]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
Java parser improvements
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
e1145ad8
AD
33This manual (@value{UPDATED}) is for @acronym{GNU} Bison (version
34@value{VERSION}), the @acronym{GNU} parser generator.
fae437e8 35
a06ea4aa 36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
ab7f29f8
JD
371999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software
38Foundation, Inc.
fae437e8
AD
39
40@quotation
41Permission is granted to copy, distribute and/or modify this document
c827f760 42under the terms of the @acronym{GNU} Free Documentation License,
592fde95 43Version 1.2 or any later version published by the Free Software
c827f760
PE
44Foundation; with no Invariant Sections, with the Front-Cover texts
45being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
46(a) below. A copy of the license is included in the section entitled
47``@acronym{GNU} Free Documentation License.''
48
389c8cfd
PE
49(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
50modify this @acronym{GNU} manual. Buying copies from the @acronym{FSF}
51supports it in developing @acronym{GNU} and promoting software
52freedom.''
fae437e8
AD
53@end quotation
54@end copying
55
e62f1a89 56@dircategory Software development
fae437e8 57@direntry
c827f760 58* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 59@end direntry
bfa74976 60
bfa74976
RS
61@titlepage
62@title Bison
c827f760 63@subtitle The Yacc-compatible Parser Generator
df1af54c 64@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
65
66@author by Charles Donnelly and Richard Stallman
67
68@page
69@vskip 0pt plus 1filll
fae437e8 70@insertcopying
bfa74976
RS
71@sp 2
72Published by the Free Software Foundation @*
0fb669f9
PE
7351 Franklin Street, Fifth Floor @*
74Boston, MA 02110-1301 USA @*
9ecbd125 75Printed copies are available from the Free Software Foundation.@*
c827f760 76@acronym{ISBN} 1-882114-44-2
bfa74976
RS
77@sp 2
78Cover art by Etienne Suvasa.
79@end titlepage
d5796688
JT
80
81@contents
bfa74976 82
342b8b6e
AD
83@ifnottex
84@node Top
85@top Bison
fae437e8 86@insertcopying
342b8b6e 87@end ifnottex
bfa74976
RS
88
89@menu
13863333
AD
90* Introduction::
91* Conditions::
c827f760 92* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
93 how you can copy and share Bison
94
95Tutorial sections:
96* Concepts:: Basic concepts for understanding Bison.
97* Examples:: Three simple explained examples of using Bison.
98
99Reference sections:
100* Grammar File:: Writing Bison declarations and rules.
101* Interface:: C-language interface to the parser function @code{yyparse}.
102* Algorithm:: How the Bison parser works at run-time.
103* Error Recovery:: Writing rules for error recovery.
104* Context Dependency:: What to do if your language syntax is too
105 messy for Bison to handle straightforwardly.
ec3bc396 106* Debugging:: Understanding or debugging Bison parsers.
bfa74976 107* Invocation:: How to run Bison (to produce the parser source file).
8405b70c 108* Other Languages:: Creating C++ and Java parsers.
12545799 109* FAQ:: Frequently Asked Questions
bfa74976
RS
110* Table of Symbols:: All the keywords of the Bison language are explained.
111* Glossary:: Basic concepts are explained.
f2b5126e 112* Copying This Manual:: License for copying this manual.
bfa74976
RS
113* Index:: Cross-references to the text.
114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 127* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 128* Locations Overview:: Tracking Locations.
bfa74976
RS
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
133
fa7e68c3
PE
134Writing @acronym{GLR} Parsers
135
32c29292
JD
136* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
137* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
138* GLR Semantic Actions:: Deferred semantic actions have special concerns.
139* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 140
bfa74976
RS
141Examples
142
143* RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145* Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
147* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 148* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
149* Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
bfa74976
RS
151* Exercises:: Ideas for improving the multi-function calculator.
152
153Reverse Polish Notation Calculator
154
75f5aaea 155* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
156* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
157* Lexer: Rpcalc Lexer. The lexical analyzer.
158* Main: Rpcalc Main. The controlling function.
159* Error: Rpcalc Error. The error reporting function.
160* Gen: Rpcalc Gen. Running Bison on the grammar file.
161* Comp: Rpcalc Compile. Run the C compiler on the output code.
162
163Grammar Rules for @code{rpcalc}
164
13863333
AD
165* Rpcalc Input::
166* Rpcalc Line::
167* Rpcalc Expr::
bfa74976 168
342b8b6e
AD
169Location Tracking Calculator: @code{ltcalc}
170
171* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
172* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
173* Lexer: Ltcalc Lexer. The lexical analyzer.
174
bfa74976
RS
175Multi-Function Calculator: @code{mfcalc}
176
177* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
178* Rules: Mfcalc Rules. Grammar rules for the calculator.
179* Symtab: Mfcalc Symtab. Symbol table management subroutines.
180
181Bison Grammar Files
182
183* Grammar Outline:: Overall layout of the grammar file.
184* Symbols:: Terminal and nonterminal symbols.
185* Rules:: How to write grammar rules.
186* Recursion:: Writing recursive rules.
187* Semantics:: Semantic values and actions.
93dd49ab 188* Locations:: Locations and actions.
bfa74976
RS
189* Declarations:: All kinds of Bison declarations are described here.
190* Multiple Parsers:: Putting more than one Bison parser in one program.
191
192Outline of a Bison Grammar
193
93dd49ab 194* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 195* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
bfa74976
RS
196* Bison Declarations:: Syntax and usage of the Bison declarations section.
197* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 198* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
199
200Defining Language Semantics
201
202* Value Type:: Specifying one data type for all semantic values.
203* Multiple Types:: Specifying several alternative data types.
204* Actions:: An action is the semantic definition of a grammar rule.
205* Action Types:: Specifying data types for actions to operate on.
206* Mid-Rule Actions:: Most actions go at the end of a rule.
207 This says when, why and how to use the exceptional
208 action in the middle of a rule.
209
93dd49ab
PE
210Tracking Locations
211
212* Location Type:: Specifying a data type for locations.
213* Actions and Locations:: Using locations in actions.
214* Location Default Action:: Defining a general way to compute locations.
215
bfa74976
RS
216Bison Declarations
217
b50d2359 218* Require Decl:: Requiring a Bison version.
bfa74976
RS
219* Token Decl:: Declaring terminal symbols.
220* Precedence Decl:: Declaring terminals with precedence and associativity.
221* Union Decl:: Declaring the set of all semantic value types.
222* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 223* Initial Action Decl:: Code run before parsing starts.
72f889cc 224* Destructor Decl:: Declaring how symbols are freed.
d6328241 225* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
226* Start Decl:: Specifying the start symbol.
227* Pure Decl:: Requesting a reentrant parser.
9987d1b3 228* Push Decl:: Requesting a push parser.
bfa74976
RS
229* Decl Summary:: Table of all Bison declarations.
230
231Parser C-Language Interface
232
233* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 234* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
235 which reads tokens.
236* Error Reporting:: You must supply a function @code{yyerror}.
237* Action Features:: Special features for use in actions.
f7ab6a50
PE
238* Internationalization:: How to let the parser speak in the user's
239 native language.
bfa74976
RS
240
241The Lexical Analyzer Function @code{yylex}
242
243* Calling Convention:: How @code{yyparse} calls @code{yylex}.
244* Token Values:: How @code{yylex} must return the semantic value
245 of the token it has read.
95923bd6 246* Token Locations:: How @code{yylex} must return the text location
bfa74976 247 (line number, etc.) of the token, if the
93dd49ab 248 actions want that.
bfa74976
RS
249* Pure Calling:: How the calling convention differs
250 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
251
13863333 252The Bison Parser Algorithm
bfa74976 253
742e4900 254* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
255* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
256* Precedence:: Operator precedence works by resolving conflicts.
257* Contextual Precedence:: When an operator's precedence depends on context.
258* Parser States:: The parser is a finite-state-machine with stack.
259* Reduce/Reduce:: When two rules are applicable in the same situation.
260* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 261* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 262* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
263
264Operator Precedence
265
266* Why Precedence:: An example showing why precedence is needed.
267* Using Precedence:: How to specify precedence in Bison grammars.
268* Precedence Examples:: How these features are used in the previous example.
269* How Precedence:: How they work.
270
271Handling Context Dependencies
272
273* Semantic Tokens:: Token parsing can depend on the semantic context.
274* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
275* Tie-in Recovery:: Lexical tie-ins have implications for how
276 error recovery rules must be written.
277
93dd49ab 278Debugging Your Parser
ec3bc396
AD
279
280* Understanding:: Understanding the structure of your parser.
281* Tracing:: Tracing the execution of your parser.
282
bfa74976
RS
283Invoking Bison
284
13863333 285* Bison Options:: All the options described in detail,
c827f760 286 in alphabetical order by short options.
bfa74976 287* Option Cross Key:: Alphabetical list of long options.
93dd49ab 288* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 289
8405b70c 290Parsers Written In Other Languages
12545799
AD
291
292* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 293* Java Parsers:: The interface to generate Java parser classes
12545799
AD
294
295C++ Parsers
296
297* C++ Bison Interface:: Asking for C++ parser generation
298* C++ Semantic Values:: %union vs. C++
299* C++ Location Values:: The position and location classes
300* C++ Parser Interface:: Instantiating and running the parser
301* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 302* A Complete C++ Example:: Demonstrating their use
12545799
AD
303
304A Complete C++ Example
305
306* Calc++ --- C++ Calculator:: The specifications
307* Calc++ Parsing Driver:: An active parsing context
308* Calc++ Parser:: A parser class
309* Calc++ Scanner:: A pure C++ Flex scanner
310* Calc++ Top Level:: Conducting the band
311
8405b70c
PB
312Java Parsers
313
314* Java Bison Interface:: Asking for Java parser generation
315* Java Semantic Values:: %type and %token vs. Java
316* Java Location Values:: The position and location classes
317* Java Parser Interface:: Instantiating and running the parser
e254a580
DJ
318* Java Scanner Interface:: Specifying the scanner for the parser
319* Java Action Features:: Special features for use in actions.
8405b70c 320* Java Differences:: Differences between C/C++ and Java Grammars
e254a580 321* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 322
d1a1114f
AD
323Frequently Asked Questions
324
1a059451 325* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 326* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 327* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 328* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 329* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
330* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
331* I can't build Bison:: Troubleshooting
332* Where can I find help?:: Troubleshouting
333* Bug Reports:: Troublereporting
334* Other Languages:: Parsers in Java and others
335* Beta Testing:: Experimenting development versions
336* Mailing Lists:: Meeting other Bison users
d1a1114f 337
f2b5126e
PB
338Copying This Manual
339
f16b0819 340* Copying This Manual:: License for copying this manual.
f2b5126e 341
342b8b6e 342@end detailmenu
bfa74976
RS
343@end menu
344
342b8b6e 345@node Introduction
bfa74976
RS
346@unnumbered Introduction
347@cindex introduction
348
6077da58
PE
349@dfn{Bison} is a general-purpose parser generator that converts an
350annotated context-free grammar into an @acronym{LALR}(1) or
351@acronym{GLR} parser for that grammar. Once you are proficient with
1e137b71 352Bison, you can use it to develop a wide range of language parsers, from those
bfa74976
RS
353used in simple desk calculators to complex programming languages.
354
355Bison is upward compatible with Yacc: all properly-written Yacc grammars
356ought to work with Bison with no change. Anyone familiar with Yacc
357should be able to use Bison with little trouble. You need to be fluent in
1e137b71 358C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
359
360We begin with tutorial chapters that explain the basic concepts of using
361Bison and show three explained examples, each building on the last. If you
362don't know Bison or Yacc, start by reading these chapters. Reference
363chapters follow which describe specific aspects of Bison in detail.
364
931c7513
RS
365Bison was written primarily by Robert Corbett; Richard Stallman made it
366Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 367multi-character string literals and other features.
931c7513 368
df1af54c 369This edition corresponds to version @value{VERSION} of Bison.
bfa74976 370
342b8b6e 371@node Conditions
bfa74976
RS
372@unnumbered Conditions for Using Bison
373
193d7c70
PE
374The distribution terms for Bison-generated parsers permit using the
375parsers in nonfree programs. Before Bison version 2.2, these extra
376permissions applied only when Bison was generating @acronym{LALR}(1)
377parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 378parsers could be used only in programs that were free software.
a31239f1 379
c827f760
PE
380The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
381compiler, have never
9ecbd125 382had such a requirement. They could always be used for nonfree
a31239f1
RS
383software. The reason Bison was different was not due to a special
384policy decision; it resulted from applying the usual General Public
385License to all of the Bison source code.
386
387The output of the Bison utility---the Bison parser file---contains a
388verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
389parser's implementation. (The actions from your grammar are inserted
390into this implementation at one point, but most of the rest of the
391implementation is not changed.) When we applied the @acronym{GPL}
392terms to the skeleton code for the parser's implementation,
a31239f1
RS
393the effect was to restrict the use of Bison output to free software.
394
395We didn't change the terms because of sympathy for people who want to
396make software proprietary. @strong{Software should be free.} But we
397concluded that limiting Bison's use to free software was doing little to
398encourage people to make other software free. So we decided to make the
399practical conditions for using Bison match the practical conditions for
c827f760 400using the other @acronym{GNU} tools.
bfa74976 401
193d7c70
PE
402This exception applies when Bison is generating code for a parser.
403You can tell whether the exception applies to a Bison output file by
404inspecting the file for text beginning with ``As a special
405exception@dots{}''. The text spells out the exact terms of the
406exception.
262aa8dd 407
f16b0819
PE
408@node Copying
409@unnumbered GNU GENERAL PUBLIC LICENSE
410@include gpl-3.0.texi
bfa74976 411
342b8b6e 412@node Concepts
bfa74976
RS
413@chapter The Concepts of Bison
414
415This chapter introduces many of the basic concepts without which the
416details of Bison will not make sense. If you do not already know how to
417use Bison or Yacc, we suggest you start by reading this chapter carefully.
418
419@menu
420* Language and Grammar:: Languages and context-free grammars,
421 as mathematical ideas.
422* Grammar in Bison:: How we represent grammars for Bison's sake.
423* Semantic Values:: Each token or syntactic grouping can have
424 a semantic value (the value of an integer,
425 the name of an identifier, etc.).
426* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 427* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 428* Locations Overview:: Tracking Locations.
bfa74976
RS
429* Bison Parser:: What are Bison's input and output,
430 how is the output used?
431* Stages:: Stages in writing and running Bison grammars.
432* Grammar Layout:: Overall structure of a Bison grammar file.
433@end menu
434
342b8b6e 435@node Language and Grammar
bfa74976
RS
436@section Languages and Context-Free Grammars
437
bfa74976
RS
438@cindex context-free grammar
439@cindex grammar, context-free
440In order for Bison to parse a language, it must be described by a
441@dfn{context-free grammar}. This means that you specify one or more
442@dfn{syntactic groupings} and give rules for constructing them from their
443parts. For example, in the C language, one kind of grouping is called an
444`expression'. One rule for making an expression might be, ``An expression
445can be made of a minus sign and another expression''. Another would be,
446``An expression can be an integer''. As you can see, rules are often
447recursive, but there must be at least one rule which leads out of the
448recursion.
449
c827f760 450@cindex @acronym{BNF}
bfa74976
RS
451@cindex Backus-Naur form
452The most common formal system for presenting such rules for humans to read
c827f760
PE
453is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
454order to specify the language Algol 60. Any grammar expressed in
455@acronym{BNF} is a context-free grammar. The input to Bison is
456essentially machine-readable @acronym{BNF}.
bfa74976 457
c827f760
PE
458@cindex @acronym{LALR}(1) grammars
459@cindex @acronym{LR}(1) grammars
676385e2
PH
460There are various important subclasses of context-free grammar. Although it
461can handle almost all context-free grammars, Bison is optimized for what
c827f760 462are called @acronym{LALR}(1) grammars.
676385e2 463In brief, in these grammars, it must be possible to
bfa74976 464tell how to parse any portion of an input string with just a single
742e4900 465token of lookahead. Strictly speaking, that is a description of an
c827f760
PE
466@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
467restrictions that are
bfa74976 468hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
469@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
470@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
471more information on this.
bfa74976 472
c827f760
PE
473@cindex @acronym{GLR} parsing
474@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 475@cindex ambiguous grammars
9d9b8b70 476@cindex nondeterministic parsing
9501dc6e
AD
477
478Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
479roughly that the next grammar rule to apply at any point in the input is
480uniquely determined by the preceding input and a fixed, finite portion
742e4900 481(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 482grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 483apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 484grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 485lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
486With the proper declarations, Bison is also able to parse these more
487general context-free grammars, using a technique known as @acronym{GLR}
488parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
489are able to handle any context-free grammar for which the number of
490possible parses of any given string is finite.
676385e2 491
bfa74976
RS
492@cindex symbols (abstract)
493@cindex token
494@cindex syntactic grouping
495@cindex grouping, syntactic
9501dc6e
AD
496In the formal grammatical rules for a language, each kind of syntactic
497unit or grouping is named by a @dfn{symbol}. Those which are built by
498grouping smaller constructs according to grammatical rules are called
bfa74976
RS
499@dfn{nonterminal symbols}; those which can't be subdivided are called
500@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
501corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 502corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
503
504We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
505nonterminal, mean. The tokens of C are identifiers, constants (numeric
506and string), and the various keywords, arithmetic operators and
507punctuation marks. So the terminal symbols of a grammar for C include
508`identifier', `number', `string', plus one symbol for each keyword,
509operator or punctuation mark: `if', `return', `const', `static', `int',
510`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
511(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
512lexicography, not grammar.)
513
514Here is a simple C function subdivided into tokens:
515
9edcd895
AD
516@ifinfo
517@example
518int /* @r{keyword `int'} */
14d4662b 519square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
520 @r{identifier, close-paren} */
521@{ /* @r{open-brace} */
aa08666d
AD
522 return x * x; /* @r{keyword `return', identifier, asterisk,}
523 @r{identifier, semicolon} */
9edcd895
AD
524@} /* @r{close-brace} */
525@end example
526@end ifinfo
527@ifnotinfo
bfa74976
RS
528@example
529int /* @r{keyword `int'} */
14d4662b 530square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 531@{ /* @r{open-brace} */
9edcd895 532 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
533@} /* @r{close-brace} */
534@end example
9edcd895 535@end ifnotinfo
bfa74976
RS
536
537The syntactic groupings of C include the expression, the statement, the
538declaration, and the function definition. These are represented in the
539grammar of C by nonterminal symbols `expression', `statement',
540`declaration' and `function definition'. The full grammar uses dozens of
541additional language constructs, each with its own nonterminal symbol, in
542order to express the meanings of these four. The example above is a
543function definition; it contains one declaration, and one statement. In
544the statement, each @samp{x} is an expression and so is @samp{x * x}.
545
546Each nonterminal symbol must have grammatical rules showing how it is made
547out of simpler constructs. For example, one kind of C statement is the
548@code{return} statement; this would be described with a grammar rule which
549reads informally as follows:
550
551@quotation
552A `statement' can be made of a `return' keyword, an `expression' and a
553`semicolon'.
554@end quotation
555
556@noindent
557There would be many other rules for `statement', one for each kind of
558statement in C.
559
560@cindex start symbol
561One nonterminal symbol must be distinguished as the special one which
562defines a complete utterance in the language. It is called the @dfn{start
563symbol}. In a compiler, this means a complete input program. In the C
564language, the nonterminal symbol `sequence of definitions and declarations'
565plays this role.
566
567For example, @samp{1 + 2} is a valid C expression---a valid part of a C
568program---but it is not valid as an @emph{entire} C program. In the
569context-free grammar of C, this follows from the fact that `expression' is
570not the start symbol.
571
572The Bison parser reads a sequence of tokens as its input, and groups the
573tokens using the grammar rules. If the input is valid, the end result is
574that the entire token sequence reduces to a single grouping whose symbol is
575the grammar's start symbol. If we use a grammar for C, the entire input
576must be a `sequence of definitions and declarations'. If not, the parser
577reports a syntax error.
578
342b8b6e 579@node Grammar in Bison
bfa74976
RS
580@section From Formal Rules to Bison Input
581@cindex Bison grammar
582@cindex grammar, Bison
583@cindex formal grammar
584
585A formal grammar is a mathematical construct. To define the language
586for Bison, you must write a file expressing the grammar in Bison syntax:
587a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
588
589A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 590as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
591in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
592
593The Bison representation for a terminal symbol is also called a @dfn{token
594type}. Token types as well can be represented as C-like identifiers. By
595convention, these identifiers should be upper case to distinguish them from
596nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
597@code{RETURN}. A terminal symbol that stands for a particular keyword in
598the language should be named after that keyword converted to upper case.
599The terminal symbol @code{error} is reserved for error recovery.
931c7513 600@xref{Symbols}.
bfa74976
RS
601
602A terminal symbol can also be represented as a character literal, just like
603a C character constant. You should do this whenever a token is just a
604single character (parenthesis, plus-sign, etc.): use that same character in
605a literal as the terminal symbol for that token.
606
931c7513
RS
607A third way to represent a terminal symbol is with a C string constant
608containing several characters. @xref{Symbols}, for more information.
609
bfa74976
RS
610The grammar rules also have an expression in Bison syntax. For example,
611here is the Bison rule for a C @code{return} statement. The semicolon in
612quotes is a literal character token, representing part of the C syntax for
613the statement; the naked semicolon, and the colon, are Bison punctuation
614used in every rule.
615
616@example
617stmt: RETURN expr ';'
618 ;
619@end example
620
621@noindent
622@xref{Rules, ,Syntax of Grammar Rules}.
623
342b8b6e 624@node Semantic Values
bfa74976
RS
625@section Semantic Values
626@cindex semantic value
627@cindex value, semantic
628
629A formal grammar selects tokens only by their classifications: for example,
630if a rule mentions the terminal symbol `integer constant', it means that
631@emph{any} integer constant is grammatically valid in that position. The
632precise value of the constant is irrelevant to how to parse the input: if
633@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 634grammatical.
bfa74976
RS
635
636But the precise value is very important for what the input means once it is
637parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6383989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
639has both a token type and a @dfn{semantic value}. @xref{Semantics,
640,Defining Language Semantics},
bfa74976
RS
641for details.
642
643The token type is a terminal symbol defined in the grammar, such as
644@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
645you need to know to decide where the token may validly appear and how to
646group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 647except their types.
bfa74976
RS
648
649The semantic value has all the rest of the information about the
650meaning of the token, such as the value of an integer, or the name of an
651identifier. (A token such as @code{','} which is just punctuation doesn't
652need to have any semantic value.)
653
654For example, an input token might be classified as token type
655@code{INTEGER} and have the semantic value 4. Another input token might
656have the same token type @code{INTEGER} but value 3989. When a grammar
657rule says that @code{INTEGER} is allowed, either of these tokens is
658acceptable because each is an @code{INTEGER}. When the parser accepts the
659token, it keeps track of the token's semantic value.
660
661Each grouping can also have a semantic value as well as its nonterminal
662symbol. For example, in a calculator, an expression typically has a
663semantic value that is a number. In a compiler for a programming
664language, an expression typically has a semantic value that is a tree
665structure describing the meaning of the expression.
666
342b8b6e 667@node Semantic Actions
bfa74976
RS
668@section Semantic Actions
669@cindex semantic actions
670@cindex actions, semantic
671
672In order to be useful, a program must do more than parse input; it must
673also produce some output based on the input. In a Bison grammar, a grammar
674rule can have an @dfn{action} made up of C statements. Each time the
675parser recognizes a match for that rule, the action is executed.
676@xref{Actions}.
13863333 677
bfa74976
RS
678Most of the time, the purpose of an action is to compute the semantic value
679of the whole construct from the semantic values of its parts. For example,
680suppose we have a rule which says an expression can be the sum of two
681expressions. When the parser recognizes such a sum, each of the
682subexpressions has a semantic value which describes how it was built up.
683The action for this rule should create a similar sort of value for the
684newly recognized larger expression.
685
686For example, here is a rule that says an expression can be the sum of
687two subexpressions:
688
689@example
690expr: expr '+' expr @{ $$ = $1 + $3; @}
691 ;
692@end example
693
694@noindent
695The action says how to produce the semantic value of the sum expression
696from the values of the two subexpressions.
697
676385e2 698@node GLR Parsers
c827f760
PE
699@section Writing @acronym{GLR} Parsers
700@cindex @acronym{GLR} parsing
701@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
702@findex %glr-parser
703@cindex conflicts
704@cindex shift/reduce conflicts
fa7e68c3 705@cindex reduce/reduce conflicts
676385e2 706
fa7e68c3 707In some grammars, Bison's standard
9501dc6e
AD
708@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
709certain grammar rule at a given point. That is, it may not be able to
710decide (on the basis of the input read so far) which of two possible
711reductions (applications of a grammar rule) applies, or whether to apply
712a reduction or read more of the input and apply a reduction later in the
713input. These are known respectively as @dfn{reduce/reduce} conflicts
714(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
715(@pxref{Shift/Reduce}).
716
717To use a grammar that is not easily modified to be @acronym{LALR}(1), a
718more general parsing algorithm is sometimes necessary. If you include
676385e2 719@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 720(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
721(@acronym{GLR}) parser. These parsers handle Bison grammars that
722contain no unresolved conflicts (i.e., after applying precedence
723declarations) identically to @acronym{LALR}(1) parsers. However, when
724faced with unresolved shift/reduce and reduce/reduce conflicts,
725@acronym{GLR} parsers use the simple expedient of doing both,
726effectively cloning the parser to follow both possibilities. Each of
727the resulting parsers can again split, so that at any given time, there
728can be any number of possible parses being explored. The parsers
676385e2
PH
729proceed in lockstep; that is, all of them consume (shift) a given input
730symbol before any of them proceed to the next. Each of the cloned
731parsers eventually meets one of two possible fates: either it runs into
732a parsing error, in which case it simply vanishes, or it merges with
733another parser, because the two of them have reduced the input to an
734identical set of symbols.
735
736During the time that there are multiple parsers, semantic actions are
737recorded, but not performed. When a parser disappears, its recorded
738semantic actions disappear as well, and are never performed. When a
739reduction makes two parsers identical, causing them to merge, Bison
740records both sets of semantic actions. Whenever the last two parsers
741merge, reverting to the single-parser case, Bison resolves all the
742outstanding actions either by precedences given to the grammar rules
743involved, or by performing both actions, and then calling a designated
744user-defined function on the resulting values to produce an arbitrary
745merged result.
746
fa7e68c3 747@menu
32c29292
JD
748* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
749* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
750* GLR Semantic Actions:: Deferred semantic actions have special concerns.
751* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
752@end menu
753
754@node Simple GLR Parsers
755@subsection Using @acronym{GLR} on Unambiguous Grammars
756@cindex @acronym{GLR} parsing, unambiguous grammars
757@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
758@findex %glr-parser
759@findex %expect-rr
760@cindex conflicts
761@cindex reduce/reduce conflicts
762@cindex shift/reduce conflicts
763
764In the simplest cases, you can use the @acronym{GLR} algorithm
765to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
742e4900 766Such grammars typically require more than one symbol of lookahead,
fa7e68c3
PE
767or (in rare cases) fall into the category of grammars in which the
768@acronym{LALR}(1) algorithm throws away too much information (they are in
769@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
770
771Consider a problem that
772arises in the declaration of enumerated and subrange types in the
773programming language Pascal. Here are some examples:
774
775@example
776type subrange = lo .. hi;
777type enum = (a, b, c);
778@end example
779
780@noindent
781The original language standard allows only numeric
782literals and constant identifiers for the subrange bounds (@samp{lo}
783and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
78410206) and many other
785Pascal implementations allow arbitrary expressions there. This gives
786rise to the following situation, containing a superfluous pair of
787parentheses:
788
789@example
790type subrange = (a) .. b;
791@end example
792
793@noindent
794Compare this to the following declaration of an enumerated
795type with only one value:
796
797@example
798type enum = (a);
799@end example
800
801@noindent
802(These declarations are contrived, but they are syntactically
803valid, and more-complicated cases can come up in practical programs.)
804
805These two declarations look identical until the @samp{..} token.
742e4900 806With normal @acronym{LALR}(1) one-token lookahead it is not
fa7e68c3
PE
807possible to decide between the two forms when the identifier
808@samp{a} is parsed. It is, however, desirable
809for a parser to decide this, since in the latter case
810@samp{a} must become a new identifier to represent the enumeration
811value, while in the former case @samp{a} must be evaluated with its
812current meaning, which may be a constant or even a function call.
813
814You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
815to be resolved later, but this typically requires substantial
816contortions in both semantic actions and large parts of the
817grammar, where the parentheses are nested in the recursive rules for
818expressions.
819
820You might think of using the lexer to distinguish between the two
821forms by returning different tokens for currently defined and
822undefined identifiers. But if these declarations occur in a local
823scope, and @samp{a} is defined in an outer scope, then both forms
824are possible---either locally redefining @samp{a}, or using the
825value of @samp{a} from the outer scope. So this approach cannot
826work.
827
e757bb10 828A simple solution to this problem is to declare the parser to
fa7e68c3
PE
829use the @acronym{GLR} algorithm.
830When the @acronym{GLR} parser reaches the critical state, it
831merely splits into two branches and pursues both syntax rules
832simultaneously. Sooner or later, one of them runs into a parsing
833error. If there is a @samp{..} token before the next
834@samp{;}, the rule for enumerated types fails since it cannot
835accept @samp{..} anywhere; otherwise, the subrange type rule
836fails since it requires a @samp{..} token. So one of the branches
837fails silently, and the other one continues normally, performing
838all the intermediate actions that were postponed during the split.
839
840If the input is syntactically incorrect, both branches fail and the parser
841reports a syntax error as usual.
842
843The effect of all this is that the parser seems to ``guess'' the
844correct branch to take, or in other words, it seems to use more
742e4900 845lookahead than the underlying @acronym{LALR}(1) algorithm actually allows
fa7e68c3
PE
846for. In this example, @acronym{LALR}(2) would suffice, but also some cases
847that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
848
849In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
850and the current Bison parser even takes exponential time and space
851for some grammars. In practice, this rarely happens, and for many
852grammars it is possible to prove that it cannot happen.
853The present example contains only one conflict between two
854rules, and the type-declaration context containing the conflict
855cannot be nested. So the number of
856branches that can exist at any time is limited by the constant 2,
857and the parsing time is still linear.
858
859Here is a Bison grammar corresponding to the example above. It
860parses a vastly simplified form of Pascal type declarations.
861
862@example
863%token TYPE DOTDOT ID
864
865@group
866%left '+' '-'
867%left '*' '/'
868@end group
869
870%%
871
872@group
873type_decl : TYPE ID '=' type ';'
874 ;
875@end group
876
877@group
878type : '(' id_list ')'
879 | expr DOTDOT expr
880 ;
881@end group
882
883@group
884id_list : ID
885 | id_list ',' ID
886 ;
887@end group
888
889@group
890expr : '(' expr ')'
891 | expr '+' expr
892 | expr '-' expr
893 | expr '*' expr
894 | expr '/' expr
895 | ID
896 ;
897@end group
898@end example
899
900When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
901about one reduce/reduce conflict. In the conflicting situation the
902parser chooses one of the alternatives, arbitrarily the one
903declared first. Therefore the following correct input is not
904recognized:
905
906@example
907type t = (a) .. b;
908@end example
909
910The parser can be turned into a @acronym{GLR} parser, while also telling Bison
911to be silent about the one known reduce/reduce conflict, by
e757bb10 912adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
913@samp{%%}):
914
915@example
916%glr-parser
917%expect-rr 1
918@end example
919
920@noindent
921No change in the grammar itself is required. Now the
922parser recognizes all valid declarations, according to the
923limited syntax above, transparently. In fact, the user does not even
924notice when the parser splits.
925
f8e1c9e5
AD
926So here we have a case where we can use the benefits of @acronym{GLR},
927almost without disadvantages. Even in simple cases like this, however,
928there are at least two potential problems to beware. First, always
929analyze the conflicts reported by Bison to make sure that @acronym{GLR}
930splitting is only done where it is intended. A @acronym{GLR} parser
931splitting inadvertently may cause problems less obvious than an
932@acronym{LALR} parser statically choosing the wrong alternative in a
933conflict. Second, consider interactions with the lexer (@pxref{Semantic
934Tokens}) with great care. Since a split parser consumes tokens without
935performing any actions during the split, the lexer cannot obtain
936information via parser actions. Some cases of lexer interactions can be
937eliminated by using @acronym{GLR} to shift the complications from the
938lexer to the parser. You must check the remaining cases for
939correctness.
940
941In our example, it would be safe for the lexer to return tokens based on
942their current meanings in some symbol table, because no new symbols are
943defined in the middle of a type declaration. Though it is possible for
944a parser to define the enumeration constants as they are parsed, before
945the type declaration is completed, it actually makes no difference since
946they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
947
948@node Merging GLR Parses
949@subsection Using @acronym{GLR} to Resolve Ambiguities
950@cindex @acronym{GLR} parsing, ambiguous grammars
951@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
952@findex %dprec
953@findex %merge
954@cindex conflicts
955@cindex reduce/reduce conflicts
956
2a8d363a 957Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
958
959@example
960%@{
38a92d50
PE
961 #include <stdio.h>
962 #define YYSTYPE char const *
963 int yylex (void);
964 void yyerror (char const *);
676385e2
PH
965%@}
966
967%token TYPENAME ID
968
969%right '='
970%left '+'
971
972%glr-parser
973
974%%
975
fae437e8 976prog :
676385e2
PH
977 | prog stmt @{ printf ("\n"); @}
978 ;
979
980stmt : expr ';' %dprec 1
981 | decl %dprec 2
982 ;
983
2a8d363a 984expr : ID @{ printf ("%s ", $$); @}
fae437e8 985 | TYPENAME '(' expr ')'
2a8d363a
AD
986 @{ printf ("%s <cast> ", $1); @}
987 | expr '+' expr @{ printf ("+ "); @}
988 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
989 ;
990
fae437e8 991decl : TYPENAME declarator ';'
2a8d363a 992 @{ printf ("%s <declare> ", $1); @}
676385e2 993 | TYPENAME declarator '=' expr ';'
2a8d363a 994 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
995 ;
996
2a8d363a 997declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
998 | '(' declarator ')'
999 ;
1000@end example
1001
1002@noindent
1003This models a problematic part of the C++ grammar---the ambiguity between
1004certain declarations and statements. For example,
1005
1006@example
1007T (x) = y+z;
1008@end example
1009
1010@noindent
1011parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1012(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1013@samp{x} as an @code{ID}).
676385e2 1014Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1015@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1016time it encounters @code{x} in the example above. Since this is a
1017@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1018each choice of resolving the reduce/reduce conflict.
1019Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1020however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1021ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1022the other reduces @code{stmt : decl}, after which both parsers are in an
1023identical state: they've seen @samp{prog stmt} and have the same unprocessed
1024input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1025
1026At this point, the @acronym{GLR} parser requires a specification in the
1027grammar of how to choose between the competing parses.
1028In the example above, the two @code{%dprec}
e757bb10 1029declarations specify that Bison is to give precedence
fa7e68c3 1030to the parse that interprets the example as a
676385e2
PH
1031@code{decl}, which implies that @code{x} is a declarator.
1032The parser therefore prints
1033
1034@example
fae437e8 1035"x" y z + T <init-declare>
676385e2
PH
1036@end example
1037
fa7e68c3
PE
1038The @code{%dprec} declarations only come into play when more than one
1039parse survives. Consider a different input string for this parser:
676385e2
PH
1040
1041@example
1042T (x) + y;
1043@end example
1044
1045@noindent
e757bb10 1046This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1047construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1048Here, there is no ambiguity (this cannot be parsed as a declaration).
1049However, at the time the Bison parser encounters @code{x}, it does not
1050have enough information to resolve the reduce/reduce conflict (again,
1051between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1052case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1053into two, one assuming that @code{x} is an @code{expr}, and the other
1054assuming @code{x} is a @code{declarator}. The second of these parsers
1055then vanishes when it sees @code{+}, and the parser prints
1056
1057@example
fae437e8 1058x T <cast> y +
676385e2
PH
1059@end example
1060
1061Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1062the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1063actions of the two possible parsers, rather than choosing one over the
1064other. To do so, you could change the declaration of @code{stmt} as
1065follows:
1066
1067@example
1068stmt : expr ';' %merge <stmtMerge>
1069 | decl %merge <stmtMerge>
1070 ;
1071@end example
1072
1073@noindent
676385e2
PH
1074and define the @code{stmtMerge} function as:
1075
1076@example
38a92d50
PE
1077static YYSTYPE
1078stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1079@{
1080 printf ("<OR> ");
1081 return "";
1082@}
1083@end example
1084
1085@noindent
1086with an accompanying forward declaration
1087in the C declarations at the beginning of the file:
1088
1089@example
1090%@{
38a92d50 1091 #define YYSTYPE char const *
676385e2
PH
1092 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1093%@}
1094@end example
1095
1096@noindent
fa7e68c3
PE
1097With these declarations, the resulting parser parses the first example
1098as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1099
1100@example
fae437e8 1101"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1102@end example
1103
fa7e68c3 1104Bison requires that all of the
e757bb10 1105productions that participate in any particular merge have identical
fa7e68c3
PE
1106@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1107and the parser will report an error during any parse that results in
1108the offending merge.
9501dc6e 1109
32c29292
JD
1110@node GLR Semantic Actions
1111@subsection GLR Semantic Actions
1112
1113@cindex deferred semantic actions
1114By definition, a deferred semantic action is not performed at the same time as
1115the associated reduction.
1116This raises caveats for several Bison features you might use in a semantic
1117action in a @acronym{GLR} parser.
1118
1119@vindex yychar
1120@cindex @acronym{GLR} parsers and @code{yychar}
1121@vindex yylval
1122@cindex @acronym{GLR} parsers and @code{yylval}
1123@vindex yylloc
1124@cindex @acronym{GLR} parsers and @code{yylloc}
1125In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1126the lookahead token present at the time of the associated reduction.
32c29292
JD
1127After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1128you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1129lookahead token's semantic value and location, if any.
32c29292
JD
1130In a nondeferred semantic action, you can also modify any of these variables to
1131influence syntax analysis.
742e4900 1132@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1133
1134@findex yyclearin
1135@cindex @acronym{GLR} parsers and @code{yyclearin}
1136In a deferred semantic action, it's too late to influence syntax analysis.
1137In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1138shallow copies of the values they had at the time of the associated reduction.
1139For this reason alone, modifying them is dangerous.
1140Moreover, the result of modifying them is undefined and subject to change with
1141future versions of Bison.
1142For example, if a semantic action might be deferred, you should never write it
1143to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1144memory referenced by @code{yylval}.
1145
1146@findex YYERROR
1147@cindex @acronym{GLR} parsers and @code{YYERROR}
1148Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1149(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1150initiate error recovery.
1151During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
1152the same as its effect in an @acronym{LALR}(1) parser.
1153In a deferred semantic action, its effect is undefined.
1154@c The effect is probably a syntax error at the split point.
1155
8710fc41
JD
1156Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1157describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1158
fa7e68c3
PE
1159@node Compiler Requirements
1160@subsection Considerations when Compiling @acronym{GLR} Parsers
1161@cindex @code{inline}
9501dc6e 1162@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1163
38a92d50
PE
1164The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1165later. In addition, they use the @code{inline} keyword, which is not
1166C89, but is C99 and is a common extension in pre-C99 compilers. It is
1167up to the user of these parsers to handle
9501dc6e
AD
1168portability issues. For instance, if using Autoconf and the Autoconf
1169macro @code{AC_C_INLINE}, a mere
1170
1171@example
1172%@{
38a92d50 1173 #include <config.h>
9501dc6e
AD
1174%@}
1175@end example
1176
1177@noindent
1178will suffice. Otherwise, we suggest
1179
1180@example
1181%@{
38a92d50
PE
1182 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1183 #define inline
1184 #endif
9501dc6e
AD
1185%@}
1186@end example
676385e2 1187
342b8b6e 1188@node Locations Overview
847bf1f5
AD
1189@section Locations
1190@cindex location
95923bd6
AD
1191@cindex textual location
1192@cindex location, textual
847bf1f5
AD
1193
1194Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1195and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1196the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1197Bison provides a mechanism for handling these locations.
1198
72d2299c 1199Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1200associated location, but the type of locations is the same for all tokens and
72d2299c 1201groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1202structure for storing locations (@pxref{Locations}, for more details).
1203
1204Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1205set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1206is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1207@code{@@3}.
1208
1209When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1210of its left hand side (@pxref{Actions}). In the same way, another default
1211action is used for locations. However, the action for locations is general
847bf1f5 1212enough for most cases, meaning there is usually no need to describe for each
72d2299c 1213rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1214grouping, the default behavior of the output parser is to take the beginning
1215of the first symbol, and the end of the last symbol.
1216
342b8b6e 1217@node Bison Parser
bfa74976
RS
1218@section Bison Output: the Parser File
1219@cindex Bison parser
1220@cindex Bison utility
1221@cindex lexical analyzer, purpose
1222@cindex parser
1223
1224When you run Bison, you give it a Bison grammar file as input. The output
1225is a C source file that parses the language described by the grammar.
1226This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1227utility and the Bison parser are two distinct programs: the Bison utility
1228is a program whose output is the Bison parser that becomes part of your
1229program.
1230
1231The job of the Bison parser is to group tokens into groupings according to
1232the grammar rules---for example, to build identifiers and operators into
1233expressions. As it does this, it runs the actions for the grammar rules it
1234uses.
1235
704a47c4
AD
1236The tokens come from a function called the @dfn{lexical analyzer} that
1237you must supply in some fashion (such as by writing it in C). The Bison
1238parser calls the lexical analyzer each time it wants a new token. It
1239doesn't know what is ``inside'' the tokens (though their semantic values
1240may reflect this). Typically the lexical analyzer makes the tokens by
1241parsing characters of text, but Bison does not depend on this.
1242@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1243
1244The Bison parser file is C code which defines a function named
1245@code{yyparse} which implements that grammar. This function does not make
1246a complete C program: you must supply some additional functions. One is
1247the lexical analyzer. Another is an error-reporting function which the
1248parser calls to report an error. In addition, a complete C program must
1249start with a function called @code{main}; you have to provide this, and
1250arrange for it to call @code{yyparse} or the parser will never run.
1251@xref{Interface, ,Parser C-Language Interface}.
1252
f7ab6a50 1253Aside from the token type names and the symbols in the actions you
7093d0f5 1254write, all symbols defined in the Bison parser file itself
bfa74976
RS
1255begin with @samp{yy} or @samp{YY}. This includes interface functions
1256such as the lexical analyzer function @code{yylex}, the error reporting
1257function @code{yyerror} and the parser function @code{yyparse} itself.
1258This also includes numerous identifiers used for internal purposes.
1259Therefore, you should avoid using C identifiers starting with @samp{yy}
1260or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1261this manual. Also, you should avoid using the C identifiers
1262@samp{malloc} and @samp{free} for anything other than their usual
1263meanings.
bfa74976 1264
7093d0f5
AD
1265In some cases the Bison parser file includes system headers, and in
1266those cases your code should respect the identifiers reserved by those
55289366 1267headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1268@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1269declare memory allocators and related types. @code{<libintl.h>} is
1270included if message translation is in use
1271(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1272be included if you define @code{YYDEBUG} to a nonzero value
1273(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1274
342b8b6e 1275@node Stages
bfa74976
RS
1276@section Stages in Using Bison
1277@cindex stages in using Bison
1278@cindex using Bison
1279
1280The actual language-design process using Bison, from grammar specification
1281to a working compiler or interpreter, has these parts:
1282
1283@enumerate
1284@item
1285Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1286(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1287in the language, describe the action that is to be taken when an
1288instance of that rule is recognized. The action is described by a
1289sequence of C statements.
bfa74976
RS
1290
1291@item
704a47c4
AD
1292Write a lexical analyzer to process input and pass tokens to the parser.
1293The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1294Lexical Analyzer Function @code{yylex}}). It could also be produced
1295using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1296
1297@item
1298Write a controlling function that calls the Bison-produced parser.
1299
1300@item
1301Write error-reporting routines.
1302@end enumerate
1303
1304To turn this source code as written into a runnable program, you
1305must follow these steps:
1306
1307@enumerate
1308@item
1309Run Bison on the grammar to produce the parser.
1310
1311@item
1312Compile the code output by Bison, as well as any other source files.
1313
1314@item
1315Link the object files to produce the finished product.
1316@end enumerate
1317
342b8b6e 1318@node Grammar Layout
bfa74976
RS
1319@section The Overall Layout of a Bison Grammar
1320@cindex grammar file
1321@cindex file format
1322@cindex format of grammar file
1323@cindex layout of Bison grammar
1324
1325The input file for the Bison utility is a @dfn{Bison grammar file}. The
1326general form of a Bison grammar file is as follows:
1327
1328@example
1329%@{
08e49d20 1330@var{Prologue}
bfa74976
RS
1331%@}
1332
1333@var{Bison declarations}
1334
1335%%
1336@var{Grammar rules}
1337%%
08e49d20 1338@var{Epilogue}
bfa74976
RS
1339@end example
1340
1341@noindent
1342The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1343in every Bison grammar file to separate the sections.
1344
72d2299c 1345The prologue may define types and variables used in the actions. You can
342b8b6e 1346also use preprocessor commands to define macros used there, and use
bfa74976 1347@code{#include} to include header files that do any of these things.
38a92d50
PE
1348You need to declare the lexical analyzer @code{yylex} and the error
1349printer @code{yyerror} here, along with any other global identifiers
1350used by the actions in the grammar rules.
bfa74976
RS
1351
1352The Bison declarations declare the names of the terminal and nonterminal
1353symbols, and may also describe operator precedence and the data types of
1354semantic values of various symbols.
1355
1356The grammar rules define how to construct each nonterminal symbol from its
1357parts.
1358
38a92d50
PE
1359The epilogue can contain any code you want to use. Often the
1360definitions of functions declared in the prologue go here. In a
1361simple program, all the rest of the program can go here.
bfa74976 1362
342b8b6e 1363@node Examples
bfa74976
RS
1364@chapter Examples
1365@cindex simple examples
1366@cindex examples, simple
1367
1368Now we show and explain three sample programs written using Bison: a
1369reverse polish notation calculator, an algebraic (infix) notation
1370calculator, and a multi-function calculator. All three have been tested
1371under BSD Unix 4.3; each produces a usable, though limited, interactive
1372desk-top calculator.
1373
1374These examples are simple, but Bison grammars for real programming
aa08666d
AD
1375languages are written the same way. You can copy these examples into a
1376source file to try them.
bfa74976
RS
1377
1378@menu
1379* RPN Calc:: Reverse polish notation calculator;
1380 a first example with no operator precedence.
1381* Infix Calc:: Infix (algebraic) notation calculator.
1382 Operator precedence is introduced.
1383* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1384* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1385* Multi-function Calc:: Calculator with memory and trig functions.
1386 It uses multiple data-types for semantic values.
1387* Exercises:: Ideas for improving the multi-function calculator.
1388@end menu
1389
342b8b6e 1390@node RPN Calc
bfa74976
RS
1391@section Reverse Polish Notation Calculator
1392@cindex reverse polish notation
1393@cindex polish notation calculator
1394@cindex @code{rpcalc}
1395@cindex calculator, simple
1396
1397The first example is that of a simple double-precision @dfn{reverse polish
1398notation} calculator (a calculator using postfix operators). This example
1399provides a good starting point, since operator precedence is not an issue.
1400The second example will illustrate how operator precedence is handled.
1401
1402The source code for this calculator is named @file{rpcalc.y}. The
1403@samp{.y} extension is a convention used for Bison input files.
1404
1405@menu
75f5aaea 1406* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1407* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1408* Lexer: Rpcalc Lexer. The lexical analyzer.
1409* Main: Rpcalc Main. The controlling function.
1410* Error: Rpcalc Error. The error reporting function.
1411* Gen: Rpcalc Gen. Running Bison on the grammar file.
1412* Comp: Rpcalc Compile. Run the C compiler on the output code.
1413@end menu
1414
342b8b6e 1415@node Rpcalc Decls
bfa74976
RS
1416@subsection Declarations for @code{rpcalc}
1417
1418Here are the C and Bison declarations for the reverse polish notation
1419calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1420
1421@example
72d2299c 1422/* Reverse polish notation calculator. */
bfa74976
RS
1423
1424%@{
38a92d50
PE
1425 #define YYSTYPE double
1426 #include <math.h>
1427 int yylex (void);
1428 void yyerror (char const *);
bfa74976
RS
1429%@}
1430
1431%token NUM
1432
72d2299c 1433%% /* Grammar rules and actions follow. */
bfa74976
RS
1434@end example
1435
75f5aaea 1436The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1437preprocessor directives and two forward declarations.
bfa74976
RS
1438
1439The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1440specifying the C data type for semantic values of both tokens and
1441groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1442Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1443don't define it, @code{int} is the default. Because we specify
1444@code{double}, each token and each expression has an associated value,
1445which is a floating point number.
bfa74976
RS
1446
1447The @code{#include} directive is used to declare the exponentiation
1448function @code{pow}.
1449
38a92d50
PE
1450The forward declarations for @code{yylex} and @code{yyerror} are
1451needed because the C language requires that functions be declared
1452before they are used. These functions will be defined in the
1453epilogue, but the parser calls them so they must be declared in the
1454prologue.
1455
704a47c4
AD
1456The second section, Bison declarations, provides information to Bison
1457about the token types (@pxref{Bison Declarations, ,The Bison
1458Declarations Section}). Each terminal symbol that is not a
1459single-character literal must be declared here. (Single-character
bfa74976
RS
1460literals normally don't need to be declared.) In this example, all the
1461arithmetic operators are designated by single-character literals, so the
1462only terminal symbol that needs to be declared is @code{NUM}, the token
1463type for numeric constants.
1464
342b8b6e 1465@node Rpcalc Rules
bfa74976
RS
1466@subsection Grammar Rules for @code{rpcalc}
1467
1468Here are the grammar rules for the reverse polish notation calculator.
1469
1470@example
1471input: /* empty */
1472 | input line
1473;
1474
1475line: '\n'
18b519c0 1476 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1477;
1478
18b519c0
AD
1479exp: NUM @{ $$ = $1; @}
1480 | exp exp '+' @{ $$ = $1 + $2; @}
1481 | exp exp '-' @{ $$ = $1 - $2; @}
1482 | exp exp '*' @{ $$ = $1 * $2; @}
1483 | exp exp '/' @{ $$ = $1 / $2; @}
1484 /* Exponentiation */
1485 | exp exp '^' @{ $$ = pow ($1, $2); @}
1486 /* Unary minus */
1487 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1488;
1489%%
1490@end example
1491
1492The groupings of the rpcalc ``language'' defined here are the expression
1493(given the name @code{exp}), the line of input (@code{line}), and the
1494complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1495symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1496which is read as ``or''. The following sections explain what these rules
1497mean.
1498
1499The semantics of the language is determined by the actions taken when a
1500grouping is recognized. The actions are the C code that appears inside
1501braces. @xref{Actions}.
1502
1503You must specify these actions in C, but Bison provides the means for
1504passing semantic values between the rules. In each action, the
1505pseudo-variable @code{$$} stands for the semantic value for the grouping
1506that the rule is going to construct. Assigning a value to @code{$$} is the
1507main job of most actions. The semantic values of the components of the
1508rule are referred to as @code{$1}, @code{$2}, and so on.
1509
1510@menu
13863333
AD
1511* Rpcalc Input::
1512* Rpcalc Line::
1513* Rpcalc Expr::
bfa74976
RS
1514@end menu
1515
342b8b6e 1516@node Rpcalc Input
bfa74976
RS
1517@subsubsection Explanation of @code{input}
1518
1519Consider the definition of @code{input}:
1520
1521@example
1522input: /* empty */
1523 | input line
1524;
1525@end example
1526
1527This definition reads as follows: ``A complete input is either an empty
1528string, or a complete input followed by an input line''. Notice that
1529``complete input'' is defined in terms of itself. This definition is said
1530to be @dfn{left recursive} since @code{input} appears always as the
1531leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1532
1533The first alternative is empty because there are no symbols between the
1534colon and the first @samp{|}; this means that @code{input} can match an
1535empty string of input (no tokens). We write the rules this way because it
1536is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1537It's conventional to put an empty alternative first and write the comment
1538@samp{/* empty */} in it.
1539
1540The second alternate rule (@code{input line}) handles all nontrivial input.
1541It means, ``After reading any number of lines, read one more line if
1542possible.'' The left recursion makes this rule into a loop. Since the
1543first alternative matches empty input, the loop can be executed zero or
1544more times.
1545
1546The parser function @code{yyparse} continues to process input until a
1547grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1548input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1549
342b8b6e 1550@node Rpcalc Line
bfa74976
RS
1551@subsubsection Explanation of @code{line}
1552
1553Now consider the definition of @code{line}:
1554
1555@example
1556line: '\n'
1557 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1558;
1559@end example
1560
1561The first alternative is a token which is a newline character; this means
1562that rpcalc accepts a blank line (and ignores it, since there is no
1563action). The second alternative is an expression followed by a newline.
1564This is the alternative that makes rpcalc useful. The semantic value of
1565the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1566question is the first symbol in the alternative. The action prints this
1567value, which is the result of the computation the user asked for.
1568
1569This action is unusual because it does not assign a value to @code{$$}. As
1570a consequence, the semantic value associated with the @code{line} is
1571uninitialized (its value will be unpredictable). This would be a bug if
1572that value were ever used, but we don't use it: once rpcalc has printed the
1573value of the user's input line, that value is no longer needed.
1574
342b8b6e 1575@node Rpcalc Expr
bfa74976
RS
1576@subsubsection Explanation of @code{expr}
1577
1578The @code{exp} grouping has several rules, one for each kind of expression.
1579The first rule handles the simplest expressions: those that are just numbers.
1580The second handles an addition-expression, which looks like two expressions
1581followed by a plus-sign. The third handles subtraction, and so on.
1582
1583@example
1584exp: NUM
1585 | exp exp '+' @{ $$ = $1 + $2; @}
1586 | exp exp '-' @{ $$ = $1 - $2; @}
1587 @dots{}
1588 ;
1589@end example
1590
1591We have used @samp{|} to join all the rules for @code{exp}, but we could
1592equally well have written them separately:
1593
1594@example
1595exp: NUM ;
1596exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1597exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1598 @dots{}
1599@end example
1600
1601Most of the rules have actions that compute the value of the expression in
1602terms of the value of its parts. For example, in the rule for addition,
1603@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1604the second one. The third component, @code{'+'}, has no meaningful
1605associated semantic value, but if it had one you could refer to it as
1606@code{$3}. When @code{yyparse} recognizes a sum expression using this
1607rule, the sum of the two subexpressions' values is produced as the value of
1608the entire expression. @xref{Actions}.
1609
1610You don't have to give an action for every rule. When a rule has no
1611action, Bison by default copies the value of @code{$1} into @code{$$}.
1612This is what happens in the first rule (the one that uses @code{NUM}).
1613
1614The formatting shown here is the recommended convention, but Bison does
72d2299c 1615not require it. You can add or change white space as much as you wish.
bfa74976
RS
1616For example, this:
1617
1618@example
99a9344e 1619exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1620@end example
1621
1622@noindent
1623means the same thing as this:
1624
1625@example
1626exp: NUM
1627 | exp exp '+' @{ $$ = $1 + $2; @}
1628 | @dots{}
99a9344e 1629;
bfa74976
RS
1630@end example
1631
1632@noindent
1633The latter, however, is much more readable.
1634
342b8b6e 1635@node Rpcalc Lexer
bfa74976
RS
1636@subsection The @code{rpcalc} Lexical Analyzer
1637@cindex writing a lexical analyzer
1638@cindex lexical analyzer, writing
1639
704a47c4
AD
1640The lexical analyzer's job is low-level parsing: converting characters
1641or sequences of characters into tokens. The Bison parser gets its
1642tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1643Analyzer Function @code{yylex}}.
bfa74976 1644
c827f760
PE
1645Only a simple lexical analyzer is needed for the @acronym{RPN}
1646calculator. This
bfa74976
RS
1647lexical analyzer skips blanks and tabs, then reads in numbers as
1648@code{double} and returns them as @code{NUM} tokens. Any other character
1649that isn't part of a number is a separate token. Note that the token-code
1650for such a single-character token is the character itself.
1651
1652The return value of the lexical analyzer function is a numeric code which
1653represents a token type. The same text used in Bison rules to stand for
1654this token type is also a C expression for the numeric code for the type.
1655This works in two ways. If the token type is a character literal, then its
e966383b 1656numeric code is that of the character; you can use the same
bfa74976
RS
1657character literal in the lexical analyzer to express the number. If the
1658token type is an identifier, that identifier is defined by Bison as a C
1659macro whose definition is the appropriate number. In this example,
1660therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1661
1964ad8c
AD
1662The semantic value of the token (if it has one) is stored into the
1663global variable @code{yylval}, which is where the Bison parser will look
1664for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1665defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1666,Declarations for @code{rpcalc}}.)
bfa74976 1667
72d2299c
PE
1668A token type code of zero is returned if the end-of-input is encountered.
1669(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1670
1671Here is the code for the lexical analyzer:
1672
1673@example
1674@group
72d2299c 1675/* The lexical analyzer returns a double floating point
e966383b 1676 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1677 of the character read if not a number. It skips all blanks
1678 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1679
1680#include <ctype.h>
1681@end group
1682
1683@group
13863333
AD
1684int
1685yylex (void)
bfa74976
RS
1686@{
1687 int c;
1688
72d2299c 1689 /* Skip white space. */
13863333 1690 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1691 ;
1692@end group
1693@group
72d2299c 1694 /* Process numbers. */
13863333 1695 if (c == '.' || isdigit (c))
bfa74976
RS
1696 @{
1697 ungetc (c, stdin);
1698 scanf ("%lf", &yylval);
1699 return NUM;
1700 @}
1701@end group
1702@group
72d2299c 1703 /* Return end-of-input. */
13863333 1704 if (c == EOF)
bfa74976 1705 return 0;
72d2299c 1706 /* Return a single char. */
13863333 1707 return c;
bfa74976
RS
1708@}
1709@end group
1710@end example
1711
342b8b6e 1712@node Rpcalc Main
bfa74976
RS
1713@subsection The Controlling Function
1714@cindex controlling function
1715@cindex main function in simple example
1716
1717In keeping with the spirit of this example, the controlling function is
1718kept to the bare minimum. The only requirement is that it call
1719@code{yyparse} to start the process of parsing.
1720
1721@example
1722@group
13863333
AD
1723int
1724main (void)
bfa74976 1725@{
13863333 1726 return yyparse ();
bfa74976
RS
1727@}
1728@end group
1729@end example
1730
342b8b6e 1731@node Rpcalc Error
bfa74976
RS
1732@subsection The Error Reporting Routine
1733@cindex error reporting routine
1734
1735When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1736function @code{yyerror} to print an error message (usually but not
6e649e65 1737always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1738@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1739here is the definition we will use:
bfa74976
RS
1740
1741@example
1742@group
1743#include <stdio.h>
1744
38a92d50 1745/* Called by yyparse on error. */
13863333 1746void
38a92d50 1747yyerror (char const *s)
bfa74976 1748@{
4e03e201 1749 fprintf (stderr, "%s\n", s);
bfa74976
RS
1750@}
1751@end group
1752@end example
1753
1754After @code{yyerror} returns, the Bison parser may recover from the error
1755and continue parsing if the grammar contains a suitable error rule
1756(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1757have not written any error rules in this example, so any invalid input will
1758cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1759real calculator, but it is adequate for the first example.
bfa74976 1760
342b8b6e 1761@node Rpcalc Gen
bfa74976
RS
1762@subsection Running Bison to Make the Parser
1763@cindex running Bison (introduction)
1764
ceed8467
AD
1765Before running Bison to produce a parser, we need to decide how to
1766arrange all the source code in one or more source files. For such a
1767simple example, the easiest thing is to put everything in one file. The
1768definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1769end, in the epilogue of the file
75f5aaea 1770(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1771
1772For a large project, you would probably have several source files, and use
1773@code{make} to arrange to recompile them.
1774
1775With all the source in a single file, you use the following command to
1776convert it into a parser file:
1777
1778@example
fa4d969f 1779bison @var{file}.y
bfa74976
RS
1780@end example
1781
1782@noindent
1783In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1784@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1785removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1786Bison contains the source code for @code{yyparse}. The additional
1787functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1788are copied verbatim to the output.
1789
342b8b6e 1790@node Rpcalc Compile
bfa74976
RS
1791@subsection Compiling the Parser File
1792@cindex compiling the parser
1793
1794Here is how to compile and run the parser file:
1795
1796@example
1797@group
1798# @r{List files in current directory.}
9edcd895 1799$ @kbd{ls}
bfa74976
RS
1800rpcalc.tab.c rpcalc.y
1801@end group
1802
1803@group
1804# @r{Compile the Bison parser.}
1805# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1806$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1807@end group
1808
1809@group
1810# @r{List files again.}
9edcd895 1811$ @kbd{ls}
bfa74976
RS
1812rpcalc rpcalc.tab.c rpcalc.y
1813@end group
1814@end example
1815
1816The file @file{rpcalc} now contains the executable code. Here is an
1817example session using @code{rpcalc}.
1818
1819@example
9edcd895
AD
1820$ @kbd{rpcalc}
1821@kbd{4 9 +}
bfa74976 182213
9edcd895 1823@kbd{3 7 + 3 4 5 *+-}
bfa74976 1824-13
9edcd895 1825@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 182613
9edcd895 1827@kbd{5 6 / 4 n +}
bfa74976 1828-3.166666667
9edcd895 1829@kbd{3 4 ^} @r{Exponentiation}
bfa74976 183081
9edcd895
AD
1831@kbd{^D} @r{End-of-file indicator}
1832$
bfa74976
RS
1833@end example
1834
342b8b6e 1835@node Infix Calc
bfa74976
RS
1836@section Infix Notation Calculator: @code{calc}
1837@cindex infix notation calculator
1838@cindex @code{calc}
1839@cindex calculator, infix notation
1840
1841We now modify rpcalc to handle infix operators instead of postfix. Infix
1842notation involves the concept of operator precedence and the need for
1843parentheses nested to arbitrary depth. Here is the Bison code for
1844@file{calc.y}, an infix desk-top calculator.
1845
1846@example
38a92d50 1847/* Infix notation calculator. */
bfa74976
RS
1848
1849%@{
38a92d50
PE
1850 #define YYSTYPE double
1851 #include <math.h>
1852 #include <stdio.h>
1853 int yylex (void);
1854 void yyerror (char const *);
bfa74976
RS
1855%@}
1856
38a92d50 1857/* Bison declarations. */
bfa74976
RS
1858%token NUM
1859%left '-' '+'
1860%left '*' '/'
1861%left NEG /* negation--unary minus */
38a92d50 1862%right '^' /* exponentiation */
bfa74976 1863
38a92d50
PE
1864%% /* The grammar follows. */
1865input: /* empty */
bfa74976
RS
1866 | input line
1867;
1868
1869line: '\n'
1870 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1871;
1872
1873exp: NUM @{ $$ = $1; @}
1874 | exp '+' exp @{ $$ = $1 + $3; @}
1875 | exp '-' exp @{ $$ = $1 - $3; @}
1876 | exp '*' exp @{ $$ = $1 * $3; @}
1877 | exp '/' exp @{ $$ = $1 / $3; @}
1878 | '-' exp %prec NEG @{ $$ = -$2; @}
1879 | exp '^' exp @{ $$ = pow ($1, $3); @}
1880 | '(' exp ')' @{ $$ = $2; @}
1881;
1882%%
1883@end example
1884
1885@noindent
ceed8467
AD
1886The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1887same as before.
bfa74976
RS
1888
1889There are two important new features shown in this code.
1890
1891In the second section (Bison declarations), @code{%left} declares token
1892types and says they are left-associative operators. The declarations
1893@code{%left} and @code{%right} (right associativity) take the place of
1894@code{%token} which is used to declare a token type name without
1895associativity. (These tokens are single-character literals, which
1896ordinarily don't need to be declared. We declare them here to specify
1897the associativity.)
1898
1899Operator precedence is determined by the line ordering of the
1900declarations; the higher the line number of the declaration (lower on
1901the page or screen), the higher the precedence. Hence, exponentiation
1902has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1903by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1904Precedence}.
bfa74976 1905
704a47c4
AD
1906The other important new feature is the @code{%prec} in the grammar
1907section for the unary minus operator. The @code{%prec} simply instructs
1908Bison that the rule @samp{| '-' exp} has the same precedence as
1909@code{NEG}---in this case the next-to-highest. @xref{Contextual
1910Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1911
1912Here is a sample run of @file{calc.y}:
1913
1914@need 500
1915@example
9edcd895
AD
1916$ @kbd{calc}
1917@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19186.880952381
9edcd895 1919@kbd{-56 + 2}
bfa74976 1920-54
9edcd895 1921@kbd{3 ^ 2}
bfa74976
RS
19229
1923@end example
1924
342b8b6e 1925@node Simple Error Recovery
bfa74976
RS
1926@section Simple Error Recovery
1927@cindex error recovery, simple
1928
1929Up to this point, this manual has not addressed the issue of @dfn{error
1930recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1931error. All we have handled is error reporting with @code{yyerror}.
1932Recall that by default @code{yyparse} returns after calling
1933@code{yyerror}. This means that an erroneous input line causes the
1934calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1935
1936The Bison language itself includes the reserved word @code{error}, which
1937may be included in the grammar rules. In the example below it has
1938been added to one of the alternatives for @code{line}:
1939
1940@example
1941@group
1942line: '\n'
1943 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1944 | error '\n' @{ yyerrok; @}
1945;
1946@end group
1947@end example
1948
ceed8467 1949This addition to the grammar allows for simple error recovery in the
6e649e65 1950event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1951read, the error will be recognized by the third rule for @code{line},
1952and parsing will continue. (The @code{yyerror} function is still called
1953upon to print its message as well.) The action executes the statement
1954@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1955that error recovery is complete (@pxref{Error Recovery}). Note the
1956difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1957misprint.
bfa74976
RS
1958
1959This form of error recovery deals with syntax errors. There are other
1960kinds of errors; for example, division by zero, which raises an exception
1961signal that is normally fatal. A real calculator program must handle this
1962signal and use @code{longjmp} to return to @code{main} and resume parsing
1963input lines; it would also have to discard the rest of the current line of
1964input. We won't discuss this issue further because it is not specific to
1965Bison programs.
1966
342b8b6e
AD
1967@node Location Tracking Calc
1968@section Location Tracking Calculator: @code{ltcalc}
1969@cindex location tracking calculator
1970@cindex @code{ltcalc}
1971@cindex calculator, location tracking
1972
9edcd895
AD
1973This example extends the infix notation calculator with location
1974tracking. This feature will be used to improve the error messages. For
1975the sake of clarity, this example is a simple integer calculator, since
1976most of the work needed to use locations will be done in the lexical
72d2299c 1977analyzer.
342b8b6e
AD
1978
1979@menu
1980* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1981* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1982* Lexer: Ltcalc Lexer. The lexical analyzer.
1983@end menu
1984
1985@node Ltcalc Decls
1986@subsection Declarations for @code{ltcalc}
1987
9edcd895
AD
1988The C and Bison declarations for the location tracking calculator are
1989the same as the declarations for the infix notation calculator.
342b8b6e
AD
1990
1991@example
1992/* Location tracking calculator. */
1993
1994%@{
38a92d50
PE
1995 #define YYSTYPE int
1996 #include <math.h>
1997 int yylex (void);
1998 void yyerror (char const *);
342b8b6e
AD
1999%@}
2000
2001/* Bison declarations. */
2002%token NUM
2003
2004%left '-' '+'
2005%left '*' '/'
2006%left NEG
2007%right '^'
2008
38a92d50 2009%% /* The grammar follows. */
342b8b6e
AD
2010@end example
2011
9edcd895
AD
2012@noindent
2013Note there are no declarations specific to locations. Defining a data
2014type for storing locations is not needed: we will use the type provided
2015by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2016four member structure with the following integer fields:
2017@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2018@code{last_column}. By conventions, and in accordance with the GNU
2019Coding Standards and common practice, the line and column count both
2020start at 1.
342b8b6e
AD
2021
2022@node Ltcalc Rules
2023@subsection Grammar Rules for @code{ltcalc}
2024
9edcd895
AD
2025Whether handling locations or not has no effect on the syntax of your
2026language. Therefore, grammar rules for this example will be very close
2027to those of the previous example: we will only modify them to benefit
2028from the new information.
342b8b6e 2029
9edcd895
AD
2030Here, we will use locations to report divisions by zero, and locate the
2031wrong expressions or subexpressions.
342b8b6e
AD
2032
2033@example
2034@group
2035input : /* empty */
2036 | input line
2037;
2038@end group
2039
2040@group
2041line : '\n'
2042 | exp '\n' @{ printf ("%d\n", $1); @}
2043;
2044@end group
2045
2046@group
2047exp : NUM @{ $$ = $1; @}
2048 | exp '+' exp @{ $$ = $1 + $3; @}
2049 | exp '-' exp @{ $$ = $1 - $3; @}
2050 | exp '*' exp @{ $$ = $1 * $3; @}
2051@end group
342b8b6e 2052@group
9edcd895 2053 | exp '/' exp
342b8b6e
AD
2054 @{
2055 if ($3)
2056 $$ = $1 / $3;
2057 else
2058 @{
2059 $$ = 1;
9edcd895
AD
2060 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2061 @@3.first_line, @@3.first_column,
2062 @@3.last_line, @@3.last_column);
342b8b6e
AD
2063 @}
2064 @}
2065@end group
2066@group
178e123e 2067 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2068 | exp '^' exp @{ $$ = pow ($1, $3); @}
2069 | '(' exp ')' @{ $$ = $2; @}
2070@end group
2071@end example
2072
2073This code shows how to reach locations inside of semantic actions, by
2074using the pseudo-variables @code{@@@var{n}} for rule components, and the
2075pseudo-variable @code{@@$} for groupings.
2076
9edcd895
AD
2077We don't need to assign a value to @code{@@$}: the output parser does it
2078automatically. By default, before executing the C code of each action,
2079@code{@@$} is set to range from the beginning of @code{@@1} to the end
2080of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2081can be redefined (@pxref{Location Default Action, , Default Action for
2082Locations}), and for very specific rules, @code{@@$} can be computed by
2083hand.
342b8b6e
AD
2084
2085@node Ltcalc Lexer
2086@subsection The @code{ltcalc} Lexical Analyzer.
2087
9edcd895 2088Until now, we relied on Bison's defaults to enable location
72d2299c 2089tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2090able to feed the parser with the token locations, as it already does for
2091semantic values.
342b8b6e 2092
9edcd895
AD
2093To this end, we must take into account every single character of the
2094input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2095
2096@example
2097@group
2098int
2099yylex (void)
2100@{
2101 int c;
18b519c0 2102@end group
342b8b6e 2103
18b519c0 2104@group
72d2299c 2105 /* Skip white space. */
342b8b6e
AD
2106 while ((c = getchar ()) == ' ' || c == '\t')
2107 ++yylloc.last_column;
18b519c0 2108@end group
342b8b6e 2109
18b519c0 2110@group
72d2299c 2111 /* Step. */
342b8b6e
AD
2112 yylloc.first_line = yylloc.last_line;
2113 yylloc.first_column = yylloc.last_column;
2114@end group
2115
2116@group
72d2299c 2117 /* Process numbers. */
342b8b6e
AD
2118 if (isdigit (c))
2119 @{
2120 yylval = c - '0';
2121 ++yylloc.last_column;
2122 while (isdigit (c = getchar ()))
2123 @{
2124 ++yylloc.last_column;
2125 yylval = yylval * 10 + c - '0';
2126 @}
2127 ungetc (c, stdin);
2128 return NUM;
2129 @}
2130@end group
2131
72d2299c 2132 /* Return end-of-input. */
342b8b6e
AD
2133 if (c == EOF)
2134 return 0;
2135
72d2299c 2136 /* Return a single char, and update location. */
342b8b6e
AD
2137 if (c == '\n')
2138 @{
2139 ++yylloc.last_line;
2140 yylloc.last_column = 0;
2141 @}
2142 else
2143 ++yylloc.last_column;
2144 return c;
2145@}
2146@end example
2147
9edcd895
AD
2148Basically, the lexical analyzer performs the same processing as before:
2149it skips blanks and tabs, and reads numbers or single-character tokens.
2150In addition, it updates @code{yylloc}, the global variable (of type
2151@code{YYLTYPE}) containing the token's location.
342b8b6e 2152
9edcd895 2153Now, each time this function returns a token, the parser has its number
72d2299c 2154as well as its semantic value, and its location in the text. The last
9edcd895
AD
2155needed change is to initialize @code{yylloc}, for example in the
2156controlling function:
342b8b6e
AD
2157
2158@example
9edcd895 2159@group
342b8b6e
AD
2160int
2161main (void)
2162@{
2163 yylloc.first_line = yylloc.last_line = 1;
2164 yylloc.first_column = yylloc.last_column = 0;
2165 return yyparse ();
2166@}
9edcd895 2167@end group
342b8b6e
AD
2168@end example
2169
9edcd895
AD
2170Remember that computing locations is not a matter of syntax. Every
2171character must be associated to a location update, whether it is in
2172valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2173
2174@node Multi-function Calc
bfa74976
RS
2175@section Multi-Function Calculator: @code{mfcalc}
2176@cindex multi-function calculator
2177@cindex @code{mfcalc}
2178@cindex calculator, multi-function
2179
2180Now that the basics of Bison have been discussed, it is time to move on to
2181a more advanced problem. The above calculators provided only five
2182functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2183be nice to have a calculator that provides other mathematical functions such
2184as @code{sin}, @code{cos}, etc.
2185
2186It is easy to add new operators to the infix calculator as long as they are
2187only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2188back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2189adding a new operator. But we want something more flexible: built-in
2190functions whose syntax has this form:
2191
2192@example
2193@var{function_name} (@var{argument})
2194@end example
2195
2196@noindent
2197At the same time, we will add memory to the calculator, by allowing you
2198to create named variables, store values in them, and use them later.
2199Here is a sample session with the multi-function calculator:
2200
2201@example
9edcd895
AD
2202$ @kbd{mfcalc}
2203@kbd{pi = 3.141592653589}
bfa74976 22043.1415926536
9edcd895 2205@kbd{sin(pi)}
bfa74976 22060.0000000000
9edcd895 2207@kbd{alpha = beta1 = 2.3}
bfa74976 22082.3000000000
9edcd895 2209@kbd{alpha}
bfa74976 22102.3000000000
9edcd895 2211@kbd{ln(alpha)}
bfa74976 22120.8329091229
9edcd895 2213@kbd{exp(ln(beta1))}
bfa74976 22142.3000000000
9edcd895 2215$
bfa74976
RS
2216@end example
2217
2218Note that multiple assignment and nested function calls are permitted.
2219
2220@menu
2221* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2222* Rules: Mfcalc Rules. Grammar rules for the calculator.
2223* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2224@end menu
2225
342b8b6e 2226@node Mfcalc Decl
bfa74976
RS
2227@subsection Declarations for @code{mfcalc}
2228
2229Here are the C and Bison declarations for the multi-function calculator.
2230
2231@smallexample
18b519c0 2232@group
bfa74976 2233%@{
38a92d50
PE
2234 #include <math.h> /* For math functions, cos(), sin(), etc. */
2235 #include "calc.h" /* Contains definition of `symrec'. */
2236 int yylex (void);
2237 void yyerror (char const *);
bfa74976 2238%@}
18b519c0
AD
2239@end group
2240@group
bfa74976 2241%union @{
38a92d50
PE
2242 double val; /* For returning numbers. */
2243 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2244@}
18b519c0 2245@end group
38a92d50
PE
2246%token <val> NUM /* Simple double precision number. */
2247%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2248%type <val> exp
2249
18b519c0 2250@group
bfa74976
RS
2251%right '='
2252%left '-' '+'
2253%left '*' '/'
38a92d50
PE
2254%left NEG /* negation--unary minus */
2255%right '^' /* exponentiation */
18b519c0 2256@end group
38a92d50 2257%% /* The grammar follows. */
bfa74976
RS
2258@end smallexample
2259
2260The above grammar introduces only two new features of the Bison language.
2261These features allow semantic values to have various data types
2262(@pxref{Multiple Types, ,More Than One Value Type}).
2263
2264The @code{%union} declaration specifies the entire list of possible types;
2265this is instead of defining @code{YYSTYPE}. The allowable types are now
2266double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2267the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2268
2269Since values can now have various types, it is necessary to associate a
2270type with each grammar symbol whose semantic value is used. These symbols
2271are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2272declarations are augmented with information about their data type (placed
2273between angle brackets).
2274
704a47c4
AD
2275The Bison construct @code{%type} is used for declaring nonterminal
2276symbols, just as @code{%token} is used for declaring token types. We
2277have not used @code{%type} before because nonterminal symbols are
2278normally declared implicitly by the rules that define them. But
2279@code{exp} must be declared explicitly so we can specify its value type.
2280@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2281
342b8b6e 2282@node Mfcalc Rules
bfa74976
RS
2283@subsection Grammar Rules for @code{mfcalc}
2284
2285Here are the grammar rules for the multi-function calculator.
2286Most of them are copied directly from @code{calc}; three rules,
2287those which mention @code{VAR} or @code{FNCT}, are new.
2288
2289@smallexample
18b519c0 2290@group
bfa74976
RS
2291input: /* empty */
2292 | input line
2293;
18b519c0 2294@end group
bfa74976 2295
18b519c0 2296@group
bfa74976
RS
2297line:
2298 '\n'
2299 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2300 | error '\n' @{ yyerrok; @}
2301;
18b519c0 2302@end group
bfa74976 2303
18b519c0 2304@group
bfa74976
RS
2305exp: NUM @{ $$ = $1; @}
2306 | VAR @{ $$ = $1->value.var; @}
2307 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2308 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2309 | exp '+' exp @{ $$ = $1 + $3; @}
2310 | exp '-' exp @{ $$ = $1 - $3; @}
2311 | exp '*' exp @{ $$ = $1 * $3; @}
2312 | exp '/' exp @{ $$ = $1 / $3; @}
2313 | '-' exp %prec NEG @{ $$ = -$2; @}
2314 | exp '^' exp @{ $$ = pow ($1, $3); @}
2315 | '(' exp ')' @{ $$ = $2; @}
2316;
18b519c0 2317@end group
38a92d50 2318/* End of grammar. */
bfa74976
RS
2319%%
2320@end smallexample
2321
342b8b6e 2322@node Mfcalc Symtab
bfa74976
RS
2323@subsection The @code{mfcalc} Symbol Table
2324@cindex symbol table example
2325
2326The multi-function calculator requires a symbol table to keep track of the
2327names and meanings of variables and functions. This doesn't affect the
2328grammar rules (except for the actions) or the Bison declarations, but it
2329requires some additional C functions for support.
2330
2331The symbol table itself consists of a linked list of records. Its
2332definition, which is kept in the header @file{calc.h}, is as follows. It
2333provides for either functions or variables to be placed in the table.
2334
2335@smallexample
2336@group
38a92d50 2337/* Function type. */
32dfccf8 2338typedef double (*func_t) (double);
72f889cc 2339@end group
32dfccf8 2340
72f889cc 2341@group
38a92d50 2342/* Data type for links in the chain of symbols. */
bfa74976
RS
2343struct symrec
2344@{
38a92d50 2345 char *name; /* name of symbol */
bfa74976 2346 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2347 union
2348 @{
38a92d50
PE
2349 double var; /* value of a VAR */
2350 func_t fnctptr; /* value of a FNCT */
bfa74976 2351 @} value;
38a92d50 2352 struct symrec *next; /* link field */
bfa74976
RS
2353@};
2354@end group
2355
2356@group
2357typedef struct symrec symrec;
2358
38a92d50 2359/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2360extern symrec *sym_table;
2361
a730d142 2362symrec *putsym (char const *, int);
38a92d50 2363symrec *getsym (char const *);
bfa74976
RS
2364@end group
2365@end smallexample
2366
2367The new version of @code{main} includes a call to @code{init_table}, a
2368function that initializes the symbol table. Here it is, and
2369@code{init_table} as well:
2370
2371@smallexample
bfa74976
RS
2372#include <stdio.h>
2373
18b519c0 2374@group
38a92d50 2375/* Called by yyparse on error. */
13863333 2376void
38a92d50 2377yyerror (char const *s)
bfa74976
RS
2378@{
2379 printf ("%s\n", s);
2380@}
18b519c0 2381@end group
bfa74976 2382
18b519c0 2383@group
bfa74976
RS
2384struct init
2385@{
38a92d50
PE
2386 char const *fname;
2387 double (*fnct) (double);
bfa74976
RS
2388@};
2389@end group
2390
2391@group
38a92d50 2392struct init const arith_fncts[] =
13863333 2393@{
32dfccf8
AD
2394 "sin", sin,
2395 "cos", cos,
13863333 2396 "atan", atan,
32dfccf8
AD
2397 "ln", log,
2398 "exp", exp,
13863333
AD
2399 "sqrt", sqrt,
2400 0, 0
2401@};
18b519c0 2402@end group
bfa74976 2403
18b519c0 2404@group
bfa74976 2405/* The symbol table: a chain of `struct symrec'. */
38a92d50 2406symrec *sym_table;
bfa74976
RS
2407@end group
2408
2409@group
72d2299c 2410/* Put arithmetic functions in table. */
13863333
AD
2411void
2412init_table (void)
bfa74976
RS
2413@{
2414 int i;
2415 symrec *ptr;
2416 for (i = 0; arith_fncts[i].fname != 0; i++)
2417 @{
2418 ptr = putsym (arith_fncts[i].fname, FNCT);
2419 ptr->value.fnctptr = arith_fncts[i].fnct;
2420 @}
2421@}
2422@end group
38a92d50
PE
2423
2424@group
2425int
2426main (void)
2427@{
2428 init_table ();
2429 return yyparse ();
2430@}
2431@end group
bfa74976
RS
2432@end smallexample
2433
2434By simply editing the initialization list and adding the necessary include
2435files, you can add additional functions to the calculator.
2436
2437Two important functions allow look-up and installation of symbols in the
2438symbol table. The function @code{putsym} is passed a name and the type
2439(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2440linked to the front of the list, and a pointer to the object is returned.
2441The function @code{getsym} is passed the name of the symbol to look up. If
2442found, a pointer to that symbol is returned; otherwise zero is returned.
2443
2444@smallexample
2445symrec *
38a92d50 2446putsym (char const *sym_name, int sym_type)
bfa74976
RS
2447@{
2448 symrec *ptr;
2449 ptr = (symrec *) malloc (sizeof (symrec));
2450 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2451 strcpy (ptr->name,sym_name);
2452 ptr->type = sym_type;
72d2299c 2453 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2454 ptr->next = (struct symrec *)sym_table;
2455 sym_table = ptr;
2456 return ptr;
2457@}
2458
2459symrec *
38a92d50 2460getsym (char const *sym_name)
bfa74976
RS
2461@{
2462 symrec *ptr;
2463 for (ptr = sym_table; ptr != (symrec *) 0;
2464 ptr = (symrec *)ptr->next)
2465 if (strcmp (ptr->name,sym_name) == 0)
2466 return ptr;
2467 return 0;
2468@}
2469@end smallexample
2470
2471The function @code{yylex} must now recognize variables, numeric values, and
2472the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2473characters with a leading letter are recognized as either variables or
bfa74976
RS
2474functions depending on what the symbol table says about them.
2475
2476The string is passed to @code{getsym} for look up in the symbol table. If
2477the name appears in the table, a pointer to its location and its type
2478(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2479already in the table, then it is installed as a @code{VAR} using
2480@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2481returned to @code{yyparse}.
bfa74976
RS
2482
2483No change is needed in the handling of numeric values and arithmetic
2484operators in @code{yylex}.
2485
2486@smallexample
2487@group
2488#include <ctype.h>
18b519c0 2489@end group
13863333 2490
18b519c0 2491@group
13863333
AD
2492int
2493yylex (void)
bfa74976
RS
2494@{
2495 int c;
2496
72d2299c 2497 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2498 while ((c = getchar ()) == ' ' || c == '\t');
2499
2500 if (c == EOF)
2501 return 0;
2502@end group
2503
2504@group
2505 /* Char starts a number => parse the number. */
2506 if (c == '.' || isdigit (c))
2507 @{
2508 ungetc (c, stdin);
2509 scanf ("%lf", &yylval.val);
2510 return NUM;
2511 @}
2512@end group
2513
2514@group
2515 /* Char starts an identifier => read the name. */
2516 if (isalpha (c))
2517 @{
2518 symrec *s;
2519 static char *symbuf = 0;
2520 static int length = 0;
2521 int i;
2522@end group
2523
2524@group
2525 /* Initially make the buffer long enough
2526 for a 40-character symbol name. */
2527 if (length == 0)
2528 length = 40, symbuf = (char *)malloc (length + 1);
2529
2530 i = 0;
2531 do
2532@end group
2533@group
2534 @{
2535 /* If buffer is full, make it bigger. */
2536 if (i == length)
2537 @{
2538 length *= 2;
18b519c0 2539 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2540 @}
2541 /* Add this character to the buffer. */
2542 symbuf[i++] = c;
2543 /* Get another character. */
2544 c = getchar ();
2545 @}
2546@end group
2547@group
72d2299c 2548 while (isalnum (c));
bfa74976
RS
2549
2550 ungetc (c, stdin);
2551 symbuf[i] = '\0';
2552@end group
2553
2554@group
2555 s = getsym (symbuf);
2556 if (s == 0)
2557 s = putsym (symbuf, VAR);
2558 yylval.tptr = s;
2559 return s->type;
2560 @}
2561
2562 /* Any other character is a token by itself. */
2563 return c;
2564@}
2565@end group
2566@end smallexample
2567
72d2299c 2568This program is both powerful and flexible. You may easily add new
704a47c4
AD
2569functions, and it is a simple job to modify this code to install
2570predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2571
342b8b6e 2572@node Exercises
bfa74976
RS
2573@section Exercises
2574@cindex exercises
2575
2576@enumerate
2577@item
2578Add some new functions from @file{math.h} to the initialization list.
2579
2580@item
2581Add another array that contains constants and their values. Then
2582modify @code{init_table} to add these constants to the symbol table.
2583It will be easiest to give the constants type @code{VAR}.
2584
2585@item
2586Make the program report an error if the user refers to an
2587uninitialized variable in any way except to store a value in it.
2588@end enumerate
2589
342b8b6e 2590@node Grammar File
bfa74976
RS
2591@chapter Bison Grammar Files
2592
2593Bison takes as input a context-free grammar specification and produces a
2594C-language function that recognizes correct instances of the grammar.
2595
2596The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2597@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2598
2599@menu
2600* Grammar Outline:: Overall layout of the grammar file.
2601* Symbols:: Terminal and nonterminal symbols.
2602* Rules:: How to write grammar rules.
2603* Recursion:: Writing recursive rules.
2604* Semantics:: Semantic values and actions.
847bf1f5 2605* Locations:: Locations and actions.
bfa74976
RS
2606* Declarations:: All kinds of Bison declarations are described here.
2607* Multiple Parsers:: Putting more than one Bison parser in one program.
2608@end menu
2609
342b8b6e 2610@node Grammar Outline
bfa74976
RS
2611@section Outline of a Bison Grammar
2612
2613A Bison grammar file has four main sections, shown here with the
2614appropriate delimiters:
2615
2616@example
2617%@{
38a92d50 2618 @var{Prologue}
bfa74976
RS
2619%@}
2620
2621@var{Bison declarations}
2622
2623%%
2624@var{Grammar rules}
2625%%
2626
75f5aaea 2627@var{Epilogue}
bfa74976
RS
2628@end example
2629
2630Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2631As a @acronym{GNU} extension, @samp{//} introduces a comment that
2632continues until end of line.
bfa74976
RS
2633
2634@menu
75f5aaea 2635* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2636* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
bfa74976
RS
2637* Bison Declarations:: Syntax and usage of the Bison declarations section.
2638* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2639* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2640@end menu
2641
38a92d50 2642@node Prologue
75f5aaea
MA
2643@subsection The prologue
2644@cindex declarations section
2645@cindex Prologue
2646@cindex declarations
bfa74976 2647
f8e1c9e5
AD
2648The @var{Prologue} section contains macro definitions and declarations
2649of functions and variables that are used in the actions in the grammar
2650rules. These are copied to the beginning of the parser file so that
2651they precede the definition of @code{yyparse}. You can use
2652@samp{#include} to get the declarations from a header file. If you
2653don't need any C declarations, you may omit the @samp{%@{} and
2654@samp{%@}} delimiters that bracket this section.
bfa74976 2655
9c437126 2656The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2657of @samp{%@}} that is outside a comment, a string literal, or a
2658character constant.
2659
c732d2c6
AD
2660You may have more than one @var{Prologue} section, intermixed with the
2661@var{Bison declarations}. This allows you to have C and Bison
2662declarations that refer to each other. For example, the @code{%union}
2663declaration may use types defined in a header file, and you may wish to
2664prototype functions that take arguments of type @code{YYSTYPE}. This
2665can be done with two @var{Prologue} blocks, one before and one after the
2666@code{%union} declaration.
2667
2668@smallexample
2669%@{
aef3da86 2670 #define _GNU_SOURCE
38a92d50
PE
2671 #include <stdio.h>
2672 #include "ptypes.h"
c732d2c6
AD
2673%@}
2674
2675%union @{
779e7ceb 2676 long int n;
c732d2c6
AD
2677 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2678@}
2679
2680%@{
38a92d50
PE
2681 static void print_token_value (FILE *, int, YYSTYPE);
2682 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2683%@}
2684
2685@dots{}
2686@end smallexample
2687
aef3da86
PE
2688When in doubt, it is usually safer to put prologue code before all
2689Bison declarations, rather than after. For example, any definitions
2690of feature test macros like @code{_GNU_SOURCE} or
2691@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2692feature test macros can affect the behavior of Bison-generated
2693@code{#include} directives.
2694
2cbe6b7f
JD
2695@node Prologue Alternatives
2696@subsection Prologue Alternatives
2697@cindex Prologue Alternatives
2698
136a0f76 2699@findex %code
16dc6a9e
JD
2700@findex %code requires
2701@findex %code provides
2702@findex %code top
85894313
JD
2703(The prologue alternatives described here are experimental.
2704More user feedback will help to determine whether they should become permanent
2705features.)
2706
2cbe6b7f
JD
2707The functionality of @var{Prologue} sections can often be subtle and
2708inflexible.
8e0a5e9e
JD
2709As an alternative, Bison provides a %code directive with an explicit qualifier
2710field, which identifies the purpose of the code and thus the location(s) where
2711Bison should generate it.
2712For C/C++, the qualifier can be omitted for the default location, or it can be
8405b70c 2713one of @code{requires}, @code{provides}, @code{top}.
148d66d8 2714@xref{Decl Summary,,%code}.
2cbe6b7f
JD
2715
2716Look again at the example of the previous section:
2717
2718@smallexample
2719%@{
2720 #define _GNU_SOURCE
2721 #include <stdio.h>
2722 #include "ptypes.h"
2723%@}
2724
2725%union @{
2726 long int n;
2727 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2728@}
2729
2730%@{
2731 static void print_token_value (FILE *, int, YYSTYPE);
2732 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2733%@}
2734
2735@dots{}
2736@end smallexample
2737
2738@noindent
2739Notice that there are two @var{Prologue} sections here, but there's a subtle
2740distinction between their functionality.
2741For example, if you decide to override Bison's default definition for
2742@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2743definition?
2744You should write it in the first since Bison will insert that code into the
8e0a5e9e 2745parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2746In which @var{Prologue} section should you prototype an internal function,
2747@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2748arguments?
2749You should prototype it in the second since Bison will insert that code
2750@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2751
2752This distinction in functionality between the two @var{Prologue} sections is
2753established by the appearance of the @code{%union} between them.
a501eca9 2754This behavior raises a few questions.
2cbe6b7f
JD
2755First, why should the position of a @code{%union} affect definitions related to
2756@code{YYLTYPE} and @code{yytokentype}?
2757Second, what if there is no @code{%union}?
2758In that case, the second kind of @var{Prologue} section is not available.
2759This behavior is not intuitive.
2760
8e0a5e9e 2761To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2762@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2763Let's go ahead and add the new @code{YYLTYPE} definition and the
2764@code{trace_token} prototype at the same time:
2765
2766@smallexample
16dc6a9e 2767%code top @{
2cbe6b7f
JD
2768 #define _GNU_SOURCE
2769 #include <stdio.h>
8e0a5e9e
JD
2770
2771 /* WARNING: The following code really belongs
16dc6a9e 2772 * in a `%code requires'; see below. */
8e0a5e9e 2773
2cbe6b7f
JD
2774 #include "ptypes.h"
2775 #define YYLTYPE YYLTYPE
2776 typedef struct YYLTYPE
2777 @{
2778 int first_line;
2779 int first_column;
2780 int last_line;
2781 int last_column;
2782 char *filename;
2783 @} YYLTYPE;
2784@}
2785
2786%union @{
2787 long int n;
2788 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2789@}
2790
2791%code @{
2792 static void print_token_value (FILE *, int, YYSTYPE);
2793 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2794 static void trace_token (enum yytokentype token, YYLTYPE loc);
2795@}
2796
2797@dots{}
2798@end smallexample
2799
2800@noindent
16dc6a9e
JD
2801In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2802functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2803explicit which kind you intend.
2cbe6b7f
JD
2804Moreover, both kinds are always available even in the absence of @code{%union}.
2805
16dc6a9e 2806The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2807The first two lines before the warning need to appear near the top of the
2808parser source code file.
2809The first line after the warning is required by @code{YYSTYPE} and thus also
2810needs to appear in the parser source code file.
2cbe6b7f 2811However, if you've instructed Bison to generate a parser header file
148d66d8
JD
2812(@pxref{Decl Summary, ,%defines}), you probably want that line to appear before
2813the @code{YYSTYPE} definition in that header file as well.
8e0a5e9e 2814The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2815override the default @code{YYLTYPE} definition there.
2816
16dc6a9e 2817In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2818lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2819definitions.
16dc6a9e 2820Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2821
2822@smallexample
16dc6a9e 2823%code top @{
2cbe6b7f
JD
2824 #define _GNU_SOURCE
2825 #include <stdio.h>
2826@}
2827
16dc6a9e 2828%code requires @{
9bc0dd67
JD
2829 #include "ptypes.h"
2830@}
2831%union @{
2832 long int n;
2833 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2834@}
2835
16dc6a9e 2836%code requires @{
2cbe6b7f
JD
2837 #define YYLTYPE YYLTYPE
2838 typedef struct YYLTYPE
2839 @{
2840 int first_line;
2841 int first_column;
2842 int last_line;
2843 int last_column;
2844 char *filename;
2845 @} YYLTYPE;
2846@}
2847
136a0f76 2848%code @{
2cbe6b7f
JD
2849 static void print_token_value (FILE *, int, YYSTYPE);
2850 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2851 static void trace_token (enum yytokentype token, YYLTYPE loc);
2852@}
2853
2854@dots{}
2855@end smallexample
2856
2857@noindent
2858Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2859definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2860definitions in both the parser source code file and the parser header file.
16dc6a9e 2861(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2862place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2863
a501eca9 2864When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2865should prefer @code{%code requires} over @code{%code top} regardless of whether
2866you instruct Bison to generate a parser header file.
a501eca9 2867When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2868source code file and that has no special need to appear at the top of that
16dc6a9e 2869file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2870These practices will make the purpose of each block of your code explicit to
2871Bison and to other developers reading your grammar file.
8e0a5e9e 2872Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2873@code{%code requires} to be the most important of the four @var{Prologue}
2874alternatives.
a501eca9 2875
2cbe6b7f
JD
2876At some point while developing your parser, you might decide to provide
2877@code{trace_token} to modules that are external to your parser.
2878Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2879header file and the parser source code file.
2880Since this function is not a dependency required by @code{YYSTYPE} or
2881@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2882@code{%code requires}.
2cbe6b7f 2883More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2884@code{%code requires} is not sufficient.
8e0a5e9e 2885Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2886@code{%code provides}:
2cbe6b7f
JD
2887
2888@smallexample
16dc6a9e 2889%code top @{
2cbe6b7f 2890 #define _GNU_SOURCE
136a0f76 2891 #include <stdio.h>
2cbe6b7f 2892@}
136a0f76 2893
16dc6a9e 2894%code requires @{
2cbe6b7f
JD
2895 #include "ptypes.h"
2896@}
2897%union @{
2898 long int n;
2899 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2900@}
2901
16dc6a9e 2902%code requires @{
2cbe6b7f
JD
2903 #define YYLTYPE YYLTYPE
2904 typedef struct YYLTYPE
2905 @{
2906 int first_line;
2907 int first_column;
2908 int last_line;
2909 int last_column;
2910 char *filename;
2911 @} YYLTYPE;
2912@}
2913
16dc6a9e 2914%code provides @{
2cbe6b7f
JD
2915 void trace_token (enum yytokentype token, YYLTYPE loc);
2916@}
2917
2918%code @{
9bc0dd67
JD
2919 static void print_token_value (FILE *, int, YYSTYPE);
2920 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2921@}
9bc0dd67
JD
2922
2923@dots{}
2924@end smallexample
2925
2cbe6b7f
JD
2926@noindent
2927Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
2928file and the parser source code file after the definitions for
2929@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
2930
2931The above examples are careful to write directives in an order that reflects
8e0a5e9e 2932the layout of the generated parser source code and header files:
16dc6a9e 2933@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 2934@code{%code}.
a501eca9 2935While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
2936this order, Bison does not require it.
2937Instead, Bison lets you choose an organization that makes sense to you.
2938
a501eca9 2939You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2940In that case, Bison concatenates the contained code in declaration order.
2941This is the only way in which the position of one of these directives within
2942the grammar file affects its functionality.
2943
2944The result of the previous two properties is greater flexibility in how you may
2945organize your grammar file.
2946For example, you may organize semantic-type-related directives by semantic
2947type:
2948
2949@smallexample
16dc6a9e 2950%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2951%union @{ type1 field1; @}
2952%destructor @{ type1_free ($$); @} <field1>
2953%printer @{ type1_print ($$); @} <field1>
2954
16dc6a9e 2955%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2956%union @{ type2 field2; @}
2957%destructor @{ type2_free ($$); @} <field2>
2958%printer @{ type2_print ($$); @} <field2>
2959@end smallexample
2960
2961@noindent
2962You could even place each of the above directive groups in the rules section of
2963the grammar file next to the set of rules that uses the associated semantic
2964type.
61fee93e
JD
2965(In the rules section, you must terminate each of those directives with a
2966semicolon.)
2cbe6b7f
JD
2967And you don't have to worry that some directive (like a @code{%union}) in the
2968definitions section is going to adversely affect their functionality in some
2969counter-intuitive manner just because it comes first.
2970Such an organization is not possible using @var{Prologue} sections.
2971
a501eca9 2972This section has been concerned with explaining the advantages of the four
8e0a5e9e 2973@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2974However, in most cases when using these directives, you shouldn't need to
2975think about all the low-level ordering issues discussed here.
2976Instead, you should simply use these directives to label each block of your
2977code according to its purpose and let Bison handle the ordering.
2978@code{%code} is the most generic label.
16dc6a9e
JD
2979Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
2980as needed.
a501eca9 2981
342b8b6e 2982@node Bison Declarations
bfa74976
RS
2983@subsection The Bison Declarations Section
2984@cindex Bison declarations (introduction)
2985@cindex declarations, Bison (introduction)
2986
2987The @var{Bison declarations} section contains declarations that define
2988terminal and nonterminal symbols, specify precedence, and so on.
2989In some simple grammars you may not need any declarations.
2990@xref{Declarations, ,Bison Declarations}.
2991
342b8b6e 2992@node Grammar Rules
bfa74976
RS
2993@subsection The Grammar Rules Section
2994@cindex grammar rules section
2995@cindex rules section for grammar
2996
2997The @dfn{grammar rules} section contains one or more Bison grammar
2998rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2999
3000There must always be at least one grammar rule, and the first
3001@samp{%%} (which precedes the grammar rules) may never be omitted even
3002if it is the first thing in the file.
3003
38a92d50 3004@node Epilogue
75f5aaea 3005@subsection The epilogue
bfa74976 3006@cindex additional C code section
75f5aaea 3007@cindex epilogue
bfa74976
RS
3008@cindex C code, section for additional
3009
08e49d20
PE
3010The @var{Epilogue} is copied verbatim to the end of the parser file, just as
3011the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
3012place to put anything that you want to have in the parser file but which need
3013not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
3014definitions of @code{yylex} and @code{yyerror} often go here. Because
3015C requires functions to be declared before being used, you often need
3016to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 3017even if you define them in the Epilogue.
75f5aaea 3018@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3019
3020If the last section is empty, you may omit the @samp{%%} that separates it
3021from the grammar rules.
3022
f8e1c9e5
AD
3023The Bison parser itself contains many macros and identifiers whose names
3024start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3025any such names (except those documented in this manual) in the epilogue
3026of the grammar file.
bfa74976 3027
342b8b6e 3028@node Symbols
bfa74976
RS
3029@section Symbols, Terminal and Nonterminal
3030@cindex nonterminal symbol
3031@cindex terminal symbol
3032@cindex token type
3033@cindex symbol
3034
3035@dfn{Symbols} in Bison grammars represent the grammatical classifications
3036of the language.
3037
3038A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3039class of syntactically equivalent tokens. You use the symbol in grammar
3040rules to mean that a token in that class is allowed. The symbol is
3041represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3042function returns a token type code to indicate what kind of token has
3043been read. You don't need to know what the code value is; you can use
3044the symbol to stand for it.
bfa74976 3045
f8e1c9e5
AD
3046A @dfn{nonterminal symbol} stands for a class of syntactically
3047equivalent groupings. The symbol name is used in writing grammar rules.
3048By convention, it should be all lower case.
bfa74976
RS
3049
3050Symbol names can contain letters, digits (not at the beginning),
3051underscores and periods. Periods make sense only in nonterminals.
3052
931c7513 3053There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3054
3055@itemize @bullet
3056@item
3057A @dfn{named token type} is written with an identifier, like an
c827f760 3058identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3059such name must be defined with a Bison declaration such as
3060@code{%token}. @xref{Token Decl, ,Token Type Names}.
3061
3062@item
3063@cindex character token
3064@cindex literal token
3065@cindex single-character literal
931c7513
RS
3066A @dfn{character token type} (or @dfn{literal character token}) is
3067written in the grammar using the same syntax used in C for character
3068constants; for example, @code{'+'} is a character token type. A
3069character token type doesn't need to be declared unless you need to
3070specify its semantic value data type (@pxref{Value Type, ,Data Types of
3071Semantic Values}), associativity, or precedence (@pxref{Precedence,
3072,Operator Precedence}).
bfa74976
RS
3073
3074By convention, a character token type is used only to represent a
3075token that consists of that particular character. Thus, the token
3076type @code{'+'} is used to represent the character @samp{+} as a
3077token. Nothing enforces this convention, but if you depart from it,
3078your program will confuse other readers.
3079
3080All the usual escape sequences used in character literals in C can be
3081used in Bison as well, but you must not use the null character as a
72d2299c
PE
3082character literal because its numeric code, zero, signifies
3083end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3084for @code{yylex}}). Also, unlike standard C, trigraphs have no
3085special meaning in Bison character literals, nor is backslash-newline
3086allowed.
931c7513
RS
3087
3088@item
3089@cindex string token
3090@cindex literal string token
9ecbd125 3091@cindex multicharacter literal
931c7513
RS
3092A @dfn{literal string token} is written like a C string constant; for
3093example, @code{"<="} is a literal string token. A literal string token
3094doesn't need to be declared unless you need to specify its semantic
14ded682 3095value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3096(@pxref{Precedence}).
3097
3098You can associate the literal string token with a symbolic name as an
3099alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3100Declarations}). If you don't do that, the lexical analyzer has to
3101retrieve the token number for the literal string token from the
3102@code{yytname} table (@pxref{Calling Convention}).
3103
c827f760 3104@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3105
3106By convention, a literal string token is used only to represent a token
3107that consists of that particular string. Thus, you should use the token
3108type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3109does not enforce this convention, but if you depart from it, people who
931c7513
RS
3110read your program will be confused.
3111
3112All the escape sequences used in string literals in C can be used in
92ac3705
PE
3113Bison as well, except that you must not use a null character within a
3114string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3115meaning in Bison string literals, nor is backslash-newline allowed. A
3116literal string token must contain two or more characters; for a token
3117containing just one character, use a character token (see above).
bfa74976
RS
3118@end itemize
3119
3120How you choose to write a terminal symbol has no effect on its
3121grammatical meaning. That depends only on where it appears in rules and
3122on when the parser function returns that symbol.
3123
72d2299c
PE
3124The value returned by @code{yylex} is always one of the terminal
3125symbols, except that a zero or negative value signifies end-of-input.
3126Whichever way you write the token type in the grammar rules, you write
3127it the same way in the definition of @code{yylex}. The numeric code
3128for a character token type is simply the positive numeric code of the
3129character, so @code{yylex} can use the identical value to generate the
3130requisite code, though you may need to convert it to @code{unsigned
3131char} to avoid sign-extension on hosts where @code{char} is signed.
3132Each named token type becomes a C macro in
bfa74976 3133the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3134(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3135@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3136
3137If @code{yylex} is defined in a separate file, you need to arrange for the
3138token-type macro definitions to be available there. Use the @samp{-d}
3139option when you run Bison, so that it will write these macro definitions
3140into a separate header file @file{@var{name}.tab.h} which you can include
3141in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3142
72d2299c 3143If you want to write a grammar that is portable to any Standard C
9d9b8b70 3144host, you must use only nonnull character tokens taken from the basic
c827f760 3145execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3146digits, the 52 lower- and upper-case English letters, and the
3147characters in the following C-language string:
3148
3149@example
3150"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3151@end example
3152
f8e1c9e5
AD
3153The @code{yylex} function and Bison must use a consistent character set
3154and encoding for character tokens. For example, if you run Bison in an
3155@acronym{ASCII} environment, but then compile and run the resulting
3156program in an environment that uses an incompatible character set like
3157@acronym{EBCDIC}, the resulting program may not work because the tables
3158generated by Bison will assume @acronym{ASCII} numeric values for
3159character tokens. It is standard practice for software distributions to
3160contain C source files that were generated by Bison in an
3161@acronym{ASCII} environment, so installers on platforms that are
3162incompatible with @acronym{ASCII} must rebuild those files before
3163compiling them.
e966383b 3164
bfa74976
RS
3165The symbol @code{error} is a terminal symbol reserved for error recovery
3166(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3167In particular, @code{yylex} should never return this value. The default
3168value of the error token is 256, unless you explicitly assigned 256 to
3169one of your tokens with a @code{%token} declaration.
bfa74976 3170
342b8b6e 3171@node Rules
bfa74976
RS
3172@section Syntax of Grammar Rules
3173@cindex rule syntax
3174@cindex grammar rule syntax
3175@cindex syntax of grammar rules
3176
3177A Bison grammar rule has the following general form:
3178
3179@example
e425e872 3180@group
bfa74976
RS
3181@var{result}: @var{components}@dots{}
3182 ;
e425e872 3183@end group
bfa74976
RS
3184@end example
3185
3186@noindent
9ecbd125 3187where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3188and @var{components} are various terminal and nonterminal symbols that
13863333 3189are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3190
3191For example,
3192
3193@example
3194@group
3195exp: exp '+' exp
3196 ;
3197@end group
3198@end example
3199
3200@noindent
3201says that two groupings of type @code{exp}, with a @samp{+} token in between,
3202can be combined into a larger grouping of type @code{exp}.
3203
72d2299c
PE
3204White space in rules is significant only to separate symbols. You can add
3205extra white space as you wish.
bfa74976
RS
3206
3207Scattered among the components can be @var{actions} that determine
3208the semantics of the rule. An action looks like this:
3209
3210@example
3211@{@var{C statements}@}
3212@end example
3213
3214@noindent
287c78f6
PE
3215@cindex braced code
3216This is an example of @dfn{braced code}, that is, C code surrounded by
3217braces, much like a compound statement in C@. Braced code can contain
3218any sequence of C tokens, so long as its braces are balanced. Bison
3219does not check the braced code for correctness directly; it merely
3220copies the code to the output file, where the C compiler can check it.
3221
3222Within braced code, the balanced-brace count is not affected by braces
3223within comments, string literals, or character constants, but it is
3224affected by the C digraphs @samp{<%} and @samp{%>} that represent
3225braces. At the top level braced code must be terminated by @samp{@}}
3226and not by a digraph. Bison does not look for trigraphs, so if braced
3227code uses trigraphs you should ensure that they do not affect the
3228nesting of braces or the boundaries of comments, string literals, or
3229character constants.
3230
bfa74976
RS
3231Usually there is only one action and it follows the components.
3232@xref{Actions}.
3233
3234@findex |
3235Multiple rules for the same @var{result} can be written separately or can
3236be joined with the vertical-bar character @samp{|} as follows:
3237
bfa74976
RS
3238@example
3239@group
3240@var{result}: @var{rule1-components}@dots{}
3241 | @var{rule2-components}@dots{}
3242 @dots{}
3243 ;
3244@end group
3245@end example
bfa74976
RS
3246
3247@noindent
3248They are still considered distinct rules even when joined in this way.
3249
3250If @var{components} in a rule is empty, it means that @var{result} can
3251match the empty string. For example, here is how to define a
3252comma-separated sequence of zero or more @code{exp} groupings:
3253
3254@example
3255@group
3256expseq: /* empty */
3257 | expseq1
3258 ;
3259@end group
3260
3261@group
3262expseq1: exp
3263 | expseq1 ',' exp
3264 ;
3265@end group
3266@end example
3267
3268@noindent
3269It is customary to write a comment @samp{/* empty */} in each rule
3270with no components.
3271
342b8b6e 3272@node Recursion
bfa74976
RS
3273@section Recursive Rules
3274@cindex recursive rule
3275
f8e1c9e5
AD
3276A rule is called @dfn{recursive} when its @var{result} nonterminal
3277appears also on its right hand side. Nearly all Bison grammars need to
3278use recursion, because that is the only way to define a sequence of any
3279number of a particular thing. Consider this recursive definition of a
9ecbd125 3280comma-separated sequence of one or more expressions:
bfa74976
RS
3281
3282@example
3283@group
3284expseq1: exp
3285 | expseq1 ',' exp
3286 ;
3287@end group
3288@end example
3289
3290@cindex left recursion
3291@cindex right recursion
3292@noindent
3293Since the recursive use of @code{expseq1} is the leftmost symbol in the
3294right hand side, we call this @dfn{left recursion}. By contrast, here
3295the same construct is defined using @dfn{right recursion}:
3296
3297@example
3298@group
3299expseq1: exp
3300 | exp ',' expseq1
3301 ;
3302@end group
3303@end example
3304
3305@noindent
ec3bc396
AD
3306Any kind of sequence can be defined using either left recursion or right
3307recursion, but you should always use left recursion, because it can
3308parse a sequence of any number of elements with bounded stack space.
3309Right recursion uses up space on the Bison stack in proportion to the
3310number of elements in the sequence, because all the elements must be
3311shifted onto the stack before the rule can be applied even once.
3312@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3313of this.
bfa74976
RS
3314
3315@cindex mutual recursion
3316@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3317rule does not appear directly on its right hand side, but does appear
3318in rules for other nonterminals which do appear on its right hand
13863333 3319side.
bfa74976
RS
3320
3321For example:
3322
3323@example
3324@group
3325expr: primary
3326 | primary '+' primary
3327 ;
3328@end group
3329
3330@group
3331primary: constant
3332 | '(' expr ')'
3333 ;
3334@end group
3335@end example
3336
3337@noindent
3338defines two mutually-recursive nonterminals, since each refers to the
3339other.
3340
342b8b6e 3341@node Semantics
bfa74976
RS
3342@section Defining Language Semantics
3343@cindex defining language semantics
13863333 3344@cindex language semantics, defining
bfa74976
RS
3345
3346The grammar rules for a language determine only the syntax. The semantics
3347are determined by the semantic values associated with various tokens and
3348groupings, and by the actions taken when various groupings are recognized.
3349
3350For example, the calculator calculates properly because the value
3351associated with each expression is the proper number; it adds properly
3352because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3353the numbers associated with @var{x} and @var{y}.
3354
3355@menu
3356* Value Type:: Specifying one data type for all semantic values.
3357* Multiple Types:: Specifying several alternative data types.
3358* Actions:: An action is the semantic definition of a grammar rule.
3359* Action Types:: Specifying data types for actions to operate on.
3360* Mid-Rule Actions:: Most actions go at the end of a rule.
3361 This says when, why and how to use the exceptional
3362 action in the middle of a rule.
3363@end menu
3364
342b8b6e 3365@node Value Type
bfa74976
RS
3366@subsection Data Types of Semantic Values
3367@cindex semantic value type
3368@cindex value type, semantic
3369@cindex data types of semantic values
3370@cindex default data type
3371
3372In a simple program it may be sufficient to use the same data type for
3373the semantic values of all language constructs. This was true in the
c827f760 3374@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3375Notation Calculator}).
bfa74976 3376
ddc8ede1
PE
3377Bison normally uses the type @code{int} for semantic values if your
3378program uses the same data type for all language constructs. To
bfa74976
RS
3379specify some other type, define @code{YYSTYPE} as a macro, like this:
3380
3381@example
3382#define YYSTYPE double
3383@end example
3384
3385@noindent
50cce58e
PE
3386@code{YYSTYPE}'s replacement list should be a type name
3387that does not contain parentheses or square brackets.
342b8b6e 3388This macro definition must go in the prologue of the grammar file
75f5aaea 3389(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3390
342b8b6e 3391@node Multiple Types
bfa74976
RS
3392@subsection More Than One Value Type
3393
3394In most programs, you will need different data types for different kinds
3395of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3396@code{int} or @code{long int}, while a string constant needs type
3397@code{char *}, and an identifier might need a pointer to an entry in the
3398symbol table.
bfa74976
RS
3399
3400To use more than one data type for semantic values in one parser, Bison
3401requires you to do two things:
3402
3403@itemize @bullet
3404@item
ddc8ede1 3405Specify the entire collection of possible data types, either by using the
704a47c4 3406@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3407Value Types}), or by using a @code{typedef} or a @code{#define} to
3408define @code{YYSTYPE} to be a union type whose member names are
3409the type tags.
bfa74976
RS
3410
3411@item
14ded682
AD
3412Choose one of those types for each symbol (terminal or nonterminal) for
3413which semantic values are used. This is done for tokens with the
3414@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3415and for groupings with the @code{%type} Bison declaration (@pxref{Type
3416Decl, ,Nonterminal Symbols}).
bfa74976
RS
3417@end itemize
3418
342b8b6e 3419@node Actions
bfa74976
RS
3420@subsection Actions
3421@cindex action
3422@vindex $$
3423@vindex $@var{n}
3424
3425An action accompanies a syntactic rule and contains C code to be executed
3426each time an instance of that rule is recognized. The task of most actions
3427is to compute a semantic value for the grouping built by the rule from the
3428semantic values associated with tokens or smaller groupings.
3429
287c78f6
PE
3430An action consists of braced code containing C statements, and can be
3431placed at any position in the rule;
704a47c4
AD
3432it is executed at that position. Most rules have just one action at the
3433end of the rule, following all the components. Actions in the middle of
3434a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3435Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3436
3437The C code in an action can refer to the semantic values of the components
3438matched by the rule with the construct @code{$@var{n}}, which stands for
3439the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3440being constructed is @code{$$}. Bison translates both of these
3441constructs into expressions of the appropriate type when it copies the
3442actions into the parser file. @code{$$} is translated to a modifiable
3443lvalue, so it can be assigned to.
bfa74976
RS
3444
3445Here is a typical example:
3446
3447@example
3448@group
3449exp: @dots{}
3450 | exp '+' exp
3451 @{ $$ = $1 + $3; @}
3452@end group
3453@end example
3454
3455@noindent
3456This rule constructs an @code{exp} from two smaller @code{exp} groupings
3457connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3458refer to the semantic values of the two component @code{exp} groupings,
3459which are the first and third symbols on the right hand side of the rule.
3460The sum is stored into @code{$$} so that it becomes the semantic value of
3461the addition-expression just recognized by the rule. If there were a
3462useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3463referred to as @code{$2}.
bfa74976 3464
3ded9a63
AD
3465Note that the vertical-bar character @samp{|} is really a rule
3466separator, and actions are attached to a single rule. This is a
3467difference with tools like Flex, for which @samp{|} stands for either
3468``or'', or ``the same action as that of the next rule''. In the
3469following example, the action is triggered only when @samp{b} is found:
3470
3471@example
3472@group
3473a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3474@end group
3475@end example
3476
bfa74976
RS
3477@cindex default action
3478If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3479@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3480becomes the value of the whole rule. Of course, the default action is
3481valid only if the two data types match. There is no meaningful default
3482action for an empty rule; every empty rule must have an explicit action
3483unless the rule's value does not matter.
bfa74976
RS
3484
3485@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3486to tokens and groupings on the stack @emph{before} those that match the
3487current rule. This is a very risky practice, and to use it reliably
3488you must be certain of the context in which the rule is applied. Here
3489is a case in which you can use this reliably:
3490
3491@example
3492@group
3493foo: expr bar '+' expr @{ @dots{} @}
3494 | expr bar '-' expr @{ @dots{} @}
3495 ;
3496@end group
3497
3498@group
3499bar: /* empty */
3500 @{ previous_expr = $0; @}
3501 ;
3502@end group
3503@end example
3504
3505As long as @code{bar} is used only in the fashion shown here, @code{$0}
3506always refers to the @code{expr} which precedes @code{bar} in the
3507definition of @code{foo}.
3508
32c29292 3509@vindex yylval
742e4900 3510It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3511any, from a semantic action.
3512This semantic value is stored in @code{yylval}.
3513@xref{Action Features, ,Special Features for Use in Actions}.
3514
342b8b6e 3515@node Action Types
bfa74976
RS
3516@subsection Data Types of Values in Actions
3517@cindex action data types
3518@cindex data types in actions
3519
3520If you have chosen a single data type for semantic values, the @code{$$}
3521and @code{$@var{n}} constructs always have that data type.
3522
3523If you have used @code{%union} to specify a variety of data types, then you
3524must declare a choice among these types for each terminal or nonterminal
3525symbol that can have a semantic value. Then each time you use @code{$$} or
3526@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3527in the rule. In this example,
bfa74976
RS
3528
3529@example
3530@group
3531exp: @dots{}
3532 | exp '+' exp
3533 @{ $$ = $1 + $3; @}
3534@end group
3535@end example
3536
3537@noindent
3538@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3539have the data type declared for the nonterminal symbol @code{exp}. If
3540@code{$2} were used, it would have the data type declared for the
e0c471a9 3541terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3542
3543Alternatively, you can specify the data type when you refer to the value,
3544by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3545reference. For example, if you have defined types as shown here:
3546
3547@example
3548@group
3549%union @{
3550 int itype;
3551 double dtype;
3552@}
3553@end group
3554@end example
3555
3556@noindent
3557then you can write @code{$<itype>1} to refer to the first subunit of the
3558rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3559
342b8b6e 3560@node Mid-Rule Actions
bfa74976
RS
3561@subsection Actions in Mid-Rule
3562@cindex actions in mid-rule
3563@cindex mid-rule actions
3564
3565Occasionally it is useful to put an action in the middle of a rule.
3566These actions are written just like usual end-of-rule actions, but they
3567are executed before the parser even recognizes the following components.
3568
3569A mid-rule action may refer to the components preceding it using
3570@code{$@var{n}}, but it may not refer to subsequent components because
3571it is run before they are parsed.
3572
3573The mid-rule action itself counts as one of the components of the rule.
3574This makes a difference when there is another action later in the same rule
3575(and usually there is another at the end): you have to count the actions
3576along with the symbols when working out which number @var{n} to use in
3577@code{$@var{n}}.
3578
3579The mid-rule action can also have a semantic value. The action can set
3580its value with an assignment to @code{$$}, and actions later in the rule
3581can refer to the value using @code{$@var{n}}. Since there is no symbol
3582to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3583in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3584specify a data type each time you refer to this value.
bfa74976
RS
3585
3586There is no way to set the value of the entire rule with a mid-rule
3587action, because assignments to @code{$$} do not have that effect. The
3588only way to set the value for the entire rule is with an ordinary action
3589at the end of the rule.
3590
3591Here is an example from a hypothetical compiler, handling a @code{let}
3592statement that looks like @samp{let (@var{variable}) @var{statement}} and
3593serves to create a variable named @var{variable} temporarily for the
3594duration of @var{statement}. To parse this construct, we must put
3595@var{variable} into the symbol table while @var{statement} is parsed, then
3596remove it afterward. Here is how it is done:
3597
3598@example
3599@group
3600stmt: LET '(' var ')'
3601 @{ $<context>$ = push_context ();
3602 declare_variable ($3); @}
3603 stmt @{ $$ = $6;
3604 pop_context ($<context>5); @}
3605@end group
3606@end example
3607
3608@noindent
3609As soon as @samp{let (@var{variable})} has been recognized, the first
3610action is run. It saves a copy of the current semantic context (the
3611list of accessible variables) as its semantic value, using alternative
3612@code{context} in the data-type union. Then it calls
3613@code{declare_variable} to add the new variable to that list. Once the
3614first action is finished, the embedded statement @code{stmt} can be
3615parsed. Note that the mid-rule action is component number 5, so the
3616@samp{stmt} is component number 6.
3617
3618After the embedded statement is parsed, its semantic value becomes the
3619value of the entire @code{let}-statement. Then the semantic value from the
3620earlier action is used to restore the prior list of variables. This
3621removes the temporary @code{let}-variable from the list so that it won't
3622appear to exist while the rest of the program is parsed.
3623
841a7737
JD
3624@findex %destructor
3625@cindex discarded symbols, mid-rule actions
3626@cindex error recovery, mid-rule actions
3627In the above example, if the parser initiates error recovery (@pxref{Error
3628Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3629it might discard the previous semantic context @code{$<context>5} without
3630restoring it.
3631Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3632Discarded Symbols}).
ec5479ce
JD
3633However, Bison currently provides no means to declare a destructor specific to
3634a particular mid-rule action's semantic value.
841a7737
JD
3635
3636One solution is to bury the mid-rule action inside a nonterminal symbol and to
3637declare a destructor for that symbol:
3638
3639@example
3640@group
3641%type <context> let
3642%destructor @{ pop_context ($$); @} let
3643
3644%%
3645
3646stmt: let stmt
3647 @{ $$ = $2;
3648 pop_context ($1); @}
3649 ;
3650
3651let: LET '(' var ')'
3652 @{ $$ = push_context ();
3653 declare_variable ($3); @}
3654 ;
3655
3656@end group
3657@end example
3658
3659@noindent
3660Note that the action is now at the end of its rule.
3661Any mid-rule action can be converted to an end-of-rule action in this way, and
3662this is what Bison actually does to implement mid-rule actions.
3663
bfa74976
RS
3664Taking action before a rule is completely recognized often leads to
3665conflicts since the parser must commit to a parse in order to execute the
3666action. For example, the following two rules, without mid-rule actions,
3667can coexist in a working parser because the parser can shift the open-brace
3668token and look at what follows before deciding whether there is a
3669declaration or not:
3670
3671@example
3672@group
3673compound: '@{' declarations statements '@}'
3674 | '@{' statements '@}'
3675 ;
3676@end group
3677@end example
3678
3679@noindent
3680But when we add a mid-rule action as follows, the rules become nonfunctional:
3681
3682@example
3683@group
3684compound: @{ prepare_for_local_variables (); @}
3685 '@{' declarations statements '@}'
3686@end group
3687@group
3688 | '@{' statements '@}'
3689 ;
3690@end group
3691@end example
3692
3693@noindent
3694Now the parser is forced to decide whether to run the mid-rule action
3695when it has read no farther than the open-brace. In other words, it
3696must commit to using one rule or the other, without sufficient
3697information to do it correctly. (The open-brace token is what is called
742e4900
JD
3698the @dfn{lookahead} token at this time, since the parser is still
3699deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3700
3701You might think that you could correct the problem by putting identical
3702actions into the two rules, like this:
3703
3704@example
3705@group
3706compound: @{ prepare_for_local_variables (); @}
3707 '@{' declarations statements '@}'
3708 | @{ prepare_for_local_variables (); @}
3709 '@{' statements '@}'
3710 ;
3711@end group
3712@end example
3713
3714@noindent
3715But this does not help, because Bison does not realize that the two actions
3716are identical. (Bison never tries to understand the C code in an action.)
3717
3718If the grammar is such that a declaration can be distinguished from a
3719statement by the first token (which is true in C), then one solution which
3720does work is to put the action after the open-brace, like this:
3721
3722@example
3723@group
3724compound: '@{' @{ prepare_for_local_variables (); @}
3725 declarations statements '@}'
3726 | '@{' statements '@}'
3727 ;
3728@end group
3729@end example
3730
3731@noindent
3732Now the first token of the following declaration or statement,
3733which would in any case tell Bison which rule to use, can still do so.
3734
3735Another solution is to bury the action inside a nonterminal symbol which
3736serves as a subroutine:
3737
3738@example
3739@group
3740subroutine: /* empty */
3741 @{ prepare_for_local_variables (); @}
3742 ;
3743
3744@end group
3745
3746@group
3747compound: subroutine
3748 '@{' declarations statements '@}'
3749 | subroutine
3750 '@{' statements '@}'
3751 ;
3752@end group
3753@end example
3754
3755@noindent
3756Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3757deciding which rule for @code{compound} it will eventually use.
bfa74976 3758
342b8b6e 3759@node Locations
847bf1f5
AD
3760@section Tracking Locations
3761@cindex location
95923bd6
AD
3762@cindex textual location
3763@cindex location, textual
847bf1f5
AD
3764
3765Though grammar rules and semantic actions are enough to write a fully
72d2299c 3766functional parser, it can be useful to process some additional information,
3e259915
MA
3767especially symbol locations.
3768
704a47c4
AD
3769The way locations are handled is defined by providing a data type, and
3770actions to take when rules are matched.
847bf1f5
AD
3771
3772@menu
3773* Location Type:: Specifying a data type for locations.
3774* Actions and Locations:: Using locations in actions.
3775* Location Default Action:: Defining a general way to compute locations.
3776@end menu
3777
342b8b6e 3778@node Location Type
847bf1f5
AD
3779@subsection Data Type of Locations
3780@cindex data type of locations
3781@cindex default location type
3782
3783Defining a data type for locations is much simpler than for semantic values,
3784since all tokens and groupings always use the same type.
3785
50cce58e
PE
3786You can specify the type of locations by defining a macro called
3787@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3788defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3789When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3790four members:
3791
3792@example
6273355b 3793typedef struct YYLTYPE
847bf1f5
AD
3794@{
3795 int first_line;
3796 int first_column;
3797 int last_line;
3798 int last_column;
6273355b 3799@} YYLTYPE;
847bf1f5
AD
3800@end example
3801
cd48d21d
AD
3802At the beginning of the parsing, Bison initializes all these fields to 1
3803for @code{yylloc}.
3804
342b8b6e 3805@node Actions and Locations
847bf1f5
AD
3806@subsection Actions and Locations
3807@cindex location actions
3808@cindex actions, location
3809@vindex @@$
3810@vindex @@@var{n}
3811
3812Actions are not only useful for defining language semantics, but also for
3813describing the behavior of the output parser with locations.
3814
3815The most obvious way for building locations of syntactic groupings is very
72d2299c 3816similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3817constructs can be used to access the locations of the elements being matched.
3818The location of the @var{n}th component of the right hand side is
3819@code{@@@var{n}}, while the location of the left hand side grouping is
3820@code{@@$}.
3821
3e259915 3822Here is a basic example using the default data type for locations:
847bf1f5
AD
3823
3824@example
3825@group
3826exp: @dots{}
3e259915 3827 | exp '/' exp
847bf1f5 3828 @{
3e259915
MA
3829 @@$.first_column = @@1.first_column;
3830 @@$.first_line = @@1.first_line;
847bf1f5
AD
3831 @@$.last_column = @@3.last_column;
3832 @@$.last_line = @@3.last_line;
3e259915
MA
3833 if ($3)
3834 $$ = $1 / $3;
3835 else
3836 @{
3837 $$ = 1;
4e03e201
AD
3838 fprintf (stderr,
3839 "Division by zero, l%d,c%d-l%d,c%d",
3840 @@3.first_line, @@3.first_column,
3841 @@3.last_line, @@3.last_column);
3e259915 3842 @}
847bf1f5
AD
3843 @}
3844@end group
3845@end example
3846
3e259915 3847As for semantic values, there is a default action for locations that is
72d2299c 3848run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3849beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3850last symbol.
3e259915 3851
72d2299c 3852With this default action, the location tracking can be fully automatic. The
3e259915
MA
3853example above simply rewrites this way:
3854
3855@example
3856@group
3857exp: @dots{}
3858 | exp '/' exp
3859 @{
3860 if ($3)
3861 $$ = $1 / $3;
3862 else
3863 @{
3864 $$ = 1;
4e03e201
AD
3865 fprintf (stderr,
3866 "Division by zero, l%d,c%d-l%d,c%d",
3867 @@3.first_line, @@3.first_column,
3868 @@3.last_line, @@3.last_column);
3e259915
MA
3869 @}
3870 @}
3871@end group
3872@end example
847bf1f5 3873
32c29292 3874@vindex yylloc
742e4900 3875It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3876from a semantic action.
3877This location is stored in @code{yylloc}.
3878@xref{Action Features, ,Special Features for Use in Actions}.
3879
342b8b6e 3880@node Location Default Action
847bf1f5
AD
3881@subsection Default Action for Locations
3882@vindex YYLLOC_DEFAULT
8710fc41 3883@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3884
72d2299c 3885Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3886locations are much more general than semantic values, there is room in
3887the output parser to redefine the default action to take for each
72d2299c 3888rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3889matched, before the associated action is run. It is also invoked
3890while processing a syntax error, to compute the error's location.
8710fc41
JD
3891Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3892parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3893of that ambiguity.
847bf1f5 3894
3e259915 3895Most of the time, this macro is general enough to suppress location
79282c6c 3896dedicated code from semantic actions.
847bf1f5 3897
72d2299c 3898The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3899the location of the grouping (the result of the computation). When a
766de5eb 3900rule is matched, the second parameter identifies locations of
96b93a3d 3901all right hand side elements of the rule being matched, and the third
8710fc41
JD
3902parameter is the size of the rule's right hand side.
3903When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3904right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3905When processing a syntax error, the second parameter identifies locations
3906of the symbols that were discarded during error processing, and the third
96b93a3d 3907parameter is the number of discarded symbols.
847bf1f5 3908
766de5eb 3909By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3910
766de5eb 3911@smallexample
847bf1f5 3912@group
766de5eb
PE
3913# define YYLLOC_DEFAULT(Current, Rhs, N) \
3914 do \
3915 if (N) \
3916 @{ \
3917 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3918 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3919 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3920 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3921 @} \
3922 else \
3923 @{ \
3924 (Current).first_line = (Current).last_line = \
3925 YYRHSLOC(Rhs, 0).last_line; \
3926 (Current).first_column = (Current).last_column = \
3927 YYRHSLOC(Rhs, 0).last_column; \
3928 @} \
3929 while (0)
847bf1f5 3930@end group
766de5eb 3931@end smallexample
676385e2 3932
766de5eb
PE
3933where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3934in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3935just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3936
3e259915 3937When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3938
3e259915 3939@itemize @bullet
79282c6c 3940@item
72d2299c 3941All arguments are free of side-effects. However, only the first one (the
3e259915 3942result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3943
3e259915 3944@item
766de5eb
PE
3945For consistency with semantic actions, valid indexes within the
3946right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3947valid index, and it refers to the symbol just before the reduction.
3948During error processing @var{n} is always positive.
0ae99356
PE
3949
3950@item
3951Your macro should parenthesize its arguments, if need be, since the
3952actual arguments may not be surrounded by parentheses. Also, your
3953macro should expand to something that can be used as a single
3954statement when it is followed by a semicolon.
3e259915 3955@end itemize
847bf1f5 3956
342b8b6e 3957@node Declarations
bfa74976
RS
3958@section Bison Declarations
3959@cindex declarations, Bison
3960@cindex Bison declarations
3961
3962The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3963used in formulating the grammar and the data types of semantic values.
3964@xref{Symbols}.
3965
3966All token type names (but not single-character literal tokens such as
3967@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3968declared if you need to specify which data type to use for the semantic
3969value (@pxref{Multiple Types, ,More Than One Value Type}).
3970
3971The first rule in the file also specifies the start symbol, by default.
3972If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3973it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3974Grammars}).
bfa74976
RS
3975
3976@menu
b50d2359 3977* Require Decl:: Requiring a Bison version.
bfa74976
RS
3978* Token Decl:: Declaring terminal symbols.
3979* Precedence Decl:: Declaring terminals with precedence and associativity.
3980* Union Decl:: Declaring the set of all semantic value types.
3981* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3982* Initial Action Decl:: Code run before parsing starts.
72f889cc 3983* Destructor Decl:: Declaring how symbols are freed.
d6328241 3984* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3985* Start Decl:: Specifying the start symbol.
3986* Pure Decl:: Requesting a reentrant parser.
9987d1b3 3987* Push Decl:: Requesting a push parser.
bfa74976
RS
3988* Decl Summary:: Table of all Bison declarations.
3989@end menu
3990
b50d2359
AD
3991@node Require Decl
3992@subsection Require a Version of Bison
3993@cindex version requirement
3994@cindex requiring a version of Bison
3995@findex %require
3996
3997You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
3998the requirement is not met, @command{bison} exits with an error (exit
3999status 63).
b50d2359
AD
4000
4001@example
4002%require "@var{version}"
4003@end example
4004
342b8b6e 4005@node Token Decl
bfa74976
RS
4006@subsection Token Type Names
4007@cindex declaring token type names
4008@cindex token type names, declaring
931c7513 4009@cindex declaring literal string tokens
bfa74976
RS
4010@findex %token
4011
4012The basic way to declare a token type name (terminal symbol) is as follows:
4013
4014@example
4015%token @var{name}
4016@end example
4017
4018Bison will convert this into a @code{#define} directive in
4019the parser, so that the function @code{yylex} (if it is in this file)
4020can use the name @var{name} to stand for this token type's code.
4021
14ded682
AD
4022Alternatively, you can use @code{%left}, @code{%right}, or
4023@code{%nonassoc} instead of @code{%token}, if you wish to specify
4024associativity and precedence. @xref{Precedence Decl, ,Operator
4025Precedence}.
bfa74976
RS
4026
4027You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4028a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4029following the token name:
bfa74976
RS
4030
4031@example
4032%token NUM 300
1452af69 4033%token XNUM 0x12d // a GNU extension
bfa74976
RS
4034@end example
4035
4036@noindent
4037It is generally best, however, to let Bison choose the numeric codes for
4038all token types. Bison will automatically select codes that don't conflict
e966383b 4039with each other or with normal characters.
bfa74976
RS
4040
4041In the event that the stack type is a union, you must augment the
4042@code{%token} or other token declaration to include the data type
704a47c4
AD
4043alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4044Than One Value Type}).
bfa74976
RS
4045
4046For example:
4047
4048@example
4049@group
4050%union @{ /* define stack type */
4051 double val;
4052 symrec *tptr;
4053@}
4054%token <val> NUM /* define token NUM and its type */
4055@end group
4056@end example
4057
931c7513
RS
4058You can associate a literal string token with a token type name by
4059writing the literal string at the end of a @code{%token}
4060declaration which declares the name. For example:
4061
4062@example
4063%token arrow "=>"
4064@end example
4065
4066@noindent
4067For example, a grammar for the C language might specify these names with
4068equivalent literal string tokens:
4069
4070@example
4071%token <operator> OR "||"
4072%token <operator> LE 134 "<="
4073%left OR "<="
4074@end example
4075
4076@noindent
4077Once you equate the literal string and the token name, you can use them
4078interchangeably in further declarations or the grammar rules. The
4079@code{yylex} function can use the token name or the literal string to
4080obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4081Syntax error messages passed to @code{yyerror} from the parser will reference
4082the literal string instead of the token name.
4083
4084The token numbered as 0 corresponds to end of file; the following line
4085allows for nicer error messages referring to ``end of file'' instead
4086of ``$end'':
4087
4088@example
4089%token END 0 "end of file"
4090@end example
931c7513 4091
342b8b6e 4092@node Precedence Decl
bfa74976
RS
4093@subsection Operator Precedence
4094@cindex precedence declarations
4095@cindex declaring operator precedence
4096@cindex operator precedence, declaring
4097
4098Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4099declare a token and specify its precedence and associativity, all at
4100once. These are called @dfn{precedence declarations}.
704a47c4
AD
4101@xref{Precedence, ,Operator Precedence}, for general information on
4102operator precedence.
bfa74976 4103
ab7f29f8 4104The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4105@code{%token}: either
4106
4107@example
4108%left @var{symbols}@dots{}
4109@end example
4110
4111@noindent
4112or
4113
4114@example
4115%left <@var{type}> @var{symbols}@dots{}
4116@end example
4117
4118And indeed any of these declarations serves the purposes of @code{%token}.
4119But in addition, they specify the associativity and relative precedence for
4120all the @var{symbols}:
4121
4122@itemize @bullet
4123@item
4124The associativity of an operator @var{op} determines how repeated uses
4125of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4126@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4127grouping @var{y} with @var{z} first. @code{%left} specifies
4128left-associativity (grouping @var{x} with @var{y} first) and
4129@code{%right} specifies right-associativity (grouping @var{y} with
4130@var{z} first). @code{%nonassoc} specifies no associativity, which
4131means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4132considered a syntax error.
4133
4134@item
4135The precedence of an operator determines how it nests with other operators.
4136All the tokens declared in a single precedence declaration have equal
4137precedence and nest together according to their associativity.
4138When two tokens declared in different precedence declarations associate,
4139the one declared later has the higher precedence and is grouped first.
4140@end itemize
4141
ab7f29f8
JD
4142For backward compatibility, there is a confusing difference between the
4143argument lists of @code{%token} and precedence declarations.
4144Only a @code{%token} can associate a literal string with a token type name.
4145A precedence declaration always interprets a literal string as a reference to a
4146separate token.
4147For example:
4148
4149@example
4150%left OR "<=" // Does not declare an alias.
4151%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4152@end example
4153
342b8b6e 4154@node Union Decl
bfa74976
RS
4155@subsection The Collection of Value Types
4156@cindex declaring value types
4157@cindex value types, declaring
4158@findex %union
4159
287c78f6
PE
4160The @code{%union} declaration specifies the entire collection of
4161possible data types for semantic values. The keyword @code{%union} is
4162followed by braced code containing the same thing that goes inside a
4163@code{union} in C@.
bfa74976
RS
4164
4165For example:
4166
4167@example
4168@group
4169%union @{
4170 double val;
4171 symrec *tptr;
4172@}
4173@end group
4174@end example
4175
4176@noindent
4177This says that the two alternative types are @code{double} and @code{symrec
4178*}. They are given names @code{val} and @code{tptr}; these names are used
4179in the @code{%token} and @code{%type} declarations to pick one of the types
4180for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4181
6273355b
PE
4182As an extension to @acronym{POSIX}, a tag is allowed after the
4183@code{union}. For example:
4184
4185@example
4186@group
4187%union value @{
4188 double val;
4189 symrec *tptr;
4190@}
4191@end group
4192@end example
4193
d6ca7905 4194@noindent
6273355b
PE
4195specifies the union tag @code{value}, so the corresponding C type is
4196@code{union value}. If you do not specify a tag, it defaults to
4197@code{YYSTYPE}.
4198
d6ca7905
PE
4199As another extension to @acronym{POSIX}, you may specify multiple
4200@code{%union} declarations; their contents are concatenated. However,
4201only the first @code{%union} declaration can specify a tag.
4202
6273355b 4203Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4204a semicolon after the closing brace.
4205
ddc8ede1
PE
4206Instead of @code{%union}, you can define and use your own union type
4207@code{YYSTYPE} if your grammar contains at least one
4208@samp{<@var{type}>} tag. For example, you can put the following into
4209a header file @file{parser.h}:
4210
4211@example
4212@group
4213union YYSTYPE @{
4214 double val;
4215 symrec *tptr;
4216@};
4217typedef union YYSTYPE YYSTYPE;
4218@end group
4219@end example
4220
4221@noindent
4222and then your grammar can use the following
4223instead of @code{%union}:
4224
4225@example
4226@group
4227%@{
4228#include "parser.h"
4229%@}
4230%type <val> expr
4231%token <tptr> ID
4232@end group
4233@end example
4234
342b8b6e 4235@node Type Decl
bfa74976
RS
4236@subsection Nonterminal Symbols
4237@cindex declaring value types, nonterminals
4238@cindex value types, nonterminals, declaring
4239@findex %type
4240
4241@noindent
4242When you use @code{%union} to specify multiple value types, you must
4243declare the value type of each nonterminal symbol for which values are
4244used. This is done with a @code{%type} declaration, like this:
4245
4246@example
4247%type <@var{type}> @var{nonterminal}@dots{}
4248@end example
4249
4250@noindent
704a47c4
AD
4251Here @var{nonterminal} is the name of a nonterminal symbol, and
4252@var{type} is the name given in the @code{%union} to the alternative
4253that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4254can give any number of nonterminal symbols in the same @code{%type}
4255declaration, if they have the same value type. Use spaces to separate
4256the symbol names.
bfa74976 4257
931c7513
RS
4258You can also declare the value type of a terminal symbol. To do this,
4259use the same @code{<@var{type}>} construction in a declaration for the
4260terminal symbol. All kinds of token declarations allow
4261@code{<@var{type}>}.
4262
18d192f0
AD
4263@node Initial Action Decl
4264@subsection Performing Actions before Parsing
4265@findex %initial-action
4266
4267Sometimes your parser needs to perform some initializations before
4268parsing. The @code{%initial-action} directive allows for such arbitrary
4269code.
4270
4271@deffn {Directive} %initial-action @{ @var{code} @}
4272@findex %initial-action
287c78f6 4273Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4274@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4275@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4276@code{%parse-param}.
18d192f0
AD
4277@end deffn
4278
451364ed
AD
4279For instance, if your locations use a file name, you may use
4280
4281@example
48b16bbc 4282%parse-param @{ char const *file_name @};
451364ed
AD
4283%initial-action
4284@{
4626a15d 4285 @@$.initialize (file_name);
451364ed
AD
4286@};
4287@end example
4288
18d192f0 4289
72f889cc
AD
4290@node Destructor Decl
4291@subsection Freeing Discarded Symbols
4292@cindex freeing discarded symbols
4293@findex %destructor
12e35840 4294@findex <*>
3ebecc24 4295@findex <>
a85284cf
AD
4296During error recovery (@pxref{Error Recovery}), symbols already pushed
4297on the stack and tokens coming from the rest of the file are discarded
4298until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4299or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4300symbols on the stack must be discarded. Even if the parser succeeds, it
4301must discard the start symbol.
258b75ca
PE
4302
4303When discarded symbols convey heap based information, this memory is
4304lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4305in traditional compilers, it is unacceptable for programs like shells or
4306protocol implementations that may parse and execute indefinitely.
258b75ca 4307
a85284cf
AD
4308The @code{%destructor} directive defines code that is called when a
4309symbol is automatically discarded.
72f889cc
AD
4310
4311@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4312@findex %destructor
287c78f6
PE
4313Invoke the braced @var{code} whenever the parser discards one of the
4314@var{symbols}.
4b367315 4315Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4316with the discarded symbol, and @code{@@$} designates its location.
4317The additional parser parameters are also available (@pxref{Parser Function, ,
4318The Parser Function @code{yyparse}}).
ec5479ce 4319
b2a0b7ca
JD
4320When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4321per-symbol @code{%destructor}.
4322You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4323tag among @var{symbols}.
b2a0b7ca 4324In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4325grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4326per-symbol @code{%destructor}.
4327
12e35840 4328Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4329(These default forms are experimental.
4330More user feedback will help to determine whether they should become permanent
4331features.)
3ebecc24 4332You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4333exactly one @code{%destructor} declaration in your grammar file.
4334The parser will invoke the @var{code} associated with one of these whenever it
4335discards any user-defined grammar symbol that has no per-symbol and no per-type
4336@code{%destructor}.
4337The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4338symbol for which you have formally declared a semantic type tag (@code{%type}
4339counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4340The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4341symbol that has no declared semantic type tag.
72f889cc
AD
4342@end deffn
4343
b2a0b7ca 4344@noindent
12e35840 4345For example:
72f889cc
AD
4346
4347@smallexample
ec5479ce
JD
4348%union @{ char *string; @}
4349%token <string> STRING1
4350%token <string> STRING2
4351%type <string> string1
4352%type <string> string2
b2a0b7ca
JD
4353%union @{ char character; @}
4354%token <character> CHR
4355%type <character> chr
12e35840
JD
4356%token TAGLESS
4357
b2a0b7ca 4358%destructor @{ @} <character>
12e35840
JD
4359%destructor @{ free ($$); @} <*>
4360%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4361%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4362@end smallexample
4363
4364@noindent
b2a0b7ca
JD
4365guarantees that, when the parser discards any user-defined symbol that has a
4366semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4367to @code{free} by default.
ec5479ce
JD
4368However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4369prints its line number to @code{stdout}.
4370It performs only the second @code{%destructor} in this case, so it invokes
4371@code{free} only once.
12e35840
JD
4372Finally, the parser merely prints a message whenever it discards any symbol,
4373such as @code{TAGLESS}, that has no semantic type tag.
4374
4375A Bison-generated parser invokes the default @code{%destructor}s only for
4376user-defined as opposed to Bison-defined symbols.
4377For example, the parser will not invoke either kind of default
4378@code{%destructor} for the special Bison-defined symbols @code{$accept},
4379@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4380none of which you can reference in your grammar.
4381It also will not invoke either for the @code{error} token (@pxref{Table of
4382Symbols, ,error}), which is always defined by Bison regardless of whether you
4383reference it in your grammar.
4384However, it may invoke one of them for the end token (token 0) if you
4385redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4386
4387@smallexample
4388%token END 0
4389@end smallexample
4390
12e35840
JD
4391@cindex actions in mid-rule
4392@cindex mid-rule actions
4393Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4394mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4395That is, Bison does not consider a mid-rule to have a semantic value if you do
4396not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4397@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4398rule.
4399However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4400@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4401
3508ce36
JD
4402@ignore
4403@noindent
4404In the future, it may be possible to redefine the @code{error} token as a
4405nonterminal that captures the discarded symbols.
4406In that case, the parser will invoke the default destructor for it as well.
4407@end ignore
4408
e757bb10
AD
4409@sp 1
4410
4411@cindex discarded symbols
4412@dfn{Discarded symbols} are the following:
4413
4414@itemize
4415@item
4416stacked symbols popped during the first phase of error recovery,
4417@item
4418incoming terminals during the second phase of error recovery,
4419@item
742e4900 4420the current lookahead and the entire stack (except the current
9d9b8b70 4421right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4422@item
4423the start symbol, when the parser succeeds.
e757bb10
AD
4424@end itemize
4425
9d9b8b70
PE
4426The parser can @dfn{return immediately} because of an explicit call to
4427@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4428exhaustion.
4429
29553547 4430Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4431error via @code{YYERROR} are not discarded automatically. As a rule
4432of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4433the memory.
e757bb10 4434
342b8b6e 4435@node Expect Decl
bfa74976
RS
4436@subsection Suppressing Conflict Warnings
4437@cindex suppressing conflict warnings
4438@cindex preventing warnings about conflicts
4439@cindex warnings, preventing
4440@cindex conflicts, suppressing warnings of
4441@findex %expect
d6328241 4442@findex %expect-rr
bfa74976
RS
4443
4444Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4445(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4446have harmless shift/reduce conflicts which are resolved in a predictable
4447way and would be difficult to eliminate. It is desirable to suppress
4448the warning about these conflicts unless the number of conflicts
4449changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4450
4451The declaration looks like this:
4452
4453@example
4454%expect @var{n}
4455@end example
4456
035aa4a0
PE
4457Here @var{n} is a decimal integer. The declaration says there should
4458be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4459Bison reports an error if the number of shift/reduce conflicts differs
4460from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4461
035aa4a0
PE
4462For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more
4463serious, and should be eliminated entirely. Bison will always report
4464reduce/reduce conflicts for these parsers. With @acronym{GLR}
4465parsers, however, both kinds of conflicts are routine; otherwise,
4466there would be no need to use @acronym{GLR} parsing. Therefore, it is
4467also possible to specify an expected number of reduce/reduce conflicts
4468in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4469
4470@example
4471%expect-rr @var{n}
4472@end example
4473
bfa74976
RS
4474In general, using @code{%expect} involves these steps:
4475
4476@itemize @bullet
4477@item
4478Compile your grammar without @code{%expect}. Use the @samp{-v} option
4479to get a verbose list of where the conflicts occur. Bison will also
4480print the number of conflicts.
4481
4482@item
4483Check each of the conflicts to make sure that Bison's default
4484resolution is what you really want. If not, rewrite the grammar and
4485go back to the beginning.
4486
4487@item
4488Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4489number which Bison printed. With @acronym{GLR} parsers, add an
4490@code{%expect-rr} declaration as well.
bfa74976
RS
4491@end itemize
4492
035aa4a0
PE
4493Now Bison will warn you if you introduce an unexpected conflict, but
4494will keep silent otherwise.
bfa74976 4495
342b8b6e 4496@node Start Decl
bfa74976
RS
4497@subsection The Start-Symbol
4498@cindex declaring the start symbol
4499@cindex start symbol, declaring
4500@cindex default start symbol
4501@findex %start
4502
4503Bison assumes by default that the start symbol for the grammar is the first
4504nonterminal specified in the grammar specification section. The programmer
4505may override this restriction with the @code{%start} declaration as follows:
4506
4507@example
4508%start @var{symbol}
4509@end example
4510
342b8b6e 4511@node Pure Decl
bfa74976
RS
4512@subsection A Pure (Reentrant) Parser
4513@cindex reentrant parser
4514@cindex pure parser
d9df47b6 4515@findex %define api.pure
bfa74976
RS
4516
4517A @dfn{reentrant} program is one which does not alter in the course of
4518execution; in other words, it consists entirely of @dfn{pure} (read-only)
4519code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4520for example, a nonreentrant program may not be safe to call from a signal
4521handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4522program must be called only within interlocks.
4523
70811b85 4524Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4525suitable for most uses, and it permits compatibility with Yacc. (The
4526standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4527statically allocated variables for communication with @code{yylex},
4528including @code{yylval} and @code{yylloc}.)
bfa74976 4529
70811b85 4530Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4531declaration @code{%define api.pure} says that you want the parser to be
70811b85 4532reentrant. It looks like this:
bfa74976
RS
4533
4534@example
d9df47b6 4535%define api.pure
bfa74976
RS
4536@end example
4537
70811b85
RS
4538The result is that the communication variables @code{yylval} and
4539@code{yylloc} become local variables in @code{yyparse}, and a different
4540calling convention is used for the lexical analyzer function
4541@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4542Parsers}, for the details of this. The variable @code{yynerrs}
4543becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4544of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4545Reporting Function @code{yyerror}}). The convention for calling
4546@code{yyparse} itself is unchanged.
4547
4548Whether the parser is pure has nothing to do with the grammar rules.
4549You can generate either a pure parser or a nonreentrant parser from any
4550valid grammar.
bfa74976 4551
9987d1b3
JD
4552@node Push Decl
4553@subsection A Push Parser
4554@cindex push parser
4555@cindex push parser
c373bf8b 4556@findex %define api.push_pull
9987d1b3 4557
59da312b
JD
4558(The current push parsing interface is experimental and may evolve.
4559More user feedback will help to stabilize it.)
4560
f4101aa6
AD
4561A pull parser is called once and it takes control until all its input
4562is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4563each time a new token is made available.
4564
f4101aa6 4565A push parser is typically useful when the parser is part of a
9987d1b3 4566main event loop in the client's application. This is typically
f4101aa6
AD
4567a requirement of a GUI, when the main event loop needs to be triggered
4568within a certain time period.
9987d1b3 4569
d782395d
JD
4570Normally, Bison generates a pull parser.
4571The following Bison declaration says that you want the parser to be a push
c373bf8b 4572parser (@pxref{Decl Summary,,%define api.push_pull}):
9987d1b3
JD
4573
4574@example
c373bf8b 4575%define api.push_pull "push"
9987d1b3
JD
4576@end example
4577
4578In almost all cases, you want to ensure that your push parser is also
4579a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4580time you should create an impure push parser is to have backwards
9987d1b3
JD
4581compatibility with the impure Yacc pull mode interface. Unless you know
4582what you are doing, your declarations should look like this:
4583
4584@example
d9df47b6 4585%define api.pure
c373bf8b 4586%define api.push_pull "push"
9987d1b3
JD
4587@end example
4588
f4101aa6
AD
4589There is a major notable functional difference between the pure push parser
4590and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4591many parser instances, of the same type of parser, in memory at the same time.
4592An impure push parser should only use one parser at a time.
4593
4594When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4595the generated parser. @code{yypstate} is a structure that the generated
4596parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4597function that will create a new parser instance. @code{yypstate_delete}
4598will free the resources associated with the corresponding parser instance.
f4101aa6 4599Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4600token is available to provide the parser. A trivial example
4601of using a pure push parser would look like this:
4602
4603@example
4604int status;
4605yypstate *ps = yypstate_new ();
4606do @{
4607 status = yypush_parse (ps, yylex (), NULL);
4608@} while (status == YYPUSH_MORE);
4609yypstate_delete (ps);
4610@end example
4611
4612If the user decided to use an impure push parser, a few things about
f4101aa6 4613the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4614a global variable instead of a variable in the @code{yypush_parse} function.
4615For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4616changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4617example would thus look like this:
4618
4619@example
4620extern int yychar;
4621int status;
4622yypstate *ps = yypstate_new ();
4623do @{
4624 yychar = yylex ();
4625 status = yypush_parse (ps);
4626@} while (status == YYPUSH_MORE);
4627yypstate_delete (ps);
4628@end example
4629
f4101aa6 4630That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4631for use by the next invocation of the @code{yypush_parse} function.
4632
f4101aa6 4633Bison also supports both the push parser interface along with the pull parser
9987d1b3 4634interface in the same generated parser. In order to get this functionality,
f4101aa6 4635you should replace the @code{%define api.push_pull "push"} declaration with the
c373bf8b
JD
4636@code{%define api.push_pull "both"} declaration. Doing this will create all of
4637the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4638and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4639would be used. However, the user should note that it is implemented in the
d782395d
JD
4640generated parser by calling @code{yypull_parse}.
4641This makes the @code{yyparse} function that is generated with the
c373bf8b 4642@code{%define api.push_pull "both"} declaration slower than the normal
d782395d
JD
4643@code{yyparse} function. If the user
4644calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4645stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4646and then @code{yypull_parse} the rest of the input stream. If you would like
4647to switch back and forth between between parsing styles, you would have to
4648write your own @code{yypull_parse} function that knows when to quit looking
4649for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4650like this:
4651
4652@example
4653yypstate *ps = yypstate_new ();
4654yypull_parse (ps); /* Will call the lexer */
4655yypstate_delete (ps);
4656@end example
4657
d9df47b6 4658Adding the @code{%define api.pure} declaration does exactly the same thing to
f4101aa6 4659the generated parser with @code{%define api.push_pull "both"} as it did for
c373bf8b 4660@code{%define api.push_pull "push"}.
9987d1b3 4661
342b8b6e 4662@node Decl Summary
bfa74976
RS
4663@subsection Bison Declaration Summary
4664@cindex Bison declaration summary
4665@cindex declaration summary
4666@cindex summary, Bison declaration
4667
d8988b2f 4668Here is a summary of the declarations used to define a grammar:
bfa74976 4669
18b519c0 4670@deffn {Directive} %union
bfa74976
RS
4671Declare the collection of data types that semantic values may have
4672(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4673@end deffn
bfa74976 4674
18b519c0 4675@deffn {Directive} %token
bfa74976
RS
4676Declare a terminal symbol (token type name) with no precedence
4677or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4678@end deffn
bfa74976 4679
18b519c0 4680@deffn {Directive} %right
bfa74976
RS
4681Declare a terminal symbol (token type name) that is right-associative
4682(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4683@end deffn
bfa74976 4684
18b519c0 4685@deffn {Directive} %left
bfa74976
RS
4686Declare a terminal symbol (token type name) that is left-associative
4687(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4688@end deffn
bfa74976 4689
18b519c0 4690@deffn {Directive} %nonassoc
bfa74976 4691Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4692(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4693Using it in a way that would be associative is a syntax error.
4694@end deffn
4695
91d2c560 4696@ifset defaultprec
39a06c25 4697@deffn {Directive} %default-prec
22fccf95 4698Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4699(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4700@end deffn
91d2c560 4701@end ifset
bfa74976 4702
18b519c0 4703@deffn {Directive} %type
bfa74976
RS
4704Declare the type of semantic values for a nonterminal symbol
4705(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4706@end deffn
bfa74976 4707
18b519c0 4708@deffn {Directive} %start
89cab50d
AD
4709Specify the grammar's start symbol (@pxref{Start Decl, ,The
4710Start-Symbol}).
18b519c0 4711@end deffn
bfa74976 4712
18b519c0 4713@deffn {Directive} %expect
bfa74976
RS
4714Declare the expected number of shift-reduce conflicts
4715(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4716@end deffn
4717
bfa74976 4718
d8988b2f
AD
4719@sp 1
4720@noindent
4721In order to change the behavior of @command{bison}, use the following
4722directives:
4723
148d66d8
JD
4724@deffn {Directive} %code @{@var{code}@}
4725@findex %code
4726This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4727It inserts @var{code} verbatim at a language-dependent default location in the
4728output@footnote{The default location is actually skeleton-dependent;
4729 writers of non-standard skeletons however should choose the default location
4730 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4731
4732@cindex Prologue
8405b70c 4733For C/C++, the default location is the parser source code
148d66d8
JD
4734file after the usual contents of the parser header file.
4735Thus, @code{%code} replaces the traditional Yacc prologue,
4736@code{%@{@var{code}%@}}, for most purposes.
4737For a detailed discussion, see @ref{Prologue Alternatives}.
4738
8405b70c 4739For Java, the default location is inside the parser class.
148d66d8
JD
4740
4741(Like all the Yacc prologue alternatives, this directive is experimental.
4742More user feedback will help to determine whether it should become a permanent
4743feature.)
4744@end deffn
4745
4746@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4747This is the qualified form of the @code{%code} directive.
4748If you need to specify location-sensitive verbatim @var{code} that does not
4749belong at the default location selected by the unqualified @code{%code} form,
4750use this form instead.
4751
4752@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4753where Bison should generate it.
4754Not all values of @var{qualifier} are available for all target languages:
4755
4756@itemize @bullet
148d66d8 4757@item requires
793fbca5 4758@findex %code requires
148d66d8
JD
4759
4760@itemize @bullet
4761@item Language(s): C, C++
4762
4763@item Purpose: This is the best place to write dependency code required for
4764@code{YYSTYPE} and @code{YYLTYPE}.
4765In other words, it's the best place to define types referenced in @code{%union}
4766directives, and it's the best place to override Bison's default @code{YYSTYPE}
4767and @code{YYLTYPE} definitions.
4768
4769@item Location(s): The parser header file and the parser source code file
4770before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
4771@end itemize
4772
4773@item provides
4774@findex %code provides
4775
4776@itemize @bullet
4777@item Language(s): C, C++
4778
4779@item Purpose: This is the best place to write additional definitions and
4780declarations that should be provided to other modules.
4781
4782@item Location(s): The parser header file and the parser source code file after
4783the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
4784@end itemize
4785
4786@item top
4787@findex %code top
4788
4789@itemize @bullet
4790@item Language(s): C, C++
4791
4792@item Purpose: The unqualified @code{%code} or @code{%code requires} should
4793usually be more appropriate than @code{%code top}.
4794However, occasionally it is necessary to insert code much nearer the top of the
4795parser source code file.
4796For example:
4797
4798@smallexample
4799%code top @{
4800 #define _GNU_SOURCE
4801 #include <stdio.h>
4802@}
4803@end smallexample
4804
4805@item Location(s): Near the top of the parser source code file.
4806@end itemize
8405b70c 4807
148d66d8
JD
4808@item imports
4809@findex %code imports
4810
4811@itemize @bullet
4812@item Language(s): Java
4813
4814@item Purpose: This is the best place to write Java import directives.
4815
4816@item Location(s): The parser Java file after any Java package directive and
4817before any class definitions.
4818@end itemize
148d66d8
JD
4819@end itemize
4820
4821(Like all the Yacc prologue alternatives, this directive is experimental.
4822More user feedback will help to determine whether it should become a permanent
4823feature.)
4824
4825@cindex Prologue
4826For a detailed discussion of how to use @code{%code} in place of the
4827traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
4828@end deffn
4829
18b519c0 4830@deffn {Directive} %debug
4947ebdb
PE
4831In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4832already defined, so that the debugging facilities are compiled.
18b519c0 4833@end deffn
ec3bc396 4834@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 4835
c1d19e10
PB
4836@deffn {Directive} %define @var{variable}
4837@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2
JD
4838Define a variable to adjust Bison's behavior.
4839The possible choices for @var{variable}, as well as their meanings, depend on
4840the selected target language and/or the parser skeleton (@pxref{Decl
4841Summary,,%language}).
4842
4843Bison will warn if a @var{variable} is defined multiple times.
4844
4845Omitting @code{"@var{value}"} is always equivalent to specifying it as
4846@code{""}.
4847
922bdd7f 4848Some @var{variable}s may be used as Booleans.
9611cfa2
JD
4849In this case, Bison will complain if the variable definition does not meet one
4850of the following four conditions:
4851
4852@enumerate
4853@item @code{"@var{value}"} is @code{"true"}
4854
4855@item @code{"@var{value}"} is omitted (or is @code{""}).
4856This is equivalent to @code{"true"}.
4857
4858@item @code{"@var{value}"} is @code{"false"}.
4859
4860@item @var{variable} is never defined.
4861In this case, Bison selects a default value, which may depend on the selected
4862target language and/or parser skeleton.
4863@end enumerate
148d66d8 4864
793fbca5
JD
4865Some of the accepted @var{variable}s are:
4866
4867@itemize @bullet
d9df47b6
JD
4868@item api.pure
4869@findex %define api.pure
4870
4871@itemize @bullet
4872@item Language(s): C
4873
4874@item Purpose: Request a pure (reentrant) parser program.
4875@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
4876
4877@item Accepted Values: Boolean
4878
4879@item Default Value: @code{"false"}
4880@end itemize
4881
c373bf8b
JD
4882@item api.push_pull
4883@findex %define api.push_pull
793fbca5
JD
4884
4885@itemize @bullet
4886@item Language(s): C (LALR(1) only)
4887
4888@item Purpose: Requests a pull parser, a push parser, or both.
d782395d 4889@xref{Push Decl, ,A Push Parser}.
59da312b
JD
4890(The current push parsing interface is experimental and may evolve.
4891More user feedback will help to stabilize it.)
793fbca5
JD
4892
4893@item Accepted Values: @code{"pull"}, @code{"push"}, @code{"both"}
4894
4895@item Default Value: @code{"pull"}
4896@end itemize
4897
31984206
JD
4898@item lr.keep_unreachable_states
4899@findex %define lr.keep_unreachable_states
4900
4901@itemize @bullet
4902@item Language(s): all
4903
4904@item Purpose: Requests that Bison allow unreachable parser states to remain in
4905the parser tables.
4906Bison considers a state to be unreachable if there exists no sequence of
4907transitions from the start state to that state.
4908A state can become unreachable during conflict resolution if Bison disables a
4909shift action leading to it from a predecessor state.
4910Keeping unreachable states is sometimes useful for analysis purposes, but they
4911are useless in the generated parser.
4912
4913@item Accepted Values: Boolean
4914
4915@item Default Value: @code{"false"}
4916
4917@item Caveats:
4918
4919@itemize @bullet
cff03fb2
JD
4920
4921@item Unreachable states may contain conflicts and may use rules not used in
4922any other state.
31984206
JD
4923Thus, keeping unreachable states may induce warnings that are irrelevant to
4924your parser's behavior, and it may eliminate warnings that are relevant.
4925Of course, the change in warnings may actually be relevant to a parser table
4926analysis that wants to keep unreachable states, so this behavior will likely
4927remain in future Bison releases.
4928
4929@item While Bison is able to remove unreachable states, it is not guaranteed to
4930remove other kinds of useless states.
4931Specifically, when Bison disables reduce actions during conflict resolution,
4932some goto actions may become useless, and thus some additional states may
4933become useless.
4934If Bison were to compute which goto actions were useless and then disable those
4935actions, it could identify such states as unreachable and then remove those
4936states.
4937However, Bison does not compute which goto actions are useless.
4938@end itemize
4939@end itemize
4940
793fbca5
JD
4941@item namespace
4942@findex %define namespace
4943
4944@itemize
4945@item Languages(s): C++
4946
4947@item Purpose: Specifies the namespace for the parser class.
4948For example, if you specify:
4949
4950@smallexample
4951%define namespace "foo::bar"
4952@end smallexample
4953
4954Bison uses @code{foo::bar} verbatim in references such as:
4955
4956@smallexample
4957foo::bar::parser::semantic_type
4958@end smallexample
4959
4960However, to open a namespace, Bison removes any leading @code{::} and then
4961splits on any remaining occurrences:
4962
4963@smallexample
4964namespace foo @{ namespace bar @{
4965 class position;
4966 class location;
4967@} @}
4968@end smallexample
4969
4970@item Accepted Values: Any absolute or relative C++ namespace reference without
4971a trailing @code{"::"}.
4972For example, @code{"foo"} or @code{"::foo::bar"}.
4973
4974@item Default Value: The value specified by @code{%name-prefix}, which defaults
4975to @code{yy}.
4976This usage of @code{%name-prefix} is for backward compatibility and can be
4977confusing since @code{%name-prefix} also specifies the textual prefix for the
4978lexical analyzer function.
4979Thus, if you specify @code{%name-prefix}, it is best to also specify
4980@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
4981lexical analyzer function.
4982For example, if you specify:
4983
4984@smallexample
4985%define namespace "foo"
4986%name-prefix "bar::"
4987@end smallexample
4988
4989The parser namespace is @code{foo} and @code{yylex} is referenced as
4990@code{bar::lex}.
4991@end itemize
4992@end itemize
4993
d782395d
JD
4994@end deffn
4995
18b519c0 4996@deffn {Directive} %defines
4bfd5e4e
PE
4997Write a header file containing macro definitions for the token type
4998names defined in the grammar as well as a few other declarations.
d8988b2f 4999If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 5000is named @file{@var{name}.h}.
d8988b2f 5001
b321737f 5002For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
5003@code{YYSTYPE} is already defined as a macro or you have used a
5004@code{<@var{type}>} tag without using @code{%union}.
5005Therefore, if you are using a @code{%union}
f8e1c9e5
AD
5006(@pxref{Multiple Types, ,More Than One Value Type}) with components that
5007require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 5008or type definition
f8e1c9e5
AD
5009(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
5010arrange for these definitions to be propagated to all modules, e.g., by
5011putting them in a prerequisite header that is included both by your
5012parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
5013
5014Unless your parser is pure, the output header declares @code{yylval}
5015as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
5016Parser}.
5017
5018If you have also used locations, the output header declares
5019@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 5020the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
5021Locations}.
5022
f8e1c9e5
AD
5023This output file is normally essential if you wish to put the definition
5024of @code{yylex} in a separate source file, because @code{yylex}
5025typically needs to be able to refer to the above-mentioned declarations
5026and to the token type codes. @xref{Token Values, ,Semantic Values of
5027Tokens}.
9bc0dd67 5028
16dc6a9e
JD
5029@findex %code requires
5030@findex %code provides
5031If you have declared @code{%code requires} or @code{%code provides}, the output
5032header also contains their code.
148d66d8 5033@xref{Decl Summary, ,%code}.
592d0b1e
PB
5034@end deffn
5035
02975b9a
JD
5036@deffn {Directive} %defines @var{defines-file}
5037Same as above, but save in the file @var{defines-file}.
5038@end deffn
5039
18b519c0 5040@deffn {Directive} %destructor
258b75ca 5041Specify how the parser should reclaim the memory associated to
fa7e68c3 5042discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 5043@end deffn
72f889cc 5044
02975b9a 5045@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
5046Specify a prefix to use for all Bison output file names. The names are
5047chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 5048@end deffn
d8988b2f 5049
e6e704dc 5050@deffn {Directive} %language "@var{language}"
0e021770 5051Specify the programming language for the generated parser. Currently
59da312b 5052supported languages include C, C++, and Java.
e6e704dc 5053@var{language} is case-insensitive.
0e021770
PE
5054@end deffn
5055
18b519c0 5056@deffn {Directive} %locations
89cab50d
AD
5057Generate the code processing the locations (@pxref{Action Features,
5058,Special Features for Use in Actions}). This mode is enabled as soon as
5059the grammar uses the special @samp{@@@var{n}} tokens, but if your
5060grammar does not use it, using @samp{%locations} allows for more
6e649e65 5061accurate syntax error messages.
18b519c0 5062@end deffn
89cab50d 5063
02975b9a 5064@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5065Rename the external symbols used in the parser so that they start with
5066@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5067in C parsers
d8988b2f 5068is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5069@code{yylval}, @code{yychar}, @code{yydebug}, and
f4101aa6
AD
5070(if locations are used) @code{yylloc}. If you use a push parser,
5071@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5072@code{yypstate_new} and @code{yypstate_delete} will
5073also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5
JD
5074names become @code{c_parse}, @code{c_lex}, and so on.
5075For C++ parsers, see the @code{%define namespace} documentation in this
5076section.
aa08666d 5077@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5078@end deffn
931c7513 5079
91d2c560 5080@ifset defaultprec
22fccf95
PE
5081@deffn {Directive} %no-default-prec
5082Do not assign a precedence to rules lacking an explicit @code{%prec}
5083modifier (@pxref{Contextual Precedence, ,Context-Dependent
5084Precedence}).
5085@end deffn
91d2c560 5086@end ifset
22fccf95 5087
18b519c0 5088@deffn {Directive} %no-lines
931c7513
RS
5089Don't generate any @code{#line} preprocessor commands in the parser
5090file. Ordinarily Bison writes these commands in the parser file so that
5091the C compiler and debuggers will associate errors and object code with
5092your source file (the grammar file). This directive causes them to
5093associate errors with the parser file, treating it an independent source
5094file in its own right.
18b519c0 5095@end deffn
931c7513 5096
02975b9a 5097@deffn {Directive} %output "@var{file}"
fa4d969f 5098Specify @var{file} for the parser file.
18b519c0 5099@end deffn
6deb4447 5100
18b519c0 5101@deffn {Directive} %pure-parser
d9df47b6
JD
5102Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
5103for which Bison is more careful to warn about unreasonable usage.
18b519c0 5104@end deffn
6deb4447 5105
b50d2359 5106@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5107Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5108Require a Version of Bison}.
b50d2359
AD
5109@end deffn
5110
0e021770 5111@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5112Specify the skeleton to use.
5113
5114You probably don't need this option unless you are developing Bison.
5115You should use @code{%language} if you want to specify the skeleton for a
5116different language, because it is clearer and because it will always choose the
5117correct skeleton for non-deterministic or push parsers.
5118
5119If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5120file in the Bison installation directory.
5121If it does, @var{file} is an absolute file name or a file name relative to the
5122directory of the grammar file.
5123This is similar to how most shells resolve commands.
0e021770
PE
5124@end deffn
5125
18b519c0 5126@deffn {Directive} %token-table
931c7513
RS
5127Generate an array of token names in the parser file. The name of the
5128array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 5129token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
5130three elements of @code{yytname} correspond to the predefined tokens
5131@code{"$end"},
88bce5a2
AD
5132@code{"error"}, and @code{"$undefined"}; after these come the symbols
5133defined in the grammar file.
931c7513 5134
9e0876fb
PE
5135The name in the table includes all the characters needed to represent
5136the token in Bison. For single-character literals and literal
5137strings, this includes the surrounding quoting characters and any
5138escape sequences. For example, the Bison single-character literal
5139@code{'+'} corresponds to a three-character name, represented in C as
5140@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5141corresponds to a five-character name, represented in C as
5142@code{"\"\\\\/\""}.
931c7513 5143
8c9a50be 5144When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5145definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5146@code{YYNRULES}, and @code{YYNSTATES}:
5147
5148@table @code
5149@item YYNTOKENS
5150The highest token number, plus one.
5151@item YYNNTS
9ecbd125 5152The number of nonterminal symbols.
931c7513
RS
5153@item YYNRULES
5154The number of grammar rules,
5155@item YYNSTATES
5156The number of parser states (@pxref{Parser States}).
5157@end table
18b519c0 5158@end deffn
d8988b2f 5159
18b519c0 5160@deffn {Directive} %verbose
d8988b2f 5161Write an extra output file containing verbose descriptions of the
742e4900 5162parser states and what is done for each type of lookahead token in
72d2299c 5163that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5164information.
18b519c0 5165@end deffn
d8988b2f 5166
18b519c0 5167@deffn {Directive} %yacc
d8988b2f
AD
5168Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5169including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5170@end deffn
d8988b2f
AD
5171
5172
342b8b6e 5173@node Multiple Parsers
bfa74976
RS
5174@section Multiple Parsers in the Same Program
5175
5176Most programs that use Bison parse only one language and therefore contain
5177only one Bison parser. But what if you want to parse more than one
5178language with the same program? Then you need to avoid a name conflict
5179between different definitions of @code{yyparse}, @code{yylval}, and so on.
5180
5181The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5182(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5183functions and variables of the Bison parser to start with @var{prefix}
5184instead of @samp{yy}. You can use this to give each parser distinct
5185names that do not conflict.
bfa74976
RS
5186
5187The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5188@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5189@code{yychar} and @code{yydebug}. If you use a push parser,
5190@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5191@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5192For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5193@code{clex}, and so on.
bfa74976
RS
5194
5195@strong{All the other variables and macros associated with Bison are not
5196renamed.} These others are not global; there is no conflict if the same
5197name is used in different parsers. For example, @code{YYSTYPE} is not
5198renamed, but defining this in different ways in different parsers causes
5199no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5200
5201The @samp{-p} option works by adding macro definitions to the beginning
5202of the parser source file, defining @code{yyparse} as
5203@code{@var{prefix}parse}, and so on. This effectively substitutes one
5204name for the other in the entire parser file.
5205
342b8b6e 5206@node Interface
bfa74976
RS
5207@chapter Parser C-Language Interface
5208@cindex C-language interface
5209@cindex interface
5210
5211The Bison parser is actually a C function named @code{yyparse}. Here we
5212describe the interface conventions of @code{yyparse} and the other
5213functions that it needs to use.
5214
5215Keep in mind that the parser uses many C identifiers starting with
5216@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5217identifier (aside from those in this manual) in an action or in epilogue
5218in the grammar file, you are likely to run into trouble.
bfa74976
RS
5219
5220@menu
5221* Parser Function:: How to call @code{yyparse} and what it returns.
9987d1b3
JD
5222* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5223* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
f4101aa6 5224* Parser Create Function:: How to call @code{yypstate_new} and what it
9987d1b3 5225 returns.
f4101aa6 5226* Parser Delete Function:: How to call @code{yypstate_delete} and what it
9987d1b3 5227 returns.
13863333 5228* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
5229 which reads tokens.
5230* Error Reporting:: You must supply a function @code{yyerror}.
5231* Action Features:: Special features for use in actions.
f7ab6a50
PE
5232* Internationalization:: How to let the parser speak in the user's
5233 native language.
bfa74976
RS
5234@end menu
5235
342b8b6e 5236@node Parser Function
bfa74976
RS
5237@section The Parser Function @code{yyparse}
5238@findex yyparse
5239
5240You call the function @code{yyparse} to cause parsing to occur. This
5241function reads tokens, executes actions, and ultimately returns when it
5242encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5243write an action which directs @code{yyparse} to return immediately
5244without reading further.
bfa74976 5245
2a8d363a
AD
5246
5247@deftypefun int yyparse (void)
bfa74976
RS
5248The value returned by @code{yyparse} is 0 if parsing was successful (return
5249is due to end-of-input).
5250
b47dbebe
PE
5251The value is 1 if parsing failed because of invalid input, i.e., input
5252that contains a syntax error or that causes @code{YYABORT} to be
5253invoked.
5254
5255The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5256@end deftypefun
bfa74976
RS
5257
5258In an action, you can cause immediate return from @code{yyparse} by using
5259these macros:
5260
2a8d363a 5261@defmac YYACCEPT
bfa74976
RS
5262@findex YYACCEPT
5263Return immediately with value 0 (to report success).
2a8d363a 5264@end defmac
bfa74976 5265
2a8d363a 5266@defmac YYABORT
bfa74976
RS
5267@findex YYABORT
5268Return immediately with value 1 (to report failure).
2a8d363a
AD
5269@end defmac
5270
5271If you use a reentrant parser, you can optionally pass additional
5272parameter information to it in a reentrant way. To do so, use the
5273declaration @code{%parse-param}:
5274
feeb0eda 5275@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5276@findex %parse-param
287c78f6
PE
5277Declare that an argument declared by the braced-code
5278@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5279The @var{argument-declaration} is used when declaring
feeb0eda
PE
5280functions or prototypes. The last identifier in
5281@var{argument-declaration} must be the argument name.
2a8d363a
AD
5282@end deffn
5283
5284Here's an example. Write this in the parser:
5285
5286@example
feeb0eda
PE
5287%parse-param @{int *nastiness@}
5288%parse-param @{int *randomness@}
2a8d363a
AD
5289@end example
5290
5291@noindent
5292Then call the parser like this:
5293
5294@example
5295@{
5296 int nastiness, randomness;
5297 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5298 value = yyparse (&nastiness, &randomness);
5299 @dots{}
5300@}
5301@end example
5302
5303@noindent
5304In the grammar actions, use expressions like this to refer to the data:
5305
5306@example
5307exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5308@end example
5309
9987d1b3
JD
5310@node Push Parser Function
5311@section The Push Parser Function @code{yypush_parse}
5312@findex yypush_parse
5313
59da312b
JD
5314(The current push parsing interface is experimental and may evolve.
5315More user feedback will help to stabilize it.)
5316
f4101aa6
AD
5317You call the function @code{yypush_parse} to parse a single token. This
5318function is available if either the @code{%define api.push_pull "push"} or
5319@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5320@xref{Push Decl, ,A Push Parser}.
5321
5322@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5323The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5324following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5325is required to finish parsing the grammar.
5326@end deftypefun
5327
5328@node Pull Parser Function
5329@section The Pull Parser Function @code{yypull_parse}
5330@findex yypull_parse
5331
59da312b
JD
5332(The current push parsing interface is experimental and may evolve.
5333More user feedback will help to stabilize it.)
5334
f4101aa6
AD
5335You call the function @code{yypull_parse} to parse the rest of the input
5336stream. This function is available if the @code{%define api.push_pull "both"}
5337declaration is used.
9987d1b3
JD
5338@xref{Push Decl, ,A Push Parser}.
5339
5340@deftypefun int yypull_parse (yypstate *yyps)
5341The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5342@end deftypefun
5343
5344@node Parser Create Function
5345@section The Parser Create Function @code{yystate_new}
5346@findex yypstate_new
5347
59da312b
JD
5348(The current push parsing interface is experimental and may evolve.
5349More user feedback will help to stabilize it.)
5350
f4101aa6
AD
5351You call the function @code{yypstate_new} to create a new parser instance.
5352This function is available if either the @code{%define api.push_pull "push"} or
5353@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5354@xref{Push Decl, ,A Push Parser}.
5355
5356@deftypefun yypstate *yypstate_new (void)
5357The fuction will return a valid parser instance if there was memory available
333e670c
JD
5358or 0 if no memory was available.
5359In impure mode, it will also return 0 if a parser instance is currently
5360allocated.
9987d1b3
JD
5361@end deftypefun
5362
5363@node Parser Delete Function
5364@section The Parser Delete Function @code{yystate_delete}
5365@findex yypstate_delete
5366
59da312b
JD
5367(The current push parsing interface is experimental and may evolve.
5368More user feedback will help to stabilize it.)
5369
9987d1b3 5370You call the function @code{yypstate_delete} to delete a parser instance.
f4101aa6
AD
5371function is available if either the @code{%define api.push_pull "push"} or
5372@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5373@xref{Push Decl, ,A Push Parser}.
5374
5375@deftypefun void yypstate_delete (yypstate *yyps)
5376This function will reclaim the memory associated with a parser instance.
5377After this call, you should no longer attempt to use the parser instance.
5378@end deftypefun
bfa74976 5379
342b8b6e 5380@node Lexical
bfa74976
RS
5381@section The Lexical Analyzer Function @code{yylex}
5382@findex yylex
5383@cindex lexical analyzer
5384
5385The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5386the input stream and returns them to the parser. Bison does not create
5387this function automatically; you must write it so that @code{yyparse} can
5388call it. The function is sometimes referred to as a lexical scanner.
5389
5390In simple programs, @code{yylex} is often defined at the end of the Bison
5391grammar file. If @code{yylex} is defined in a separate source file, you
5392need to arrange for the token-type macro definitions to be available there.
5393To do this, use the @samp{-d} option when you run Bison, so that it will
5394write these macro definitions into a separate header file
5395@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 5396that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
5397
5398@menu
5399* Calling Convention:: How @code{yyparse} calls @code{yylex}.
5400* Token Values:: How @code{yylex} must return the semantic value
5401 of the token it has read.
95923bd6 5402* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
5403 (line number, etc.) of the token, if the
5404 actions want that.
5405* Pure Calling:: How the calling convention differs
5406 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
5407@end menu
5408
342b8b6e 5409@node Calling Convention
bfa74976
RS
5410@subsection Calling Convention for @code{yylex}
5411
72d2299c
PE
5412The value that @code{yylex} returns must be the positive numeric code
5413for the type of token it has just found; a zero or negative value
5414signifies end-of-input.
bfa74976
RS
5415
5416When a token is referred to in the grammar rules by a name, that name
5417in the parser file becomes a C macro whose definition is the proper
5418numeric code for that token type. So @code{yylex} can use the name
5419to indicate that type. @xref{Symbols}.
5420
5421When a token is referred to in the grammar rules by a character literal,
5422the numeric code for that character is also the code for the token type.
72d2299c
PE
5423So @code{yylex} can simply return that character code, possibly converted
5424to @code{unsigned char} to avoid sign-extension. The null character
5425must not be used this way, because its code is zero and that
bfa74976
RS
5426signifies end-of-input.
5427
5428Here is an example showing these things:
5429
5430@example
13863333
AD
5431int
5432yylex (void)
bfa74976
RS
5433@{
5434 @dots{}
72d2299c 5435 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5436 return 0;
5437 @dots{}
5438 if (c == '+' || c == '-')
72d2299c 5439 return c; /* Assume token type for `+' is '+'. */
bfa74976 5440 @dots{}
72d2299c 5441 return INT; /* Return the type of the token. */
bfa74976
RS
5442 @dots{}
5443@}
5444@end example
5445
5446@noindent
5447This interface has been designed so that the output from the @code{lex}
5448utility can be used without change as the definition of @code{yylex}.
5449
931c7513
RS
5450If the grammar uses literal string tokens, there are two ways that
5451@code{yylex} can determine the token type codes for them:
5452
5453@itemize @bullet
5454@item
5455If the grammar defines symbolic token names as aliases for the
5456literal string tokens, @code{yylex} can use these symbolic names like
5457all others. In this case, the use of the literal string tokens in
5458the grammar file has no effect on @code{yylex}.
5459
5460@item
9ecbd125 5461@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5462table. The index of the token in the table is the token type's code.
9ecbd125 5463The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5464double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5465token's characters are escaped as necessary to be suitable as input
5466to Bison.
931c7513 5467
9e0876fb
PE
5468Here's code for looking up a multicharacter token in @code{yytname},
5469assuming that the characters of the token are stored in
5470@code{token_buffer}, and assuming that the token does not contain any
5471characters like @samp{"} that require escaping.
931c7513
RS
5472
5473@smallexample
5474for (i = 0; i < YYNTOKENS; i++)
5475 @{
5476 if (yytname[i] != 0
5477 && yytname[i][0] == '"'
68449b3a
PE
5478 && ! strncmp (yytname[i] + 1, token_buffer,
5479 strlen (token_buffer))
931c7513
RS
5480 && yytname[i][strlen (token_buffer) + 1] == '"'
5481 && yytname[i][strlen (token_buffer) + 2] == 0)
5482 break;
5483 @}
5484@end smallexample
5485
5486The @code{yytname} table is generated only if you use the
8c9a50be 5487@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5488@end itemize
5489
342b8b6e 5490@node Token Values
bfa74976
RS
5491@subsection Semantic Values of Tokens
5492
5493@vindex yylval
9d9b8b70 5494In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5495be stored into the global variable @code{yylval}. When you are using
5496just one data type for semantic values, @code{yylval} has that type.
5497Thus, if the type is @code{int} (the default), you might write this in
5498@code{yylex}:
5499
5500@example
5501@group
5502 @dots{}
72d2299c
PE
5503 yylval = value; /* Put value onto Bison stack. */
5504 return INT; /* Return the type of the token. */
bfa74976
RS
5505 @dots{}
5506@end group
5507@end example
5508
5509When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5510made from the @code{%union} declaration (@pxref{Union Decl, ,The
5511Collection of Value Types}). So when you store a token's value, you
5512must use the proper member of the union. If the @code{%union}
5513declaration looks like this:
bfa74976
RS
5514
5515@example
5516@group
5517%union @{
5518 int intval;
5519 double val;
5520 symrec *tptr;
5521@}
5522@end group
5523@end example
5524
5525@noindent
5526then the code in @code{yylex} might look like this:
5527
5528@example
5529@group
5530 @dots{}
72d2299c
PE
5531 yylval.intval = value; /* Put value onto Bison stack. */
5532 return INT; /* Return the type of the token. */
bfa74976
RS
5533 @dots{}
5534@end group
5535@end example
5536
95923bd6
AD
5537@node Token Locations
5538@subsection Textual Locations of Tokens
bfa74976
RS
5539
5540@vindex yylloc
847bf1f5 5541If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5542Tracking Locations}) in actions to keep track of the textual locations
5543of tokens and groupings, then you must provide this information in
5544@code{yylex}. The function @code{yyparse} expects to find the textual
5545location of a token just parsed in the global variable @code{yylloc}.
5546So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5547
5548By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5549initialize the members that are going to be used by the actions. The
5550four members are called @code{first_line}, @code{first_column},
5551@code{last_line} and @code{last_column}. Note that the use of this
5552feature makes the parser noticeably slower.
bfa74976
RS
5553
5554@tindex YYLTYPE
5555The data type of @code{yylloc} has the name @code{YYLTYPE}.
5556
342b8b6e 5557@node Pure Calling
c656404a 5558@subsection Calling Conventions for Pure Parsers
bfa74976 5559
d9df47b6 5560When you use the Bison declaration @code{%define api.pure} to request a
e425e872
RS
5561pure, reentrant parser, the global communication variables @code{yylval}
5562and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5563Parser}.) In such parsers the two global variables are replaced by
5564pointers passed as arguments to @code{yylex}. You must declare them as
5565shown here, and pass the information back by storing it through those
5566pointers.
bfa74976
RS
5567
5568@example
13863333
AD
5569int
5570yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5571@{
5572 @dots{}
5573 *lvalp = value; /* Put value onto Bison stack. */
5574 return INT; /* Return the type of the token. */
5575 @dots{}
5576@}
5577@end example
5578
5579If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5580textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5581this case, omit the second argument; @code{yylex} will be called with
5582only one argument.
5583
e425e872 5584
2a8d363a
AD
5585If you wish to pass the additional parameter data to @code{yylex}, use
5586@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5587Function}).
e425e872 5588
feeb0eda 5589@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5590@findex %lex-param
287c78f6
PE
5591Declare that the braced-code @var{argument-declaration} is an
5592additional @code{yylex} argument declaration.
2a8d363a 5593@end deffn
e425e872 5594
2a8d363a 5595For instance:
e425e872
RS
5596
5597@example
feeb0eda
PE
5598%parse-param @{int *nastiness@}
5599%lex-param @{int *nastiness@}
5600%parse-param @{int *randomness@}
e425e872
RS
5601@end example
5602
5603@noindent
2a8d363a 5604results in the following signature:
e425e872
RS
5605
5606@example
2a8d363a
AD
5607int yylex (int *nastiness);
5608int yyparse (int *nastiness, int *randomness);
e425e872
RS
5609@end example
5610
d9df47b6 5611If @code{%define api.pure} is added:
c656404a
RS
5612
5613@example
2a8d363a
AD
5614int yylex (YYSTYPE *lvalp, int *nastiness);
5615int yyparse (int *nastiness, int *randomness);
c656404a
RS
5616@end example
5617
2a8d363a 5618@noindent
d9df47b6 5619and finally, if both @code{%define api.pure} and @code{%locations} are used:
c656404a 5620
2a8d363a
AD
5621@example
5622int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5623int yyparse (int *nastiness, int *randomness);
5624@end example
931c7513 5625
342b8b6e 5626@node Error Reporting
bfa74976
RS
5627@section The Error Reporting Function @code{yyerror}
5628@cindex error reporting function
5629@findex yyerror
5630@cindex parse error
5631@cindex syntax error
5632
6e649e65 5633The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 5634whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 5635action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
5636macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
5637in Actions}).
bfa74976
RS
5638
5639The Bison parser expects to report the error by calling an error
5640reporting function named @code{yyerror}, which you must supply. It is
5641called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
5642receives one argument. For a syntax error, the string is normally
5643@w{@code{"syntax error"}}.
bfa74976 5644
2a8d363a
AD
5645@findex %error-verbose
5646If you invoke the directive @code{%error-verbose} in the Bison
5647declarations section (@pxref{Bison Declarations, ,The Bison Declarations
5648Section}), then Bison provides a more verbose and specific error message
6e649e65 5649string instead of just plain @w{@code{"syntax error"}}.
bfa74976 5650
1a059451
PE
5651The parser can detect one other kind of error: memory exhaustion. This
5652can happen when the input contains constructions that are very deeply
bfa74976 5653nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
5654parser normally extends its stack automatically up to a very large limit. But
5655if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
5656fashion, except that the argument string is @w{@code{"memory exhausted"}}.
5657
5658In some cases diagnostics like @w{@code{"syntax error"}} are
5659translated automatically from English to some other language before
5660they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
5661
5662The following definition suffices in simple programs:
5663
5664@example
5665@group
13863333 5666void
38a92d50 5667yyerror (char const *s)
bfa74976
RS
5668@{
5669@end group
5670@group
5671 fprintf (stderr, "%s\n", s);
5672@}
5673@end group
5674@end example
5675
5676After @code{yyerror} returns to @code{yyparse}, the latter will attempt
5677error recovery if you have written suitable error recovery grammar rules
5678(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
5679immediately return 1.
5680
93724f13 5681Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
5682an access to the current location.
5683This is indeed the case for the @acronym{GLR}
2a8d363a 5684parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 5685@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
5686@code{yyerror} are:
5687
5688@example
38a92d50
PE
5689void yyerror (char const *msg); /* Yacc parsers. */
5690void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
5691@end example
5692
feeb0eda 5693If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
5694
5695@example
b317297e
PE
5696void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
5697void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
5698@end example
5699
fa7e68c3 5700Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
5701convention for absolutely pure parsers, i.e., when the calling
5702convention of @code{yylex} @emph{and} the calling convention of
d9df47b6
JD
5703@code{%define api.pure} are pure.
5704I.e.:
2a8d363a
AD
5705
5706@example
5707/* Location tracking. */
5708%locations
5709/* Pure yylex. */
d9df47b6 5710%define api.pure
feeb0eda 5711%lex-param @{int *nastiness@}
2a8d363a 5712/* Pure yyparse. */
feeb0eda
PE
5713%parse-param @{int *nastiness@}
5714%parse-param @{int *randomness@}
2a8d363a
AD
5715@end example
5716
5717@noindent
5718results in the following signatures for all the parser kinds:
5719
5720@example
5721int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5722int yyparse (int *nastiness, int *randomness);
93724f13
AD
5723void yyerror (YYLTYPE *locp,
5724 int *nastiness, int *randomness,
38a92d50 5725 char const *msg);
2a8d363a
AD
5726@end example
5727
1c0c3e95 5728@noindent
38a92d50
PE
5729The prototypes are only indications of how the code produced by Bison
5730uses @code{yyerror}. Bison-generated code always ignores the returned
5731value, so @code{yyerror} can return any type, including @code{void}.
5732Also, @code{yyerror} can be a variadic function; that is why the
5733message is always passed last.
5734
5735Traditionally @code{yyerror} returns an @code{int} that is always
5736ignored, but this is purely for historical reasons, and @code{void} is
5737preferable since it more accurately describes the return type for
5738@code{yyerror}.
93724f13 5739
bfa74976
RS
5740@vindex yynerrs
5741The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 5742reported so far. Normally this variable is global; but if you
704a47c4
AD
5743request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
5744then it is a local variable which only the actions can access.
bfa74976 5745
342b8b6e 5746@node Action Features
bfa74976
RS
5747@section Special Features for Use in Actions
5748@cindex summary, action features
5749@cindex action features summary
5750
5751Here is a table of Bison constructs, variables and macros that
5752are useful in actions.
5753
18b519c0 5754@deffn {Variable} $$
bfa74976
RS
5755Acts like a variable that contains the semantic value for the
5756grouping made by the current rule. @xref{Actions}.
18b519c0 5757@end deffn
bfa74976 5758
18b519c0 5759@deffn {Variable} $@var{n}
bfa74976
RS
5760Acts like a variable that contains the semantic value for the
5761@var{n}th component of the current rule. @xref{Actions}.
18b519c0 5762@end deffn
bfa74976 5763
18b519c0 5764@deffn {Variable} $<@var{typealt}>$
bfa74976 5765Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
5766specified by the @code{%union} declaration. @xref{Action Types, ,Data
5767Types of Values in Actions}.
18b519c0 5768@end deffn
bfa74976 5769
18b519c0 5770@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 5771Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 5772union specified by the @code{%union} declaration.
e0c471a9 5773@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 5774@end deffn
bfa74976 5775
18b519c0 5776@deffn {Macro} YYABORT;
bfa74976
RS
5777Return immediately from @code{yyparse}, indicating failure.
5778@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5779@end deffn
bfa74976 5780
18b519c0 5781@deffn {Macro} YYACCEPT;
bfa74976
RS
5782Return immediately from @code{yyparse}, indicating success.
5783@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5784@end deffn
bfa74976 5785
18b519c0 5786@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
5787@findex YYBACKUP
5788Unshift a token. This macro is allowed only for rules that reduce
742e4900 5789a single value, and only when there is no lookahead token.
c827f760 5790It is also disallowed in @acronym{GLR} parsers.
742e4900 5791It installs a lookahead token with token type @var{token} and
bfa74976
RS
5792semantic value @var{value}; then it discards the value that was
5793going to be reduced by this rule.
5794
5795If the macro is used when it is not valid, such as when there is
742e4900 5796a lookahead token already, then it reports a syntax error with
bfa74976
RS
5797a message @samp{cannot back up} and performs ordinary error
5798recovery.
5799
5800In either case, the rest of the action is not executed.
18b519c0 5801@end deffn
bfa74976 5802
18b519c0 5803@deffn {Macro} YYEMPTY
bfa74976 5804@vindex YYEMPTY
742e4900 5805Value stored in @code{yychar} when there is no lookahead token.
18b519c0 5806@end deffn
bfa74976 5807
32c29292
JD
5808@deffn {Macro} YYEOF
5809@vindex YYEOF
742e4900 5810Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
5811stream.
5812@end deffn
5813
18b519c0 5814@deffn {Macro} YYERROR;
bfa74976
RS
5815@findex YYERROR
5816Cause an immediate syntax error. This statement initiates error
5817recovery just as if the parser itself had detected an error; however, it
5818does not call @code{yyerror}, and does not print any message. If you
5819want to print an error message, call @code{yyerror} explicitly before
5820the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 5821@end deffn
bfa74976 5822
18b519c0 5823@deffn {Macro} YYRECOVERING
02103984
PE
5824@findex YYRECOVERING
5825The expression @code{YYRECOVERING ()} yields 1 when the parser
5826is recovering from a syntax error, and 0 otherwise.
bfa74976 5827@xref{Error Recovery}.
18b519c0 5828@end deffn
bfa74976 5829
18b519c0 5830@deffn {Variable} yychar
742e4900
JD
5831Variable containing either the lookahead token, or @code{YYEOF} when the
5832lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
5833has been performed so the next token is not yet known.
5834Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
5835Actions}).
742e4900 5836@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 5837@end deffn
bfa74976 5838
18b519c0 5839@deffn {Macro} yyclearin;
742e4900 5840Discard the current lookahead token. This is useful primarily in
32c29292
JD
5841error rules.
5842Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
5843Semantic Actions}).
5844@xref{Error Recovery}.
18b519c0 5845@end deffn
bfa74976 5846
18b519c0 5847@deffn {Macro} yyerrok;
bfa74976 5848Resume generating error messages immediately for subsequent syntax
13863333 5849errors. This is useful primarily in error rules.
bfa74976 5850@xref{Error Recovery}.
18b519c0 5851@end deffn
bfa74976 5852
32c29292 5853@deffn {Variable} yylloc
742e4900 5854Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
5855to @code{YYEMPTY} or @code{YYEOF}.
5856Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
5857Actions}).
5858@xref{Actions and Locations, ,Actions and Locations}.
5859@end deffn
5860
5861@deffn {Variable} yylval
742e4900 5862Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
5863not set to @code{YYEMPTY} or @code{YYEOF}.
5864Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
5865Actions}).
5866@xref{Actions, ,Actions}.
5867@end deffn
5868
18b519c0 5869@deffn {Value} @@$
847bf1f5 5870@findex @@$
95923bd6 5871Acts like a structure variable containing information on the textual location
847bf1f5
AD
5872of the grouping made by the current rule. @xref{Locations, ,
5873Tracking Locations}.
bfa74976 5874
847bf1f5
AD
5875@c Check if those paragraphs are still useful or not.
5876
5877@c @example
5878@c struct @{
5879@c int first_line, last_line;
5880@c int first_column, last_column;
5881@c @};
5882@c @end example
5883
5884@c Thus, to get the starting line number of the third component, you would
5885@c use @samp{@@3.first_line}.
bfa74976 5886
847bf1f5
AD
5887@c In order for the members of this structure to contain valid information,
5888@c you must make @code{yylex} supply this information about each token.
5889@c If you need only certain members, then @code{yylex} need only fill in
5890@c those members.
bfa74976 5891
847bf1f5 5892@c The use of this feature makes the parser noticeably slower.
18b519c0 5893@end deffn
847bf1f5 5894
18b519c0 5895@deffn {Value} @@@var{n}
847bf1f5 5896@findex @@@var{n}
95923bd6 5897Acts like a structure variable containing information on the textual location
847bf1f5
AD
5898of the @var{n}th component of the current rule. @xref{Locations, ,
5899Tracking Locations}.
18b519c0 5900@end deffn
bfa74976 5901
f7ab6a50
PE
5902@node Internationalization
5903@section Parser Internationalization
5904@cindex internationalization
5905@cindex i18n
5906@cindex NLS
5907@cindex gettext
5908@cindex bison-po
5909
5910A Bison-generated parser can print diagnostics, including error and
5911tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
5912also supports outputting diagnostics in the user's native language. To
5913make this work, the user should set the usual environment variables.
5914@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
5915For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
5916set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
5917encoding. The exact set of available locales depends on the user's
5918installation.
5919
5920The maintainer of a package that uses a Bison-generated parser enables
5921the internationalization of the parser's output through the following
5922steps. Here we assume a package that uses @acronym{GNU} Autoconf and
5923@acronym{GNU} Automake.
5924
5925@enumerate
5926@item
30757c8c 5927@cindex bison-i18n.m4
f7ab6a50
PE
5928Into the directory containing the @acronym{GNU} Autoconf macros used
5929by the package---often called @file{m4}---copy the
5930@file{bison-i18n.m4} file installed by Bison under
5931@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
5932For example:
5933
5934@example
5935cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
5936@end example
5937
5938@item
30757c8c
PE
5939@findex BISON_I18N
5940@vindex BISON_LOCALEDIR
5941@vindex YYENABLE_NLS
f7ab6a50
PE
5942In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
5943invocation, add an invocation of @code{BISON_I18N}. This macro is
5944defined in the file @file{bison-i18n.m4} that you copied earlier. It
5945causes @samp{configure} to find the value of the
30757c8c
PE
5946@code{BISON_LOCALEDIR} variable, and it defines the source-language
5947symbol @code{YYENABLE_NLS} to enable translations in the
5948Bison-generated parser.
f7ab6a50
PE
5949
5950@item
5951In the @code{main} function of your program, designate the directory
5952containing Bison's runtime message catalog, through a call to
5953@samp{bindtextdomain} with domain name @samp{bison-runtime}.
5954For example:
5955
5956@example
5957bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
5958@end example
5959
5960Typically this appears after any other call @code{bindtextdomain
5961(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
5962@samp{BISON_LOCALEDIR} to be defined as a string through the
5963@file{Makefile}.
5964
5965@item
5966In the @file{Makefile.am} that controls the compilation of the @code{main}
5967function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
5968either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
5969
5970@example
5971DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5972@end example
5973
5974or:
5975
5976@example
5977AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5978@end example
5979
5980@item
5981Finally, invoke the command @command{autoreconf} to generate the build
5982infrastructure.
5983@end enumerate
5984
bfa74976 5985
342b8b6e 5986@node Algorithm
13863333
AD
5987@chapter The Bison Parser Algorithm
5988@cindex Bison parser algorithm
bfa74976
RS
5989@cindex algorithm of parser
5990@cindex shifting
5991@cindex reduction
5992@cindex parser stack
5993@cindex stack, parser
5994
5995As Bison reads tokens, it pushes them onto a stack along with their
5996semantic values. The stack is called the @dfn{parser stack}. Pushing a
5997token is traditionally called @dfn{shifting}.
5998
5999For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6000@samp{3} to come. The stack will have four elements, one for each token
6001that was shifted.
6002
6003But the stack does not always have an element for each token read. When
6004the last @var{n} tokens and groupings shifted match the components of a
6005grammar rule, they can be combined according to that rule. This is called
6006@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6007single grouping whose symbol is the result (left hand side) of that rule.
6008Running the rule's action is part of the process of reduction, because this
6009is what computes the semantic value of the resulting grouping.
6010
6011For example, if the infix calculator's parser stack contains this:
6012
6013@example
60141 + 5 * 3
6015@end example
6016
6017@noindent
6018and the next input token is a newline character, then the last three
6019elements can be reduced to 15 via the rule:
6020
6021@example
6022expr: expr '*' expr;
6023@end example
6024
6025@noindent
6026Then the stack contains just these three elements:
6027
6028@example
60291 + 15
6030@end example
6031
6032@noindent
6033At this point, another reduction can be made, resulting in the single value
603416. Then the newline token can be shifted.
6035
6036The parser tries, by shifts and reductions, to reduce the entire input down
6037to a single grouping whose symbol is the grammar's start-symbol
6038(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6039
6040This kind of parser is known in the literature as a bottom-up parser.
6041
6042@menu
742e4900 6043* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6044* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6045* Precedence:: Operator precedence works by resolving conflicts.
6046* Contextual Precedence:: When an operator's precedence depends on context.
6047* Parser States:: The parser is a finite-state-machine with stack.
6048* Reduce/Reduce:: When two rules are applicable in the same situation.
6049* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6050* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6051* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6052@end menu
6053
742e4900
JD
6054@node Lookahead
6055@section Lookahead Tokens
6056@cindex lookahead token
bfa74976
RS
6057
6058The Bison parser does @emph{not} always reduce immediately as soon as the
6059last @var{n} tokens and groupings match a rule. This is because such a
6060simple strategy is inadequate to handle most languages. Instead, when a
6061reduction is possible, the parser sometimes ``looks ahead'' at the next
6062token in order to decide what to do.
6063
6064When a token is read, it is not immediately shifted; first it becomes the
742e4900 6065@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6066perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6067the lookahead token remains off to the side. When no more reductions
6068should take place, the lookahead token is shifted onto the stack. This
bfa74976 6069does not mean that all possible reductions have been done; depending on the
742e4900 6070token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6071application.
6072
742e4900 6073Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6074expressions which contain binary addition operators and postfix unary
6075factorial operators (@samp{!}), and allow parentheses for grouping.
6076
6077@example
6078@group
6079expr: term '+' expr
6080 | term
6081 ;
6082@end group
6083
6084@group
6085term: '(' expr ')'
6086 | term '!'
6087 | NUMBER
6088 ;
6089@end group
6090@end example
6091
6092Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6093should be done? If the following token is @samp{)}, then the first three
6094tokens must be reduced to form an @code{expr}. This is the only valid
6095course, because shifting the @samp{)} would produce a sequence of symbols
6096@w{@code{term ')'}}, and no rule allows this.
6097
6098If the following token is @samp{!}, then it must be shifted immediately so
6099that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6100parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6101@code{expr}. It would then be impossible to shift the @samp{!} because
6102doing so would produce on the stack the sequence of symbols @code{expr
6103'!'}. No rule allows that sequence.
6104
6105@vindex yychar
32c29292
JD
6106@vindex yylval
6107@vindex yylloc
742e4900 6108The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6109Its semantic value and location, if any, are stored in the variables
6110@code{yylval} and @code{yylloc}.
bfa74976
RS
6111@xref{Action Features, ,Special Features for Use in Actions}.
6112
342b8b6e 6113@node Shift/Reduce
bfa74976
RS
6114@section Shift/Reduce Conflicts
6115@cindex conflicts
6116@cindex shift/reduce conflicts
6117@cindex dangling @code{else}
6118@cindex @code{else}, dangling
6119
6120Suppose we are parsing a language which has if-then and if-then-else
6121statements, with a pair of rules like this:
6122
6123@example
6124@group
6125if_stmt:
6126 IF expr THEN stmt
6127 | IF expr THEN stmt ELSE stmt
6128 ;
6129@end group
6130@end example
6131
6132@noindent
6133Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6134terminal symbols for specific keyword tokens.
6135
742e4900 6136When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6137contents of the stack (assuming the input is valid) are just right for
6138reduction by the first rule. But it is also legitimate to shift the
6139@code{ELSE}, because that would lead to eventual reduction by the second
6140rule.
6141
6142This situation, where either a shift or a reduction would be valid, is
6143called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6144these conflicts by choosing to shift, unless otherwise directed by
6145operator precedence declarations. To see the reason for this, let's
6146contrast it with the other alternative.
6147
6148Since the parser prefers to shift the @code{ELSE}, the result is to attach
6149the else-clause to the innermost if-statement, making these two inputs
6150equivalent:
6151
6152@example
6153if x then if y then win (); else lose;
6154
6155if x then do; if y then win (); else lose; end;
6156@end example
6157
6158But if the parser chose to reduce when possible rather than shift, the
6159result would be to attach the else-clause to the outermost if-statement,
6160making these two inputs equivalent:
6161
6162@example
6163if x then if y then win (); else lose;
6164
6165if x then do; if y then win (); end; else lose;
6166@end example
6167
6168The conflict exists because the grammar as written is ambiguous: either
6169parsing of the simple nested if-statement is legitimate. The established
6170convention is that these ambiguities are resolved by attaching the
6171else-clause to the innermost if-statement; this is what Bison accomplishes
6172by choosing to shift rather than reduce. (It would ideally be cleaner to
6173write an unambiguous grammar, but that is very hard to do in this case.)
6174This particular ambiguity was first encountered in the specifications of
6175Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6176
6177To avoid warnings from Bison about predictable, legitimate shift/reduce
6178conflicts, use the @code{%expect @var{n}} declaration. There will be no
6179warning as long as the number of shift/reduce conflicts is exactly @var{n}.
6180@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6181
6182The definition of @code{if_stmt} above is solely to blame for the
6183conflict, but the conflict does not actually appear without additional
6184rules. Here is a complete Bison input file that actually manifests the
6185conflict:
6186
6187@example
6188@group
6189%token IF THEN ELSE variable
6190%%
6191@end group
6192@group
6193stmt: expr
6194 | if_stmt
6195 ;
6196@end group
6197
6198@group
6199if_stmt:
6200 IF expr THEN stmt
6201 | IF expr THEN stmt ELSE stmt
6202 ;
6203@end group
6204
6205expr: variable
6206 ;
6207@end example
6208
342b8b6e 6209@node Precedence
bfa74976
RS
6210@section Operator Precedence
6211@cindex operator precedence
6212@cindex precedence of operators
6213
6214Another situation where shift/reduce conflicts appear is in arithmetic
6215expressions. Here shifting is not always the preferred resolution; the
6216Bison declarations for operator precedence allow you to specify when to
6217shift and when to reduce.
6218
6219@menu
6220* Why Precedence:: An example showing why precedence is needed.
6221* Using Precedence:: How to specify precedence in Bison grammars.
6222* Precedence Examples:: How these features are used in the previous example.
6223* How Precedence:: How they work.
6224@end menu
6225
342b8b6e 6226@node Why Precedence
bfa74976
RS
6227@subsection When Precedence is Needed
6228
6229Consider the following ambiguous grammar fragment (ambiguous because the
6230input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6231
6232@example
6233@group
6234expr: expr '-' expr
6235 | expr '*' expr
6236 | expr '<' expr
6237 | '(' expr ')'
6238 @dots{}
6239 ;
6240@end group
6241@end example
6242
6243@noindent
6244Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6245should it reduce them via the rule for the subtraction operator? It
6246depends on the next token. Of course, if the next token is @samp{)}, we
6247must reduce; shifting is invalid because no single rule can reduce the
6248token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6249the next token is @samp{*} or @samp{<}, we have a choice: either
6250shifting or reduction would allow the parse to complete, but with
6251different results.
6252
6253To decide which one Bison should do, we must consider the results. If
6254the next operator token @var{op} is shifted, then it must be reduced
6255first in order to permit another opportunity to reduce the difference.
6256The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6257hand, if the subtraction is reduced before shifting @var{op}, the result
6258is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6259reduce should depend on the relative precedence of the operators
6260@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6261@samp{<}.
bfa74976
RS
6262
6263@cindex associativity
6264What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6265@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6266operators we prefer the former, which is called @dfn{left association}.
6267The latter alternative, @dfn{right association}, is desirable for
6268assignment operators. The choice of left or right association is a
6269matter of whether the parser chooses to shift or reduce when the stack
742e4900 6270contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6271makes right-associativity.
bfa74976 6272
342b8b6e 6273@node Using Precedence
bfa74976
RS
6274@subsection Specifying Operator Precedence
6275@findex %left
6276@findex %right
6277@findex %nonassoc
6278
6279Bison allows you to specify these choices with the operator precedence
6280declarations @code{%left} and @code{%right}. Each such declaration
6281contains a list of tokens, which are operators whose precedence and
6282associativity is being declared. The @code{%left} declaration makes all
6283those operators left-associative and the @code{%right} declaration makes
6284them right-associative. A third alternative is @code{%nonassoc}, which
6285declares that it is a syntax error to find the same operator twice ``in a
6286row''.
6287
6288The relative precedence of different operators is controlled by the
6289order in which they are declared. The first @code{%left} or
6290@code{%right} declaration in the file declares the operators whose
6291precedence is lowest, the next such declaration declares the operators
6292whose precedence is a little higher, and so on.
6293
342b8b6e 6294@node Precedence Examples
bfa74976
RS
6295@subsection Precedence Examples
6296
6297In our example, we would want the following declarations:
6298
6299@example
6300%left '<'
6301%left '-'
6302%left '*'
6303@end example
6304
6305In a more complete example, which supports other operators as well, we
6306would declare them in groups of equal precedence. For example, @code{'+'} is
6307declared with @code{'-'}:
6308
6309@example
6310%left '<' '>' '=' NE LE GE
6311%left '+' '-'
6312%left '*' '/'
6313@end example
6314
6315@noindent
6316(Here @code{NE} and so on stand for the operators for ``not equal''
6317and so on. We assume that these tokens are more than one character long
6318and therefore are represented by names, not character literals.)
6319
342b8b6e 6320@node How Precedence
bfa74976
RS
6321@subsection How Precedence Works
6322
6323The first effect of the precedence declarations is to assign precedence
6324levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6325precedence levels to certain rules: each rule gets its precedence from
6326the last terminal symbol mentioned in the components. (You can also
6327specify explicitly the precedence of a rule. @xref{Contextual
6328Precedence, ,Context-Dependent Precedence}.)
6329
6330Finally, the resolution of conflicts works by comparing the precedence
742e4900 6331of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6332token's precedence is higher, the choice is to shift. If the rule's
6333precedence is higher, the choice is to reduce. If they have equal
6334precedence, the choice is made based on the associativity of that
6335precedence level. The verbose output file made by @samp{-v}
6336(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6337resolved.
bfa74976
RS
6338
6339Not all rules and not all tokens have precedence. If either the rule or
742e4900 6340the lookahead token has no precedence, then the default is to shift.
bfa74976 6341
342b8b6e 6342@node Contextual Precedence
bfa74976
RS
6343@section Context-Dependent Precedence
6344@cindex context-dependent precedence
6345@cindex unary operator precedence
6346@cindex precedence, context-dependent
6347@cindex precedence, unary operator
6348@findex %prec
6349
6350Often the precedence of an operator depends on the context. This sounds
6351outlandish at first, but it is really very common. For example, a minus
6352sign typically has a very high precedence as a unary operator, and a
6353somewhat lower precedence (lower than multiplication) as a binary operator.
6354
6355The Bison precedence declarations, @code{%left}, @code{%right} and
6356@code{%nonassoc}, can only be used once for a given token; so a token has
6357only one precedence declared in this way. For context-dependent
6358precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6359modifier for rules.
bfa74976
RS
6360
6361The @code{%prec} modifier declares the precedence of a particular rule by
6362specifying a terminal symbol whose precedence should be used for that rule.
6363It's not necessary for that symbol to appear otherwise in the rule. The
6364modifier's syntax is:
6365
6366@example
6367%prec @var{terminal-symbol}
6368@end example
6369
6370@noindent
6371and it is written after the components of the rule. Its effect is to
6372assign the rule the precedence of @var{terminal-symbol}, overriding
6373the precedence that would be deduced for it in the ordinary way. The
6374altered rule precedence then affects how conflicts involving that rule
6375are resolved (@pxref{Precedence, ,Operator Precedence}).
6376
6377Here is how @code{%prec} solves the problem of unary minus. First, declare
6378a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6379are no tokens of this type, but the symbol serves to stand for its
6380precedence:
6381
6382@example
6383@dots{}
6384%left '+' '-'
6385%left '*'
6386%left UMINUS
6387@end example
6388
6389Now the precedence of @code{UMINUS} can be used in specific rules:
6390
6391@example
6392@group
6393exp: @dots{}
6394 | exp '-' exp
6395 @dots{}
6396 | '-' exp %prec UMINUS
6397@end group
6398@end example
6399
91d2c560 6400@ifset defaultprec
39a06c25
PE
6401If you forget to append @code{%prec UMINUS} to the rule for unary
6402minus, Bison silently assumes that minus has its usual precedence.
6403This kind of problem can be tricky to debug, since one typically
6404discovers the mistake only by testing the code.
6405
22fccf95 6406The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6407this kind of problem systematically. It causes rules that lack a
6408@code{%prec} modifier to have no precedence, even if the last terminal
6409symbol mentioned in their components has a declared precedence.
6410
22fccf95 6411If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6412for all rules that participate in precedence conflict resolution.
6413Then you will see any shift/reduce conflict until you tell Bison how
6414to resolve it, either by changing your grammar or by adding an
6415explicit precedence. This will probably add declarations to the
6416grammar, but it helps to protect against incorrect rule precedences.
6417
22fccf95
PE
6418The effect of @code{%no-default-prec;} can be reversed by giving
6419@code{%default-prec;}, which is the default.
91d2c560 6420@end ifset
39a06c25 6421
342b8b6e 6422@node Parser States
bfa74976
RS
6423@section Parser States
6424@cindex finite-state machine
6425@cindex parser state
6426@cindex state (of parser)
6427
6428The function @code{yyparse} is implemented using a finite-state machine.
6429The values pushed on the parser stack are not simply token type codes; they
6430represent the entire sequence of terminal and nonterminal symbols at or
6431near the top of the stack. The current state collects all the information
6432about previous input which is relevant to deciding what to do next.
6433
742e4900
JD
6434Each time a lookahead token is read, the current parser state together
6435with the type of lookahead token are looked up in a table. This table
6436entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6437specifies the new parser state, which is pushed onto the top of the
6438parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6439This means that a certain number of tokens or groupings are taken off
6440the top of the stack, and replaced by one grouping. In other words,
6441that number of states are popped from the stack, and one new state is
6442pushed.
6443
742e4900 6444There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6445is erroneous in the current state. This causes error processing to begin
6446(@pxref{Error Recovery}).
6447
342b8b6e 6448@node Reduce/Reduce
bfa74976
RS
6449@section Reduce/Reduce Conflicts
6450@cindex reduce/reduce conflict
6451@cindex conflicts, reduce/reduce
6452
6453A reduce/reduce conflict occurs if there are two or more rules that apply
6454to the same sequence of input. This usually indicates a serious error
6455in the grammar.
6456
6457For example, here is an erroneous attempt to define a sequence
6458of zero or more @code{word} groupings.
6459
6460@example
6461sequence: /* empty */
6462 @{ printf ("empty sequence\n"); @}
6463 | maybeword
6464 | sequence word
6465 @{ printf ("added word %s\n", $2); @}
6466 ;
6467
6468maybeword: /* empty */
6469 @{ printf ("empty maybeword\n"); @}
6470 | word
6471 @{ printf ("single word %s\n", $1); @}
6472 ;
6473@end example
6474
6475@noindent
6476The error is an ambiguity: there is more than one way to parse a single
6477@code{word} into a @code{sequence}. It could be reduced to a
6478@code{maybeword} and then into a @code{sequence} via the second rule.
6479Alternatively, nothing-at-all could be reduced into a @code{sequence}
6480via the first rule, and this could be combined with the @code{word}
6481using the third rule for @code{sequence}.
6482
6483There is also more than one way to reduce nothing-at-all into a
6484@code{sequence}. This can be done directly via the first rule,
6485or indirectly via @code{maybeword} and then the second rule.
6486
6487You might think that this is a distinction without a difference, because it
6488does not change whether any particular input is valid or not. But it does
6489affect which actions are run. One parsing order runs the second rule's
6490action; the other runs the first rule's action and the third rule's action.
6491In this example, the output of the program changes.
6492
6493Bison resolves a reduce/reduce conflict by choosing to use the rule that
6494appears first in the grammar, but it is very risky to rely on this. Every
6495reduce/reduce conflict must be studied and usually eliminated. Here is the
6496proper way to define @code{sequence}:
6497
6498@example
6499sequence: /* empty */
6500 @{ printf ("empty sequence\n"); @}
6501 | sequence word
6502 @{ printf ("added word %s\n", $2); @}
6503 ;
6504@end example
6505
6506Here is another common error that yields a reduce/reduce conflict:
6507
6508@example
6509sequence: /* empty */
6510 | sequence words
6511 | sequence redirects
6512 ;
6513
6514words: /* empty */
6515 | words word
6516 ;
6517
6518redirects:/* empty */
6519 | redirects redirect
6520 ;
6521@end example
6522
6523@noindent
6524The intention here is to define a sequence which can contain either
6525@code{word} or @code{redirect} groupings. The individual definitions of
6526@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6527three together make a subtle ambiguity: even an empty input can be parsed
6528in infinitely many ways!
6529
6530Consider: nothing-at-all could be a @code{words}. Or it could be two
6531@code{words} in a row, or three, or any number. It could equally well be a
6532@code{redirects}, or two, or any number. Or it could be a @code{words}
6533followed by three @code{redirects} and another @code{words}. And so on.
6534
6535Here are two ways to correct these rules. First, to make it a single level
6536of sequence:
6537
6538@example
6539sequence: /* empty */
6540 | sequence word
6541 | sequence redirect
6542 ;
6543@end example
6544
6545Second, to prevent either a @code{words} or a @code{redirects}
6546from being empty:
6547
6548@example
6549sequence: /* empty */
6550 | sequence words
6551 | sequence redirects
6552 ;
6553
6554words: word
6555 | words word
6556 ;
6557
6558redirects:redirect
6559 | redirects redirect
6560 ;
6561@end example
6562
342b8b6e 6563@node Mystery Conflicts
bfa74976
RS
6564@section Mysterious Reduce/Reduce Conflicts
6565
6566Sometimes reduce/reduce conflicts can occur that don't look warranted.
6567Here is an example:
6568
6569@example
6570@group
6571%token ID
6572
6573%%
6574def: param_spec return_spec ','
6575 ;
6576param_spec:
6577 type
6578 | name_list ':' type
6579 ;
6580@end group
6581@group
6582return_spec:
6583 type
6584 | name ':' type
6585 ;
6586@end group
6587@group
6588type: ID
6589 ;
6590@end group
6591@group
6592name: ID
6593 ;
6594name_list:
6595 name
6596 | name ',' name_list
6597 ;
6598@end group
6599@end example
6600
6601It would seem that this grammar can be parsed with only a single token
742e4900 6602of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6603a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 6604@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 6605
c827f760
PE
6606@cindex @acronym{LR}(1)
6607@cindex @acronym{LALR}(1)
bfa74976 6608However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
6609@acronym{LR}(1) grammars. In this grammar, two contexts, that after
6610an @code{ID}
bfa74976
RS
6611at the beginning of a @code{param_spec} and likewise at the beginning of
6612a @code{return_spec}, are similar enough that Bison assumes they are the
6613same. They appear similar because the same set of rules would be
6614active---the rule for reducing to a @code{name} and that for reducing to
6615a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6616that the rules would require different lookahead tokens in the two
bfa74976
RS
6617contexts, so it makes a single parser state for them both. Combining
6618the two contexts causes a conflict later. In parser terminology, this
c827f760 6619occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
6620
6621In general, it is better to fix deficiencies than to document them. But
6622this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
6623generators that can handle @acronym{LR}(1) grammars are hard to write
6624and tend to
bfa74976
RS
6625produce parsers that are very large. In practice, Bison is more useful
6626as it is now.
6627
6628When the problem arises, you can often fix it by identifying the two
a220f555
MA
6629parser states that are being confused, and adding something to make them
6630look distinct. In the above example, adding one rule to
bfa74976
RS
6631@code{return_spec} as follows makes the problem go away:
6632
6633@example
6634@group
6635%token BOGUS
6636@dots{}
6637%%
6638@dots{}
6639return_spec:
6640 type
6641 | name ':' type
6642 /* This rule is never used. */
6643 | ID BOGUS
6644 ;
6645@end group
6646@end example
6647
6648This corrects the problem because it introduces the possibility of an
6649additional active rule in the context after the @code{ID} at the beginning of
6650@code{return_spec}. This rule is not active in the corresponding context
6651in a @code{param_spec}, so the two contexts receive distinct parser states.
6652As long as the token @code{BOGUS} is never generated by @code{yylex},
6653the added rule cannot alter the way actual input is parsed.
6654
6655In this particular example, there is another way to solve the problem:
6656rewrite the rule for @code{return_spec} to use @code{ID} directly
6657instead of via @code{name}. This also causes the two confusing
6658contexts to have different sets of active rules, because the one for
6659@code{return_spec} activates the altered rule for @code{return_spec}
6660rather than the one for @code{name}.
6661
6662@example
6663param_spec:
6664 type
6665 | name_list ':' type
6666 ;
6667return_spec:
6668 type
6669 | ID ':' type
6670 ;
6671@end example
6672
e054b190
PE
6673For a more detailed exposition of @acronym{LALR}(1) parsers and parser
6674generators, please see:
6675Frank DeRemer and Thomas Pennello, Efficient Computation of
6676@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
6677Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
6678pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
6679
fae437e8 6680@node Generalized LR Parsing
c827f760
PE
6681@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
6682@cindex @acronym{GLR} parsing
6683@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 6684@cindex ambiguous grammars
9d9b8b70 6685@cindex nondeterministic parsing
676385e2 6686
fae437e8
AD
6687Bison produces @emph{deterministic} parsers that choose uniquely
6688when to reduce and which reduction to apply
742e4900 6689based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
6690As a result, normal Bison handles a proper subset of the family of
6691context-free languages.
fae437e8 6692Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
6693sequence of reductions cannot have deterministic parsers in this sense.
6694The same is true of languages that require more than one symbol of
742e4900 6695lookahead, since the parser lacks the information necessary to make a
676385e2 6696decision at the point it must be made in a shift-reduce parser.
fae437e8 6697Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
6698there are languages where Bison's particular choice of how to
6699summarize the input seen so far loses necessary information.
6700
6701When you use the @samp{%glr-parser} declaration in your grammar file,
6702Bison generates a parser that uses a different algorithm, called
c827f760
PE
6703Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
6704parser uses the same basic
676385e2
PH
6705algorithm for parsing as an ordinary Bison parser, but behaves
6706differently in cases where there is a shift-reduce conflict that has not
fae437e8 6707been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
6708reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
6709situation, it
fae437e8 6710effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
6711shift or reduction. These parsers then proceed as usual, consuming
6712tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 6713and split further, with the result that instead of a sequence of states,
c827f760 6714a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
6715
6716In effect, each stack represents a guess as to what the proper parse
6717is. Additional input may indicate that a guess was wrong, in which case
6718the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 6719actions generated in each stack are saved, rather than being executed
676385e2 6720immediately. When a stack disappears, its saved semantic actions never
fae437e8 6721get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
6722their sets of semantic actions are both saved with the state that
6723results from the reduction. We say that two stacks are equivalent
fae437e8 6724when they both represent the same sequence of states,
676385e2
PH
6725and each pair of corresponding states represents a
6726grammar symbol that produces the same segment of the input token
6727stream.
6728
6729Whenever the parser makes a transition from having multiple
c827f760 6730states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
6731algorithm, after resolving and executing the saved-up actions.
6732At this transition, some of the states on the stack will have semantic
6733values that are sets (actually multisets) of possible actions. The
6734parser tries to pick one of the actions by first finding one whose rule
6735has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 6736declaration. Otherwise, if the alternative actions are not ordered by
676385e2 6737precedence, but there the same merging function is declared for both
fae437e8 6738rules by the @samp{%merge} declaration,
676385e2
PH
6739Bison resolves and evaluates both and then calls the merge function on
6740the result. Otherwise, it reports an ambiguity.
6741
c827f760
PE
6742It is possible to use a data structure for the @acronym{GLR} parsing tree that
6743permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
6744size of the input), any unambiguous (not necessarily
6745@acronym{LALR}(1)) grammar in
fae437e8 6746quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
6747context-free grammar in cubic worst-case time. However, Bison currently
6748uses a simpler data structure that requires time proportional to the
6749length of the input times the maximum number of stacks required for any
9d9b8b70 6750prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
6751grammars can require exponential time and space to process. Such badly
6752behaving examples, however, are not generally of practical interest.
9d9b8b70 6753Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 6754doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 6755structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
6756grammar, in particular, it is only slightly slower than with the default
6757Bison parser.
6758
fa7e68c3 6759For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
6760Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
6761Generalised @acronym{LR} Parsers, Royal Holloway, University of
6762London, Department of Computer Science, TR-00-12,
6763@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
6764(2000-12-24).
6765
1a059451
PE
6766@node Memory Management
6767@section Memory Management, and How to Avoid Memory Exhaustion
6768@cindex memory exhaustion
6769@cindex memory management
bfa74976
RS
6770@cindex stack overflow
6771@cindex parser stack overflow
6772@cindex overflow of parser stack
6773
1a059451 6774The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 6775not reduced. When this happens, the parser function @code{yyparse}
1a059451 6776calls @code{yyerror} and then returns 2.
bfa74976 6777
c827f760 6778Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
6779usually results from using a right recursion instead of a left
6780recursion, @xref{Recursion, ,Recursive Rules}.
6781
bfa74976
RS
6782@vindex YYMAXDEPTH
6783By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 6784parser stack can become before memory is exhausted. Define the
bfa74976
RS
6785macro with a value that is an integer. This value is the maximum number
6786of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
6787
6788The stack space allowed is not necessarily allocated. If you specify a
1a059451 6789large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
6790stack at first, and then makes it bigger by stages as needed. This
6791increasing allocation happens automatically and silently. Therefore,
6792you do not need to make @code{YYMAXDEPTH} painfully small merely to save
6793space for ordinary inputs that do not need much stack.
6794
d7e14fc0
PE
6795However, do not allow @code{YYMAXDEPTH} to be a value so large that
6796arithmetic overflow could occur when calculating the size of the stack
6797space. Also, do not allow @code{YYMAXDEPTH} to be less than
6798@code{YYINITDEPTH}.
6799
bfa74976
RS
6800@cindex default stack limit
6801The default value of @code{YYMAXDEPTH}, if you do not define it, is
680210000.
6803
6804@vindex YYINITDEPTH
6805You can control how much stack is allocated initially by defining the
d7e14fc0
PE
6806macro @code{YYINITDEPTH} to a positive integer. For the C
6807@acronym{LALR}(1) parser, this value must be a compile-time constant
6808unless you are assuming C99 or some other target language or compiler
6809that allows variable-length arrays. The default is 200.
6810
1a059451 6811Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 6812
d1a1114f 6813@c FIXME: C++ output.
c827f760 6814Because of semantical differences between C and C++, the
1a059451
PE
6815@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
6816by C++ compilers. In this precise case (compiling a C parser as C++) you are
6817suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
6818this deficiency in a future release.
d1a1114f 6819
342b8b6e 6820@node Error Recovery
bfa74976
RS
6821@chapter Error Recovery
6822@cindex error recovery
6823@cindex recovery from errors
6824
6e649e65 6825It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
6826error. For example, a compiler should recover sufficiently to parse the
6827rest of the input file and check it for errors; a calculator should accept
6828another expression.
6829
6830In a simple interactive command parser where each input is one line, it may
6831be sufficient to allow @code{yyparse} to return 1 on error and have the
6832caller ignore the rest of the input line when that happens (and then call
6833@code{yyparse} again). But this is inadequate for a compiler, because it
6834forgets all the syntactic context leading up to the error. A syntax error
6835deep within a function in the compiler input should not cause the compiler
6836to treat the following line like the beginning of a source file.
6837
6838@findex error
6839You can define how to recover from a syntax error by writing rules to
6840recognize the special token @code{error}. This is a terminal symbol that
6841is always defined (you need not declare it) and reserved for error
6842handling. The Bison parser generates an @code{error} token whenever a
6843syntax error happens; if you have provided a rule to recognize this token
13863333 6844in the current context, the parse can continue.
bfa74976
RS
6845
6846For example:
6847
6848@example
6849stmnts: /* empty string */
6850 | stmnts '\n'
6851 | stmnts exp '\n'
6852 | stmnts error '\n'
6853@end example
6854
6855The fourth rule in this example says that an error followed by a newline
6856makes a valid addition to any @code{stmnts}.
6857
6858What happens if a syntax error occurs in the middle of an @code{exp}? The
6859error recovery rule, interpreted strictly, applies to the precise sequence
6860of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
6861the middle of an @code{exp}, there will probably be some additional tokens
6862and subexpressions on the stack after the last @code{stmnts}, and there
6863will be tokens to read before the next newline. So the rule is not
6864applicable in the ordinary way.
6865
6866But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
6867the semantic context and part of the input. First it discards states
6868and objects from the stack until it gets back to a state in which the
bfa74976 6869@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
6870already parsed are discarded, back to the last complete @code{stmnts}.)
6871At this point the @code{error} token can be shifted. Then, if the old
742e4900 6872lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 6873tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
6874this example, Bison reads and discards input until the next newline so
6875that the fourth rule can apply. Note that discarded symbols are
6876possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
6877Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
6878
6879The choice of error rules in the grammar is a choice of strategies for
6880error recovery. A simple and useful strategy is simply to skip the rest of
6881the current input line or current statement if an error is detected:
6882
6883@example
72d2299c 6884stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
6885@end example
6886
6887It is also useful to recover to the matching close-delimiter of an
6888opening-delimiter that has already been parsed. Otherwise the
6889close-delimiter will probably appear to be unmatched, and generate another,
6890spurious error message:
6891
6892@example
6893primary: '(' expr ')'
6894 | '(' error ')'
6895 @dots{}
6896 ;
6897@end example
6898
6899Error recovery strategies are necessarily guesses. When they guess wrong,
6900one syntax error often leads to another. In the above example, the error
6901recovery rule guesses that an error is due to bad input within one
6902@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
6903middle of a valid @code{stmnt}. After the error recovery rule recovers
6904from the first error, another syntax error will be found straightaway,
6905since the text following the spurious semicolon is also an invalid
6906@code{stmnt}.
6907
6908To prevent an outpouring of error messages, the parser will output no error
6909message for another syntax error that happens shortly after the first; only
6910after three consecutive input tokens have been successfully shifted will
6911error messages resume.
6912
6913Note that rules which accept the @code{error} token may have actions, just
6914as any other rules can.
6915
6916@findex yyerrok
6917You can make error messages resume immediately by using the macro
6918@code{yyerrok} in an action. If you do this in the error rule's action, no
6919error messages will be suppressed. This macro requires no arguments;
6920@samp{yyerrok;} is a valid C statement.
6921
6922@findex yyclearin
742e4900 6923The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
6924this is unacceptable, then the macro @code{yyclearin} may be used to clear
6925this token. Write the statement @samp{yyclearin;} in the error rule's
6926action.
32c29292 6927@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 6928
6e649e65 6929For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
6930called that advances the input stream to some point where parsing should
6931once again commence. The next symbol returned by the lexical scanner is
742e4900 6932probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
6933with @samp{yyclearin;}.
6934
6935@vindex YYRECOVERING
02103984
PE
6936The expression @code{YYRECOVERING ()} yields 1 when the parser
6937is recovering from a syntax error, and 0 otherwise.
6938Syntax error diagnostics are suppressed while recovering from a syntax
6939error.
bfa74976 6940
342b8b6e 6941@node Context Dependency
bfa74976
RS
6942@chapter Handling Context Dependencies
6943
6944The Bison paradigm is to parse tokens first, then group them into larger
6945syntactic units. In many languages, the meaning of a token is affected by
6946its context. Although this violates the Bison paradigm, certain techniques
6947(known as @dfn{kludges}) may enable you to write Bison parsers for such
6948languages.
6949
6950@menu
6951* Semantic Tokens:: Token parsing can depend on the semantic context.
6952* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
6953* Tie-in Recovery:: Lexical tie-ins have implications for how
6954 error recovery rules must be written.
6955@end menu
6956
6957(Actually, ``kludge'' means any technique that gets its job done but is
6958neither clean nor robust.)
6959
342b8b6e 6960@node Semantic Tokens
bfa74976
RS
6961@section Semantic Info in Token Types
6962
6963The C language has a context dependency: the way an identifier is used
6964depends on what its current meaning is. For example, consider this:
6965
6966@example
6967foo (x);
6968@end example
6969
6970This looks like a function call statement, but if @code{foo} is a typedef
6971name, then this is actually a declaration of @code{x}. How can a Bison
6972parser for C decide how to parse this input?
6973
c827f760 6974The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
6975@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
6976identifier, it looks up the current declaration of the identifier in order
6977to decide which token type to return: @code{TYPENAME} if the identifier is
6978declared as a typedef, @code{IDENTIFIER} otherwise.
6979
6980The grammar rules can then express the context dependency by the choice of
6981token type to recognize. @code{IDENTIFIER} is accepted as an expression,
6982but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
6983@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
6984is @emph{not} significant, such as in declarations that can shadow a
6985typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
6986accepted---there is one rule for each of the two token types.
6987
6988This technique is simple to use if the decision of which kinds of
6989identifiers to allow is made at a place close to where the identifier is
6990parsed. But in C this is not always so: C allows a declaration to
6991redeclare a typedef name provided an explicit type has been specified
6992earlier:
6993
6994@example
3a4f411f
PE
6995typedef int foo, bar;
6996int baz (void)
6997@{
6998 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
6999 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7000 return foo (bar);
7001@}
bfa74976
RS
7002@end example
7003
7004Unfortunately, the name being declared is separated from the declaration
7005construct itself by a complicated syntactic structure---the ``declarator''.
7006
9ecbd125 7007As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7008all the nonterminal names changed: once for parsing a declaration in
7009which a typedef name can be redefined, and once for parsing a
7010declaration in which that can't be done. Here is a part of the
7011duplication, with actions omitted for brevity:
bfa74976
RS
7012
7013@example
7014initdcl:
7015 declarator maybeasm '='
7016 init
7017 | declarator maybeasm
7018 ;
7019
7020notype_initdcl:
7021 notype_declarator maybeasm '='
7022 init
7023 | notype_declarator maybeasm
7024 ;
7025@end example
7026
7027@noindent
7028Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7029cannot. The distinction between @code{declarator} and
7030@code{notype_declarator} is the same sort of thing.
7031
7032There is some similarity between this technique and a lexical tie-in
7033(described next), in that information which alters the lexical analysis is
7034changed during parsing by other parts of the program. The difference is
7035here the information is global, and is used for other purposes in the
7036program. A true lexical tie-in has a special-purpose flag controlled by
7037the syntactic context.
7038
342b8b6e 7039@node Lexical Tie-ins
bfa74976
RS
7040@section Lexical Tie-ins
7041@cindex lexical tie-in
7042
7043One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7044which is set by Bison actions, whose purpose is to alter the way tokens are
7045parsed.
7046
7047For example, suppose we have a language vaguely like C, but with a special
7048construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7049an expression in parentheses in which all integers are hexadecimal. In
7050particular, the token @samp{a1b} must be treated as an integer rather than
7051as an identifier if it appears in that context. Here is how you can do it:
7052
7053@example
7054@group
7055%@{
38a92d50
PE
7056 int hexflag;
7057 int yylex (void);
7058 void yyerror (char const *);
bfa74976
RS
7059%@}
7060%%
7061@dots{}
7062@end group
7063@group
7064expr: IDENTIFIER
7065 | constant
7066 | HEX '('
7067 @{ hexflag = 1; @}
7068 expr ')'
7069 @{ hexflag = 0;
7070 $$ = $4; @}
7071 | expr '+' expr
7072 @{ $$ = make_sum ($1, $3); @}
7073 @dots{}
7074 ;
7075@end group
7076
7077@group
7078constant:
7079 INTEGER
7080 | STRING
7081 ;
7082@end group
7083@end example
7084
7085@noindent
7086Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7087it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7088with letters are parsed as integers if possible.
7089
342b8b6e
AD
7090The declaration of @code{hexflag} shown in the prologue of the parser file
7091is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 7092You must also write the code in @code{yylex} to obey the flag.
bfa74976 7093
342b8b6e 7094@node Tie-in Recovery
bfa74976
RS
7095@section Lexical Tie-ins and Error Recovery
7096
7097Lexical tie-ins make strict demands on any error recovery rules you have.
7098@xref{Error Recovery}.
7099
7100The reason for this is that the purpose of an error recovery rule is to
7101abort the parsing of one construct and resume in some larger construct.
7102For example, in C-like languages, a typical error recovery rule is to skip
7103tokens until the next semicolon, and then start a new statement, like this:
7104
7105@example
7106stmt: expr ';'
7107 | IF '(' expr ')' stmt @{ @dots{} @}
7108 @dots{}
7109 error ';'
7110 @{ hexflag = 0; @}
7111 ;
7112@end example
7113
7114If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7115construct, this error rule will apply, and then the action for the
7116completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7117remain set for the entire rest of the input, or until the next @code{hex}
7118keyword, causing identifiers to be misinterpreted as integers.
7119
7120To avoid this problem the error recovery rule itself clears @code{hexflag}.
7121
7122There may also be an error recovery rule that works within expressions.
7123For example, there could be a rule which applies within parentheses
7124and skips to the close-parenthesis:
7125
7126@example
7127@group
7128expr: @dots{}
7129 | '(' expr ')'
7130 @{ $$ = $2; @}
7131 | '(' error ')'
7132 @dots{}
7133@end group
7134@end example
7135
7136If this rule acts within the @code{hex} construct, it is not going to abort
7137that construct (since it applies to an inner level of parentheses within
7138the construct). Therefore, it should not clear the flag: the rest of
7139the @code{hex} construct should be parsed with the flag still in effect.
7140
7141What if there is an error recovery rule which might abort out of the
7142@code{hex} construct or might not, depending on circumstances? There is no
7143way you can write the action to determine whether a @code{hex} construct is
7144being aborted or not. So if you are using a lexical tie-in, you had better
7145make sure your error recovery rules are not of this kind. Each rule must
7146be such that you can be sure that it always will, or always won't, have to
7147clear the flag.
7148
ec3bc396
AD
7149@c ================================================== Debugging Your Parser
7150
342b8b6e 7151@node Debugging
bfa74976 7152@chapter Debugging Your Parser
ec3bc396
AD
7153
7154Developing a parser can be a challenge, especially if you don't
7155understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7156Algorithm}). Even so, sometimes a detailed description of the automaton
7157can help (@pxref{Understanding, , Understanding Your Parser}), or
7158tracing the execution of the parser can give some insight on why it
7159behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7160
7161@menu
7162* Understanding:: Understanding the structure of your parser.
7163* Tracing:: Tracing the execution of your parser.
7164@end menu
7165
7166@node Understanding
7167@section Understanding Your Parser
7168
7169As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7170Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7171frequent than one would hope), looking at this automaton is required to
7172tune or simply fix a parser. Bison provides two different
35fe0834 7173representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7174
7175The textual file is generated when the options @option{--report} or
7176@option{--verbose} are specified, see @xref{Invocation, , Invoking
7177Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
7178the parser output file name, and adding @samp{.output} instead.
7179Therefore, if the input file is @file{foo.y}, then the parser file is
7180called @file{foo.tab.c} by default. As a consequence, the verbose
7181output file is called @file{foo.output}.
7182
7183The following grammar file, @file{calc.y}, will be used in the sequel:
7184
7185@example
7186%token NUM STR
7187%left '+' '-'
7188%left '*'
7189%%
7190exp: exp '+' exp
7191 | exp '-' exp
7192 | exp '*' exp
7193 | exp '/' exp
7194 | NUM
7195 ;
7196useless: STR;
7197%%
7198@end example
7199
88bce5a2
AD
7200@command{bison} reports:
7201
7202@example
cff03fb2
JD
7203calc.y: warning: 1 nonterminal and 1 rule useless in grammar
7204calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7205calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7206calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7207@end example
7208
7209When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7210creates a file @file{calc.output} with contents detailed below. The
7211order of the output and the exact presentation might vary, but the
7212interpretation is the same.
ec3bc396
AD
7213
7214The first section includes details on conflicts that were solved thanks
7215to precedence and/or associativity:
7216
7217@example
7218Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7219Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7220Conflict in state 8 between rule 2 and token '*' resolved as shift.
7221@exdent @dots{}
7222@end example
7223
7224@noindent
7225The next section lists states that still have conflicts.
7226
7227@example
5a99098d
PE
7228State 8 conflicts: 1 shift/reduce
7229State 9 conflicts: 1 shift/reduce
7230State 10 conflicts: 1 shift/reduce
7231State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7232@end example
7233
7234@noindent
7235@cindex token, useless
7236@cindex useless token
7237@cindex nonterminal, useless
7238@cindex useless nonterminal
7239@cindex rule, useless
7240@cindex useless rule
7241The next section reports useless tokens, nonterminal and rules. Useless
7242nonterminals and rules are removed in order to produce a smaller parser,
7243but useless tokens are preserved, since they might be used by the
d80fb37a 7244scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7245below):
7246
7247@example
d80fb37a 7248Nonterminals useless in grammar:
ec3bc396
AD
7249 useless
7250
d80fb37a 7251Terminals unused in grammar:
ec3bc396
AD
7252 STR
7253
cff03fb2 7254Rules useless in grammar:
ec3bc396
AD
7255#6 useless: STR;
7256@end example
7257
7258@noindent
7259The next section reproduces the exact grammar that Bison used:
7260
7261@example
7262Grammar
7263
7264 Number, Line, Rule
88bce5a2 7265 0 5 $accept -> exp $end
ec3bc396
AD
7266 1 5 exp -> exp '+' exp
7267 2 6 exp -> exp '-' exp
7268 3 7 exp -> exp '*' exp
7269 4 8 exp -> exp '/' exp
7270 5 9 exp -> NUM
7271@end example
7272
7273@noindent
7274and reports the uses of the symbols:
7275
7276@example
7277Terminals, with rules where they appear
7278
88bce5a2 7279$end (0) 0
ec3bc396
AD
7280'*' (42) 3
7281'+' (43) 1
7282'-' (45) 2
7283'/' (47) 4
7284error (256)
7285NUM (258) 5
7286
7287Nonterminals, with rules where they appear
7288
88bce5a2 7289$accept (8)
ec3bc396
AD
7290 on left: 0
7291exp (9)
7292 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7293@end example
7294
7295@noindent
7296@cindex item
7297@cindex pointed rule
7298@cindex rule, pointed
7299Bison then proceeds onto the automaton itself, describing each state
7300with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7301item is a production rule together with a point (marked by @samp{.})
7302that the input cursor.
7303
7304@example
7305state 0
7306
88bce5a2 7307 $accept -> . exp $ (rule 0)
ec3bc396 7308
2a8d363a 7309 NUM shift, and go to state 1
ec3bc396 7310
2a8d363a 7311 exp go to state 2
ec3bc396
AD
7312@end example
7313
7314This reads as follows: ``state 0 corresponds to being at the very
7315beginning of the parsing, in the initial rule, right before the start
7316symbol (here, @code{exp}). When the parser returns to this state right
7317after having reduced a rule that produced an @code{exp}, the control
7318flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7319symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7320the parse stack, and the control flow jumps to state 1. Any other
742e4900 7321lookahead triggers a syntax error.''
ec3bc396
AD
7322
7323@cindex core, item set
7324@cindex item set core
7325@cindex kernel, item set
7326@cindex item set core
7327Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7328report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7329at the beginning of any rule deriving an @code{exp}. By default Bison
7330reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7331you want to see more detail you can invoke @command{bison} with
7332@option{--report=itemset} to list all the items, include those that can
7333be derived:
7334
7335@example
7336state 0
7337
88bce5a2 7338 $accept -> . exp $ (rule 0)
ec3bc396
AD
7339 exp -> . exp '+' exp (rule 1)
7340 exp -> . exp '-' exp (rule 2)
7341 exp -> . exp '*' exp (rule 3)
7342 exp -> . exp '/' exp (rule 4)
7343 exp -> . NUM (rule 5)
7344
7345 NUM shift, and go to state 1
7346
7347 exp go to state 2
7348@end example
7349
7350@noindent
7351In the state 1...
7352
7353@example
7354state 1
7355
7356 exp -> NUM . (rule 5)
7357
2a8d363a 7358 $default reduce using rule 5 (exp)
ec3bc396
AD
7359@end example
7360
7361@noindent
742e4900 7362the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7363(@samp{$default}), the parser will reduce it. If it was coming from
7364state 0, then, after this reduction it will return to state 0, and will
7365jump to state 2 (@samp{exp: go to state 2}).
7366
7367@example
7368state 2
7369
88bce5a2 7370 $accept -> exp . $ (rule 0)
ec3bc396
AD
7371 exp -> exp . '+' exp (rule 1)
7372 exp -> exp . '-' exp (rule 2)
7373 exp -> exp . '*' exp (rule 3)
7374 exp -> exp . '/' exp (rule 4)
7375
2a8d363a
AD
7376 $ shift, and go to state 3
7377 '+' shift, and go to state 4
7378 '-' shift, and go to state 5
7379 '*' shift, and go to state 6
7380 '/' shift, and go to state 7
ec3bc396
AD
7381@end example
7382
7383@noindent
7384In state 2, the automaton can only shift a symbol. For instance,
742e4900 7385because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
7386@samp{+}, it will be shifted on the parse stack, and the automaton
7387control will jump to state 4, corresponding to the item @samp{exp -> exp
7388'+' . exp}. Since there is no default action, any other token than
6e649e65 7389those listed above will trigger a syntax error.
ec3bc396
AD
7390
7391The state 3 is named the @dfn{final state}, or the @dfn{accepting
7392state}:
7393
7394@example
7395state 3
7396
88bce5a2 7397 $accept -> exp $ . (rule 0)
ec3bc396 7398
2a8d363a 7399 $default accept
ec3bc396
AD
7400@end example
7401
7402@noindent
7403the initial rule is completed (the start symbol and the end
7404of input were read), the parsing exits successfully.
7405
7406The interpretation of states 4 to 7 is straightforward, and is left to
7407the reader.
7408
7409@example
7410state 4
7411
7412 exp -> exp '+' . exp (rule 1)
7413
2a8d363a 7414 NUM shift, and go to state 1
ec3bc396 7415
2a8d363a 7416 exp go to state 8
ec3bc396
AD
7417
7418state 5
7419
7420 exp -> exp '-' . exp (rule 2)
7421
2a8d363a 7422 NUM shift, and go to state 1
ec3bc396 7423
2a8d363a 7424 exp go to state 9
ec3bc396
AD
7425
7426state 6
7427
7428 exp -> exp '*' . exp (rule 3)
7429
2a8d363a 7430 NUM shift, and go to state 1
ec3bc396 7431
2a8d363a 7432 exp go to state 10
ec3bc396
AD
7433
7434state 7
7435
7436 exp -> exp '/' . exp (rule 4)
7437
2a8d363a 7438 NUM shift, and go to state 1
ec3bc396 7439
2a8d363a 7440 exp go to state 11
ec3bc396
AD
7441@end example
7442
5a99098d
PE
7443As was announced in beginning of the report, @samp{State 8 conflicts:
74441 shift/reduce}:
ec3bc396
AD
7445
7446@example
7447state 8
7448
7449 exp -> exp . '+' exp (rule 1)
7450 exp -> exp '+' exp . (rule 1)
7451 exp -> exp . '-' exp (rule 2)
7452 exp -> exp . '*' exp (rule 3)
7453 exp -> exp . '/' exp (rule 4)
7454
2a8d363a
AD
7455 '*' shift, and go to state 6
7456 '/' shift, and go to state 7
ec3bc396 7457
2a8d363a
AD
7458 '/' [reduce using rule 1 (exp)]
7459 $default reduce using rule 1 (exp)
ec3bc396
AD
7460@end example
7461
742e4900 7462Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
7463either shifting (and going to state 7), or reducing rule 1. The
7464conflict means that either the grammar is ambiguous, or the parser lacks
7465information to make the right decision. Indeed the grammar is
7466ambiguous, as, since we did not specify the precedence of @samp{/}, the
7467sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
7468NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
7469NUM}, which corresponds to reducing rule 1.
7470
c827f760 7471Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
7472arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
7473Shift/Reduce Conflicts}. Discarded actions are reported in between
7474square brackets.
7475
7476Note that all the previous states had a single possible action: either
7477shifting the next token and going to the corresponding state, or
7478reducing a single rule. In the other cases, i.e., when shifting
7479@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
7480possible, the lookahead is required to select the action. State 8 is
7481one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
7482is shifting, otherwise the action is reducing rule 1. In other words,
7483the first two items, corresponding to rule 1, are not eligible when the
742e4900 7484lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 7485precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
7486with some set of possible lookahead tokens. When run with
7487@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
7488
7489@example
7490state 8
7491
88c78747 7492 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
7493 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
7494 exp -> exp . '-' exp (rule 2)
7495 exp -> exp . '*' exp (rule 3)
7496 exp -> exp . '/' exp (rule 4)
7497
7498 '*' shift, and go to state 6
7499 '/' shift, and go to state 7
7500
7501 '/' [reduce using rule 1 (exp)]
7502 $default reduce using rule 1 (exp)
7503@end example
7504
7505The remaining states are similar:
7506
7507@example
7508state 9
7509
7510 exp -> exp . '+' exp (rule 1)
7511 exp -> exp . '-' exp (rule 2)
7512 exp -> exp '-' exp . (rule 2)
7513 exp -> exp . '*' exp (rule 3)
7514 exp -> exp . '/' exp (rule 4)
7515
2a8d363a
AD
7516 '*' shift, and go to state 6
7517 '/' shift, and go to state 7
ec3bc396 7518
2a8d363a
AD
7519 '/' [reduce using rule 2 (exp)]
7520 $default reduce using rule 2 (exp)
ec3bc396
AD
7521
7522state 10
7523
7524 exp -> exp . '+' exp (rule 1)
7525 exp -> exp . '-' exp (rule 2)
7526 exp -> exp . '*' exp (rule 3)
7527 exp -> exp '*' exp . (rule 3)
7528 exp -> exp . '/' exp (rule 4)
7529
2a8d363a 7530 '/' shift, and go to state 7
ec3bc396 7531
2a8d363a
AD
7532 '/' [reduce using rule 3 (exp)]
7533 $default reduce using rule 3 (exp)
ec3bc396
AD
7534
7535state 11
7536
7537 exp -> exp . '+' exp (rule 1)
7538 exp -> exp . '-' exp (rule 2)
7539 exp -> exp . '*' exp (rule 3)
7540 exp -> exp . '/' exp (rule 4)
7541 exp -> exp '/' exp . (rule 4)
7542
2a8d363a
AD
7543 '+' shift, and go to state 4
7544 '-' shift, and go to state 5
7545 '*' shift, and go to state 6
7546 '/' shift, and go to state 7
ec3bc396 7547
2a8d363a
AD
7548 '+' [reduce using rule 4 (exp)]
7549 '-' [reduce using rule 4 (exp)]
7550 '*' [reduce using rule 4 (exp)]
7551 '/' [reduce using rule 4 (exp)]
7552 $default reduce using rule 4 (exp)
ec3bc396
AD
7553@end example
7554
7555@noindent
fa7e68c3
PE
7556Observe that state 11 contains conflicts not only due to the lack of
7557precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7558@samp{*}, but also because the
ec3bc396
AD
7559associativity of @samp{/} is not specified.
7560
7561
7562@node Tracing
7563@section Tracing Your Parser
bfa74976
RS
7564@findex yydebug
7565@cindex debugging
7566@cindex tracing the parser
7567
7568If a Bison grammar compiles properly but doesn't do what you want when it
7569runs, the @code{yydebug} parser-trace feature can help you figure out why.
7570
3ded9a63
AD
7571There are several means to enable compilation of trace facilities:
7572
7573@table @asis
7574@item the macro @code{YYDEBUG}
7575@findex YYDEBUG
7576Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 7577parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
7578@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7579YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7580Prologue}).
7581
7582@item the option @option{-t}, @option{--debug}
7583Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 7584,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
7585
7586@item the directive @samp{%debug}
7587@findex %debug
7588Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
7589Declaration Summary}). This is a Bison extension, which will prove
7590useful when Bison will output parsers for languages that don't use a
c827f760
PE
7591preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
7592you, this is
3ded9a63
AD
7593the preferred solution.
7594@end table
7595
7596We suggest that you always enable the debug option so that debugging is
7597always possible.
bfa74976 7598
02a81e05 7599The trace facility outputs messages with macro calls of the form
e2742e46 7600@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 7601@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
7602arguments. If you define @code{YYDEBUG} to a nonzero value but do not
7603define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 7604and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
7605
7606Once you have compiled the program with trace facilities, the way to
7607request a trace is to store a nonzero value in the variable @code{yydebug}.
7608You can do this by making the C code do it (in @code{main}, perhaps), or
7609you can alter the value with a C debugger.
7610
7611Each step taken by the parser when @code{yydebug} is nonzero produces a
7612line or two of trace information, written on @code{stderr}. The trace
7613messages tell you these things:
7614
7615@itemize @bullet
7616@item
7617Each time the parser calls @code{yylex}, what kind of token was read.
7618
7619@item
7620Each time a token is shifted, the depth and complete contents of the
7621state stack (@pxref{Parser States}).
7622
7623@item
7624Each time a rule is reduced, which rule it is, and the complete contents
7625of the state stack afterward.
7626@end itemize
7627
7628To make sense of this information, it helps to refer to the listing file
704a47c4
AD
7629produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
7630Bison}). This file shows the meaning of each state in terms of
7631positions in various rules, and also what each state will do with each
7632possible input token. As you read the successive trace messages, you
7633can see that the parser is functioning according to its specification in
7634the listing file. Eventually you will arrive at the place where
7635something undesirable happens, and you will see which parts of the
7636grammar are to blame.
bfa74976
RS
7637
7638The parser file is a C program and you can use C debuggers on it, but it's
7639not easy to interpret what it is doing. The parser function is a
7640finite-state machine interpreter, and aside from the actions it executes
7641the same code over and over. Only the values of variables show where in
7642the grammar it is working.
7643
7644@findex YYPRINT
7645The debugging information normally gives the token type of each token
7646read, but not its semantic value. You can optionally define a macro
7647named @code{YYPRINT} to provide a way to print the value. If you define
7648@code{YYPRINT}, it should take three arguments. The parser will pass a
7649standard I/O stream, the numeric code for the token type, and the token
7650value (from @code{yylval}).
7651
7652Here is an example of @code{YYPRINT} suitable for the multi-function
7653calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
7654
7655@smallexample
38a92d50
PE
7656%@{
7657 static void print_token_value (FILE *, int, YYSTYPE);
7658 #define YYPRINT(file, type, value) print_token_value (file, type, value)
7659%@}
7660
7661@dots{} %% @dots{} %% @dots{}
bfa74976
RS
7662
7663static void
831d3c99 7664print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
7665@{
7666 if (type == VAR)
d3c4e709 7667 fprintf (file, "%s", value.tptr->name);
bfa74976 7668 else if (type == NUM)
d3c4e709 7669 fprintf (file, "%d", value.val);
bfa74976
RS
7670@}
7671@end smallexample
7672
ec3bc396
AD
7673@c ================================================= Invoking Bison
7674
342b8b6e 7675@node Invocation
bfa74976
RS
7676@chapter Invoking Bison
7677@cindex invoking Bison
7678@cindex Bison invocation
7679@cindex options for invoking Bison
7680
7681The usual way to invoke Bison is as follows:
7682
7683@example
7684bison @var{infile}
7685@end example
7686
7687Here @var{infile} is the grammar file name, which usually ends in
7688@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
7689with @samp{.tab.c} and removing any leading directory. Thus, the
7690@samp{bison foo.y} file name yields
7691@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
7692@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 7693C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
7694or @file{foo.y++}. Then, the output files will take an extension like
7695the given one as input (respectively @file{foo.tab.cpp} and
7696@file{foo.tab.c++}).
fa4d969f 7697This feature takes effect with all options that manipulate file names like
234a3be3
AD
7698@samp{-o} or @samp{-d}.
7699
7700For example :
7701
7702@example
7703bison -d @var{infile.yxx}
7704@end example
84163231 7705@noindent
72d2299c 7706will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
7707
7708@example
b56471a6 7709bison -d -o @var{output.c++} @var{infile.y}
234a3be3 7710@end example
84163231 7711@noindent
234a3be3
AD
7712will produce @file{output.c++} and @file{outfile.h++}.
7713
397ec073
PE
7714For compatibility with @acronym{POSIX}, the standard Bison
7715distribution also contains a shell script called @command{yacc} that
7716invokes Bison with the @option{-y} option.
7717
bfa74976 7718@menu
13863333 7719* Bison Options:: All the options described in detail,
c827f760 7720 in alphabetical order by short options.
bfa74976 7721* Option Cross Key:: Alphabetical list of long options.
93dd49ab 7722* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
7723@end menu
7724
342b8b6e 7725@node Bison Options
bfa74976
RS
7726@section Bison Options
7727
7728Bison supports both traditional single-letter options and mnemonic long
7729option names. Long option names are indicated with @samp{--} instead of
7730@samp{-}. Abbreviations for option names are allowed as long as they
7731are unique. When a long option takes an argument, like
7732@samp{--file-prefix}, connect the option name and the argument with
7733@samp{=}.
7734
7735Here is a list of options that can be used with Bison, alphabetized by
7736short option. It is followed by a cross key alphabetized by long
7737option.
7738
89cab50d
AD
7739@c Please, keep this ordered as in `bison --help'.
7740@noindent
7741Operations modes:
7742@table @option
7743@item -h
7744@itemx --help
7745Print a summary of the command-line options to Bison and exit.
bfa74976 7746
89cab50d
AD
7747@item -V
7748@itemx --version
7749Print the version number of Bison and exit.
bfa74976 7750
f7ab6a50
PE
7751@item --print-localedir
7752Print the name of the directory containing locale-dependent data.
7753
a0de5091
JD
7754@item --print-datadir
7755Print the name of the directory containing skeletons and XSLT.
7756
89cab50d
AD
7757@item -y
7758@itemx --yacc
54662697
PE
7759Act more like the traditional Yacc command. This can cause
7760different diagnostics to be generated, and may change behavior in
7761other minor ways. Most importantly, imitate Yacc's output
7762file name conventions, so that the parser output file is called
89cab50d 7763@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e
JD
7764@file{y.tab.h}.
7765Also, if generating an @acronym{LALR}(1) parser in C, generate @code{#define}
7766statements in addition to an @code{enum} to associate token numbers with token
7767names.
7768Thus, the following shell script can substitute for Yacc, and the Bison
7769distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 7770
89cab50d 7771@example
397ec073 7772#! /bin/sh
26e06a21 7773bison -y "$@@"
89cab50d 7774@end example
54662697
PE
7775
7776The @option{-y}/@option{--yacc} option is intended for use with
7777traditional Yacc grammars. If your grammar uses a Bison extension
7778like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
7779this option is specified.
7780
118d4978
AD
7781@item -W
7782@itemx --warnings
7783Output warnings falling in @var{category}. @var{category} can be one
7784of:
7785@table @code
7786@item midrule-values
8e55b3aa
JD
7787Warn about mid-rule values that are set but not used within any of the actions
7788of the parent rule.
7789For example, warn about unused @code{$2} in:
118d4978
AD
7790
7791@example
7792exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
7793@end example
7794
8e55b3aa
JD
7795Also warn about mid-rule values that are used but not set.
7796For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
7797
7798@example
7799 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
7800@end example
7801
7802These warnings are not enabled by default since they sometimes prove to
7803be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 7804@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
7805
7806
7807@item yacc
7808Incompatibilities with @acronym{POSIX} Yacc.
7809
7810@item all
8e55b3aa 7811All the warnings.
118d4978 7812@item none
8e55b3aa 7813Turn off all the warnings.
118d4978 7814@item error
8e55b3aa 7815Treat warnings as errors.
118d4978
AD
7816@end table
7817
7818A category can be turned off by prefixing its name with @samp{no-}. For
7819instance, @option{-Wno-syntax} will hide the warnings about unused
7820variables.
89cab50d
AD
7821@end table
7822
7823@noindent
7824Tuning the parser:
7825
7826@table @option
7827@item -t
7828@itemx --debug
4947ebdb
PE
7829In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
7830already defined, so that the debugging facilities are compiled.
ec3bc396 7831@xref{Tracing, ,Tracing Your Parser}.
89cab50d 7832
0e021770
PE
7833@item -L @var{language}
7834@itemx --language=@var{language}
7835Specify the programming language for the generated parser, as if
7836@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 7837Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 7838@var{language} is case-insensitive.
0e021770 7839
89cab50d 7840@item --locations
d8988b2f 7841Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
7842
7843@item -p @var{prefix}
7844@itemx --name-prefix=@var{prefix}
02975b9a 7845Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 7846@xref{Decl Summary}.
bfa74976
RS
7847
7848@item -l
7849@itemx --no-lines
7850Don't put any @code{#line} preprocessor commands in the parser file.
7851Ordinarily Bison puts them in the parser file so that the C compiler
7852and debuggers will associate errors with your source file, the
7853grammar file. This option causes them to associate errors with the
95e742f7 7854parser file, treating it as an independent source file in its own right.
bfa74976 7855
e6e704dc
JD
7856@item -S @var{file}
7857@itemx --skeleton=@var{file}
a7867f53 7858Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
7859(@pxref{Decl Summary, , Bison Declaration Summary}).
7860
a7867f53
JD
7861You probably don't need this option unless you are developing Bison.
7862You should use @option{--language} if you want to specify the skeleton for a
e6e704dc
JD
7863different language, because it is clearer and because it will always
7864choose the correct skeleton for non-deterministic or push parsers.
7865
a7867f53
JD
7866If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
7867file in the Bison installation directory.
7868If it does, @var{file} is an absolute file name or a file name relative to the
7869current working directory.
7870This is similar to how most shells resolve commands.
7871
89cab50d
AD
7872@item -k
7873@itemx --token-table
d8988b2f 7874Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 7875@end table
bfa74976 7876
89cab50d
AD
7877@noindent
7878Adjust the output:
bfa74976 7879
89cab50d 7880@table @option
8e55b3aa 7881@item --defines[=@var{file}]
d8988b2f 7882Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 7883file containing macro definitions for the token type names defined in
4bfd5e4e 7884the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 7885
8e55b3aa
JD
7886@item -d
7887This is the same as @code{--defines} except @code{-d} does not accept a
7888@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
7889with other short options.
342b8b6e 7890
89cab50d
AD
7891@item -b @var{file-prefix}
7892@itemx --file-prefix=@var{prefix}
9c437126 7893Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 7894for all Bison output file names. @xref{Decl Summary}.
bfa74976 7895
ec3bc396
AD
7896@item -r @var{things}
7897@itemx --report=@var{things}
7898Write an extra output file containing verbose description of the comma
7899separated list of @var{things} among:
7900
7901@table @code
7902@item state
7903Description of the grammar, conflicts (resolved and unresolved), and
c827f760 7904@acronym{LALR} automaton.
ec3bc396 7905
742e4900 7906@item lookahead
ec3bc396 7907Implies @code{state} and augments the description of the automaton with
742e4900 7908each rule's lookahead set.
ec3bc396
AD
7909
7910@item itemset
7911Implies @code{state} and augments the description of the automaton with
7912the full set of items for each state, instead of its core only.
7913@end table
7914
1bb2bd75
JD
7915@item --report-file=@var{file}
7916Specify the @var{file} for the verbose description.
7917
bfa74976
RS
7918@item -v
7919@itemx --verbose
9c437126 7920Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 7921file containing verbose descriptions of the grammar and
72d2299c 7922parser. @xref{Decl Summary}.
bfa74976 7923
fa4d969f
PE
7924@item -o @var{file}
7925@itemx --output=@var{file}
7926Specify the @var{file} for the parser file.
bfa74976 7927
fa4d969f 7928The other output files' names are constructed from @var{file} as
d8988b2f 7929described under the @samp{-v} and @samp{-d} options.
342b8b6e 7930
8e55b3aa
JD
7931@item -g[@var{file}]
7932@itemx --graph[=@var{file}]
35fe0834
PE
7933Output a graphical representation of the @acronym{LALR}(1) grammar
7934automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
7935@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
8e55b3aa
JD
7936@code{@var{file}} is optional.
7937If omitted and the grammar file is @file{foo.y}, the output file will be
7938@file{foo.dot}.
59da312b 7939
8e55b3aa
JD
7940@item -x[@var{file}]
7941@itemx --xml[=@var{file}]
59da312b 7942Output an XML report of the @acronym{LALR}(1) automaton computed by Bison.
8e55b3aa 7943@code{@var{file}} is optional.
59da312b
JD
7944If omitted and the grammar file is @file{foo.y}, the output file will be
7945@file{foo.xml}.
7946(The current XML schema is experimental and may evolve.
7947More user feedback will help to stabilize it.)
bfa74976
RS
7948@end table
7949
342b8b6e 7950@node Option Cross Key
bfa74976
RS
7951@section Option Cross Key
7952
aa08666d 7953@c FIXME: How about putting the directives too?
bfa74976
RS
7954Here is a list of options, alphabetized by long option, to help you find
7955the corresponding short option.
7956
aa08666d
AD
7957@multitable {@option{--defines=@var{defines-file}}} {@option{-b @var{file-prefix}XXX}}
7958@headitem Long Option @tab Short Option
f4101aa6 7959@include cross-options.texi
aa08666d 7960@end multitable
bfa74976 7961
93dd49ab
PE
7962@node Yacc Library
7963@section Yacc Library
7964
7965The Yacc library contains default implementations of the
7966@code{yyerror} and @code{main} functions. These default
7967implementations are normally not useful, but @acronym{POSIX} requires
7968them. To use the Yacc library, link your program with the
7969@option{-ly} option. Note that Bison's implementation of the Yacc
7970library is distributed under the terms of the @acronym{GNU} General
7971Public License (@pxref{Copying}).
7972
7973If you use the Yacc library's @code{yyerror} function, you should
7974declare @code{yyerror} as follows:
7975
7976@example
7977int yyerror (char const *);
7978@end example
7979
7980Bison ignores the @code{int} value returned by this @code{yyerror}.
7981If you use the Yacc library's @code{main} function, your
7982@code{yyparse} function should have the following type signature:
7983
7984@example
7985int yyparse (void);
7986@end example
7987
12545799
AD
7988@c ================================================= C++ Bison
7989
8405b70c
PB
7990@node Other Languages
7991@chapter Parsers Written In Other Languages
12545799
AD
7992
7993@menu
7994* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 7995* Java Parsers:: The interface to generate Java parser classes
12545799
AD
7996@end menu
7997
7998@node C++ Parsers
7999@section C++ Parsers
8000
8001@menu
8002* C++ Bison Interface:: Asking for C++ parser generation
8003* C++ Semantic Values:: %union vs. C++
8004* C++ Location Values:: The position and location classes
8005* C++ Parser Interface:: Instantiating and running the parser
8006* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8007* A Complete C++ Example:: Demonstrating their use
12545799
AD
8008@end menu
8009
8010@node C++ Bison Interface
8011@subsection C++ Bison Interface
0e021770 8012@c - %language "C++"
12545799
AD
8013@c - Always pure
8014@c - initial action
8015
e6e704dc
JD
8016The C++ @acronym{LALR}(1) parser is selected using the language directive,
8017@samp{%language "C++"}, or the synonymous command-line option
8018@option{--language=c++}.
8019@xref{Decl Summary}.
0e021770 8020
793fbca5
JD
8021When run, @command{bison} will create several entities in the @samp{yy}
8022namespace.
8023@findex %define namespace
8024Use the @samp{%define namespace} directive to change the namespace name, see
8025@ref{Decl Summary}.
8026The various classes are generated in the following files:
aa08666d 8027
12545799
AD
8028@table @file
8029@item position.hh
8030@itemx location.hh
8031The definition of the classes @code{position} and @code{location},
8032used for location tracking. @xref{C++ Location Values}.
8033
8034@item stack.hh
8035An auxiliary class @code{stack} used by the parser.
8036
fa4d969f
PE
8037@item @var{file}.hh
8038@itemx @var{file}.cc
cd8b5791
AD
8039(Assuming the extension of the input file was @samp{.yy}.) The
8040declaration and implementation of the C++ parser class. The basename
8041and extension of these two files follow the same rules as with regular C
8042parsers (@pxref{Invocation}).
12545799 8043
cd8b5791
AD
8044The header is @emph{mandatory}; you must either pass
8045@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8046@samp{%defines} directive.
8047@end table
8048
8049All these files are documented using Doxygen; run @command{doxygen}
8050for a complete and accurate documentation.
8051
8052@node C++ Semantic Values
8053@subsection C++ Semantic Values
8054@c - No objects in unions
178e123e 8055@c - YYSTYPE
12545799
AD
8056@c - Printer and destructor
8057
8058The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8059Collection of Value Types}. In particular it produces a genuine
8060@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
8061within pseudo-unions (similar to Boost variants) might be implemented to
8062alleviate these issues.}, which have a few specific features in C++.
12545799
AD
8063@itemize @minus
8064@item
fb9712a9
AD
8065The type @code{YYSTYPE} is defined but its use is discouraged: rather
8066you should refer to the parser's encapsulated type
8067@code{yy::parser::semantic_type}.
12545799
AD
8068@item
8069Non POD (Plain Old Data) types cannot be used. C++ forbids any
8070instance of classes with constructors in unions: only @emph{pointers}
8071to such objects are allowed.
8072@end itemize
8073
8074Because objects have to be stored via pointers, memory is not
8075reclaimed automatically: using the @code{%destructor} directive is the
8076only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8077Symbols}.
8078
8079
8080@node C++ Location Values
8081@subsection C++ Location Values
8082@c - %locations
8083@c - class Position
8084@c - class Location
16dc6a9e 8085@c - %define filename_type "const symbol::Symbol"
12545799
AD
8086
8087When the directive @code{%locations} is used, the C++ parser supports
8088location tracking, see @ref{Locations, , Locations Overview}. Two
8089auxiliary classes define a @code{position}, a single point in a file,
8090and a @code{location}, a range composed of a pair of
8091@code{position}s (possibly spanning several files).
8092
fa4d969f 8093@deftypemethod {position} {std::string*} file
12545799
AD
8094The name of the file. It will always be handled as a pointer, the
8095parser will never duplicate nor deallocate it. As an experimental
8096feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8097filename_type "@var{type}"}.
12545799
AD
8098@end deftypemethod
8099
8100@deftypemethod {position} {unsigned int} line
8101The line, starting at 1.
8102@end deftypemethod
8103
8104@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8105Advance by @var{height} lines, resetting the column number.
8106@end deftypemethod
8107
8108@deftypemethod {position} {unsigned int} column
8109The column, starting at 0.
8110@end deftypemethod
8111
8112@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8113Advance by @var{width} columns, without changing the line number.
8114@end deftypemethod
8115
8116@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8117@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8118@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8119@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8120Various forms of syntactic sugar for @code{columns}.
8121@end deftypemethod
8122
8123@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8124Report @var{p} on @var{o} like this:
fa4d969f
PE
8125@samp{@var{file}:@var{line}.@var{column}}, or
8126@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8127@end deftypemethod
8128
8129@deftypemethod {location} {position} begin
8130@deftypemethodx {location} {position} end
8131The first, inclusive, position of the range, and the first beyond.
8132@end deftypemethod
8133
8134@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8135@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8136Advance the @code{end} position.
8137@end deftypemethod
8138
8139@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8140@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8141@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8142Various forms of syntactic sugar.
8143@end deftypemethod
8144
8145@deftypemethod {location} {void} step ()
8146Move @code{begin} onto @code{end}.
8147@end deftypemethod
8148
8149
8150@node C++ Parser Interface
8151@subsection C++ Parser Interface
8152@c - define parser_class_name
8153@c - Ctor
8154@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8155@c debug_stream.
8156@c - Reporting errors
8157
8158The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8159declare and define the parser class in the namespace @code{yy}. The
8160class name defaults to @code{parser}, but may be changed using
16dc6a9e 8161@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8162this class is detailed below. It can be extended using the
12545799
AD
8163@code{%parse-param} feature: its semantics is slightly changed since
8164it describes an additional member of the parser class, and an
8165additional argument for its constructor.
8166
8a0adb01
AD
8167@defcv {Type} {parser} {semantic_value_type}
8168@defcvx {Type} {parser} {location_value_type}
12545799 8169The types for semantics value and locations.
8a0adb01 8170@end defcv
12545799
AD
8171
8172@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8173Build a new parser object. There are no arguments by default, unless
8174@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8175@end deftypemethod
8176
8177@deftypemethod {parser} {int} parse ()
8178Run the syntactic analysis, and return 0 on success, 1 otherwise.
8179@end deftypemethod
8180
8181@deftypemethod {parser} {std::ostream&} debug_stream ()
8182@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8183Get or set the stream used for tracing the parsing. It defaults to
8184@code{std::cerr}.
8185@end deftypemethod
8186
8187@deftypemethod {parser} {debug_level_type} debug_level ()
8188@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8189Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8190or nonzero, full tracing.
12545799
AD
8191@end deftypemethod
8192
8193@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
8194The definition for this member function must be supplied by the user:
8195the parser uses it to report a parser error occurring at @var{l},
8196described by @var{m}.
8197@end deftypemethod
8198
8199
8200@node C++ Scanner Interface
8201@subsection C++ Scanner Interface
8202@c - prefix for yylex.
8203@c - Pure interface to yylex
8204@c - %lex-param
8205
8206The parser invokes the scanner by calling @code{yylex}. Contrary to C
8207parsers, C++ parsers are always pure: there is no point in using the
d9df47b6 8208@code{%define api.pure} directive. Therefore the interface is as follows.
12545799
AD
8209
8210@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
8211Return the next token. Its type is the return value, its semantic
8212value and location being @var{yylval} and @var{yylloc}. Invocations of
8213@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8214@end deftypemethod
8215
8216
8217@node A Complete C++ Example
8405b70c 8218@subsection A Complete C++ Example
12545799
AD
8219
8220This section demonstrates the use of a C++ parser with a simple but
8221complete example. This example should be available on your system,
8222ready to compile, in the directory @dfn{../bison/examples/calc++}. It
8223focuses on the use of Bison, therefore the design of the various C++
8224classes is very naive: no accessors, no encapsulation of members etc.
8225We will use a Lex scanner, and more precisely, a Flex scanner, to
8226demonstrate the various interaction. A hand written scanner is
8227actually easier to interface with.
8228
8229@menu
8230* Calc++ --- C++ Calculator:: The specifications
8231* Calc++ Parsing Driver:: An active parsing context
8232* Calc++ Parser:: A parser class
8233* Calc++ Scanner:: A pure C++ Flex scanner
8234* Calc++ Top Level:: Conducting the band
8235@end menu
8236
8237@node Calc++ --- C++ Calculator
8405b70c 8238@subsubsection Calc++ --- C++ Calculator
12545799
AD
8239
8240Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 8241expression, possibly preceded by variable assignments. An
12545799
AD
8242environment containing possibly predefined variables such as
8243@code{one} and @code{two}, is exchanged with the parser. An example
8244of valid input follows.
8245
8246@example
8247three := 3
8248seven := one + two * three
8249seven * seven
8250@end example
8251
8252@node Calc++ Parsing Driver
8405b70c 8253@subsubsection Calc++ Parsing Driver
12545799
AD
8254@c - An env
8255@c - A place to store error messages
8256@c - A place for the result
8257
8258To support a pure interface with the parser (and the scanner) the
8259technique of the ``parsing context'' is convenient: a structure
8260containing all the data to exchange. Since, in addition to simply
8261launch the parsing, there are several auxiliary tasks to execute (open
8262the file for parsing, instantiate the parser etc.), we recommend
8263transforming the simple parsing context structure into a fully blown
8264@dfn{parsing driver} class.
8265
8266The declaration of this driver class, @file{calc++-driver.hh}, is as
8267follows. The first part includes the CPP guard and imports the
fb9712a9
AD
8268required standard library components, and the declaration of the parser
8269class.
12545799 8270
1c59e0a1 8271@comment file: calc++-driver.hh
12545799
AD
8272@example
8273#ifndef CALCXX_DRIVER_HH
8274# define CALCXX_DRIVER_HH
8275# include <string>
8276# include <map>
fb9712a9 8277# include "calc++-parser.hh"
12545799
AD
8278@end example
8279
12545799
AD
8280
8281@noindent
8282Then comes the declaration of the scanning function. Flex expects
8283the signature of @code{yylex} to be defined in the macro
8284@code{YY_DECL}, and the C++ parser expects it to be declared. We can
8285factor both as follows.
1c59e0a1
AD
8286
8287@comment file: calc++-driver.hh
12545799 8288@example
3dc5e96b
PE
8289// Tell Flex the lexer's prototype ...
8290# define YY_DECL \
c095d689
AD
8291 yy::calcxx_parser::token_type \
8292 yylex (yy::calcxx_parser::semantic_type* yylval, \
8293 yy::calcxx_parser::location_type* yylloc, \
8294 calcxx_driver& driver)
12545799
AD
8295// ... and declare it for the parser's sake.
8296YY_DECL;
8297@end example
8298
8299@noindent
8300The @code{calcxx_driver} class is then declared with its most obvious
8301members.
8302
1c59e0a1 8303@comment file: calc++-driver.hh
12545799
AD
8304@example
8305// Conducting the whole scanning and parsing of Calc++.
8306class calcxx_driver
8307@{
8308public:
8309 calcxx_driver ();
8310 virtual ~calcxx_driver ();
8311
8312 std::map<std::string, int> variables;
8313
8314 int result;
8315@end example
8316
8317@noindent
8318To encapsulate the coordination with the Flex scanner, it is useful to
8319have two members function to open and close the scanning phase.
12545799 8320
1c59e0a1 8321@comment file: calc++-driver.hh
12545799
AD
8322@example
8323 // Handling the scanner.
8324 void scan_begin ();
8325 void scan_end ();
8326 bool trace_scanning;
8327@end example
8328
8329@noindent
8330Similarly for the parser itself.
8331
1c59e0a1 8332@comment file: calc++-driver.hh
12545799 8333@example
bb32f4f2
AD
8334 // Run the parser. Return 0 on success.
8335 int parse (const std::string& f);
12545799
AD
8336 std::string file;
8337 bool trace_parsing;
8338@end example
8339
8340@noindent
8341To demonstrate pure handling of parse errors, instead of simply
8342dumping them on the standard error output, we will pass them to the
8343compiler driver using the following two member functions. Finally, we
8344close the class declaration and CPP guard.
8345
1c59e0a1 8346@comment file: calc++-driver.hh
12545799
AD
8347@example
8348 // Error handling.
8349 void error (const yy::location& l, const std::string& m);
8350 void error (const std::string& m);
8351@};
8352#endif // ! CALCXX_DRIVER_HH
8353@end example
8354
8355The implementation of the driver is straightforward. The @code{parse}
8356member function deserves some attention. The @code{error} functions
8357are simple stubs, they should actually register the located error
8358messages and set error state.
8359
1c59e0a1 8360@comment file: calc++-driver.cc
12545799
AD
8361@example
8362#include "calc++-driver.hh"
8363#include "calc++-parser.hh"
8364
8365calcxx_driver::calcxx_driver ()
8366 : trace_scanning (false), trace_parsing (false)
8367@{
8368 variables["one"] = 1;
8369 variables["two"] = 2;
8370@}
8371
8372calcxx_driver::~calcxx_driver ()
8373@{
8374@}
8375
bb32f4f2 8376int
12545799
AD
8377calcxx_driver::parse (const std::string &f)
8378@{
8379 file = f;
8380 scan_begin ();
8381 yy::calcxx_parser parser (*this);
8382 parser.set_debug_level (trace_parsing);
bb32f4f2 8383 int res = parser.parse ();
12545799 8384 scan_end ();
bb32f4f2 8385 return res;
12545799
AD
8386@}
8387
8388void
8389calcxx_driver::error (const yy::location& l, const std::string& m)
8390@{
8391 std::cerr << l << ": " << m << std::endl;
8392@}
8393
8394void
8395calcxx_driver::error (const std::string& m)
8396@{
8397 std::cerr << m << std::endl;
8398@}
8399@end example
8400
8401@node Calc++ Parser
8405b70c 8402@subsubsection Calc++ Parser
12545799 8403
b50d2359
AD
8404The parser definition file @file{calc++-parser.yy} starts by asking for
8405the C++ LALR(1) skeleton, the creation of the parser header file, and
8406specifies the name of the parser class. Because the C++ skeleton
8407changed several times, it is safer to require the version you designed
8408the grammar for.
1c59e0a1
AD
8409
8410@comment file: calc++-parser.yy
12545799 8411@example
0e021770 8412%language "C++" /* -*- C++ -*- */
e6e704dc 8413%require "@value{VERSION}"
12545799 8414%defines
16dc6a9e 8415%define parser_class_name "calcxx_parser"
fb9712a9
AD
8416@end example
8417
8418@noindent
16dc6a9e 8419@findex %code requires
fb9712a9
AD
8420Then come the declarations/inclusions needed to define the
8421@code{%union}. Because the parser uses the parsing driver and
8422reciprocally, both cannot include the header of the other. Because the
8423driver's header needs detailed knowledge about the parser class (in
8424particular its inner types), it is the parser's header which will simply
8425use a forward declaration of the driver.
148d66d8 8426@xref{Decl Summary, ,%code}.
fb9712a9
AD
8427
8428@comment file: calc++-parser.yy
8429@example
16dc6a9e 8430%code requires @{
12545799 8431# include <string>
fb9712a9 8432class calcxx_driver;
9bc0dd67 8433@}
12545799
AD
8434@end example
8435
8436@noindent
8437The driver is passed by reference to the parser and to the scanner.
8438This provides a simple but effective pure interface, not relying on
8439global variables.
8440
1c59e0a1 8441@comment file: calc++-parser.yy
12545799
AD
8442@example
8443// The parsing context.
8444%parse-param @{ calcxx_driver& driver @}
8445%lex-param @{ calcxx_driver& driver @}
8446@end example
8447
8448@noindent
8449Then we request the location tracking feature, and initialize the
8450first location's file name. Afterwards new locations are computed
8451relatively to the previous locations: the file name will be
8452automatically propagated.
8453
1c59e0a1 8454@comment file: calc++-parser.yy
12545799
AD
8455@example
8456%locations
8457%initial-action
8458@{
8459 // Initialize the initial location.
b47dbebe 8460 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
8461@};
8462@end example
8463
8464@noindent
8465Use the two following directives to enable parser tracing and verbose
8466error messages.
8467
1c59e0a1 8468@comment file: calc++-parser.yy
12545799
AD
8469@example
8470%debug
8471%error-verbose
8472@end example
8473
8474@noindent
8475Semantic values cannot use ``real'' objects, but only pointers to
8476them.
8477
1c59e0a1 8478@comment file: calc++-parser.yy
12545799
AD
8479@example
8480// Symbols.
8481%union
8482@{
8483 int ival;
8484 std::string *sval;
8485@};
8486@end example
8487
fb9712a9 8488@noindent
136a0f76
PB
8489@findex %code
8490The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 8491@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
8492
8493@comment file: calc++-parser.yy
8494@example
136a0f76 8495%code @{
fb9712a9 8496# include "calc++-driver.hh"
34f98f46 8497@}
fb9712a9
AD
8498@end example
8499
8500
12545799
AD
8501@noindent
8502The token numbered as 0 corresponds to end of file; the following line
8503allows for nicer error messages referring to ``end of file'' instead
8504of ``$end''. Similarly user friendly named are provided for each
8505symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
8506avoid name clashes.
8507
1c59e0a1 8508@comment file: calc++-parser.yy
12545799 8509@example
fb9712a9
AD
8510%token END 0 "end of file"
8511%token ASSIGN ":="
8512%token <sval> IDENTIFIER "identifier"
8513%token <ival> NUMBER "number"
a8c2e813 8514%type <ival> exp
12545799
AD
8515@end example
8516
8517@noindent
8518To enable memory deallocation during error recovery, use
8519@code{%destructor}.
8520
287c78f6 8521@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 8522@comment file: calc++-parser.yy
12545799
AD
8523@example
8524%printer @{ debug_stream () << *$$; @} "identifier"
8525%destructor @{ delete $$; @} "identifier"
8526
a8c2e813 8527%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
8528@end example
8529
8530@noindent
8531The grammar itself is straightforward.
8532
1c59e0a1 8533@comment file: calc++-parser.yy
12545799
AD
8534@example
8535%%
8536%start unit;
8537unit: assignments exp @{ driver.result = $2; @};
8538
8539assignments: assignments assignment @{@}
9d9b8b70 8540 | /* Nothing. */ @{@};
12545799 8541
3dc5e96b
PE
8542assignment:
8543 "identifier" ":=" exp
8544 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
8545
8546%left '+' '-';
8547%left '*' '/';
8548exp: exp '+' exp @{ $$ = $1 + $3; @}
8549 | exp '-' exp @{ $$ = $1 - $3; @}
8550 | exp '*' exp @{ $$ = $1 * $3; @}
8551 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 8552 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 8553 | "number" @{ $$ = $1; @};
12545799
AD
8554%%
8555@end example
8556
8557@noindent
8558Finally the @code{error} member function registers the errors to the
8559driver.
8560
1c59e0a1 8561@comment file: calc++-parser.yy
12545799
AD
8562@example
8563void
1c59e0a1
AD
8564yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
8565 const std::string& m)
12545799
AD
8566@{
8567 driver.error (l, m);
8568@}
8569@end example
8570
8571@node Calc++ Scanner
8405b70c 8572@subsubsection Calc++ Scanner
12545799
AD
8573
8574The Flex scanner first includes the driver declaration, then the
8575parser's to get the set of defined tokens.
8576
1c59e0a1 8577@comment file: calc++-scanner.ll
12545799
AD
8578@example
8579%@{ /* -*- C++ -*- */
04098407
PE
8580# include <cstdlib>
8581# include <errno.h>
8582# include <limits.h>
12545799
AD
8583# include <string>
8584# include "calc++-driver.hh"
8585# include "calc++-parser.hh"
eaea13f5
PE
8586
8587/* Work around an incompatibility in flex (at least versions
8588 2.5.31 through 2.5.33): it generates code that does
8589 not conform to C89. See Debian bug 333231
8590 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
8591# undef yywrap
8592# define yywrap() 1
eaea13f5 8593
c095d689
AD
8594/* By default yylex returns int, we use token_type.
8595 Unfortunately yyterminate by default returns 0, which is
8596 not of token_type. */
8c5b881d 8597#define yyterminate() return token::END
12545799
AD
8598%@}
8599@end example
8600
8601@noindent
8602Because there is no @code{#include}-like feature we don't need
8603@code{yywrap}, we don't need @code{unput} either, and we parse an
8604actual file, this is not an interactive session with the user.
8605Finally we enable the scanner tracing features.
8606
1c59e0a1 8607@comment file: calc++-scanner.ll
12545799
AD
8608@example
8609%option noyywrap nounput batch debug
8610@end example
8611
8612@noindent
8613Abbreviations allow for more readable rules.
8614
1c59e0a1 8615@comment file: calc++-scanner.ll
12545799
AD
8616@example
8617id [a-zA-Z][a-zA-Z_0-9]*
8618int [0-9]+
8619blank [ \t]
8620@end example
8621
8622@noindent
9d9b8b70 8623The following paragraph suffices to track locations accurately. Each
12545799
AD
8624time @code{yylex} is invoked, the begin position is moved onto the end
8625position. Then when a pattern is matched, the end position is
8626advanced of its width. In case it matched ends of lines, the end
8627cursor is adjusted, and each time blanks are matched, the begin cursor
8628is moved onto the end cursor to effectively ignore the blanks
8629preceding tokens. Comments would be treated equally.
8630
1c59e0a1 8631@comment file: calc++-scanner.ll
12545799 8632@example
828c373b
AD
8633%@{
8634# define YY_USER_ACTION yylloc->columns (yyleng);
8635%@}
12545799
AD
8636%%
8637%@{
8638 yylloc->step ();
12545799
AD
8639%@}
8640@{blank@}+ yylloc->step ();
8641[\n]+ yylloc->lines (yyleng); yylloc->step ();
8642@end example
8643
8644@noindent
fb9712a9
AD
8645The rules are simple, just note the use of the driver to report errors.
8646It is convenient to use a typedef to shorten
8647@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 8648@code{token::identifier} for instance.
12545799 8649
1c59e0a1 8650@comment file: calc++-scanner.ll
12545799 8651@example
fb9712a9
AD
8652%@{
8653 typedef yy::calcxx_parser::token token;
8654%@}
8c5b881d 8655 /* Convert ints to the actual type of tokens. */
c095d689 8656[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 8657":=" return token::ASSIGN;
04098407
PE
8658@{int@} @{
8659 errno = 0;
8660 long n = strtol (yytext, NULL, 10);
8661 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
8662 driver.error (*yylloc, "integer is out of range");
8663 yylval->ival = n;
fb9712a9 8664 return token::NUMBER;
04098407 8665@}
fb9712a9 8666@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
8667. driver.error (*yylloc, "invalid character");
8668%%
8669@end example
8670
8671@noindent
8672Finally, because the scanner related driver's member function depend
8673on the scanner's data, it is simpler to implement them in this file.
8674
1c59e0a1 8675@comment file: calc++-scanner.ll
12545799
AD
8676@example
8677void
8678calcxx_driver::scan_begin ()
8679@{
8680 yy_flex_debug = trace_scanning;
bb32f4f2
AD
8681 if (file == "-")
8682 yyin = stdin;
8683 else if (!(yyin = fopen (file.c_str (), "r")))
8684 @{
8685 error (std::string ("cannot open ") + file);
8686 exit (1);
8687 @}
12545799
AD
8688@}
8689
8690void
8691calcxx_driver::scan_end ()
8692@{
8693 fclose (yyin);
8694@}
8695@end example
8696
8697@node Calc++ Top Level
8405b70c 8698@subsubsection Calc++ Top Level
12545799
AD
8699
8700The top level file, @file{calc++.cc}, poses no problem.
8701
1c59e0a1 8702@comment file: calc++.cc
12545799
AD
8703@example
8704#include <iostream>
8705#include "calc++-driver.hh"
8706
8707int
fa4d969f 8708main (int argc, char *argv[])
12545799
AD
8709@{
8710 calcxx_driver driver;
8711 for (++argv; argv[0]; ++argv)
8712 if (*argv == std::string ("-p"))
8713 driver.trace_parsing = true;
8714 else if (*argv == std::string ("-s"))
8715 driver.trace_scanning = true;
bb32f4f2
AD
8716 else if (!driver.parse (*argv))
8717 std::cout << driver.result << std::endl;
12545799
AD
8718@}
8719@end example
8720
8405b70c
PB
8721@node Java Parsers
8722@section Java Parsers
8723
8724@menu
8725* Java Bison Interface:: Asking for Java parser generation
8726* Java Semantic Values:: %type and %token vs. Java
8727* Java Location Values:: The position and location classes
8728* Java Parser Interface:: Instantiating and running the parser
e254a580
DJ
8729* Java Scanner Interface:: Specifying the scanner for the parser
8730* Java Action Features:: Special features for use in actions.
8405b70c 8731* Java Differences:: Differences between C/C++ and Java Grammars
e254a580 8732* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
8733@end menu
8734
8735@node Java Bison Interface
8736@subsection Java Bison Interface
8737@c - %language "Java"
8405b70c 8738
59da312b
JD
8739(The current Java interface is experimental and may evolve.
8740More user feedback will help to stabilize it.)
8741
e254a580
DJ
8742The Java parser skeletons are selected using the @code{%language "Java"}
8743directive or the @option{-L java}/@option{--language=java} option.
8405b70c 8744
e254a580
DJ
8745@c FIXME: Documented bug.
8746When generating a Java parser, @code{bison @var{basename}.y} will create
8747a single Java source file named @file{@var{basename}.java}. Using an
8748input file without a @file{.y} suffix is currently broken. The basename
8749of the output file can be changed by the @code{%file-prefix} directive
8750or the @option{-p}/@option{--name-prefix} option. The entire output file
8751name can be changed by the @code{%output} directive or the
8752@option{-o}/@option{--output} option. The output file contains a single
8753class for the parser.
8405b70c 8754
e254a580 8755You can create documentation for generated parsers using Javadoc.
8405b70c 8756
e254a580
DJ
8757Contrary to C parsers, Java parsers do not use global variables; the
8758state of the parser is always local to an instance of the parser class.
8759Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
8760and @code{%define api.pure} directives does not do anything when used in
8761Java.
8405b70c 8762
e254a580
DJ
8763Push parsers are currently unsupported in Java and @code{%define
8764api.push_pull} have no effect.
01b477c6 8765
e254a580
DJ
8766@acronym{GLR} parsers are currently unsupported in Java. Do not use the
8767@code{glr-parser} directive.
8768
8769No header file can be generated for Java parsers. Do not use the
8770@code{%defines} directive or the @option{-d}/@option{--defines} options.
8771
8772@c FIXME: Possible code change.
8773Currently, support for debugging and verbose errors are always compiled
8774in. Thus the @code{%debug} and @code{%token-table} directives and the
8775@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
8776options have no effect. This may change in the future to eliminate
8777unused code in the generated parser, so use @code{%debug} and
8778@code{%verbose-error} explicitly if needed. Also, in the future the
8779@code{%token-table} directive might enable a public interface to
8780access the token names and codes.
8405b70c
PB
8781
8782@node Java Semantic Values
8783@subsection Java Semantic Values
8784@c - No %union, specify type in %type/%token.
8785@c - YYSTYPE
8786@c - Printer and destructor
8787
8788There is no @code{%union} directive in Java parsers. Instead, the
8789semantic values' types (class names) should be specified in the
8790@code{%type} or @code{%token} directive:
8791
8792@example
8793%type <Expression> expr assignment_expr term factor
8794%type <Integer> number
8795@end example
8796
8797By default, the semantic stack is declared to have @code{Object} members,
8798which means that the class types you specify can be of any class.
8799To improve the type safety of the parser, you can declare the common
e254a580
DJ
8800superclass of all the semantic values using the @code{%define stype}
8801directive. For example, after the following declaration:
8405b70c
PB
8802
8803@example
e254a580 8804%define stype "ASTNode"
8405b70c
PB
8805@end example
8806
8807@noindent
8808any @code{%type} or @code{%token} specifying a semantic type which
8809is not a subclass of ASTNode, will cause a compile-time error.
8810
e254a580 8811@c FIXME: Documented bug.
8405b70c
PB
8812Types used in the directives may be qualified with a package name.
8813Primitive data types are accepted for Java version 1.5 or later. Note
8814that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
8815Generic types may not be used; this is due to a limitation in the
8816implementation of Bison, and may change in future releases.
8405b70c
PB
8817
8818Java parsers do not support @code{%destructor}, since the language
8819adopts garbage collection. The parser will try to hold references
8820to semantic values for as little time as needed.
8821
8822Java parsers do not support @code{%printer}, as @code{toString()}
8823can be used to print the semantic values. This however may change
8824(in a backwards-compatible way) in future versions of Bison.
8825
8826
8827@node Java Location Values
8828@subsection Java Location Values
8829@c - %locations
8830@c - class Position
8831@c - class Location
8832
8833When the directive @code{%locations} is used, the Java parser
8834supports location tracking, see @ref{Locations, , Locations Overview}.
8835An auxiliary user-defined class defines a @dfn{position}, a single point
8836in a file; Bison itself defines a class representing a @dfn{location},
8837a range composed of a pair of positions (possibly spanning several
8838files). The location class is an inner class of the parser; the name
e254a580
DJ
8839is @code{Location} by default, and may also be renamed using
8840@code{%define location_type "@var{class-name}}.
8405b70c
PB
8841
8842The location class treats the position as a completely opaque value.
8843By default, the class name is @code{Position}, but this can be changed
e254a580
DJ
8844with @code{%define position_type "@var{class-name}"}. This class must
8845be supplied by the user.
8405b70c
PB
8846
8847
e254a580
DJ
8848@deftypeivar {Location} {Position} begin
8849@deftypeivarx {Location} {Position} end
8405b70c 8850The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
8851@end deftypeivar
8852
8853@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
8854Create a @code{Location} denoting an empty range located at a given point.
8855@end deftypeop
8405b70c 8856
e254a580
DJ
8857@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
8858Create a @code{Location} from the endpoints of the range.
8859@end deftypeop
8860
8861@deftypemethod {Location} {String} toString ()
8405b70c
PB
8862Prints the range represented by the location. For this to work
8863properly, the position class should override the @code{equals} and
8864@code{toString} methods appropriately.
8865@end deftypemethod
8866
8867
8868@node Java Parser Interface
8869@subsection Java Parser Interface
8870@c - define parser_class_name
8871@c - Ctor
8872@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8873@c debug_stream.
8874@c - Reporting errors
8875
e254a580
DJ
8876The name of the generated parser class defaults to @code{YYParser}. The
8877@code{YY} prefix may be changed using the @code{%name-prefix} directive
8878or the @option{-p}/@option{--name-prefix} option. Alternatively, use
8879@code{%define parser_class_name "@var{name}"} to give a custom name to
8880the class. The interface of this class is detailed below.
8405b70c 8881
e254a580
DJ
8882By default, the parser class has package visibility. A declaration
8883@code{%define public} will change to public visibility. Remember that,
8884according to the Java language specification, the name of the @file{.java}
8885file should match the name of the class in this case. Similarly, you can
8886use @code{abstract}, @code{final} and @code{strictfp} with the
8887@code{%define} declaration to add other modifiers to the parser class.
8888
8889The Java package name of the parser class can be specified using the
8890@code{%define package} directive. The superclass and the implemented
8891interfaces of the parser class can be specified with the @code{%define
8892extends} and @code{%define implements} directives.
8893
8894The parser class defines an inner class, @code{Location}, that is used
8895for location tracking (see @ref{Java Location Values}), and a inner
8896interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
8897these inner class/interface, and the members described in the interface
8898below, all the other members and fields are preceded with a @code{yy} or
8899@code{YY} prefix to avoid clashes with user code.
8900
8901@c FIXME: The following constants and variables are still undocumented:
8902@c @code{bisonVersion}, @code{bisonSkeleton} and @code{errorVerbose}.
8903
8904The parser class can be extended using the @code{%parse-param}
8905directive. Each occurrence of the directive will add a @code{protected
8906final} field to the parser class, and an argument to its constructor,
8907which initialize them automatically.
8908
8909Token names defined by @code{%token} and the predefined @code{EOF} token
8910name are added as constant fields to the parser class.
8911
8912@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
8913Build a new parser object with embedded @code{%code lexer}. There are
8914no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
8915used.
8916@end deftypeop
8917
8918@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
8919Build a new parser object using the specified scanner. There are no
8920additional parameters unless @code{%parse-param}s are used.
8921
8922If the scanner is defined by @code{%code lexer}, this constructor is
8923declared @code{protected} and is called automatically with a scanner
8924created with the correct @code{%lex-param}s.
8925@end deftypeop
8405b70c
PB
8926
8927@deftypemethod {YYParser} {boolean} parse ()
8928Run the syntactic analysis, and return @code{true} on success,
8929@code{false} otherwise.
8930@end deftypemethod
8931
01b477c6 8932@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 8933During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
8934from a syntax error.
8935@xref{Error Recovery}.
8405b70c
PB
8936@end deftypemethod
8937
8938@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
8939@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
8940Get or set the stream used for tracing the parsing. It defaults to
8941@code{System.err}.
8942@end deftypemethod
8943
8944@deftypemethod {YYParser} {int} getDebugLevel ()
8945@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
8946Get or set the tracing level. Currently its value is either 0, no trace,
8947or nonzero, full tracing.
8948@end deftypemethod
8949
8405b70c
PB
8950
8951@node Java Scanner Interface
8952@subsection Java Scanner Interface
01b477c6 8953@c - %code lexer
8405b70c 8954@c - %lex-param
01b477c6 8955@c - Lexer interface
8405b70c 8956
e254a580
DJ
8957There are two possible ways to interface a Bison-generated Java parser
8958with a scanner: the scanner may be defined by @code{%code lexer}, or
8959defined elsewhere. In either case, the scanner has to implement the
8960@code{Lexer} inner interface of the parser class.
8961
8962In the first case, the body of the scanner class is placed in
8963@code{%code lexer} blocks. If you want to pass parameters from the
8964parser constructor to the scanner constructor, specify them with
8965@code{%lex-param}; they are passed before @code{%parse-param}s to the
8966constructor.
01b477c6 8967
59c5ac72 8968In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
8969which is defined within the parser class (e.g., @code{YYParser.Lexer}).
8970The constructor of the parser object will then accept an object
8971implementing the interface; @code{%lex-param} is not used in this
8972case.
8973
8974In both cases, the scanner has to implement the following methods.
8975
e254a580
DJ
8976@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
8977This method is defined by the user to emit an error message. The first
8978parameter is omitted if location tracking is not active. Its type can be
8979changed using @code{%define location_type "@var{class-name}".}
8405b70c
PB
8980@end deftypemethod
8981
e254a580 8982@deftypemethod {Lexer} {int} yylex ()
8405b70c
PB
8983Return the next token. Its type is the return value, its semantic
8984value and location are saved and returned by the ther methods in the
e254a580
DJ
8985interface.
8986
8987Use @code{%define lex_throws} to specify any uncaught exceptions.
8988Default is @code{java.io.IOException}.
8405b70c
PB
8989@end deftypemethod
8990
8991@deftypemethod {Lexer} {Position} getStartPos ()
8992@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
8993Return respectively the first position of the last token that
8994@code{yylex} returned, and the first position beyond it. These
8995methods are not needed unless location tracking is active.
8405b70c 8996
e254a580 8997The return type can be changed using @code{%define position_type
8405b70c
PB
8998"@var{class-name}".}
8999@end deftypemethod
9000
9001@deftypemethod {Lexer} {Object} getLVal ()
59c5ac72 9002Return the semantical value of the last token that yylex returned.
8405b70c 9003
e254a580 9004The return type can be changed using @code{%define stype
8405b70c
PB
9005"@var{class-name}".}
9006@end deftypemethod
9007
9008
e254a580
DJ
9009@node Java Action Features
9010@subsection Special Features for Use in Java Actions
9011
9012The following special constructs can be uses in Java actions.
9013Other analogous C action features are currently unavailable for Java.
9014
9015Use @code{%define throws} to specify any uncaught exceptions from parser
9016actions, and initial actions specified by @code{%initial-action}.
9017
9018@defvar $@var{n}
9019The semantic value for the @var{n}th component of the current rule.
9020This may not be assigned to.
9021@xref{Java Semantic Values}.
9022@end defvar
9023
9024@defvar $<@var{typealt}>@var{n}
9025Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9026@xref{Java Semantic Values}.
9027@end defvar
9028
9029@defvar $$
9030The semantic value for the grouping made by the current rule. As a
9031value, this is in the base type (@code{Object} or as specified by
9032@code{%define stype}) as in not cast to the declared subtype because
9033casts are not allowed on the left-hand side of Java assignments.
9034Use an explicit Java cast if the correct subtype is needed.
9035@xref{Java Semantic Values}.
9036@end defvar
9037
9038@defvar $<@var{typealt}>$
9039Same as @code{$$} since Java always allow assigning to the base type.
9040Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9041for setting the value but there is currently no easy way to distinguish
9042these constructs.
9043@xref{Java Semantic Values}.
9044@end defvar
9045
9046@defvar @@@var{n}
9047The location information of the @var{n}th component of the current rule.
9048This may not be assigned to.
9049@xref{Java Location Values}.
9050@end defvar
9051
9052@defvar @@$
9053The location information of the grouping made by the current rule.
9054@xref{Java Location Values}.
9055@end defvar
9056
9057@deffn {Statement} {return YYABORT;}
9058Return immediately from the parser, indicating failure.
9059@xref{Java Parser Interface}.
9060@end deffn
8405b70c 9061
e254a580
DJ
9062@deffn {Statement} {return YYACCEPT;}
9063Return immediately from the parser, indicating success.
9064@xref{Java Parser Interface}.
9065@end deffn
8405b70c 9066
e254a580
DJ
9067@deffn {Statement} {return YYERROR;}
9068Start error recovery without printing an error message.
9069@xref{Error Recovery}.
9070@end deffn
8405b70c 9071
e254a580
DJ
9072@deffn {Statement} {return YYFAIL;}
9073Print an error message and start error recovery.
9074@xref{Error Recovery}.
9075@end deffn
8405b70c 9076
e254a580
DJ
9077@deftypefn {Function} {boolean} recovering ()
9078Return whether error recovery is being done. In this state, the parser
9079reads token until it reaches a known state, and then restarts normal
9080operation.
9081@xref{Error Recovery}.
9082@end deftypefn
8405b70c 9083
e254a580
DJ
9084@deftypefn {Function} {protected void} yyerror (String msg)
9085@deftypefnx {Function} {protected void} yyerror (Position pos, String msg)
9086@deftypefnx {Function} {protected void} yyerror (Location loc, String msg)
9087Print an error message using the @code{yyerror} method of the scanner
9088instance in use.
9089@end deftypefn
8405b70c 9090
8405b70c 9091
8405b70c
PB
9092@node Java Differences
9093@subsection Differences between C/C++ and Java Grammars
9094
9095The different structure of the Java language forces several differences
9096between C/C++ grammars, and grammars designed for Java parsers. This
29553547 9097section summarizes these differences.
8405b70c
PB
9098
9099@itemize
9100@item
01b477c6 9101Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 9102@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
9103macros. Instead, they should be preceded by @code{return} when they
9104appear in an action. The actual definition of these symbols is
8405b70c
PB
9105opaque to the Bison grammar, and it might change in the future. The
9106only meaningful operation that you can do, is to return them.
e254a580 9107See @pxref{Java Action Features}.
8405b70c
PB
9108
9109Note that of these three symbols, only @code{YYACCEPT} and
9110@code{YYABORT} will cause a return from the @code{yyparse}
9111method@footnote{Java parsers include the actions in a separate
9112method than @code{yyparse} in order to have an intuitive syntax that
9113corresponds to these C macros.}.
9114
e254a580
DJ
9115@item
9116Java lacks unions, so @code{%union} has no effect. Instead, semantic
9117values have a common base type: @code{Object} or as specified by
9118@code{%define stype}. Angle backets on @code{%token}, @code{type},
9119@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
9120an union. The type of @code{$$}, even with angle brackets, is the base
9121type since Java casts are not allow on the left-hand side of assignments.
9122Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
9123left-hand side of assignments. See @pxref{Java Semantic Values} and
9124@pxref{Java Action Features}.
9125
8405b70c
PB
9126@item
9127The prolog declarations have a different meaning than in C/C++ code.
01b477c6
PB
9128@table @asis
9129@item @code{%code imports}
9130blocks are placed at the beginning of the Java source code. They may
9131include copyright notices. For a @code{package} declarations, it is
9132suggested to use @code{%define package} instead.
8405b70c 9133
01b477c6
PB
9134@item unqualified @code{%code}
9135blocks are placed inside the parser class.
9136
9137@item @code{%code lexer}
9138blocks, if specified, should include the implementation of the
9139scanner. If there is no such block, the scanner can be any class
9140that implements the appropriate interface (see @pxref{Java Scanner
9141Interface}).
29553547 9142@end table
8405b70c
PB
9143
9144Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
9145In particular, @code{%@{ @dots{} %@}} blocks should not be used
9146and may give an error in future versions of Bison.
9147
01b477c6 9148The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
9149be used to define other classes used by the parser @emph{outside}
9150the parser class.
8405b70c
PB
9151@end itemize
9152
e254a580
DJ
9153
9154@node Java Declarations Summary
9155@subsection Java Declarations Summary
9156
9157This summary only include declarations specific to Java or have special
9158meaning when used in a Java parser.
9159
9160@deffn {Directive} {%language "Java"}
9161Generate a Java class for the parser.
9162@end deffn
9163
9164@deffn {Directive} %lex-param @{@var{type} @var{name}@}
9165A parameter for the lexer class defined by @code{%code lexer}
9166@emph{only}, added as parameters to the lexer constructor and the parser
9167constructor that @emph{creates} a lexer. Default is none.
9168@xref{Java Scanner Interface}.
9169@end deffn
9170
9171@deffn {Directive} %name-prefix "@var{prefix}"
9172The prefix of the parser class name @code{@var{prefix}Parser} if
9173@code{%define parser_class_name} is not used. Default is @code{YY}.
9174@xref{Java Bison Interface}.
9175@end deffn
9176
9177@deffn {Directive} %parse-param @{@var{type} @var{name}@}
9178A parameter for the parser class added as parameters to constructor(s)
9179and as fields initialized by the constructor(s). Default is none.
9180@xref{Java Parser Interface}.
9181@end deffn
9182
9183@deffn {Directive} %token <@var{type}> @var{token} @dots{}
9184Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
9185@xref{Java Semantic Values}.
9186@end deffn
9187
9188@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
9189Declare the type of nonterminals. Note that the angle brackets enclose
9190a Java @emph{type}.
9191@xref{Java Semantic Values}.
9192@end deffn
9193
9194@deffn {Directive} %code @{ @var{code} @dots{} @}
9195Code appended to the inside of the parser class.
9196@xref{Java Differences}.
9197@end deffn
9198
9199@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
9200Code inserted just after the @code{package} declaration.
9201@xref{Java Differences}.
9202@end deffn
9203
9204@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
9205Code added to the body of a inner lexer class within the parser class.
9206@xref{Java Scanner Interface}.
9207@end deffn
9208
9209@deffn {Directive} %% @var{code} @dots{}
9210Code (after the second @code{%%}) appended to the end of the file,
9211@emph{outside} the parser class.
9212@xref{Java Differences}.
9213@end deffn
9214
9215@deffn {Directive} %@{ @var{code} @dots{} %@}
9216Not supported. Use @code{%code import} instead.
9217@xref{Java Differences}.
9218@end deffn
9219
9220@deffn {Directive} {%define abstract}
9221Whether the parser class is declared @code{abstract}. Default is false.
9222@xref{Java Bison Interface}.
9223@end deffn
9224
9225@deffn {Directive} {%define extends} "@var{superclass}"
9226The superclass of the parser class. Default is none.
9227@xref{Java Bison Interface}.
9228@end deffn
9229
9230@deffn {Directive} {%define final}
9231Whether the parser class is declared @code{final}. Default is false.
9232@xref{Java Bison Interface}.
9233@end deffn
9234
9235@deffn {Directive} {%define implements} "@var{interfaces}"
9236The implemented interfaces of the parser class, a comma-separated list.
9237Default is none.
9238@xref{Java Bison Interface}.
9239@end deffn
9240
9241@deffn {Directive} {%define lex_throws} "@var{exceptions}"
9242The exceptions thrown by the @code{yylex} method of the lexer, a
9243comma-separated list. Default is @code{java.io.IOException}.
9244@xref{Java Scanner Interface}.
9245@end deffn
9246
9247@deffn {Directive} {%define location_type} "@var{class}"
9248The name of the class used for locations (a range between two
9249positions). This class is generated as an inner class of the parser
9250class by @command{bison}. Default is @code{Location}.
9251@xref{Java Location Values}.
9252@end deffn
9253
9254@deffn {Directive} {%define package} "@var{package}"
9255The package to put the parser class in. Default is none.
9256@xref{Java Bison Interface}.
9257@end deffn
9258
9259@deffn {Directive} {%define parser_class_name} "@var{name}"
9260The name of the parser class. Default is @code{YYParser} or
9261@code{@var{name-prefix}Parser}.
9262@xref{Java Bison Interface}.
9263@end deffn
9264
9265@deffn {Directive} {%define position_type} "@var{class}"
9266The name of the class used for positions. This class must be supplied by
9267the user. Default is @code{Position}.
9268@xref{Java Location Values}.
9269@end deffn
9270
9271@deffn {Directive} {%define public}
9272Whether the parser class is declared @code{public}. Default is false.
9273@xref{Java Bison Interface}.
9274@end deffn
9275
9276@deffn {Directive} {%define stype} "@var{class}"
9277The base type of semantic values. Default is @code{Object}.
9278@xref{Java Semantic Values}.
9279@end deffn
9280
9281@deffn {Directive} {%define strictfp}
9282Whether the parser class is declared @code{strictfp}. Default is false.
9283@xref{Java Bison Interface}.
9284@end deffn
9285
9286@deffn {Directive} {%define throws} "@var{exceptions}"
9287The exceptions thrown by user-supplied parser actions and
9288@code{%initial-action}, a comma-separated list. Default is none.
9289@xref{Java Parser Interface}.
9290@end deffn
9291
9292
12545799 9293@c ================================================= FAQ
d1a1114f
AD
9294
9295@node FAQ
9296@chapter Frequently Asked Questions
9297@cindex frequently asked questions
9298@cindex questions
9299
9300Several questions about Bison come up occasionally. Here some of them
9301are addressed.
9302
9303@menu
55ba27be
AD
9304* Memory Exhausted:: Breaking the Stack Limits
9305* How Can I Reset the Parser:: @code{yyparse} Keeps some State
9306* Strings are Destroyed:: @code{yylval} Loses Track of Strings
9307* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 9308* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
9309* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
9310* I can't build Bison:: Troubleshooting
9311* Where can I find help?:: Troubleshouting
9312* Bug Reports:: Troublereporting
8405b70c 9313* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
9314* Beta Testing:: Experimenting development versions
9315* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
9316@end menu
9317
1a059451
PE
9318@node Memory Exhausted
9319@section Memory Exhausted
d1a1114f
AD
9320
9321@display
1a059451 9322My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
9323message. What can I do?
9324@end display
9325
9326This question is already addressed elsewhere, @xref{Recursion,
9327,Recursive Rules}.
9328
e64fec0a
PE
9329@node How Can I Reset the Parser
9330@section How Can I Reset the Parser
5b066063 9331
0e14ad77
PE
9332The following phenomenon has several symptoms, resulting in the
9333following typical questions:
5b066063
AD
9334
9335@display
9336I invoke @code{yyparse} several times, and on correct input it works
9337properly; but when a parse error is found, all the other calls fail
0e14ad77 9338too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
9339@end display
9340
9341@noindent
9342or
9343
9344@display
0e14ad77 9345My parser includes support for an @samp{#include}-like feature, in
5b066063 9346which case I run @code{yyparse} from @code{yyparse}. This fails
d9df47b6 9347although I did specify @code{%define api.pure}.
5b066063
AD
9348@end display
9349
0e14ad77
PE
9350These problems typically come not from Bison itself, but from
9351Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
9352speed, they might not notice a change of input file. As a
9353demonstration, consider the following source file,
9354@file{first-line.l}:
9355
9356@verbatim
9357%{
9358#include <stdio.h>
9359#include <stdlib.h>
9360%}
9361%%
9362.*\n ECHO; return 1;
9363%%
9364int
0e14ad77 9365yyparse (char const *file)
5b066063
AD
9366{
9367 yyin = fopen (file, "r");
9368 if (!yyin)
9369 exit (2);
fa7e68c3 9370 /* One token only. */
5b066063 9371 yylex ();
0e14ad77 9372 if (fclose (yyin) != 0)
5b066063
AD
9373 exit (3);
9374 return 0;
9375}
9376
9377int
0e14ad77 9378main (void)
5b066063
AD
9379{
9380 yyparse ("input");
9381 yyparse ("input");
9382 return 0;
9383}
9384@end verbatim
9385
9386@noindent
9387If the file @file{input} contains
9388
9389@verbatim
9390input:1: Hello,
9391input:2: World!
9392@end verbatim
9393
9394@noindent
0e14ad77 9395then instead of getting the first line twice, you get:
5b066063
AD
9396
9397@example
9398$ @kbd{flex -ofirst-line.c first-line.l}
9399$ @kbd{gcc -ofirst-line first-line.c -ll}
9400$ @kbd{./first-line}
9401input:1: Hello,
9402input:2: World!
9403@end example
9404
0e14ad77
PE
9405Therefore, whenever you change @code{yyin}, you must tell the
9406Lex-generated scanner to discard its current buffer and switch to the
9407new one. This depends upon your implementation of Lex; see its
9408documentation for more. For Flex, it suffices to call
9409@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
9410Flex-generated scanner needs to read from several input streams to
9411handle features like include files, you might consider using Flex
9412functions like @samp{yy_switch_to_buffer} that manipulate multiple
9413input buffers.
5b066063 9414
b165c324
AD
9415If your Flex-generated scanner uses start conditions (@pxref{Start
9416conditions, , Start conditions, flex, The Flex Manual}), you might
9417also want to reset the scanner's state, i.e., go back to the initial
9418start condition, through a call to @samp{BEGIN (0)}.
9419
fef4cb51
AD
9420@node Strings are Destroyed
9421@section Strings are Destroyed
9422
9423@display
c7e441b4 9424My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
9425them. Instead of reporting @samp{"foo", "bar"}, it reports
9426@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
9427@end display
9428
9429This error is probably the single most frequent ``bug report'' sent to
9430Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 9431of the scanner. Consider the following Lex code:
fef4cb51
AD
9432
9433@verbatim
9434%{
9435#include <stdio.h>
9436char *yylval = NULL;
9437%}
9438%%
9439.* yylval = yytext; return 1;
9440\n /* IGNORE */
9441%%
9442int
9443main ()
9444{
fa7e68c3 9445 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
9446 char *fst = (yylex (), yylval);
9447 char *snd = (yylex (), yylval);
9448 printf ("\"%s\", \"%s\"\n", fst, snd);
9449 return 0;
9450}
9451@end verbatim
9452
9453If you compile and run this code, you get:
9454
9455@example
9456$ @kbd{flex -osplit-lines.c split-lines.l}
9457$ @kbd{gcc -osplit-lines split-lines.c -ll}
9458$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9459"one
9460two", "two"
9461@end example
9462
9463@noindent
9464this is because @code{yytext} is a buffer provided for @emph{reading}
9465in the action, but if you want to keep it, you have to duplicate it
9466(e.g., using @code{strdup}). Note that the output may depend on how
9467your implementation of Lex handles @code{yytext}. For instance, when
9468given the Lex compatibility option @option{-l} (which triggers the
9469option @samp{%array}) Flex generates a different behavior:
9470
9471@example
9472$ @kbd{flex -l -osplit-lines.c split-lines.l}
9473$ @kbd{gcc -osplit-lines split-lines.c -ll}
9474$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9475"two", "two"
9476@end example
9477
9478
2fa09258
AD
9479@node Implementing Gotos/Loops
9480@section Implementing Gotos/Loops
a06ea4aa
AD
9481
9482@display
9483My simple calculator supports variables, assignments, and functions,
2fa09258 9484but how can I implement gotos, or loops?
a06ea4aa
AD
9485@end display
9486
9487Although very pedagogical, the examples included in the document blur
a1c84f45 9488the distinction to make between the parser---whose job is to recover
a06ea4aa 9489the structure of a text and to transmit it to subsequent modules of
a1c84f45 9490the program---and the processing (such as the execution) of this
a06ea4aa
AD
9491structure. This works well with so called straight line programs,
9492i.e., precisely those that have a straightforward execution model:
9493execute simple instructions one after the others.
9494
9495@cindex abstract syntax tree
9496@cindex @acronym{AST}
9497If you want a richer model, you will probably need to use the parser
9498to construct a tree that does represent the structure it has
9499recovered; this tree is usually called the @dfn{abstract syntax tree},
9500or @dfn{@acronym{AST}} for short. Then, walking through this tree,
9501traversing it in various ways, will enable treatments such as its
9502execution or its translation, which will result in an interpreter or a
9503compiler.
9504
9505This topic is way beyond the scope of this manual, and the reader is
9506invited to consult the dedicated literature.
9507
9508
ed2e6384
AD
9509@node Multiple start-symbols
9510@section Multiple start-symbols
9511
9512@display
9513I have several closely related grammars, and I would like to share their
9514implementations. In fact, I could use a single grammar but with
9515multiple entry points.
9516@end display
9517
9518Bison does not support multiple start-symbols, but there is a very
9519simple means to simulate them. If @code{foo} and @code{bar} are the two
9520pseudo start-symbols, then introduce two new tokens, say
9521@code{START_FOO} and @code{START_BAR}, and use them as switches from the
9522real start-symbol:
9523
9524@example
9525%token START_FOO START_BAR;
9526%start start;
9527start: START_FOO foo
9528 | START_BAR bar;
9529@end example
9530
9531These tokens prevents the introduction of new conflicts. As far as the
9532parser goes, that is all that is needed.
9533
9534Now the difficult part is ensuring that the scanner will send these
9535tokens first. If your scanner is hand-written, that should be
9536straightforward. If your scanner is generated by Lex, them there is
9537simple means to do it: recall that anything between @samp{%@{ ... %@}}
9538after the first @code{%%} is copied verbatim in the top of the generated
9539@code{yylex} function. Make sure a variable @code{start_token} is
9540available in the scanner (e.g., a global variable or using
9541@code{%lex-param} etc.), and use the following:
9542
9543@example
9544 /* @r{Prologue.} */
9545%%
9546%@{
9547 if (start_token)
9548 @{
9549 int t = start_token;
9550 start_token = 0;
9551 return t;
9552 @}
9553%@}
9554 /* @r{The rules.} */
9555@end example
9556
9557
55ba27be
AD
9558@node Secure? Conform?
9559@section Secure? Conform?
9560
9561@display
9562Is Bison secure? Does it conform to POSIX?
9563@end display
9564
9565If you're looking for a guarantee or certification, we don't provide it.
9566However, Bison is intended to be a reliable program that conforms to the
9567@acronym{POSIX} specification for Yacc. If you run into problems,
9568please send us a bug report.
9569
9570@node I can't build Bison
9571@section I can't build Bison
9572
9573@display
8c5b881d
PE
9574I can't build Bison because @command{make} complains that
9575@code{msgfmt} is not found.
55ba27be
AD
9576What should I do?
9577@end display
9578
9579Like most GNU packages with internationalization support, that feature
9580is turned on by default. If you have problems building in the @file{po}
9581subdirectory, it indicates that your system's internationalization
9582support is lacking. You can re-configure Bison with
9583@option{--disable-nls} to turn off this support, or you can install GNU
9584gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
9585Bison. See the file @file{ABOUT-NLS} for more information.
9586
9587
9588@node Where can I find help?
9589@section Where can I find help?
9590
9591@display
9592I'm having trouble using Bison. Where can I find help?
9593@end display
9594
9595First, read this fine manual. Beyond that, you can send mail to
9596@email{help-bison@@gnu.org}. This mailing list is intended to be
9597populated with people who are willing to answer questions about using
9598and installing Bison. Please keep in mind that (most of) the people on
9599the list have aspects of their lives which are not related to Bison (!),
9600so you may not receive an answer to your question right away. This can
9601be frustrating, but please try not to honk them off; remember that any
9602help they provide is purely voluntary and out of the kindness of their
9603hearts.
9604
9605@node Bug Reports
9606@section Bug Reports
9607
9608@display
9609I found a bug. What should I include in the bug report?
9610@end display
9611
9612Before you send a bug report, make sure you are using the latest
9613version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
9614mirrors. Be sure to include the version number in your bug report. If
9615the bug is present in the latest version but not in a previous version,
9616try to determine the most recent version which did not contain the bug.
9617
9618If the bug is parser-related, you should include the smallest grammar
9619you can which demonstrates the bug. The grammar file should also be
9620complete (i.e., I should be able to run it through Bison without having
9621to edit or add anything). The smaller and simpler the grammar, the
9622easier it will be to fix the bug.
9623
9624Include information about your compilation environment, including your
9625operating system's name and version and your compiler's name and
9626version. If you have trouble compiling, you should also include a
9627transcript of the build session, starting with the invocation of
9628`configure'. Depending on the nature of the bug, you may be asked to
9629send additional files as well (such as `config.h' or `config.cache').
9630
9631Patches are most welcome, but not required. That is, do not hesitate to
9632send a bug report just because you can not provide a fix.
9633
9634Send bug reports to @email{bug-bison@@gnu.org}.
9635
8405b70c
PB
9636@node More Languages
9637@section More Languages
55ba27be
AD
9638
9639@display
8405b70c 9640Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
9641favorite language here}?
9642@end display
9643
8405b70c 9644C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
9645languages; contributions are welcome.
9646
9647@node Beta Testing
9648@section Beta Testing
9649
9650@display
9651What is involved in being a beta tester?
9652@end display
9653
9654It's not terribly involved. Basically, you would download a test
9655release, compile it, and use it to build and run a parser or two. After
9656that, you would submit either a bug report or a message saying that
9657everything is okay. It is important to report successes as well as
9658failures because test releases eventually become mainstream releases,
9659but only if they are adequately tested. If no one tests, development is
9660essentially halted.
9661
9662Beta testers are particularly needed for operating systems to which the
9663developers do not have easy access. They currently have easy access to
9664recent GNU/Linux and Solaris versions. Reports about other operating
9665systems are especially welcome.
9666
9667@node Mailing Lists
9668@section Mailing Lists
9669
9670@display
9671How do I join the help-bison and bug-bison mailing lists?
9672@end display
9673
9674See @url{http://lists.gnu.org/}.
a06ea4aa 9675
d1a1114f
AD
9676@c ================================================= Table of Symbols
9677
342b8b6e 9678@node Table of Symbols
bfa74976
RS
9679@appendix Bison Symbols
9680@cindex Bison symbols, table of
9681@cindex symbols in Bison, table of
9682
18b519c0 9683@deffn {Variable} @@$
3ded9a63 9684In an action, the location of the left-hand side of the rule.
88bce5a2 9685@xref{Locations, , Locations Overview}.
18b519c0 9686@end deffn
3ded9a63 9687
18b519c0 9688@deffn {Variable} @@@var{n}
3ded9a63
AD
9689In an action, the location of the @var{n}-th symbol of the right-hand
9690side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 9691@end deffn
3ded9a63 9692
18b519c0 9693@deffn {Variable} $$
3ded9a63
AD
9694In an action, the semantic value of the left-hand side of the rule.
9695@xref{Actions}.
18b519c0 9696@end deffn
3ded9a63 9697
18b519c0 9698@deffn {Variable} $@var{n}
3ded9a63
AD
9699In an action, the semantic value of the @var{n}-th symbol of the
9700right-hand side of the rule. @xref{Actions}.
18b519c0 9701@end deffn
3ded9a63 9702
dd8d9022
AD
9703@deffn {Delimiter} %%
9704Delimiter used to separate the grammar rule section from the
9705Bison declarations section or the epilogue.
9706@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 9707@end deffn
bfa74976 9708
dd8d9022
AD
9709@c Don't insert spaces, or check the DVI output.
9710@deffn {Delimiter} %@{@var{code}%@}
9711All code listed between @samp{%@{} and @samp{%@}} is copied directly to
9712the output file uninterpreted. Such code forms the prologue of the input
9713file. @xref{Grammar Outline, ,Outline of a Bison
9714Grammar}.
18b519c0 9715@end deffn
bfa74976 9716
dd8d9022
AD
9717@deffn {Construct} /*@dots{}*/
9718Comment delimiters, as in C.
18b519c0 9719@end deffn
bfa74976 9720
dd8d9022
AD
9721@deffn {Delimiter} :
9722Separates a rule's result from its components. @xref{Rules, ,Syntax of
9723Grammar Rules}.
18b519c0 9724@end deffn
bfa74976 9725
dd8d9022
AD
9726@deffn {Delimiter} ;
9727Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9728@end deffn
bfa74976 9729
dd8d9022
AD
9730@deffn {Delimiter} |
9731Separates alternate rules for the same result nonterminal.
9732@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9733@end deffn
bfa74976 9734
12e35840
JD
9735@deffn {Directive} <*>
9736Used to define a default tagged @code{%destructor} or default tagged
9737@code{%printer}.
85894313
JD
9738
9739This feature is experimental.
9740More user feedback will help to determine whether it should become a permanent
9741feature.
9742
12e35840
JD
9743@xref{Destructor Decl, , Freeing Discarded Symbols}.
9744@end deffn
9745
3ebecc24 9746@deffn {Directive} <>
12e35840
JD
9747Used to define a default tagless @code{%destructor} or default tagless
9748@code{%printer}.
85894313
JD
9749
9750This feature is experimental.
9751More user feedback will help to determine whether it should become a permanent
9752feature.
9753
12e35840
JD
9754@xref{Destructor Decl, , Freeing Discarded Symbols}.
9755@end deffn
9756
dd8d9022
AD
9757@deffn {Symbol} $accept
9758The predefined nonterminal whose only rule is @samp{$accept: @var{start}
9759$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
9760Start-Symbol}. It cannot be used in the grammar.
18b519c0 9761@end deffn
bfa74976 9762
136a0f76 9763@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
9764@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
9765Insert @var{code} verbatim into output parser source.
9766@xref{Decl Summary,,%code}.
9bc0dd67
JD
9767@end deffn
9768
9769@deffn {Directive} %debug
9770Equip the parser for debugging. @xref{Decl Summary}.
9771@end deffn
9772
18b519c0 9773@deffn {Directive} %debug
6deb4447 9774Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 9775@end deffn
6deb4447 9776
91d2c560 9777@ifset defaultprec
22fccf95
PE
9778@deffn {Directive} %default-prec
9779Assign a precedence to rules that lack an explicit @samp{%prec}
9780modifier. @xref{Contextual Precedence, ,Context-Dependent
9781Precedence}.
39a06c25 9782@end deffn
91d2c560 9783@end ifset
39a06c25 9784
148d66d8
JD
9785@deffn {Directive} %define @var{define-variable}
9786@deffnx {Directive} %define @var{define-variable} @var{value}
9787Define a variable to adjust Bison's behavior.
9788@xref{Decl Summary,,%define}.
9789@end deffn
9790
18b519c0 9791@deffn {Directive} %defines
6deb4447
AD
9792Bison declaration to create a header file meant for the scanner.
9793@xref{Decl Summary}.
18b519c0 9794@end deffn
6deb4447 9795
02975b9a
JD
9796@deffn {Directive} %defines @var{defines-file}
9797Same as above, but save in the file @var{defines-file}.
9798@xref{Decl Summary}.
9799@end deffn
9800
18b519c0 9801@deffn {Directive} %destructor
258b75ca 9802Specify how the parser should reclaim the memory associated to
fa7e68c3 9803discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 9804@end deffn
72f889cc 9805
18b519c0 9806@deffn {Directive} %dprec
676385e2 9807Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
9808time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
9809@acronym{GLR} Parsers}.
18b519c0 9810@end deffn
676385e2 9811
dd8d9022
AD
9812@deffn {Symbol} $end
9813The predefined token marking the end of the token stream. It cannot be
9814used in the grammar.
9815@end deffn
9816
9817@deffn {Symbol} error
9818A token name reserved for error recovery. This token may be used in
9819grammar rules so as to allow the Bison parser to recognize an error in
9820the grammar without halting the process. In effect, a sentence
9821containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
9822token @code{error} becomes the current lookahead token. Actions
9823corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
9824token is reset to the token that originally caused the violation.
9825@xref{Error Recovery}.
18d192f0
AD
9826@end deffn
9827
18b519c0 9828@deffn {Directive} %error-verbose
2a8d363a
AD
9829Bison declaration to request verbose, specific error message strings
9830when @code{yyerror} is called.
18b519c0 9831@end deffn
2a8d363a 9832
02975b9a 9833@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 9834Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 9835Summary}.
18b519c0 9836@end deffn
d8988b2f 9837
18b519c0 9838@deffn {Directive} %glr-parser
c827f760
PE
9839Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
9840Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 9841@end deffn
676385e2 9842
dd8d9022
AD
9843@deffn {Directive} %initial-action
9844Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
9845@end deffn
9846
e6e704dc
JD
9847@deffn {Directive} %language
9848Specify the programming language for the generated parser.
9849@xref{Decl Summary}.
9850@end deffn
9851
18b519c0 9852@deffn {Directive} %left
bfa74976
RS
9853Bison declaration to assign left associativity to token(s).
9854@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 9855@end deffn
bfa74976 9856
feeb0eda 9857@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
9858Bison declaration to specifying an additional parameter that
9859@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
9860for Pure Parsers}.
18b519c0 9861@end deffn
2a8d363a 9862
18b519c0 9863@deffn {Directive} %merge
676385e2 9864Bison declaration to assign a merging function to a rule. If there is a
fae437e8 9865reduce/reduce conflict with a rule having the same merging function, the
676385e2 9866function is applied to the two semantic values to get a single result.
c827f760 9867@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 9868@end deffn
676385e2 9869
02975b9a 9870@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 9871Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 9872@end deffn
d8988b2f 9873
91d2c560 9874@ifset defaultprec
22fccf95
PE
9875@deffn {Directive} %no-default-prec
9876Do not assign a precedence to rules that lack an explicit @samp{%prec}
9877modifier. @xref{Contextual Precedence, ,Context-Dependent
9878Precedence}.
9879@end deffn
91d2c560 9880@end ifset
22fccf95 9881
18b519c0 9882@deffn {Directive} %no-lines
931c7513
RS
9883Bison declaration to avoid generating @code{#line} directives in the
9884parser file. @xref{Decl Summary}.
18b519c0 9885@end deffn
931c7513 9886
18b519c0 9887@deffn {Directive} %nonassoc
9d9b8b70 9888Bison declaration to assign nonassociativity to token(s).
bfa74976 9889@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 9890@end deffn
bfa74976 9891
02975b9a 9892@deffn {Directive} %output "@var{file}"
72d2299c 9893Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 9894Summary}.
18b519c0 9895@end deffn
d8988b2f 9896
feeb0eda 9897@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
9898Bison declaration to specifying an additional parameter that
9899@code{yyparse} should accept. @xref{Parser Function,, The Parser
9900Function @code{yyparse}}.
18b519c0 9901@end deffn
2a8d363a 9902
18b519c0 9903@deffn {Directive} %prec
bfa74976
RS
9904Bison declaration to assign a precedence to a specific rule.
9905@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 9906@end deffn
bfa74976 9907
18b519c0 9908@deffn {Directive} %pure-parser
d9df47b6
JD
9909Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
9910for which Bison is more careful to warn about unreasonable usage.
18b519c0 9911@end deffn
bfa74976 9912
b50d2359 9913@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
9914Require version @var{version} or higher of Bison. @xref{Require Decl, ,
9915Require a Version of Bison}.
b50d2359
AD
9916@end deffn
9917
18b519c0 9918@deffn {Directive} %right
bfa74976
RS
9919Bison declaration to assign right associativity to token(s).
9920@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 9921@end deffn
bfa74976 9922
e6e704dc
JD
9923@deffn {Directive} %skeleton
9924Specify the skeleton to use; usually for development.
9925@xref{Decl Summary}.
9926@end deffn
9927
18b519c0 9928@deffn {Directive} %start
704a47c4
AD
9929Bison declaration to specify the start symbol. @xref{Start Decl, ,The
9930Start-Symbol}.
18b519c0 9931@end deffn
bfa74976 9932
18b519c0 9933@deffn {Directive} %token
bfa74976
RS
9934Bison declaration to declare token(s) without specifying precedence.
9935@xref{Token Decl, ,Token Type Names}.
18b519c0 9936@end deffn
bfa74976 9937
18b519c0 9938@deffn {Directive} %token-table
931c7513
RS
9939Bison declaration to include a token name table in the parser file.
9940@xref{Decl Summary}.
18b519c0 9941@end deffn
931c7513 9942
18b519c0 9943@deffn {Directive} %type
704a47c4
AD
9944Bison declaration to declare nonterminals. @xref{Type Decl,
9945,Nonterminal Symbols}.
18b519c0 9946@end deffn
bfa74976 9947
dd8d9022
AD
9948@deffn {Symbol} $undefined
9949The predefined token onto which all undefined values returned by
9950@code{yylex} are mapped. It cannot be used in the grammar, rather, use
9951@code{error}.
9952@end deffn
9953
18b519c0 9954@deffn {Directive} %union
bfa74976
RS
9955Bison declaration to specify several possible data types for semantic
9956values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 9957@end deffn
bfa74976 9958
dd8d9022
AD
9959@deffn {Macro} YYABORT
9960Macro to pretend that an unrecoverable syntax error has occurred, by
9961making @code{yyparse} return 1 immediately. The error reporting
9962function @code{yyerror} is not called. @xref{Parser Function, ,The
9963Parser Function @code{yyparse}}.
8405b70c
PB
9964
9965For Java parsers, this functionality is invoked using @code{return YYABORT;}
9966instead.
dd8d9022 9967@end deffn
3ded9a63 9968
dd8d9022
AD
9969@deffn {Macro} YYACCEPT
9970Macro to pretend that a complete utterance of the language has been
9971read, by making @code{yyparse} return 0 immediately.
9972@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
9973
9974For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
9975instead.
dd8d9022 9976@end deffn
bfa74976 9977
dd8d9022 9978@deffn {Macro} YYBACKUP
742e4900 9979Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 9980token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 9981@end deffn
bfa74976 9982
dd8d9022 9983@deffn {Variable} yychar
32c29292 9984External integer variable that contains the integer value of the
742e4900 9985lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
9986@code{yyparse}.) Error-recovery rule actions may examine this variable.
9987@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 9988@end deffn
bfa74976 9989
dd8d9022
AD
9990@deffn {Variable} yyclearin
9991Macro used in error-recovery rule actions. It clears the previous
742e4900 9992lookahead token. @xref{Error Recovery}.
18b519c0 9993@end deffn
bfa74976 9994
dd8d9022
AD
9995@deffn {Macro} YYDEBUG
9996Macro to define to equip the parser with tracing code. @xref{Tracing,
9997,Tracing Your Parser}.
18b519c0 9998@end deffn
bfa74976 9999
dd8d9022
AD
10000@deffn {Variable} yydebug
10001External integer variable set to zero by default. If @code{yydebug}
10002is given a nonzero value, the parser will output information on input
10003symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 10004@end deffn
bfa74976 10005
dd8d9022
AD
10006@deffn {Macro} yyerrok
10007Macro to cause parser to recover immediately to its normal mode
10008after a syntax error. @xref{Error Recovery}.
10009@end deffn
10010
10011@deffn {Macro} YYERROR
10012Macro to pretend that a syntax error has just been detected: call
10013@code{yyerror} and then perform normal error recovery if possible
10014(@pxref{Error Recovery}), or (if recovery is impossible) make
10015@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
10016
10017For Java parsers, this functionality is invoked using @code{return YYERROR;}
10018instead.
dd8d9022
AD
10019@end deffn
10020
10021@deffn {Function} yyerror
10022User-supplied function to be called by @code{yyparse} on error.
10023@xref{Error Reporting, ,The Error
10024Reporting Function @code{yyerror}}.
10025@end deffn
10026
10027@deffn {Macro} YYERROR_VERBOSE
10028An obsolete macro that you define with @code{#define} in the prologue
10029to request verbose, specific error message strings
10030when @code{yyerror} is called. It doesn't matter what definition you
10031use for @code{YYERROR_VERBOSE}, just whether you define it. Using
10032@code{%error-verbose} is preferred.
10033@end deffn
10034
10035@deffn {Macro} YYINITDEPTH
10036Macro for specifying the initial size of the parser stack.
1a059451 10037@xref{Memory Management}.
dd8d9022
AD
10038@end deffn
10039
10040@deffn {Function} yylex
10041User-supplied lexical analyzer function, called with no arguments to get
10042the next token. @xref{Lexical, ,The Lexical Analyzer Function
10043@code{yylex}}.
10044@end deffn
10045
10046@deffn {Macro} YYLEX_PARAM
10047An obsolete macro for specifying an extra argument (or list of extra
32c29292 10048arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
10049macro is deprecated, and is supported only for Yacc like parsers.
10050@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
10051@end deffn
10052
10053@deffn {Variable} yylloc
10054External variable in which @code{yylex} should place the line and column
10055numbers associated with a token. (In a pure parser, it is a local
10056variable within @code{yyparse}, and its address is passed to
32c29292
JD
10057@code{yylex}.)
10058You can ignore this variable if you don't use the @samp{@@} feature in the
10059grammar actions.
10060@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 10061In semantic actions, it stores the location of the lookahead token.
32c29292 10062@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
10063@end deffn
10064
10065@deffn {Type} YYLTYPE
10066Data type of @code{yylloc}; by default, a structure with four
10067members. @xref{Location Type, , Data Types of Locations}.
10068@end deffn
10069
10070@deffn {Variable} yylval
10071External variable in which @code{yylex} should place the semantic
10072value associated with a token. (In a pure parser, it is a local
10073variable within @code{yyparse}, and its address is passed to
32c29292
JD
10074@code{yylex}.)
10075@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 10076In semantic actions, it stores the semantic value of the lookahead token.
32c29292 10077@xref{Actions, ,Actions}.
dd8d9022
AD
10078@end deffn
10079
10080@deffn {Macro} YYMAXDEPTH
1a059451
PE
10081Macro for specifying the maximum size of the parser stack. @xref{Memory
10082Management}.
dd8d9022
AD
10083@end deffn
10084
10085@deffn {Variable} yynerrs
8a2800e7 10086Global variable which Bison increments each time it reports a syntax error.
f4101aa6 10087(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 10088pure push parser, it is a member of yypstate.)
dd8d9022
AD
10089@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
10090@end deffn
10091
10092@deffn {Function} yyparse
10093The parser function produced by Bison; call this function to start
10094parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
10095@end deffn
10096
9987d1b3 10097@deffn {Function} yypstate_delete
f4101aa6 10098The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 10099call this function to delete the memory associated with a parser.
f4101aa6 10100@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 10101@code{yypstate_delete}}.
59da312b
JD
10102(The current push parsing interface is experimental and may evolve.
10103More user feedback will help to stabilize it.)
9987d1b3
JD
10104@end deffn
10105
10106@deffn {Function} yypstate_new
f4101aa6 10107The function to create a parser instance, produced by Bison in push mode;
9987d1b3 10108call this function to create a new parser.
f4101aa6 10109@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 10110@code{yypstate_new}}.
59da312b
JD
10111(The current push parsing interface is experimental and may evolve.
10112More user feedback will help to stabilize it.)
9987d1b3
JD
10113@end deffn
10114
10115@deffn {Function} yypull_parse
f4101aa6
AD
10116The parser function produced by Bison in push mode; call this function to
10117parse the rest of the input stream.
10118@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 10119@code{yypull_parse}}.
59da312b
JD
10120(The current push parsing interface is experimental and may evolve.
10121More user feedback will help to stabilize it.)
9987d1b3
JD
10122@end deffn
10123
10124@deffn {Function} yypush_parse
f4101aa6
AD
10125The parser function produced by Bison in push mode; call this function to
10126parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 10127@code{yypush_parse}}.
59da312b
JD
10128(The current push parsing interface is experimental and may evolve.
10129More user feedback will help to stabilize it.)
9987d1b3
JD
10130@end deffn
10131
dd8d9022
AD
10132@deffn {Macro} YYPARSE_PARAM
10133An obsolete macro for specifying the name of a parameter that
10134@code{yyparse} should accept. The use of this macro is deprecated, and
10135is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
10136Conventions for Pure Parsers}.
10137@end deffn
10138
10139@deffn {Macro} YYRECOVERING
02103984
PE
10140The expression @code{YYRECOVERING ()} yields 1 when the parser
10141is recovering from a syntax error, and 0 otherwise.
10142@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
10143@end deffn
10144
10145@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
10146Macro used to control the use of @code{alloca} when the C
10147@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
10148the parser will use @code{malloc} to extend its stacks. If defined to
101491, the parser will use @code{alloca}. Values other than 0 and 1 are
10150reserved for future Bison extensions. If not defined,
10151@code{YYSTACK_USE_ALLOCA} defaults to 0.
10152
55289366 10153In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
10154limited stack and with unreliable stack-overflow checking, you should
10155set @code{YYMAXDEPTH} to a value that cannot possibly result in
10156unchecked stack overflow on any of your target hosts when
10157@code{alloca} is called. You can inspect the code that Bison
10158generates in order to determine the proper numeric values. This will
10159require some expertise in low-level implementation details.
dd8d9022
AD
10160@end deffn
10161
10162@deffn {Type} YYSTYPE
10163Data type of semantic values; @code{int} by default.
10164@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 10165@end deffn
bfa74976 10166
342b8b6e 10167@node Glossary
bfa74976
RS
10168@appendix Glossary
10169@cindex glossary
10170
10171@table @asis
c827f760
PE
10172@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
10173Formal method of specifying context-free grammars originally proposed
10174by John Backus, and slightly improved by Peter Naur in his 1960-01-02
10175committee document contributing to what became the Algol 60 report.
10176@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
10177
10178@item Context-free grammars
10179Grammars specified as rules that can be applied regardless of context.
10180Thus, if there is a rule which says that an integer can be used as an
10181expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
10182permitted. @xref{Language and Grammar, ,Languages and Context-Free
10183Grammars}.
bfa74976
RS
10184
10185@item Dynamic allocation
10186Allocation of memory that occurs during execution, rather than at
10187compile time or on entry to a function.
10188
10189@item Empty string
10190Analogous to the empty set in set theory, the empty string is a
10191character string of length zero.
10192
10193@item Finite-state stack machine
10194A ``machine'' that has discrete states in which it is said to exist at
10195each instant in time. As input to the machine is processed, the
10196machine moves from state to state as specified by the logic of the
10197machine. In the case of the parser, the input is the language being
10198parsed, and the states correspond to various stages in the grammar
c827f760 10199rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 10200
c827f760 10201@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 10202A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
10203that are not @acronym{LALR}(1). It resolves situations that Bison's
10204usual @acronym{LALR}(1)
676385e2
PH
10205algorithm cannot by effectively splitting off multiple parsers, trying all
10206possible parsers, and discarding those that fail in the light of additional
c827f760
PE
10207right context. @xref{Generalized LR Parsing, ,Generalized
10208@acronym{LR} Parsing}.
676385e2 10209
bfa74976
RS
10210@item Grouping
10211A language construct that is (in general) grammatically divisible;
c827f760 10212for example, `expression' or `declaration' in C@.
bfa74976
RS
10213@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10214
10215@item Infix operator
10216An arithmetic operator that is placed between the operands on which it
10217performs some operation.
10218
10219@item Input stream
10220A continuous flow of data between devices or programs.
10221
10222@item Language construct
10223One of the typical usage schemas of the language. For example, one of
10224the constructs of the C language is the @code{if} statement.
10225@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10226
10227@item Left associativity
10228Operators having left associativity are analyzed from left to right:
10229@samp{a+b+c} first computes @samp{a+b} and then combines with
10230@samp{c}. @xref{Precedence, ,Operator Precedence}.
10231
10232@item Left recursion
89cab50d
AD
10233A rule whose result symbol is also its first component symbol; for
10234example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
10235Rules}.
bfa74976
RS
10236
10237@item Left-to-right parsing
10238Parsing a sentence of a language by analyzing it token by token from
c827f760 10239left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10240
10241@item Lexical analyzer (scanner)
10242A function that reads an input stream and returns tokens one by one.
10243@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
10244
10245@item Lexical tie-in
10246A flag, set by actions in the grammar rules, which alters the way
10247tokens are parsed. @xref{Lexical Tie-ins}.
10248
931c7513 10249@item Literal string token
14ded682 10250A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 10251
742e4900
JD
10252@item Lookahead token
10253A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 10254Tokens}.
bfa74976 10255
c827f760 10256@item @acronym{LALR}(1)
bfa74976 10257The class of context-free grammars that Bison (like most other parser
c827f760
PE
10258generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
10259Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 10260
c827f760 10261@item @acronym{LR}(1)
bfa74976 10262The class of context-free grammars in which at most one token of
742e4900 10263lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
10264
10265@item Nonterminal symbol
10266A grammar symbol standing for a grammatical construct that can
10267be expressed through rules in terms of smaller constructs; in other
10268words, a construct that is not a token. @xref{Symbols}.
10269
bfa74976
RS
10270@item Parser
10271A function that recognizes valid sentences of a language by analyzing
10272the syntax structure of a set of tokens passed to it from a lexical
10273analyzer.
10274
10275@item Postfix operator
10276An arithmetic operator that is placed after the operands upon which it
10277performs some operation.
10278
10279@item Reduction
10280Replacing a string of nonterminals and/or terminals with a single
89cab50d 10281nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 10282Parser Algorithm}.
bfa74976
RS
10283
10284@item Reentrant
10285A reentrant subprogram is a subprogram which can be in invoked any
10286number of times in parallel, without interference between the various
10287invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
10288
10289@item Reverse polish notation
10290A language in which all operators are postfix operators.
10291
10292@item Right recursion
89cab50d
AD
10293A rule whose result symbol is also its last component symbol; for
10294example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
10295Rules}.
bfa74976
RS
10296
10297@item Semantics
10298In computer languages, the semantics are specified by the actions
10299taken for each instance of the language, i.e., the meaning of
10300each statement. @xref{Semantics, ,Defining Language Semantics}.
10301
10302@item Shift
10303A parser is said to shift when it makes the choice of analyzing
10304further input from the stream rather than reducing immediately some
c827f760 10305already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10306
10307@item Single-character literal
10308A single character that is recognized and interpreted as is.
10309@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
10310
10311@item Start symbol
10312The nonterminal symbol that stands for a complete valid utterance in
10313the language being parsed. The start symbol is usually listed as the
13863333 10314first nonterminal symbol in a language specification.
bfa74976
RS
10315@xref{Start Decl, ,The Start-Symbol}.
10316
10317@item Symbol table
10318A data structure where symbol names and associated data are stored
10319during parsing to allow for recognition and use of existing
10320information in repeated uses of a symbol. @xref{Multi-function Calc}.
10321
6e649e65
PE
10322@item Syntax error
10323An error encountered during parsing of an input stream due to invalid
10324syntax. @xref{Error Recovery}.
10325
bfa74976
RS
10326@item Token
10327A basic, grammatically indivisible unit of a language. The symbol
10328that describes a token in the grammar is a terminal symbol.
10329The input of the Bison parser is a stream of tokens which comes from
10330the lexical analyzer. @xref{Symbols}.
10331
10332@item Terminal symbol
89cab50d
AD
10333A grammar symbol that has no rules in the grammar and therefore is
10334grammatically indivisible. The piece of text it represents is a token.
10335@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
10336@end table
10337
342b8b6e 10338@node Copying This Manual
f2b5126e 10339@appendix Copying This Manual
f2b5126e
PB
10340@include fdl.texi
10341
342b8b6e 10342@node Index
bfa74976
RS
10343@unnumbered Index
10344
10345@printindex cp
10346
bfa74976 10347@bye
a06ea4aa
AD
10348
10349@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
10350@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
10351@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
10352@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
10353@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
10354@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
10355@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
10356@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
10357@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
10358@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
10359@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
10360@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
178e123e 10361@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln
a06ea4aa
AD
10362@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
10363@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
10364@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
10365@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
178e123e 10366@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs
a06ea4aa
AD
10367@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
10368@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
10369@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 10370@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa 10371@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
35fe0834 10372@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype
a06ea4aa 10373@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
35fe0834 10374@c LocalWords: infile ypp yxx outfile itemx tex leaderfill
a06ea4aa 10375@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
178e123e 10376@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST
a06ea4aa 10377@c LocalWords: YYSTACK DVI fdl printindex