]> git.saurik.com Git - bison.git/blame - doc/bison.texi
Merge branch 'maint'
[bison.git] / doc / bison.texi
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
34136e65 36Copyright @copyright{} 1988-1993, 1995, 1998-2012 Free Software
575619af 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 106* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
5e528941 112* Bibliography:: Publications cited in this manual.
f9b86351 113* Index of Terms:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 128* Locations:: Overview of location tracking.
f5f419de
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
8a4281b9 134Writing GLR Parsers
fa7e68c3 135
8a4281b9
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 140* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
24ec0837
AD
166* Rpcalc Input:: Explanation of the @code{input} nonterminal
167* Rpcalc Line:: Explanation of the @code{line} nonterminal
168* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
181* Mfcalc Lexer:: The lexical analyzer.
182* Mfcalc Main:: The controlling function.
bfa74976
RS
183
184Bison Grammar Files
185
303834cc
JD
186* Grammar Outline:: Overall layout of the grammar file.
187* Symbols:: Terminal and nonterminal symbols.
188* Rules:: How to write grammar rules.
189* Recursion:: Writing recursive rules.
190* Semantics:: Semantic values and actions.
191* Tracking Locations:: Locations and actions.
192* Named References:: Using named references in actions.
193* Declarations:: All kinds of Bison declarations are described here.
194* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
195
196Outline of a Bison Grammar
197
f5f419de 198* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 199* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
200* Bison Declarations:: Syntax and usage of the Bison declarations section.
201* Grammar Rules:: Syntax and usage of the grammar rules section.
202* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
203
204Defining Language Semantics
205
206* Value Type:: Specifying one data type for all semantic values.
207* Multiple Types:: Specifying several alternative data types.
208* Actions:: An action is the semantic definition of a grammar rule.
209* Action Types:: Specifying data types for actions to operate on.
210* Mid-Rule Actions:: Most actions go at the end of a rule.
211 This says when, why and how to use the exceptional
212 action in the middle of a rule.
213
93dd49ab
PE
214Tracking Locations
215
216* Location Type:: Specifying a data type for locations.
217* Actions and Locations:: Using locations in actions.
218* Location Default Action:: Defining a general way to compute locations.
219
bfa74976
RS
220Bison Declarations
221
b50d2359 222* Require Decl:: Requiring a Bison version.
bfa74976
RS
223* Token Decl:: Declaring terminal symbols.
224* Precedence Decl:: Declaring terminals with precedence and associativity.
225* Union Decl:: Declaring the set of all semantic value types.
226* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 227* Initial Action Decl:: Code run before parsing starts.
72f889cc 228* Destructor Decl:: Declaring how symbols are freed.
93c150b6 229* Printer Decl:: Declaring how symbol values are displayed.
d6328241 230* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
231* Start Decl:: Specifying the start symbol.
232* Pure Decl:: Requesting a reentrant parser.
9987d1b3 233* Push Decl:: Requesting a push parser.
bfa74976 234* Decl Summary:: Table of all Bison declarations.
35c1e5f0 235* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 236* %code Summary:: Inserting code into the parser source.
bfa74976
RS
237
238Parser C-Language Interface
239
f5f419de
DJ
240* Parser Function:: How to call @code{yyparse} and what it returns.
241* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
242* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
243* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
244* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
245* Lexical:: You must supply a function @code{yylex}
246 which reads tokens.
247* Error Reporting:: You must supply a function @code{yyerror}.
248* Action Features:: Special features for use in actions.
249* Internationalization:: How to let the parser speak in the user's
250 native language.
bfa74976
RS
251
252The Lexical Analyzer Function @code{yylex}
253
254* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
255* Token Values:: How @code{yylex} must return the semantic value
256 of the token it has read.
257* Token Locations:: How @code{yylex} must return the text location
258 (line number, etc.) of the token, if the
259 actions want that.
260* Pure Calling:: How the calling convention differs in a pure parser
261 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 262
13863333 263The Bison Parser Algorithm
bfa74976 264
742e4900 265* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
266* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
267* Precedence:: Operator precedence works by resolving conflicts.
268* Contextual Precedence:: When an operator's precedence depends on context.
269* Parser States:: The parser is a finite-state-machine with stack.
270* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 271* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 272* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 273* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 274* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
275
276Operator Precedence
277
278* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
279* Using Precedence:: How to specify precedence and associativity.
280* Precedence Only:: How to specify precedence only.
bfa74976
RS
281* Precedence Examples:: How these features are used in the previous example.
282* How Precedence:: How they work.
283
7fceb615
JD
284Tuning LR
285
286* LR Table Construction:: Choose a different construction algorithm.
287* Default Reductions:: Disable default reductions.
288* LAC:: Correct lookahead sets in the parser states.
289* Unreachable States:: Keep unreachable parser states for debugging.
290
bfa74976
RS
291Handling Context Dependencies
292
293* Semantic Tokens:: Token parsing can depend on the semantic context.
294* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
295* Tie-in Recovery:: Lexical tie-ins have implications for how
296 error recovery rules must be written.
297
93dd49ab 298Debugging Your Parser
ec3bc396
AD
299
300* Understanding:: Understanding the structure of your parser.
301* Tracing:: Tracing the execution of your parser.
302
93c150b6
AD
303Tracing Your Parser
304
305* Enabling Traces:: Activating run-time trace support
306* Mfcalc Traces:: Extending @code{mfcalc} to support traces
307* The YYPRINT Macro:: Obsolete interface for semantic value reports
308
bfa74976
RS
309Invoking Bison
310
13863333 311* Bison Options:: All the options described in detail,
c827f760 312 in alphabetical order by short options.
bfa74976 313* Option Cross Key:: Alphabetical list of long options.
93dd49ab 314* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 315
8405b70c 316Parsers Written In Other Languages
12545799
AD
317
318* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 319* Java Parsers:: The interface to generate Java parser classes
12545799
AD
320
321C++ Parsers
322
323* C++ Bison Interface:: Asking for C++ parser generation
324* C++ Semantic Values:: %union vs. C++
325* C++ Location Values:: The position and location classes
326* C++ Parser Interface:: Instantiating and running the parser
327* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 328* A Complete C++ Example:: Demonstrating their use
12545799 329
936c88d1
AD
330C++ Location Values
331
332* C++ position:: One point in the source file
333* C++ location:: Two points in the source file
334
12545799
AD
335A Complete C++ Example
336
337* Calc++ --- C++ Calculator:: The specifications
338* Calc++ Parsing Driver:: An active parsing context
339* Calc++ Parser:: A parser class
340* Calc++ Scanner:: A pure C++ Flex scanner
341* Calc++ Top Level:: Conducting the band
342
8405b70c
PB
343Java Parsers
344
f5f419de
DJ
345* Java Bison Interface:: Asking for Java parser generation
346* Java Semantic Values:: %type and %token vs. Java
347* Java Location Values:: The position and location classes
348* Java Parser Interface:: Instantiating and running the parser
349* Java Scanner Interface:: Specifying the scanner for the parser
350* Java Action Features:: Special features for use in actions
351* Java Differences:: Differences between C/C++ and Java Grammars
352* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 353
d1a1114f
AD
354Frequently Asked Questions
355
f5f419de
DJ
356* Memory Exhausted:: Breaking the Stack Limits
357* How Can I Reset the Parser:: @code{yyparse} Keeps some State
358* Strings are Destroyed:: @code{yylval} Loses Track of Strings
359* Implementing Gotos/Loops:: Control Flow in the Calculator
360* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 361* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
362* I can't build Bison:: Troubleshooting
363* Where can I find help?:: Troubleshouting
364* Bug Reports:: Troublereporting
365* More Languages:: Parsers in C++, Java, and so on
366* Beta Testing:: Experimenting development versions
367* Mailing Lists:: Meeting other Bison users
d1a1114f 368
f2b5126e
PB
369Copying This Manual
370
f5f419de 371* Copying This Manual:: License for copying this manual.
f2b5126e 372
342b8b6e 373@end detailmenu
bfa74976
RS
374@end menu
375
342b8b6e 376@node Introduction
bfa74976
RS
377@unnumbered Introduction
378@cindex introduction
379
6077da58 380@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
381annotated context-free grammar into a deterministic LR or generalized
382LR (GLR) parser employing LALR(1) parser tables. As an experimental
383feature, Bison can also generate IELR(1) or canonical LR(1) parser
384tables. Once you are proficient with Bison, you can use it to develop
385a wide range of language parsers, from those used in simple desk
386calculators to complex programming languages.
387
388Bison is upward compatible with Yacc: all properly-written Yacc
389grammars ought to work with Bison with no change. Anyone familiar
390with Yacc should be able to use Bison with little trouble. You need
391to be fluent in C or C++ programming in order to use Bison or to
392understand this manual. Java is also supported as an experimental
393feature.
394
395We begin with tutorial chapters that explain the basic concepts of
396using Bison and show three explained examples, each building on the
397last. If you don't know Bison or Yacc, start by reading these
398chapters. Reference chapters follow, which describe specific aspects
399of Bison in detail.
bfa74976 400
679e9935
JD
401Bison was written originally by Robert Corbett. Richard Stallman made
402it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
403added multi-character string literals and other features. Since then,
404Bison has grown more robust and evolved many other new features thanks
405to the hard work of a long list of volunteers. For details, see the
406@file{THANKS} and @file{ChangeLog} files included in the Bison
407distribution.
931c7513 408
df1af54c 409This edition corresponds to version @value{VERSION} of Bison.
bfa74976 410
342b8b6e 411@node Conditions
bfa74976
RS
412@unnumbered Conditions for Using Bison
413
193d7c70
PE
414The distribution terms for Bison-generated parsers permit using the
415parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 416permissions applied only when Bison was generating LALR(1)
193d7c70 417parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 418parsers could be used only in programs that were free software.
a31239f1 419
8a4281b9 420The other GNU programming tools, such as the GNU C
c827f760 421compiler, have never
9ecbd125 422had such a requirement. They could always be used for nonfree
a31239f1
RS
423software. The reason Bison was different was not due to a special
424policy decision; it resulted from applying the usual General Public
425License to all of the Bison source code.
426
ff7571c0
JD
427The main output of the Bison utility---the Bison parser implementation
428file---contains a verbatim copy of a sizable piece of Bison, which is
429the code for the parser's implementation. (The actions from your
430grammar are inserted into this implementation at one point, but most
431of the rest of the implementation is not changed.) When we applied
432the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
433the effect was to restrict the use of Bison output to free software.
434
435We didn't change the terms because of sympathy for people who want to
436make software proprietary. @strong{Software should be free.} But we
437concluded that limiting Bison's use to free software was doing little to
438encourage people to make other software free. So we decided to make the
439practical conditions for using Bison match the practical conditions for
8a4281b9 440using the other GNU tools.
bfa74976 441
193d7c70
PE
442This exception applies when Bison is generating code for a parser.
443You can tell whether the exception applies to a Bison output file by
444inspecting the file for text beginning with ``As a special
445exception@dots{}''. The text spells out the exact terms of the
446exception.
262aa8dd 447
f16b0819
PE
448@node Copying
449@unnumbered GNU GENERAL PUBLIC LICENSE
450@include gpl-3.0.texi
bfa74976 451
342b8b6e 452@node Concepts
bfa74976
RS
453@chapter The Concepts of Bison
454
455This chapter introduces many of the basic concepts without which the
456details of Bison will not make sense. If you do not already know how to
457use Bison or Yacc, we suggest you start by reading this chapter carefully.
458
459@menu
f5f419de
DJ
460* Language and Grammar:: Languages and context-free grammars,
461 as mathematical ideas.
462* Grammar in Bison:: How we represent grammars for Bison's sake.
463* Semantic Values:: Each token or syntactic grouping can have
464 a semantic value (the value of an integer,
465 the name of an identifier, etc.).
466* Semantic Actions:: Each rule can have an action containing C code.
467* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 468* Locations:: Overview of location tracking.
f5f419de
DJ
469* Bison Parser:: What are Bison's input and output,
470 how is the output used?
471* Stages:: Stages in writing and running Bison grammars.
472* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
473@end menu
474
342b8b6e 475@node Language and Grammar
bfa74976
RS
476@section Languages and Context-Free Grammars
477
bfa74976
RS
478@cindex context-free grammar
479@cindex grammar, context-free
480In order for Bison to parse a language, it must be described by a
481@dfn{context-free grammar}. This means that you specify one or more
482@dfn{syntactic groupings} and give rules for constructing them from their
483parts. For example, in the C language, one kind of grouping is called an
484`expression'. One rule for making an expression might be, ``An expression
485can be made of a minus sign and another expression''. Another would be,
486``An expression can be an integer''. As you can see, rules are often
487recursive, but there must be at least one rule which leads out of the
488recursion.
489
8a4281b9 490@cindex BNF
bfa74976
RS
491@cindex Backus-Naur form
492The most common formal system for presenting such rules for humans to read
8a4281b9 493is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 494order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
495BNF is a context-free grammar. The input to Bison is
496essentially machine-readable BNF.
bfa74976 497
7fceb615
JD
498@cindex LALR grammars
499@cindex IELR grammars
500@cindex LR grammars
501There are various important subclasses of context-free grammars. Although
502it can handle almost all context-free grammars, Bison is optimized for what
503are called LR(1) grammars. In brief, in these grammars, it must be possible
504to tell how to parse any portion of an input string with just a single token
505of lookahead. For historical reasons, Bison by default is limited by the
506additional restrictions of LALR(1), which is hard to explain simply.
cc09e5be
JD
507@xref{Mysterious Conflicts}, for more information on this. As an
508experimental feature, you can escape these additional restrictions by
509requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
510Construction}, to learn how.
bfa74976 511
8a4281b9
JD
512@cindex GLR parsing
513@cindex generalized LR (GLR) parsing
676385e2 514@cindex ambiguous grammars
9d9b8b70 515@cindex nondeterministic parsing
9501dc6e 516
8a4281b9 517Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
518roughly that the next grammar rule to apply at any point in the input is
519uniquely determined by the preceding input and a fixed, finite portion
742e4900 520(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 521grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 522apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 523grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 524lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 525With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
526general context-free grammars, using a technique known as GLR
527parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
528are able to handle any context-free grammar for which the number of
529possible parses of any given string is finite.
676385e2 530
bfa74976
RS
531@cindex symbols (abstract)
532@cindex token
533@cindex syntactic grouping
534@cindex grouping, syntactic
9501dc6e
AD
535In the formal grammatical rules for a language, each kind of syntactic
536unit or grouping is named by a @dfn{symbol}. Those which are built by
537grouping smaller constructs according to grammatical rules are called
bfa74976
RS
538@dfn{nonterminal symbols}; those which can't be subdivided are called
539@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
540corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 541corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
542
543We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
544nonterminal, mean. The tokens of C are identifiers, constants (numeric
545and string), and the various keywords, arithmetic operators and
546punctuation marks. So the terminal symbols of a grammar for C include
547`identifier', `number', `string', plus one symbol for each keyword,
548operator or punctuation mark: `if', `return', `const', `static', `int',
549`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
550(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
551lexicography, not grammar.)
552
553Here is a simple C function subdivided into tokens:
554
9edcd895
AD
555@example
556int /* @r{keyword `int'} */
14d4662b 557square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
558 @r{identifier, close-paren} */
559@{ /* @r{open-brace} */
aa08666d
AD
560 return x * x; /* @r{keyword `return', identifier, asterisk,}
561 @r{identifier, semicolon} */
9edcd895
AD
562@} /* @r{close-brace} */
563@end example
bfa74976
RS
564
565The syntactic groupings of C include the expression, the statement, the
566declaration, and the function definition. These are represented in the
567grammar of C by nonterminal symbols `expression', `statement',
568`declaration' and `function definition'. The full grammar uses dozens of
569additional language constructs, each with its own nonterminal symbol, in
570order to express the meanings of these four. The example above is a
571function definition; it contains one declaration, and one statement. In
572the statement, each @samp{x} is an expression and so is @samp{x * x}.
573
574Each nonterminal symbol must have grammatical rules showing how it is made
575out of simpler constructs. For example, one kind of C statement is the
576@code{return} statement; this would be described with a grammar rule which
577reads informally as follows:
578
579@quotation
580A `statement' can be made of a `return' keyword, an `expression' and a
581`semicolon'.
582@end quotation
583
584@noindent
585There would be many other rules for `statement', one for each kind of
586statement in C.
587
588@cindex start symbol
589One nonterminal symbol must be distinguished as the special one which
590defines a complete utterance in the language. It is called the @dfn{start
591symbol}. In a compiler, this means a complete input program. In the C
592language, the nonterminal symbol `sequence of definitions and declarations'
593plays this role.
594
595For example, @samp{1 + 2} is a valid C expression---a valid part of a C
596program---but it is not valid as an @emph{entire} C program. In the
597context-free grammar of C, this follows from the fact that `expression' is
598not the start symbol.
599
600The Bison parser reads a sequence of tokens as its input, and groups the
601tokens using the grammar rules. If the input is valid, the end result is
602that the entire token sequence reduces to a single grouping whose symbol is
603the grammar's start symbol. If we use a grammar for C, the entire input
604must be a `sequence of definitions and declarations'. If not, the parser
605reports a syntax error.
606
342b8b6e 607@node Grammar in Bison
bfa74976
RS
608@section From Formal Rules to Bison Input
609@cindex Bison grammar
610@cindex grammar, Bison
611@cindex formal grammar
612
613A formal grammar is a mathematical construct. To define the language
614for Bison, you must write a file expressing the grammar in Bison syntax:
615a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
616
617A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 618as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
619in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
620
621The Bison representation for a terminal symbol is also called a @dfn{token
622type}. Token types as well can be represented as C-like identifiers. By
623convention, these identifiers should be upper case to distinguish them from
624nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
625@code{RETURN}. A terminal symbol that stands for a particular keyword in
626the language should be named after that keyword converted to upper case.
627The terminal symbol @code{error} is reserved for error recovery.
931c7513 628@xref{Symbols}.
bfa74976
RS
629
630A terminal symbol can also be represented as a character literal, just like
631a C character constant. You should do this whenever a token is just a
632single character (parenthesis, plus-sign, etc.): use that same character in
633a literal as the terminal symbol for that token.
634
931c7513
RS
635A third way to represent a terminal symbol is with a C string constant
636containing several characters. @xref{Symbols}, for more information.
637
bfa74976
RS
638The grammar rules also have an expression in Bison syntax. For example,
639here is the Bison rule for a C @code{return} statement. The semicolon in
640quotes is a literal character token, representing part of the C syntax for
641the statement; the naked semicolon, and the colon, are Bison punctuation
642used in every rule.
643
644@example
5e9b6624 645stmt: RETURN expr ';' ;
bfa74976
RS
646@end example
647
648@noindent
649@xref{Rules, ,Syntax of Grammar Rules}.
650
342b8b6e 651@node Semantic Values
bfa74976
RS
652@section Semantic Values
653@cindex semantic value
654@cindex value, semantic
655
656A formal grammar selects tokens only by their classifications: for example,
657if a rule mentions the terminal symbol `integer constant', it means that
658@emph{any} integer constant is grammatically valid in that position. The
659precise value of the constant is irrelevant to how to parse the input: if
660@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 661grammatical.
bfa74976
RS
662
663But the precise value is very important for what the input means once it is
664parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6653989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
666has both a token type and a @dfn{semantic value}. @xref{Semantics,
667,Defining Language Semantics},
bfa74976
RS
668for details.
669
670The token type is a terminal symbol defined in the grammar, such as
671@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
672you need to know to decide where the token may validly appear and how to
673group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 674except their types.
bfa74976
RS
675
676The semantic value has all the rest of the information about the
677meaning of the token, such as the value of an integer, or the name of an
678identifier. (A token such as @code{','} which is just punctuation doesn't
679need to have any semantic value.)
680
681For example, an input token might be classified as token type
682@code{INTEGER} and have the semantic value 4. Another input token might
683have the same token type @code{INTEGER} but value 3989. When a grammar
684rule says that @code{INTEGER} is allowed, either of these tokens is
685acceptable because each is an @code{INTEGER}. When the parser accepts the
686token, it keeps track of the token's semantic value.
687
688Each grouping can also have a semantic value as well as its nonterminal
689symbol. For example, in a calculator, an expression typically has a
690semantic value that is a number. In a compiler for a programming
691language, an expression typically has a semantic value that is a tree
692structure describing the meaning of the expression.
693
342b8b6e 694@node Semantic Actions
bfa74976
RS
695@section Semantic Actions
696@cindex semantic actions
697@cindex actions, semantic
698
699In order to be useful, a program must do more than parse input; it must
700also produce some output based on the input. In a Bison grammar, a grammar
701rule can have an @dfn{action} made up of C statements. Each time the
702parser recognizes a match for that rule, the action is executed.
703@xref{Actions}.
13863333 704
bfa74976
RS
705Most of the time, the purpose of an action is to compute the semantic value
706of the whole construct from the semantic values of its parts. For example,
707suppose we have a rule which says an expression can be the sum of two
708expressions. When the parser recognizes such a sum, each of the
709subexpressions has a semantic value which describes how it was built up.
710The action for this rule should create a similar sort of value for the
711newly recognized larger expression.
712
713For example, here is a rule that says an expression can be the sum of
714two subexpressions:
715
716@example
5e9b6624 717expr: expr '+' expr @{ $$ = $1 + $3; @} ;
bfa74976
RS
718@end example
719
720@noindent
721The action says how to produce the semantic value of the sum expression
722from the values of the two subexpressions.
723
676385e2 724@node GLR Parsers
8a4281b9
JD
725@section Writing GLR Parsers
726@cindex GLR parsing
727@cindex generalized LR (GLR) parsing
676385e2
PH
728@findex %glr-parser
729@cindex conflicts
730@cindex shift/reduce conflicts
fa7e68c3 731@cindex reduce/reduce conflicts
676385e2 732
eb45ef3b 733In some grammars, Bison's deterministic
8a4281b9 734LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
735certain grammar rule at a given point. That is, it may not be able to
736decide (on the basis of the input read so far) which of two possible
737reductions (applications of a grammar rule) applies, or whether to apply
738a reduction or read more of the input and apply a reduction later in the
739input. These are known respectively as @dfn{reduce/reduce} conflicts
740(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
741(@pxref{Shift/Reduce}).
742
8a4281b9 743To use a grammar that is not easily modified to be LR(1), a
9501dc6e 744more general parsing algorithm is sometimes necessary. If you include
676385e2 745@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
746(@pxref{Grammar Outline}), the result is a Generalized LR
747(GLR) parser. These parsers handle Bison grammars that
9501dc6e 748contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 749declarations) identically to deterministic parsers. However, when
9501dc6e 750faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 751GLR parsers use the simple expedient of doing both,
9501dc6e
AD
752effectively cloning the parser to follow both possibilities. Each of
753the resulting parsers can again split, so that at any given time, there
754can be any number of possible parses being explored. The parsers
676385e2
PH
755proceed in lockstep; that is, all of them consume (shift) a given input
756symbol before any of them proceed to the next. Each of the cloned
757parsers eventually meets one of two possible fates: either it runs into
758a parsing error, in which case it simply vanishes, or it merges with
759another parser, because the two of them have reduced the input to an
760identical set of symbols.
761
762During the time that there are multiple parsers, semantic actions are
763recorded, but not performed. When a parser disappears, its recorded
764semantic actions disappear as well, and are never performed. When a
765reduction makes two parsers identical, causing them to merge, Bison
766records both sets of semantic actions. Whenever the last two parsers
767merge, reverting to the single-parser case, Bison resolves all the
768outstanding actions either by precedences given to the grammar rules
769involved, or by performing both actions, and then calling a designated
770user-defined function on the resulting values to produce an arbitrary
771merged result.
772
fa7e68c3 773@menu
8a4281b9
JD
774* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
775* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 776* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 777* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 778* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
779@end menu
780
781@node Simple GLR Parsers
8a4281b9
JD
782@subsection Using GLR on Unambiguous Grammars
783@cindex GLR parsing, unambiguous grammars
784@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
785@findex %glr-parser
786@findex %expect-rr
787@cindex conflicts
788@cindex reduce/reduce conflicts
789@cindex shift/reduce conflicts
790
8a4281b9
JD
791In the simplest cases, you can use the GLR algorithm
792to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 793Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
794
795Consider a problem that
796arises in the declaration of enumerated and subrange types in the
797programming language Pascal. Here are some examples:
798
799@example
800type subrange = lo .. hi;
801type enum = (a, b, c);
802@end example
803
804@noindent
805The original language standard allows only numeric
806literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 807and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
80810206) and many other
809Pascal implementations allow arbitrary expressions there. This gives
810rise to the following situation, containing a superfluous pair of
811parentheses:
812
813@example
814type subrange = (a) .. b;
815@end example
816
817@noindent
818Compare this to the following declaration of an enumerated
819type with only one value:
820
821@example
822type enum = (a);
823@end example
824
825@noindent
826(These declarations are contrived, but they are syntactically
827valid, and more-complicated cases can come up in practical programs.)
828
829These two declarations look identical until the @samp{..} token.
8a4281b9 830With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
831possible to decide between the two forms when the identifier
832@samp{a} is parsed. It is, however, desirable
833for a parser to decide this, since in the latter case
834@samp{a} must become a new identifier to represent the enumeration
835value, while in the former case @samp{a} must be evaluated with its
836current meaning, which may be a constant or even a function call.
837
838You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
839to be resolved later, but this typically requires substantial
840contortions in both semantic actions and large parts of the
841grammar, where the parentheses are nested in the recursive rules for
842expressions.
843
844You might think of using the lexer to distinguish between the two
845forms by returning different tokens for currently defined and
846undefined identifiers. But if these declarations occur in a local
847scope, and @samp{a} is defined in an outer scope, then both forms
848are possible---either locally redefining @samp{a}, or using the
849value of @samp{a} from the outer scope. So this approach cannot
850work.
851
e757bb10 852A simple solution to this problem is to declare the parser to
8a4281b9
JD
853use the GLR algorithm.
854When the GLR parser reaches the critical state, it
fa7e68c3
PE
855merely splits into two branches and pursues both syntax rules
856simultaneously. Sooner or later, one of them runs into a parsing
857error. If there is a @samp{..} token before the next
858@samp{;}, the rule for enumerated types fails since it cannot
859accept @samp{..} anywhere; otherwise, the subrange type rule
860fails since it requires a @samp{..} token. So one of the branches
861fails silently, and the other one continues normally, performing
862all the intermediate actions that were postponed during the split.
863
864If the input is syntactically incorrect, both branches fail and the parser
865reports a syntax error as usual.
866
867The effect of all this is that the parser seems to ``guess'' the
868correct branch to take, or in other words, it seems to use more
8a4281b9
JD
869lookahead than the underlying LR(1) algorithm actually allows
870for. In this example, LR(2) would suffice, but also some cases
871that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 872
8a4281b9 873In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
874and the current Bison parser even takes exponential time and space
875for some grammars. In practice, this rarely happens, and for many
876grammars it is possible to prove that it cannot happen.
877The present example contains only one conflict between two
878rules, and the type-declaration context containing the conflict
879cannot be nested. So the number of
880branches that can exist at any time is limited by the constant 2,
881and the parsing time is still linear.
882
883Here is a Bison grammar corresponding to the example above. It
884parses a vastly simplified form of Pascal type declarations.
885
886@example
887%token TYPE DOTDOT ID
888
889@group
890%left '+' '-'
891%left '*' '/'
892@end group
893
894%%
895
896@group
5e9b6624 897type_decl: TYPE ID '=' type ';' ;
fa7e68c3
PE
898@end group
899
900@group
5e9b6624
AD
901type:
902 '(' id_list ')'
903| expr DOTDOT expr
904;
fa7e68c3
PE
905@end group
906
907@group
5e9b6624
AD
908id_list:
909 ID
910| id_list ',' ID
911;
fa7e68c3
PE
912@end group
913
914@group
5e9b6624
AD
915expr:
916 '(' expr ')'
917| expr '+' expr
918| expr '-' expr
919| expr '*' expr
920| expr '/' expr
921| ID
922;
fa7e68c3
PE
923@end group
924@end example
925
8a4281b9 926When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
927about one reduce/reduce conflict. In the conflicting situation the
928parser chooses one of the alternatives, arbitrarily the one
929declared first. Therefore the following correct input is not
930recognized:
931
932@example
933type t = (a) .. b;
934@end example
935
8a4281b9 936The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
937to be silent about the one known reduce/reduce conflict, by adding
938these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
939@samp{%%}):
940
941@example
942%glr-parser
943%expect-rr 1
944@end example
945
946@noindent
947No change in the grammar itself is required. Now the
948parser recognizes all valid declarations, according to the
949limited syntax above, transparently. In fact, the user does not even
950notice when the parser splits.
951
8a4281b9 952So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
953almost without disadvantages. Even in simple cases like this, however,
954there are at least two potential problems to beware. First, always
8a4281b9
JD
955analyze the conflicts reported by Bison to make sure that GLR
956splitting is only done where it is intended. A GLR parser
f8e1c9e5 957splitting inadvertently may cause problems less obvious than an
8a4281b9 958LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
959conflict. Second, consider interactions with the lexer (@pxref{Semantic
960Tokens}) with great care. Since a split parser consumes tokens without
961performing any actions during the split, the lexer cannot obtain
962information via parser actions. Some cases of lexer interactions can be
8a4281b9 963eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
964lexer to the parser. You must check the remaining cases for
965correctness.
966
967In our example, it would be safe for the lexer to return tokens based on
968their current meanings in some symbol table, because no new symbols are
969defined in the middle of a type declaration. Though it is possible for
970a parser to define the enumeration constants as they are parsed, before
971the type declaration is completed, it actually makes no difference since
972they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
973
974@node Merging GLR Parses
8a4281b9
JD
975@subsection Using GLR to Resolve Ambiguities
976@cindex GLR parsing, ambiguous grammars
977@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
978@findex %dprec
979@findex %merge
980@cindex conflicts
981@cindex reduce/reduce conflicts
982
2a8d363a 983Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
984
985@example
986%@{
38a92d50
PE
987 #include <stdio.h>
988 #define YYSTYPE char const *
989 int yylex (void);
990 void yyerror (char const *);
676385e2
PH
991%@}
992
993%token TYPENAME ID
994
995%right '='
996%left '+'
997
998%glr-parser
999
1000%%
1001
5e9b6624
AD
1002prog:
1003 /* Nothing. */
1004| prog stmt @{ printf ("\n"); @}
1005;
676385e2 1006
5e9b6624
AD
1007stmt:
1008 expr ';' %dprec 1
1009| decl %dprec 2
1010;
676385e2 1011
5e9b6624
AD
1012expr:
1013 ID @{ printf ("%s ", $$); @}
1014| TYPENAME '(' expr ')'
1015 @{ printf ("%s <cast> ", $1); @}
1016| expr '+' expr @{ printf ("+ "); @}
1017| expr '=' expr @{ printf ("= "); @}
1018;
676385e2 1019
5e9b6624
AD
1020decl:
1021 TYPENAME declarator ';'
1022 @{ printf ("%s <declare> ", $1); @}
1023| TYPENAME declarator '=' expr ';'
1024 @{ printf ("%s <init-declare> ", $1); @}
1025;
676385e2 1026
5e9b6624
AD
1027declarator:
1028 ID @{ printf ("\"%s\" ", $1); @}
1029| '(' declarator ')'
1030;
676385e2
PH
1031@end example
1032
1033@noindent
1034This models a problematic part of the C++ grammar---the ambiguity between
1035certain declarations and statements. For example,
1036
1037@example
1038T (x) = y+z;
1039@end example
1040
1041@noindent
1042parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1043(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1044@samp{x} as an @code{ID}).
676385e2 1045Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1046@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1047time it encounters @code{x} in the example above. Since this is a
8a4281b9 1048GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1049each choice of resolving the reduce/reduce conflict.
1050Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1051however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1052ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1053the other reduces @code{stmt : decl}, after which both parsers are in an
1054identical state: they've seen @samp{prog stmt} and have the same unprocessed
1055input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1056
8a4281b9 1057At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1058grammar of how to choose between the competing parses.
1059In the example above, the two @code{%dprec}
e757bb10 1060declarations specify that Bison is to give precedence
fa7e68c3 1061to the parse that interprets the example as a
676385e2
PH
1062@code{decl}, which implies that @code{x} is a declarator.
1063The parser therefore prints
1064
1065@example
fae437e8 1066"x" y z + T <init-declare>
676385e2
PH
1067@end example
1068
fa7e68c3
PE
1069The @code{%dprec} declarations only come into play when more than one
1070parse survives. Consider a different input string for this parser:
676385e2
PH
1071
1072@example
1073T (x) + y;
1074@end example
1075
1076@noindent
8a4281b9 1077This is another example of using GLR to parse an unambiguous
fa7e68c3 1078construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1079Here, there is no ambiguity (this cannot be parsed as a declaration).
1080However, at the time the Bison parser encounters @code{x}, it does not
1081have enough information to resolve the reduce/reduce conflict (again,
1082between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1083case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1084into two, one assuming that @code{x} is an @code{expr}, and the other
1085assuming @code{x} is a @code{declarator}. The second of these parsers
1086then vanishes when it sees @code{+}, and the parser prints
1087
1088@example
fae437e8 1089x T <cast> y +
676385e2
PH
1090@end example
1091
1092Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1093the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1094actions of the two possible parsers, rather than choosing one over the
1095other. To do so, you could change the declaration of @code{stmt} as
1096follows:
1097
1098@example
5e9b6624
AD
1099stmt:
1100 expr ';' %merge <stmtMerge>
1101| decl %merge <stmtMerge>
1102;
676385e2
PH
1103@end example
1104
1105@noindent
676385e2
PH
1106and define the @code{stmtMerge} function as:
1107
1108@example
38a92d50
PE
1109static YYSTYPE
1110stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1111@{
1112 printf ("<OR> ");
1113 return "";
1114@}
1115@end example
1116
1117@noindent
1118with an accompanying forward declaration
1119in the C declarations at the beginning of the file:
1120
1121@example
1122%@{
38a92d50 1123 #define YYSTYPE char const *
676385e2
PH
1124 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1125%@}
1126@end example
1127
1128@noindent
fa7e68c3
PE
1129With these declarations, the resulting parser parses the first example
1130as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1131
1132@example
fae437e8 1133"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1134@end example
1135
fa7e68c3 1136Bison requires that all of the
e757bb10 1137productions that participate in any particular merge have identical
fa7e68c3
PE
1138@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1139and the parser will report an error during any parse that results in
1140the offending merge.
9501dc6e 1141
32c29292
JD
1142@node GLR Semantic Actions
1143@subsection GLR Semantic Actions
1144
8a4281b9 1145The nature of GLR parsing and the structure of the generated
20be2f92
PH
1146parsers give rise to certain restrictions on semantic values and actions.
1147
1148@subsubsection Deferred semantic actions
32c29292
JD
1149@cindex deferred semantic actions
1150By definition, a deferred semantic action is not performed at the same time as
1151the associated reduction.
1152This raises caveats for several Bison features you might use in a semantic
8a4281b9 1153action in a GLR parser.
32c29292
JD
1154
1155@vindex yychar
8a4281b9 1156@cindex GLR parsers and @code{yychar}
32c29292 1157@vindex yylval
8a4281b9 1158@cindex GLR parsers and @code{yylval}
32c29292 1159@vindex yylloc
8a4281b9 1160@cindex GLR parsers and @code{yylloc}
32c29292 1161In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1162the lookahead token present at the time of the associated reduction.
32c29292
JD
1163After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1164you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1165lookahead token's semantic value and location, if any.
32c29292
JD
1166In a nondeferred semantic action, you can also modify any of these variables to
1167influence syntax analysis.
742e4900 1168@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1169
1170@findex yyclearin
8a4281b9 1171@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1172In a deferred semantic action, it's too late to influence syntax analysis.
1173In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1174shallow copies of the values they had at the time of the associated reduction.
1175For this reason alone, modifying them is dangerous.
1176Moreover, the result of modifying them is undefined and subject to change with
1177future versions of Bison.
1178For example, if a semantic action might be deferred, you should never write it
1179to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1180memory referenced by @code{yylval}.
1181
20be2f92 1182@subsubsection YYERROR
32c29292 1183@findex YYERROR
8a4281b9 1184@cindex GLR parsers and @code{YYERROR}
32c29292 1185Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1186(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1187initiate error recovery.
8a4281b9 1188During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1189the same as its effect in a deterministic parser.
411614fa
JM
1190The effect in a deferred action is similar, but the precise point of the
1191error is undefined; instead, the parser reverts to deterministic operation,
20be2f92
PH
1192selecting an unspecified stack on which to continue with a syntax error.
1193In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1194parsing, @code{YYERROR} silently prunes
1195the parse that invoked the test.
1196
1197@subsubsection Restrictions on semantic values and locations
8a4281b9 1198GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1199semantic values and location types when using the generated parsers as
1200C++ code.
8710fc41 1201
ca2a6d15
PH
1202@node Semantic Predicates
1203@subsection Controlling a Parse with Arbitrary Predicates
1204@findex %?
8a4281b9 1205@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1206
1207In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1208GLR parsers
ca2a6d15
PH
1209allow you to reject parses on the basis of arbitrary computations executed
1210in user code, without having Bison treat this rejection as an error
1211if there are alternative parses. (This feature is experimental and may
1212evolve. We welcome user feedback.) For example,
1213
c93f22fc
AD
1214@example
1215widget:
5e9b6624
AD
1216 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1217| %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1218;
c93f22fc 1219@end example
ca2a6d15
PH
1220
1221@noindent
411614fa 1222is one way to allow the same parser to handle two different syntaxes for
ca2a6d15
PH
1223widgets. The clause preceded by @code{%?} is treated like an ordinary
1224action, except that its text is treated as an expression and is always
411614fa 1225evaluated immediately (even when in nondeterministic mode). If the
ca2a6d15 1226expression yields 0 (false), the clause is treated as a syntax error,
411614fa 1227which, in a nondeterministic parser, causes the stack in which it is reduced
ca2a6d15
PH
1228to die. In a deterministic parser, it acts like YYERROR.
1229
1230As the example shows, predicates otherwise look like semantic actions, and
1231therefore you must be take them into account when determining the numbers
1232to use for denoting the semantic values of right-hand side symbols.
1233Predicate actions, however, have no defined value, and may not be given
1234labels.
1235
1236There is a subtle difference between semantic predicates and ordinary
1237actions in nondeterministic mode, since the latter are deferred.
411614fa 1238For example, we could try to rewrite the previous example as
ca2a6d15 1239
c93f22fc
AD
1240@example
1241widget:
5e9b6624
AD
1242 @{ if (!new_syntax) YYERROR; @}
1243 "widget" id new_args @{ $$ = f($3, $4); @}
1244| @{ if (new_syntax) YYERROR; @}
1245 "widget" id old_args @{ $$ = f($3, $4); @}
1246;
c93f22fc 1247@end example
ca2a6d15
PH
1248
1249@noindent
1250(reversing the sense of the predicate tests to cause an error when they are
1251false). However, this
1252does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1253have overlapping syntax.
411614fa 1254Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1255a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1256for cases where @code{new_args} and @code{old_args} recognize the same string
1257@emph{before} performing the tests of @code{new_syntax}. It therefore
1258reports an error.
1259
1260Finally, be careful in writing predicates: deferred actions have not been
1261evaluated, so that using them in a predicate will have undefined effects.
1262
fa7e68c3 1263@node Compiler Requirements
8a4281b9 1264@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1265@cindex @code{inline}
8a4281b9 1266@cindex GLR parsers and @code{inline}
fa7e68c3 1267
8a4281b9 1268The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1269later. In addition, they use the @code{inline} keyword, which is not
1270C89, but is C99 and is a common extension in pre-C99 compilers. It is
1271up to the user of these parsers to handle
9501dc6e
AD
1272portability issues. For instance, if using Autoconf and the Autoconf
1273macro @code{AC_C_INLINE}, a mere
1274
1275@example
1276%@{
38a92d50 1277 #include <config.h>
9501dc6e
AD
1278%@}
1279@end example
1280
1281@noindent
1282will suffice. Otherwise, we suggest
1283
1284@example
1285%@{
aaaa2aae
AD
1286 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1287 && ! defined inline)
1288 # define inline
38a92d50 1289 #endif
9501dc6e
AD
1290%@}
1291@end example
676385e2 1292
1769eb30 1293@node Locations
847bf1f5
AD
1294@section Locations
1295@cindex location
95923bd6
AD
1296@cindex textual location
1297@cindex location, textual
847bf1f5
AD
1298
1299Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1300and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1301the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1302Bison provides a mechanism for handling these locations.
1303
72d2299c 1304Each token has a semantic value. In a similar fashion, each token has an
303834cc
JD
1305associated location, but the type of locations is the same for all tokens
1306and groupings. Moreover, the output parser is equipped with a default data
1307structure for storing locations (@pxref{Tracking Locations}, for more
1308details).
847bf1f5
AD
1309
1310Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1311set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1312is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1313@code{@@3}.
1314
1315When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1316of its left hand side (@pxref{Actions}). In the same way, another default
1317action is used for locations. However, the action for locations is general
847bf1f5 1318enough for most cases, meaning there is usually no need to describe for each
72d2299c 1319rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1320grouping, the default behavior of the output parser is to take the beginning
1321of the first symbol, and the end of the last symbol.
1322
342b8b6e 1323@node Bison Parser
ff7571c0 1324@section Bison Output: the Parser Implementation File
bfa74976
RS
1325@cindex Bison parser
1326@cindex Bison utility
1327@cindex lexical analyzer, purpose
1328@cindex parser
1329
ff7571c0
JD
1330When you run Bison, you give it a Bison grammar file as input. The
1331most important output is a C source file that implements a parser for
1332the language described by the grammar. This parser is called a
1333@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1334implementation file}. Keep in mind that the Bison utility and the
1335Bison parser are two distinct programs: the Bison utility is a program
1336whose output is the Bison parser implementation file that becomes part
1337of your program.
bfa74976
RS
1338
1339The job of the Bison parser is to group tokens into groupings according to
1340the grammar rules---for example, to build identifiers and operators into
1341expressions. As it does this, it runs the actions for the grammar rules it
1342uses.
1343
704a47c4
AD
1344The tokens come from a function called the @dfn{lexical analyzer} that
1345you must supply in some fashion (such as by writing it in C). The Bison
1346parser calls the lexical analyzer each time it wants a new token. It
1347doesn't know what is ``inside'' the tokens (though their semantic values
1348may reflect this). Typically the lexical analyzer makes the tokens by
1349parsing characters of text, but Bison does not depend on this.
1350@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1351
ff7571c0
JD
1352The Bison parser implementation file is C code which defines a
1353function named @code{yyparse} which implements that grammar. This
1354function does not make a complete C program: you must supply some
1355additional functions. One is the lexical analyzer. Another is an
1356error-reporting function which the parser calls to report an error.
1357In addition, a complete C program must start with a function called
1358@code{main}; you have to provide this, and arrange for it to call
1359@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1360C-Language Interface}.
bfa74976 1361
f7ab6a50 1362Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1363write, all symbols defined in the Bison parser implementation file
1364itself begin with @samp{yy} or @samp{YY}. This includes interface
1365functions such as the lexical analyzer function @code{yylex}, the
1366error reporting function @code{yyerror} and the parser function
1367@code{yyparse} itself. This also includes numerous identifiers used
1368for internal purposes. Therefore, you should avoid using C
1369identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1370file except for the ones defined in this manual. Also, you should
1371avoid using the C identifiers @samp{malloc} and @samp{free} for
1372anything other than their usual meanings.
1373
1374In some cases the Bison parser implementation file includes system
1375headers, and in those cases your code should respect the identifiers
1376reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1377@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1378included as needed to declare memory allocators and related types.
1379@code{<libintl.h>} is included if message translation is in use
1380(@pxref{Internationalization}). Other system headers may be included
1381if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1382,Tracing Your Parser}).
7093d0f5 1383
342b8b6e 1384@node Stages
bfa74976
RS
1385@section Stages in Using Bison
1386@cindex stages in using Bison
1387@cindex using Bison
1388
1389The actual language-design process using Bison, from grammar specification
1390to a working compiler or interpreter, has these parts:
1391
1392@enumerate
1393@item
1394Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1395(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1396in the language, describe the action that is to be taken when an
1397instance of that rule is recognized. The action is described by a
1398sequence of C statements.
bfa74976
RS
1399
1400@item
704a47c4
AD
1401Write a lexical analyzer to process input and pass tokens to the parser.
1402The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1403Lexical Analyzer Function @code{yylex}}). It could also be produced
1404using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1405
1406@item
1407Write a controlling function that calls the Bison-produced parser.
1408
1409@item
1410Write error-reporting routines.
1411@end enumerate
1412
1413To turn this source code as written into a runnable program, you
1414must follow these steps:
1415
1416@enumerate
1417@item
1418Run Bison on the grammar to produce the parser.
1419
1420@item
1421Compile the code output by Bison, as well as any other source files.
1422
1423@item
1424Link the object files to produce the finished product.
1425@end enumerate
1426
342b8b6e 1427@node Grammar Layout
bfa74976
RS
1428@section The Overall Layout of a Bison Grammar
1429@cindex grammar file
1430@cindex file format
1431@cindex format of grammar file
1432@cindex layout of Bison grammar
1433
1434The input file for the Bison utility is a @dfn{Bison grammar file}. The
1435general form of a Bison grammar file is as follows:
1436
1437@example
1438%@{
08e49d20 1439@var{Prologue}
bfa74976
RS
1440%@}
1441
1442@var{Bison declarations}
1443
1444%%
1445@var{Grammar rules}
1446%%
08e49d20 1447@var{Epilogue}
bfa74976
RS
1448@end example
1449
1450@noindent
1451The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1452in every Bison grammar file to separate the sections.
1453
72d2299c 1454The prologue may define types and variables used in the actions. You can
342b8b6e 1455also use preprocessor commands to define macros used there, and use
bfa74976 1456@code{#include} to include header files that do any of these things.
38a92d50
PE
1457You need to declare the lexical analyzer @code{yylex} and the error
1458printer @code{yyerror} here, along with any other global identifiers
1459used by the actions in the grammar rules.
bfa74976
RS
1460
1461The Bison declarations declare the names of the terminal and nonterminal
1462symbols, and may also describe operator precedence and the data types of
1463semantic values of various symbols.
1464
1465The grammar rules define how to construct each nonterminal symbol from its
1466parts.
1467
38a92d50
PE
1468The epilogue can contain any code you want to use. Often the
1469definitions of functions declared in the prologue go here. In a
1470simple program, all the rest of the program can go here.
bfa74976 1471
342b8b6e 1472@node Examples
bfa74976
RS
1473@chapter Examples
1474@cindex simple examples
1475@cindex examples, simple
1476
aaaa2aae 1477Now we show and explain several sample programs written using Bison: a
bfa74976 1478reverse polish notation calculator, an algebraic (infix) notation
aaaa2aae
AD
1479calculator --- later extended to track ``locations'' ---
1480and a multi-function calculator. All
1481produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1482
1483These examples are simple, but Bison grammars for real programming
aa08666d
AD
1484languages are written the same way. You can copy these examples into a
1485source file to try them.
bfa74976
RS
1486
1487@menu
f5f419de
DJ
1488* RPN Calc:: Reverse polish notation calculator;
1489 a first example with no operator precedence.
1490* Infix Calc:: Infix (algebraic) notation calculator.
1491 Operator precedence is introduced.
bfa74976 1492* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1493* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1494* Multi-function Calc:: Calculator with memory and trig functions.
1495 It uses multiple data-types for semantic values.
1496* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1497@end menu
1498
342b8b6e 1499@node RPN Calc
bfa74976
RS
1500@section Reverse Polish Notation Calculator
1501@cindex reverse polish notation
1502@cindex polish notation calculator
1503@cindex @code{rpcalc}
1504@cindex calculator, simple
1505
1506The first example is that of a simple double-precision @dfn{reverse polish
1507notation} calculator (a calculator using postfix operators). This example
1508provides a good starting point, since operator precedence is not an issue.
1509The second example will illustrate how operator precedence is handled.
1510
1511The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1512@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1513
1514@menu
f5f419de
DJ
1515* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1516* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1517* Rpcalc Lexer:: The lexical analyzer.
1518* Rpcalc Main:: The controlling function.
1519* Rpcalc Error:: The error reporting function.
1520* Rpcalc Generate:: Running Bison on the grammar file.
1521* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1522@end menu
1523
f5f419de 1524@node Rpcalc Declarations
bfa74976
RS
1525@subsection Declarations for @code{rpcalc}
1526
1527Here are the C and Bison declarations for the reverse polish notation
1528calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1529
24ec0837 1530@comment file: rpcalc.y
bfa74976 1531@example
72d2299c 1532/* Reverse polish notation calculator. */
bfa74976
RS
1533
1534%@{
38a92d50 1535 #define YYSTYPE double
24ec0837 1536 #include <stdio.h>
38a92d50
PE
1537 #include <math.h>
1538 int yylex (void);
1539 void yyerror (char const *);
bfa74976
RS
1540%@}
1541
1542%token NUM
1543
72d2299c 1544%% /* Grammar rules and actions follow. */
bfa74976
RS
1545@end example
1546
75f5aaea 1547The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1548preprocessor directives and two forward declarations.
bfa74976
RS
1549
1550The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1551specifying the C data type for semantic values of both tokens and
1552groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1553Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1554don't define it, @code{int} is the default. Because we specify
1555@code{double}, each token and each expression has an associated value,
1556which is a floating point number.
bfa74976
RS
1557
1558The @code{#include} directive is used to declare the exponentiation
1559function @code{pow}.
1560
38a92d50
PE
1561The forward declarations for @code{yylex} and @code{yyerror} are
1562needed because the C language requires that functions be declared
1563before they are used. These functions will be defined in the
1564epilogue, but the parser calls them so they must be declared in the
1565prologue.
1566
704a47c4
AD
1567The second section, Bison declarations, provides information to Bison
1568about the token types (@pxref{Bison Declarations, ,The Bison
1569Declarations Section}). Each terminal symbol that is not a
1570single-character literal must be declared here. (Single-character
bfa74976
RS
1571literals normally don't need to be declared.) In this example, all the
1572arithmetic operators are designated by single-character literals, so the
1573only terminal symbol that needs to be declared is @code{NUM}, the token
1574type for numeric constants.
1575
342b8b6e 1576@node Rpcalc Rules
bfa74976
RS
1577@subsection Grammar Rules for @code{rpcalc}
1578
1579Here are the grammar rules for the reverse polish notation calculator.
1580
24ec0837 1581@comment file: rpcalc.y
bfa74976 1582@example
aaaa2aae 1583@group
5e9b6624
AD
1584input:
1585 /* empty */
1586| input line
bfa74976 1587;
aaaa2aae 1588@end group
bfa74976 1589
aaaa2aae 1590@group
5e9b6624
AD
1591line:
1592 '\n'
1593| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1594;
aaaa2aae 1595@end group
bfa74976 1596
aaaa2aae 1597@group
5e9b6624
AD
1598exp:
1599 NUM @{ $$ = $1; @}
1600| exp exp '+' @{ $$ = $1 + $2; @}
1601| exp exp '-' @{ $$ = $1 - $2; @}
1602| exp exp '*' @{ $$ = $1 * $2; @}
1603| exp exp '/' @{ $$ = $1 / $2; @}
1604| exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1605| exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1606;
aaaa2aae 1607@end group
bfa74976
RS
1608%%
1609@end example
1610
1611The groupings of the rpcalc ``language'' defined here are the expression
1612(given the name @code{exp}), the line of input (@code{line}), and the
1613complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1614symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1615which is read as ``or''. The following sections explain what these rules
1616mean.
1617
1618The semantics of the language is determined by the actions taken when a
1619grouping is recognized. The actions are the C code that appears inside
1620braces. @xref{Actions}.
1621
1622You must specify these actions in C, but Bison provides the means for
1623passing semantic values between the rules. In each action, the
1624pseudo-variable @code{$$} stands for the semantic value for the grouping
1625that the rule is going to construct. Assigning a value to @code{$$} is the
1626main job of most actions. The semantic values of the components of the
1627rule are referred to as @code{$1}, @code{$2}, and so on.
1628
1629@menu
24ec0837
AD
1630* Rpcalc Input:: Explanation of the @code{input} nonterminal
1631* Rpcalc Line:: Explanation of the @code{line} nonterminal
1632* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976
RS
1633@end menu
1634
342b8b6e 1635@node Rpcalc Input
bfa74976
RS
1636@subsubsection Explanation of @code{input}
1637
1638Consider the definition of @code{input}:
1639
1640@example
5e9b6624
AD
1641input:
1642 /* empty */
1643| input line
bfa74976
RS
1644;
1645@end example
1646
1647This definition reads as follows: ``A complete input is either an empty
1648string, or a complete input followed by an input line''. Notice that
1649``complete input'' is defined in terms of itself. This definition is said
1650to be @dfn{left recursive} since @code{input} appears always as the
1651leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1652
1653The first alternative is empty because there are no symbols between the
1654colon and the first @samp{|}; this means that @code{input} can match an
1655empty string of input (no tokens). We write the rules this way because it
1656is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1657It's conventional to put an empty alternative first and write the comment
1658@samp{/* empty */} in it.
1659
1660The second alternate rule (@code{input line}) handles all nontrivial input.
1661It means, ``After reading any number of lines, read one more line if
1662possible.'' The left recursion makes this rule into a loop. Since the
1663first alternative matches empty input, the loop can be executed zero or
1664more times.
1665
1666The parser function @code{yyparse} continues to process input until a
1667grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1668input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1669
342b8b6e 1670@node Rpcalc Line
bfa74976
RS
1671@subsubsection Explanation of @code{line}
1672
1673Now consider the definition of @code{line}:
1674
1675@example
5e9b6624
AD
1676line:
1677 '\n'
1678| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1679;
1680@end example
1681
1682The first alternative is a token which is a newline character; this means
1683that rpcalc accepts a blank line (and ignores it, since there is no
1684action). The second alternative is an expression followed by a newline.
1685This is the alternative that makes rpcalc useful. The semantic value of
1686the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1687question is the first symbol in the alternative. The action prints this
1688value, which is the result of the computation the user asked for.
1689
1690This action is unusual because it does not assign a value to @code{$$}. As
1691a consequence, the semantic value associated with the @code{line} is
1692uninitialized (its value will be unpredictable). This would be a bug if
1693that value were ever used, but we don't use it: once rpcalc has printed the
1694value of the user's input line, that value is no longer needed.
1695
342b8b6e 1696@node Rpcalc Expr
bfa74976
RS
1697@subsubsection Explanation of @code{expr}
1698
1699The @code{exp} grouping has several rules, one for each kind of expression.
1700The first rule handles the simplest expressions: those that are just numbers.
1701The second handles an addition-expression, which looks like two expressions
1702followed by a plus-sign. The third handles subtraction, and so on.
1703
1704@example
5e9b6624
AD
1705exp:
1706 NUM
1707| exp exp '+' @{ $$ = $1 + $2; @}
1708| exp exp '-' @{ $$ = $1 - $2; @}
1709@dots{}
1710;
bfa74976
RS
1711@end example
1712
1713We have used @samp{|} to join all the rules for @code{exp}, but we could
1714equally well have written them separately:
1715
1716@example
5e9b6624
AD
1717exp: NUM ;
1718exp: exp exp '+' @{ $$ = $1 + $2; @};
1719exp: exp exp '-' @{ $$ = $1 - $2; @};
1720@dots{}
bfa74976
RS
1721@end example
1722
1723Most of the rules have actions that compute the value of the expression in
1724terms of the value of its parts. For example, in the rule for addition,
1725@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1726the second one. The third component, @code{'+'}, has no meaningful
1727associated semantic value, but if it had one you could refer to it as
1728@code{$3}. When @code{yyparse} recognizes a sum expression using this
1729rule, the sum of the two subexpressions' values is produced as the value of
1730the entire expression. @xref{Actions}.
1731
1732You don't have to give an action for every rule. When a rule has no
1733action, Bison by default copies the value of @code{$1} into @code{$$}.
1734This is what happens in the first rule (the one that uses @code{NUM}).
1735
1736The formatting shown here is the recommended convention, but Bison does
72d2299c 1737not require it. You can add or change white space as much as you wish.
bfa74976
RS
1738For example, this:
1739
1740@example
5e9b6624 1741exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1742@end example
1743
1744@noindent
1745means the same thing as this:
1746
1747@example
5e9b6624
AD
1748exp:
1749 NUM
1750| exp exp '+' @{ $$ = $1 + $2; @}
1751| @dots{}
99a9344e 1752;
bfa74976
RS
1753@end example
1754
1755@noindent
1756The latter, however, is much more readable.
1757
342b8b6e 1758@node Rpcalc Lexer
bfa74976
RS
1759@subsection The @code{rpcalc} Lexical Analyzer
1760@cindex writing a lexical analyzer
1761@cindex lexical analyzer, writing
1762
704a47c4
AD
1763The lexical analyzer's job is low-level parsing: converting characters
1764or sequences of characters into tokens. The Bison parser gets its
1765tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1766Analyzer Function @code{yylex}}.
bfa74976 1767
8a4281b9 1768Only a simple lexical analyzer is needed for the RPN
c827f760 1769calculator. This
bfa74976
RS
1770lexical analyzer skips blanks and tabs, then reads in numbers as
1771@code{double} and returns them as @code{NUM} tokens. Any other character
1772that isn't part of a number is a separate token. Note that the token-code
1773for such a single-character token is the character itself.
1774
1775The return value of the lexical analyzer function is a numeric code which
1776represents a token type. The same text used in Bison rules to stand for
1777this token type is also a C expression for the numeric code for the type.
1778This works in two ways. If the token type is a character literal, then its
e966383b 1779numeric code is that of the character; you can use the same
bfa74976
RS
1780character literal in the lexical analyzer to express the number. If the
1781token type is an identifier, that identifier is defined by Bison as a C
1782macro whose definition is the appropriate number. In this example,
1783therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1784
1964ad8c
AD
1785The semantic value of the token (if it has one) is stored into the
1786global variable @code{yylval}, which is where the Bison parser will look
1787for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1788defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1789,Declarations for @code{rpcalc}}.)
bfa74976 1790
72d2299c
PE
1791A token type code of zero is returned if the end-of-input is encountered.
1792(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1793
1794Here is the code for the lexical analyzer:
1795
24ec0837 1796@comment file: rpcalc.y
bfa74976
RS
1797@example
1798@group
72d2299c 1799/* The lexical analyzer returns a double floating point
e966383b 1800 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1801 of the character read if not a number. It skips all blanks
1802 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1803
1804#include <ctype.h>
1805@end group
1806
1807@group
13863333
AD
1808int
1809yylex (void)
bfa74976
RS
1810@{
1811 int c;
1812
72d2299c 1813 /* Skip white space. */
13863333 1814 while ((c = getchar ()) == ' ' || c == '\t')
d4fca427 1815 continue;
bfa74976
RS
1816@end group
1817@group
72d2299c 1818 /* Process numbers. */
13863333 1819 if (c == '.' || isdigit (c))
bfa74976
RS
1820 @{
1821 ungetc (c, stdin);
1822 scanf ("%lf", &yylval);
1823 return NUM;
1824 @}
1825@end group
1826@group
72d2299c 1827 /* Return end-of-input. */
13863333 1828 if (c == EOF)
bfa74976 1829 return 0;
72d2299c 1830 /* Return a single char. */
13863333 1831 return c;
bfa74976
RS
1832@}
1833@end group
1834@end example
1835
342b8b6e 1836@node Rpcalc Main
bfa74976
RS
1837@subsection The Controlling Function
1838@cindex controlling function
1839@cindex main function in simple example
1840
1841In keeping with the spirit of this example, the controlling function is
1842kept to the bare minimum. The only requirement is that it call
1843@code{yyparse} to start the process of parsing.
1844
24ec0837 1845@comment file: rpcalc.y
bfa74976
RS
1846@example
1847@group
13863333
AD
1848int
1849main (void)
bfa74976 1850@{
13863333 1851 return yyparse ();
bfa74976
RS
1852@}
1853@end group
1854@end example
1855
342b8b6e 1856@node Rpcalc Error
bfa74976
RS
1857@subsection The Error Reporting Routine
1858@cindex error reporting routine
1859
1860When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1861function @code{yyerror} to print an error message (usually but not
6e649e65 1862always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1863@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1864here is the definition we will use:
bfa74976 1865
24ec0837 1866@comment file: rpcalc.y
bfa74976
RS
1867@example
1868@group
1869#include <stdio.h>
aaaa2aae 1870@end group
bfa74976 1871
aaaa2aae 1872@group
38a92d50 1873/* Called by yyparse on error. */
13863333 1874void
38a92d50 1875yyerror (char const *s)
bfa74976 1876@{
4e03e201 1877 fprintf (stderr, "%s\n", s);
bfa74976
RS
1878@}
1879@end group
1880@end example
1881
1882After @code{yyerror} returns, the Bison parser may recover from the error
1883and continue parsing if the grammar contains a suitable error rule
1884(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1885have not written any error rules in this example, so any invalid input will
1886cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1887real calculator, but it is adequate for the first example.
bfa74976 1888
f5f419de 1889@node Rpcalc Generate
bfa74976
RS
1890@subsection Running Bison to Make the Parser
1891@cindex running Bison (introduction)
1892
ceed8467
AD
1893Before running Bison to produce a parser, we need to decide how to
1894arrange all the source code in one or more source files. For such a
ff7571c0
JD
1895simple example, the easiest thing is to put everything in one file,
1896the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1897@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1898(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1899
1900For a large project, you would probably have several source files, and use
1901@code{make} to arrange to recompile them.
1902
ff7571c0
JD
1903With all the source in the grammar file, you use the following command
1904to convert it into a parser implementation file:
bfa74976
RS
1905
1906@example
fa4d969f 1907bison @var{file}.y
bfa74976
RS
1908@end example
1909
1910@noindent
ff7571c0
JD
1911In this example, the grammar file is called @file{rpcalc.y} (for
1912``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1913implementation file named @file{@var{file}.tab.c}, removing the
1914@samp{.y} from the grammar file name. The parser implementation file
1915contains the source code for @code{yyparse}. The additional functions
1916in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1917copied verbatim to the parser implementation file.
bfa74976 1918
342b8b6e 1919@node Rpcalc Compile
ff7571c0 1920@subsection Compiling the Parser Implementation File
bfa74976
RS
1921@cindex compiling the parser
1922
ff7571c0 1923Here is how to compile and run the parser implementation file:
bfa74976
RS
1924
1925@example
1926@group
1927# @r{List files in current directory.}
9edcd895 1928$ @kbd{ls}
bfa74976
RS
1929rpcalc.tab.c rpcalc.y
1930@end group
1931
1932@group
1933# @r{Compile the Bison parser.}
1934# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1935$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1936@end group
1937
1938@group
1939# @r{List files again.}
9edcd895 1940$ @kbd{ls}
bfa74976
RS
1941rpcalc rpcalc.tab.c rpcalc.y
1942@end group
1943@end example
1944
1945The file @file{rpcalc} now contains the executable code. Here is an
1946example session using @code{rpcalc}.
1947
1948@example
9edcd895
AD
1949$ @kbd{rpcalc}
1950@kbd{4 9 +}
24ec0837 1951@result{} 13
9edcd895 1952@kbd{3 7 + 3 4 5 *+-}
24ec0837 1953@result{} -13
9edcd895 1954@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
24ec0837 1955@result{} 13
9edcd895 1956@kbd{5 6 / 4 n +}
24ec0837 1957@result{} -3.166666667
9edcd895 1958@kbd{3 4 ^} @r{Exponentiation}
24ec0837 1959@result{} 81
9edcd895
AD
1960@kbd{^D} @r{End-of-file indicator}
1961$
bfa74976
RS
1962@end example
1963
342b8b6e 1964@node Infix Calc
bfa74976
RS
1965@section Infix Notation Calculator: @code{calc}
1966@cindex infix notation calculator
1967@cindex @code{calc}
1968@cindex calculator, infix notation
1969
1970We now modify rpcalc to handle infix operators instead of postfix. Infix
1971notation involves the concept of operator precedence and the need for
1972parentheses nested to arbitrary depth. Here is the Bison code for
1973@file{calc.y}, an infix desk-top calculator.
1974
1975@example
38a92d50 1976/* Infix notation calculator. */
bfa74976 1977
aaaa2aae 1978@group
bfa74976 1979%@{
38a92d50
PE
1980 #define YYSTYPE double
1981 #include <math.h>
1982 #include <stdio.h>
1983 int yylex (void);
1984 void yyerror (char const *);
bfa74976 1985%@}
aaaa2aae 1986@end group
bfa74976 1987
aaaa2aae 1988@group
38a92d50 1989/* Bison declarations. */
bfa74976
RS
1990%token NUM
1991%left '-' '+'
1992%left '*' '/'
d78f0ac9
AD
1993%precedence NEG /* negation--unary minus */
1994%right '^' /* exponentiation */
aaaa2aae 1995@end group
bfa74976 1996
38a92d50 1997%% /* The grammar follows. */
aaaa2aae 1998@group
5e9b6624
AD
1999input:
2000 /* empty */
2001| input line
bfa74976 2002;
aaaa2aae 2003@end group
bfa74976 2004
aaaa2aae 2005@group
5e9b6624
AD
2006line:
2007 '\n'
2008| exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976 2009;
aaaa2aae 2010@end group
bfa74976 2011
aaaa2aae 2012@group
5e9b6624
AD
2013exp:
2014 NUM @{ $$ = $1; @}
2015| exp '+' exp @{ $$ = $1 + $3; @}
2016| exp '-' exp @{ $$ = $1 - $3; @}
2017| exp '*' exp @{ $$ = $1 * $3; @}
2018| exp '/' exp @{ $$ = $1 / $3; @}
2019| '-' exp %prec NEG @{ $$ = -$2; @}
2020| exp '^' exp @{ $$ = pow ($1, $3); @}
2021| '(' exp ')' @{ $$ = $2; @}
bfa74976 2022;
aaaa2aae 2023@end group
bfa74976
RS
2024%%
2025@end example
2026
2027@noindent
ceed8467
AD
2028The functions @code{yylex}, @code{yyerror} and @code{main} can be the
2029same as before.
bfa74976
RS
2030
2031There are two important new features shown in this code.
2032
2033In the second section (Bison declarations), @code{%left} declares token
2034types and says they are left-associative operators. The declarations
2035@code{%left} and @code{%right} (right associativity) take the place of
2036@code{%token} which is used to declare a token type name without
d78f0ac9 2037associativity/precedence. (These tokens are single-character literals, which
bfa74976 2038ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 2039the associativity/precedence.)
bfa74976
RS
2040
2041Operator precedence is determined by the line ordering of the
2042declarations; the higher the line number of the declaration (lower on
2043the page or screen), the higher the precedence. Hence, exponentiation
2044has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
2045by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
2046only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 2047Precedence}.
bfa74976 2048
704a47c4
AD
2049The other important new feature is the @code{%prec} in the grammar
2050section for the unary minus operator. The @code{%prec} simply instructs
2051Bison that the rule @samp{| '-' exp} has the same precedence as
2052@code{NEG}---in this case the next-to-highest. @xref{Contextual
2053Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2054
2055Here is a sample run of @file{calc.y}:
2056
2057@need 500
2058@example
9edcd895
AD
2059$ @kbd{calc}
2060@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20616.880952381
9edcd895 2062@kbd{-56 + 2}
bfa74976 2063-54
9edcd895 2064@kbd{3 ^ 2}
bfa74976
RS
20659
2066@end example
2067
342b8b6e 2068@node Simple Error Recovery
bfa74976
RS
2069@section Simple Error Recovery
2070@cindex error recovery, simple
2071
2072Up to this point, this manual has not addressed the issue of @dfn{error
2073recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2074error. All we have handled is error reporting with @code{yyerror}.
2075Recall that by default @code{yyparse} returns after calling
2076@code{yyerror}. This means that an erroneous input line causes the
2077calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2078
2079The Bison language itself includes the reserved word @code{error}, which
2080may be included in the grammar rules. In the example below it has
2081been added to one of the alternatives for @code{line}:
2082
2083@example
2084@group
5e9b6624
AD
2085line:
2086 '\n'
2087| exp '\n' @{ printf ("\t%.10g\n", $1); @}
2088| error '\n' @{ yyerrok; @}
bfa74976
RS
2089;
2090@end group
2091@end example
2092
ceed8467 2093This addition to the grammar allows for simple error recovery in the
6e649e65 2094event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2095read, the error will be recognized by the third rule for @code{line},
2096and parsing will continue. (The @code{yyerror} function is still called
2097upon to print its message as well.) The action executes the statement
2098@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2099that error recovery is complete (@pxref{Error Recovery}). Note the
2100difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2101misprint.
bfa74976
RS
2102
2103This form of error recovery deals with syntax errors. There are other
2104kinds of errors; for example, division by zero, which raises an exception
2105signal that is normally fatal. A real calculator program must handle this
2106signal and use @code{longjmp} to return to @code{main} and resume parsing
2107input lines; it would also have to discard the rest of the current line of
2108input. We won't discuss this issue further because it is not specific to
2109Bison programs.
2110
342b8b6e
AD
2111@node Location Tracking Calc
2112@section Location Tracking Calculator: @code{ltcalc}
2113@cindex location tracking calculator
2114@cindex @code{ltcalc}
2115@cindex calculator, location tracking
2116
9edcd895
AD
2117This example extends the infix notation calculator with location
2118tracking. This feature will be used to improve the error messages. For
2119the sake of clarity, this example is a simple integer calculator, since
2120most of the work needed to use locations will be done in the lexical
72d2299c 2121analyzer.
342b8b6e
AD
2122
2123@menu
f5f419de
DJ
2124* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2125* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2126* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2127@end menu
2128
f5f419de 2129@node Ltcalc Declarations
342b8b6e
AD
2130@subsection Declarations for @code{ltcalc}
2131
9edcd895
AD
2132The C and Bison declarations for the location tracking calculator are
2133the same as the declarations for the infix notation calculator.
342b8b6e
AD
2134
2135@example
2136/* Location tracking calculator. */
2137
2138%@{
38a92d50
PE
2139 #define YYSTYPE int
2140 #include <math.h>
2141 int yylex (void);
2142 void yyerror (char const *);
342b8b6e
AD
2143%@}
2144
2145/* Bison declarations. */
2146%token NUM
2147
2148%left '-' '+'
2149%left '*' '/'
d78f0ac9 2150%precedence NEG
342b8b6e
AD
2151%right '^'
2152
38a92d50 2153%% /* The grammar follows. */
342b8b6e
AD
2154@end example
2155
9edcd895
AD
2156@noindent
2157Note there are no declarations specific to locations. Defining a data
2158type for storing locations is not needed: we will use the type provided
2159by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2160four member structure with the following integer fields:
2161@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2162@code{last_column}. By conventions, and in accordance with the GNU
2163Coding Standards and common practice, the line and column count both
2164start at 1.
342b8b6e
AD
2165
2166@node Ltcalc Rules
2167@subsection Grammar Rules for @code{ltcalc}
2168
9edcd895
AD
2169Whether handling locations or not has no effect on the syntax of your
2170language. Therefore, grammar rules for this example will be very close
2171to those of the previous example: we will only modify them to benefit
2172from the new information.
342b8b6e 2173
9edcd895
AD
2174Here, we will use locations to report divisions by zero, and locate the
2175wrong expressions or subexpressions.
342b8b6e
AD
2176
2177@example
2178@group
5e9b6624
AD
2179input:
2180 /* empty */
2181| input line
342b8b6e
AD
2182;
2183@end group
2184
2185@group
5e9b6624
AD
2186line:
2187 '\n'
2188| exp '\n' @{ printf ("%d\n", $1); @}
342b8b6e
AD
2189;
2190@end group
2191
2192@group
5e9b6624
AD
2193exp:
2194 NUM @{ $$ = $1; @}
2195| exp '+' exp @{ $$ = $1 + $3; @}
2196| exp '-' exp @{ $$ = $1 - $3; @}
2197| exp '*' exp @{ $$ = $1 * $3; @}
342b8b6e 2198@end group
342b8b6e 2199@group
5e9b6624
AD
2200| exp '/' exp
2201 @{
2202 if ($3)
2203 $$ = $1 / $3;
2204 else
2205 @{
2206 $$ = 1;
2207 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2208 @@3.first_line, @@3.first_column,
2209 @@3.last_line, @@3.last_column);
2210 @}
2211 @}
342b8b6e
AD
2212@end group
2213@group
5e9b6624
AD
2214| '-' exp %prec NEG @{ $$ = -$2; @}
2215| exp '^' exp @{ $$ = pow ($1, $3); @}
2216| '(' exp ')' @{ $$ = $2; @}
342b8b6e
AD
2217@end group
2218@end example
2219
2220This code shows how to reach locations inside of semantic actions, by
2221using the pseudo-variables @code{@@@var{n}} for rule components, and the
2222pseudo-variable @code{@@$} for groupings.
2223
9edcd895
AD
2224We don't need to assign a value to @code{@@$}: the output parser does it
2225automatically. By default, before executing the C code of each action,
2226@code{@@$} is set to range from the beginning of @code{@@1} to the end
2227of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2228can be redefined (@pxref{Location Default Action, , Default Action for
2229Locations}), and for very specific rules, @code{@@$} can be computed by
2230hand.
342b8b6e
AD
2231
2232@node Ltcalc Lexer
2233@subsection The @code{ltcalc} Lexical Analyzer.
2234
9edcd895 2235Until now, we relied on Bison's defaults to enable location
72d2299c 2236tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2237able to feed the parser with the token locations, as it already does for
2238semantic values.
342b8b6e 2239
9edcd895
AD
2240To this end, we must take into account every single character of the
2241input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2242
2243@example
2244@group
2245int
2246yylex (void)
2247@{
2248 int c;
18b519c0 2249@end group
342b8b6e 2250
18b519c0 2251@group
72d2299c 2252 /* Skip white space. */
342b8b6e
AD
2253 while ((c = getchar ()) == ' ' || c == '\t')
2254 ++yylloc.last_column;
18b519c0 2255@end group
342b8b6e 2256
18b519c0 2257@group
72d2299c 2258 /* Step. */
342b8b6e
AD
2259 yylloc.first_line = yylloc.last_line;
2260 yylloc.first_column = yylloc.last_column;
2261@end group
2262
2263@group
72d2299c 2264 /* Process numbers. */
342b8b6e
AD
2265 if (isdigit (c))
2266 @{
2267 yylval = c - '0';
2268 ++yylloc.last_column;
2269 while (isdigit (c = getchar ()))
2270 @{
2271 ++yylloc.last_column;
2272 yylval = yylval * 10 + c - '0';
2273 @}
2274 ungetc (c, stdin);
2275 return NUM;
2276 @}
2277@end group
2278
72d2299c 2279 /* Return end-of-input. */
342b8b6e
AD
2280 if (c == EOF)
2281 return 0;
2282
d4fca427 2283@group
72d2299c 2284 /* Return a single char, and update location. */
342b8b6e
AD
2285 if (c == '\n')
2286 @{
2287 ++yylloc.last_line;
2288 yylloc.last_column = 0;
2289 @}
2290 else
2291 ++yylloc.last_column;
2292 return c;
2293@}
d4fca427 2294@end group
342b8b6e
AD
2295@end example
2296
9edcd895
AD
2297Basically, the lexical analyzer performs the same processing as before:
2298it skips blanks and tabs, and reads numbers or single-character tokens.
2299In addition, it updates @code{yylloc}, the global variable (of type
2300@code{YYLTYPE}) containing the token's location.
342b8b6e 2301
9edcd895 2302Now, each time this function returns a token, the parser has its number
72d2299c 2303as well as its semantic value, and its location in the text. The last
9edcd895
AD
2304needed change is to initialize @code{yylloc}, for example in the
2305controlling function:
342b8b6e
AD
2306
2307@example
9edcd895 2308@group
342b8b6e
AD
2309int
2310main (void)
2311@{
2312 yylloc.first_line = yylloc.last_line = 1;
2313 yylloc.first_column = yylloc.last_column = 0;
2314 return yyparse ();
2315@}
9edcd895 2316@end group
342b8b6e
AD
2317@end example
2318
9edcd895
AD
2319Remember that computing locations is not a matter of syntax. Every
2320character must be associated to a location update, whether it is in
2321valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2322
2323@node Multi-function Calc
bfa74976
RS
2324@section Multi-Function Calculator: @code{mfcalc}
2325@cindex multi-function calculator
2326@cindex @code{mfcalc}
2327@cindex calculator, multi-function
2328
2329Now that the basics of Bison have been discussed, it is time to move on to
2330a more advanced problem. The above calculators provided only five
2331functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2332be nice to have a calculator that provides other mathematical functions such
2333as @code{sin}, @code{cos}, etc.
2334
2335It is easy to add new operators to the infix calculator as long as they are
2336only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2337back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2338adding a new operator. But we want something more flexible: built-in
2339functions whose syntax has this form:
2340
2341@example
2342@var{function_name} (@var{argument})
2343@end example
2344
2345@noindent
2346At the same time, we will add memory to the calculator, by allowing you
2347to create named variables, store values in them, and use them later.
2348Here is a sample session with the multi-function calculator:
2349
2350@example
d4fca427 2351@group
9edcd895
AD
2352$ @kbd{mfcalc}
2353@kbd{pi = 3.141592653589}
f9c75dd0 2354@result{} 3.1415926536
d4fca427
AD
2355@end group
2356@group
9edcd895 2357@kbd{sin(pi)}
f9c75dd0 2358@result{} 0.0000000000
d4fca427 2359@end group
9edcd895 2360@kbd{alpha = beta1 = 2.3}
f9c75dd0 2361@result{} 2.3000000000
9edcd895 2362@kbd{alpha}
f9c75dd0 2363@result{} 2.3000000000
9edcd895 2364@kbd{ln(alpha)}
f9c75dd0 2365@result{} 0.8329091229
9edcd895 2366@kbd{exp(ln(beta1))}
f9c75dd0 2367@result{} 2.3000000000
9edcd895 2368$
bfa74976
RS
2369@end example
2370
2371Note that multiple assignment and nested function calls are permitted.
2372
2373@menu
f5f419de
DJ
2374* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2375* Mfcalc Rules:: Grammar rules for the calculator.
2376* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
2377* Mfcalc Lexer:: The lexical analyzer.
2378* Mfcalc Main:: The controlling function.
bfa74976
RS
2379@end menu
2380
f5f419de 2381@node Mfcalc Declarations
bfa74976
RS
2382@subsection Declarations for @code{mfcalc}
2383
2384Here are the C and Bison declarations for the multi-function calculator.
2385
93c150b6 2386@comment file: mfcalc.y: 1
c93f22fc 2387@example
18b519c0 2388@group
bfa74976 2389%@{
f9c75dd0 2390 #include <stdio.h> /* For printf, etc. */
578e3413 2391 #include <math.h> /* For pow, used in the grammar. */
f9c75dd0 2392 #include "calc.h" /* Contains definition of `symrec'. */
38a92d50
PE
2393 int yylex (void);
2394 void yyerror (char const *);
bfa74976 2395%@}
18b519c0 2396@end group
93c150b6 2397
18b519c0 2398@group
bfa74976 2399%union @{
38a92d50
PE
2400 double val; /* For returning numbers. */
2401 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2402@}
18b519c0 2403@end group
38a92d50 2404%token <val> NUM /* Simple double precision number. */
93c150b6 2405%token <tptr> VAR FNCT /* Variable and function. */
bfa74976
RS
2406%type <val> exp
2407
18b519c0 2408@group
bfa74976
RS
2409%right '='
2410%left '-' '+'
2411%left '*' '/'
d78f0ac9
AD
2412%precedence NEG /* negation--unary minus */
2413%right '^' /* exponentiation */
18b519c0 2414@end group
c93f22fc 2415@end example
bfa74976
RS
2416
2417The above grammar introduces only two new features of the Bison language.
2418These features allow semantic values to have various data types
2419(@pxref{Multiple Types, ,More Than One Value Type}).
2420
2421The @code{%union} declaration specifies the entire list of possible types;
2422this is instead of defining @code{YYSTYPE}. The allowable types are now
2423double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2424the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2425
2426Since values can now have various types, it is necessary to associate a
2427type with each grammar symbol whose semantic value is used. These symbols
2428are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2429declarations are augmented with information about their data type (placed
2430between angle brackets).
2431
704a47c4
AD
2432The Bison construct @code{%type} is used for declaring nonterminal
2433symbols, just as @code{%token} is used for declaring token types. We
2434have not used @code{%type} before because nonterminal symbols are
2435normally declared implicitly by the rules that define them. But
2436@code{exp} must be declared explicitly so we can specify its value type.
2437@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2438
342b8b6e 2439@node Mfcalc Rules
bfa74976
RS
2440@subsection Grammar Rules for @code{mfcalc}
2441
2442Here are the grammar rules for the multi-function calculator.
2443Most of them are copied directly from @code{calc}; three rules,
2444those which mention @code{VAR} or @code{FNCT}, are new.
2445
93c150b6 2446@comment file: mfcalc.y: 3
c93f22fc 2447@example
93c150b6 2448%% /* The grammar follows. */
18b519c0 2449@group
5e9b6624
AD
2450input:
2451 /* empty */
2452| input line
bfa74976 2453;
18b519c0 2454@end group
bfa74976 2455
18b519c0 2456@group
bfa74976 2457line:
5e9b6624
AD
2458 '\n'
2459| exp '\n' @{ printf ("%.10g\n", $1); @}
2460| error '\n' @{ yyerrok; @}
bfa74976 2461;
18b519c0 2462@end group
bfa74976 2463
18b519c0 2464@group
5e9b6624
AD
2465exp:
2466 NUM @{ $$ = $1; @}
2467| VAR @{ $$ = $1->value.var; @}
2468| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2469| FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2470| exp '+' exp @{ $$ = $1 + $3; @}
2471| exp '-' exp @{ $$ = $1 - $3; @}
2472| exp '*' exp @{ $$ = $1 * $3; @}
2473| exp '/' exp @{ $$ = $1 / $3; @}
2474| '-' exp %prec NEG @{ $$ = -$2; @}
2475| exp '^' exp @{ $$ = pow ($1, $3); @}
2476| '(' exp ')' @{ $$ = $2; @}
bfa74976 2477;
18b519c0 2478@end group
38a92d50 2479/* End of grammar. */
bfa74976 2480%%
c93f22fc 2481@end example
bfa74976 2482
f5f419de 2483@node Mfcalc Symbol Table
bfa74976
RS
2484@subsection The @code{mfcalc} Symbol Table
2485@cindex symbol table example
2486
2487The multi-function calculator requires a symbol table to keep track of the
2488names and meanings of variables and functions. This doesn't affect the
2489grammar rules (except for the actions) or the Bison declarations, but it
2490requires some additional C functions for support.
2491
2492The symbol table itself consists of a linked list of records. Its
2493definition, which is kept in the header @file{calc.h}, is as follows. It
2494provides for either functions or variables to be placed in the table.
2495
f9c75dd0 2496@comment file: calc.h
c93f22fc 2497@example
bfa74976 2498@group
38a92d50 2499/* Function type. */
32dfccf8 2500typedef double (*func_t) (double);
72f889cc 2501@end group
32dfccf8 2502
72f889cc 2503@group
38a92d50 2504/* Data type for links in the chain of symbols. */
bfa74976
RS
2505struct symrec
2506@{
38a92d50 2507 char *name; /* name of symbol */
bfa74976 2508 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2509 union
2510 @{
38a92d50
PE
2511 double var; /* value of a VAR */
2512 func_t fnctptr; /* value of a FNCT */
bfa74976 2513 @} value;
38a92d50 2514 struct symrec *next; /* link field */
bfa74976
RS
2515@};
2516@end group
2517
2518@group
2519typedef struct symrec symrec;
2520
38a92d50 2521/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2522extern symrec *sym_table;
2523
a730d142 2524symrec *putsym (char const *, int);
38a92d50 2525symrec *getsym (char const *);
bfa74976 2526@end group
c93f22fc 2527@end example
bfa74976 2528
aeb57fb6
AD
2529The new version of @code{main} will call @code{init_table} to initialize
2530the symbol table:
bfa74976 2531
93c150b6 2532@comment file: mfcalc.y: 3
c93f22fc 2533@example
18b519c0 2534@group
bfa74976
RS
2535struct init
2536@{
38a92d50
PE
2537 char const *fname;
2538 double (*fnct) (double);
bfa74976
RS
2539@};
2540@end group
2541
2542@group
38a92d50 2543struct init const arith_fncts[] =
13863333 2544@{
f9c75dd0
AD
2545 @{ "atan", atan @},
2546 @{ "cos", cos @},
2547 @{ "exp", exp @},
2548 @{ "ln", log @},
2549 @{ "sin", sin @},
2550 @{ "sqrt", sqrt @},
2551 @{ 0, 0 @},
13863333 2552@};
18b519c0 2553@end group
bfa74976 2554
18b519c0 2555@group
bfa74976 2556/* The symbol table: a chain of `struct symrec'. */
38a92d50 2557symrec *sym_table;
bfa74976
RS
2558@end group
2559
2560@group
72d2299c 2561/* Put arithmetic functions in table. */
f9c75dd0 2562static
13863333
AD
2563void
2564init_table (void)
bfa74976
RS
2565@{
2566 int i;
bfa74976
RS
2567 for (i = 0; arith_fncts[i].fname != 0; i++)
2568 @{
aaaa2aae 2569 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2570 ptr->value.fnctptr = arith_fncts[i].fnct;
2571 @}
2572@}
2573@end group
c93f22fc 2574@end example
bfa74976
RS
2575
2576By simply editing the initialization list and adding the necessary include
2577files, you can add additional functions to the calculator.
2578
2579Two important functions allow look-up and installation of symbols in the
2580symbol table. The function @code{putsym} is passed a name and the type
2581(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2582linked to the front of the list, and a pointer to the object is returned.
2583The function @code{getsym} is passed the name of the symbol to look up. If
2584found, a pointer to that symbol is returned; otherwise zero is returned.
2585
93c150b6 2586@comment file: mfcalc.y: 3
c93f22fc 2587@example
f9c75dd0
AD
2588#include <stdlib.h> /* malloc. */
2589#include <string.h> /* strlen. */
2590
d4fca427 2591@group
bfa74976 2592symrec *
38a92d50 2593putsym (char const *sym_name, int sym_type)
bfa74976 2594@{
aaaa2aae 2595 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2596 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2597 strcpy (ptr->name,sym_name);
2598 ptr->type = sym_type;
72d2299c 2599 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2600 ptr->next = (struct symrec *)sym_table;
2601 sym_table = ptr;
2602 return ptr;
2603@}
d4fca427 2604@end group
bfa74976 2605
d4fca427 2606@group
bfa74976 2607symrec *
38a92d50 2608getsym (char const *sym_name)
bfa74976
RS
2609@{
2610 symrec *ptr;
2611 for (ptr = sym_table; ptr != (symrec *) 0;
2612 ptr = (symrec *)ptr->next)
f518dbaf 2613 if (strcmp (ptr->name, sym_name) == 0)
bfa74976
RS
2614 return ptr;
2615 return 0;
2616@}
d4fca427 2617@end group
c93f22fc 2618@end example
bfa74976 2619
aeb57fb6
AD
2620@node Mfcalc Lexer
2621@subsection The @code{mfcalc} Lexer
2622
bfa74976
RS
2623The function @code{yylex} must now recognize variables, numeric values, and
2624the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2625characters with a leading letter are recognized as either variables or
bfa74976
RS
2626functions depending on what the symbol table says about them.
2627
2628The string is passed to @code{getsym} for look up in the symbol table. If
2629the name appears in the table, a pointer to its location and its type
2630(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2631already in the table, then it is installed as a @code{VAR} using
2632@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2633returned to @code{yyparse}.
bfa74976
RS
2634
2635No change is needed in the handling of numeric values and arithmetic
2636operators in @code{yylex}.
2637
93c150b6 2638@comment file: mfcalc.y: 3
c93f22fc 2639@example
bfa74976
RS
2640@group
2641#include <ctype.h>
18b519c0 2642@end group
13863333 2643
18b519c0 2644@group
13863333
AD
2645int
2646yylex (void)
bfa74976
RS
2647@{
2648 int c;
2649
72d2299c 2650 /* Ignore white space, get first nonwhite character. */
d4fca427
AD
2651 while ((c = getchar ()) == ' ' || c == '\t')
2652 continue;
bfa74976
RS
2653
2654 if (c == EOF)
2655 return 0;
2656@end group
2657
2658@group
2659 /* Char starts a number => parse the number. */
2660 if (c == '.' || isdigit (c))
2661 @{
2662 ungetc (c, stdin);
2663 scanf ("%lf", &yylval.val);
2664 return NUM;
2665 @}
2666@end group
2667
2668@group
2669 /* Char starts an identifier => read the name. */
2670 if (isalpha (c))
2671 @{
aaaa2aae
AD
2672 /* Initially make the buffer long enough
2673 for a 40-character symbol name. */
2674 static size_t length = 40;
bfa74976 2675 static char *symbuf = 0;
aaaa2aae 2676 symrec *s;
bfa74976
RS
2677 int i;
2678@end group
aaaa2aae
AD
2679 if (!symbuf)
2680 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2681
2682 i = 0;
2683 do
bfa74976
RS
2684@group
2685 @{
2686 /* If buffer is full, make it bigger. */
2687 if (i == length)
2688 @{
2689 length *= 2;
18b519c0 2690 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2691 @}
2692 /* Add this character to the buffer. */
2693 symbuf[i++] = c;
2694 /* Get another character. */
2695 c = getchar ();
2696 @}
2697@end group
2698@group
72d2299c 2699 while (isalnum (c));
bfa74976
RS
2700
2701 ungetc (c, stdin);
2702 symbuf[i] = '\0';
2703@end group
2704
2705@group
2706 s = getsym (symbuf);
2707 if (s == 0)
2708 s = putsym (symbuf, VAR);
2709 yylval.tptr = s;
2710 return s->type;
2711 @}
2712
2713 /* Any other character is a token by itself. */
2714 return c;
2715@}
2716@end group
c93f22fc 2717@end example
bfa74976 2718
aeb57fb6
AD
2719@node Mfcalc Main
2720@subsection The @code{mfcalc} Main
2721
2722The error reporting function is unchanged, and the new version of
93c150b6
AD
2723@code{main} includes a call to @code{init_table} and sets the @code{yydebug}
2724on user demand (@xref{Tracing, , Tracing Your Parser}, for details):
aeb57fb6 2725
93c150b6 2726@comment file: mfcalc.y: 3
c93f22fc 2727@example
aeb57fb6
AD
2728@group
2729/* Called by yyparse on error. */
2730void
2731yyerror (char const *s)
2732@{
2733 fprintf (stderr, "%s\n", s);
2734@}
2735@end group
2736
aaaa2aae 2737@group
aeb57fb6
AD
2738int
2739main (int argc, char const* argv[])
2740@{
93c150b6
AD
2741 int i;
2742 /* Enable parse traces on option -p. */
2743 for (i = 1; i < argc; ++i)
2744 if (!strcmp(argv[i], "-p"))
2745 yydebug = 1;
aeb57fb6
AD
2746 init_table ();
2747 return yyparse ();
2748@}
2749@end group
c93f22fc 2750@end example
aeb57fb6 2751
72d2299c 2752This program is both powerful and flexible. You may easily add new
704a47c4
AD
2753functions, and it is a simple job to modify this code to install
2754predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2755
342b8b6e 2756@node Exercises
bfa74976
RS
2757@section Exercises
2758@cindex exercises
2759
2760@enumerate
2761@item
2762Add some new functions from @file{math.h} to the initialization list.
2763
2764@item
2765Add another array that contains constants and their values. Then
2766modify @code{init_table} to add these constants to the symbol table.
2767It will be easiest to give the constants type @code{VAR}.
2768
2769@item
2770Make the program report an error if the user refers to an
2771uninitialized variable in any way except to store a value in it.
2772@end enumerate
2773
342b8b6e 2774@node Grammar File
bfa74976
RS
2775@chapter Bison Grammar Files
2776
2777Bison takes as input a context-free grammar specification and produces a
2778C-language function that recognizes correct instances of the grammar.
2779
ff7571c0 2780The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2781@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2782
2783@menu
303834cc
JD
2784* Grammar Outline:: Overall layout of the grammar file.
2785* Symbols:: Terminal and nonterminal symbols.
2786* Rules:: How to write grammar rules.
2787* Recursion:: Writing recursive rules.
2788* Semantics:: Semantic values and actions.
2789* Tracking Locations:: Locations and actions.
2790* Named References:: Using named references in actions.
2791* Declarations:: All kinds of Bison declarations are described here.
2792* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2793@end menu
2794
342b8b6e 2795@node Grammar Outline
bfa74976
RS
2796@section Outline of a Bison Grammar
2797
2798A Bison grammar file has four main sections, shown here with the
2799appropriate delimiters:
2800
2801@example
2802%@{
38a92d50 2803 @var{Prologue}
bfa74976
RS
2804%@}
2805
2806@var{Bison declarations}
2807
2808%%
2809@var{Grammar rules}
2810%%
2811
75f5aaea 2812@var{Epilogue}
bfa74976
RS
2813@end example
2814
2815Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
8a4281b9 2816As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2817continues until end of line.
bfa74976
RS
2818
2819@menu
f5f419de 2820* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2821* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2822* Bison Declarations:: Syntax and usage of the Bison declarations section.
2823* Grammar Rules:: Syntax and usage of the grammar rules section.
2824* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2825@end menu
2826
38a92d50 2827@node Prologue
75f5aaea
MA
2828@subsection The prologue
2829@cindex declarations section
2830@cindex Prologue
2831@cindex declarations
bfa74976 2832
f8e1c9e5
AD
2833The @var{Prologue} section contains macro definitions and declarations
2834of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2835rules. These are copied to the beginning of the parser implementation
2836file so that they precede the definition of @code{yyparse}. You can
2837use @samp{#include} to get the declarations from a header file. If
2838you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2839@samp{%@}} delimiters that bracket this section.
bfa74976 2840
9c437126 2841The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2842of @samp{%@}} that is outside a comment, a string literal, or a
2843character constant.
2844
c732d2c6
AD
2845You may have more than one @var{Prologue} section, intermixed with the
2846@var{Bison declarations}. This allows you to have C and Bison
2847declarations that refer to each other. For example, the @code{%union}
2848declaration may use types defined in a header file, and you may wish to
2849prototype functions that take arguments of type @code{YYSTYPE}. This
2850can be done with two @var{Prologue} blocks, one before and one after the
2851@code{%union} declaration.
2852
c93f22fc 2853@example
c732d2c6 2854%@{
aef3da86 2855 #define _GNU_SOURCE
38a92d50
PE
2856 #include <stdio.h>
2857 #include "ptypes.h"
c732d2c6
AD
2858%@}
2859
2860%union @{
779e7ceb 2861 long int n;
c732d2c6
AD
2862 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2863@}
2864
2865%@{
38a92d50
PE
2866 static void print_token_value (FILE *, int, YYSTYPE);
2867 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2868%@}
2869
2870@dots{}
c93f22fc 2871@end example
c732d2c6 2872
aef3da86
PE
2873When in doubt, it is usually safer to put prologue code before all
2874Bison declarations, rather than after. For example, any definitions
2875of feature test macros like @code{_GNU_SOURCE} or
2876@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2877feature test macros can affect the behavior of Bison-generated
2878@code{#include} directives.
2879
2cbe6b7f
JD
2880@node Prologue Alternatives
2881@subsection Prologue Alternatives
2882@cindex Prologue Alternatives
2883
136a0f76 2884@findex %code
16dc6a9e
JD
2885@findex %code requires
2886@findex %code provides
2887@findex %code top
85894313 2888
2cbe6b7f 2889The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2890inflexible. As an alternative, Bison provides a @code{%code}
2891directive with an explicit qualifier field, which identifies the
2892purpose of the code and thus the location(s) where Bison should
2893generate it. For C/C++, the qualifier can be omitted for the default
2894location, or it can be one of @code{requires}, @code{provides},
e0c07222 2895@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2896
2897Look again at the example of the previous section:
2898
c93f22fc 2899@example
2cbe6b7f
JD
2900%@{
2901 #define _GNU_SOURCE
2902 #include <stdio.h>
2903 #include "ptypes.h"
2904%@}
2905
2906%union @{
2907 long int n;
2908 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2909@}
2910
2911%@{
2912 static void print_token_value (FILE *, int, YYSTYPE);
2913 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2914%@}
2915
2916@dots{}
c93f22fc 2917@end example
2cbe6b7f
JD
2918
2919@noindent
ff7571c0
JD
2920Notice that there are two @var{Prologue} sections here, but there's a
2921subtle distinction between their functionality. For example, if you
2922decide to override Bison's default definition for @code{YYLTYPE}, in
2923which @var{Prologue} section should you write your new definition?
2924You should write it in the first since Bison will insert that code
2925into the parser implementation file @emph{before} the default
2926@code{YYLTYPE} definition. In which @var{Prologue} section should you
2927prototype an internal function, @code{trace_token}, that accepts
2928@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2929prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2930@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2931
2932This distinction in functionality between the two @var{Prologue} sections is
2933established by the appearance of the @code{%union} between them.
a501eca9 2934This behavior raises a few questions.
2cbe6b7f
JD
2935First, why should the position of a @code{%union} affect definitions related to
2936@code{YYLTYPE} and @code{yytokentype}?
2937Second, what if there is no @code{%union}?
2938In that case, the second kind of @var{Prologue} section is not available.
2939This behavior is not intuitive.
2940
8e0a5e9e 2941To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2942@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2943Let's go ahead and add the new @code{YYLTYPE} definition and the
2944@code{trace_token} prototype at the same time:
2945
c93f22fc 2946@example
16dc6a9e 2947%code top @{
2cbe6b7f
JD
2948 #define _GNU_SOURCE
2949 #include <stdio.h>
8e0a5e9e
JD
2950
2951 /* WARNING: The following code really belongs
16dc6a9e 2952 * in a `%code requires'; see below. */
8e0a5e9e 2953
2cbe6b7f
JD
2954 #include "ptypes.h"
2955 #define YYLTYPE YYLTYPE
2956 typedef struct YYLTYPE
2957 @{
2958 int first_line;
2959 int first_column;
2960 int last_line;
2961 int last_column;
2962 char *filename;
2963 @} YYLTYPE;
2964@}
2965
2966%union @{
2967 long int n;
2968 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2969@}
2970
2971%code @{
2972 static void print_token_value (FILE *, int, YYSTYPE);
2973 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2974 static void trace_token (enum yytokentype token, YYLTYPE loc);
2975@}
2976
2977@dots{}
c93f22fc 2978@end example
2cbe6b7f
JD
2979
2980@noindent
16dc6a9e
JD
2981In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2982functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2983explicit which kind you intend.
2cbe6b7f
JD
2984Moreover, both kinds are always available even in the absence of @code{%union}.
2985
ff7571c0
JD
2986The @code{%code top} block above logically contains two parts. The
2987first two lines before the warning need to appear near the top of the
2988parser implementation file. The first line after the warning is
2989required by @code{YYSTYPE} and thus also needs to appear in the parser
2990implementation file. However, if you've instructed Bison to generate
2991a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2992want that line to appear before the @code{YYSTYPE} definition in that
2993header file as well. The @code{YYLTYPE} definition should also appear
2994in the parser header file to override the default @code{YYLTYPE}
2995definition there.
2cbe6b7f 2996
16dc6a9e 2997In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2998lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2999definitions.
16dc6a9e 3000Thus, they belong in one or more @code{%code requires}:
9bc0dd67 3001
c93f22fc 3002@example
d4fca427 3003@group
16dc6a9e 3004%code top @{
2cbe6b7f
JD
3005 #define _GNU_SOURCE
3006 #include <stdio.h>
3007@}
d4fca427 3008@end group
2cbe6b7f 3009
d4fca427 3010@group
16dc6a9e 3011%code requires @{
9bc0dd67
JD
3012 #include "ptypes.h"
3013@}
d4fca427
AD
3014@end group
3015@group
9bc0dd67
JD
3016%union @{
3017 long int n;
3018 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3019@}
d4fca427 3020@end group
9bc0dd67 3021
d4fca427 3022@group
16dc6a9e 3023%code requires @{
2cbe6b7f
JD
3024 #define YYLTYPE YYLTYPE
3025 typedef struct YYLTYPE
3026 @{
3027 int first_line;
3028 int first_column;
3029 int last_line;
3030 int last_column;
3031 char *filename;
3032 @} YYLTYPE;
3033@}
d4fca427 3034@end group
2cbe6b7f 3035
d4fca427 3036@group
136a0f76 3037%code @{
2cbe6b7f
JD
3038 static void print_token_value (FILE *, int, YYSTYPE);
3039 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3040 static void trace_token (enum yytokentype token, YYLTYPE loc);
3041@}
d4fca427 3042@end group
2cbe6b7f
JD
3043
3044@dots{}
c93f22fc 3045@end example
2cbe6b7f
JD
3046
3047@noindent
ff7571c0
JD
3048Now Bison will insert @code{#include "ptypes.h"} and the new
3049@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
3050and @code{YYLTYPE} definitions in both the parser implementation file
3051and the parser header file. (By the same reasoning, @code{%code
3052requires} would also be the appropriate place to write your own
3053definition for @code{YYSTYPE}.)
3054
3055When you are writing dependency code for @code{YYSTYPE} and
3056@code{YYLTYPE}, you should prefer @code{%code requires} over
3057@code{%code top} regardless of whether you instruct Bison to generate
3058a parser header file. When you are writing code that you need Bison
3059to insert only into the parser implementation file and that has no
3060special need to appear at the top of that file, you should prefer the
3061unqualified @code{%code} over @code{%code top}. These practices will
3062make the purpose of each block of your code explicit to Bison and to
3063other developers reading your grammar file. Following these
3064practices, we expect the unqualified @code{%code} and @code{%code
3065requires} to be the most important of the four @var{Prologue}
16dc6a9e 3066alternatives.
a501eca9 3067
ff7571c0
JD
3068At some point while developing your parser, you might decide to
3069provide @code{trace_token} to modules that are external to your
3070parser. Thus, you might wish for Bison to insert the prototype into
3071both the parser header file and the parser implementation file. Since
3072this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 3073@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
3074@code{%code requires}. More importantly, since it depends upon
3075@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3076sufficient. Instead, move its prototype from the unqualified
3077@code{%code} to a @code{%code provides}:
2cbe6b7f 3078
c93f22fc 3079@example
d4fca427 3080@group
16dc6a9e 3081%code top @{
2cbe6b7f 3082 #define _GNU_SOURCE
136a0f76 3083 #include <stdio.h>
2cbe6b7f 3084@}
d4fca427 3085@end group
136a0f76 3086
d4fca427 3087@group
16dc6a9e 3088%code requires @{
2cbe6b7f
JD
3089 #include "ptypes.h"
3090@}
d4fca427
AD
3091@end group
3092@group
2cbe6b7f
JD
3093%union @{
3094 long int n;
3095 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3096@}
d4fca427 3097@end group
2cbe6b7f 3098
d4fca427 3099@group
16dc6a9e 3100%code requires @{
2cbe6b7f
JD
3101 #define YYLTYPE YYLTYPE
3102 typedef struct YYLTYPE
3103 @{
3104 int first_line;
3105 int first_column;
3106 int last_line;
3107 int last_column;
3108 char *filename;
3109 @} YYLTYPE;
3110@}
d4fca427 3111@end group
2cbe6b7f 3112
d4fca427 3113@group
16dc6a9e 3114%code provides @{
2cbe6b7f
JD
3115 void trace_token (enum yytokentype token, YYLTYPE loc);
3116@}
d4fca427 3117@end group
2cbe6b7f 3118
d4fca427 3119@group
2cbe6b7f 3120%code @{
9bc0dd67
JD
3121 static void print_token_value (FILE *, int, YYSTYPE);
3122 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3123@}
d4fca427 3124@end group
9bc0dd67
JD
3125
3126@dots{}
c93f22fc 3127@end example
9bc0dd67 3128
2cbe6b7f 3129@noindent
ff7571c0
JD
3130Bison will insert the @code{trace_token} prototype into both the
3131parser header file and the parser implementation file after the
3132definitions for @code{yytokentype}, @code{YYLTYPE}, and
3133@code{YYSTYPE}.
2cbe6b7f 3134
ff7571c0
JD
3135The above examples are careful to write directives in an order that
3136reflects the layout of the generated parser implementation and header
3137files: @code{%code top}, @code{%code requires}, @code{%code provides},
3138and then @code{%code}. While your grammar files may generally be
3139easier to read if you also follow this order, Bison does not require
3140it. Instead, Bison lets you choose an organization that makes sense
3141to you.
2cbe6b7f 3142
a501eca9 3143You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3144In that case, Bison concatenates the contained code in declaration order.
3145This is the only way in which the position of one of these directives within
3146the grammar file affects its functionality.
3147
3148The result of the previous two properties is greater flexibility in how you may
3149organize your grammar file.
3150For example, you may organize semantic-type-related directives by semantic
3151type:
3152
c93f22fc 3153@example
d4fca427 3154@group
16dc6a9e 3155%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3156%union @{ type1 field1; @}
3157%destructor @{ type1_free ($$); @} <field1>
c5026327 3158%printer @{ type1_print (yyoutput, $$); @} <field1>
d4fca427 3159@end group
2cbe6b7f 3160
d4fca427 3161@group
16dc6a9e 3162%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3163%union @{ type2 field2; @}
3164%destructor @{ type2_free ($$); @} <field2>
c5026327 3165%printer @{ type2_print (yyoutput, $$); @} <field2>
d4fca427 3166@end group
c93f22fc 3167@end example
2cbe6b7f
JD
3168
3169@noindent
3170You could even place each of the above directive groups in the rules section of
3171the grammar file next to the set of rules that uses the associated semantic
3172type.
61fee93e
JD
3173(In the rules section, you must terminate each of those directives with a
3174semicolon.)
2cbe6b7f
JD
3175And you don't have to worry that some directive (like a @code{%union}) in the
3176definitions section is going to adversely affect their functionality in some
3177counter-intuitive manner just because it comes first.
3178Such an organization is not possible using @var{Prologue} sections.
3179
a501eca9 3180This section has been concerned with explaining the advantages of the four
8e0a5e9e 3181@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3182However, in most cases when using these directives, you shouldn't need to
3183think about all the low-level ordering issues discussed here.
3184Instead, you should simply use these directives to label each block of your
3185code according to its purpose and let Bison handle the ordering.
3186@code{%code} is the most generic label.
16dc6a9e
JD
3187Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3188as needed.
a501eca9 3189
342b8b6e 3190@node Bison Declarations
bfa74976
RS
3191@subsection The Bison Declarations Section
3192@cindex Bison declarations (introduction)
3193@cindex declarations, Bison (introduction)
3194
3195The @var{Bison declarations} section contains declarations that define
3196terminal and nonterminal symbols, specify precedence, and so on.
3197In some simple grammars you may not need any declarations.
3198@xref{Declarations, ,Bison Declarations}.
3199
342b8b6e 3200@node Grammar Rules
bfa74976
RS
3201@subsection The Grammar Rules Section
3202@cindex grammar rules section
3203@cindex rules section for grammar
3204
3205The @dfn{grammar rules} section contains one or more Bison grammar
3206rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3207
3208There must always be at least one grammar rule, and the first
3209@samp{%%} (which precedes the grammar rules) may never be omitted even
3210if it is the first thing in the file.
3211
38a92d50 3212@node Epilogue
75f5aaea 3213@subsection The epilogue
bfa74976 3214@cindex additional C code section
75f5aaea 3215@cindex epilogue
bfa74976
RS
3216@cindex C code, section for additional
3217
ff7571c0
JD
3218The @var{Epilogue} is copied verbatim to the end of the parser
3219implementation file, just as the @var{Prologue} is copied to the
3220beginning. This is the most convenient place to put anything that you
3221want to have in the parser implementation file but which need not come
3222before the definition of @code{yyparse}. For example, the definitions
3223of @code{yylex} and @code{yyerror} often go here. Because C requires
3224functions to be declared before being used, you often need to declare
3225functions like @code{yylex} and @code{yyerror} in the Prologue, even
3226if you define them in the Epilogue. @xref{Interface, ,Parser
3227C-Language Interface}.
bfa74976
RS
3228
3229If the last section is empty, you may omit the @samp{%%} that separates it
3230from the grammar rules.
3231
f8e1c9e5
AD
3232The Bison parser itself contains many macros and identifiers whose names
3233start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3234any such names (except those documented in this manual) in the epilogue
3235of the grammar file.
bfa74976 3236
342b8b6e 3237@node Symbols
bfa74976
RS
3238@section Symbols, Terminal and Nonterminal
3239@cindex nonterminal symbol
3240@cindex terminal symbol
3241@cindex token type
3242@cindex symbol
3243
3244@dfn{Symbols} in Bison grammars represent the grammatical classifications
3245of the language.
3246
3247A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3248class of syntactically equivalent tokens. You use the symbol in grammar
3249rules to mean that a token in that class is allowed. The symbol is
3250represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3251function returns a token type code to indicate what kind of token has
3252been read. You don't need to know what the code value is; you can use
3253the symbol to stand for it.
bfa74976 3254
f8e1c9e5
AD
3255A @dfn{nonterminal symbol} stands for a class of syntactically
3256equivalent groupings. The symbol name is used in writing grammar rules.
3257By convention, it should be all lower case.
bfa74976 3258
82f3355e
JD
3259Symbol names can contain letters, underscores, periods, and non-initial
3260digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3261with POSIX Yacc. Periods and dashes make symbol names less convenient to
3262use with named references, which require brackets around such names
3263(@pxref{Named References}). Terminal symbols that contain periods or dashes
3264make little sense: since they are not valid symbols (in most programming
3265languages) they are not exported as token names.
bfa74976 3266
931c7513 3267There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3268
3269@itemize @bullet
3270@item
3271A @dfn{named token type} is written with an identifier, like an
c827f760 3272identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3273such name must be defined with a Bison declaration such as
3274@code{%token}. @xref{Token Decl, ,Token Type Names}.
3275
3276@item
3277@cindex character token
3278@cindex literal token
3279@cindex single-character literal
931c7513
RS
3280A @dfn{character token type} (or @dfn{literal character token}) is
3281written in the grammar using the same syntax used in C for character
3282constants; for example, @code{'+'} is a character token type. A
3283character token type doesn't need to be declared unless you need to
3284specify its semantic value data type (@pxref{Value Type, ,Data Types of
3285Semantic Values}), associativity, or precedence (@pxref{Precedence,
3286,Operator Precedence}).
bfa74976
RS
3287
3288By convention, a character token type is used only to represent a
3289token that consists of that particular character. Thus, the token
3290type @code{'+'} is used to represent the character @samp{+} as a
3291token. Nothing enforces this convention, but if you depart from it,
3292your program will confuse other readers.
3293
3294All the usual escape sequences used in character literals in C can be
3295used in Bison as well, but you must not use the null character as a
72d2299c
PE
3296character literal because its numeric code, zero, signifies
3297end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3298for @code{yylex}}). Also, unlike standard C, trigraphs have no
3299special meaning in Bison character literals, nor is backslash-newline
3300allowed.
931c7513
RS
3301
3302@item
3303@cindex string token
3304@cindex literal string token
9ecbd125 3305@cindex multicharacter literal
931c7513
RS
3306A @dfn{literal string token} is written like a C string constant; for
3307example, @code{"<="} is a literal string token. A literal string token
3308doesn't need to be declared unless you need to specify its semantic
14ded682 3309value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3310(@pxref{Precedence}).
3311
3312You can associate the literal string token with a symbolic name as an
3313alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3314Declarations}). If you don't do that, the lexical analyzer has to
3315retrieve the token number for the literal string token from the
3316@code{yytname} table (@pxref{Calling Convention}).
3317
c827f760 3318@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3319
3320By convention, a literal string token is used only to represent a token
3321that consists of that particular string. Thus, you should use the token
3322type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3323does not enforce this convention, but if you depart from it, people who
931c7513
RS
3324read your program will be confused.
3325
3326All the escape sequences used in string literals in C can be used in
92ac3705
PE
3327Bison as well, except that you must not use a null character within a
3328string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3329meaning in Bison string literals, nor is backslash-newline allowed. A
3330literal string token must contain two or more characters; for a token
3331containing just one character, use a character token (see above).
bfa74976
RS
3332@end itemize
3333
3334How you choose to write a terminal symbol has no effect on its
3335grammatical meaning. That depends only on where it appears in rules and
3336on when the parser function returns that symbol.
3337
72d2299c
PE
3338The value returned by @code{yylex} is always one of the terminal
3339symbols, except that a zero or negative value signifies end-of-input.
3340Whichever way you write the token type in the grammar rules, you write
3341it the same way in the definition of @code{yylex}. The numeric code
3342for a character token type is simply the positive numeric code of the
3343character, so @code{yylex} can use the identical value to generate the
3344requisite code, though you may need to convert it to @code{unsigned
3345char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3346Each named token type becomes a C macro in the parser implementation
3347file, so @code{yylex} can use the name to stand for the code. (This
3348is why periods don't make sense in terminal symbols.) @xref{Calling
3349Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3350
3351If @code{yylex} is defined in a separate file, you need to arrange for the
3352token-type macro definitions to be available there. Use the @samp{-d}
3353option when you run Bison, so that it will write these macro definitions
3354into a separate header file @file{@var{name}.tab.h} which you can include
3355in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3356
72d2299c 3357If you want to write a grammar that is portable to any Standard C
9d9b8b70 3358host, you must use only nonnull character tokens taken from the basic
c827f760 3359execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3360digits, the 52 lower- and upper-case English letters, and the
3361characters in the following C-language string:
3362
3363@example
3364"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3365@end example
3366
f8e1c9e5
AD
3367The @code{yylex} function and Bison must use a consistent character set
3368and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3369ASCII environment, but then compile and run the resulting
f8e1c9e5 3370program in an environment that uses an incompatible character set like
8a4281b9
JD
3371EBCDIC, the resulting program may not work because the tables
3372generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3373character tokens. It is standard practice for software distributions to
3374contain C source files that were generated by Bison in an
8a4281b9
JD
3375ASCII environment, so installers on platforms that are
3376incompatible with ASCII must rebuild those files before
f8e1c9e5 3377compiling them.
e966383b 3378
bfa74976
RS
3379The symbol @code{error} is a terminal symbol reserved for error recovery
3380(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3381In particular, @code{yylex} should never return this value. The default
3382value of the error token is 256, unless you explicitly assigned 256 to
3383one of your tokens with a @code{%token} declaration.
bfa74976 3384
342b8b6e 3385@node Rules
bfa74976
RS
3386@section Syntax of Grammar Rules
3387@cindex rule syntax
3388@cindex grammar rule syntax
3389@cindex syntax of grammar rules
3390
3391A Bison grammar rule has the following general form:
3392
3393@example
e425e872 3394@group
5e9b6624 3395@var{result}: @var{components}@dots{};
e425e872 3396@end group
bfa74976
RS
3397@end example
3398
3399@noindent
9ecbd125 3400where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3401and @var{components} are various terminal and nonterminal symbols that
13863333 3402are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3403
3404For example,
3405
3406@example
3407@group
5e9b6624 3408exp: exp '+' exp;
bfa74976
RS
3409@end group
3410@end example
3411
3412@noindent
3413says that two groupings of type @code{exp}, with a @samp{+} token in between,
3414can be combined into a larger grouping of type @code{exp}.
3415
72d2299c
PE
3416White space in rules is significant only to separate symbols. You can add
3417extra white space as you wish.
bfa74976
RS
3418
3419Scattered among the components can be @var{actions} that determine
3420the semantics of the rule. An action looks like this:
3421
3422@example
3423@{@var{C statements}@}
3424@end example
3425
3426@noindent
287c78f6
PE
3427@cindex braced code
3428This is an example of @dfn{braced code}, that is, C code surrounded by
3429braces, much like a compound statement in C@. Braced code can contain
3430any sequence of C tokens, so long as its braces are balanced. Bison
3431does not check the braced code for correctness directly; it merely
ff7571c0
JD
3432copies the code to the parser implementation file, where the C
3433compiler can check it.
287c78f6
PE
3434
3435Within braced code, the balanced-brace count is not affected by braces
3436within comments, string literals, or character constants, but it is
3437affected by the C digraphs @samp{<%} and @samp{%>} that represent
3438braces. At the top level braced code must be terminated by @samp{@}}
3439and not by a digraph. Bison does not look for trigraphs, so if braced
3440code uses trigraphs you should ensure that they do not affect the
3441nesting of braces or the boundaries of comments, string literals, or
3442character constants.
3443
bfa74976
RS
3444Usually there is only one action and it follows the components.
3445@xref{Actions}.
3446
3447@findex |
3448Multiple rules for the same @var{result} can be written separately or can
3449be joined with the vertical-bar character @samp{|} as follows:
3450
bfa74976
RS
3451@example
3452@group
5e9b6624
AD
3453@var{result}:
3454 @var{rule1-components}@dots{}
3455| @var{rule2-components}@dots{}
3456@dots{}
3457;
bfa74976
RS
3458@end group
3459@end example
bfa74976
RS
3460
3461@noindent
3462They are still considered distinct rules even when joined in this way.
3463
3464If @var{components} in a rule is empty, it means that @var{result} can
3465match the empty string. For example, here is how to define a
3466comma-separated sequence of zero or more @code{exp} groupings:
3467
3468@example
3469@group
5e9b6624
AD
3470expseq:
3471 /* empty */
3472| expseq1
3473;
bfa74976
RS
3474@end group
3475
3476@group
5e9b6624
AD
3477expseq1:
3478 exp
3479| expseq1 ',' exp
3480;
bfa74976
RS
3481@end group
3482@end example
3483
3484@noindent
3485It is customary to write a comment @samp{/* empty */} in each rule
3486with no components.
3487
342b8b6e 3488@node Recursion
bfa74976
RS
3489@section Recursive Rules
3490@cindex recursive rule
3491
f8e1c9e5
AD
3492A rule is called @dfn{recursive} when its @var{result} nonterminal
3493appears also on its right hand side. Nearly all Bison grammars need to
3494use recursion, because that is the only way to define a sequence of any
3495number of a particular thing. Consider this recursive definition of a
9ecbd125 3496comma-separated sequence of one or more expressions:
bfa74976
RS
3497
3498@example
3499@group
5e9b6624
AD
3500expseq1:
3501 exp
3502| expseq1 ',' exp
3503;
bfa74976
RS
3504@end group
3505@end example
3506
3507@cindex left recursion
3508@cindex right recursion
3509@noindent
3510Since the recursive use of @code{expseq1} is the leftmost symbol in the
3511right hand side, we call this @dfn{left recursion}. By contrast, here
3512the same construct is defined using @dfn{right recursion}:
3513
3514@example
3515@group
5e9b6624
AD
3516expseq1:
3517 exp
3518| exp ',' expseq1
3519;
bfa74976
RS
3520@end group
3521@end example
3522
3523@noindent
ec3bc396
AD
3524Any kind of sequence can be defined using either left recursion or right
3525recursion, but you should always use left recursion, because it can
3526parse a sequence of any number of elements with bounded stack space.
3527Right recursion uses up space on the Bison stack in proportion to the
3528number of elements in the sequence, because all the elements must be
3529shifted onto the stack before the rule can be applied even once.
3530@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3531of this.
bfa74976
RS
3532
3533@cindex mutual recursion
3534@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3535rule does not appear directly on its right hand side, but does appear
3536in rules for other nonterminals which do appear on its right hand
13863333 3537side.
bfa74976
RS
3538
3539For example:
3540
3541@example
3542@group
5e9b6624
AD
3543expr:
3544 primary
3545| primary '+' primary
3546;
bfa74976
RS
3547@end group
3548
3549@group
5e9b6624
AD
3550primary:
3551 constant
3552| '(' expr ')'
3553;
bfa74976
RS
3554@end group
3555@end example
3556
3557@noindent
3558defines two mutually-recursive nonterminals, since each refers to the
3559other.
3560
342b8b6e 3561@node Semantics
bfa74976
RS
3562@section Defining Language Semantics
3563@cindex defining language semantics
13863333 3564@cindex language semantics, defining
bfa74976
RS
3565
3566The grammar rules for a language determine only the syntax. The semantics
3567are determined by the semantic values associated with various tokens and
3568groupings, and by the actions taken when various groupings are recognized.
3569
3570For example, the calculator calculates properly because the value
3571associated with each expression is the proper number; it adds properly
3572because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3573the numbers associated with @var{x} and @var{y}.
3574
3575@menu
3576* Value Type:: Specifying one data type for all semantic values.
3577* Multiple Types:: Specifying several alternative data types.
3578* Actions:: An action is the semantic definition of a grammar rule.
3579* Action Types:: Specifying data types for actions to operate on.
3580* Mid-Rule Actions:: Most actions go at the end of a rule.
3581 This says when, why and how to use the exceptional
3582 action in the middle of a rule.
3583@end menu
3584
342b8b6e 3585@node Value Type
bfa74976
RS
3586@subsection Data Types of Semantic Values
3587@cindex semantic value type
3588@cindex value type, semantic
3589@cindex data types of semantic values
3590@cindex default data type
3591
3592In a simple program it may be sufficient to use the same data type for
3593the semantic values of all language constructs. This was true in the
8a4281b9 3594RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3595Notation Calculator}).
bfa74976 3596
ddc8ede1
PE
3597Bison normally uses the type @code{int} for semantic values if your
3598program uses the same data type for all language constructs. To
bfa74976
RS
3599specify some other type, define @code{YYSTYPE} as a macro, like this:
3600
3601@example
3602#define YYSTYPE double
3603@end example
3604
3605@noindent
50cce58e
PE
3606@code{YYSTYPE}'s replacement list should be a type name
3607that does not contain parentheses or square brackets.
342b8b6e 3608This macro definition must go in the prologue of the grammar file
75f5aaea 3609(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3610
342b8b6e 3611@node Multiple Types
bfa74976
RS
3612@subsection More Than One Value Type
3613
3614In most programs, you will need different data types for different kinds
3615of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3616@code{int} or @code{long int}, while a string constant needs type
3617@code{char *}, and an identifier might need a pointer to an entry in the
3618symbol table.
bfa74976
RS
3619
3620To use more than one data type for semantic values in one parser, Bison
3621requires you to do two things:
3622
3623@itemize @bullet
3624@item
ddc8ede1 3625Specify the entire collection of possible data types, either by using the
704a47c4 3626@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3627Value Types}), or by using a @code{typedef} or a @code{#define} to
3628define @code{YYSTYPE} to be a union type whose member names are
3629the type tags.
bfa74976
RS
3630
3631@item
14ded682
AD
3632Choose one of those types for each symbol (terminal or nonterminal) for
3633which semantic values are used. This is done for tokens with the
3634@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3635and for groupings with the @code{%type} Bison declaration (@pxref{Type
3636Decl, ,Nonterminal Symbols}).
bfa74976
RS
3637@end itemize
3638
342b8b6e 3639@node Actions
bfa74976
RS
3640@subsection Actions
3641@cindex action
3642@vindex $$
3643@vindex $@var{n}
d013372c
AR
3644@vindex $@var{name}
3645@vindex $[@var{name}]
bfa74976
RS
3646
3647An action accompanies a syntactic rule and contains C code to be executed
3648each time an instance of that rule is recognized. The task of most actions
3649is to compute a semantic value for the grouping built by the rule from the
3650semantic values associated with tokens or smaller groupings.
3651
287c78f6
PE
3652An action consists of braced code containing C statements, and can be
3653placed at any position in the rule;
704a47c4
AD
3654it is executed at that position. Most rules have just one action at the
3655end of the rule, following all the components. Actions in the middle of
3656a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3657Actions, ,Actions in Mid-Rule}).
bfa74976 3658
ff7571c0
JD
3659The C code in an action can refer to the semantic values of the
3660components matched by the rule with the construct @code{$@var{n}},
3661which stands for the value of the @var{n}th component. The semantic
3662value for the grouping being constructed is @code{$$}. In addition,
3663the semantic values of symbols can be accessed with the named
3664references construct @code{$@var{name}} or @code{$[@var{name}]}.
3665Bison translates both of these constructs into expressions of the
3666appropriate type when it copies the actions into the parser
3667implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3668for the current grouping) is translated to a modifiable lvalue, so it
3669can be assigned to.
bfa74976
RS
3670
3671Here is a typical example:
3672
3673@example
3674@group
5e9b6624
AD
3675exp:
3676@dots{}
3677| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3678@end group
3679@end example
3680
d013372c
AR
3681Or, in terms of named references:
3682
3683@example
3684@group
5e9b6624
AD
3685exp[result]:
3686@dots{}
3687| exp[left] '+' exp[right] @{ $result = $left + $right; @}
d013372c
AR
3688@end group
3689@end example
3690
bfa74976
RS
3691@noindent
3692This rule constructs an @code{exp} from two smaller @code{exp} groupings
3693connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3694(@code{$left} and @code{$right})
bfa74976
RS
3695refer to the semantic values of the two component @code{exp} groupings,
3696which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3697The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3698semantic value of
bfa74976
RS
3699the addition-expression just recognized by the rule. If there were a
3700useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3701referred to as @code{$2}.
bfa74976 3702
a7b15ab9
JD
3703@xref{Named References}, for more information about using the named
3704references construct.
d013372c 3705
3ded9a63
AD
3706Note that the vertical-bar character @samp{|} is really a rule
3707separator, and actions are attached to a single rule. This is a
3708difference with tools like Flex, for which @samp{|} stands for either
3709``or'', or ``the same action as that of the next rule''. In the
3710following example, the action is triggered only when @samp{b} is found:
3711
3712@example
3713@group
3714a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3715@end group
3716@end example
3717
bfa74976
RS
3718@cindex default action
3719If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3720@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3721becomes the value of the whole rule. Of course, the default action is
3722valid only if the two data types match. There is no meaningful default
3723action for an empty rule; every empty rule must have an explicit action
3724unless the rule's value does not matter.
bfa74976
RS
3725
3726@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3727to tokens and groupings on the stack @emph{before} those that match the
3728current rule. This is a very risky practice, and to use it reliably
3729you must be certain of the context in which the rule is applied. Here
3730is a case in which you can use this reliably:
3731
3732@example
3733@group
5e9b6624
AD
3734foo:
3735 expr bar '+' expr @{ @dots{} @}
3736| expr bar '-' expr @{ @dots{} @}
3737;
bfa74976
RS
3738@end group
3739
3740@group
5e9b6624
AD
3741bar:
3742 /* empty */ @{ previous_expr = $0; @}
3743;
bfa74976
RS
3744@end group
3745@end example
3746
3747As long as @code{bar} is used only in the fashion shown here, @code{$0}
3748always refers to the @code{expr} which precedes @code{bar} in the
3749definition of @code{foo}.
3750
32c29292 3751@vindex yylval
742e4900 3752It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3753any, from a semantic action.
3754This semantic value is stored in @code{yylval}.
3755@xref{Action Features, ,Special Features for Use in Actions}.
3756
342b8b6e 3757@node Action Types
bfa74976
RS
3758@subsection Data Types of Values in Actions
3759@cindex action data types
3760@cindex data types in actions
3761
3762If you have chosen a single data type for semantic values, the @code{$$}
3763and @code{$@var{n}} constructs always have that data type.
3764
3765If you have used @code{%union} to specify a variety of data types, then you
3766must declare a choice among these types for each terminal or nonterminal
3767symbol that can have a semantic value. Then each time you use @code{$$} or
3768@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3769in the rule. In this example,
bfa74976
RS
3770
3771@example
3772@group
5e9b6624
AD
3773exp:
3774 @dots{}
3775| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3776@end group
3777@end example
3778
3779@noindent
3780@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3781have the data type declared for the nonterminal symbol @code{exp}. If
3782@code{$2} were used, it would have the data type declared for the
e0c471a9 3783terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3784
3785Alternatively, you can specify the data type when you refer to the value,
3786by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3787reference. For example, if you have defined types as shown here:
3788
3789@example
3790@group
3791%union @{
3792 int itype;
3793 double dtype;
3794@}
3795@end group
3796@end example
3797
3798@noindent
3799then you can write @code{$<itype>1} to refer to the first subunit of the
3800rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3801
342b8b6e 3802@node Mid-Rule Actions
bfa74976
RS
3803@subsection Actions in Mid-Rule
3804@cindex actions in mid-rule
3805@cindex mid-rule actions
3806
3807Occasionally it is useful to put an action in the middle of a rule.
3808These actions are written just like usual end-of-rule actions, but they
3809are executed before the parser even recognizes the following components.
3810
3811A mid-rule action may refer to the components preceding it using
3812@code{$@var{n}}, but it may not refer to subsequent components because
3813it is run before they are parsed.
3814
3815The mid-rule action itself counts as one of the components of the rule.
3816This makes a difference when there is another action later in the same rule
3817(and usually there is another at the end): you have to count the actions
3818along with the symbols when working out which number @var{n} to use in
3819@code{$@var{n}}.
3820
3821The mid-rule action can also have a semantic value. The action can set
3822its value with an assignment to @code{$$}, and actions later in the rule
3823can refer to the value using @code{$@var{n}}. Since there is no symbol
3824to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3825in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3826specify a data type each time you refer to this value.
bfa74976
RS
3827
3828There is no way to set the value of the entire rule with a mid-rule
3829action, because assignments to @code{$$} do not have that effect. The
3830only way to set the value for the entire rule is with an ordinary action
3831at the end of the rule.
3832
3833Here is an example from a hypothetical compiler, handling a @code{let}
3834statement that looks like @samp{let (@var{variable}) @var{statement}} and
3835serves to create a variable named @var{variable} temporarily for the
3836duration of @var{statement}. To parse this construct, we must put
3837@var{variable} into the symbol table while @var{statement} is parsed, then
3838remove it afterward. Here is how it is done:
3839
3840@example
3841@group
5e9b6624
AD
3842stmt:
3843 LET '(' var ')'
3844 @{ $<context>$ = push_context (); declare_variable ($3); @}
3845 stmt
3846 @{ $$ = $6; pop_context ($<context>5); @}
bfa74976
RS
3847@end group
3848@end example
3849
3850@noindent
3851As soon as @samp{let (@var{variable})} has been recognized, the first
3852action is run. It saves a copy of the current semantic context (the
3853list of accessible variables) as its semantic value, using alternative
3854@code{context} in the data-type union. Then it calls
3855@code{declare_variable} to add the new variable to that list. Once the
3856first action is finished, the embedded statement @code{stmt} can be
3857parsed. Note that the mid-rule action is component number 5, so the
3858@samp{stmt} is component number 6.
3859
3860After the embedded statement is parsed, its semantic value becomes the
3861value of the entire @code{let}-statement. Then the semantic value from the
3862earlier action is used to restore the prior list of variables. This
3863removes the temporary @code{let}-variable from the list so that it won't
3864appear to exist while the rest of the program is parsed.
3865
841a7737
JD
3866@findex %destructor
3867@cindex discarded symbols, mid-rule actions
3868@cindex error recovery, mid-rule actions
3869In the above example, if the parser initiates error recovery (@pxref{Error
3870Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3871it might discard the previous semantic context @code{$<context>5} without
3872restoring it.
3873Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3874Discarded Symbols}).
ec5479ce
JD
3875However, Bison currently provides no means to declare a destructor specific to
3876a particular mid-rule action's semantic value.
841a7737
JD
3877
3878One solution is to bury the mid-rule action inside a nonterminal symbol and to
3879declare a destructor for that symbol:
3880
3881@example
3882@group
3883%type <context> let
3884%destructor @{ pop_context ($$); @} let
3885
3886%%
3887
5e9b6624
AD
3888stmt:
3889 let stmt
3890 @{
3891 $$ = $2;
3892 pop_context ($1);
3893 @};
841a7737 3894
5e9b6624
AD
3895let:
3896 LET '(' var ')'
3897 @{
3898 $$ = push_context ();
3899 declare_variable ($3);
3900 @};
841a7737
JD
3901
3902@end group
3903@end example
3904
3905@noindent
3906Note that the action is now at the end of its rule.
3907Any mid-rule action can be converted to an end-of-rule action in this way, and
3908this is what Bison actually does to implement mid-rule actions.
3909
bfa74976
RS
3910Taking action before a rule is completely recognized often leads to
3911conflicts since the parser must commit to a parse in order to execute the
3912action. For example, the following two rules, without mid-rule actions,
3913can coexist in a working parser because the parser can shift the open-brace
3914token and look at what follows before deciding whether there is a
3915declaration or not:
3916
3917@example
3918@group
5e9b6624
AD
3919compound:
3920 '@{' declarations statements '@}'
3921| '@{' statements '@}'
3922;
bfa74976
RS
3923@end group
3924@end example
3925
3926@noindent
3927But when we add a mid-rule action as follows, the rules become nonfunctional:
3928
3929@example
3930@group
5e9b6624
AD
3931compound:
3932 @{ prepare_for_local_variables (); @}
3933 '@{' declarations statements '@}'
bfa74976
RS
3934@end group
3935@group
5e9b6624
AD
3936| '@{' statements '@}'
3937;
bfa74976
RS
3938@end group
3939@end example
3940
3941@noindent
3942Now the parser is forced to decide whether to run the mid-rule action
3943when it has read no farther than the open-brace. In other words, it
3944must commit to using one rule or the other, without sufficient
3945information to do it correctly. (The open-brace token is what is called
742e4900
JD
3946the @dfn{lookahead} token at this time, since the parser is still
3947deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3948
3949You might think that you could correct the problem by putting identical
3950actions into the two rules, like this:
3951
3952@example
3953@group
5e9b6624
AD
3954compound:
3955 @{ prepare_for_local_variables (); @}
3956 '@{' declarations statements '@}'
3957| @{ prepare_for_local_variables (); @}
3958 '@{' statements '@}'
3959;
bfa74976
RS
3960@end group
3961@end example
3962
3963@noindent
3964But this does not help, because Bison does not realize that the two actions
3965are identical. (Bison never tries to understand the C code in an action.)
3966
3967If the grammar is such that a declaration can be distinguished from a
3968statement by the first token (which is true in C), then one solution which
3969does work is to put the action after the open-brace, like this:
3970
3971@example
3972@group
5e9b6624
AD
3973compound:
3974 '@{' @{ prepare_for_local_variables (); @}
3975 declarations statements '@}'
3976| '@{' statements '@}'
3977;
bfa74976
RS
3978@end group
3979@end example
3980
3981@noindent
3982Now the first token of the following declaration or statement,
3983which would in any case tell Bison which rule to use, can still do so.
3984
3985Another solution is to bury the action inside a nonterminal symbol which
3986serves as a subroutine:
3987
3988@example
3989@group
5e9b6624
AD
3990subroutine:
3991 /* empty */ @{ prepare_for_local_variables (); @}
3992;
bfa74976
RS
3993@end group
3994
3995@group
5e9b6624
AD
3996compound:
3997 subroutine '@{' declarations statements '@}'
3998| subroutine '@{' statements '@}'
3999;
bfa74976
RS
4000@end group
4001@end example
4002
4003@noindent
4004Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 4005deciding which rule for @code{compound} it will eventually use.
bfa74976 4006
303834cc 4007@node Tracking Locations
847bf1f5
AD
4008@section Tracking Locations
4009@cindex location
95923bd6
AD
4010@cindex textual location
4011@cindex location, textual
847bf1f5
AD
4012
4013Though grammar rules and semantic actions are enough to write a fully
72d2299c 4014functional parser, it can be useful to process some additional information,
3e259915
MA
4015especially symbol locations.
4016
704a47c4
AD
4017The way locations are handled is defined by providing a data type, and
4018actions to take when rules are matched.
847bf1f5
AD
4019
4020@menu
4021* Location Type:: Specifying a data type for locations.
4022* Actions and Locations:: Using locations in actions.
4023* Location Default Action:: Defining a general way to compute locations.
4024@end menu
4025
342b8b6e 4026@node Location Type
847bf1f5
AD
4027@subsection Data Type of Locations
4028@cindex data type of locations
4029@cindex default location type
4030
4031Defining a data type for locations is much simpler than for semantic values,
4032since all tokens and groupings always use the same type.
4033
50cce58e
PE
4034You can specify the type of locations by defining a macro called
4035@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 4036defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
4037When @code{YYLTYPE} is not defined, Bison uses a default structure type with
4038four members:
4039
4040@example
6273355b 4041typedef struct YYLTYPE
847bf1f5
AD
4042@{
4043 int first_line;
4044 int first_column;
4045 int last_line;
4046 int last_column;
6273355b 4047@} YYLTYPE;
847bf1f5
AD
4048@end example
4049
d59e456d
AD
4050When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
4051initializes all these fields to 1 for @code{yylloc}. To initialize
4052@code{yylloc} with a custom location type (or to chose a different
4053initialization), use the @code{%initial-action} directive. @xref{Initial
4054Action Decl, , Performing Actions before Parsing}.
cd48d21d 4055
342b8b6e 4056@node Actions and Locations
847bf1f5
AD
4057@subsection Actions and Locations
4058@cindex location actions
4059@cindex actions, location
4060@vindex @@$
4061@vindex @@@var{n}
d013372c
AR
4062@vindex @@@var{name}
4063@vindex @@[@var{name}]
847bf1f5
AD
4064
4065Actions are not only useful for defining language semantics, but also for
4066describing the behavior of the output parser with locations.
4067
4068The most obvious way for building locations of syntactic groupings is very
72d2299c 4069similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4070constructs can be used to access the locations of the elements being matched.
4071The location of the @var{n}th component of the right hand side is
4072@code{@@@var{n}}, while the location of the left hand side grouping is
4073@code{@@$}.
4074
d013372c
AR
4075In addition, the named references construct @code{@@@var{name}} and
4076@code{@@[@var{name}]} may also be used to address the symbol locations.
a7b15ab9
JD
4077@xref{Named References}, for more information about using the named
4078references construct.
d013372c 4079
3e259915 4080Here is a basic example using the default data type for locations:
847bf1f5
AD
4081
4082@example
4083@group
5e9b6624
AD
4084exp:
4085 @dots{}
4086| exp '/' exp
4087 @{
4088 @@$.first_column = @@1.first_column;
4089 @@$.first_line = @@1.first_line;
4090 @@$.last_column = @@3.last_column;
4091 @@$.last_line = @@3.last_line;
4092 if ($3)
4093 $$ = $1 / $3;
4094 else
4095 @{
4096 $$ = 1;
4097 fprintf (stderr,
4098 "Division by zero, l%d,c%d-l%d,c%d",
4099 @@3.first_line, @@3.first_column,
4100 @@3.last_line, @@3.last_column);
4101 @}
4102 @}
847bf1f5
AD
4103@end group
4104@end example
4105
3e259915 4106As for semantic values, there is a default action for locations that is
72d2299c 4107run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4108beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4109last symbol.
3e259915 4110
72d2299c 4111With this default action, the location tracking can be fully automatic. The
3e259915
MA
4112example above simply rewrites this way:
4113
4114@example
4115@group
5e9b6624
AD
4116exp:
4117 @dots{}
4118| exp '/' exp
4119 @{
4120 if ($3)
4121 $$ = $1 / $3;
4122 else
4123 @{
4124 $$ = 1;
4125 fprintf (stderr,
4126 "Division by zero, l%d,c%d-l%d,c%d",
4127 @@3.first_line, @@3.first_column,
4128 @@3.last_line, @@3.last_column);
4129 @}
4130 @}
3e259915
MA
4131@end group
4132@end example
847bf1f5 4133
32c29292 4134@vindex yylloc
742e4900 4135It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4136from a semantic action.
4137This location is stored in @code{yylloc}.
4138@xref{Action Features, ,Special Features for Use in Actions}.
4139
342b8b6e 4140@node Location Default Action
847bf1f5
AD
4141@subsection Default Action for Locations
4142@vindex YYLLOC_DEFAULT
8a4281b9 4143@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4144
72d2299c 4145Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4146locations are much more general than semantic values, there is room in
4147the output parser to redefine the default action to take for each
72d2299c 4148rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4149matched, before the associated action is run. It is also invoked
4150while processing a syntax error, to compute the error's location.
8a4281b9 4151Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4152parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4153of that ambiguity.
847bf1f5 4154
3e259915 4155Most of the time, this macro is general enough to suppress location
79282c6c 4156dedicated code from semantic actions.
847bf1f5 4157
72d2299c 4158The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4159the location of the grouping (the result of the computation). When a
766de5eb 4160rule is matched, the second parameter identifies locations of
96b93a3d 4161all right hand side elements of the rule being matched, and the third
8710fc41 4162parameter is the size of the rule's right hand side.
8a4281b9 4163When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4164right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4165When processing a syntax error, the second parameter identifies locations
4166of the symbols that were discarded during error processing, and the third
96b93a3d 4167parameter is the number of discarded symbols.
847bf1f5 4168
766de5eb 4169By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4170
c93f22fc
AD
4171@example
4172@group
4173# define YYLLOC_DEFAULT(Cur, Rhs, N) \
4174do \
4175 if (N) \
4176 @{ \
4177 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4178 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4179 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4180 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4181 @} \
4182 else \
4183 @{ \
4184 (Cur).first_line = (Cur).last_line = \
4185 YYRHSLOC(Rhs, 0).last_line; \
4186 (Cur).first_column = (Cur).last_column = \
4187 YYRHSLOC(Rhs, 0).last_column; \
4188 @} \
4189while (0)
4190@end group
4191@end example
676385e2 4192
aaaa2aae 4193@noindent
766de5eb
PE
4194where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4195in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4196just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4197
3e259915 4198When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4199
3e259915 4200@itemize @bullet
79282c6c 4201@item
72d2299c 4202All arguments are free of side-effects. However, only the first one (the
3e259915 4203result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4204
3e259915 4205@item
766de5eb
PE
4206For consistency with semantic actions, valid indexes within the
4207right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4208valid index, and it refers to the symbol just before the reduction.
4209During error processing @var{n} is always positive.
0ae99356
PE
4210
4211@item
4212Your macro should parenthesize its arguments, if need be, since the
4213actual arguments may not be surrounded by parentheses. Also, your
4214macro should expand to something that can be used as a single
4215statement when it is followed by a semicolon.
3e259915 4216@end itemize
847bf1f5 4217
378e917c 4218@node Named References
a7b15ab9 4219@section Named References
378e917c
JD
4220@cindex named references
4221
a40e77eb
JD
4222As described in the preceding sections, the traditional way to refer to any
4223semantic value or location is a @dfn{positional reference}, which takes the
4224form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4225such a reference is not very descriptive. Moreover, if you later decide to
4226insert or remove symbols in the right-hand side of a grammar rule, the need
4227to renumber such references can be tedious and error-prone.
4228
4229To avoid these issues, you can also refer to a semantic value or location
4230using a @dfn{named reference}. First of all, original symbol names may be
4231used as named references. For example:
378e917c
JD
4232
4233@example
4234@group
4235invocation: op '(' args ')'
4236 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4237@end group
4238@end example
4239
4240@noindent
a40e77eb 4241Positional and named references can be mixed arbitrarily. For example:
378e917c
JD
4242
4243@example
4244@group
4245invocation: op '(' args ')'
4246 @{ $$ = new_invocation ($op, $args, @@$); @}
4247@end group
4248@end example
4249
4250@noindent
4251However, sometimes regular symbol names are not sufficient due to
4252ambiguities:
4253
4254@example
4255@group
4256exp: exp '/' exp
4257 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4258
4259exp: exp '/' exp
4260 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4261
4262exp: exp '/' exp
4263 @{ $$ = $1 / $3; @} // No error.
4264@end group
4265@end example
4266
4267@noindent
4268When ambiguity occurs, explicitly declared names may be used for values and
4269locations. Explicit names are declared as a bracketed name after a symbol
4270appearance in rule definitions. For example:
4271@example
4272@group
4273exp[result]: exp[left] '/' exp[right]
4274 @{ $result = $left / $right; @}
4275@end group
4276@end example
4277
4278@noindent
a7b15ab9
JD
4279In order to access a semantic value generated by a mid-rule action, an
4280explicit name may also be declared by putting a bracketed name after the
4281closing brace of the mid-rule action code:
378e917c
JD
4282@example
4283@group
4284exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4285 @{ $res = $left + $right; @}
4286@end group
4287@end example
4288
4289@noindent
4290
4291In references, in order to specify names containing dots and dashes, an explicit
4292bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4293@example
4294@group
762caaf6 4295if-stmt: "if" '(' expr ')' "then" then.stmt ';'
378e917c
JD
4296 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4297@end group
4298@end example
4299
4300It often happens that named references are followed by a dot, dash or other
4301C punctuation marks and operators. By default, Bison will read
a7b15ab9
JD
4302@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4303@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4304value. In order to force Bison to recognize @samp{name.suffix} in its
4305entirety as the name of a semantic value, the bracketed syntax
4306@samp{$[name.suffix]} must be used.
4307
4308The named references feature is experimental. More user feedback will help
4309to stabilize it.
378e917c 4310
342b8b6e 4311@node Declarations
bfa74976
RS
4312@section Bison Declarations
4313@cindex declarations, Bison
4314@cindex Bison declarations
4315
4316The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4317used in formulating the grammar and the data types of semantic values.
4318@xref{Symbols}.
4319
4320All token type names (but not single-character literal tokens such as
4321@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4322declared if you need to specify which data type to use for the semantic
4323value (@pxref{Multiple Types, ,More Than One Value Type}).
4324
ff7571c0
JD
4325The first rule in the grammar file also specifies the start symbol, by
4326default. If you want some other symbol to be the start symbol, you
4327must declare it explicitly (@pxref{Language and Grammar, ,Languages
4328and Context-Free Grammars}).
bfa74976
RS
4329
4330@menu
b50d2359 4331* Require Decl:: Requiring a Bison version.
bfa74976
RS
4332* Token Decl:: Declaring terminal symbols.
4333* Precedence Decl:: Declaring terminals with precedence and associativity.
4334* Union Decl:: Declaring the set of all semantic value types.
4335* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4336* Initial Action Decl:: Code run before parsing starts.
72f889cc 4337* Destructor Decl:: Declaring how symbols are freed.
93c150b6 4338* Printer Decl:: Declaring how symbol values are displayed.
d6328241 4339* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4340* Start Decl:: Specifying the start symbol.
4341* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4342* Push Decl:: Requesting a push parser.
bfa74976 4343* Decl Summary:: Table of all Bison declarations.
35c1e5f0 4344* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 4345* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4346@end menu
4347
b50d2359
AD
4348@node Require Decl
4349@subsection Require a Version of Bison
4350@cindex version requirement
4351@cindex requiring a version of Bison
4352@findex %require
4353
4354You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4355the requirement is not met, @command{bison} exits with an error (exit
4356status 63).
b50d2359
AD
4357
4358@example
4359%require "@var{version}"
4360@end example
4361
342b8b6e 4362@node Token Decl
bfa74976
RS
4363@subsection Token Type Names
4364@cindex declaring token type names
4365@cindex token type names, declaring
931c7513 4366@cindex declaring literal string tokens
bfa74976
RS
4367@findex %token
4368
4369The basic way to declare a token type name (terminal symbol) is as follows:
4370
4371@example
4372%token @var{name}
4373@end example
4374
4375Bison will convert this into a @code{#define} directive in
4376the parser, so that the function @code{yylex} (if it is in this file)
4377can use the name @var{name} to stand for this token type's code.
4378
d78f0ac9
AD
4379Alternatively, you can use @code{%left}, @code{%right},
4380@code{%precedence}, or
14ded682
AD
4381@code{%nonassoc} instead of @code{%token}, if you wish to specify
4382associativity and precedence. @xref{Precedence Decl, ,Operator
4383Precedence}.
bfa74976
RS
4384
4385You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4386a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4387following the token name:
bfa74976
RS
4388
4389@example
4390%token NUM 300
1452af69 4391%token XNUM 0x12d // a GNU extension
bfa74976
RS
4392@end example
4393
4394@noindent
4395It is generally best, however, to let Bison choose the numeric codes for
4396all token types. Bison will automatically select codes that don't conflict
e966383b 4397with each other or with normal characters.
bfa74976
RS
4398
4399In the event that the stack type is a union, you must augment the
4400@code{%token} or other token declaration to include the data type
704a47c4
AD
4401alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4402Than One Value Type}).
bfa74976
RS
4403
4404For example:
4405
4406@example
4407@group
4408%union @{ /* define stack type */
4409 double val;
4410 symrec *tptr;
4411@}
4412%token <val> NUM /* define token NUM and its type */
4413@end group
4414@end example
4415
931c7513
RS
4416You can associate a literal string token with a token type name by
4417writing the literal string at the end of a @code{%token}
4418declaration which declares the name. For example:
4419
4420@example
4421%token arrow "=>"
4422@end example
4423
4424@noindent
4425For example, a grammar for the C language might specify these names with
4426equivalent literal string tokens:
4427
4428@example
4429%token <operator> OR "||"
4430%token <operator> LE 134 "<="
4431%left OR "<="
4432@end example
4433
4434@noindent
4435Once you equate the literal string and the token name, you can use them
4436interchangeably in further declarations or the grammar rules. The
4437@code{yylex} function can use the token name or the literal string to
4438obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4439Syntax error messages passed to @code{yyerror} from the parser will reference
4440the literal string instead of the token name.
4441
4442The token numbered as 0 corresponds to end of file; the following line
4443allows for nicer error messages referring to ``end of file'' instead
4444of ``$end'':
4445
4446@example
4447%token END 0 "end of file"
4448@end example
931c7513 4449
342b8b6e 4450@node Precedence Decl
bfa74976
RS
4451@subsection Operator Precedence
4452@cindex precedence declarations
4453@cindex declaring operator precedence
4454@cindex operator precedence, declaring
4455
d78f0ac9
AD
4456Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4457@code{%precedence} declaration to
bfa74976
RS
4458declare a token and specify its precedence and associativity, all at
4459once. These are called @dfn{precedence declarations}.
704a47c4
AD
4460@xref{Precedence, ,Operator Precedence}, for general information on
4461operator precedence.
bfa74976 4462
ab7f29f8 4463The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4464@code{%token}: either
4465
4466@example
4467%left @var{symbols}@dots{}
4468@end example
4469
4470@noindent
4471or
4472
4473@example
4474%left <@var{type}> @var{symbols}@dots{}
4475@end example
4476
4477And indeed any of these declarations serves the purposes of @code{%token}.
4478But in addition, they specify the associativity and relative precedence for
4479all the @var{symbols}:
4480
4481@itemize @bullet
4482@item
4483The associativity of an operator @var{op} determines how repeated uses
4484of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4485@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4486grouping @var{y} with @var{z} first. @code{%left} specifies
4487left-associativity (grouping @var{x} with @var{y} first) and
4488@code{%right} specifies right-associativity (grouping @var{y} with
4489@var{z} first). @code{%nonassoc} specifies no associativity, which
4490means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4491considered a syntax error.
4492
d78f0ac9
AD
4493@code{%precedence} gives only precedence to the @var{symbols}, and
4494defines no associativity at all. Use this to define precedence only,
4495and leave any potential conflict due to associativity enabled.
4496
bfa74976
RS
4497@item
4498The precedence of an operator determines how it nests with other operators.
4499All the tokens declared in a single precedence declaration have equal
4500precedence and nest together according to their associativity.
4501When two tokens declared in different precedence declarations associate,
4502the one declared later has the higher precedence and is grouped first.
4503@end itemize
4504
ab7f29f8
JD
4505For backward compatibility, there is a confusing difference between the
4506argument lists of @code{%token} and precedence declarations.
4507Only a @code{%token} can associate a literal string with a token type name.
4508A precedence declaration always interprets a literal string as a reference to a
4509separate token.
4510For example:
4511
4512@example
4513%left OR "<=" // Does not declare an alias.
4514%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4515@end example
4516
342b8b6e 4517@node Union Decl
bfa74976
RS
4518@subsection The Collection of Value Types
4519@cindex declaring value types
4520@cindex value types, declaring
4521@findex %union
4522
287c78f6
PE
4523The @code{%union} declaration specifies the entire collection of
4524possible data types for semantic values. The keyword @code{%union} is
4525followed by braced code containing the same thing that goes inside a
4526@code{union} in C@.
bfa74976
RS
4527
4528For example:
4529
4530@example
4531@group
4532%union @{
4533 double val;
4534 symrec *tptr;
4535@}
4536@end group
4537@end example
4538
4539@noindent
4540This says that the two alternative types are @code{double} and @code{symrec
4541*}. They are given names @code{val} and @code{tptr}; these names are used
4542in the @code{%token} and @code{%type} declarations to pick one of the types
4543for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4544
8a4281b9 4545As an extension to POSIX, a tag is allowed after the
6273355b
PE
4546@code{union}. For example:
4547
4548@example
4549@group
4550%union value @{
4551 double val;
4552 symrec *tptr;
4553@}
4554@end group
4555@end example
4556
d6ca7905 4557@noindent
6273355b
PE
4558specifies the union tag @code{value}, so the corresponding C type is
4559@code{union value}. If you do not specify a tag, it defaults to
4560@code{YYSTYPE}.
4561
8a4281b9 4562As another extension to POSIX, you may specify multiple
d6ca7905
PE
4563@code{%union} declarations; their contents are concatenated. However,
4564only the first @code{%union} declaration can specify a tag.
4565
6273355b 4566Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4567a semicolon after the closing brace.
4568
ddc8ede1
PE
4569Instead of @code{%union}, you can define and use your own union type
4570@code{YYSTYPE} if your grammar contains at least one
4571@samp{<@var{type}>} tag. For example, you can put the following into
4572a header file @file{parser.h}:
4573
4574@example
4575@group
4576union YYSTYPE @{
4577 double val;
4578 symrec *tptr;
4579@};
4580typedef union YYSTYPE YYSTYPE;
4581@end group
4582@end example
4583
4584@noindent
4585and then your grammar can use the following
4586instead of @code{%union}:
4587
4588@example
4589@group
4590%@{
4591#include "parser.h"
4592%@}
4593%type <val> expr
4594%token <tptr> ID
4595@end group
4596@end example
4597
342b8b6e 4598@node Type Decl
bfa74976
RS
4599@subsection Nonterminal Symbols
4600@cindex declaring value types, nonterminals
4601@cindex value types, nonterminals, declaring
4602@findex %type
4603
4604@noindent
4605When you use @code{%union} to specify multiple value types, you must
4606declare the value type of each nonterminal symbol for which values are
4607used. This is done with a @code{%type} declaration, like this:
4608
4609@example
4610%type <@var{type}> @var{nonterminal}@dots{}
4611@end example
4612
4613@noindent
704a47c4
AD
4614Here @var{nonterminal} is the name of a nonterminal symbol, and
4615@var{type} is the name given in the @code{%union} to the alternative
4616that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4617can give any number of nonterminal symbols in the same @code{%type}
4618declaration, if they have the same value type. Use spaces to separate
4619the symbol names.
bfa74976 4620
931c7513
RS
4621You can also declare the value type of a terminal symbol. To do this,
4622use the same @code{<@var{type}>} construction in a declaration for the
4623terminal symbol. All kinds of token declarations allow
4624@code{<@var{type}>}.
4625
18d192f0
AD
4626@node Initial Action Decl
4627@subsection Performing Actions before Parsing
4628@findex %initial-action
4629
4630Sometimes your parser needs to perform some initializations before
4631parsing. The @code{%initial-action} directive allows for such arbitrary
4632code.
4633
4634@deffn {Directive} %initial-action @{ @var{code} @}
4635@findex %initial-action
287c78f6 4636Declare that the braced @var{code} must be invoked before parsing each time
cd735a8c
AD
4637@code{yyparse} is called. The @var{code} may use @code{$$} (or
4638@code{$<@var{tag}>$}) and @code{@@$} --- initial value and location of the
4639lookahead --- and the @code{%parse-param}.
18d192f0
AD
4640@end deffn
4641
451364ed
AD
4642For instance, if your locations use a file name, you may use
4643
4644@example
48b16bbc 4645%parse-param @{ char const *file_name @};
451364ed
AD
4646%initial-action
4647@{
4626a15d 4648 @@$.initialize (file_name);
451364ed
AD
4649@};
4650@end example
4651
18d192f0 4652
72f889cc
AD
4653@node Destructor Decl
4654@subsection Freeing Discarded Symbols
4655@cindex freeing discarded symbols
4656@findex %destructor
12e35840 4657@findex <*>
3ebecc24 4658@findex <>
a85284cf
AD
4659During error recovery (@pxref{Error Recovery}), symbols already pushed
4660on the stack and tokens coming from the rest of the file are discarded
4661until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4662or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4663symbols on the stack must be discarded. Even if the parser succeeds, it
4664must discard the start symbol.
258b75ca
PE
4665
4666When discarded symbols convey heap based information, this memory is
4667lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4668in traditional compilers, it is unacceptable for programs like shells or
4669protocol implementations that may parse and execute indefinitely.
258b75ca 4670
a85284cf
AD
4671The @code{%destructor} directive defines code that is called when a
4672symbol is automatically discarded.
72f889cc
AD
4673
4674@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4675@findex %destructor
287c78f6 4676Invoke the braced @var{code} whenever the parser discards one of the
4982f078
AD
4677@var{symbols}. Within @var{code}, @code{$$} (or @code{$<@var{tag}>$})
4678designates the semantic value associated with the discarded symbol, and
4679@code{@@$} designates its location. The additional parser parameters are
4680also available (@pxref{Parser Function, , The Parser Function
4681@code{yyparse}}).
ec5479ce 4682
b2a0b7ca
JD
4683When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4684per-symbol @code{%destructor}.
4685You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4686tag among @var{symbols}.
b2a0b7ca 4687In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4688grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4689per-symbol @code{%destructor}.
4690
12e35840 4691Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4692(These default forms are experimental.
4693More user feedback will help to determine whether they should become permanent
4694features.)
3ebecc24 4695You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4696exactly one @code{%destructor} declaration in your grammar file.
4697The parser will invoke the @var{code} associated with one of these whenever it
4698discards any user-defined grammar symbol that has no per-symbol and no per-type
4699@code{%destructor}.
4700The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4701symbol for which you have formally declared a semantic type tag (@code{%type}
4702counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4703The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4704symbol that has no declared semantic type tag.
72f889cc
AD
4705@end deffn
4706
b2a0b7ca 4707@noindent
12e35840 4708For example:
72f889cc 4709
c93f22fc 4710@example
ec5479ce
JD
4711%union @{ char *string; @}
4712%token <string> STRING1
4713%token <string> STRING2
4714%type <string> string1
4715%type <string> string2
b2a0b7ca
JD
4716%union @{ char character; @}
4717%token <character> CHR
4718%type <character> chr
12e35840
JD
4719%token TAGLESS
4720
b2a0b7ca 4721%destructor @{ @} <character>
12e35840
JD
4722%destructor @{ free ($$); @} <*>
4723%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4724%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
c93f22fc 4725@end example
72f889cc
AD
4726
4727@noindent
b2a0b7ca
JD
4728guarantees that, when the parser discards any user-defined symbol that has a
4729semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4730to @code{free} by default.
ec5479ce
JD
4731However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4732prints its line number to @code{stdout}.
4733It performs only the second @code{%destructor} in this case, so it invokes
4734@code{free} only once.
12e35840
JD
4735Finally, the parser merely prints a message whenever it discards any symbol,
4736such as @code{TAGLESS}, that has no semantic type tag.
4737
4738A Bison-generated parser invokes the default @code{%destructor}s only for
4739user-defined as opposed to Bison-defined symbols.
4740For example, the parser will not invoke either kind of default
4741@code{%destructor} for the special Bison-defined symbols @code{$accept},
4742@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4743none of which you can reference in your grammar.
4744It also will not invoke either for the @code{error} token (@pxref{Table of
4745Symbols, ,error}), which is always defined by Bison regardless of whether you
4746reference it in your grammar.
4747However, it may invoke one of them for the end token (token 0) if you
4748redefine it from @code{$end} to, for example, @code{END}:
3508ce36 4749
c93f22fc 4750@example
3508ce36 4751%token END 0
c93f22fc 4752@end example
3508ce36 4753
12e35840
JD
4754@cindex actions in mid-rule
4755@cindex mid-rule actions
4756Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4757mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
a7b15ab9
JD
4758That is, Bison does not consider a mid-rule to have a semantic value if you
4759do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4760(where @var{n} is the right-hand side symbol position of the mid-rule) in
4761any later action in that rule. However, if you do reference either, the
4762Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4763it discards the mid-rule symbol.
12e35840 4764
3508ce36
JD
4765@ignore
4766@noindent
4767In the future, it may be possible to redefine the @code{error} token as a
4768nonterminal that captures the discarded symbols.
4769In that case, the parser will invoke the default destructor for it as well.
4770@end ignore
4771
e757bb10
AD
4772@sp 1
4773
4774@cindex discarded symbols
4775@dfn{Discarded symbols} are the following:
4776
4777@itemize
4778@item
4779stacked symbols popped during the first phase of error recovery,
4780@item
4781incoming terminals during the second phase of error recovery,
4782@item
742e4900 4783the current lookahead and the entire stack (except the current
9d9b8b70 4784right-hand side symbols) when the parser returns immediately, and
258b75ca 4785@item
d3e4409a
AD
4786the current lookahead and the entire stack (including the current right-hand
4787side symbols) when the C++ parser (@file{lalr1.cc}) catches an exception in
4788@code{parse},
4789@item
258b75ca 4790the start symbol, when the parser succeeds.
e757bb10
AD
4791@end itemize
4792
9d9b8b70
PE
4793The parser can @dfn{return immediately} because of an explicit call to
4794@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4795exhaustion.
4796
29553547 4797Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4798error via @code{YYERROR} are not discarded automatically. As a rule
4799of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4800the memory.
e757bb10 4801
93c150b6
AD
4802@node Printer Decl
4803@subsection Printing Semantic Values
4804@cindex printing semantic values
4805@findex %printer
4806@findex <*>
4807@findex <>
4808When run-time traces are enabled (@pxref{Tracing, ,Tracing Your Parser}),
4809the parser reports its actions, such as reductions. When a symbol involved
4810in an action is reported, only its kind is displayed, as the parser cannot
4811know how semantic values should be formatted.
4812
4813The @code{%printer} directive defines code that is called when a symbol is
4814reported. Its syntax is the same as @code{%destructor} (@pxref{Destructor
4815Decl, , Freeing Discarded Symbols}).
4816
4817@deffn {Directive} %printer @{ @var{code} @} @var{symbols}
4818@findex %printer
4819@vindex yyoutput
4820@c This is the same text as for %destructor.
4821Invoke the braced @var{code} whenever the parser displays one of the
4822@var{symbols}. Within @var{code}, @code{yyoutput} denotes the output stream
4982f078
AD
4823(a @code{FILE*} in C, and an @code{std::ostream&} in C++), @code{$$} (or
4824@code{$<@var{tag}>$}) designates the semantic value associated with the
4825symbol, and @code{@@$} its location. The additional parser parameters are
4826also available (@pxref{Parser Function, , The Parser Function
4827@code{yyparse}}).
93c150b6
AD
4828
4829The @var{symbols} are defined as for @code{%destructor} (@pxref{Destructor
4830Decl, , Freeing Discarded Symbols}.): they can be per-type (e.g.,
4831@samp{<ival>}), per-symbol (e.g., @samp{exp}, @samp{NUM}, @samp{"float"}),
4832typed per-default (i.e., @samp{<*>}, or untyped per-default (i.e.,
4833@samp{<>}).
4834@end deffn
4835
4836@noindent
4837For example:
4838
4839@example
4840%union @{ char *string; @}
4841%token <string> STRING1
4842%token <string> STRING2
4843%type <string> string1
4844%type <string> string2
4845%union @{ char character; @}
4846%token <character> CHR
4847%type <character> chr
4848%token TAGLESS
4849
4850%printer @{ fprintf (yyoutput, "'%c'", $$); @} <character>
4851%printer @{ fprintf (yyoutput, "&%p", $$); @} <*>
4852%printer @{ fprintf (yyoutput, "\"%s\"", $$); @} STRING1 string1
4853%printer @{ fprintf (yyoutput, "<>"); @} <>
4854@end example
4855
4856@noindent
4857guarantees that, when the parser print any symbol that has a semantic type
4858tag other than @code{<character>}, it display the address of the semantic
4859value by default. However, when the parser displays a @code{STRING1} or a
4860@code{string1}, it formats it as a string in double quotes. It performs
4861only the second @code{%printer} in this case, so it prints only once.
4862Finally, the parser print @samp{<>} for any symbol, such as @code{TAGLESS},
4863that has no semantic type tag. See also
4864
4865
342b8b6e 4866@node Expect Decl
bfa74976
RS
4867@subsection Suppressing Conflict Warnings
4868@cindex suppressing conflict warnings
4869@cindex preventing warnings about conflicts
4870@cindex warnings, preventing
4871@cindex conflicts, suppressing warnings of
4872@findex %expect
d6328241 4873@findex %expect-rr
bfa74976
RS
4874
4875Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4876(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4877have harmless shift/reduce conflicts which are resolved in a predictable
4878way and would be difficult to eliminate. It is desirable to suppress
4879the warning about these conflicts unless the number of conflicts
4880changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4881
4882The declaration looks like this:
4883
4884@example
4885%expect @var{n}
4886@end example
4887
035aa4a0
PE
4888Here @var{n} is a decimal integer. The declaration says there should
4889be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4890Bison reports an error if the number of shift/reduce conflicts differs
4891from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4892
eb45ef3b 4893For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4894serious, and should be eliminated entirely. Bison will always report
8a4281b9 4895reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4896parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 4897there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4898also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 4899in GLR parsers, using the declaration:
d6328241
PH
4900
4901@example
4902%expect-rr @var{n}
4903@end example
4904
bfa74976
RS
4905In general, using @code{%expect} involves these steps:
4906
4907@itemize @bullet
4908@item
4909Compile your grammar without @code{%expect}. Use the @samp{-v} option
4910to get a verbose list of where the conflicts occur. Bison will also
4911print the number of conflicts.
4912
4913@item
4914Check each of the conflicts to make sure that Bison's default
4915resolution is what you really want. If not, rewrite the grammar and
4916go back to the beginning.
4917
4918@item
4919Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 4920number which Bison printed. With GLR parsers, add an
035aa4a0 4921@code{%expect-rr} declaration as well.
bfa74976
RS
4922@end itemize
4923
93d7dde9
JD
4924Now Bison will report an error if you introduce an unexpected conflict,
4925but will keep silent otherwise.
bfa74976 4926
342b8b6e 4927@node Start Decl
bfa74976
RS
4928@subsection The Start-Symbol
4929@cindex declaring the start symbol
4930@cindex start symbol, declaring
4931@cindex default start symbol
4932@findex %start
4933
4934Bison assumes by default that the start symbol for the grammar is the first
4935nonterminal specified in the grammar specification section. The programmer
4936may override this restriction with the @code{%start} declaration as follows:
4937
4938@example
4939%start @var{symbol}
4940@end example
4941
342b8b6e 4942@node Pure Decl
bfa74976
RS
4943@subsection A Pure (Reentrant) Parser
4944@cindex reentrant parser
4945@cindex pure parser
d9df47b6 4946@findex %define api.pure
bfa74976
RS
4947
4948A @dfn{reentrant} program is one which does not alter in the course of
4949execution; in other words, it consists entirely of @dfn{pure} (read-only)
4950code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4951for example, a nonreentrant program may not be safe to call from a signal
4952handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4953program must be called only within interlocks.
4954
70811b85 4955Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4956suitable for most uses, and it permits compatibility with Yacc. (The
4957standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4958statically allocated variables for communication with @code{yylex},
4959including @code{yylval} and @code{yylloc}.)
bfa74976 4960
70811b85 4961Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 4962declaration @samp{%define api.pure} says that you want the parser to be
70811b85 4963reentrant. It looks like this:
bfa74976
RS
4964
4965@example
d9df47b6 4966%define api.pure
bfa74976
RS
4967@end example
4968
70811b85
RS
4969The result is that the communication variables @code{yylval} and
4970@code{yylloc} become local variables in @code{yyparse}, and a different
4971calling convention is used for the lexical analyzer function
4972@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4973Parsers}, for the details of this. The variable @code{yynerrs}
4974becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4975of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4976Reporting Function @code{yyerror}}). The convention for calling
4977@code{yyparse} itself is unchanged.
4978
4979Whether the parser is pure has nothing to do with the grammar rules.
4980You can generate either a pure parser or a nonreentrant parser from any
4981valid grammar.
bfa74976 4982
9987d1b3
JD
4983@node Push Decl
4984@subsection A Push Parser
4985@cindex push parser
4986@cindex push parser
67212941 4987@findex %define api.push-pull
9987d1b3 4988
59da312b
JD
4989(The current push parsing interface is experimental and may evolve.
4990More user feedback will help to stabilize it.)
4991
f4101aa6
AD
4992A pull parser is called once and it takes control until all its input
4993is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4994each time a new token is made available.
4995
f4101aa6 4996A push parser is typically useful when the parser is part of a
9987d1b3 4997main event loop in the client's application. This is typically
f4101aa6
AD
4998a requirement of a GUI, when the main event loop needs to be triggered
4999within a certain time period.
9987d1b3 5000
d782395d
JD
5001Normally, Bison generates a pull parser.
5002The following Bison declaration says that you want the parser to be a push
35c1e5f0 5003parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
5004
5005@example
cf499cff 5006%define api.push-pull push
9987d1b3
JD
5007@end example
5008
5009In almost all cases, you want to ensure that your push parser is also
5010a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 5011time you should create an impure push parser is to have backwards
9987d1b3
JD
5012compatibility with the impure Yacc pull mode interface. Unless you know
5013what you are doing, your declarations should look like this:
5014
5015@example
d9df47b6 5016%define api.pure
cf499cff 5017%define api.push-pull push
9987d1b3
JD
5018@end example
5019
f4101aa6
AD
5020There is a major notable functional difference between the pure push parser
5021and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
5022many parser instances, of the same type of parser, in memory at the same time.
5023An impure push parser should only use one parser at a time.
5024
5025When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
5026the generated parser. @code{yypstate} is a structure that the generated
5027parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
5028function that will create a new parser instance. @code{yypstate_delete}
5029will free the resources associated with the corresponding parser instance.
f4101aa6 5030Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
5031token is available to provide the parser. A trivial example
5032of using a pure push parser would look like this:
5033
5034@example
5035int status;
5036yypstate *ps = yypstate_new ();
5037do @{
5038 status = yypush_parse (ps, yylex (), NULL);
5039@} while (status == YYPUSH_MORE);
5040yypstate_delete (ps);
5041@end example
5042
5043If the user decided to use an impure push parser, a few things about
f4101aa6 5044the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
5045a global variable instead of a variable in the @code{yypush_parse} function.
5046For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 5047changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
5048example would thus look like this:
5049
5050@example
5051extern int yychar;
5052int status;
5053yypstate *ps = yypstate_new ();
5054do @{
5055 yychar = yylex ();
5056 status = yypush_parse (ps);
5057@} while (status == YYPUSH_MORE);
5058yypstate_delete (ps);
5059@end example
5060
f4101aa6 5061That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
5062for use by the next invocation of the @code{yypush_parse} function.
5063
f4101aa6 5064Bison also supports both the push parser interface along with the pull parser
9987d1b3 5065interface in the same generated parser. In order to get this functionality,
cf499cff
JD
5066you should replace the @samp{%define api.push-pull push} declaration with the
5067@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 5068the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
5069and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
5070would be used. However, the user should note that it is implemented in the
d782395d
JD
5071generated parser by calling @code{yypull_parse}.
5072This makes the @code{yyparse} function that is generated with the
cf499cff 5073@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
5074@code{yyparse} function. If the user
5075calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
5076stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
5077and then @code{yypull_parse} the rest of the input stream. If you would like
5078to switch back and forth between between parsing styles, you would have to
5079write your own @code{yypull_parse} function that knows when to quit looking
5080for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
5081like this:
5082
5083@example
5084yypstate *ps = yypstate_new ();
5085yypull_parse (ps); /* Will call the lexer */
5086yypstate_delete (ps);
5087@end example
5088
67501061 5089Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
5090the generated parser with @samp{%define api.push-pull both} as it did for
5091@samp{%define api.push-pull push}.
9987d1b3 5092
342b8b6e 5093@node Decl Summary
bfa74976
RS
5094@subsection Bison Declaration Summary
5095@cindex Bison declaration summary
5096@cindex declaration summary
5097@cindex summary, Bison declaration
5098
d8988b2f 5099Here is a summary of the declarations used to define a grammar:
bfa74976 5100
18b519c0 5101@deffn {Directive} %union
bfa74976
RS
5102Declare the collection of data types that semantic values may have
5103(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 5104@end deffn
bfa74976 5105
18b519c0 5106@deffn {Directive} %token
bfa74976
RS
5107Declare a terminal symbol (token type name) with no precedence
5108or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 5109@end deffn
bfa74976 5110
18b519c0 5111@deffn {Directive} %right
bfa74976
RS
5112Declare a terminal symbol (token type name) that is right-associative
5113(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5114@end deffn
bfa74976 5115
18b519c0 5116@deffn {Directive} %left
bfa74976
RS
5117Declare a terminal symbol (token type name) that is left-associative
5118(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5119@end deffn
bfa74976 5120
18b519c0 5121@deffn {Directive} %nonassoc
bfa74976 5122Declare a terminal symbol (token type name) that is nonassociative
bfa74976 5123(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
5124Using it in a way that would be associative is a syntax error.
5125@end deffn
5126
91d2c560 5127@ifset defaultprec
39a06c25 5128@deffn {Directive} %default-prec
22fccf95 5129Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
5130(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5131@end deffn
91d2c560 5132@end ifset
bfa74976 5133
18b519c0 5134@deffn {Directive} %type
bfa74976
RS
5135Declare the type of semantic values for a nonterminal symbol
5136(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 5137@end deffn
bfa74976 5138
18b519c0 5139@deffn {Directive} %start
89cab50d
AD
5140Specify the grammar's start symbol (@pxref{Start Decl, ,The
5141Start-Symbol}).
18b519c0 5142@end deffn
bfa74976 5143
18b519c0 5144@deffn {Directive} %expect
bfa74976
RS
5145Declare the expected number of shift-reduce conflicts
5146(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
5147@end deffn
5148
bfa74976 5149
d8988b2f
AD
5150@sp 1
5151@noindent
5152In order to change the behavior of @command{bison}, use the following
5153directives:
5154
148d66d8 5155@deffn {Directive} %code @{@var{code}@}
e0c07222 5156@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 5157@findex %code
e0c07222
JD
5158Insert @var{code} verbatim into the output parser source at the
5159default location or at the location specified by @var{qualifier}.
5160@xref{%code Summary}.
148d66d8
JD
5161@end deffn
5162
18b519c0 5163@deffn {Directive} %debug
60aa04a2 5164Instrument the parser for traces. Obsoleted by @samp{%define
fa819509 5165parse.trace}.
ec3bc396 5166@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5167@end deffn
d8988b2f 5168
35c1e5f0
JD
5169@deffn {Directive} %define @var{variable}
5170@deffnx {Directive} %define @var{variable} @var{value}
5171@deffnx {Directive} %define @var{variable} "@var{value}"
5172Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5173@end deffn
5174
5175@deffn {Directive} %defines
5176Write a parser header file containing macro definitions for the token
5177type names defined in the grammar as well as a few other declarations.
5178If the parser implementation file is named @file{@var{name}.c} then
5179the parser header file is named @file{@var{name}.h}.
5180
5181For C parsers, the parser header file declares @code{YYSTYPE} unless
5182@code{YYSTYPE} is already defined as a macro or you have used a
5183@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5184you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5185Value Type}) with components that require other definitions, or if you
5186have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5187Type, ,Data Types of Semantic Values}), you need to arrange for these
5188definitions to be propagated to all modules, e.g., by putting them in
5189a prerequisite header that is included both by your parser and by any
5190other module that needs @code{YYSTYPE}.
5191
5192Unless your parser is pure, the parser header file declares
5193@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5194(Reentrant) Parser}.
5195
5196If you have also used locations, the parser header file declares
303834cc
JD
5197@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5198@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
35c1e5f0
JD
5199
5200This parser header file is normally essential if you wish to put the
5201definition of @code{yylex} in a separate source file, because
5202@code{yylex} typically needs to be able to refer to the
5203above-mentioned declarations and to the token type codes. @xref{Token
5204Values, ,Semantic Values of Tokens}.
5205
5206@findex %code requires
5207@findex %code provides
5208If you have declared @code{%code requires} or @code{%code provides}, the output
5209header also contains their code.
5210@xref{%code Summary}.
c9d5bcc9
AD
5211
5212@cindex Header guard
5213The generated header is protected against multiple inclusions with a C
5214preprocessor guard: @samp{YY_@var{PREFIX}_@var{FILE}_INCLUDED}, where
5215@var{PREFIX} and @var{FILE} are the prefix (@pxref{Multiple Parsers,
5216,Multiple Parsers in the Same Program}) and generated file name turned
5217uppercase, with each series of non alphanumerical characters converted to a
5218single underscore.
5219
5220For instance with @samp{%define api.prefix "calc"} and @samp{%defines
5221"lib/parse.h"}, the header will be guarded as follows.
5222@example
5223#ifndef YY_CALC_LIB_PARSE_H_INCLUDED
5224# define YY_CALC_LIB_PARSE_H_INCLUDED
5225...
5226#endif /* ! YY_CALC_LIB_PARSE_H_INCLUDED */
5227@end example
35c1e5f0
JD
5228@end deffn
5229
5230@deffn {Directive} %defines @var{defines-file}
5231Same as above, but save in the file @var{defines-file}.
5232@end deffn
5233
5234@deffn {Directive} %destructor
5235Specify how the parser should reclaim the memory associated to
5236discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5237@end deffn
5238
5239@deffn {Directive} %file-prefix "@var{prefix}"
5240Specify a prefix to use for all Bison output file names. The names
5241are chosen as if the grammar file were named @file{@var{prefix}.y}.
5242@end deffn
5243
5244@deffn {Directive} %language "@var{language}"
5245Specify the programming language for the generated parser. Currently
5246supported languages include C, C++, and Java.
5247@var{language} is case-insensitive.
5248
5249This directive is experimental and its effect may be modified in future
5250releases.
5251@end deffn
5252
5253@deffn {Directive} %locations
5254Generate the code processing the locations (@pxref{Action Features,
5255,Special Features for Use in Actions}). This mode is enabled as soon as
5256the grammar uses the special @samp{@@@var{n}} tokens, but if your
5257grammar does not use it, using @samp{%locations} allows for more
5258accurate syntax error messages.
5259@end deffn
5260
5261@deffn {Directive} %name-prefix "@var{prefix}"
5262Rename the external symbols used in the parser so that they start with
5263@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5264in C parsers
5265is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5266@code{yylval}, @code{yychar}, @code{yydebug}, and
5267(if locations are used) @code{yylloc}. If you use a push parser,
5268@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5269@code{yypstate_new} and @code{yypstate_delete} will
5270also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5271names become @code{c_parse}, @code{c_lex}, and so on.
5272For C++ parsers, see the @samp{%define api.namespace} documentation in this
5273section.
5274@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5275@end deffn
5276
5277@ifset defaultprec
5278@deffn {Directive} %no-default-prec
5279Do not assign a precedence to rules lacking an explicit @code{%prec}
5280modifier (@pxref{Contextual Precedence, ,Context-Dependent
5281Precedence}).
5282@end deffn
5283@end ifset
5284
5285@deffn {Directive} %no-lines
5286Don't generate any @code{#line} preprocessor commands in the parser
5287implementation file. Ordinarily Bison writes these commands in the
5288parser implementation file so that the C compiler and debuggers will
5289associate errors and object code with your source file (the grammar
5290file). This directive causes them to associate errors with the parser
5291implementation file, treating it as an independent source file in its
5292own right.
5293@end deffn
5294
5295@deffn {Directive} %output "@var{file}"
5296Specify @var{file} for the parser implementation file.
5297@end deffn
5298
5299@deffn {Directive} %pure-parser
5300Deprecated version of @samp{%define api.pure} (@pxref{%define
5301Summary,,api.pure}), for which Bison is more careful to warn about
5302unreasonable usage.
5303@end deffn
5304
5305@deffn {Directive} %require "@var{version}"
5306Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5307Require a Version of Bison}.
5308@end deffn
5309
5310@deffn {Directive} %skeleton "@var{file}"
5311Specify the skeleton to use.
5312
5313@c You probably don't need this option unless you are developing Bison.
5314@c You should use @code{%language} if you want to specify the skeleton for a
5315@c different language, because it is clearer and because it will always choose the
5316@c correct skeleton for non-deterministic or push parsers.
5317
5318If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5319file in the Bison installation directory.
5320If it does, @var{file} is an absolute file name or a file name relative to the
5321directory of the grammar file.
5322This is similar to how most shells resolve commands.
5323@end deffn
5324
5325@deffn {Directive} %token-table
5326Generate an array of token names in the parser implementation file.
5327The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5328the name of the token whose internal Bison token code number is
5329@var{i}. The first three elements of @code{yytname} correspond to the
5330predefined tokens @code{"$end"}, @code{"error"}, and
5331@code{"$undefined"}; after these come the symbols defined in the
5332grammar file.
5333
5334The name in the table includes all the characters needed to represent
5335the token in Bison. For single-character literals and literal
5336strings, this includes the surrounding quoting characters and any
5337escape sequences. For example, the Bison single-character literal
5338@code{'+'} corresponds to a three-character name, represented in C as
5339@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5340corresponds to a five-character name, represented in C as
5341@code{"\"\\\\/\""}.
5342
5343When you specify @code{%token-table}, Bison also generates macro
5344definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5345@code{YYNRULES}, and @code{YYNSTATES}:
5346
5347@table @code
5348@item YYNTOKENS
5349The highest token number, plus one.
5350@item YYNNTS
5351The number of nonterminal symbols.
5352@item YYNRULES
5353The number of grammar rules,
5354@item YYNSTATES
5355The number of parser states (@pxref{Parser States}).
5356@end table
5357@end deffn
5358
5359@deffn {Directive} %verbose
5360Write an extra output file containing verbose descriptions of the
5361parser states and what is done for each type of lookahead token in
5362that state. @xref{Understanding, , Understanding Your Parser}, for more
5363information.
5364@end deffn
5365
5366@deffn {Directive} %yacc
5367Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5368including its naming conventions. @xref{Bison Options}, for more.
5369@end deffn
5370
5371
5372@node %define Summary
5373@subsection %define Summary
51151d91
JD
5374
5375There are many features of Bison's behavior that can be controlled by
5376assigning the feature a single value. For historical reasons, some
5377such features are assigned values by dedicated directives, such as
5378@code{%start}, which assigns the start symbol. However, newer such
5379features are associated with variables, which are assigned by the
5380@code{%define} directive:
5381
c1d19e10 5382@deffn {Directive} %define @var{variable}
cf499cff 5383@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5384@deffnx {Directive} %define @var{variable} "@var{value}"
51151d91 5385Define @var{variable} to @var{value}.
9611cfa2 5386
51151d91
JD
5387@var{value} must be placed in quotation marks if it contains any
5388character other than a letter, underscore, period, or non-initial dash
5389or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5390to specifying @code{""}.
9611cfa2 5391
51151d91
JD
5392It is an error if a @var{variable} is defined by @code{%define}
5393multiple times, but see @ref{Bison Options,,-D
5394@var{name}[=@var{value}]}.
5395@end deffn
cf499cff 5396
51151d91
JD
5397The rest of this section summarizes variables and values that
5398@code{%define} accepts.
9611cfa2 5399
51151d91
JD
5400Some @var{variable}s take Boolean values. In this case, Bison will
5401complain if the variable definition does not meet one of the following
5402four conditions:
9611cfa2
JD
5403
5404@enumerate
cf499cff 5405@item @code{@var{value}} is @code{true}
9611cfa2 5406
cf499cff
JD
5407@item @code{@var{value}} is omitted (or @code{""} is specified).
5408This is equivalent to @code{true}.
9611cfa2 5409
cf499cff 5410@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5411
5412@item @var{variable} is never defined.
c6abeab1 5413In this case, Bison selects a default value.
9611cfa2 5414@end enumerate
148d66d8 5415
c6abeab1
JD
5416What @var{variable}s are accepted, as well as their meanings and default
5417values, depend on the selected target language and/or the parser
5418skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5419Summary,,%skeleton}).
5420Unaccepted @var{variable}s produce an error.
793fbca5
JD
5421Some of the accepted @var{variable}s are:
5422
fa819509 5423@table @code
6b5a0de9 5424@c ================================================== api.namespace
67501061
AD
5425@item api.namespace
5426@findex %define api.namespace
5427@itemize
5428@item Languages(s): C++
5429
f1b238df 5430@item Purpose: Specify the namespace for the parser class.
67501061
AD
5431For example, if you specify:
5432
c93f22fc 5433@example
67501061 5434%define api.namespace "foo::bar"
c93f22fc 5435@end example
67501061
AD
5436
5437Bison uses @code{foo::bar} verbatim in references such as:
5438
c93f22fc 5439@example
67501061 5440foo::bar::parser::semantic_type
c93f22fc 5441@end example
67501061
AD
5442
5443However, to open a namespace, Bison removes any leading @code{::} and then
5444splits on any remaining occurrences:
5445
c93f22fc 5446@example
67501061
AD
5447namespace foo @{ namespace bar @{
5448 class position;
5449 class location;
5450@} @}
c93f22fc 5451@end example
67501061
AD
5452
5453@item Accepted Values:
5454Any absolute or relative C++ namespace reference without a trailing
5455@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5456
5457@item Default Value:
5458The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5459This usage of @code{%name-prefix} is for backward compatibility and can
5460be confusing since @code{%name-prefix} also specifies the textual prefix
5461for the lexical analyzer function. Thus, if you specify
5462@code{%name-prefix}, it is best to also specify @samp{%define
5463api.namespace} so that @code{%name-prefix} @emph{only} affects the
5464lexical analyzer function. For example, if you specify:
5465
c93f22fc 5466@example
67501061
AD
5467%define api.namespace "foo"
5468%name-prefix "bar::"
c93f22fc 5469@end example
67501061
AD
5470
5471The parser namespace is @code{foo} and @code{yylex} is referenced as
5472@code{bar::lex}.
5473@end itemize
5474@c namespace
5475
5476
4b3847c3 5477@c ================================================== api.prefix
5458913a 5478@item api.prefix
4b3847c3
AD
5479@findex %define api.prefix
5480
5481@itemize @bullet
5482@item Language(s): All
5483
5484@item Purpose: Rename exported symbols
5485@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5486
5487@item Accepted Values: String
5488
5489@item Default Value: @code{yy}
e358222b
AD
5490
5491@item History: introduced in Bison 2.6
4b3847c3 5492@end itemize
67501061
AD
5493
5494@c ================================================== api.pure
d9df47b6
JD
5495@item api.pure
5496@findex %define api.pure
5497
5498@itemize @bullet
5499@item Language(s): C
5500
5501@item Purpose: Request a pure (reentrant) parser program.
5502@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5503
5504@item Accepted Values: Boolean
5505
cf499cff 5506@item Default Value: @code{false}
d9df47b6 5507@end itemize
71b00ed8 5508@c api.pure
d9df47b6 5509
67501061
AD
5510
5511
5512@c ================================================== api.push-pull
67212941
JD
5513@item api.push-pull
5514@findex %define api.push-pull
793fbca5
JD
5515
5516@itemize @bullet
eb45ef3b 5517@item Language(s): C (deterministic parsers only)
793fbca5 5518
f1b238df 5519@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5520@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5521(The current push parsing interface is experimental and may evolve.
5522More user feedback will help to stabilize it.)
793fbca5 5523
cf499cff 5524@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5525
cf499cff 5526@item Default Value: @code{pull}
793fbca5 5527@end itemize
67212941 5528@c api.push-pull
71b00ed8 5529
6b5a0de9
AD
5530
5531
5532@c ================================================== api.tokens.prefix
4c6622c2
AD
5533@item api.tokens.prefix
5534@findex %define api.tokens.prefix
5535
5536@itemize
5537@item Languages(s): all
5538
5539@item Purpose:
5540Add a prefix to the token names when generating their definition in the
5541target language. For instance
5542
5543@example
5544%token FILE for ERROR
5545%define api.tokens.prefix "TOK_"
5546%%
5547start: FILE for ERROR;
5548@end example
5549
5550@noindent
5551generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5552and @code{TOK_ERROR} in the generated source files. In particular, the
5553scanner must use these prefixed token names, while the grammar itself
5554may still use the short names (as in the sample rule given above). The
5555generated informational files (@file{*.output}, @file{*.xml},
5556@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5557and @ref{Calc++ Scanner}, for a complete example.
5558
5559@item Accepted Values:
5560Any string. Should be a valid identifier prefix in the target language,
5561in other words, it should typically be an identifier itself (sequence of
5562letters, underscores, and ---not at the beginning--- digits).
5563
5564@item Default Value:
5565empty
5566@end itemize
5567@c api.tokens.prefix
5568
5569
3cdc21cf 5570@c ================================================== lex_symbol
84072495 5571@item lex_symbol
3cdc21cf
AD
5572@findex %define lex_symbol
5573
5574@itemize @bullet
5575@item Language(s):
5576C++
5577
5578@item Purpose:
5579When variant-based semantic values are enabled (@pxref{C++ Variants}),
5580request that symbols be handled as a whole (type, value, and possibly
5581location) in the scanner. @xref{Complete Symbols}, for details.
5582
5583@item Accepted Values:
5584Boolean.
5585
5586@item Default Value:
5587@code{false}
5588@end itemize
5589@c lex_symbol
5590
5591
6b5a0de9
AD
5592@c ================================================== lr.default-reductions
5593
5bab9d08 5594@item lr.default-reductions
5bab9d08 5595@findex %define lr.default-reductions
eb45ef3b
JD
5596
5597@itemize @bullet
5598@item Language(s): all
5599
fcf834f9 5600@item Purpose: Specify the kind of states that are permitted to
7fceb615
JD
5601contain default reductions. @xref{Default Reductions}. (The ability to
5602specify where default reductions should be used is experimental. More user
5603feedback will help to stabilize it.)
eb45ef3b 5604
f0ad1b2f 5605@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
eb45ef3b
JD
5606@item Default Value:
5607@itemize
cf499cff 5608@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
f0ad1b2f 5609@item @code{most} otherwise.
eb45ef3b
JD
5610@end itemize
5611@end itemize
5612
6b5a0de9
AD
5613@c ============================================ lr.keep-unreachable-states
5614
67212941
JD
5615@item lr.keep-unreachable-states
5616@findex %define lr.keep-unreachable-states
31984206
JD
5617
5618@itemize @bullet
5619@item Language(s): all
f1b238df 5620@item Purpose: Request that Bison allow unreachable parser states to
7fceb615 5621remain in the parser tables. @xref{Unreachable States}.
31984206 5622@item Accepted Values: Boolean
cf499cff 5623@item Default Value: @code{false}
31984206 5624@end itemize
67212941 5625@c lr.keep-unreachable-states
31984206 5626
6b5a0de9
AD
5627@c ================================================== lr.type
5628
eb45ef3b
JD
5629@item lr.type
5630@findex %define lr.type
eb45ef3b
JD
5631
5632@itemize @bullet
5633@item Language(s): all
5634
f1b238df 5635@item Purpose: Specify the type of parser tables within the
7fceb615 5636LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
eb45ef3b
JD
5637More user feedback will help to stabilize it.)
5638
7fceb615 5639@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
eb45ef3b 5640
cf499cff 5641@item Default Value: @code{lalr}
eb45ef3b
JD
5642@end itemize
5643
67501061
AD
5644
5645@c ================================================== namespace
793fbca5
JD
5646@item namespace
5647@findex %define namespace
67501061 5648Obsoleted by @code{api.namespace}
fa819509
AD
5649@c namespace
5650
31b850d2
AD
5651
5652@c ================================================== parse.assert
0c90a1f5
AD
5653@item parse.assert
5654@findex %define parse.assert
5655
5656@itemize
5657@item Languages(s): C++
5658
5659@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5660In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5661constructed and
0c90a1f5
AD
5662destroyed properly. This option checks these constraints.
5663
5664@item Accepted Values: Boolean
5665
5666@item Default Value: @code{false}
5667@end itemize
5668@c parse.assert
5669
31b850d2
AD
5670
5671@c ================================================== parse.error
5672@item parse.error
5673@findex %define parse.error
5674@itemize
5675@item Languages(s):
fcf834f9 5676all
31b850d2
AD
5677@item Purpose:
5678Control the kind of error messages passed to the error reporting
5679function. @xref{Error Reporting, ,The Error Reporting Function
5680@code{yyerror}}.
5681@item Accepted Values:
5682@itemize
cf499cff 5683@item @code{simple}
31b850d2
AD
5684Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5685error"}}.
cf499cff 5686@item @code{verbose}
7fceb615
JD
5687Error messages report the unexpected token, and possibly the expected ones.
5688However, this report can often be incorrect when LAC is not enabled
5689(@pxref{LAC}).
31b850d2
AD
5690@end itemize
5691
5692@item Default Value:
5693@code{simple}
5694@end itemize
5695@c parse.error
5696
5697
fcf834f9
JD
5698@c ================================================== parse.lac
5699@item parse.lac
5700@findex %define parse.lac
fcf834f9
JD
5701
5702@itemize
7fceb615 5703@item Languages(s): C (deterministic parsers only)
fcf834f9 5704
8a4281b9 5705@item Purpose: Enable LAC (lookahead correction) to improve
7fceb615 5706syntax error handling. @xref{LAC}.
fcf834f9 5707@item Accepted Values: @code{none}, @code{full}
fcf834f9
JD
5708@item Default Value: @code{none}
5709@end itemize
5710@c parse.lac
5711
31b850d2 5712@c ================================================== parse.trace
fa819509
AD
5713@item parse.trace
5714@findex %define parse.trace
5715
5716@itemize
60aa04a2 5717@item Languages(s): C, C++, Java
fa819509
AD
5718
5719@item Purpose: Require parser instrumentation for tracing.
60aa04a2
AD
5720@xref{Tracing, ,Tracing Your Parser}.
5721
5722In C/C++, define the macro @code{YYDEBUG} (or @code{@var{prefix}DEBUG} with
5723@samp{%define api.prefix @var{prefix}}), see @ref{Multiple Parsers,
5724,Multiple Parsers in the Same Program}) to 1 in the parser implementation
ff7571c0 5725file if it is not already defined, so that the debugging facilities are
60aa04a2 5726compiled.
793fbca5 5727
fa819509
AD
5728@item Accepted Values: Boolean
5729
5730@item Default Value: @code{false}
5731@end itemize
fa819509 5732@c parse.trace
99c08fb6 5733
3cdc21cf
AD
5734@c ================================================== variant
5735@item variant
5736@findex %define variant
5737
5738@itemize @bullet
5739@item Language(s):
5740C++
5741
5742@item Purpose:
f1b238df 5743Request variant-based semantic values.
3cdc21cf
AD
5744@xref{C++ Variants}.
5745
5746@item Accepted Values:
5747Boolean.
5748
5749@item Default Value:
5750@code{false}
5751@end itemize
5752@c variant
99c08fb6 5753@end table
592d0b1e 5754
d8988b2f 5755
e0c07222
JD
5756@node %code Summary
5757@subsection %code Summary
e0c07222 5758@findex %code
e0c07222 5759@cindex Prologue
51151d91
JD
5760
5761The @code{%code} directive inserts code verbatim into the output
5762parser source at any of a predefined set of locations. It thus serves
5763as a flexible and user-friendly alternative to the traditional Yacc
5764prologue, @code{%@{@var{code}%@}}. This section summarizes the
5765functionality of @code{%code} for the various target languages
5766supported by Bison. For a detailed discussion of how to use
5767@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5768is advantageous to do so, @pxref{Prologue Alternatives}.
5769
5770@deffn {Directive} %code @{@var{code}@}
5771This is the unqualified form of the @code{%code} directive. It
5772inserts @var{code} verbatim at a language-dependent default location
5773in the parser implementation.
5774
e0c07222 5775For C/C++, the default location is the parser implementation file
51151d91
JD
5776after the usual contents of the parser header file. Thus, the
5777unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
e0c07222
JD
5778
5779For Java, the default location is inside the parser class.
5780@end deffn
5781
5782@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5783This is the qualified form of the @code{%code} directive.
51151d91
JD
5784@var{qualifier} identifies the purpose of @var{code} and thus the
5785location(s) where Bison should insert it. That is, if you need to
5786specify location-sensitive @var{code} that does not belong at the
5787default location selected by the unqualified @code{%code} form, use
5788this form instead.
5789@end deffn
5790
5791For any particular qualifier or for the unqualified form, if there are
5792multiple occurrences of the @code{%code} directive, Bison concatenates
5793the specified code in the order in which it appears in the grammar
5794file.
e0c07222 5795
51151d91
JD
5796Not all qualifiers are accepted for all target languages. Unaccepted
5797qualifiers produce an error. Some of the accepted qualifiers are:
e0c07222 5798
84072495 5799@table @code
e0c07222
JD
5800@item requires
5801@findex %code requires
5802
5803@itemize @bullet
5804@item Language(s): C, C++
5805
5806@item Purpose: This is the best place to write dependency code required for
5807@code{YYSTYPE} and @code{YYLTYPE}.
5808In other words, it's the best place to define types referenced in @code{%union}
5809directives, and it's the best place to override Bison's default @code{YYSTYPE}
5810and @code{YYLTYPE} definitions.
5811
5812@item Location(s): The parser header file and the parser implementation file
5813before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5814definitions.
5815@end itemize
5816
5817@item provides
5818@findex %code provides
5819
5820@itemize @bullet
5821@item Language(s): C, C++
5822
5823@item Purpose: This is the best place to write additional definitions and
5824declarations that should be provided to other modules.
5825
5826@item Location(s): The parser header file and the parser implementation
5827file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5828token definitions.
5829@end itemize
5830
5831@item top
5832@findex %code top
5833
5834@itemize @bullet
5835@item Language(s): C, C++
5836
5837@item Purpose: The unqualified @code{%code} or @code{%code requires}
5838should usually be more appropriate than @code{%code top}. However,
5839occasionally it is necessary to insert code much nearer the top of the
5840parser implementation file. For example:
5841
c93f22fc 5842@example
e0c07222
JD
5843%code top @{
5844 #define _GNU_SOURCE
5845 #include <stdio.h>
5846@}
c93f22fc 5847@end example
e0c07222
JD
5848
5849@item Location(s): Near the top of the parser implementation file.
5850@end itemize
5851
5852@item imports
5853@findex %code imports
5854
5855@itemize @bullet
5856@item Language(s): Java
5857
5858@item Purpose: This is the best place to write Java import directives.
5859
5860@item Location(s): The parser Java file after any Java package directive and
5861before any class definitions.
5862@end itemize
84072495 5863@end table
e0c07222 5864
51151d91
JD
5865Though we say the insertion locations are language-dependent, they are
5866technically skeleton-dependent. Writers of non-standard skeletons
5867however should choose their locations consistently with the behavior
5868of the standard Bison skeletons.
e0c07222 5869
d8988b2f 5870
342b8b6e 5871@node Multiple Parsers
bfa74976
RS
5872@section Multiple Parsers in the Same Program
5873
5874Most programs that use Bison parse only one language and therefore contain
4b3847c3
AD
5875only one Bison parser. But what if you want to parse more than one language
5876with the same program? Then you need to avoid name conflicts between
5877different definitions of functions and variables such as @code{yyparse},
5878@code{yylval}. To use different parsers from the same compilation unit, you
5879also need to avoid conflicts on types and macros (e.g., @code{YYSTYPE})
5880exported in the generated header.
5881
5882The easy way to do this is to define the @code{%define} variable
e358222b
AD
5883@code{api.prefix}. With different @code{api.prefix}s it is guaranteed that
5884headers do not conflict when included together, and that compiled objects
5885can be linked together too. Specifying @samp{%define api.prefix
5886@var{prefix}} (or passing the option @samp{-Dapi.prefix=@var{prefix}}, see
5887@ref{Invocation, ,Invoking Bison}) renames the interface functions and
5888variables of the Bison parser to start with @var{prefix} instead of
5889@samp{yy}, and all the macros to start by @var{PREFIX} (i.e., @var{prefix}
5890upper-cased) instead of @samp{YY}.
4b3847c3
AD
5891
5892The renamed symbols include @code{yyparse}, @code{yylex}, @code{yyerror},
5893@code{yynerrs}, @code{yylval}, @code{yylloc}, @code{yychar} and
5894@code{yydebug}. If you use a push parser, @code{yypush_parse},
5895@code{yypull_parse}, @code{yypstate}, @code{yypstate_new} and
5896@code{yypstate_delete} will also be renamed. The renamed macros include
e358222b
AD
5897@code{YYSTYPE}, @code{YYLTYPE}, and @code{YYDEBUG}, which is treated
5898specifically --- more about this below.
4b3847c3
AD
5899
5900For example, if you use @samp{%define api.prefix c}, the names become
5901@code{cparse}, @code{clex}, @dots{}, @code{CSTYPE}, @code{CLTYPE}, and so
5902on.
5903
5904The @code{%define} variable @code{api.prefix} works in two different ways.
5905In the implementation file, it works by adding macro definitions to the
5906beginning of the parser implementation file, defining @code{yyparse} as
5907@code{@var{prefix}parse}, and so on:
5908
5909@example
5910#define YYSTYPE CTYPE
5911#define yyparse cparse
5912#define yylval clval
5913...
5914YYSTYPE yylval;
5915int yyparse (void);
5916@end example
5917
5918This effectively substitutes one name for the other in the entire parser
5919implementation file, thus the ``original'' names (@code{yylex},
5920@code{YYSTYPE}, @dots{}) are also usable in the parser implementation file.
5921
5922However, in the parser header file, the symbols are defined renamed, for
5923instance:
bfa74976 5924
4b3847c3
AD
5925@example
5926extern CSTYPE clval;
5927int cparse (void);
5928@end example
bfa74976 5929
e358222b
AD
5930The macro @code{YYDEBUG} is commonly used to enable the tracing support in
5931parsers. To comply with this tradition, when @code{api.prefix} is used,
5932@code{YYDEBUG} (not renamed) is used as a default value:
5933
5934@example
5935/* Enabling traces. */
5936#ifndef CDEBUG
5937# if defined YYDEBUG
5938# if YYDEBUG
5939# define CDEBUG 1
5940# else
5941# define CDEBUG 0
5942# endif
5943# else
5944# define CDEBUG 0
5945# endif
5946#endif
5947#if CDEBUG
5948extern int cdebug;
5949#endif
5950@end example
5951
5952@sp 2
5953
5954Prior to Bison 2.6, a feature similar to @code{api.prefix} was provided by
5955the obsolete directive @code{%name-prefix} (@pxref{Table of Symbols, ,Bison
5956Symbols}) and the option @code{--name-prefix} (@pxref{Bison Options}).
bfa74976 5957
342b8b6e 5958@node Interface
bfa74976
RS
5959@chapter Parser C-Language Interface
5960@cindex C-language interface
5961@cindex interface
5962
5963The Bison parser is actually a C function named @code{yyparse}. Here we
5964describe the interface conventions of @code{yyparse} and the other
5965functions that it needs to use.
5966
5967Keep in mind that the parser uses many C identifiers starting with
5968@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5969identifier (aside from those in this manual) in an action or in epilogue
5970in the grammar file, you are likely to run into trouble.
bfa74976
RS
5971
5972@menu
f5f419de
DJ
5973* Parser Function:: How to call @code{yyparse} and what it returns.
5974* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5975* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5976* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5977* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5978* Lexical:: You must supply a function @code{yylex}
5979 which reads tokens.
5980* Error Reporting:: You must supply a function @code{yyerror}.
5981* Action Features:: Special features for use in actions.
5982* Internationalization:: How to let the parser speak in the user's
5983 native language.
bfa74976
RS
5984@end menu
5985
342b8b6e 5986@node Parser Function
bfa74976
RS
5987@section The Parser Function @code{yyparse}
5988@findex yyparse
5989
5990You call the function @code{yyparse} to cause parsing to occur. This
5991function reads tokens, executes actions, and ultimately returns when it
5992encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5993write an action which directs @code{yyparse} to return immediately
5994without reading further.
bfa74976 5995
2a8d363a
AD
5996
5997@deftypefun int yyparse (void)
bfa74976
RS
5998The value returned by @code{yyparse} is 0 if parsing was successful (return
5999is due to end-of-input).
6000
b47dbebe
PE
6001The value is 1 if parsing failed because of invalid input, i.e., input
6002that contains a syntax error or that causes @code{YYABORT} to be
6003invoked.
6004
6005The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 6006@end deftypefun
bfa74976
RS
6007
6008In an action, you can cause immediate return from @code{yyparse} by using
6009these macros:
6010
2a8d363a 6011@defmac YYACCEPT
bfa74976
RS
6012@findex YYACCEPT
6013Return immediately with value 0 (to report success).
2a8d363a 6014@end defmac
bfa74976 6015
2a8d363a 6016@defmac YYABORT
bfa74976
RS
6017@findex YYABORT
6018Return immediately with value 1 (to report failure).
2a8d363a
AD
6019@end defmac
6020
6021If you use a reentrant parser, you can optionally pass additional
6022parameter information to it in a reentrant way. To do so, use the
6023declaration @code{%parse-param}:
6024
2055a44e 6025@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6026@findex %parse-param
2055a44e
AD
6027Declare that one or more
6028@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 6029The @var{argument-declaration} is used when declaring
feeb0eda
PE
6030functions or prototypes. The last identifier in
6031@var{argument-declaration} must be the argument name.
2a8d363a
AD
6032@end deffn
6033
6034Here's an example. Write this in the parser:
6035
6036@example
2055a44e 6037%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
6038@end example
6039
6040@noindent
6041Then call the parser like this:
6042
6043@example
6044@{
6045 int nastiness, randomness;
6046 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
6047 value = yyparse (&nastiness, &randomness);
6048 @dots{}
6049@}
6050@end example
6051
6052@noindent
6053In the grammar actions, use expressions like this to refer to the data:
6054
6055@example
6056exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
6057@end example
6058
9987d1b3
JD
6059@node Push Parser Function
6060@section The Push Parser Function @code{yypush_parse}
6061@findex yypush_parse
6062
59da312b
JD
6063(The current push parsing interface is experimental and may evolve.
6064More user feedback will help to stabilize it.)
6065
f4101aa6 6066You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
6067function is available if either the @samp{%define api.push-pull push} or
6068@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6069@xref{Push Decl, ,A Push Parser}.
6070
6071@deftypefun int yypush_parse (yypstate *yyps)
ad60e80f
AD
6072The value returned by @code{yypush_parse} is the same as for yyparse with
6073the following exception: it returns @code{YYPUSH_MORE} if more input is
6074required to finish parsing the grammar.
9987d1b3
JD
6075@end deftypefun
6076
6077@node Pull Parser Function
6078@section The Pull Parser Function @code{yypull_parse}
6079@findex yypull_parse
6080
59da312b
JD
6081(The current push parsing interface is experimental and may evolve.
6082More user feedback will help to stabilize it.)
6083
f4101aa6 6084You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 6085stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 6086declaration is used.
9987d1b3
JD
6087@xref{Push Decl, ,A Push Parser}.
6088
6089@deftypefun int yypull_parse (yypstate *yyps)
6090The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
6091@end deftypefun
6092
6093@node Parser Create Function
6094@section The Parser Create Function @code{yystate_new}
6095@findex yypstate_new
6096
59da312b
JD
6097(The current push parsing interface is experimental and may evolve.
6098More user feedback will help to stabilize it.)
6099
f4101aa6 6100You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
6101This function is available if either the @samp{%define api.push-pull push} or
6102@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6103@xref{Push Decl, ,A Push Parser}.
6104
34a41a93 6105@deftypefun {yypstate*} yypstate_new (void)
f50bfcd6 6106The function will return a valid parser instance if there was memory available
333e670c
JD
6107or 0 if no memory was available.
6108In impure mode, it will also return 0 if a parser instance is currently
6109allocated.
9987d1b3
JD
6110@end deftypefun
6111
6112@node Parser Delete Function
6113@section The Parser Delete Function @code{yystate_delete}
6114@findex yypstate_delete
6115
59da312b
JD
6116(The current push parsing interface is experimental and may evolve.
6117More user feedback will help to stabilize it.)
6118
9987d1b3 6119You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
6120function is available if either the @samp{%define api.push-pull push} or
6121@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6122@xref{Push Decl, ,A Push Parser}.
6123
6124@deftypefun void yypstate_delete (yypstate *yyps)
6125This function will reclaim the memory associated with a parser instance.
6126After this call, you should no longer attempt to use the parser instance.
6127@end deftypefun
bfa74976 6128
342b8b6e 6129@node Lexical
bfa74976
RS
6130@section The Lexical Analyzer Function @code{yylex}
6131@findex yylex
6132@cindex lexical analyzer
6133
6134The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
6135the input stream and returns them to the parser. Bison does not create
6136this function automatically; you must write it so that @code{yyparse} can
6137call it. The function is sometimes referred to as a lexical scanner.
6138
ff7571c0
JD
6139In simple programs, @code{yylex} is often defined at the end of the
6140Bison grammar file. If @code{yylex} is defined in a separate source
6141file, you need to arrange for the token-type macro definitions to be
6142available there. To do this, use the @samp{-d} option when you run
6143Bison, so that it will write these macro definitions into the separate
6144parser header file, @file{@var{name}.tab.h}, which you can include in
6145the other source files that need it. @xref{Invocation, ,Invoking
6146Bison}.
bfa74976
RS
6147
6148@menu
6149* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
6150* Token Values:: How @code{yylex} must return the semantic value
6151 of the token it has read.
6152* Token Locations:: How @code{yylex} must return the text location
6153 (line number, etc.) of the token, if the
6154 actions want that.
6155* Pure Calling:: How the calling convention differs in a pure parser
6156 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
6157@end menu
6158
342b8b6e 6159@node Calling Convention
bfa74976
RS
6160@subsection Calling Convention for @code{yylex}
6161
72d2299c
PE
6162The value that @code{yylex} returns must be the positive numeric code
6163for the type of token it has just found; a zero or negative value
6164signifies end-of-input.
bfa74976
RS
6165
6166When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
6167in the parser implementation file becomes a C macro whose definition
6168is the proper numeric code for that token type. So @code{yylex} can
6169use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
6170
6171When a token is referred to in the grammar rules by a character literal,
6172the numeric code for that character is also the code for the token type.
72d2299c
PE
6173So @code{yylex} can simply return that character code, possibly converted
6174to @code{unsigned char} to avoid sign-extension. The null character
6175must not be used this way, because its code is zero and that
bfa74976
RS
6176signifies end-of-input.
6177
6178Here is an example showing these things:
6179
6180@example
13863333
AD
6181int
6182yylex (void)
bfa74976
RS
6183@{
6184 @dots{}
72d2299c 6185 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
6186 return 0;
6187 @dots{}
6188 if (c == '+' || c == '-')
72d2299c 6189 return c; /* Assume token type for `+' is '+'. */
bfa74976 6190 @dots{}
72d2299c 6191 return INT; /* Return the type of the token. */
bfa74976
RS
6192 @dots{}
6193@}
6194@end example
6195
6196@noindent
6197This interface has been designed so that the output from the @code{lex}
6198utility can be used without change as the definition of @code{yylex}.
6199
931c7513
RS
6200If the grammar uses literal string tokens, there are two ways that
6201@code{yylex} can determine the token type codes for them:
6202
6203@itemize @bullet
6204@item
6205If the grammar defines symbolic token names as aliases for the
6206literal string tokens, @code{yylex} can use these symbolic names like
6207all others. In this case, the use of the literal string tokens in
6208the grammar file has no effect on @code{yylex}.
6209
6210@item
9ecbd125 6211@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6212table. The index of the token in the table is the token type's code.
9ecbd125 6213The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6214double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6215token's characters are escaped as necessary to be suitable as input
6216to Bison.
931c7513 6217
9e0876fb
PE
6218Here's code for looking up a multicharacter token in @code{yytname},
6219assuming that the characters of the token are stored in
6220@code{token_buffer}, and assuming that the token does not contain any
6221characters like @samp{"} that require escaping.
931c7513 6222
c93f22fc 6223@example
931c7513
RS
6224for (i = 0; i < YYNTOKENS; i++)
6225 @{
6226 if (yytname[i] != 0
6227 && yytname[i][0] == '"'
68449b3a
PE
6228 && ! strncmp (yytname[i] + 1, token_buffer,
6229 strlen (token_buffer))
931c7513
RS
6230 && yytname[i][strlen (token_buffer) + 1] == '"'
6231 && yytname[i][strlen (token_buffer) + 2] == 0)
6232 break;
6233 @}
c93f22fc 6234@end example
931c7513
RS
6235
6236The @code{yytname} table is generated only if you use the
8c9a50be 6237@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6238@end itemize
6239
342b8b6e 6240@node Token Values
bfa74976
RS
6241@subsection Semantic Values of Tokens
6242
6243@vindex yylval
9d9b8b70 6244In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6245be stored into the global variable @code{yylval}. When you are using
6246just one data type for semantic values, @code{yylval} has that type.
6247Thus, if the type is @code{int} (the default), you might write this in
6248@code{yylex}:
6249
6250@example
6251@group
6252 @dots{}
72d2299c
PE
6253 yylval = value; /* Put value onto Bison stack. */
6254 return INT; /* Return the type of the token. */
bfa74976
RS
6255 @dots{}
6256@end group
6257@end example
6258
6259When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6260made from the @code{%union} declaration (@pxref{Union Decl, ,The
6261Collection of Value Types}). So when you store a token's value, you
6262must use the proper member of the union. If the @code{%union}
6263declaration looks like this:
bfa74976
RS
6264
6265@example
6266@group
6267%union @{
6268 int intval;
6269 double val;
6270 symrec *tptr;
6271@}
6272@end group
6273@end example
6274
6275@noindent
6276then the code in @code{yylex} might look like this:
6277
6278@example
6279@group
6280 @dots{}
72d2299c
PE
6281 yylval.intval = value; /* Put value onto Bison stack. */
6282 return INT; /* Return the type of the token. */
bfa74976
RS
6283 @dots{}
6284@end group
6285@end example
6286
95923bd6
AD
6287@node Token Locations
6288@subsection Textual Locations of Tokens
bfa74976
RS
6289
6290@vindex yylloc
303834cc
JD
6291If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6292in actions to keep track of the textual locations of tokens and groupings,
6293then you must provide this information in @code{yylex}. The function
6294@code{yyparse} expects to find the textual location of a token just parsed
6295in the global variable @code{yylloc}. So @code{yylex} must store the proper
6296data in that variable.
847bf1f5
AD
6297
6298By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6299initialize the members that are going to be used by the actions. The
6300four members are called @code{first_line}, @code{first_column},
6301@code{last_line} and @code{last_column}. Note that the use of this
6302feature makes the parser noticeably slower.
bfa74976
RS
6303
6304@tindex YYLTYPE
6305The data type of @code{yylloc} has the name @code{YYLTYPE}.
6306
342b8b6e 6307@node Pure Calling
c656404a 6308@subsection Calling Conventions for Pure Parsers
bfa74976 6309
67501061 6310When you use the Bison declaration @samp{%define api.pure} to request a
e425e872
RS
6311pure, reentrant parser, the global communication variables @code{yylval}
6312and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6313Parser}.) In such parsers the two global variables are replaced by
6314pointers passed as arguments to @code{yylex}. You must declare them as
6315shown here, and pass the information back by storing it through those
6316pointers.
bfa74976
RS
6317
6318@example
13863333
AD
6319int
6320yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6321@{
6322 @dots{}
6323 *lvalp = value; /* Put value onto Bison stack. */
6324 return INT; /* Return the type of the token. */
6325 @dots{}
6326@}
6327@end example
6328
6329If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6330textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6331this case, omit the second argument; @code{yylex} will be called with
6332only one argument.
6333
2055a44e 6334If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6335@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6336Function}). To pass additional arguments to both @code{yylex} and
6337@code{yyparse}, use @code{%param}.
e425e872 6338
2055a44e 6339@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6340@findex %lex-param
2055a44e
AD
6341Specify that @var{argument-declaration} are additional @code{yylex} argument
6342declarations. You may pass one or more such declarations, which is
6343equivalent to repeating @code{%lex-param}.
6344@end deffn
6345
6346@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6347@findex %param
6348Specify that @var{argument-declaration} are additional
6349@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6350@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6351@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6352declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6353@end deffn
e425e872 6354
2a8d363a 6355For instance:
e425e872
RS
6356
6357@example
2055a44e
AD
6358%lex-param @{scanner_mode *mode@}
6359%parse-param @{parser_mode *mode@}
6360%param @{environment_type *env@}
e425e872
RS
6361@end example
6362
6363@noindent
18ad57b3 6364results in the following signatures:
e425e872
RS
6365
6366@example
2055a44e
AD
6367int yylex (scanner_mode *mode, environment_type *env);
6368int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6369@end example
6370
67501061 6371If @samp{%define api.pure} is added:
c656404a
RS
6372
6373@example
2055a44e
AD
6374int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6375int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6376@end example
6377
2a8d363a 6378@noindent
67501061 6379and finally, if both @samp{%define api.pure} and @code{%locations} are used:
c656404a 6380
2a8d363a 6381@example
2055a44e
AD
6382int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6383 scanner_mode *mode, environment_type *env);
6384int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6385@end example
931c7513 6386
342b8b6e 6387@node Error Reporting
bfa74976
RS
6388@section The Error Reporting Function @code{yyerror}
6389@cindex error reporting function
6390@findex yyerror
6391@cindex parse error
6392@cindex syntax error
6393
31b850d2 6394The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6395whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6396action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6397macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6398in Actions}).
bfa74976
RS
6399
6400The Bison parser expects to report the error by calling an error
6401reporting function named @code{yyerror}, which you must supply. It is
6402called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6403receives one argument. For a syntax error, the string is normally
6404@w{@code{"syntax error"}}.
bfa74976 6405
31b850d2 6406@findex %define parse.error
7fceb615
JD
6407If you invoke @samp{%define parse.error verbose} in the Bison declarations
6408section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6409Bison provides a more verbose and specific error message string instead of
6410just plain @w{@code{"syntax error"}}. However, that message sometimes
6411contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6412
1a059451
PE
6413The parser can detect one other kind of error: memory exhaustion. This
6414can happen when the input contains constructions that are very deeply
bfa74976 6415nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6416parser normally extends its stack automatically up to a very large limit. But
6417if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6418fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6419
6420In some cases diagnostics like @w{@code{"syntax error"}} are
6421translated automatically from English to some other language before
6422they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6423
6424The following definition suffices in simple programs:
6425
6426@example
6427@group
13863333 6428void
38a92d50 6429yyerror (char const *s)
bfa74976
RS
6430@{
6431@end group
6432@group
6433 fprintf (stderr, "%s\n", s);
6434@}
6435@end group
6436@end example
6437
6438After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6439error recovery if you have written suitable error recovery grammar rules
6440(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6441immediately return 1.
6442
93724f13 6443Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 6444an access to the current location.
8a4281b9 6445This is indeed the case for the GLR
2a8d363a 6446parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6447@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6448@code{yyerror} are:
6449
6450@example
38a92d50
PE
6451void yyerror (char const *msg); /* Yacc parsers. */
6452void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6453@end example
6454
feeb0eda 6455If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6456
6457@example
b317297e
PE
6458void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6459void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6460@end example
6461
8a4281b9 6462Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6463convention for absolutely pure parsers, i.e., when the calling
6464convention of @code{yylex} @emph{and} the calling convention of
67501061 6465@samp{%define api.pure} are pure.
d9df47b6 6466I.e.:
2a8d363a
AD
6467
6468@example
6469/* Location tracking. */
6470%locations
6471/* Pure yylex. */
d9df47b6 6472%define api.pure
feeb0eda 6473%lex-param @{int *nastiness@}
2a8d363a 6474/* Pure yyparse. */
feeb0eda
PE
6475%parse-param @{int *nastiness@}
6476%parse-param @{int *randomness@}
2a8d363a
AD
6477@end example
6478
6479@noindent
6480results in the following signatures for all the parser kinds:
6481
6482@example
6483int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6484int yyparse (int *nastiness, int *randomness);
93724f13
AD
6485void yyerror (YYLTYPE *locp,
6486 int *nastiness, int *randomness,
38a92d50 6487 char const *msg);
2a8d363a
AD
6488@end example
6489
1c0c3e95 6490@noindent
38a92d50
PE
6491The prototypes are only indications of how the code produced by Bison
6492uses @code{yyerror}. Bison-generated code always ignores the returned
6493value, so @code{yyerror} can return any type, including @code{void}.
6494Also, @code{yyerror} can be a variadic function; that is why the
6495message is always passed last.
6496
6497Traditionally @code{yyerror} returns an @code{int} that is always
6498ignored, but this is purely for historical reasons, and @code{void} is
6499preferable since it more accurately describes the return type for
6500@code{yyerror}.
93724f13 6501
bfa74976
RS
6502@vindex yynerrs
6503The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6504reported so far. Normally this variable is global; but if you
704a47c4
AD
6505request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6506then it is a local variable which only the actions can access.
bfa74976 6507
342b8b6e 6508@node Action Features
bfa74976
RS
6509@section Special Features for Use in Actions
6510@cindex summary, action features
6511@cindex action features summary
6512
6513Here is a table of Bison constructs, variables and macros that
6514are useful in actions.
6515
18b519c0 6516@deffn {Variable} $$
bfa74976
RS
6517Acts like a variable that contains the semantic value for the
6518grouping made by the current rule. @xref{Actions}.
18b519c0 6519@end deffn
bfa74976 6520
18b519c0 6521@deffn {Variable} $@var{n}
bfa74976
RS
6522Acts like a variable that contains the semantic value for the
6523@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6524@end deffn
bfa74976 6525
18b519c0 6526@deffn {Variable} $<@var{typealt}>$
bfa74976 6527Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6528specified by the @code{%union} declaration. @xref{Action Types, ,Data
6529Types of Values in Actions}.
18b519c0 6530@end deffn
bfa74976 6531
18b519c0 6532@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6533Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6534union specified by the @code{%union} declaration.
e0c471a9 6535@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6536@end deffn
bfa74976 6537
34a41a93 6538@deffn {Macro} YYABORT @code{;}
bfa74976
RS
6539Return immediately from @code{yyparse}, indicating failure.
6540@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6541@end deffn
bfa74976 6542
34a41a93 6543@deffn {Macro} YYACCEPT @code{;}
bfa74976
RS
6544Return immediately from @code{yyparse}, indicating success.
6545@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6546@end deffn
bfa74976 6547
34a41a93 6548@deffn {Macro} YYBACKUP (@var{token}, @var{value})@code{;}
bfa74976
RS
6549@findex YYBACKUP
6550Unshift a token. This macro is allowed only for rules that reduce
742e4900 6551a single value, and only when there is no lookahead token.
8a4281b9 6552It is also disallowed in GLR parsers.
742e4900 6553It installs a lookahead token with token type @var{token} and
bfa74976
RS
6554semantic value @var{value}; then it discards the value that was
6555going to be reduced by this rule.
6556
6557If the macro is used when it is not valid, such as when there is
742e4900 6558a lookahead token already, then it reports a syntax error with
bfa74976
RS
6559a message @samp{cannot back up} and performs ordinary error
6560recovery.
6561
6562In either case, the rest of the action is not executed.
18b519c0 6563@end deffn
bfa74976 6564
18b519c0 6565@deffn {Macro} YYEMPTY
742e4900 6566Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6567@end deffn
bfa74976 6568
32c29292 6569@deffn {Macro} YYEOF
742e4900 6570Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6571stream.
6572@end deffn
6573
34a41a93 6574@deffn {Macro} YYERROR @code{;}
bfa74976
RS
6575Cause an immediate syntax error. This statement initiates error
6576recovery just as if the parser itself had detected an error; however, it
6577does not call @code{yyerror}, and does not print any message. If you
6578want to print an error message, call @code{yyerror} explicitly before
6579the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6580@end deffn
bfa74976 6581
18b519c0 6582@deffn {Macro} YYRECOVERING
02103984
PE
6583@findex YYRECOVERING
6584The expression @code{YYRECOVERING ()} yields 1 when the parser
6585is recovering from a syntax error, and 0 otherwise.
bfa74976 6586@xref{Error Recovery}.
18b519c0 6587@end deffn
bfa74976 6588
18b519c0 6589@deffn {Variable} yychar
742e4900
JD
6590Variable containing either the lookahead token, or @code{YYEOF} when the
6591lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6592has been performed so the next token is not yet known.
6593Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6594Actions}).
742e4900 6595@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6596@end deffn
bfa74976 6597
34a41a93 6598@deffn {Macro} yyclearin @code{;}
742e4900 6599Discard the current lookahead token. This is useful primarily in
32c29292
JD
6600error rules.
6601Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6602Semantic Actions}).
6603@xref{Error Recovery}.
18b519c0 6604@end deffn
bfa74976 6605
34a41a93 6606@deffn {Macro} yyerrok @code{;}
bfa74976 6607Resume generating error messages immediately for subsequent syntax
13863333 6608errors. This is useful primarily in error rules.
bfa74976 6609@xref{Error Recovery}.
18b519c0 6610@end deffn
bfa74976 6611
32c29292 6612@deffn {Variable} yylloc
742e4900 6613Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6614to @code{YYEMPTY} or @code{YYEOF}.
6615Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6616Actions}).
6617@xref{Actions and Locations, ,Actions and Locations}.
6618@end deffn
6619
6620@deffn {Variable} yylval
742e4900 6621Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6622not set to @code{YYEMPTY} or @code{YYEOF}.
6623Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6624Actions}).
6625@xref{Actions, ,Actions}.
6626@end deffn
6627
18b519c0 6628@deffn {Value} @@$
847bf1f5 6629@findex @@$
303834cc
JD
6630Acts like a structure variable containing information on the textual
6631location of the grouping made by the current rule. @xref{Tracking
6632Locations}.
bfa74976 6633
847bf1f5
AD
6634@c Check if those paragraphs are still useful or not.
6635
6636@c @example
6637@c struct @{
6638@c int first_line, last_line;
6639@c int first_column, last_column;
6640@c @};
6641@c @end example
6642
6643@c Thus, to get the starting line number of the third component, you would
6644@c use @samp{@@3.first_line}.
bfa74976 6645
847bf1f5
AD
6646@c In order for the members of this structure to contain valid information,
6647@c you must make @code{yylex} supply this information about each token.
6648@c If you need only certain members, then @code{yylex} need only fill in
6649@c those members.
bfa74976 6650
847bf1f5 6651@c The use of this feature makes the parser noticeably slower.
18b519c0 6652@end deffn
847bf1f5 6653
18b519c0 6654@deffn {Value} @@@var{n}
847bf1f5 6655@findex @@@var{n}
303834cc
JD
6656Acts like a structure variable containing information on the textual
6657location of the @var{n}th component of the current rule. @xref{Tracking
6658Locations}.
18b519c0 6659@end deffn
bfa74976 6660
f7ab6a50
PE
6661@node Internationalization
6662@section Parser Internationalization
6663@cindex internationalization
6664@cindex i18n
6665@cindex NLS
6666@cindex gettext
6667@cindex bison-po
6668
6669A Bison-generated parser can print diagnostics, including error and
6670tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6671also supports outputting diagnostics in the user's native language. To
6672make this work, the user should set the usual environment variables.
6673@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6674For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 6675set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6676encoding. The exact set of available locales depends on the user's
6677installation.
6678
6679The maintainer of a package that uses a Bison-generated parser enables
6680the internationalization of the parser's output through the following
8a4281b9
JD
6681steps. Here we assume a package that uses GNU Autoconf and
6682GNU Automake.
f7ab6a50
PE
6683
6684@enumerate
6685@item
30757c8c 6686@cindex bison-i18n.m4
8a4281b9 6687Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6688by the package---often called @file{m4}---copy the
6689@file{bison-i18n.m4} file installed by Bison under
6690@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6691For example:
6692
6693@example
6694cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6695@end example
6696
6697@item
30757c8c
PE
6698@findex BISON_I18N
6699@vindex BISON_LOCALEDIR
6700@vindex YYENABLE_NLS
f7ab6a50
PE
6701In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6702invocation, add an invocation of @code{BISON_I18N}. This macro is
6703defined in the file @file{bison-i18n.m4} that you copied earlier. It
6704causes @samp{configure} to find the value of the
30757c8c
PE
6705@code{BISON_LOCALEDIR} variable, and it defines the source-language
6706symbol @code{YYENABLE_NLS} to enable translations in the
6707Bison-generated parser.
f7ab6a50
PE
6708
6709@item
6710In the @code{main} function of your program, designate the directory
6711containing Bison's runtime message catalog, through a call to
6712@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6713For example:
6714
6715@example
6716bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6717@end example
6718
6719Typically this appears after any other call @code{bindtextdomain
6720(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6721@samp{BISON_LOCALEDIR} to be defined as a string through the
6722@file{Makefile}.
6723
6724@item
6725In the @file{Makefile.am} that controls the compilation of the @code{main}
6726function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6727either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6728
6729@example
6730DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6731@end example
6732
6733or:
6734
6735@example
6736AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6737@end example
6738
6739@item
6740Finally, invoke the command @command{autoreconf} to generate the build
6741infrastructure.
6742@end enumerate
6743
bfa74976 6744
342b8b6e 6745@node Algorithm
13863333
AD
6746@chapter The Bison Parser Algorithm
6747@cindex Bison parser algorithm
bfa74976
RS
6748@cindex algorithm of parser
6749@cindex shifting
6750@cindex reduction
6751@cindex parser stack
6752@cindex stack, parser
6753
6754As Bison reads tokens, it pushes them onto a stack along with their
6755semantic values. The stack is called the @dfn{parser stack}. Pushing a
6756token is traditionally called @dfn{shifting}.
6757
6758For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6759@samp{3} to come. The stack will have four elements, one for each token
6760that was shifted.
6761
6762But the stack does not always have an element for each token read. When
6763the last @var{n} tokens and groupings shifted match the components of a
6764grammar rule, they can be combined according to that rule. This is called
6765@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6766single grouping whose symbol is the result (left hand side) of that rule.
6767Running the rule's action is part of the process of reduction, because this
6768is what computes the semantic value of the resulting grouping.
6769
6770For example, if the infix calculator's parser stack contains this:
6771
6772@example
67731 + 5 * 3
6774@end example
6775
6776@noindent
6777and the next input token is a newline character, then the last three
6778elements can be reduced to 15 via the rule:
6779
6780@example
6781expr: expr '*' expr;
6782@end example
6783
6784@noindent
6785Then the stack contains just these three elements:
6786
6787@example
67881 + 15
6789@end example
6790
6791@noindent
6792At this point, another reduction can be made, resulting in the single value
679316. Then the newline token can be shifted.
6794
6795The parser tries, by shifts and reductions, to reduce the entire input down
6796to a single grouping whose symbol is the grammar's start-symbol
6797(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6798
6799This kind of parser is known in the literature as a bottom-up parser.
6800
6801@menu
742e4900 6802* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6803* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6804* Precedence:: Operator precedence works by resolving conflicts.
6805* Contextual Precedence:: When an operator's precedence depends on context.
6806* Parser States:: The parser is a finite-state-machine with stack.
6807* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 6808* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 6809* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 6810* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6811* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6812@end menu
6813
742e4900
JD
6814@node Lookahead
6815@section Lookahead Tokens
6816@cindex lookahead token
bfa74976
RS
6817
6818The Bison parser does @emph{not} always reduce immediately as soon as the
6819last @var{n} tokens and groupings match a rule. This is because such a
6820simple strategy is inadequate to handle most languages. Instead, when a
6821reduction is possible, the parser sometimes ``looks ahead'' at the next
6822token in order to decide what to do.
6823
6824When a token is read, it is not immediately shifted; first it becomes the
742e4900 6825@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6826perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6827the lookahead token remains off to the side. When no more reductions
6828should take place, the lookahead token is shifted onto the stack. This
bfa74976 6829does not mean that all possible reductions have been done; depending on the
742e4900 6830token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6831application.
6832
742e4900 6833Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6834expressions which contain binary addition operators and postfix unary
6835factorial operators (@samp{!}), and allow parentheses for grouping.
6836
6837@example
6838@group
5e9b6624
AD
6839expr:
6840 term '+' expr
6841| term
6842;
bfa74976
RS
6843@end group
6844
6845@group
5e9b6624
AD
6846term:
6847 '(' expr ')'
6848| term '!'
6849| NUMBER
6850;
bfa74976
RS
6851@end group
6852@end example
6853
6854Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6855should be done? If the following token is @samp{)}, then the first three
6856tokens must be reduced to form an @code{expr}. This is the only valid
6857course, because shifting the @samp{)} would produce a sequence of symbols
6858@w{@code{term ')'}}, and no rule allows this.
6859
6860If the following token is @samp{!}, then it must be shifted immediately so
6861that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6862parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6863@code{expr}. It would then be impossible to shift the @samp{!} because
6864doing so would produce on the stack the sequence of symbols @code{expr
6865'!'}. No rule allows that sequence.
6866
6867@vindex yychar
32c29292
JD
6868@vindex yylval
6869@vindex yylloc
742e4900 6870The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6871Its semantic value and location, if any, are stored in the variables
6872@code{yylval} and @code{yylloc}.
bfa74976
RS
6873@xref{Action Features, ,Special Features for Use in Actions}.
6874
342b8b6e 6875@node Shift/Reduce
bfa74976
RS
6876@section Shift/Reduce Conflicts
6877@cindex conflicts
6878@cindex shift/reduce conflicts
6879@cindex dangling @code{else}
6880@cindex @code{else}, dangling
6881
6882Suppose we are parsing a language which has if-then and if-then-else
6883statements, with a pair of rules like this:
6884
6885@example
6886@group
6887if_stmt:
5e9b6624
AD
6888 IF expr THEN stmt
6889| IF expr THEN stmt ELSE stmt
6890;
bfa74976
RS
6891@end group
6892@end example
6893
6894@noindent
6895Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6896terminal symbols for specific keyword tokens.
6897
742e4900 6898When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6899contents of the stack (assuming the input is valid) are just right for
6900reduction by the first rule. But it is also legitimate to shift the
6901@code{ELSE}, because that would lead to eventual reduction by the second
6902rule.
6903
6904This situation, where either a shift or a reduction would be valid, is
6905called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6906these conflicts by choosing to shift, unless otherwise directed by
6907operator precedence declarations. To see the reason for this, let's
6908contrast it with the other alternative.
6909
6910Since the parser prefers to shift the @code{ELSE}, the result is to attach
6911the else-clause to the innermost if-statement, making these two inputs
6912equivalent:
6913
6914@example
6915if x then if y then win (); else lose;
6916
6917if x then do; if y then win (); else lose; end;
6918@end example
6919
6920But if the parser chose to reduce when possible rather than shift, the
6921result would be to attach the else-clause to the outermost if-statement,
6922making these two inputs equivalent:
6923
6924@example
6925if x then if y then win (); else lose;
6926
6927if x then do; if y then win (); end; else lose;
6928@end example
6929
6930The conflict exists because the grammar as written is ambiguous: either
6931parsing of the simple nested if-statement is legitimate. The established
6932convention is that these ambiguities are resolved by attaching the
6933else-clause to the innermost if-statement; this is what Bison accomplishes
6934by choosing to shift rather than reduce. (It would ideally be cleaner to
6935write an unambiguous grammar, but that is very hard to do in this case.)
6936This particular ambiguity was first encountered in the specifications of
6937Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6938
6939To avoid warnings from Bison about predictable, legitimate shift/reduce
93d7dde9
JD
6940conflicts, use the @code{%expect @var{n}} declaration.
6941There will be no warning as long as the number of shift/reduce conflicts
6942is exactly @var{n}, and Bison will report an error if there is a
6943different number.
bfa74976
RS
6944@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6945
6946The definition of @code{if_stmt} above is solely to blame for the
6947conflict, but the conflict does not actually appear without additional
ff7571c0
JD
6948rules. Here is a complete Bison grammar file that actually manifests
6949the conflict:
bfa74976
RS
6950
6951@example
6952@group
6953%token IF THEN ELSE variable
6954%%
6955@end group
6956@group
5e9b6624
AD
6957stmt:
6958 expr
6959| if_stmt
6960;
bfa74976
RS
6961@end group
6962
6963@group
6964if_stmt:
5e9b6624
AD
6965 IF expr THEN stmt
6966| IF expr THEN stmt ELSE stmt
6967;
bfa74976
RS
6968@end group
6969
5e9b6624
AD
6970expr:
6971 variable
6972;
bfa74976
RS
6973@end example
6974
342b8b6e 6975@node Precedence
bfa74976
RS
6976@section Operator Precedence
6977@cindex operator precedence
6978@cindex precedence of operators
6979
6980Another situation where shift/reduce conflicts appear is in arithmetic
6981expressions. Here shifting is not always the preferred resolution; the
6982Bison declarations for operator precedence allow you to specify when to
6983shift and when to reduce.
6984
6985@menu
6986* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
6987* Using Precedence:: How to specify precedence and associativity.
6988* Precedence Only:: How to specify precedence only.
bfa74976
RS
6989* Precedence Examples:: How these features are used in the previous example.
6990* How Precedence:: How they work.
6991@end menu
6992
342b8b6e 6993@node Why Precedence
bfa74976
RS
6994@subsection When Precedence is Needed
6995
6996Consider the following ambiguous grammar fragment (ambiguous because the
6997input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6998
6999@example
7000@group
5e9b6624
AD
7001expr:
7002 expr '-' expr
7003| expr '*' expr
7004| expr '<' expr
7005| '(' expr ')'
7006@dots{}
7007;
bfa74976
RS
7008@end group
7009@end example
7010
7011@noindent
7012Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
7013should it reduce them via the rule for the subtraction operator? It
7014depends on the next token. Of course, if the next token is @samp{)}, we
7015must reduce; shifting is invalid because no single rule can reduce the
7016token sequence @w{@samp{- 2 )}} or anything starting with that. But if
7017the next token is @samp{*} or @samp{<}, we have a choice: either
7018shifting or reduction would allow the parse to complete, but with
7019different results.
7020
7021To decide which one Bison should do, we must consider the results. If
7022the next operator token @var{op} is shifted, then it must be reduced
7023first in order to permit another opportunity to reduce the difference.
7024The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
7025hand, if the subtraction is reduced before shifting @var{op}, the result
7026is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
7027reduce should depend on the relative precedence of the operators
7028@samp{-} and @var{op}: @samp{*} should be shifted first, but not
7029@samp{<}.
bfa74976
RS
7030
7031@cindex associativity
7032What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
7033@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
7034operators we prefer the former, which is called @dfn{left association}.
7035The latter alternative, @dfn{right association}, is desirable for
7036assignment operators. The choice of left or right association is a
7037matter of whether the parser chooses to shift or reduce when the stack
742e4900 7038contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 7039makes right-associativity.
bfa74976 7040
342b8b6e 7041@node Using Precedence
bfa74976
RS
7042@subsection Specifying Operator Precedence
7043@findex %left
bfa74976 7044@findex %nonassoc
d78f0ac9
AD
7045@findex %precedence
7046@findex %right
bfa74976
RS
7047
7048Bison allows you to specify these choices with the operator precedence
7049declarations @code{%left} and @code{%right}. Each such declaration
7050contains a list of tokens, which are operators whose precedence and
7051associativity is being declared. The @code{%left} declaration makes all
7052those operators left-associative and the @code{%right} declaration makes
7053them right-associative. A third alternative is @code{%nonassoc}, which
7054declares that it is a syntax error to find the same operator twice ``in a
7055row''.
d78f0ac9
AD
7056The last alternative, @code{%precedence}, allows to define only
7057precedence and no associativity at all. As a result, any
7058associativity-related conflict that remains will be reported as an
7059compile-time error. The directive @code{%nonassoc} creates run-time
7060error: using the operator in a associative way is a syntax error. The
7061directive @code{%precedence} creates compile-time errors: an operator
7062@emph{can} be involved in an associativity-related conflict, contrary to
7063what expected the grammar author.
bfa74976
RS
7064
7065The relative precedence of different operators is controlled by the
d78f0ac9
AD
7066order in which they are declared. The first precedence/associativity
7067declaration in the file declares the operators whose
bfa74976
RS
7068precedence is lowest, the next such declaration declares the operators
7069whose precedence is a little higher, and so on.
7070
d78f0ac9
AD
7071@node Precedence Only
7072@subsection Specifying Precedence Only
7073@findex %precedence
7074
8a4281b9 7075Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
7076@code{%nonassoc}, which all defines precedence and associativity, little
7077attention is paid to the fact that precedence cannot be defined without
7078defining associativity. Yet, sometimes, when trying to solve a
7079conflict, precedence suffices. In such a case, using @code{%left},
7080@code{%right}, or @code{%nonassoc} might hide future (associativity
7081related) conflicts that would remain hidden.
7082
7083The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 7084Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
7085in the following situation, where the period denotes the current parsing
7086state:
7087
7088@example
7089if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
7090@end example
7091
7092The conflict involves the reduction of the rule @samp{IF expr THEN
7093stmt}, which precedence is by default that of its last token
7094(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
7095disambiguation (attach the @code{else} to the closest @code{if}),
7096shifting must be preferred, i.e., the precedence of @code{ELSE} must be
7097higher than that of @code{THEN}. But neither is expected to be involved
7098in an associativity related conflict, which can be specified as follows.
7099
7100@example
7101%precedence THEN
7102%precedence ELSE
7103@end example
7104
7105The unary-minus is another typical example where associativity is
7106usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 7107Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
7108used to declare the precedence of @code{NEG}, which is more than needed
7109since it also defines its associativity. While this is harmless in the
7110traditional example, who knows how @code{NEG} might be used in future
7111evolutions of the grammar@dots{}
7112
342b8b6e 7113@node Precedence Examples
bfa74976
RS
7114@subsection Precedence Examples
7115
7116In our example, we would want the following declarations:
7117
7118@example
7119%left '<'
7120%left '-'
7121%left '*'
7122@end example
7123
7124In a more complete example, which supports other operators as well, we
7125would declare them in groups of equal precedence. For example, @code{'+'} is
7126declared with @code{'-'}:
7127
7128@example
7129%left '<' '>' '=' NE LE GE
7130%left '+' '-'
7131%left '*' '/'
7132@end example
7133
7134@noindent
7135(Here @code{NE} and so on stand for the operators for ``not equal''
7136and so on. We assume that these tokens are more than one character long
7137and therefore are represented by names, not character literals.)
7138
342b8b6e 7139@node How Precedence
bfa74976
RS
7140@subsection How Precedence Works
7141
7142The first effect of the precedence declarations is to assign precedence
7143levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
7144precedence levels to certain rules: each rule gets its precedence from
7145the last terminal symbol mentioned in the components. (You can also
7146specify explicitly the precedence of a rule. @xref{Contextual
7147Precedence, ,Context-Dependent Precedence}.)
7148
7149Finally, the resolution of conflicts works by comparing the precedence
742e4900 7150of the rule being considered with that of the lookahead token. If the
704a47c4
AD
7151token's precedence is higher, the choice is to shift. If the rule's
7152precedence is higher, the choice is to reduce. If they have equal
7153precedence, the choice is made based on the associativity of that
7154precedence level. The verbose output file made by @samp{-v}
7155(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
7156resolved.
bfa74976
RS
7157
7158Not all rules and not all tokens have precedence. If either the rule or
742e4900 7159the lookahead token has no precedence, then the default is to shift.
bfa74976 7160
342b8b6e 7161@node Contextual Precedence
bfa74976
RS
7162@section Context-Dependent Precedence
7163@cindex context-dependent precedence
7164@cindex unary operator precedence
7165@cindex precedence, context-dependent
7166@cindex precedence, unary operator
7167@findex %prec
7168
7169Often the precedence of an operator depends on the context. This sounds
7170outlandish at first, but it is really very common. For example, a minus
7171sign typically has a very high precedence as a unary operator, and a
7172somewhat lower precedence (lower than multiplication) as a binary operator.
7173
d78f0ac9
AD
7174The Bison precedence declarations
7175can only be used once for a given token; so a token has
bfa74976
RS
7176only one precedence declared in this way. For context-dependent
7177precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 7178modifier for rules.
bfa74976
RS
7179
7180The @code{%prec} modifier declares the precedence of a particular rule by
7181specifying a terminal symbol whose precedence should be used for that rule.
7182It's not necessary for that symbol to appear otherwise in the rule. The
7183modifier's syntax is:
7184
7185@example
7186%prec @var{terminal-symbol}
7187@end example
7188
7189@noindent
7190and it is written after the components of the rule. Its effect is to
7191assign the rule the precedence of @var{terminal-symbol}, overriding
7192the precedence that would be deduced for it in the ordinary way. The
7193altered rule precedence then affects how conflicts involving that rule
7194are resolved (@pxref{Precedence, ,Operator Precedence}).
7195
7196Here is how @code{%prec} solves the problem of unary minus. First, declare
7197a precedence for a fictitious terminal symbol named @code{UMINUS}. There
7198are no tokens of this type, but the symbol serves to stand for its
7199precedence:
7200
7201@example
7202@dots{}
7203%left '+' '-'
7204%left '*'
7205%left UMINUS
7206@end example
7207
7208Now the precedence of @code{UMINUS} can be used in specific rules:
7209
7210@example
7211@group
5e9b6624
AD
7212exp:
7213 @dots{}
7214| exp '-' exp
7215 @dots{}
7216| '-' exp %prec UMINUS
bfa74976
RS
7217@end group
7218@end example
7219
91d2c560 7220@ifset defaultprec
39a06c25
PE
7221If you forget to append @code{%prec UMINUS} to the rule for unary
7222minus, Bison silently assumes that minus has its usual precedence.
7223This kind of problem can be tricky to debug, since one typically
7224discovers the mistake only by testing the code.
7225
22fccf95 7226The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
7227this kind of problem systematically. It causes rules that lack a
7228@code{%prec} modifier to have no precedence, even if the last terminal
7229symbol mentioned in their components has a declared precedence.
7230
22fccf95 7231If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
7232for all rules that participate in precedence conflict resolution.
7233Then you will see any shift/reduce conflict until you tell Bison how
7234to resolve it, either by changing your grammar or by adding an
7235explicit precedence. This will probably add declarations to the
7236grammar, but it helps to protect against incorrect rule precedences.
7237
22fccf95
PE
7238The effect of @code{%no-default-prec;} can be reversed by giving
7239@code{%default-prec;}, which is the default.
91d2c560 7240@end ifset
39a06c25 7241
342b8b6e 7242@node Parser States
bfa74976
RS
7243@section Parser States
7244@cindex finite-state machine
7245@cindex parser state
7246@cindex state (of parser)
7247
7248The function @code{yyparse} is implemented using a finite-state machine.
7249The values pushed on the parser stack are not simply token type codes; they
7250represent the entire sequence of terminal and nonterminal symbols at or
7251near the top of the stack. The current state collects all the information
7252about previous input which is relevant to deciding what to do next.
7253
742e4900
JD
7254Each time a lookahead token is read, the current parser state together
7255with the type of lookahead token are looked up in a table. This table
7256entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7257specifies the new parser state, which is pushed onto the top of the
7258parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7259This means that a certain number of tokens or groupings are taken off
7260the top of the stack, and replaced by one grouping. In other words,
7261that number of states are popped from the stack, and one new state is
7262pushed.
7263
742e4900 7264There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7265is erroneous in the current state. This causes error processing to begin
7266(@pxref{Error Recovery}).
7267
342b8b6e 7268@node Reduce/Reduce
bfa74976
RS
7269@section Reduce/Reduce Conflicts
7270@cindex reduce/reduce conflict
7271@cindex conflicts, reduce/reduce
7272
7273A reduce/reduce conflict occurs if there are two or more rules that apply
7274to the same sequence of input. This usually indicates a serious error
7275in the grammar.
7276
7277For example, here is an erroneous attempt to define a sequence
7278of zero or more @code{word} groupings.
7279
7280@example
d4fca427 7281@group
5e9b6624
AD
7282sequence:
7283 /* empty */ @{ printf ("empty sequence\n"); @}
7284| maybeword
7285| sequence word @{ printf ("added word %s\n", $2); @}
7286;
d4fca427 7287@end group
bfa74976 7288
d4fca427 7289@group
5e9b6624
AD
7290maybeword:
7291 /* empty */ @{ printf ("empty maybeword\n"); @}
7292| word @{ printf ("single word %s\n", $1); @}
7293;
d4fca427 7294@end group
bfa74976
RS
7295@end example
7296
7297@noindent
7298The error is an ambiguity: there is more than one way to parse a single
7299@code{word} into a @code{sequence}. It could be reduced to a
7300@code{maybeword} and then into a @code{sequence} via the second rule.
7301Alternatively, nothing-at-all could be reduced into a @code{sequence}
7302via the first rule, and this could be combined with the @code{word}
7303using the third rule for @code{sequence}.
7304
7305There is also more than one way to reduce nothing-at-all into a
7306@code{sequence}. This can be done directly via the first rule,
7307or indirectly via @code{maybeword} and then the second rule.
7308
7309You might think that this is a distinction without a difference, because it
7310does not change whether any particular input is valid or not. But it does
7311affect which actions are run. One parsing order runs the second rule's
7312action; the other runs the first rule's action and the third rule's action.
7313In this example, the output of the program changes.
7314
7315Bison resolves a reduce/reduce conflict by choosing to use the rule that
7316appears first in the grammar, but it is very risky to rely on this. Every
7317reduce/reduce conflict must be studied and usually eliminated. Here is the
7318proper way to define @code{sequence}:
7319
7320@example
5e9b6624
AD
7321sequence:
7322 /* empty */ @{ printf ("empty sequence\n"); @}
7323| sequence word @{ printf ("added word %s\n", $2); @}
7324;
bfa74976
RS
7325@end example
7326
7327Here is another common error that yields a reduce/reduce conflict:
7328
7329@example
5e9b6624
AD
7330sequence:
7331 /* empty */
7332| sequence words
7333| sequence redirects
7334;
bfa74976 7335
5e9b6624
AD
7336words:
7337 /* empty */
7338| words word
7339;
bfa74976 7340
5e9b6624
AD
7341redirects:
7342 /* empty */
7343| redirects redirect
7344;
bfa74976
RS
7345@end example
7346
7347@noindent
7348The intention here is to define a sequence which can contain either
7349@code{word} or @code{redirect} groupings. The individual definitions of
7350@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7351three together make a subtle ambiguity: even an empty input can be parsed
7352in infinitely many ways!
7353
7354Consider: nothing-at-all could be a @code{words}. Or it could be two
7355@code{words} in a row, or three, or any number. It could equally well be a
7356@code{redirects}, or two, or any number. Or it could be a @code{words}
7357followed by three @code{redirects} and another @code{words}. And so on.
7358
7359Here are two ways to correct these rules. First, to make it a single level
7360of sequence:
7361
7362@example
5e9b6624
AD
7363sequence:
7364 /* empty */
7365| sequence word
7366| sequence redirect
7367;
bfa74976
RS
7368@end example
7369
7370Second, to prevent either a @code{words} or a @code{redirects}
7371from being empty:
7372
7373@example
d4fca427 7374@group
5e9b6624
AD
7375sequence:
7376 /* empty */
7377| sequence words
7378| sequence redirects
7379;
d4fca427 7380@end group
bfa74976 7381
d4fca427 7382@group
5e9b6624
AD
7383words:
7384 word
7385| words word
7386;
d4fca427 7387@end group
bfa74976 7388
d4fca427 7389@group
5e9b6624
AD
7390redirects:
7391 redirect
7392| redirects redirect
7393;
d4fca427 7394@end group
bfa74976
RS
7395@end example
7396
cc09e5be
JD
7397@node Mysterious Conflicts
7398@section Mysterious Conflicts
7fceb615 7399@cindex Mysterious Conflicts
bfa74976
RS
7400
7401Sometimes reduce/reduce conflicts can occur that don't look warranted.
7402Here is an example:
7403
7404@example
7405@group
7406%token ID
7407
7408%%
5e9b6624 7409def: param_spec return_spec ',';
bfa74976 7410param_spec:
5e9b6624
AD
7411 type
7412| name_list ':' type
7413;
bfa74976
RS
7414@end group
7415@group
7416return_spec:
5e9b6624
AD
7417 type
7418| name ':' type
7419;
bfa74976
RS
7420@end group
7421@group
5e9b6624 7422type: ID;
bfa74976
RS
7423@end group
7424@group
5e9b6624 7425name: ID;
bfa74976 7426name_list:
5e9b6624
AD
7427 name
7428| name ',' name_list
7429;
bfa74976
RS
7430@end group
7431@end example
7432
7433It would seem that this grammar can be parsed with only a single token
742e4900 7434of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 7435a @code{name} if a comma or colon follows, or a @code{type} if another
8a4281b9 7436@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 7437
7fceb615
JD
7438@cindex LR
7439@cindex LALR
eb45ef3b 7440However, for historical reasons, Bison cannot by default handle all
8a4281b9 7441LR(1) grammars.
eb45ef3b
JD
7442In this grammar, two contexts, that after an @code{ID} at the beginning
7443of a @code{param_spec} and likewise at the beginning of a
7444@code{return_spec}, are similar enough that Bison assumes they are the
7445same.
7446They appear similar because the same set of rules would be
bfa74976
RS
7447active---the rule for reducing to a @code{name} and that for reducing to
7448a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7449that the rules would require different lookahead tokens in the two
bfa74976
RS
7450contexts, so it makes a single parser state for them both. Combining
7451the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7452occurrence means that the grammar is not LALR(1).
bfa74976 7453
7fceb615
JD
7454@cindex IELR
7455@cindex canonical LR
7456For many practical grammars (specifically those that fall into the non-LR(1)
7457class), the limitations of LALR(1) result in difficulties beyond just
7458mysterious reduce/reduce conflicts. The best way to fix all these problems
7459is to select a different parser table construction algorithm. Either
7460IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7461and easier to debug during development. @xref{LR Table Construction}, for
7462details. (Bison's IELR(1) and canonical LR(1) implementations are
7463experimental. More user feedback will help to stabilize them.)
eb45ef3b 7464
8a4281b9 7465If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7466can often fix a mysterious conflict by identifying the two parser states
7467that are being confused, and adding something to make them look
7468distinct. In the above example, adding one rule to
bfa74976
RS
7469@code{return_spec} as follows makes the problem go away:
7470
7471@example
7472@group
7473%token BOGUS
7474@dots{}
7475%%
7476@dots{}
7477return_spec:
5e9b6624
AD
7478 type
7479| name ':' type
7480| ID BOGUS /* This rule is never used. */
7481;
bfa74976
RS
7482@end group
7483@end example
7484
7485This corrects the problem because it introduces the possibility of an
7486additional active rule in the context after the @code{ID} at the beginning of
7487@code{return_spec}. This rule is not active in the corresponding context
7488in a @code{param_spec}, so the two contexts receive distinct parser states.
7489As long as the token @code{BOGUS} is never generated by @code{yylex},
7490the added rule cannot alter the way actual input is parsed.
7491
7492In this particular example, there is another way to solve the problem:
7493rewrite the rule for @code{return_spec} to use @code{ID} directly
7494instead of via @code{name}. This also causes the two confusing
7495contexts to have different sets of active rules, because the one for
7496@code{return_spec} activates the altered rule for @code{return_spec}
7497rather than the one for @code{name}.
7498
7499@example
7500param_spec:
5e9b6624
AD
7501 type
7502| name_list ':' type
7503;
bfa74976 7504return_spec:
5e9b6624
AD
7505 type
7506| ID ':' type
7507;
bfa74976
RS
7508@end example
7509
8a4281b9 7510For a more detailed exposition of LALR(1) parsers and parser
5e528941 7511generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7512
7fceb615
JD
7513@node Tuning LR
7514@section Tuning LR
7515
7516The default behavior of Bison's LR-based parsers is chosen mostly for
7517historical reasons, but that behavior is often not robust. For example, in
7518the previous section, we discussed the mysterious conflicts that can be
7519produced by LALR(1), Bison's default parser table construction algorithm.
7520Another example is Bison's @code{%define parse.error verbose} directive,
7521which instructs the generated parser to produce verbose syntax error
7522messages, which can sometimes contain incorrect information.
7523
7524In this section, we explore several modern features of Bison that allow you
7525to tune fundamental aspects of the generated LR-based parsers. Some of
7526these features easily eliminate shortcomings like those mentioned above.
7527Others can be helpful purely for understanding your parser.
7528
7529Most of the features discussed in this section are still experimental. More
7530user feedback will help to stabilize them.
7531
7532@menu
7533* LR Table Construction:: Choose a different construction algorithm.
7534* Default Reductions:: Disable default reductions.
7535* LAC:: Correct lookahead sets in the parser states.
7536* Unreachable States:: Keep unreachable parser states for debugging.
7537@end menu
7538
7539@node LR Table Construction
7540@subsection LR Table Construction
7541@cindex Mysterious Conflict
7542@cindex LALR
7543@cindex IELR
7544@cindex canonical LR
7545@findex %define lr.type
7546
7547For historical reasons, Bison constructs LALR(1) parser tables by default.
7548However, LALR does not possess the full language-recognition power of LR.
7549As a result, the behavior of parsers employing LALR parser tables is often
cc09e5be 7550mysterious. We presented a simple example of this effect in @ref{Mysterious
7fceb615
JD
7551Conflicts}.
7552
7553As we also demonstrated in that example, the traditional approach to
7554eliminating such mysterious behavior is to restructure the grammar.
7555Unfortunately, doing so correctly is often difficult. Moreover, merely
7556discovering that LALR causes mysterious behavior in your parser can be
7557difficult as well.
7558
7559Fortunately, Bison provides an easy way to eliminate the possibility of such
7560mysterious behavior altogether. You simply need to activate a more powerful
7561parser table construction algorithm by using the @code{%define lr.type}
7562directive.
7563
7564@deffn {Directive} {%define lr.type @var{TYPE}}
7565Specify the type of parser tables within the LR(1) family. The accepted
7566values for @var{TYPE} are:
7567
7568@itemize
7569@item @code{lalr} (default)
7570@item @code{ielr}
7571@item @code{canonical-lr}
7572@end itemize
7573
7574(This feature is experimental. More user feedback will help to stabilize
7575it.)
7576@end deffn
7577
7578For example, to activate IELR, you might add the following directive to you
7579grammar file:
7580
7581@example
7582%define lr.type ielr
7583@end example
7584
cc09e5be 7585@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7fceb615
JD
7586conflict is then eliminated, so there is no need to invest time in
7587comprehending the conflict or restructuring the grammar to fix it. If,
7588during future development, the grammar evolves such that all mysterious
7589behavior would have disappeared using just LALR, you need not fear that
7590continuing to use IELR will result in unnecessarily large parser tables.
7591That is, IELR generates LALR tables when LALR (using a deterministic parsing
7592algorithm) is sufficient to support the full language-recognition power of
7593LR. Thus, by enabling IELR at the start of grammar development, you can
7594safely and completely eliminate the need to consider LALR's shortcomings.
7595
7596While IELR is almost always preferable, there are circumstances where LALR
7597or the canonical LR parser tables described by Knuth
7598(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7599relative advantages of each parser table construction algorithm within
7600Bison:
7601
7602@itemize
7603@item LALR
7604
7605There are at least two scenarios where LALR can be worthwhile:
7606
7607@itemize
7608@item GLR without static conflict resolution.
7609
7610@cindex GLR with LALR
7611When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
7612conflicts statically (for example, with @code{%left} or @code{%prec}), then
7613the parser explores all potential parses of any given input. In this case,
7614the choice of parser table construction algorithm is guaranteed not to alter
7615the language accepted by the parser. LALR parser tables are the smallest
7616parser tables Bison can currently construct, so they may then be preferable.
7617Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7618more like a deterministic parser in the syntactic contexts where those
7619conflicts appear, and so either IELR or canonical LR can then be helpful to
7620avoid LALR's mysterious behavior.
7621
7622@item Malformed grammars.
7623
7624Occasionally during development, an especially malformed grammar with a
7625major recurring flaw may severely impede the IELR or canonical LR parser
7626table construction algorithm. LALR can be a quick way to construct parser
7627tables in order to investigate such problems while ignoring the more subtle
7628differences from IELR and canonical LR.
7629@end itemize
7630
7631@item IELR
7632
7633IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7634any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7635always accept exactly the same set of sentences. However, like LALR, IELR
7636merges parser states during parser table construction so that the number of
7637parser states is often an order of magnitude less than for canonical LR.
7638More importantly, because canonical LR's extra parser states may contain
7639duplicate conflicts in the case of non-LR grammars, the number of conflicts
7640for IELR is often an order of magnitude less as well. This effect can
7641significantly reduce the complexity of developing a grammar.
7642
7643@item Canonical LR
7644
7645@cindex delayed syntax error detection
7646@cindex LAC
7647@findex %nonassoc
7648While inefficient, canonical LR parser tables can be an interesting means to
7649explore a grammar because they possess a property that IELR and LALR tables
7650do not. That is, if @code{%nonassoc} is not used and default reductions are
7651left disabled (@pxref{Default Reductions}), then, for every left context of
7652every canonical LR state, the set of tokens accepted by that state is
7653guaranteed to be the exact set of tokens that is syntactically acceptable in
7654that left context. It might then seem that an advantage of canonical LR
7655parsers in production is that, under the above constraints, they are
7656guaranteed to detect a syntax error as soon as possible without performing
7657any unnecessary reductions. However, IELR parsers that use LAC are also
7658able to achieve this behavior without sacrificing @code{%nonassoc} or
7659default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7660@end itemize
7661
7662For a more detailed exposition of the mysterious behavior in LALR parsers
7663and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7664@ref{Bibliography,,Denny 2010 November}.
7665
7666@node Default Reductions
7667@subsection Default Reductions
7668@cindex default reductions
7669@findex %define lr.default-reductions
7670@findex %nonassoc
7671
7672After parser table construction, Bison identifies the reduction with the
7673largest lookahead set in each parser state. To reduce the size of the
7674parser state, traditional Bison behavior is to remove that lookahead set and
7675to assign that reduction to be the default parser action. Such a reduction
7676is known as a @dfn{default reduction}.
7677
7678Default reductions affect more than the size of the parser tables. They
7679also affect the behavior of the parser:
7680
7681@itemize
7682@item Delayed @code{yylex} invocations.
7683
7684@cindex delayed yylex invocations
7685@cindex consistent states
7686@cindex defaulted states
7687A @dfn{consistent state} is a state that has only one possible parser
7688action. If that action is a reduction and is encoded as a default
7689reduction, then that consistent state is called a @dfn{defaulted state}.
7690Upon reaching a defaulted state, a Bison-generated parser does not bother to
7691invoke @code{yylex} to fetch the next token before performing the reduction.
7692In other words, whether default reductions are enabled in consistent states
7693determines how soon a Bison-generated parser invokes @code{yylex} for a
7694token: immediately when it @emph{reaches} that token in the input or when it
7695eventually @emph{needs} that token as a lookahead to determine the next
7696parser action. Traditionally, default reductions are enabled, and so the
7697parser exhibits the latter behavior.
7698
7699The presence of defaulted states is an important consideration when
7700designing @code{yylex} and the grammar file. That is, if the behavior of
7701@code{yylex} can influence or be influenced by the semantic actions
7702associated with the reductions in defaulted states, then the delay of the
7703next @code{yylex} invocation until after those reductions is significant.
7704For example, the semantic actions might pop a scope stack that @code{yylex}
7705uses to determine what token to return. Thus, the delay might be necessary
7706to ensure that @code{yylex} does not look up the next token in a scope that
7707should already be considered closed.
7708
7709@item Delayed syntax error detection.
7710
7711@cindex delayed syntax error detection
7712When the parser fetches a new token by invoking @code{yylex}, it checks
7713whether there is an action for that token in the current parser state. The
7714parser detects a syntax error if and only if either (1) there is no action
7715for that token or (2) the action for that token is the error action (due to
7716the use of @code{%nonassoc}). However, if there is a default reduction in
7717that state (which might or might not be a defaulted state), then it is
7718impossible for condition 1 to exist. That is, all tokens have an action.
7719Thus, the parser sometimes fails to detect the syntax error until it reaches
7720a later state.
7721
7722@cindex LAC
7723@c If there's an infinite loop, default reductions can prevent an incorrect
7724@c sentence from being rejected.
7725While default reductions never cause the parser to accept syntactically
7726incorrect sentences, the delay of syntax error detection can have unexpected
7727effects on the behavior of the parser. However, the delay can be caused
7728anyway by parser state merging and the use of @code{%nonassoc}, and it can
7729be fixed by another Bison feature, LAC. We discuss the effects of delayed
7730syntax error detection and LAC more in the next section (@pxref{LAC}).
7731@end itemize
7732
7733For canonical LR, the only default reduction that Bison enables by default
7734is the accept action, which appears only in the accepting state, which has
7735no other action and is thus a defaulted state. However, the default accept
7736action does not delay any @code{yylex} invocation or syntax error detection
7737because the accept action ends the parse.
7738
7739For LALR and IELR, Bison enables default reductions in nearly all states by
7740default. There are only two exceptions. First, states that have a shift
7741action on the @code{error} token do not have default reductions because
7742delayed syntax error detection could then prevent the @code{error} token
7743from ever being shifted in that state. However, parser state merging can
7744cause the same effect anyway, and LAC fixes it in both cases, so future
7745versions of Bison might drop this exception when LAC is activated. Second,
7746GLR parsers do not record the default reduction as the action on a lookahead
7747token for which there is a conflict. The correct action in this case is to
7748split the parse instead.
7749
7750To adjust which states have default reductions enabled, use the
7751@code{%define lr.default-reductions} directive.
7752
7753@deffn {Directive} {%define lr.default-reductions @var{WHERE}}
7754Specify the kind of states that are permitted to contain default reductions.
7755The accepted values of @var{WHERE} are:
7756@itemize
f0ad1b2f 7757@item @code{most} (default for LALR and IELR)
7fceb615
JD
7758@item @code{consistent}
7759@item @code{accepting} (default for canonical LR)
7760@end itemize
7761
7762(The ability to specify where default reductions are permitted is
7763experimental. More user feedback will help to stabilize it.)
7764@end deffn
7765
7fceb615
JD
7766@node LAC
7767@subsection LAC
7768@findex %define parse.lac
7769@cindex LAC
7770@cindex lookahead correction
7771
7772Canonical LR, IELR, and LALR can suffer from a couple of problems upon
7773encountering a syntax error. First, the parser might perform additional
7774parser stack reductions before discovering the syntax error. Such
7775reductions can perform user semantic actions that are unexpected because
7776they are based on an invalid token, and they cause error recovery to begin
7777in a different syntactic context than the one in which the invalid token was
7778encountered. Second, when verbose error messages are enabled (@pxref{Error
7779Reporting}), the expected token list in the syntax error message can both
7780contain invalid tokens and omit valid tokens.
7781
7782The culprits for the above problems are @code{%nonassoc}, default reductions
7783in inconsistent states (@pxref{Default Reductions}), and parser state
7784merging. Because IELR and LALR merge parser states, they suffer the most.
7785Canonical LR can suffer only if @code{%nonassoc} is used or if default
7786reductions are enabled for inconsistent states.
7787
7788LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
7789that solves these problems for canonical LR, IELR, and LALR without
7790sacrificing @code{%nonassoc}, default reductions, or state merging. You can
7791enable LAC with the @code{%define parse.lac} directive.
7792
7793@deffn {Directive} {%define parse.lac @var{VALUE}}
7794Enable LAC to improve syntax error handling.
7795@itemize
7796@item @code{none} (default)
7797@item @code{full}
7798@end itemize
7799(This feature is experimental. More user feedback will help to stabilize
7800it. Moreover, it is currently only available for deterministic parsers in
7801C.)
7802@end deffn
7803
7804Conceptually, the LAC mechanism is straight-forward. Whenever the parser
7805fetches a new token from the scanner so that it can determine the next
7806parser action, it immediately suspends normal parsing and performs an
7807exploratory parse using a temporary copy of the normal parser state stack.
7808During this exploratory parse, the parser does not perform user semantic
7809actions. If the exploratory parse reaches a shift action, normal parsing
7810then resumes on the normal parser stacks. If the exploratory parse reaches
7811an error instead, the parser reports a syntax error. If verbose syntax
7812error messages are enabled, the parser must then discover the list of
7813expected tokens, so it performs a separate exploratory parse for each token
7814in the grammar.
7815
7816There is one subtlety about the use of LAC. That is, when in a consistent
7817parser state with a default reduction, the parser will not attempt to fetch
7818a token from the scanner because no lookahead is needed to determine the
7819next parser action. Thus, whether default reductions are enabled in
7820consistent states (@pxref{Default Reductions}) affects how soon the parser
7821detects a syntax error: immediately when it @emph{reaches} an erroneous
7822token or when it eventually @emph{needs} that token as a lookahead to
7823determine the next parser action. The latter behavior is probably more
7824intuitive, so Bison currently provides no way to achieve the former behavior
7825while default reductions are enabled in consistent states.
7826
7827Thus, when LAC is in use, for some fixed decision of whether to enable
7828default reductions in consistent states, canonical LR and IELR behave almost
7829exactly the same for both syntactically acceptable and syntactically
7830unacceptable input. While LALR still does not support the full
7831language-recognition power of canonical LR and IELR, LAC at least enables
7832LALR's syntax error handling to correctly reflect LALR's
7833language-recognition power.
7834
7835There are a few caveats to consider when using LAC:
7836
7837@itemize
7838@item Infinite parsing loops.
7839
7840IELR plus LAC does have one shortcoming relative to canonical LR. Some
7841parsers generated by Bison can loop infinitely. LAC does not fix infinite
7842parsing loops that occur between encountering a syntax error and detecting
7843it, but enabling canonical LR or disabling default reductions sometimes
7844does.
7845
7846@item Verbose error message limitations.
7847
7848Because of internationalization considerations, Bison-generated parsers
7849limit the size of the expected token list they are willing to report in a
7850verbose syntax error message. If the number of expected tokens exceeds that
7851limit, the list is simply dropped from the message. Enabling LAC can
7852increase the size of the list and thus cause the parser to drop it. Of
7853course, dropping the list is better than reporting an incorrect list.
7854
7855@item Performance.
7856
7857Because LAC requires many parse actions to be performed twice, it can have a
7858performance penalty. However, not all parse actions must be performed
7859twice. Specifically, during a series of default reductions in consistent
7860states and shift actions, the parser never has to initiate an exploratory
7861parse. Moreover, the most time-consuming tasks in a parse are often the
7862file I/O, the lexical analysis performed by the scanner, and the user's
7863semantic actions, but none of these are performed during the exploratory
7864parse. Finally, the base of the temporary stack used during an exploratory
7865parse is a pointer into the normal parser state stack so that the stack is
7866never physically copied. In our experience, the performance penalty of LAC
5a321748 7867has proved insignificant for practical grammars.
7fceb615
JD
7868@end itemize
7869
709c7d11
JD
7870While the LAC algorithm shares techniques that have been recognized in the
7871parser community for years, for the publication that introduces LAC,
7872@pxref{Bibliography,,Denny 2010 May}.
15e46f2d 7873
7fceb615
JD
7874@node Unreachable States
7875@subsection Unreachable States
7876@findex %define lr.keep-unreachable-states
7877@cindex unreachable states
7878
7879If there exists no sequence of transitions from the parser's start state to
7880some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
7881state}. A state can become unreachable during conflict resolution if Bison
7882disables a shift action leading to it from a predecessor state.
7883
7884By default, Bison removes unreachable states from the parser after conflict
7885resolution because they are useless in the generated parser. However,
7886keeping unreachable states is sometimes useful when trying to understand the
7887relationship between the parser and the grammar.
7888
7889@deffn {Directive} {%define lr.keep-unreachable-states @var{VALUE}}
7890Request that Bison allow unreachable states to remain in the parser tables.
7891@var{VALUE} must be a Boolean. The default is @code{false}.
7892@end deffn
7893
7894There are a few caveats to consider:
7895
7896@itemize @bullet
7897@item Missing or extraneous warnings.
7898
7899Unreachable states may contain conflicts and may use rules not used in any
7900other state. Thus, keeping unreachable states may induce warnings that are
7901irrelevant to your parser's behavior, and it may eliminate warnings that are
7902relevant. Of course, the change in warnings may actually be relevant to a
7903parser table analysis that wants to keep unreachable states, so this
7904behavior will likely remain in future Bison releases.
7905
7906@item Other useless states.
7907
7908While Bison is able to remove unreachable states, it is not guaranteed to
7909remove other kinds of useless states. Specifically, when Bison disables
7910reduce actions during conflict resolution, some goto actions may become
7911useless, and thus some additional states may become useless. If Bison were
7912to compute which goto actions were useless and then disable those actions,
7913it could identify such states as unreachable and then remove those states.
7914However, Bison does not compute which goto actions are useless.
7915@end itemize
7916
fae437e8 7917@node Generalized LR Parsing
8a4281b9
JD
7918@section Generalized LR (GLR) Parsing
7919@cindex GLR parsing
7920@cindex generalized LR (GLR) parsing
676385e2 7921@cindex ambiguous grammars
9d9b8b70 7922@cindex nondeterministic parsing
676385e2 7923
fae437e8
AD
7924Bison produces @emph{deterministic} parsers that choose uniquely
7925when to reduce and which reduction to apply
742e4900 7926based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7927As a result, normal Bison handles a proper subset of the family of
7928context-free languages.
fae437e8 7929Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7930sequence of reductions cannot have deterministic parsers in this sense.
7931The same is true of languages that require more than one symbol of
742e4900 7932lookahead, since the parser lacks the information necessary to make a
676385e2 7933decision at the point it must be made in a shift-reduce parser.
cc09e5be 7934Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
eb45ef3b 7935there are languages where Bison's default choice of how to
676385e2
PH
7936summarize the input seen so far loses necessary information.
7937
7938When you use the @samp{%glr-parser} declaration in your grammar file,
7939Bison generates a parser that uses a different algorithm, called
8a4281b9 7940Generalized LR (or GLR). A Bison GLR
c827f760 7941parser uses the same basic
676385e2
PH
7942algorithm for parsing as an ordinary Bison parser, but behaves
7943differently in cases where there is a shift-reduce conflict that has not
fae437e8 7944been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 7945reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7946situation, it
fae437e8 7947effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7948shift or reduction. These parsers then proceed as usual, consuming
7949tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7950and split further, with the result that instead of a sequence of states,
8a4281b9 7951a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7952
7953In effect, each stack represents a guess as to what the proper parse
7954is. Additional input may indicate that a guess was wrong, in which case
7955the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7956actions generated in each stack are saved, rather than being executed
676385e2 7957immediately. When a stack disappears, its saved semantic actions never
fae437e8 7958get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7959their sets of semantic actions are both saved with the state that
7960results from the reduction. We say that two stacks are equivalent
fae437e8 7961when they both represent the same sequence of states,
676385e2
PH
7962and each pair of corresponding states represents a
7963grammar symbol that produces the same segment of the input token
7964stream.
7965
7966Whenever the parser makes a transition from having multiple
eb45ef3b 7967states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7968algorithm, after resolving and executing the saved-up actions.
7969At this transition, some of the states on the stack will have semantic
7970values that are sets (actually multisets) of possible actions. The
7971parser tries to pick one of the actions by first finding one whose rule
7972has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7973declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7974precedence, but there the same merging function is declared for both
fae437e8 7975rules by the @samp{%merge} declaration,
676385e2
PH
7976Bison resolves and evaluates both and then calls the merge function on
7977the result. Otherwise, it reports an ambiguity.
7978
8a4281b9
JD
7979It is possible to use a data structure for the GLR parsing tree that
7980permits the processing of any LR(1) grammar in linear time (in the
c827f760 7981size of the input), any unambiguous (not necessarily
8a4281b9 7982LR(1)) grammar in
fae437e8 7983quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7984context-free grammar in cubic worst-case time. However, Bison currently
7985uses a simpler data structure that requires time proportional to the
7986length of the input times the maximum number of stacks required for any
9d9b8b70 7987prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7988grammars can require exponential time and space to process. Such badly
7989behaving examples, however, are not generally of practical interest.
9d9b8b70 7990Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7991doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 7992structure should generally be adequate. On LR(1) portions of a
eb45ef3b 7993grammar, in particular, it is only slightly slower than with the
8a4281b9 7994deterministic LR(1) Bison parser.
676385e2 7995
5e528941
JD
7996For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
79972000}.
f6481e2f 7998
1a059451
PE
7999@node Memory Management
8000@section Memory Management, and How to Avoid Memory Exhaustion
8001@cindex memory exhaustion
8002@cindex memory management
bfa74976
RS
8003@cindex stack overflow
8004@cindex parser stack overflow
8005@cindex overflow of parser stack
8006
1a059451 8007The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 8008not reduced. When this happens, the parser function @code{yyparse}
1a059451 8009calls @code{yyerror} and then returns 2.
bfa74976 8010
c827f760 8011Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f 8012usually results from using a right recursion instead of a left
188867ac 8013recursion, see @ref{Recursion, ,Recursive Rules}.
d1a1114f 8014
bfa74976
RS
8015@vindex YYMAXDEPTH
8016By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 8017parser stack can become before memory is exhausted. Define the
bfa74976
RS
8018macro with a value that is an integer. This value is the maximum number
8019of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
8020
8021The stack space allowed is not necessarily allocated. If you specify a
1a059451 8022large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
8023stack at first, and then makes it bigger by stages as needed. This
8024increasing allocation happens automatically and silently. Therefore,
8025you do not need to make @code{YYMAXDEPTH} painfully small merely to save
8026space for ordinary inputs that do not need much stack.
8027
d7e14fc0
PE
8028However, do not allow @code{YYMAXDEPTH} to be a value so large that
8029arithmetic overflow could occur when calculating the size of the stack
8030space. Also, do not allow @code{YYMAXDEPTH} to be less than
8031@code{YYINITDEPTH}.
8032
bfa74976
RS
8033@cindex default stack limit
8034The default value of @code{YYMAXDEPTH}, if you do not define it, is
803510000.
8036
8037@vindex YYINITDEPTH
8038You can control how much stack is allocated initially by defining the
eb45ef3b
JD
8039macro @code{YYINITDEPTH} to a positive integer. For the deterministic
8040parser in C, this value must be a compile-time constant
d7e14fc0
PE
8041unless you are assuming C99 or some other target language or compiler
8042that allows variable-length arrays. The default is 200.
8043
1a059451 8044Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 8045
20be2f92 8046You can generate a deterministic parser containing C++ user code from
411614fa 8047the default (C) skeleton, as well as from the C++ skeleton
20be2f92
PH
8048(@pxref{C++ Parsers}). However, if you do use the default skeleton
8049and want to allow the parsing stack to grow,
8050be careful not to use semantic types or location types that require
8051non-trivial copy constructors.
8052The C skeleton bypasses these constructors when copying data to
8053new, larger stacks.
d1a1114f 8054
342b8b6e 8055@node Error Recovery
bfa74976
RS
8056@chapter Error Recovery
8057@cindex error recovery
8058@cindex recovery from errors
8059
6e649e65 8060It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
8061error. For example, a compiler should recover sufficiently to parse the
8062rest of the input file and check it for errors; a calculator should accept
8063another expression.
8064
8065In a simple interactive command parser where each input is one line, it may
8066be sufficient to allow @code{yyparse} to return 1 on error and have the
8067caller ignore the rest of the input line when that happens (and then call
8068@code{yyparse} again). But this is inadequate for a compiler, because it
8069forgets all the syntactic context leading up to the error. A syntax error
8070deep within a function in the compiler input should not cause the compiler
8071to treat the following line like the beginning of a source file.
8072
8073@findex error
8074You can define how to recover from a syntax error by writing rules to
8075recognize the special token @code{error}. This is a terminal symbol that
8076is always defined (you need not declare it) and reserved for error
8077handling. The Bison parser generates an @code{error} token whenever a
8078syntax error happens; if you have provided a rule to recognize this token
13863333 8079in the current context, the parse can continue.
bfa74976
RS
8080
8081For example:
8082
8083@example
0860e383 8084stmts:
5e9b6624 8085 /* empty string */
0860e383
AD
8086| stmts '\n'
8087| stmts exp '\n'
8088| stmts error '\n'
bfa74976
RS
8089@end example
8090
8091The fourth rule in this example says that an error followed by a newline
0860e383 8092makes a valid addition to any @code{stmts}.
bfa74976
RS
8093
8094What happens if a syntax error occurs in the middle of an @code{exp}? The
8095error recovery rule, interpreted strictly, applies to the precise sequence
0860e383 8096of a @code{stmts}, an @code{error} and a newline. If an error occurs in
bfa74976 8097the middle of an @code{exp}, there will probably be some additional tokens
0860e383 8098and subexpressions on the stack after the last @code{stmts}, and there
bfa74976
RS
8099will be tokens to read before the next newline. So the rule is not
8100applicable in the ordinary way.
8101
8102But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
8103the semantic context and part of the input. First it discards states
8104and objects from the stack until it gets back to a state in which the
bfa74976 8105@code{error} token is acceptable. (This means that the subexpressions
0860e383 8106already parsed are discarded, back to the last complete @code{stmts}.)
72f889cc 8107At this point the @code{error} token can be shifted. Then, if the old
742e4900 8108lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 8109tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
8110this example, Bison reads and discards input until the next newline so
8111that the fourth rule can apply. Note that discarded symbols are
8112possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
8113Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
8114
8115The choice of error rules in the grammar is a choice of strategies for
8116error recovery. A simple and useful strategy is simply to skip the rest of
8117the current input line or current statement if an error is detected:
8118
8119@example
0860e383 8120stmt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
8121@end example
8122
8123It is also useful to recover to the matching close-delimiter of an
8124opening-delimiter that has already been parsed. Otherwise the
8125close-delimiter will probably appear to be unmatched, and generate another,
8126spurious error message:
8127
8128@example
5e9b6624
AD
8129primary:
8130 '(' expr ')'
8131| '(' error ')'
8132@dots{}
8133;
bfa74976
RS
8134@end example
8135
8136Error recovery strategies are necessarily guesses. When they guess wrong,
8137one syntax error often leads to another. In the above example, the error
8138recovery rule guesses that an error is due to bad input within one
0860e383
AD
8139@code{stmt}. Suppose that instead a spurious semicolon is inserted in the
8140middle of a valid @code{stmt}. After the error recovery rule recovers
bfa74976
RS
8141from the first error, another syntax error will be found straightaway,
8142since the text following the spurious semicolon is also an invalid
0860e383 8143@code{stmt}.
bfa74976
RS
8144
8145To prevent an outpouring of error messages, the parser will output no error
8146message for another syntax error that happens shortly after the first; only
8147after three consecutive input tokens have been successfully shifted will
8148error messages resume.
8149
8150Note that rules which accept the @code{error} token may have actions, just
8151as any other rules can.
8152
8153@findex yyerrok
8154You can make error messages resume immediately by using the macro
8155@code{yyerrok} in an action. If you do this in the error rule's action, no
8156error messages will be suppressed. This macro requires no arguments;
8157@samp{yyerrok;} is a valid C statement.
8158
8159@findex yyclearin
742e4900 8160The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
8161this is unacceptable, then the macro @code{yyclearin} may be used to clear
8162this token. Write the statement @samp{yyclearin;} in the error rule's
8163action.
32c29292 8164@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 8165
6e649e65 8166For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
8167called that advances the input stream to some point where parsing should
8168once again commence. The next symbol returned by the lexical scanner is
742e4900 8169probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
8170with @samp{yyclearin;}.
8171
8172@vindex YYRECOVERING
02103984
PE
8173The expression @code{YYRECOVERING ()} yields 1 when the parser
8174is recovering from a syntax error, and 0 otherwise.
8175Syntax error diagnostics are suppressed while recovering from a syntax
8176error.
bfa74976 8177
342b8b6e 8178@node Context Dependency
bfa74976
RS
8179@chapter Handling Context Dependencies
8180
8181The Bison paradigm is to parse tokens first, then group them into larger
8182syntactic units. In many languages, the meaning of a token is affected by
8183its context. Although this violates the Bison paradigm, certain techniques
8184(known as @dfn{kludges}) may enable you to write Bison parsers for such
8185languages.
8186
8187@menu
8188* Semantic Tokens:: Token parsing can depend on the semantic context.
8189* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
8190* Tie-in Recovery:: Lexical tie-ins have implications for how
8191 error recovery rules must be written.
8192@end menu
8193
8194(Actually, ``kludge'' means any technique that gets its job done but is
8195neither clean nor robust.)
8196
342b8b6e 8197@node Semantic Tokens
bfa74976
RS
8198@section Semantic Info in Token Types
8199
8200The C language has a context dependency: the way an identifier is used
8201depends on what its current meaning is. For example, consider this:
8202
8203@example
8204foo (x);
8205@end example
8206
8207This looks like a function call statement, but if @code{foo} is a typedef
8208name, then this is actually a declaration of @code{x}. How can a Bison
8209parser for C decide how to parse this input?
8210
8a4281b9 8211The method used in GNU C is to have two different token types,
bfa74976
RS
8212@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
8213identifier, it looks up the current declaration of the identifier in order
8214to decide which token type to return: @code{TYPENAME} if the identifier is
8215declared as a typedef, @code{IDENTIFIER} otherwise.
8216
8217The grammar rules can then express the context dependency by the choice of
8218token type to recognize. @code{IDENTIFIER} is accepted as an expression,
8219but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
8220@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
8221is @emph{not} significant, such as in declarations that can shadow a
8222typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
8223accepted---there is one rule for each of the two token types.
8224
8225This technique is simple to use if the decision of which kinds of
8226identifiers to allow is made at a place close to where the identifier is
8227parsed. But in C this is not always so: C allows a declaration to
8228redeclare a typedef name provided an explicit type has been specified
8229earlier:
8230
8231@example
3a4f411f
PE
8232typedef int foo, bar;
8233int baz (void)
d4fca427 8234@group
3a4f411f
PE
8235@{
8236 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
8237 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
8238 return foo (bar);
8239@}
d4fca427 8240@end group
bfa74976
RS
8241@end example
8242
8243Unfortunately, the name being declared is separated from the declaration
8244construct itself by a complicated syntactic structure---the ``declarator''.
8245
9ecbd125 8246As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
8247all the nonterminal names changed: once for parsing a declaration in
8248which a typedef name can be redefined, and once for parsing a
8249declaration in which that can't be done. Here is a part of the
8250duplication, with actions omitted for brevity:
bfa74976
RS
8251
8252@example
d4fca427 8253@group
bfa74976 8254initdcl:
5e9b6624
AD
8255 declarator maybeasm '=' init
8256| declarator maybeasm
8257;
d4fca427 8258@end group
bfa74976 8259
d4fca427 8260@group
bfa74976 8261notype_initdcl:
5e9b6624
AD
8262 notype_declarator maybeasm '=' init
8263| notype_declarator maybeasm
8264;
d4fca427 8265@end group
bfa74976
RS
8266@end example
8267
8268@noindent
8269Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
8270cannot. The distinction between @code{declarator} and
8271@code{notype_declarator} is the same sort of thing.
8272
8273There is some similarity between this technique and a lexical tie-in
8274(described next), in that information which alters the lexical analysis is
8275changed during parsing by other parts of the program. The difference is
8276here the information is global, and is used for other purposes in the
8277program. A true lexical tie-in has a special-purpose flag controlled by
8278the syntactic context.
8279
342b8b6e 8280@node Lexical Tie-ins
bfa74976
RS
8281@section Lexical Tie-ins
8282@cindex lexical tie-in
8283
8284One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
8285which is set by Bison actions, whose purpose is to alter the way tokens are
8286parsed.
8287
8288For example, suppose we have a language vaguely like C, but with a special
8289construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
8290an expression in parentheses in which all integers are hexadecimal. In
8291particular, the token @samp{a1b} must be treated as an integer rather than
8292as an identifier if it appears in that context. Here is how you can do it:
8293
8294@example
8295@group
8296%@{
38a92d50
PE
8297 int hexflag;
8298 int yylex (void);
8299 void yyerror (char const *);
bfa74976
RS
8300%@}
8301%%
8302@dots{}
8303@end group
8304@group
5e9b6624
AD
8305expr:
8306 IDENTIFIER
8307| constant
8308| HEX '(' @{ hexflag = 1; @}
8309 expr ')' @{ hexflag = 0; $$ = $4; @}
8310| expr '+' expr @{ $$ = make_sum ($1, $3); @}
8311@dots{}
8312;
bfa74976
RS
8313@end group
8314
8315@group
8316constant:
5e9b6624
AD
8317 INTEGER
8318| STRING
8319;
bfa74976
RS
8320@end group
8321@end example
8322
8323@noindent
8324Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8325it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8326with letters are parsed as integers if possible.
8327
ff7571c0
JD
8328The declaration of @code{hexflag} shown in the prologue of the grammar
8329file is needed to make it accessible to the actions (@pxref{Prologue,
8330,The Prologue}). You must also write the code in @code{yylex} to obey
8331the flag.
bfa74976 8332
342b8b6e 8333@node Tie-in Recovery
bfa74976
RS
8334@section Lexical Tie-ins and Error Recovery
8335
8336Lexical tie-ins make strict demands on any error recovery rules you have.
8337@xref{Error Recovery}.
8338
8339The reason for this is that the purpose of an error recovery rule is to
8340abort the parsing of one construct and resume in some larger construct.
8341For example, in C-like languages, a typical error recovery rule is to skip
8342tokens until the next semicolon, and then start a new statement, like this:
8343
8344@example
5e9b6624
AD
8345stmt:
8346 expr ';'
8347| IF '(' expr ')' stmt @{ @dots{} @}
8348@dots{}
8349| error ';' @{ hexflag = 0; @}
8350;
bfa74976
RS
8351@end example
8352
8353If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8354construct, this error rule will apply, and then the action for the
8355completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8356remain set for the entire rest of the input, or until the next @code{hex}
8357keyword, causing identifiers to be misinterpreted as integers.
8358
8359To avoid this problem the error recovery rule itself clears @code{hexflag}.
8360
8361There may also be an error recovery rule that works within expressions.
8362For example, there could be a rule which applies within parentheses
8363and skips to the close-parenthesis:
8364
8365@example
8366@group
5e9b6624
AD
8367expr:
8368 @dots{}
8369| '(' expr ')' @{ $$ = $2; @}
8370| '(' error ')'
8371@dots{}
bfa74976
RS
8372@end group
8373@end example
8374
8375If this rule acts within the @code{hex} construct, it is not going to abort
8376that construct (since it applies to an inner level of parentheses within
8377the construct). Therefore, it should not clear the flag: the rest of
8378the @code{hex} construct should be parsed with the flag still in effect.
8379
8380What if there is an error recovery rule which might abort out of the
8381@code{hex} construct or might not, depending on circumstances? There is no
8382way you can write the action to determine whether a @code{hex} construct is
8383being aborted or not. So if you are using a lexical tie-in, you had better
8384make sure your error recovery rules are not of this kind. Each rule must
8385be such that you can be sure that it always will, or always won't, have to
8386clear the flag.
8387
ec3bc396
AD
8388@c ================================================== Debugging Your Parser
8389
342b8b6e 8390@node Debugging
bfa74976 8391@chapter Debugging Your Parser
ec3bc396 8392
93c150b6
AD
8393Developing a parser can be a challenge, especially if you don't understand
8394the algorithm (@pxref{Algorithm, ,The Bison Parser Algorithm}). This
8395chapter explains how to generate and read the detailed description of the
8396automaton, and how to enable and understand the parser run-time traces.
ec3bc396
AD
8397
8398@menu
8399* Understanding:: Understanding the structure of your parser.
8400* Tracing:: Tracing the execution of your parser.
8401@end menu
8402
8403@node Understanding
8404@section Understanding Your Parser
8405
8406As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8407Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8408frequent than one would hope), looking at this automaton is required to
8409tune or simply fix a parser. Bison provides two different
35fe0834 8410representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
8411
8412The textual file is generated when the options @option{--report} or
e3fd1dcb 8413@option{--verbose} are specified, see @ref{Invocation, , Invoking
ec3bc396 8414Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
8415the parser implementation file name, and adding @samp{.output}
8416instead. Therefore, if the grammar file is @file{foo.y}, then the
8417parser implementation file is called @file{foo.tab.c} by default. As
8418a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8419
8420The following grammar file, @file{calc.y}, will be used in the sequel:
8421
8422@example
8423%token NUM STR
8424%left '+' '-'
8425%left '*'
8426%%
5e9b6624
AD
8427exp:
8428 exp '+' exp
8429| exp '-' exp
8430| exp '*' exp
8431| exp '/' exp
8432| NUM
8433;
ec3bc396
AD
8434useless: STR;
8435%%
8436@end example
8437
88bce5a2
AD
8438@command{bison} reports:
8439
8440@example
8f0d265e
JD
8441calc.y: warning: 1 nonterminal useless in grammar
8442calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
8443calc.y:11.1-7: warning: nonterminal useless in grammar: useless
8444calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8445calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8446@end example
8447
8448When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8449creates a file @file{calc.output} with contents detailed below. The
8450order of the output and the exact presentation might vary, but the
8451interpretation is the same.
ec3bc396 8452
ec3bc396
AD
8453@noindent
8454@cindex token, useless
8455@cindex useless token
8456@cindex nonterminal, useless
8457@cindex useless nonterminal
8458@cindex rule, useless
8459@cindex useless rule
62243aa5 8460The first section reports useless tokens, nonterminals and rules. Useless
29e20e22
AD
8461nonterminals and rules are removed in order to produce a smaller parser, but
8462useless tokens are preserved, since they might be used by the scanner (note
8463the difference between ``useless'' and ``unused'' below):
ec3bc396
AD
8464
8465@example
29e20e22 8466Nonterminals useless in grammar
ec3bc396
AD
8467 useless
8468
29e20e22 8469Terminals unused in grammar
ec3bc396
AD
8470 STR
8471
29e20e22
AD
8472Rules useless in grammar
8473 6 useless: STR
ec3bc396
AD
8474@end example
8475
8476@noindent
29e20e22
AD
8477The next section lists states that still have conflicts.
8478
8479@example
8480State 8 conflicts: 1 shift/reduce
8481State 9 conflicts: 1 shift/reduce
8482State 10 conflicts: 1 shift/reduce
8483State 11 conflicts: 4 shift/reduce
8484@end example
8485
8486@noindent
8487Then Bison reproduces the exact grammar it used:
ec3bc396
AD
8488
8489@example
8490Grammar
8491
29e20e22
AD
8492 0 $accept: exp $end
8493
8494 1 exp: exp '+' exp
8495 2 | exp '-' exp
8496 3 | exp '*' exp
8497 4 | exp '/' exp
8498 5 | NUM
ec3bc396
AD
8499@end example
8500
8501@noindent
8502and reports the uses of the symbols:
8503
8504@example
d4fca427 8505@group
ec3bc396
AD
8506Terminals, with rules where they appear
8507
88bce5a2 8508$end (0) 0
ec3bc396
AD
8509'*' (42) 3
8510'+' (43) 1
8511'-' (45) 2
8512'/' (47) 4
8513error (256)
8514NUM (258) 5
29e20e22 8515STR (259)
d4fca427 8516@end group
ec3bc396 8517
d4fca427 8518@group
ec3bc396
AD
8519Nonterminals, with rules where they appear
8520
29e20e22 8521$accept (9)
ec3bc396 8522 on left: 0
29e20e22 8523exp (10)
ec3bc396 8524 on left: 1 2 3 4 5, on right: 0 1 2 3 4
d4fca427 8525@end group
ec3bc396
AD
8526@end example
8527
8528@noindent
8529@cindex item
8530@cindex pointed rule
8531@cindex rule, pointed
8532Bison then proceeds onto the automaton itself, describing each state
35880c82
PE
8533with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
8534item is a production rule together with a point (@samp{.}) marking
8535the location of the input cursor.
ec3bc396
AD
8536
8537@example
8538state 0
8539
29e20e22 8540 0 $accept: . exp $end
ec3bc396 8541
29e20e22 8542 NUM shift, and go to state 1
ec3bc396 8543
29e20e22 8544 exp go to state 2
ec3bc396
AD
8545@end example
8546
8547This reads as follows: ``state 0 corresponds to being at the very
8548beginning of the parsing, in the initial rule, right before the start
8549symbol (here, @code{exp}). When the parser returns to this state right
8550after having reduced a rule that produced an @code{exp}, the control
8551flow jumps to state 2. If there is no such transition on a nonterminal
35880c82 8552symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 8553the parse stack, and the control flow jumps to state 1. Any other
742e4900 8554lookahead triggers a syntax error.''
ec3bc396
AD
8555
8556@cindex core, item set
8557@cindex item set core
8558@cindex kernel, item set
8559@cindex item set core
8560Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8561report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8562at the beginning of any rule deriving an @code{exp}. By default Bison
8563reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8564you want to see more detail you can invoke @command{bison} with
35880c82 8565@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
8566
8567@example
8568state 0
8569
29e20e22
AD
8570 0 $accept: . exp $end
8571 1 exp: . exp '+' exp
8572 2 | . exp '-' exp
8573 3 | . exp '*' exp
8574 4 | . exp '/' exp
8575 5 | . NUM
ec3bc396 8576
29e20e22 8577 NUM shift, and go to state 1
ec3bc396 8578
29e20e22 8579 exp go to state 2
ec3bc396
AD
8580@end example
8581
8582@noindent
29e20e22 8583In the state 1@dots{}
ec3bc396
AD
8584
8585@example
8586state 1
8587
29e20e22 8588 5 exp: NUM .
ec3bc396 8589
29e20e22 8590 $default reduce using rule 5 (exp)
ec3bc396
AD
8591@end example
8592
8593@noindent
742e4900 8594the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
8595(@samp{$default}), the parser will reduce it. If it was coming from
8596state 0, then, after this reduction it will return to state 0, and will
8597jump to state 2 (@samp{exp: go to state 2}).
8598
8599@example
8600state 2
8601
29e20e22
AD
8602 0 $accept: exp . $end
8603 1 exp: exp . '+' exp
8604 2 | exp . '-' exp
8605 3 | exp . '*' exp
8606 4 | exp . '/' exp
ec3bc396 8607
29e20e22
AD
8608 $end shift, and go to state 3
8609 '+' shift, and go to state 4
8610 '-' shift, and go to state 5
8611 '*' shift, and go to state 6
8612 '/' shift, and go to state 7
ec3bc396
AD
8613@end example
8614
8615@noindent
8616In state 2, the automaton can only shift a symbol. For instance,
29e20e22 8617because of the item @samp{exp: exp . '+' exp}, if the lookahead is
35880c82 8618@samp{+} it is shifted onto the parse stack, and the automaton
29e20e22 8619jumps to state 4, corresponding to the item @samp{exp: exp '+' . exp}.
35880c82
PE
8620Since there is no default action, any lookahead not listed triggers a syntax
8621error.
ec3bc396 8622
eb45ef3b 8623@cindex accepting state
ec3bc396
AD
8624The state 3 is named the @dfn{final state}, or the @dfn{accepting
8625state}:
8626
8627@example
8628state 3
8629
29e20e22 8630 0 $accept: exp $end .
ec3bc396 8631
29e20e22 8632 $default accept
ec3bc396
AD
8633@end example
8634
8635@noindent
29e20e22
AD
8636the initial rule is completed (the start symbol and the end-of-input were
8637read), the parsing exits successfully.
ec3bc396
AD
8638
8639The interpretation of states 4 to 7 is straightforward, and is left to
8640the reader.
8641
8642@example
8643state 4
8644
29e20e22 8645 1 exp: exp '+' . exp
ec3bc396 8646
29e20e22
AD
8647 NUM shift, and go to state 1
8648
8649 exp go to state 8
ec3bc396 8650
ec3bc396
AD
8651
8652state 5
8653
29e20e22
AD
8654 2 exp: exp '-' . exp
8655
8656 NUM shift, and go to state 1
ec3bc396 8657
29e20e22 8658 exp go to state 9
ec3bc396 8659
ec3bc396
AD
8660
8661state 6
8662
29e20e22 8663 3 exp: exp '*' . exp
ec3bc396 8664
29e20e22
AD
8665 NUM shift, and go to state 1
8666
8667 exp go to state 10
ec3bc396 8668
ec3bc396
AD
8669
8670state 7
8671
29e20e22 8672 4 exp: exp '/' . exp
ec3bc396 8673
29e20e22 8674 NUM shift, and go to state 1
ec3bc396 8675
29e20e22 8676 exp go to state 11
ec3bc396
AD
8677@end example
8678
5a99098d
PE
8679As was announced in beginning of the report, @samp{State 8 conflicts:
86801 shift/reduce}:
ec3bc396
AD
8681
8682@example
8683state 8
8684
29e20e22
AD
8685 1 exp: exp . '+' exp
8686 1 | exp '+' exp .
8687 2 | exp . '-' exp
8688 3 | exp . '*' exp
8689 4 | exp . '/' exp
ec3bc396 8690
29e20e22
AD
8691 '*' shift, and go to state 6
8692 '/' shift, and go to state 7
ec3bc396 8693
29e20e22
AD
8694 '/' [reduce using rule 1 (exp)]
8695 $default reduce using rule 1 (exp)
ec3bc396
AD
8696@end example
8697
742e4900 8698Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8699either shifting (and going to state 7), or reducing rule 1. The
8700conflict means that either the grammar is ambiguous, or the parser lacks
8701information to make the right decision. Indeed the grammar is
8702ambiguous, as, since we did not specify the precedence of @samp{/}, the
8703sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8704NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8705NUM}, which corresponds to reducing rule 1.
8706
eb45ef3b 8707Because in deterministic parsing a single decision can be made, Bison
ec3bc396 8708arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
29e20e22 8709Shift/Reduce Conflicts}. Discarded actions are reported between
ec3bc396
AD
8710square brackets.
8711
8712Note that all the previous states had a single possible action: either
8713shifting the next token and going to the corresponding state, or
8714reducing a single rule. In the other cases, i.e., when shifting
8715@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8716possible, the lookahead is required to select the action. State 8 is
8717one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8718is shifting, otherwise the action is reducing rule 1. In other words,
8719the first two items, corresponding to rule 1, are not eligible when the
742e4900 8720lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8721precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8722with some set of possible lookahead tokens. When run with
8723@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8724
8725@example
8726state 8
8727
29e20e22
AD
8728 1 exp: exp . '+' exp
8729 1 | exp '+' exp . [$end, '+', '-', '/']
8730 2 | exp . '-' exp
8731 3 | exp . '*' exp
8732 4 | exp . '/' exp
8733
8734 '*' shift, and go to state 6
8735 '/' shift, and go to state 7
ec3bc396 8736
29e20e22
AD
8737 '/' [reduce using rule 1 (exp)]
8738 $default reduce using rule 1 (exp)
8739@end example
8740
8741Note however that while @samp{NUM + NUM / NUM} is ambiguous (which results in
8742the conflicts on @samp{/}), @samp{NUM + NUM * NUM} is not: the conflict was
8743solved thanks to associativity and precedence directives. If invoked with
8744@option{--report=solved}, Bison includes information about the solved
8745conflicts in the report:
ec3bc396 8746
29e20e22
AD
8747@example
8748Conflict between rule 1 and token '+' resolved as reduce (%left '+').
8749Conflict between rule 1 and token '-' resolved as reduce (%left '-').
8750Conflict between rule 1 and token '*' resolved as shift ('+' < '*').
ec3bc396
AD
8751@end example
8752
29e20e22 8753
ec3bc396
AD
8754The remaining states are similar:
8755
8756@example
d4fca427 8757@group
ec3bc396
AD
8758state 9
8759
29e20e22
AD
8760 1 exp: exp . '+' exp
8761 2 | exp . '-' exp
8762 2 | exp '-' exp .
8763 3 | exp . '*' exp
8764 4 | exp . '/' exp
ec3bc396 8765
29e20e22
AD
8766 '*' shift, and go to state 6
8767 '/' shift, and go to state 7
ec3bc396 8768
29e20e22
AD
8769 '/' [reduce using rule 2 (exp)]
8770 $default reduce using rule 2 (exp)
d4fca427 8771@end group
ec3bc396 8772
d4fca427 8773@group
ec3bc396
AD
8774state 10
8775
29e20e22
AD
8776 1 exp: exp . '+' exp
8777 2 | exp . '-' exp
8778 3 | exp . '*' exp
8779 3 | exp '*' exp .
8780 4 | exp . '/' exp
ec3bc396 8781
29e20e22 8782 '/' shift, and go to state 7
ec3bc396 8783
29e20e22
AD
8784 '/' [reduce using rule 3 (exp)]
8785 $default reduce using rule 3 (exp)
d4fca427 8786@end group
ec3bc396 8787
d4fca427 8788@group
ec3bc396
AD
8789state 11
8790
29e20e22
AD
8791 1 exp: exp . '+' exp
8792 2 | exp . '-' exp
8793 3 | exp . '*' exp
8794 4 | exp . '/' exp
8795 4 | exp '/' exp .
8796
8797 '+' shift, and go to state 4
8798 '-' shift, and go to state 5
8799 '*' shift, and go to state 6
8800 '/' shift, and go to state 7
8801
8802 '+' [reduce using rule 4 (exp)]
8803 '-' [reduce using rule 4 (exp)]
8804 '*' [reduce using rule 4 (exp)]
8805 '/' [reduce using rule 4 (exp)]
8806 $default reduce using rule 4 (exp)
d4fca427 8807@end group
ec3bc396
AD
8808@end example
8809
8810@noindent
fa7e68c3
PE
8811Observe that state 11 contains conflicts not only due to the lack of
8812precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8813@samp{*}, but also because the
ec3bc396
AD
8814associativity of @samp{/} is not specified.
8815
8816
8817@node Tracing
8818@section Tracing Your Parser
bfa74976
RS
8819@findex yydebug
8820@cindex debugging
8821@cindex tracing the parser
8822
93c150b6
AD
8823When a Bison grammar compiles properly but parses ``incorrectly'', the
8824@code{yydebug} parser-trace feature helps figuring out why.
8825
8826@menu
8827* Enabling Traces:: Activating run-time trace support
8828* Mfcalc Traces:: Extending @code{mfcalc} to support traces
8829* The YYPRINT Macro:: Obsolete interface for semantic value reports
8830@end menu
bfa74976 8831
93c150b6
AD
8832@node Enabling Traces
8833@subsection Enabling Traces
3ded9a63
AD
8834There are several means to enable compilation of trace facilities:
8835
8836@table @asis
8837@item the macro @code{YYDEBUG}
8838@findex YYDEBUG
8839Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 8840parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8841@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8842YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8843Prologue}).
8844
e6ae99fe 8845If the @code{%define} variable @code{api.prefix} is used (@pxref{Multiple
e358222b
AD
8846Parsers, ,Multiple Parsers in the Same Program}), for instance @samp{%define
8847api.prefix x}, then if @code{CDEBUG} is defined, its value controls the
5a05f42e
AD
8848tracing feature (enabled if and only if nonzero); otherwise tracing is
8849enabled if and only if @code{YYDEBUG} is nonzero.
e358222b
AD
8850
8851@item the option @option{-t} (POSIX Yacc compliant)
8852@itemx the option @option{--debug} (Bison extension)
8853Use the @samp{-t} option when you run Bison (@pxref{Invocation, ,Invoking
8854Bison}). With @samp{%define api.prefix c}, it defines @code{CDEBUG} to 1,
8855otherwise it defines @code{YYDEBUG} to 1.
3ded9a63
AD
8856
8857@item the directive @samp{%debug}
8858@findex %debug
fa819509
AD
8859Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
8860Summary}). This Bison extension is maintained for backward
8861compatibility with previous versions of Bison.
8862
8863@item the variable @samp{parse.trace}
8864@findex %define parse.trace
35c1e5f0
JD
8865Add the @samp{%define parse.trace} directive (@pxref{%define
8866Summary,,parse.trace}), or pass the @option{-Dparse.trace} option
fa819509 8867(@pxref{Bison Options}). This is a Bison extension, which is especially
35c1e5f0
JD
8868useful for languages that don't use a preprocessor. Unless POSIX and Yacc
8869portability matter to you, this is the preferred solution.
3ded9a63
AD
8870@end table
8871
fa819509 8872We suggest that you always enable the trace option so that debugging is
3ded9a63 8873always possible.
bfa74976 8874
93c150b6 8875@findex YYFPRINTF
02a81e05 8876The trace facility outputs messages with macro calls of the form
e2742e46 8877@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8878@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8879arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8880define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8881and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8882
8883Once you have compiled the program with trace facilities, the way to
8884request a trace is to store a nonzero value in the variable @code{yydebug}.
8885You can do this by making the C code do it (in @code{main}, perhaps), or
8886you can alter the value with a C debugger.
8887
8888Each step taken by the parser when @code{yydebug} is nonzero produces a
8889line or two of trace information, written on @code{stderr}. The trace
8890messages tell you these things:
8891
8892@itemize @bullet
8893@item
8894Each time the parser calls @code{yylex}, what kind of token was read.
8895
8896@item
8897Each time a token is shifted, the depth and complete contents of the
8898state stack (@pxref{Parser States}).
8899
8900@item
8901Each time a rule is reduced, which rule it is, and the complete contents
8902of the state stack afterward.
8903@end itemize
8904
93c150b6
AD
8905To make sense of this information, it helps to refer to the automaton
8906description file (@pxref{Understanding, ,Understanding Your Parser}).
8907This file shows the meaning of each state in terms of
704a47c4
AD
8908positions in various rules, and also what each state will do with each
8909possible input token. As you read the successive trace messages, you
8910can see that the parser is functioning according to its specification in
8911the listing file. Eventually you will arrive at the place where
8912something undesirable happens, and you will see which parts of the
8913grammar are to blame.
bfa74976 8914
93c150b6 8915The parser implementation file is a C/C++/Java program and you can use
ff7571c0
JD
8916debuggers on it, but it's not easy to interpret what it is doing. The
8917parser function is a finite-state machine interpreter, and aside from
8918the actions it executes the same code over and over. Only the values
8919of variables show where in the grammar it is working.
bfa74976 8920
93c150b6
AD
8921@node Mfcalc Traces
8922@subsection Enabling Debug Traces for @code{mfcalc}
8923
8924The debugging information normally gives the token type of each token read,
8925but not its semantic value. The @code{%printer} directive allows specify
8926how semantic values are reported, see @ref{Printer Decl, , Printing
8927Semantic Values}. For backward compatibility, Yacc like C parsers may also
8928use the @code{YYPRINT} (@pxref{The YYPRINT Macro, , The @code{YYPRINT}
8929Macro}), but its use is discouraged.
8930
8931As a demonstration of @code{%printer}, consider the multi-function
8932calculator, @code{mfcalc} (@pxref{Multi-function Calc}). To enable run-time
8933traces, and semantic value reports, insert the following directives in its
8934prologue:
8935
8936@comment file: mfcalc.y: 2
8937@example
8938/* Generate the parser description file. */
8939%verbose
8940/* Enable run-time traces (yydebug). */
8941%define parse.trace
8942
8943/* Formatting semantic values. */
8944%printer @{ fprintf (yyoutput, "%s", $$->name); @} VAR;
8945%printer @{ fprintf (yyoutput, "%s()", $$->name); @} FNCT;
8946%printer @{ fprintf (yyoutput, "%g", $$); @} <val>;
8947@end example
8948
8949The @code{%define} directive instructs Bison to generate run-time trace
8950support. Then, activation of these traces is controlled at run-time by the
8951@code{yydebug} variable, which is disabled by default. Because these traces
8952will refer to the ``states'' of the parser, it is helpful to ask for the
8953creation of a description of that parser; this is the purpose of (admittedly
8954ill-named) @code{%verbose} directive.
8955
8956The set of @code{%printer} directives demonstrates how to format the
8957semantic value in the traces. Note that the specification can be done
8958either on the symbol type (e.g., @code{VAR} or @code{FNCT}), or on the type
8959tag: since @code{<val>} is the type for both @code{NUM} and @code{exp}, this
8960printer will be used for them.
8961
8962Here is a sample of the information provided by run-time traces. The traces
8963are sent onto standard error.
8964
8965@example
8966$ @kbd{echo 'sin(1-1)' | ./mfcalc -p}
8967Starting parse
8968Entering state 0
8969Reducing stack by rule 1 (line 34):
8970-> $$ = nterm input ()
8971Stack now 0
8972Entering state 1
8973@end example
8974
8975@noindent
8976This first batch shows a specific feature of this grammar: the first rule
8977(which is in line 34 of @file{mfcalc.y} can be reduced without even having
8978to look for the first token. The resulting left-hand symbol (@code{$$}) is
8979a valueless (@samp{()}) @code{input} non terminal (@code{nterm}).
8980
8981Then the parser calls the scanner.
8982@example
8983Reading a token: Next token is token FNCT (sin())
8984Shifting token FNCT (sin())
8985Entering state 6
8986@end example
8987
8988@noindent
8989That token (@code{token}) is a function (@code{FNCT}) whose value is
8990@samp{sin} as formatted per our @code{%printer} specification: @samp{sin()}.
8991The parser stores (@code{Shifting}) that token, and others, until it can do
8992something about it.
8993
8994@example
8995Reading a token: Next token is token '(' ()
8996Shifting token '(' ()
8997Entering state 14
8998Reading a token: Next token is token NUM (1.000000)
8999Shifting token NUM (1.000000)
9000Entering state 4
9001Reducing stack by rule 6 (line 44):
9002 $1 = token NUM (1.000000)
9003-> $$ = nterm exp (1.000000)
9004Stack now 0 1 6 14
9005Entering state 24
9006@end example
9007
9008@noindent
9009The previous reduction demonstrates the @code{%printer} directive for
9010@code{<val>}: both the token @code{NUM} and the resulting non-terminal
9011@code{exp} have @samp{1} as value.
9012
9013@example
9014Reading a token: Next token is token '-' ()
9015Shifting token '-' ()
9016Entering state 17
9017Reading a token: Next token is token NUM (1.000000)
9018Shifting token NUM (1.000000)
9019Entering state 4
9020Reducing stack by rule 6 (line 44):
9021 $1 = token NUM (1.000000)
9022-> $$ = nterm exp (1.000000)
9023Stack now 0 1 6 14 24 17
9024Entering state 26
9025Reading a token: Next token is token ')' ()
9026Reducing stack by rule 11 (line 49):
9027 $1 = nterm exp (1.000000)
9028 $2 = token '-' ()
9029 $3 = nterm exp (1.000000)
9030-> $$ = nterm exp (0.000000)
9031Stack now 0 1 6 14
9032Entering state 24
9033@end example
9034
9035@noindent
9036The rule for the subtraction was just reduced. The parser is about to
9037discover the end of the call to @code{sin}.
9038
9039@example
9040Next token is token ')' ()
9041Shifting token ')' ()
9042Entering state 31
9043Reducing stack by rule 9 (line 47):
9044 $1 = token FNCT (sin())
9045 $2 = token '(' ()
9046 $3 = nterm exp (0.000000)
9047 $4 = token ')' ()
9048-> $$ = nterm exp (0.000000)
9049Stack now 0 1
9050Entering state 11
9051@end example
9052
9053@noindent
9054Finally, the end-of-line allow the parser to complete the computation, and
9055display its result.
9056
9057@example
9058Reading a token: Next token is token '\n' ()
9059Shifting token '\n' ()
9060Entering state 22
9061Reducing stack by rule 4 (line 40):
9062 $1 = nterm exp (0.000000)
9063 $2 = token '\n' ()
9064@result{} 0
9065-> $$ = nterm line ()
9066Stack now 0 1
9067Entering state 10
9068Reducing stack by rule 2 (line 35):
9069 $1 = nterm input ()
9070 $2 = nterm line ()
9071-> $$ = nterm input ()
9072Stack now 0
9073Entering state 1
9074@end example
9075
9076The parser has returned into state 1, in which it is waiting for the next
9077expression to evaluate, or for the end-of-file token, which causes the
9078completion of the parsing.
9079
9080@example
9081Reading a token: Now at end of input.
9082Shifting token $end ()
9083Entering state 2
9084Stack now 0 1 2
9085Cleanup: popping token $end ()
9086Cleanup: popping nterm input ()
9087@end example
9088
9089
9090@node The YYPRINT Macro
9091@subsection The @code{YYPRINT} Macro
9092
bfa74976 9093@findex YYPRINT
93c150b6
AD
9094Before @code{%printer} support, semantic values could be displayed using the
9095@code{YYPRINT} macro, which works only for terminal symbols and only with
9096the @file{yacc.c} skeleton.
9097
9098@deffn {Macro} YYPRINT (@var{stream}, @var{token}, @var{value});
9099@findex YYPRINT
9100If you define @code{YYPRINT}, it should take three arguments. The parser
9101will pass a standard I/O stream, the numeric code for the token type, and
9102the token value (from @code{yylval}).
9103
9104For @file{yacc.c} only. Obsoleted by @code{%printer}.
9105@end deffn
bfa74976
RS
9106
9107Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 9108calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976 9109
c93f22fc 9110@example
38a92d50
PE
9111%@{
9112 static void print_token_value (FILE *, int, YYSTYPE);
93c150b6
AD
9113 #define YYPRINT(File, Type, Value) \
9114 print_token_value (File, Type, Value)
38a92d50
PE
9115%@}
9116
9117@dots{} %% @dots{} %% @dots{}
bfa74976
RS
9118
9119static void
831d3c99 9120print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
9121@{
9122 if (type == VAR)
d3c4e709 9123 fprintf (file, "%s", value.tptr->name);
bfa74976 9124 else if (type == NUM)
d3c4e709 9125 fprintf (file, "%d", value.val);
bfa74976 9126@}
c93f22fc 9127@end example
bfa74976 9128
ec3bc396
AD
9129@c ================================================= Invoking Bison
9130
342b8b6e 9131@node Invocation
bfa74976
RS
9132@chapter Invoking Bison
9133@cindex invoking Bison
9134@cindex Bison invocation
9135@cindex options for invoking Bison
9136
9137The usual way to invoke Bison is as follows:
9138
9139@example
9140bison @var{infile}
9141@end example
9142
9143Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
9144@samp{.y}. The parser implementation file's name is made by replacing
9145the @samp{.y} with @samp{.tab.c} and removing any leading directory.
9146Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
9147the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
9148also possible, in case you are writing C++ code instead of C in your
9149grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
9150output files will take an extension like the given one as input
9151(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
9152feature takes effect with all options that manipulate file names like
234a3be3
AD
9153@samp{-o} or @samp{-d}.
9154
9155For example :
9156
9157@example
9158bison -d @var{infile.yxx}
9159@end example
84163231 9160@noindent
72d2299c 9161will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
9162
9163@example
b56471a6 9164bison -d -o @var{output.c++} @var{infile.y}
234a3be3 9165@end example
84163231 9166@noindent
234a3be3
AD
9167will produce @file{output.c++} and @file{outfile.h++}.
9168
8a4281b9 9169For compatibility with POSIX, the standard Bison
397ec073
PE
9170distribution also contains a shell script called @command{yacc} that
9171invokes Bison with the @option{-y} option.
9172
bfa74976 9173@menu
13863333 9174* Bison Options:: All the options described in detail,
c827f760 9175 in alphabetical order by short options.
bfa74976 9176* Option Cross Key:: Alphabetical list of long options.
93dd49ab 9177* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
9178@end menu
9179
342b8b6e 9180@node Bison Options
bfa74976
RS
9181@section Bison Options
9182
9183Bison supports both traditional single-letter options and mnemonic long
9184option names. Long option names are indicated with @samp{--} instead of
9185@samp{-}. Abbreviations for option names are allowed as long as they
9186are unique. When a long option takes an argument, like
9187@samp{--file-prefix}, connect the option name and the argument with
9188@samp{=}.
9189
9190Here is a list of options that can be used with Bison, alphabetized by
9191short option. It is followed by a cross key alphabetized by long
9192option.
9193
89cab50d
AD
9194@c Please, keep this ordered as in `bison --help'.
9195@noindent
9196Operations modes:
9197@table @option
9198@item -h
9199@itemx --help
9200Print a summary of the command-line options to Bison and exit.
bfa74976 9201
89cab50d
AD
9202@item -V
9203@itemx --version
9204Print the version number of Bison and exit.
bfa74976 9205
f7ab6a50
PE
9206@item --print-localedir
9207Print the name of the directory containing locale-dependent data.
9208
a0de5091
JD
9209@item --print-datadir
9210Print the name of the directory containing skeletons and XSLT.
9211
89cab50d
AD
9212@item -y
9213@itemx --yacc
ff7571c0
JD
9214Act more like the traditional Yacc command. This can cause different
9215diagnostics to be generated, and may change behavior in other minor
9216ways. Most importantly, imitate Yacc's output file name conventions,
9217so that the parser implementation file is called @file{y.tab.c}, and
9218the other outputs are called @file{y.output} and @file{y.tab.h}.
9219Also, if generating a deterministic parser in C, generate
9220@code{#define} statements in addition to an @code{enum} to associate
9221token numbers with token names. Thus, the following shell script can
9222substitute for Yacc, and the Bison distribution contains such a script
9223for compatibility with POSIX:
bfa74976 9224
89cab50d 9225@example
397ec073 9226#! /bin/sh
26e06a21 9227bison -y "$@@"
89cab50d 9228@end example
54662697
PE
9229
9230The @option{-y}/@option{--yacc} option is intended for use with
9231traditional Yacc grammars. If your grammar uses a Bison extension
9232like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
9233this option is specified.
9234
1d5b3c08
JD
9235@item -W [@var{category}]
9236@itemx --warnings[=@var{category}]
118d4978
AD
9237Output warnings falling in @var{category}. @var{category} can be one
9238of:
9239@table @code
9240@item midrule-values
8e55b3aa
JD
9241Warn about mid-rule values that are set but not used within any of the actions
9242of the parent rule.
9243For example, warn about unused @code{$2} in:
118d4978
AD
9244
9245@example
9246exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
9247@end example
9248
8e55b3aa
JD
9249Also warn about mid-rule values that are used but not set.
9250For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
9251
9252@example
5e9b6624 9253exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
118d4978
AD
9254@end example
9255
9256These warnings are not enabled by default since they sometimes prove to
9257be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 9258@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 9259
118d4978 9260@item yacc
8a4281b9 9261Incompatibilities with POSIX Yacc.
118d4978 9262
786743d5
JD
9263@item conflicts-sr
9264@itemx conflicts-rr
9265S/R and R/R conflicts. These warnings are enabled by default. However, if
9266the @code{%expect} or @code{%expect-rr} directive is specified, an
9267unexpected number of conflicts is an error, and an expected number of
9268conflicts is not reported, so @option{-W} and @option{--warning} then have
9269no effect on the conflict report.
9270
518e8830
AD
9271@item deprecated
9272Deprecated constructs whose support will be removed in future versions of
9273Bison.
9274
c39014ae
JD
9275@item other
9276All warnings not categorized above. These warnings are enabled by default.
9277
9278This category is provided merely for the sake of completeness. Future
9279releases of Bison may move warnings from this category to new, more specific
9280categories.
9281
118d4978 9282@item all
8e55b3aa 9283All the warnings.
118d4978 9284@item none
8e55b3aa 9285Turn off all the warnings.
118d4978 9286@item error
1048a1c9 9287See @option{-Werror}, below.
118d4978
AD
9288@end table
9289
9290A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 9291instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 9292POSIX Yacc incompatibilities.
1048a1c9
AD
9293
9294@item -Werror[=@var{category}]
9295@itemx -Wno-error[=@var{category}]
9296Enable warnings falling in @var{category}, and treat them as errors. If no
9297@var{category} is given, it defaults to making all enabled warnings into errors.
9298
9299@var{category} is the same as for @option{--warnings}, with the exception that
9300it may not be prefixed with @samp{no-} (see above).
9301
9302Prefixed with @samp{no}, it deactivates the error treatment for this
9303@var{category}. However, the warning itself won't be disabled, or enabled, by
9304this option.
9305
9306Note that the precedence of the @samp{=} and @samp{,} operators is such that
9307the following commands are @emph{not} equivalent, as the first will not treat
9308S/R conflicts as errors.
9309
9310@example
9311$ bison -Werror=yacc,conflicts-sr input.y
9312$ bison -Werror=yacc,error=conflicts-sr input.y
9313@end example
89cab50d
AD
9314@end table
9315
9316@noindent
9317Tuning the parser:
9318
9319@table @option
9320@item -t
9321@itemx --debug
ff7571c0
JD
9322In the parser implementation file, define the macro @code{YYDEBUG} to
93231 if it is not already defined, so that the debugging facilities are
9324compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 9325
58697c6d
AD
9326@item -D @var{name}[=@var{value}]
9327@itemx --define=@var{name}[=@var{value}]
17aed602 9328@itemx -F @var{name}[=@var{value}]
de5ab940
JD
9329@itemx --force-define=@var{name}[=@var{value}]
9330Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
35c1e5f0 9331(@pxref{%define Summary}) except that Bison processes multiple
de5ab940
JD
9332definitions for the same @var{name} as follows:
9333
9334@itemize
9335@item
0b6d43c5
JD
9336Bison quietly ignores all command-line definitions for @var{name} except
9337the last.
de5ab940 9338@item
0b6d43c5
JD
9339If that command-line definition is specified by a @code{-D} or
9340@code{--define}, Bison reports an error for any @code{%define}
9341definition for @var{name}.
de5ab940 9342@item
0b6d43c5
JD
9343If that command-line definition is specified by a @code{-F} or
9344@code{--force-define} instead, Bison quietly ignores all @code{%define}
9345definitions for @var{name}.
9346@item
9347Otherwise, Bison reports an error if there are multiple @code{%define}
9348definitions for @var{name}.
de5ab940
JD
9349@end itemize
9350
9351You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
9352make files unless you are confident that it is safe to quietly ignore
9353any conflicting @code{%define} that may be added to the grammar file.
58697c6d 9354
0e021770
PE
9355@item -L @var{language}
9356@itemx --language=@var{language}
9357Specify the programming language for the generated parser, as if
9358@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 9359Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 9360@var{language} is case-insensitive.
0e021770 9361
ed4d67dc
JD
9362This option is experimental and its effect may be modified in future
9363releases.
9364
89cab50d 9365@item --locations
d8988b2f 9366Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
9367
9368@item -p @var{prefix}
9369@itemx --name-prefix=@var{prefix}
4b3847c3
AD
9370Pretend that @code{%name-prefix "@var{prefix}"} was specified (@pxref{Decl
9371Summary}). Obsoleted by @code{-Dapi.prefix=@var{prefix}}. @xref{Multiple
9372Parsers, ,Multiple Parsers in the Same Program}.
bfa74976
RS
9373
9374@item -l
9375@itemx --no-lines
ff7571c0
JD
9376Don't put any @code{#line} preprocessor commands in the parser
9377implementation file. Ordinarily Bison puts them in the parser
9378implementation file so that the C compiler and debuggers will
9379associate errors with your source file, the grammar file. This option
9380causes them to associate errors with the parser implementation file,
9381treating it as an independent source file in its own right.
bfa74976 9382
e6e704dc
JD
9383@item -S @var{file}
9384@itemx --skeleton=@var{file}
a7867f53 9385Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
9386(@pxref{Decl Summary, , Bison Declaration Summary}).
9387
ed4d67dc
JD
9388@c You probably don't need this option unless you are developing Bison.
9389@c You should use @option{--language} if you want to specify the skeleton for a
9390@c different language, because it is clearer and because it will always
9391@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 9392
a7867f53
JD
9393If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
9394file in the Bison installation directory.
9395If it does, @var{file} is an absolute file name or a file name relative to the
9396current working directory.
9397This is similar to how most shells resolve commands.
9398
89cab50d
AD
9399@item -k
9400@itemx --token-table
d8988b2f 9401Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 9402@end table
bfa74976 9403
89cab50d
AD
9404@noindent
9405Adjust the output:
bfa74976 9406
89cab50d 9407@table @option
8e55b3aa 9408@item --defines[=@var{file}]
d8988b2f 9409Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 9410file containing macro definitions for the token type names defined in
4bfd5e4e 9411the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 9412
8e55b3aa
JD
9413@item -d
9414This is the same as @code{--defines} except @code{-d} does not accept a
9415@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
9416with other short options.
342b8b6e 9417
89cab50d
AD
9418@item -b @var{file-prefix}
9419@itemx --file-prefix=@var{prefix}
9c437126 9420Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 9421for all Bison output file names. @xref{Decl Summary}.
bfa74976 9422
ec3bc396
AD
9423@item -r @var{things}
9424@itemx --report=@var{things}
9425Write an extra output file containing verbose description of the comma
9426separated list of @var{things} among:
9427
9428@table @code
9429@item state
9430Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 9431parser's automaton.
ec3bc396 9432
57f8bd8d
AD
9433@item itemset
9434Implies @code{state} and augments the description of the automaton with
9435the full set of items for each state, instead of its core only.
9436
742e4900 9437@item lookahead
ec3bc396 9438Implies @code{state} and augments the description of the automaton with
742e4900 9439each rule's lookahead set.
ec3bc396 9440
57f8bd8d
AD
9441@item solved
9442Implies @code{state}. Explain how conflicts were solved thanks to
9443precedence and associativity directives.
9444
9445@item all
9446Enable all the items.
9447
9448@item none
9449Do not generate the report.
ec3bc396
AD
9450@end table
9451
1bb2bd75
JD
9452@item --report-file=@var{file}
9453Specify the @var{file} for the verbose description.
9454
bfa74976
RS
9455@item -v
9456@itemx --verbose
9c437126 9457Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 9458file containing verbose descriptions of the grammar and
72d2299c 9459parser. @xref{Decl Summary}.
bfa74976 9460
fa4d969f
PE
9461@item -o @var{file}
9462@itemx --output=@var{file}
ff7571c0 9463Specify the @var{file} for the parser implementation file.
bfa74976 9464
fa4d969f 9465The other output files' names are constructed from @var{file} as
d8988b2f 9466described under the @samp{-v} and @samp{-d} options.
342b8b6e 9467
a7c09cba 9468@item -g [@var{file}]
8e55b3aa 9469@itemx --graph[=@var{file}]
eb45ef3b 9470Output a graphical representation of the parser's
35fe0834 9471automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 9472@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
9473@code{@var{file}} is optional.
9474If omitted and the grammar file is @file{foo.y}, the output file will be
9475@file{foo.dot}.
59da312b 9476
a7c09cba 9477@item -x [@var{file}]
8e55b3aa 9478@itemx --xml[=@var{file}]
eb45ef3b 9479Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 9480@code{@var{file}} is optional.
59da312b
JD
9481If omitted and the grammar file is @file{foo.y}, the output file will be
9482@file{foo.xml}.
9483(The current XML schema is experimental and may evolve.
9484More user feedback will help to stabilize it.)
bfa74976
RS
9485@end table
9486
342b8b6e 9487@node Option Cross Key
bfa74976
RS
9488@section Option Cross Key
9489
9490Here is a list of options, alphabetized by long option, to help you find
de5ab940 9491the corresponding short option and directive.
bfa74976 9492
de5ab940 9493@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 9494@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 9495@include cross-options.texi
aa08666d 9496@end multitable
bfa74976 9497
93dd49ab
PE
9498@node Yacc Library
9499@section Yacc Library
9500
9501The Yacc library contains default implementations of the
9502@code{yyerror} and @code{main} functions. These default
8a4281b9 9503implementations are normally not useful, but POSIX requires
93dd49ab
PE
9504them. To use the Yacc library, link your program with the
9505@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 9506library is distributed under the terms of the GNU General
93dd49ab
PE
9507Public License (@pxref{Copying}).
9508
9509If you use the Yacc library's @code{yyerror} function, you should
9510declare @code{yyerror} as follows:
9511
9512@example
9513int yyerror (char const *);
9514@end example
9515
9516Bison ignores the @code{int} value returned by this @code{yyerror}.
9517If you use the Yacc library's @code{main} function, your
9518@code{yyparse} function should have the following type signature:
9519
9520@example
9521int yyparse (void);
9522@end example
9523
12545799
AD
9524@c ================================================= C++ Bison
9525
8405b70c
PB
9526@node Other Languages
9527@chapter Parsers Written In Other Languages
12545799
AD
9528
9529@menu
9530* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 9531* Java Parsers:: The interface to generate Java parser classes
12545799
AD
9532@end menu
9533
9534@node C++ Parsers
9535@section C++ Parsers
9536
9537@menu
9538* C++ Bison Interface:: Asking for C++ parser generation
9539* C++ Semantic Values:: %union vs. C++
9540* C++ Location Values:: The position and location classes
9541* C++ Parser Interface:: Instantiating and running the parser
9542* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 9543* A Complete C++ Example:: Demonstrating their use
12545799
AD
9544@end menu
9545
9546@node C++ Bison Interface
9547@subsection C++ Bison Interface
ed4d67dc 9548@c - %skeleton "lalr1.cc"
12545799
AD
9549@c - Always pure
9550@c - initial action
9551
eb45ef3b 9552The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
9553@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
9554@option{--skeleton=lalr1.cc}.
e6e704dc 9555@xref{Decl Summary}.
0e021770 9556
793fbca5
JD
9557When run, @command{bison} will create several entities in the @samp{yy}
9558namespace.
67501061 9559@findex %define api.namespace
35c1e5f0
JD
9560Use the @samp{%define api.namespace} directive to change the namespace name,
9561see @ref{%define Summary,,api.namespace}. The various classes are generated
9562in the following files:
aa08666d 9563
12545799
AD
9564@table @file
9565@item position.hh
9566@itemx location.hh
9567The definition of the classes @code{position} and @code{location},
3cdc21cf 9568used for location tracking when enabled. @xref{C++ Location Values}.
12545799
AD
9569
9570@item stack.hh
9571An auxiliary class @code{stack} used by the parser.
9572
fa4d969f
PE
9573@item @var{file}.hh
9574@itemx @var{file}.cc
ff7571c0 9575(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
9576declaration and implementation of the C++ parser class. The basename
9577and extension of these two files follow the same rules as with regular C
9578parsers (@pxref{Invocation}).
12545799 9579
cd8b5791
AD
9580The header is @emph{mandatory}; you must either pass
9581@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
9582@samp{%defines} directive.
9583@end table
9584
9585All these files are documented using Doxygen; run @command{doxygen}
9586for a complete and accurate documentation.
9587
9588@node C++ Semantic Values
9589@subsection C++ Semantic Values
9590@c - No objects in unions
178e123e 9591@c - YYSTYPE
12545799
AD
9592@c - Printer and destructor
9593
3cdc21cf
AD
9594Bison supports two different means to handle semantic values in C++. One is
9595alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
9596practitioners know, unions are inconvenient in C++, therefore another
9597approach is provided, based on variants (@pxref{C++ Variants}).
9598
9599@menu
9600* C++ Unions:: Semantic values cannot be objects
9601* C++ Variants:: Using objects as semantic values
9602@end menu
9603
9604@node C++ Unions
9605@subsubsection C++ Unions
9606
12545799
AD
9607The @code{%union} directive works as for C, see @ref{Union Decl, ,The
9608Collection of Value Types}. In particular it produces a genuine
3cdc21cf 9609@code{union}, which have a few specific features in C++.
12545799
AD
9610@itemize @minus
9611@item
fb9712a9
AD
9612The type @code{YYSTYPE} is defined but its use is discouraged: rather
9613you should refer to the parser's encapsulated type
9614@code{yy::parser::semantic_type}.
12545799
AD
9615@item
9616Non POD (Plain Old Data) types cannot be used. C++ forbids any
9617instance of classes with constructors in unions: only @emph{pointers}
9618to such objects are allowed.
9619@end itemize
9620
9621Because objects have to be stored via pointers, memory is not
9622reclaimed automatically: using the @code{%destructor} directive is the
9623only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
9624Symbols}.
9625
3cdc21cf
AD
9626@node C++ Variants
9627@subsubsection C++ Variants
9628
9629Starting with version 2.6, Bison provides a @emph{variant} based
9630implementation of semantic values for C++. This alleviates all the
9631limitations reported in the previous section, and in particular, object
9632types can be used without pointers.
9633
9634To enable variant-based semantic values, set @code{%define} variable
35c1e5f0 9635@code{variant} (@pxref{%define Summary,, variant}). Once this defined,
3cdc21cf
AD
9636@code{%union} is ignored, and instead of using the name of the fields of the
9637@code{%union} to ``type'' the symbols, use genuine types.
9638
9639For instance, instead of
9640
9641@example
9642%union
9643@{
9644 int ival;
9645 std::string* sval;
9646@}
9647%token <ival> NUMBER;
9648%token <sval> STRING;
9649@end example
9650
9651@noindent
9652write
9653
9654@example
9655%token <int> NUMBER;
9656%token <std::string> STRING;
9657@end example
9658
9659@code{STRING} is no longer a pointer, which should fairly simplify the user
9660actions in the grammar and in the scanner (in particular the memory
9661management).
9662
9663Since C++ features destructors, and since it is customary to specialize
9664@code{operator<<} to support uniform printing of values, variants also
9665typically simplify Bison printers and destructors.
9666
9667Variants are stricter than unions. When based on unions, you may play any
9668dirty game with @code{yylval}, say storing an @code{int}, reading a
9669@code{char*}, and then storing a @code{double} in it. This is no longer
9670possible with variants: they must be initialized, then assigned to, and
9671eventually, destroyed.
9672
9673@deftypemethod {semantic_type} {T&} build<T> ()
9674Initialize, but leave empty. Returns the address where the actual value may
9675be stored. Requires that the variant was not initialized yet.
9676@end deftypemethod
9677
9678@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
9679Initialize, and copy-construct from @var{t}.
9680@end deftypemethod
9681
9682
9683@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
9684appeared unacceptable to require Boost on the user's machine (i.e., the
9685machine on which the generated parser will be compiled, not the machine on
9686which @command{bison} was run). Second, for each possible semantic value,
9687Boost.Variant not only stores the value, but also a tag specifying its
9688type. But the parser already ``knows'' the type of the semantic value, so
9689that would be duplicating the information.
9690
9691Therefore we developed light-weight variants whose type tag is external (so
9692they are really like @code{unions} for C++ actually). But our code is much
9693less mature that Boost.Variant. So there is a number of limitations in
9694(the current implementation of) variants:
9695@itemize
9696@item
9697Alignment must be enforced: values should be aligned in memory according to
9698the most demanding type. Computing the smallest alignment possible requires
9699meta-programming techniques that are not currently implemented in Bison, and
9700therefore, since, as far as we know, @code{double} is the most demanding
9701type on all platforms, alignments are enforced for @code{double} whatever
9702types are actually used. This may waste space in some cases.
9703
9704@item
9705Our implementation is not conforming with strict aliasing rules. Alias
9706analysis is a technique used in optimizing compilers to detect when two
9707pointers are disjoint (they cannot ``meet''). Our implementation breaks
9708some of the rules that G++ 4.4 uses in its alias analysis, so @emph{strict
9709alias analysis must be disabled}. Use the option
9710@option{-fno-strict-aliasing} to compile the generated parser.
9711
9712@item
9713There might be portability issues we are not aware of.
9714@end itemize
9715
a6ca4ce2 9716As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 9717is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
9718
9719@node C++ Location Values
9720@subsection C++ Location Values
9721@c - %locations
9722@c - class Position
9723@c - class Location
16dc6a9e 9724@c - %define filename_type "const symbol::Symbol"
12545799
AD
9725
9726When the directive @code{%locations} is used, the C++ parser supports
303834cc
JD
9727location tracking, see @ref{Tracking Locations}. Two auxiliary classes
9728define a @code{position}, a single point in a file, and a @code{location}, a
9729range composed of a pair of @code{position}s (possibly spanning several
9730files).
12545799 9731
936c88d1
AD
9732@tindex uint
9733In this section @code{uint} is an abbreviation for @code{unsigned int}: in
9734genuine code only the latter is used.
9735
9736@menu
9737* C++ position:: One point in the source file
9738* C++ location:: Two points in the source file
9739@end menu
9740
9741@node C++ position
9742@subsubsection C++ @code{position}
9743
9744@deftypeop {Constructor} {position} {} position (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9745Create a @code{position} denoting a given point. Note that @code{file} is
9746not reclaimed when the @code{position} is destroyed: memory managed must be
9747handled elsewhere.
9748@end deftypeop
9749
9750@deftypemethod {position} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9751Reset the position to the given values.
9752@end deftypemethod
9753
9754@deftypeivar {position} {std::string*} file
12545799
AD
9755The name of the file. It will always be handled as a pointer, the
9756parser will never duplicate nor deallocate it. As an experimental
9757feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 9758filename_type "@var{type}"}.
936c88d1 9759@end deftypeivar
12545799 9760
936c88d1 9761@deftypeivar {position} {uint} line
12545799 9762The line, starting at 1.
936c88d1 9763@end deftypeivar
12545799 9764
936c88d1 9765@deftypemethod {position} {uint} lines (int @var{height} = 1)
12545799
AD
9766Advance by @var{height} lines, resetting the column number.
9767@end deftypemethod
9768
936c88d1
AD
9769@deftypeivar {position} {uint} column
9770The column, starting at 1.
9771@end deftypeivar
12545799 9772
936c88d1 9773@deftypemethod {position} {uint} columns (int @var{width} = 1)
12545799
AD
9774Advance by @var{width} columns, without changing the line number.
9775@end deftypemethod
9776
936c88d1
AD
9777@deftypemethod {position} {position&} operator+= (int @var{width})
9778@deftypemethodx {position} {position} operator+ (int @var{width})
9779@deftypemethodx {position} {position&} operator-= (int @var{width})
9780@deftypemethodx {position} {position} operator- (int @var{width})
12545799
AD
9781Various forms of syntactic sugar for @code{columns}.
9782@end deftypemethod
9783
936c88d1
AD
9784@deftypemethod {position} {bool} operator== (const position& @var{that})
9785@deftypemethodx {position} {bool} operator!= (const position& @var{that})
9786Whether @code{*this} and @code{that} denote equal/different positions.
9787@end deftypemethod
9788
9789@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const position& @var{p})
12545799 9790Report @var{p} on @var{o} like this:
fa4d969f
PE
9791@samp{@var{file}:@var{line}.@var{column}}, or
9792@samp{@var{line}.@var{column}} if @var{file} is null.
936c88d1
AD
9793@end deftypefun
9794
9795@node C++ location
9796@subsubsection C++ @code{location}
9797
9798@deftypeop {Constructor} {location} {} location (const position& @var{begin}, const position& @var{end})
9799Create a @code{Location} from the endpoints of the range.
9800@end deftypeop
9801
9802@deftypeop {Constructor} {location} {} location (const position& @var{pos} = position())
9803@deftypeopx {Constructor} {location} {} location (std::string* @var{file}, uint @var{line}, uint @var{col})
9804Create a @code{Location} denoting an empty range located at a given point.
9805@end deftypeop
9806
9807@deftypemethod {location} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9808Reset the location to an empty range at the given values.
12545799
AD
9809@end deftypemethod
9810
936c88d1
AD
9811@deftypeivar {location} {position} begin
9812@deftypeivarx {location} {position} end
12545799 9813The first, inclusive, position of the range, and the first beyond.
936c88d1 9814@end deftypeivar
12545799 9815
936c88d1
AD
9816@deftypemethod {location} {uint} columns (int @var{width} = 1)
9817@deftypemethodx {location} {uint} lines (int @var{height} = 1)
12545799
AD
9818Advance the @code{end} position.
9819@end deftypemethod
9820
936c88d1
AD
9821@deftypemethod {location} {location} operator+ (const location& @var{end})
9822@deftypemethodx {location} {location} operator+ (int @var{width})
9823@deftypemethodx {location} {location} operator+= (int @var{width})
12545799
AD
9824Various forms of syntactic sugar.
9825@end deftypemethod
9826
9827@deftypemethod {location} {void} step ()
9828Move @code{begin} onto @code{end}.
9829@end deftypemethod
9830
936c88d1
AD
9831@deftypemethod {location} {bool} operator== (const location& @var{that})
9832@deftypemethodx {location} {bool} operator!= (const location& @var{that})
9833Whether @code{*this} and @code{that} denote equal/different ranges of
9834positions.
9835@end deftypemethod
9836
9837@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const location& @var{p})
9838Report @var{p} on @var{o}, taking care of special cases such as: no
9839@code{filename} defined, or equal filename/line or column.
9840@end deftypefun
12545799
AD
9841
9842@node C++ Parser Interface
9843@subsection C++ Parser Interface
9844@c - define parser_class_name
9845@c - Ctor
9846@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9847@c debug_stream.
9848@c - Reporting errors
9849
9850The output files @file{@var{output}.hh} and @file{@var{output}.cc}
9851declare and define the parser class in the namespace @code{yy}. The
9852class name defaults to @code{parser}, but may be changed using
16dc6a9e 9853@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 9854this class is detailed below. It can be extended using the
12545799
AD
9855@code{%parse-param} feature: its semantics is slightly changed since
9856it describes an additional member of the parser class, and an
9857additional argument for its constructor.
9858
3cdc21cf
AD
9859@defcv {Type} {parser} {semantic_type}
9860@defcvx {Type} {parser} {location_type}
9861The types for semantic values and locations (if enabled).
9862@end defcv
9863
86e5b440 9864@defcv {Type} {parser} {token}
aaaa2aae
AD
9865A structure that contains (only) the @code{yytokentype} enumeration, which
9866defines the tokens. To refer to the token @code{FOO},
9867use @code{yy::parser::token::FOO}. The scanner can use
86e5b440
AD
9868@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
9869(@pxref{Calc++ Scanner}).
9870@end defcv
9871
3cdc21cf
AD
9872@defcv {Type} {parser} {syntax_error}
9873This class derives from @code{std::runtime_error}. Throw instances of it
a6552c5d
AD
9874from the scanner or from the user actions to raise parse errors. This is
9875equivalent with first
3cdc21cf
AD
9876invoking @code{error} to report the location and message of the syntax
9877error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
9878But contrary to @code{YYERROR} which can only be invoked from user actions
9879(i.e., written in the action itself), the exception can be thrown from
9880function invoked from the user action.
8a0adb01 9881@end defcv
12545799
AD
9882
9883@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
9884Build a new parser object. There are no arguments by default, unless
9885@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
9886@end deftypemethod
9887
3cdc21cf
AD
9888@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
9889@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
9890Instantiate a syntax-error exception.
9891@end deftypemethod
9892
12545799
AD
9893@deftypemethod {parser} {int} parse ()
9894Run the syntactic analysis, and return 0 on success, 1 otherwise.
d3e4409a
AD
9895
9896@cindex exceptions
9897The whole function is wrapped in a @code{try}/@code{catch} block, so that
9898when an exception is thrown, the @code{%destructor}s are called to release
9899the lookahead symbol, and the symbols pushed on the stack.
12545799
AD
9900@end deftypemethod
9901
9902@deftypemethod {parser} {std::ostream&} debug_stream ()
9903@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
9904Get or set the stream used for tracing the parsing. It defaults to
9905@code{std::cerr}.
9906@end deftypemethod
9907
9908@deftypemethod {parser} {debug_level_type} debug_level ()
9909@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
9910Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 9911or nonzero, full tracing.
12545799
AD
9912@end deftypemethod
9913
9914@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 9915@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
9916The definition for this member function must be supplied by the user:
9917the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
9918described by @var{m}. If location tracking is not enabled, the second
9919signature is used.
12545799
AD
9920@end deftypemethod
9921
9922
9923@node C++ Scanner Interface
9924@subsection C++ Scanner Interface
9925@c - prefix for yylex.
9926@c - Pure interface to yylex
9927@c - %lex-param
9928
9929The parser invokes the scanner by calling @code{yylex}. Contrary to C
9930parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
9931@samp{%define api.pure} directive. The actual interface with @code{yylex}
9932depends whether you use unions, or variants.
12545799 9933
3cdc21cf
AD
9934@menu
9935* Split Symbols:: Passing symbols as two/three components
9936* Complete Symbols:: Making symbols a whole
9937@end menu
9938
9939@node Split Symbols
9940@subsubsection Split Symbols
9941
9942Therefore the interface is as follows.
9943
86e5b440
AD
9944@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
9945@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
9946Return the next token. Its type is the return value, its semantic value and
9947location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
9948@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
9949@end deftypemethod
9950
3cdc21cf
AD
9951Note that when using variants, the interface for @code{yylex} is the same,
9952but @code{yylval} is handled differently.
9953
9954Regular union-based code in Lex scanner typically look like:
9955
9956@example
9957[0-9]+ @{
9958 yylval.ival = text_to_int (yytext);
9959 return yy::parser::INTEGER;
9960 @}
9961[a-z]+ @{
9962 yylval.sval = new std::string (yytext);
9963 return yy::parser::IDENTIFIER;
9964 @}
9965@end example
9966
9967Using variants, @code{yylval} is already constructed, but it is not
9968initialized. So the code would look like:
9969
9970@example
9971[0-9]+ @{
9972 yylval.build<int>() = text_to_int (yytext);
9973 return yy::parser::INTEGER;
9974 @}
9975[a-z]+ @{
9976 yylval.build<std::string> = yytext;
9977 return yy::parser::IDENTIFIER;
9978 @}
9979@end example
9980
9981@noindent
9982or
9983
9984@example
9985[0-9]+ @{
9986 yylval.build(text_to_int (yytext));
9987 return yy::parser::INTEGER;
9988 @}
9989[a-z]+ @{
9990 yylval.build(yytext);
9991 return yy::parser::IDENTIFIER;
9992 @}
9993@end example
9994
9995
9996@node Complete Symbols
9997@subsubsection Complete Symbols
9998
9999If you specified both @code{%define variant} and @code{%define lex_symbol},
10000the @code{parser} class also defines the class @code{parser::symbol_type}
10001which defines a @emph{complete} symbol, aggregating its type (i.e., the
10002traditional value returned by @code{yylex}), its semantic value (i.e., the
10003value passed in @code{yylval}, and possibly its location (@code{yylloc}).
10004
10005@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
10006Build a complete terminal symbol which token type is @var{type}, and which
10007semantic value is @var{value}. If location tracking is enabled, also pass
10008the @var{location}.
10009@end deftypemethod
10010
10011This interface is low-level and should not be used for two reasons. First,
10012it is inconvenient, as you still have to build the semantic value, which is
10013a variant, and second, because consistency is not enforced: as with unions,
10014it is still possible to give an integer as semantic value for a string.
10015
10016So for each token type, Bison generates named constructors as follows.
10017
10018@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
10019@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
10020Build a complete terminal symbol for the token type @var{token} (not
10021including the @code{api.tokens.prefix}) whose possible semantic value is
10022@var{value} of adequate @var{value_type}. If location tracking is enabled,
10023also pass the @var{location}.
10024@end deftypemethod
10025
10026For instance, given the following declarations:
10027
10028@example
10029%define api.tokens.prefix "TOK_"
10030%token <std::string> IDENTIFIER;
10031%token <int> INTEGER;
10032%token COLON;
10033@end example
10034
10035@noindent
10036Bison generates the following functions:
10037
10038@example
10039symbol_type make_IDENTIFIER(const std::string& v,
10040 const location_type& l);
10041symbol_type make_INTEGER(const int& v,
10042 const location_type& loc);
10043symbol_type make_COLON(const location_type& loc);
10044@end example
10045
10046@noindent
10047which should be used in a Lex-scanner as follows.
10048
10049@example
10050[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
10051[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
10052":" return yy::parser::make_COLON(loc);
10053@end example
10054
10055Tokens that do not have an identifier are not accessible: you cannot simply
10056use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
10057
10058@node A Complete C++ Example
8405b70c 10059@subsection A Complete C++ Example
12545799
AD
10060
10061This section demonstrates the use of a C++ parser with a simple but
10062complete example. This example should be available on your system,
3cdc21cf 10063ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
10064focuses on the use of Bison, therefore the design of the various C++
10065classes is very naive: no accessors, no encapsulation of members etc.
10066We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 10067demonstrate the various interactions. A hand-written scanner is
12545799
AD
10068actually easier to interface with.
10069
10070@menu
10071* Calc++ --- C++ Calculator:: The specifications
10072* Calc++ Parsing Driver:: An active parsing context
10073* Calc++ Parser:: A parser class
10074* Calc++ Scanner:: A pure C++ Flex scanner
10075* Calc++ Top Level:: Conducting the band
10076@end menu
10077
10078@node Calc++ --- C++ Calculator
8405b70c 10079@subsubsection Calc++ --- C++ Calculator
12545799
AD
10080
10081Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 10082expression, possibly preceded by variable assignments. An
12545799
AD
10083environment containing possibly predefined variables such as
10084@code{one} and @code{two}, is exchanged with the parser. An example
10085of valid input follows.
10086
10087@example
10088three := 3
10089seven := one + two * three
10090seven * seven
10091@end example
10092
10093@node Calc++ Parsing Driver
8405b70c 10094@subsubsection Calc++ Parsing Driver
12545799
AD
10095@c - An env
10096@c - A place to store error messages
10097@c - A place for the result
10098
10099To support a pure interface with the parser (and the scanner) the
10100technique of the ``parsing context'' is convenient: a structure
10101containing all the data to exchange. Since, in addition to simply
10102launch the parsing, there are several auxiliary tasks to execute (open
10103the file for parsing, instantiate the parser etc.), we recommend
10104transforming the simple parsing context structure into a fully blown
10105@dfn{parsing driver} class.
10106
10107The declaration of this driver class, @file{calc++-driver.hh}, is as
10108follows. The first part includes the CPP guard and imports the
fb9712a9
AD
10109required standard library components, and the declaration of the parser
10110class.
12545799 10111
1c59e0a1 10112@comment file: calc++-driver.hh
12545799
AD
10113@example
10114#ifndef CALCXX_DRIVER_HH
10115# define CALCXX_DRIVER_HH
10116# include <string>
10117# include <map>
fb9712a9 10118# include "calc++-parser.hh"
12545799
AD
10119@end example
10120
12545799
AD
10121
10122@noindent
10123Then comes the declaration of the scanning function. Flex expects
10124the signature of @code{yylex} to be defined in the macro
10125@code{YY_DECL}, and the C++ parser expects it to be declared. We can
10126factor both as follows.
1c59e0a1
AD
10127
10128@comment file: calc++-driver.hh
12545799 10129@example
3dc5e96b 10130// Tell Flex the lexer's prototype ...
3cdc21cf
AD
10131# define YY_DECL \
10132 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
10133// ... and declare it for the parser's sake.
10134YY_DECL;
10135@end example
10136
10137@noindent
10138The @code{calcxx_driver} class is then declared with its most obvious
10139members.
10140
1c59e0a1 10141@comment file: calc++-driver.hh
12545799
AD
10142@example
10143// Conducting the whole scanning and parsing of Calc++.
10144class calcxx_driver
10145@{
10146public:
10147 calcxx_driver ();
10148 virtual ~calcxx_driver ();
10149
10150 std::map<std::string, int> variables;
10151
10152 int result;
10153@end example
10154
10155@noindent
3cdc21cf
AD
10156To encapsulate the coordination with the Flex scanner, it is useful to have
10157member functions to open and close the scanning phase.
12545799 10158
1c59e0a1 10159@comment file: calc++-driver.hh
12545799
AD
10160@example
10161 // Handling the scanner.
10162 void scan_begin ();
10163 void scan_end ();
10164 bool trace_scanning;
10165@end example
10166
10167@noindent
10168Similarly for the parser itself.
10169
1c59e0a1 10170@comment file: calc++-driver.hh
12545799 10171@example
3cdc21cf
AD
10172 // Run the parser on file F.
10173 // Return 0 on success.
bb32f4f2 10174 int parse (const std::string& f);
3cdc21cf
AD
10175 // The name of the file being parsed.
10176 // Used later to pass the file name to the location tracker.
12545799 10177 std::string file;
3cdc21cf 10178 // Whether parser traces should be generated.
12545799
AD
10179 bool trace_parsing;
10180@end example
10181
10182@noindent
10183To demonstrate pure handling of parse errors, instead of simply
10184dumping them on the standard error output, we will pass them to the
10185compiler driver using the following two member functions. Finally, we
10186close the class declaration and CPP guard.
10187
1c59e0a1 10188@comment file: calc++-driver.hh
12545799
AD
10189@example
10190 // Error handling.
10191 void error (const yy::location& l, const std::string& m);
10192 void error (const std::string& m);
10193@};
10194#endif // ! CALCXX_DRIVER_HH
10195@end example
10196
10197The implementation of the driver is straightforward. The @code{parse}
10198member function deserves some attention. The @code{error} functions
10199are simple stubs, they should actually register the located error
10200messages and set error state.
10201
1c59e0a1 10202@comment file: calc++-driver.cc
12545799
AD
10203@example
10204#include "calc++-driver.hh"
10205#include "calc++-parser.hh"
10206
10207calcxx_driver::calcxx_driver ()
10208 : trace_scanning (false), trace_parsing (false)
10209@{
10210 variables["one"] = 1;
10211 variables["two"] = 2;
10212@}
10213
10214calcxx_driver::~calcxx_driver ()
10215@{
10216@}
10217
bb32f4f2 10218int
12545799
AD
10219calcxx_driver::parse (const std::string &f)
10220@{
10221 file = f;
10222 scan_begin ();
10223 yy::calcxx_parser parser (*this);
10224 parser.set_debug_level (trace_parsing);
bb32f4f2 10225 int res = parser.parse ();
12545799 10226 scan_end ();
bb32f4f2 10227 return res;
12545799
AD
10228@}
10229
10230void
10231calcxx_driver::error (const yy::location& l, const std::string& m)
10232@{
10233 std::cerr << l << ": " << m << std::endl;
10234@}
10235
10236void
10237calcxx_driver::error (const std::string& m)
10238@{
10239 std::cerr << m << std::endl;
10240@}
10241@end example
10242
10243@node Calc++ Parser
8405b70c 10244@subsubsection Calc++ Parser
12545799 10245
ff7571c0
JD
10246The grammar file @file{calc++-parser.yy} starts by asking for the C++
10247deterministic parser skeleton, the creation of the parser header file,
10248and specifies the name of the parser class. Because the C++ skeleton
10249changed several times, it is safer to require the version you designed
10250the grammar for.
1c59e0a1
AD
10251
10252@comment file: calc++-parser.yy
12545799 10253@example
c93f22fc 10254%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 10255%require "@value{VERSION}"
12545799 10256%defines
16dc6a9e 10257%define parser_class_name "calcxx_parser"
fb9712a9
AD
10258@end example
10259
3cdc21cf
AD
10260@noindent
10261@findex %define variant
10262@findex %define lex_symbol
10263This example will use genuine C++ objects as semantic values, therefore, we
10264require the variant-based interface. To make sure we properly use it, we
10265enable assertions. To fully benefit from type-safety and more natural
10266definition of ``symbol'', we enable @code{lex_symbol}.
10267
10268@comment file: calc++-parser.yy
10269@example
10270%define variant
10271%define parse.assert
10272%define lex_symbol
10273@end example
10274
fb9712a9 10275@noindent
16dc6a9e 10276@findex %code requires
3cdc21cf
AD
10277Then come the declarations/inclusions needed by the semantic values.
10278Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 10279to include the header of the other, which is, of course, insane. This
3cdc21cf 10280mutual dependency will be broken using forward declarations. Because the
fb9712a9 10281driver's header needs detailed knowledge about the parser class (in
3cdc21cf 10282particular its inner types), it is the parser's header which will use a
e0c07222 10283forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
10284
10285@comment file: calc++-parser.yy
10286@example
3cdc21cf
AD
10287%code requires
10288@{
12545799 10289# include <string>
fb9712a9 10290class calcxx_driver;
9bc0dd67 10291@}
12545799
AD
10292@end example
10293
10294@noindent
10295The driver is passed by reference to the parser and to the scanner.
10296This provides a simple but effective pure interface, not relying on
10297global variables.
10298
1c59e0a1 10299@comment file: calc++-parser.yy
12545799
AD
10300@example
10301// The parsing context.
2055a44e 10302%param @{ calcxx_driver& driver @}
12545799
AD
10303@end example
10304
10305@noindent
2055a44e 10306Then we request location tracking, and initialize the
f50bfcd6 10307first location's file name. Afterward new locations are computed
12545799 10308relatively to the previous locations: the file name will be
2055a44e 10309propagated.
12545799 10310
1c59e0a1 10311@comment file: calc++-parser.yy
12545799
AD
10312@example
10313%locations
10314%initial-action
10315@{
10316 // Initialize the initial location.
b47dbebe 10317 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
10318@};
10319@end example
10320
10321@noindent
7fceb615
JD
10322Use the following two directives to enable parser tracing and verbose error
10323messages. However, verbose error messages can contain incorrect information
10324(@pxref{LAC}).
12545799 10325
1c59e0a1 10326@comment file: calc++-parser.yy
12545799 10327@example
fa819509 10328%define parse.trace
cf499cff 10329%define parse.error verbose
12545799
AD
10330@end example
10331
fb9712a9 10332@noindent
136a0f76
PB
10333@findex %code
10334The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 10335@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
10336
10337@comment file: calc++-parser.yy
10338@example
3cdc21cf
AD
10339%code
10340@{
fb9712a9 10341# include "calc++-driver.hh"
34f98f46 10342@}
fb9712a9
AD
10343@end example
10344
10345
12545799
AD
10346@noindent
10347The token numbered as 0 corresponds to end of file; the following line
99c08fb6 10348allows for nicer error messages referring to ``end of file'' instead of
35c1e5f0
JD
10349``$end''. Similarly user friendly names are provided for each symbol. To
10350avoid name clashes in the generated files (@pxref{Calc++ Scanner}), prefix
10351tokens with @code{TOK_} (@pxref{%define Summary,,api.tokens.prefix}).
12545799 10352
1c59e0a1 10353@comment file: calc++-parser.yy
12545799 10354@example
4c6622c2 10355%define api.tokens.prefix "TOK_"
3cdc21cf
AD
10356%token
10357 END 0 "end of file"
10358 ASSIGN ":="
10359 MINUS "-"
10360 PLUS "+"
10361 STAR "*"
10362 SLASH "/"
10363 LPAREN "("
10364 RPAREN ")"
10365;
12545799
AD
10366@end example
10367
10368@noindent
3cdc21cf
AD
10369Since we use variant-based semantic values, @code{%union} is not used, and
10370both @code{%type} and @code{%token} expect genuine types, as opposed to type
10371tags.
12545799 10372
1c59e0a1 10373@comment file: calc++-parser.yy
12545799 10374@example
3cdc21cf
AD
10375%token <std::string> IDENTIFIER "identifier"
10376%token <int> NUMBER "number"
10377%type <int> exp
10378@end example
10379
10380@noindent
10381No @code{%destructor} is needed to enable memory deallocation during error
10382recovery; the memory, for strings for instance, will be reclaimed by the
10383regular destructors. All the values are printed using their
a76c741d 10384@code{operator<<} (@pxref{Printer Decl, , Printing Semantic Values}).
12545799 10385
3cdc21cf
AD
10386@comment file: calc++-parser.yy
10387@example
c5026327 10388%printer @{ yyoutput << $$; @} <*>;
12545799
AD
10389@end example
10390
10391@noindent
3cdc21cf
AD
10392The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
10393Location Tracking Calculator: @code{ltcalc}}).
12545799 10394
1c59e0a1 10395@comment file: calc++-parser.yy
12545799
AD
10396@example
10397%%
10398%start unit;
10399unit: assignments exp @{ driver.result = $2; @};
10400
99c08fb6 10401assignments:
5e9b6624
AD
10402 /* Nothing. */ @{@}
10403| assignments assignment @{@};
12545799 10404
3dc5e96b 10405assignment:
3cdc21cf 10406 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 10407
3cdc21cf
AD
10408%left "+" "-";
10409%left "*" "/";
99c08fb6 10410exp:
3cdc21cf
AD
10411 exp "+" exp @{ $$ = $1 + $3; @}
10412| exp "-" exp @{ $$ = $1 - $3; @}
10413| exp "*" exp @{ $$ = $1 * $3; @}
10414| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 10415| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 10416| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 10417| "number" @{ std::swap ($$, $1); @};
12545799
AD
10418%%
10419@end example
10420
10421@noindent
10422Finally the @code{error} member function registers the errors to the
10423driver.
10424
1c59e0a1 10425@comment file: calc++-parser.yy
12545799
AD
10426@example
10427void
3cdc21cf 10428yy::calcxx_parser::error (const location_type& l,
1c59e0a1 10429 const std::string& m)
12545799
AD
10430@{
10431 driver.error (l, m);
10432@}
10433@end example
10434
10435@node Calc++ Scanner
8405b70c 10436@subsubsection Calc++ Scanner
12545799
AD
10437
10438The Flex scanner first includes the driver declaration, then the
10439parser's to get the set of defined tokens.
10440
1c59e0a1 10441@comment file: calc++-scanner.ll
12545799 10442@example
c93f22fc 10443%@{ /* -*- C++ -*- */
3c248d70
AD
10444# include <cerrno>
10445# include <climits>
3cdc21cf 10446# include <cstdlib>
12545799
AD
10447# include <string>
10448# include "calc++-driver.hh"
10449# include "calc++-parser.hh"
eaea13f5 10450
3cdc21cf
AD
10451// Work around an incompatibility in flex (at least versions
10452// 2.5.31 through 2.5.33): it generates code that does
10453// not conform to C89. See Debian bug 333231
10454// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
10455# undef yywrap
10456# define yywrap() 1
eaea13f5 10457
3cdc21cf
AD
10458// The location of the current token.
10459static yy::location loc;
12545799
AD
10460%@}
10461@end example
10462
10463@noindent
10464Because there is no @code{#include}-like feature we don't need
10465@code{yywrap}, we don't need @code{unput} either, and we parse an
10466actual file, this is not an interactive session with the user.
3cdc21cf 10467Finally, we enable scanner tracing.
12545799 10468
1c59e0a1 10469@comment file: calc++-scanner.ll
12545799
AD
10470@example
10471%option noyywrap nounput batch debug
10472@end example
10473
10474@noindent
10475Abbreviations allow for more readable rules.
10476
1c59e0a1 10477@comment file: calc++-scanner.ll
12545799
AD
10478@example
10479id [a-zA-Z][a-zA-Z_0-9]*
10480int [0-9]+
10481blank [ \t]
10482@end example
10483
10484@noindent
9d9b8b70 10485The following paragraph suffices to track locations accurately. Each
12545799 10486time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
10487position. Then when a pattern is matched, its width is added to the end
10488column. When matching ends of lines, the end
12545799
AD
10489cursor is adjusted, and each time blanks are matched, the begin cursor
10490is moved onto the end cursor to effectively ignore the blanks
10491preceding tokens. Comments would be treated equally.
10492
1c59e0a1 10493@comment file: calc++-scanner.ll
12545799 10494@example
d4fca427 10495@group
828c373b 10496%@{
3cdc21cf
AD
10497 // Code run each time a pattern is matched.
10498 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 10499%@}
d4fca427 10500@end group
12545799 10501%%
d4fca427 10502@group
12545799 10503%@{
3cdc21cf
AD
10504 // Code run each time yylex is called.
10505 loc.step ();
12545799 10506%@}
d4fca427 10507@end group
3cdc21cf
AD
10508@{blank@}+ loc.step ();
10509[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
10510@end example
10511
10512@noindent
3cdc21cf 10513The rules are simple. The driver is used to report errors.
12545799 10514
1c59e0a1 10515@comment file: calc++-scanner.ll
12545799 10516@example
3cdc21cf
AD
10517"-" return yy::calcxx_parser::make_MINUS(loc);
10518"+" return yy::calcxx_parser::make_PLUS(loc);
10519"*" return yy::calcxx_parser::make_STAR(loc);
10520"/" return yy::calcxx_parser::make_SLASH(loc);
10521"(" return yy::calcxx_parser::make_LPAREN(loc);
10522")" return yy::calcxx_parser::make_RPAREN(loc);
10523":=" return yy::calcxx_parser::make_ASSIGN(loc);
10524
d4fca427 10525@group
04098407
PE
10526@{int@} @{
10527 errno = 0;
10528 long n = strtol (yytext, NULL, 10);
10529 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
10530 driver.error (loc, "integer is out of range");
10531 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 10532@}
d4fca427 10533@end group
3cdc21cf
AD
10534@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
10535. driver.error (loc, "invalid character");
10536<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
10537%%
10538@end example
10539
10540@noindent
3cdc21cf 10541Finally, because the scanner-related driver's member-functions depend
12545799
AD
10542on the scanner's data, it is simpler to implement them in this file.
10543
1c59e0a1 10544@comment file: calc++-scanner.ll
12545799 10545@example
d4fca427 10546@group
12545799
AD
10547void
10548calcxx_driver::scan_begin ()
10549@{
10550 yy_flex_debug = trace_scanning;
93c150b6 10551 if (file.empty () || file == "-")
bb32f4f2
AD
10552 yyin = stdin;
10553 else if (!(yyin = fopen (file.c_str (), "r")))
10554 @{
aaaa2aae 10555 error ("cannot open " + file + ": " + strerror(errno));
d0f2b7f8 10556 exit (EXIT_FAILURE);
bb32f4f2 10557 @}
12545799 10558@}
d4fca427 10559@end group
12545799 10560
d4fca427 10561@group
12545799
AD
10562void
10563calcxx_driver::scan_end ()
10564@{
10565 fclose (yyin);
10566@}
d4fca427 10567@end group
12545799
AD
10568@end example
10569
10570@node Calc++ Top Level
8405b70c 10571@subsubsection Calc++ Top Level
12545799
AD
10572
10573The top level file, @file{calc++.cc}, poses no problem.
10574
1c59e0a1 10575@comment file: calc++.cc
12545799
AD
10576@example
10577#include <iostream>
10578#include "calc++-driver.hh"
10579
d4fca427 10580@group
12545799 10581int
fa4d969f 10582main (int argc, char *argv[])
12545799 10583@{
414c76a4 10584 int res = 0;
12545799 10585 calcxx_driver driver;
93c150b6
AD
10586 for (int i = 1; i < argc; ++i)
10587 if (argv[i] == std::string ("-p"))
12545799 10588 driver.trace_parsing = true;
93c150b6 10589 else if (argv[i] == std::string ("-s"))
12545799 10590 driver.trace_scanning = true;
93c150b6 10591 else if (!driver.parse (argv[i]))
bb32f4f2 10592 std::cout << driver.result << std::endl;
414c76a4
AD
10593 else
10594 res = 1;
10595 return res;
12545799 10596@}
d4fca427 10597@end group
12545799
AD
10598@end example
10599
8405b70c
PB
10600@node Java Parsers
10601@section Java Parsers
10602
10603@menu
f5f419de
DJ
10604* Java Bison Interface:: Asking for Java parser generation
10605* Java Semantic Values:: %type and %token vs. Java
10606* Java Location Values:: The position and location classes
10607* Java Parser Interface:: Instantiating and running the parser
10608* Java Scanner Interface:: Specifying the scanner for the parser
10609* Java Action Features:: Special features for use in actions
10610* Java Differences:: Differences between C/C++ and Java Grammars
10611* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
10612@end menu
10613
10614@node Java Bison Interface
10615@subsection Java Bison Interface
10616@c - %language "Java"
8405b70c 10617
59da312b
JD
10618(The current Java interface is experimental and may evolve.
10619More user feedback will help to stabilize it.)
10620
e254a580
DJ
10621The Java parser skeletons are selected using the @code{%language "Java"}
10622directive or the @option{-L java}/@option{--language=java} option.
8405b70c 10623
e254a580 10624@c FIXME: Documented bug.
ff7571c0
JD
10625When generating a Java parser, @code{bison @var{basename}.y} will
10626create a single Java source file named @file{@var{basename}.java}
10627containing the parser implementation. Using a grammar file without a
10628@file{.y} suffix is currently broken. The basename of the parser
10629implementation file can be changed by the @code{%file-prefix}
10630directive or the @option{-p}/@option{--name-prefix} option. The
10631entire parser implementation file name can be changed by the
10632@code{%output} directive or the @option{-o}/@option{--output} option.
10633The parser implementation file contains a single class for the parser.
8405b70c 10634
e254a580 10635You can create documentation for generated parsers using Javadoc.
8405b70c 10636
e254a580
DJ
10637Contrary to C parsers, Java parsers do not use global variables; the
10638state of the parser is always local to an instance of the parser class.
10639Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
67501061 10640and @samp{%define api.pure} directives does not do anything when used in
e254a580 10641Java.
8405b70c 10642
e254a580 10643Push parsers are currently unsupported in Java and @code{%define
67212941 10644api.push-pull} have no effect.
01b477c6 10645
8a4281b9 10646GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
10647@code{glr-parser} directive.
10648
10649No header file can be generated for Java parsers. Do not use the
10650@code{%defines} directive or the @option{-d}/@option{--defines} options.
10651
10652@c FIXME: Possible code change.
fa819509
AD
10653Currently, support for tracing is always compiled
10654in. Thus the @samp{%define parse.trace} and @samp{%token-table}
10655directives and the
e254a580
DJ
10656@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
10657options have no effect. This may change in the future to eliminate
fa819509
AD
10658unused code in the generated parser, so use @samp{%define parse.trace}
10659explicitly
1979121c 10660if needed. Also, in the future the
e254a580
DJ
10661@code{%token-table} directive might enable a public interface to
10662access the token names and codes.
8405b70c 10663
09ccae9b 10664Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 10665hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
10666Try reducing the amount of code in actions and static initializers;
10667otherwise, report a bug so that the parser skeleton will be improved.
10668
10669
8405b70c
PB
10670@node Java Semantic Values
10671@subsection Java Semantic Values
10672@c - No %union, specify type in %type/%token.
10673@c - YYSTYPE
10674@c - Printer and destructor
10675
10676There is no @code{%union} directive in Java parsers. Instead, the
10677semantic values' types (class names) should be specified in the
10678@code{%type} or @code{%token} directive:
10679
10680@example
10681%type <Expression> expr assignment_expr term factor
10682%type <Integer> number
10683@end example
10684
10685By default, the semantic stack is declared to have @code{Object} members,
10686which means that the class types you specify can be of any class.
10687To improve the type safety of the parser, you can declare the common
67501061 10688superclass of all the semantic values using the @samp{%define stype}
e254a580 10689directive. For example, after the following declaration:
8405b70c
PB
10690
10691@example
e254a580 10692%define stype "ASTNode"
8405b70c
PB
10693@end example
10694
10695@noindent
10696any @code{%type} or @code{%token} specifying a semantic type which
10697is not a subclass of ASTNode, will cause a compile-time error.
10698
e254a580 10699@c FIXME: Documented bug.
8405b70c
PB
10700Types used in the directives may be qualified with a package name.
10701Primitive data types are accepted for Java version 1.5 or later. Note
10702that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
10703Generic types may not be used; this is due to a limitation in the
10704implementation of Bison, and may change in future releases.
8405b70c
PB
10705
10706Java parsers do not support @code{%destructor}, since the language
10707adopts garbage collection. The parser will try to hold references
10708to semantic values for as little time as needed.
10709
10710Java parsers do not support @code{%printer}, as @code{toString()}
10711can be used to print the semantic values. This however may change
10712(in a backwards-compatible way) in future versions of Bison.
10713
10714
10715@node Java Location Values
10716@subsection Java Location Values
10717@c - %locations
10718@c - class Position
10719@c - class Location
10720
303834cc
JD
10721When the directive @code{%locations} is used, the Java parser supports
10722location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
10723class defines a @dfn{position}, a single point in a file; Bison itself
10724defines a class representing a @dfn{location}, a range composed of a pair of
10725positions (possibly spanning several files). The location class is an inner
10726class of the parser; the name is @code{Location} by default, and may also be
10727renamed using @samp{%define location_type "@var{class-name}"}.
8405b70c
PB
10728
10729The location class treats the position as a completely opaque value.
10730By default, the class name is @code{Position}, but this can be changed
67501061 10731with @samp{%define position_type "@var{class-name}"}. This class must
e254a580 10732be supplied by the user.
8405b70c
PB
10733
10734
e254a580
DJ
10735@deftypeivar {Location} {Position} begin
10736@deftypeivarx {Location} {Position} end
8405b70c 10737The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
10738@end deftypeivar
10739
10740@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 10741Create a @code{Location} denoting an empty range located at a given point.
e254a580 10742@end deftypeop
8405b70c 10743
e254a580
DJ
10744@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
10745Create a @code{Location} from the endpoints of the range.
10746@end deftypeop
10747
10748@deftypemethod {Location} {String} toString ()
8405b70c
PB
10749Prints the range represented by the location. For this to work
10750properly, the position class should override the @code{equals} and
10751@code{toString} methods appropriately.
10752@end deftypemethod
10753
10754
10755@node Java Parser Interface
10756@subsection Java Parser Interface
10757@c - define parser_class_name
10758@c - Ctor
10759@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10760@c debug_stream.
10761@c - Reporting errors
10762
e254a580
DJ
10763The name of the generated parser class defaults to @code{YYParser}. The
10764@code{YY} prefix may be changed using the @code{%name-prefix} directive
10765or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 10766@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 10767the class. The interface of this class is detailed below.
8405b70c 10768
e254a580 10769By default, the parser class has package visibility. A declaration
67501061 10770@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
10771according to the Java language specification, the name of the @file{.java}
10772file should match the name of the class in this case. Similarly, you can
10773use @code{abstract}, @code{final} and @code{strictfp} with the
10774@code{%define} declaration to add other modifiers to the parser class.
67501061 10775A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 10776be used to add any number of annotations to the parser class.
e254a580
DJ
10777
10778The Java package name of the parser class can be specified using the
67501061 10779@samp{%define package} directive. The superclass and the implemented
e254a580 10780interfaces of the parser class can be specified with the @code{%define
67501061 10781extends} and @samp{%define implements} directives.
e254a580
DJ
10782
10783The parser class defines an inner class, @code{Location}, that is used
10784for location tracking (see @ref{Java Location Values}), and a inner
10785interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
10786these inner class/interface, and the members described in the interface
10787below, all the other members and fields are preceded with a @code{yy} or
10788@code{YY} prefix to avoid clashes with user code.
10789
e254a580
DJ
10790The parser class can be extended using the @code{%parse-param}
10791directive. Each occurrence of the directive will add a @code{protected
10792final} field to the parser class, and an argument to its constructor,
10793which initialize them automatically.
10794
e254a580
DJ
10795@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
10796Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
10797no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
10798@code{%lex-param}s are used.
1979121c
DJ
10799
10800Use @code{%code init} for code added to the start of the constructor
10801body. This is especially useful to initialize superclasses. Use
f50bfcd6 10802@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
10803@end deftypeop
10804
10805@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
10806Build a new parser object using the specified scanner. There are no
2055a44e
AD
10807additional parameters unless @code{%param}s and/or @code{%parse-param}s are
10808used.
e254a580
DJ
10809
10810If the scanner is defined by @code{%code lexer}, this constructor is
10811declared @code{protected} and is called automatically with a scanner
2055a44e 10812created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
10813
10814Use @code{%code init} for code added to the start of the constructor
10815body. This is especially useful to initialize superclasses. Use
5a321748 10816@samp{%define init_throws} to specify any uncaught exceptions.
e254a580 10817@end deftypeop
8405b70c
PB
10818
10819@deftypemethod {YYParser} {boolean} parse ()
10820Run the syntactic analysis, and return @code{true} on success,
10821@code{false} otherwise.
10822@end deftypemethod
10823
1979121c
DJ
10824@deftypemethod {YYParser} {boolean} getErrorVerbose ()
10825@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
10826Get or set the option to produce verbose error messages. These are only
cf499cff 10827available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
10828verbose error messages.
10829@end deftypemethod
10830
10831@deftypemethod {YYParser} {void} yyerror (String @var{msg})
10832@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
10833@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
10834Print an error message using the @code{yyerror} method of the scanner
10835instance in use. The @code{Location} and @code{Position} parameters are
10836available only if location tracking is active.
10837@end deftypemethod
10838
01b477c6 10839@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 10840During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
10841from a syntax error.
10842@xref{Error Recovery}.
8405b70c
PB
10843@end deftypemethod
10844
10845@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
10846@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
10847Get or set the stream used for tracing the parsing. It defaults to
10848@code{System.err}.
10849@end deftypemethod
10850
10851@deftypemethod {YYParser} {int} getDebugLevel ()
10852@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
10853Get or set the tracing level. Currently its value is either 0, no trace,
10854or nonzero, full tracing.
10855@end deftypemethod
10856
1979121c
DJ
10857@deftypecv {Constant} {YYParser} {String} {bisonVersion}
10858@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
10859Identify the Bison version and skeleton used to generate this parser.
10860@end deftypecv
10861
8405b70c
PB
10862
10863@node Java Scanner Interface
10864@subsection Java Scanner Interface
01b477c6 10865@c - %code lexer
8405b70c 10866@c - %lex-param
01b477c6 10867@c - Lexer interface
8405b70c 10868
e254a580
DJ
10869There are two possible ways to interface a Bison-generated Java parser
10870with a scanner: the scanner may be defined by @code{%code lexer}, or
10871defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
10872@code{Lexer} inner interface of the parser class. This interface also
10873contain constants for all user-defined token names and the predefined
10874@code{EOF} token.
e254a580
DJ
10875
10876In the first case, the body of the scanner class is placed in
10877@code{%code lexer} blocks. If you want to pass parameters from the
10878parser constructor to the scanner constructor, specify them with
10879@code{%lex-param}; they are passed before @code{%parse-param}s to the
10880constructor.
01b477c6 10881
59c5ac72 10882In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
10883which is defined within the parser class (e.g., @code{YYParser.Lexer}).
10884The constructor of the parser object will then accept an object
10885implementing the interface; @code{%lex-param} is not used in this
10886case.
10887
10888In both cases, the scanner has to implement the following methods.
10889
e254a580
DJ
10890@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
10891This method is defined by the user to emit an error message. The first
10892parameter is omitted if location tracking is not active. Its type can be
67501061 10893changed using @samp{%define location_type "@var{class-name}".}
8405b70c
PB
10894@end deftypemethod
10895
e254a580 10896@deftypemethod {Lexer} {int} yylex ()
8405b70c 10897Return the next token. Its type is the return value, its semantic
f50bfcd6 10898value and location are saved and returned by the their methods in the
e254a580
DJ
10899interface.
10900
67501061 10901Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 10902Default is @code{java.io.IOException}.
8405b70c
PB
10903@end deftypemethod
10904
10905@deftypemethod {Lexer} {Position} getStartPos ()
10906@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
10907Return respectively the first position of the last token that
10908@code{yylex} returned, and the first position beyond it. These
10909methods are not needed unless location tracking is active.
8405b70c 10910
67501061 10911The return type can be changed using @samp{%define position_type
8405b70c
PB
10912"@var{class-name}".}
10913@end deftypemethod
10914
10915@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 10916Return the semantic value of the last token that yylex returned.
8405b70c 10917
67501061 10918The return type can be changed using @samp{%define stype
8405b70c
PB
10919"@var{class-name}".}
10920@end deftypemethod
10921
10922
e254a580
DJ
10923@node Java Action Features
10924@subsection Special Features for Use in Java Actions
10925
10926The following special constructs can be uses in Java actions.
10927Other analogous C action features are currently unavailable for Java.
10928
67501061 10929Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
10930actions, and initial actions specified by @code{%initial-action}.
10931
10932@defvar $@var{n}
10933The semantic value for the @var{n}th component of the current rule.
10934This may not be assigned to.
10935@xref{Java Semantic Values}.
10936@end defvar
10937
10938@defvar $<@var{typealt}>@var{n}
10939Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
10940@xref{Java Semantic Values}.
10941@end defvar
10942
10943@defvar $$
10944The semantic value for the grouping made by the current rule. As a
10945value, this is in the base type (@code{Object} or as specified by
67501061 10946@samp{%define stype}) as in not cast to the declared subtype because
e254a580
DJ
10947casts are not allowed on the left-hand side of Java assignments.
10948Use an explicit Java cast if the correct subtype is needed.
10949@xref{Java Semantic Values}.
10950@end defvar
10951
10952@defvar $<@var{typealt}>$
10953Same as @code{$$} since Java always allow assigning to the base type.
10954Perhaps we should use this and @code{$<>$} for the value and @code{$$}
10955for setting the value but there is currently no easy way to distinguish
10956these constructs.
10957@xref{Java Semantic Values}.
10958@end defvar
10959
10960@defvar @@@var{n}
10961The location information of the @var{n}th component of the current rule.
10962This may not be assigned to.
10963@xref{Java Location Values}.
10964@end defvar
10965
10966@defvar @@$
10967The location information of the grouping made by the current rule.
10968@xref{Java Location Values}.
10969@end defvar
10970
34a41a93 10971@deftypefn {Statement} return YYABORT @code{;}
e254a580
DJ
10972Return immediately from the parser, indicating failure.
10973@xref{Java Parser Interface}.
34a41a93 10974@end deftypefn
8405b70c 10975
34a41a93 10976@deftypefn {Statement} return YYACCEPT @code{;}
e254a580
DJ
10977Return immediately from the parser, indicating success.
10978@xref{Java Parser Interface}.
34a41a93 10979@end deftypefn
8405b70c 10980
34a41a93 10981@deftypefn {Statement} {return} YYERROR @code{;}
4a11b852 10982Start error recovery (without printing an error message).
e254a580 10983@xref{Error Recovery}.
34a41a93 10984@end deftypefn
8405b70c 10985
e254a580
DJ
10986@deftypefn {Function} {boolean} recovering ()
10987Return whether error recovery is being done. In this state, the parser
10988reads token until it reaches a known state, and then restarts normal
10989operation.
10990@xref{Error Recovery}.
10991@end deftypefn
8405b70c 10992
1979121c
DJ
10993@deftypefn {Function} {void} yyerror (String @var{msg})
10994@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
10995@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 10996Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
10997instance in use. The @code{Location} and @code{Position} parameters are
10998available only if location tracking is active.
e254a580 10999@end deftypefn
8405b70c 11000
8405b70c 11001
8405b70c
PB
11002@node Java Differences
11003@subsection Differences between C/C++ and Java Grammars
11004
11005The different structure of the Java language forces several differences
11006between C/C++ grammars, and grammars designed for Java parsers. This
29553547 11007section summarizes these differences.
8405b70c
PB
11008
11009@itemize
11010@item
01b477c6 11011Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 11012@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
11013macros. Instead, they should be preceded by @code{return} when they
11014appear in an action. The actual definition of these symbols is
8405b70c
PB
11015opaque to the Bison grammar, and it might change in the future. The
11016only meaningful operation that you can do, is to return them.
e3fd1dcb 11017@xref{Java Action Features}.
8405b70c
PB
11018
11019Note that of these three symbols, only @code{YYACCEPT} and
11020@code{YYABORT} will cause a return from the @code{yyparse}
11021method@footnote{Java parsers include the actions in a separate
11022method than @code{yyparse} in order to have an intuitive syntax that
11023corresponds to these C macros.}.
11024
e254a580
DJ
11025@item
11026Java lacks unions, so @code{%union} has no effect. Instead, semantic
11027values have a common base type: @code{Object} or as specified by
f50bfcd6 11028@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
11029@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
11030an union. The type of @code{$$}, even with angle brackets, is the base
11031type since Java casts are not allow on the left-hand side of assignments.
11032Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
15cd62c2 11033left-hand side of assignments. @xref{Java Semantic Values}, and
e3fd1dcb 11034@ref{Java Action Features}.
e254a580 11035
8405b70c 11036@item
f50bfcd6 11037The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
11038@table @asis
11039@item @code{%code imports}
11040blocks are placed at the beginning of the Java source code. They may
11041include copyright notices. For a @code{package} declarations, it is
67501061 11042suggested to use @samp{%define package} instead.
8405b70c 11043
01b477c6
PB
11044@item unqualified @code{%code}
11045blocks are placed inside the parser class.
11046
11047@item @code{%code lexer}
11048blocks, if specified, should include the implementation of the
11049scanner. If there is no such block, the scanner can be any class
e3fd1dcb 11050that implements the appropriate interface (@pxref{Java Scanner
01b477c6 11051Interface}).
29553547 11052@end table
8405b70c
PB
11053
11054Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
11055In particular, @code{%@{ @dots{} %@}} blocks should not be used
11056and may give an error in future versions of Bison.
11057
01b477c6 11058The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
11059be used to define other classes used by the parser @emph{outside}
11060the parser class.
8405b70c
PB
11061@end itemize
11062
e254a580
DJ
11063
11064@node Java Declarations Summary
11065@subsection Java Declarations Summary
11066
11067This summary only include declarations specific to Java or have special
11068meaning when used in a Java parser.
11069
11070@deffn {Directive} {%language "Java"}
11071Generate a Java class for the parser.
11072@end deffn
11073
11074@deffn {Directive} %lex-param @{@var{type} @var{name}@}
11075A parameter for the lexer class defined by @code{%code lexer}
11076@emph{only}, added as parameters to the lexer constructor and the parser
11077constructor that @emph{creates} a lexer. Default is none.
11078@xref{Java Scanner Interface}.
11079@end deffn
11080
11081@deffn {Directive} %name-prefix "@var{prefix}"
11082The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 11083@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
11084@xref{Java Bison Interface}.
11085@end deffn
11086
11087@deffn {Directive} %parse-param @{@var{type} @var{name}@}
11088A parameter for the parser class added as parameters to constructor(s)
11089and as fields initialized by the constructor(s). Default is none.
11090@xref{Java Parser Interface}.
11091@end deffn
11092
11093@deffn {Directive} %token <@var{type}> @var{token} @dots{}
11094Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
11095@xref{Java Semantic Values}.
11096@end deffn
11097
11098@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
11099Declare the type of nonterminals. Note that the angle brackets enclose
11100a Java @emph{type}.
11101@xref{Java Semantic Values}.
11102@end deffn
11103
11104@deffn {Directive} %code @{ @var{code} @dots{} @}
11105Code appended to the inside of the parser class.
11106@xref{Java Differences}.
11107@end deffn
11108
11109@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
11110Code inserted just after the @code{package} declaration.
11111@xref{Java Differences}.
11112@end deffn
11113
1979121c
DJ
11114@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
11115Code inserted at the beginning of the parser constructor body.
11116@xref{Java Parser Interface}.
11117@end deffn
11118
e254a580
DJ
11119@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
11120Code added to the body of a inner lexer class within the parser class.
11121@xref{Java Scanner Interface}.
11122@end deffn
11123
11124@deffn {Directive} %% @var{code} @dots{}
11125Code (after the second @code{%%}) appended to the end of the file,
11126@emph{outside} the parser class.
11127@xref{Java Differences}.
11128@end deffn
11129
11130@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 11131Not supported. Use @code{%code imports} instead.
e254a580
DJ
11132@xref{Java Differences}.
11133@end deffn
11134
11135@deffn {Directive} {%define abstract}
11136Whether the parser class is declared @code{abstract}. Default is false.
11137@xref{Java Bison Interface}.
11138@end deffn
11139
1979121c
DJ
11140@deffn {Directive} {%define annotations} "@var{annotations}"
11141The Java annotations for the parser class. Default is none.
11142@xref{Java Bison Interface}.
11143@end deffn
11144
e254a580
DJ
11145@deffn {Directive} {%define extends} "@var{superclass}"
11146The superclass of the parser class. Default is none.
11147@xref{Java Bison Interface}.
11148@end deffn
11149
11150@deffn {Directive} {%define final}
11151Whether the parser class is declared @code{final}. Default is false.
11152@xref{Java Bison Interface}.
11153@end deffn
11154
11155@deffn {Directive} {%define implements} "@var{interfaces}"
11156The implemented interfaces of the parser class, a comma-separated list.
11157Default is none.
11158@xref{Java Bison Interface}.
11159@end deffn
11160
1979121c
DJ
11161@deffn {Directive} {%define init_throws} "@var{exceptions}"
11162The exceptions thrown by @code{%code init} from the parser class
11163constructor. Default is none.
11164@xref{Java Parser Interface}.
11165@end deffn
11166
e254a580
DJ
11167@deffn {Directive} {%define lex_throws} "@var{exceptions}"
11168The exceptions thrown by the @code{yylex} method of the lexer, a
11169comma-separated list. Default is @code{java.io.IOException}.
11170@xref{Java Scanner Interface}.
11171@end deffn
11172
11173@deffn {Directive} {%define location_type} "@var{class}"
11174The name of the class used for locations (a range between two
11175positions). This class is generated as an inner class of the parser
11176class by @command{bison}. Default is @code{Location}.
11177@xref{Java Location Values}.
11178@end deffn
11179
11180@deffn {Directive} {%define package} "@var{package}"
11181The package to put the parser class in. Default is none.
11182@xref{Java Bison Interface}.
11183@end deffn
11184
11185@deffn {Directive} {%define parser_class_name} "@var{name}"
11186The name of the parser class. Default is @code{YYParser} or
11187@code{@var{name-prefix}Parser}.
11188@xref{Java Bison Interface}.
11189@end deffn
11190
11191@deffn {Directive} {%define position_type} "@var{class}"
11192The name of the class used for positions. This class must be supplied by
11193the user. Default is @code{Position}.
11194@xref{Java Location Values}.
11195@end deffn
11196
11197@deffn {Directive} {%define public}
11198Whether the parser class is declared @code{public}. Default is false.
11199@xref{Java Bison Interface}.
11200@end deffn
11201
11202@deffn {Directive} {%define stype} "@var{class}"
11203The base type of semantic values. Default is @code{Object}.
11204@xref{Java Semantic Values}.
11205@end deffn
11206
11207@deffn {Directive} {%define strictfp}
11208Whether the parser class is declared @code{strictfp}. Default is false.
11209@xref{Java Bison Interface}.
11210@end deffn
11211
11212@deffn {Directive} {%define throws} "@var{exceptions}"
11213The exceptions thrown by user-supplied parser actions and
11214@code{%initial-action}, a comma-separated list. Default is none.
11215@xref{Java Parser Interface}.
11216@end deffn
11217
11218
12545799 11219@c ================================================= FAQ
d1a1114f
AD
11220
11221@node FAQ
11222@chapter Frequently Asked Questions
11223@cindex frequently asked questions
11224@cindex questions
11225
11226Several questions about Bison come up occasionally. Here some of them
11227are addressed.
11228
11229@menu
55ba27be
AD
11230* Memory Exhausted:: Breaking the Stack Limits
11231* How Can I Reset the Parser:: @code{yyparse} Keeps some State
11232* Strings are Destroyed:: @code{yylval} Loses Track of Strings
11233* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 11234* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 11235* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
11236* I can't build Bison:: Troubleshooting
11237* Where can I find help?:: Troubleshouting
11238* Bug Reports:: Troublereporting
8405b70c 11239* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
11240* Beta Testing:: Experimenting development versions
11241* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
11242@end menu
11243
1a059451
PE
11244@node Memory Exhausted
11245@section Memory Exhausted
d1a1114f 11246
71b52b13 11247@quotation
1a059451 11248My parser returns with error with a @samp{memory exhausted}
d1a1114f 11249message. What can I do?
71b52b13 11250@end quotation
d1a1114f 11251
188867ac
AD
11252This question is already addressed elsewhere, see @ref{Recursion, ,Recursive
11253Rules}.
d1a1114f 11254
e64fec0a
PE
11255@node How Can I Reset the Parser
11256@section How Can I Reset the Parser
5b066063 11257
0e14ad77
PE
11258The following phenomenon has several symptoms, resulting in the
11259following typical questions:
5b066063 11260
71b52b13 11261@quotation
5b066063
AD
11262I invoke @code{yyparse} several times, and on correct input it works
11263properly; but when a parse error is found, all the other calls fail
0e14ad77 11264too. How can I reset the error flag of @code{yyparse}?
71b52b13 11265@end quotation
5b066063
AD
11266
11267@noindent
11268or
11269
71b52b13 11270@quotation
0e14ad77 11271My parser includes support for an @samp{#include}-like feature, in
5b066063 11272which case I run @code{yyparse} from @code{yyparse}. This fails
67501061 11273although I did specify @samp{%define api.pure}.
71b52b13 11274@end quotation
5b066063 11275
0e14ad77
PE
11276These problems typically come not from Bison itself, but from
11277Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
11278speed, they might not notice a change of input file. As a
11279demonstration, consider the following source file,
11280@file{first-line.l}:
11281
d4fca427
AD
11282@example
11283@group
11284%@{
5b066063
AD
11285#include <stdio.h>
11286#include <stdlib.h>
d4fca427
AD
11287%@}
11288@end group
5b066063
AD
11289%%
11290.*\n ECHO; return 1;
11291%%
d4fca427 11292@group
5b066063 11293int
0e14ad77 11294yyparse (char const *file)
d4fca427 11295@{
5b066063
AD
11296 yyin = fopen (file, "r");
11297 if (!yyin)
d4fca427
AD
11298 @{
11299 perror ("fopen");
11300 exit (EXIT_FAILURE);
11301 @}
11302@end group
11303@group
fa7e68c3 11304 /* One token only. */
5b066063 11305 yylex ();
0e14ad77 11306 if (fclose (yyin) != 0)
d4fca427
AD
11307 @{
11308 perror ("fclose");
11309 exit (EXIT_FAILURE);
11310 @}
5b066063 11311 return 0;
d4fca427
AD
11312@}
11313@end group
5b066063 11314
d4fca427 11315@group
5b066063 11316int
0e14ad77 11317main (void)
d4fca427 11318@{
5b066063
AD
11319 yyparse ("input");
11320 yyparse ("input");
11321 return 0;
d4fca427
AD
11322@}
11323@end group
11324@end example
5b066063
AD
11325
11326@noindent
11327If the file @file{input} contains
11328
71b52b13 11329@example
5b066063
AD
11330input:1: Hello,
11331input:2: World!
71b52b13 11332@end example
5b066063
AD
11333
11334@noindent
0e14ad77 11335then instead of getting the first line twice, you get:
5b066063
AD
11336
11337@example
11338$ @kbd{flex -ofirst-line.c first-line.l}
11339$ @kbd{gcc -ofirst-line first-line.c -ll}
11340$ @kbd{./first-line}
11341input:1: Hello,
11342input:2: World!
11343@end example
11344
0e14ad77
PE
11345Therefore, whenever you change @code{yyin}, you must tell the
11346Lex-generated scanner to discard its current buffer and switch to the
11347new one. This depends upon your implementation of Lex; see its
11348documentation for more. For Flex, it suffices to call
11349@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
11350Flex-generated scanner needs to read from several input streams to
11351handle features like include files, you might consider using Flex
11352functions like @samp{yy_switch_to_buffer} that manipulate multiple
11353input buffers.
5b066063 11354
b165c324
AD
11355If your Flex-generated scanner uses start conditions (@pxref{Start
11356conditions, , Start conditions, flex, The Flex Manual}), you might
11357also want to reset the scanner's state, i.e., go back to the initial
11358start condition, through a call to @samp{BEGIN (0)}.
11359
fef4cb51
AD
11360@node Strings are Destroyed
11361@section Strings are Destroyed
11362
71b52b13 11363@quotation
c7e441b4 11364My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
11365them. Instead of reporting @samp{"foo", "bar"}, it reports
11366@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
71b52b13 11367@end quotation
fef4cb51
AD
11368
11369This error is probably the single most frequent ``bug report'' sent to
11370Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 11371of the scanner. Consider the following Lex code:
fef4cb51 11372
71b52b13 11373@example
d4fca427 11374@group
71b52b13 11375%@{
fef4cb51
AD
11376#include <stdio.h>
11377char *yylval = NULL;
71b52b13 11378%@}
d4fca427
AD
11379@end group
11380@group
fef4cb51
AD
11381%%
11382.* yylval = yytext; return 1;
11383\n /* IGNORE */
11384%%
d4fca427
AD
11385@end group
11386@group
fef4cb51
AD
11387int
11388main ()
71b52b13 11389@{
fa7e68c3 11390 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
11391 char *fst = (yylex (), yylval);
11392 char *snd = (yylex (), yylval);
11393 printf ("\"%s\", \"%s\"\n", fst, snd);
11394 return 0;
71b52b13 11395@}
d4fca427 11396@end group
71b52b13 11397@end example
fef4cb51
AD
11398
11399If you compile and run this code, you get:
11400
11401@example
11402$ @kbd{flex -osplit-lines.c split-lines.l}
11403$ @kbd{gcc -osplit-lines split-lines.c -ll}
11404$ @kbd{printf 'one\ntwo\n' | ./split-lines}
11405"one
11406two", "two"
11407@end example
11408
11409@noindent
11410this is because @code{yytext} is a buffer provided for @emph{reading}
11411in the action, but if you want to keep it, you have to duplicate it
11412(e.g., using @code{strdup}). Note that the output may depend on how
11413your implementation of Lex handles @code{yytext}. For instance, when
11414given the Lex compatibility option @option{-l} (which triggers the
11415option @samp{%array}) Flex generates a different behavior:
11416
11417@example
11418$ @kbd{flex -l -osplit-lines.c split-lines.l}
11419$ @kbd{gcc -osplit-lines split-lines.c -ll}
11420$ @kbd{printf 'one\ntwo\n' | ./split-lines}
11421"two", "two"
11422@end example
11423
11424
2fa09258
AD
11425@node Implementing Gotos/Loops
11426@section Implementing Gotos/Loops
a06ea4aa 11427
71b52b13 11428@quotation
a06ea4aa 11429My simple calculator supports variables, assignments, and functions,
2fa09258 11430but how can I implement gotos, or loops?
71b52b13 11431@end quotation
a06ea4aa
AD
11432
11433Although very pedagogical, the examples included in the document blur
a1c84f45 11434the distinction to make between the parser---whose job is to recover
a06ea4aa 11435the structure of a text and to transmit it to subsequent modules of
a1c84f45 11436the program---and the processing (such as the execution) of this
a06ea4aa
AD
11437structure. This works well with so called straight line programs,
11438i.e., precisely those that have a straightforward execution model:
11439execute simple instructions one after the others.
11440
11441@cindex abstract syntax tree
8a4281b9 11442@cindex AST
a06ea4aa
AD
11443If you want a richer model, you will probably need to use the parser
11444to construct a tree that does represent the structure it has
11445recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 11446or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
11447traversing it in various ways, will enable treatments such as its
11448execution or its translation, which will result in an interpreter or a
11449compiler.
11450
11451This topic is way beyond the scope of this manual, and the reader is
11452invited to consult the dedicated literature.
11453
11454
ed2e6384
AD
11455@node Multiple start-symbols
11456@section Multiple start-symbols
11457
71b52b13 11458@quotation
ed2e6384
AD
11459I have several closely related grammars, and I would like to share their
11460implementations. In fact, I could use a single grammar but with
11461multiple entry points.
71b52b13 11462@end quotation
ed2e6384
AD
11463
11464Bison does not support multiple start-symbols, but there is a very
11465simple means to simulate them. If @code{foo} and @code{bar} are the two
11466pseudo start-symbols, then introduce two new tokens, say
11467@code{START_FOO} and @code{START_BAR}, and use them as switches from the
11468real start-symbol:
11469
11470@example
11471%token START_FOO START_BAR;
11472%start start;
5e9b6624
AD
11473start:
11474 START_FOO foo
11475| START_BAR bar;
ed2e6384
AD
11476@end example
11477
11478These tokens prevents the introduction of new conflicts. As far as the
11479parser goes, that is all that is needed.
11480
11481Now the difficult part is ensuring that the scanner will send these
11482tokens first. If your scanner is hand-written, that should be
11483straightforward. If your scanner is generated by Lex, them there is
11484simple means to do it: recall that anything between @samp{%@{ ... %@}}
11485after the first @code{%%} is copied verbatim in the top of the generated
11486@code{yylex} function. Make sure a variable @code{start_token} is
11487available in the scanner (e.g., a global variable or using
11488@code{%lex-param} etc.), and use the following:
11489
11490@example
11491 /* @r{Prologue.} */
11492%%
11493%@{
11494 if (start_token)
11495 @{
11496 int t = start_token;
11497 start_token = 0;
11498 return t;
11499 @}
11500%@}
11501 /* @r{The rules.} */
11502@end example
11503
11504
55ba27be
AD
11505@node Secure? Conform?
11506@section Secure? Conform?
11507
71b52b13 11508@quotation
55ba27be 11509Is Bison secure? Does it conform to POSIX?
71b52b13 11510@end quotation
55ba27be
AD
11511
11512If you're looking for a guarantee or certification, we don't provide it.
11513However, Bison is intended to be a reliable program that conforms to the
8a4281b9 11514POSIX specification for Yacc. If you run into problems,
55ba27be
AD
11515please send us a bug report.
11516
11517@node I can't build Bison
11518@section I can't build Bison
11519
71b52b13 11520@quotation
8c5b881d
PE
11521I can't build Bison because @command{make} complains that
11522@code{msgfmt} is not found.
55ba27be 11523What should I do?
71b52b13 11524@end quotation
55ba27be
AD
11525
11526Like most GNU packages with internationalization support, that feature
11527is turned on by default. If you have problems building in the @file{po}
11528subdirectory, it indicates that your system's internationalization
11529support is lacking. You can re-configure Bison with
11530@option{--disable-nls} to turn off this support, or you can install GNU
11531gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
11532Bison. See the file @file{ABOUT-NLS} for more information.
11533
11534
11535@node Where can I find help?
11536@section Where can I find help?
11537
71b52b13 11538@quotation
55ba27be 11539I'm having trouble using Bison. Where can I find help?
71b52b13 11540@end quotation
55ba27be
AD
11541
11542First, read this fine manual. Beyond that, you can send mail to
11543@email{help-bison@@gnu.org}. This mailing list is intended to be
11544populated with people who are willing to answer questions about using
11545and installing Bison. Please keep in mind that (most of) the people on
11546the list have aspects of their lives which are not related to Bison (!),
11547so you may not receive an answer to your question right away. This can
11548be frustrating, but please try not to honk them off; remember that any
11549help they provide is purely voluntary and out of the kindness of their
11550hearts.
11551
11552@node Bug Reports
11553@section Bug Reports
11554
71b52b13 11555@quotation
55ba27be 11556I found a bug. What should I include in the bug report?
71b52b13 11557@end quotation
55ba27be
AD
11558
11559Before you send a bug report, make sure you are using the latest
11560version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
11561mirrors. Be sure to include the version number in your bug report. If
11562the bug is present in the latest version but not in a previous version,
11563try to determine the most recent version which did not contain the bug.
11564
11565If the bug is parser-related, you should include the smallest grammar
11566you can which demonstrates the bug. The grammar file should also be
11567complete (i.e., I should be able to run it through Bison without having
11568to edit or add anything). The smaller and simpler the grammar, the
11569easier it will be to fix the bug.
11570
11571Include information about your compilation environment, including your
11572operating system's name and version and your compiler's name and
11573version. If you have trouble compiling, you should also include a
11574transcript of the build session, starting with the invocation of
11575`configure'. Depending on the nature of the bug, you may be asked to
11576send additional files as well (such as `config.h' or `config.cache').
11577
11578Patches are most welcome, but not required. That is, do not hesitate to
411614fa 11579send a bug report just because you cannot provide a fix.
55ba27be
AD
11580
11581Send bug reports to @email{bug-bison@@gnu.org}.
11582
8405b70c
PB
11583@node More Languages
11584@section More Languages
55ba27be 11585
71b52b13 11586@quotation
8405b70c 11587Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 11588favorite language here}?
71b52b13 11589@end quotation
55ba27be 11590
8405b70c 11591C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
11592languages; contributions are welcome.
11593
11594@node Beta Testing
11595@section Beta Testing
11596
71b52b13 11597@quotation
55ba27be 11598What is involved in being a beta tester?
71b52b13 11599@end quotation
55ba27be
AD
11600
11601It's not terribly involved. Basically, you would download a test
11602release, compile it, and use it to build and run a parser or two. After
11603that, you would submit either a bug report or a message saying that
11604everything is okay. It is important to report successes as well as
11605failures because test releases eventually become mainstream releases,
11606but only if they are adequately tested. If no one tests, development is
11607essentially halted.
11608
11609Beta testers are particularly needed for operating systems to which the
11610developers do not have easy access. They currently have easy access to
11611recent GNU/Linux and Solaris versions. Reports about other operating
11612systems are especially welcome.
11613
11614@node Mailing Lists
11615@section Mailing Lists
11616
71b52b13 11617@quotation
55ba27be 11618How do I join the help-bison and bug-bison mailing lists?
71b52b13 11619@end quotation
55ba27be
AD
11620
11621See @url{http://lists.gnu.org/}.
a06ea4aa 11622
d1a1114f
AD
11623@c ================================================= Table of Symbols
11624
342b8b6e 11625@node Table of Symbols
bfa74976
RS
11626@appendix Bison Symbols
11627@cindex Bison symbols, table of
11628@cindex symbols in Bison, table of
11629
18b519c0 11630@deffn {Variable} @@$
3ded9a63 11631In an action, the location of the left-hand side of the rule.
303834cc 11632@xref{Tracking Locations}.
18b519c0 11633@end deffn
3ded9a63 11634
18b519c0 11635@deffn {Variable} @@@var{n}
303834cc
JD
11636In an action, the location of the @var{n}-th symbol of the right-hand side
11637of the rule. @xref{Tracking Locations}.
18b519c0 11638@end deffn
3ded9a63 11639
d013372c 11640@deffn {Variable} @@@var{name}
303834cc
JD
11641In an action, the location of a symbol addressed by name. @xref{Tracking
11642Locations}.
d013372c
AR
11643@end deffn
11644
11645@deffn {Variable} @@[@var{name}]
303834cc
JD
11646In an action, the location of a symbol addressed by name. @xref{Tracking
11647Locations}.
d013372c
AR
11648@end deffn
11649
18b519c0 11650@deffn {Variable} $$
3ded9a63
AD
11651In an action, the semantic value of the left-hand side of the rule.
11652@xref{Actions}.
18b519c0 11653@end deffn
3ded9a63 11654
18b519c0 11655@deffn {Variable} $@var{n}
3ded9a63
AD
11656In an action, the semantic value of the @var{n}-th symbol of the
11657right-hand side of the rule. @xref{Actions}.
18b519c0 11658@end deffn
3ded9a63 11659
d013372c
AR
11660@deffn {Variable} $@var{name}
11661In an action, the semantic value of a symbol addressed by name.
11662@xref{Actions}.
11663@end deffn
11664
11665@deffn {Variable} $[@var{name}]
11666In an action, the semantic value of a symbol addressed by name.
11667@xref{Actions}.
11668@end deffn
11669
dd8d9022
AD
11670@deffn {Delimiter} %%
11671Delimiter used to separate the grammar rule section from the
11672Bison declarations section or the epilogue.
11673@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 11674@end deffn
bfa74976 11675
dd8d9022
AD
11676@c Don't insert spaces, or check the DVI output.
11677@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
11678All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
11679to the parser implementation file. Such code forms the prologue of
11680the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 11681Grammar}.
18b519c0 11682@end deffn
bfa74976 11683
ca2a6d15
PH
11684@deffn {Directive} %?@{@var{expression}@}
11685Predicate actions. This is a type of action clause that may appear in
11686rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 11687GLR parsers during nondeterministic operation,
ca2a6d15
PH
11688this silently causes an alternative parse to die. During deterministic
11689operation, it is the same as the effect of YYERROR.
11690@xref{Semantic Predicates}.
11691
11692This feature is experimental.
11693More user feedback will help to determine whether it should become a permanent
11694feature.
11695@end deffn
11696
dd8d9022
AD
11697@deffn {Construct} /*@dots{}*/
11698Comment delimiters, as in C.
18b519c0 11699@end deffn
bfa74976 11700
dd8d9022
AD
11701@deffn {Delimiter} :
11702Separates a rule's result from its components. @xref{Rules, ,Syntax of
11703Grammar Rules}.
18b519c0 11704@end deffn
bfa74976 11705
dd8d9022
AD
11706@deffn {Delimiter} ;
11707Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11708@end deffn
bfa74976 11709
dd8d9022
AD
11710@deffn {Delimiter} |
11711Separates alternate rules for the same result nonterminal.
11712@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11713@end deffn
bfa74976 11714
12e35840
JD
11715@deffn {Directive} <*>
11716Used to define a default tagged @code{%destructor} or default tagged
11717@code{%printer}.
85894313
JD
11718
11719This feature is experimental.
11720More user feedback will help to determine whether it should become a permanent
11721feature.
11722
12e35840
JD
11723@xref{Destructor Decl, , Freeing Discarded Symbols}.
11724@end deffn
11725
3ebecc24 11726@deffn {Directive} <>
12e35840
JD
11727Used to define a default tagless @code{%destructor} or default tagless
11728@code{%printer}.
85894313
JD
11729
11730This feature is experimental.
11731More user feedback will help to determine whether it should become a permanent
11732feature.
11733
12e35840
JD
11734@xref{Destructor Decl, , Freeing Discarded Symbols}.
11735@end deffn
11736
dd8d9022
AD
11737@deffn {Symbol} $accept
11738The predefined nonterminal whose only rule is @samp{$accept: @var{start}
11739$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
11740Start-Symbol}. It cannot be used in the grammar.
18b519c0 11741@end deffn
bfa74976 11742
136a0f76 11743@deffn {Directive} %code @{@var{code}@}
148d66d8 11744@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
51151d91
JD
11745Insert @var{code} verbatim into the output parser source at the
11746default location or at the location specified by @var{qualifier}.
e0c07222 11747@xref{%code Summary}.
9bc0dd67
JD
11748@end deffn
11749
11750@deffn {Directive} %debug
11751Equip the parser for debugging. @xref{Decl Summary}.
11752@end deffn
11753
91d2c560 11754@ifset defaultprec
22fccf95
PE
11755@deffn {Directive} %default-prec
11756Assign a precedence to rules that lack an explicit @samp{%prec}
11757modifier. @xref{Contextual Precedence, ,Context-Dependent
11758Precedence}.
39a06c25 11759@end deffn
91d2c560 11760@end ifset
39a06c25 11761
7fceb615
JD
11762@deffn {Directive} %define @var{variable}
11763@deffnx {Directive} %define @var{variable} @var{value}
11764@deffnx {Directive} %define @var{variable} "@var{value}"
35c1e5f0 11765Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
11766@end deffn
11767
18b519c0 11768@deffn {Directive} %defines
ff7571c0
JD
11769Bison declaration to create a parser header file, which is usually
11770meant for the scanner. @xref{Decl Summary}.
18b519c0 11771@end deffn
6deb4447 11772
02975b9a
JD
11773@deffn {Directive} %defines @var{defines-file}
11774Same as above, but save in the file @var{defines-file}.
11775@xref{Decl Summary}.
11776@end deffn
11777
18b519c0 11778@deffn {Directive} %destructor
258b75ca 11779Specify how the parser should reclaim the memory associated to
fa7e68c3 11780discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 11781@end deffn
72f889cc 11782
18b519c0 11783@deffn {Directive} %dprec
676385e2 11784Bison declaration to assign a precedence to a rule that is used at parse
c827f760 11785time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 11786GLR Parsers}.
18b519c0 11787@end deffn
676385e2 11788
dd8d9022
AD
11789@deffn {Symbol} $end
11790The predefined token marking the end of the token stream. It cannot be
11791used in the grammar.
11792@end deffn
11793
11794@deffn {Symbol} error
11795A token name reserved for error recovery. This token may be used in
11796grammar rules so as to allow the Bison parser to recognize an error in
11797the grammar without halting the process. In effect, a sentence
11798containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
11799token @code{error} becomes the current lookahead token. Actions
11800corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
11801token is reset to the token that originally caused the violation.
11802@xref{Error Recovery}.
18d192f0
AD
11803@end deffn
11804
18b519c0 11805@deffn {Directive} %error-verbose
7fceb615
JD
11806An obsolete directive standing for @samp{%define parse.error verbose}
11807(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
18b519c0 11808@end deffn
2a8d363a 11809
02975b9a 11810@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 11811Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 11812Summary}.
18b519c0 11813@end deffn
d8988b2f 11814
18b519c0 11815@deffn {Directive} %glr-parser
8a4281b9
JD
11816Bison declaration to produce a GLR parser. @xref{GLR
11817Parsers, ,Writing GLR Parsers}.
18b519c0 11818@end deffn
676385e2 11819
dd8d9022
AD
11820@deffn {Directive} %initial-action
11821Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
11822@end deffn
11823
e6e704dc
JD
11824@deffn {Directive} %language
11825Specify the programming language for the generated parser.
11826@xref{Decl Summary}.
11827@end deffn
11828
18b519c0 11829@deffn {Directive} %left
d78f0ac9 11830Bison declaration to assign precedence and left associativity to token(s).
bfa74976 11831@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11832@end deffn
bfa74976 11833
2055a44e
AD
11834@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
11835Bison declaration to specifying additional arguments that
2a8d363a
AD
11836@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
11837for Pure Parsers}.
18b519c0 11838@end deffn
2a8d363a 11839
18b519c0 11840@deffn {Directive} %merge
676385e2 11841Bison declaration to assign a merging function to a rule. If there is a
fae437e8 11842reduce/reduce conflict with a rule having the same merging function, the
676385e2 11843function is applied to the two semantic values to get a single result.
8a4281b9 11844@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 11845@end deffn
676385e2 11846
02975b9a 11847@deffn {Directive} %name-prefix "@var{prefix}"
4b3847c3
AD
11848Obsoleted by the @code{%define} variable @code{api.prefix} (@pxref{Multiple
11849Parsers, ,Multiple Parsers in the Same Program}).
11850
11851Rename the external symbols (variables and functions) used in the parser so
11852that they start with @var{prefix} instead of @samp{yy}. Contrary to
11853@code{api.prefix}, do no rename types and macros.
11854
11855The precise list of symbols renamed in C parsers is @code{yyparse},
11856@code{yylex}, @code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yychar},
11857@code{yydebug}, and (if locations are used) @code{yylloc}. If you use a
11858push parser, @code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
11859@code{yypstate_new} and @code{yypstate_delete} will also be renamed. For
11860example, if you use @samp{%name-prefix "c_"}, the names become
11861@code{c_parse}, @code{c_lex}, and so on. For C++ parsers, see the
11862@code{%define namespace} documentation in this section.
18b519c0 11863@end deffn
d8988b2f 11864
4b3847c3 11865
91d2c560 11866@ifset defaultprec
22fccf95
PE
11867@deffn {Directive} %no-default-prec
11868Do not assign a precedence to rules that lack an explicit @samp{%prec}
11869modifier. @xref{Contextual Precedence, ,Context-Dependent
11870Precedence}.
11871@end deffn
91d2c560 11872@end ifset
22fccf95 11873
18b519c0 11874@deffn {Directive} %no-lines
931c7513 11875Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 11876parser implementation file. @xref{Decl Summary}.
18b519c0 11877@end deffn
931c7513 11878
18b519c0 11879@deffn {Directive} %nonassoc
d78f0ac9 11880Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 11881@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11882@end deffn
bfa74976 11883
02975b9a 11884@deffn {Directive} %output "@var{file}"
ff7571c0
JD
11885Bison declaration to set the name of the parser implementation file.
11886@xref{Decl Summary}.
18b519c0 11887@end deffn
d8988b2f 11888
2055a44e
AD
11889@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
11890Bison declaration to specify additional arguments that both
11891@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
11892Parser Function @code{yyparse}}.
11893@end deffn
11894
11895@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
11896Bison declaration to specify additional arguments that @code{yyparse}
11897should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 11898@end deffn
2a8d363a 11899
18b519c0 11900@deffn {Directive} %prec
bfa74976
RS
11901Bison declaration to assign a precedence to a specific rule.
11902@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 11903@end deffn
bfa74976 11904
d78f0ac9
AD
11905@deffn {Directive} %precedence
11906Bison declaration to assign precedence to token(s), but no associativity
11907@xref{Precedence Decl, ,Operator Precedence}.
11908@end deffn
11909
18b519c0 11910@deffn {Directive} %pure-parser
35c1e5f0
JD
11911Deprecated version of @samp{%define api.pure} (@pxref{%define
11912Summary,,api.pure}), for which Bison is more careful to warn about
11913unreasonable usage.
18b519c0 11914@end deffn
bfa74976 11915
b50d2359 11916@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
11917Require version @var{version} or higher of Bison. @xref{Require Decl, ,
11918Require a Version of Bison}.
b50d2359
AD
11919@end deffn
11920
18b519c0 11921@deffn {Directive} %right
d78f0ac9 11922Bison declaration to assign precedence and right associativity to token(s).
bfa74976 11923@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11924@end deffn
bfa74976 11925
e6e704dc
JD
11926@deffn {Directive} %skeleton
11927Specify the skeleton to use; usually for development.
11928@xref{Decl Summary}.
11929@end deffn
11930
18b519c0 11931@deffn {Directive} %start
704a47c4
AD
11932Bison declaration to specify the start symbol. @xref{Start Decl, ,The
11933Start-Symbol}.
18b519c0 11934@end deffn
bfa74976 11935
18b519c0 11936@deffn {Directive} %token
bfa74976
RS
11937Bison declaration to declare token(s) without specifying precedence.
11938@xref{Token Decl, ,Token Type Names}.
18b519c0 11939@end deffn
bfa74976 11940
18b519c0 11941@deffn {Directive} %token-table
ff7571c0
JD
11942Bison declaration to include a token name table in the parser
11943implementation file. @xref{Decl Summary}.
18b519c0 11944@end deffn
931c7513 11945
18b519c0 11946@deffn {Directive} %type
704a47c4
AD
11947Bison declaration to declare nonterminals. @xref{Type Decl,
11948,Nonterminal Symbols}.
18b519c0 11949@end deffn
bfa74976 11950
dd8d9022
AD
11951@deffn {Symbol} $undefined
11952The predefined token onto which all undefined values returned by
11953@code{yylex} are mapped. It cannot be used in the grammar, rather, use
11954@code{error}.
11955@end deffn
11956
18b519c0 11957@deffn {Directive} %union
bfa74976
RS
11958Bison declaration to specify several possible data types for semantic
11959values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 11960@end deffn
bfa74976 11961
dd8d9022
AD
11962@deffn {Macro} YYABORT
11963Macro to pretend that an unrecoverable syntax error has occurred, by
11964making @code{yyparse} return 1 immediately. The error reporting
11965function @code{yyerror} is not called. @xref{Parser Function, ,The
11966Parser Function @code{yyparse}}.
8405b70c
PB
11967
11968For Java parsers, this functionality is invoked using @code{return YYABORT;}
11969instead.
dd8d9022 11970@end deffn
3ded9a63 11971
dd8d9022
AD
11972@deffn {Macro} YYACCEPT
11973Macro to pretend that a complete utterance of the language has been
11974read, by making @code{yyparse} return 0 immediately.
11975@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
11976
11977For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
11978instead.
dd8d9022 11979@end deffn
bfa74976 11980
dd8d9022 11981@deffn {Macro} YYBACKUP
742e4900 11982Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 11983token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11984@end deffn
bfa74976 11985
dd8d9022 11986@deffn {Variable} yychar
32c29292 11987External integer variable that contains the integer value of the
742e4900 11988lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
11989@code{yyparse}.) Error-recovery rule actions may examine this variable.
11990@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11991@end deffn
bfa74976 11992
dd8d9022
AD
11993@deffn {Variable} yyclearin
11994Macro used in error-recovery rule actions. It clears the previous
742e4900 11995lookahead token. @xref{Error Recovery}.
18b519c0 11996@end deffn
bfa74976 11997
dd8d9022
AD
11998@deffn {Macro} YYDEBUG
11999Macro to define to equip the parser with tracing code. @xref{Tracing,
12000,Tracing Your Parser}.
18b519c0 12001@end deffn
bfa74976 12002
dd8d9022
AD
12003@deffn {Variable} yydebug
12004External integer variable set to zero by default. If @code{yydebug}
12005is given a nonzero value, the parser will output information on input
12006symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 12007@end deffn
bfa74976 12008
dd8d9022
AD
12009@deffn {Macro} yyerrok
12010Macro to cause parser to recover immediately to its normal mode
12011after a syntax error. @xref{Error Recovery}.
12012@end deffn
12013
12014@deffn {Macro} YYERROR
4a11b852
AD
12015Cause an immediate syntax error. This statement initiates error
12016recovery just as if the parser itself had detected an error; however, it
12017does not call @code{yyerror}, and does not print any message. If you
12018want to print an error message, call @code{yyerror} explicitly before
12019the @samp{YYERROR;} statement. @xref{Error Recovery}.
8405b70c
PB
12020
12021For Java parsers, this functionality is invoked using @code{return YYERROR;}
12022instead.
dd8d9022
AD
12023@end deffn
12024
12025@deffn {Function} yyerror
12026User-supplied function to be called by @code{yyparse} on error.
71b00ed8 12027@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
12028@end deffn
12029
12030@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
12031An obsolete macro used in the @file{yacc.c} skeleton, that you define
12032with @code{#define} in the prologue to request verbose, specific error
12033message strings when @code{yyerror} is called. It doesn't matter what
12034definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 12035it. Using @samp{%define parse.error verbose} is preferred
31b850d2 12036(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
12037@end deffn
12038
93c150b6
AD
12039@deffn {Macro} YYFPRINTF
12040Macro used to output run-time traces.
12041@xref{Enabling Traces}.
12042@end deffn
12043
dd8d9022
AD
12044@deffn {Macro} YYINITDEPTH
12045Macro for specifying the initial size of the parser stack.
1a059451 12046@xref{Memory Management}.
dd8d9022
AD
12047@end deffn
12048
12049@deffn {Function} yylex
12050User-supplied lexical analyzer function, called with no arguments to get
12051the next token. @xref{Lexical, ,The Lexical Analyzer Function
12052@code{yylex}}.
12053@end deffn
12054
12055@deffn {Macro} YYLEX_PARAM
12056An obsolete macro for specifying an extra argument (or list of extra
32c29292 12057arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
12058macro is deprecated, and is supported only for Yacc like parsers.
12059@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
12060@end deffn
12061
12062@deffn {Variable} yylloc
12063External variable in which @code{yylex} should place the line and column
12064numbers associated with a token. (In a pure parser, it is a local
12065variable within @code{yyparse}, and its address is passed to
32c29292
JD
12066@code{yylex}.)
12067You can ignore this variable if you don't use the @samp{@@} feature in the
12068grammar actions.
12069@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 12070In semantic actions, it stores the location of the lookahead token.
32c29292 12071@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
12072@end deffn
12073
12074@deffn {Type} YYLTYPE
12075Data type of @code{yylloc}; by default, a structure with four
12076members. @xref{Location Type, , Data Types of Locations}.
12077@end deffn
12078
12079@deffn {Variable} yylval
12080External variable in which @code{yylex} should place the semantic
12081value associated with a token. (In a pure parser, it is a local
12082variable within @code{yyparse}, and its address is passed to
32c29292
JD
12083@code{yylex}.)
12084@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 12085In semantic actions, it stores the semantic value of the lookahead token.
32c29292 12086@xref{Actions, ,Actions}.
dd8d9022
AD
12087@end deffn
12088
12089@deffn {Macro} YYMAXDEPTH
1a059451
PE
12090Macro for specifying the maximum size of the parser stack. @xref{Memory
12091Management}.
dd8d9022
AD
12092@end deffn
12093
12094@deffn {Variable} yynerrs
8a2800e7 12095Global variable which Bison increments each time it reports a syntax error.
f4101aa6 12096(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 12097pure push parser, it is a member of yypstate.)
dd8d9022
AD
12098@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
12099@end deffn
12100
12101@deffn {Function} yyparse
12102The parser function produced by Bison; call this function to start
12103parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
12104@end deffn
12105
93c150b6
AD
12106@deffn {Macro} YYPRINT
12107Macro used to output token semantic values. For @file{yacc.c} only.
12108Obsoleted by @code{%printer}.
12109@xref{The YYPRINT Macro, , The @code{YYPRINT} Macro}.
12110@end deffn
12111
9987d1b3 12112@deffn {Function} yypstate_delete
f4101aa6 12113The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 12114call this function to delete the memory associated with a parser.
f4101aa6 12115@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 12116@code{yypstate_delete}}.
59da312b
JD
12117(The current push parsing interface is experimental and may evolve.
12118More user feedback will help to stabilize it.)
9987d1b3
JD
12119@end deffn
12120
12121@deffn {Function} yypstate_new
f4101aa6 12122The function to create a parser instance, produced by Bison in push mode;
9987d1b3 12123call this function to create a new parser.
f4101aa6 12124@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 12125@code{yypstate_new}}.
59da312b
JD
12126(The current push parsing interface is experimental and may evolve.
12127More user feedback will help to stabilize it.)
9987d1b3
JD
12128@end deffn
12129
12130@deffn {Function} yypull_parse
f4101aa6
AD
12131The parser function produced by Bison in push mode; call this function to
12132parse the rest of the input stream.
12133@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 12134@code{yypull_parse}}.
59da312b
JD
12135(The current push parsing interface is experimental and may evolve.
12136More user feedback will help to stabilize it.)
9987d1b3
JD
12137@end deffn
12138
12139@deffn {Function} yypush_parse
f4101aa6
AD
12140The parser function produced by Bison in push mode; call this function to
12141parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 12142@code{yypush_parse}}.
59da312b
JD
12143(The current push parsing interface is experimental and may evolve.
12144More user feedback will help to stabilize it.)
9987d1b3
JD
12145@end deffn
12146
dd8d9022 12147@deffn {Macro} YYRECOVERING
02103984
PE
12148The expression @code{YYRECOVERING ()} yields 1 when the parser
12149is recovering from a syntax error, and 0 otherwise.
12150@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
12151@end deffn
12152
12153@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
12154Macro used to control the use of @code{alloca} when the
12155deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
12156the parser will use @code{malloc} to extend its stacks. If defined to
121571, the parser will use @code{alloca}. Values other than 0 and 1 are
12158reserved for future Bison extensions. If not defined,
12159@code{YYSTACK_USE_ALLOCA} defaults to 0.
12160
55289366 12161In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
12162limited stack and with unreliable stack-overflow checking, you should
12163set @code{YYMAXDEPTH} to a value that cannot possibly result in
12164unchecked stack overflow on any of your target hosts when
12165@code{alloca} is called. You can inspect the code that Bison
12166generates in order to determine the proper numeric values. This will
12167require some expertise in low-level implementation details.
dd8d9022
AD
12168@end deffn
12169
12170@deffn {Type} YYSTYPE
12171Data type of semantic values; @code{int} by default.
12172@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 12173@end deffn
bfa74976 12174
342b8b6e 12175@node Glossary
bfa74976
RS
12176@appendix Glossary
12177@cindex glossary
12178
12179@table @asis
7fceb615 12180@item Accepting state
eb45ef3b
JD
12181A state whose only action is the accept action.
12182The accepting state is thus a consistent state.
12183@xref{Understanding,,}.
12184
8a4281b9 12185@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
12186Formal method of specifying context-free grammars originally proposed
12187by John Backus, and slightly improved by Peter Naur in his 1960-01-02
12188committee document contributing to what became the Algol 60 report.
12189@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 12190
7fceb615
JD
12191@item Consistent state
12192A state containing only one possible action. @xref{Default Reductions}.
eb45ef3b 12193
bfa74976
RS
12194@item Context-free grammars
12195Grammars specified as rules that can be applied regardless of context.
12196Thus, if there is a rule which says that an integer can be used as an
12197expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
12198permitted. @xref{Language and Grammar, ,Languages and Context-Free
12199Grammars}.
bfa74976 12200
7fceb615 12201@item Default reduction
110ef36a 12202The reduction that a parser should perform if the current parser state
35c1e5f0 12203contains no other action for the lookahead token. In permitted parser
7fceb615
JD
12204states, Bison declares the reduction with the largest lookahead set to be
12205the default reduction and removes that lookahead set. @xref{Default
12206Reductions}.
12207
12208@item Defaulted state
12209A consistent state with a default reduction. @xref{Default Reductions}.
eb45ef3b 12210
bfa74976
RS
12211@item Dynamic allocation
12212Allocation of memory that occurs during execution, rather than at
12213compile time or on entry to a function.
12214
12215@item Empty string
12216Analogous to the empty set in set theory, the empty string is a
12217character string of length zero.
12218
12219@item Finite-state stack machine
12220A ``machine'' that has discrete states in which it is said to exist at
12221each instant in time. As input to the machine is processed, the
12222machine moves from state to state as specified by the logic of the
12223machine. In the case of the parser, the input is the language being
12224parsed, and the states correspond to various stages in the grammar
c827f760 12225rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 12226
8a4281b9 12227@item Generalized LR (GLR)
676385e2 12228A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 12229that are not LR(1). It resolves situations that Bison's
eb45ef3b 12230deterministic parsing
676385e2
PH
12231algorithm cannot by effectively splitting off multiple parsers, trying all
12232possible parsers, and discarding those that fail in the light of additional
c827f760 12233right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 12234LR Parsing}.
676385e2 12235
bfa74976
RS
12236@item Grouping
12237A language construct that is (in general) grammatically divisible;
c827f760 12238for example, `expression' or `declaration' in C@.
bfa74976
RS
12239@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
12240
7fceb615
JD
12241@item IELR(1) (Inadequacy Elimination LR(1))
12242A minimal LR(1) parser table construction algorithm. That is, given any
35c1e5f0 12243context-free grammar, IELR(1) generates parser tables with the full
7fceb615
JD
12244language-recognition power of canonical LR(1) but with nearly the same
12245number of parser states as LALR(1). This reduction in parser states is
12246often an order of magnitude. More importantly, because canonical LR(1)'s
12247extra parser states may contain duplicate conflicts in the case of non-LR(1)
12248grammars, the number of conflicts for IELR(1) is often an order of magnitude
12249less as well. This can significantly reduce the complexity of developing a
12250grammar. @xref{LR Table Construction}.
eb45ef3b 12251
bfa74976
RS
12252@item Infix operator
12253An arithmetic operator that is placed between the operands on which it
12254performs some operation.
12255
12256@item Input stream
12257A continuous flow of data between devices or programs.
12258
8a4281b9 12259@item LAC (Lookahead Correction)
fcf834f9 12260A parsing mechanism that fixes the problem of delayed syntax error
7fceb615
JD
12261detection, which is caused by LR state merging, default reductions, and the
12262use of @code{%nonassoc}. Delayed syntax error detection results in
12263unexpected semantic actions, initiation of error recovery in the wrong
12264syntactic context, and an incorrect list of expected tokens in a verbose
12265syntax error message. @xref{LAC}.
fcf834f9 12266
bfa74976
RS
12267@item Language construct
12268One of the typical usage schemas of the language. For example, one of
12269the constructs of the C language is the @code{if} statement.
12270@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
12271
12272@item Left associativity
12273Operators having left associativity are analyzed from left to right:
12274@samp{a+b+c} first computes @samp{a+b} and then combines with
12275@samp{c}. @xref{Precedence, ,Operator Precedence}.
12276
12277@item Left recursion
89cab50d
AD
12278A rule whose result symbol is also its first component symbol; for
12279example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
12280Rules}.
bfa74976
RS
12281
12282@item Left-to-right parsing
12283Parsing a sentence of a language by analyzing it token by token from
c827f760 12284left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
12285
12286@item Lexical analyzer (scanner)
12287A function that reads an input stream and returns tokens one by one.
12288@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
12289
12290@item Lexical tie-in
12291A flag, set by actions in the grammar rules, which alters the way
12292tokens are parsed. @xref{Lexical Tie-ins}.
12293
931c7513 12294@item Literal string token
14ded682 12295A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 12296
742e4900
JD
12297@item Lookahead token
12298A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 12299Tokens}.
bfa74976 12300
8a4281b9 12301@item LALR(1)
bfa74976 12302The class of context-free grammars that Bison (like most other parser
8a4281b9 12303generators) can handle by default; a subset of LR(1).
cc09e5be 12304@xref{Mysterious Conflicts}.
bfa74976 12305
8a4281b9 12306@item LR(1)
bfa74976 12307The class of context-free grammars in which at most one token of
742e4900 12308lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
12309
12310@item Nonterminal symbol
12311A grammar symbol standing for a grammatical construct that can
12312be expressed through rules in terms of smaller constructs; in other
12313words, a construct that is not a token. @xref{Symbols}.
12314
bfa74976
RS
12315@item Parser
12316A function that recognizes valid sentences of a language by analyzing
12317the syntax structure of a set of tokens passed to it from a lexical
12318analyzer.
12319
12320@item Postfix operator
12321An arithmetic operator that is placed after the operands upon which it
12322performs some operation.
12323
12324@item Reduction
12325Replacing a string of nonterminals and/or terminals with a single
89cab50d 12326nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 12327Parser Algorithm}.
bfa74976
RS
12328
12329@item Reentrant
12330A reentrant subprogram is a subprogram which can be in invoked any
12331number of times in parallel, without interference between the various
12332invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
12333
12334@item Reverse polish notation
12335A language in which all operators are postfix operators.
12336
12337@item Right recursion
89cab50d
AD
12338A rule whose result symbol is also its last component symbol; for
12339example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
12340Rules}.
bfa74976
RS
12341
12342@item Semantics
12343In computer languages, the semantics are specified by the actions
12344taken for each instance of the language, i.e., the meaning of
12345each statement. @xref{Semantics, ,Defining Language Semantics}.
12346
12347@item Shift
12348A parser is said to shift when it makes the choice of analyzing
12349further input from the stream rather than reducing immediately some
c827f760 12350already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
12351
12352@item Single-character literal
12353A single character that is recognized and interpreted as is.
12354@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
12355
12356@item Start symbol
12357The nonterminal symbol that stands for a complete valid utterance in
12358the language being parsed. The start symbol is usually listed as the
13863333 12359first nonterminal symbol in a language specification.
bfa74976
RS
12360@xref{Start Decl, ,The Start-Symbol}.
12361
12362@item Symbol table
12363A data structure where symbol names and associated data are stored
12364during parsing to allow for recognition and use of existing
12365information in repeated uses of a symbol. @xref{Multi-function Calc}.
12366
6e649e65
PE
12367@item Syntax error
12368An error encountered during parsing of an input stream due to invalid
12369syntax. @xref{Error Recovery}.
12370
bfa74976
RS
12371@item Token
12372A basic, grammatically indivisible unit of a language. The symbol
12373that describes a token in the grammar is a terminal symbol.
12374The input of the Bison parser is a stream of tokens which comes from
12375the lexical analyzer. @xref{Symbols}.
12376
12377@item Terminal symbol
89cab50d
AD
12378A grammar symbol that has no rules in the grammar and therefore is
12379grammatically indivisible. The piece of text it represents is a token.
12380@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7fceb615
JD
12381
12382@item Unreachable state
12383A parser state to which there does not exist a sequence of transitions from
12384the parser's start state. A state can become unreachable during conflict
12385resolution. @xref{Unreachable States}.
bfa74976
RS
12386@end table
12387
342b8b6e 12388@node Copying This Manual
f2b5126e 12389@appendix Copying This Manual
f2b5126e
PB
12390@include fdl.texi
12391
5e528941
JD
12392@node Bibliography
12393@unnumbered Bibliography
12394
12395@table @asis
12396@item [Denny 2008]
12397Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
12398for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
123992008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
12400pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
12401
12402@item [Denny 2010 May]
12403Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
12404Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
12405University, Clemson, SC, USA (May 2010).
12406@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
12407
12408@item [Denny 2010 November]
12409Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
12410Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
12411in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
124122010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
12413
12414@item [DeRemer 1982]
12415Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
12416Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
12417Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
12418615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
12419
12420@item [Knuth 1965]
12421Donald E. Knuth, On the Translation of Languages from Left to Right, in
12422@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
12423607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
12424
12425@item [Scott 2000]
12426Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
12427@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
12428London, Department of Computer Science, TR-00-12 (December 2000).
12429@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
12430@end table
12431
f9b86351
AD
12432@node Index of Terms
12433@unnumbered Index of Terms
bfa74976
RS
12434
12435@printindex cp
12436
bfa74976 12437@bye
a06ea4aa 12438
6b5a0de9
AD
12439@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
12440@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
12441@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
12442@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
12443@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
12444@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
12445@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
12446@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
12447@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
12448@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
12449@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
12450@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
12451@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
5a321748 12452@c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum IEC syntaxes
6b5a0de9
AD
12453@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
12454@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
12455@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
12456@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
12457@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
12458@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
12459@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
12460@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
12461@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
5a321748 12462@c LocalWords: YYINITDEPTH stmts ref initdcl maybeasm notype Lookahead yyoutput
6b5a0de9
AD
12463@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
12464@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
12465@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
12466@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
12467@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 12468@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
5a321748
AD
12469@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs sr
12470@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC nterm LR's
6b5a0de9 12471@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
5a321748 12472@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative Ph
6b5a0de9
AD
12473@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
12474@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
12475@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
5a321748 12476@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz ACM
6b5a0de9 12477@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
5a321748 12478@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno filename
6b5a0de9
AD
12479@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
12480@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
12481@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
12482@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
5a321748 12483@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc PSLR
6b5a0de9
AD
12484@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
12485@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
12486@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
12487@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
5a05f42e 12488@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos uint
5a321748 12489@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett LALR's
5a05f42e
AD
12490@c LocalWords: subdirectory Solaris nonassociativity perror schemas Malloy ints
12491@c LocalWords: Scannerless ispell american ChangeLog smallexample CSTYPE CLTYPE
12492@c LocalWords: clval CDEBUG cdebug deftypeopx yyterminate
e944aaff
AD
12493
12494@c Local Variables:
12495@c ispell-dictionary: "american"
12496@c fill-column: 76
12497@c End: