]> git.saurik.com Git - bison.git/blame - doc/bison.texi
Merge remote-tracking branch 'origin/maint'
[bison.git] / doc / bison.texi
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
34136e65 36Copyright @copyright{} 1988-1993, 1995, 1998-2012 Free Software
575619af 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 106* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
5e528941 112* Bibliography:: Publications cited in this manual.
f9b86351 113* Index of Terms:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 128* Locations:: Overview of location tracking.
f5f419de
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
8a4281b9 134Writing GLR Parsers
fa7e68c3 135
8a4281b9
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 140* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
24ec0837
AD
166* Rpcalc Input:: Explanation of the @code{input} nonterminal
167* Rpcalc Line:: Explanation of the @code{line} nonterminal
168* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
181* Mfcalc Lexer:: The lexical analyzer.
182* Mfcalc Main:: The controlling function.
bfa74976
RS
183
184Bison Grammar Files
185
303834cc
JD
186* Grammar Outline:: Overall layout of the grammar file.
187* Symbols:: Terminal and nonterminal symbols.
188* Rules:: How to write grammar rules.
189* Recursion:: Writing recursive rules.
190* Semantics:: Semantic values and actions.
191* Tracking Locations:: Locations and actions.
192* Named References:: Using named references in actions.
193* Declarations:: All kinds of Bison declarations are described here.
194* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
195
196Outline of a Bison Grammar
197
f5f419de 198* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 199* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
200* Bison Declarations:: Syntax and usage of the Bison declarations section.
201* Grammar Rules:: Syntax and usage of the grammar rules section.
202* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
203
204Defining Language Semantics
205
206* Value Type:: Specifying one data type for all semantic values.
207* Multiple Types:: Specifying several alternative data types.
208* Actions:: An action is the semantic definition of a grammar rule.
209* Action Types:: Specifying data types for actions to operate on.
210* Mid-Rule Actions:: Most actions go at the end of a rule.
211 This says when, why and how to use the exceptional
212 action in the middle of a rule.
213
93dd49ab
PE
214Tracking Locations
215
216* Location Type:: Specifying a data type for locations.
217* Actions and Locations:: Using locations in actions.
218* Location Default Action:: Defining a general way to compute locations.
219
bfa74976
RS
220Bison Declarations
221
b50d2359 222* Require Decl:: Requiring a Bison version.
bfa74976
RS
223* Token Decl:: Declaring terminal symbols.
224* Precedence Decl:: Declaring terminals with precedence and associativity.
225* Union Decl:: Declaring the set of all semantic value types.
226* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 227* Initial Action Decl:: Code run before parsing starts.
72f889cc 228* Destructor Decl:: Declaring how symbols are freed.
93c150b6 229* Printer Decl:: Declaring how symbol values are displayed.
d6328241 230* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
231* Start Decl:: Specifying the start symbol.
232* Pure Decl:: Requesting a reentrant parser.
9987d1b3 233* Push Decl:: Requesting a push parser.
bfa74976 234* Decl Summary:: Table of all Bison declarations.
35c1e5f0 235* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 236* %code Summary:: Inserting code into the parser source.
bfa74976
RS
237
238Parser C-Language Interface
239
f5f419de
DJ
240* Parser Function:: How to call @code{yyparse} and what it returns.
241* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
242* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
243* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
244* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
245* Lexical:: You must supply a function @code{yylex}
246 which reads tokens.
247* Error Reporting:: You must supply a function @code{yyerror}.
248* Action Features:: Special features for use in actions.
249* Internationalization:: How to let the parser speak in the user's
250 native language.
bfa74976
RS
251
252The Lexical Analyzer Function @code{yylex}
253
254* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
255* Token Values:: How @code{yylex} must return the semantic value
256 of the token it has read.
257* Token Locations:: How @code{yylex} must return the text location
258 (line number, etc.) of the token, if the
259 actions want that.
260* Pure Calling:: How the calling convention differs in a pure parser
261 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 262
13863333 263The Bison Parser Algorithm
bfa74976 264
742e4900 265* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
266* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
267* Precedence:: Operator precedence works by resolving conflicts.
268* Contextual Precedence:: When an operator's precedence depends on context.
269* Parser States:: The parser is a finite-state-machine with stack.
270* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 271* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 272* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 273* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 274* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
275
276Operator Precedence
277
278* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
279* Using Precedence:: How to specify precedence and associativity.
280* Precedence Only:: How to specify precedence only.
bfa74976
RS
281* Precedence Examples:: How these features are used in the previous example.
282* How Precedence:: How they work.
c28cd5dc 283* Non Operators:: Using precedence for general conflicts.
bfa74976 284
7fceb615
JD
285Tuning LR
286
287* LR Table Construction:: Choose a different construction algorithm.
288* Default Reductions:: Disable default reductions.
289* LAC:: Correct lookahead sets in the parser states.
290* Unreachable States:: Keep unreachable parser states for debugging.
291
bfa74976
RS
292Handling Context Dependencies
293
294* Semantic Tokens:: Token parsing can depend on the semantic context.
295* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
296* Tie-in Recovery:: Lexical tie-ins have implications for how
297 error recovery rules must be written.
298
93dd49ab 299Debugging Your Parser
ec3bc396
AD
300
301* Understanding:: Understanding the structure of your parser.
fc4fdd62 302* Graphviz:: Getting a visual representation of the parser.
9c16d399 303* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
304* Tracing:: Tracing the execution of your parser.
305
93c150b6
AD
306Tracing Your Parser
307
308* Enabling Traces:: Activating run-time trace support
309* Mfcalc Traces:: Extending @code{mfcalc} to support traces
310* The YYPRINT Macro:: Obsolete interface for semantic value reports
311
bfa74976
RS
312Invoking Bison
313
13863333 314* Bison Options:: All the options described in detail,
c827f760 315 in alphabetical order by short options.
bfa74976 316* Option Cross Key:: Alphabetical list of long options.
93dd49ab 317* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 318
8405b70c 319Parsers Written In Other Languages
12545799
AD
320
321* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 322* Java Parsers:: The interface to generate Java parser classes
12545799
AD
323
324C++ Parsers
325
326* C++ Bison Interface:: Asking for C++ parser generation
327* C++ Semantic Values:: %union vs. C++
328* C++ Location Values:: The position and location classes
329* C++ Parser Interface:: Instantiating and running the parser
330* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 331* A Complete C++ Example:: Demonstrating their use
12545799 332
936c88d1
AD
333C++ Location Values
334
335* C++ position:: One point in the source file
336* C++ location:: Two points in the source file
db8ab2be 337* User Defined Location Type:: Required interface for locations
936c88d1 338
12545799
AD
339A Complete C++ Example
340
341* Calc++ --- C++ Calculator:: The specifications
342* Calc++ Parsing Driver:: An active parsing context
343* Calc++ Parser:: A parser class
344* Calc++ Scanner:: A pure C++ Flex scanner
345* Calc++ Top Level:: Conducting the band
346
8405b70c
PB
347Java Parsers
348
f5f419de
DJ
349* Java Bison Interface:: Asking for Java parser generation
350* Java Semantic Values:: %type and %token vs. Java
351* Java Location Values:: The position and location classes
352* Java Parser Interface:: Instantiating and running the parser
353* Java Scanner Interface:: Specifying the scanner for the parser
354* Java Action Features:: Special features for use in actions
355* Java Differences:: Differences between C/C++ and Java Grammars
356* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 357
d1a1114f
AD
358Frequently Asked Questions
359
f5f419de
DJ
360* Memory Exhausted:: Breaking the Stack Limits
361* How Can I Reset the Parser:: @code{yyparse} Keeps some State
362* Strings are Destroyed:: @code{yylval} Loses Track of Strings
363* Implementing Gotos/Loops:: Control Flow in the Calculator
364* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 365* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
366* I can't build Bison:: Troubleshooting
367* Where can I find help?:: Troubleshouting
368* Bug Reports:: Troublereporting
369* More Languages:: Parsers in C++, Java, and so on
370* Beta Testing:: Experimenting development versions
371* Mailing Lists:: Meeting other Bison users
d1a1114f 372
f2b5126e
PB
373Copying This Manual
374
f5f419de 375* Copying This Manual:: License for copying this manual.
f2b5126e 376
342b8b6e 377@end detailmenu
bfa74976
RS
378@end menu
379
342b8b6e 380@node Introduction
bfa74976
RS
381@unnumbered Introduction
382@cindex introduction
383
6077da58 384@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
385annotated context-free grammar into a deterministic LR or generalized
386LR (GLR) parser employing LALR(1) parser tables. As an experimental
387feature, Bison can also generate IELR(1) or canonical LR(1) parser
388tables. Once you are proficient with Bison, you can use it to develop
389a wide range of language parsers, from those used in simple desk
390calculators to complex programming languages.
391
392Bison is upward compatible with Yacc: all properly-written Yacc
393grammars ought to work with Bison with no change. Anyone familiar
394with Yacc should be able to use Bison with little trouble. You need
395to be fluent in C or C++ programming in order to use Bison or to
396understand this manual. Java is also supported as an experimental
397feature.
398
399We begin with tutorial chapters that explain the basic concepts of
400using Bison and show three explained examples, each building on the
401last. If you don't know Bison or Yacc, start by reading these
402chapters. Reference chapters follow, which describe specific aspects
403of Bison in detail.
bfa74976 404
679e9935
JD
405Bison was written originally by Robert Corbett. Richard Stallman made
406it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
407added multi-character string literals and other features. Since then,
408Bison has grown more robust and evolved many other new features thanks
409to the hard work of a long list of volunteers. For details, see the
410@file{THANKS} and @file{ChangeLog} files included in the Bison
411distribution.
931c7513 412
df1af54c 413This edition corresponds to version @value{VERSION} of Bison.
bfa74976 414
342b8b6e 415@node Conditions
bfa74976
RS
416@unnumbered Conditions for Using Bison
417
193d7c70
PE
418The distribution terms for Bison-generated parsers permit using the
419parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 420permissions applied only when Bison was generating LALR(1)
193d7c70 421parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 422parsers could be used only in programs that were free software.
a31239f1 423
8a4281b9 424The other GNU programming tools, such as the GNU C
c827f760 425compiler, have never
9ecbd125 426had such a requirement. They could always be used for nonfree
a31239f1
RS
427software. The reason Bison was different was not due to a special
428policy decision; it resulted from applying the usual General Public
429License to all of the Bison source code.
430
ff7571c0
JD
431The main output of the Bison utility---the Bison parser implementation
432file---contains a verbatim copy of a sizable piece of Bison, which is
433the code for the parser's implementation. (The actions from your
434grammar are inserted into this implementation at one point, but most
435of the rest of the implementation is not changed.) When we applied
436the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
437the effect was to restrict the use of Bison output to free software.
438
439We didn't change the terms because of sympathy for people who want to
440make software proprietary. @strong{Software should be free.} But we
441concluded that limiting Bison's use to free software was doing little to
442encourage people to make other software free. So we decided to make the
443practical conditions for using Bison match the practical conditions for
8a4281b9 444using the other GNU tools.
bfa74976 445
193d7c70
PE
446This exception applies when Bison is generating code for a parser.
447You can tell whether the exception applies to a Bison output file by
448inspecting the file for text beginning with ``As a special
449exception@dots{}''. The text spells out the exact terms of the
450exception.
262aa8dd 451
f16b0819
PE
452@node Copying
453@unnumbered GNU GENERAL PUBLIC LICENSE
454@include gpl-3.0.texi
bfa74976 455
342b8b6e 456@node Concepts
bfa74976
RS
457@chapter The Concepts of Bison
458
459This chapter introduces many of the basic concepts without which the
460details of Bison will not make sense. If you do not already know how to
461use Bison or Yacc, we suggest you start by reading this chapter carefully.
462
463@menu
f5f419de
DJ
464* Language and Grammar:: Languages and context-free grammars,
465 as mathematical ideas.
466* Grammar in Bison:: How we represent grammars for Bison's sake.
467* Semantic Values:: Each token or syntactic grouping can have
468 a semantic value (the value of an integer,
469 the name of an identifier, etc.).
470* Semantic Actions:: Each rule can have an action containing C code.
471* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 472* Locations:: Overview of location tracking.
f5f419de
DJ
473* Bison Parser:: What are Bison's input and output,
474 how is the output used?
475* Stages:: Stages in writing and running Bison grammars.
476* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
477@end menu
478
342b8b6e 479@node Language and Grammar
bfa74976
RS
480@section Languages and Context-Free Grammars
481
bfa74976
RS
482@cindex context-free grammar
483@cindex grammar, context-free
484In order for Bison to parse a language, it must be described by a
485@dfn{context-free grammar}. This means that you specify one or more
486@dfn{syntactic groupings} and give rules for constructing them from their
487parts. For example, in the C language, one kind of grouping is called an
488`expression'. One rule for making an expression might be, ``An expression
489can be made of a minus sign and another expression''. Another would be,
490``An expression can be an integer''. As you can see, rules are often
491recursive, but there must be at least one rule which leads out of the
492recursion.
493
8a4281b9 494@cindex BNF
bfa74976
RS
495@cindex Backus-Naur form
496The most common formal system for presenting such rules for humans to read
8a4281b9 497is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 498order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
499BNF is a context-free grammar. The input to Bison is
500essentially machine-readable BNF.
bfa74976 501
7fceb615
JD
502@cindex LALR grammars
503@cindex IELR grammars
504@cindex LR grammars
505There are various important subclasses of context-free grammars. Although
506it can handle almost all context-free grammars, Bison is optimized for what
507are called LR(1) grammars. In brief, in these grammars, it must be possible
508to tell how to parse any portion of an input string with just a single token
509of lookahead. For historical reasons, Bison by default is limited by the
510additional restrictions of LALR(1), which is hard to explain simply.
cc09e5be
JD
511@xref{Mysterious Conflicts}, for more information on this. As an
512experimental feature, you can escape these additional restrictions by
513requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
514Construction}, to learn how.
bfa74976 515
8a4281b9
JD
516@cindex GLR parsing
517@cindex generalized LR (GLR) parsing
676385e2 518@cindex ambiguous grammars
9d9b8b70 519@cindex nondeterministic parsing
9501dc6e 520
8a4281b9 521Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
522roughly that the next grammar rule to apply at any point in the input is
523uniquely determined by the preceding input and a fixed, finite portion
742e4900 524(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 525grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 526apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 527grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 528lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 529With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
530general context-free grammars, using a technique known as GLR
531parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
532are able to handle any context-free grammar for which the number of
533possible parses of any given string is finite.
676385e2 534
bfa74976
RS
535@cindex symbols (abstract)
536@cindex token
537@cindex syntactic grouping
538@cindex grouping, syntactic
9501dc6e
AD
539In the formal grammatical rules for a language, each kind of syntactic
540unit or grouping is named by a @dfn{symbol}. Those which are built by
541grouping smaller constructs according to grammatical rules are called
bfa74976
RS
542@dfn{nonterminal symbols}; those which can't be subdivided are called
543@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
544corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 545corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
546
547We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
548nonterminal, mean. The tokens of C are identifiers, constants (numeric
549and string), and the various keywords, arithmetic operators and
550punctuation marks. So the terminal symbols of a grammar for C include
551`identifier', `number', `string', plus one symbol for each keyword,
552operator or punctuation mark: `if', `return', `const', `static', `int',
553`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
554(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
555lexicography, not grammar.)
556
557Here is a simple C function subdivided into tokens:
558
9edcd895
AD
559@example
560int /* @r{keyword `int'} */
14d4662b 561square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
562 @r{identifier, close-paren} */
563@{ /* @r{open-brace} */
aa08666d
AD
564 return x * x; /* @r{keyword `return', identifier, asterisk,}
565 @r{identifier, semicolon} */
9edcd895
AD
566@} /* @r{close-brace} */
567@end example
bfa74976
RS
568
569The syntactic groupings of C include the expression, the statement, the
570declaration, and the function definition. These are represented in the
571grammar of C by nonterminal symbols `expression', `statement',
572`declaration' and `function definition'. The full grammar uses dozens of
573additional language constructs, each with its own nonterminal symbol, in
574order to express the meanings of these four. The example above is a
575function definition; it contains one declaration, and one statement. In
576the statement, each @samp{x} is an expression and so is @samp{x * x}.
577
578Each nonterminal symbol must have grammatical rules showing how it is made
579out of simpler constructs. For example, one kind of C statement is the
580@code{return} statement; this would be described with a grammar rule which
581reads informally as follows:
582
583@quotation
584A `statement' can be made of a `return' keyword, an `expression' and a
585`semicolon'.
586@end quotation
587
588@noindent
589There would be many other rules for `statement', one for each kind of
590statement in C.
591
592@cindex start symbol
593One nonterminal symbol must be distinguished as the special one which
594defines a complete utterance in the language. It is called the @dfn{start
595symbol}. In a compiler, this means a complete input program. In the C
596language, the nonterminal symbol `sequence of definitions and declarations'
597plays this role.
598
599For example, @samp{1 + 2} is a valid C expression---a valid part of a C
600program---but it is not valid as an @emph{entire} C program. In the
601context-free grammar of C, this follows from the fact that `expression' is
602not the start symbol.
603
604The Bison parser reads a sequence of tokens as its input, and groups the
605tokens using the grammar rules. If the input is valid, the end result is
606that the entire token sequence reduces to a single grouping whose symbol is
607the grammar's start symbol. If we use a grammar for C, the entire input
608must be a `sequence of definitions and declarations'. If not, the parser
609reports a syntax error.
610
342b8b6e 611@node Grammar in Bison
bfa74976
RS
612@section From Formal Rules to Bison Input
613@cindex Bison grammar
614@cindex grammar, Bison
615@cindex formal grammar
616
617A formal grammar is a mathematical construct. To define the language
618for Bison, you must write a file expressing the grammar in Bison syntax:
619a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
620
621A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 622as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
623in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
624
625The Bison representation for a terminal symbol is also called a @dfn{token
626type}. Token types as well can be represented as C-like identifiers. By
627convention, these identifiers should be upper case to distinguish them from
628nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
629@code{RETURN}. A terminal symbol that stands for a particular keyword in
630the language should be named after that keyword converted to upper case.
631The terminal symbol @code{error} is reserved for error recovery.
931c7513 632@xref{Symbols}.
bfa74976
RS
633
634A terminal symbol can also be represented as a character literal, just like
635a C character constant. You should do this whenever a token is just a
636single character (parenthesis, plus-sign, etc.): use that same character in
637a literal as the terminal symbol for that token.
638
931c7513
RS
639A third way to represent a terminal symbol is with a C string constant
640containing several characters. @xref{Symbols}, for more information.
641
bfa74976
RS
642The grammar rules also have an expression in Bison syntax. For example,
643here is the Bison rule for a C @code{return} statement. The semicolon in
644quotes is a literal character token, representing part of the C syntax for
645the statement; the naked semicolon, and the colon, are Bison punctuation
646used in every rule.
647
648@example
5e9b6624 649stmt: RETURN expr ';' ;
bfa74976
RS
650@end example
651
652@noindent
653@xref{Rules, ,Syntax of Grammar Rules}.
654
342b8b6e 655@node Semantic Values
bfa74976
RS
656@section Semantic Values
657@cindex semantic value
658@cindex value, semantic
659
660A formal grammar selects tokens only by their classifications: for example,
661if a rule mentions the terminal symbol `integer constant', it means that
662@emph{any} integer constant is grammatically valid in that position. The
663precise value of the constant is irrelevant to how to parse the input: if
664@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 665grammatical.
bfa74976
RS
666
667But the precise value is very important for what the input means once it is
668parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6693989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
670has both a token type and a @dfn{semantic value}. @xref{Semantics,
671,Defining Language Semantics},
bfa74976
RS
672for details.
673
674The token type is a terminal symbol defined in the grammar, such as
675@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
676you need to know to decide where the token may validly appear and how to
677group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 678except their types.
bfa74976
RS
679
680The semantic value has all the rest of the information about the
681meaning of the token, such as the value of an integer, or the name of an
682identifier. (A token such as @code{','} which is just punctuation doesn't
683need to have any semantic value.)
684
685For example, an input token might be classified as token type
686@code{INTEGER} and have the semantic value 4. Another input token might
687have the same token type @code{INTEGER} but value 3989. When a grammar
688rule says that @code{INTEGER} is allowed, either of these tokens is
689acceptable because each is an @code{INTEGER}. When the parser accepts the
690token, it keeps track of the token's semantic value.
691
692Each grouping can also have a semantic value as well as its nonterminal
693symbol. For example, in a calculator, an expression typically has a
694semantic value that is a number. In a compiler for a programming
695language, an expression typically has a semantic value that is a tree
696structure describing the meaning of the expression.
697
342b8b6e 698@node Semantic Actions
bfa74976
RS
699@section Semantic Actions
700@cindex semantic actions
701@cindex actions, semantic
702
703In order to be useful, a program must do more than parse input; it must
704also produce some output based on the input. In a Bison grammar, a grammar
705rule can have an @dfn{action} made up of C statements. Each time the
706parser recognizes a match for that rule, the action is executed.
707@xref{Actions}.
13863333 708
bfa74976
RS
709Most of the time, the purpose of an action is to compute the semantic value
710of the whole construct from the semantic values of its parts. For example,
711suppose we have a rule which says an expression can be the sum of two
712expressions. When the parser recognizes such a sum, each of the
713subexpressions has a semantic value which describes how it was built up.
714The action for this rule should create a similar sort of value for the
715newly recognized larger expression.
716
717For example, here is a rule that says an expression can be the sum of
718two subexpressions:
719
720@example
5e9b6624 721expr: expr '+' expr @{ $$ = $1 + $3; @} ;
bfa74976
RS
722@end example
723
724@noindent
725The action says how to produce the semantic value of the sum expression
726from the values of the two subexpressions.
727
676385e2 728@node GLR Parsers
8a4281b9
JD
729@section Writing GLR Parsers
730@cindex GLR parsing
731@cindex generalized LR (GLR) parsing
676385e2
PH
732@findex %glr-parser
733@cindex conflicts
734@cindex shift/reduce conflicts
fa7e68c3 735@cindex reduce/reduce conflicts
676385e2 736
eb45ef3b 737In some grammars, Bison's deterministic
8a4281b9 738LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
739certain grammar rule at a given point. That is, it may not be able to
740decide (on the basis of the input read so far) which of two possible
741reductions (applications of a grammar rule) applies, or whether to apply
742a reduction or read more of the input and apply a reduction later in the
743input. These are known respectively as @dfn{reduce/reduce} conflicts
744(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
745(@pxref{Shift/Reduce}).
746
8a4281b9 747To use a grammar that is not easily modified to be LR(1), a
9501dc6e 748more general parsing algorithm is sometimes necessary. If you include
676385e2 749@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
750(@pxref{Grammar Outline}), the result is a Generalized LR
751(GLR) parser. These parsers handle Bison grammars that
9501dc6e 752contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 753declarations) identically to deterministic parsers. However, when
9501dc6e 754faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 755GLR parsers use the simple expedient of doing both,
9501dc6e
AD
756effectively cloning the parser to follow both possibilities. Each of
757the resulting parsers can again split, so that at any given time, there
758can be any number of possible parses being explored. The parsers
676385e2
PH
759proceed in lockstep; that is, all of them consume (shift) a given input
760symbol before any of them proceed to the next. Each of the cloned
761parsers eventually meets one of two possible fates: either it runs into
762a parsing error, in which case it simply vanishes, or it merges with
763another parser, because the two of them have reduced the input to an
764identical set of symbols.
765
766During the time that there are multiple parsers, semantic actions are
767recorded, but not performed. When a parser disappears, its recorded
768semantic actions disappear as well, and are never performed. When a
769reduction makes two parsers identical, causing them to merge, Bison
770records both sets of semantic actions. Whenever the last two parsers
771merge, reverting to the single-parser case, Bison resolves all the
772outstanding actions either by precedences given to the grammar rules
773involved, or by performing both actions, and then calling a designated
774user-defined function on the resulting values to produce an arbitrary
775merged result.
776
fa7e68c3 777@menu
8a4281b9
JD
778* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
779* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 780* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 781* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 782* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
783@end menu
784
785@node Simple GLR Parsers
8a4281b9
JD
786@subsection Using GLR on Unambiguous Grammars
787@cindex GLR parsing, unambiguous grammars
788@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
789@findex %glr-parser
790@findex %expect-rr
791@cindex conflicts
792@cindex reduce/reduce conflicts
793@cindex shift/reduce conflicts
794
8a4281b9
JD
795In the simplest cases, you can use the GLR algorithm
796to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 797Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
798
799Consider a problem that
800arises in the declaration of enumerated and subrange types in the
801programming language Pascal. Here are some examples:
802
803@example
804type subrange = lo .. hi;
805type enum = (a, b, c);
806@end example
807
808@noindent
809The original language standard allows only numeric
810literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 811and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
81210206) and many other
813Pascal implementations allow arbitrary expressions there. This gives
814rise to the following situation, containing a superfluous pair of
815parentheses:
816
817@example
818type subrange = (a) .. b;
819@end example
820
821@noindent
822Compare this to the following declaration of an enumerated
823type with only one value:
824
825@example
826type enum = (a);
827@end example
828
829@noindent
830(These declarations are contrived, but they are syntactically
831valid, and more-complicated cases can come up in practical programs.)
832
833These two declarations look identical until the @samp{..} token.
8a4281b9 834With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
835possible to decide between the two forms when the identifier
836@samp{a} is parsed. It is, however, desirable
837for a parser to decide this, since in the latter case
838@samp{a} must become a new identifier to represent the enumeration
839value, while in the former case @samp{a} must be evaluated with its
840current meaning, which may be a constant or even a function call.
841
842You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
843to be resolved later, but this typically requires substantial
844contortions in both semantic actions and large parts of the
845grammar, where the parentheses are nested in the recursive rules for
846expressions.
847
848You might think of using the lexer to distinguish between the two
849forms by returning different tokens for currently defined and
850undefined identifiers. But if these declarations occur in a local
851scope, and @samp{a} is defined in an outer scope, then both forms
852are possible---either locally redefining @samp{a}, or using the
853value of @samp{a} from the outer scope. So this approach cannot
854work.
855
e757bb10 856A simple solution to this problem is to declare the parser to
8a4281b9
JD
857use the GLR algorithm.
858When the GLR parser reaches the critical state, it
fa7e68c3
PE
859merely splits into two branches and pursues both syntax rules
860simultaneously. Sooner or later, one of them runs into a parsing
861error. If there is a @samp{..} token before the next
862@samp{;}, the rule for enumerated types fails since it cannot
863accept @samp{..} anywhere; otherwise, the subrange type rule
864fails since it requires a @samp{..} token. So one of the branches
865fails silently, and the other one continues normally, performing
866all the intermediate actions that were postponed during the split.
867
868If the input is syntactically incorrect, both branches fail and the parser
869reports a syntax error as usual.
870
871The effect of all this is that the parser seems to ``guess'' the
872correct branch to take, or in other words, it seems to use more
8a4281b9
JD
873lookahead than the underlying LR(1) algorithm actually allows
874for. In this example, LR(2) would suffice, but also some cases
875that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 876
8a4281b9 877In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
878and the current Bison parser even takes exponential time and space
879for some grammars. In practice, this rarely happens, and for many
880grammars it is possible to prove that it cannot happen.
881The present example contains only one conflict between two
882rules, and the type-declaration context containing the conflict
883cannot be nested. So the number of
884branches that can exist at any time is limited by the constant 2,
885and the parsing time is still linear.
886
887Here is a Bison grammar corresponding to the example above. It
888parses a vastly simplified form of Pascal type declarations.
889
890@example
891%token TYPE DOTDOT ID
892
893@group
894%left '+' '-'
895%left '*' '/'
896@end group
897
898%%
899
900@group
5e9b6624 901type_decl: TYPE ID '=' type ';' ;
fa7e68c3
PE
902@end group
903
904@group
5e9b6624
AD
905type:
906 '(' id_list ')'
907| expr DOTDOT expr
908;
fa7e68c3
PE
909@end group
910
911@group
5e9b6624
AD
912id_list:
913 ID
914| id_list ',' ID
915;
fa7e68c3
PE
916@end group
917
918@group
5e9b6624
AD
919expr:
920 '(' expr ')'
921| expr '+' expr
922| expr '-' expr
923| expr '*' expr
924| expr '/' expr
925| ID
926;
fa7e68c3
PE
927@end group
928@end example
929
8a4281b9 930When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
931about one reduce/reduce conflict. In the conflicting situation the
932parser chooses one of the alternatives, arbitrarily the one
933declared first. Therefore the following correct input is not
934recognized:
935
936@example
937type t = (a) .. b;
938@end example
939
8a4281b9 940The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
941to be silent about the one known reduce/reduce conflict, by adding
942these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
943@samp{%%}):
944
945@example
946%glr-parser
947%expect-rr 1
948@end example
949
950@noindent
951No change in the grammar itself is required. Now the
952parser recognizes all valid declarations, according to the
953limited syntax above, transparently. In fact, the user does not even
954notice when the parser splits.
955
8a4281b9 956So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
957almost without disadvantages. Even in simple cases like this, however,
958there are at least two potential problems to beware. First, always
8a4281b9
JD
959analyze the conflicts reported by Bison to make sure that GLR
960splitting is only done where it is intended. A GLR parser
f8e1c9e5 961splitting inadvertently may cause problems less obvious than an
8a4281b9 962LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
963conflict. Second, consider interactions with the lexer (@pxref{Semantic
964Tokens}) with great care. Since a split parser consumes tokens without
965performing any actions during the split, the lexer cannot obtain
966information via parser actions. Some cases of lexer interactions can be
8a4281b9 967eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
968lexer to the parser. You must check the remaining cases for
969correctness.
970
971In our example, it would be safe for the lexer to return tokens based on
972their current meanings in some symbol table, because no new symbols are
973defined in the middle of a type declaration. Though it is possible for
974a parser to define the enumeration constants as they are parsed, before
975the type declaration is completed, it actually makes no difference since
976they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
977
978@node Merging GLR Parses
8a4281b9
JD
979@subsection Using GLR to Resolve Ambiguities
980@cindex GLR parsing, ambiguous grammars
981@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
982@findex %dprec
983@findex %merge
984@cindex conflicts
985@cindex reduce/reduce conflicts
986
2a8d363a 987Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
988
989@example
990%@{
38a92d50
PE
991 #include <stdio.h>
992 #define YYSTYPE char const *
993 int yylex (void);
994 void yyerror (char const *);
676385e2
PH
995%@}
996
997%token TYPENAME ID
998
999%right '='
1000%left '+'
1001
1002%glr-parser
1003
1004%%
1005
5e9b6624
AD
1006prog:
1007 /* Nothing. */
1008| prog stmt @{ printf ("\n"); @}
1009;
676385e2 1010
5e9b6624
AD
1011stmt:
1012 expr ';' %dprec 1
1013| decl %dprec 2
1014;
676385e2 1015
5e9b6624
AD
1016expr:
1017 ID @{ printf ("%s ", $$); @}
1018| TYPENAME '(' expr ')'
1019 @{ printf ("%s <cast> ", $1); @}
1020| expr '+' expr @{ printf ("+ "); @}
1021| expr '=' expr @{ printf ("= "); @}
1022;
676385e2 1023
5e9b6624
AD
1024decl:
1025 TYPENAME declarator ';'
1026 @{ printf ("%s <declare> ", $1); @}
1027| TYPENAME declarator '=' expr ';'
1028 @{ printf ("%s <init-declare> ", $1); @}
1029;
676385e2 1030
5e9b6624
AD
1031declarator:
1032 ID @{ printf ("\"%s\" ", $1); @}
1033| '(' declarator ')'
1034;
676385e2
PH
1035@end example
1036
1037@noindent
1038This models a problematic part of the C++ grammar---the ambiguity between
1039certain declarations and statements. For example,
1040
1041@example
1042T (x) = y+z;
1043@end example
1044
1045@noindent
1046parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1047(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1048@samp{x} as an @code{ID}).
676385e2 1049Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1050@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1051time it encounters @code{x} in the example above. Since this is a
8a4281b9 1052GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1053each choice of resolving the reduce/reduce conflict.
1054Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1055however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1056ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1057the other reduces @code{stmt : decl}, after which both parsers are in an
1058identical state: they've seen @samp{prog stmt} and have the same unprocessed
1059input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1060
8a4281b9 1061At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1062grammar of how to choose between the competing parses.
1063In the example above, the two @code{%dprec}
e757bb10 1064declarations specify that Bison is to give precedence
fa7e68c3 1065to the parse that interprets the example as a
676385e2
PH
1066@code{decl}, which implies that @code{x} is a declarator.
1067The parser therefore prints
1068
1069@example
fae437e8 1070"x" y z + T <init-declare>
676385e2
PH
1071@end example
1072
fa7e68c3
PE
1073The @code{%dprec} declarations only come into play when more than one
1074parse survives. Consider a different input string for this parser:
676385e2
PH
1075
1076@example
1077T (x) + y;
1078@end example
1079
1080@noindent
8a4281b9 1081This is another example of using GLR to parse an unambiguous
fa7e68c3 1082construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1083Here, there is no ambiguity (this cannot be parsed as a declaration).
1084However, at the time the Bison parser encounters @code{x}, it does not
1085have enough information to resolve the reduce/reduce conflict (again,
1086between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1087case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1088into two, one assuming that @code{x} is an @code{expr}, and the other
1089assuming @code{x} is a @code{declarator}. The second of these parsers
1090then vanishes when it sees @code{+}, and the parser prints
1091
1092@example
fae437e8 1093x T <cast> y +
676385e2
PH
1094@end example
1095
1096Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1097the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1098actions of the two possible parsers, rather than choosing one over the
1099other. To do so, you could change the declaration of @code{stmt} as
1100follows:
1101
1102@example
5e9b6624
AD
1103stmt:
1104 expr ';' %merge <stmtMerge>
1105| decl %merge <stmtMerge>
1106;
676385e2
PH
1107@end example
1108
1109@noindent
676385e2
PH
1110and define the @code{stmtMerge} function as:
1111
1112@example
38a92d50
PE
1113static YYSTYPE
1114stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1115@{
1116 printf ("<OR> ");
1117 return "";
1118@}
1119@end example
1120
1121@noindent
1122with an accompanying forward declaration
1123in the C declarations at the beginning of the file:
1124
1125@example
1126%@{
38a92d50 1127 #define YYSTYPE char const *
676385e2
PH
1128 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1129%@}
1130@end example
1131
1132@noindent
fa7e68c3
PE
1133With these declarations, the resulting parser parses the first example
1134as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1135
1136@example
fae437e8 1137"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1138@end example
1139
fa7e68c3 1140Bison requires that all of the
e757bb10 1141productions that participate in any particular merge have identical
fa7e68c3
PE
1142@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1143and the parser will report an error during any parse that results in
1144the offending merge.
9501dc6e 1145
32c29292
JD
1146@node GLR Semantic Actions
1147@subsection GLR Semantic Actions
1148
8a4281b9 1149The nature of GLR parsing and the structure of the generated
20be2f92
PH
1150parsers give rise to certain restrictions on semantic values and actions.
1151
1152@subsubsection Deferred semantic actions
32c29292
JD
1153@cindex deferred semantic actions
1154By definition, a deferred semantic action is not performed at the same time as
1155the associated reduction.
1156This raises caveats for several Bison features you might use in a semantic
8a4281b9 1157action in a GLR parser.
32c29292
JD
1158
1159@vindex yychar
8a4281b9 1160@cindex GLR parsers and @code{yychar}
32c29292 1161@vindex yylval
8a4281b9 1162@cindex GLR parsers and @code{yylval}
32c29292 1163@vindex yylloc
8a4281b9 1164@cindex GLR parsers and @code{yylloc}
32c29292 1165In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1166the lookahead token present at the time of the associated reduction.
32c29292
JD
1167After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1168you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1169lookahead token's semantic value and location, if any.
32c29292
JD
1170In a nondeferred semantic action, you can also modify any of these variables to
1171influence syntax analysis.
742e4900 1172@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1173
1174@findex yyclearin
8a4281b9 1175@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1176In a deferred semantic action, it's too late to influence syntax analysis.
1177In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1178shallow copies of the values they had at the time of the associated reduction.
1179For this reason alone, modifying them is dangerous.
1180Moreover, the result of modifying them is undefined and subject to change with
1181future versions of Bison.
1182For example, if a semantic action might be deferred, you should never write it
1183to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1184memory referenced by @code{yylval}.
1185
20be2f92 1186@subsubsection YYERROR
32c29292 1187@findex YYERROR
8a4281b9 1188@cindex GLR parsers and @code{YYERROR}
32c29292 1189Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1190(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1191initiate error recovery.
8a4281b9 1192During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1193the same as its effect in a deterministic parser.
411614fa
JM
1194The effect in a deferred action is similar, but the precise point of the
1195error is undefined; instead, the parser reverts to deterministic operation,
20be2f92
PH
1196selecting an unspecified stack on which to continue with a syntax error.
1197In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1198parsing, @code{YYERROR} silently prunes
1199the parse that invoked the test.
1200
1201@subsubsection Restrictions on semantic values and locations
8a4281b9 1202GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1203semantic values and location types when using the generated parsers as
1204C++ code.
8710fc41 1205
ca2a6d15
PH
1206@node Semantic Predicates
1207@subsection Controlling a Parse with Arbitrary Predicates
1208@findex %?
8a4281b9 1209@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1210
1211In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1212GLR parsers
ca2a6d15
PH
1213allow you to reject parses on the basis of arbitrary computations executed
1214in user code, without having Bison treat this rejection as an error
1215if there are alternative parses. (This feature is experimental and may
1216evolve. We welcome user feedback.) For example,
1217
c93f22fc
AD
1218@example
1219widget:
5e9b6624
AD
1220 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1221| %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1222;
c93f22fc 1223@end example
ca2a6d15
PH
1224
1225@noindent
411614fa 1226is one way to allow the same parser to handle two different syntaxes for
ca2a6d15
PH
1227widgets. The clause preceded by @code{%?} is treated like an ordinary
1228action, except that its text is treated as an expression and is always
411614fa 1229evaluated immediately (even when in nondeterministic mode). If the
ca2a6d15 1230expression yields 0 (false), the clause is treated as a syntax error,
411614fa 1231which, in a nondeterministic parser, causes the stack in which it is reduced
ca2a6d15
PH
1232to die. In a deterministic parser, it acts like YYERROR.
1233
1234As the example shows, predicates otherwise look like semantic actions, and
1235therefore you must be take them into account when determining the numbers
1236to use for denoting the semantic values of right-hand side symbols.
1237Predicate actions, however, have no defined value, and may not be given
1238labels.
1239
1240There is a subtle difference between semantic predicates and ordinary
1241actions in nondeterministic mode, since the latter are deferred.
411614fa 1242For example, we could try to rewrite the previous example as
ca2a6d15 1243
c93f22fc
AD
1244@example
1245widget:
5e9b6624
AD
1246 @{ if (!new_syntax) YYERROR; @}
1247 "widget" id new_args @{ $$ = f($3, $4); @}
1248| @{ if (new_syntax) YYERROR; @}
1249 "widget" id old_args @{ $$ = f($3, $4); @}
1250;
c93f22fc 1251@end example
ca2a6d15
PH
1252
1253@noindent
1254(reversing the sense of the predicate tests to cause an error when they are
1255false). However, this
1256does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1257have overlapping syntax.
411614fa 1258Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1259a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1260for cases where @code{new_args} and @code{old_args} recognize the same string
1261@emph{before} performing the tests of @code{new_syntax}. It therefore
1262reports an error.
1263
1264Finally, be careful in writing predicates: deferred actions have not been
1265evaluated, so that using them in a predicate will have undefined effects.
1266
fa7e68c3 1267@node Compiler Requirements
8a4281b9 1268@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1269@cindex @code{inline}
8a4281b9 1270@cindex GLR parsers and @code{inline}
fa7e68c3 1271
8a4281b9 1272The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1273later. In addition, they use the @code{inline} keyword, which is not
1274C89, but is C99 and is a common extension in pre-C99 compilers. It is
1275up to the user of these parsers to handle
9501dc6e
AD
1276portability issues. For instance, if using Autoconf and the Autoconf
1277macro @code{AC_C_INLINE}, a mere
1278
1279@example
1280%@{
38a92d50 1281 #include <config.h>
9501dc6e
AD
1282%@}
1283@end example
1284
1285@noindent
1286will suffice. Otherwise, we suggest
1287
1288@example
1289%@{
aaaa2aae
AD
1290 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1291 && ! defined inline)
1292 # define inline
38a92d50 1293 #endif
9501dc6e
AD
1294%@}
1295@end example
676385e2 1296
1769eb30 1297@node Locations
847bf1f5
AD
1298@section Locations
1299@cindex location
95923bd6
AD
1300@cindex textual location
1301@cindex location, textual
847bf1f5
AD
1302
1303Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1304and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1305the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1306Bison provides a mechanism for handling these locations.
1307
72d2299c 1308Each token has a semantic value. In a similar fashion, each token has an
303834cc
JD
1309associated location, but the type of locations is the same for all tokens
1310and groupings. Moreover, the output parser is equipped with a default data
1311structure for storing locations (@pxref{Tracking Locations}, for more
1312details).
847bf1f5
AD
1313
1314Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1315set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1316is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1317@code{@@3}.
1318
1319When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1320of its left hand side (@pxref{Actions}). In the same way, another default
1321action is used for locations. However, the action for locations is general
847bf1f5 1322enough for most cases, meaning there is usually no need to describe for each
72d2299c 1323rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1324grouping, the default behavior of the output parser is to take the beginning
1325of the first symbol, and the end of the last symbol.
1326
342b8b6e 1327@node Bison Parser
ff7571c0 1328@section Bison Output: the Parser Implementation File
bfa74976
RS
1329@cindex Bison parser
1330@cindex Bison utility
1331@cindex lexical analyzer, purpose
1332@cindex parser
1333
ff7571c0
JD
1334When you run Bison, you give it a Bison grammar file as input. The
1335most important output is a C source file that implements a parser for
1336the language described by the grammar. This parser is called a
1337@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1338implementation file}. Keep in mind that the Bison utility and the
1339Bison parser are two distinct programs: the Bison utility is a program
1340whose output is the Bison parser implementation file that becomes part
1341of your program.
bfa74976
RS
1342
1343The job of the Bison parser is to group tokens into groupings according to
1344the grammar rules---for example, to build identifiers and operators into
1345expressions. As it does this, it runs the actions for the grammar rules it
1346uses.
1347
704a47c4
AD
1348The tokens come from a function called the @dfn{lexical analyzer} that
1349you must supply in some fashion (such as by writing it in C). The Bison
1350parser calls the lexical analyzer each time it wants a new token. It
1351doesn't know what is ``inside'' the tokens (though their semantic values
1352may reflect this). Typically the lexical analyzer makes the tokens by
1353parsing characters of text, but Bison does not depend on this.
1354@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1355
ff7571c0
JD
1356The Bison parser implementation file is C code which defines a
1357function named @code{yyparse} which implements that grammar. This
1358function does not make a complete C program: you must supply some
1359additional functions. One is the lexical analyzer. Another is an
1360error-reporting function which the parser calls to report an error.
1361In addition, a complete C program must start with a function called
1362@code{main}; you have to provide this, and arrange for it to call
1363@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1364C-Language Interface}.
bfa74976 1365
f7ab6a50 1366Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1367write, all symbols defined in the Bison parser implementation file
1368itself begin with @samp{yy} or @samp{YY}. This includes interface
1369functions such as the lexical analyzer function @code{yylex}, the
1370error reporting function @code{yyerror} and the parser function
1371@code{yyparse} itself. This also includes numerous identifiers used
1372for internal purposes. Therefore, you should avoid using C
1373identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1374file except for the ones defined in this manual. Also, you should
1375avoid using the C identifiers @samp{malloc} and @samp{free} for
1376anything other than their usual meanings.
1377
1378In some cases the Bison parser implementation file includes system
1379headers, and in those cases your code should respect the identifiers
1380reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1381@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1382included as needed to declare memory allocators and related types.
1383@code{<libintl.h>} is included if message translation is in use
1384(@pxref{Internationalization}). Other system headers may be included
1385if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1386,Tracing Your Parser}).
7093d0f5 1387
342b8b6e 1388@node Stages
bfa74976
RS
1389@section Stages in Using Bison
1390@cindex stages in using Bison
1391@cindex using Bison
1392
1393The actual language-design process using Bison, from grammar specification
1394to a working compiler or interpreter, has these parts:
1395
1396@enumerate
1397@item
1398Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1399(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1400in the language, describe the action that is to be taken when an
1401instance of that rule is recognized. The action is described by a
1402sequence of C statements.
bfa74976
RS
1403
1404@item
704a47c4
AD
1405Write a lexical analyzer to process input and pass tokens to the parser.
1406The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1407Lexical Analyzer Function @code{yylex}}). It could also be produced
1408using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1409
1410@item
1411Write a controlling function that calls the Bison-produced parser.
1412
1413@item
1414Write error-reporting routines.
1415@end enumerate
1416
1417To turn this source code as written into a runnable program, you
1418must follow these steps:
1419
1420@enumerate
1421@item
1422Run Bison on the grammar to produce the parser.
1423
1424@item
1425Compile the code output by Bison, as well as any other source files.
1426
1427@item
1428Link the object files to produce the finished product.
1429@end enumerate
1430
342b8b6e 1431@node Grammar Layout
bfa74976
RS
1432@section The Overall Layout of a Bison Grammar
1433@cindex grammar file
1434@cindex file format
1435@cindex format of grammar file
1436@cindex layout of Bison grammar
1437
1438The input file for the Bison utility is a @dfn{Bison grammar file}. The
1439general form of a Bison grammar file is as follows:
1440
1441@example
1442%@{
08e49d20 1443@var{Prologue}
bfa74976
RS
1444%@}
1445
1446@var{Bison declarations}
1447
1448%%
1449@var{Grammar rules}
1450%%
08e49d20 1451@var{Epilogue}
bfa74976
RS
1452@end example
1453
1454@noindent
1455The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1456in every Bison grammar file to separate the sections.
1457
72d2299c 1458The prologue may define types and variables used in the actions. You can
342b8b6e 1459also use preprocessor commands to define macros used there, and use
bfa74976 1460@code{#include} to include header files that do any of these things.
38a92d50
PE
1461You need to declare the lexical analyzer @code{yylex} and the error
1462printer @code{yyerror} here, along with any other global identifiers
1463used by the actions in the grammar rules.
bfa74976
RS
1464
1465The Bison declarations declare the names of the terminal and nonterminal
1466symbols, and may also describe operator precedence and the data types of
1467semantic values of various symbols.
1468
1469The grammar rules define how to construct each nonterminal symbol from its
1470parts.
1471
38a92d50
PE
1472The epilogue can contain any code you want to use. Often the
1473definitions of functions declared in the prologue go here. In a
1474simple program, all the rest of the program can go here.
bfa74976 1475
342b8b6e 1476@node Examples
bfa74976
RS
1477@chapter Examples
1478@cindex simple examples
1479@cindex examples, simple
1480
aaaa2aae 1481Now we show and explain several sample programs written using Bison: a
bfa74976 1482reverse polish notation calculator, an algebraic (infix) notation
aaaa2aae
AD
1483calculator --- later extended to track ``locations'' ---
1484and a multi-function calculator. All
1485produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1486
1487These examples are simple, but Bison grammars for real programming
aa08666d
AD
1488languages are written the same way. You can copy these examples into a
1489source file to try them.
bfa74976
RS
1490
1491@menu
f5f419de
DJ
1492* RPN Calc:: Reverse polish notation calculator;
1493 a first example with no operator precedence.
1494* Infix Calc:: Infix (algebraic) notation calculator.
1495 Operator precedence is introduced.
bfa74976 1496* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1497* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1498* Multi-function Calc:: Calculator with memory and trig functions.
1499 It uses multiple data-types for semantic values.
1500* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1501@end menu
1502
342b8b6e 1503@node RPN Calc
bfa74976
RS
1504@section Reverse Polish Notation Calculator
1505@cindex reverse polish notation
1506@cindex polish notation calculator
1507@cindex @code{rpcalc}
1508@cindex calculator, simple
1509
1510The first example is that of a simple double-precision @dfn{reverse polish
1511notation} calculator (a calculator using postfix operators). This example
1512provides a good starting point, since operator precedence is not an issue.
1513The second example will illustrate how operator precedence is handled.
1514
1515The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1516@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1517
1518@menu
f5f419de
DJ
1519* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1520* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1521* Rpcalc Lexer:: The lexical analyzer.
1522* Rpcalc Main:: The controlling function.
1523* Rpcalc Error:: The error reporting function.
1524* Rpcalc Generate:: Running Bison on the grammar file.
1525* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1526@end menu
1527
f5f419de 1528@node Rpcalc Declarations
bfa74976
RS
1529@subsection Declarations for @code{rpcalc}
1530
1531Here are the C and Bison declarations for the reverse polish notation
1532calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1533
24ec0837 1534@comment file: rpcalc.y
bfa74976 1535@example
72d2299c 1536/* Reverse polish notation calculator. */
bfa74976
RS
1537
1538%@{
38a92d50 1539 #define YYSTYPE double
24ec0837 1540 #include <stdio.h>
38a92d50
PE
1541 #include <math.h>
1542 int yylex (void);
1543 void yyerror (char const *);
bfa74976
RS
1544%@}
1545
1546%token NUM
1547
72d2299c 1548%% /* Grammar rules and actions follow. */
bfa74976
RS
1549@end example
1550
75f5aaea 1551The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1552preprocessor directives and two forward declarations.
bfa74976
RS
1553
1554The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1555specifying the C data type for semantic values of both tokens and
1556groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1557Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1558don't define it, @code{int} is the default. Because we specify
1559@code{double}, each token and each expression has an associated value,
1560which is a floating point number.
bfa74976
RS
1561
1562The @code{#include} directive is used to declare the exponentiation
1563function @code{pow}.
1564
38a92d50
PE
1565The forward declarations for @code{yylex} and @code{yyerror} are
1566needed because the C language requires that functions be declared
1567before they are used. These functions will be defined in the
1568epilogue, but the parser calls them so they must be declared in the
1569prologue.
1570
704a47c4
AD
1571The second section, Bison declarations, provides information to Bison
1572about the token types (@pxref{Bison Declarations, ,The Bison
1573Declarations Section}). Each terminal symbol that is not a
1574single-character literal must be declared here. (Single-character
bfa74976
RS
1575literals normally don't need to be declared.) In this example, all the
1576arithmetic operators are designated by single-character literals, so the
1577only terminal symbol that needs to be declared is @code{NUM}, the token
1578type for numeric constants.
1579
342b8b6e 1580@node Rpcalc Rules
bfa74976
RS
1581@subsection Grammar Rules for @code{rpcalc}
1582
1583Here are the grammar rules for the reverse polish notation calculator.
1584
24ec0837 1585@comment file: rpcalc.y
bfa74976 1586@example
aaaa2aae 1587@group
5e9b6624
AD
1588input:
1589 /* empty */
1590| input line
bfa74976 1591;
aaaa2aae 1592@end group
bfa74976 1593
aaaa2aae 1594@group
5e9b6624
AD
1595line:
1596 '\n'
1597| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1598;
aaaa2aae 1599@end group
bfa74976 1600
aaaa2aae 1601@group
5e9b6624
AD
1602exp:
1603 NUM @{ $$ = $1; @}
1604| exp exp '+' @{ $$ = $1 + $2; @}
1605| exp exp '-' @{ $$ = $1 - $2; @}
1606| exp exp '*' @{ $$ = $1 * $2; @}
1607| exp exp '/' @{ $$ = $1 / $2; @}
1608| exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1609| exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1610;
aaaa2aae 1611@end group
bfa74976
RS
1612%%
1613@end example
1614
1615The groupings of the rpcalc ``language'' defined here are the expression
1616(given the name @code{exp}), the line of input (@code{line}), and the
1617complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1618symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1619which is read as ``or''. The following sections explain what these rules
1620mean.
1621
1622The semantics of the language is determined by the actions taken when a
1623grouping is recognized. The actions are the C code that appears inside
1624braces. @xref{Actions}.
1625
1626You must specify these actions in C, but Bison provides the means for
1627passing semantic values between the rules. In each action, the
1628pseudo-variable @code{$$} stands for the semantic value for the grouping
1629that the rule is going to construct. Assigning a value to @code{$$} is the
1630main job of most actions. The semantic values of the components of the
1631rule are referred to as @code{$1}, @code{$2}, and so on.
1632
1633@menu
24ec0837
AD
1634* Rpcalc Input:: Explanation of the @code{input} nonterminal
1635* Rpcalc Line:: Explanation of the @code{line} nonterminal
1636* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976
RS
1637@end menu
1638
342b8b6e 1639@node Rpcalc Input
bfa74976
RS
1640@subsubsection Explanation of @code{input}
1641
1642Consider the definition of @code{input}:
1643
1644@example
5e9b6624
AD
1645input:
1646 /* empty */
1647| input line
bfa74976
RS
1648;
1649@end example
1650
1651This definition reads as follows: ``A complete input is either an empty
1652string, or a complete input followed by an input line''. Notice that
1653``complete input'' is defined in terms of itself. This definition is said
1654to be @dfn{left recursive} since @code{input} appears always as the
1655leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1656
1657The first alternative is empty because there are no symbols between the
1658colon and the first @samp{|}; this means that @code{input} can match an
1659empty string of input (no tokens). We write the rules this way because it
1660is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1661It's conventional to put an empty alternative first and write the comment
1662@samp{/* empty */} in it.
1663
1664The second alternate rule (@code{input line}) handles all nontrivial input.
1665It means, ``After reading any number of lines, read one more line if
1666possible.'' The left recursion makes this rule into a loop. Since the
1667first alternative matches empty input, the loop can be executed zero or
1668more times.
1669
1670The parser function @code{yyparse} continues to process input until a
1671grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1672input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1673
342b8b6e 1674@node Rpcalc Line
bfa74976
RS
1675@subsubsection Explanation of @code{line}
1676
1677Now consider the definition of @code{line}:
1678
1679@example
5e9b6624
AD
1680line:
1681 '\n'
1682| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1683;
1684@end example
1685
1686The first alternative is a token which is a newline character; this means
1687that rpcalc accepts a blank line (and ignores it, since there is no
1688action). The second alternative is an expression followed by a newline.
1689This is the alternative that makes rpcalc useful. The semantic value of
1690the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1691question is the first symbol in the alternative. The action prints this
1692value, which is the result of the computation the user asked for.
1693
1694This action is unusual because it does not assign a value to @code{$$}. As
1695a consequence, the semantic value associated with the @code{line} is
1696uninitialized (its value will be unpredictable). This would be a bug if
1697that value were ever used, but we don't use it: once rpcalc has printed the
1698value of the user's input line, that value is no longer needed.
1699
342b8b6e 1700@node Rpcalc Expr
bfa74976
RS
1701@subsubsection Explanation of @code{expr}
1702
1703The @code{exp} grouping has several rules, one for each kind of expression.
1704The first rule handles the simplest expressions: those that are just numbers.
1705The second handles an addition-expression, which looks like two expressions
1706followed by a plus-sign. The third handles subtraction, and so on.
1707
1708@example
5e9b6624
AD
1709exp:
1710 NUM
1711| exp exp '+' @{ $$ = $1 + $2; @}
1712| exp exp '-' @{ $$ = $1 - $2; @}
1713@dots{}
1714;
bfa74976
RS
1715@end example
1716
1717We have used @samp{|} to join all the rules for @code{exp}, but we could
1718equally well have written them separately:
1719
1720@example
5e9b6624
AD
1721exp: NUM ;
1722exp: exp exp '+' @{ $$ = $1 + $2; @};
1723exp: exp exp '-' @{ $$ = $1 - $2; @};
1724@dots{}
bfa74976
RS
1725@end example
1726
1727Most of the rules have actions that compute the value of the expression in
1728terms of the value of its parts. For example, in the rule for addition,
1729@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1730the second one. The third component, @code{'+'}, has no meaningful
1731associated semantic value, but if it had one you could refer to it as
1732@code{$3}. When @code{yyparse} recognizes a sum expression using this
1733rule, the sum of the two subexpressions' values is produced as the value of
1734the entire expression. @xref{Actions}.
1735
1736You don't have to give an action for every rule. When a rule has no
1737action, Bison by default copies the value of @code{$1} into @code{$$}.
1738This is what happens in the first rule (the one that uses @code{NUM}).
1739
1740The formatting shown here is the recommended convention, but Bison does
72d2299c 1741not require it. You can add or change white space as much as you wish.
bfa74976
RS
1742For example, this:
1743
1744@example
5e9b6624 1745exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1746@end example
1747
1748@noindent
1749means the same thing as this:
1750
1751@example
5e9b6624
AD
1752exp:
1753 NUM
1754| exp exp '+' @{ $$ = $1 + $2; @}
1755| @dots{}
99a9344e 1756;
bfa74976
RS
1757@end example
1758
1759@noindent
1760The latter, however, is much more readable.
1761
342b8b6e 1762@node Rpcalc Lexer
bfa74976
RS
1763@subsection The @code{rpcalc} Lexical Analyzer
1764@cindex writing a lexical analyzer
1765@cindex lexical analyzer, writing
1766
704a47c4
AD
1767The lexical analyzer's job is low-level parsing: converting characters
1768or sequences of characters into tokens. The Bison parser gets its
1769tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1770Analyzer Function @code{yylex}}.
bfa74976 1771
8a4281b9 1772Only a simple lexical analyzer is needed for the RPN
c827f760 1773calculator. This
bfa74976
RS
1774lexical analyzer skips blanks and tabs, then reads in numbers as
1775@code{double} and returns them as @code{NUM} tokens. Any other character
1776that isn't part of a number is a separate token. Note that the token-code
1777for such a single-character token is the character itself.
1778
1779The return value of the lexical analyzer function is a numeric code which
1780represents a token type. The same text used in Bison rules to stand for
1781this token type is also a C expression for the numeric code for the type.
1782This works in two ways. If the token type is a character literal, then its
e966383b 1783numeric code is that of the character; you can use the same
bfa74976
RS
1784character literal in the lexical analyzer to express the number. If the
1785token type is an identifier, that identifier is defined by Bison as a C
1786macro whose definition is the appropriate number. In this example,
1787therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1788
1964ad8c
AD
1789The semantic value of the token (if it has one) is stored into the
1790global variable @code{yylval}, which is where the Bison parser will look
1791for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1792defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1793,Declarations for @code{rpcalc}}.)
bfa74976 1794
72d2299c
PE
1795A token type code of zero is returned if the end-of-input is encountered.
1796(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1797
1798Here is the code for the lexical analyzer:
1799
24ec0837 1800@comment file: rpcalc.y
bfa74976
RS
1801@example
1802@group
72d2299c 1803/* The lexical analyzer returns a double floating point
e966383b 1804 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1805 of the character read if not a number. It skips all blanks
1806 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1807
1808#include <ctype.h>
1809@end group
1810
1811@group
13863333
AD
1812int
1813yylex (void)
bfa74976
RS
1814@{
1815 int c;
1816
72d2299c 1817 /* Skip white space. */
13863333 1818 while ((c = getchar ()) == ' ' || c == '\t')
d4fca427 1819 continue;
bfa74976
RS
1820@end group
1821@group
72d2299c 1822 /* Process numbers. */
13863333 1823 if (c == '.' || isdigit (c))
bfa74976
RS
1824 @{
1825 ungetc (c, stdin);
1826 scanf ("%lf", &yylval);
1827 return NUM;
1828 @}
1829@end group
1830@group
72d2299c 1831 /* Return end-of-input. */
13863333 1832 if (c == EOF)
bfa74976 1833 return 0;
72d2299c 1834 /* Return a single char. */
13863333 1835 return c;
bfa74976
RS
1836@}
1837@end group
1838@end example
1839
342b8b6e 1840@node Rpcalc Main
bfa74976
RS
1841@subsection The Controlling Function
1842@cindex controlling function
1843@cindex main function in simple example
1844
1845In keeping with the spirit of this example, the controlling function is
1846kept to the bare minimum. The only requirement is that it call
1847@code{yyparse} to start the process of parsing.
1848
24ec0837 1849@comment file: rpcalc.y
bfa74976
RS
1850@example
1851@group
13863333
AD
1852int
1853main (void)
bfa74976 1854@{
13863333 1855 return yyparse ();
bfa74976
RS
1856@}
1857@end group
1858@end example
1859
342b8b6e 1860@node Rpcalc Error
bfa74976
RS
1861@subsection The Error Reporting Routine
1862@cindex error reporting routine
1863
1864When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1865function @code{yyerror} to print an error message (usually but not
6e649e65 1866always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1867@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1868here is the definition we will use:
bfa74976 1869
24ec0837 1870@comment file: rpcalc.y
bfa74976
RS
1871@example
1872@group
1873#include <stdio.h>
aaaa2aae 1874@end group
bfa74976 1875
aaaa2aae 1876@group
38a92d50 1877/* Called by yyparse on error. */
13863333 1878void
38a92d50 1879yyerror (char const *s)
bfa74976 1880@{
4e03e201 1881 fprintf (stderr, "%s\n", s);
bfa74976
RS
1882@}
1883@end group
1884@end example
1885
1886After @code{yyerror} returns, the Bison parser may recover from the error
1887and continue parsing if the grammar contains a suitable error rule
1888(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1889have not written any error rules in this example, so any invalid input will
1890cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1891real calculator, but it is adequate for the first example.
bfa74976 1892
f5f419de 1893@node Rpcalc Generate
bfa74976
RS
1894@subsection Running Bison to Make the Parser
1895@cindex running Bison (introduction)
1896
ceed8467
AD
1897Before running Bison to produce a parser, we need to decide how to
1898arrange all the source code in one or more source files. For such a
ff7571c0
JD
1899simple example, the easiest thing is to put everything in one file,
1900the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1901@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1902(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1903
1904For a large project, you would probably have several source files, and use
1905@code{make} to arrange to recompile them.
1906
ff7571c0
JD
1907With all the source in the grammar file, you use the following command
1908to convert it into a parser implementation file:
bfa74976
RS
1909
1910@example
fa4d969f 1911bison @var{file}.y
bfa74976
RS
1912@end example
1913
1914@noindent
ff7571c0
JD
1915In this example, the grammar file is called @file{rpcalc.y} (for
1916``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1917implementation file named @file{@var{file}.tab.c}, removing the
1918@samp{.y} from the grammar file name. The parser implementation file
1919contains the source code for @code{yyparse}. The additional functions
1920in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1921copied verbatim to the parser implementation file.
bfa74976 1922
342b8b6e 1923@node Rpcalc Compile
ff7571c0 1924@subsection Compiling the Parser Implementation File
bfa74976
RS
1925@cindex compiling the parser
1926
ff7571c0 1927Here is how to compile and run the parser implementation file:
bfa74976
RS
1928
1929@example
1930@group
1931# @r{List files in current directory.}
9edcd895 1932$ @kbd{ls}
bfa74976
RS
1933rpcalc.tab.c rpcalc.y
1934@end group
1935
1936@group
1937# @r{Compile the Bison parser.}
1938# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1939$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1940@end group
1941
1942@group
1943# @r{List files again.}
9edcd895 1944$ @kbd{ls}
bfa74976
RS
1945rpcalc rpcalc.tab.c rpcalc.y
1946@end group
1947@end example
1948
1949The file @file{rpcalc} now contains the executable code. Here is an
1950example session using @code{rpcalc}.
1951
1952@example
9edcd895
AD
1953$ @kbd{rpcalc}
1954@kbd{4 9 +}
24ec0837 1955@result{} 13
9edcd895 1956@kbd{3 7 + 3 4 5 *+-}
24ec0837 1957@result{} -13
9edcd895 1958@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
24ec0837 1959@result{} 13
9edcd895 1960@kbd{5 6 / 4 n +}
24ec0837 1961@result{} -3.166666667
9edcd895 1962@kbd{3 4 ^} @r{Exponentiation}
24ec0837 1963@result{} 81
9edcd895
AD
1964@kbd{^D} @r{End-of-file indicator}
1965$
bfa74976
RS
1966@end example
1967
342b8b6e 1968@node Infix Calc
bfa74976
RS
1969@section Infix Notation Calculator: @code{calc}
1970@cindex infix notation calculator
1971@cindex @code{calc}
1972@cindex calculator, infix notation
1973
1974We now modify rpcalc to handle infix operators instead of postfix. Infix
1975notation involves the concept of operator precedence and the need for
1976parentheses nested to arbitrary depth. Here is the Bison code for
1977@file{calc.y}, an infix desk-top calculator.
1978
1979@example
38a92d50 1980/* Infix notation calculator. */
bfa74976 1981
aaaa2aae 1982@group
bfa74976 1983%@{
38a92d50
PE
1984 #define YYSTYPE double
1985 #include <math.h>
1986 #include <stdio.h>
1987 int yylex (void);
1988 void yyerror (char const *);
bfa74976 1989%@}
aaaa2aae 1990@end group
bfa74976 1991
aaaa2aae 1992@group
38a92d50 1993/* Bison declarations. */
bfa74976
RS
1994%token NUM
1995%left '-' '+'
1996%left '*' '/'
d78f0ac9
AD
1997%precedence NEG /* negation--unary minus */
1998%right '^' /* exponentiation */
aaaa2aae 1999@end group
bfa74976 2000
38a92d50 2001%% /* The grammar follows. */
aaaa2aae 2002@group
5e9b6624
AD
2003input:
2004 /* empty */
2005| input line
bfa74976 2006;
aaaa2aae 2007@end group
bfa74976 2008
aaaa2aae 2009@group
5e9b6624
AD
2010line:
2011 '\n'
2012| exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976 2013;
aaaa2aae 2014@end group
bfa74976 2015
aaaa2aae 2016@group
5e9b6624
AD
2017exp:
2018 NUM @{ $$ = $1; @}
2019| exp '+' exp @{ $$ = $1 + $3; @}
2020| exp '-' exp @{ $$ = $1 - $3; @}
2021| exp '*' exp @{ $$ = $1 * $3; @}
2022| exp '/' exp @{ $$ = $1 / $3; @}
2023| '-' exp %prec NEG @{ $$ = -$2; @}
2024| exp '^' exp @{ $$ = pow ($1, $3); @}
2025| '(' exp ')' @{ $$ = $2; @}
bfa74976 2026;
aaaa2aae 2027@end group
bfa74976
RS
2028%%
2029@end example
2030
2031@noindent
ceed8467
AD
2032The functions @code{yylex}, @code{yyerror} and @code{main} can be the
2033same as before.
bfa74976
RS
2034
2035There are two important new features shown in this code.
2036
2037In the second section (Bison declarations), @code{%left} declares token
2038types and says they are left-associative operators. The declarations
2039@code{%left} and @code{%right} (right associativity) take the place of
2040@code{%token} which is used to declare a token type name without
d78f0ac9 2041associativity/precedence. (These tokens are single-character literals, which
bfa74976 2042ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 2043the associativity/precedence.)
bfa74976
RS
2044
2045Operator precedence is determined by the line ordering of the
2046declarations; the higher the line number of the declaration (lower on
2047the page or screen), the higher the precedence. Hence, exponentiation
2048has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
2049by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
2050only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 2051Precedence}.
bfa74976 2052
704a47c4
AD
2053The other important new feature is the @code{%prec} in the grammar
2054section for the unary minus operator. The @code{%prec} simply instructs
2055Bison that the rule @samp{| '-' exp} has the same precedence as
2056@code{NEG}---in this case the next-to-highest. @xref{Contextual
2057Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2058
2059Here is a sample run of @file{calc.y}:
2060
2061@need 500
2062@example
9edcd895
AD
2063$ @kbd{calc}
2064@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20656.880952381
9edcd895 2066@kbd{-56 + 2}
bfa74976 2067-54
9edcd895 2068@kbd{3 ^ 2}
bfa74976
RS
20699
2070@end example
2071
342b8b6e 2072@node Simple Error Recovery
bfa74976
RS
2073@section Simple Error Recovery
2074@cindex error recovery, simple
2075
2076Up to this point, this manual has not addressed the issue of @dfn{error
2077recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2078error. All we have handled is error reporting with @code{yyerror}.
2079Recall that by default @code{yyparse} returns after calling
2080@code{yyerror}. This means that an erroneous input line causes the
2081calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2082
2083The Bison language itself includes the reserved word @code{error}, which
2084may be included in the grammar rules. In the example below it has
2085been added to one of the alternatives for @code{line}:
2086
2087@example
2088@group
5e9b6624
AD
2089line:
2090 '\n'
2091| exp '\n' @{ printf ("\t%.10g\n", $1); @}
2092| error '\n' @{ yyerrok; @}
bfa74976
RS
2093;
2094@end group
2095@end example
2096
ceed8467 2097This addition to the grammar allows for simple error recovery in the
6e649e65 2098event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2099read, the error will be recognized by the third rule for @code{line},
2100and parsing will continue. (The @code{yyerror} function is still called
2101upon to print its message as well.) The action executes the statement
2102@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2103that error recovery is complete (@pxref{Error Recovery}). Note the
2104difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2105misprint.
bfa74976
RS
2106
2107This form of error recovery deals with syntax errors. There are other
2108kinds of errors; for example, division by zero, which raises an exception
2109signal that is normally fatal. A real calculator program must handle this
2110signal and use @code{longjmp} to return to @code{main} and resume parsing
2111input lines; it would also have to discard the rest of the current line of
2112input. We won't discuss this issue further because it is not specific to
2113Bison programs.
2114
342b8b6e
AD
2115@node Location Tracking Calc
2116@section Location Tracking Calculator: @code{ltcalc}
2117@cindex location tracking calculator
2118@cindex @code{ltcalc}
2119@cindex calculator, location tracking
2120
9edcd895
AD
2121This example extends the infix notation calculator with location
2122tracking. This feature will be used to improve the error messages. For
2123the sake of clarity, this example is a simple integer calculator, since
2124most of the work needed to use locations will be done in the lexical
72d2299c 2125analyzer.
342b8b6e
AD
2126
2127@menu
f5f419de
DJ
2128* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2129* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2130* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2131@end menu
2132
f5f419de 2133@node Ltcalc Declarations
342b8b6e
AD
2134@subsection Declarations for @code{ltcalc}
2135
9edcd895
AD
2136The C and Bison declarations for the location tracking calculator are
2137the same as the declarations for the infix notation calculator.
342b8b6e
AD
2138
2139@example
2140/* Location tracking calculator. */
2141
2142%@{
38a92d50
PE
2143 #define YYSTYPE int
2144 #include <math.h>
2145 int yylex (void);
2146 void yyerror (char const *);
342b8b6e
AD
2147%@}
2148
2149/* Bison declarations. */
2150%token NUM
2151
2152%left '-' '+'
2153%left '*' '/'
d78f0ac9 2154%precedence NEG
342b8b6e
AD
2155%right '^'
2156
38a92d50 2157%% /* The grammar follows. */
342b8b6e
AD
2158@end example
2159
9edcd895
AD
2160@noindent
2161Note there are no declarations specific to locations. Defining a data
2162type for storing locations is not needed: we will use the type provided
2163by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2164four member structure with the following integer fields:
2165@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2166@code{last_column}. By conventions, and in accordance with the GNU
2167Coding Standards and common practice, the line and column count both
2168start at 1.
342b8b6e
AD
2169
2170@node Ltcalc Rules
2171@subsection Grammar Rules for @code{ltcalc}
2172
9edcd895
AD
2173Whether handling locations or not has no effect on the syntax of your
2174language. Therefore, grammar rules for this example will be very close
2175to those of the previous example: we will only modify them to benefit
2176from the new information.
342b8b6e 2177
9edcd895
AD
2178Here, we will use locations to report divisions by zero, and locate the
2179wrong expressions or subexpressions.
342b8b6e
AD
2180
2181@example
2182@group
5e9b6624
AD
2183input:
2184 /* empty */
2185| input line
342b8b6e
AD
2186;
2187@end group
2188
2189@group
5e9b6624
AD
2190line:
2191 '\n'
2192| exp '\n' @{ printf ("%d\n", $1); @}
342b8b6e
AD
2193;
2194@end group
2195
2196@group
5e9b6624
AD
2197exp:
2198 NUM @{ $$ = $1; @}
2199| exp '+' exp @{ $$ = $1 + $3; @}
2200| exp '-' exp @{ $$ = $1 - $3; @}
2201| exp '*' exp @{ $$ = $1 * $3; @}
342b8b6e 2202@end group
342b8b6e 2203@group
5e9b6624
AD
2204| exp '/' exp
2205 @{
2206 if ($3)
2207 $$ = $1 / $3;
2208 else
2209 @{
2210 $$ = 1;
2211 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2212 @@3.first_line, @@3.first_column,
2213 @@3.last_line, @@3.last_column);
2214 @}
2215 @}
342b8b6e
AD
2216@end group
2217@group
5e9b6624
AD
2218| '-' exp %prec NEG @{ $$ = -$2; @}
2219| exp '^' exp @{ $$ = pow ($1, $3); @}
2220| '(' exp ')' @{ $$ = $2; @}
342b8b6e
AD
2221@end group
2222@end example
2223
2224This code shows how to reach locations inside of semantic actions, by
2225using the pseudo-variables @code{@@@var{n}} for rule components, and the
2226pseudo-variable @code{@@$} for groupings.
2227
9edcd895
AD
2228We don't need to assign a value to @code{@@$}: the output parser does it
2229automatically. By default, before executing the C code of each action,
2230@code{@@$} is set to range from the beginning of @code{@@1} to the end
2231of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2232can be redefined (@pxref{Location Default Action, , Default Action for
2233Locations}), and for very specific rules, @code{@@$} can be computed by
2234hand.
342b8b6e
AD
2235
2236@node Ltcalc Lexer
2237@subsection The @code{ltcalc} Lexical Analyzer.
2238
9edcd895 2239Until now, we relied on Bison's defaults to enable location
72d2299c 2240tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2241able to feed the parser with the token locations, as it already does for
2242semantic values.
342b8b6e 2243
9edcd895
AD
2244To this end, we must take into account every single character of the
2245input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2246
2247@example
2248@group
2249int
2250yylex (void)
2251@{
2252 int c;
18b519c0 2253@end group
342b8b6e 2254
18b519c0 2255@group
72d2299c 2256 /* Skip white space. */
342b8b6e
AD
2257 while ((c = getchar ()) == ' ' || c == '\t')
2258 ++yylloc.last_column;
18b519c0 2259@end group
342b8b6e 2260
18b519c0 2261@group
72d2299c 2262 /* Step. */
342b8b6e
AD
2263 yylloc.first_line = yylloc.last_line;
2264 yylloc.first_column = yylloc.last_column;
2265@end group
2266
2267@group
72d2299c 2268 /* Process numbers. */
342b8b6e
AD
2269 if (isdigit (c))
2270 @{
2271 yylval = c - '0';
2272 ++yylloc.last_column;
2273 while (isdigit (c = getchar ()))
2274 @{
2275 ++yylloc.last_column;
2276 yylval = yylval * 10 + c - '0';
2277 @}
2278 ungetc (c, stdin);
2279 return NUM;
2280 @}
2281@end group
2282
72d2299c 2283 /* Return end-of-input. */
342b8b6e
AD
2284 if (c == EOF)
2285 return 0;
2286
d4fca427 2287@group
72d2299c 2288 /* Return a single char, and update location. */
342b8b6e
AD
2289 if (c == '\n')
2290 @{
2291 ++yylloc.last_line;
2292 yylloc.last_column = 0;
2293 @}
2294 else
2295 ++yylloc.last_column;
2296 return c;
2297@}
d4fca427 2298@end group
342b8b6e
AD
2299@end example
2300
9edcd895
AD
2301Basically, the lexical analyzer performs the same processing as before:
2302it skips blanks and tabs, and reads numbers or single-character tokens.
2303In addition, it updates @code{yylloc}, the global variable (of type
2304@code{YYLTYPE}) containing the token's location.
342b8b6e 2305
9edcd895 2306Now, each time this function returns a token, the parser has its number
72d2299c 2307as well as its semantic value, and its location in the text. The last
9edcd895
AD
2308needed change is to initialize @code{yylloc}, for example in the
2309controlling function:
342b8b6e
AD
2310
2311@example
9edcd895 2312@group
342b8b6e
AD
2313int
2314main (void)
2315@{
2316 yylloc.first_line = yylloc.last_line = 1;
2317 yylloc.first_column = yylloc.last_column = 0;
2318 return yyparse ();
2319@}
9edcd895 2320@end group
342b8b6e
AD
2321@end example
2322
9edcd895
AD
2323Remember that computing locations is not a matter of syntax. Every
2324character must be associated to a location update, whether it is in
2325valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2326
2327@node Multi-function Calc
bfa74976
RS
2328@section Multi-Function Calculator: @code{mfcalc}
2329@cindex multi-function calculator
2330@cindex @code{mfcalc}
2331@cindex calculator, multi-function
2332
2333Now that the basics of Bison have been discussed, it is time to move on to
2334a more advanced problem. The above calculators provided only five
2335functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2336be nice to have a calculator that provides other mathematical functions such
2337as @code{sin}, @code{cos}, etc.
2338
2339It is easy to add new operators to the infix calculator as long as they are
2340only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2341back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2342adding a new operator. But we want something more flexible: built-in
2343functions whose syntax has this form:
2344
2345@example
2346@var{function_name} (@var{argument})
2347@end example
2348
2349@noindent
2350At the same time, we will add memory to the calculator, by allowing you
2351to create named variables, store values in them, and use them later.
2352Here is a sample session with the multi-function calculator:
2353
2354@example
d4fca427 2355@group
9edcd895
AD
2356$ @kbd{mfcalc}
2357@kbd{pi = 3.141592653589}
f9c75dd0 2358@result{} 3.1415926536
d4fca427
AD
2359@end group
2360@group
9edcd895 2361@kbd{sin(pi)}
f9c75dd0 2362@result{} 0.0000000000
d4fca427 2363@end group
9edcd895 2364@kbd{alpha = beta1 = 2.3}
f9c75dd0 2365@result{} 2.3000000000
9edcd895 2366@kbd{alpha}
f9c75dd0 2367@result{} 2.3000000000
9edcd895 2368@kbd{ln(alpha)}
f9c75dd0 2369@result{} 0.8329091229
9edcd895 2370@kbd{exp(ln(beta1))}
f9c75dd0 2371@result{} 2.3000000000
9edcd895 2372$
bfa74976
RS
2373@end example
2374
2375Note that multiple assignment and nested function calls are permitted.
2376
2377@menu
f5f419de
DJ
2378* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2379* Mfcalc Rules:: Grammar rules for the calculator.
2380* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
2381* Mfcalc Lexer:: The lexical analyzer.
2382* Mfcalc Main:: The controlling function.
bfa74976
RS
2383@end menu
2384
f5f419de 2385@node Mfcalc Declarations
bfa74976
RS
2386@subsection Declarations for @code{mfcalc}
2387
2388Here are the C and Bison declarations for the multi-function calculator.
2389
93c150b6 2390@comment file: mfcalc.y: 1
c93f22fc 2391@example
18b519c0 2392@group
bfa74976 2393%@{
f9c75dd0 2394 #include <stdio.h> /* For printf, etc. */
578e3413 2395 #include <math.h> /* For pow, used in the grammar. */
f9c75dd0 2396 #include "calc.h" /* Contains definition of `symrec'. */
38a92d50
PE
2397 int yylex (void);
2398 void yyerror (char const *);
bfa74976 2399%@}
18b519c0 2400@end group
93c150b6 2401
18b519c0 2402@group
bfa74976 2403%union @{
38a92d50
PE
2404 double val; /* For returning numbers. */
2405 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2406@}
18b519c0 2407@end group
38a92d50 2408%token <val> NUM /* Simple double precision number. */
93c150b6 2409%token <tptr> VAR FNCT /* Variable and function. */
bfa74976
RS
2410%type <val> exp
2411
18b519c0 2412@group
bfa74976
RS
2413%right '='
2414%left '-' '+'
2415%left '*' '/'
d78f0ac9
AD
2416%precedence NEG /* negation--unary minus */
2417%right '^' /* exponentiation */
18b519c0 2418@end group
c93f22fc 2419@end example
bfa74976
RS
2420
2421The above grammar introduces only two new features of the Bison language.
2422These features allow semantic values to have various data types
2423(@pxref{Multiple Types, ,More Than One Value Type}).
2424
2425The @code{%union} declaration specifies the entire list of possible types;
2426this is instead of defining @code{YYSTYPE}. The allowable types are now
2427double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2428the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2429
2430Since values can now have various types, it is necessary to associate a
2431type with each grammar symbol whose semantic value is used. These symbols
2432are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2433declarations are augmented with information about their data type (placed
2434between angle brackets).
2435
704a47c4
AD
2436The Bison construct @code{%type} is used for declaring nonterminal
2437symbols, just as @code{%token} is used for declaring token types. We
2438have not used @code{%type} before because nonterminal symbols are
2439normally declared implicitly by the rules that define them. But
2440@code{exp} must be declared explicitly so we can specify its value type.
2441@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2442
342b8b6e 2443@node Mfcalc Rules
bfa74976
RS
2444@subsection Grammar Rules for @code{mfcalc}
2445
2446Here are the grammar rules for the multi-function calculator.
2447Most of them are copied directly from @code{calc}; three rules,
2448those which mention @code{VAR} or @code{FNCT}, are new.
2449
93c150b6 2450@comment file: mfcalc.y: 3
c93f22fc 2451@example
93c150b6 2452%% /* The grammar follows. */
18b519c0 2453@group
5e9b6624
AD
2454input:
2455 /* empty */
2456| input line
bfa74976 2457;
18b519c0 2458@end group
bfa74976 2459
18b519c0 2460@group
bfa74976 2461line:
5e9b6624
AD
2462 '\n'
2463| exp '\n' @{ printf ("%.10g\n", $1); @}
2464| error '\n' @{ yyerrok; @}
bfa74976 2465;
18b519c0 2466@end group
bfa74976 2467
18b519c0 2468@group
5e9b6624
AD
2469exp:
2470 NUM @{ $$ = $1; @}
2471| VAR @{ $$ = $1->value.var; @}
2472| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2473| FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2474| exp '+' exp @{ $$ = $1 + $3; @}
2475| exp '-' exp @{ $$ = $1 - $3; @}
2476| exp '*' exp @{ $$ = $1 * $3; @}
2477| exp '/' exp @{ $$ = $1 / $3; @}
2478| '-' exp %prec NEG @{ $$ = -$2; @}
2479| exp '^' exp @{ $$ = pow ($1, $3); @}
2480| '(' exp ')' @{ $$ = $2; @}
bfa74976 2481;
18b519c0 2482@end group
38a92d50 2483/* End of grammar. */
bfa74976 2484%%
c93f22fc 2485@end example
bfa74976 2486
f5f419de 2487@node Mfcalc Symbol Table
bfa74976
RS
2488@subsection The @code{mfcalc} Symbol Table
2489@cindex symbol table example
2490
2491The multi-function calculator requires a symbol table to keep track of the
2492names and meanings of variables and functions. This doesn't affect the
2493grammar rules (except for the actions) or the Bison declarations, but it
2494requires some additional C functions for support.
2495
2496The symbol table itself consists of a linked list of records. Its
2497definition, which is kept in the header @file{calc.h}, is as follows. It
2498provides for either functions or variables to be placed in the table.
2499
f9c75dd0 2500@comment file: calc.h
c93f22fc 2501@example
bfa74976 2502@group
38a92d50 2503/* Function type. */
32dfccf8 2504typedef double (*func_t) (double);
72f889cc 2505@end group
32dfccf8 2506
72f889cc 2507@group
38a92d50 2508/* Data type for links in the chain of symbols. */
bfa74976
RS
2509struct symrec
2510@{
38a92d50 2511 char *name; /* name of symbol */
bfa74976 2512 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2513 union
2514 @{
38a92d50
PE
2515 double var; /* value of a VAR */
2516 func_t fnctptr; /* value of a FNCT */
bfa74976 2517 @} value;
38a92d50 2518 struct symrec *next; /* link field */
bfa74976
RS
2519@};
2520@end group
2521
2522@group
2523typedef struct symrec symrec;
2524
38a92d50 2525/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2526extern symrec *sym_table;
2527
a730d142 2528symrec *putsym (char const *, int);
38a92d50 2529symrec *getsym (char const *);
bfa74976 2530@end group
c93f22fc 2531@end example
bfa74976 2532
aeb57fb6
AD
2533The new version of @code{main} will call @code{init_table} to initialize
2534the symbol table:
bfa74976 2535
93c150b6 2536@comment file: mfcalc.y: 3
c93f22fc 2537@example
18b519c0 2538@group
bfa74976
RS
2539struct init
2540@{
38a92d50
PE
2541 char const *fname;
2542 double (*fnct) (double);
bfa74976
RS
2543@};
2544@end group
2545
2546@group
38a92d50 2547struct init const arith_fncts[] =
13863333 2548@{
f9c75dd0
AD
2549 @{ "atan", atan @},
2550 @{ "cos", cos @},
2551 @{ "exp", exp @},
2552 @{ "ln", log @},
2553 @{ "sin", sin @},
2554 @{ "sqrt", sqrt @},
2555 @{ 0, 0 @},
13863333 2556@};
18b519c0 2557@end group
bfa74976 2558
18b519c0 2559@group
bfa74976 2560/* The symbol table: a chain of `struct symrec'. */
38a92d50 2561symrec *sym_table;
bfa74976
RS
2562@end group
2563
2564@group
72d2299c 2565/* Put arithmetic functions in table. */
f9c75dd0 2566static
13863333
AD
2567void
2568init_table (void)
bfa74976
RS
2569@{
2570 int i;
bfa74976
RS
2571 for (i = 0; arith_fncts[i].fname != 0; i++)
2572 @{
aaaa2aae 2573 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2574 ptr->value.fnctptr = arith_fncts[i].fnct;
2575 @}
2576@}
2577@end group
c93f22fc 2578@end example
bfa74976
RS
2579
2580By simply editing the initialization list and adding the necessary include
2581files, you can add additional functions to the calculator.
2582
2583Two important functions allow look-up and installation of symbols in the
2584symbol table. The function @code{putsym} is passed a name and the type
2585(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2586linked to the front of the list, and a pointer to the object is returned.
2587The function @code{getsym} is passed the name of the symbol to look up. If
2588found, a pointer to that symbol is returned; otherwise zero is returned.
2589
93c150b6 2590@comment file: mfcalc.y: 3
c93f22fc 2591@example
f9c75dd0
AD
2592#include <stdlib.h> /* malloc. */
2593#include <string.h> /* strlen. */
2594
d4fca427 2595@group
bfa74976 2596symrec *
38a92d50 2597putsym (char const *sym_name, int sym_type)
bfa74976 2598@{
aaaa2aae 2599 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2600 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2601 strcpy (ptr->name,sym_name);
2602 ptr->type = sym_type;
72d2299c 2603 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2604 ptr->next = (struct symrec *)sym_table;
2605 sym_table = ptr;
2606 return ptr;
2607@}
d4fca427 2608@end group
bfa74976 2609
d4fca427 2610@group
bfa74976 2611symrec *
38a92d50 2612getsym (char const *sym_name)
bfa74976
RS
2613@{
2614 symrec *ptr;
2615 for (ptr = sym_table; ptr != (symrec *) 0;
2616 ptr = (symrec *)ptr->next)
f518dbaf 2617 if (strcmp (ptr->name, sym_name) == 0)
bfa74976
RS
2618 return ptr;
2619 return 0;
2620@}
d4fca427 2621@end group
c93f22fc 2622@end example
bfa74976 2623
aeb57fb6
AD
2624@node Mfcalc Lexer
2625@subsection The @code{mfcalc} Lexer
2626
bfa74976
RS
2627The function @code{yylex} must now recognize variables, numeric values, and
2628the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2629characters with a leading letter are recognized as either variables or
bfa74976
RS
2630functions depending on what the symbol table says about them.
2631
2632The string is passed to @code{getsym} for look up in the symbol table. If
2633the name appears in the table, a pointer to its location and its type
2634(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2635already in the table, then it is installed as a @code{VAR} using
2636@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2637returned to @code{yyparse}.
bfa74976
RS
2638
2639No change is needed in the handling of numeric values and arithmetic
2640operators in @code{yylex}.
2641
93c150b6 2642@comment file: mfcalc.y: 3
c93f22fc 2643@example
bfa74976
RS
2644@group
2645#include <ctype.h>
18b519c0 2646@end group
13863333 2647
18b519c0 2648@group
13863333
AD
2649int
2650yylex (void)
bfa74976
RS
2651@{
2652 int c;
2653
72d2299c 2654 /* Ignore white space, get first nonwhite character. */
d4fca427
AD
2655 while ((c = getchar ()) == ' ' || c == '\t')
2656 continue;
bfa74976
RS
2657
2658 if (c == EOF)
2659 return 0;
2660@end group
2661
2662@group
2663 /* Char starts a number => parse the number. */
2664 if (c == '.' || isdigit (c))
2665 @{
2666 ungetc (c, stdin);
2667 scanf ("%lf", &yylval.val);
2668 return NUM;
2669 @}
2670@end group
2671
2672@group
2673 /* Char starts an identifier => read the name. */
2674 if (isalpha (c))
2675 @{
aaaa2aae
AD
2676 /* Initially make the buffer long enough
2677 for a 40-character symbol name. */
2678 static size_t length = 40;
bfa74976 2679 static char *symbuf = 0;
aaaa2aae 2680 symrec *s;
bfa74976
RS
2681 int i;
2682@end group
aaaa2aae
AD
2683 if (!symbuf)
2684 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2685
2686 i = 0;
2687 do
bfa74976
RS
2688@group
2689 @{
2690 /* If buffer is full, make it bigger. */
2691 if (i == length)
2692 @{
2693 length *= 2;
18b519c0 2694 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2695 @}
2696 /* Add this character to the buffer. */
2697 symbuf[i++] = c;
2698 /* Get another character. */
2699 c = getchar ();
2700 @}
2701@end group
2702@group
72d2299c 2703 while (isalnum (c));
bfa74976
RS
2704
2705 ungetc (c, stdin);
2706 symbuf[i] = '\0';
2707@end group
2708
2709@group
2710 s = getsym (symbuf);
2711 if (s == 0)
2712 s = putsym (symbuf, VAR);
2713 yylval.tptr = s;
2714 return s->type;
2715 @}
2716
2717 /* Any other character is a token by itself. */
2718 return c;
2719@}
2720@end group
c93f22fc 2721@end example
bfa74976 2722
aeb57fb6
AD
2723@node Mfcalc Main
2724@subsection The @code{mfcalc} Main
2725
2726The error reporting function is unchanged, and the new version of
93c150b6
AD
2727@code{main} includes a call to @code{init_table} and sets the @code{yydebug}
2728on user demand (@xref{Tracing, , Tracing Your Parser}, for details):
aeb57fb6 2729
93c150b6 2730@comment file: mfcalc.y: 3
c93f22fc 2731@example
aeb57fb6
AD
2732@group
2733/* Called by yyparse on error. */
2734void
2735yyerror (char const *s)
2736@{
2737 fprintf (stderr, "%s\n", s);
2738@}
2739@end group
2740
aaaa2aae 2741@group
aeb57fb6
AD
2742int
2743main (int argc, char const* argv[])
2744@{
93c150b6
AD
2745 int i;
2746 /* Enable parse traces on option -p. */
2747 for (i = 1; i < argc; ++i)
2748 if (!strcmp(argv[i], "-p"))
2749 yydebug = 1;
aeb57fb6
AD
2750 init_table ();
2751 return yyparse ();
2752@}
2753@end group
c93f22fc 2754@end example
aeb57fb6 2755
72d2299c 2756This program is both powerful and flexible. You may easily add new
704a47c4
AD
2757functions, and it is a simple job to modify this code to install
2758predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2759
342b8b6e 2760@node Exercises
bfa74976
RS
2761@section Exercises
2762@cindex exercises
2763
2764@enumerate
2765@item
2766Add some new functions from @file{math.h} to the initialization list.
2767
2768@item
2769Add another array that contains constants and their values. Then
2770modify @code{init_table} to add these constants to the symbol table.
2771It will be easiest to give the constants type @code{VAR}.
2772
2773@item
2774Make the program report an error if the user refers to an
2775uninitialized variable in any way except to store a value in it.
2776@end enumerate
2777
342b8b6e 2778@node Grammar File
bfa74976
RS
2779@chapter Bison Grammar Files
2780
2781Bison takes as input a context-free grammar specification and produces a
2782C-language function that recognizes correct instances of the grammar.
2783
ff7571c0 2784The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2785@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2786
2787@menu
303834cc
JD
2788* Grammar Outline:: Overall layout of the grammar file.
2789* Symbols:: Terminal and nonterminal symbols.
2790* Rules:: How to write grammar rules.
2791* Recursion:: Writing recursive rules.
2792* Semantics:: Semantic values and actions.
2793* Tracking Locations:: Locations and actions.
2794* Named References:: Using named references in actions.
2795* Declarations:: All kinds of Bison declarations are described here.
2796* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2797@end menu
2798
342b8b6e 2799@node Grammar Outline
bfa74976
RS
2800@section Outline of a Bison Grammar
2801
2802A Bison grammar file has four main sections, shown here with the
2803appropriate delimiters:
2804
2805@example
2806%@{
38a92d50 2807 @var{Prologue}
bfa74976
RS
2808%@}
2809
2810@var{Bison declarations}
2811
2812%%
2813@var{Grammar rules}
2814%%
2815
75f5aaea 2816@var{Epilogue}
bfa74976
RS
2817@end example
2818
2819Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
8a4281b9 2820As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2821continues until end of line.
bfa74976
RS
2822
2823@menu
f5f419de 2824* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2825* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2826* Bison Declarations:: Syntax and usage of the Bison declarations section.
2827* Grammar Rules:: Syntax and usage of the grammar rules section.
2828* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2829@end menu
2830
38a92d50 2831@node Prologue
75f5aaea
MA
2832@subsection The prologue
2833@cindex declarations section
2834@cindex Prologue
2835@cindex declarations
bfa74976 2836
f8e1c9e5
AD
2837The @var{Prologue} section contains macro definitions and declarations
2838of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2839rules. These are copied to the beginning of the parser implementation
2840file so that they precede the definition of @code{yyparse}. You can
2841use @samp{#include} to get the declarations from a header file. If
2842you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2843@samp{%@}} delimiters that bracket this section.
bfa74976 2844
9c437126 2845The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2846of @samp{%@}} that is outside a comment, a string literal, or a
2847character constant.
2848
c732d2c6
AD
2849You may have more than one @var{Prologue} section, intermixed with the
2850@var{Bison declarations}. This allows you to have C and Bison
2851declarations that refer to each other. For example, the @code{%union}
2852declaration may use types defined in a header file, and you may wish to
2853prototype functions that take arguments of type @code{YYSTYPE}. This
2854can be done with two @var{Prologue} blocks, one before and one after the
2855@code{%union} declaration.
2856
c93f22fc 2857@example
c732d2c6 2858%@{
aef3da86 2859 #define _GNU_SOURCE
38a92d50
PE
2860 #include <stdio.h>
2861 #include "ptypes.h"
c732d2c6
AD
2862%@}
2863
2864%union @{
779e7ceb 2865 long int n;
c732d2c6
AD
2866 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2867@}
2868
2869%@{
38a92d50
PE
2870 static void print_token_value (FILE *, int, YYSTYPE);
2871 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2872%@}
2873
2874@dots{}
c93f22fc 2875@end example
c732d2c6 2876
aef3da86
PE
2877When in doubt, it is usually safer to put prologue code before all
2878Bison declarations, rather than after. For example, any definitions
2879of feature test macros like @code{_GNU_SOURCE} or
2880@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2881feature test macros can affect the behavior of Bison-generated
2882@code{#include} directives.
2883
2cbe6b7f
JD
2884@node Prologue Alternatives
2885@subsection Prologue Alternatives
2886@cindex Prologue Alternatives
2887
136a0f76 2888@findex %code
16dc6a9e
JD
2889@findex %code requires
2890@findex %code provides
2891@findex %code top
85894313 2892
2cbe6b7f 2893The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2894inflexible. As an alternative, Bison provides a @code{%code}
2895directive with an explicit qualifier field, which identifies the
2896purpose of the code and thus the location(s) where Bison should
2897generate it. For C/C++, the qualifier can be omitted for the default
2898location, or it can be one of @code{requires}, @code{provides},
e0c07222 2899@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2900
2901Look again at the example of the previous section:
2902
c93f22fc 2903@example
2cbe6b7f
JD
2904%@{
2905 #define _GNU_SOURCE
2906 #include <stdio.h>
2907 #include "ptypes.h"
2908%@}
2909
2910%union @{
2911 long int n;
2912 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2913@}
2914
2915%@{
2916 static void print_token_value (FILE *, int, YYSTYPE);
2917 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2918%@}
2919
2920@dots{}
c93f22fc 2921@end example
2cbe6b7f
JD
2922
2923@noindent
ff7571c0
JD
2924Notice that there are two @var{Prologue} sections here, but there's a
2925subtle distinction between their functionality. For example, if you
2926decide to override Bison's default definition for @code{YYLTYPE}, in
2927which @var{Prologue} section should you write your new definition?
2928You should write it in the first since Bison will insert that code
2929into the parser implementation file @emph{before} the default
2930@code{YYLTYPE} definition. In which @var{Prologue} section should you
2931prototype an internal function, @code{trace_token}, that accepts
2932@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2933prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2934@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2935
2936This distinction in functionality between the two @var{Prologue} sections is
2937established by the appearance of the @code{%union} between them.
a501eca9 2938This behavior raises a few questions.
2cbe6b7f
JD
2939First, why should the position of a @code{%union} affect definitions related to
2940@code{YYLTYPE} and @code{yytokentype}?
2941Second, what if there is no @code{%union}?
2942In that case, the second kind of @var{Prologue} section is not available.
2943This behavior is not intuitive.
2944
8e0a5e9e 2945To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2946@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2947Let's go ahead and add the new @code{YYLTYPE} definition and the
2948@code{trace_token} prototype at the same time:
2949
c93f22fc 2950@example
16dc6a9e 2951%code top @{
2cbe6b7f
JD
2952 #define _GNU_SOURCE
2953 #include <stdio.h>
8e0a5e9e
JD
2954
2955 /* WARNING: The following code really belongs
16dc6a9e 2956 * in a `%code requires'; see below. */
8e0a5e9e 2957
2cbe6b7f
JD
2958 #include "ptypes.h"
2959 #define YYLTYPE YYLTYPE
2960 typedef struct YYLTYPE
2961 @{
2962 int first_line;
2963 int first_column;
2964 int last_line;
2965 int last_column;
2966 char *filename;
2967 @} YYLTYPE;
2968@}
2969
2970%union @{
2971 long int n;
2972 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2973@}
2974
2975%code @{
2976 static void print_token_value (FILE *, int, YYSTYPE);
2977 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2978 static void trace_token (enum yytokentype token, YYLTYPE loc);
2979@}
2980
2981@dots{}
c93f22fc 2982@end example
2cbe6b7f
JD
2983
2984@noindent
16dc6a9e
JD
2985In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2986functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2987explicit which kind you intend.
2cbe6b7f
JD
2988Moreover, both kinds are always available even in the absence of @code{%union}.
2989
ff7571c0
JD
2990The @code{%code top} block above logically contains two parts. The
2991first two lines before the warning need to appear near the top of the
2992parser implementation file. The first line after the warning is
2993required by @code{YYSTYPE} and thus also needs to appear in the parser
2994implementation file. However, if you've instructed Bison to generate
2995a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2996want that line to appear before the @code{YYSTYPE} definition in that
2997header file as well. The @code{YYLTYPE} definition should also appear
2998in the parser header file to override the default @code{YYLTYPE}
2999definition there.
2cbe6b7f 3000
16dc6a9e 3001In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
3002lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
3003definitions.
16dc6a9e 3004Thus, they belong in one or more @code{%code requires}:
9bc0dd67 3005
c93f22fc 3006@example
d4fca427 3007@group
16dc6a9e 3008%code top @{
2cbe6b7f
JD
3009 #define _GNU_SOURCE
3010 #include <stdio.h>
3011@}
d4fca427 3012@end group
2cbe6b7f 3013
d4fca427 3014@group
16dc6a9e 3015%code requires @{
9bc0dd67
JD
3016 #include "ptypes.h"
3017@}
d4fca427
AD
3018@end group
3019@group
9bc0dd67
JD
3020%union @{
3021 long int n;
3022 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3023@}
d4fca427 3024@end group
9bc0dd67 3025
d4fca427 3026@group
16dc6a9e 3027%code requires @{
2cbe6b7f
JD
3028 #define YYLTYPE YYLTYPE
3029 typedef struct YYLTYPE
3030 @{
3031 int first_line;
3032 int first_column;
3033 int last_line;
3034 int last_column;
3035 char *filename;
3036 @} YYLTYPE;
3037@}
d4fca427 3038@end group
2cbe6b7f 3039
d4fca427 3040@group
136a0f76 3041%code @{
2cbe6b7f
JD
3042 static void print_token_value (FILE *, int, YYSTYPE);
3043 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3044 static void trace_token (enum yytokentype token, YYLTYPE loc);
3045@}
d4fca427 3046@end group
2cbe6b7f
JD
3047
3048@dots{}
c93f22fc 3049@end example
2cbe6b7f
JD
3050
3051@noindent
ff7571c0
JD
3052Now Bison will insert @code{#include "ptypes.h"} and the new
3053@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
3054and @code{YYLTYPE} definitions in both the parser implementation file
3055and the parser header file. (By the same reasoning, @code{%code
3056requires} would also be the appropriate place to write your own
3057definition for @code{YYSTYPE}.)
3058
3059When you are writing dependency code for @code{YYSTYPE} and
3060@code{YYLTYPE}, you should prefer @code{%code requires} over
3061@code{%code top} regardless of whether you instruct Bison to generate
3062a parser header file. When you are writing code that you need Bison
3063to insert only into the parser implementation file and that has no
3064special need to appear at the top of that file, you should prefer the
3065unqualified @code{%code} over @code{%code top}. These practices will
3066make the purpose of each block of your code explicit to Bison and to
3067other developers reading your grammar file. Following these
3068practices, we expect the unqualified @code{%code} and @code{%code
3069requires} to be the most important of the four @var{Prologue}
16dc6a9e 3070alternatives.
a501eca9 3071
ff7571c0
JD
3072At some point while developing your parser, you might decide to
3073provide @code{trace_token} to modules that are external to your
3074parser. Thus, you might wish for Bison to insert the prototype into
3075both the parser header file and the parser implementation file. Since
3076this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 3077@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
3078@code{%code requires}. More importantly, since it depends upon
3079@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3080sufficient. Instead, move its prototype from the unqualified
3081@code{%code} to a @code{%code provides}:
2cbe6b7f 3082
c93f22fc 3083@example
d4fca427 3084@group
16dc6a9e 3085%code top @{
2cbe6b7f 3086 #define _GNU_SOURCE
136a0f76 3087 #include <stdio.h>
2cbe6b7f 3088@}
d4fca427 3089@end group
136a0f76 3090
d4fca427 3091@group
16dc6a9e 3092%code requires @{
2cbe6b7f
JD
3093 #include "ptypes.h"
3094@}
d4fca427
AD
3095@end group
3096@group
2cbe6b7f
JD
3097%union @{
3098 long int n;
3099 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3100@}
d4fca427 3101@end group
2cbe6b7f 3102
d4fca427 3103@group
16dc6a9e 3104%code requires @{
2cbe6b7f
JD
3105 #define YYLTYPE YYLTYPE
3106 typedef struct YYLTYPE
3107 @{
3108 int first_line;
3109 int first_column;
3110 int last_line;
3111 int last_column;
3112 char *filename;
3113 @} YYLTYPE;
3114@}
d4fca427 3115@end group
2cbe6b7f 3116
d4fca427 3117@group
16dc6a9e 3118%code provides @{
2cbe6b7f
JD
3119 void trace_token (enum yytokentype token, YYLTYPE loc);
3120@}
d4fca427 3121@end group
2cbe6b7f 3122
d4fca427 3123@group
2cbe6b7f 3124%code @{
9bc0dd67
JD
3125 static void print_token_value (FILE *, int, YYSTYPE);
3126 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3127@}
d4fca427 3128@end group
9bc0dd67
JD
3129
3130@dots{}
c93f22fc 3131@end example
9bc0dd67 3132
2cbe6b7f 3133@noindent
ff7571c0
JD
3134Bison will insert the @code{trace_token} prototype into both the
3135parser header file and the parser implementation file after the
3136definitions for @code{yytokentype}, @code{YYLTYPE}, and
3137@code{YYSTYPE}.
2cbe6b7f 3138
ff7571c0
JD
3139The above examples are careful to write directives in an order that
3140reflects the layout of the generated parser implementation and header
3141files: @code{%code top}, @code{%code requires}, @code{%code provides},
3142and then @code{%code}. While your grammar files may generally be
3143easier to read if you also follow this order, Bison does not require
3144it. Instead, Bison lets you choose an organization that makes sense
3145to you.
2cbe6b7f 3146
a501eca9 3147You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3148In that case, Bison concatenates the contained code in declaration order.
3149This is the only way in which the position of one of these directives within
3150the grammar file affects its functionality.
3151
3152The result of the previous two properties is greater flexibility in how you may
3153organize your grammar file.
3154For example, you may organize semantic-type-related directives by semantic
3155type:
3156
c93f22fc 3157@example
d4fca427 3158@group
16dc6a9e 3159%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3160%union @{ type1 field1; @}
3161%destructor @{ type1_free ($$); @} <field1>
c5026327 3162%printer @{ type1_print (yyoutput, $$); @} <field1>
d4fca427 3163@end group
2cbe6b7f 3164
d4fca427 3165@group
16dc6a9e 3166%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3167%union @{ type2 field2; @}
3168%destructor @{ type2_free ($$); @} <field2>
c5026327 3169%printer @{ type2_print (yyoutput, $$); @} <field2>
d4fca427 3170@end group
c93f22fc 3171@end example
2cbe6b7f
JD
3172
3173@noindent
3174You could even place each of the above directive groups in the rules section of
3175the grammar file next to the set of rules that uses the associated semantic
3176type.
61fee93e
JD
3177(In the rules section, you must terminate each of those directives with a
3178semicolon.)
2cbe6b7f
JD
3179And you don't have to worry that some directive (like a @code{%union}) in the
3180definitions section is going to adversely affect their functionality in some
3181counter-intuitive manner just because it comes first.
3182Such an organization is not possible using @var{Prologue} sections.
3183
a501eca9 3184This section has been concerned with explaining the advantages of the four
8e0a5e9e 3185@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3186However, in most cases when using these directives, you shouldn't need to
3187think about all the low-level ordering issues discussed here.
3188Instead, you should simply use these directives to label each block of your
3189code according to its purpose and let Bison handle the ordering.
3190@code{%code} is the most generic label.
16dc6a9e
JD
3191Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3192as needed.
a501eca9 3193
342b8b6e 3194@node Bison Declarations
bfa74976
RS
3195@subsection The Bison Declarations Section
3196@cindex Bison declarations (introduction)
3197@cindex declarations, Bison (introduction)
3198
3199The @var{Bison declarations} section contains declarations that define
3200terminal and nonterminal symbols, specify precedence, and so on.
3201In some simple grammars you may not need any declarations.
3202@xref{Declarations, ,Bison Declarations}.
3203
342b8b6e 3204@node Grammar Rules
bfa74976
RS
3205@subsection The Grammar Rules Section
3206@cindex grammar rules section
3207@cindex rules section for grammar
3208
3209The @dfn{grammar rules} section contains one or more Bison grammar
3210rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3211
3212There must always be at least one grammar rule, and the first
3213@samp{%%} (which precedes the grammar rules) may never be omitted even
3214if it is the first thing in the file.
3215
38a92d50 3216@node Epilogue
75f5aaea 3217@subsection The epilogue
bfa74976 3218@cindex additional C code section
75f5aaea 3219@cindex epilogue
bfa74976
RS
3220@cindex C code, section for additional
3221
ff7571c0
JD
3222The @var{Epilogue} is copied verbatim to the end of the parser
3223implementation file, just as the @var{Prologue} is copied to the
3224beginning. This is the most convenient place to put anything that you
3225want to have in the parser implementation file but which need not come
3226before the definition of @code{yyparse}. For example, the definitions
3227of @code{yylex} and @code{yyerror} often go here. Because C requires
3228functions to be declared before being used, you often need to declare
3229functions like @code{yylex} and @code{yyerror} in the Prologue, even
3230if you define them in the Epilogue. @xref{Interface, ,Parser
3231C-Language Interface}.
bfa74976
RS
3232
3233If the last section is empty, you may omit the @samp{%%} that separates it
3234from the grammar rules.
3235
f8e1c9e5
AD
3236The Bison parser itself contains many macros and identifiers whose names
3237start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3238any such names (except those documented in this manual) in the epilogue
3239of the grammar file.
bfa74976 3240
342b8b6e 3241@node Symbols
bfa74976
RS
3242@section Symbols, Terminal and Nonterminal
3243@cindex nonterminal symbol
3244@cindex terminal symbol
3245@cindex token type
3246@cindex symbol
3247
3248@dfn{Symbols} in Bison grammars represent the grammatical classifications
3249of the language.
3250
3251A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3252class of syntactically equivalent tokens. You use the symbol in grammar
3253rules to mean that a token in that class is allowed. The symbol is
3254represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3255function returns a token type code to indicate what kind of token has
3256been read. You don't need to know what the code value is; you can use
3257the symbol to stand for it.
bfa74976 3258
f8e1c9e5
AD
3259A @dfn{nonterminal symbol} stands for a class of syntactically
3260equivalent groupings. The symbol name is used in writing grammar rules.
3261By convention, it should be all lower case.
bfa74976 3262
82f3355e
JD
3263Symbol names can contain letters, underscores, periods, and non-initial
3264digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3265with POSIX Yacc. Periods and dashes make symbol names less convenient to
3266use with named references, which require brackets around such names
3267(@pxref{Named References}). Terminal symbols that contain periods or dashes
3268make little sense: since they are not valid symbols (in most programming
3269languages) they are not exported as token names.
bfa74976 3270
931c7513 3271There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3272
3273@itemize @bullet
3274@item
3275A @dfn{named token type} is written with an identifier, like an
c827f760 3276identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3277such name must be defined with a Bison declaration such as
3278@code{%token}. @xref{Token Decl, ,Token Type Names}.
3279
3280@item
3281@cindex character token
3282@cindex literal token
3283@cindex single-character literal
931c7513
RS
3284A @dfn{character token type} (or @dfn{literal character token}) is
3285written in the grammar using the same syntax used in C for character
3286constants; for example, @code{'+'} is a character token type. A
3287character token type doesn't need to be declared unless you need to
3288specify its semantic value data type (@pxref{Value Type, ,Data Types of
3289Semantic Values}), associativity, or precedence (@pxref{Precedence,
3290,Operator Precedence}).
bfa74976
RS
3291
3292By convention, a character token type is used only to represent a
3293token that consists of that particular character. Thus, the token
3294type @code{'+'} is used to represent the character @samp{+} as a
3295token. Nothing enforces this convention, but if you depart from it,
3296your program will confuse other readers.
3297
3298All the usual escape sequences used in character literals in C can be
3299used in Bison as well, but you must not use the null character as a
72d2299c
PE
3300character literal because its numeric code, zero, signifies
3301end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3302for @code{yylex}}). Also, unlike standard C, trigraphs have no
3303special meaning in Bison character literals, nor is backslash-newline
3304allowed.
931c7513
RS
3305
3306@item
3307@cindex string token
3308@cindex literal string token
9ecbd125 3309@cindex multicharacter literal
931c7513
RS
3310A @dfn{literal string token} is written like a C string constant; for
3311example, @code{"<="} is a literal string token. A literal string token
3312doesn't need to be declared unless you need to specify its semantic
14ded682 3313value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3314(@pxref{Precedence}).
3315
3316You can associate the literal string token with a symbolic name as an
3317alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3318Declarations}). If you don't do that, the lexical analyzer has to
3319retrieve the token number for the literal string token from the
3320@code{yytname} table (@pxref{Calling Convention}).
3321
c827f760 3322@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3323
3324By convention, a literal string token is used only to represent a token
3325that consists of that particular string. Thus, you should use the token
3326type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3327does not enforce this convention, but if you depart from it, people who
931c7513
RS
3328read your program will be confused.
3329
3330All the escape sequences used in string literals in C can be used in
92ac3705
PE
3331Bison as well, except that you must not use a null character within a
3332string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3333meaning in Bison string literals, nor is backslash-newline allowed. A
3334literal string token must contain two or more characters; for a token
3335containing just one character, use a character token (see above).
bfa74976
RS
3336@end itemize
3337
3338How you choose to write a terminal symbol has no effect on its
3339grammatical meaning. That depends only on where it appears in rules and
3340on when the parser function returns that symbol.
3341
72d2299c
PE
3342The value returned by @code{yylex} is always one of the terminal
3343symbols, except that a zero or negative value signifies end-of-input.
3344Whichever way you write the token type in the grammar rules, you write
3345it the same way in the definition of @code{yylex}. The numeric code
3346for a character token type is simply the positive numeric code of the
3347character, so @code{yylex} can use the identical value to generate the
3348requisite code, though you may need to convert it to @code{unsigned
3349char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3350Each named token type becomes a C macro in the parser implementation
3351file, so @code{yylex} can use the name to stand for the code. (This
3352is why periods don't make sense in terminal symbols.) @xref{Calling
3353Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3354
3355If @code{yylex} is defined in a separate file, you need to arrange for the
3356token-type macro definitions to be available there. Use the @samp{-d}
3357option when you run Bison, so that it will write these macro definitions
3358into a separate header file @file{@var{name}.tab.h} which you can include
3359in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3360
72d2299c 3361If you want to write a grammar that is portable to any Standard C
9d9b8b70 3362host, you must use only nonnull character tokens taken from the basic
c827f760 3363execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3364digits, the 52 lower- and upper-case English letters, and the
3365characters in the following C-language string:
3366
3367@example
3368"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3369@end example
3370
f8e1c9e5
AD
3371The @code{yylex} function and Bison must use a consistent character set
3372and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3373ASCII environment, but then compile and run the resulting
f8e1c9e5 3374program in an environment that uses an incompatible character set like
8a4281b9
JD
3375EBCDIC, the resulting program may not work because the tables
3376generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3377character tokens. It is standard practice for software distributions to
3378contain C source files that were generated by Bison in an
8a4281b9
JD
3379ASCII environment, so installers on platforms that are
3380incompatible with ASCII must rebuild those files before
f8e1c9e5 3381compiling them.
e966383b 3382
bfa74976
RS
3383The symbol @code{error} is a terminal symbol reserved for error recovery
3384(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3385In particular, @code{yylex} should never return this value. The default
3386value of the error token is 256, unless you explicitly assigned 256 to
3387one of your tokens with a @code{%token} declaration.
bfa74976 3388
342b8b6e 3389@node Rules
bfa74976
RS
3390@section Syntax of Grammar Rules
3391@cindex rule syntax
3392@cindex grammar rule syntax
3393@cindex syntax of grammar rules
3394
3395A Bison grammar rule has the following general form:
3396
3397@example
e425e872 3398@group
5e9b6624 3399@var{result}: @var{components}@dots{};
e425e872 3400@end group
bfa74976
RS
3401@end example
3402
3403@noindent
9ecbd125 3404where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3405and @var{components} are various terminal and nonterminal symbols that
13863333 3406are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3407
3408For example,
3409
3410@example
3411@group
5e9b6624 3412exp: exp '+' exp;
bfa74976
RS
3413@end group
3414@end example
3415
3416@noindent
3417says that two groupings of type @code{exp}, with a @samp{+} token in between,
3418can be combined into a larger grouping of type @code{exp}.
3419
72d2299c
PE
3420White space in rules is significant only to separate symbols. You can add
3421extra white space as you wish.
bfa74976
RS
3422
3423Scattered among the components can be @var{actions} that determine
3424the semantics of the rule. An action looks like this:
3425
3426@example
3427@{@var{C statements}@}
3428@end example
3429
3430@noindent
287c78f6
PE
3431@cindex braced code
3432This is an example of @dfn{braced code}, that is, C code surrounded by
3433braces, much like a compound statement in C@. Braced code can contain
3434any sequence of C tokens, so long as its braces are balanced. Bison
3435does not check the braced code for correctness directly; it merely
ff7571c0
JD
3436copies the code to the parser implementation file, where the C
3437compiler can check it.
287c78f6
PE
3438
3439Within braced code, the balanced-brace count is not affected by braces
3440within comments, string literals, or character constants, but it is
3441affected by the C digraphs @samp{<%} and @samp{%>} that represent
3442braces. At the top level braced code must be terminated by @samp{@}}
3443and not by a digraph. Bison does not look for trigraphs, so if braced
3444code uses trigraphs you should ensure that they do not affect the
3445nesting of braces or the boundaries of comments, string literals, or
3446character constants.
3447
bfa74976
RS
3448Usually there is only one action and it follows the components.
3449@xref{Actions}.
3450
3451@findex |
3452Multiple rules for the same @var{result} can be written separately or can
3453be joined with the vertical-bar character @samp{|} as follows:
3454
bfa74976
RS
3455@example
3456@group
5e9b6624
AD
3457@var{result}:
3458 @var{rule1-components}@dots{}
3459| @var{rule2-components}@dots{}
3460@dots{}
3461;
bfa74976
RS
3462@end group
3463@end example
bfa74976
RS
3464
3465@noindent
3466They are still considered distinct rules even when joined in this way.
3467
3468If @var{components} in a rule is empty, it means that @var{result} can
3469match the empty string. For example, here is how to define a
3470comma-separated sequence of zero or more @code{exp} groupings:
3471
3472@example
3473@group
5e9b6624
AD
3474expseq:
3475 /* empty */
3476| expseq1
3477;
bfa74976
RS
3478@end group
3479
3480@group
5e9b6624
AD
3481expseq1:
3482 exp
3483| expseq1 ',' exp
3484;
bfa74976
RS
3485@end group
3486@end example
3487
3488@noindent
3489It is customary to write a comment @samp{/* empty */} in each rule
3490with no components.
3491
342b8b6e 3492@node Recursion
bfa74976
RS
3493@section Recursive Rules
3494@cindex recursive rule
3495
f8e1c9e5
AD
3496A rule is called @dfn{recursive} when its @var{result} nonterminal
3497appears also on its right hand side. Nearly all Bison grammars need to
3498use recursion, because that is the only way to define a sequence of any
3499number of a particular thing. Consider this recursive definition of a
9ecbd125 3500comma-separated sequence of one or more expressions:
bfa74976
RS
3501
3502@example
3503@group
5e9b6624
AD
3504expseq1:
3505 exp
3506| expseq1 ',' exp
3507;
bfa74976
RS
3508@end group
3509@end example
3510
3511@cindex left recursion
3512@cindex right recursion
3513@noindent
3514Since the recursive use of @code{expseq1} is the leftmost symbol in the
3515right hand side, we call this @dfn{left recursion}. By contrast, here
3516the same construct is defined using @dfn{right recursion}:
3517
3518@example
3519@group
5e9b6624
AD
3520expseq1:
3521 exp
3522| exp ',' expseq1
3523;
bfa74976
RS
3524@end group
3525@end example
3526
3527@noindent
ec3bc396
AD
3528Any kind of sequence can be defined using either left recursion or right
3529recursion, but you should always use left recursion, because it can
3530parse a sequence of any number of elements with bounded stack space.
3531Right recursion uses up space on the Bison stack in proportion to the
3532number of elements in the sequence, because all the elements must be
3533shifted onto the stack before the rule can be applied even once.
3534@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3535of this.
bfa74976
RS
3536
3537@cindex mutual recursion
3538@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3539rule does not appear directly on its right hand side, but does appear
3540in rules for other nonterminals which do appear on its right hand
13863333 3541side.
bfa74976
RS
3542
3543For example:
3544
3545@example
3546@group
5e9b6624
AD
3547expr:
3548 primary
3549| primary '+' primary
3550;
bfa74976
RS
3551@end group
3552
3553@group
5e9b6624
AD
3554primary:
3555 constant
3556| '(' expr ')'
3557;
bfa74976
RS
3558@end group
3559@end example
3560
3561@noindent
3562defines two mutually-recursive nonterminals, since each refers to the
3563other.
3564
342b8b6e 3565@node Semantics
bfa74976
RS
3566@section Defining Language Semantics
3567@cindex defining language semantics
13863333 3568@cindex language semantics, defining
bfa74976
RS
3569
3570The grammar rules for a language determine only the syntax. The semantics
3571are determined by the semantic values associated with various tokens and
3572groupings, and by the actions taken when various groupings are recognized.
3573
3574For example, the calculator calculates properly because the value
3575associated with each expression is the proper number; it adds properly
3576because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3577the numbers associated with @var{x} and @var{y}.
3578
3579@menu
3580* Value Type:: Specifying one data type for all semantic values.
3581* Multiple Types:: Specifying several alternative data types.
3582* Actions:: An action is the semantic definition of a grammar rule.
3583* Action Types:: Specifying data types for actions to operate on.
3584* Mid-Rule Actions:: Most actions go at the end of a rule.
3585 This says when, why and how to use the exceptional
3586 action in the middle of a rule.
3587@end menu
3588
342b8b6e 3589@node Value Type
bfa74976
RS
3590@subsection Data Types of Semantic Values
3591@cindex semantic value type
3592@cindex value type, semantic
3593@cindex data types of semantic values
3594@cindex default data type
3595
3596In a simple program it may be sufficient to use the same data type for
3597the semantic values of all language constructs. This was true in the
8a4281b9 3598RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3599Notation Calculator}).
bfa74976 3600
ddc8ede1
PE
3601Bison normally uses the type @code{int} for semantic values if your
3602program uses the same data type for all language constructs. To
bfa74976
RS
3603specify some other type, define @code{YYSTYPE} as a macro, like this:
3604
3605@example
3606#define YYSTYPE double
3607@end example
3608
3609@noindent
50cce58e
PE
3610@code{YYSTYPE}'s replacement list should be a type name
3611that does not contain parentheses or square brackets.
342b8b6e 3612This macro definition must go in the prologue of the grammar file
75f5aaea 3613(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3614
342b8b6e 3615@node Multiple Types
bfa74976
RS
3616@subsection More Than One Value Type
3617
3618In most programs, you will need different data types for different kinds
3619of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3620@code{int} or @code{long int}, while a string constant needs type
3621@code{char *}, and an identifier might need a pointer to an entry in the
3622symbol table.
bfa74976
RS
3623
3624To use more than one data type for semantic values in one parser, Bison
3625requires you to do two things:
3626
3627@itemize @bullet
3628@item
ddc8ede1 3629Specify the entire collection of possible data types, either by using the
704a47c4 3630@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3631Value Types}), or by using a @code{typedef} or a @code{#define} to
3632define @code{YYSTYPE} to be a union type whose member names are
3633the type tags.
bfa74976
RS
3634
3635@item
14ded682
AD
3636Choose one of those types for each symbol (terminal or nonterminal) for
3637which semantic values are used. This is done for tokens with the
3638@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3639and for groupings with the @code{%type} Bison declaration (@pxref{Type
3640Decl, ,Nonterminal Symbols}).
bfa74976
RS
3641@end itemize
3642
342b8b6e 3643@node Actions
bfa74976
RS
3644@subsection Actions
3645@cindex action
3646@vindex $$
3647@vindex $@var{n}
d013372c
AR
3648@vindex $@var{name}
3649@vindex $[@var{name}]
bfa74976
RS
3650
3651An action accompanies a syntactic rule and contains C code to be executed
3652each time an instance of that rule is recognized. The task of most actions
3653is to compute a semantic value for the grouping built by the rule from the
3654semantic values associated with tokens or smaller groupings.
3655
287c78f6
PE
3656An action consists of braced code containing C statements, and can be
3657placed at any position in the rule;
704a47c4
AD
3658it is executed at that position. Most rules have just one action at the
3659end of the rule, following all the components. Actions in the middle of
3660a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3661Actions, ,Actions in Mid-Rule}).
bfa74976 3662
ff7571c0
JD
3663The C code in an action can refer to the semantic values of the
3664components matched by the rule with the construct @code{$@var{n}},
3665which stands for the value of the @var{n}th component. The semantic
3666value for the grouping being constructed is @code{$$}. In addition,
3667the semantic values of symbols can be accessed with the named
3668references construct @code{$@var{name}} or @code{$[@var{name}]}.
3669Bison translates both of these constructs into expressions of the
3670appropriate type when it copies the actions into the parser
3671implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3672for the current grouping) is translated to a modifiable lvalue, so it
3673can be assigned to.
bfa74976
RS
3674
3675Here is a typical example:
3676
3677@example
3678@group
5e9b6624
AD
3679exp:
3680@dots{}
3681| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3682@end group
3683@end example
3684
d013372c
AR
3685Or, in terms of named references:
3686
3687@example
3688@group
5e9b6624
AD
3689exp[result]:
3690@dots{}
3691| exp[left] '+' exp[right] @{ $result = $left + $right; @}
d013372c
AR
3692@end group
3693@end example
3694
bfa74976
RS
3695@noindent
3696This rule constructs an @code{exp} from two smaller @code{exp} groupings
3697connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3698(@code{$left} and @code{$right})
bfa74976
RS
3699refer to the semantic values of the two component @code{exp} groupings,
3700which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3701The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3702semantic value of
bfa74976
RS
3703the addition-expression just recognized by the rule. If there were a
3704useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3705referred to as @code{$2}.
bfa74976 3706
a7b15ab9
JD
3707@xref{Named References}, for more information about using the named
3708references construct.
d013372c 3709
3ded9a63
AD
3710Note that the vertical-bar character @samp{|} is really a rule
3711separator, and actions are attached to a single rule. This is a
3712difference with tools like Flex, for which @samp{|} stands for either
3713``or'', or ``the same action as that of the next rule''. In the
3714following example, the action is triggered only when @samp{b} is found:
3715
3716@example
3717@group
3718a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3719@end group
3720@end example
3721
bfa74976
RS
3722@cindex default action
3723If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3724@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3725becomes the value of the whole rule. Of course, the default action is
3726valid only if the two data types match. There is no meaningful default
3727action for an empty rule; every empty rule must have an explicit action
3728unless the rule's value does not matter.
bfa74976
RS
3729
3730@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3731to tokens and groupings on the stack @emph{before} those that match the
3732current rule. This is a very risky practice, and to use it reliably
3733you must be certain of the context in which the rule is applied. Here
3734is a case in which you can use this reliably:
3735
3736@example
3737@group
5e9b6624
AD
3738foo:
3739 expr bar '+' expr @{ @dots{} @}
3740| expr bar '-' expr @{ @dots{} @}
3741;
bfa74976
RS
3742@end group
3743
3744@group
5e9b6624
AD
3745bar:
3746 /* empty */ @{ previous_expr = $0; @}
3747;
bfa74976
RS
3748@end group
3749@end example
3750
3751As long as @code{bar} is used only in the fashion shown here, @code{$0}
3752always refers to the @code{expr} which precedes @code{bar} in the
3753definition of @code{foo}.
3754
32c29292 3755@vindex yylval
742e4900 3756It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3757any, from a semantic action.
3758This semantic value is stored in @code{yylval}.
3759@xref{Action Features, ,Special Features for Use in Actions}.
3760
342b8b6e 3761@node Action Types
bfa74976
RS
3762@subsection Data Types of Values in Actions
3763@cindex action data types
3764@cindex data types in actions
3765
3766If you have chosen a single data type for semantic values, the @code{$$}
3767and @code{$@var{n}} constructs always have that data type.
3768
3769If you have used @code{%union} to specify a variety of data types, then you
3770must declare a choice among these types for each terminal or nonterminal
3771symbol that can have a semantic value. Then each time you use @code{$$} or
3772@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3773in the rule. In this example,
bfa74976
RS
3774
3775@example
3776@group
5e9b6624
AD
3777exp:
3778 @dots{}
3779| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3780@end group
3781@end example
3782
3783@noindent
3784@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3785have the data type declared for the nonterminal symbol @code{exp}. If
3786@code{$2} were used, it would have the data type declared for the
e0c471a9 3787terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3788
3789Alternatively, you can specify the data type when you refer to the value,
3790by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3791reference. For example, if you have defined types as shown here:
3792
3793@example
3794@group
3795%union @{
3796 int itype;
3797 double dtype;
3798@}
3799@end group
3800@end example
3801
3802@noindent
3803then you can write @code{$<itype>1} to refer to the first subunit of the
3804rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3805
342b8b6e 3806@node Mid-Rule Actions
bfa74976
RS
3807@subsection Actions in Mid-Rule
3808@cindex actions in mid-rule
3809@cindex mid-rule actions
3810
3811Occasionally it is useful to put an action in the middle of a rule.
3812These actions are written just like usual end-of-rule actions, but they
3813are executed before the parser even recognizes the following components.
3814
3815A mid-rule action may refer to the components preceding it using
3816@code{$@var{n}}, but it may not refer to subsequent components because
3817it is run before they are parsed.
3818
3819The mid-rule action itself counts as one of the components of the rule.
3820This makes a difference when there is another action later in the same rule
3821(and usually there is another at the end): you have to count the actions
3822along with the symbols when working out which number @var{n} to use in
3823@code{$@var{n}}.
3824
3825The mid-rule action can also have a semantic value. The action can set
3826its value with an assignment to @code{$$}, and actions later in the rule
3827can refer to the value using @code{$@var{n}}. Since there is no symbol
3828to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3829in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3830specify a data type each time you refer to this value.
bfa74976
RS
3831
3832There is no way to set the value of the entire rule with a mid-rule
3833action, because assignments to @code{$$} do not have that effect. The
3834only way to set the value for the entire rule is with an ordinary action
3835at the end of the rule.
3836
3837Here is an example from a hypothetical compiler, handling a @code{let}
3838statement that looks like @samp{let (@var{variable}) @var{statement}} and
3839serves to create a variable named @var{variable} temporarily for the
3840duration of @var{statement}. To parse this construct, we must put
3841@var{variable} into the symbol table while @var{statement} is parsed, then
3842remove it afterward. Here is how it is done:
3843
3844@example
3845@group
5e9b6624
AD
3846stmt:
3847 LET '(' var ')'
3848 @{ $<context>$ = push_context (); declare_variable ($3); @}
3849 stmt
3850 @{ $$ = $6; pop_context ($<context>5); @}
bfa74976
RS
3851@end group
3852@end example
3853
3854@noindent
3855As soon as @samp{let (@var{variable})} has been recognized, the first
3856action is run. It saves a copy of the current semantic context (the
3857list of accessible variables) as its semantic value, using alternative
3858@code{context} in the data-type union. Then it calls
3859@code{declare_variable} to add the new variable to that list. Once the
3860first action is finished, the embedded statement @code{stmt} can be
3861parsed. Note that the mid-rule action is component number 5, so the
3862@samp{stmt} is component number 6.
3863
3864After the embedded statement is parsed, its semantic value becomes the
3865value of the entire @code{let}-statement. Then the semantic value from the
3866earlier action is used to restore the prior list of variables. This
3867removes the temporary @code{let}-variable from the list so that it won't
3868appear to exist while the rest of the program is parsed.
3869
841a7737
JD
3870@findex %destructor
3871@cindex discarded symbols, mid-rule actions
3872@cindex error recovery, mid-rule actions
3873In the above example, if the parser initiates error recovery (@pxref{Error
3874Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3875it might discard the previous semantic context @code{$<context>5} without
3876restoring it.
3877Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3878Discarded Symbols}).
ec5479ce
JD
3879However, Bison currently provides no means to declare a destructor specific to
3880a particular mid-rule action's semantic value.
841a7737
JD
3881
3882One solution is to bury the mid-rule action inside a nonterminal symbol and to
3883declare a destructor for that symbol:
3884
3885@example
3886@group
3887%type <context> let
3888%destructor @{ pop_context ($$); @} let
3889
3890%%
3891
5e9b6624
AD
3892stmt:
3893 let stmt
3894 @{
3895 $$ = $2;
3896 pop_context ($1);
3897 @};
841a7737 3898
5e9b6624
AD
3899let:
3900 LET '(' var ')'
3901 @{
3902 $$ = push_context ();
3903 declare_variable ($3);
3904 @};
841a7737
JD
3905
3906@end group
3907@end example
3908
3909@noindent
3910Note that the action is now at the end of its rule.
3911Any mid-rule action can be converted to an end-of-rule action in this way, and
3912this is what Bison actually does to implement mid-rule actions.
3913
bfa74976
RS
3914Taking action before a rule is completely recognized often leads to
3915conflicts since the parser must commit to a parse in order to execute the
3916action. For example, the following two rules, without mid-rule actions,
3917can coexist in a working parser because the parser can shift the open-brace
3918token and look at what follows before deciding whether there is a
3919declaration or not:
3920
3921@example
3922@group
5e9b6624
AD
3923compound:
3924 '@{' declarations statements '@}'
3925| '@{' statements '@}'
3926;
bfa74976
RS
3927@end group
3928@end example
3929
3930@noindent
3931But when we add a mid-rule action as follows, the rules become nonfunctional:
3932
3933@example
3934@group
5e9b6624
AD
3935compound:
3936 @{ prepare_for_local_variables (); @}
3937 '@{' declarations statements '@}'
bfa74976
RS
3938@end group
3939@group
5e9b6624
AD
3940| '@{' statements '@}'
3941;
bfa74976
RS
3942@end group
3943@end example
3944
3945@noindent
3946Now the parser is forced to decide whether to run the mid-rule action
3947when it has read no farther than the open-brace. In other words, it
3948must commit to using one rule or the other, without sufficient
3949information to do it correctly. (The open-brace token is what is called
742e4900
JD
3950the @dfn{lookahead} token at this time, since the parser is still
3951deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3952
3953You might think that you could correct the problem by putting identical
3954actions into the two rules, like this:
3955
3956@example
3957@group
5e9b6624
AD
3958compound:
3959 @{ prepare_for_local_variables (); @}
3960 '@{' declarations statements '@}'
3961| @{ prepare_for_local_variables (); @}
3962 '@{' statements '@}'
3963;
bfa74976
RS
3964@end group
3965@end example
3966
3967@noindent
3968But this does not help, because Bison does not realize that the two actions
3969are identical. (Bison never tries to understand the C code in an action.)
3970
3971If the grammar is such that a declaration can be distinguished from a
3972statement by the first token (which is true in C), then one solution which
3973does work is to put the action after the open-brace, like this:
3974
3975@example
3976@group
5e9b6624
AD
3977compound:
3978 '@{' @{ prepare_for_local_variables (); @}
3979 declarations statements '@}'
3980| '@{' statements '@}'
3981;
bfa74976
RS
3982@end group
3983@end example
3984
3985@noindent
3986Now the first token of the following declaration or statement,
3987which would in any case tell Bison which rule to use, can still do so.
3988
3989Another solution is to bury the action inside a nonterminal symbol which
3990serves as a subroutine:
3991
3992@example
3993@group
5e9b6624
AD
3994subroutine:
3995 /* empty */ @{ prepare_for_local_variables (); @}
3996;
bfa74976
RS
3997@end group
3998
3999@group
5e9b6624
AD
4000compound:
4001 subroutine '@{' declarations statements '@}'
4002| subroutine '@{' statements '@}'
4003;
bfa74976
RS
4004@end group
4005@end example
4006
4007@noindent
4008Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 4009deciding which rule for @code{compound} it will eventually use.
bfa74976 4010
303834cc 4011@node Tracking Locations
847bf1f5
AD
4012@section Tracking Locations
4013@cindex location
95923bd6
AD
4014@cindex textual location
4015@cindex location, textual
847bf1f5
AD
4016
4017Though grammar rules and semantic actions are enough to write a fully
72d2299c 4018functional parser, it can be useful to process some additional information,
3e259915
MA
4019especially symbol locations.
4020
704a47c4
AD
4021The way locations are handled is defined by providing a data type, and
4022actions to take when rules are matched.
847bf1f5
AD
4023
4024@menu
4025* Location Type:: Specifying a data type for locations.
4026* Actions and Locations:: Using locations in actions.
4027* Location Default Action:: Defining a general way to compute locations.
4028@end menu
4029
342b8b6e 4030@node Location Type
847bf1f5
AD
4031@subsection Data Type of Locations
4032@cindex data type of locations
4033@cindex default location type
4034
4035Defining a data type for locations is much simpler than for semantic values,
4036since all tokens and groupings always use the same type.
4037
50cce58e
PE
4038You can specify the type of locations by defining a macro called
4039@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 4040defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
4041When @code{YYLTYPE} is not defined, Bison uses a default structure type with
4042four members:
4043
4044@example
6273355b 4045typedef struct YYLTYPE
847bf1f5
AD
4046@{
4047 int first_line;
4048 int first_column;
4049 int last_line;
4050 int last_column;
6273355b 4051@} YYLTYPE;
847bf1f5
AD
4052@end example
4053
d59e456d
AD
4054When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
4055initializes all these fields to 1 for @code{yylloc}. To initialize
4056@code{yylloc} with a custom location type (or to chose a different
4057initialization), use the @code{%initial-action} directive. @xref{Initial
4058Action Decl, , Performing Actions before Parsing}.
cd48d21d 4059
342b8b6e 4060@node Actions and Locations
847bf1f5
AD
4061@subsection Actions and Locations
4062@cindex location actions
4063@cindex actions, location
4064@vindex @@$
4065@vindex @@@var{n}
d013372c
AR
4066@vindex @@@var{name}
4067@vindex @@[@var{name}]
847bf1f5
AD
4068
4069Actions are not only useful for defining language semantics, but also for
4070describing the behavior of the output parser with locations.
4071
4072The most obvious way for building locations of syntactic groupings is very
72d2299c 4073similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4074constructs can be used to access the locations of the elements being matched.
4075The location of the @var{n}th component of the right hand side is
4076@code{@@@var{n}}, while the location of the left hand side grouping is
4077@code{@@$}.
4078
d013372c
AR
4079In addition, the named references construct @code{@@@var{name}} and
4080@code{@@[@var{name}]} may also be used to address the symbol locations.
a7b15ab9
JD
4081@xref{Named References}, for more information about using the named
4082references construct.
d013372c 4083
3e259915 4084Here is a basic example using the default data type for locations:
847bf1f5
AD
4085
4086@example
4087@group
5e9b6624
AD
4088exp:
4089 @dots{}
4090| exp '/' exp
4091 @{
4092 @@$.first_column = @@1.first_column;
4093 @@$.first_line = @@1.first_line;
4094 @@$.last_column = @@3.last_column;
4095 @@$.last_line = @@3.last_line;
4096 if ($3)
4097 $$ = $1 / $3;
4098 else
4099 @{
4100 $$ = 1;
4101 fprintf (stderr,
4102 "Division by zero, l%d,c%d-l%d,c%d",
4103 @@3.first_line, @@3.first_column,
4104 @@3.last_line, @@3.last_column);
4105 @}
4106 @}
847bf1f5
AD
4107@end group
4108@end example
4109
3e259915 4110As for semantic values, there is a default action for locations that is
72d2299c 4111run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4112beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4113last symbol.
3e259915 4114
72d2299c 4115With this default action, the location tracking can be fully automatic. The
3e259915
MA
4116example above simply rewrites this way:
4117
4118@example
4119@group
5e9b6624
AD
4120exp:
4121 @dots{}
4122| exp '/' exp
4123 @{
4124 if ($3)
4125 $$ = $1 / $3;
4126 else
4127 @{
4128 $$ = 1;
4129 fprintf (stderr,
4130 "Division by zero, l%d,c%d-l%d,c%d",
4131 @@3.first_line, @@3.first_column,
4132 @@3.last_line, @@3.last_column);
4133 @}
4134 @}
3e259915
MA
4135@end group
4136@end example
847bf1f5 4137
32c29292 4138@vindex yylloc
742e4900 4139It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4140from a semantic action.
4141This location is stored in @code{yylloc}.
4142@xref{Action Features, ,Special Features for Use in Actions}.
4143
342b8b6e 4144@node Location Default Action
847bf1f5
AD
4145@subsection Default Action for Locations
4146@vindex YYLLOC_DEFAULT
8a4281b9 4147@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4148
72d2299c 4149Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4150locations are much more general than semantic values, there is room in
4151the output parser to redefine the default action to take for each
72d2299c 4152rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4153matched, before the associated action is run. It is also invoked
4154while processing a syntax error, to compute the error's location.
8a4281b9 4155Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4156parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4157of that ambiguity.
847bf1f5 4158
3e259915 4159Most of the time, this macro is general enough to suppress location
79282c6c 4160dedicated code from semantic actions.
847bf1f5 4161
72d2299c 4162The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4163the location of the grouping (the result of the computation). When a
766de5eb 4164rule is matched, the second parameter identifies locations of
96b93a3d 4165all right hand side elements of the rule being matched, and the third
8710fc41 4166parameter is the size of the rule's right hand side.
8a4281b9 4167When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4168right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4169When processing a syntax error, the second parameter identifies locations
4170of the symbols that were discarded during error processing, and the third
96b93a3d 4171parameter is the number of discarded symbols.
847bf1f5 4172
766de5eb 4173By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4174
c93f22fc
AD
4175@example
4176@group
4177# define YYLLOC_DEFAULT(Cur, Rhs, N) \
4178do \
4179 if (N) \
4180 @{ \
4181 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4182 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4183 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4184 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4185 @} \
4186 else \
4187 @{ \
4188 (Cur).first_line = (Cur).last_line = \
4189 YYRHSLOC(Rhs, 0).last_line; \
4190 (Cur).first_column = (Cur).last_column = \
4191 YYRHSLOC(Rhs, 0).last_column; \
4192 @} \
4193while (0)
4194@end group
4195@end example
676385e2 4196
aaaa2aae 4197@noindent
766de5eb
PE
4198where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4199in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4200just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4201
3e259915 4202When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4203
3e259915 4204@itemize @bullet
79282c6c 4205@item
72d2299c 4206All arguments are free of side-effects. However, only the first one (the
3e259915 4207result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4208
3e259915 4209@item
766de5eb
PE
4210For consistency with semantic actions, valid indexes within the
4211right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4212valid index, and it refers to the symbol just before the reduction.
4213During error processing @var{n} is always positive.
0ae99356
PE
4214
4215@item
4216Your macro should parenthesize its arguments, if need be, since the
4217actual arguments may not be surrounded by parentheses. Also, your
4218macro should expand to something that can be used as a single
4219statement when it is followed by a semicolon.
3e259915 4220@end itemize
847bf1f5 4221
378e917c 4222@node Named References
a7b15ab9 4223@section Named References
378e917c
JD
4224@cindex named references
4225
a40e77eb
JD
4226As described in the preceding sections, the traditional way to refer to any
4227semantic value or location is a @dfn{positional reference}, which takes the
4228form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4229such a reference is not very descriptive. Moreover, if you later decide to
4230insert or remove symbols in the right-hand side of a grammar rule, the need
4231to renumber such references can be tedious and error-prone.
4232
4233To avoid these issues, you can also refer to a semantic value or location
4234using a @dfn{named reference}. First of all, original symbol names may be
4235used as named references. For example:
378e917c
JD
4236
4237@example
4238@group
4239invocation: op '(' args ')'
4240 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4241@end group
4242@end example
4243
4244@noindent
a40e77eb 4245Positional and named references can be mixed arbitrarily. For example:
378e917c
JD
4246
4247@example
4248@group
4249invocation: op '(' args ')'
4250 @{ $$ = new_invocation ($op, $args, @@$); @}
4251@end group
4252@end example
4253
4254@noindent
4255However, sometimes regular symbol names are not sufficient due to
4256ambiguities:
4257
4258@example
4259@group
4260exp: exp '/' exp
4261 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4262
4263exp: exp '/' exp
4264 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4265
4266exp: exp '/' exp
4267 @{ $$ = $1 / $3; @} // No error.
4268@end group
4269@end example
4270
4271@noindent
4272When ambiguity occurs, explicitly declared names may be used for values and
4273locations. Explicit names are declared as a bracketed name after a symbol
4274appearance in rule definitions. For example:
4275@example
4276@group
4277exp[result]: exp[left] '/' exp[right]
4278 @{ $result = $left / $right; @}
4279@end group
4280@end example
4281
4282@noindent
a7b15ab9
JD
4283In order to access a semantic value generated by a mid-rule action, an
4284explicit name may also be declared by putting a bracketed name after the
4285closing brace of the mid-rule action code:
378e917c
JD
4286@example
4287@group
4288exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4289 @{ $res = $left + $right; @}
4290@end group
4291@end example
4292
4293@noindent
4294
4295In references, in order to specify names containing dots and dashes, an explicit
4296bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4297@example
4298@group
762caaf6 4299if-stmt: "if" '(' expr ')' "then" then.stmt ';'
378e917c
JD
4300 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4301@end group
4302@end example
4303
4304It often happens that named references are followed by a dot, dash or other
4305C punctuation marks and operators. By default, Bison will read
a7b15ab9
JD
4306@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4307@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4308value. In order to force Bison to recognize @samp{name.suffix} in its
4309entirety as the name of a semantic value, the bracketed syntax
4310@samp{$[name.suffix]} must be used.
4311
4312The named references feature is experimental. More user feedback will help
4313to stabilize it.
378e917c 4314
342b8b6e 4315@node Declarations
bfa74976
RS
4316@section Bison Declarations
4317@cindex declarations, Bison
4318@cindex Bison declarations
4319
4320The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4321used in formulating the grammar and the data types of semantic values.
4322@xref{Symbols}.
4323
4324All token type names (but not single-character literal tokens such as
4325@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4326declared if you need to specify which data type to use for the semantic
4327value (@pxref{Multiple Types, ,More Than One Value Type}).
4328
ff7571c0
JD
4329The first rule in the grammar file also specifies the start symbol, by
4330default. If you want some other symbol to be the start symbol, you
4331must declare it explicitly (@pxref{Language and Grammar, ,Languages
4332and Context-Free Grammars}).
bfa74976
RS
4333
4334@menu
b50d2359 4335* Require Decl:: Requiring a Bison version.
bfa74976
RS
4336* Token Decl:: Declaring terminal symbols.
4337* Precedence Decl:: Declaring terminals with precedence and associativity.
4338* Union Decl:: Declaring the set of all semantic value types.
4339* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4340* Initial Action Decl:: Code run before parsing starts.
72f889cc 4341* Destructor Decl:: Declaring how symbols are freed.
93c150b6 4342* Printer Decl:: Declaring how symbol values are displayed.
d6328241 4343* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4344* Start Decl:: Specifying the start symbol.
4345* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4346* Push Decl:: Requesting a push parser.
bfa74976 4347* Decl Summary:: Table of all Bison declarations.
35c1e5f0 4348* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 4349* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4350@end menu
4351
b50d2359
AD
4352@node Require Decl
4353@subsection Require a Version of Bison
4354@cindex version requirement
4355@cindex requiring a version of Bison
4356@findex %require
4357
4358You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4359the requirement is not met, @command{bison} exits with an error (exit
4360status 63).
b50d2359
AD
4361
4362@example
4363%require "@var{version}"
4364@end example
4365
342b8b6e 4366@node Token Decl
bfa74976
RS
4367@subsection Token Type Names
4368@cindex declaring token type names
4369@cindex token type names, declaring
931c7513 4370@cindex declaring literal string tokens
bfa74976
RS
4371@findex %token
4372
4373The basic way to declare a token type name (terminal symbol) is as follows:
4374
4375@example
4376%token @var{name}
4377@end example
4378
4379Bison will convert this into a @code{#define} directive in
4380the parser, so that the function @code{yylex} (if it is in this file)
4381can use the name @var{name} to stand for this token type's code.
4382
d78f0ac9
AD
4383Alternatively, you can use @code{%left}, @code{%right},
4384@code{%precedence}, or
14ded682
AD
4385@code{%nonassoc} instead of @code{%token}, if you wish to specify
4386associativity and precedence. @xref{Precedence Decl, ,Operator
4387Precedence}.
bfa74976
RS
4388
4389You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4390a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4391following the token name:
bfa74976
RS
4392
4393@example
4394%token NUM 300
1452af69 4395%token XNUM 0x12d // a GNU extension
bfa74976
RS
4396@end example
4397
4398@noindent
4399It is generally best, however, to let Bison choose the numeric codes for
4400all token types. Bison will automatically select codes that don't conflict
e966383b 4401with each other or with normal characters.
bfa74976
RS
4402
4403In the event that the stack type is a union, you must augment the
4404@code{%token} or other token declaration to include the data type
704a47c4
AD
4405alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4406Than One Value Type}).
bfa74976
RS
4407
4408For example:
4409
4410@example
4411@group
4412%union @{ /* define stack type */
4413 double val;
4414 symrec *tptr;
4415@}
4416%token <val> NUM /* define token NUM and its type */
4417@end group
4418@end example
4419
931c7513
RS
4420You can associate a literal string token with a token type name by
4421writing the literal string at the end of a @code{%token}
4422declaration which declares the name. For example:
4423
4424@example
4425%token arrow "=>"
4426@end example
4427
4428@noindent
4429For example, a grammar for the C language might specify these names with
4430equivalent literal string tokens:
4431
4432@example
4433%token <operator> OR "||"
4434%token <operator> LE 134 "<="
4435%left OR "<="
4436@end example
4437
4438@noindent
4439Once you equate the literal string and the token name, you can use them
4440interchangeably in further declarations or the grammar rules. The
4441@code{yylex} function can use the token name or the literal string to
4442obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4443Syntax error messages passed to @code{yyerror} from the parser will reference
4444the literal string instead of the token name.
4445
4446The token numbered as 0 corresponds to end of file; the following line
4447allows for nicer error messages referring to ``end of file'' instead
4448of ``$end'':
4449
4450@example
4451%token END 0 "end of file"
4452@end example
931c7513 4453
342b8b6e 4454@node Precedence Decl
bfa74976
RS
4455@subsection Operator Precedence
4456@cindex precedence declarations
4457@cindex declaring operator precedence
4458@cindex operator precedence, declaring
4459
d78f0ac9
AD
4460Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4461@code{%precedence} declaration to
bfa74976
RS
4462declare a token and specify its precedence and associativity, all at
4463once. These are called @dfn{precedence declarations}.
704a47c4
AD
4464@xref{Precedence, ,Operator Precedence}, for general information on
4465operator precedence.
bfa74976 4466
ab7f29f8 4467The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4468@code{%token}: either
4469
4470@example
4471%left @var{symbols}@dots{}
4472@end example
4473
4474@noindent
4475or
4476
4477@example
4478%left <@var{type}> @var{symbols}@dots{}
4479@end example
4480
4481And indeed any of these declarations serves the purposes of @code{%token}.
4482But in addition, they specify the associativity and relative precedence for
4483all the @var{symbols}:
4484
4485@itemize @bullet
4486@item
4487The associativity of an operator @var{op} determines how repeated uses
4488of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4489@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4490grouping @var{y} with @var{z} first. @code{%left} specifies
4491left-associativity (grouping @var{x} with @var{y} first) and
4492@code{%right} specifies right-associativity (grouping @var{y} with
4493@var{z} first). @code{%nonassoc} specifies no associativity, which
4494means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4495considered a syntax error.
4496
d78f0ac9
AD
4497@code{%precedence} gives only precedence to the @var{symbols}, and
4498defines no associativity at all. Use this to define precedence only,
4499and leave any potential conflict due to associativity enabled.
4500
bfa74976
RS
4501@item
4502The precedence of an operator determines how it nests with other operators.
4503All the tokens declared in a single precedence declaration have equal
4504precedence and nest together according to their associativity.
4505When two tokens declared in different precedence declarations associate,
4506the one declared later has the higher precedence and is grouped first.
4507@end itemize
4508
ab7f29f8
JD
4509For backward compatibility, there is a confusing difference between the
4510argument lists of @code{%token} and precedence declarations.
4511Only a @code{%token} can associate a literal string with a token type name.
4512A precedence declaration always interprets a literal string as a reference to a
4513separate token.
4514For example:
4515
4516@example
4517%left OR "<=" // Does not declare an alias.
4518%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4519@end example
4520
342b8b6e 4521@node Union Decl
bfa74976
RS
4522@subsection The Collection of Value Types
4523@cindex declaring value types
4524@cindex value types, declaring
4525@findex %union
4526
287c78f6
PE
4527The @code{%union} declaration specifies the entire collection of
4528possible data types for semantic values. The keyword @code{%union} is
4529followed by braced code containing the same thing that goes inside a
4530@code{union} in C@.
bfa74976
RS
4531
4532For example:
4533
4534@example
4535@group
4536%union @{
4537 double val;
4538 symrec *tptr;
4539@}
4540@end group
4541@end example
4542
4543@noindent
4544This says that the two alternative types are @code{double} and @code{symrec
4545*}. They are given names @code{val} and @code{tptr}; these names are used
4546in the @code{%token} and @code{%type} declarations to pick one of the types
4547for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4548
8a4281b9 4549As an extension to POSIX, a tag is allowed after the
6273355b
PE
4550@code{union}. For example:
4551
4552@example
4553@group
4554%union value @{
4555 double val;
4556 symrec *tptr;
4557@}
4558@end group
4559@end example
4560
d6ca7905 4561@noindent
6273355b
PE
4562specifies the union tag @code{value}, so the corresponding C type is
4563@code{union value}. If you do not specify a tag, it defaults to
4564@code{YYSTYPE}.
4565
8a4281b9 4566As another extension to POSIX, you may specify multiple
d6ca7905
PE
4567@code{%union} declarations; their contents are concatenated. However,
4568only the first @code{%union} declaration can specify a tag.
4569
6273355b 4570Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4571a semicolon after the closing brace.
4572
ddc8ede1
PE
4573Instead of @code{%union}, you can define and use your own union type
4574@code{YYSTYPE} if your grammar contains at least one
4575@samp{<@var{type}>} tag. For example, you can put the following into
4576a header file @file{parser.h}:
4577
4578@example
4579@group
4580union YYSTYPE @{
4581 double val;
4582 symrec *tptr;
4583@};
4584typedef union YYSTYPE YYSTYPE;
4585@end group
4586@end example
4587
4588@noindent
4589and then your grammar can use the following
4590instead of @code{%union}:
4591
4592@example
4593@group
4594%@{
4595#include "parser.h"
4596%@}
4597%type <val> expr
4598%token <tptr> ID
4599@end group
4600@end example
4601
342b8b6e 4602@node Type Decl
bfa74976
RS
4603@subsection Nonterminal Symbols
4604@cindex declaring value types, nonterminals
4605@cindex value types, nonterminals, declaring
4606@findex %type
4607
4608@noindent
4609When you use @code{%union} to specify multiple value types, you must
4610declare the value type of each nonterminal symbol for which values are
4611used. This is done with a @code{%type} declaration, like this:
4612
4613@example
4614%type <@var{type}> @var{nonterminal}@dots{}
4615@end example
4616
4617@noindent
704a47c4
AD
4618Here @var{nonterminal} is the name of a nonterminal symbol, and
4619@var{type} is the name given in the @code{%union} to the alternative
4620that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4621can give any number of nonterminal symbols in the same @code{%type}
4622declaration, if they have the same value type. Use spaces to separate
4623the symbol names.
bfa74976 4624
931c7513
RS
4625You can also declare the value type of a terminal symbol. To do this,
4626use the same @code{<@var{type}>} construction in a declaration for the
4627terminal symbol. All kinds of token declarations allow
4628@code{<@var{type}>}.
4629
18d192f0
AD
4630@node Initial Action Decl
4631@subsection Performing Actions before Parsing
4632@findex %initial-action
4633
4634Sometimes your parser needs to perform some initializations before
4635parsing. The @code{%initial-action} directive allows for such arbitrary
4636code.
4637
4638@deffn {Directive} %initial-action @{ @var{code} @}
4639@findex %initial-action
287c78f6 4640Declare that the braced @var{code} must be invoked before parsing each time
cd735a8c
AD
4641@code{yyparse} is called. The @var{code} may use @code{$$} (or
4642@code{$<@var{tag}>$}) and @code{@@$} --- initial value and location of the
4643lookahead --- and the @code{%parse-param}.
18d192f0
AD
4644@end deffn
4645
451364ed
AD
4646For instance, if your locations use a file name, you may use
4647
4648@example
48b16bbc 4649%parse-param @{ char const *file_name @};
451364ed
AD
4650%initial-action
4651@{
4626a15d 4652 @@$.initialize (file_name);
451364ed
AD
4653@};
4654@end example
4655
18d192f0 4656
72f889cc
AD
4657@node Destructor Decl
4658@subsection Freeing Discarded Symbols
4659@cindex freeing discarded symbols
4660@findex %destructor
12e35840 4661@findex <*>
3ebecc24 4662@findex <>
a85284cf
AD
4663During error recovery (@pxref{Error Recovery}), symbols already pushed
4664on the stack and tokens coming from the rest of the file are discarded
4665until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4666or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4667symbols on the stack must be discarded. Even if the parser succeeds, it
4668must discard the start symbol.
258b75ca
PE
4669
4670When discarded symbols convey heap based information, this memory is
4671lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4672in traditional compilers, it is unacceptable for programs like shells or
4673protocol implementations that may parse and execute indefinitely.
258b75ca 4674
a85284cf
AD
4675The @code{%destructor} directive defines code that is called when a
4676symbol is automatically discarded.
72f889cc
AD
4677
4678@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4679@findex %destructor
287c78f6 4680Invoke the braced @var{code} whenever the parser discards one of the
4982f078
AD
4681@var{symbols}. Within @var{code}, @code{$$} (or @code{$<@var{tag}>$})
4682designates the semantic value associated with the discarded symbol, and
4683@code{@@$} designates its location. The additional parser parameters are
4684also available (@pxref{Parser Function, , The Parser Function
4685@code{yyparse}}).
ec5479ce 4686
b2a0b7ca
JD
4687When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4688per-symbol @code{%destructor}.
4689You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4690tag among @var{symbols}.
b2a0b7ca 4691In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4692grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4693per-symbol @code{%destructor}.
4694
12e35840 4695Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4696(These default forms are experimental.
4697More user feedback will help to determine whether they should become permanent
4698features.)
3ebecc24 4699You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4700exactly one @code{%destructor} declaration in your grammar file.
4701The parser will invoke the @var{code} associated with one of these whenever it
4702discards any user-defined grammar symbol that has no per-symbol and no per-type
4703@code{%destructor}.
4704The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4705symbol for which you have formally declared a semantic type tag (@code{%type}
4706counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4707The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4708symbol that has no declared semantic type tag.
72f889cc
AD
4709@end deffn
4710
b2a0b7ca 4711@noindent
12e35840 4712For example:
72f889cc 4713
c93f22fc 4714@example
ec5479ce
JD
4715%union @{ char *string; @}
4716%token <string> STRING1
4717%token <string> STRING2
4718%type <string> string1
4719%type <string> string2
b2a0b7ca
JD
4720%union @{ char character; @}
4721%token <character> CHR
4722%type <character> chr
12e35840
JD
4723%token TAGLESS
4724
b2a0b7ca 4725%destructor @{ @} <character>
12e35840
JD
4726%destructor @{ free ($$); @} <*>
4727%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4728%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
c93f22fc 4729@end example
72f889cc
AD
4730
4731@noindent
b2a0b7ca
JD
4732guarantees that, when the parser discards any user-defined symbol that has a
4733semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4734to @code{free} by default.
ec5479ce
JD
4735However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4736prints its line number to @code{stdout}.
4737It performs only the second @code{%destructor} in this case, so it invokes
4738@code{free} only once.
12e35840
JD
4739Finally, the parser merely prints a message whenever it discards any symbol,
4740such as @code{TAGLESS}, that has no semantic type tag.
4741
4742A Bison-generated parser invokes the default @code{%destructor}s only for
4743user-defined as opposed to Bison-defined symbols.
4744For example, the parser will not invoke either kind of default
4745@code{%destructor} for the special Bison-defined symbols @code{$accept},
4746@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4747none of which you can reference in your grammar.
4748It also will not invoke either for the @code{error} token (@pxref{Table of
4749Symbols, ,error}), which is always defined by Bison regardless of whether you
4750reference it in your grammar.
4751However, it may invoke one of them for the end token (token 0) if you
4752redefine it from @code{$end} to, for example, @code{END}:
3508ce36 4753
c93f22fc 4754@example
3508ce36 4755%token END 0
c93f22fc 4756@end example
3508ce36 4757
12e35840
JD
4758@cindex actions in mid-rule
4759@cindex mid-rule actions
4760Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4761mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
a7b15ab9
JD
4762That is, Bison does not consider a mid-rule to have a semantic value if you
4763do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4764(where @var{n} is the right-hand side symbol position of the mid-rule) in
4765any later action in that rule. However, if you do reference either, the
4766Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4767it discards the mid-rule symbol.
12e35840 4768
3508ce36
JD
4769@ignore
4770@noindent
4771In the future, it may be possible to redefine the @code{error} token as a
4772nonterminal that captures the discarded symbols.
4773In that case, the parser will invoke the default destructor for it as well.
4774@end ignore
4775
e757bb10
AD
4776@sp 1
4777
4778@cindex discarded symbols
4779@dfn{Discarded symbols} are the following:
4780
4781@itemize
4782@item
4783stacked symbols popped during the first phase of error recovery,
4784@item
4785incoming terminals during the second phase of error recovery,
4786@item
742e4900 4787the current lookahead and the entire stack (except the current
9d9b8b70 4788right-hand side symbols) when the parser returns immediately, and
258b75ca 4789@item
d3e4409a
AD
4790the current lookahead and the entire stack (including the current right-hand
4791side symbols) when the C++ parser (@file{lalr1.cc}) catches an exception in
4792@code{parse},
4793@item
258b75ca 4794the start symbol, when the parser succeeds.
e757bb10
AD
4795@end itemize
4796
9d9b8b70
PE
4797The parser can @dfn{return immediately} because of an explicit call to
4798@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4799exhaustion.
4800
29553547 4801Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4802error via @code{YYERROR} are not discarded automatically. As a rule
4803of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4804the memory.
e757bb10 4805
93c150b6
AD
4806@node Printer Decl
4807@subsection Printing Semantic Values
4808@cindex printing semantic values
4809@findex %printer
4810@findex <*>
4811@findex <>
4812When run-time traces are enabled (@pxref{Tracing, ,Tracing Your Parser}),
4813the parser reports its actions, such as reductions. When a symbol involved
4814in an action is reported, only its kind is displayed, as the parser cannot
4815know how semantic values should be formatted.
4816
4817The @code{%printer} directive defines code that is called when a symbol is
4818reported. Its syntax is the same as @code{%destructor} (@pxref{Destructor
4819Decl, , Freeing Discarded Symbols}).
4820
4821@deffn {Directive} %printer @{ @var{code} @} @var{symbols}
4822@findex %printer
4823@vindex yyoutput
4824@c This is the same text as for %destructor.
4825Invoke the braced @var{code} whenever the parser displays one of the
4826@var{symbols}. Within @var{code}, @code{yyoutput} denotes the output stream
4982f078
AD
4827(a @code{FILE*} in C, and an @code{std::ostream&} in C++), @code{$$} (or
4828@code{$<@var{tag}>$}) designates the semantic value associated with the
4829symbol, and @code{@@$} its location. The additional parser parameters are
4830also available (@pxref{Parser Function, , The Parser Function
4831@code{yyparse}}).
93c150b6
AD
4832
4833The @var{symbols} are defined as for @code{%destructor} (@pxref{Destructor
4834Decl, , Freeing Discarded Symbols}.): they can be per-type (e.g.,
4835@samp{<ival>}), per-symbol (e.g., @samp{exp}, @samp{NUM}, @samp{"float"}),
4836typed per-default (i.e., @samp{<*>}, or untyped per-default (i.e.,
4837@samp{<>}).
4838@end deffn
4839
4840@noindent
4841For example:
4842
4843@example
4844%union @{ char *string; @}
4845%token <string> STRING1
4846%token <string> STRING2
4847%type <string> string1
4848%type <string> string2
4849%union @{ char character; @}
4850%token <character> CHR
4851%type <character> chr
4852%token TAGLESS
4853
4854%printer @{ fprintf (yyoutput, "'%c'", $$); @} <character>
4855%printer @{ fprintf (yyoutput, "&%p", $$); @} <*>
4856%printer @{ fprintf (yyoutput, "\"%s\"", $$); @} STRING1 string1
4857%printer @{ fprintf (yyoutput, "<>"); @} <>
4858@end example
4859
4860@noindent
4861guarantees that, when the parser print any symbol that has a semantic type
4862tag other than @code{<character>}, it display the address of the semantic
4863value by default. However, when the parser displays a @code{STRING1} or a
4864@code{string1}, it formats it as a string in double quotes. It performs
4865only the second @code{%printer} in this case, so it prints only once.
4866Finally, the parser print @samp{<>} for any symbol, such as @code{TAGLESS},
4867that has no semantic type tag. See also
4868
4869
342b8b6e 4870@node Expect Decl
bfa74976
RS
4871@subsection Suppressing Conflict Warnings
4872@cindex suppressing conflict warnings
4873@cindex preventing warnings about conflicts
4874@cindex warnings, preventing
4875@cindex conflicts, suppressing warnings of
4876@findex %expect
d6328241 4877@findex %expect-rr
bfa74976
RS
4878
4879Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4880(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4881have harmless shift/reduce conflicts which are resolved in a predictable
4882way and would be difficult to eliminate. It is desirable to suppress
4883the warning about these conflicts unless the number of conflicts
4884changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4885
4886The declaration looks like this:
4887
4888@example
4889%expect @var{n}
4890@end example
4891
035aa4a0
PE
4892Here @var{n} is a decimal integer. The declaration says there should
4893be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4894Bison reports an error if the number of shift/reduce conflicts differs
4895from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4896
eb45ef3b 4897For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4898serious, and should be eliminated entirely. Bison will always report
8a4281b9 4899reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4900parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 4901there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4902also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 4903in GLR parsers, using the declaration:
d6328241
PH
4904
4905@example
4906%expect-rr @var{n}
4907@end example
4908
bfa74976
RS
4909In general, using @code{%expect} involves these steps:
4910
4911@itemize @bullet
4912@item
4913Compile your grammar without @code{%expect}. Use the @samp{-v} option
4914to get a verbose list of where the conflicts occur. Bison will also
4915print the number of conflicts.
4916
4917@item
4918Check each of the conflicts to make sure that Bison's default
4919resolution is what you really want. If not, rewrite the grammar and
4920go back to the beginning.
4921
4922@item
4923Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 4924number which Bison printed. With GLR parsers, add an
035aa4a0 4925@code{%expect-rr} declaration as well.
bfa74976
RS
4926@end itemize
4927
93d7dde9
JD
4928Now Bison will report an error if you introduce an unexpected conflict,
4929but will keep silent otherwise.
bfa74976 4930
342b8b6e 4931@node Start Decl
bfa74976
RS
4932@subsection The Start-Symbol
4933@cindex declaring the start symbol
4934@cindex start symbol, declaring
4935@cindex default start symbol
4936@findex %start
4937
4938Bison assumes by default that the start symbol for the grammar is the first
4939nonterminal specified in the grammar specification section. The programmer
4940may override this restriction with the @code{%start} declaration as follows:
4941
4942@example
4943%start @var{symbol}
4944@end example
4945
342b8b6e 4946@node Pure Decl
bfa74976
RS
4947@subsection A Pure (Reentrant) Parser
4948@cindex reentrant parser
4949@cindex pure parser
d9df47b6 4950@findex %define api.pure
bfa74976
RS
4951
4952A @dfn{reentrant} program is one which does not alter in the course of
4953execution; in other words, it consists entirely of @dfn{pure} (read-only)
4954code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4955for example, a nonreentrant program may not be safe to call from a signal
4956handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4957program must be called only within interlocks.
4958
70811b85 4959Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4960suitable for most uses, and it permits compatibility with Yacc. (The
4961standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4962statically allocated variables for communication with @code{yylex},
4963including @code{yylval} and @code{yylloc}.)
bfa74976 4964
70811b85 4965Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 4966declaration @samp{%define api.pure} says that you want the parser to be
70811b85 4967reentrant. It looks like this:
bfa74976
RS
4968
4969@example
d9df47b6 4970%define api.pure
bfa74976
RS
4971@end example
4972
70811b85
RS
4973The result is that the communication variables @code{yylval} and
4974@code{yylloc} become local variables in @code{yyparse}, and a different
4975calling convention is used for the lexical analyzer function
4976@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4977Parsers}, for the details of this. The variable @code{yynerrs}
4978becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4979of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4980Reporting Function @code{yyerror}}). The convention for calling
4981@code{yyparse} itself is unchanged.
4982
4983Whether the parser is pure has nothing to do with the grammar rules.
4984You can generate either a pure parser or a nonreentrant parser from any
4985valid grammar.
bfa74976 4986
9987d1b3
JD
4987@node Push Decl
4988@subsection A Push Parser
4989@cindex push parser
4990@cindex push parser
67212941 4991@findex %define api.push-pull
9987d1b3 4992
59da312b
JD
4993(The current push parsing interface is experimental and may evolve.
4994More user feedback will help to stabilize it.)
4995
f4101aa6
AD
4996A pull parser is called once and it takes control until all its input
4997is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4998each time a new token is made available.
4999
f4101aa6 5000A push parser is typically useful when the parser is part of a
9987d1b3 5001main event loop in the client's application. This is typically
f4101aa6
AD
5002a requirement of a GUI, when the main event loop needs to be triggered
5003within a certain time period.
9987d1b3 5004
d782395d
JD
5005Normally, Bison generates a pull parser.
5006The following Bison declaration says that you want the parser to be a push
35c1e5f0 5007parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
5008
5009@example
cf499cff 5010%define api.push-pull push
9987d1b3
JD
5011@end example
5012
5013In almost all cases, you want to ensure that your push parser is also
5014a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 5015time you should create an impure push parser is to have backwards
9987d1b3
JD
5016compatibility with the impure Yacc pull mode interface. Unless you know
5017what you are doing, your declarations should look like this:
5018
5019@example
d9df47b6 5020%define api.pure
cf499cff 5021%define api.push-pull push
9987d1b3
JD
5022@end example
5023
f4101aa6
AD
5024There is a major notable functional difference between the pure push parser
5025and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
5026many parser instances, of the same type of parser, in memory at the same time.
5027An impure push parser should only use one parser at a time.
5028
5029When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
5030the generated parser. @code{yypstate} is a structure that the generated
5031parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
5032function that will create a new parser instance. @code{yypstate_delete}
5033will free the resources associated with the corresponding parser instance.
f4101aa6 5034Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
5035token is available to provide the parser. A trivial example
5036of using a pure push parser would look like this:
5037
5038@example
5039int status;
5040yypstate *ps = yypstate_new ();
5041do @{
5042 status = yypush_parse (ps, yylex (), NULL);
5043@} while (status == YYPUSH_MORE);
5044yypstate_delete (ps);
5045@end example
5046
5047If the user decided to use an impure push parser, a few things about
f4101aa6 5048the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
5049a global variable instead of a variable in the @code{yypush_parse} function.
5050For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 5051changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
5052example would thus look like this:
5053
5054@example
5055extern int yychar;
5056int status;
5057yypstate *ps = yypstate_new ();
5058do @{
5059 yychar = yylex ();
5060 status = yypush_parse (ps);
5061@} while (status == YYPUSH_MORE);
5062yypstate_delete (ps);
5063@end example
5064
f4101aa6 5065That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
5066for use by the next invocation of the @code{yypush_parse} function.
5067
f4101aa6 5068Bison also supports both the push parser interface along with the pull parser
9987d1b3 5069interface in the same generated parser. In order to get this functionality,
cf499cff
JD
5070you should replace the @samp{%define api.push-pull push} declaration with the
5071@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 5072the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
5073and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
5074would be used. However, the user should note that it is implemented in the
d782395d
JD
5075generated parser by calling @code{yypull_parse}.
5076This makes the @code{yyparse} function that is generated with the
cf499cff 5077@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
5078@code{yyparse} function. If the user
5079calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
5080stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
5081and then @code{yypull_parse} the rest of the input stream. If you would like
5082to switch back and forth between between parsing styles, you would have to
5083write your own @code{yypull_parse} function that knows when to quit looking
5084for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
5085like this:
5086
5087@example
5088yypstate *ps = yypstate_new ();
5089yypull_parse (ps); /* Will call the lexer */
5090yypstate_delete (ps);
5091@end example
5092
67501061 5093Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
5094the generated parser with @samp{%define api.push-pull both} as it did for
5095@samp{%define api.push-pull push}.
9987d1b3 5096
342b8b6e 5097@node Decl Summary
bfa74976
RS
5098@subsection Bison Declaration Summary
5099@cindex Bison declaration summary
5100@cindex declaration summary
5101@cindex summary, Bison declaration
5102
d8988b2f 5103Here is a summary of the declarations used to define a grammar:
bfa74976 5104
18b519c0 5105@deffn {Directive} %union
bfa74976
RS
5106Declare the collection of data types that semantic values may have
5107(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 5108@end deffn
bfa74976 5109
18b519c0 5110@deffn {Directive} %token
bfa74976
RS
5111Declare a terminal symbol (token type name) with no precedence
5112or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 5113@end deffn
bfa74976 5114
18b519c0 5115@deffn {Directive} %right
bfa74976
RS
5116Declare a terminal symbol (token type name) that is right-associative
5117(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5118@end deffn
bfa74976 5119
18b519c0 5120@deffn {Directive} %left
bfa74976
RS
5121Declare a terminal symbol (token type name) that is left-associative
5122(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5123@end deffn
bfa74976 5124
18b519c0 5125@deffn {Directive} %nonassoc
bfa74976 5126Declare a terminal symbol (token type name) that is nonassociative
bfa74976 5127(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
5128Using it in a way that would be associative is a syntax error.
5129@end deffn
5130
91d2c560 5131@ifset defaultprec
39a06c25 5132@deffn {Directive} %default-prec
22fccf95 5133Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
5134(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5135@end deffn
91d2c560 5136@end ifset
bfa74976 5137
18b519c0 5138@deffn {Directive} %type
bfa74976
RS
5139Declare the type of semantic values for a nonterminal symbol
5140(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 5141@end deffn
bfa74976 5142
18b519c0 5143@deffn {Directive} %start
89cab50d
AD
5144Specify the grammar's start symbol (@pxref{Start Decl, ,The
5145Start-Symbol}).
18b519c0 5146@end deffn
bfa74976 5147
18b519c0 5148@deffn {Directive} %expect
bfa74976
RS
5149Declare the expected number of shift-reduce conflicts
5150(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
5151@end deffn
5152
bfa74976 5153
d8988b2f
AD
5154@sp 1
5155@noindent
5156In order to change the behavior of @command{bison}, use the following
5157directives:
5158
148d66d8 5159@deffn {Directive} %code @{@var{code}@}
e0c07222 5160@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 5161@findex %code
e0c07222
JD
5162Insert @var{code} verbatim into the output parser source at the
5163default location or at the location specified by @var{qualifier}.
5164@xref{%code Summary}.
148d66d8
JD
5165@end deffn
5166
18b519c0 5167@deffn {Directive} %debug
60aa04a2 5168Instrument the parser for traces. Obsoleted by @samp{%define
fa819509 5169parse.trace}.
ec3bc396 5170@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5171@end deffn
d8988b2f 5172
35c1e5f0
JD
5173@deffn {Directive} %define @var{variable}
5174@deffnx {Directive} %define @var{variable} @var{value}
5175@deffnx {Directive} %define @var{variable} "@var{value}"
5176Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5177@end deffn
5178
5179@deffn {Directive} %defines
5180Write a parser header file containing macro definitions for the token
5181type names defined in the grammar as well as a few other declarations.
5182If the parser implementation file is named @file{@var{name}.c} then
5183the parser header file is named @file{@var{name}.h}.
5184
5185For C parsers, the parser header file declares @code{YYSTYPE} unless
5186@code{YYSTYPE} is already defined as a macro or you have used a
5187@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5188you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5189Value Type}) with components that require other definitions, or if you
5190have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5191Type, ,Data Types of Semantic Values}), you need to arrange for these
5192definitions to be propagated to all modules, e.g., by putting them in
5193a prerequisite header that is included both by your parser and by any
5194other module that needs @code{YYSTYPE}.
5195
5196Unless your parser is pure, the parser header file declares
5197@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5198(Reentrant) Parser}.
5199
5200If you have also used locations, the parser header file declares
303834cc
JD
5201@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5202@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
35c1e5f0
JD
5203
5204This parser header file is normally essential if you wish to put the
5205definition of @code{yylex} in a separate source file, because
5206@code{yylex} typically needs to be able to refer to the
5207above-mentioned declarations and to the token type codes. @xref{Token
5208Values, ,Semantic Values of Tokens}.
5209
5210@findex %code requires
5211@findex %code provides
5212If you have declared @code{%code requires} or @code{%code provides}, the output
5213header also contains their code.
5214@xref{%code Summary}.
c9d5bcc9
AD
5215
5216@cindex Header guard
5217The generated header is protected against multiple inclusions with a C
5218preprocessor guard: @samp{YY_@var{PREFIX}_@var{FILE}_INCLUDED}, where
5219@var{PREFIX} and @var{FILE} are the prefix (@pxref{Multiple Parsers,
5220,Multiple Parsers in the Same Program}) and generated file name turned
5221uppercase, with each series of non alphanumerical characters converted to a
5222single underscore.
5223
5224For instance with @samp{%define api.prefix "calc"} and @samp{%defines
5225"lib/parse.h"}, the header will be guarded as follows.
5226@example
5227#ifndef YY_CALC_LIB_PARSE_H_INCLUDED
5228# define YY_CALC_LIB_PARSE_H_INCLUDED
5229...
5230#endif /* ! YY_CALC_LIB_PARSE_H_INCLUDED */
5231@end example
35c1e5f0
JD
5232@end deffn
5233
5234@deffn {Directive} %defines @var{defines-file}
5235Same as above, but save in the file @var{defines-file}.
5236@end deffn
5237
5238@deffn {Directive} %destructor
5239Specify how the parser should reclaim the memory associated to
5240discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5241@end deffn
5242
5243@deffn {Directive} %file-prefix "@var{prefix}"
5244Specify a prefix to use for all Bison output file names. The names
5245are chosen as if the grammar file were named @file{@var{prefix}.y}.
5246@end deffn
5247
5248@deffn {Directive} %language "@var{language}"
5249Specify the programming language for the generated parser. Currently
5250supported languages include C, C++, and Java.
5251@var{language} is case-insensitive.
5252
5253This directive is experimental and its effect may be modified in future
5254releases.
5255@end deffn
5256
5257@deffn {Directive} %locations
5258Generate the code processing the locations (@pxref{Action Features,
5259,Special Features for Use in Actions}). This mode is enabled as soon as
5260the grammar uses the special @samp{@@@var{n}} tokens, but if your
5261grammar does not use it, using @samp{%locations} allows for more
5262accurate syntax error messages.
5263@end deffn
5264
5265@deffn {Directive} %name-prefix "@var{prefix}"
5266Rename the external symbols used in the parser so that they start with
5267@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5268in C parsers
5269is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5270@code{yylval}, @code{yychar}, @code{yydebug}, and
5271(if locations are used) @code{yylloc}. If you use a push parser,
5272@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5273@code{yypstate_new} and @code{yypstate_delete} will
5274also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5275names become @code{c_parse}, @code{c_lex}, and so on.
5276For C++ parsers, see the @samp{%define api.namespace} documentation in this
5277section.
5278@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5279@end deffn
5280
5281@ifset defaultprec
5282@deffn {Directive} %no-default-prec
5283Do not assign a precedence to rules lacking an explicit @code{%prec}
5284modifier (@pxref{Contextual Precedence, ,Context-Dependent
5285Precedence}).
5286@end deffn
5287@end ifset
5288
5289@deffn {Directive} %no-lines
5290Don't generate any @code{#line} preprocessor commands in the parser
5291implementation file. Ordinarily Bison writes these commands in the
5292parser implementation file so that the C compiler and debuggers will
5293associate errors and object code with your source file (the grammar
5294file). This directive causes them to associate errors with the parser
5295implementation file, treating it as an independent source file in its
5296own right.
5297@end deffn
5298
5299@deffn {Directive} %output "@var{file}"
5300Specify @var{file} for the parser implementation file.
5301@end deffn
5302
5303@deffn {Directive} %pure-parser
5304Deprecated version of @samp{%define api.pure} (@pxref{%define
5305Summary,,api.pure}), for which Bison is more careful to warn about
5306unreasonable usage.
5307@end deffn
5308
5309@deffn {Directive} %require "@var{version}"
5310Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5311Require a Version of Bison}.
5312@end deffn
5313
5314@deffn {Directive} %skeleton "@var{file}"
5315Specify the skeleton to use.
5316
5317@c You probably don't need this option unless you are developing Bison.
5318@c You should use @code{%language} if you want to specify the skeleton for a
5319@c different language, because it is clearer and because it will always choose the
5320@c correct skeleton for non-deterministic or push parsers.
5321
5322If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5323file in the Bison installation directory.
5324If it does, @var{file} is an absolute file name or a file name relative to the
5325directory of the grammar file.
5326This is similar to how most shells resolve commands.
5327@end deffn
5328
5329@deffn {Directive} %token-table
5330Generate an array of token names in the parser implementation file.
5331The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5332the name of the token whose internal Bison token code number is
5333@var{i}. The first three elements of @code{yytname} correspond to the
5334predefined tokens @code{"$end"}, @code{"error"}, and
5335@code{"$undefined"}; after these come the symbols defined in the
5336grammar file.
5337
5338The name in the table includes all the characters needed to represent
5339the token in Bison. For single-character literals and literal
5340strings, this includes the surrounding quoting characters and any
5341escape sequences. For example, the Bison single-character literal
5342@code{'+'} corresponds to a three-character name, represented in C as
5343@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5344corresponds to a five-character name, represented in C as
5345@code{"\"\\\\/\""}.
5346
5347When you specify @code{%token-table}, Bison also generates macro
5348definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5349@code{YYNRULES}, and @code{YYNSTATES}:
5350
5351@table @code
5352@item YYNTOKENS
5353The highest token number, plus one.
5354@item YYNNTS
5355The number of nonterminal symbols.
5356@item YYNRULES
5357The number of grammar rules,
5358@item YYNSTATES
5359The number of parser states (@pxref{Parser States}).
5360@end table
5361@end deffn
5362
5363@deffn {Directive} %verbose
5364Write an extra output file containing verbose descriptions of the
5365parser states and what is done for each type of lookahead token in
5366that state. @xref{Understanding, , Understanding Your Parser}, for more
5367information.
5368@end deffn
5369
5370@deffn {Directive} %yacc
5371Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5372including its naming conventions. @xref{Bison Options}, for more.
5373@end deffn
5374
5375
5376@node %define Summary
5377@subsection %define Summary
51151d91
JD
5378
5379There are many features of Bison's behavior that can be controlled by
5380assigning the feature a single value. For historical reasons, some
5381such features are assigned values by dedicated directives, such as
5382@code{%start}, which assigns the start symbol. However, newer such
5383features are associated with variables, which are assigned by the
5384@code{%define} directive:
5385
c1d19e10 5386@deffn {Directive} %define @var{variable}
cf499cff 5387@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5388@deffnx {Directive} %define @var{variable} "@var{value}"
51151d91 5389Define @var{variable} to @var{value}.
9611cfa2 5390
51151d91
JD
5391@var{value} must be placed in quotation marks if it contains any
5392character other than a letter, underscore, period, or non-initial dash
5393or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5394to specifying @code{""}.
9611cfa2 5395
51151d91
JD
5396It is an error if a @var{variable} is defined by @code{%define}
5397multiple times, but see @ref{Bison Options,,-D
5398@var{name}[=@var{value}]}.
5399@end deffn
cf499cff 5400
51151d91
JD
5401The rest of this section summarizes variables and values that
5402@code{%define} accepts.
9611cfa2 5403
51151d91
JD
5404Some @var{variable}s take Boolean values. In this case, Bison will
5405complain if the variable definition does not meet one of the following
5406four conditions:
9611cfa2
JD
5407
5408@enumerate
cf499cff 5409@item @code{@var{value}} is @code{true}
9611cfa2 5410
cf499cff
JD
5411@item @code{@var{value}} is omitted (or @code{""} is specified).
5412This is equivalent to @code{true}.
9611cfa2 5413
cf499cff 5414@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5415
5416@item @var{variable} is never defined.
c6abeab1 5417In this case, Bison selects a default value.
9611cfa2 5418@end enumerate
148d66d8 5419
c6abeab1
JD
5420What @var{variable}s are accepted, as well as their meanings and default
5421values, depend on the selected target language and/or the parser
5422skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5423Summary,,%skeleton}).
5424Unaccepted @var{variable}s produce an error.
793fbca5
JD
5425Some of the accepted @var{variable}s are:
5426
fa819509 5427@table @code
6b5a0de9 5428@c ================================================== api.namespace
67501061
AD
5429@item api.namespace
5430@findex %define api.namespace
5431@itemize
5432@item Languages(s): C++
5433
f1b238df 5434@item Purpose: Specify the namespace for the parser class.
67501061
AD
5435For example, if you specify:
5436
c93f22fc 5437@example
67501061 5438%define api.namespace "foo::bar"
c93f22fc 5439@end example
67501061
AD
5440
5441Bison uses @code{foo::bar} verbatim in references such as:
5442
c93f22fc 5443@example
67501061 5444foo::bar::parser::semantic_type
c93f22fc 5445@end example
67501061
AD
5446
5447However, to open a namespace, Bison removes any leading @code{::} and then
5448splits on any remaining occurrences:
5449
c93f22fc 5450@example
67501061
AD
5451namespace foo @{ namespace bar @{
5452 class position;
5453 class location;
5454@} @}
c93f22fc 5455@end example
67501061
AD
5456
5457@item Accepted Values:
5458Any absolute or relative C++ namespace reference without a trailing
5459@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5460
5461@item Default Value:
5462The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5463This usage of @code{%name-prefix} is for backward compatibility and can
5464be confusing since @code{%name-prefix} also specifies the textual prefix
5465for the lexical analyzer function. Thus, if you specify
5466@code{%name-prefix}, it is best to also specify @samp{%define
5467api.namespace} so that @code{%name-prefix} @emph{only} affects the
5468lexical analyzer function. For example, if you specify:
5469
c93f22fc 5470@example
67501061
AD
5471%define api.namespace "foo"
5472%name-prefix "bar::"
c93f22fc 5473@end example
67501061
AD
5474
5475The parser namespace is @code{foo} and @code{yylex} is referenced as
5476@code{bar::lex}.
5477@end itemize
5478@c namespace
5479
db8ab2be
AD
5480@c ================================================== api.location.type
5481@item @code{api.location.type}
5482@findex %define api.location.type
5483
5484@itemize @bullet
7287be84 5485@item Language(s): C++, Java
db8ab2be
AD
5486
5487@item Purpose: Define the location type.
5488@xref{User Defined Location Type}.
5489
5490@item Accepted Values: String
5491
5492@item Default Value: none
5493
5494@item History: introduced in Bison 2.7
5495@end itemize
67501061 5496
4b3847c3 5497@c ================================================== api.prefix
5458913a 5498@item api.prefix
4b3847c3
AD
5499@findex %define api.prefix
5500
5501@itemize @bullet
5502@item Language(s): All
5503
db8ab2be 5504@item Purpose: Rename exported symbols.
4b3847c3
AD
5505@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5506
5507@item Accepted Values: String
5508
5509@item Default Value: @code{yy}
e358222b
AD
5510
5511@item History: introduced in Bison 2.6
4b3847c3 5512@end itemize
67501061
AD
5513
5514@c ================================================== api.pure
d9df47b6
JD
5515@item api.pure
5516@findex %define api.pure
5517
5518@itemize @bullet
5519@item Language(s): C
5520
5521@item Purpose: Request a pure (reentrant) parser program.
5522@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5523
5524@item Accepted Values: Boolean
5525
cf499cff 5526@item Default Value: @code{false}
d9df47b6 5527@end itemize
71b00ed8 5528@c api.pure
d9df47b6 5529
67501061
AD
5530
5531
5532@c ================================================== api.push-pull
67212941
JD
5533@item api.push-pull
5534@findex %define api.push-pull
793fbca5
JD
5535
5536@itemize @bullet
eb45ef3b 5537@item Language(s): C (deterministic parsers only)
793fbca5 5538
f1b238df 5539@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5540@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5541(The current push parsing interface is experimental and may evolve.
5542More user feedback will help to stabilize it.)
793fbca5 5543
cf499cff 5544@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5545
cf499cff 5546@item Default Value: @code{pull}
793fbca5 5547@end itemize
67212941 5548@c api.push-pull
71b00ed8 5549
6b5a0de9
AD
5550
5551
e36ec1f4
AD
5552@c ================================================== api.token.constructor
5553@item api.token.constructor
5554@findex %define api.token.constructor
5555
5556@itemize @bullet
5557@item Language(s):
5558C++
5559
5560@item Purpose:
5561When variant-based semantic values are enabled (@pxref{C++ Variants}),
5562request that symbols be handled as a whole (type, value, and possibly
5563location) in the scanner. @xref{Complete Symbols}, for details.
5564
5565@item Accepted Values:
5566Boolean.
5567
5568@item Default Value:
5569@code{false}
5570@item History:
5571introduced in Bison 2.8
5572@end itemize
5573@c api.token.constructor
5574
5575
2a6b66c5
AD
5576@c ================================================== api.token.prefix
5577@item api.token.prefix
5578@findex %define api.token.prefix
4c6622c2
AD
5579
5580@itemize
5581@item Languages(s): all
5582
5583@item Purpose:
5584Add a prefix to the token names when generating their definition in the
5585target language. For instance
5586
5587@example
5588%token FILE for ERROR
2a6b66c5 5589%define api.token.prefix "TOK_"
4c6622c2
AD
5590%%
5591start: FILE for ERROR;
5592@end example
5593
5594@noindent
5595generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5596and @code{TOK_ERROR} in the generated source files. In particular, the
5597scanner must use these prefixed token names, while the grammar itself
5598may still use the short names (as in the sample rule given above). The
5599generated informational files (@file{*.output}, @file{*.xml},
5600@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5601and @ref{Calc++ Scanner}, for a complete example.
5602
5603@item Accepted Values:
5604Any string. Should be a valid identifier prefix in the target language,
5605in other words, it should typically be an identifier itself (sequence of
5606letters, underscores, and ---not at the beginning--- digits).
5607
5608@item Default Value:
5609empty
2a6b66c5
AD
5610@item History:
5611introduced in Bison 2.8
4c6622c2 5612@end itemize
2a6b66c5 5613@c api.token.prefix
4c6622c2
AD
5614
5615
f3bc3386 5616@c ================================================== lr.default-reduction
6b5a0de9 5617
f3bc3386
AD
5618@item lr.default-reduction
5619@findex %define lr.default-reduction
eb45ef3b
JD
5620
5621@itemize @bullet
5622@item Language(s): all
5623
fcf834f9 5624@item Purpose: Specify the kind of states that are permitted to
7fceb615
JD
5625contain default reductions. @xref{Default Reductions}. (The ability to
5626specify where default reductions should be used is experimental. More user
5627feedback will help to stabilize it.)
eb45ef3b 5628
f0ad1b2f 5629@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
eb45ef3b
JD
5630@item Default Value:
5631@itemize
cf499cff 5632@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
f0ad1b2f 5633@item @code{most} otherwise.
eb45ef3b 5634@end itemize
f3bc3386
AD
5635@item History:
5636introduced as @code{lr.default-reduction} in 2.5, renamed as
5637@code{lr.default-reduction} in 2.8.
eb45ef3b
JD
5638@end itemize
5639
f3bc3386 5640@c ============================================ lr.keep-unreachable-state
6b5a0de9 5641
f3bc3386
AD
5642@item lr.keep-unreachable-state
5643@findex %define lr.keep-unreachable-state
31984206
JD
5644
5645@itemize @bullet
5646@item Language(s): all
f1b238df 5647@item Purpose: Request that Bison allow unreachable parser states to
7fceb615 5648remain in the parser tables. @xref{Unreachable States}.
31984206 5649@item Accepted Values: Boolean
cf499cff 5650@item Default Value: @code{false}
31984206 5651@end itemize
f3bc3386
AD
5652introduced as @code{lr.keep_unreachable_states} in 2.3b, renamed as
5653@code{lr.keep-unreachable-state} in 2.5, and as
5654@code{lr.keep-unreachable-state} in 2.8.
5655@c lr.keep-unreachable-state
31984206 5656
6b5a0de9
AD
5657@c ================================================== lr.type
5658
eb45ef3b
JD
5659@item lr.type
5660@findex %define lr.type
eb45ef3b
JD
5661
5662@itemize @bullet
5663@item Language(s): all
5664
f1b238df 5665@item Purpose: Specify the type of parser tables within the
7fceb615 5666LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
eb45ef3b
JD
5667More user feedback will help to stabilize it.)
5668
7fceb615 5669@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
eb45ef3b 5670
cf499cff 5671@item Default Value: @code{lalr}
eb45ef3b
JD
5672@end itemize
5673
67501061
AD
5674
5675@c ================================================== namespace
793fbca5
JD
5676@item namespace
5677@findex %define namespace
67501061 5678Obsoleted by @code{api.namespace}
fa819509
AD
5679@c namespace
5680
31b850d2
AD
5681
5682@c ================================================== parse.assert
0c90a1f5
AD
5683@item parse.assert
5684@findex %define parse.assert
5685
5686@itemize
5687@item Languages(s): C++
5688
5689@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5690In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5691constructed and
0c90a1f5
AD
5692destroyed properly. This option checks these constraints.
5693
5694@item Accepted Values: Boolean
5695
5696@item Default Value: @code{false}
5697@end itemize
5698@c parse.assert
5699
31b850d2
AD
5700
5701@c ================================================== parse.error
5702@item parse.error
5703@findex %define parse.error
5704@itemize
5705@item Languages(s):
fcf834f9 5706all
31b850d2
AD
5707@item Purpose:
5708Control the kind of error messages passed to the error reporting
5709function. @xref{Error Reporting, ,The Error Reporting Function
5710@code{yyerror}}.
5711@item Accepted Values:
5712@itemize
cf499cff 5713@item @code{simple}
31b850d2
AD
5714Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5715error"}}.
cf499cff 5716@item @code{verbose}
7fceb615
JD
5717Error messages report the unexpected token, and possibly the expected ones.
5718However, this report can often be incorrect when LAC is not enabled
5719(@pxref{LAC}).
31b850d2
AD
5720@end itemize
5721
5722@item Default Value:
5723@code{simple}
5724@end itemize
5725@c parse.error
5726
5727
fcf834f9
JD
5728@c ================================================== parse.lac
5729@item parse.lac
5730@findex %define parse.lac
fcf834f9
JD
5731
5732@itemize
7fceb615 5733@item Languages(s): C (deterministic parsers only)
fcf834f9 5734
8a4281b9 5735@item Purpose: Enable LAC (lookahead correction) to improve
7fceb615 5736syntax error handling. @xref{LAC}.
fcf834f9 5737@item Accepted Values: @code{none}, @code{full}
fcf834f9
JD
5738@item Default Value: @code{none}
5739@end itemize
5740@c parse.lac
5741
31b850d2 5742@c ================================================== parse.trace
fa819509
AD
5743@item parse.trace
5744@findex %define parse.trace
5745
5746@itemize
60aa04a2 5747@item Languages(s): C, C++, Java
fa819509
AD
5748
5749@item Purpose: Require parser instrumentation for tracing.
60aa04a2
AD
5750@xref{Tracing, ,Tracing Your Parser}.
5751
5752In C/C++, define the macro @code{YYDEBUG} (or @code{@var{prefix}DEBUG} with
5753@samp{%define api.prefix @var{prefix}}), see @ref{Multiple Parsers,
5754,Multiple Parsers in the Same Program}) to 1 in the parser implementation
ff7571c0 5755file if it is not already defined, so that the debugging facilities are
60aa04a2 5756compiled.
793fbca5 5757
fa819509
AD
5758@item Accepted Values: Boolean
5759
5760@item Default Value: @code{false}
5761@end itemize
fa819509 5762@c parse.trace
99c08fb6 5763
3cdc21cf
AD
5764@c ================================================== variant
5765@item variant
5766@findex %define variant
5767
5768@itemize @bullet
5769@item Language(s):
5770C++
5771
5772@item Purpose:
f1b238df 5773Request variant-based semantic values.
3cdc21cf
AD
5774@xref{C++ Variants}.
5775
5776@item Accepted Values:
5777Boolean.
5778
5779@item Default Value:
5780@code{false}
5781@end itemize
5782@c variant
99c08fb6 5783@end table
592d0b1e 5784
d8988b2f 5785
e0c07222
JD
5786@node %code Summary
5787@subsection %code Summary
e0c07222 5788@findex %code
e0c07222 5789@cindex Prologue
51151d91
JD
5790
5791The @code{%code} directive inserts code verbatim into the output
5792parser source at any of a predefined set of locations. It thus serves
5793as a flexible and user-friendly alternative to the traditional Yacc
5794prologue, @code{%@{@var{code}%@}}. This section summarizes the
5795functionality of @code{%code} for the various target languages
5796supported by Bison. For a detailed discussion of how to use
5797@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5798is advantageous to do so, @pxref{Prologue Alternatives}.
5799
5800@deffn {Directive} %code @{@var{code}@}
5801This is the unqualified form of the @code{%code} directive. It
5802inserts @var{code} verbatim at a language-dependent default location
5803in the parser implementation.
5804
e0c07222 5805For C/C++, the default location is the parser implementation file
51151d91
JD
5806after the usual contents of the parser header file. Thus, the
5807unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
e0c07222
JD
5808
5809For Java, the default location is inside the parser class.
5810@end deffn
5811
5812@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5813This is the qualified form of the @code{%code} directive.
51151d91
JD
5814@var{qualifier} identifies the purpose of @var{code} and thus the
5815location(s) where Bison should insert it. That is, if you need to
5816specify location-sensitive @var{code} that does not belong at the
5817default location selected by the unqualified @code{%code} form, use
5818this form instead.
5819@end deffn
5820
5821For any particular qualifier or for the unqualified form, if there are
5822multiple occurrences of the @code{%code} directive, Bison concatenates
5823the specified code in the order in which it appears in the grammar
5824file.
e0c07222 5825
51151d91
JD
5826Not all qualifiers are accepted for all target languages. Unaccepted
5827qualifiers produce an error. Some of the accepted qualifiers are:
e0c07222 5828
84072495 5829@table @code
e0c07222
JD
5830@item requires
5831@findex %code requires
5832
5833@itemize @bullet
5834@item Language(s): C, C++
5835
5836@item Purpose: This is the best place to write dependency code required for
5837@code{YYSTYPE} and @code{YYLTYPE}.
5838In other words, it's the best place to define types referenced in @code{%union}
5839directives, and it's the best place to override Bison's default @code{YYSTYPE}
5840and @code{YYLTYPE} definitions.
5841
5842@item Location(s): The parser header file and the parser implementation file
5843before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5844definitions.
5845@end itemize
5846
5847@item provides
5848@findex %code provides
5849
5850@itemize @bullet
5851@item Language(s): C, C++
5852
5853@item Purpose: This is the best place to write additional definitions and
5854declarations that should be provided to other modules.
5855
5856@item Location(s): The parser header file and the parser implementation
5857file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5858token definitions.
5859@end itemize
5860
5861@item top
5862@findex %code top
5863
5864@itemize @bullet
5865@item Language(s): C, C++
5866
5867@item Purpose: The unqualified @code{%code} or @code{%code requires}
5868should usually be more appropriate than @code{%code top}. However,
5869occasionally it is necessary to insert code much nearer the top of the
5870parser implementation file. For example:
5871
c93f22fc 5872@example
e0c07222
JD
5873%code top @{
5874 #define _GNU_SOURCE
5875 #include <stdio.h>
5876@}
c93f22fc 5877@end example
e0c07222
JD
5878
5879@item Location(s): Near the top of the parser implementation file.
5880@end itemize
5881
5882@item imports
5883@findex %code imports
5884
5885@itemize @bullet
5886@item Language(s): Java
5887
5888@item Purpose: This is the best place to write Java import directives.
5889
5890@item Location(s): The parser Java file after any Java package directive and
5891before any class definitions.
5892@end itemize
84072495 5893@end table
e0c07222 5894
51151d91
JD
5895Though we say the insertion locations are language-dependent, they are
5896technically skeleton-dependent. Writers of non-standard skeletons
5897however should choose their locations consistently with the behavior
5898of the standard Bison skeletons.
e0c07222 5899
d8988b2f 5900
342b8b6e 5901@node Multiple Parsers
bfa74976
RS
5902@section Multiple Parsers in the Same Program
5903
5904Most programs that use Bison parse only one language and therefore contain
4b3847c3
AD
5905only one Bison parser. But what if you want to parse more than one language
5906with the same program? Then you need to avoid name conflicts between
5907different definitions of functions and variables such as @code{yyparse},
5908@code{yylval}. To use different parsers from the same compilation unit, you
5909also need to avoid conflicts on types and macros (e.g., @code{YYSTYPE})
5910exported in the generated header.
5911
5912The easy way to do this is to define the @code{%define} variable
e358222b
AD
5913@code{api.prefix}. With different @code{api.prefix}s it is guaranteed that
5914headers do not conflict when included together, and that compiled objects
5915can be linked together too. Specifying @samp{%define api.prefix
5916@var{prefix}} (or passing the option @samp{-Dapi.prefix=@var{prefix}}, see
5917@ref{Invocation, ,Invoking Bison}) renames the interface functions and
5918variables of the Bison parser to start with @var{prefix} instead of
5919@samp{yy}, and all the macros to start by @var{PREFIX} (i.e., @var{prefix}
5920upper-cased) instead of @samp{YY}.
4b3847c3
AD
5921
5922The renamed symbols include @code{yyparse}, @code{yylex}, @code{yyerror},
5923@code{yynerrs}, @code{yylval}, @code{yylloc}, @code{yychar} and
5924@code{yydebug}. If you use a push parser, @code{yypush_parse},
5925@code{yypull_parse}, @code{yypstate}, @code{yypstate_new} and
5926@code{yypstate_delete} will also be renamed. The renamed macros include
e358222b
AD
5927@code{YYSTYPE}, @code{YYLTYPE}, and @code{YYDEBUG}, which is treated
5928specifically --- more about this below.
4b3847c3
AD
5929
5930For example, if you use @samp{%define api.prefix c}, the names become
5931@code{cparse}, @code{clex}, @dots{}, @code{CSTYPE}, @code{CLTYPE}, and so
5932on.
5933
5934The @code{%define} variable @code{api.prefix} works in two different ways.
5935In the implementation file, it works by adding macro definitions to the
5936beginning of the parser implementation file, defining @code{yyparse} as
5937@code{@var{prefix}parse}, and so on:
5938
5939@example
5940#define YYSTYPE CTYPE
5941#define yyparse cparse
5942#define yylval clval
5943...
5944YYSTYPE yylval;
5945int yyparse (void);
5946@end example
5947
5948This effectively substitutes one name for the other in the entire parser
5949implementation file, thus the ``original'' names (@code{yylex},
5950@code{YYSTYPE}, @dots{}) are also usable in the parser implementation file.
5951
5952However, in the parser header file, the symbols are defined renamed, for
5953instance:
bfa74976 5954
4b3847c3
AD
5955@example
5956extern CSTYPE clval;
5957int cparse (void);
5958@end example
bfa74976 5959
e358222b
AD
5960The macro @code{YYDEBUG} is commonly used to enable the tracing support in
5961parsers. To comply with this tradition, when @code{api.prefix} is used,
5962@code{YYDEBUG} (not renamed) is used as a default value:
5963
5964@example
5965/* Enabling traces. */
5966#ifndef CDEBUG
5967# if defined YYDEBUG
5968# if YYDEBUG
5969# define CDEBUG 1
5970# else
5971# define CDEBUG 0
5972# endif
5973# else
5974# define CDEBUG 0
5975# endif
5976#endif
5977#if CDEBUG
5978extern int cdebug;
5979#endif
5980@end example
5981
5982@sp 2
5983
5984Prior to Bison 2.6, a feature similar to @code{api.prefix} was provided by
5985the obsolete directive @code{%name-prefix} (@pxref{Table of Symbols, ,Bison
5986Symbols}) and the option @code{--name-prefix} (@pxref{Bison Options}).
bfa74976 5987
342b8b6e 5988@node Interface
bfa74976
RS
5989@chapter Parser C-Language Interface
5990@cindex C-language interface
5991@cindex interface
5992
5993The Bison parser is actually a C function named @code{yyparse}. Here we
5994describe the interface conventions of @code{yyparse} and the other
5995functions that it needs to use.
5996
5997Keep in mind that the parser uses many C identifiers starting with
5998@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5999identifier (aside from those in this manual) in an action or in epilogue
6000in the grammar file, you are likely to run into trouble.
bfa74976
RS
6001
6002@menu
f5f419de
DJ
6003* Parser Function:: How to call @code{yyparse} and what it returns.
6004* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
6005* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
6006* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
6007* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
6008* Lexical:: You must supply a function @code{yylex}
6009 which reads tokens.
6010* Error Reporting:: You must supply a function @code{yyerror}.
6011* Action Features:: Special features for use in actions.
6012* Internationalization:: How to let the parser speak in the user's
6013 native language.
bfa74976
RS
6014@end menu
6015
342b8b6e 6016@node Parser Function
bfa74976
RS
6017@section The Parser Function @code{yyparse}
6018@findex yyparse
6019
6020You call the function @code{yyparse} to cause parsing to occur. This
6021function reads tokens, executes actions, and ultimately returns when it
6022encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
6023write an action which directs @code{yyparse} to return immediately
6024without reading further.
bfa74976 6025
2a8d363a
AD
6026
6027@deftypefun int yyparse (void)
bfa74976
RS
6028The value returned by @code{yyparse} is 0 if parsing was successful (return
6029is due to end-of-input).
6030
b47dbebe
PE
6031The value is 1 if parsing failed because of invalid input, i.e., input
6032that contains a syntax error or that causes @code{YYABORT} to be
6033invoked.
6034
6035The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 6036@end deftypefun
bfa74976
RS
6037
6038In an action, you can cause immediate return from @code{yyparse} by using
6039these macros:
6040
2a8d363a 6041@defmac YYACCEPT
bfa74976
RS
6042@findex YYACCEPT
6043Return immediately with value 0 (to report success).
2a8d363a 6044@end defmac
bfa74976 6045
2a8d363a 6046@defmac YYABORT
bfa74976
RS
6047@findex YYABORT
6048Return immediately with value 1 (to report failure).
2a8d363a
AD
6049@end defmac
6050
6051If you use a reentrant parser, you can optionally pass additional
6052parameter information to it in a reentrant way. To do so, use the
6053declaration @code{%parse-param}:
6054
2055a44e 6055@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6056@findex %parse-param
2055a44e
AD
6057Declare that one or more
6058@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 6059The @var{argument-declaration} is used when declaring
feeb0eda
PE
6060functions or prototypes. The last identifier in
6061@var{argument-declaration} must be the argument name.
2a8d363a
AD
6062@end deffn
6063
6064Here's an example. Write this in the parser:
6065
6066@example
2055a44e 6067%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
6068@end example
6069
6070@noindent
6071Then call the parser like this:
6072
6073@example
6074@{
6075 int nastiness, randomness;
6076 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
6077 value = yyparse (&nastiness, &randomness);
6078 @dots{}
6079@}
6080@end example
6081
6082@noindent
6083In the grammar actions, use expressions like this to refer to the data:
6084
6085@example
6086exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
6087@end example
6088
9987d1b3
JD
6089@node Push Parser Function
6090@section The Push Parser Function @code{yypush_parse}
6091@findex yypush_parse
6092
59da312b
JD
6093(The current push parsing interface is experimental and may evolve.
6094More user feedback will help to stabilize it.)
6095
f4101aa6 6096You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
6097function is available if either the @samp{%define api.push-pull push} or
6098@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6099@xref{Push Decl, ,A Push Parser}.
6100
6101@deftypefun int yypush_parse (yypstate *yyps)
ad60e80f
AD
6102The value returned by @code{yypush_parse} is the same as for yyparse with
6103the following exception: it returns @code{YYPUSH_MORE} if more input is
6104required to finish parsing the grammar.
9987d1b3
JD
6105@end deftypefun
6106
6107@node Pull Parser Function
6108@section The Pull Parser Function @code{yypull_parse}
6109@findex yypull_parse
6110
59da312b
JD
6111(The current push parsing interface is experimental and may evolve.
6112More user feedback will help to stabilize it.)
6113
f4101aa6 6114You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 6115stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 6116declaration is used.
9987d1b3
JD
6117@xref{Push Decl, ,A Push Parser}.
6118
6119@deftypefun int yypull_parse (yypstate *yyps)
6120The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
6121@end deftypefun
6122
6123@node Parser Create Function
6124@section The Parser Create Function @code{yystate_new}
6125@findex yypstate_new
6126
59da312b
JD
6127(The current push parsing interface is experimental and may evolve.
6128More user feedback will help to stabilize it.)
6129
f4101aa6 6130You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
6131This function is available if either the @samp{%define api.push-pull push} or
6132@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6133@xref{Push Decl, ,A Push Parser}.
6134
34a41a93 6135@deftypefun {yypstate*} yypstate_new (void)
f50bfcd6 6136The function will return a valid parser instance if there was memory available
333e670c
JD
6137or 0 if no memory was available.
6138In impure mode, it will also return 0 if a parser instance is currently
6139allocated.
9987d1b3
JD
6140@end deftypefun
6141
6142@node Parser Delete Function
6143@section The Parser Delete Function @code{yystate_delete}
6144@findex yypstate_delete
6145
59da312b
JD
6146(The current push parsing interface is experimental and may evolve.
6147More user feedback will help to stabilize it.)
6148
9987d1b3 6149You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
6150function is available if either the @samp{%define api.push-pull push} or
6151@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6152@xref{Push Decl, ,A Push Parser}.
6153
6154@deftypefun void yypstate_delete (yypstate *yyps)
6155This function will reclaim the memory associated with a parser instance.
6156After this call, you should no longer attempt to use the parser instance.
6157@end deftypefun
bfa74976 6158
342b8b6e 6159@node Lexical
bfa74976
RS
6160@section The Lexical Analyzer Function @code{yylex}
6161@findex yylex
6162@cindex lexical analyzer
6163
6164The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
6165the input stream and returns them to the parser. Bison does not create
6166this function automatically; you must write it so that @code{yyparse} can
6167call it. The function is sometimes referred to as a lexical scanner.
6168
ff7571c0
JD
6169In simple programs, @code{yylex} is often defined at the end of the
6170Bison grammar file. If @code{yylex} is defined in a separate source
6171file, you need to arrange for the token-type macro definitions to be
6172available there. To do this, use the @samp{-d} option when you run
6173Bison, so that it will write these macro definitions into the separate
6174parser header file, @file{@var{name}.tab.h}, which you can include in
6175the other source files that need it. @xref{Invocation, ,Invoking
6176Bison}.
bfa74976
RS
6177
6178@menu
6179* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
6180* Token Values:: How @code{yylex} must return the semantic value
6181 of the token it has read.
6182* Token Locations:: How @code{yylex} must return the text location
6183 (line number, etc.) of the token, if the
6184 actions want that.
6185* Pure Calling:: How the calling convention differs in a pure parser
6186 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
6187@end menu
6188
342b8b6e 6189@node Calling Convention
bfa74976
RS
6190@subsection Calling Convention for @code{yylex}
6191
72d2299c
PE
6192The value that @code{yylex} returns must be the positive numeric code
6193for the type of token it has just found; a zero or negative value
6194signifies end-of-input.
bfa74976
RS
6195
6196When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
6197in the parser implementation file becomes a C macro whose definition
6198is the proper numeric code for that token type. So @code{yylex} can
6199use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
6200
6201When a token is referred to in the grammar rules by a character literal,
6202the numeric code for that character is also the code for the token type.
72d2299c
PE
6203So @code{yylex} can simply return that character code, possibly converted
6204to @code{unsigned char} to avoid sign-extension. The null character
6205must not be used this way, because its code is zero and that
bfa74976
RS
6206signifies end-of-input.
6207
6208Here is an example showing these things:
6209
6210@example
13863333
AD
6211int
6212yylex (void)
bfa74976
RS
6213@{
6214 @dots{}
72d2299c 6215 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
6216 return 0;
6217 @dots{}
6218 if (c == '+' || c == '-')
72d2299c 6219 return c; /* Assume token type for `+' is '+'. */
bfa74976 6220 @dots{}
72d2299c 6221 return INT; /* Return the type of the token. */
bfa74976
RS
6222 @dots{}
6223@}
6224@end example
6225
6226@noindent
6227This interface has been designed so that the output from the @code{lex}
6228utility can be used without change as the definition of @code{yylex}.
6229
931c7513
RS
6230If the grammar uses literal string tokens, there are two ways that
6231@code{yylex} can determine the token type codes for them:
6232
6233@itemize @bullet
6234@item
6235If the grammar defines symbolic token names as aliases for the
6236literal string tokens, @code{yylex} can use these symbolic names like
6237all others. In this case, the use of the literal string tokens in
6238the grammar file has no effect on @code{yylex}.
6239
6240@item
9ecbd125 6241@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6242table. The index of the token in the table is the token type's code.
9ecbd125 6243The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6244double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6245token's characters are escaped as necessary to be suitable as input
6246to Bison.
931c7513 6247
9e0876fb
PE
6248Here's code for looking up a multicharacter token in @code{yytname},
6249assuming that the characters of the token are stored in
6250@code{token_buffer}, and assuming that the token does not contain any
6251characters like @samp{"} that require escaping.
931c7513 6252
c93f22fc 6253@example
931c7513
RS
6254for (i = 0; i < YYNTOKENS; i++)
6255 @{
6256 if (yytname[i] != 0
6257 && yytname[i][0] == '"'
68449b3a
PE
6258 && ! strncmp (yytname[i] + 1, token_buffer,
6259 strlen (token_buffer))
931c7513
RS
6260 && yytname[i][strlen (token_buffer) + 1] == '"'
6261 && yytname[i][strlen (token_buffer) + 2] == 0)
6262 break;
6263 @}
c93f22fc 6264@end example
931c7513
RS
6265
6266The @code{yytname} table is generated only if you use the
8c9a50be 6267@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6268@end itemize
6269
342b8b6e 6270@node Token Values
bfa74976
RS
6271@subsection Semantic Values of Tokens
6272
6273@vindex yylval
9d9b8b70 6274In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6275be stored into the global variable @code{yylval}. When you are using
6276just one data type for semantic values, @code{yylval} has that type.
6277Thus, if the type is @code{int} (the default), you might write this in
6278@code{yylex}:
6279
6280@example
6281@group
6282 @dots{}
72d2299c
PE
6283 yylval = value; /* Put value onto Bison stack. */
6284 return INT; /* Return the type of the token. */
bfa74976
RS
6285 @dots{}
6286@end group
6287@end example
6288
6289When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6290made from the @code{%union} declaration (@pxref{Union Decl, ,The
6291Collection of Value Types}). So when you store a token's value, you
6292must use the proper member of the union. If the @code{%union}
6293declaration looks like this:
bfa74976
RS
6294
6295@example
6296@group
6297%union @{
6298 int intval;
6299 double val;
6300 symrec *tptr;
6301@}
6302@end group
6303@end example
6304
6305@noindent
6306then the code in @code{yylex} might look like this:
6307
6308@example
6309@group
6310 @dots{}
72d2299c
PE
6311 yylval.intval = value; /* Put value onto Bison stack. */
6312 return INT; /* Return the type of the token. */
bfa74976
RS
6313 @dots{}
6314@end group
6315@end example
6316
95923bd6
AD
6317@node Token Locations
6318@subsection Textual Locations of Tokens
bfa74976
RS
6319
6320@vindex yylloc
303834cc
JD
6321If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6322in actions to keep track of the textual locations of tokens and groupings,
6323then you must provide this information in @code{yylex}. The function
6324@code{yyparse} expects to find the textual location of a token just parsed
6325in the global variable @code{yylloc}. So @code{yylex} must store the proper
6326data in that variable.
847bf1f5
AD
6327
6328By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6329initialize the members that are going to be used by the actions. The
6330four members are called @code{first_line}, @code{first_column},
6331@code{last_line} and @code{last_column}. Note that the use of this
6332feature makes the parser noticeably slower.
bfa74976
RS
6333
6334@tindex YYLTYPE
6335The data type of @code{yylloc} has the name @code{YYLTYPE}.
6336
342b8b6e 6337@node Pure Calling
c656404a 6338@subsection Calling Conventions for Pure Parsers
bfa74976 6339
67501061 6340When you use the Bison declaration @samp{%define api.pure} to request a
e425e872
RS
6341pure, reentrant parser, the global communication variables @code{yylval}
6342and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6343Parser}.) In such parsers the two global variables are replaced by
6344pointers passed as arguments to @code{yylex}. You must declare them as
6345shown here, and pass the information back by storing it through those
6346pointers.
bfa74976
RS
6347
6348@example
13863333
AD
6349int
6350yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6351@{
6352 @dots{}
6353 *lvalp = value; /* Put value onto Bison stack. */
6354 return INT; /* Return the type of the token. */
6355 @dots{}
6356@}
6357@end example
6358
6359If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6360textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6361this case, omit the second argument; @code{yylex} will be called with
6362only one argument.
6363
2055a44e 6364If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6365@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6366Function}). To pass additional arguments to both @code{yylex} and
6367@code{yyparse}, use @code{%param}.
e425e872 6368
2055a44e 6369@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6370@findex %lex-param
2055a44e
AD
6371Specify that @var{argument-declaration} are additional @code{yylex} argument
6372declarations. You may pass one or more such declarations, which is
6373equivalent to repeating @code{%lex-param}.
6374@end deffn
6375
6376@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6377@findex %param
6378Specify that @var{argument-declaration} are additional
6379@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6380@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6381@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6382declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6383@end deffn
e425e872 6384
2a8d363a 6385For instance:
e425e872
RS
6386
6387@example
2055a44e
AD
6388%lex-param @{scanner_mode *mode@}
6389%parse-param @{parser_mode *mode@}
6390%param @{environment_type *env@}
e425e872
RS
6391@end example
6392
6393@noindent
18ad57b3 6394results in the following signatures:
e425e872
RS
6395
6396@example
2055a44e
AD
6397int yylex (scanner_mode *mode, environment_type *env);
6398int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6399@end example
6400
67501061 6401If @samp{%define api.pure} is added:
c656404a
RS
6402
6403@example
2055a44e
AD
6404int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6405int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6406@end example
6407
2a8d363a 6408@noindent
67501061 6409and finally, if both @samp{%define api.pure} and @code{%locations} are used:
c656404a 6410
2a8d363a 6411@example
2055a44e
AD
6412int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6413 scanner_mode *mode, environment_type *env);
6414int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6415@end example
931c7513 6416
342b8b6e 6417@node Error Reporting
bfa74976
RS
6418@section The Error Reporting Function @code{yyerror}
6419@cindex error reporting function
6420@findex yyerror
6421@cindex parse error
6422@cindex syntax error
6423
31b850d2 6424The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6425whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6426action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6427macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6428in Actions}).
bfa74976
RS
6429
6430The Bison parser expects to report the error by calling an error
6431reporting function named @code{yyerror}, which you must supply. It is
6432called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6433receives one argument. For a syntax error, the string is normally
6434@w{@code{"syntax error"}}.
bfa74976 6435
31b850d2 6436@findex %define parse.error
7fceb615
JD
6437If you invoke @samp{%define parse.error verbose} in the Bison declarations
6438section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6439Bison provides a more verbose and specific error message string instead of
6440just plain @w{@code{"syntax error"}}. However, that message sometimes
6441contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6442
1a059451
PE
6443The parser can detect one other kind of error: memory exhaustion. This
6444can happen when the input contains constructions that are very deeply
bfa74976 6445nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6446parser normally extends its stack automatically up to a very large limit. But
6447if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6448fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6449
6450In some cases diagnostics like @w{@code{"syntax error"}} are
6451translated automatically from English to some other language before
6452they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6453
6454The following definition suffices in simple programs:
6455
6456@example
6457@group
13863333 6458void
38a92d50 6459yyerror (char const *s)
bfa74976
RS
6460@{
6461@end group
6462@group
6463 fprintf (stderr, "%s\n", s);
6464@}
6465@end group
6466@end example
6467
6468After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6469error recovery if you have written suitable error recovery grammar rules
6470(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6471immediately return 1.
6472
93724f13 6473Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 6474an access to the current location.
8a4281b9 6475This is indeed the case for the GLR
2a8d363a 6476parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6477@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6478@code{yyerror} are:
6479
6480@example
38a92d50
PE
6481void yyerror (char const *msg); /* Yacc parsers. */
6482void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6483@end example
6484
feeb0eda 6485If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6486
6487@example
b317297e
PE
6488void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6489void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6490@end example
6491
8a4281b9 6492Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6493convention for absolutely pure parsers, i.e., when the calling
6494convention of @code{yylex} @emph{and} the calling convention of
67501061 6495@samp{%define api.pure} are pure.
d9df47b6 6496I.e.:
2a8d363a
AD
6497
6498@example
6499/* Location tracking. */
6500%locations
6501/* Pure yylex. */
d9df47b6 6502%define api.pure
feeb0eda 6503%lex-param @{int *nastiness@}
2a8d363a 6504/* Pure yyparse. */
feeb0eda
PE
6505%parse-param @{int *nastiness@}
6506%parse-param @{int *randomness@}
2a8d363a
AD
6507@end example
6508
6509@noindent
6510results in the following signatures for all the parser kinds:
6511
6512@example
6513int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6514int yyparse (int *nastiness, int *randomness);
93724f13
AD
6515void yyerror (YYLTYPE *locp,
6516 int *nastiness, int *randomness,
38a92d50 6517 char const *msg);
2a8d363a
AD
6518@end example
6519
1c0c3e95 6520@noindent
38a92d50
PE
6521The prototypes are only indications of how the code produced by Bison
6522uses @code{yyerror}. Bison-generated code always ignores the returned
6523value, so @code{yyerror} can return any type, including @code{void}.
6524Also, @code{yyerror} can be a variadic function; that is why the
6525message is always passed last.
6526
6527Traditionally @code{yyerror} returns an @code{int} that is always
6528ignored, but this is purely for historical reasons, and @code{void} is
6529preferable since it more accurately describes the return type for
6530@code{yyerror}.
93724f13 6531
bfa74976
RS
6532@vindex yynerrs
6533The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6534reported so far. Normally this variable is global; but if you
704a47c4
AD
6535request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6536then it is a local variable which only the actions can access.
bfa74976 6537
342b8b6e 6538@node Action Features
bfa74976
RS
6539@section Special Features for Use in Actions
6540@cindex summary, action features
6541@cindex action features summary
6542
6543Here is a table of Bison constructs, variables and macros that
6544are useful in actions.
6545
18b519c0 6546@deffn {Variable} $$
bfa74976
RS
6547Acts like a variable that contains the semantic value for the
6548grouping made by the current rule. @xref{Actions}.
18b519c0 6549@end deffn
bfa74976 6550
18b519c0 6551@deffn {Variable} $@var{n}
bfa74976
RS
6552Acts like a variable that contains the semantic value for the
6553@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6554@end deffn
bfa74976 6555
18b519c0 6556@deffn {Variable} $<@var{typealt}>$
bfa74976 6557Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6558specified by the @code{%union} declaration. @xref{Action Types, ,Data
6559Types of Values in Actions}.
18b519c0 6560@end deffn
bfa74976 6561
18b519c0 6562@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6563Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6564union specified by the @code{%union} declaration.
e0c471a9 6565@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6566@end deffn
bfa74976 6567
34a41a93 6568@deffn {Macro} YYABORT @code{;}
bfa74976
RS
6569Return immediately from @code{yyparse}, indicating failure.
6570@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6571@end deffn
bfa74976 6572
34a41a93 6573@deffn {Macro} YYACCEPT @code{;}
bfa74976
RS
6574Return immediately from @code{yyparse}, indicating success.
6575@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6576@end deffn
bfa74976 6577
34a41a93 6578@deffn {Macro} YYBACKUP (@var{token}, @var{value})@code{;}
bfa74976
RS
6579@findex YYBACKUP
6580Unshift a token. This macro is allowed only for rules that reduce
742e4900 6581a single value, and only when there is no lookahead token.
8a4281b9 6582It is also disallowed in GLR parsers.
742e4900 6583It installs a lookahead token with token type @var{token} and
bfa74976
RS
6584semantic value @var{value}; then it discards the value that was
6585going to be reduced by this rule.
6586
6587If the macro is used when it is not valid, such as when there is
742e4900 6588a lookahead token already, then it reports a syntax error with
bfa74976
RS
6589a message @samp{cannot back up} and performs ordinary error
6590recovery.
6591
6592In either case, the rest of the action is not executed.
18b519c0 6593@end deffn
bfa74976 6594
18b519c0 6595@deffn {Macro} YYEMPTY
742e4900 6596Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6597@end deffn
bfa74976 6598
32c29292 6599@deffn {Macro} YYEOF
742e4900 6600Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6601stream.
6602@end deffn
6603
34a41a93 6604@deffn {Macro} YYERROR @code{;}
bfa74976
RS
6605Cause an immediate syntax error. This statement initiates error
6606recovery just as if the parser itself had detected an error; however, it
6607does not call @code{yyerror}, and does not print any message. If you
6608want to print an error message, call @code{yyerror} explicitly before
6609the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6610@end deffn
bfa74976 6611
18b519c0 6612@deffn {Macro} YYRECOVERING
02103984
PE
6613@findex YYRECOVERING
6614The expression @code{YYRECOVERING ()} yields 1 when the parser
6615is recovering from a syntax error, and 0 otherwise.
bfa74976 6616@xref{Error Recovery}.
18b519c0 6617@end deffn
bfa74976 6618
18b519c0 6619@deffn {Variable} yychar
742e4900
JD
6620Variable containing either the lookahead token, or @code{YYEOF} when the
6621lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6622has been performed so the next token is not yet known.
6623Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6624Actions}).
742e4900 6625@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6626@end deffn
bfa74976 6627
34a41a93 6628@deffn {Macro} yyclearin @code{;}
742e4900 6629Discard the current lookahead token. This is useful primarily in
32c29292
JD
6630error rules.
6631Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6632Semantic Actions}).
6633@xref{Error Recovery}.
18b519c0 6634@end deffn
bfa74976 6635
34a41a93 6636@deffn {Macro} yyerrok @code{;}
bfa74976 6637Resume generating error messages immediately for subsequent syntax
13863333 6638errors. This is useful primarily in error rules.
bfa74976 6639@xref{Error Recovery}.
18b519c0 6640@end deffn
bfa74976 6641
32c29292 6642@deffn {Variable} yylloc
742e4900 6643Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6644to @code{YYEMPTY} or @code{YYEOF}.
6645Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6646Actions}).
6647@xref{Actions and Locations, ,Actions and Locations}.
6648@end deffn
6649
6650@deffn {Variable} yylval
742e4900 6651Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6652not set to @code{YYEMPTY} or @code{YYEOF}.
6653Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6654Actions}).
6655@xref{Actions, ,Actions}.
6656@end deffn
6657
18b519c0 6658@deffn {Value} @@$
847bf1f5 6659@findex @@$
303834cc
JD
6660Acts like a structure variable containing information on the textual
6661location of the grouping made by the current rule. @xref{Tracking
6662Locations}.
bfa74976 6663
847bf1f5
AD
6664@c Check if those paragraphs are still useful or not.
6665
6666@c @example
6667@c struct @{
6668@c int first_line, last_line;
6669@c int first_column, last_column;
6670@c @};
6671@c @end example
6672
6673@c Thus, to get the starting line number of the third component, you would
6674@c use @samp{@@3.first_line}.
bfa74976 6675
847bf1f5
AD
6676@c In order for the members of this structure to contain valid information,
6677@c you must make @code{yylex} supply this information about each token.
6678@c If you need only certain members, then @code{yylex} need only fill in
6679@c those members.
bfa74976 6680
847bf1f5 6681@c The use of this feature makes the parser noticeably slower.
18b519c0 6682@end deffn
847bf1f5 6683
18b519c0 6684@deffn {Value} @@@var{n}
847bf1f5 6685@findex @@@var{n}
303834cc
JD
6686Acts like a structure variable containing information on the textual
6687location of the @var{n}th component of the current rule. @xref{Tracking
6688Locations}.
18b519c0 6689@end deffn
bfa74976 6690
f7ab6a50
PE
6691@node Internationalization
6692@section Parser Internationalization
6693@cindex internationalization
6694@cindex i18n
6695@cindex NLS
6696@cindex gettext
6697@cindex bison-po
6698
6699A Bison-generated parser can print diagnostics, including error and
6700tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6701also supports outputting diagnostics in the user's native language. To
6702make this work, the user should set the usual environment variables.
6703@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6704For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 6705set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6706encoding. The exact set of available locales depends on the user's
6707installation.
6708
6709The maintainer of a package that uses a Bison-generated parser enables
6710the internationalization of the parser's output through the following
8a4281b9
JD
6711steps. Here we assume a package that uses GNU Autoconf and
6712GNU Automake.
f7ab6a50
PE
6713
6714@enumerate
6715@item
30757c8c 6716@cindex bison-i18n.m4
8a4281b9 6717Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6718by the package---often called @file{m4}---copy the
6719@file{bison-i18n.m4} file installed by Bison under
6720@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6721For example:
6722
6723@example
6724cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6725@end example
6726
6727@item
30757c8c
PE
6728@findex BISON_I18N
6729@vindex BISON_LOCALEDIR
6730@vindex YYENABLE_NLS
f7ab6a50
PE
6731In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6732invocation, add an invocation of @code{BISON_I18N}. This macro is
6733defined in the file @file{bison-i18n.m4} that you copied earlier. It
6734causes @samp{configure} to find the value of the
30757c8c
PE
6735@code{BISON_LOCALEDIR} variable, and it defines the source-language
6736symbol @code{YYENABLE_NLS} to enable translations in the
6737Bison-generated parser.
f7ab6a50
PE
6738
6739@item
6740In the @code{main} function of your program, designate the directory
6741containing Bison's runtime message catalog, through a call to
6742@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6743For example:
6744
6745@example
6746bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6747@end example
6748
6749Typically this appears after any other call @code{bindtextdomain
6750(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6751@samp{BISON_LOCALEDIR} to be defined as a string through the
6752@file{Makefile}.
6753
6754@item
6755In the @file{Makefile.am} that controls the compilation of the @code{main}
6756function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6757either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6758
6759@example
6760DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6761@end example
6762
6763or:
6764
6765@example
6766AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6767@end example
6768
6769@item
6770Finally, invoke the command @command{autoreconf} to generate the build
6771infrastructure.
6772@end enumerate
6773
bfa74976 6774
342b8b6e 6775@node Algorithm
13863333
AD
6776@chapter The Bison Parser Algorithm
6777@cindex Bison parser algorithm
bfa74976
RS
6778@cindex algorithm of parser
6779@cindex shifting
6780@cindex reduction
6781@cindex parser stack
6782@cindex stack, parser
6783
6784As Bison reads tokens, it pushes them onto a stack along with their
6785semantic values. The stack is called the @dfn{parser stack}. Pushing a
6786token is traditionally called @dfn{shifting}.
6787
6788For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6789@samp{3} to come. The stack will have four elements, one for each token
6790that was shifted.
6791
6792But the stack does not always have an element for each token read. When
6793the last @var{n} tokens and groupings shifted match the components of a
6794grammar rule, they can be combined according to that rule. This is called
6795@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6796single grouping whose symbol is the result (left hand side) of that rule.
6797Running the rule's action is part of the process of reduction, because this
6798is what computes the semantic value of the resulting grouping.
6799
6800For example, if the infix calculator's parser stack contains this:
6801
6802@example
68031 + 5 * 3
6804@end example
6805
6806@noindent
6807and the next input token is a newline character, then the last three
6808elements can be reduced to 15 via the rule:
6809
6810@example
6811expr: expr '*' expr;
6812@end example
6813
6814@noindent
6815Then the stack contains just these three elements:
6816
6817@example
68181 + 15
6819@end example
6820
6821@noindent
6822At this point, another reduction can be made, resulting in the single value
682316. Then the newline token can be shifted.
6824
6825The parser tries, by shifts and reductions, to reduce the entire input down
6826to a single grouping whose symbol is the grammar's start-symbol
6827(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6828
6829This kind of parser is known in the literature as a bottom-up parser.
6830
6831@menu
742e4900 6832* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6833* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6834* Precedence:: Operator precedence works by resolving conflicts.
6835* Contextual Precedence:: When an operator's precedence depends on context.
6836* Parser States:: The parser is a finite-state-machine with stack.
6837* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 6838* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 6839* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 6840* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6841* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6842@end menu
6843
742e4900
JD
6844@node Lookahead
6845@section Lookahead Tokens
6846@cindex lookahead token
bfa74976
RS
6847
6848The Bison parser does @emph{not} always reduce immediately as soon as the
6849last @var{n} tokens and groupings match a rule. This is because such a
6850simple strategy is inadequate to handle most languages. Instead, when a
6851reduction is possible, the parser sometimes ``looks ahead'' at the next
6852token in order to decide what to do.
6853
6854When a token is read, it is not immediately shifted; first it becomes the
742e4900 6855@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6856perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6857the lookahead token remains off to the side. When no more reductions
6858should take place, the lookahead token is shifted onto the stack. This
bfa74976 6859does not mean that all possible reductions have been done; depending on the
742e4900 6860token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6861application.
6862
742e4900 6863Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6864expressions which contain binary addition operators and postfix unary
6865factorial operators (@samp{!}), and allow parentheses for grouping.
6866
6867@example
6868@group
5e9b6624
AD
6869expr:
6870 term '+' expr
6871| term
6872;
bfa74976
RS
6873@end group
6874
6875@group
5e9b6624
AD
6876term:
6877 '(' expr ')'
6878| term '!'
534cee7a 6879| "number"
5e9b6624 6880;
bfa74976
RS
6881@end group
6882@end example
6883
6884Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6885should be done? If the following token is @samp{)}, then the first three
6886tokens must be reduced to form an @code{expr}. This is the only valid
6887course, because shifting the @samp{)} would produce a sequence of symbols
6888@w{@code{term ')'}}, and no rule allows this.
6889
6890If the following token is @samp{!}, then it must be shifted immediately so
6891that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6892parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6893@code{expr}. It would then be impossible to shift the @samp{!} because
6894doing so would produce on the stack the sequence of symbols @code{expr
6895'!'}. No rule allows that sequence.
6896
6897@vindex yychar
32c29292
JD
6898@vindex yylval
6899@vindex yylloc
742e4900 6900The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6901Its semantic value and location, if any, are stored in the variables
6902@code{yylval} and @code{yylloc}.
bfa74976
RS
6903@xref{Action Features, ,Special Features for Use in Actions}.
6904
342b8b6e 6905@node Shift/Reduce
bfa74976
RS
6906@section Shift/Reduce Conflicts
6907@cindex conflicts
6908@cindex shift/reduce conflicts
6909@cindex dangling @code{else}
6910@cindex @code{else}, dangling
6911
6912Suppose we are parsing a language which has if-then and if-then-else
6913statements, with a pair of rules like this:
6914
6915@example
6916@group
6917if_stmt:
534cee7a
AD
6918 "if" expr "then" stmt
6919| "if" expr "then" stmt "else" stmt
5e9b6624 6920;
bfa74976
RS
6921@end group
6922@end example
6923
6924@noindent
534cee7a
AD
6925Here @code{"if"}, @code{"then"} and @code{"else"} are terminal symbols for
6926specific keyword tokens.
bfa74976 6927
534cee7a 6928When the @code{"else"} token is read and becomes the lookahead token, the
bfa74976
RS
6929contents of the stack (assuming the input is valid) are just right for
6930reduction by the first rule. But it is also legitimate to shift the
534cee7a 6931@code{"else"}, because that would lead to eventual reduction by the second
bfa74976
RS
6932rule.
6933
6934This situation, where either a shift or a reduction would be valid, is
6935called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6936these conflicts by choosing to shift, unless otherwise directed by
6937operator precedence declarations. To see the reason for this, let's
6938contrast it with the other alternative.
6939
534cee7a 6940Since the parser prefers to shift the @code{"else"}, the result is to attach
bfa74976
RS
6941the else-clause to the innermost if-statement, making these two inputs
6942equivalent:
6943
6944@example
534cee7a 6945if x then if y then win; else lose;
bfa74976 6946
534cee7a 6947if x then do; if y then win; else lose; end;
bfa74976
RS
6948@end example
6949
6950But if the parser chose to reduce when possible rather than shift, the
6951result would be to attach the else-clause to the outermost if-statement,
6952making these two inputs equivalent:
6953
6954@example
534cee7a 6955if x then if y then win; else lose;
bfa74976 6956
534cee7a 6957if x then do; if y then win; end; else lose;
bfa74976
RS
6958@end example
6959
6960The conflict exists because the grammar as written is ambiguous: either
6961parsing of the simple nested if-statement is legitimate. The established
6962convention is that these ambiguities are resolved by attaching the
6963else-clause to the innermost if-statement; this is what Bison accomplishes
6964by choosing to shift rather than reduce. (It would ideally be cleaner to
6965write an unambiguous grammar, but that is very hard to do in this case.)
6966This particular ambiguity was first encountered in the specifications of
6967Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6968
6969To avoid warnings from Bison about predictable, legitimate shift/reduce
c28cd5dc 6970conflicts, you can use the @code{%expect @var{n}} declaration.
93d7dde9
JD
6971There will be no warning as long as the number of shift/reduce conflicts
6972is exactly @var{n}, and Bison will report an error if there is a
6973different number.
c28cd5dc
AD
6974@xref{Expect Decl, ,Suppressing Conflict Warnings}. However, we don't
6975recommend the use of @code{%expect} (except @samp{%expect 0}!), as an equal
6976number of conflicts does not mean that they are the @emph{same}. When
6977possible, you should rather use precedence directives to @emph{fix} the
6978conflicts explicitly (@pxref{Non Operators,, Using Precedence For Non
6979Operators}).
bfa74976
RS
6980
6981The definition of @code{if_stmt} above is solely to blame for the
6982conflict, but the conflict does not actually appear without additional
ff7571c0
JD
6983rules. Here is a complete Bison grammar file that actually manifests
6984the conflict:
bfa74976
RS
6985
6986@example
6987@group
bfa74976
RS
6988%%
6989@end group
6990@group
5e9b6624
AD
6991stmt:
6992 expr
6993| if_stmt
6994;
bfa74976
RS
6995@end group
6996
6997@group
6998if_stmt:
534cee7a
AD
6999 "if" expr "then" stmt
7000| "if" expr "then" stmt "else" stmt
5e9b6624 7001;
bfa74976
RS
7002@end group
7003
5e9b6624 7004expr:
534cee7a 7005 "identifier"
5e9b6624 7006;
bfa74976
RS
7007@end example
7008
342b8b6e 7009@node Precedence
bfa74976
RS
7010@section Operator Precedence
7011@cindex operator precedence
7012@cindex precedence of operators
7013
7014Another situation where shift/reduce conflicts appear is in arithmetic
7015expressions. Here shifting is not always the preferred resolution; the
7016Bison declarations for operator precedence allow you to specify when to
7017shift and when to reduce.
7018
7019@menu
7020* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
7021* Using Precedence:: How to specify precedence and associativity.
7022* Precedence Only:: How to specify precedence only.
bfa74976
RS
7023* Precedence Examples:: How these features are used in the previous example.
7024* How Precedence:: How they work.
c28cd5dc 7025* Non Operators:: Using precedence for general conflicts.
bfa74976
RS
7026@end menu
7027
342b8b6e 7028@node Why Precedence
bfa74976
RS
7029@subsection When Precedence is Needed
7030
7031Consider the following ambiguous grammar fragment (ambiguous because the
7032input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
7033
7034@example
7035@group
5e9b6624
AD
7036expr:
7037 expr '-' expr
7038| expr '*' expr
7039| expr '<' expr
7040| '(' expr ')'
7041@dots{}
7042;
bfa74976
RS
7043@end group
7044@end example
7045
7046@noindent
7047Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
7048should it reduce them via the rule for the subtraction operator? It
7049depends on the next token. Of course, if the next token is @samp{)}, we
7050must reduce; shifting is invalid because no single rule can reduce the
7051token sequence @w{@samp{- 2 )}} or anything starting with that. But if
7052the next token is @samp{*} or @samp{<}, we have a choice: either
7053shifting or reduction would allow the parse to complete, but with
7054different results.
7055
7056To decide which one Bison should do, we must consider the results. If
7057the next operator token @var{op} is shifted, then it must be reduced
7058first in order to permit another opportunity to reduce the difference.
7059The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
7060hand, if the subtraction is reduced before shifting @var{op}, the result
7061is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
7062reduce should depend on the relative precedence of the operators
7063@samp{-} and @var{op}: @samp{*} should be shifted first, but not
7064@samp{<}.
bfa74976
RS
7065
7066@cindex associativity
7067What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
7068@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
7069operators we prefer the former, which is called @dfn{left association}.
7070The latter alternative, @dfn{right association}, is desirable for
7071assignment operators. The choice of left or right association is a
7072matter of whether the parser chooses to shift or reduce when the stack
742e4900 7073contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 7074makes right-associativity.
bfa74976 7075
342b8b6e 7076@node Using Precedence
bfa74976
RS
7077@subsection Specifying Operator Precedence
7078@findex %left
bfa74976 7079@findex %nonassoc
d78f0ac9
AD
7080@findex %precedence
7081@findex %right
bfa74976
RS
7082
7083Bison allows you to specify these choices with the operator precedence
7084declarations @code{%left} and @code{%right}. Each such declaration
7085contains a list of tokens, which are operators whose precedence and
7086associativity is being declared. The @code{%left} declaration makes all
7087those operators left-associative and the @code{%right} declaration makes
7088them right-associative. A third alternative is @code{%nonassoc}, which
7089declares that it is a syntax error to find the same operator twice ``in a
7090row''.
d78f0ac9
AD
7091The last alternative, @code{%precedence}, allows to define only
7092precedence and no associativity at all. As a result, any
7093associativity-related conflict that remains will be reported as an
7094compile-time error. The directive @code{%nonassoc} creates run-time
7095error: using the operator in a associative way is a syntax error. The
7096directive @code{%precedence} creates compile-time errors: an operator
7097@emph{can} be involved in an associativity-related conflict, contrary to
7098what expected the grammar author.
bfa74976
RS
7099
7100The relative precedence of different operators is controlled by the
d78f0ac9
AD
7101order in which they are declared. The first precedence/associativity
7102declaration in the file declares the operators whose
bfa74976
RS
7103precedence is lowest, the next such declaration declares the operators
7104whose precedence is a little higher, and so on.
7105
d78f0ac9
AD
7106@node Precedence Only
7107@subsection Specifying Precedence Only
7108@findex %precedence
7109
8a4281b9 7110Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
7111@code{%nonassoc}, which all defines precedence and associativity, little
7112attention is paid to the fact that precedence cannot be defined without
7113defining associativity. Yet, sometimes, when trying to solve a
7114conflict, precedence suffices. In such a case, using @code{%left},
7115@code{%right}, or @code{%nonassoc} might hide future (associativity
7116related) conflicts that would remain hidden.
7117
7118The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 7119Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
7120in the following situation, where the period denotes the current parsing
7121state:
7122
7123@example
7124if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
7125@end example
7126
7127The conflict involves the reduction of the rule @samp{IF expr THEN
7128stmt}, which precedence is by default that of its last token
7129(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
7130disambiguation (attach the @code{else} to the closest @code{if}),
7131shifting must be preferred, i.e., the precedence of @code{ELSE} must be
7132higher than that of @code{THEN}. But neither is expected to be involved
7133in an associativity related conflict, which can be specified as follows.
7134
7135@example
7136%precedence THEN
7137%precedence ELSE
7138@end example
7139
7140The unary-minus is another typical example where associativity is
7141usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 7142Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
7143used to declare the precedence of @code{NEG}, which is more than needed
7144since it also defines its associativity. While this is harmless in the
7145traditional example, who knows how @code{NEG} might be used in future
7146evolutions of the grammar@dots{}
7147
342b8b6e 7148@node Precedence Examples
bfa74976
RS
7149@subsection Precedence Examples
7150
7151In our example, we would want the following declarations:
7152
7153@example
7154%left '<'
7155%left '-'
7156%left '*'
7157@end example
7158
7159In a more complete example, which supports other operators as well, we
7160would declare them in groups of equal precedence. For example, @code{'+'} is
7161declared with @code{'-'}:
7162
7163@example
534cee7a 7164%left '<' '>' '=' "!=" "<=" ">="
bfa74976
RS
7165%left '+' '-'
7166%left '*' '/'
7167@end example
7168
342b8b6e 7169@node How Precedence
bfa74976
RS
7170@subsection How Precedence Works
7171
7172The first effect of the precedence declarations is to assign precedence
7173levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
7174precedence levels to certain rules: each rule gets its precedence from
7175the last terminal symbol mentioned in the components. (You can also
7176specify explicitly the precedence of a rule. @xref{Contextual
7177Precedence, ,Context-Dependent Precedence}.)
7178
7179Finally, the resolution of conflicts works by comparing the precedence
742e4900 7180of the rule being considered with that of the lookahead token. If the
704a47c4
AD
7181token's precedence is higher, the choice is to shift. If the rule's
7182precedence is higher, the choice is to reduce. If they have equal
7183precedence, the choice is made based on the associativity of that
7184precedence level. The verbose output file made by @samp{-v}
7185(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
7186resolved.
bfa74976
RS
7187
7188Not all rules and not all tokens have precedence. If either the rule or
742e4900 7189the lookahead token has no precedence, then the default is to shift.
bfa74976 7190
c28cd5dc
AD
7191@node Non Operators
7192@subsection Using Precedence For Non Operators
7193
7194Using properly precedence and associativity directives can help fixing
7195shift/reduce conflicts that do not involve arithmetics-like operators. For
7196instance, the ``dangling @code{else}'' problem (@pxref{Shift/Reduce, ,
7197Shift/Reduce Conflicts}) can be solved elegantly in two different ways.
7198
7199In the present case, the conflict is between the token @code{"else"} willing
7200to be shifted, and the rule @samp{if_stmt: "if" expr "then" stmt}, asking
7201for reduction. By default, the precedence of a rule is that of its last
7202token, here @code{"then"}, so the conflict will be solved appropriately
7203by giving @code{"else"} a precedence higher than that of @code{"then"}, for
7204instance as follows:
7205
7206@example
7207@group
7208%nonassoc "then"
7209%nonassoc "else"
7210@end group
7211@end example
7212
7213Alternatively, you may give both tokens the same precedence, in which case
7214associativity is used to solve the conflict. To preserve the shift action,
7215use right associativity:
7216
7217@example
7218%right "then" "else"
7219@end example
7220
7221Neither solution is perfect however. Since Bison does not provide, so far,
7222support for ``scoped'' precedence, both force you to declare the precedence
7223of these keywords with respect to the other operators your grammar.
7224Therefore, instead of being warned about new conflicts you would be unaware
7225of (e.g., a shift/reduce conflict due to @samp{if test then 1 else 2 + 3}
7226being ambiguous: @samp{if test then 1 else (2 + 3)} or @samp{(if test then 1
7227else 2) + 3}?), the conflict will be already ``fixed''.
7228
342b8b6e 7229@node Contextual Precedence
bfa74976
RS
7230@section Context-Dependent Precedence
7231@cindex context-dependent precedence
7232@cindex unary operator precedence
7233@cindex precedence, context-dependent
7234@cindex precedence, unary operator
7235@findex %prec
7236
7237Often the precedence of an operator depends on the context. This sounds
7238outlandish at first, but it is really very common. For example, a minus
7239sign typically has a very high precedence as a unary operator, and a
7240somewhat lower precedence (lower than multiplication) as a binary operator.
7241
d78f0ac9
AD
7242The Bison precedence declarations
7243can only be used once for a given token; so a token has
bfa74976
RS
7244only one precedence declared in this way. For context-dependent
7245precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 7246modifier for rules.
bfa74976
RS
7247
7248The @code{%prec} modifier declares the precedence of a particular rule by
7249specifying a terminal symbol whose precedence should be used for that rule.
7250It's not necessary for that symbol to appear otherwise in the rule. The
7251modifier's syntax is:
7252
7253@example
7254%prec @var{terminal-symbol}
7255@end example
7256
7257@noindent
7258and it is written after the components of the rule. Its effect is to
7259assign the rule the precedence of @var{terminal-symbol}, overriding
7260the precedence that would be deduced for it in the ordinary way. The
7261altered rule precedence then affects how conflicts involving that rule
7262are resolved (@pxref{Precedence, ,Operator Precedence}).
7263
7264Here is how @code{%prec} solves the problem of unary minus. First, declare
7265a precedence for a fictitious terminal symbol named @code{UMINUS}. There
7266are no tokens of this type, but the symbol serves to stand for its
7267precedence:
7268
7269@example
7270@dots{}
7271%left '+' '-'
7272%left '*'
7273%left UMINUS
7274@end example
7275
7276Now the precedence of @code{UMINUS} can be used in specific rules:
7277
7278@example
7279@group
5e9b6624
AD
7280exp:
7281 @dots{}
7282| exp '-' exp
7283 @dots{}
7284| '-' exp %prec UMINUS
bfa74976
RS
7285@end group
7286@end example
7287
91d2c560 7288@ifset defaultprec
39a06c25
PE
7289If you forget to append @code{%prec UMINUS} to the rule for unary
7290minus, Bison silently assumes that minus has its usual precedence.
7291This kind of problem can be tricky to debug, since one typically
7292discovers the mistake only by testing the code.
7293
22fccf95 7294The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
7295this kind of problem systematically. It causes rules that lack a
7296@code{%prec} modifier to have no precedence, even if the last terminal
7297symbol mentioned in their components has a declared precedence.
7298
22fccf95 7299If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
7300for all rules that participate in precedence conflict resolution.
7301Then you will see any shift/reduce conflict until you tell Bison how
7302to resolve it, either by changing your grammar or by adding an
7303explicit precedence. This will probably add declarations to the
7304grammar, but it helps to protect against incorrect rule precedences.
7305
22fccf95
PE
7306The effect of @code{%no-default-prec;} can be reversed by giving
7307@code{%default-prec;}, which is the default.
91d2c560 7308@end ifset
39a06c25 7309
342b8b6e 7310@node Parser States
bfa74976
RS
7311@section Parser States
7312@cindex finite-state machine
7313@cindex parser state
7314@cindex state (of parser)
7315
7316The function @code{yyparse} is implemented using a finite-state machine.
7317The values pushed on the parser stack are not simply token type codes; they
7318represent the entire sequence of terminal and nonterminal symbols at or
7319near the top of the stack. The current state collects all the information
7320about previous input which is relevant to deciding what to do next.
7321
742e4900
JD
7322Each time a lookahead token is read, the current parser state together
7323with the type of lookahead token are looked up in a table. This table
7324entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7325specifies the new parser state, which is pushed onto the top of the
7326parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7327This means that a certain number of tokens or groupings are taken off
7328the top of the stack, and replaced by one grouping. In other words,
7329that number of states are popped from the stack, and one new state is
7330pushed.
7331
742e4900 7332There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7333is erroneous in the current state. This causes error processing to begin
7334(@pxref{Error Recovery}).
7335
342b8b6e 7336@node Reduce/Reduce
bfa74976
RS
7337@section Reduce/Reduce Conflicts
7338@cindex reduce/reduce conflict
7339@cindex conflicts, reduce/reduce
7340
7341A reduce/reduce conflict occurs if there are two or more rules that apply
7342to the same sequence of input. This usually indicates a serious error
7343in the grammar.
7344
7345For example, here is an erroneous attempt to define a sequence
7346of zero or more @code{word} groupings.
7347
7348@example
d4fca427 7349@group
5e9b6624
AD
7350sequence:
7351 /* empty */ @{ printf ("empty sequence\n"); @}
7352| maybeword
7353| sequence word @{ printf ("added word %s\n", $2); @}
7354;
d4fca427 7355@end group
bfa74976 7356
d4fca427 7357@group
5e9b6624
AD
7358maybeword:
7359 /* empty */ @{ printf ("empty maybeword\n"); @}
7360| word @{ printf ("single word %s\n", $1); @}
7361;
d4fca427 7362@end group
bfa74976
RS
7363@end example
7364
7365@noindent
7366The error is an ambiguity: there is more than one way to parse a single
7367@code{word} into a @code{sequence}. It could be reduced to a
7368@code{maybeword} and then into a @code{sequence} via the second rule.
7369Alternatively, nothing-at-all could be reduced into a @code{sequence}
7370via the first rule, and this could be combined with the @code{word}
7371using the third rule for @code{sequence}.
7372
7373There is also more than one way to reduce nothing-at-all into a
7374@code{sequence}. This can be done directly via the first rule,
7375or indirectly via @code{maybeword} and then the second rule.
7376
7377You might think that this is a distinction without a difference, because it
7378does not change whether any particular input is valid or not. But it does
7379affect which actions are run. One parsing order runs the second rule's
7380action; the other runs the first rule's action and the third rule's action.
7381In this example, the output of the program changes.
7382
7383Bison resolves a reduce/reduce conflict by choosing to use the rule that
7384appears first in the grammar, but it is very risky to rely on this. Every
7385reduce/reduce conflict must be studied and usually eliminated. Here is the
7386proper way to define @code{sequence}:
7387
7388@example
51356dd2 7389@group
5e9b6624
AD
7390sequence:
7391 /* empty */ @{ printf ("empty sequence\n"); @}
7392| sequence word @{ printf ("added word %s\n", $2); @}
7393;
51356dd2 7394@end group
bfa74976
RS
7395@end example
7396
7397Here is another common error that yields a reduce/reduce conflict:
7398
7399@example
5e9b6624 7400sequence:
51356dd2 7401@group
5e9b6624
AD
7402 /* empty */
7403| sequence words
7404| sequence redirects
7405;
51356dd2 7406@end group
bfa74976 7407
51356dd2 7408@group
5e9b6624
AD
7409words:
7410 /* empty */
7411| words word
7412;
51356dd2 7413@end group
bfa74976 7414
51356dd2 7415@group
5e9b6624
AD
7416redirects:
7417 /* empty */
7418| redirects redirect
7419;
51356dd2 7420@end group
bfa74976
RS
7421@end example
7422
7423@noindent
7424The intention here is to define a sequence which can contain either
7425@code{word} or @code{redirect} groupings. The individual definitions of
7426@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7427three together make a subtle ambiguity: even an empty input can be parsed
7428in infinitely many ways!
7429
7430Consider: nothing-at-all could be a @code{words}. Or it could be two
7431@code{words} in a row, or three, or any number. It could equally well be a
7432@code{redirects}, or two, or any number. Or it could be a @code{words}
7433followed by three @code{redirects} and another @code{words}. And so on.
7434
7435Here are two ways to correct these rules. First, to make it a single level
7436of sequence:
7437
7438@example
5e9b6624
AD
7439sequence:
7440 /* empty */
7441| sequence word
7442| sequence redirect
7443;
bfa74976
RS
7444@end example
7445
7446Second, to prevent either a @code{words} or a @code{redirects}
7447from being empty:
7448
7449@example
d4fca427 7450@group
5e9b6624
AD
7451sequence:
7452 /* empty */
7453| sequence words
7454| sequence redirects
7455;
d4fca427 7456@end group
bfa74976 7457
d4fca427 7458@group
5e9b6624
AD
7459words:
7460 word
7461| words word
7462;
d4fca427 7463@end group
bfa74976 7464
d4fca427 7465@group
5e9b6624
AD
7466redirects:
7467 redirect
7468| redirects redirect
7469;
d4fca427 7470@end group
bfa74976
RS
7471@end example
7472
53e2cd1e
AD
7473Yet this proposal introduces another kind of ambiguity! The input
7474@samp{word word} can be parsed as a single @code{words} composed of two
7475@samp{word}s, or as two one-@code{word} @code{words} (and likewise for
7476@code{redirect}/@code{redirects}). However this ambiguity is now a
7477shift/reduce conflict, and therefore it can now be addressed with precedence
7478directives.
7479
7480To simplify the matter, we will proceed with @code{word} and @code{redirect}
7481being tokens: @code{"word"} and @code{"redirect"}.
7482
7483To prefer the longest @code{words}, the conflict between the token
7484@code{"word"} and the rule @samp{sequence: sequence words} must be resolved
7485as a shift. To this end, we use the same techniques as exposed above, see
7486@ref{Non Operators,, Using Precedence For Non Operators}. One solution
7487relies on precedences: use @code{%prec} to give a lower precedence to the
7488rule:
7489
7490@example
7491%nonassoc "word"
7492%nonassoc "sequence"
7493%%
7494@group
7495sequence:
7496 /* empty */
7497| sequence word %prec "sequence"
7498| sequence redirect %prec "sequence"
7499;
7500@end group
7501
7502@group
7503words:
7504 word
7505| words "word"
7506;
7507@end group
7508@end example
7509
7510Another solution relies on associativity: provide both the token and the
7511rule with the same precedence, but make them right-associative:
7512
7513@example
7514%right "word" "redirect"
7515%%
7516@group
7517sequence:
7518 /* empty */
7519| sequence word %prec "word"
7520| sequence redirect %prec "redirect"
7521;
7522@end group
7523@end example
7524
cc09e5be
JD
7525@node Mysterious Conflicts
7526@section Mysterious Conflicts
7fceb615 7527@cindex Mysterious Conflicts
bfa74976
RS
7528
7529Sometimes reduce/reduce conflicts can occur that don't look warranted.
7530Here is an example:
7531
7532@example
7533@group
bfa74976 7534%%
5e9b6624 7535def: param_spec return_spec ',';
bfa74976 7536param_spec:
5e9b6624
AD
7537 type
7538| name_list ':' type
7539;
bfa74976
RS
7540@end group
7541@group
7542return_spec:
5e9b6624
AD
7543 type
7544| name ':' type
7545;
bfa74976
RS
7546@end group
7547@group
534cee7a 7548type: "id";
bfa74976
RS
7549@end group
7550@group
534cee7a 7551name: "id";
bfa74976 7552name_list:
5e9b6624
AD
7553 name
7554| name ',' name_list
7555;
bfa74976
RS
7556@end group
7557@end example
7558
534cee7a
AD
7559It would seem that this grammar can be parsed with only a single token of
7560lookahead: when a @code{param_spec} is being read, an @code{"id"} is a
7561@code{name} if a comma or colon follows, or a @code{type} if another
7562@code{"id"} follows. In other words, this grammar is LR(1).
bfa74976 7563
7fceb615
JD
7564@cindex LR
7565@cindex LALR
eb45ef3b 7566However, for historical reasons, Bison cannot by default handle all
8a4281b9 7567LR(1) grammars.
534cee7a 7568In this grammar, two contexts, that after an @code{"id"} at the beginning
eb45ef3b
JD
7569of a @code{param_spec} and likewise at the beginning of a
7570@code{return_spec}, are similar enough that Bison assumes they are the
7571same.
7572They appear similar because the same set of rules would be
bfa74976
RS
7573active---the rule for reducing to a @code{name} and that for reducing to
7574a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7575that the rules would require different lookahead tokens in the two
bfa74976
RS
7576contexts, so it makes a single parser state for them both. Combining
7577the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7578occurrence means that the grammar is not LALR(1).
bfa74976 7579
7fceb615
JD
7580@cindex IELR
7581@cindex canonical LR
7582For many practical grammars (specifically those that fall into the non-LR(1)
7583class), the limitations of LALR(1) result in difficulties beyond just
7584mysterious reduce/reduce conflicts. The best way to fix all these problems
7585is to select a different parser table construction algorithm. Either
7586IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7587and easier to debug during development. @xref{LR Table Construction}, for
7588details. (Bison's IELR(1) and canonical LR(1) implementations are
7589experimental. More user feedback will help to stabilize them.)
eb45ef3b 7590
8a4281b9 7591If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7592can often fix a mysterious conflict by identifying the two parser states
7593that are being confused, and adding something to make them look
7594distinct. In the above example, adding one rule to
bfa74976
RS
7595@code{return_spec} as follows makes the problem go away:
7596
7597@example
7598@group
bfa74976
RS
7599@dots{}
7600return_spec:
5e9b6624
AD
7601 type
7602| name ':' type
534cee7a 7603| "id" "bogus" /* This rule is never used. */
5e9b6624 7604;
bfa74976
RS
7605@end group
7606@end example
7607
7608This corrects the problem because it introduces the possibility of an
534cee7a 7609additional active rule in the context after the @code{"id"} at the beginning of
bfa74976
RS
7610@code{return_spec}. This rule is not active in the corresponding context
7611in a @code{param_spec}, so the two contexts receive distinct parser states.
534cee7a 7612As long as the token @code{"bogus"} is never generated by @code{yylex},
bfa74976
RS
7613the added rule cannot alter the way actual input is parsed.
7614
7615In this particular example, there is another way to solve the problem:
534cee7a 7616rewrite the rule for @code{return_spec} to use @code{"id"} directly
bfa74976
RS
7617instead of via @code{name}. This also causes the two confusing
7618contexts to have different sets of active rules, because the one for
7619@code{return_spec} activates the altered rule for @code{return_spec}
7620rather than the one for @code{name}.
7621
7622@example
7623param_spec:
5e9b6624
AD
7624 type
7625| name_list ':' type
7626;
bfa74976 7627return_spec:
5e9b6624 7628 type
534cee7a 7629| "id" ':' type
5e9b6624 7630;
bfa74976
RS
7631@end example
7632
8a4281b9 7633For a more detailed exposition of LALR(1) parsers and parser
5e528941 7634generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7635
7fceb615
JD
7636@node Tuning LR
7637@section Tuning LR
7638
7639The default behavior of Bison's LR-based parsers is chosen mostly for
7640historical reasons, but that behavior is often not robust. For example, in
7641the previous section, we discussed the mysterious conflicts that can be
7642produced by LALR(1), Bison's default parser table construction algorithm.
7643Another example is Bison's @code{%define parse.error verbose} directive,
7644which instructs the generated parser to produce verbose syntax error
7645messages, which can sometimes contain incorrect information.
7646
7647In this section, we explore several modern features of Bison that allow you
7648to tune fundamental aspects of the generated LR-based parsers. Some of
7649these features easily eliminate shortcomings like those mentioned above.
7650Others can be helpful purely for understanding your parser.
7651
7652Most of the features discussed in this section are still experimental. More
7653user feedback will help to stabilize them.
7654
7655@menu
7656* LR Table Construction:: Choose a different construction algorithm.
7657* Default Reductions:: Disable default reductions.
7658* LAC:: Correct lookahead sets in the parser states.
7659* Unreachable States:: Keep unreachable parser states for debugging.
7660@end menu
7661
7662@node LR Table Construction
7663@subsection LR Table Construction
7664@cindex Mysterious Conflict
7665@cindex LALR
7666@cindex IELR
7667@cindex canonical LR
7668@findex %define lr.type
7669
7670For historical reasons, Bison constructs LALR(1) parser tables by default.
7671However, LALR does not possess the full language-recognition power of LR.
7672As a result, the behavior of parsers employing LALR parser tables is often
cc09e5be 7673mysterious. We presented a simple example of this effect in @ref{Mysterious
7fceb615
JD
7674Conflicts}.
7675
7676As we also demonstrated in that example, the traditional approach to
7677eliminating such mysterious behavior is to restructure the grammar.
7678Unfortunately, doing so correctly is often difficult. Moreover, merely
7679discovering that LALR causes mysterious behavior in your parser can be
7680difficult as well.
7681
7682Fortunately, Bison provides an easy way to eliminate the possibility of such
7683mysterious behavior altogether. You simply need to activate a more powerful
7684parser table construction algorithm by using the @code{%define lr.type}
7685directive.
7686
7687@deffn {Directive} {%define lr.type @var{TYPE}}
7688Specify the type of parser tables within the LR(1) family. The accepted
7689values for @var{TYPE} are:
7690
7691@itemize
7692@item @code{lalr} (default)
7693@item @code{ielr}
7694@item @code{canonical-lr}
7695@end itemize
7696
7697(This feature is experimental. More user feedback will help to stabilize
7698it.)
7699@end deffn
7700
7701For example, to activate IELR, you might add the following directive to you
7702grammar file:
7703
7704@example
7705%define lr.type ielr
7706@end example
7707
cc09e5be 7708@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7fceb615
JD
7709conflict is then eliminated, so there is no need to invest time in
7710comprehending the conflict or restructuring the grammar to fix it. If,
7711during future development, the grammar evolves such that all mysterious
7712behavior would have disappeared using just LALR, you need not fear that
7713continuing to use IELR will result in unnecessarily large parser tables.
7714That is, IELR generates LALR tables when LALR (using a deterministic parsing
7715algorithm) is sufficient to support the full language-recognition power of
7716LR. Thus, by enabling IELR at the start of grammar development, you can
7717safely and completely eliminate the need to consider LALR's shortcomings.
7718
7719While IELR is almost always preferable, there are circumstances where LALR
7720or the canonical LR parser tables described by Knuth
7721(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7722relative advantages of each parser table construction algorithm within
7723Bison:
7724
7725@itemize
7726@item LALR
7727
7728There are at least two scenarios where LALR can be worthwhile:
7729
7730@itemize
7731@item GLR without static conflict resolution.
7732
7733@cindex GLR with LALR
7734When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
7735conflicts statically (for example, with @code{%left} or @code{%prec}), then
7736the parser explores all potential parses of any given input. In this case,
7737the choice of parser table construction algorithm is guaranteed not to alter
7738the language accepted by the parser. LALR parser tables are the smallest
7739parser tables Bison can currently construct, so they may then be preferable.
7740Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7741more like a deterministic parser in the syntactic contexts where those
7742conflicts appear, and so either IELR or canonical LR can then be helpful to
7743avoid LALR's mysterious behavior.
7744
7745@item Malformed grammars.
7746
7747Occasionally during development, an especially malformed grammar with a
7748major recurring flaw may severely impede the IELR or canonical LR parser
7749table construction algorithm. LALR can be a quick way to construct parser
7750tables in order to investigate such problems while ignoring the more subtle
7751differences from IELR and canonical LR.
7752@end itemize
7753
7754@item IELR
7755
7756IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7757any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7758always accept exactly the same set of sentences. However, like LALR, IELR
7759merges parser states during parser table construction so that the number of
7760parser states is often an order of magnitude less than for canonical LR.
7761More importantly, because canonical LR's extra parser states may contain
7762duplicate conflicts in the case of non-LR grammars, the number of conflicts
7763for IELR is often an order of magnitude less as well. This effect can
7764significantly reduce the complexity of developing a grammar.
7765
7766@item Canonical LR
7767
7768@cindex delayed syntax error detection
7769@cindex LAC
7770@findex %nonassoc
7771While inefficient, canonical LR parser tables can be an interesting means to
7772explore a grammar because they possess a property that IELR and LALR tables
7773do not. That is, if @code{%nonassoc} is not used and default reductions are
7774left disabled (@pxref{Default Reductions}), then, for every left context of
7775every canonical LR state, the set of tokens accepted by that state is
7776guaranteed to be the exact set of tokens that is syntactically acceptable in
7777that left context. It might then seem that an advantage of canonical LR
7778parsers in production is that, under the above constraints, they are
7779guaranteed to detect a syntax error as soon as possible without performing
7780any unnecessary reductions. However, IELR parsers that use LAC are also
7781able to achieve this behavior without sacrificing @code{%nonassoc} or
7782default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7783@end itemize
7784
7785For a more detailed exposition of the mysterious behavior in LALR parsers
7786and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7787@ref{Bibliography,,Denny 2010 November}.
7788
7789@node Default Reductions
7790@subsection Default Reductions
7791@cindex default reductions
f3bc3386 7792@findex %define lr.default-reduction
7fceb615
JD
7793@findex %nonassoc
7794
7795After parser table construction, Bison identifies the reduction with the
7796largest lookahead set in each parser state. To reduce the size of the
7797parser state, traditional Bison behavior is to remove that lookahead set and
7798to assign that reduction to be the default parser action. Such a reduction
7799is known as a @dfn{default reduction}.
7800
7801Default reductions affect more than the size of the parser tables. They
7802also affect the behavior of the parser:
7803
7804@itemize
7805@item Delayed @code{yylex} invocations.
7806
7807@cindex delayed yylex invocations
7808@cindex consistent states
7809@cindex defaulted states
7810A @dfn{consistent state} is a state that has only one possible parser
7811action. If that action is a reduction and is encoded as a default
7812reduction, then that consistent state is called a @dfn{defaulted state}.
7813Upon reaching a defaulted state, a Bison-generated parser does not bother to
7814invoke @code{yylex} to fetch the next token before performing the reduction.
7815In other words, whether default reductions are enabled in consistent states
7816determines how soon a Bison-generated parser invokes @code{yylex} for a
7817token: immediately when it @emph{reaches} that token in the input or when it
7818eventually @emph{needs} that token as a lookahead to determine the next
7819parser action. Traditionally, default reductions are enabled, and so the
7820parser exhibits the latter behavior.
7821
7822The presence of defaulted states is an important consideration when
7823designing @code{yylex} and the grammar file. That is, if the behavior of
7824@code{yylex} can influence or be influenced by the semantic actions
7825associated with the reductions in defaulted states, then the delay of the
7826next @code{yylex} invocation until after those reductions is significant.
7827For example, the semantic actions might pop a scope stack that @code{yylex}
7828uses to determine what token to return. Thus, the delay might be necessary
7829to ensure that @code{yylex} does not look up the next token in a scope that
7830should already be considered closed.
7831
7832@item Delayed syntax error detection.
7833
7834@cindex delayed syntax error detection
7835When the parser fetches a new token by invoking @code{yylex}, it checks
7836whether there is an action for that token in the current parser state. The
7837parser detects a syntax error if and only if either (1) there is no action
7838for that token or (2) the action for that token is the error action (due to
7839the use of @code{%nonassoc}). However, if there is a default reduction in
7840that state (which might or might not be a defaulted state), then it is
7841impossible for condition 1 to exist. That is, all tokens have an action.
7842Thus, the parser sometimes fails to detect the syntax error until it reaches
7843a later state.
7844
7845@cindex LAC
7846@c If there's an infinite loop, default reductions can prevent an incorrect
7847@c sentence from being rejected.
7848While default reductions never cause the parser to accept syntactically
7849incorrect sentences, the delay of syntax error detection can have unexpected
7850effects on the behavior of the parser. However, the delay can be caused
7851anyway by parser state merging and the use of @code{%nonassoc}, and it can
7852be fixed by another Bison feature, LAC. We discuss the effects of delayed
7853syntax error detection and LAC more in the next section (@pxref{LAC}).
7854@end itemize
7855
7856For canonical LR, the only default reduction that Bison enables by default
7857is the accept action, which appears only in the accepting state, which has
7858no other action and is thus a defaulted state. However, the default accept
7859action does not delay any @code{yylex} invocation or syntax error detection
7860because the accept action ends the parse.
7861
7862For LALR and IELR, Bison enables default reductions in nearly all states by
7863default. There are only two exceptions. First, states that have a shift
7864action on the @code{error} token do not have default reductions because
7865delayed syntax error detection could then prevent the @code{error} token
7866from ever being shifted in that state. However, parser state merging can
7867cause the same effect anyway, and LAC fixes it in both cases, so future
7868versions of Bison might drop this exception when LAC is activated. Second,
7869GLR parsers do not record the default reduction as the action on a lookahead
7870token for which there is a conflict. The correct action in this case is to
7871split the parse instead.
7872
7873To adjust which states have default reductions enabled, use the
f3bc3386 7874@code{%define lr.default-reduction} directive.
7fceb615 7875
f3bc3386 7876@deffn {Directive} {%define lr.default-reduction @var{WHERE}}
7fceb615
JD
7877Specify the kind of states that are permitted to contain default reductions.
7878The accepted values of @var{WHERE} are:
7879@itemize
f0ad1b2f 7880@item @code{most} (default for LALR and IELR)
7fceb615
JD
7881@item @code{consistent}
7882@item @code{accepting} (default for canonical LR)
7883@end itemize
7884
7885(The ability to specify where default reductions are permitted is
7886experimental. More user feedback will help to stabilize it.)
7887@end deffn
7888
7fceb615
JD
7889@node LAC
7890@subsection LAC
7891@findex %define parse.lac
7892@cindex LAC
7893@cindex lookahead correction
7894
7895Canonical LR, IELR, and LALR can suffer from a couple of problems upon
7896encountering a syntax error. First, the parser might perform additional
7897parser stack reductions before discovering the syntax error. Such
7898reductions can perform user semantic actions that are unexpected because
7899they are based on an invalid token, and they cause error recovery to begin
7900in a different syntactic context than the one in which the invalid token was
7901encountered. Second, when verbose error messages are enabled (@pxref{Error
7902Reporting}), the expected token list in the syntax error message can both
7903contain invalid tokens and omit valid tokens.
7904
7905The culprits for the above problems are @code{%nonassoc}, default reductions
7906in inconsistent states (@pxref{Default Reductions}), and parser state
7907merging. Because IELR and LALR merge parser states, they suffer the most.
7908Canonical LR can suffer only if @code{%nonassoc} is used or if default
7909reductions are enabled for inconsistent states.
7910
7911LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
7912that solves these problems for canonical LR, IELR, and LALR without
7913sacrificing @code{%nonassoc}, default reductions, or state merging. You can
7914enable LAC with the @code{%define parse.lac} directive.
7915
7916@deffn {Directive} {%define parse.lac @var{VALUE}}
7917Enable LAC to improve syntax error handling.
7918@itemize
7919@item @code{none} (default)
7920@item @code{full}
7921@end itemize
7922(This feature is experimental. More user feedback will help to stabilize
7923it. Moreover, it is currently only available for deterministic parsers in
7924C.)
7925@end deffn
7926
7927Conceptually, the LAC mechanism is straight-forward. Whenever the parser
7928fetches a new token from the scanner so that it can determine the next
7929parser action, it immediately suspends normal parsing and performs an
7930exploratory parse using a temporary copy of the normal parser state stack.
7931During this exploratory parse, the parser does not perform user semantic
7932actions. If the exploratory parse reaches a shift action, normal parsing
7933then resumes on the normal parser stacks. If the exploratory parse reaches
7934an error instead, the parser reports a syntax error. If verbose syntax
7935error messages are enabled, the parser must then discover the list of
7936expected tokens, so it performs a separate exploratory parse for each token
7937in the grammar.
7938
7939There is one subtlety about the use of LAC. That is, when in a consistent
7940parser state with a default reduction, the parser will not attempt to fetch
7941a token from the scanner because no lookahead is needed to determine the
7942next parser action. Thus, whether default reductions are enabled in
7943consistent states (@pxref{Default Reductions}) affects how soon the parser
7944detects a syntax error: immediately when it @emph{reaches} an erroneous
7945token or when it eventually @emph{needs} that token as a lookahead to
7946determine the next parser action. The latter behavior is probably more
7947intuitive, so Bison currently provides no way to achieve the former behavior
7948while default reductions are enabled in consistent states.
7949
7950Thus, when LAC is in use, for some fixed decision of whether to enable
7951default reductions in consistent states, canonical LR and IELR behave almost
7952exactly the same for both syntactically acceptable and syntactically
7953unacceptable input. While LALR still does not support the full
7954language-recognition power of canonical LR and IELR, LAC at least enables
7955LALR's syntax error handling to correctly reflect LALR's
7956language-recognition power.
7957
7958There are a few caveats to consider when using LAC:
7959
7960@itemize
7961@item Infinite parsing loops.
7962
7963IELR plus LAC does have one shortcoming relative to canonical LR. Some
7964parsers generated by Bison can loop infinitely. LAC does not fix infinite
7965parsing loops that occur between encountering a syntax error and detecting
7966it, but enabling canonical LR or disabling default reductions sometimes
7967does.
7968
7969@item Verbose error message limitations.
7970
7971Because of internationalization considerations, Bison-generated parsers
7972limit the size of the expected token list they are willing to report in a
7973verbose syntax error message. If the number of expected tokens exceeds that
7974limit, the list is simply dropped from the message. Enabling LAC can
7975increase the size of the list and thus cause the parser to drop it. Of
7976course, dropping the list is better than reporting an incorrect list.
7977
7978@item Performance.
7979
7980Because LAC requires many parse actions to be performed twice, it can have a
7981performance penalty. However, not all parse actions must be performed
7982twice. Specifically, during a series of default reductions in consistent
7983states and shift actions, the parser never has to initiate an exploratory
7984parse. Moreover, the most time-consuming tasks in a parse are often the
7985file I/O, the lexical analysis performed by the scanner, and the user's
7986semantic actions, but none of these are performed during the exploratory
7987parse. Finally, the base of the temporary stack used during an exploratory
7988parse is a pointer into the normal parser state stack so that the stack is
7989never physically copied. In our experience, the performance penalty of LAC
5a321748 7990has proved insignificant for practical grammars.
7fceb615
JD
7991@end itemize
7992
709c7d11
JD
7993While the LAC algorithm shares techniques that have been recognized in the
7994parser community for years, for the publication that introduces LAC,
7995@pxref{Bibliography,,Denny 2010 May}.
15e46f2d 7996
7fceb615
JD
7997@node Unreachable States
7998@subsection Unreachable States
f3bc3386 7999@findex %define lr.keep-unreachable-state
7fceb615
JD
8000@cindex unreachable states
8001
8002If there exists no sequence of transitions from the parser's start state to
8003some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
8004state}. A state can become unreachable during conflict resolution if Bison
8005disables a shift action leading to it from a predecessor state.
8006
8007By default, Bison removes unreachable states from the parser after conflict
8008resolution because they are useless in the generated parser. However,
8009keeping unreachable states is sometimes useful when trying to understand the
8010relationship between the parser and the grammar.
8011
f3bc3386 8012@deffn {Directive} {%define lr.keep-unreachable-state @var{VALUE}}
7fceb615
JD
8013Request that Bison allow unreachable states to remain in the parser tables.
8014@var{VALUE} must be a Boolean. The default is @code{false}.
8015@end deffn
8016
8017There are a few caveats to consider:
8018
8019@itemize @bullet
8020@item Missing or extraneous warnings.
8021
8022Unreachable states may contain conflicts and may use rules not used in any
8023other state. Thus, keeping unreachable states may induce warnings that are
8024irrelevant to your parser's behavior, and it may eliminate warnings that are
8025relevant. Of course, the change in warnings may actually be relevant to a
8026parser table analysis that wants to keep unreachable states, so this
8027behavior will likely remain in future Bison releases.
8028
8029@item Other useless states.
8030
8031While Bison is able to remove unreachable states, it is not guaranteed to
8032remove other kinds of useless states. Specifically, when Bison disables
8033reduce actions during conflict resolution, some goto actions may become
8034useless, and thus some additional states may become useless. If Bison were
8035to compute which goto actions were useless and then disable those actions,
8036it could identify such states as unreachable and then remove those states.
8037However, Bison does not compute which goto actions are useless.
8038@end itemize
8039
fae437e8 8040@node Generalized LR Parsing
8a4281b9
JD
8041@section Generalized LR (GLR) Parsing
8042@cindex GLR parsing
8043@cindex generalized LR (GLR) parsing
676385e2 8044@cindex ambiguous grammars
9d9b8b70 8045@cindex nondeterministic parsing
676385e2 8046
fae437e8
AD
8047Bison produces @emph{deterministic} parsers that choose uniquely
8048when to reduce and which reduction to apply
742e4900 8049based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
8050As a result, normal Bison handles a proper subset of the family of
8051context-free languages.
fae437e8 8052Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
8053sequence of reductions cannot have deterministic parsers in this sense.
8054The same is true of languages that require more than one symbol of
742e4900 8055lookahead, since the parser lacks the information necessary to make a
676385e2 8056decision at the point it must be made in a shift-reduce parser.
cc09e5be 8057Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
eb45ef3b 8058there are languages where Bison's default choice of how to
676385e2
PH
8059summarize the input seen so far loses necessary information.
8060
8061When you use the @samp{%glr-parser} declaration in your grammar file,
8062Bison generates a parser that uses a different algorithm, called
8a4281b9 8063Generalized LR (or GLR). A Bison GLR
c827f760 8064parser uses the same basic
676385e2
PH
8065algorithm for parsing as an ordinary Bison parser, but behaves
8066differently in cases where there is a shift-reduce conflict that has not
fae437e8 8067been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 8068reduce-reduce conflict. When a GLR parser encounters such a
c827f760 8069situation, it
fae437e8 8070effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
8071shift or reduction. These parsers then proceed as usual, consuming
8072tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 8073and split further, with the result that instead of a sequence of states,
8a4281b9 8074a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
8075
8076In effect, each stack represents a guess as to what the proper parse
8077is. Additional input may indicate that a guess was wrong, in which case
8078the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 8079actions generated in each stack are saved, rather than being executed
676385e2 8080immediately. When a stack disappears, its saved semantic actions never
fae437e8 8081get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
8082their sets of semantic actions are both saved with the state that
8083results from the reduction. We say that two stacks are equivalent
fae437e8 8084when they both represent the same sequence of states,
676385e2
PH
8085and each pair of corresponding states represents a
8086grammar symbol that produces the same segment of the input token
8087stream.
8088
8089Whenever the parser makes a transition from having multiple
eb45ef3b 8090states to having one, it reverts to the normal deterministic parsing
676385e2
PH
8091algorithm, after resolving and executing the saved-up actions.
8092At this transition, some of the states on the stack will have semantic
8093values that are sets (actually multisets) of possible actions. The
8094parser tries to pick one of the actions by first finding one whose rule
8095has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 8096declaration. Otherwise, if the alternative actions are not ordered by
676385e2 8097precedence, but there the same merging function is declared for both
fae437e8 8098rules by the @samp{%merge} declaration,
676385e2
PH
8099Bison resolves and evaluates both and then calls the merge function on
8100the result. Otherwise, it reports an ambiguity.
8101
8a4281b9
JD
8102It is possible to use a data structure for the GLR parsing tree that
8103permits the processing of any LR(1) grammar in linear time (in the
c827f760 8104size of the input), any unambiguous (not necessarily
8a4281b9 8105LR(1)) grammar in
fae437e8 8106quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
8107context-free grammar in cubic worst-case time. However, Bison currently
8108uses a simpler data structure that requires time proportional to the
8109length of the input times the maximum number of stacks required for any
9d9b8b70 8110prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
8111grammars can require exponential time and space to process. Such badly
8112behaving examples, however, are not generally of practical interest.
9d9b8b70 8113Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 8114doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 8115structure should generally be adequate. On LR(1) portions of a
eb45ef3b 8116grammar, in particular, it is only slightly slower than with the
8a4281b9 8117deterministic LR(1) Bison parser.
676385e2 8118
5e528941
JD
8119For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
81202000}.
f6481e2f 8121
1a059451
PE
8122@node Memory Management
8123@section Memory Management, and How to Avoid Memory Exhaustion
8124@cindex memory exhaustion
8125@cindex memory management
bfa74976
RS
8126@cindex stack overflow
8127@cindex parser stack overflow
8128@cindex overflow of parser stack
8129
1a059451 8130The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 8131not reduced. When this happens, the parser function @code{yyparse}
1a059451 8132calls @code{yyerror} and then returns 2.
bfa74976 8133
c827f760 8134Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f 8135usually results from using a right recursion instead of a left
188867ac 8136recursion, see @ref{Recursion, ,Recursive Rules}.
d1a1114f 8137
bfa74976
RS
8138@vindex YYMAXDEPTH
8139By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 8140parser stack can become before memory is exhausted. Define the
bfa74976
RS
8141macro with a value that is an integer. This value is the maximum number
8142of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
8143
8144The stack space allowed is not necessarily allocated. If you specify a
1a059451 8145large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
8146stack at first, and then makes it bigger by stages as needed. This
8147increasing allocation happens automatically and silently. Therefore,
8148you do not need to make @code{YYMAXDEPTH} painfully small merely to save
8149space for ordinary inputs that do not need much stack.
8150
d7e14fc0
PE
8151However, do not allow @code{YYMAXDEPTH} to be a value so large that
8152arithmetic overflow could occur when calculating the size of the stack
8153space. Also, do not allow @code{YYMAXDEPTH} to be less than
8154@code{YYINITDEPTH}.
8155
bfa74976
RS
8156@cindex default stack limit
8157The default value of @code{YYMAXDEPTH}, if you do not define it, is
815810000.
8159
8160@vindex YYINITDEPTH
8161You can control how much stack is allocated initially by defining the
eb45ef3b
JD
8162macro @code{YYINITDEPTH} to a positive integer. For the deterministic
8163parser in C, this value must be a compile-time constant
d7e14fc0
PE
8164unless you are assuming C99 or some other target language or compiler
8165that allows variable-length arrays. The default is 200.
8166
1a059451 8167Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 8168
20be2f92 8169You can generate a deterministic parser containing C++ user code from
411614fa 8170the default (C) skeleton, as well as from the C++ skeleton
20be2f92
PH
8171(@pxref{C++ Parsers}). However, if you do use the default skeleton
8172and want to allow the parsing stack to grow,
8173be careful not to use semantic types or location types that require
8174non-trivial copy constructors.
8175The C skeleton bypasses these constructors when copying data to
8176new, larger stacks.
d1a1114f 8177
342b8b6e 8178@node Error Recovery
bfa74976
RS
8179@chapter Error Recovery
8180@cindex error recovery
8181@cindex recovery from errors
8182
6e649e65 8183It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
8184error. For example, a compiler should recover sufficiently to parse the
8185rest of the input file and check it for errors; a calculator should accept
8186another expression.
8187
8188In a simple interactive command parser where each input is one line, it may
8189be sufficient to allow @code{yyparse} to return 1 on error and have the
8190caller ignore the rest of the input line when that happens (and then call
8191@code{yyparse} again). But this is inadequate for a compiler, because it
8192forgets all the syntactic context leading up to the error. A syntax error
8193deep within a function in the compiler input should not cause the compiler
8194to treat the following line like the beginning of a source file.
8195
8196@findex error
8197You can define how to recover from a syntax error by writing rules to
8198recognize the special token @code{error}. This is a terminal symbol that
8199is always defined (you need not declare it) and reserved for error
8200handling. The Bison parser generates an @code{error} token whenever a
8201syntax error happens; if you have provided a rule to recognize this token
13863333 8202in the current context, the parse can continue.
bfa74976
RS
8203
8204For example:
8205
8206@example
0860e383 8207stmts:
5e9b6624 8208 /* empty string */
0860e383
AD
8209| stmts '\n'
8210| stmts exp '\n'
8211| stmts error '\n'
bfa74976
RS
8212@end example
8213
8214The fourth rule in this example says that an error followed by a newline
0860e383 8215makes a valid addition to any @code{stmts}.
bfa74976
RS
8216
8217What happens if a syntax error occurs in the middle of an @code{exp}? The
8218error recovery rule, interpreted strictly, applies to the precise sequence
0860e383 8219of a @code{stmts}, an @code{error} and a newline. If an error occurs in
bfa74976 8220the middle of an @code{exp}, there will probably be some additional tokens
0860e383 8221and subexpressions on the stack after the last @code{stmts}, and there
bfa74976
RS
8222will be tokens to read before the next newline. So the rule is not
8223applicable in the ordinary way.
8224
8225But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
8226the semantic context and part of the input. First it discards states
8227and objects from the stack until it gets back to a state in which the
bfa74976 8228@code{error} token is acceptable. (This means that the subexpressions
0860e383 8229already parsed are discarded, back to the last complete @code{stmts}.)
72f889cc 8230At this point the @code{error} token can be shifted. Then, if the old
742e4900 8231lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 8232tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
8233this example, Bison reads and discards input until the next newline so
8234that the fourth rule can apply. Note that discarded symbols are
8235possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
8236Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
8237
8238The choice of error rules in the grammar is a choice of strategies for
8239error recovery. A simple and useful strategy is simply to skip the rest of
8240the current input line or current statement if an error is detected:
8241
8242@example
0860e383 8243stmt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
8244@end example
8245
8246It is also useful to recover to the matching close-delimiter of an
8247opening-delimiter that has already been parsed. Otherwise the
8248close-delimiter will probably appear to be unmatched, and generate another,
8249spurious error message:
8250
8251@example
5e9b6624
AD
8252primary:
8253 '(' expr ')'
8254| '(' error ')'
8255@dots{}
8256;
bfa74976
RS
8257@end example
8258
8259Error recovery strategies are necessarily guesses. When they guess wrong,
8260one syntax error often leads to another. In the above example, the error
8261recovery rule guesses that an error is due to bad input within one
0860e383
AD
8262@code{stmt}. Suppose that instead a spurious semicolon is inserted in the
8263middle of a valid @code{stmt}. After the error recovery rule recovers
bfa74976
RS
8264from the first error, another syntax error will be found straightaway,
8265since the text following the spurious semicolon is also an invalid
0860e383 8266@code{stmt}.
bfa74976
RS
8267
8268To prevent an outpouring of error messages, the parser will output no error
8269message for another syntax error that happens shortly after the first; only
8270after three consecutive input tokens have been successfully shifted will
8271error messages resume.
8272
8273Note that rules which accept the @code{error} token may have actions, just
8274as any other rules can.
8275
8276@findex yyerrok
8277You can make error messages resume immediately by using the macro
8278@code{yyerrok} in an action. If you do this in the error rule's action, no
8279error messages will be suppressed. This macro requires no arguments;
8280@samp{yyerrok;} is a valid C statement.
8281
8282@findex yyclearin
742e4900 8283The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
8284this is unacceptable, then the macro @code{yyclearin} may be used to clear
8285this token. Write the statement @samp{yyclearin;} in the error rule's
8286action.
32c29292 8287@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 8288
6e649e65 8289For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
8290called that advances the input stream to some point where parsing should
8291once again commence. The next symbol returned by the lexical scanner is
742e4900 8292probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
8293with @samp{yyclearin;}.
8294
8295@vindex YYRECOVERING
02103984
PE
8296The expression @code{YYRECOVERING ()} yields 1 when the parser
8297is recovering from a syntax error, and 0 otherwise.
8298Syntax error diagnostics are suppressed while recovering from a syntax
8299error.
bfa74976 8300
342b8b6e 8301@node Context Dependency
bfa74976
RS
8302@chapter Handling Context Dependencies
8303
8304The Bison paradigm is to parse tokens first, then group them into larger
8305syntactic units. In many languages, the meaning of a token is affected by
8306its context. Although this violates the Bison paradigm, certain techniques
8307(known as @dfn{kludges}) may enable you to write Bison parsers for such
8308languages.
8309
8310@menu
8311* Semantic Tokens:: Token parsing can depend on the semantic context.
8312* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
8313* Tie-in Recovery:: Lexical tie-ins have implications for how
8314 error recovery rules must be written.
8315@end menu
8316
8317(Actually, ``kludge'' means any technique that gets its job done but is
8318neither clean nor robust.)
8319
342b8b6e 8320@node Semantic Tokens
bfa74976
RS
8321@section Semantic Info in Token Types
8322
8323The C language has a context dependency: the way an identifier is used
8324depends on what its current meaning is. For example, consider this:
8325
8326@example
8327foo (x);
8328@end example
8329
8330This looks like a function call statement, but if @code{foo} is a typedef
8331name, then this is actually a declaration of @code{x}. How can a Bison
8332parser for C decide how to parse this input?
8333
8a4281b9 8334The method used in GNU C is to have two different token types,
bfa74976
RS
8335@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
8336identifier, it looks up the current declaration of the identifier in order
8337to decide which token type to return: @code{TYPENAME} if the identifier is
8338declared as a typedef, @code{IDENTIFIER} otherwise.
8339
8340The grammar rules can then express the context dependency by the choice of
8341token type to recognize. @code{IDENTIFIER} is accepted as an expression,
8342but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
8343@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
8344is @emph{not} significant, such as in declarations that can shadow a
8345typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
8346accepted---there is one rule for each of the two token types.
8347
8348This technique is simple to use if the decision of which kinds of
8349identifiers to allow is made at a place close to where the identifier is
8350parsed. But in C this is not always so: C allows a declaration to
8351redeclare a typedef name provided an explicit type has been specified
8352earlier:
8353
8354@example
3a4f411f
PE
8355typedef int foo, bar;
8356int baz (void)
d4fca427 8357@group
3a4f411f
PE
8358@{
8359 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
8360 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
8361 return foo (bar);
8362@}
d4fca427 8363@end group
bfa74976
RS
8364@end example
8365
8366Unfortunately, the name being declared is separated from the declaration
8367construct itself by a complicated syntactic structure---the ``declarator''.
8368
9ecbd125 8369As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
8370all the nonterminal names changed: once for parsing a declaration in
8371which a typedef name can be redefined, and once for parsing a
8372declaration in which that can't be done. Here is a part of the
8373duplication, with actions omitted for brevity:
bfa74976
RS
8374
8375@example
d4fca427 8376@group
bfa74976 8377initdcl:
5e9b6624
AD
8378 declarator maybeasm '=' init
8379| declarator maybeasm
8380;
d4fca427 8381@end group
bfa74976 8382
d4fca427 8383@group
bfa74976 8384notype_initdcl:
5e9b6624
AD
8385 notype_declarator maybeasm '=' init
8386| notype_declarator maybeasm
8387;
d4fca427 8388@end group
bfa74976
RS
8389@end example
8390
8391@noindent
8392Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
8393cannot. The distinction between @code{declarator} and
8394@code{notype_declarator} is the same sort of thing.
8395
8396There is some similarity between this technique and a lexical tie-in
8397(described next), in that information which alters the lexical analysis is
8398changed during parsing by other parts of the program. The difference is
8399here the information is global, and is used for other purposes in the
8400program. A true lexical tie-in has a special-purpose flag controlled by
8401the syntactic context.
8402
342b8b6e 8403@node Lexical Tie-ins
bfa74976
RS
8404@section Lexical Tie-ins
8405@cindex lexical tie-in
8406
8407One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
8408which is set by Bison actions, whose purpose is to alter the way tokens are
8409parsed.
8410
8411For example, suppose we have a language vaguely like C, but with a special
8412construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
8413an expression in parentheses in which all integers are hexadecimal. In
8414particular, the token @samp{a1b} must be treated as an integer rather than
8415as an identifier if it appears in that context. Here is how you can do it:
8416
8417@example
8418@group
8419%@{
38a92d50
PE
8420 int hexflag;
8421 int yylex (void);
8422 void yyerror (char const *);
bfa74976
RS
8423%@}
8424%%
8425@dots{}
8426@end group
8427@group
5e9b6624
AD
8428expr:
8429 IDENTIFIER
8430| constant
8431| HEX '(' @{ hexflag = 1; @}
8432 expr ')' @{ hexflag = 0; $$ = $4; @}
8433| expr '+' expr @{ $$ = make_sum ($1, $3); @}
8434@dots{}
8435;
bfa74976
RS
8436@end group
8437
8438@group
8439constant:
5e9b6624
AD
8440 INTEGER
8441| STRING
8442;
bfa74976
RS
8443@end group
8444@end example
8445
8446@noindent
8447Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8448it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8449with letters are parsed as integers if possible.
8450
ff7571c0
JD
8451The declaration of @code{hexflag} shown in the prologue of the grammar
8452file is needed to make it accessible to the actions (@pxref{Prologue,
8453,The Prologue}). You must also write the code in @code{yylex} to obey
8454the flag.
bfa74976 8455
342b8b6e 8456@node Tie-in Recovery
bfa74976
RS
8457@section Lexical Tie-ins and Error Recovery
8458
8459Lexical tie-ins make strict demands on any error recovery rules you have.
8460@xref{Error Recovery}.
8461
8462The reason for this is that the purpose of an error recovery rule is to
8463abort the parsing of one construct and resume in some larger construct.
8464For example, in C-like languages, a typical error recovery rule is to skip
8465tokens until the next semicolon, and then start a new statement, like this:
8466
8467@example
5e9b6624
AD
8468stmt:
8469 expr ';'
8470| IF '(' expr ')' stmt @{ @dots{} @}
8471@dots{}
8472| error ';' @{ hexflag = 0; @}
8473;
bfa74976
RS
8474@end example
8475
8476If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8477construct, this error rule will apply, and then the action for the
8478completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8479remain set for the entire rest of the input, or until the next @code{hex}
8480keyword, causing identifiers to be misinterpreted as integers.
8481
8482To avoid this problem the error recovery rule itself clears @code{hexflag}.
8483
8484There may also be an error recovery rule that works within expressions.
8485For example, there could be a rule which applies within parentheses
8486and skips to the close-parenthesis:
8487
8488@example
8489@group
5e9b6624
AD
8490expr:
8491 @dots{}
8492| '(' expr ')' @{ $$ = $2; @}
8493| '(' error ')'
8494@dots{}
bfa74976
RS
8495@end group
8496@end example
8497
8498If this rule acts within the @code{hex} construct, it is not going to abort
8499that construct (since it applies to an inner level of parentheses within
8500the construct). Therefore, it should not clear the flag: the rest of
8501the @code{hex} construct should be parsed with the flag still in effect.
8502
8503What if there is an error recovery rule which might abort out of the
8504@code{hex} construct or might not, depending on circumstances? There is no
8505way you can write the action to determine whether a @code{hex} construct is
8506being aborted or not. So if you are using a lexical tie-in, you had better
8507make sure your error recovery rules are not of this kind. Each rule must
8508be such that you can be sure that it always will, or always won't, have to
8509clear the flag.
8510
ec3bc396
AD
8511@c ================================================== Debugging Your Parser
8512
342b8b6e 8513@node Debugging
bfa74976 8514@chapter Debugging Your Parser
ec3bc396 8515
93c150b6
AD
8516Developing a parser can be a challenge, especially if you don't understand
8517the algorithm (@pxref{Algorithm, ,The Bison Parser Algorithm}). This
8518chapter explains how to generate and read the detailed description of the
8519automaton, and how to enable and understand the parser run-time traces.
ec3bc396
AD
8520
8521@menu
8522* Understanding:: Understanding the structure of your parser.
fc4fdd62 8523* Graphviz:: Getting a visual representation of the parser.
9c16d399 8524* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
8525* Tracing:: Tracing the execution of your parser.
8526@end menu
8527
8528@node Understanding
8529@section Understanding Your Parser
8530
8531As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8532Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8533frequent than one would hope), looking at this automaton is required to
8534tune or simply fix a parser. Bison provides two different
35fe0834 8535representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
8536
8537The textual file is generated when the options @option{--report} or
e3fd1dcb 8538@option{--verbose} are specified, see @ref{Invocation, , Invoking
ec3bc396 8539Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
8540the parser implementation file name, and adding @samp{.output}
8541instead. Therefore, if the grammar file is @file{foo.y}, then the
8542parser implementation file is called @file{foo.tab.c} by default. As
8543a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8544
8545The following grammar file, @file{calc.y}, will be used in the sequel:
8546
8547@example
8548%token NUM STR
8549%left '+' '-'
8550%left '*'
8551%%
5e9b6624
AD
8552exp:
8553 exp '+' exp
8554| exp '-' exp
8555| exp '*' exp
8556| exp '/' exp
8557| NUM
8558;
ec3bc396
AD
8559useless: STR;
8560%%
8561@end example
8562
88bce5a2
AD
8563@command{bison} reports:
8564
8565@example
8f0d265e
JD
8566calc.y: warning: 1 nonterminal useless in grammar
8567calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
8568calc.y:11.1-7: warning: nonterminal useless in grammar: useless
8569calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8570calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8571@end example
8572
8573When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8574creates a file @file{calc.output} with contents detailed below. The
8575order of the output and the exact presentation might vary, but the
8576interpretation is the same.
ec3bc396 8577
ec3bc396
AD
8578@noindent
8579@cindex token, useless
8580@cindex useless token
8581@cindex nonterminal, useless
8582@cindex useless nonterminal
8583@cindex rule, useless
8584@cindex useless rule
62243aa5 8585The first section reports useless tokens, nonterminals and rules. Useless
29e20e22
AD
8586nonterminals and rules are removed in order to produce a smaller parser, but
8587useless tokens are preserved, since they might be used by the scanner (note
8588the difference between ``useless'' and ``unused'' below):
ec3bc396
AD
8589
8590@example
29e20e22 8591Nonterminals useless in grammar
ec3bc396
AD
8592 useless
8593
29e20e22 8594Terminals unused in grammar
ec3bc396
AD
8595 STR
8596
29e20e22
AD
8597Rules useless in grammar
8598 6 useless: STR
ec3bc396
AD
8599@end example
8600
8601@noindent
29e20e22
AD
8602The next section lists states that still have conflicts.
8603
8604@example
8605State 8 conflicts: 1 shift/reduce
8606State 9 conflicts: 1 shift/reduce
8607State 10 conflicts: 1 shift/reduce
8608State 11 conflicts: 4 shift/reduce
8609@end example
8610
8611@noindent
8612Then Bison reproduces the exact grammar it used:
ec3bc396
AD
8613
8614@example
8615Grammar
8616
29e20e22
AD
8617 0 $accept: exp $end
8618
8619 1 exp: exp '+' exp
8620 2 | exp '-' exp
8621 3 | exp '*' exp
8622 4 | exp '/' exp
8623 5 | NUM
ec3bc396
AD
8624@end example
8625
8626@noindent
8627and reports the uses of the symbols:
8628
8629@example
d4fca427 8630@group
ec3bc396
AD
8631Terminals, with rules where they appear
8632
88bce5a2 8633$end (0) 0
ec3bc396
AD
8634'*' (42) 3
8635'+' (43) 1
8636'-' (45) 2
8637'/' (47) 4
8638error (256)
8639NUM (258) 5
29e20e22 8640STR (259)
d4fca427 8641@end group
ec3bc396 8642
d4fca427 8643@group
ec3bc396
AD
8644Nonterminals, with rules where they appear
8645
29e20e22 8646$accept (9)
ec3bc396 8647 on left: 0
29e20e22 8648exp (10)
ec3bc396 8649 on left: 1 2 3 4 5, on right: 0 1 2 3 4
d4fca427 8650@end group
ec3bc396
AD
8651@end example
8652
8653@noindent
8654@cindex item
8655@cindex pointed rule
8656@cindex rule, pointed
8657Bison then proceeds onto the automaton itself, describing each state
35880c82
PE
8658with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
8659item is a production rule together with a point (@samp{.}) marking
8660the location of the input cursor.
ec3bc396
AD
8661
8662@example
8663state 0
8664
29e20e22 8665 0 $accept: . exp $end
ec3bc396 8666
29e20e22 8667 NUM shift, and go to state 1
ec3bc396 8668
29e20e22 8669 exp go to state 2
ec3bc396
AD
8670@end example
8671
8672This reads as follows: ``state 0 corresponds to being at the very
8673beginning of the parsing, in the initial rule, right before the start
8674symbol (here, @code{exp}). When the parser returns to this state right
8675after having reduced a rule that produced an @code{exp}, the control
8676flow jumps to state 2. If there is no such transition on a nonterminal
35880c82 8677symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 8678the parse stack, and the control flow jumps to state 1. Any other
742e4900 8679lookahead triggers a syntax error.''
ec3bc396
AD
8680
8681@cindex core, item set
8682@cindex item set core
8683@cindex kernel, item set
8684@cindex item set core
8685Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8686report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8687at the beginning of any rule deriving an @code{exp}. By default Bison
8688reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8689you want to see more detail you can invoke @command{bison} with
35880c82 8690@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
8691
8692@example
8693state 0
8694
29e20e22
AD
8695 0 $accept: . exp $end
8696 1 exp: . exp '+' exp
8697 2 | . exp '-' exp
8698 3 | . exp '*' exp
8699 4 | . exp '/' exp
8700 5 | . NUM
ec3bc396 8701
29e20e22 8702 NUM shift, and go to state 1
ec3bc396 8703
29e20e22 8704 exp go to state 2
ec3bc396
AD
8705@end example
8706
8707@noindent
29e20e22 8708In the state 1@dots{}
ec3bc396
AD
8709
8710@example
8711state 1
8712
29e20e22 8713 5 exp: NUM .
ec3bc396 8714
29e20e22 8715 $default reduce using rule 5 (exp)
ec3bc396
AD
8716@end example
8717
8718@noindent
742e4900 8719the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
8720(@samp{$default}), the parser will reduce it. If it was coming from
8721state 0, then, after this reduction it will return to state 0, and will
8722jump to state 2 (@samp{exp: go to state 2}).
8723
8724@example
8725state 2
8726
29e20e22
AD
8727 0 $accept: exp . $end
8728 1 exp: exp . '+' exp
8729 2 | exp . '-' exp
8730 3 | exp . '*' exp
8731 4 | exp . '/' exp
ec3bc396 8732
29e20e22
AD
8733 $end shift, and go to state 3
8734 '+' shift, and go to state 4
8735 '-' shift, and go to state 5
8736 '*' shift, and go to state 6
8737 '/' shift, and go to state 7
ec3bc396
AD
8738@end example
8739
8740@noindent
8741In state 2, the automaton can only shift a symbol. For instance,
29e20e22 8742because of the item @samp{exp: exp . '+' exp}, if the lookahead is
35880c82 8743@samp{+} it is shifted onto the parse stack, and the automaton
29e20e22 8744jumps to state 4, corresponding to the item @samp{exp: exp '+' . exp}.
35880c82
PE
8745Since there is no default action, any lookahead not listed triggers a syntax
8746error.
ec3bc396 8747
eb45ef3b 8748@cindex accepting state
ec3bc396
AD
8749The state 3 is named the @dfn{final state}, or the @dfn{accepting
8750state}:
8751
8752@example
8753state 3
8754
29e20e22 8755 0 $accept: exp $end .
ec3bc396 8756
29e20e22 8757 $default accept
ec3bc396
AD
8758@end example
8759
8760@noindent
29e20e22
AD
8761the initial rule is completed (the start symbol and the end-of-input were
8762read), the parsing exits successfully.
ec3bc396
AD
8763
8764The interpretation of states 4 to 7 is straightforward, and is left to
8765the reader.
8766
8767@example
8768state 4
8769
29e20e22 8770 1 exp: exp '+' . exp
ec3bc396 8771
29e20e22
AD
8772 NUM shift, and go to state 1
8773
8774 exp go to state 8
ec3bc396 8775
ec3bc396
AD
8776
8777state 5
8778
29e20e22
AD
8779 2 exp: exp '-' . exp
8780
8781 NUM shift, and go to state 1
ec3bc396 8782
29e20e22 8783 exp go to state 9
ec3bc396 8784
ec3bc396
AD
8785
8786state 6
8787
29e20e22 8788 3 exp: exp '*' . exp
ec3bc396 8789
29e20e22
AD
8790 NUM shift, and go to state 1
8791
8792 exp go to state 10
ec3bc396 8793
ec3bc396
AD
8794
8795state 7
8796
29e20e22 8797 4 exp: exp '/' . exp
ec3bc396 8798
29e20e22 8799 NUM shift, and go to state 1
ec3bc396 8800
29e20e22 8801 exp go to state 11
ec3bc396
AD
8802@end example
8803
5a99098d
PE
8804As was announced in beginning of the report, @samp{State 8 conflicts:
88051 shift/reduce}:
ec3bc396
AD
8806
8807@example
8808state 8
8809
29e20e22
AD
8810 1 exp: exp . '+' exp
8811 1 | exp '+' exp .
8812 2 | exp . '-' exp
8813 3 | exp . '*' exp
8814 4 | exp . '/' exp
ec3bc396 8815
29e20e22
AD
8816 '*' shift, and go to state 6
8817 '/' shift, and go to state 7
ec3bc396 8818
29e20e22
AD
8819 '/' [reduce using rule 1 (exp)]
8820 $default reduce using rule 1 (exp)
ec3bc396
AD
8821@end example
8822
742e4900 8823Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8824either shifting (and going to state 7), or reducing rule 1. The
8825conflict means that either the grammar is ambiguous, or the parser lacks
8826information to make the right decision. Indeed the grammar is
8827ambiguous, as, since we did not specify the precedence of @samp{/}, the
8828sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8829NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8830NUM}, which corresponds to reducing rule 1.
8831
eb45ef3b 8832Because in deterministic parsing a single decision can be made, Bison
ec3bc396 8833arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
29e20e22 8834Shift/Reduce Conflicts}. Discarded actions are reported between
ec3bc396
AD
8835square brackets.
8836
8837Note that all the previous states had a single possible action: either
8838shifting the next token and going to the corresponding state, or
8839reducing a single rule. In the other cases, i.e., when shifting
8840@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8841possible, the lookahead is required to select the action. State 8 is
8842one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8843is shifting, otherwise the action is reducing rule 1. In other words,
8844the first two items, corresponding to rule 1, are not eligible when the
742e4900 8845lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8846precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8847with some set of possible lookahead tokens. When run with
8848@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8849
8850@example
8851state 8
8852
29e20e22
AD
8853 1 exp: exp . '+' exp
8854 1 | exp '+' exp . [$end, '+', '-', '/']
8855 2 | exp . '-' exp
8856 3 | exp . '*' exp
8857 4 | exp . '/' exp
8858
8859 '*' shift, and go to state 6
8860 '/' shift, and go to state 7
ec3bc396 8861
29e20e22
AD
8862 '/' [reduce using rule 1 (exp)]
8863 $default reduce using rule 1 (exp)
8864@end example
8865
8866Note however that while @samp{NUM + NUM / NUM} is ambiguous (which results in
8867the conflicts on @samp{/}), @samp{NUM + NUM * NUM} is not: the conflict was
8868solved thanks to associativity and precedence directives. If invoked with
8869@option{--report=solved}, Bison includes information about the solved
8870conflicts in the report:
ec3bc396 8871
29e20e22
AD
8872@example
8873Conflict between rule 1 and token '+' resolved as reduce (%left '+').
8874Conflict between rule 1 and token '-' resolved as reduce (%left '-').
8875Conflict between rule 1 and token '*' resolved as shift ('+' < '*').
ec3bc396
AD
8876@end example
8877
29e20e22 8878
ec3bc396
AD
8879The remaining states are similar:
8880
8881@example
d4fca427 8882@group
ec3bc396
AD
8883state 9
8884
29e20e22
AD
8885 1 exp: exp . '+' exp
8886 2 | exp . '-' exp
8887 2 | exp '-' exp .
8888 3 | exp . '*' exp
8889 4 | exp . '/' exp
ec3bc396 8890
29e20e22
AD
8891 '*' shift, and go to state 6
8892 '/' shift, and go to state 7
ec3bc396 8893
29e20e22
AD
8894 '/' [reduce using rule 2 (exp)]
8895 $default reduce using rule 2 (exp)
d4fca427 8896@end group
ec3bc396 8897
d4fca427 8898@group
ec3bc396
AD
8899state 10
8900
29e20e22
AD
8901 1 exp: exp . '+' exp
8902 2 | exp . '-' exp
8903 3 | exp . '*' exp
8904 3 | exp '*' exp .
8905 4 | exp . '/' exp
ec3bc396 8906
29e20e22 8907 '/' shift, and go to state 7
ec3bc396 8908
29e20e22
AD
8909 '/' [reduce using rule 3 (exp)]
8910 $default reduce using rule 3 (exp)
d4fca427 8911@end group
ec3bc396 8912
d4fca427 8913@group
ec3bc396
AD
8914state 11
8915
29e20e22
AD
8916 1 exp: exp . '+' exp
8917 2 | exp . '-' exp
8918 3 | exp . '*' exp
8919 4 | exp . '/' exp
8920 4 | exp '/' exp .
8921
8922 '+' shift, and go to state 4
8923 '-' shift, and go to state 5
8924 '*' shift, and go to state 6
8925 '/' shift, and go to state 7
8926
8927 '+' [reduce using rule 4 (exp)]
8928 '-' [reduce using rule 4 (exp)]
8929 '*' [reduce using rule 4 (exp)]
8930 '/' [reduce using rule 4 (exp)]
8931 $default reduce using rule 4 (exp)
d4fca427 8932@end group
ec3bc396
AD
8933@end example
8934
8935@noindent
fa7e68c3
PE
8936Observe that state 11 contains conflicts not only due to the lack of
8937precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8938@samp{*}, but also because the
ec3bc396
AD
8939associativity of @samp{/} is not specified.
8940
9c16d399
TR
8941Note that Bison may also produce an HTML version of this output, via an XML
8942file and XSLT processing (@pxref{Xml}).
8943
fc4fdd62
TR
8944@c ================================================= Graphical Representation
8945
8946@node Graphviz
8947@section Visualizing Your Parser
8948@cindex dot
8949
8950As another means to gain better understanding of the shift/reduce
8951automaton corresponding to the Bison parser, a DOT file can be generated. Note
8952that debugging a real grammar with this is tedious at best, and impractical
8953most of the times, because the generated files are huge (the generation of
8954a PDF or PNG file from it will take very long, and more often than not it will
8955fail due to memory exhaustion). This option was rather designed for beginners,
8956to help them understand LR parsers.
8957
bfdcc3a0
AD
8958This file is generated when the @option{--graph} option is specified
8959(@pxref{Invocation, , Invoking Bison}). Its name is made by removing
fc4fdd62
TR
8960@samp{.tab.c} or @samp{.c} from the parser implementation file name, and
8961adding @samp{.dot} instead. If the grammar file is @file{foo.y}, the
8962Graphviz output file is called @file{foo.dot}.
8963
8964The following grammar file, @file{rr.y}, will be used in the sequel:
8965
8966@example
8967%%
8968@group
8969exp: a ";" | b ".";
8970a: "0";
8971b: "0";
8972@end group
8973@end example
8974
8975The graphical output is very similar to the textual one, and as such it is
8976easier understood by making direct comparisons between them. See
8977@ref{Debugging, , Debugging Your Parser} for a detailled analysis of the
8978textual report.
8979
8980@subheading Graphical Representation of States
8981
8982The items (pointed rules) for each state are grouped together in graph nodes.
8983Their numbering is the same as in the verbose file. See the following points,
8984about transitions, for examples
8985
8986When invoked with @option{--report=lookaheads}, the lookahead tokens, when
8987needed, are shown next to the relevant rule between square brackets as a
8988comma separated list. This is the case in the figure for the representation of
8989reductions, below.
8990
8991@sp 1
8992
8993The transitions are represented as directed edges between the current and
8994the target states.
8995
8996@subheading Graphical Representation of Shifts
8997
8998Shifts are shown as solid arrows, labelled with the lookahead token for that
8999shift. The following describes a reduction in the @file{rr.output} file:
9000
9001@example
9002@group
9003state 3
9004
9005 1 exp: a . ";"
9006
9007 ";" shift, and go to state 6
9008@end group
9009@end example
9010
9011A Graphviz rendering of this portion of the graph could be:
9012
9013@center @image{figs/example-shift, 100pt}
9014
9015@subheading Graphical Representation of Reductions
9016
9017Reductions are shown as solid arrows, leading to a diamond-shaped node
9018bearing the number of the reduction rule. The arrow is labelled with the
9019appropriate comma separated lookahead tokens. If the reduction is the default
9020action for the given state, there is no such label.
9021
9022This is how reductions are represented in the verbose file @file{rr.output}:
9023@example
9024state 1
9025
9026 3 a: "0" . [";"]
9027 4 b: "0" . ["."]
9028
9029 "." reduce using rule 4 (b)
9030 $default reduce using rule 3 (a)
9031@end example
9032
9033A Graphviz rendering of this portion of the graph could be:
9034
9035@center @image{figs/example-reduce, 120pt}
9036
9037When unresolved conflicts are present, because in deterministic parsing
9038a single decision can be made, Bison can arbitrarily choose to disable a
9039reduction, see @ref{Shift/Reduce, , Shift/Reduce Conflicts}. Discarded actions
9040are distinguished by a red filling color on these nodes, just like how they are
9041reported between square brackets in the verbose file.
9042
9043The reduction corresponding to the rule number 0 is the acceptation state. It
9044is shown as a blue diamond, labelled "Acc".
9045
9046@subheading Graphical representation of go tos
9047
9048The @samp{go to} jump transitions are represented as dotted lines bearing
9049the name of the rule being jumped to.
9050
9c16d399
TR
9051Note that a DOT file may also be produced via an XML file and XSLT
9052processing (@pxref{Xml}).
9053
9054@c ================================================= XML
9055
9056@node Xml
9057@section Visualizing your parser in multiple formats
9058@cindex xml
9059
9060Bison supports two major report formats: textual output
9061(@pxref{Understanding}) when invoked with option @option{--verbose}, and DOT
9062(@pxref{Graphviz}) when invoked with option @option{--graph}. However,
9063another alternative is to output an XML file that may then be, with
9064@command{xsltproc}, rendered as either a raw text format equivalent to the
9065verbose file, or as an HTML version of the same file, with clickable
9066transitions, or even as a DOT. The @file{.output} and DOT files obtained via
be3517b0
TR
9067XSLT have no difference whatsoever with those obtained by invoking
9068@command{bison} with options @option{--verbose} or @option{--graph}.
9c16d399
TR
9069
9070The textual file is generated when the options @option{-x} or
9071@option{--xml[=FILE]} are specified, see @ref{Invocation,,Invoking Bison}.
9072If not specified, its name is made by removing @samp{.tab.c} or @samp{.c}
9073from the parser implementation file name, and adding @samp{.xml} instead.
9074For instance, if the grammar file is @file{foo.y}, the default XML output
9075file is @file{foo.xml}.
9076
9077Bison ships with a @file{data/xslt} directory, containing XSL Transformation
9078files to apply to the XML file. Their names are non-ambiguous:
9079
9080@table @file
9081@item xml2dot.xsl
be3517b0 9082Used to output a copy of the DOT visualization of the automaton.
9c16d399
TR
9083@item xml2text.xsl
9084Used to output a copy of the .output file.
9085@item xml2xhtml.xsl
9086Used to output an xhtml enhancement of the .output file.
9087@end table
9088
9089Sample usage (requires @code{xsltproc}):
9090@example
9091$ bison -x input.y
9092@group
9093$ bison --print-datadir
9094/usr/local/share/bison
9095@end group
9096$ xsltproc /usr/local/share/bison/xslt/xml2xhtml.xsl input.xml > input.html
9097@end example
9098
fc4fdd62 9099@c ================================================= Tracing
ec3bc396
AD
9100
9101@node Tracing
9102@section Tracing Your Parser
bfa74976
RS
9103@findex yydebug
9104@cindex debugging
9105@cindex tracing the parser
9106
93c150b6
AD
9107When a Bison grammar compiles properly but parses ``incorrectly'', the
9108@code{yydebug} parser-trace feature helps figuring out why.
9109
9110@menu
9111* Enabling Traces:: Activating run-time trace support
9112* Mfcalc Traces:: Extending @code{mfcalc} to support traces
9113* The YYPRINT Macro:: Obsolete interface for semantic value reports
9114@end menu
bfa74976 9115
93c150b6
AD
9116@node Enabling Traces
9117@subsection Enabling Traces
3ded9a63
AD
9118There are several means to enable compilation of trace facilities:
9119
9120@table @asis
9121@item the macro @code{YYDEBUG}
9122@findex YYDEBUG
9123Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 9124parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
9125@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
9126YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
9127Prologue}).
9128
e6ae99fe 9129If the @code{%define} variable @code{api.prefix} is used (@pxref{Multiple
e358222b
AD
9130Parsers, ,Multiple Parsers in the Same Program}), for instance @samp{%define
9131api.prefix x}, then if @code{CDEBUG} is defined, its value controls the
5a05f42e
AD
9132tracing feature (enabled if and only if nonzero); otherwise tracing is
9133enabled if and only if @code{YYDEBUG} is nonzero.
e358222b
AD
9134
9135@item the option @option{-t} (POSIX Yacc compliant)
9136@itemx the option @option{--debug} (Bison extension)
9137Use the @samp{-t} option when you run Bison (@pxref{Invocation, ,Invoking
9138Bison}). With @samp{%define api.prefix c}, it defines @code{CDEBUG} to 1,
9139otherwise it defines @code{YYDEBUG} to 1.
3ded9a63
AD
9140
9141@item the directive @samp{%debug}
9142@findex %debug
fa819509
AD
9143Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
9144Summary}). This Bison extension is maintained for backward
9145compatibility with previous versions of Bison.
9146
9147@item the variable @samp{parse.trace}
9148@findex %define parse.trace
35c1e5f0
JD
9149Add the @samp{%define parse.trace} directive (@pxref{%define
9150Summary,,parse.trace}), or pass the @option{-Dparse.trace} option
fa819509 9151(@pxref{Bison Options}). This is a Bison extension, which is especially
35c1e5f0
JD
9152useful for languages that don't use a preprocessor. Unless POSIX and Yacc
9153portability matter to you, this is the preferred solution.
3ded9a63
AD
9154@end table
9155
fa819509 9156We suggest that you always enable the trace option so that debugging is
3ded9a63 9157always possible.
bfa74976 9158
93c150b6 9159@findex YYFPRINTF
02a81e05 9160The trace facility outputs messages with macro calls of the form
e2742e46 9161@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 9162@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
9163arguments. If you define @code{YYDEBUG} to a nonzero value but do not
9164define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 9165and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
9166
9167Once you have compiled the program with trace facilities, the way to
9168request a trace is to store a nonzero value in the variable @code{yydebug}.
9169You can do this by making the C code do it (in @code{main}, perhaps), or
9170you can alter the value with a C debugger.
9171
9172Each step taken by the parser when @code{yydebug} is nonzero produces a
9173line or two of trace information, written on @code{stderr}. The trace
9174messages tell you these things:
9175
9176@itemize @bullet
9177@item
9178Each time the parser calls @code{yylex}, what kind of token was read.
9179
9180@item
9181Each time a token is shifted, the depth and complete contents of the
9182state stack (@pxref{Parser States}).
9183
9184@item
9185Each time a rule is reduced, which rule it is, and the complete contents
9186of the state stack afterward.
9187@end itemize
9188
93c150b6
AD
9189To make sense of this information, it helps to refer to the automaton
9190description file (@pxref{Understanding, ,Understanding Your Parser}).
9191This file shows the meaning of each state in terms of
704a47c4
AD
9192positions in various rules, and also what each state will do with each
9193possible input token. As you read the successive trace messages, you
9194can see that the parser is functioning according to its specification in
9195the listing file. Eventually you will arrive at the place where
9196something undesirable happens, and you will see which parts of the
9197grammar are to blame.
bfa74976 9198
93c150b6 9199The parser implementation file is a C/C++/Java program and you can use
ff7571c0
JD
9200debuggers on it, but it's not easy to interpret what it is doing. The
9201parser function is a finite-state machine interpreter, and aside from
9202the actions it executes the same code over and over. Only the values
9203of variables show where in the grammar it is working.
bfa74976 9204
93c150b6
AD
9205@node Mfcalc Traces
9206@subsection Enabling Debug Traces for @code{mfcalc}
9207
9208The debugging information normally gives the token type of each token read,
9209but not its semantic value. The @code{%printer} directive allows specify
9210how semantic values are reported, see @ref{Printer Decl, , Printing
9211Semantic Values}. For backward compatibility, Yacc like C parsers may also
9212use the @code{YYPRINT} (@pxref{The YYPRINT Macro, , The @code{YYPRINT}
9213Macro}), but its use is discouraged.
9214
9215As a demonstration of @code{%printer}, consider the multi-function
9216calculator, @code{mfcalc} (@pxref{Multi-function Calc}). To enable run-time
9217traces, and semantic value reports, insert the following directives in its
9218prologue:
9219
9220@comment file: mfcalc.y: 2
9221@example
9222/* Generate the parser description file. */
9223%verbose
9224/* Enable run-time traces (yydebug). */
9225%define parse.trace
9226
9227/* Formatting semantic values. */
9228%printer @{ fprintf (yyoutput, "%s", $$->name); @} VAR;
9229%printer @{ fprintf (yyoutput, "%s()", $$->name); @} FNCT;
9230%printer @{ fprintf (yyoutput, "%g", $$); @} <val>;
9231@end example
9232
9233The @code{%define} directive instructs Bison to generate run-time trace
9234support. Then, activation of these traces is controlled at run-time by the
9235@code{yydebug} variable, which is disabled by default. Because these traces
9236will refer to the ``states'' of the parser, it is helpful to ask for the
9237creation of a description of that parser; this is the purpose of (admittedly
9238ill-named) @code{%verbose} directive.
9239
9240The set of @code{%printer} directives demonstrates how to format the
9241semantic value in the traces. Note that the specification can be done
9242either on the symbol type (e.g., @code{VAR} or @code{FNCT}), or on the type
9243tag: since @code{<val>} is the type for both @code{NUM} and @code{exp}, this
9244printer will be used for them.
9245
9246Here is a sample of the information provided by run-time traces. The traces
9247are sent onto standard error.
9248
9249@example
9250$ @kbd{echo 'sin(1-1)' | ./mfcalc -p}
9251Starting parse
9252Entering state 0
9253Reducing stack by rule 1 (line 34):
9254-> $$ = nterm input ()
9255Stack now 0
9256Entering state 1
9257@end example
9258
9259@noindent
9260This first batch shows a specific feature of this grammar: the first rule
9261(which is in line 34 of @file{mfcalc.y} can be reduced without even having
9262to look for the first token. The resulting left-hand symbol (@code{$$}) is
9263a valueless (@samp{()}) @code{input} non terminal (@code{nterm}).
9264
9265Then the parser calls the scanner.
9266@example
9267Reading a token: Next token is token FNCT (sin())
9268Shifting token FNCT (sin())
9269Entering state 6
9270@end example
9271
9272@noindent
9273That token (@code{token}) is a function (@code{FNCT}) whose value is
9274@samp{sin} as formatted per our @code{%printer} specification: @samp{sin()}.
9275The parser stores (@code{Shifting}) that token, and others, until it can do
9276something about it.
9277
9278@example
9279Reading a token: Next token is token '(' ()
9280Shifting token '(' ()
9281Entering state 14
9282Reading a token: Next token is token NUM (1.000000)
9283Shifting token NUM (1.000000)
9284Entering state 4
9285Reducing stack by rule 6 (line 44):
9286 $1 = token NUM (1.000000)
9287-> $$ = nterm exp (1.000000)
9288Stack now 0 1 6 14
9289Entering state 24
9290@end example
9291
9292@noindent
9293The previous reduction demonstrates the @code{%printer} directive for
9294@code{<val>}: both the token @code{NUM} and the resulting non-terminal
9295@code{exp} have @samp{1} as value.
9296
9297@example
9298Reading a token: Next token is token '-' ()
9299Shifting token '-' ()
9300Entering state 17
9301Reading a token: Next token is token NUM (1.000000)
9302Shifting token NUM (1.000000)
9303Entering state 4
9304Reducing stack by rule 6 (line 44):
9305 $1 = token NUM (1.000000)
9306-> $$ = nterm exp (1.000000)
9307Stack now 0 1 6 14 24 17
9308Entering state 26
9309Reading a token: Next token is token ')' ()
9310Reducing stack by rule 11 (line 49):
9311 $1 = nterm exp (1.000000)
9312 $2 = token '-' ()
9313 $3 = nterm exp (1.000000)
9314-> $$ = nterm exp (0.000000)
9315Stack now 0 1 6 14
9316Entering state 24
9317@end example
9318
9319@noindent
9320The rule for the subtraction was just reduced. The parser is about to
9321discover the end of the call to @code{sin}.
9322
9323@example
9324Next token is token ')' ()
9325Shifting token ')' ()
9326Entering state 31
9327Reducing stack by rule 9 (line 47):
9328 $1 = token FNCT (sin())
9329 $2 = token '(' ()
9330 $3 = nterm exp (0.000000)
9331 $4 = token ')' ()
9332-> $$ = nterm exp (0.000000)
9333Stack now 0 1
9334Entering state 11
9335@end example
9336
9337@noindent
9338Finally, the end-of-line allow the parser to complete the computation, and
9339display its result.
9340
9341@example
9342Reading a token: Next token is token '\n' ()
9343Shifting token '\n' ()
9344Entering state 22
9345Reducing stack by rule 4 (line 40):
9346 $1 = nterm exp (0.000000)
9347 $2 = token '\n' ()
9348@result{} 0
9349-> $$ = nterm line ()
9350Stack now 0 1
9351Entering state 10
9352Reducing stack by rule 2 (line 35):
9353 $1 = nterm input ()
9354 $2 = nterm line ()
9355-> $$ = nterm input ()
9356Stack now 0
9357Entering state 1
9358@end example
9359
9360The parser has returned into state 1, in which it is waiting for the next
9361expression to evaluate, or for the end-of-file token, which causes the
9362completion of the parsing.
9363
9364@example
9365Reading a token: Now at end of input.
9366Shifting token $end ()
9367Entering state 2
9368Stack now 0 1 2
9369Cleanup: popping token $end ()
9370Cleanup: popping nterm input ()
9371@end example
9372
9373
9374@node The YYPRINT Macro
9375@subsection The @code{YYPRINT} Macro
9376
bfa74976 9377@findex YYPRINT
93c150b6
AD
9378Before @code{%printer} support, semantic values could be displayed using the
9379@code{YYPRINT} macro, which works only for terminal symbols and only with
9380the @file{yacc.c} skeleton.
9381
9382@deffn {Macro} YYPRINT (@var{stream}, @var{token}, @var{value});
9383@findex YYPRINT
9384If you define @code{YYPRINT}, it should take three arguments. The parser
9385will pass a standard I/O stream, the numeric code for the token type, and
9386the token value (from @code{yylval}).
9387
9388For @file{yacc.c} only. Obsoleted by @code{%printer}.
9389@end deffn
bfa74976
RS
9390
9391Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 9392calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976 9393
c93f22fc 9394@example
38a92d50
PE
9395%@{
9396 static void print_token_value (FILE *, int, YYSTYPE);
93c150b6
AD
9397 #define YYPRINT(File, Type, Value) \
9398 print_token_value (File, Type, Value)
38a92d50
PE
9399%@}
9400
9401@dots{} %% @dots{} %% @dots{}
bfa74976
RS
9402
9403static void
831d3c99 9404print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
9405@{
9406 if (type == VAR)
d3c4e709 9407 fprintf (file, "%s", value.tptr->name);
bfa74976 9408 else if (type == NUM)
d3c4e709 9409 fprintf (file, "%d", value.val);
bfa74976 9410@}
c93f22fc 9411@end example
bfa74976 9412
ec3bc396
AD
9413@c ================================================= Invoking Bison
9414
342b8b6e 9415@node Invocation
bfa74976
RS
9416@chapter Invoking Bison
9417@cindex invoking Bison
9418@cindex Bison invocation
9419@cindex options for invoking Bison
9420
9421The usual way to invoke Bison is as follows:
9422
9423@example
9424bison @var{infile}
9425@end example
9426
9427Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
9428@samp{.y}. The parser implementation file's name is made by replacing
9429the @samp{.y} with @samp{.tab.c} and removing any leading directory.
9430Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
9431the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
9432also possible, in case you are writing C++ code instead of C in your
9433grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
9434output files will take an extension like the given one as input
9435(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
9436feature takes effect with all options that manipulate file names like
234a3be3
AD
9437@samp{-o} or @samp{-d}.
9438
9439For example :
9440
9441@example
9442bison -d @var{infile.yxx}
9443@end example
84163231 9444@noindent
72d2299c 9445will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
9446
9447@example
b56471a6 9448bison -d -o @var{output.c++} @var{infile.y}
234a3be3 9449@end example
84163231 9450@noindent
234a3be3
AD
9451will produce @file{output.c++} and @file{outfile.h++}.
9452
8a4281b9 9453For compatibility with POSIX, the standard Bison
397ec073
PE
9454distribution also contains a shell script called @command{yacc} that
9455invokes Bison with the @option{-y} option.
9456
bfa74976 9457@menu
13863333 9458* Bison Options:: All the options described in detail,
c827f760 9459 in alphabetical order by short options.
bfa74976 9460* Option Cross Key:: Alphabetical list of long options.
93dd49ab 9461* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
9462@end menu
9463
342b8b6e 9464@node Bison Options
bfa74976
RS
9465@section Bison Options
9466
9467Bison supports both traditional single-letter options and mnemonic long
9468option names. Long option names are indicated with @samp{--} instead of
9469@samp{-}. Abbreviations for option names are allowed as long as they
9470are unique. When a long option takes an argument, like
9471@samp{--file-prefix}, connect the option name and the argument with
9472@samp{=}.
9473
9474Here is a list of options that can be used with Bison, alphabetized by
9475short option. It is followed by a cross key alphabetized by long
9476option.
9477
89cab50d
AD
9478@c Please, keep this ordered as in `bison --help'.
9479@noindent
9480Operations modes:
9481@table @option
9482@item -h
9483@itemx --help
9484Print a summary of the command-line options to Bison and exit.
bfa74976 9485
89cab50d
AD
9486@item -V
9487@itemx --version
9488Print the version number of Bison and exit.
bfa74976 9489
f7ab6a50
PE
9490@item --print-localedir
9491Print the name of the directory containing locale-dependent data.
9492
a0de5091
JD
9493@item --print-datadir
9494Print the name of the directory containing skeletons and XSLT.
9495
89cab50d
AD
9496@item -y
9497@itemx --yacc
ff7571c0
JD
9498Act more like the traditional Yacc command. This can cause different
9499diagnostics to be generated, and may change behavior in other minor
9500ways. Most importantly, imitate Yacc's output file name conventions,
9501so that the parser implementation file is called @file{y.tab.c}, and
9502the other outputs are called @file{y.output} and @file{y.tab.h}.
9503Also, if generating a deterministic parser in C, generate
9504@code{#define} statements in addition to an @code{enum} to associate
9505token numbers with token names. Thus, the following shell script can
9506substitute for Yacc, and the Bison distribution contains such a script
9507for compatibility with POSIX:
bfa74976 9508
89cab50d 9509@example
397ec073 9510#! /bin/sh
26e06a21 9511bison -y "$@@"
89cab50d 9512@end example
54662697
PE
9513
9514The @option{-y}/@option{--yacc} option is intended for use with
9515traditional Yacc grammars. If your grammar uses a Bison extension
9516like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
9517this option is specified.
9518
1d5b3c08
JD
9519@item -W [@var{category}]
9520@itemx --warnings[=@var{category}]
118d4978
AD
9521Output warnings falling in @var{category}. @var{category} can be one
9522of:
9523@table @code
9524@item midrule-values
8e55b3aa
JD
9525Warn about mid-rule values that are set but not used within any of the actions
9526of the parent rule.
9527For example, warn about unused @code{$2} in:
118d4978
AD
9528
9529@example
9530exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
9531@end example
9532
8e55b3aa
JD
9533Also warn about mid-rule values that are used but not set.
9534For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
9535
9536@example
5e9b6624 9537exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
118d4978
AD
9538@end example
9539
9540These warnings are not enabled by default since they sometimes prove to
9541be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 9542@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 9543
118d4978 9544@item yacc
8a4281b9 9545Incompatibilities with POSIX Yacc.
118d4978 9546
786743d5
JD
9547@item conflicts-sr
9548@itemx conflicts-rr
9549S/R and R/R conflicts. These warnings are enabled by default. However, if
9550the @code{%expect} or @code{%expect-rr} directive is specified, an
9551unexpected number of conflicts is an error, and an expected number of
9552conflicts is not reported, so @option{-W} and @option{--warning} then have
9553no effect on the conflict report.
9554
518e8830
AD
9555@item deprecated
9556Deprecated constructs whose support will be removed in future versions of
9557Bison.
9558
c39014ae
JD
9559@item other
9560All warnings not categorized above. These warnings are enabled by default.
9561
9562This category is provided merely for the sake of completeness. Future
9563releases of Bison may move warnings from this category to new, more specific
9564categories.
9565
118d4978 9566@item all
8e55b3aa 9567All the warnings.
118d4978 9568@item none
8e55b3aa 9569Turn off all the warnings.
118d4978 9570@item error
1048a1c9 9571See @option{-Werror}, below.
118d4978
AD
9572@end table
9573
9574A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 9575instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 9576POSIX Yacc incompatibilities.
1048a1c9
AD
9577
9578@item -Werror[=@var{category}]
9579@itemx -Wno-error[=@var{category}]
9580Enable warnings falling in @var{category}, and treat them as errors. If no
9581@var{category} is given, it defaults to making all enabled warnings into errors.
9582
9583@var{category} is the same as for @option{--warnings}, with the exception that
9584it may not be prefixed with @samp{no-} (see above).
9585
9586Prefixed with @samp{no}, it deactivates the error treatment for this
9587@var{category}. However, the warning itself won't be disabled, or enabled, by
9588this option.
9589
9590Note that the precedence of the @samp{=} and @samp{,} operators is such that
9591the following commands are @emph{not} equivalent, as the first will not treat
9592S/R conflicts as errors.
9593
9594@example
9595$ bison -Werror=yacc,conflicts-sr input.y
9596$ bison -Werror=yacc,error=conflicts-sr input.y
9597@end example
89cab50d
AD
9598@end table
9599
9600@noindent
9601Tuning the parser:
9602
9603@table @option
9604@item -t
9605@itemx --debug
ff7571c0
JD
9606In the parser implementation file, define the macro @code{YYDEBUG} to
96071 if it is not already defined, so that the debugging facilities are
9608compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 9609
58697c6d
AD
9610@item -D @var{name}[=@var{value}]
9611@itemx --define=@var{name}[=@var{value}]
17aed602 9612@itemx -F @var{name}[=@var{value}]
de5ab940
JD
9613@itemx --force-define=@var{name}[=@var{value}]
9614Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
35c1e5f0 9615(@pxref{%define Summary}) except that Bison processes multiple
de5ab940
JD
9616definitions for the same @var{name} as follows:
9617
9618@itemize
9619@item
0b6d43c5
JD
9620Bison quietly ignores all command-line definitions for @var{name} except
9621the last.
de5ab940 9622@item
0b6d43c5
JD
9623If that command-line definition is specified by a @code{-D} or
9624@code{--define}, Bison reports an error for any @code{%define}
9625definition for @var{name}.
de5ab940 9626@item
0b6d43c5
JD
9627If that command-line definition is specified by a @code{-F} or
9628@code{--force-define} instead, Bison quietly ignores all @code{%define}
9629definitions for @var{name}.
9630@item
9631Otherwise, Bison reports an error if there are multiple @code{%define}
9632definitions for @var{name}.
de5ab940
JD
9633@end itemize
9634
9635You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
9636make files unless you are confident that it is safe to quietly ignore
9637any conflicting @code{%define} that may be added to the grammar file.
58697c6d 9638
0e021770
PE
9639@item -L @var{language}
9640@itemx --language=@var{language}
9641Specify the programming language for the generated parser, as if
9642@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 9643Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 9644@var{language} is case-insensitive.
0e021770 9645
ed4d67dc
JD
9646This option is experimental and its effect may be modified in future
9647releases.
9648
89cab50d 9649@item --locations
d8988b2f 9650Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
9651
9652@item -p @var{prefix}
9653@itemx --name-prefix=@var{prefix}
4b3847c3
AD
9654Pretend that @code{%name-prefix "@var{prefix}"} was specified (@pxref{Decl
9655Summary}). Obsoleted by @code{-Dapi.prefix=@var{prefix}}. @xref{Multiple
9656Parsers, ,Multiple Parsers in the Same Program}.
bfa74976
RS
9657
9658@item -l
9659@itemx --no-lines
ff7571c0
JD
9660Don't put any @code{#line} preprocessor commands in the parser
9661implementation file. Ordinarily Bison puts them in the parser
9662implementation file so that the C compiler and debuggers will
9663associate errors with your source file, the grammar file. This option
9664causes them to associate errors with the parser implementation file,
9665treating it as an independent source file in its own right.
bfa74976 9666
e6e704dc
JD
9667@item -S @var{file}
9668@itemx --skeleton=@var{file}
a7867f53 9669Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
9670(@pxref{Decl Summary, , Bison Declaration Summary}).
9671
ed4d67dc
JD
9672@c You probably don't need this option unless you are developing Bison.
9673@c You should use @option{--language} if you want to specify the skeleton for a
9674@c different language, because it is clearer and because it will always
9675@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 9676
a7867f53
JD
9677If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
9678file in the Bison installation directory.
9679If it does, @var{file} is an absolute file name or a file name relative to the
9680current working directory.
9681This is similar to how most shells resolve commands.
9682
89cab50d
AD
9683@item -k
9684@itemx --token-table
d8988b2f 9685Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 9686@end table
bfa74976 9687
89cab50d
AD
9688@noindent
9689Adjust the output:
bfa74976 9690
89cab50d 9691@table @option
8e55b3aa 9692@item --defines[=@var{file}]
d8988b2f 9693Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 9694file containing macro definitions for the token type names defined in
4bfd5e4e 9695the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 9696
8e55b3aa
JD
9697@item -d
9698This is the same as @code{--defines} except @code{-d} does not accept a
9699@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
9700with other short options.
342b8b6e 9701
89cab50d
AD
9702@item -b @var{file-prefix}
9703@itemx --file-prefix=@var{prefix}
9c437126 9704Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 9705for all Bison output file names. @xref{Decl Summary}.
bfa74976 9706
ec3bc396
AD
9707@item -r @var{things}
9708@itemx --report=@var{things}
9709Write an extra output file containing verbose description of the comma
9710separated list of @var{things} among:
9711
9712@table @code
9713@item state
9714Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 9715parser's automaton.
ec3bc396 9716
57f8bd8d
AD
9717@item itemset
9718Implies @code{state} and augments the description of the automaton with
9719the full set of items for each state, instead of its core only.
9720
742e4900 9721@item lookahead
ec3bc396 9722Implies @code{state} and augments the description of the automaton with
742e4900 9723each rule's lookahead set.
ec3bc396 9724
57f8bd8d
AD
9725@item solved
9726Implies @code{state}. Explain how conflicts were solved thanks to
9727precedence and associativity directives.
9728
9729@item all
9730Enable all the items.
9731
9732@item none
9733Do not generate the report.
ec3bc396
AD
9734@end table
9735
1bb2bd75
JD
9736@item --report-file=@var{file}
9737Specify the @var{file} for the verbose description.
9738
bfa74976
RS
9739@item -v
9740@itemx --verbose
9c437126 9741Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 9742file containing verbose descriptions of the grammar and
72d2299c 9743parser. @xref{Decl Summary}.
bfa74976 9744
fa4d969f
PE
9745@item -o @var{file}
9746@itemx --output=@var{file}
ff7571c0 9747Specify the @var{file} for the parser implementation file.
bfa74976 9748
fa4d969f 9749The other output files' names are constructed from @var{file} as
d8988b2f 9750described under the @samp{-v} and @samp{-d} options.
342b8b6e 9751
a7c09cba 9752@item -g [@var{file}]
8e55b3aa 9753@itemx --graph[=@var{file}]
eb45ef3b 9754Output a graphical representation of the parser's
35fe0834 9755automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 9756@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
9757@code{@var{file}} is optional.
9758If omitted and the grammar file is @file{foo.y}, the output file will be
9759@file{foo.dot}.
59da312b 9760
a7c09cba 9761@item -x [@var{file}]
8e55b3aa 9762@itemx --xml[=@var{file}]
eb45ef3b 9763Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 9764@code{@var{file}} is optional.
59da312b
JD
9765If omitted and the grammar file is @file{foo.y}, the output file will be
9766@file{foo.xml}.
9767(The current XML schema is experimental and may evolve.
9768More user feedback will help to stabilize it.)
bfa74976
RS
9769@end table
9770
342b8b6e 9771@node Option Cross Key
bfa74976
RS
9772@section Option Cross Key
9773
9774Here is a list of options, alphabetized by long option, to help you find
de5ab940 9775the corresponding short option and directive.
bfa74976 9776
de5ab940 9777@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 9778@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 9779@include cross-options.texi
aa08666d 9780@end multitable
bfa74976 9781
93dd49ab
PE
9782@node Yacc Library
9783@section Yacc Library
9784
9785The Yacc library contains default implementations of the
9786@code{yyerror} and @code{main} functions. These default
8a4281b9 9787implementations are normally not useful, but POSIX requires
93dd49ab
PE
9788them. To use the Yacc library, link your program with the
9789@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 9790library is distributed under the terms of the GNU General
93dd49ab
PE
9791Public License (@pxref{Copying}).
9792
9793If you use the Yacc library's @code{yyerror} function, you should
9794declare @code{yyerror} as follows:
9795
9796@example
9797int yyerror (char const *);
9798@end example
9799
9800Bison ignores the @code{int} value returned by this @code{yyerror}.
9801If you use the Yacc library's @code{main} function, your
9802@code{yyparse} function should have the following type signature:
9803
9804@example
9805int yyparse (void);
9806@end example
9807
12545799
AD
9808@c ================================================= C++ Bison
9809
8405b70c
PB
9810@node Other Languages
9811@chapter Parsers Written In Other Languages
12545799
AD
9812
9813@menu
9814* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 9815* Java Parsers:: The interface to generate Java parser classes
12545799
AD
9816@end menu
9817
9818@node C++ Parsers
9819@section C++ Parsers
9820
9821@menu
9822* C++ Bison Interface:: Asking for C++ parser generation
9823* C++ Semantic Values:: %union vs. C++
9824* C++ Location Values:: The position and location classes
9825* C++ Parser Interface:: Instantiating and running the parser
9826* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 9827* A Complete C++ Example:: Demonstrating their use
12545799
AD
9828@end menu
9829
9830@node C++ Bison Interface
9831@subsection C++ Bison Interface
ed4d67dc 9832@c - %skeleton "lalr1.cc"
12545799
AD
9833@c - Always pure
9834@c - initial action
9835
eb45ef3b 9836The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
9837@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
9838@option{--skeleton=lalr1.cc}.
e6e704dc 9839@xref{Decl Summary}.
0e021770 9840
793fbca5
JD
9841When run, @command{bison} will create several entities in the @samp{yy}
9842namespace.
67501061 9843@findex %define api.namespace
35c1e5f0
JD
9844Use the @samp{%define api.namespace} directive to change the namespace name,
9845see @ref{%define Summary,,api.namespace}. The various classes are generated
9846in the following files:
aa08666d 9847
12545799
AD
9848@table @file
9849@item position.hh
9850@itemx location.hh
db8ab2be 9851The definition of the classes @code{position} and @code{location}, used for
f6b561d9
AD
9852location tracking when enabled. These files are not generated if the
9853@code{%define} variable @code{api.location.type} is defined. @xref{C++
9854Location Values}.
12545799
AD
9855
9856@item stack.hh
9857An auxiliary class @code{stack} used by the parser.
9858
fa4d969f
PE
9859@item @var{file}.hh
9860@itemx @var{file}.cc
ff7571c0 9861(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
9862declaration and implementation of the C++ parser class. The basename
9863and extension of these two files follow the same rules as with regular C
9864parsers (@pxref{Invocation}).
12545799 9865
cd8b5791
AD
9866The header is @emph{mandatory}; you must either pass
9867@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
9868@samp{%defines} directive.
9869@end table
9870
9871All these files are documented using Doxygen; run @command{doxygen}
9872for a complete and accurate documentation.
9873
9874@node C++ Semantic Values
9875@subsection C++ Semantic Values
9876@c - No objects in unions
178e123e 9877@c - YYSTYPE
12545799
AD
9878@c - Printer and destructor
9879
3cdc21cf
AD
9880Bison supports two different means to handle semantic values in C++. One is
9881alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
9882practitioners know, unions are inconvenient in C++, therefore another
9883approach is provided, based on variants (@pxref{C++ Variants}).
9884
9885@menu
9886* C++ Unions:: Semantic values cannot be objects
9887* C++ Variants:: Using objects as semantic values
9888@end menu
9889
9890@node C++ Unions
9891@subsubsection C++ Unions
9892
12545799
AD
9893The @code{%union} directive works as for C, see @ref{Union Decl, ,The
9894Collection of Value Types}. In particular it produces a genuine
3cdc21cf 9895@code{union}, which have a few specific features in C++.
12545799
AD
9896@itemize @minus
9897@item
fb9712a9
AD
9898The type @code{YYSTYPE} is defined but its use is discouraged: rather
9899you should refer to the parser's encapsulated type
9900@code{yy::parser::semantic_type}.
12545799
AD
9901@item
9902Non POD (Plain Old Data) types cannot be used. C++ forbids any
9903instance of classes with constructors in unions: only @emph{pointers}
9904to such objects are allowed.
9905@end itemize
9906
9907Because objects have to be stored via pointers, memory is not
9908reclaimed automatically: using the @code{%destructor} directive is the
9909only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
9910Symbols}.
9911
3cdc21cf
AD
9912@node C++ Variants
9913@subsubsection C++ Variants
9914
9915Starting with version 2.6, Bison provides a @emph{variant} based
9916implementation of semantic values for C++. This alleviates all the
9917limitations reported in the previous section, and in particular, object
9918types can be used without pointers.
9919
9920To enable variant-based semantic values, set @code{%define} variable
35c1e5f0 9921@code{variant} (@pxref{%define Summary,, variant}). Once this defined,
3cdc21cf
AD
9922@code{%union} is ignored, and instead of using the name of the fields of the
9923@code{%union} to ``type'' the symbols, use genuine types.
9924
9925For instance, instead of
9926
9927@example
9928%union
9929@{
9930 int ival;
9931 std::string* sval;
9932@}
9933%token <ival> NUMBER;
9934%token <sval> STRING;
9935@end example
9936
9937@noindent
9938write
9939
9940@example
9941%token <int> NUMBER;
9942%token <std::string> STRING;
9943@end example
9944
9945@code{STRING} is no longer a pointer, which should fairly simplify the user
9946actions in the grammar and in the scanner (in particular the memory
9947management).
9948
9949Since C++ features destructors, and since it is customary to specialize
9950@code{operator<<} to support uniform printing of values, variants also
9951typically simplify Bison printers and destructors.
9952
9953Variants are stricter than unions. When based on unions, you may play any
9954dirty game with @code{yylval}, say storing an @code{int}, reading a
9955@code{char*}, and then storing a @code{double} in it. This is no longer
9956possible with variants: they must be initialized, then assigned to, and
9957eventually, destroyed.
9958
9959@deftypemethod {semantic_type} {T&} build<T> ()
9960Initialize, but leave empty. Returns the address where the actual value may
9961be stored. Requires that the variant was not initialized yet.
9962@end deftypemethod
9963
9964@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
9965Initialize, and copy-construct from @var{t}.
9966@end deftypemethod
9967
9968
9969@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
9970appeared unacceptable to require Boost on the user's machine (i.e., the
9971machine on which the generated parser will be compiled, not the machine on
9972which @command{bison} was run). Second, for each possible semantic value,
9973Boost.Variant not only stores the value, but also a tag specifying its
9974type. But the parser already ``knows'' the type of the semantic value, so
9975that would be duplicating the information.
9976
9977Therefore we developed light-weight variants whose type tag is external (so
9978they are really like @code{unions} for C++ actually). But our code is much
9979less mature that Boost.Variant. So there is a number of limitations in
9980(the current implementation of) variants:
9981@itemize
9982@item
9983Alignment must be enforced: values should be aligned in memory according to
9984the most demanding type. Computing the smallest alignment possible requires
9985meta-programming techniques that are not currently implemented in Bison, and
9986therefore, since, as far as we know, @code{double} is the most demanding
9987type on all platforms, alignments are enforced for @code{double} whatever
9988types are actually used. This may waste space in some cases.
9989
9990@item
9991Our implementation is not conforming with strict aliasing rules. Alias
9992analysis is a technique used in optimizing compilers to detect when two
9993pointers are disjoint (they cannot ``meet''). Our implementation breaks
9994some of the rules that G++ 4.4 uses in its alias analysis, so @emph{strict
9995alias analysis must be disabled}. Use the option
9996@option{-fno-strict-aliasing} to compile the generated parser.
9997
9998@item
9999There might be portability issues we are not aware of.
10000@end itemize
10001
a6ca4ce2 10002As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 10003is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
10004
10005@node C++ Location Values
10006@subsection C++ Location Values
10007@c - %locations
10008@c - class Position
10009@c - class Location
16dc6a9e 10010@c - %define filename_type "const symbol::Symbol"
12545799
AD
10011
10012When the directive @code{%locations} is used, the C++ parser supports
db8ab2be
AD
10013location tracking, see @ref{Tracking Locations}.
10014
10015By default, two auxiliary classes define a @code{position}, a single point
10016in a file, and a @code{location}, a range composed of a pair of
10017@code{position}s (possibly spanning several files). But if the
10018@code{%define} variable @code{api.location.type} is defined, then these
10019classes will not be generated, and the user defined type will be used.
12545799 10020
936c88d1
AD
10021@tindex uint
10022In this section @code{uint} is an abbreviation for @code{unsigned int}: in
10023genuine code only the latter is used.
10024
10025@menu
10026* C++ position:: One point in the source file
10027* C++ location:: Two points in the source file
db8ab2be 10028* User Defined Location Type:: Required interface for locations
936c88d1
AD
10029@end menu
10030
10031@node C++ position
10032@subsubsection C++ @code{position}
10033
10034@deftypeop {Constructor} {position} {} position (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10035Create a @code{position} denoting a given point. Note that @code{file} is
10036not reclaimed when the @code{position} is destroyed: memory managed must be
10037handled elsewhere.
10038@end deftypeop
10039
10040@deftypemethod {position} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10041Reset the position to the given values.
10042@end deftypemethod
10043
10044@deftypeivar {position} {std::string*} file
12545799
AD
10045The name of the file. It will always be handled as a pointer, the
10046parser will never duplicate nor deallocate it. As an experimental
10047feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 10048filename_type "@var{type}"}.
936c88d1 10049@end deftypeivar
12545799 10050
936c88d1 10051@deftypeivar {position} {uint} line
12545799 10052The line, starting at 1.
936c88d1 10053@end deftypeivar
12545799 10054
936c88d1 10055@deftypemethod {position} {uint} lines (int @var{height} = 1)
12545799
AD
10056Advance by @var{height} lines, resetting the column number.
10057@end deftypemethod
10058
936c88d1
AD
10059@deftypeivar {position} {uint} column
10060The column, starting at 1.
10061@end deftypeivar
12545799 10062
936c88d1 10063@deftypemethod {position} {uint} columns (int @var{width} = 1)
12545799
AD
10064Advance by @var{width} columns, without changing the line number.
10065@end deftypemethod
10066
936c88d1
AD
10067@deftypemethod {position} {position&} operator+= (int @var{width})
10068@deftypemethodx {position} {position} operator+ (int @var{width})
10069@deftypemethodx {position} {position&} operator-= (int @var{width})
10070@deftypemethodx {position} {position} operator- (int @var{width})
12545799
AD
10071Various forms of syntactic sugar for @code{columns}.
10072@end deftypemethod
10073
936c88d1
AD
10074@deftypemethod {position} {bool} operator== (const position& @var{that})
10075@deftypemethodx {position} {bool} operator!= (const position& @var{that})
10076Whether @code{*this} and @code{that} denote equal/different positions.
10077@end deftypemethod
10078
10079@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const position& @var{p})
12545799 10080Report @var{p} on @var{o} like this:
fa4d969f
PE
10081@samp{@var{file}:@var{line}.@var{column}}, or
10082@samp{@var{line}.@var{column}} if @var{file} is null.
936c88d1
AD
10083@end deftypefun
10084
10085@node C++ location
10086@subsubsection C++ @code{location}
10087
10088@deftypeop {Constructor} {location} {} location (const position& @var{begin}, const position& @var{end})
10089Create a @code{Location} from the endpoints of the range.
10090@end deftypeop
10091
10092@deftypeop {Constructor} {location} {} location (const position& @var{pos} = position())
10093@deftypeopx {Constructor} {location} {} location (std::string* @var{file}, uint @var{line}, uint @var{col})
10094Create a @code{Location} denoting an empty range located at a given point.
10095@end deftypeop
10096
10097@deftypemethod {location} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10098Reset the location to an empty range at the given values.
12545799
AD
10099@end deftypemethod
10100
936c88d1
AD
10101@deftypeivar {location} {position} begin
10102@deftypeivarx {location} {position} end
12545799 10103The first, inclusive, position of the range, and the first beyond.
936c88d1 10104@end deftypeivar
12545799 10105
936c88d1
AD
10106@deftypemethod {location} {uint} columns (int @var{width} = 1)
10107@deftypemethodx {location} {uint} lines (int @var{height} = 1)
12545799
AD
10108Advance the @code{end} position.
10109@end deftypemethod
10110
936c88d1
AD
10111@deftypemethod {location} {location} operator+ (const location& @var{end})
10112@deftypemethodx {location} {location} operator+ (int @var{width})
10113@deftypemethodx {location} {location} operator+= (int @var{width})
12545799
AD
10114Various forms of syntactic sugar.
10115@end deftypemethod
10116
10117@deftypemethod {location} {void} step ()
10118Move @code{begin} onto @code{end}.
10119@end deftypemethod
10120
936c88d1
AD
10121@deftypemethod {location} {bool} operator== (const location& @var{that})
10122@deftypemethodx {location} {bool} operator!= (const location& @var{that})
10123Whether @code{*this} and @code{that} denote equal/different ranges of
10124positions.
10125@end deftypemethod
10126
10127@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const location& @var{p})
10128Report @var{p} on @var{o}, taking care of special cases such as: no
10129@code{filename} defined, or equal filename/line or column.
10130@end deftypefun
12545799 10131
db8ab2be
AD
10132@node User Defined Location Type
10133@subsubsection User Defined Location Type
10134@findex %define api.location.type
10135
10136Instead of using the built-in types you may use the @code{%define} variable
10137@code{api.location.type} to specify your own type:
10138
10139@example
10140%define api.location.type @var{LocationType}
10141@end example
10142
10143The requirements over your @var{LocationType} are:
10144@itemize
10145@item
10146it must be copyable;
10147
10148@item
10149in order to compute the (default) value of @code{@@$} in a reduction, the
10150parser basically runs
10151@example
10152@@$.begin = @@$1.begin;
10153@@$.end = @@$@var{N}.end; // The location of last right-hand side symbol.
10154@end example
10155@noindent
10156so there must be copyable @code{begin} and @code{end} members;
10157
10158@item
10159alternatively you may redefine the computation of the default location, in
10160which case these members are not required (@pxref{Location Default Action});
10161
10162@item
10163if traces are enabled, then there must exist an @samp{std::ostream&
10164 operator<< (std::ostream& o, const @var{LocationType}& s)} function.
10165@end itemize
10166
10167@sp 1
10168
10169In programs with several C++ parsers, you may also use the @code{%define}
10170variable @code{api.location.type} to share a common set of built-in
10171definitions for @code{position} and @code{location}. For instance, one
10172parser @file{master/parser.yy} might use:
10173
10174@example
10175%defines
10176%locations
10177%define namespace "master::"
10178@end example
10179
10180@noindent
10181to generate the @file{master/position.hh} and @file{master/location.hh}
10182files, reused by other parsers as follows:
10183
10184@example
7287be84 10185%define api.location.type "master::location"
db8ab2be
AD
10186%code requires @{ #include <master/location.hh> @}
10187@end example
10188
12545799
AD
10189@node C++ Parser Interface
10190@subsection C++ Parser Interface
10191@c - define parser_class_name
10192@c - Ctor
10193@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10194@c debug_stream.
10195@c - Reporting errors
10196
10197The output files @file{@var{output}.hh} and @file{@var{output}.cc}
10198declare and define the parser class in the namespace @code{yy}. The
10199class name defaults to @code{parser}, but may be changed using
16dc6a9e 10200@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 10201this class is detailed below. It can be extended using the
12545799
AD
10202@code{%parse-param} feature: its semantics is slightly changed since
10203it describes an additional member of the parser class, and an
10204additional argument for its constructor.
10205
3cdc21cf
AD
10206@defcv {Type} {parser} {semantic_type}
10207@defcvx {Type} {parser} {location_type}
10208The types for semantic values and locations (if enabled).
10209@end defcv
10210
86e5b440 10211@defcv {Type} {parser} {token}
aaaa2aae
AD
10212A structure that contains (only) the @code{yytokentype} enumeration, which
10213defines the tokens. To refer to the token @code{FOO},
10214use @code{yy::parser::token::FOO}. The scanner can use
86e5b440
AD
10215@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
10216(@pxref{Calc++ Scanner}).
10217@end defcv
10218
3cdc21cf
AD
10219@defcv {Type} {parser} {syntax_error}
10220This class derives from @code{std::runtime_error}. Throw instances of it
a6552c5d
AD
10221from the scanner or from the user actions to raise parse errors. This is
10222equivalent with first
3cdc21cf
AD
10223invoking @code{error} to report the location and message of the syntax
10224error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
10225But contrary to @code{YYERROR} which can only be invoked from user actions
10226(i.e., written in the action itself), the exception can be thrown from
10227function invoked from the user action.
8a0adb01 10228@end defcv
12545799
AD
10229
10230@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
10231Build a new parser object. There are no arguments by default, unless
10232@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
10233@end deftypemethod
10234
3cdc21cf
AD
10235@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
10236@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
10237Instantiate a syntax-error exception.
10238@end deftypemethod
10239
12545799
AD
10240@deftypemethod {parser} {int} parse ()
10241Run the syntactic analysis, and return 0 on success, 1 otherwise.
d3e4409a
AD
10242
10243@cindex exceptions
10244The whole function is wrapped in a @code{try}/@code{catch} block, so that
10245when an exception is thrown, the @code{%destructor}s are called to release
10246the lookahead symbol, and the symbols pushed on the stack.
12545799
AD
10247@end deftypemethod
10248
10249@deftypemethod {parser} {std::ostream&} debug_stream ()
10250@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
10251Get or set the stream used for tracing the parsing. It defaults to
10252@code{std::cerr}.
10253@end deftypemethod
10254
10255@deftypemethod {parser} {debug_level_type} debug_level ()
10256@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
10257Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 10258or nonzero, full tracing.
12545799
AD
10259@end deftypemethod
10260
10261@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 10262@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
10263The definition for this member function must be supplied by the user:
10264the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
10265described by @var{m}. If location tracking is not enabled, the second
10266signature is used.
12545799
AD
10267@end deftypemethod
10268
10269
10270@node C++ Scanner Interface
10271@subsection C++ Scanner Interface
10272@c - prefix for yylex.
10273@c - Pure interface to yylex
10274@c - %lex-param
10275
10276The parser invokes the scanner by calling @code{yylex}. Contrary to C
10277parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
10278@samp{%define api.pure} directive. The actual interface with @code{yylex}
10279depends whether you use unions, or variants.
12545799 10280
3cdc21cf
AD
10281@menu
10282* Split Symbols:: Passing symbols as two/three components
10283* Complete Symbols:: Making symbols a whole
10284@end menu
10285
10286@node Split Symbols
10287@subsubsection Split Symbols
10288
10289Therefore the interface is as follows.
10290
86e5b440
AD
10291@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
10292@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
10293Return the next token. Its type is the return value, its semantic value and
10294location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
10295@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
10296@end deftypemethod
10297
3cdc21cf
AD
10298Note that when using variants, the interface for @code{yylex} is the same,
10299but @code{yylval} is handled differently.
10300
10301Regular union-based code in Lex scanner typically look like:
10302
10303@example
10304[0-9]+ @{
10305 yylval.ival = text_to_int (yytext);
10306 return yy::parser::INTEGER;
10307 @}
10308[a-z]+ @{
10309 yylval.sval = new std::string (yytext);
10310 return yy::parser::IDENTIFIER;
10311 @}
10312@end example
10313
10314Using variants, @code{yylval} is already constructed, but it is not
10315initialized. So the code would look like:
10316
10317@example
10318[0-9]+ @{
10319 yylval.build<int>() = text_to_int (yytext);
10320 return yy::parser::INTEGER;
10321 @}
10322[a-z]+ @{
10323 yylval.build<std::string> = yytext;
10324 return yy::parser::IDENTIFIER;
10325 @}
10326@end example
10327
10328@noindent
10329or
10330
10331@example
10332[0-9]+ @{
10333 yylval.build(text_to_int (yytext));
10334 return yy::parser::INTEGER;
10335 @}
10336[a-z]+ @{
10337 yylval.build(yytext);
10338 return yy::parser::IDENTIFIER;
10339 @}
10340@end example
10341
10342
10343@node Complete Symbols
10344@subsubsection Complete Symbols
10345
e36ec1f4
AD
10346If you specified both @code{%define variant} and
10347@code{%define api.token.constructor},
3cdc21cf
AD
10348the @code{parser} class also defines the class @code{parser::symbol_type}
10349which defines a @emph{complete} symbol, aggregating its type (i.e., the
10350traditional value returned by @code{yylex}), its semantic value (i.e., the
10351value passed in @code{yylval}, and possibly its location (@code{yylloc}).
10352
10353@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
10354Build a complete terminal symbol which token type is @var{type}, and which
10355semantic value is @var{value}. If location tracking is enabled, also pass
10356the @var{location}.
10357@end deftypemethod
10358
10359This interface is low-level and should not be used for two reasons. First,
10360it is inconvenient, as you still have to build the semantic value, which is
10361a variant, and second, because consistency is not enforced: as with unions,
10362it is still possible to give an integer as semantic value for a string.
10363
10364So for each token type, Bison generates named constructors as follows.
10365
10366@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
10367@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
10368Build a complete terminal symbol for the token type @var{token} (not
2a6b66c5 10369including the @code{api.token.prefix}) whose possible semantic value is
3cdc21cf
AD
10370@var{value} of adequate @var{value_type}. If location tracking is enabled,
10371also pass the @var{location}.
10372@end deftypemethod
10373
10374For instance, given the following declarations:
10375
10376@example
2a6b66c5 10377%define api.token.prefix "TOK_"
3cdc21cf
AD
10378%token <std::string> IDENTIFIER;
10379%token <int> INTEGER;
10380%token COLON;
10381@end example
10382
10383@noindent
10384Bison generates the following functions:
10385
10386@example
10387symbol_type make_IDENTIFIER(const std::string& v,
10388 const location_type& l);
10389symbol_type make_INTEGER(const int& v,
10390 const location_type& loc);
10391symbol_type make_COLON(const location_type& loc);
10392@end example
10393
10394@noindent
10395which should be used in a Lex-scanner as follows.
10396
10397@example
10398[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
10399[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
10400":" return yy::parser::make_COLON(loc);
10401@end example
10402
10403Tokens that do not have an identifier are not accessible: you cannot simply
10404use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
10405
10406@node A Complete C++ Example
8405b70c 10407@subsection A Complete C++ Example
12545799
AD
10408
10409This section demonstrates the use of a C++ parser with a simple but
10410complete example. This example should be available on your system,
3cdc21cf 10411ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
10412focuses on the use of Bison, therefore the design of the various C++
10413classes is very naive: no accessors, no encapsulation of members etc.
10414We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 10415demonstrate the various interactions. A hand-written scanner is
12545799
AD
10416actually easier to interface with.
10417
10418@menu
10419* Calc++ --- C++ Calculator:: The specifications
10420* Calc++ Parsing Driver:: An active parsing context
10421* Calc++ Parser:: A parser class
10422* Calc++ Scanner:: A pure C++ Flex scanner
10423* Calc++ Top Level:: Conducting the band
10424@end menu
10425
10426@node Calc++ --- C++ Calculator
8405b70c 10427@subsubsection Calc++ --- C++ Calculator
12545799
AD
10428
10429Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 10430expression, possibly preceded by variable assignments. An
12545799
AD
10431environment containing possibly predefined variables such as
10432@code{one} and @code{two}, is exchanged with the parser. An example
10433of valid input follows.
10434
10435@example
10436three := 3
10437seven := one + two * three
10438seven * seven
10439@end example
10440
10441@node Calc++ Parsing Driver
8405b70c 10442@subsubsection Calc++ Parsing Driver
12545799
AD
10443@c - An env
10444@c - A place to store error messages
10445@c - A place for the result
10446
10447To support a pure interface with the parser (and the scanner) the
10448technique of the ``parsing context'' is convenient: a structure
10449containing all the data to exchange. Since, in addition to simply
10450launch the parsing, there are several auxiliary tasks to execute (open
10451the file for parsing, instantiate the parser etc.), we recommend
10452transforming the simple parsing context structure into a fully blown
10453@dfn{parsing driver} class.
10454
10455The declaration of this driver class, @file{calc++-driver.hh}, is as
10456follows. The first part includes the CPP guard and imports the
fb9712a9
AD
10457required standard library components, and the declaration of the parser
10458class.
12545799 10459
1c59e0a1 10460@comment file: calc++-driver.hh
12545799
AD
10461@example
10462#ifndef CALCXX_DRIVER_HH
10463# define CALCXX_DRIVER_HH
10464# include <string>
10465# include <map>
fb9712a9 10466# include "calc++-parser.hh"
12545799
AD
10467@end example
10468
12545799
AD
10469
10470@noindent
10471Then comes the declaration of the scanning function. Flex expects
10472the signature of @code{yylex} to be defined in the macro
10473@code{YY_DECL}, and the C++ parser expects it to be declared. We can
10474factor both as follows.
1c59e0a1
AD
10475
10476@comment file: calc++-driver.hh
12545799 10477@example
3dc5e96b 10478// Tell Flex the lexer's prototype ...
3cdc21cf
AD
10479# define YY_DECL \
10480 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
10481// ... and declare it for the parser's sake.
10482YY_DECL;
10483@end example
10484
10485@noindent
10486The @code{calcxx_driver} class is then declared with its most obvious
10487members.
10488
1c59e0a1 10489@comment file: calc++-driver.hh
12545799
AD
10490@example
10491// Conducting the whole scanning and parsing of Calc++.
10492class calcxx_driver
10493@{
10494public:
10495 calcxx_driver ();
10496 virtual ~calcxx_driver ();
10497
10498 std::map<std::string, int> variables;
10499
10500 int result;
10501@end example
10502
10503@noindent
3cdc21cf
AD
10504To encapsulate the coordination with the Flex scanner, it is useful to have
10505member functions to open and close the scanning phase.
12545799 10506
1c59e0a1 10507@comment file: calc++-driver.hh
12545799
AD
10508@example
10509 // Handling the scanner.
10510 void scan_begin ();
10511 void scan_end ();
10512 bool trace_scanning;
10513@end example
10514
10515@noindent
10516Similarly for the parser itself.
10517
1c59e0a1 10518@comment file: calc++-driver.hh
12545799 10519@example
3cdc21cf
AD
10520 // Run the parser on file F.
10521 // Return 0 on success.
bb32f4f2 10522 int parse (const std::string& f);
3cdc21cf
AD
10523 // The name of the file being parsed.
10524 // Used later to pass the file name to the location tracker.
12545799 10525 std::string file;
3cdc21cf 10526 // Whether parser traces should be generated.
12545799
AD
10527 bool trace_parsing;
10528@end example
10529
10530@noindent
10531To demonstrate pure handling of parse errors, instead of simply
10532dumping them on the standard error output, we will pass them to the
10533compiler driver using the following two member functions. Finally, we
10534close the class declaration and CPP guard.
10535
1c59e0a1 10536@comment file: calc++-driver.hh
12545799
AD
10537@example
10538 // Error handling.
10539 void error (const yy::location& l, const std::string& m);
10540 void error (const std::string& m);
10541@};
10542#endif // ! CALCXX_DRIVER_HH
10543@end example
10544
10545The implementation of the driver is straightforward. The @code{parse}
10546member function deserves some attention. The @code{error} functions
10547are simple stubs, they should actually register the located error
10548messages and set error state.
10549
1c59e0a1 10550@comment file: calc++-driver.cc
12545799
AD
10551@example
10552#include "calc++-driver.hh"
10553#include "calc++-parser.hh"
10554
10555calcxx_driver::calcxx_driver ()
10556 : trace_scanning (false), trace_parsing (false)
10557@{
10558 variables["one"] = 1;
10559 variables["two"] = 2;
10560@}
10561
10562calcxx_driver::~calcxx_driver ()
10563@{
10564@}
10565
bb32f4f2 10566int
12545799
AD
10567calcxx_driver::parse (const std::string &f)
10568@{
10569 file = f;
10570 scan_begin ();
10571 yy::calcxx_parser parser (*this);
10572 parser.set_debug_level (trace_parsing);
bb32f4f2 10573 int res = parser.parse ();
12545799 10574 scan_end ();
bb32f4f2 10575 return res;
12545799
AD
10576@}
10577
10578void
10579calcxx_driver::error (const yy::location& l, const std::string& m)
10580@{
10581 std::cerr << l << ": " << m << std::endl;
10582@}
10583
10584void
10585calcxx_driver::error (const std::string& m)
10586@{
10587 std::cerr << m << std::endl;
10588@}
10589@end example
10590
10591@node Calc++ Parser
8405b70c 10592@subsubsection Calc++ Parser
12545799 10593
ff7571c0
JD
10594The grammar file @file{calc++-parser.yy} starts by asking for the C++
10595deterministic parser skeleton, the creation of the parser header file,
10596and specifies the name of the parser class. Because the C++ skeleton
10597changed several times, it is safer to require the version you designed
10598the grammar for.
1c59e0a1
AD
10599
10600@comment file: calc++-parser.yy
12545799 10601@example
c93f22fc 10602%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 10603%require "@value{VERSION}"
12545799 10604%defines
16dc6a9e 10605%define parser_class_name "calcxx_parser"
fb9712a9
AD
10606@end example
10607
3cdc21cf 10608@noindent
e36ec1f4 10609@findex %define api.token.constructor
3cdc21cf 10610@findex %define variant
3cdc21cf
AD
10611This example will use genuine C++ objects as semantic values, therefore, we
10612require the variant-based interface. To make sure we properly use it, we
10613enable assertions. To fully benefit from type-safety and more natural
e36ec1f4 10614definition of ``symbol'', we enable @code{api.token.constructor}.
3cdc21cf
AD
10615
10616@comment file: calc++-parser.yy
10617@example
e36ec1f4 10618%define api.token.constructor
3cdc21cf 10619%define parse.assert
e36ec1f4 10620%define variant
3cdc21cf
AD
10621@end example
10622
fb9712a9 10623@noindent
16dc6a9e 10624@findex %code requires
3cdc21cf
AD
10625Then come the declarations/inclusions needed by the semantic values.
10626Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 10627to include the header of the other, which is, of course, insane. This
3cdc21cf 10628mutual dependency will be broken using forward declarations. Because the
fb9712a9 10629driver's header needs detailed knowledge about the parser class (in
3cdc21cf 10630particular its inner types), it is the parser's header which will use a
e0c07222 10631forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
10632
10633@comment file: calc++-parser.yy
10634@example
3cdc21cf
AD
10635%code requires
10636@{
12545799 10637# include <string>
fb9712a9 10638class calcxx_driver;
9bc0dd67 10639@}
12545799
AD
10640@end example
10641
10642@noindent
10643The driver is passed by reference to the parser and to the scanner.
10644This provides a simple but effective pure interface, not relying on
10645global variables.
10646
1c59e0a1 10647@comment file: calc++-parser.yy
12545799
AD
10648@example
10649// The parsing context.
2055a44e 10650%param @{ calcxx_driver& driver @}
12545799
AD
10651@end example
10652
10653@noindent
2055a44e 10654Then we request location tracking, and initialize the
f50bfcd6 10655first location's file name. Afterward new locations are computed
12545799 10656relatively to the previous locations: the file name will be
2055a44e 10657propagated.
12545799 10658
1c59e0a1 10659@comment file: calc++-parser.yy
12545799
AD
10660@example
10661%locations
10662%initial-action
10663@{
10664 // Initialize the initial location.
b47dbebe 10665 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
10666@};
10667@end example
10668
10669@noindent
7fceb615
JD
10670Use the following two directives to enable parser tracing and verbose error
10671messages. However, verbose error messages can contain incorrect information
10672(@pxref{LAC}).
12545799 10673
1c59e0a1 10674@comment file: calc++-parser.yy
12545799 10675@example
fa819509 10676%define parse.trace
cf499cff 10677%define parse.error verbose
12545799
AD
10678@end example
10679
fb9712a9 10680@noindent
136a0f76
PB
10681@findex %code
10682The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 10683@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
10684
10685@comment file: calc++-parser.yy
10686@example
3cdc21cf
AD
10687%code
10688@{
fb9712a9 10689# include "calc++-driver.hh"
34f98f46 10690@}
fb9712a9
AD
10691@end example
10692
10693
12545799
AD
10694@noindent
10695The token numbered as 0 corresponds to end of file; the following line
99c08fb6 10696allows for nicer error messages referring to ``end of file'' instead of
35c1e5f0
JD
10697``$end''. Similarly user friendly names are provided for each symbol. To
10698avoid name clashes in the generated files (@pxref{Calc++ Scanner}), prefix
2a6b66c5 10699tokens with @code{TOK_} (@pxref{%define Summary,,api.token.prefix}).
12545799 10700
1c59e0a1 10701@comment file: calc++-parser.yy
12545799 10702@example
2a6b66c5 10703%define api.token.prefix "TOK_"
3cdc21cf
AD
10704%token
10705 END 0 "end of file"
10706 ASSIGN ":="
10707 MINUS "-"
10708 PLUS "+"
10709 STAR "*"
10710 SLASH "/"
10711 LPAREN "("
10712 RPAREN ")"
10713;
12545799
AD
10714@end example
10715
10716@noindent
3cdc21cf
AD
10717Since we use variant-based semantic values, @code{%union} is not used, and
10718both @code{%type} and @code{%token} expect genuine types, as opposed to type
10719tags.
12545799 10720
1c59e0a1 10721@comment file: calc++-parser.yy
12545799 10722@example
3cdc21cf
AD
10723%token <std::string> IDENTIFIER "identifier"
10724%token <int> NUMBER "number"
10725%type <int> exp
10726@end example
10727
10728@noindent
10729No @code{%destructor} is needed to enable memory deallocation during error
10730recovery; the memory, for strings for instance, will be reclaimed by the
10731regular destructors. All the values are printed using their
a76c741d 10732@code{operator<<} (@pxref{Printer Decl, , Printing Semantic Values}).
12545799 10733
3cdc21cf
AD
10734@comment file: calc++-parser.yy
10735@example
c5026327 10736%printer @{ yyoutput << $$; @} <*>;
12545799
AD
10737@end example
10738
10739@noindent
3cdc21cf
AD
10740The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
10741Location Tracking Calculator: @code{ltcalc}}).
12545799 10742
1c59e0a1 10743@comment file: calc++-parser.yy
12545799
AD
10744@example
10745%%
10746%start unit;
10747unit: assignments exp @{ driver.result = $2; @};
10748
99c08fb6 10749assignments:
5e9b6624
AD
10750 /* Nothing. */ @{@}
10751| assignments assignment @{@};
12545799 10752
3dc5e96b 10753assignment:
3cdc21cf 10754 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 10755
3cdc21cf
AD
10756%left "+" "-";
10757%left "*" "/";
99c08fb6 10758exp:
3cdc21cf
AD
10759 exp "+" exp @{ $$ = $1 + $3; @}
10760| exp "-" exp @{ $$ = $1 - $3; @}
10761| exp "*" exp @{ $$ = $1 * $3; @}
10762| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 10763| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 10764| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 10765| "number" @{ std::swap ($$, $1); @};
12545799
AD
10766%%
10767@end example
10768
10769@noindent
10770Finally the @code{error} member function registers the errors to the
10771driver.
10772
1c59e0a1 10773@comment file: calc++-parser.yy
12545799
AD
10774@example
10775void
3cdc21cf 10776yy::calcxx_parser::error (const location_type& l,
1c59e0a1 10777 const std::string& m)
12545799
AD
10778@{
10779 driver.error (l, m);
10780@}
10781@end example
10782
10783@node Calc++ Scanner
8405b70c 10784@subsubsection Calc++ Scanner
12545799
AD
10785
10786The Flex scanner first includes the driver declaration, then the
10787parser's to get the set of defined tokens.
10788
1c59e0a1 10789@comment file: calc++-scanner.ll
12545799 10790@example
c93f22fc 10791%@{ /* -*- C++ -*- */
3c248d70
AD
10792# include <cerrno>
10793# include <climits>
3cdc21cf 10794# include <cstdlib>
12545799
AD
10795# include <string>
10796# include "calc++-driver.hh"
10797# include "calc++-parser.hh"
eaea13f5 10798
3cdc21cf
AD
10799// Work around an incompatibility in flex (at least versions
10800// 2.5.31 through 2.5.33): it generates code that does
10801// not conform to C89. See Debian bug 333231
10802// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
10803# undef yywrap
10804# define yywrap() 1
eaea13f5 10805
3cdc21cf
AD
10806// The location of the current token.
10807static yy::location loc;
12545799
AD
10808%@}
10809@end example
10810
10811@noindent
10812Because there is no @code{#include}-like feature we don't need
10813@code{yywrap}, we don't need @code{unput} either, and we parse an
10814actual file, this is not an interactive session with the user.
3cdc21cf 10815Finally, we enable scanner tracing.
12545799 10816
1c59e0a1 10817@comment file: calc++-scanner.ll
12545799
AD
10818@example
10819%option noyywrap nounput batch debug
10820@end example
10821
10822@noindent
10823Abbreviations allow for more readable rules.
10824
1c59e0a1 10825@comment file: calc++-scanner.ll
12545799
AD
10826@example
10827id [a-zA-Z][a-zA-Z_0-9]*
10828int [0-9]+
10829blank [ \t]
10830@end example
10831
10832@noindent
9d9b8b70 10833The following paragraph suffices to track locations accurately. Each
12545799 10834time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
10835position. Then when a pattern is matched, its width is added to the end
10836column. When matching ends of lines, the end
12545799
AD
10837cursor is adjusted, and each time blanks are matched, the begin cursor
10838is moved onto the end cursor to effectively ignore the blanks
10839preceding tokens. Comments would be treated equally.
10840
1c59e0a1 10841@comment file: calc++-scanner.ll
12545799 10842@example
d4fca427 10843@group
828c373b 10844%@{
3cdc21cf
AD
10845 // Code run each time a pattern is matched.
10846 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 10847%@}
d4fca427 10848@end group
12545799 10849%%
d4fca427 10850@group
12545799 10851%@{
3cdc21cf
AD
10852 // Code run each time yylex is called.
10853 loc.step ();
12545799 10854%@}
d4fca427 10855@end group
3cdc21cf
AD
10856@{blank@}+ loc.step ();
10857[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
10858@end example
10859
10860@noindent
3cdc21cf 10861The rules are simple. The driver is used to report errors.
12545799 10862
1c59e0a1 10863@comment file: calc++-scanner.ll
12545799 10864@example
3cdc21cf
AD
10865"-" return yy::calcxx_parser::make_MINUS(loc);
10866"+" return yy::calcxx_parser::make_PLUS(loc);
10867"*" return yy::calcxx_parser::make_STAR(loc);
10868"/" return yy::calcxx_parser::make_SLASH(loc);
10869"(" return yy::calcxx_parser::make_LPAREN(loc);
10870")" return yy::calcxx_parser::make_RPAREN(loc);
10871":=" return yy::calcxx_parser::make_ASSIGN(loc);
10872
d4fca427 10873@group
04098407
PE
10874@{int@} @{
10875 errno = 0;
10876 long n = strtol (yytext, NULL, 10);
10877 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
10878 driver.error (loc, "integer is out of range");
10879 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 10880@}
d4fca427 10881@end group
3cdc21cf
AD
10882@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
10883. driver.error (loc, "invalid character");
10884<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
10885%%
10886@end example
10887
10888@noindent
3cdc21cf 10889Finally, because the scanner-related driver's member-functions depend
12545799
AD
10890on the scanner's data, it is simpler to implement them in this file.
10891
1c59e0a1 10892@comment file: calc++-scanner.ll
12545799 10893@example
d4fca427 10894@group
12545799
AD
10895void
10896calcxx_driver::scan_begin ()
10897@{
10898 yy_flex_debug = trace_scanning;
93c150b6 10899 if (file.empty () || file == "-")
bb32f4f2
AD
10900 yyin = stdin;
10901 else if (!(yyin = fopen (file.c_str (), "r")))
10902 @{
aaaa2aae 10903 error ("cannot open " + file + ": " + strerror(errno));
d0f2b7f8 10904 exit (EXIT_FAILURE);
bb32f4f2 10905 @}
12545799 10906@}
d4fca427 10907@end group
12545799 10908
d4fca427 10909@group
12545799
AD
10910void
10911calcxx_driver::scan_end ()
10912@{
10913 fclose (yyin);
10914@}
d4fca427 10915@end group
12545799
AD
10916@end example
10917
10918@node Calc++ Top Level
8405b70c 10919@subsubsection Calc++ Top Level
12545799
AD
10920
10921The top level file, @file{calc++.cc}, poses no problem.
10922
1c59e0a1 10923@comment file: calc++.cc
12545799
AD
10924@example
10925#include <iostream>
10926#include "calc++-driver.hh"
10927
d4fca427 10928@group
12545799 10929int
fa4d969f 10930main (int argc, char *argv[])
12545799 10931@{
414c76a4 10932 int res = 0;
12545799 10933 calcxx_driver driver;
93c150b6
AD
10934 for (int i = 1; i < argc; ++i)
10935 if (argv[i] == std::string ("-p"))
12545799 10936 driver.trace_parsing = true;
93c150b6 10937 else if (argv[i] == std::string ("-s"))
12545799 10938 driver.trace_scanning = true;
93c150b6 10939 else if (!driver.parse (argv[i]))
bb32f4f2 10940 std::cout << driver.result << std::endl;
414c76a4
AD
10941 else
10942 res = 1;
10943 return res;
12545799 10944@}
d4fca427 10945@end group
12545799
AD
10946@end example
10947
8405b70c
PB
10948@node Java Parsers
10949@section Java Parsers
10950
10951@menu
f5f419de
DJ
10952* Java Bison Interface:: Asking for Java parser generation
10953* Java Semantic Values:: %type and %token vs. Java
10954* Java Location Values:: The position and location classes
10955* Java Parser Interface:: Instantiating and running the parser
10956* Java Scanner Interface:: Specifying the scanner for the parser
10957* Java Action Features:: Special features for use in actions
10958* Java Differences:: Differences between C/C++ and Java Grammars
10959* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
10960@end menu
10961
10962@node Java Bison Interface
10963@subsection Java Bison Interface
10964@c - %language "Java"
8405b70c 10965
59da312b
JD
10966(The current Java interface is experimental and may evolve.
10967More user feedback will help to stabilize it.)
10968
e254a580
DJ
10969The Java parser skeletons are selected using the @code{%language "Java"}
10970directive or the @option{-L java}/@option{--language=java} option.
8405b70c 10971
e254a580 10972@c FIXME: Documented bug.
ff7571c0
JD
10973When generating a Java parser, @code{bison @var{basename}.y} will
10974create a single Java source file named @file{@var{basename}.java}
10975containing the parser implementation. Using a grammar file without a
10976@file{.y} suffix is currently broken. The basename of the parser
10977implementation file can be changed by the @code{%file-prefix}
10978directive or the @option{-p}/@option{--name-prefix} option. The
10979entire parser implementation file name can be changed by the
10980@code{%output} directive or the @option{-o}/@option{--output} option.
10981The parser implementation file contains a single class for the parser.
8405b70c 10982
e254a580 10983You can create documentation for generated parsers using Javadoc.
8405b70c 10984
e254a580
DJ
10985Contrary to C parsers, Java parsers do not use global variables; the
10986state of the parser is always local to an instance of the parser class.
10987Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
67501061 10988and @samp{%define api.pure} directives does not do anything when used in
e254a580 10989Java.
8405b70c 10990
e254a580 10991Push parsers are currently unsupported in Java and @code{%define
67212941 10992api.push-pull} have no effect.
01b477c6 10993
8a4281b9 10994GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
10995@code{glr-parser} directive.
10996
10997No header file can be generated for Java parsers. Do not use the
10998@code{%defines} directive or the @option{-d}/@option{--defines} options.
10999
11000@c FIXME: Possible code change.
fa819509
AD
11001Currently, support for tracing is always compiled
11002in. Thus the @samp{%define parse.trace} and @samp{%token-table}
11003directives and the
e254a580
DJ
11004@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
11005options have no effect. This may change in the future to eliminate
fa819509
AD
11006unused code in the generated parser, so use @samp{%define parse.trace}
11007explicitly
1979121c 11008if needed. Also, in the future the
e254a580
DJ
11009@code{%token-table} directive might enable a public interface to
11010access the token names and codes.
8405b70c 11011
09ccae9b 11012Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 11013hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
11014Try reducing the amount of code in actions and static initializers;
11015otherwise, report a bug so that the parser skeleton will be improved.
11016
11017
8405b70c
PB
11018@node Java Semantic Values
11019@subsection Java Semantic Values
11020@c - No %union, specify type in %type/%token.
11021@c - YYSTYPE
11022@c - Printer and destructor
11023
11024There is no @code{%union} directive in Java parsers. Instead, the
11025semantic values' types (class names) should be specified in the
11026@code{%type} or @code{%token} directive:
11027
11028@example
11029%type <Expression> expr assignment_expr term factor
11030%type <Integer> number
11031@end example
11032
11033By default, the semantic stack is declared to have @code{Object} members,
11034which means that the class types you specify can be of any class.
11035To improve the type safety of the parser, you can declare the common
67501061 11036superclass of all the semantic values using the @samp{%define stype}
e254a580 11037directive. For example, after the following declaration:
8405b70c
PB
11038
11039@example
e254a580 11040%define stype "ASTNode"
8405b70c
PB
11041@end example
11042
11043@noindent
11044any @code{%type} or @code{%token} specifying a semantic type which
11045is not a subclass of ASTNode, will cause a compile-time error.
11046
e254a580 11047@c FIXME: Documented bug.
8405b70c
PB
11048Types used in the directives may be qualified with a package name.
11049Primitive data types are accepted for Java version 1.5 or later. Note
11050that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
11051Generic types may not be used; this is due to a limitation in the
11052implementation of Bison, and may change in future releases.
8405b70c
PB
11053
11054Java parsers do not support @code{%destructor}, since the language
11055adopts garbage collection. The parser will try to hold references
11056to semantic values for as little time as needed.
11057
11058Java parsers do not support @code{%printer}, as @code{toString()}
11059can be used to print the semantic values. This however may change
11060(in a backwards-compatible way) in future versions of Bison.
11061
11062
11063@node Java Location Values
11064@subsection Java Location Values
11065@c - %locations
11066@c - class Position
11067@c - class Location
11068
303834cc
JD
11069When the directive @code{%locations} is used, the Java parser supports
11070location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
11071class defines a @dfn{position}, a single point in a file; Bison itself
11072defines a class representing a @dfn{location}, a range composed of a pair of
11073positions (possibly spanning several files). The location class is an inner
11074class of the parser; the name is @code{Location} by default, and may also be
7287be84 11075renamed using @code{%define api.location.type "@var{class-name}"}.
8405b70c
PB
11076
11077The location class treats the position as a completely opaque value.
11078By default, the class name is @code{Position}, but this can be changed
7287be84 11079with @code{%define api.position.type "@var{class-name}"}. This class must
e254a580 11080be supplied by the user.
8405b70c
PB
11081
11082
e254a580
DJ
11083@deftypeivar {Location} {Position} begin
11084@deftypeivarx {Location} {Position} end
8405b70c 11085The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
11086@end deftypeivar
11087
11088@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 11089Create a @code{Location} denoting an empty range located at a given point.
e254a580 11090@end deftypeop
8405b70c 11091
e254a580
DJ
11092@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
11093Create a @code{Location} from the endpoints of the range.
11094@end deftypeop
11095
11096@deftypemethod {Location} {String} toString ()
8405b70c
PB
11097Prints the range represented by the location. For this to work
11098properly, the position class should override the @code{equals} and
11099@code{toString} methods appropriately.
11100@end deftypemethod
11101
11102
11103@node Java Parser Interface
11104@subsection Java Parser Interface
11105@c - define parser_class_name
11106@c - Ctor
11107@c - parse, error, set_debug_level, debug_level, set_debug_stream,
11108@c debug_stream.
11109@c - Reporting errors
11110
e254a580
DJ
11111The name of the generated parser class defaults to @code{YYParser}. The
11112@code{YY} prefix may be changed using the @code{%name-prefix} directive
11113or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 11114@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 11115the class. The interface of this class is detailed below.
8405b70c 11116
e254a580 11117By default, the parser class has package visibility. A declaration
67501061 11118@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
11119according to the Java language specification, the name of the @file{.java}
11120file should match the name of the class in this case. Similarly, you can
11121use @code{abstract}, @code{final} and @code{strictfp} with the
11122@code{%define} declaration to add other modifiers to the parser class.
67501061 11123A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 11124be used to add any number of annotations to the parser class.
e254a580
DJ
11125
11126The Java package name of the parser class can be specified using the
67501061 11127@samp{%define package} directive. The superclass and the implemented
e254a580 11128interfaces of the parser class can be specified with the @code{%define
67501061 11129extends} and @samp{%define implements} directives.
e254a580
DJ
11130
11131The parser class defines an inner class, @code{Location}, that is used
11132for location tracking (see @ref{Java Location Values}), and a inner
11133interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
11134these inner class/interface, and the members described in the interface
11135below, all the other members and fields are preceded with a @code{yy} or
11136@code{YY} prefix to avoid clashes with user code.
11137
e254a580
DJ
11138The parser class can be extended using the @code{%parse-param}
11139directive. Each occurrence of the directive will add a @code{protected
11140final} field to the parser class, and an argument to its constructor,
11141which initialize them automatically.
11142
e254a580
DJ
11143@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
11144Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
11145no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
11146@code{%lex-param}s are used.
1979121c
DJ
11147
11148Use @code{%code init} for code added to the start of the constructor
11149body. This is especially useful to initialize superclasses. Use
f50bfcd6 11150@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
11151@end deftypeop
11152
11153@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
11154Build a new parser object using the specified scanner. There are no
2055a44e
AD
11155additional parameters unless @code{%param}s and/or @code{%parse-param}s are
11156used.
e254a580
DJ
11157
11158If the scanner is defined by @code{%code lexer}, this constructor is
11159declared @code{protected} and is called automatically with a scanner
2055a44e 11160created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
11161
11162Use @code{%code init} for code added to the start of the constructor
11163body. This is especially useful to initialize superclasses. Use
5a321748 11164@samp{%define init_throws} to specify any uncaught exceptions.
e254a580 11165@end deftypeop
8405b70c
PB
11166
11167@deftypemethod {YYParser} {boolean} parse ()
11168Run the syntactic analysis, and return @code{true} on success,
11169@code{false} otherwise.
11170@end deftypemethod
11171
1979121c
DJ
11172@deftypemethod {YYParser} {boolean} getErrorVerbose ()
11173@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
11174Get or set the option to produce verbose error messages. These are only
cf499cff 11175available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
11176verbose error messages.
11177@end deftypemethod
11178
11179@deftypemethod {YYParser} {void} yyerror (String @var{msg})
11180@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
11181@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
11182Print an error message using the @code{yyerror} method of the scanner
11183instance in use. The @code{Location} and @code{Position} parameters are
11184available only if location tracking is active.
11185@end deftypemethod
11186
01b477c6 11187@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 11188During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
11189from a syntax error.
11190@xref{Error Recovery}.
8405b70c
PB
11191@end deftypemethod
11192
11193@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
11194@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
11195Get or set the stream used for tracing the parsing. It defaults to
11196@code{System.err}.
11197@end deftypemethod
11198
11199@deftypemethod {YYParser} {int} getDebugLevel ()
11200@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
11201Get or set the tracing level. Currently its value is either 0, no trace,
11202or nonzero, full tracing.
11203@end deftypemethod
11204
1979121c
DJ
11205@deftypecv {Constant} {YYParser} {String} {bisonVersion}
11206@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
11207Identify the Bison version and skeleton used to generate this parser.
11208@end deftypecv
11209
8405b70c
PB
11210
11211@node Java Scanner Interface
11212@subsection Java Scanner Interface
01b477c6 11213@c - %code lexer
8405b70c 11214@c - %lex-param
01b477c6 11215@c - Lexer interface
8405b70c 11216
e254a580
DJ
11217There are two possible ways to interface a Bison-generated Java parser
11218with a scanner: the scanner may be defined by @code{%code lexer}, or
11219defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
11220@code{Lexer} inner interface of the parser class. This interface also
11221contain constants for all user-defined token names and the predefined
11222@code{EOF} token.
e254a580
DJ
11223
11224In the first case, the body of the scanner class is placed in
11225@code{%code lexer} blocks. If you want to pass parameters from the
11226parser constructor to the scanner constructor, specify them with
11227@code{%lex-param}; they are passed before @code{%parse-param}s to the
11228constructor.
01b477c6 11229
59c5ac72 11230In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
11231which is defined within the parser class (e.g., @code{YYParser.Lexer}).
11232The constructor of the parser object will then accept an object
11233implementing the interface; @code{%lex-param} is not used in this
11234case.
11235
11236In both cases, the scanner has to implement the following methods.
11237
e254a580
DJ
11238@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
11239This method is defined by the user to emit an error message. The first
11240parameter is omitted if location tracking is not active. Its type can be
7287be84 11241changed using @code{%define api.location.type "@var{class-name}".}
8405b70c
PB
11242@end deftypemethod
11243
e254a580 11244@deftypemethod {Lexer} {int} yylex ()
8405b70c 11245Return the next token. Its type is the return value, its semantic
f50bfcd6 11246value and location are saved and returned by the their methods in the
e254a580
DJ
11247interface.
11248
67501061 11249Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 11250Default is @code{java.io.IOException}.
8405b70c
PB
11251@end deftypemethod
11252
11253@deftypemethod {Lexer} {Position} getStartPos ()
11254@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
11255Return respectively the first position of the last token that
11256@code{yylex} returned, and the first position beyond it. These
11257methods are not needed unless location tracking is active.
8405b70c 11258
7287be84 11259The return type can be changed using @code{%define api.position.type
8405b70c
PB
11260"@var{class-name}".}
11261@end deftypemethod
11262
11263@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 11264Return the semantic value of the last token that yylex returned.
8405b70c 11265
67501061 11266The return type can be changed using @samp{%define stype
8405b70c
PB
11267"@var{class-name}".}
11268@end deftypemethod
11269
11270
e254a580
DJ
11271@node Java Action Features
11272@subsection Special Features for Use in Java Actions
11273
11274The following special constructs can be uses in Java actions.
11275Other analogous C action features are currently unavailable for Java.
11276
67501061 11277Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
11278actions, and initial actions specified by @code{%initial-action}.
11279
11280@defvar $@var{n}
11281The semantic value for the @var{n}th component of the current rule.
11282This may not be assigned to.
11283@xref{Java Semantic Values}.
11284@end defvar
11285
11286@defvar $<@var{typealt}>@var{n}
11287Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
11288@xref{Java Semantic Values}.
11289@end defvar
11290
11291@defvar $$
11292The semantic value for the grouping made by the current rule. As a
11293value, this is in the base type (@code{Object} or as specified by
67501061 11294@samp{%define stype}) as in not cast to the declared subtype because
e254a580
DJ
11295casts are not allowed on the left-hand side of Java assignments.
11296Use an explicit Java cast if the correct subtype is needed.
11297@xref{Java Semantic Values}.
11298@end defvar
11299
11300@defvar $<@var{typealt}>$
11301Same as @code{$$} since Java always allow assigning to the base type.
11302Perhaps we should use this and @code{$<>$} for the value and @code{$$}
11303for setting the value but there is currently no easy way to distinguish
11304these constructs.
11305@xref{Java Semantic Values}.
11306@end defvar
11307
11308@defvar @@@var{n}
11309The location information of the @var{n}th component of the current rule.
11310This may not be assigned to.
11311@xref{Java Location Values}.
11312@end defvar
11313
11314@defvar @@$
11315The location information of the grouping made by the current rule.
11316@xref{Java Location Values}.
11317@end defvar
11318
34a41a93 11319@deftypefn {Statement} return YYABORT @code{;}
e254a580
DJ
11320Return immediately from the parser, indicating failure.
11321@xref{Java Parser Interface}.
34a41a93 11322@end deftypefn
8405b70c 11323
34a41a93 11324@deftypefn {Statement} return YYACCEPT @code{;}
e254a580
DJ
11325Return immediately from the parser, indicating success.
11326@xref{Java Parser Interface}.
34a41a93 11327@end deftypefn
8405b70c 11328
34a41a93 11329@deftypefn {Statement} {return} YYERROR @code{;}
4a11b852 11330Start error recovery (without printing an error message).
e254a580 11331@xref{Error Recovery}.
34a41a93 11332@end deftypefn
8405b70c 11333
e254a580
DJ
11334@deftypefn {Function} {boolean} recovering ()
11335Return whether error recovery is being done. In this state, the parser
11336reads token until it reaches a known state, and then restarts normal
11337operation.
11338@xref{Error Recovery}.
11339@end deftypefn
8405b70c 11340
1979121c
DJ
11341@deftypefn {Function} {void} yyerror (String @var{msg})
11342@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
11343@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 11344Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
11345instance in use. The @code{Location} and @code{Position} parameters are
11346available only if location tracking is active.
e254a580 11347@end deftypefn
8405b70c 11348
8405b70c 11349
8405b70c
PB
11350@node Java Differences
11351@subsection Differences between C/C++ and Java Grammars
11352
11353The different structure of the Java language forces several differences
11354between C/C++ grammars, and grammars designed for Java parsers. This
29553547 11355section summarizes these differences.
8405b70c
PB
11356
11357@itemize
11358@item
01b477c6 11359Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 11360@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
11361macros. Instead, they should be preceded by @code{return} when they
11362appear in an action. The actual definition of these symbols is
8405b70c
PB
11363opaque to the Bison grammar, and it might change in the future. The
11364only meaningful operation that you can do, is to return them.
e3fd1dcb 11365@xref{Java Action Features}.
8405b70c
PB
11366
11367Note that of these three symbols, only @code{YYACCEPT} and
11368@code{YYABORT} will cause a return from the @code{yyparse}
11369method@footnote{Java parsers include the actions in a separate
11370method than @code{yyparse} in order to have an intuitive syntax that
11371corresponds to these C macros.}.
11372
e254a580
DJ
11373@item
11374Java lacks unions, so @code{%union} has no effect. Instead, semantic
11375values have a common base type: @code{Object} or as specified by
f50bfcd6 11376@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
11377@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
11378an union. The type of @code{$$}, even with angle brackets, is the base
11379type since Java casts are not allow on the left-hand side of assignments.
11380Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
15cd62c2 11381left-hand side of assignments. @xref{Java Semantic Values}, and
e3fd1dcb 11382@ref{Java Action Features}.
e254a580 11383
8405b70c 11384@item
f50bfcd6 11385The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
11386@table @asis
11387@item @code{%code imports}
11388blocks are placed at the beginning of the Java source code. They may
11389include copyright notices. For a @code{package} declarations, it is
67501061 11390suggested to use @samp{%define package} instead.
8405b70c 11391
01b477c6
PB
11392@item unqualified @code{%code}
11393blocks are placed inside the parser class.
11394
11395@item @code{%code lexer}
11396blocks, if specified, should include the implementation of the
11397scanner. If there is no such block, the scanner can be any class
e3fd1dcb 11398that implements the appropriate interface (@pxref{Java Scanner
01b477c6 11399Interface}).
29553547 11400@end table
8405b70c
PB
11401
11402Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
11403In particular, @code{%@{ @dots{} %@}} blocks should not be used
11404and may give an error in future versions of Bison.
11405
01b477c6 11406The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
11407be used to define other classes used by the parser @emph{outside}
11408the parser class.
8405b70c
PB
11409@end itemize
11410
e254a580
DJ
11411
11412@node Java Declarations Summary
11413@subsection Java Declarations Summary
11414
11415This summary only include declarations specific to Java or have special
11416meaning when used in a Java parser.
11417
11418@deffn {Directive} {%language "Java"}
11419Generate a Java class for the parser.
11420@end deffn
11421
11422@deffn {Directive} %lex-param @{@var{type} @var{name}@}
11423A parameter for the lexer class defined by @code{%code lexer}
11424@emph{only}, added as parameters to the lexer constructor and the parser
11425constructor that @emph{creates} a lexer. Default is none.
11426@xref{Java Scanner Interface}.
11427@end deffn
11428
11429@deffn {Directive} %name-prefix "@var{prefix}"
11430The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 11431@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
11432@xref{Java Bison Interface}.
11433@end deffn
11434
11435@deffn {Directive} %parse-param @{@var{type} @var{name}@}
11436A parameter for the parser class added as parameters to constructor(s)
11437and as fields initialized by the constructor(s). Default is none.
11438@xref{Java Parser Interface}.
11439@end deffn
11440
11441@deffn {Directive} %token <@var{type}> @var{token} @dots{}
11442Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
11443@xref{Java Semantic Values}.
11444@end deffn
11445
11446@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
11447Declare the type of nonterminals. Note that the angle brackets enclose
11448a Java @emph{type}.
11449@xref{Java Semantic Values}.
11450@end deffn
11451
11452@deffn {Directive} %code @{ @var{code} @dots{} @}
11453Code appended to the inside of the parser class.
11454@xref{Java Differences}.
11455@end deffn
11456
11457@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
11458Code inserted just after the @code{package} declaration.
11459@xref{Java Differences}.
11460@end deffn
11461
1979121c
DJ
11462@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
11463Code inserted at the beginning of the parser constructor body.
11464@xref{Java Parser Interface}.
11465@end deffn
11466
e254a580
DJ
11467@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
11468Code added to the body of a inner lexer class within the parser class.
11469@xref{Java Scanner Interface}.
11470@end deffn
11471
11472@deffn {Directive} %% @var{code} @dots{}
11473Code (after the second @code{%%}) appended to the end of the file,
11474@emph{outside} the parser class.
11475@xref{Java Differences}.
11476@end deffn
11477
11478@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 11479Not supported. Use @code{%code imports} instead.
e254a580
DJ
11480@xref{Java Differences}.
11481@end deffn
11482
11483@deffn {Directive} {%define abstract}
11484Whether the parser class is declared @code{abstract}. Default is false.
11485@xref{Java Bison Interface}.
11486@end deffn
11487
1979121c
DJ
11488@deffn {Directive} {%define annotations} "@var{annotations}"
11489The Java annotations for the parser class. Default is none.
11490@xref{Java Bison Interface}.
11491@end deffn
11492
e254a580
DJ
11493@deffn {Directive} {%define extends} "@var{superclass}"
11494The superclass of the parser class. Default is none.
11495@xref{Java Bison Interface}.
11496@end deffn
11497
11498@deffn {Directive} {%define final}
11499Whether the parser class is declared @code{final}. Default is false.
11500@xref{Java Bison Interface}.
11501@end deffn
11502
11503@deffn {Directive} {%define implements} "@var{interfaces}"
11504The implemented interfaces of the parser class, a comma-separated list.
11505Default is none.
11506@xref{Java Bison Interface}.
11507@end deffn
11508
1979121c
DJ
11509@deffn {Directive} {%define init_throws} "@var{exceptions}"
11510The exceptions thrown by @code{%code init} from the parser class
11511constructor. Default is none.
11512@xref{Java Parser Interface}.
11513@end deffn
11514
e254a580
DJ
11515@deffn {Directive} {%define lex_throws} "@var{exceptions}"
11516The exceptions thrown by the @code{yylex} method of the lexer, a
11517comma-separated list. Default is @code{java.io.IOException}.
11518@xref{Java Scanner Interface}.
11519@end deffn
11520
7287be84 11521@deffn {Directive} {%define api.location.type} "@var{class}"
e254a580
DJ
11522The name of the class used for locations (a range between two
11523positions). This class is generated as an inner class of the parser
11524class by @command{bison}. Default is @code{Location}.
7287be84 11525Formerly named @code{location_type}.
e254a580
DJ
11526@xref{Java Location Values}.
11527@end deffn
11528
11529@deffn {Directive} {%define package} "@var{package}"
11530The package to put the parser class in. Default is none.
11531@xref{Java Bison Interface}.
11532@end deffn
11533
11534@deffn {Directive} {%define parser_class_name} "@var{name}"
11535The name of the parser class. Default is @code{YYParser} or
11536@code{@var{name-prefix}Parser}.
11537@xref{Java Bison Interface}.
11538@end deffn
11539
7287be84 11540@deffn {Directive} {%define api.position.type} "@var{class}"
e254a580
DJ
11541The name of the class used for positions. This class must be supplied by
11542the user. Default is @code{Position}.
7287be84 11543Formerly named @code{position_type}.
e254a580
DJ
11544@xref{Java Location Values}.
11545@end deffn
11546
11547@deffn {Directive} {%define public}
11548Whether the parser class is declared @code{public}. Default is false.
11549@xref{Java Bison Interface}.
11550@end deffn
11551
11552@deffn {Directive} {%define stype} "@var{class}"
11553The base type of semantic values. Default is @code{Object}.
11554@xref{Java Semantic Values}.
11555@end deffn
11556
11557@deffn {Directive} {%define strictfp}
11558Whether the parser class is declared @code{strictfp}. Default is false.
11559@xref{Java Bison Interface}.
11560@end deffn
11561
11562@deffn {Directive} {%define throws} "@var{exceptions}"
11563The exceptions thrown by user-supplied parser actions and
11564@code{%initial-action}, a comma-separated list. Default is none.
11565@xref{Java Parser Interface}.
11566@end deffn
11567
11568
12545799 11569@c ================================================= FAQ
d1a1114f
AD
11570
11571@node FAQ
11572@chapter Frequently Asked Questions
11573@cindex frequently asked questions
11574@cindex questions
11575
11576Several questions about Bison come up occasionally. Here some of them
11577are addressed.
11578
11579@menu
55ba27be
AD
11580* Memory Exhausted:: Breaking the Stack Limits
11581* How Can I Reset the Parser:: @code{yyparse} Keeps some State
11582* Strings are Destroyed:: @code{yylval} Loses Track of Strings
11583* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 11584* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 11585* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
11586* I can't build Bison:: Troubleshooting
11587* Where can I find help?:: Troubleshouting
11588* Bug Reports:: Troublereporting
8405b70c 11589* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
11590* Beta Testing:: Experimenting development versions
11591* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
11592@end menu
11593
1a059451
PE
11594@node Memory Exhausted
11595@section Memory Exhausted
d1a1114f 11596
71b52b13 11597@quotation
1a059451 11598My parser returns with error with a @samp{memory exhausted}
d1a1114f 11599message. What can I do?
71b52b13 11600@end quotation
d1a1114f 11601
188867ac
AD
11602This question is already addressed elsewhere, see @ref{Recursion, ,Recursive
11603Rules}.
d1a1114f 11604
e64fec0a
PE
11605@node How Can I Reset the Parser
11606@section How Can I Reset the Parser
5b066063 11607
0e14ad77
PE
11608The following phenomenon has several symptoms, resulting in the
11609following typical questions:
5b066063 11610
71b52b13 11611@quotation
5b066063
AD
11612I invoke @code{yyparse} several times, and on correct input it works
11613properly; but when a parse error is found, all the other calls fail
0e14ad77 11614too. How can I reset the error flag of @code{yyparse}?
71b52b13 11615@end quotation
5b066063
AD
11616
11617@noindent
11618or
11619
71b52b13 11620@quotation
0e14ad77 11621My parser includes support for an @samp{#include}-like feature, in
5b066063 11622which case I run @code{yyparse} from @code{yyparse}. This fails
67501061 11623although I did specify @samp{%define api.pure}.
71b52b13 11624@end quotation
5b066063 11625
0e14ad77
PE
11626These problems typically come not from Bison itself, but from
11627Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
11628speed, they might not notice a change of input file. As a
11629demonstration, consider the following source file,
11630@file{first-line.l}:
11631
d4fca427
AD
11632@example
11633@group
11634%@{
5b066063
AD
11635#include <stdio.h>
11636#include <stdlib.h>
d4fca427
AD
11637%@}
11638@end group
5b066063
AD
11639%%
11640.*\n ECHO; return 1;
11641%%
d4fca427 11642@group
5b066063 11643int
0e14ad77 11644yyparse (char const *file)
d4fca427 11645@{
5b066063
AD
11646 yyin = fopen (file, "r");
11647 if (!yyin)
d4fca427
AD
11648 @{
11649 perror ("fopen");
11650 exit (EXIT_FAILURE);
11651 @}
11652@end group
11653@group
fa7e68c3 11654 /* One token only. */
5b066063 11655 yylex ();
0e14ad77 11656 if (fclose (yyin) != 0)
d4fca427
AD
11657 @{
11658 perror ("fclose");
11659 exit (EXIT_FAILURE);
11660 @}
5b066063 11661 return 0;
d4fca427
AD
11662@}
11663@end group
5b066063 11664
d4fca427 11665@group
5b066063 11666int
0e14ad77 11667main (void)
d4fca427 11668@{
5b066063
AD
11669 yyparse ("input");
11670 yyparse ("input");
11671 return 0;
d4fca427
AD
11672@}
11673@end group
11674@end example
5b066063
AD
11675
11676@noindent
11677If the file @file{input} contains
11678
71b52b13 11679@example
5b066063
AD
11680input:1: Hello,
11681input:2: World!
71b52b13 11682@end example
5b066063
AD
11683
11684@noindent
0e14ad77 11685then instead of getting the first line twice, you get:
5b066063
AD
11686
11687@example
11688$ @kbd{flex -ofirst-line.c first-line.l}
11689$ @kbd{gcc -ofirst-line first-line.c -ll}
11690$ @kbd{./first-line}
11691input:1: Hello,
11692input:2: World!
11693@end example
11694
0e14ad77
PE
11695Therefore, whenever you change @code{yyin}, you must tell the
11696Lex-generated scanner to discard its current buffer and switch to the
11697new one. This depends upon your implementation of Lex; see its
11698documentation for more. For Flex, it suffices to call
11699@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
11700Flex-generated scanner needs to read from several input streams to
11701handle features like include files, you might consider using Flex
11702functions like @samp{yy_switch_to_buffer} that manipulate multiple
11703input buffers.
5b066063 11704
b165c324
AD
11705If your Flex-generated scanner uses start conditions (@pxref{Start
11706conditions, , Start conditions, flex, The Flex Manual}), you might
11707also want to reset the scanner's state, i.e., go back to the initial
11708start condition, through a call to @samp{BEGIN (0)}.
11709
fef4cb51
AD
11710@node Strings are Destroyed
11711@section Strings are Destroyed
11712
71b52b13 11713@quotation
c7e441b4 11714My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
11715them. Instead of reporting @samp{"foo", "bar"}, it reports
11716@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
71b52b13 11717@end quotation
fef4cb51
AD
11718
11719This error is probably the single most frequent ``bug report'' sent to
11720Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 11721of the scanner. Consider the following Lex code:
fef4cb51 11722
71b52b13 11723@example
d4fca427 11724@group
71b52b13 11725%@{
fef4cb51
AD
11726#include <stdio.h>
11727char *yylval = NULL;
71b52b13 11728%@}
d4fca427
AD
11729@end group
11730@group
fef4cb51
AD
11731%%
11732.* yylval = yytext; return 1;
11733\n /* IGNORE */
11734%%
d4fca427
AD
11735@end group
11736@group
fef4cb51
AD
11737int
11738main ()
71b52b13 11739@{
fa7e68c3 11740 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
11741 char *fst = (yylex (), yylval);
11742 char *snd = (yylex (), yylval);
11743 printf ("\"%s\", \"%s\"\n", fst, snd);
11744 return 0;
71b52b13 11745@}
d4fca427 11746@end group
71b52b13 11747@end example
fef4cb51
AD
11748
11749If you compile and run this code, you get:
11750
11751@example
11752$ @kbd{flex -osplit-lines.c split-lines.l}
11753$ @kbd{gcc -osplit-lines split-lines.c -ll}
11754$ @kbd{printf 'one\ntwo\n' | ./split-lines}
11755"one
11756two", "two"
11757@end example
11758
11759@noindent
11760this is because @code{yytext} is a buffer provided for @emph{reading}
11761in the action, but if you want to keep it, you have to duplicate it
11762(e.g., using @code{strdup}). Note that the output may depend on how
11763your implementation of Lex handles @code{yytext}. For instance, when
11764given the Lex compatibility option @option{-l} (which triggers the
11765option @samp{%array}) Flex generates a different behavior:
11766
11767@example
11768$ @kbd{flex -l -osplit-lines.c split-lines.l}
11769$ @kbd{gcc -osplit-lines split-lines.c -ll}
11770$ @kbd{printf 'one\ntwo\n' | ./split-lines}
11771"two", "two"
11772@end example
11773
11774
2fa09258
AD
11775@node Implementing Gotos/Loops
11776@section Implementing Gotos/Loops
a06ea4aa 11777
71b52b13 11778@quotation
a06ea4aa 11779My simple calculator supports variables, assignments, and functions,
2fa09258 11780but how can I implement gotos, or loops?
71b52b13 11781@end quotation
a06ea4aa
AD
11782
11783Although very pedagogical, the examples included in the document blur
a1c84f45 11784the distinction to make between the parser---whose job is to recover
a06ea4aa 11785the structure of a text and to transmit it to subsequent modules of
a1c84f45 11786the program---and the processing (such as the execution) of this
a06ea4aa
AD
11787structure. This works well with so called straight line programs,
11788i.e., precisely those that have a straightforward execution model:
11789execute simple instructions one after the others.
11790
11791@cindex abstract syntax tree
8a4281b9 11792@cindex AST
a06ea4aa
AD
11793If you want a richer model, you will probably need to use the parser
11794to construct a tree that does represent the structure it has
11795recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 11796or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
11797traversing it in various ways, will enable treatments such as its
11798execution or its translation, which will result in an interpreter or a
11799compiler.
11800
11801This topic is way beyond the scope of this manual, and the reader is
11802invited to consult the dedicated literature.
11803
11804
ed2e6384
AD
11805@node Multiple start-symbols
11806@section Multiple start-symbols
11807
71b52b13 11808@quotation
ed2e6384
AD
11809I have several closely related grammars, and I would like to share their
11810implementations. In fact, I could use a single grammar but with
11811multiple entry points.
71b52b13 11812@end quotation
ed2e6384
AD
11813
11814Bison does not support multiple start-symbols, but there is a very
11815simple means to simulate them. If @code{foo} and @code{bar} are the two
11816pseudo start-symbols, then introduce two new tokens, say
11817@code{START_FOO} and @code{START_BAR}, and use them as switches from the
11818real start-symbol:
11819
11820@example
11821%token START_FOO START_BAR;
11822%start start;
5e9b6624
AD
11823start:
11824 START_FOO foo
11825| START_BAR bar;
ed2e6384
AD
11826@end example
11827
11828These tokens prevents the introduction of new conflicts. As far as the
11829parser goes, that is all that is needed.
11830
11831Now the difficult part is ensuring that the scanner will send these
11832tokens first. If your scanner is hand-written, that should be
11833straightforward. If your scanner is generated by Lex, them there is
11834simple means to do it: recall that anything between @samp{%@{ ... %@}}
11835after the first @code{%%} is copied verbatim in the top of the generated
11836@code{yylex} function. Make sure a variable @code{start_token} is
11837available in the scanner (e.g., a global variable or using
11838@code{%lex-param} etc.), and use the following:
11839
11840@example
11841 /* @r{Prologue.} */
11842%%
11843%@{
11844 if (start_token)
11845 @{
11846 int t = start_token;
11847 start_token = 0;
11848 return t;
11849 @}
11850%@}
11851 /* @r{The rules.} */
11852@end example
11853
11854
55ba27be
AD
11855@node Secure? Conform?
11856@section Secure? Conform?
11857
71b52b13 11858@quotation
55ba27be 11859Is Bison secure? Does it conform to POSIX?
71b52b13 11860@end quotation
55ba27be
AD
11861
11862If you're looking for a guarantee or certification, we don't provide it.
11863However, Bison is intended to be a reliable program that conforms to the
8a4281b9 11864POSIX specification for Yacc. If you run into problems,
55ba27be
AD
11865please send us a bug report.
11866
11867@node I can't build Bison
11868@section I can't build Bison
11869
71b52b13 11870@quotation
8c5b881d
PE
11871I can't build Bison because @command{make} complains that
11872@code{msgfmt} is not found.
55ba27be 11873What should I do?
71b52b13 11874@end quotation
55ba27be
AD
11875
11876Like most GNU packages with internationalization support, that feature
11877is turned on by default. If you have problems building in the @file{po}
11878subdirectory, it indicates that your system's internationalization
11879support is lacking. You can re-configure Bison with
11880@option{--disable-nls} to turn off this support, or you can install GNU
11881gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
11882Bison. See the file @file{ABOUT-NLS} for more information.
11883
11884
11885@node Where can I find help?
11886@section Where can I find help?
11887
71b52b13 11888@quotation
55ba27be 11889I'm having trouble using Bison. Where can I find help?
71b52b13 11890@end quotation
55ba27be
AD
11891
11892First, read this fine manual. Beyond that, you can send mail to
11893@email{help-bison@@gnu.org}. This mailing list is intended to be
11894populated with people who are willing to answer questions about using
11895and installing Bison. Please keep in mind that (most of) the people on
11896the list have aspects of their lives which are not related to Bison (!),
11897so you may not receive an answer to your question right away. This can
11898be frustrating, but please try not to honk them off; remember that any
11899help they provide is purely voluntary and out of the kindness of their
11900hearts.
11901
11902@node Bug Reports
11903@section Bug Reports
11904
71b52b13 11905@quotation
55ba27be 11906I found a bug. What should I include in the bug report?
71b52b13 11907@end quotation
55ba27be
AD
11908
11909Before you send a bug report, make sure you are using the latest
11910version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
11911mirrors. Be sure to include the version number in your bug report. If
11912the bug is present in the latest version but not in a previous version,
11913try to determine the most recent version which did not contain the bug.
11914
11915If the bug is parser-related, you should include the smallest grammar
11916you can which demonstrates the bug. The grammar file should also be
11917complete (i.e., I should be able to run it through Bison without having
11918to edit or add anything). The smaller and simpler the grammar, the
11919easier it will be to fix the bug.
11920
11921Include information about your compilation environment, including your
11922operating system's name and version and your compiler's name and
11923version. If you have trouble compiling, you should also include a
11924transcript of the build session, starting with the invocation of
11925`configure'. Depending on the nature of the bug, you may be asked to
11926send additional files as well (such as `config.h' or `config.cache').
11927
11928Patches are most welcome, but not required. That is, do not hesitate to
411614fa 11929send a bug report just because you cannot provide a fix.
55ba27be
AD
11930
11931Send bug reports to @email{bug-bison@@gnu.org}.
11932
8405b70c
PB
11933@node More Languages
11934@section More Languages
55ba27be 11935
71b52b13 11936@quotation
8405b70c 11937Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 11938favorite language here}?
71b52b13 11939@end quotation
55ba27be 11940
8405b70c 11941C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
11942languages; contributions are welcome.
11943
11944@node Beta Testing
11945@section Beta Testing
11946
71b52b13 11947@quotation
55ba27be 11948What is involved in being a beta tester?
71b52b13 11949@end quotation
55ba27be
AD
11950
11951It's not terribly involved. Basically, you would download a test
11952release, compile it, and use it to build and run a parser or two. After
11953that, you would submit either a bug report or a message saying that
11954everything is okay. It is important to report successes as well as
11955failures because test releases eventually become mainstream releases,
11956but only if they are adequately tested. If no one tests, development is
11957essentially halted.
11958
11959Beta testers are particularly needed for operating systems to which the
11960developers do not have easy access. They currently have easy access to
11961recent GNU/Linux and Solaris versions. Reports about other operating
11962systems are especially welcome.
11963
11964@node Mailing Lists
11965@section Mailing Lists
11966
71b52b13 11967@quotation
55ba27be 11968How do I join the help-bison and bug-bison mailing lists?
71b52b13 11969@end quotation
55ba27be
AD
11970
11971See @url{http://lists.gnu.org/}.
a06ea4aa 11972
d1a1114f
AD
11973@c ================================================= Table of Symbols
11974
342b8b6e 11975@node Table of Symbols
bfa74976
RS
11976@appendix Bison Symbols
11977@cindex Bison symbols, table of
11978@cindex symbols in Bison, table of
11979
18b519c0 11980@deffn {Variable} @@$
3ded9a63 11981In an action, the location of the left-hand side of the rule.
303834cc 11982@xref{Tracking Locations}.
18b519c0 11983@end deffn
3ded9a63 11984
18b519c0 11985@deffn {Variable} @@@var{n}
303834cc
JD
11986In an action, the location of the @var{n}-th symbol of the right-hand side
11987of the rule. @xref{Tracking Locations}.
18b519c0 11988@end deffn
3ded9a63 11989
d013372c 11990@deffn {Variable} @@@var{name}
303834cc
JD
11991In an action, the location of a symbol addressed by name. @xref{Tracking
11992Locations}.
d013372c
AR
11993@end deffn
11994
11995@deffn {Variable} @@[@var{name}]
303834cc
JD
11996In an action, the location of a symbol addressed by name. @xref{Tracking
11997Locations}.
d013372c
AR
11998@end deffn
11999
18b519c0 12000@deffn {Variable} $$
3ded9a63
AD
12001In an action, the semantic value of the left-hand side of the rule.
12002@xref{Actions}.
18b519c0 12003@end deffn
3ded9a63 12004
18b519c0 12005@deffn {Variable} $@var{n}
3ded9a63
AD
12006In an action, the semantic value of the @var{n}-th symbol of the
12007right-hand side of the rule. @xref{Actions}.
18b519c0 12008@end deffn
3ded9a63 12009
d013372c
AR
12010@deffn {Variable} $@var{name}
12011In an action, the semantic value of a symbol addressed by name.
12012@xref{Actions}.
12013@end deffn
12014
12015@deffn {Variable} $[@var{name}]
12016In an action, the semantic value of a symbol addressed by name.
12017@xref{Actions}.
12018@end deffn
12019
dd8d9022
AD
12020@deffn {Delimiter} %%
12021Delimiter used to separate the grammar rule section from the
12022Bison declarations section or the epilogue.
12023@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 12024@end deffn
bfa74976 12025
dd8d9022
AD
12026@c Don't insert spaces, or check the DVI output.
12027@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
12028All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
12029to the parser implementation file. Such code forms the prologue of
12030the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 12031Grammar}.
18b519c0 12032@end deffn
bfa74976 12033
ca2a6d15
PH
12034@deffn {Directive} %?@{@var{expression}@}
12035Predicate actions. This is a type of action clause that may appear in
12036rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 12037GLR parsers during nondeterministic operation,
ca2a6d15
PH
12038this silently causes an alternative parse to die. During deterministic
12039operation, it is the same as the effect of YYERROR.
12040@xref{Semantic Predicates}.
12041
12042This feature is experimental.
12043More user feedback will help to determine whether it should become a permanent
12044feature.
12045@end deffn
12046
dd8d9022
AD
12047@deffn {Construct} /*@dots{}*/
12048Comment delimiters, as in C.
18b519c0 12049@end deffn
bfa74976 12050
dd8d9022
AD
12051@deffn {Delimiter} :
12052Separates a rule's result from its components. @xref{Rules, ,Syntax of
12053Grammar Rules}.
18b519c0 12054@end deffn
bfa74976 12055
dd8d9022
AD
12056@deffn {Delimiter} ;
12057Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 12058@end deffn
bfa74976 12059
dd8d9022
AD
12060@deffn {Delimiter} |
12061Separates alternate rules for the same result nonterminal.
12062@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 12063@end deffn
bfa74976 12064
12e35840
JD
12065@deffn {Directive} <*>
12066Used to define a default tagged @code{%destructor} or default tagged
12067@code{%printer}.
85894313
JD
12068
12069This feature is experimental.
12070More user feedback will help to determine whether it should become a permanent
12071feature.
12072
12e35840
JD
12073@xref{Destructor Decl, , Freeing Discarded Symbols}.
12074@end deffn
12075
3ebecc24 12076@deffn {Directive} <>
12e35840
JD
12077Used to define a default tagless @code{%destructor} or default tagless
12078@code{%printer}.
85894313
JD
12079
12080This feature is experimental.
12081More user feedback will help to determine whether it should become a permanent
12082feature.
12083
12e35840
JD
12084@xref{Destructor Decl, , Freeing Discarded Symbols}.
12085@end deffn
12086
dd8d9022
AD
12087@deffn {Symbol} $accept
12088The predefined nonterminal whose only rule is @samp{$accept: @var{start}
12089$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
12090Start-Symbol}. It cannot be used in the grammar.
18b519c0 12091@end deffn
bfa74976 12092
136a0f76 12093@deffn {Directive} %code @{@var{code}@}
148d66d8 12094@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
51151d91
JD
12095Insert @var{code} verbatim into the output parser source at the
12096default location or at the location specified by @var{qualifier}.
e0c07222 12097@xref{%code Summary}.
9bc0dd67
JD
12098@end deffn
12099
12100@deffn {Directive} %debug
12101Equip the parser for debugging. @xref{Decl Summary}.
12102@end deffn
12103
91d2c560 12104@ifset defaultprec
22fccf95
PE
12105@deffn {Directive} %default-prec
12106Assign a precedence to rules that lack an explicit @samp{%prec}
12107modifier. @xref{Contextual Precedence, ,Context-Dependent
12108Precedence}.
39a06c25 12109@end deffn
91d2c560 12110@end ifset
39a06c25 12111
7fceb615
JD
12112@deffn {Directive} %define @var{variable}
12113@deffnx {Directive} %define @var{variable} @var{value}
12114@deffnx {Directive} %define @var{variable} "@var{value}"
35c1e5f0 12115Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
12116@end deffn
12117
18b519c0 12118@deffn {Directive} %defines
ff7571c0
JD
12119Bison declaration to create a parser header file, which is usually
12120meant for the scanner. @xref{Decl Summary}.
18b519c0 12121@end deffn
6deb4447 12122
02975b9a
JD
12123@deffn {Directive} %defines @var{defines-file}
12124Same as above, but save in the file @var{defines-file}.
12125@xref{Decl Summary}.
12126@end deffn
12127
18b519c0 12128@deffn {Directive} %destructor
258b75ca 12129Specify how the parser should reclaim the memory associated to
fa7e68c3 12130discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 12131@end deffn
72f889cc 12132
18b519c0 12133@deffn {Directive} %dprec
676385e2 12134Bison declaration to assign a precedence to a rule that is used at parse
c827f760 12135time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 12136GLR Parsers}.
18b519c0 12137@end deffn
676385e2 12138
dd8d9022
AD
12139@deffn {Symbol} $end
12140The predefined token marking the end of the token stream. It cannot be
12141used in the grammar.
12142@end deffn
12143
12144@deffn {Symbol} error
12145A token name reserved for error recovery. This token may be used in
12146grammar rules so as to allow the Bison parser to recognize an error in
12147the grammar without halting the process. In effect, a sentence
12148containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
12149token @code{error} becomes the current lookahead token. Actions
12150corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
12151token is reset to the token that originally caused the violation.
12152@xref{Error Recovery}.
18d192f0
AD
12153@end deffn
12154
18b519c0 12155@deffn {Directive} %error-verbose
7fceb615
JD
12156An obsolete directive standing for @samp{%define parse.error verbose}
12157(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
18b519c0 12158@end deffn
2a8d363a 12159
02975b9a 12160@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 12161Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 12162Summary}.
18b519c0 12163@end deffn
d8988b2f 12164
18b519c0 12165@deffn {Directive} %glr-parser
8a4281b9
JD
12166Bison declaration to produce a GLR parser. @xref{GLR
12167Parsers, ,Writing GLR Parsers}.
18b519c0 12168@end deffn
676385e2 12169
dd8d9022
AD
12170@deffn {Directive} %initial-action
12171Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
12172@end deffn
12173
e6e704dc
JD
12174@deffn {Directive} %language
12175Specify the programming language for the generated parser.
12176@xref{Decl Summary}.
12177@end deffn
12178
18b519c0 12179@deffn {Directive} %left
d78f0ac9 12180Bison declaration to assign precedence and left associativity to token(s).
bfa74976 12181@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12182@end deffn
bfa74976 12183
2055a44e
AD
12184@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
12185Bison declaration to specifying additional arguments that
2a8d363a
AD
12186@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
12187for Pure Parsers}.
18b519c0 12188@end deffn
2a8d363a 12189
18b519c0 12190@deffn {Directive} %merge
676385e2 12191Bison declaration to assign a merging function to a rule. If there is a
fae437e8 12192reduce/reduce conflict with a rule having the same merging function, the
676385e2 12193function is applied to the two semantic values to get a single result.
8a4281b9 12194@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 12195@end deffn
676385e2 12196
02975b9a 12197@deffn {Directive} %name-prefix "@var{prefix}"
4b3847c3
AD
12198Obsoleted by the @code{%define} variable @code{api.prefix} (@pxref{Multiple
12199Parsers, ,Multiple Parsers in the Same Program}).
12200
12201Rename the external symbols (variables and functions) used in the parser so
12202that they start with @var{prefix} instead of @samp{yy}. Contrary to
12203@code{api.prefix}, do no rename types and macros.
12204
12205The precise list of symbols renamed in C parsers is @code{yyparse},
12206@code{yylex}, @code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yychar},
12207@code{yydebug}, and (if locations are used) @code{yylloc}. If you use a
12208push parser, @code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
12209@code{yypstate_new} and @code{yypstate_delete} will also be renamed. For
12210example, if you use @samp{%name-prefix "c_"}, the names become
12211@code{c_parse}, @code{c_lex}, and so on. For C++ parsers, see the
12212@code{%define namespace} documentation in this section.
18b519c0 12213@end deffn
d8988b2f 12214
4b3847c3 12215
91d2c560 12216@ifset defaultprec
22fccf95
PE
12217@deffn {Directive} %no-default-prec
12218Do not assign a precedence to rules that lack an explicit @samp{%prec}
12219modifier. @xref{Contextual Precedence, ,Context-Dependent
12220Precedence}.
12221@end deffn
91d2c560 12222@end ifset
22fccf95 12223
18b519c0 12224@deffn {Directive} %no-lines
931c7513 12225Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 12226parser implementation file. @xref{Decl Summary}.
18b519c0 12227@end deffn
931c7513 12228
18b519c0 12229@deffn {Directive} %nonassoc
d78f0ac9 12230Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 12231@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12232@end deffn
bfa74976 12233
02975b9a 12234@deffn {Directive} %output "@var{file}"
ff7571c0
JD
12235Bison declaration to set the name of the parser implementation file.
12236@xref{Decl Summary}.
18b519c0 12237@end deffn
d8988b2f 12238
2055a44e
AD
12239@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
12240Bison declaration to specify additional arguments that both
12241@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
12242Parser Function @code{yyparse}}.
12243@end deffn
12244
12245@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
12246Bison declaration to specify additional arguments that @code{yyparse}
12247should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 12248@end deffn
2a8d363a 12249
18b519c0 12250@deffn {Directive} %prec
bfa74976
RS
12251Bison declaration to assign a precedence to a specific rule.
12252@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 12253@end deffn
bfa74976 12254
d78f0ac9
AD
12255@deffn {Directive} %precedence
12256Bison declaration to assign precedence to token(s), but no associativity
12257@xref{Precedence Decl, ,Operator Precedence}.
12258@end deffn
12259
18b519c0 12260@deffn {Directive} %pure-parser
35c1e5f0
JD
12261Deprecated version of @samp{%define api.pure} (@pxref{%define
12262Summary,,api.pure}), for which Bison is more careful to warn about
12263unreasonable usage.
18b519c0 12264@end deffn
bfa74976 12265
b50d2359 12266@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
12267Require version @var{version} or higher of Bison. @xref{Require Decl, ,
12268Require a Version of Bison}.
b50d2359
AD
12269@end deffn
12270
18b519c0 12271@deffn {Directive} %right
d78f0ac9 12272Bison declaration to assign precedence and right associativity to token(s).
bfa74976 12273@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12274@end deffn
bfa74976 12275
e6e704dc
JD
12276@deffn {Directive} %skeleton
12277Specify the skeleton to use; usually for development.
12278@xref{Decl Summary}.
12279@end deffn
12280
18b519c0 12281@deffn {Directive} %start
704a47c4
AD
12282Bison declaration to specify the start symbol. @xref{Start Decl, ,The
12283Start-Symbol}.
18b519c0 12284@end deffn
bfa74976 12285
18b519c0 12286@deffn {Directive} %token
bfa74976
RS
12287Bison declaration to declare token(s) without specifying precedence.
12288@xref{Token Decl, ,Token Type Names}.
18b519c0 12289@end deffn
bfa74976 12290
18b519c0 12291@deffn {Directive} %token-table
ff7571c0
JD
12292Bison declaration to include a token name table in the parser
12293implementation file. @xref{Decl Summary}.
18b519c0 12294@end deffn
931c7513 12295
18b519c0 12296@deffn {Directive} %type
704a47c4
AD
12297Bison declaration to declare nonterminals. @xref{Type Decl,
12298,Nonterminal Symbols}.
18b519c0 12299@end deffn
bfa74976 12300
dd8d9022
AD
12301@deffn {Symbol} $undefined
12302The predefined token onto which all undefined values returned by
12303@code{yylex} are mapped. It cannot be used in the grammar, rather, use
12304@code{error}.
12305@end deffn
12306
18b519c0 12307@deffn {Directive} %union
bfa74976
RS
12308Bison declaration to specify several possible data types for semantic
12309values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 12310@end deffn
bfa74976 12311
dd8d9022
AD
12312@deffn {Macro} YYABORT
12313Macro to pretend that an unrecoverable syntax error has occurred, by
12314making @code{yyparse} return 1 immediately. The error reporting
12315function @code{yyerror} is not called. @xref{Parser Function, ,The
12316Parser Function @code{yyparse}}.
8405b70c
PB
12317
12318For Java parsers, this functionality is invoked using @code{return YYABORT;}
12319instead.
dd8d9022 12320@end deffn
3ded9a63 12321
dd8d9022
AD
12322@deffn {Macro} YYACCEPT
12323Macro to pretend that a complete utterance of the language has been
12324read, by making @code{yyparse} return 0 immediately.
12325@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
12326
12327For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
12328instead.
dd8d9022 12329@end deffn
bfa74976 12330
dd8d9022 12331@deffn {Macro} YYBACKUP
742e4900 12332Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 12333token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 12334@end deffn
bfa74976 12335
dd8d9022 12336@deffn {Variable} yychar
32c29292 12337External integer variable that contains the integer value of the
742e4900 12338lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
12339@code{yyparse}.) Error-recovery rule actions may examine this variable.
12340@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 12341@end deffn
bfa74976 12342
dd8d9022
AD
12343@deffn {Variable} yyclearin
12344Macro used in error-recovery rule actions. It clears the previous
742e4900 12345lookahead token. @xref{Error Recovery}.
18b519c0 12346@end deffn
bfa74976 12347
dd8d9022
AD
12348@deffn {Macro} YYDEBUG
12349Macro to define to equip the parser with tracing code. @xref{Tracing,
12350,Tracing Your Parser}.
18b519c0 12351@end deffn
bfa74976 12352
dd8d9022
AD
12353@deffn {Variable} yydebug
12354External integer variable set to zero by default. If @code{yydebug}
12355is given a nonzero value, the parser will output information on input
12356symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 12357@end deffn
bfa74976 12358
dd8d9022
AD
12359@deffn {Macro} yyerrok
12360Macro to cause parser to recover immediately to its normal mode
12361after a syntax error. @xref{Error Recovery}.
12362@end deffn
12363
12364@deffn {Macro} YYERROR
4a11b852
AD
12365Cause an immediate syntax error. This statement initiates error
12366recovery just as if the parser itself had detected an error; however, it
12367does not call @code{yyerror}, and does not print any message. If you
12368want to print an error message, call @code{yyerror} explicitly before
12369the @samp{YYERROR;} statement. @xref{Error Recovery}.
8405b70c
PB
12370
12371For Java parsers, this functionality is invoked using @code{return YYERROR;}
12372instead.
dd8d9022
AD
12373@end deffn
12374
12375@deffn {Function} yyerror
12376User-supplied function to be called by @code{yyparse} on error.
71b00ed8 12377@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
12378@end deffn
12379
12380@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
12381An obsolete macro used in the @file{yacc.c} skeleton, that you define
12382with @code{#define} in the prologue to request verbose, specific error
12383message strings when @code{yyerror} is called. It doesn't matter what
12384definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 12385it. Using @samp{%define parse.error verbose} is preferred
31b850d2 12386(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
12387@end deffn
12388
93c150b6
AD
12389@deffn {Macro} YYFPRINTF
12390Macro used to output run-time traces.
12391@xref{Enabling Traces}.
12392@end deffn
12393
dd8d9022
AD
12394@deffn {Macro} YYINITDEPTH
12395Macro for specifying the initial size of the parser stack.
1a059451 12396@xref{Memory Management}.
dd8d9022
AD
12397@end deffn
12398
12399@deffn {Function} yylex
12400User-supplied lexical analyzer function, called with no arguments to get
12401the next token. @xref{Lexical, ,The Lexical Analyzer Function
12402@code{yylex}}.
12403@end deffn
12404
12405@deffn {Macro} YYLEX_PARAM
12406An obsolete macro for specifying an extra argument (or list of extra
32c29292 12407arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
12408macro is deprecated, and is supported only for Yacc like parsers.
12409@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
12410@end deffn
12411
12412@deffn {Variable} yylloc
12413External variable in which @code{yylex} should place the line and column
12414numbers associated with a token. (In a pure parser, it is a local
12415variable within @code{yyparse}, and its address is passed to
32c29292
JD
12416@code{yylex}.)
12417You can ignore this variable if you don't use the @samp{@@} feature in the
12418grammar actions.
12419@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 12420In semantic actions, it stores the location of the lookahead token.
32c29292 12421@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
12422@end deffn
12423
12424@deffn {Type} YYLTYPE
12425Data type of @code{yylloc}; by default, a structure with four
12426members. @xref{Location Type, , Data Types of Locations}.
12427@end deffn
12428
12429@deffn {Variable} yylval
12430External variable in which @code{yylex} should place the semantic
12431value associated with a token. (In a pure parser, it is a local
12432variable within @code{yyparse}, and its address is passed to
32c29292
JD
12433@code{yylex}.)
12434@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 12435In semantic actions, it stores the semantic value of the lookahead token.
32c29292 12436@xref{Actions, ,Actions}.
dd8d9022
AD
12437@end deffn
12438
12439@deffn {Macro} YYMAXDEPTH
1a059451
PE
12440Macro for specifying the maximum size of the parser stack. @xref{Memory
12441Management}.
dd8d9022
AD
12442@end deffn
12443
12444@deffn {Variable} yynerrs
8a2800e7 12445Global variable which Bison increments each time it reports a syntax error.
f4101aa6 12446(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 12447pure push parser, it is a member of yypstate.)
dd8d9022
AD
12448@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
12449@end deffn
12450
12451@deffn {Function} yyparse
12452The parser function produced by Bison; call this function to start
12453parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
12454@end deffn
12455
93c150b6
AD
12456@deffn {Macro} YYPRINT
12457Macro used to output token semantic values. For @file{yacc.c} only.
12458Obsoleted by @code{%printer}.
12459@xref{The YYPRINT Macro, , The @code{YYPRINT} Macro}.
12460@end deffn
12461
9987d1b3 12462@deffn {Function} yypstate_delete
f4101aa6 12463The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 12464call this function to delete the memory associated with a parser.
f4101aa6 12465@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 12466@code{yypstate_delete}}.
59da312b
JD
12467(The current push parsing interface is experimental and may evolve.
12468More user feedback will help to stabilize it.)
9987d1b3
JD
12469@end deffn
12470
12471@deffn {Function} yypstate_new
f4101aa6 12472The function to create a parser instance, produced by Bison in push mode;
9987d1b3 12473call this function to create a new parser.
f4101aa6 12474@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 12475@code{yypstate_new}}.
59da312b
JD
12476(The current push parsing interface is experimental and may evolve.
12477More user feedback will help to stabilize it.)
9987d1b3
JD
12478@end deffn
12479
12480@deffn {Function} yypull_parse
f4101aa6
AD
12481The parser function produced by Bison in push mode; call this function to
12482parse the rest of the input stream.
12483@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 12484@code{yypull_parse}}.
59da312b
JD
12485(The current push parsing interface is experimental and may evolve.
12486More user feedback will help to stabilize it.)
9987d1b3
JD
12487@end deffn
12488
12489@deffn {Function} yypush_parse
f4101aa6
AD
12490The parser function produced by Bison in push mode; call this function to
12491parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 12492@code{yypush_parse}}.
59da312b
JD
12493(The current push parsing interface is experimental and may evolve.
12494More user feedback will help to stabilize it.)
9987d1b3
JD
12495@end deffn
12496
dd8d9022 12497@deffn {Macro} YYRECOVERING
02103984
PE
12498The expression @code{YYRECOVERING ()} yields 1 when the parser
12499is recovering from a syntax error, and 0 otherwise.
12500@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
12501@end deffn
12502
12503@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
12504Macro used to control the use of @code{alloca} when the
12505deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
12506the parser will use @code{malloc} to extend its stacks. If defined to
125071, the parser will use @code{alloca}. Values other than 0 and 1 are
12508reserved for future Bison extensions. If not defined,
12509@code{YYSTACK_USE_ALLOCA} defaults to 0.
12510
55289366 12511In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
12512limited stack and with unreliable stack-overflow checking, you should
12513set @code{YYMAXDEPTH} to a value that cannot possibly result in
12514unchecked stack overflow on any of your target hosts when
12515@code{alloca} is called. You can inspect the code that Bison
12516generates in order to determine the proper numeric values. This will
12517require some expertise in low-level implementation details.
dd8d9022
AD
12518@end deffn
12519
12520@deffn {Type} YYSTYPE
12521Data type of semantic values; @code{int} by default.
12522@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 12523@end deffn
bfa74976 12524
342b8b6e 12525@node Glossary
bfa74976
RS
12526@appendix Glossary
12527@cindex glossary
12528
12529@table @asis
7fceb615 12530@item Accepting state
eb45ef3b
JD
12531A state whose only action is the accept action.
12532The accepting state is thus a consistent state.
12533@xref{Understanding,,}.
12534
8a4281b9 12535@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
12536Formal method of specifying context-free grammars originally proposed
12537by John Backus, and slightly improved by Peter Naur in his 1960-01-02
12538committee document contributing to what became the Algol 60 report.
12539@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 12540
7fceb615
JD
12541@item Consistent state
12542A state containing only one possible action. @xref{Default Reductions}.
eb45ef3b 12543
bfa74976
RS
12544@item Context-free grammars
12545Grammars specified as rules that can be applied regardless of context.
12546Thus, if there is a rule which says that an integer can be used as an
12547expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
12548permitted. @xref{Language and Grammar, ,Languages and Context-Free
12549Grammars}.
bfa74976 12550
7fceb615 12551@item Default reduction
110ef36a 12552The reduction that a parser should perform if the current parser state
35c1e5f0 12553contains no other action for the lookahead token. In permitted parser
7fceb615
JD
12554states, Bison declares the reduction with the largest lookahead set to be
12555the default reduction and removes that lookahead set. @xref{Default
12556Reductions}.
12557
12558@item Defaulted state
12559A consistent state with a default reduction. @xref{Default Reductions}.
eb45ef3b 12560
bfa74976
RS
12561@item Dynamic allocation
12562Allocation of memory that occurs during execution, rather than at
12563compile time or on entry to a function.
12564
12565@item Empty string
12566Analogous to the empty set in set theory, the empty string is a
12567character string of length zero.
12568
12569@item Finite-state stack machine
12570A ``machine'' that has discrete states in which it is said to exist at
12571each instant in time. As input to the machine is processed, the
12572machine moves from state to state as specified by the logic of the
12573machine. In the case of the parser, the input is the language being
12574parsed, and the states correspond to various stages in the grammar
c827f760 12575rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 12576
8a4281b9 12577@item Generalized LR (GLR)
676385e2 12578A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 12579that are not LR(1). It resolves situations that Bison's
eb45ef3b 12580deterministic parsing
676385e2
PH
12581algorithm cannot by effectively splitting off multiple parsers, trying all
12582possible parsers, and discarding those that fail in the light of additional
c827f760 12583right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 12584LR Parsing}.
676385e2 12585
bfa74976
RS
12586@item Grouping
12587A language construct that is (in general) grammatically divisible;
c827f760 12588for example, `expression' or `declaration' in C@.
bfa74976
RS
12589@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
12590
7fceb615
JD
12591@item IELR(1) (Inadequacy Elimination LR(1))
12592A minimal LR(1) parser table construction algorithm. That is, given any
35c1e5f0 12593context-free grammar, IELR(1) generates parser tables with the full
7fceb615
JD
12594language-recognition power of canonical LR(1) but with nearly the same
12595number of parser states as LALR(1). This reduction in parser states is
12596often an order of magnitude. More importantly, because canonical LR(1)'s
12597extra parser states may contain duplicate conflicts in the case of non-LR(1)
12598grammars, the number of conflicts for IELR(1) is often an order of magnitude
12599less as well. This can significantly reduce the complexity of developing a
12600grammar. @xref{LR Table Construction}.
eb45ef3b 12601
bfa74976
RS
12602@item Infix operator
12603An arithmetic operator that is placed between the operands on which it
12604performs some operation.
12605
12606@item Input stream
12607A continuous flow of data between devices or programs.
12608
8a4281b9 12609@item LAC (Lookahead Correction)
fcf834f9 12610A parsing mechanism that fixes the problem of delayed syntax error
7fceb615
JD
12611detection, which is caused by LR state merging, default reductions, and the
12612use of @code{%nonassoc}. Delayed syntax error detection results in
12613unexpected semantic actions, initiation of error recovery in the wrong
12614syntactic context, and an incorrect list of expected tokens in a verbose
12615syntax error message. @xref{LAC}.
fcf834f9 12616
bfa74976
RS
12617@item Language construct
12618One of the typical usage schemas of the language. For example, one of
12619the constructs of the C language is the @code{if} statement.
12620@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
12621
12622@item Left associativity
12623Operators having left associativity are analyzed from left to right:
12624@samp{a+b+c} first computes @samp{a+b} and then combines with
12625@samp{c}. @xref{Precedence, ,Operator Precedence}.
12626
12627@item Left recursion
89cab50d
AD
12628A rule whose result symbol is also its first component symbol; for
12629example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
12630Rules}.
bfa74976
RS
12631
12632@item Left-to-right parsing
12633Parsing a sentence of a language by analyzing it token by token from
c827f760 12634left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
12635
12636@item Lexical analyzer (scanner)
12637A function that reads an input stream and returns tokens one by one.
12638@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
12639
12640@item Lexical tie-in
12641A flag, set by actions in the grammar rules, which alters the way
12642tokens are parsed. @xref{Lexical Tie-ins}.
12643
931c7513 12644@item Literal string token
14ded682 12645A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 12646
742e4900
JD
12647@item Lookahead token
12648A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 12649Tokens}.
bfa74976 12650
8a4281b9 12651@item LALR(1)
bfa74976 12652The class of context-free grammars that Bison (like most other parser
8a4281b9 12653generators) can handle by default; a subset of LR(1).
cc09e5be 12654@xref{Mysterious Conflicts}.
bfa74976 12655
8a4281b9 12656@item LR(1)
bfa74976 12657The class of context-free grammars in which at most one token of
742e4900 12658lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
12659
12660@item Nonterminal symbol
12661A grammar symbol standing for a grammatical construct that can
12662be expressed through rules in terms of smaller constructs; in other
12663words, a construct that is not a token. @xref{Symbols}.
12664
bfa74976
RS
12665@item Parser
12666A function that recognizes valid sentences of a language by analyzing
12667the syntax structure of a set of tokens passed to it from a lexical
12668analyzer.
12669
12670@item Postfix operator
12671An arithmetic operator that is placed after the operands upon which it
12672performs some operation.
12673
12674@item Reduction
12675Replacing a string of nonterminals and/or terminals with a single
89cab50d 12676nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 12677Parser Algorithm}.
bfa74976
RS
12678
12679@item Reentrant
12680A reentrant subprogram is a subprogram which can be in invoked any
12681number of times in parallel, without interference between the various
12682invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
12683
12684@item Reverse polish notation
12685A language in which all operators are postfix operators.
12686
12687@item Right recursion
89cab50d
AD
12688A rule whose result symbol is also its last component symbol; for
12689example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
12690Rules}.
bfa74976
RS
12691
12692@item Semantics
12693In computer languages, the semantics are specified by the actions
12694taken for each instance of the language, i.e., the meaning of
12695each statement. @xref{Semantics, ,Defining Language Semantics}.
12696
12697@item Shift
12698A parser is said to shift when it makes the choice of analyzing
12699further input from the stream rather than reducing immediately some
c827f760 12700already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
12701
12702@item Single-character literal
12703A single character that is recognized and interpreted as is.
12704@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
12705
12706@item Start symbol
12707The nonterminal symbol that stands for a complete valid utterance in
12708the language being parsed. The start symbol is usually listed as the
13863333 12709first nonterminal symbol in a language specification.
bfa74976
RS
12710@xref{Start Decl, ,The Start-Symbol}.
12711
12712@item Symbol table
12713A data structure where symbol names and associated data are stored
12714during parsing to allow for recognition and use of existing
12715information in repeated uses of a symbol. @xref{Multi-function Calc}.
12716
6e649e65
PE
12717@item Syntax error
12718An error encountered during parsing of an input stream due to invalid
12719syntax. @xref{Error Recovery}.
12720
bfa74976
RS
12721@item Token
12722A basic, grammatically indivisible unit of a language. The symbol
12723that describes a token in the grammar is a terminal symbol.
12724The input of the Bison parser is a stream of tokens which comes from
12725the lexical analyzer. @xref{Symbols}.
12726
12727@item Terminal symbol
89cab50d
AD
12728A grammar symbol that has no rules in the grammar and therefore is
12729grammatically indivisible. The piece of text it represents is a token.
12730@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7fceb615
JD
12731
12732@item Unreachable state
12733A parser state to which there does not exist a sequence of transitions from
12734the parser's start state. A state can become unreachable during conflict
12735resolution. @xref{Unreachable States}.
bfa74976
RS
12736@end table
12737
342b8b6e 12738@node Copying This Manual
f2b5126e 12739@appendix Copying This Manual
f2b5126e
PB
12740@include fdl.texi
12741
5e528941
JD
12742@node Bibliography
12743@unnumbered Bibliography
12744
12745@table @asis
12746@item [Denny 2008]
12747Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
12748for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
127492008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
12750pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
12751
12752@item [Denny 2010 May]
12753Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
12754Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
12755University, Clemson, SC, USA (May 2010).
12756@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
12757
12758@item [Denny 2010 November]
12759Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
12760Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
12761in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
127622010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
12763
12764@item [DeRemer 1982]
12765Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
12766Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
12767Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
12768615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
12769
12770@item [Knuth 1965]
12771Donald E. Knuth, On the Translation of Languages from Left to Right, in
12772@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
12773607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
12774
12775@item [Scott 2000]
12776Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
12777@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
12778London, Department of Computer Science, TR-00-12 (December 2000).
12779@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
12780@end table
12781
f9b86351
AD
12782@node Index of Terms
12783@unnumbered Index of Terms
bfa74976
RS
12784
12785@printindex cp
12786
bfa74976 12787@bye
a06ea4aa 12788
6b5a0de9
AD
12789@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
12790@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
12791@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
12792@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
12793@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
12794@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
12795@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
12796@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
12797@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
12798@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
12799@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
12800@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
12801@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
5a321748 12802@c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum IEC syntaxes
6b5a0de9
AD
12803@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
12804@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
12805@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
12806@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
12807@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
12808@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
12809@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
12810@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
12811@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
5a321748 12812@c LocalWords: YYINITDEPTH stmts ref initdcl maybeasm notype Lookahead yyoutput
6b5a0de9
AD
12813@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
12814@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
12815@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
12816@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
12817@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 12818@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
5a321748
AD
12819@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs sr
12820@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC nterm LR's
6b5a0de9 12821@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
5a321748 12822@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative Ph
6b5a0de9
AD
12823@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
12824@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
12825@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
5a321748 12826@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz ACM
6b5a0de9 12827@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
5a321748 12828@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno filename
6b5a0de9
AD
12829@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
12830@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
12831@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
12832@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
5a321748 12833@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc PSLR
6b5a0de9
AD
12834@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
12835@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
12836@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
12837@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
5a05f42e 12838@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos uint
5a321748 12839@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett LALR's
5a05f42e
AD
12840@c LocalWords: subdirectory Solaris nonassociativity perror schemas Malloy ints
12841@c LocalWords: Scannerless ispell american ChangeLog smallexample CSTYPE CLTYPE
7287be84 12842@c LocalWords: clval CDEBUG cdebug deftypeopx yyterminate LocationType
53e2cd1e
AD
12843@c LocalWords: parsers parser's
12844@c LocalWords: associativity subclasses precedences unresolvable runnable
12845@c LocalWords: allocators subunit initializations unreferenced untyped
12846@c LocalWords: errorVerbose subtype subtypes
e944aaff
AD
12847
12848@c Local Variables:
12849@c ispell-dictionary: "american"
12850@c fill-column: 76
12851@c End: