]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
Don't document %no-default-prec for now.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
bfa74976
RS
15@c Set following if you have the new `shorttitlepage' command
16@c @clear shorttitlepage-enabled
17@c @set shorttitlepage-enabled
18
91d2c560
PE
19@c Set following if you want to document %default-prec and %no-default-prec.
20@c This feature is experimental and may change in future Bison versions.
21@c @set defaultprec
22
bfa74976
RS
23@c ISPELL CHECK: done, 14 Jan 1993 --bob
24
25@c Check COPYRIGHT dates. should be updated in the titlepage, ifinfo
26@c titlepage; should NOT be changed in the GPL. --mew
27
ec3bc396 28@c FIXME: I don't understand this `iftex'. Obsolete? --akim.
bfa74976
RS
29@iftex
30@syncodeindex fn cp
31@syncodeindex vr cp
32@syncodeindex tp cp
33@end iftex
34@ifinfo
35@synindex fn cp
36@synindex vr cp
37@synindex tp cp
38@end ifinfo
39@comment %**end of header
40
fae437e8 41@copying
bd773d73 42
c827f760
PE
43This manual is for @acronym{GNU} Bison (version @value{VERSION},
44@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 45
a06ea4aa 46Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
3add7b9c 471999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
fae437e8
AD
48
49@quotation
50Permission is granted to copy, distribute and/or modify this document
c827f760
PE
51under the terms of the @acronym{GNU} Free Documentation License,
52Version 1.1 or any later version published by the Free Software
53Foundation; with no Invariant Sections, with the Front-Cover texts
54being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
55(a) below. A copy of the license is included in the section entitled
56``@acronym{GNU} Free Documentation License.''
57
58(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
59and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
60Copies published by the Free Software Foundation raise funds for
61@acronym{GNU} development.''
fae437e8
AD
62@end quotation
63@end copying
64
65@dircategory GNU programming tools
66@direntry
c827f760 67* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 68@end direntry
bfa74976
RS
69
70@ifset shorttitlepage-enabled
71@shorttitlepage Bison
72@end ifset
73@titlepage
74@title Bison
c827f760 75@subtitle The Yacc-compatible Parser Generator
df1af54c 76@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
77
78@author by Charles Donnelly and Richard Stallman
79
80@page
81@vskip 0pt plus 1filll
fae437e8 82@insertcopying
bfa74976
RS
83@sp 2
84Published by the Free Software Foundation @*
931c7513
RS
8559 Temple Place, Suite 330 @*
86Boston, MA 02111-1307 USA @*
9ecbd125 87Printed copies are available from the Free Software Foundation.@*
c827f760 88@acronym{ISBN} 1-882114-44-2
bfa74976
RS
89@sp 2
90Cover art by Etienne Suvasa.
91@end titlepage
d5796688
JT
92
93@contents
bfa74976 94
342b8b6e
AD
95@ifnottex
96@node Top
97@top Bison
fae437e8 98@insertcopying
342b8b6e 99@end ifnottex
bfa74976
RS
100
101@menu
13863333
AD
102* Introduction::
103* Conditions::
c827f760 104* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
105 how you can copy and share Bison
106
107Tutorial sections:
108* Concepts:: Basic concepts for understanding Bison.
109* Examples:: Three simple explained examples of using Bison.
110
111Reference sections:
112* Grammar File:: Writing Bison declarations and rules.
113* Interface:: C-language interface to the parser function @code{yyparse}.
114* Algorithm:: How the Bison parser works at run-time.
115* Error Recovery:: Writing rules for error recovery.
116* Context Dependency:: What to do if your language syntax is too
117 messy for Bison to handle straightforwardly.
ec3bc396 118* Debugging:: Understanding or debugging Bison parsers.
bfa74976
RS
119* Invocation:: How to run Bison (to produce the parser source file).
120* Table of Symbols:: All the keywords of the Bison language are explained.
121* Glossary:: Basic concepts are explained.
d1a1114f 122* FAQ:: Frequently Asked Questions
f2b5126e 123* Copying This Manual:: License for copying this manual.
bfa74976
RS
124* Index:: Cross-references to the text.
125
93dd49ab
PE
126@detailmenu
127 --- The Detailed Node Listing ---
bfa74976
RS
128
129The Concepts of Bison
130
131* Language and Grammar:: Languages and context-free grammars,
132 as mathematical ideas.
133* Grammar in Bison:: How we represent grammars for Bison's sake.
134* Semantic Values:: Each token or syntactic grouping can have
135 a semantic value (the value of an integer,
136 the name of an identifier, etc.).
137* Semantic Actions:: Each rule can have an action containing C code.
93dd49ab
PE
138* GLR Parsers:: Writing parsers for general context-free languages
139* Locations Overview:: Tracking Locations.
bfa74976
RS
140* Bison Parser:: What are Bison's input and output,
141 how is the output used?
142* Stages:: Stages in writing and running Bison grammars.
143* Grammar Layout:: Overall structure of a Bison grammar file.
144
145Examples
146
147* RPN Calc:: Reverse polish notation calculator;
148 a first example with no operator precedence.
149* Infix Calc:: Infix (algebraic) notation calculator.
150 Operator precedence is introduced.
151* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 152* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
153* Multi-function Calc:: Calculator with memory and trig functions.
154 It uses multiple data-types for semantic values.
bfa74976
RS
155* Exercises:: Ideas for improving the multi-function calculator.
156
157Reverse Polish Notation Calculator
158
75f5aaea 159* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
160* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
161* Lexer: Rpcalc Lexer. The lexical analyzer.
162* Main: Rpcalc Main. The controlling function.
163* Error: Rpcalc Error. The error reporting function.
164* Gen: Rpcalc Gen. Running Bison on the grammar file.
165* Comp: Rpcalc Compile. Run the C compiler on the output code.
166
167Grammar Rules for @code{rpcalc}
168
13863333
AD
169* Rpcalc Input::
170* Rpcalc Line::
171* Rpcalc Expr::
bfa74976 172
342b8b6e
AD
173Location Tracking Calculator: @code{ltcalc}
174
175* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
176* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
177* Lexer: Ltcalc Lexer. The lexical analyzer.
178
bfa74976
RS
179Multi-Function Calculator: @code{mfcalc}
180
181* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
182* Rules: Mfcalc Rules. Grammar rules for the calculator.
183* Symtab: Mfcalc Symtab. Symbol table management subroutines.
184
185Bison Grammar Files
186
187* Grammar Outline:: Overall layout of the grammar file.
188* Symbols:: Terminal and nonterminal symbols.
189* Rules:: How to write grammar rules.
190* Recursion:: Writing recursive rules.
191* Semantics:: Semantic values and actions.
93dd49ab 192* Locations:: Locations and actions.
bfa74976
RS
193* Declarations:: All kinds of Bison declarations are described here.
194* Multiple Parsers:: Putting more than one Bison parser in one program.
195
196Outline of a Bison Grammar
197
93dd49ab 198* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
199* Bison Declarations:: Syntax and usage of the Bison declarations section.
200* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 201* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
202
203Defining Language Semantics
204
205* Value Type:: Specifying one data type for all semantic values.
206* Multiple Types:: Specifying several alternative data types.
207* Actions:: An action is the semantic definition of a grammar rule.
208* Action Types:: Specifying data types for actions to operate on.
209* Mid-Rule Actions:: Most actions go at the end of a rule.
210 This says when, why and how to use the exceptional
211 action in the middle of a rule.
212
93dd49ab
PE
213Tracking Locations
214
215* Location Type:: Specifying a data type for locations.
216* Actions and Locations:: Using locations in actions.
217* Location Default Action:: Defining a general way to compute locations.
218
bfa74976
RS
219Bison Declarations
220
221* Token Decl:: Declaring terminal symbols.
222* Precedence Decl:: Declaring terminals with precedence and associativity.
223* Union Decl:: Declaring the set of all semantic value types.
224* Type Decl:: Declaring the choice of type for a nonterminal symbol.
72f889cc 225* Destructor Decl:: Declaring how symbols are freed.
bfa74976
RS
226* Expect Decl:: Suppressing warnings about shift/reduce conflicts.
227* Start Decl:: Specifying the start symbol.
228* Pure Decl:: Requesting a reentrant parser.
229* Decl Summary:: Table of all Bison declarations.
230
231Parser C-Language Interface
232
233* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 234* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
235 which reads tokens.
236* Error Reporting:: You must supply a function @code{yyerror}.
237* Action Features:: Special features for use in actions.
238
239The Lexical Analyzer Function @code{yylex}
240
241* Calling Convention:: How @code{yyparse} calls @code{yylex}.
242* Token Values:: How @code{yylex} must return the semantic value
243 of the token it has read.
95923bd6 244* Token Locations:: How @code{yylex} must return the text location
bfa74976 245 (line number, etc.) of the token, if the
93dd49ab 246 actions want that.
bfa74976
RS
247* Pure Calling:: How the calling convention differs
248 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
249
13863333 250The Bison Parser Algorithm
bfa74976
RS
251
252* Look-Ahead:: Parser looks one token ahead when deciding what to do.
253* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
254* Precedence:: Operator precedence works by resolving conflicts.
255* Contextual Precedence:: When an operator's precedence depends on context.
256* Parser States:: The parser is a finite-state-machine with stack.
257* Reduce/Reduce:: When two rules are applicable in the same situation.
258* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 259* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
bfa74976
RS
260* Stack Overflow:: What happens when stack gets full. How to avoid it.
261
262Operator Precedence
263
264* Why Precedence:: An example showing why precedence is needed.
265* Using Precedence:: How to specify precedence in Bison grammars.
266* Precedence Examples:: How these features are used in the previous example.
267* How Precedence:: How they work.
268
269Handling Context Dependencies
270
271* Semantic Tokens:: Token parsing can depend on the semantic context.
272* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
273* Tie-in Recovery:: Lexical tie-ins have implications for how
274 error recovery rules must be written.
275
93dd49ab 276Debugging Your Parser
ec3bc396
AD
277
278* Understanding:: Understanding the structure of your parser.
279* Tracing:: Tracing the execution of your parser.
280
bfa74976
RS
281Invoking Bison
282
13863333 283* Bison Options:: All the options described in detail,
c827f760 284 in alphabetical order by short options.
bfa74976 285* Option Cross Key:: Alphabetical list of long options.
93dd49ab 286* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 287
d1a1114f
AD
288Frequently Asked Questions
289
290* Parser Stack Overflow:: Breaking the Stack Limits
e64fec0a 291* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 292* Strings are Destroyed:: @code{yylval} Loses Track of Strings
a06ea4aa
AD
293* C++ Parsers:: Compiling Parsers with C++ Compilers
294* Implementing Loops:: Control Flow in the Calculator
d1a1114f 295
f2b5126e
PB
296Copying This Manual
297
298* GNU Free Documentation License:: License for copying this manual.
299
342b8b6e 300@end detailmenu
bfa74976
RS
301@end menu
302
342b8b6e 303@node Introduction
bfa74976
RS
304@unnumbered Introduction
305@cindex introduction
306
307@dfn{Bison} is a general-purpose parser generator that converts a
c827f760 308grammar description for an @acronym{LALR}(1) context-free grammar into a C
bfa74976
RS
309program to parse that grammar. Once you are proficient with Bison,
310you may use it to develop a wide range of language parsers, from those
311used in simple desk calculators to complex programming languages.
312
313Bison is upward compatible with Yacc: all properly-written Yacc grammars
314ought to work with Bison with no change. Anyone familiar with Yacc
315should be able to use Bison with little trouble. You need to be fluent in
316C programming in order to use Bison or to understand this manual.
317
318We begin with tutorial chapters that explain the basic concepts of using
319Bison and show three explained examples, each building on the last. If you
320don't know Bison or Yacc, start by reading these chapters. Reference
321chapters follow which describe specific aspects of Bison in detail.
322
931c7513
RS
323Bison was written primarily by Robert Corbett; Richard Stallman made it
324Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 325multi-character string literals and other features.
931c7513 326
df1af54c 327This edition corresponds to version @value{VERSION} of Bison.
bfa74976 328
342b8b6e 329@node Conditions
bfa74976
RS
330@unnumbered Conditions for Using Bison
331
a31239f1 332As of Bison version 1.24, we have changed the distribution terms for
262aa8dd 333@code{yyparse} to permit using Bison's output in nonfree programs when
c827f760 334Bison is generating C code for @acronym{LALR}(1) parsers. Formerly, these
262aa8dd 335parsers could be used only in programs that were free software.
a31239f1 336
c827f760
PE
337The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
338compiler, have never
9ecbd125 339had such a requirement. They could always be used for nonfree
a31239f1
RS
340software. The reason Bison was different was not due to a special
341policy decision; it resulted from applying the usual General Public
342License to all of the Bison source code.
343
344The output of the Bison utility---the Bison parser file---contains a
345verbatim copy of a sizable piece of Bison, which is the code for the
346@code{yyparse} function. (The actions from your grammar are inserted
347into this function at one point, but the rest of the function is not
c827f760
PE
348changed.) When we applied the @acronym{GPL} terms to the code for
349@code{yyparse},
a31239f1
RS
350the effect was to restrict the use of Bison output to free software.
351
352We didn't change the terms because of sympathy for people who want to
353make software proprietary. @strong{Software should be free.} But we
354concluded that limiting Bison's use to free software was doing little to
355encourage people to make other software free. So we decided to make the
356practical conditions for using Bison match the practical conditions for
c827f760 357using the other @acronym{GNU} tools.
bfa74976 358
262aa8dd 359This exception applies only when Bison is generating C code for a
c827f760
PE
360@acronym{LALR}(1) parser; otherwise, the @acronym{GPL} terms operate
361as usual. You can
262aa8dd
PE
362tell whether the exception applies to your @samp{.c} output file by
363inspecting it to see whether it says ``As a special exception, when
364this file is copied by Bison into a Bison output file, you may use
365that output file without restriction.''
366
c67a198d 367@include gpl.texi
bfa74976 368
342b8b6e 369@node Concepts
bfa74976
RS
370@chapter The Concepts of Bison
371
372This chapter introduces many of the basic concepts without which the
373details of Bison will not make sense. If you do not already know how to
374use Bison or Yacc, we suggest you start by reading this chapter carefully.
375
376@menu
377* Language and Grammar:: Languages and context-free grammars,
378 as mathematical ideas.
379* Grammar in Bison:: How we represent grammars for Bison's sake.
380* Semantic Values:: Each token or syntactic grouping can have
381 a semantic value (the value of an integer,
382 the name of an identifier, etc.).
383* Semantic Actions:: Each rule can have an action containing C code.
676385e2 384* GLR Parsers:: Writing parsers for general context-free languages
847bf1f5 385* Locations Overview:: Tracking Locations.
bfa74976
RS
386* Bison Parser:: What are Bison's input and output,
387 how is the output used?
388* Stages:: Stages in writing and running Bison grammars.
389* Grammar Layout:: Overall structure of a Bison grammar file.
390@end menu
391
342b8b6e 392@node Language and Grammar
bfa74976
RS
393@section Languages and Context-Free Grammars
394
bfa74976
RS
395@cindex context-free grammar
396@cindex grammar, context-free
397In order for Bison to parse a language, it must be described by a
398@dfn{context-free grammar}. This means that you specify one or more
399@dfn{syntactic groupings} and give rules for constructing them from their
400parts. For example, in the C language, one kind of grouping is called an
401`expression'. One rule for making an expression might be, ``An expression
402can be made of a minus sign and another expression''. Another would be,
403``An expression can be an integer''. As you can see, rules are often
404recursive, but there must be at least one rule which leads out of the
405recursion.
406
c827f760 407@cindex @acronym{BNF}
bfa74976
RS
408@cindex Backus-Naur form
409The most common formal system for presenting such rules for humans to read
c827f760
PE
410is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
411order to specify the language Algol 60. Any grammar expressed in
412@acronym{BNF} is a context-free grammar. The input to Bison is
413essentially machine-readable @acronym{BNF}.
bfa74976 414
c827f760
PE
415@cindex @acronym{LALR}(1) grammars
416@cindex @acronym{LR}(1) grammars
676385e2
PH
417There are various important subclasses of context-free grammar. Although it
418can handle almost all context-free grammars, Bison is optimized for what
c827f760 419are called @acronym{LALR}(1) grammars.
676385e2 420In brief, in these grammars, it must be possible to
bfa74976
RS
421tell how to parse any portion of an input string with just a single
422token of look-ahead. Strictly speaking, that is a description of an
c827f760
PE
423@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
424restrictions that are
bfa74976 425hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
426@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
427@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
428more information on this.
bfa74976 429
c827f760
PE
430@cindex @acronym{GLR} parsing
431@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
432@cindex ambiguous grammars
433@cindex non-deterministic parsing
9501dc6e
AD
434
435Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
436roughly that the next grammar rule to apply at any point in the input is
437uniquely determined by the preceding input and a fixed, finite portion
438(called a @dfn{look-ahead}) of the remaining input. A context-free
439grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
440apply the grammar rules to get the some inputs. Even unambiguous
441grammars can be @dfn{non-deterministic}, meaning that no fixed
442look-ahead always suffices to determine the next grammar rule to apply.
443With the proper declarations, Bison is also able to parse these more
444general context-free grammars, using a technique known as @acronym{GLR}
445parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
446are able to handle any context-free grammar for which the number of
447possible parses of any given string is finite.
676385e2 448
bfa74976
RS
449@cindex symbols (abstract)
450@cindex token
451@cindex syntactic grouping
452@cindex grouping, syntactic
9501dc6e
AD
453In the formal grammatical rules for a language, each kind of syntactic
454unit or grouping is named by a @dfn{symbol}. Those which are built by
455grouping smaller constructs according to grammatical rules are called
bfa74976
RS
456@dfn{nonterminal symbols}; those which can't be subdivided are called
457@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
458corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 459corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
460
461We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
462nonterminal, mean. The tokens of C are identifiers, constants (numeric
463and string), and the various keywords, arithmetic operators and
464punctuation marks. So the terminal symbols of a grammar for C include
465`identifier', `number', `string', plus one symbol for each keyword,
466operator or punctuation mark: `if', `return', `const', `static', `int',
467`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
468(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
469lexicography, not grammar.)
470
471Here is a simple C function subdivided into tokens:
472
9edcd895
AD
473@ifinfo
474@example
475int /* @r{keyword `int'} */
476square (int x) /* @r{identifier, open-paren, identifier,}
477 @r{identifier, close-paren} */
478@{ /* @r{open-brace} */
479 return x * x; /* @r{keyword `return', identifier, asterisk,
480 identifier, semicolon} */
481@} /* @r{close-brace} */
482@end example
483@end ifinfo
484@ifnotinfo
bfa74976
RS
485@example
486int /* @r{keyword `int'} */
9edcd895 487square (int x) /* @r{identifier, open-paren, identifier, identifier, close-paren} */
bfa74976 488@{ /* @r{open-brace} */
9edcd895 489 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
490@} /* @r{close-brace} */
491@end example
9edcd895 492@end ifnotinfo
bfa74976
RS
493
494The syntactic groupings of C include the expression, the statement, the
495declaration, and the function definition. These are represented in the
496grammar of C by nonterminal symbols `expression', `statement',
497`declaration' and `function definition'. The full grammar uses dozens of
498additional language constructs, each with its own nonterminal symbol, in
499order to express the meanings of these four. The example above is a
500function definition; it contains one declaration, and one statement. In
501the statement, each @samp{x} is an expression and so is @samp{x * x}.
502
503Each nonterminal symbol must have grammatical rules showing how it is made
504out of simpler constructs. For example, one kind of C statement is the
505@code{return} statement; this would be described with a grammar rule which
506reads informally as follows:
507
508@quotation
509A `statement' can be made of a `return' keyword, an `expression' and a
510`semicolon'.
511@end quotation
512
513@noindent
514There would be many other rules for `statement', one for each kind of
515statement in C.
516
517@cindex start symbol
518One nonterminal symbol must be distinguished as the special one which
519defines a complete utterance in the language. It is called the @dfn{start
520symbol}. In a compiler, this means a complete input program. In the C
521language, the nonterminal symbol `sequence of definitions and declarations'
522plays this role.
523
524For example, @samp{1 + 2} is a valid C expression---a valid part of a C
525program---but it is not valid as an @emph{entire} C program. In the
526context-free grammar of C, this follows from the fact that `expression' is
527not the start symbol.
528
529The Bison parser reads a sequence of tokens as its input, and groups the
530tokens using the grammar rules. If the input is valid, the end result is
531that the entire token sequence reduces to a single grouping whose symbol is
532the grammar's start symbol. If we use a grammar for C, the entire input
533must be a `sequence of definitions and declarations'. If not, the parser
534reports a syntax error.
535
342b8b6e 536@node Grammar in Bison
bfa74976
RS
537@section From Formal Rules to Bison Input
538@cindex Bison grammar
539@cindex grammar, Bison
540@cindex formal grammar
541
542A formal grammar is a mathematical construct. To define the language
543for Bison, you must write a file expressing the grammar in Bison syntax:
544a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
545
546A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 547as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
548in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
549
550The Bison representation for a terminal symbol is also called a @dfn{token
551type}. Token types as well can be represented as C-like identifiers. By
552convention, these identifiers should be upper case to distinguish them from
553nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
554@code{RETURN}. A terminal symbol that stands for a particular keyword in
555the language should be named after that keyword converted to upper case.
556The terminal symbol @code{error} is reserved for error recovery.
931c7513 557@xref{Symbols}.
bfa74976
RS
558
559A terminal symbol can also be represented as a character literal, just like
560a C character constant. You should do this whenever a token is just a
561single character (parenthesis, plus-sign, etc.): use that same character in
562a literal as the terminal symbol for that token.
563
931c7513
RS
564A third way to represent a terminal symbol is with a C string constant
565containing several characters. @xref{Symbols}, for more information.
566
bfa74976
RS
567The grammar rules also have an expression in Bison syntax. For example,
568here is the Bison rule for a C @code{return} statement. The semicolon in
569quotes is a literal character token, representing part of the C syntax for
570the statement; the naked semicolon, and the colon, are Bison punctuation
571used in every rule.
572
573@example
574stmt: RETURN expr ';'
575 ;
576@end example
577
578@noindent
579@xref{Rules, ,Syntax of Grammar Rules}.
580
342b8b6e 581@node Semantic Values
bfa74976
RS
582@section Semantic Values
583@cindex semantic value
584@cindex value, semantic
585
586A formal grammar selects tokens only by their classifications: for example,
587if a rule mentions the terminal symbol `integer constant', it means that
588@emph{any} integer constant is grammatically valid in that position. The
589precise value of the constant is irrelevant to how to parse the input: if
590@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 591grammatical.
bfa74976
RS
592
593But the precise value is very important for what the input means once it is
594parsed. A compiler is useless if it fails to distinguish between 4, 1 and
5953989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
596has both a token type and a @dfn{semantic value}. @xref{Semantics,
597,Defining Language Semantics},
bfa74976
RS
598for details.
599
600The token type is a terminal symbol defined in the grammar, such as
601@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
602you need to know to decide where the token may validly appear and how to
603group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 604except their types.
bfa74976
RS
605
606The semantic value has all the rest of the information about the
607meaning of the token, such as the value of an integer, or the name of an
608identifier. (A token such as @code{','} which is just punctuation doesn't
609need to have any semantic value.)
610
611For example, an input token might be classified as token type
612@code{INTEGER} and have the semantic value 4. Another input token might
613have the same token type @code{INTEGER} but value 3989. When a grammar
614rule says that @code{INTEGER} is allowed, either of these tokens is
615acceptable because each is an @code{INTEGER}. When the parser accepts the
616token, it keeps track of the token's semantic value.
617
618Each grouping can also have a semantic value as well as its nonterminal
619symbol. For example, in a calculator, an expression typically has a
620semantic value that is a number. In a compiler for a programming
621language, an expression typically has a semantic value that is a tree
622structure describing the meaning of the expression.
623
342b8b6e 624@node Semantic Actions
bfa74976
RS
625@section Semantic Actions
626@cindex semantic actions
627@cindex actions, semantic
628
629In order to be useful, a program must do more than parse input; it must
630also produce some output based on the input. In a Bison grammar, a grammar
631rule can have an @dfn{action} made up of C statements. Each time the
632parser recognizes a match for that rule, the action is executed.
633@xref{Actions}.
13863333 634
bfa74976
RS
635Most of the time, the purpose of an action is to compute the semantic value
636of the whole construct from the semantic values of its parts. For example,
637suppose we have a rule which says an expression can be the sum of two
638expressions. When the parser recognizes such a sum, each of the
639subexpressions has a semantic value which describes how it was built up.
640The action for this rule should create a similar sort of value for the
641newly recognized larger expression.
642
643For example, here is a rule that says an expression can be the sum of
644two subexpressions:
645
646@example
647expr: expr '+' expr @{ $$ = $1 + $3; @}
648 ;
649@end example
650
651@noindent
652The action says how to produce the semantic value of the sum expression
653from the values of the two subexpressions.
654
676385e2 655@node GLR Parsers
c827f760
PE
656@section Writing @acronym{GLR} Parsers
657@cindex @acronym{GLR} parsing
658@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
659@findex %glr-parser
660@cindex conflicts
661@cindex shift/reduce conflicts
662
9501dc6e
AD
663In some grammars, there will be cases where Bison's standard
664@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
665certain grammar rule at a given point. That is, it may not be able to
666decide (on the basis of the input read so far) which of two possible
667reductions (applications of a grammar rule) applies, or whether to apply
668a reduction or read more of the input and apply a reduction later in the
669input. These are known respectively as @dfn{reduce/reduce} conflicts
670(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
671(@pxref{Shift/Reduce}).
672
673To use a grammar that is not easily modified to be @acronym{LALR}(1), a
674more general parsing algorithm is sometimes necessary. If you include
676385e2 675@code{%glr-parser} among the Bison declarations in your file
9501dc6e
AD
676(@pxref{Grammar Outline}), the result will be a Generalized @acronym{LR}
677(@acronym{GLR}) parser. These parsers handle Bison grammars that
678contain no unresolved conflicts (i.e., after applying precedence
679declarations) identically to @acronym{LALR}(1) parsers. However, when
680faced with unresolved shift/reduce and reduce/reduce conflicts,
681@acronym{GLR} parsers use the simple expedient of doing both,
682effectively cloning the parser to follow both possibilities. Each of
683the resulting parsers can again split, so that at any given time, there
684can be any number of possible parses being explored. The parsers
676385e2
PH
685proceed in lockstep; that is, all of them consume (shift) a given input
686symbol before any of them proceed to the next. Each of the cloned
687parsers eventually meets one of two possible fates: either it runs into
688a parsing error, in which case it simply vanishes, or it merges with
689another parser, because the two of them have reduced the input to an
690identical set of symbols.
691
692During the time that there are multiple parsers, semantic actions are
693recorded, but not performed. When a parser disappears, its recorded
694semantic actions disappear as well, and are never performed. When a
695reduction makes two parsers identical, causing them to merge, Bison
696records both sets of semantic actions. Whenever the last two parsers
697merge, reverting to the single-parser case, Bison resolves all the
698outstanding actions either by precedences given to the grammar rules
699involved, or by performing both actions, and then calling a designated
700user-defined function on the resulting values to produce an arbitrary
701merged result.
702
2a8d363a 703Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
704
705@example
706%@{
38a92d50
PE
707 #include <stdio.h>
708 #define YYSTYPE char const *
709 int yylex (void);
710 void yyerror (char const *);
676385e2
PH
711%@}
712
713%token TYPENAME ID
714
715%right '='
716%left '+'
717
718%glr-parser
719
720%%
721
fae437e8 722prog :
676385e2
PH
723 | prog stmt @{ printf ("\n"); @}
724 ;
725
726stmt : expr ';' %dprec 1
727 | decl %dprec 2
728 ;
729
2a8d363a 730expr : ID @{ printf ("%s ", $$); @}
fae437e8 731 | TYPENAME '(' expr ')'
2a8d363a
AD
732 @{ printf ("%s <cast> ", $1); @}
733 | expr '+' expr @{ printf ("+ "); @}
734 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
735 ;
736
fae437e8 737decl : TYPENAME declarator ';'
2a8d363a 738 @{ printf ("%s <declare> ", $1); @}
676385e2 739 | TYPENAME declarator '=' expr ';'
2a8d363a 740 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
741 ;
742
2a8d363a 743declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
744 | '(' declarator ')'
745 ;
746@end example
747
748@noindent
749This models a problematic part of the C++ grammar---the ambiguity between
750certain declarations and statements. For example,
751
752@example
753T (x) = y+z;
754@end example
755
756@noindent
757parses as either an @code{expr} or a @code{stmt}
c827f760
PE
758(assuming that @samp{T} is recognized as a @code{TYPENAME} and
759@samp{x} as an @code{ID}).
676385e2 760Bison detects this as a reduce/reduce conflict between the rules
fae437e8
AD
761@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
762time it encounters @code{x} in the example above. The two @code{%dprec}
763declarations, however, give precedence to interpreting the example as a
676385e2
PH
764@code{decl}, which implies that @code{x} is a declarator.
765The parser therefore prints
766
767@example
fae437e8 768"x" y z + T <init-declare>
676385e2
PH
769@end example
770
771Consider a different input string for this parser:
772
773@example
774T (x) + y;
775@end example
776
777@noindent
778Here, there is no ambiguity (this cannot be parsed as a declaration).
779However, at the time the Bison parser encounters @code{x}, it does not
780have enough information to resolve the reduce/reduce conflict (again,
781between @code{x} as an @code{expr} or a @code{declarator}). In this
782case, no precedence declaration is used. Instead, the parser splits
783into two, one assuming that @code{x} is an @code{expr}, and the other
784assuming @code{x} is a @code{declarator}. The second of these parsers
785then vanishes when it sees @code{+}, and the parser prints
786
787@example
fae437e8 788x T <cast> y +
676385e2
PH
789@end example
790
791Suppose that instead of resolving the ambiguity, you wanted to see all
792the possibilities. For this purpose, we must @dfn{merge} the semantic
793actions of the two possible parsers, rather than choosing one over the
794other. To do so, you could change the declaration of @code{stmt} as
795follows:
796
797@example
798stmt : expr ';' %merge <stmtMerge>
799 | decl %merge <stmtMerge>
800 ;
801@end example
802
803@noindent
804
805and define the @code{stmtMerge} function as:
806
807@example
38a92d50
PE
808static YYSTYPE
809stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
810@{
811 printf ("<OR> ");
812 return "";
813@}
814@end example
815
816@noindent
817with an accompanying forward declaration
818in the C declarations at the beginning of the file:
819
820@example
821%@{
38a92d50 822 #define YYSTYPE char const *
676385e2
PH
823 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
824%@}
825@end example
826
827@noindent
828With these declarations, the resulting parser will parse the first example
829as both an @code{expr} and a @code{decl}, and print
830
831@example
fae437e8 832"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
833@end example
834
9501dc6e
AD
835@sp 1
836
837@cindex @code{incline}
838@cindex @acronym{GLR} parsers and @code{inline}
38a92d50
PE
839The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
840later. In addition, they use the @code{inline} keyword, which is not
841C89, but is C99 and is a common extension in pre-C99 compilers. It is
842up to the user of these parsers to handle
9501dc6e
AD
843portability issues. For instance, if using Autoconf and the Autoconf
844macro @code{AC_C_INLINE}, a mere
845
846@example
847%@{
38a92d50 848 #include <config.h>
9501dc6e
AD
849%@}
850@end example
851
852@noindent
853will suffice. Otherwise, we suggest
854
855@example
856%@{
38a92d50
PE
857 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
858 #define inline
859 #endif
9501dc6e
AD
860%@}
861@end example
676385e2 862
342b8b6e 863@node Locations Overview
847bf1f5
AD
864@section Locations
865@cindex location
95923bd6
AD
866@cindex textual location
867@cindex location, textual
847bf1f5
AD
868
869Many applications, like interpreters or compilers, have to produce verbose
72d2299c 870and useful error messages. To achieve this, one must be able to keep track of
95923bd6 871the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
872Bison provides a mechanism for handling these locations.
873
72d2299c 874Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 875associated location, but the type of locations is the same for all tokens and
72d2299c 876groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
877structure for storing locations (@pxref{Locations}, for more details).
878
879Like semantic values, locations can be reached in actions using a dedicated
72d2299c 880set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
881is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
882@code{@@3}.
883
884When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
885of its left hand side (@pxref{Actions}). In the same way, another default
886action is used for locations. However, the action for locations is general
847bf1f5 887enough for most cases, meaning there is usually no need to describe for each
72d2299c 888rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
889grouping, the default behavior of the output parser is to take the beginning
890of the first symbol, and the end of the last symbol.
891
342b8b6e 892@node Bison Parser
bfa74976
RS
893@section Bison Output: the Parser File
894@cindex Bison parser
895@cindex Bison utility
896@cindex lexical analyzer, purpose
897@cindex parser
898
899When you run Bison, you give it a Bison grammar file as input. The output
900is a C source file that parses the language described by the grammar.
901This file is called a @dfn{Bison parser}. Keep in mind that the Bison
902utility and the Bison parser are two distinct programs: the Bison utility
903is a program whose output is the Bison parser that becomes part of your
904program.
905
906The job of the Bison parser is to group tokens into groupings according to
907the grammar rules---for example, to build identifiers and operators into
908expressions. As it does this, it runs the actions for the grammar rules it
909uses.
910
704a47c4
AD
911The tokens come from a function called the @dfn{lexical analyzer} that
912you must supply in some fashion (such as by writing it in C). The Bison
913parser calls the lexical analyzer each time it wants a new token. It
914doesn't know what is ``inside'' the tokens (though their semantic values
915may reflect this). Typically the lexical analyzer makes the tokens by
916parsing characters of text, but Bison does not depend on this.
917@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
918
919The Bison parser file is C code which defines a function named
920@code{yyparse} which implements that grammar. This function does not make
921a complete C program: you must supply some additional functions. One is
922the lexical analyzer. Another is an error-reporting function which the
923parser calls to report an error. In addition, a complete C program must
924start with a function called @code{main}; you have to provide this, and
925arrange for it to call @code{yyparse} or the parser will never run.
926@xref{Interface, ,Parser C-Language Interface}.
927
928Aside from the token type names and the symbols in the actions you
7093d0f5 929write, all symbols defined in the Bison parser file itself
bfa74976
RS
930begin with @samp{yy} or @samp{YY}. This includes interface functions
931such as the lexical analyzer function @code{yylex}, the error reporting
932function @code{yyerror} and the parser function @code{yyparse} itself.
933This also includes numerous identifiers used for internal purposes.
934Therefore, you should avoid using C identifiers starting with @samp{yy}
935or @samp{YY} in the Bison grammar file except for the ones defined in
936this manual.
937
7093d0f5
AD
938In some cases the Bison parser file includes system headers, and in
939those cases your code should respect the identifiers reserved by those
c827f760 940headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>},
7093d0f5 941@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
ec3bc396
AD
942declare memory allocators and related types. Other system headers may
943be included if you define @code{YYDEBUG} to a nonzero value
944(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 945
342b8b6e 946@node Stages
bfa74976
RS
947@section Stages in Using Bison
948@cindex stages in using Bison
949@cindex using Bison
950
951The actual language-design process using Bison, from grammar specification
952to a working compiler or interpreter, has these parts:
953
954@enumerate
955@item
956Formally specify the grammar in a form recognized by Bison
704a47c4
AD
957(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
958in the language, describe the action that is to be taken when an
959instance of that rule is recognized. The action is described by a
960sequence of C statements.
bfa74976
RS
961
962@item
704a47c4
AD
963Write a lexical analyzer to process input and pass tokens to the parser.
964The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
965Lexical Analyzer Function @code{yylex}}). It could also be produced
966using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
967
968@item
969Write a controlling function that calls the Bison-produced parser.
970
971@item
972Write error-reporting routines.
973@end enumerate
974
975To turn this source code as written into a runnable program, you
976must follow these steps:
977
978@enumerate
979@item
980Run Bison on the grammar to produce the parser.
981
982@item
983Compile the code output by Bison, as well as any other source files.
984
985@item
986Link the object files to produce the finished product.
987@end enumerate
988
342b8b6e 989@node Grammar Layout
bfa74976
RS
990@section The Overall Layout of a Bison Grammar
991@cindex grammar file
992@cindex file format
993@cindex format of grammar file
994@cindex layout of Bison grammar
995
996The input file for the Bison utility is a @dfn{Bison grammar file}. The
997general form of a Bison grammar file is as follows:
998
999@example
1000%@{
08e49d20 1001@var{Prologue}
bfa74976
RS
1002%@}
1003
1004@var{Bison declarations}
1005
1006%%
1007@var{Grammar rules}
1008%%
08e49d20 1009@var{Epilogue}
bfa74976
RS
1010@end example
1011
1012@noindent
1013The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1014in every Bison grammar file to separate the sections.
1015
72d2299c 1016The prologue may define types and variables used in the actions. You can
342b8b6e 1017also use preprocessor commands to define macros used there, and use
bfa74976 1018@code{#include} to include header files that do any of these things.
38a92d50
PE
1019You need to declare the lexical analyzer @code{yylex} and the error
1020printer @code{yyerror} here, along with any other global identifiers
1021used by the actions in the grammar rules.
bfa74976
RS
1022
1023The Bison declarations declare the names of the terminal and nonterminal
1024symbols, and may also describe operator precedence and the data types of
1025semantic values of various symbols.
1026
1027The grammar rules define how to construct each nonterminal symbol from its
1028parts.
1029
38a92d50
PE
1030The epilogue can contain any code you want to use. Often the
1031definitions of functions declared in the prologue go here. In a
1032simple program, all the rest of the program can go here.
bfa74976 1033
342b8b6e 1034@node Examples
bfa74976
RS
1035@chapter Examples
1036@cindex simple examples
1037@cindex examples, simple
1038
1039Now we show and explain three sample programs written using Bison: a
1040reverse polish notation calculator, an algebraic (infix) notation
1041calculator, and a multi-function calculator. All three have been tested
1042under BSD Unix 4.3; each produces a usable, though limited, interactive
1043desk-top calculator.
1044
1045These examples are simple, but Bison grammars for real programming
1046languages are written the same way.
1047@ifinfo
1048You can copy these examples out of the Info file and into a source file
1049to try them.
1050@end ifinfo
1051
1052@menu
1053* RPN Calc:: Reverse polish notation calculator;
1054 a first example with no operator precedence.
1055* Infix Calc:: Infix (algebraic) notation calculator.
1056 Operator precedence is introduced.
1057* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1058* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1059* Multi-function Calc:: Calculator with memory and trig functions.
1060 It uses multiple data-types for semantic values.
1061* Exercises:: Ideas for improving the multi-function calculator.
1062@end menu
1063
342b8b6e 1064@node RPN Calc
bfa74976
RS
1065@section Reverse Polish Notation Calculator
1066@cindex reverse polish notation
1067@cindex polish notation calculator
1068@cindex @code{rpcalc}
1069@cindex calculator, simple
1070
1071The first example is that of a simple double-precision @dfn{reverse polish
1072notation} calculator (a calculator using postfix operators). This example
1073provides a good starting point, since operator precedence is not an issue.
1074The second example will illustrate how operator precedence is handled.
1075
1076The source code for this calculator is named @file{rpcalc.y}. The
1077@samp{.y} extension is a convention used for Bison input files.
1078
1079@menu
75f5aaea 1080* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1081* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1082* Lexer: Rpcalc Lexer. The lexical analyzer.
1083* Main: Rpcalc Main. The controlling function.
1084* Error: Rpcalc Error. The error reporting function.
1085* Gen: Rpcalc Gen. Running Bison on the grammar file.
1086* Comp: Rpcalc Compile. Run the C compiler on the output code.
1087@end menu
1088
342b8b6e 1089@node Rpcalc Decls
bfa74976
RS
1090@subsection Declarations for @code{rpcalc}
1091
1092Here are the C and Bison declarations for the reverse polish notation
1093calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1094
1095@example
72d2299c 1096/* Reverse polish notation calculator. */
bfa74976
RS
1097
1098%@{
38a92d50
PE
1099 #define YYSTYPE double
1100 #include <math.h>
1101 int yylex (void);
1102 void yyerror (char const *);
bfa74976
RS
1103%@}
1104
1105%token NUM
1106
72d2299c 1107%% /* Grammar rules and actions follow. */
bfa74976
RS
1108@end example
1109
75f5aaea 1110The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1111preprocessor directives and two forward declarations.
bfa74976
RS
1112
1113The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1114specifying the C data type for semantic values of both tokens and
1115groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1116Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1117don't define it, @code{int} is the default. Because we specify
1118@code{double}, each token and each expression has an associated value,
1119which is a floating point number.
bfa74976
RS
1120
1121The @code{#include} directive is used to declare the exponentiation
1122function @code{pow}.
1123
38a92d50
PE
1124The forward declarations for @code{yylex} and @code{yyerror} are
1125needed because the C language requires that functions be declared
1126before they are used. These functions will be defined in the
1127epilogue, but the parser calls them so they must be declared in the
1128prologue.
1129
704a47c4
AD
1130The second section, Bison declarations, provides information to Bison
1131about the token types (@pxref{Bison Declarations, ,The Bison
1132Declarations Section}). Each terminal symbol that is not a
1133single-character literal must be declared here. (Single-character
bfa74976
RS
1134literals normally don't need to be declared.) In this example, all the
1135arithmetic operators are designated by single-character literals, so the
1136only terminal symbol that needs to be declared is @code{NUM}, the token
1137type for numeric constants.
1138
342b8b6e 1139@node Rpcalc Rules
bfa74976
RS
1140@subsection Grammar Rules for @code{rpcalc}
1141
1142Here are the grammar rules for the reverse polish notation calculator.
1143
1144@example
1145input: /* empty */
1146 | input line
1147;
1148
1149line: '\n'
18b519c0 1150 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1151;
1152
18b519c0
AD
1153exp: NUM @{ $$ = $1; @}
1154 | exp exp '+' @{ $$ = $1 + $2; @}
1155 | exp exp '-' @{ $$ = $1 - $2; @}
1156 | exp exp '*' @{ $$ = $1 * $2; @}
1157 | exp exp '/' @{ $$ = $1 / $2; @}
1158 /* Exponentiation */
1159 | exp exp '^' @{ $$ = pow ($1, $2); @}
1160 /* Unary minus */
1161 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1162;
1163%%
1164@end example
1165
1166The groupings of the rpcalc ``language'' defined here are the expression
1167(given the name @code{exp}), the line of input (@code{line}), and the
1168complete input transcript (@code{input}). Each of these nonterminal
1169symbols has several alternate rules, joined by the @samp{|} punctuator
1170which is read as ``or''. The following sections explain what these rules
1171mean.
1172
1173The semantics of the language is determined by the actions taken when a
1174grouping is recognized. The actions are the C code that appears inside
1175braces. @xref{Actions}.
1176
1177You must specify these actions in C, but Bison provides the means for
1178passing semantic values between the rules. In each action, the
1179pseudo-variable @code{$$} stands for the semantic value for the grouping
1180that the rule is going to construct. Assigning a value to @code{$$} is the
1181main job of most actions. The semantic values of the components of the
1182rule are referred to as @code{$1}, @code{$2}, and so on.
1183
1184@menu
13863333
AD
1185* Rpcalc Input::
1186* Rpcalc Line::
1187* Rpcalc Expr::
bfa74976
RS
1188@end menu
1189
342b8b6e 1190@node Rpcalc Input
bfa74976
RS
1191@subsubsection Explanation of @code{input}
1192
1193Consider the definition of @code{input}:
1194
1195@example
1196input: /* empty */
1197 | input line
1198;
1199@end example
1200
1201This definition reads as follows: ``A complete input is either an empty
1202string, or a complete input followed by an input line''. Notice that
1203``complete input'' is defined in terms of itself. This definition is said
1204to be @dfn{left recursive} since @code{input} appears always as the
1205leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1206
1207The first alternative is empty because there are no symbols between the
1208colon and the first @samp{|}; this means that @code{input} can match an
1209empty string of input (no tokens). We write the rules this way because it
1210is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1211It's conventional to put an empty alternative first and write the comment
1212@samp{/* empty */} in it.
1213
1214The second alternate rule (@code{input line}) handles all nontrivial input.
1215It means, ``After reading any number of lines, read one more line if
1216possible.'' The left recursion makes this rule into a loop. Since the
1217first alternative matches empty input, the loop can be executed zero or
1218more times.
1219
1220The parser function @code{yyparse} continues to process input until a
1221grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1222input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1223
342b8b6e 1224@node Rpcalc Line
bfa74976
RS
1225@subsubsection Explanation of @code{line}
1226
1227Now consider the definition of @code{line}:
1228
1229@example
1230line: '\n'
1231 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1232;
1233@end example
1234
1235The first alternative is a token which is a newline character; this means
1236that rpcalc accepts a blank line (and ignores it, since there is no
1237action). The second alternative is an expression followed by a newline.
1238This is the alternative that makes rpcalc useful. The semantic value of
1239the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1240question is the first symbol in the alternative. The action prints this
1241value, which is the result of the computation the user asked for.
1242
1243This action is unusual because it does not assign a value to @code{$$}. As
1244a consequence, the semantic value associated with the @code{line} is
1245uninitialized (its value will be unpredictable). This would be a bug if
1246that value were ever used, but we don't use it: once rpcalc has printed the
1247value of the user's input line, that value is no longer needed.
1248
342b8b6e 1249@node Rpcalc Expr
bfa74976
RS
1250@subsubsection Explanation of @code{expr}
1251
1252The @code{exp} grouping has several rules, one for each kind of expression.
1253The first rule handles the simplest expressions: those that are just numbers.
1254The second handles an addition-expression, which looks like two expressions
1255followed by a plus-sign. The third handles subtraction, and so on.
1256
1257@example
1258exp: NUM
1259 | exp exp '+' @{ $$ = $1 + $2; @}
1260 | exp exp '-' @{ $$ = $1 - $2; @}
1261 @dots{}
1262 ;
1263@end example
1264
1265We have used @samp{|} to join all the rules for @code{exp}, but we could
1266equally well have written them separately:
1267
1268@example
1269exp: NUM ;
1270exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1271exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1272 @dots{}
1273@end example
1274
1275Most of the rules have actions that compute the value of the expression in
1276terms of the value of its parts. For example, in the rule for addition,
1277@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1278the second one. The third component, @code{'+'}, has no meaningful
1279associated semantic value, but if it had one you could refer to it as
1280@code{$3}. When @code{yyparse} recognizes a sum expression using this
1281rule, the sum of the two subexpressions' values is produced as the value of
1282the entire expression. @xref{Actions}.
1283
1284You don't have to give an action for every rule. When a rule has no
1285action, Bison by default copies the value of @code{$1} into @code{$$}.
1286This is what happens in the first rule (the one that uses @code{NUM}).
1287
1288The formatting shown here is the recommended convention, but Bison does
72d2299c 1289not require it. You can add or change white space as much as you wish.
bfa74976
RS
1290For example, this:
1291
1292@example
1293exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{}
1294@end example
1295
1296@noindent
1297means the same thing as this:
1298
1299@example
1300exp: NUM
1301 | exp exp '+' @{ $$ = $1 + $2; @}
1302 | @dots{}
1303@end example
1304
1305@noindent
1306The latter, however, is much more readable.
1307
342b8b6e 1308@node Rpcalc Lexer
bfa74976
RS
1309@subsection The @code{rpcalc} Lexical Analyzer
1310@cindex writing a lexical analyzer
1311@cindex lexical analyzer, writing
1312
704a47c4
AD
1313The lexical analyzer's job is low-level parsing: converting characters
1314or sequences of characters into tokens. The Bison parser gets its
1315tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1316Analyzer Function @code{yylex}}.
bfa74976 1317
c827f760
PE
1318Only a simple lexical analyzer is needed for the @acronym{RPN}
1319calculator. This
bfa74976
RS
1320lexical analyzer skips blanks and tabs, then reads in numbers as
1321@code{double} and returns them as @code{NUM} tokens. Any other character
1322that isn't part of a number is a separate token. Note that the token-code
1323for such a single-character token is the character itself.
1324
1325The return value of the lexical analyzer function is a numeric code which
1326represents a token type. The same text used in Bison rules to stand for
1327this token type is also a C expression for the numeric code for the type.
1328This works in two ways. If the token type is a character literal, then its
e966383b 1329numeric code is that of the character; you can use the same
bfa74976
RS
1330character literal in the lexical analyzer to express the number. If the
1331token type is an identifier, that identifier is defined by Bison as a C
1332macro whose definition is the appropriate number. In this example,
1333therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1334
1964ad8c
AD
1335The semantic value of the token (if it has one) is stored into the
1336global variable @code{yylval}, which is where the Bison parser will look
1337for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1338defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1339,Declarations for @code{rpcalc}}.)
bfa74976 1340
72d2299c
PE
1341A token type code of zero is returned if the end-of-input is encountered.
1342(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1343
1344Here is the code for the lexical analyzer:
1345
1346@example
1347@group
72d2299c 1348/* The lexical analyzer returns a double floating point
e966383b 1349 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1350 of the character read if not a number. It skips all blanks
1351 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1352
1353#include <ctype.h>
1354@end group
1355
1356@group
13863333
AD
1357int
1358yylex (void)
bfa74976
RS
1359@{
1360 int c;
1361
72d2299c 1362 /* Skip white space. */
13863333 1363 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1364 ;
1365@end group
1366@group
72d2299c 1367 /* Process numbers. */
13863333 1368 if (c == '.' || isdigit (c))
bfa74976
RS
1369 @{
1370 ungetc (c, stdin);
1371 scanf ("%lf", &yylval);
1372 return NUM;
1373 @}
1374@end group
1375@group
72d2299c 1376 /* Return end-of-input. */
13863333 1377 if (c == EOF)
bfa74976 1378 return 0;
72d2299c 1379 /* Return a single char. */
13863333 1380 return c;
bfa74976
RS
1381@}
1382@end group
1383@end example
1384
342b8b6e 1385@node Rpcalc Main
bfa74976
RS
1386@subsection The Controlling Function
1387@cindex controlling function
1388@cindex main function in simple example
1389
1390In keeping with the spirit of this example, the controlling function is
1391kept to the bare minimum. The only requirement is that it call
1392@code{yyparse} to start the process of parsing.
1393
1394@example
1395@group
13863333
AD
1396int
1397main (void)
bfa74976 1398@{
13863333 1399 return yyparse ();
bfa74976
RS
1400@}
1401@end group
1402@end example
1403
342b8b6e 1404@node Rpcalc Error
bfa74976
RS
1405@subsection The Error Reporting Routine
1406@cindex error reporting routine
1407
1408When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1409function @code{yyerror} to print an error message (usually but not
6e649e65 1410always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1411@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1412here is the definition we will use:
bfa74976
RS
1413
1414@example
1415@group
1416#include <stdio.h>
1417
38a92d50 1418/* Called by yyparse on error. */
13863333 1419void
38a92d50 1420yyerror (char const *s)
bfa74976 1421@{
4e03e201 1422 fprintf (stderr, "%s\n", s);
bfa74976
RS
1423@}
1424@end group
1425@end example
1426
1427After @code{yyerror} returns, the Bison parser may recover from the error
1428and continue parsing if the grammar contains a suitable error rule
1429(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1430have not written any error rules in this example, so any invalid input will
1431cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1432real calculator, but it is adequate for the first example.
bfa74976 1433
342b8b6e 1434@node Rpcalc Gen
bfa74976
RS
1435@subsection Running Bison to Make the Parser
1436@cindex running Bison (introduction)
1437
ceed8467
AD
1438Before running Bison to produce a parser, we need to decide how to
1439arrange all the source code in one or more source files. For such a
1440simple example, the easiest thing is to put everything in one file. The
1441definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1442end, in the epilogue of the file
75f5aaea 1443(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1444
1445For a large project, you would probably have several source files, and use
1446@code{make} to arrange to recompile them.
1447
1448With all the source in a single file, you use the following command to
1449convert it into a parser file:
1450
1451@example
1452bison @var{file_name}.y
1453@end example
1454
1455@noindent
1456In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
c827f760 1457@sc{calc}ulator''). Bison produces a file named @file{@var{file_name}.tab.c},
72d2299c 1458removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1459Bison contains the source code for @code{yyparse}. The additional
1460functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1461are copied verbatim to the output.
1462
342b8b6e 1463@node Rpcalc Compile
bfa74976
RS
1464@subsection Compiling the Parser File
1465@cindex compiling the parser
1466
1467Here is how to compile and run the parser file:
1468
1469@example
1470@group
1471# @r{List files in current directory.}
9edcd895 1472$ @kbd{ls}
bfa74976
RS
1473rpcalc.tab.c rpcalc.y
1474@end group
1475
1476@group
1477# @r{Compile the Bison parser.}
1478# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1479$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1480@end group
1481
1482@group
1483# @r{List files again.}
9edcd895 1484$ @kbd{ls}
bfa74976
RS
1485rpcalc rpcalc.tab.c rpcalc.y
1486@end group
1487@end example
1488
1489The file @file{rpcalc} now contains the executable code. Here is an
1490example session using @code{rpcalc}.
1491
1492@example
9edcd895
AD
1493$ @kbd{rpcalc}
1494@kbd{4 9 +}
bfa74976 149513
9edcd895 1496@kbd{3 7 + 3 4 5 *+-}
bfa74976 1497-13
9edcd895 1498@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 149913
9edcd895 1500@kbd{5 6 / 4 n +}
bfa74976 1501-3.166666667
9edcd895 1502@kbd{3 4 ^} @r{Exponentiation}
bfa74976 150381
9edcd895
AD
1504@kbd{^D} @r{End-of-file indicator}
1505$
bfa74976
RS
1506@end example
1507
342b8b6e 1508@node Infix Calc
bfa74976
RS
1509@section Infix Notation Calculator: @code{calc}
1510@cindex infix notation calculator
1511@cindex @code{calc}
1512@cindex calculator, infix notation
1513
1514We now modify rpcalc to handle infix operators instead of postfix. Infix
1515notation involves the concept of operator precedence and the need for
1516parentheses nested to arbitrary depth. Here is the Bison code for
1517@file{calc.y}, an infix desk-top calculator.
1518
1519@example
38a92d50 1520/* Infix notation calculator. */
bfa74976
RS
1521
1522%@{
38a92d50
PE
1523 #define YYSTYPE double
1524 #include <math.h>
1525 #include <stdio.h>
1526 int yylex (void);
1527 void yyerror (char const *);
bfa74976
RS
1528%@}
1529
38a92d50 1530/* Bison declarations. */
bfa74976
RS
1531%token NUM
1532%left '-' '+'
1533%left '*' '/'
1534%left NEG /* negation--unary minus */
38a92d50 1535%right '^' /* exponentiation */
bfa74976 1536
38a92d50
PE
1537%% /* The grammar follows. */
1538input: /* empty */
bfa74976
RS
1539 | input line
1540;
1541
1542line: '\n'
1543 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1544;
1545
1546exp: NUM @{ $$ = $1; @}
1547 | exp '+' exp @{ $$ = $1 + $3; @}
1548 | exp '-' exp @{ $$ = $1 - $3; @}
1549 | exp '*' exp @{ $$ = $1 * $3; @}
1550 | exp '/' exp @{ $$ = $1 / $3; @}
1551 | '-' exp %prec NEG @{ $$ = -$2; @}
1552 | exp '^' exp @{ $$ = pow ($1, $3); @}
1553 | '(' exp ')' @{ $$ = $2; @}
1554;
1555%%
1556@end example
1557
1558@noindent
ceed8467
AD
1559The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1560same as before.
bfa74976
RS
1561
1562There are two important new features shown in this code.
1563
1564In the second section (Bison declarations), @code{%left} declares token
1565types and says they are left-associative operators. The declarations
1566@code{%left} and @code{%right} (right associativity) take the place of
1567@code{%token} which is used to declare a token type name without
1568associativity. (These tokens are single-character literals, which
1569ordinarily don't need to be declared. We declare them here to specify
1570the associativity.)
1571
1572Operator precedence is determined by the line ordering of the
1573declarations; the higher the line number of the declaration (lower on
1574the page or screen), the higher the precedence. Hence, exponentiation
1575has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1576by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1577Precedence}.
bfa74976 1578
704a47c4
AD
1579The other important new feature is the @code{%prec} in the grammar
1580section for the unary minus operator. The @code{%prec} simply instructs
1581Bison that the rule @samp{| '-' exp} has the same precedence as
1582@code{NEG}---in this case the next-to-highest. @xref{Contextual
1583Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1584
1585Here is a sample run of @file{calc.y}:
1586
1587@need 500
1588@example
9edcd895
AD
1589$ @kbd{calc}
1590@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 15916.880952381
9edcd895 1592@kbd{-56 + 2}
bfa74976 1593-54
9edcd895 1594@kbd{3 ^ 2}
bfa74976
RS
15959
1596@end example
1597
342b8b6e 1598@node Simple Error Recovery
bfa74976
RS
1599@section Simple Error Recovery
1600@cindex error recovery, simple
1601
1602Up to this point, this manual has not addressed the issue of @dfn{error
1603recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1604error. All we have handled is error reporting with @code{yyerror}.
1605Recall that by default @code{yyparse} returns after calling
1606@code{yyerror}. This means that an erroneous input line causes the
1607calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1608
1609The Bison language itself includes the reserved word @code{error}, which
1610may be included in the grammar rules. In the example below it has
1611been added to one of the alternatives for @code{line}:
1612
1613@example
1614@group
1615line: '\n'
1616 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1617 | error '\n' @{ yyerrok; @}
1618;
1619@end group
1620@end example
1621
ceed8467 1622This addition to the grammar allows for simple error recovery in the
6e649e65 1623event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1624read, the error will be recognized by the third rule for @code{line},
1625and parsing will continue. (The @code{yyerror} function is still called
1626upon to print its message as well.) The action executes the statement
1627@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1628that error recovery is complete (@pxref{Error Recovery}). Note the
1629difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1630misprint.
bfa74976
RS
1631
1632This form of error recovery deals with syntax errors. There are other
1633kinds of errors; for example, division by zero, which raises an exception
1634signal that is normally fatal. A real calculator program must handle this
1635signal and use @code{longjmp} to return to @code{main} and resume parsing
1636input lines; it would also have to discard the rest of the current line of
1637input. We won't discuss this issue further because it is not specific to
1638Bison programs.
1639
342b8b6e
AD
1640@node Location Tracking Calc
1641@section Location Tracking Calculator: @code{ltcalc}
1642@cindex location tracking calculator
1643@cindex @code{ltcalc}
1644@cindex calculator, location tracking
1645
9edcd895
AD
1646This example extends the infix notation calculator with location
1647tracking. This feature will be used to improve the error messages. For
1648the sake of clarity, this example is a simple integer calculator, since
1649most of the work needed to use locations will be done in the lexical
72d2299c 1650analyzer.
342b8b6e
AD
1651
1652@menu
1653* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1654* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1655* Lexer: Ltcalc Lexer. The lexical analyzer.
1656@end menu
1657
1658@node Ltcalc Decls
1659@subsection Declarations for @code{ltcalc}
1660
9edcd895
AD
1661The C and Bison declarations for the location tracking calculator are
1662the same as the declarations for the infix notation calculator.
342b8b6e
AD
1663
1664@example
1665/* Location tracking calculator. */
1666
1667%@{
38a92d50
PE
1668 #define YYSTYPE int
1669 #include <math.h>
1670 int yylex (void);
1671 void yyerror (char const *);
342b8b6e
AD
1672%@}
1673
1674/* Bison declarations. */
1675%token NUM
1676
1677%left '-' '+'
1678%left '*' '/'
1679%left NEG
1680%right '^'
1681
38a92d50 1682%% /* The grammar follows. */
342b8b6e
AD
1683@end example
1684
9edcd895
AD
1685@noindent
1686Note there are no declarations specific to locations. Defining a data
1687type for storing locations is not needed: we will use the type provided
1688by default (@pxref{Location Type, ,Data Types of Locations}), which is a
1689four member structure with the following integer fields:
1690@code{first_line}, @code{first_column}, @code{last_line} and
1691@code{last_column}.
342b8b6e
AD
1692
1693@node Ltcalc Rules
1694@subsection Grammar Rules for @code{ltcalc}
1695
9edcd895
AD
1696Whether handling locations or not has no effect on the syntax of your
1697language. Therefore, grammar rules for this example will be very close
1698to those of the previous example: we will only modify them to benefit
1699from the new information.
342b8b6e 1700
9edcd895
AD
1701Here, we will use locations to report divisions by zero, and locate the
1702wrong expressions or subexpressions.
342b8b6e
AD
1703
1704@example
1705@group
1706input : /* empty */
1707 | input line
1708;
1709@end group
1710
1711@group
1712line : '\n'
1713 | exp '\n' @{ printf ("%d\n", $1); @}
1714;
1715@end group
1716
1717@group
1718exp : NUM @{ $$ = $1; @}
1719 | exp '+' exp @{ $$ = $1 + $3; @}
1720 | exp '-' exp @{ $$ = $1 - $3; @}
1721 | exp '*' exp @{ $$ = $1 * $3; @}
1722@end group
342b8b6e 1723@group
9edcd895 1724 | exp '/' exp
342b8b6e
AD
1725 @{
1726 if ($3)
1727 $$ = $1 / $3;
1728 else
1729 @{
1730 $$ = 1;
9edcd895
AD
1731 fprintf (stderr, "%d.%d-%d.%d: division by zero",
1732 @@3.first_line, @@3.first_column,
1733 @@3.last_line, @@3.last_column);
342b8b6e
AD
1734 @}
1735 @}
1736@end group
1737@group
1738 | '-' exp %preg NEG @{ $$ = -$2; @}
1739 | exp '^' exp @{ $$ = pow ($1, $3); @}
1740 | '(' exp ')' @{ $$ = $2; @}
1741@end group
1742@end example
1743
1744This code shows how to reach locations inside of semantic actions, by
1745using the pseudo-variables @code{@@@var{n}} for rule components, and the
1746pseudo-variable @code{@@$} for groupings.
1747
9edcd895
AD
1748We don't need to assign a value to @code{@@$}: the output parser does it
1749automatically. By default, before executing the C code of each action,
1750@code{@@$} is set to range from the beginning of @code{@@1} to the end
1751of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
1752can be redefined (@pxref{Location Default Action, , Default Action for
1753Locations}), and for very specific rules, @code{@@$} can be computed by
1754hand.
342b8b6e
AD
1755
1756@node Ltcalc Lexer
1757@subsection The @code{ltcalc} Lexical Analyzer.
1758
9edcd895 1759Until now, we relied on Bison's defaults to enable location
72d2299c 1760tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
1761able to feed the parser with the token locations, as it already does for
1762semantic values.
342b8b6e 1763
9edcd895
AD
1764To this end, we must take into account every single character of the
1765input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
1766
1767@example
1768@group
1769int
1770yylex (void)
1771@{
1772 int c;
18b519c0 1773@end group
342b8b6e 1774
18b519c0 1775@group
72d2299c 1776 /* Skip white space. */
342b8b6e
AD
1777 while ((c = getchar ()) == ' ' || c == '\t')
1778 ++yylloc.last_column;
18b519c0 1779@end group
342b8b6e 1780
18b519c0 1781@group
72d2299c 1782 /* Step. */
342b8b6e
AD
1783 yylloc.first_line = yylloc.last_line;
1784 yylloc.first_column = yylloc.last_column;
1785@end group
1786
1787@group
72d2299c 1788 /* Process numbers. */
342b8b6e
AD
1789 if (isdigit (c))
1790 @{
1791 yylval = c - '0';
1792 ++yylloc.last_column;
1793 while (isdigit (c = getchar ()))
1794 @{
1795 ++yylloc.last_column;
1796 yylval = yylval * 10 + c - '0';
1797 @}
1798 ungetc (c, stdin);
1799 return NUM;
1800 @}
1801@end group
1802
72d2299c 1803 /* Return end-of-input. */
342b8b6e
AD
1804 if (c == EOF)
1805 return 0;
1806
72d2299c 1807 /* Return a single char, and update location. */
342b8b6e
AD
1808 if (c == '\n')
1809 @{
1810 ++yylloc.last_line;
1811 yylloc.last_column = 0;
1812 @}
1813 else
1814 ++yylloc.last_column;
1815 return c;
1816@}
1817@end example
1818
9edcd895
AD
1819Basically, the lexical analyzer performs the same processing as before:
1820it skips blanks and tabs, and reads numbers or single-character tokens.
1821In addition, it updates @code{yylloc}, the global variable (of type
1822@code{YYLTYPE}) containing the token's location.
342b8b6e 1823
9edcd895 1824Now, each time this function returns a token, the parser has its number
72d2299c 1825as well as its semantic value, and its location in the text. The last
9edcd895
AD
1826needed change is to initialize @code{yylloc}, for example in the
1827controlling function:
342b8b6e
AD
1828
1829@example
9edcd895 1830@group
342b8b6e
AD
1831int
1832main (void)
1833@{
1834 yylloc.first_line = yylloc.last_line = 1;
1835 yylloc.first_column = yylloc.last_column = 0;
1836 return yyparse ();
1837@}
9edcd895 1838@end group
342b8b6e
AD
1839@end example
1840
9edcd895
AD
1841Remember that computing locations is not a matter of syntax. Every
1842character must be associated to a location update, whether it is in
1843valid input, in comments, in literal strings, and so on.
342b8b6e
AD
1844
1845@node Multi-function Calc
bfa74976
RS
1846@section Multi-Function Calculator: @code{mfcalc}
1847@cindex multi-function calculator
1848@cindex @code{mfcalc}
1849@cindex calculator, multi-function
1850
1851Now that the basics of Bison have been discussed, it is time to move on to
1852a more advanced problem. The above calculators provided only five
1853functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
1854be nice to have a calculator that provides other mathematical functions such
1855as @code{sin}, @code{cos}, etc.
1856
1857It is easy to add new operators to the infix calculator as long as they are
1858only single-character literals. The lexical analyzer @code{yylex} passes
9ecbd125 1859back all nonnumber characters as tokens, so new grammar rules suffice for
bfa74976
RS
1860adding a new operator. But we want something more flexible: built-in
1861functions whose syntax has this form:
1862
1863@example
1864@var{function_name} (@var{argument})
1865@end example
1866
1867@noindent
1868At the same time, we will add memory to the calculator, by allowing you
1869to create named variables, store values in them, and use them later.
1870Here is a sample session with the multi-function calculator:
1871
1872@example
9edcd895
AD
1873$ @kbd{mfcalc}
1874@kbd{pi = 3.141592653589}
bfa74976 18753.1415926536
9edcd895 1876@kbd{sin(pi)}
bfa74976 18770.0000000000
9edcd895 1878@kbd{alpha = beta1 = 2.3}
bfa74976 18792.3000000000
9edcd895 1880@kbd{alpha}
bfa74976 18812.3000000000
9edcd895 1882@kbd{ln(alpha)}
bfa74976 18830.8329091229
9edcd895 1884@kbd{exp(ln(beta1))}
bfa74976 18852.3000000000
9edcd895 1886$
bfa74976
RS
1887@end example
1888
1889Note that multiple assignment and nested function calls are permitted.
1890
1891@menu
1892* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
1893* Rules: Mfcalc Rules. Grammar rules for the calculator.
1894* Symtab: Mfcalc Symtab. Symbol table management subroutines.
1895@end menu
1896
342b8b6e 1897@node Mfcalc Decl
bfa74976
RS
1898@subsection Declarations for @code{mfcalc}
1899
1900Here are the C and Bison declarations for the multi-function calculator.
1901
1902@smallexample
18b519c0 1903@group
bfa74976 1904%@{
38a92d50
PE
1905 #include <math.h> /* For math functions, cos(), sin(), etc. */
1906 #include "calc.h" /* Contains definition of `symrec'. */
1907 int yylex (void);
1908 void yyerror (char const *);
bfa74976 1909%@}
18b519c0
AD
1910@end group
1911@group
bfa74976 1912%union @{
38a92d50
PE
1913 double val; /* For returning numbers. */
1914 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 1915@}
18b519c0 1916@end group
38a92d50
PE
1917%token <val> NUM /* Simple double precision number. */
1918%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
1919%type <val> exp
1920
18b519c0 1921@group
bfa74976
RS
1922%right '='
1923%left '-' '+'
1924%left '*' '/'
38a92d50
PE
1925%left NEG /* negation--unary minus */
1926%right '^' /* exponentiation */
18b519c0 1927@end group
38a92d50 1928%% /* The grammar follows. */
bfa74976
RS
1929@end smallexample
1930
1931The above grammar introduces only two new features of the Bison language.
1932These features allow semantic values to have various data types
1933(@pxref{Multiple Types, ,More Than One Value Type}).
1934
1935The @code{%union} declaration specifies the entire list of possible types;
1936this is instead of defining @code{YYSTYPE}. The allowable types are now
1937double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
1938the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
1939
1940Since values can now have various types, it is necessary to associate a
1941type with each grammar symbol whose semantic value is used. These symbols
1942are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
1943declarations are augmented with information about their data type (placed
1944between angle brackets).
1945
704a47c4
AD
1946The Bison construct @code{%type} is used for declaring nonterminal
1947symbols, just as @code{%token} is used for declaring token types. We
1948have not used @code{%type} before because nonterminal symbols are
1949normally declared implicitly by the rules that define them. But
1950@code{exp} must be declared explicitly so we can specify its value type.
1951@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 1952
342b8b6e 1953@node Mfcalc Rules
bfa74976
RS
1954@subsection Grammar Rules for @code{mfcalc}
1955
1956Here are the grammar rules for the multi-function calculator.
1957Most of them are copied directly from @code{calc}; three rules,
1958those which mention @code{VAR} or @code{FNCT}, are new.
1959
1960@smallexample
18b519c0 1961@group
bfa74976
RS
1962input: /* empty */
1963 | input line
1964;
18b519c0 1965@end group
bfa74976 1966
18b519c0 1967@group
bfa74976
RS
1968line:
1969 '\n'
1970 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1971 | error '\n' @{ yyerrok; @}
1972;
18b519c0 1973@end group
bfa74976 1974
18b519c0 1975@group
bfa74976
RS
1976exp: NUM @{ $$ = $1; @}
1977 | VAR @{ $$ = $1->value.var; @}
1978 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
1979 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
1980 | exp '+' exp @{ $$ = $1 + $3; @}
1981 | exp '-' exp @{ $$ = $1 - $3; @}
1982 | exp '*' exp @{ $$ = $1 * $3; @}
1983 | exp '/' exp @{ $$ = $1 / $3; @}
1984 | '-' exp %prec NEG @{ $$ = -$2; @}
1985 | exp '^' exp @{ $$ = pow ($1, $3); @}
1986 | '(' exp ')' @{ $$ = $2; @}
1987;
18b519c0 1988@end group
38a92d50 1989/* End of grammar. */
bfa74976
RS
1990%%
1991@end smallexample
1992
342b8b6e 1993@node Mfcalc Symtab
bfa74976
RS
1994@subsection The @code{mfcalc} Symbol Table
1995@cindex symbol table example
1996
1997The multi-function calculator requires a symbol table to keep track of the
1998names and meanings of variables and functions. This doesn't affect the
1999grammar rules (except for the actions) or the Bison declarations, but it
2000requires some additional C functions for support.
2001
2002The symbol table itself consists of a linked list of records. Its
2003definition, which is kept in the header @file{calc.h}, is as follows. It
2004provides for either functions or variables to be placed in the table.
2005
2006@smallexample
2007@group
38a92d50 2008/* Function type. */
32dfccf8 2009typedef double (*func_t) (double);
72f889cc 2010@end group
32dfccf8 2011
72f889cc 2012@group
38a92d50 2013/* Data type for links in the chain of symbols. */
bfa74976
RS
2014struct symrec
2015@{
38a92d50 2016 char *name; /* name of symbol */
bfa74976 2017 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2018 union
2019 @{
38a92d50
PE
2020 double var; /* value of a VAR */
2021 func_t fnctptr; /* value of a FNCT */
bfa74976 2022 @} value;
38a92d50 2023 struct symrec *next; /* link field */
bfa74976
RS
2024@};
2025@end group
2026
2027@group
2028typedef struct symrec symrec;
2029
38a92d50 2030/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2031extern symrec *sym_table;
2032
38a92d50
PE
2033symrec *putsym (char const *, func_t);
2034symrec *getsym (char const *);
bfa74976
RS
2035@end group
2036@end smallexample
2037
2038The new version of @code{main} includes a call to @code{init_table}, a
2039function that initializes the symbol table. Here it is, and
2040@code{init_table} as well:
2041
2042@smallexample
bfa74976
RS
2043#include <stdio.h>
2044
18b519c0 2045@group
38a92d50 2046/* Called by yyparse on error. */
13863333 2047void
38a92d50 2048yyerror (char const *s)
bfa74976
RS
2049@{
2050 printf ("%s\n", s);
2051@}
18b519c0 2052@end group
bfa74976 2053
18b519c0 2054@group
bfa74976
RS
2055struct init
2056@{
38a92d50
PE
2057 char const *fname;
2058 double (*fnct) (double);
bfa74976
RS
2059@};
2060@end group
2061
2062@group
38a92d50 2063struct init const arith_fncts[] =
13863333 2064@{
32dfccf8
AD
2065 "sin", sin,
2066 "cos", cos,
13863333 2067 "atan", atan,
32dfccf8
AD
2068 "ln", log,
2069 "exp", exp,
13863333
AD
2070 "sqrt", sqrt,
2071 0, 0
2072@};
18b519c0 2073@end group
bfa74976 2074
18b519c0 2075@group
bfa74976 2076/* The symbol table: a chain of `struct symrec'. */
38a92d50 2077symrec *sym_table;
bfa74976
RS
2078@end group
2079
2080@group
72d2299c 2081/* Put arithmetic functions in table. */
13863333
AD
2082void
2083init_table (void)
bfa74976
RS
2084@{
2085 int i;
2086 symrec *ptr;
2087 for (i = 0; arith_fncts[i].fname != 0; i++)
2088 @{
2089 ptr = putsym (arith_fncts[i].fname, FNCT);
2090 ptr->value.fnctptr = arith_fncts[i].fnct;
2091 @}
2092@}
2093@end group
38a92d50
PE
2094
2095@group
2096int
2097main (void)
2098@{
2099 init_table ();
2100 return yyparse ();
2101@}
2102@end group
bfa74976
RS
2103@end smallexample
2104
2105By simply editing the initialization list and adding the necessary include
2106files, you can add additional functions to the calculator.
2107
2108Two important functions allow look-up and installation of symbols in the
2109symbol table. The function @code{putsym} is passed a name and the type
2110(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2111linked to the front of the list, and a pointer to the object is returned.
2112The function @code{getsym} is passed the name of the symbol to look up. If
2113found, a pointer to that symbol is returned; otherwise zero is returned.
2114
2115@smallexample
2116symrec *
38a92d50 2117putsym (char const *sym_name, int sym_type)
bfa74976
RS
2118@{
2119 symrec *ptr;
2120 ptr = (symrec *) malloc (sizeof (symrec));
2121 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2122 strcpy (ptr->name,sym_name);
2123 ptr->type = sym_type;
72d2299c 2124 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2125 ptr->next = (struct symrec *)sym_table;
2126 sym_table = ptr;
2127 return ptr;
2128@}
2129
2130symrec *
38a92d50 2131getsym (char const *sym_name)
bfa74976
RS
2132@{
2133 symrec *ptr;
2134 for (ptr = sym_table; ptr != (symrec *) 0;
2135 ptr = (symrec *)ptr->next)
2136 if (strcmp (ptr->name,sym_name) == 0)
2137 return ptr;
2138 return 0;
2139@}
2140@end smallexample
2141
2142The function @code{yylex} must now recognize variables, numeric values, and
2143the single-character arithmetic operators. Strings of alphanumeric
14ded682 2144characters with a leading non-digit are recognized as either variables or
bfa74976
RS
2145functions depending on what the symbol table says about them.
2146
2147The string is passed to @code{getsym} for look up in the symbol table. If
2148the name appears in the table, a pointer to its location and its type
2149(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2150already in the table, then it is installed as a @code{VAR} using
2151@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2152returned to @code{yyparse}.
bfa74976
RS
2153
2154No change is needed in the handling of numeric values and arithmetic
2155operators in @code{yylex}.
2156
2157@smallexample
2158@group
2159#include <ctype.h>
18b519c0 2160@end group
13863333 2161
18b519c0 2162@group
13863333
AD
2163int
2164yylex (void)
bfa74976
RS
2165@{
2166 int c;
2167
72d2299c 2168 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2169 while ((c = getchar ()) == ' ' || c == '\t');
2170
2171 if (c == EOF)
2172 return 0;
2173@end group
2174
2175@group
2176 /* Char starts a number => parse the number. */
2177 if (c == '.' || isdigit (c))
2178 @{
2179 ungetc (c, stdin);
2180 scanf ("%lf", &yylval.val);
2181 return NUM;
2182 @}
2183@end group
2184
2185@group
2186 /* Char starts an identifier => read the name. */
2187 if (isalpha (c))
2188 @{
2189 symrec *s;
2190 static char *symbuf = 0;
2191 static int length = 0;
2192 int i;
2193@end group
2194
2195@group
2196 /* Initially make the buffer long enough
2197 for a 40-character symbol name. */
2198 if (length == 0)
2199 length = 40, symbuf = (char *)malloc (length + 1);
2200
2201 i = 0;
2202 do
2203@end group
2204@group
2205 @{
2206 /* If buffer is full, make it bigger. */
2207 if (i == length)
2208 @{
2209 length *= 2;
18b519c0 2210 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2211 @}
2212 /* Add this character to the buffer. */
2213 symbuf[i++] = c;
2214 /* Get another character. */
2215 c = getchar ();
2216 @}
2217@end group
2218@group
72d2299c 2219 while (isalnum (c));
bfa74976
RS
2220
2221 ungetc (c, stdin);
2222 symbuf[i] = '\0';
2223@end group
2224
2225@group
2226 s = getsym (symbuf);
2227 if (s == 0)
2228 s = putsym (symbuf, VAR);
2229 yylval.tptr = s;
2230 return s->type;
2231 @}
2232
2233 /* Any other character is a token by itself. */
2234 return c;
2235@}
2236@end group
2237@end smallexample
2238
72d2299c 2239This program is both powerful and flexible. You may easily add new
704a47c4
AD
2240functions, and it is a simple job to modify this code to install
2241predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2242
342b8b6e 2243@node Exercises
bfa74976
RS
2244@section Exercises
2245@cindex exercises
2246
2247@enumerate
2248@item
2249Add some new functions from @file{math.h} to the initialization list.
2250
2251@item
2252Add another array that contains constants and their values. Then
2253modify @code{init_table} to add these constants to the symbol table.
2254It will be easiest to give the constants type @code{VAR}.
2255
2256@item
2257Make the program report an error if the user refers to an
2258uninitialized variable in any way except to store a value in it.
2259@end enumerate
2260
342b8b6e 2261@node Grammar File
bfa74976
RS
2262@chapter Bison Grammar Files
2263
2264Bison takes as input a context-free grammar specification and produces a
2265C-language function that recognizes correct instances of the grammar.
2266
2267The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2268@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2269
2270@menu
2271* Grammar Outline:: Overall layout of the grammar file.
2272* Symbols:: Terminal and nonterminal symbols.
2273* Rules:: How to write grammar rules.
2274* Recursion:: Writing recursive rules.
2275* Semantics:: Semantic values and actions.
847bf1f5 2276* Locations:: Locations and actions.
bfa74976
RS
2277* Declarations:: All kinds of Bison declarations are described here.
2278* Multiple Parsers:: Putting more than one Bison parser in one program.
2279@end menu
2280
342b8b6e 2281@node Grammar Outline
bfa74976
RS
2282@section Outline of a Bison Grammar
2283
2284A Bison grammar file has four main sections, shown here with the
2285appropriate delimiters:
2286
2287@example
2288%@{
38a92d50 2289 @var{Prologue}
bfa74976
RS
2290%@}
2291
2292@var{Bison declarations}
2293
2294%%
2295@var{Grammar rules}
2296%%
2297
75f5aaea 2298@var{Epilogue}
bfa74976
RS
2299@end example
2300
2301Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2302As a @acronym{GNU} extension, @samp{//} introduces a comment that
2303continues until end of line.
bfa74976
RS
2304
2305@menu
75f5aaea 2306* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
2307* Bison Declarations:: Syntax and usage of the Bison declarations section.
2308* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2309* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2310@end menu
2311
38a92d50 2312@node Prologue
75f5aaea
MA
2313@subsection The prologue
2314@cindex declarations section
2315@cindex Prologue
2316@cindex declarations
bfa74976 2317
08e49d20 2318The @var{Prologue} section contains macro definitions and
bfa74976
RS
2319declarations of functions and variables that are used in the actions in the
2320grammar rules. These are copied to the beginning of the parser file so
2321that they precede the definition of @code{yyparse}. You can use
2322@samp{#include} to get the declarations from a header file. If you don't
2323need any C declarations, you may omit the @samp{%@{} and @samp{%@}}
2324delimiters that bracket this section.
2325
c732d2c6
AD
2326You may have more than one @var{Prologue} section, intermixed with the
2327@var{Bison declarations}. This allows you to have C and Bison
2328declarations that refer to each other. For example, the @code{%union}
2329declaration may use types defined in a header file, and you may wish to
2330prototype functions that take arguments of type @code{YYSTYPE}. This
2331can be done with two @var{Prologue} blocks, one before and one after the
2332@code{%union} declaration.
2333
2334@smallexample
2335%@{
38a92d50
PE
2336 #include <stdio.h>
2337 #include "ptypes.h"
c732d2c6
AD
2338%@}
2339
2340%union @{
2341 long n;
2342 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2343@}
2344
2345%@{
38a92d50
PE
2346 static void print_token_value (FILE *, int, YYSTYPE);
2347 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2348%@}
2349
2350@dots{}
2351@end smallexample
2352
342b8b6e 2353@node Bison Declarations
bfa74976
RS
2354@subsection The Bison Declarations Section
2355@cindex Bison declarations (introduction)
2356@cindex declarations, Bison (introduction)
2357
2358The @var{Bison declarations} section contains declarations that define
2359terminal and nonterminal symbols, specify precedence, and so on.
2360In some simple grammars you may not need any declarations.
2361@xref{Declarations, ,Bison Declarations}.
2362
342b8b6e 2363@node Grammar Rules
bfa74976
RS
2364@subsection The Grammar Rules Section
2365@cindex grammar rules section
2366@cindex rules section for grammar
2367
2368The @dfn{grammar rules} section contains one or more Bison grammar
2369rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2370
2371There must always be at least one grammar rule, and the first
2372@samp{%%} (which precedes the grammar rules) may never be omitted even
2373if it is the first thing in the file.
2374
38a92d50 2375@node Epilogue
75f5aaea 2376@subsection The epilogue
bfa74976 2377@cindex additional C code section
75f5aaea 2378@cindex epilogue
bfa74976
RS
2379@cindex C code, section for additional
2380
08e49d20
PE
2381The @var{Epilogue} is copied verbatim to the end of the parser file, just as
2382the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
2383place to put anything that you want to have in the parser file but which need
2384not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
2385definitions of @code{yylex} and @code{yyerror} often go here. Because
2386C requires functions to be declared before being used, you often need
2387to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
2388even if you define them int he Epilogue.
75f5aaea 2389@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
2390
2391If the last section is empty, you may omit the @samp{%%} that separates it
2392from the grammar rules.
2393
38a92d50
PE
2394The Bison parser itself contains many macros and identifiers whose
2395names start with @samp{yy} or @samp{YY}, so it is a
bfa74976 2396good idea to avoid using any such names (except those documented in this
75f5aaea 2397manual) in the epilogue of the grammar file.
bfa74976 2398
342b8b6e 2399@node Symbols
bfa74976
RS
2400@section Symbols, Terminal and Nonterminal
2401@cindex nonterminal symbol
2402@cindex terminal symbol
2403@cindex token type
2404@cindex symbol
2405
2406@dfn{Symbols} in Bison grammars represent the grammatical classifications
2407of the language.
2408
2409A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
2410class of syntactically equivalent tokens. You use the symbol in grammar
2411rules to mean that a token in that class is allowed. The symbol is
2412represented in the Bison parser by a numeric code, and the @code{yylex}
2413function returns a token type code to indicate what kind of token has been
2414read. You don't need to know what the code value is; you can use the
2415symbol to stand for it.
2416
2417A @dfn{nonterminal symbol} stands for a class of syntactically equivalent
2418groupings. The symbol name is used in writing grammar rules. By convention,
2419it should be all lower case.
2420
2421Symbol names can contain letters, digits (not at the beginning),
2422underscores and periods. Periods make sense only in nonterminals.
2423
931c7513 2424There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
2425
2426@itemize @bullet
2427@item
2428A @dfn{named token type} is written with an identifier, like an
c827f760 2429identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
2430such name must be defined with a Bison declaration such as
2431@code{%token}. @xref{Token Decl, ,Token Type Names}.
2432
2433@item
2434@cindex character token
2435@cindex literal token
2436@cindex single-character literal
931c7513
RS
2437A @dfn{character token type} (or @dfn{literal character token}) is
2438written in the grammar using the same syntax used in C for character
2439constants; for example, @code{'+'} is a character token type. A
2440character token type doesn't need to be declared unless you need to
2441specify its semantic value data type (@pxref{Value Type, ,Data Types of
2442Semantic Values}), associativity, or precedence (@pxref{Precedence,
2443,Operator Precedence}).
bfa74976
RS
2444
2445By convention, a character token type is used only to represent a
2446token that consists of that particular character. Thus, the token
2447type @code{'+'} is used to represent the character @samp{+} as a
2448token. Nothing enforces this convention, but if you depart from it,
2449your program will confuse other readers.
2450
2451All the usual escape sequences used in character literals in C can be
2452used in Bison as well, but you must not use the null character as a
72d2299c
PE
2453character literal because its numeric code, zero, signifies
2454end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
2455for @code{yylex}}). Also, unlike standard C, trigraphs have no
2456special meaning in Bison character literals, nor is backslash-newline
2457allowed.
931c7513
RS
2458
2459@item
2460@cindex string token
2461@cindex literal string token
9ecbd125 2462@cindex multicharacter literal
931c7513
RS
2463A @dfn{literal string token} is written like a C string constant; for
2464example, @code{"<="} is a literal string token. A literal string token
2465doesn't need to be declared unless you need to specify its semantic
14ded682 2466value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
2467(@pxref{Precedence}).
2468
2469You can associate the literal string token with a symbolic name as an
2470alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
2471Declarations}). If you don't do that, the lexical analyzer has to
2472retrieve the token number for the literal string token from the
2473@code{yytname} table (@pxref{Calling Convention}).
2474
c827f760 2475@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
2476
2477By convention, a literal string token is used only to represent a token
2478that consists of that particular string. Thus, you should use the token
2479type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 2480does not enforce this convention, but if you depart from it, people who
931c7513
RS
2481read your program will be confused.
2482
2483All the escape sequences used in string literals in C can be used in
2bfc2e2a
PE
2484Bison as well. However, unlike Standard C, trigraphs have no special
2485meaning in Bison string literals, nor is backslash-newline allowed. A
2486literal string token must contain two or more characters; for a token
2487containing just one character, use a character token (see above).
bfa74976
RS
2488@end itemize
2489
2490How you choose to write a terminal symbol has no effect on its
2491grammatical meaning. That depends only on where it appears in rules and
2492on when the parser function returns that symbol.
2493
72d2299c
PE
2494The value returned by @code{yylex} is always one of the terminal
2495symbols, except that a zero or negative value signifies end-of-input.
2496Whichever way you write the token type in the grammar rules, you write
2497it the same way in the definition of @code{yylex}. The numeric code
2498for a character token type is simply the positive numeric code of the
2499character, so @code{yylex} can use the identical value to generate the
2500requisite code, though you may need to convert it to @code{unsigned
2501char} to avoid sign-extension on hosts where @code{char} is signed.
2502Each named token type becomes a C macro in
bfa74976 2503the parser file, so @code{yylex} can use the name to stand for the code.
13863333 2504(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
2505@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
2506
2507If @code{yylex} is defined in a separate file, you need to arrange for the
2508token-type macro definitions to be available there. Use the @samp{-d}
2509option when you run Bison, so that it will write these macro definitions
2510into a separate header file @file{@var{name}.tab.h} which you can include
2511in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
2512
72d2299c
PE
2513If you want to write a grammar that is portable to any Standard C
2514host, you must use only non-null character tokens taken from the basic
c827f760 2515execution character set of Standard C@. This set consists of the ten
72d2299c
PE
2516digits, the 52 lower- and upper-case English letters, and the
2517characters in the following C-language string:
2518
2519@example
2520"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
2521@end example
2522
2523The @code{yylex} function and Bison must use a consistent character
2524set and encoding for character tokens. For example, if you run Bison in an
c827f760 2525@acronym{ASCII} environment, but then compile and run the resulting program
e966383b 2526in an environment that uses an incompatible character set like
c827f760
PE
2527@acronym{EBCDIC}, the resulting program may not work because the
2528tables generated by Bison will assume @acronym{ASCII} numeric values for
72d2299c 2529character tokens. It is standard
e966383b 2530practice for software distributions to contain C source files that
c827f760
PE
2531were generated by Bison in an @acronym{ASCII} environment, so installers on
2532platforms that are incompatible with @acronym{ASCII} must rebuild those
e966383b
PE
2533files before compiling them.
2534
bfa74976
RS
2535The symbol @code{error} is a terminal symbol reserved for error recovery
2536(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
2537In particular, @code{yylex} should never return this value. The default
2538value of the error token is 256, unless you explicitly assigned 256 to
2539one of your tokens with a @code{%token} declaration.
bfa74976 2540
342b8b6e 2541@node Rules
bfa74976
RS
2542@section Syntax of Grammar Rules
2543@cindex rule syntax
2544@cindex grammar rule syntax
2545@cindex syntax of grammar rules
2546
2547A Bison grammar rule has the following general form:
2548
2549@example
e425e872 2550@group
bfa74976
RS
2551@var{result}: @var{components}@dots{}
2552 ;
e425e872 2553@end group
bfa74976
RS
2554@end example
2555
2556@noindent
9ecbd125 2557where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 2558and @var{components} are various terminal and nonterminal symbols that
13863333 2559are put together by this rule (@pxref{Symbols}).
bfa74976
RS
2560
2561For example,
2562
2563@example
2564@group
2565exp: exp '+' exp
2566 ;
2567@end group
2568@end example
2569
2570@noindent
2571says that two groupings of type @code{exp}, with a @samp{+} token in between,
2572can be combined into a larger grouping of type @code{exp}.
2573
72d2299c
PE
2574White space in rules is significant only to separate symbols. You can add
2575extra white space as you wish.
bfa74976
RS
2576
2577Scattered among the components can be @var{actions} that determine
2578the semantics of the rule. An action looks like this:
2579
2580@example
2581@{@var{C statements}@}
2582@end example
2583
2584@noindent
2585Usually there is only one action and it follows the components.
2586@xref{Actions}.
2587
2588@findex |
2589Multiple rules for the same @var{result} can be written separately or can
2590be joined with the vertical-bar character @samp{|} as follows:
2591
2592@ifinfo
2593@example
2594@var{result}: @var{rule1-components}@dots{}
2595 | @var{rule2-components}@dots{}
2596 @dots{}
2597 ;
2598@end example
2599@end ifinfo
2600@iftex
2601@example
2602@group
2603@var{result}: @var{rule1-components}@dots{}
2604 | @var{rule2-components}@dots{}
2605 @dots{}
2606 ;
2607@end group
2608@end example
2609@end iftex
2610
2611@noindent
2612They are still considered distinct rules even when joined in this way.
2613
2614If @var{components} in a rule is empty, it means that @var{result} can
2615match the empty string. For example, here is how to define a
2616comma-separated sequence of zero or more @code{exp} groupings:
2617
2618@example
2619@group
2620expseq: /* empty */
2621 | expseq1
2622 ;
2623@end group
2624
2625@group
2626expseq1: exp
2627 | expseq1 ',' exp
2628 ;
2629@end group
2630@end example
2631
2632@noindent
2633It is customary to write a comment @samp{/* empty */} in each rule
2634with no components.
2635
342b8b6e 2636@node Recursion
bfa74976
RS
2637@section Recursive Rules
2638@cindex recursive rule
2639
2640A rule is called @dfn{recursive} when its @var{result} nonterminal appears
2641also on its right hand side. Nearly all Bison grammars need to use
2642recursion, because that is the only way to define a sequence of any number
9ecbd125
JT
2643of a particular thing. Consider this recursive definition of a
2644comma-separated sequence of one or more expressions:
bfa74976
RS
2645
2646@example
2647@group
2648expseq1: exp
2649 | expseq1 ',' exp
2650 ;
2651@end group
2652@end example
2653
2654@cindex left recursion
2655@cindex right recursion
2656@noindent
2657Since the recursive use of @code{expseq1} is the leftmost symbol in the
2658right hand side, we call this @dfn{left recursion}. By contrast, here
2659the same construct is defined using @dfn{right recursion}:
2660
2661@example
2662@group
2663expseq1: exp
2664 | exp ',' expseq1
2665 ;
2666@end group
2667@end example
2668
2669@noindent
ec3bc396
AD
2670Any kind of sequence can be defined using either left recursion or right
2671recursion, but you should always use left recursion, because it can
2672parse a sequence of any number of elements with bounded stack space.
2673Right recursion uses up space on the Bison stack in proportion to the
2674number of elements in the sequence, because all the elements must be
2675shifted onto the stack before the rule can be applied even once.
2676@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
2677of this.
bfa74976
RS
2678
2679@cindex mutual recursion
2680@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
2681rule does not appear directly on its right hand side, but does appear
2682in rules for other nonterminals which do appear on its right hand
13863333 2683side.
bfa74976
RS
2684
2685For example:
2686
2687@example
2688@group
2689expr: primary
2690 | primary '+' primary
2691 ;
2692@end group
2693
2694@group
2695primary: constant
2696 | '(' expr ')'
2697 ;
2698@end group
2699@end example
2700
2701@noindent
2702defines two mutually-recursive nonterminals, since each refers to the
2703other.
2704
342b8b6e 2705@node Semantics
bfa74976
RS
2706@section Defining Language Semantics
2707@cindex defining language semantics
13863333 2708@cindex language semantics, defining
bfa74976
RS
2709
2710The grammar rules for a language determine only the syntax. The semantics
2711are determined by the semantic values associated with various tokens and
2712groupings, and by the actions taken when various groupings are recognized.
2713
2714For example, the calculator calculates properly because the value
2715associated with each expression is the proper number; it adds properly
2716because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
2717the numbers associated with @var{x} and @var{y}.
2718
2719@menu
2720* Value Type:: Specifying one data type for all semantic values.
2721* Multiple Types:: Specifying several alternative data types.
2722* Actions:: An action is the semantic definition of a grammar rule.
2723* Action Types:: Specifying data types for actions to operate on.
2724* Mid-Rule Actions:: Most actions go at the end of a rule.
2725 This says when, why and how to use the exceptional
2726 action in the middle of a rule.
2727@end menu
2728
342b8b6e 2729@node Value Type
bfa74976
RS
2730@subsection Data Types of Semantic Values
2731@cindex semantic value type
2732@cindex value type, semantic
2733@cindex data types of semantic values
2734@cindex default data type
2735
2736In a simple program it may be sufficient to use the same data type for
2737the semantic values of all language constructs. This was true in the
c827f760 2738@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 2739Notation Calculator}).
bfa74976
RS
2740
2741Bison's default is to use type @code{int} for all semantic values. To
2742specify some other type, define @code{YYSTYPE} as a macro, like this:
2743
2744@example
2745#define YYSTYPE double
2746@end example
2747
2748@noindent
342b8b6e 2749This macro definition must go in the prologue of the grammar file
75f5aaea 2750(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 2751
342b8b6e 2752@node Multiple Types
bfa74976
RS
2753@subsection More Than One Value Type
2754
2755In most programs, you will need different data types for different kinds
2756of tokens and groupings. For example, a numeric constant may need type
2757@code{int} or @code{long}, while a string constant needs type @code{char *},
2758and an identifier might need a pointer to an entry in the symbol table.
2759
2760To use more than one data type for semantic values in one parser, Bison
2761requires you to do two things:
2762
2763@itemize @bullet
2764@item
2765Specify the entire collection of possible data types, with the
704a47c4
AD
2766@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
2767Value Types}).
bfa74976
RS
2768
2769@item
14ded682
AD
2770Choose one of those types for each symbol (terminal or nonterminal) for
2771which semantic values are used. This is done for tokens with the
2772@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
2773and for groupings with the @code{%type} Bison declaration (@pxref{Type
2774Decl, ,Nonterminal Symbols}).
bfa74976
RS
2775@end itemize
2776
342b8b6e 2777@node Actions
bfa74976
RS
2778@subsection Actions
2779@cindex action
2780@vindex $$
2781@vindex $@var{n}
2782
2783An action accompanies a syntactic rule and contains C code to be executed
2784each time an instance of that rule is recognized. The task of most actions
2785is to compute a semantic value for the grouping built by the rule from the
2786semantic values associated with tokens or smaller groupings.
2787
2788An action consists of C statements surrounded by braces, much like a
2bfc2e2a
PE
2789compound statement in C@. An action can contain any sequence of C
2790statements. Bison does not look for trigraphs, though, so if your C
2791code uses trigraphs you should ensure that they do not affect the
2792nesting of braces or the boundaries of comments, strings, or character
2793literals.
2794
2795An action can be placed at any position in the rule;
704a47c4
AD
2796it is executed at that position. Most rules have just one action at the
2797end of the rule, following all the components. Actions in the middle of
2798a rule are tricky and used only for special purposes (@pxref{Mid-Rule
2799Actions, ,Actions in Mid-Rule}).
bfa74976
RS
2800
2801The C code in an action can refer to the semantic values of the components
2802matched by the rule with the construct @code{$@var{n}}, which stands for
2803the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
2804being constructed is @code{$$}. Bison translates both of these
2805constructs into expressions of the appropriate type when it copies the
2806actions into the parser file. @code{$$} is translated to a modifiable
2807lvalue, so it can be assigned to.
bfa74976
RS
2808
2809Here is a typical example:
2810
2811@example
2812@group
2813exp: @dots{}
2814 | exp '+' exp
2815 @{ $$ = $1 + $3; @}
2816@end group
2817@end example
2818
2819@noindent
2820This rule constructs an @code{exp} from two smaller @code{exp} groupings
2821connected by a plus-sign token. In the action, @code{$1} and @code{$3}
2822refer to the semantic values of the two component @code{exp} groupings,
2823which are the first and third symbols on the right hand side of the rule.
2824The sum is stored into @code{$$} so that it becomes the semantic value of
2825the addition-expression just recognized by the rule. If there were a
2826useful semantic value associated with the @samp{+} token, it could be
e0c471a9 2827referred to as @code{$2}.
bfa74976 2828
3ded9a63
AD
2829Note that the vertical-bar character @samp{|} is really a rule
2830separator, and actions are attached to a single rule. This is a
2831difference with tools like Flex, for which @samp{|} stands for either
2832``or'', or ``the same action as that of the next rule''. In the
2833following example, the action is triggered only when @samp{b} is found:
2834
2835@example
2836@group
2837a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
2838@end group
2839@end example
2840
bfa74976
RS
2841@cindex default action
2842If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
2843@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
2844becomes the value of the whole rule. Of course, the default action is
2845valid only if the two data types match. There is no meaningful default
2846action for an empty rule; every empty rule must have an explicit action
2847unless the rule's value does not matter.
bfa74976
RS
2848
2849@code{$@var{n}} with @var{n} zero or negative is allowed for reference
2850to tokens and groupings on the stack @emph{before} those that match the
2851current rule. This is a very risky practice, and to use it reliably
2852you must be certain of the context in which the rule is applied. Here
2853is a case in which you can use this reliably:
2854
2855@example
2856@group
2857foo: expr bar '+' expr @{ @dots{} @}
2858 | expr bar '-' expr @{ @dots{} @}
2859 ;
2860@end group
2861
2862@group
2863bar: /* empty */
2864 @{ previous_expr = $0; @}
2865 ;
2866@end group
2867@end example
2868
2869As long as @code{bar} is used only in the fashion shown here, @code{$0}
2870always refers to the @code{expr} which precedes @code{bar} in the
2871definition of @code{foo}.
2872
342b8b6e 2873@node Action Types
bfa74976
RS
2874@subsection Data Types of Values in Actions
2875@cindex action data types
2876@cindex data types in actions
2877
2878If you have chosen a single data type for semantic values, the @code{$$}
2879and @code{$@var{n}} constructs always have that data type.
2880
2881If you have used @code{%union} to specify a variety of data types, then you
2882must declare a choice among these types for each terminal or nonterminal
2883symbol that can have a semantic value. Then each time you use @code{$$} or
2884@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 2885in the rule. In this example,
bfa74976
RS
2886
2887@example
2888@group
2889exp: @dots{}
2890 | exp '+' exp
2891 @{ $$ = $1 + $3; @}
2892@end group
2893@end example
2894
2895@noindent
2896@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
2897have the data type declared for the nonterminal symbol @code{exp}. If
2898@code{$2} were used, it would have the data type declared for the
e0c471a9 2899terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
2900
2901Alternatively, you can specify the data type when you refer to the value,
2902by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
2903reference. For example, if you have defined types as shown here:
2904
2905@example
2906@group
2907%union @{
2908 int itype;
2909 double dtype;
2910@}
2911@end group
2912@end example
2913
2914@noindent
2915then you can write @code{$<itype>1} to refer to the first subunit of the
2916rule as an integer, or @code{$<dtype>1} to refer to it as a double.
2917
342b8b6e 2918@node Mid-Rule Actions
bfa74976
RS
2919@subsection Actions in Mid-Rule
2920@cindex actions in mid-rule
2921@cindex mid-rule actions
2922
2923Occasionally it is useful to put an action in the middle of a rule.
2924These actions are written just like usual end-of-rule actions, but they
2925are executed before the parser even recognizes the following components.
2926
2927A mid-rule action may refer to the components preceding it using
2928@code{$@var{n}}, but it may not refer to subsequent components because
2929it is run before they are parsed.
2930
2931The mid-rule action itself counts as one of the components of the rule.
2932This makes a difference when there is another action later in the same rule
2933(and usually there is another at the end): you have to count the actions
2934along with the symbols when working out which number @var{n} to use in
2935@code{$@var{n}}.
2936
2937The mid-rule action can also have a semantic value. The action can set
2938its value with an assignment to @code{$$}, and actions later in the rule
2939can refer to the value using @code{$@var{n}}. Since there is no symbol
2940to name the action, there is no way to declare a data type for the value
fdc6758b
MA
2941in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
2942specify a data type each time you refer to this value.
bfa74976
RS
2943
2944There is no way to set the value of the entire rule with a mid-rule
2945action, because assignments to @code{$$} do not have that effect. The
2946only way to set the value for the entire rule is with an ordinary action
2947at the end of the rule.
2948
2949Here is an example from a hypothetical compiler, handling a @code{let}
2950statement that looks like @samp{let (@var{variable}) @var{statement}} and
2951serves to create a variable named @var{variable} temporarily for the
2952duration of @var{statement}. To parse this construct, we must put
2953@var{variable} into the symbol table while @var{statement} is parsed, then
2954remove it afterward. Here is how it is done:
2955
2956@example
2957@group
2958stmt: LET '(' var ')'
2959 @{ $<context>$ = push_context ();
2960 declare_variable ($3); @}
2961 stmt @{ $$ = $6;
2962 pop_context ($<context>5); @}
2963@end group
2964@end example
2965
2966@noindent
2967As soon as @samp{let (@var{variable})} has been recognized, the first
2968action is run. It saves a copy of the current semantic context (the
2969list of accessible variables) as its semantic value, using alternative
2970@code{context} in the data-type union. Then it calls
2971@code{declare_variable} to add the new variable to that list. Once the
2972first action is finished, the embedded statement @code{stmt} can be
2973parsed. Note that the mid-rule action is component number 5, so the
2974@samp{stmt} is component number 6.
2975
2976After the embedded statement is parsed, its semantic value becomes the
2977value of the entire @code{let}-statement. Then the semantic value from the
2978earlier action is used to restore the prior list of variables. This
2979removes the temporary @code{let}-variable from the list so that it won't
2980appear to exist while the rest of the program is parsed.
2981
2982Taking action before a rule is completely recognized often leads to
2983conflicts since the parser must commit to a parse in order to execute the
2984action. For example, the following two rules, without mid-rule actions,
2985can coexist in a working parser because the parser can shift the open-brace
2986token and look at what follows before deciding whether there is a
2987declaration or not:
2988
2989@example
2990@group
2991compound: '@{' declarations statements '@}'
2992 | '@{' statements '@}'
2993 ;
2994@end group
2995@end example
2996
2997@noindent
2998But when we add a mid-rule action as follows, the rules become nonfunctional:
2999
3000@example
3001@group
3002compound: @{ prepare_for_local_variables (); @}
3003 '@{' declarations statements '@}'
3004@end group
3005@group
3006 | '@{' statements '@}'
3007 ;
3008@end group
3009@end example
3010
3011@noindent
3012Now the parser is forced to decide whether to run the mid-rule action
3013when it has read no farther than the open-brace. In other words, it
3014must commit to using one rule or the other, without sufficient
3015information to do it correctly. (The open-brace token is what is called
3016the @dfn{look-ahead} token at this time, since the parser is still
3017deciding what to do about it. @xref{Look-Ahead, ,Look-Ahead Tokens}.)
3018
3019You might think that you could correct the problem by putting identical
3020actions into the two rules, like this:
3021
3022@example
3023@group
3024compound: @{ prepare_for_local_variables (); @}
3025 '@{' declarations statements '@}'
3026 | @{ prepare_for_local_variables (); @}
3027 '@{' statements '@}'
3028 ;
3029@end group
3030@end example
3031
3032@noindent
3033But this does not help, because Bison does not realize that the two actions
3034are identical. (Bison never tries to understand the C code in an action.)
3035
3036If the grammar is such that a declaration can be distinguished from a
3037statement by the first token (which is true in C), then one solution which
3038does work is to put the action after the open-brace, like this:
3039
3040@example
3041@group
3042compound: '@{' @{ prepare_for_local_variables (); @}
3043 declarations statements '@}'
3044 | '@{' statements '@}'
3045 ;
3046@end group
3047@end example
3048
3049@noindent
3050Now the first token of the following declaration or statement,
3051which would in any case tell Bison which rule to use, can still do so.
3052
3053Another solution is to bury the action inside a nonterminal symbol which
3054serves as a subroutine:
3055
3056@example
3057@group
3058subroutine: /* empty */
3059 @{ prepare_for_local_variables (); @}
3060 ;
3061
3062@end group
3063
3064@group
3065compound: subroutine
3066 '@{' declarations statements '@}'
3067 | subroutine
3068 '@{' statements '@}'
3069 ;
3070@end group
3071@end example
3072
3073@noindent
3074Now Bison can execute the action in the rule for @code{subroutine} without
3075deciding which rule for @code{compound} it will eventually use. Note that
3076the action is now at the end of its rule. Any mid-rule action can be
3077converted to an end-of-rule action in this way, and this is what Bison
3078actually does to implement mid-rule actions.
3079
342b8b6e 3080@node Locations
847bf1f5
AD
3081@section Tracking Locations
3082@cindex location
95923bd6
AD
3083@cindex textual location
3084@cindex location, textual
847bf1f5
AD
3085
3086Though grammar rules and semantic actions are enough to write a fully
72d2299c 3087functional parser, it can be useful to process some additional information,
3e259915
MA
3088especially symbol locations.
3089
704a47c4
AD
3090The way locations are handled is defined by providing a data type, and
3091actions to take when rules are matched.
847bf1f5
AD
3092
3093@menu
3094* Location Type:: Specifying a data type for locations.
3095* Actions and Locations:: Using locations in actions.
3096* Location Default Action:: Defining a general way to compute locations.
3097@end menu
3098
342b8b6e 3099@node Location Type
847bf1f5
AD
3100@subsection Data Type of Locations
3101@cindex data type of locations
3102@cindex default location type
3103
3104Defining a data type for locations is much simpler than for semantic values,
3105since all tokens and groupings always use the same type.
3106
3107The type of locations is specified by defining a macro called @code{YYLTYPE}.
3108When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3109four members:
3110
3111@example
6273355b 3112typedef struct YYLTYPE
847bf1f5
AD
3113@{
3114 int first_line;
3115 int first_column;
3116 int last_line;
3117 int last_column;
6273355b 3118@} YYLTYPE;
847bf1f5
AD
3119@end example
3120
342b8b6e 3121@node Actions and Locations
847bf1f5
AD
3122@subsection Actions and Locations
3123@cindex location actions
3124@cindex actions, location
3125@vindex @@$
3126@vindex @@@var{n}
3127
3128Actions are not only useful for defining language semantics, but also for
3129describing the behavior of the output parser with locations.
3130
3131The most obvious way for building locations of syntactic groupings is very
72d2299c 3132similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3133constructs can be used to access the locations of the elements being matched.
3134The location of the @var{n}th component of the right hand side is
3135@code{@@@var{n}}, while the location of the left hand side grouping is
3136@code{@@$}.
3137
3e259915 3138Here is a basic example using the default data type for locations:
847bf1f5
AD
3139
3140@example
3141@group
3142exp: @dots{}
3e259915 3143 | exp '/' exp
847bf1f5 3144 @{
3e259915
MA
3145 @@$.first_column = @@1.first_column;
3146 @@$.first_line = @@1.first_line;
847bf1f5
AD
3147 @@$.last_column = @@3.last_column;
3148 @@$.last_line = @@3.last_line;
3e259915
MA
3149 if ($3)
3150 $$ = $1 / $3;
3151 else
3152 @{
3153 $$ = 1;
4e03e201
AD
3154 fprintf (stderr,
3155 "Division by zero, l%d,c%d-l%d,c%d",
3156 @@3.first_line, @@3.first_column,
3157 @@3.last_line, @@3.last_column);
3e259915 3158 @}
847bf1f5
AD
3159 @}
3160@end group
3161@end example
3162
3e259915 3163As for semantic values, there is a default action for locations that is
72d2299c 3164run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3165beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3166last symbol.
3e259915 3167
72d2299c 3168With this default action, the location tracking can be fully automatic. The
3e259915
MA
3169example above simply rewrites this way:
3170
3171@example
3172@group
3173exp: @dots{}
3174 | exp '/' exp
3175 @{
3176 if ($3)
3177 $$ = $1 / $3;
3178 else
3179 @{
3180 $$ = 1;
4e03e201
AD
3181 fprintf (stderr,
3182 "Division by zero, l%d,c%d-l%d,c%d",
3183 @@3.first_line, @@3.first_column,
3184 @@3.last_line, @@3.last_column);
3e259915
MA
3185 @}
3186 @}
3187@end group
3188@end example
847bf1f5 3189
342b8b6e 3190@node Location Default Action
847bf1f5
AD
3191@subsection Default Action for Locations
3192@vindex YYLLOC_DEFAULT
3193
72d2299c 3194Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3195locations are much more general than semantic values, there is room in
3196the output parser to redefine the default action to take for each
72d2299c 3197rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3198matched, before the associated action is run. It is also invoked
3199while processing a syntax error, to compute the error's location.
847bf1f5 3200
3e259915 3201Most of the time, this macro is general enough to suppress location
79282c6c 3202dedicated code from semantic actions.
847bf1f5 3203
72d2299c 3204The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d
PE
3205the location of the grouping (the result of the computation). When a
3206rule is matched, the second parameter is an array holding locations of
3207all right hand side elements of the rule being matched, and the third
3208parameter is the size of the rule's right hand side. When processing
3209a syntax error, the second parameter is an array holding locations of
3210the symbols that were discarded during error processing, and the third
3211parameter is the number of discarded symbols.
847bf1f5 3212
96b93a3d
PE
3213By default, @code{YYLLOC_DEFAULT} is defined this way for simple
3214@acronym{LALR}(1) parsers:
847bf1f5
AD
3215
3216@example
3217@group
0ae99356
PE
3218# define YYLLOC_DEFAULT(Current, Rhs, N) \
3219 ((Current).first_line = (Rhs)[1].first_line, \
3220 (Current).first_column = (Rhs)[1].first_column, \
3221 (Current).last_line = (Rhs)[N].last_line, \
3222 (Current).last_column = (Rhs)[N].last_column)
847bf1f5
AD
3223@end group
3224@end example
3225
676385e2 3226@noindent
c827f760 3227and like this for @acronym{GLR} parsers:
676385e2
PH
3228
3229@example
3230@group
0ae99356
PE
3231# define YYLLOC_DEFAULT(yyCurrent, yyRhs, YYN) \
3232 ((yyCurrent).first_line = YYRHSLOC(yyRhs, 1).first_line, \
3233 (yyCurrent).first_column = YYRHSLOC(yyRhs, 1).first_column, \
3234 (yyCurrent).last_line = YYRHSLOC(yyRhs, YYN).last_line, \
3235 (yyCurrent).last_column = YYRHSLOC(yyRhs, YYN).last_column)
676385e2
PH
3236@end group
3237@end example
3238
3e259915 3239When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3240
3e259915 3241@itemize @bullet
79282c6c 3242@item
72d2299c 3243All arguments are free of side-effects. However, only the first one (the
3e259915 3244result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3245
3e259915 3246@item
b2d52318
AD
3247For consistency with semantic actions, valid indexes for the location
3248array range from 1 to @var{n}.
0ae99356
PE
3249
3250@item
3251Your macro should parenthesize its arguments, if need be, since the
3252actual arguments may not be surrounded by parentheses. Also, your
3253macro should expand to something that can be used as a single
3254statement when it is followed by a semicolon.
3e259915 3255@end itemize
847bf1f5 3256
342b8b6e 3257@node Declarations
bfa74976
RS
3258@section Bison Declarations
3259@cindex declarations, Bison
3260@cindex Bison declarations
3261
3262The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3263used in formulating the grammar and the data types of semantic values.
3264@xref{Symbols}.
3265
3266All token type names (but not single-character literal tokens such as
3267@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3268declared if you need to specify which data type to use for the semantic
3269value (@pxref{Multiple Types, ,More Than One Value Type}).
3270
3271The first rule in the file also specifies the start symbol, by default.
3272If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3273it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3274Grammars}).
bfa74976
RS
3275
3276@menu
3277* Token Decl:: Declaring terminal symbols.
3278* Precedence Decl:: Declaring terminals with precedence and associativity.
3279* Union Decl:: Declaring the set of all semantic value types.
3280* Type Decl:: Declaring the choice of type for a nonterminal symbol.
72f889cc 3281* Destructor Decl:: Declaring how symbols are freed.
bfa74976
RS
3282* Expect Decl:: Suppressing warnings about shift/reduce conflicts.
3283* Start Decl:: Specifying the start symbol.
3284* Pure Decl:: Requesting a reentrant parser.
3285* Decl Summary:: Table of all Bison declarations.
3286@end menu
3287
342b8b6e 3288@node Token Decl
bfa74976
RS
3289@subsection Token Type Names
3290@cindex declaring token type names
3291@cindex token type names, declaring
931c7513 3292@cindex declaring literal string tokens
bfa74976
RS
3293@findex %token
3294
3295The basic way to declare a token type name (terminal symbol) is as follows:
3296
3297@example
3298%token @var{name}
3299@end example
3300
3301Bison will convert this into a @code{#define} directive in
3302the parser, so that the function @code{yylex} (if it is in this file)
3303can use the name @var{name} to stand for this token type's code.
3304
14ded682
AD
3305Alternatively, you can use @code{%left}, @code{%right}, or
3306@code{%nonassoc} instead of @code{%token}, if you wish to specify
3307associativity and precedence. @xref{Precedence Decl, ,Operator
3308Precedence}.
bfa74976
RS
3309
3310You can explicitly specify the numeric code for a token type by appending
3311an integer value in the field immediately following the token name:
3312
3313@example
3314%token NUM 300
3315@end example
3316
3317@noindent
3318It is generally best, however, to let Bison choose the numeric codes for
3319all token types. Bison will automatically select codes that don't conflict
e966383b 3320with each other or with normal characters.
bfa74976
RS
3321
3322In the event that the stack type is a union, you must augment the
3323@code{%token} or other token declaration to include the data type
704a47c4
AD
3324alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
3325Than One Value Type}).
bfa74976
RS
3326
3327For example:
3328
3329@example
3330@group
3331%union @{ /* define stack type */
3332 double val;
3333 symrec *tptr;
3334@}
3335%token <val> NUM /* define token NUM and its type */
3336@end group
3337@end example
3338
931c7513
RS
3339You can associate a literal string token with a token type name by
3340writing the literal string at the end of a @code{%token}
3341declaration which declares the name. For example:
3342
3343@example
3344%token arrow "=>"
3345@end example
3346
3347@noindent
3348For example, a grammar for the C language might specify these names with
3349equivalent literal string tokens:
3350
3351@example
3352%token <operator> OR "||"
3353%token <operator> LE 134 "<="
3354%left OR "<="
3355@end example
3356
3357@noindent
3358Once you equate the literal string and the token name, you can use them
3359interchangeably in further declarations or the grammar rules. The
3360@code{yylex} function can use the token name or the literal string to
3361obtain the token type code number (@pxref{Calling Convention}).
3362
342b8b6e 3363@node Precedence Decl
bfa74976
RS
3364@subsection Operator Precedence
3365@cindex precedence declarations
3366@cindex declaring operator precedence
3367@cindex operator precedence, declaring
3368
3369Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
3370declare a token and specify its precedence and associativity, all at
3371once. These are called @dfn{precedence declarations}.
704a47c4
AD
3372@xref{Precedence, ,Operator Precedence}, for general information on
3373operator precedence.
bfa74976
RS
3374
3375The syntax of a precedence declaration is the same as that of
3376@code{%token}: either
3377
3378@example
3379%left @var{symbols}@dots{}
3380@end example
3381
3382@noindent
3383or
3384
3385@example
3386%left <@var{type}> @var{symbols}@dots{}
3387@end example
3388
3389And indeed any of these declarations serves the purposes of @code{%token}.
3390But in addition, they specify the associativity and relative precedence for
3391all the @var{symbols}:
3392
3393@itemize @bullet
3394@item
3395The associativity of an operator @var{op} determines how repeated uses
3396of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
3397@var{z}} is parsed by grouping @var{x} with @var{y} first or by
3398grouping @var{y} with @var{z} first. @code{%left} specifies
3399left-associativity (grouping @var{x} with @var{y} first) and
3400@code{%right} specifies right-associativity (grouping @var{y} with
3401@var{z} first). @code{%nonassoc} specifies no associativity, which
3402means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
3403considered a syntax error.
3404
3405@item
3406The precedence of an operator determines how it nests with other operators.
3407All the tokens declared in a single precedence declaration have equal
3408precedence and nest together according to their associativity.
3409When two tokens declared in different precedence declarations associate,
3410the one declared later has the higher precedence and is grouped first.
3411@end itemize
3412
342b8b6e 3413@node Union Decl
bfa74976
RS
3414@subsection The Collection of Value Types
3415@cindex declaring value types
3416@cindex value types, declaring
3417@findex %union
3418
3419The @code{%union} declaration specifies the entire collection of possible
3420data types for semantic values. The keyword @code{%union} is followed by a
3421pair of braces containing the same thing that goes inside a @code{union} in
13863333 3422C.
bfa74976
RS
3423
3424For example:
3425
3426@example
3427@group
3428%union @{
3429 double val;
3430 symrec *tptr;
3431@}
3432@end group
3433@end example
3434
3435@noindent
3436This says that the two alternative types are @code{double} and @code{symrec
3437*}. They are given names @code{val} and @code{tptr}; these names are used
3438in the @code{%token} and @code{%type} declarations to pick one of the types
3439for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
3440
6273355b
PE
3441As an extension to @acronym{POSIX}, a tag is allowed after the
3442@code{union}. For example:
3443
3444@example
3445@group
3446%union value @{
3447 double val;
3448 symrec *tptr;
3449@}
3450@end group
3451@end example
3452
3453specifies the union tag @code{value}, so the corresponding C type is
3454@code{union value}. If you do not specify a tag, it defaults to
3455@code{YYSTYPE}.
3456
3457Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
3458a semicolon after the closing brace.
3459
342b8b6e 3460@node Type Decl
bfa74976
RS
3461@subsection Nonterminal Symbols
3462@cindex declaring value types, nonterminals
3463@cindex value types, nonterminals, declaring
3464@findex %type
3465
3466@noindent
3467When you use @code{%union} to specify multiple value types, you must
3468declare the value type of each nonterminal symbol for which values are
3469used. This is done with a @code{%type} declaration, like this:
3470
3471@example
3472%type <@var{type}> @var{nonterminal}@dots{}
3473@end example
3474
3475@noindent
704a47c4
AD
3476Here @var{nonterminal} is the name of a nonterminal symbol, and
3477@var{type} is the name given in the @code{%union} to the alternative
3478that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
3479can give any number of nonterminal symbols in the same @code{%type}
3480declaration, if they have the same value type. Use spaces to separate
3481the symbol names.
bfa74976 3482
931c7513
RS
3483You can also declare the value type of a terminal symbol. To do this,
3484use the same @code{<@var{type}>} construction in a declaration for the
3485terminal symbol. All kinds of token declarations allow
3486@code{<@var{type}>}.
3487
72f889cc
AD
3488@node Destructor Decl
3489@subsection Freeing Discarded Symbols
3490@cindex freeing discarded symbols
3491@findex %destructor
3492
3493Some symbols can be discarded by the parser, typically during error
3494recovery (@pxref{Error Recovery}). Basically, during error recovery,
3495embarrassing symbols already pushed on the stack, and embarrassing
3496tokens coming from the rest of the file are thrown away until the parser
3497falls on its feet. If these symbols convey heap based information, this
3498memory is lost. While this behavior is tolerable for batch parsers,
3499such as in compilers, it is unacceptable for parsers that can
3500possibility ``never end'' such as shells, or implementations of
3501communication protocols.
3502
3503The @code{%destructor} directive allows for the definition of code that
3504is called when a symbol is thrown away.
3505
3506@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
3507@findex %destructor
3508Declare that the @var{code} must be invoked for each of the
3509@var{symbols} that will be discarded by the parser. The @var{code}
3510should use @code{$$} to designate the semantic value associated to the
a06ea4aa 3511@var{symbols}. The additional parser parameters are also available
72f889cc
AD
3512(@pxref{Parser Function, , The Parser Function @code{yyparse}}).
3513
3514@strong{Warning:} as of Bison 1.875, this feature is still considered as
96b93a3d 3515experimental, as there was not enough user feedback. In particular,
3df37415 3516the syntax might still change.
72f889cc
AD
3517@end deffn
3518
3519For instance:
3520
3521@smallexample
3522%union
3523@{
3524 char *string;
3525@}
3526%token <string> STRING
3527%type <string> string
3528%destructor @{ free ($$); @} STRING string
3529@end smallexample
3530
3531@noindent
3532guarantees that when a @code{STRING} or a @code{string} will be discarded,
3533its associated memory will be freed.
3534
3535Note that in the future, Bison might also consider that right hand side
3536members that are not mentioned in the action can be destroyed. For
3537instance, in:
3538
3539@smallexample
3540comment: "/*" STRING "*/";
3541@end smallexample
3542
3543@noindent
3544the parser is entitled to destroy the semantic value of the
3545@code{string}. Of course, this will not apply to the default action;
3546compare:
3547
3548@smallexample
3549typeless: string; // $$ = $1 does not apply; $1 is destroyed.
3550typefull: string; // $$ = $1 applies, $1 is not destroyed.
3551@end smallexample
3552
342b8b6e 3553@node Expect Decl
bfa74976
RS
3554@subsection Suppressing Conflict Warnings
3555@cindex suppressing conflict warnings
3556@cindex preventing warnings about conflicts
3557@cindex warnings, preventing
3558@cindex conflicts, suppressing warnings of
3559@findex %expect
3560
3561Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
3562(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
3563have harmless shift/reduce conflicts which are resolved in a predictable
3564way and would be difficult to eliminate. It is desirable to suppress
3565the warning about these conflicts unless the number of conflicts
3566changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
3567
3568The declaration looks like this:
3569
3570@example
3571%expect @var{n}
3572@end example
3573
7da99ede
AD
3574Here @var{n} is a decimal integer. The declaration says there should be
3575no warning if there are @var{n} shift/reduce conflicts and no
69363a9e 3576reduce/reduce conflicts. The usual warning is
7da99ede
AD
3577given if there are either more or fewer conflicts, or if there are any
3578reduce/reduce conflicts.
bfa74976
RS
3579
3580In general, using @code{%expect} involves these steps:
3581
3582@itemize @bullet
3583@item
3584Compile your grammar without @code{%expect}. Use the @samp{-v} option
3585to get a verbose list of where the conflicts occur. Bison will also
3586print the number of conflicts.
3587
3588@item
3589Check each of the conflicts to make sure that Bison's default
3590resolution is what you really want. If not, rewrite the grammar and
3591go back to the beginning.
3592
3593@item
3594Add an @code{%expect} declaration, copying the number @var{n} from the
3595number which Bison printed.
3596@end itemize
3597
69363a9e
PE
3598Now Bison will stop annoying you if you do not change the number of
3599conflicts, but it will warn you again if changes in the grammar result
3600in more or fewer conflicts.
bfa74976 3601
342b8b6e 3602@node Start Decl
bfa74976
RS
3603@subsection The Start-Symbol
3604@cindex declaring the start symbol
3605@cindex start symbol, declaring
3606@cindex default start symbol
3607@findex %start
3608
3609Bison assumes by default that the start symbol for the grammar is the first
3610nonterminal specified in the grammar specification section. The programmer
3611may override this restriction with the @code{%start} declaration as follows:
3612
3613@example
3614%start @var{symbol}
3615@end example
3616
342b8b6e 3617@node Pure Decl
bfa74976
RS
3618@subsection A Pure (Reentrant) Parser
3619@cindex reentrant parser
3620@cindex pure parser
8c9a50be 3621@findex %pure-parser
bfa74976
RS
3622
3623A @dfn{reentrant} program is one which does not alter in the course of
3624execution; in other words, it consists entirely of @dfn{pure} (read-only)
3625code. Reentrancy is important whenever asynchronous execution is possible;
14ded682
AD
3626for example, a non-reentrant program may not be safe to call from a signal
3627handler. In systems with multiple threads of control, a non-reentrant
bfa74976
RS
3628program must be called only within interlocks.
3629
70811b85 3630Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
3631suitable for most uses, and it permits compatibility with Yacc. (The
3632standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
3633statically allocated variables for communication with @code{yylex},
3634including @code{yylval} and @code{yylloc}.)
bfa74976 3635
70811b85 3636Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 3637declaration @code{%pure-parser} says that you want the parser to be
70811b85 3638reentrant. It looks like this:
bfa74976
RS
3639
3640@example
8c9a50be 3641%pure-parser
bfa74976
RS
3642@end example
3643
70811b85
RS
3644The result is that the communication variables @code{yylval} and
3645@code{yylloc} become local variables in @code{yyparse}, and a different
3646calling convention is used for the lexical analyzer function
3647@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
3648Parsers}, for the details of this. The variable @code{yynerrs} also
3649becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
3650Reporting Function @code{yyerror}}). The convention for calling
3651@code{yyparse} itself is unchanged.
3652
3653Whether the parser is pure has nothing to do with the grammar rules.
3654You can generate either a pure parser or a nonreentrant parser from any
3655valid grammar.
bfa74976 3656
342b8b6e 3657@node Decl Summary
bfa74976
RS
3658@subsection Bison Declaration Summary
3659@cindex Bison declaration summary
3660@cindex declaration summary
3661@cindex summary, Bison declaration
3662
d8988b2f 3663Here is a summary of the declarations used to define a grammar:
bfa74976 3664
18b519c0 3665@deffn {Directive} %union
bfa74976
RS
3666Declare the collection of data types that semantic values may have
3667(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 3668@end deffn
bfa74976 3669
18b519c0 3670@deffn {Directive} %token
bfa74976
RS
3671Declare a terminal symbol (token type name) with no precedence
3672or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 3673@end deffn
bfa74976 3674
18b519c0 3675@deffn {Directive} %right
bfa74976
RS
3676Declare a terminal symbol (token type name) that is right-associative
3677(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 3678@end deffn
bfa74976 3679
18b519c0 3680@deffn {Directive} %left
bfa74976
RS
3681Declare a terminal symbol (token type name) that is left-associative
3682(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 3683@end deffn
bfa74976 3684
18b519c0 3685@deffn {Directive} %nonassoc
bfa74976 3686Declare a terminal symbol (token type name) that is nonassociative
bfa74976 3687(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
3688Using it in a way that would be associative is a syntax error.
3689@end deffn
3690
91d2c560 3691@ifset defaultprec
39a06c25 3692@deffn {Directive} %default-prec
22fccf95 3693Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
3694(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
3695@end deffn
91d2c560 3696@end ifset
bfa74976 3697
18b519c0 3698@deffn {Directive} %type
bfa74976
RS
3699Declare the type of semantic values for a nonterminal symbol
3700(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 3701@end deffn
bfa74976 3702
18b519c0 3703@deffn {Directive} %start
89cab50d
AD
3704Specify the grammar's start symbol (@pxref{Start Decl, ,The
3705Start-Symbol}).
18b519c0 3706@end deffn
bfa74976 3707
18b519c0 3708@deffn {Directive} %expect
bfa74976
RS
3709Declare the expected number of shift-reduce conflicts
3710(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
3711@end deffn
3712
bfa74976 3713
d8988b2f
AD
3714@sp 1
3715@noindent
3716In order to change the behavior of @command{bison}, use the following
3717directives:
3718
18b519c0 3719@deffn {Directive} %debug
4947ebdb
PE
3720In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
3721already defined, so that the debugging facilities are compiled.
18b519c0 3722@end deffn
ec3bc396 3723@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 3724
18b519c0 3725@deffn {Directive} %defines
d8988b2f
AD
3726Write an extra output file containing macro definitions for the token
3727type names defined in the grammar and the semantic value type
3728@code{YYSTYPE}, as well as a few @code{extern} variable declarations.
3729
3730If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 3731is named @file{@var{name}.h}.
d8988b2f
AD
3732
3733This output file is essential if you wish to put the definition of
3734@code{yylex} in a separate source file, because @code{yylex} needs to
3735be able to refer to token type codes and the variable
e0c471a9 3736@code{yylval}. @xref{Token Values, ,Semantic Values of Tokens}.
18b519c0 3737@end deffn
d8988b2f 3738
18b519c0 3739@deffn {Directive} %destructor
72f889cc
AD
3740Specifying how the parser should reclaim the memory associated to
3741discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 3742@end deffn
72f889cc 3743
18b519c0 3744@deffn {Directive} %file-prefix="@var{prefix}"
d8988b2f
AD
3745Specify a prefix to use for all Bison output file names. The names are
3746chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 3747@end deffn
d8988b2f 3748
18b519c0 3749@deffn {Directive} %locations
89cab50d
AD
3750Generate the code processing the locations (@pxref{Action Features,
3751,Special Features for Use in Actions}). This mode is enabled as soon as
3752the grammar uses the special @samp{@@@var{n}} tokens, but if your
3753grammar does not use it, using @samp{%locations} allows for more
6e649e65 3754accurate syntax error messages.
18b519c0 3755@end deffn
89cab50d 3756
18b519c0 3757@deffn {Directive} %name-prefix="@var{prefix}"
d8988b2f
AD
3758Rename the external symbols used in the parser so that they start with
3759@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
3760is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
2a8d363a
AD
3761@code{yylval}, @code{yylloc}, @code{yychar}, @code{yydebug}, and
3762possible @code{yylloc}. For example, if you use
3763@samp{%name-prefix="c_"}, the names become @code{c_parse}, @code{c_lex},
3764and so on. @xref{Multiple Parsers, ,Multiple Parsers in the Same
3765Program}.
18b519c0 3766@end deffn
931c7513 3767
91d2c560 3768@ifset defaultprec
22fccf95
PE
3769@deffn {Directive} %no-default-prec
3770Do not assign a precedence to rules lacking an explicit @code{%prec}
3771modifier (@pxref{Contextual Precedence, ,Context-Dependent
3772Precedence}).
3773@end deffn
91d2c560 3774@end ifset
22fccf95 3775
18b519c0 3776@deffn {Directive} %no-parser
6deb4447
AD
3777Do not include any C code in the parser file; generate tables only. The
3778parser file contains just @code{#define} directives and static variable
3779declarations.
3780
3781This option also tells Bison to write the C code for the grammar actions
3782into a file named @file{@var{filename}.act}, in the form of a
3783brace-surrounded body fit for a @code{switch} statement.
18b519c0 3784@end deffn
6deb4447 3785
18b519c0 3786@deffn {Directive} %no-lines
931c7513
RS
3787Don't generate any @code{#line} preprocessor commands in the parser
3788file. Ordinarily Bison writes these commands in the parser file so that
3789the C compiler and debuggers will associate errors and object code with
3790your source file (the grammar file). This directive causes them to
3791associate errors with the parser file, treating it an independent source
3792file in its own right.
18b519c0 3793@end deffn
931c7513 3794
18b519c0 3795@deffn {Directive} %output="@var{filename}"
d8988b2f 3796Specify the @var{filename} for the parser file.
18b519c0 3797@end deffn
6deb4447 3798
18b519c0 3799@deffn {Directive} %pure-parser
d8988b2f
AD
3800Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
3801(Reentrant) Parser}).
18b519c0 3802@end deffn
6deb4447 3803
18b519c0 3804@deffn {Directive} %token-table
931c7513
RS
3805Generate an array of token names in the parser file. The name of the
3806array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 3807token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
3808three elements of @code{yytname} correspond to the predefined tokens
3809@code{"$end"},
88bce5a2
AD
3810@code{"error"}, and @code{"$undefined"}; after these come the symbols
3811defined in the grammar file.
931c7513
RS
3812
3813For single-character literal tokens and literal string tokens, the name
3814in the table includes the single-quote or double-quote characters: for
3815example, @code{"'+'"} is a single-character literal and @code{"\"<=\""}
3816is a literal string token. All the characters of the literal string
3817token appear verbatim in the string found in the table; even
3818double-quote characters are not escaped. For example, if the token
3819consists of three characters @samp{*"*}, its string in @code{yytname}
3820contains @samp{"*"*"}. (In C, that would be written as
3821@code{"\"*\"*\""}).
3822
8c9a50be 3823When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
3824definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
3825@code{YYNRULES}, and @code{YYNSTATES}:
3826
3827@table @code
3828@item YYNTOKENS
3829The highest token number, plus one.
3830@item YYNNTS
9ecbd125 3831The number of nonterminal symbols.
931c7513
RS
3832@item YYNRULES
3833The number of grammar rules,
3834@item YYNSTATES
3835The number of parser states (@pxref{Parser States}).
3836@end table
18b519c0 3837@end deffn
d8988b2f 3838
18b519c0 3839@deffn {Directive} %verbose
d8988b2f
AD
3840Write an extra output file containing verbose descriptions of the
3841parser states and what is done for each type of look-ahead token in
72d2299c 3842that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 3843information.
18b519c0 3844@end deffn
d8988b2f 3845
18b519c0 3846@deffn {Directive} %yacc
d8988b2f
AD
3847Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
3848including its naming conventions. @xref{Bison Options}, for more.
18b519c0 3849@end deffn
d8988b2f
AD
3850
3851
342b8b6e 3852@node Multiple Parsers
bfa74976
RS
3853@section Multiple Parsers in the Same Program
3854
3855Most programs that use Bison parse only one language and therefore contain
3856only one Bison parser. But what if you want to parse more than one
3857language with the same program? Then you need to avoid a name conflict
3858between different definitions of @code{yyparse}, @code{yylval}, and so on.
3859
3860The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
3861(@pxref{Invocation, ,Invoking Bison}). This renames the interface
3862functions and variables of the Bison parser to start with @var{prefix}
3863instead of @samp{yy}. You can use this to give each parser distinct
3864names that do not conflict.
bfa74976
RS
3865
3866The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a
AD
3867@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
3868@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
3869the names become @code{cparse}, @code{clex}, and so on.
bfa74976
RS
3870
3871@strong{All the other variables and macros associated with Bison are not
3872renamed.} These others are not global; there is no conflict if the same
3873name is used in different parsers. For example, @code{YYSTYPE} is not
3874renamed, but defining this in different ways in different parsers causes
3875no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
3876
3877The @samp{-p} option works by adding macro definitions to the beginning
3878of the parser source file, defining @code{yyparse} as
3879@code{@var{prefix}parse}, and so on. This effectively substitutes one
3880name for the other in the entire parser file.
3881
342b8b6e 3882@node Interface
bfa74976
RS
3883@chapter Parser C-Language Interface
3884@cindex C-language interface
3885@cindex interface
3886
3887The Bison parser is actually a C function named @code{yyparse}. Here we
3888describe the interface conventions of @code{yyparse} and the other
3889functions that it needs to use.
3890
3891Keep in mind that the parser uses many C identifiers starting with
3892@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
3893identifier (aside from those in this manual) in an action or in epilogue
3894in the grammar file, you are likely to run into trouble.
bfa74976
RS
3895
3896@menu
3897* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 3898* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
3899 which reads tokens.
3900* Error Reporting:: You must supply a function @code{yyerror}.
3901* Action Features:: Special features for use in actions.
3902@end menu
3903
342b8b6e 3904@node Parser Function
bfa74976
RS
3905@section The Parser Function @code{yyparse}
3906@findex yyparse
3907
3908You call the function @code{yyparse} to cause parsing to occur. This
3909function reads tokens, executes actions, and ultimately returns when it
3910encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
3911write an action which directs @code{yyparse} to return immediately
3912without reading further.
bfa74976 3913
2a8d363a
AD
3914
3915@deftypefun int yyparse (void)
bfa74976
RS
3916The value returned by @code{yyparse} is 0 if parsing was successful (return
3917is due to end-of-input).
3918
3919The value is 1 if parsing failed (return is due to a syntax error).
2a8d363a 3920@end deftypefun
bfa74976
RS
3921
3922In an action, you can cause immediate return from @code{yyparse} by using
3923these macros:
3924
2a8d363a 3925@defmac YYACCEPT
bfa74976
RS
3926@findex YYACCEPT
3927Return immediately with value 0 (to report success).
2a8d363a 3928@end defmac
bfa74976 3929
2a8d363a 3930@defmac YYABORT
bfa74976
RS
3931@findex YYABORT
3932Return immediately with value 1 (to report failure).
2a8d363a
AD
3933@end defmac
3934
3935If you use a reentrant parser, you can optionally pass additional
3936parameter information to it in a reentrant way. To do so, use the
3937declaration @code{%parse-param}:
3938
feeb0eda 3939@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 3940@findex %parse-param
feeb0eda 3941Declare that an argument declared by @code{argument-declaration} is an
94175978
PE
3942additional @code{yyparse} argument.
3943The @var{argument-declaration} is used when declaring
feeb0eda
PE
3944functions or prototypes. The last identifier in
3945@var{argument-declaration} must be the argument name.
2a8d363a
AD
3946@end deffn
3947
3948Here's an example. Write this in the parser:
3949
3950@example
feeb0eda
PE
3951%parse-param @{int *nastiness@}
3952%parse-param @{int *randomness@}
2a8d363a
AD
3953@end example
3954
3955@noindent
3956Then call the parser like this:
3957
3958@example
3959@{
3960 int nastiness, randomness;
3961 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
3962 value = yyparse (&nastiness, &randomness);
3963 @dots{}
3964@}
3965@end example
3966
3967@noindent
3968In the grammar actions, use expressions like this to refer to the data:
3969
3970@example
3971exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
3972@end example
3973
bfa74976 3974
342b8b6e 3975@node Lexical
bfa74976
RS
3976@section The Lexical Analyzer Function @code{yylex}
3977@findex yylex
3978@cindex lexical analyzer
3979
3980The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
3981the input stream and returns them to the parser. Bison does not create
3982this function automatically; you must write it so that @code{yyparse} can
3983call it. The function is sometimes referred to as a lexical scanner.
3984
3985In simple programs, @code{yylex} is often defined at the end of the Bison
3986grammar file. If @code{yylex} is defined in a separate source file, you
3987need to arrange for the token-type macro definitions to be available there.
3988To do this, use the @samp{-d} option when you run Bison, so that it will
3989write these macro definitions into a separate header file
3990@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 3991that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
3992
3993@menu
3994* Calling Convention:: How @code{yyparse} calls @code{yylex}.
3995* Token Values:: How @code{yylex} must return the semantic value
3996 of the token it has read.
95923bd6 3997* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
3998 (line number, etc.) of the token, if the
3999 actions want that.
4000* Pure Calling:: How the calling convention differs
4001 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
4002@end menu
4003
342b8b6e 4004@node Calling Convention
bfa74976
RS
4005@subsection Calling Convention for @code{yylex}
4006
72d2299c
PE
4007The value that @code{yylex} returns must be the positive numeric code
4008for the type of token it has just found; a zero or negative value
4009signifies end-of-input.
bfa74976
RS
4010
4011When a token is referred to in the grammar rules by a name, that name
4012in the parser file becomes a C macro whose definition is the proper
4013numeric code for that token type. So @code{yylex} can use the name
4014to indicate that type. @xref{Symbols}.
4015
4016When a token is referred to in the grammar rules by a character literal,
4017the numeric code for that character is also the code for the token type.
72d2299c
PE
4018So @code{yylex} can simply return that character code, possibly converted
4019to @code{unsigned char} to avoid sign-extension. The null character
4020must not be used this way, because its code is zero and that
bfa74976
RS
4021signifies end-of-input.
4022
4023Here is an example showing these things:
4024
4025@example
13863333
AD
4026int
4027yylex (void)
bfa74976
RS
4028@{
4029 @dots{}
72d2299c 4030 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
4031 return 0;
4032 @dots{}
4033 if (c == '+' || c == '-')
72d2299c 4034 return c; /* Assume token type for `+' is '+'. */
bfa74976 4035 @dots{}
72d2299c 4036 return INT; /* Return the type of the token. */
bfa74976
RS
4037 @dots{}
4038@}
4039@end example
4040
4041@noindent
4042This interface has been designed so that the output from the @code{lex}
4043utility can be used without change as the definition of @code{yylex}.
4044
931c7513
RS
4045If the grammar uses literal string tokens, there are two ways that
4046@code{yylex} can determine the token type codes for them:
4047
4048@itemize @bullet
4049@item
4050If the grammar defines symbolic token names as aliases for the
4051literal string tokens, @code{yylex} can use these symbolic names like
4052all others. In this case, the use of the literal string tokens in
4053the grammar file has no effect on @code{yylex}.
4054
4055@item
9ecbd125 4056@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 4057table. The index of the token in the table is the token type's code.
9ecbd125 4058The name of a multicharacter token is recorded in @code{yytname} with a
931c7513
RS
4059double-quote, the token's characters, and another double-quote. The
4060token's characters are not escaped in any way; they appear verbatim in
4061the contents of the string in the table.
4062
4063Here's code for looking up a token in @code{yytname}, assuming that the
4064characters of the token are stored in @code{token_buffer}.
4065
4066@smallexample
4067for (i = 0; i < YYNTOKENS; i++)
4068 @{
4069 if (yytname[i] != 0
4070 && yytname[i][0] == '"'
68449b3a
PE
4071 && ! strncmp (yytname[i] + 1, token_buffer,
4072 strlen (token_buffer))
931c7513
RS
4073 && yytname[i][strlen (token_buffer) + 1] == '"'
4074 && yytname[i][strlen (token_buffer) + 2] == 0)
4075 break;
4076 @}
4077@end smallexample
4078
4079The @code{yytname} table is generated only if you use the
8c9a50be 4080@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
4081@end itemize
4082
342b8b6e 4083@node Token Values
bfa74976
RS
4084@subsection Semantic Values of Tokens
4085
4086@vindex yylval
14ded682 4087In an ordinary (non-reentrant) parser, the semantic value of the token must
bfa74976
RS
4088be stored into the global variable @code{yylval}. When you are using
4089just one data type for semantic values, @code{yylval} has that type.
4090Thus, if the type is @code{int} (the default), you might write this in
4091@code{yylex}:
4092
4093@example
4094@group
4095 @dots{}
72d2299c
PE
4096 yylval = value; /* Put value onto Bison stack. */
4097 return INT; /* Return the type of the token. */
bfa74976
RS
4098 @dots{}
4099@end group
4100@end example
4101
4102When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
4103made from the @code{%union} declaration (@pxref{Union Decl, ,The
4104Collection of Value Types}). So when you store a token's value, you
4105must use the proper member of the union. If the @code{%union}
4106declaration looks like this:
bfa74976
RS
4107
4108@example
4109@group
4110%union @{
4111 int intval;
4112 double val;
4113 symrec *tptr;
4114@}
4115@end group
4116@end example
4117
4118@noindent
4119then the code in @code{yylex} might look like this:
4120
4121@example
4122@group
4123 @dots{}
72d2299c
PE
4124 yylval.intval = value; /* Put value onto Bison stack. */
4125 return INT; /* Return the type of the token. */
bfa74976
RS
4126 @dots{}
4127@end group
4128@end example
4129
95923bd6
AD
4130@node Token Locations
4131@subsection Textual Locations of Tokens
bfa74976
RS
4132
4133@vindex yylloc
847bf1f5
AD
4134If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
4135Tracking Locations}) in actions to keep track of the
89cab50d
AD
4136textual locations of tokens and groupings, then you must provide this
4137information in @code{yylex}. The function @code{yyparse} expects to
4138find the textual location of a token just parsed in the global variable
4139@code{yylloc}. So @code{yylex} must store the proper data in that
847bf1f5
AD
4140variable.
4141
4142By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
4143initialize the members that are going to be used by the actions. The
4144four members are called @code{first_line}, @code{first_column},
4145@code{last_line} and @code{last_column}. Note that the use of this
4146feature makes the parser noticeably slower.
bfa74976
RS
4147
4148@tindex YYLTYPE
4149The data type of @code{yylloc} has the name @code{YYLTYPE}.
4150
342b8b6e 4151@node Pure Calling
c656404a 4152@subsection Calling Conventions for Pure Parsers
bfa74976 4153
8c9a50be 4154When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
4155pure, reentrant parser, the global communication variables @code{yylval}
4156and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
4157Parser}.) In such parsers the two global variables are replaced by
4158pointers passed as arguments to @code{yylex}. You must declare them as
4159shown here, and pass the information back by storing it through those
4160pointers.
bfa74976
RS
4161
4162@example
13863333
AD
4163int
4164yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
4165@{
4166 @dots{}
4167 *lvalp = value; /* Put value onto Bison stack. */
4168 return INT; /* Return the type of the token. */
4169 @dots{}
4170@}
4171@end example
4172
4173If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 4174textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
4175this case, omit the second argument; @code{yylex} will be called with
4176only one argument.
4177
e425e872 4178
2a8d363a
AD
4179If you wish to pass the additional parameter data to @code{yylex}, use
4180@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
4181Function}).
e425e872 4182
feeb0eda 4183@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 4184@findex %lex-param
feeb0eda
PE
4185Declare that @code{argument-declaration} is an additional @code{yylex}
4186argument declaration.
2a8d363a 4187@end deffn
e425e872 4188
2a8d363a 4189For instance:
e425e872
RS
4190
4191@example
feeb0eda
PE
4192%parse-param @{int *nastiness@}
4193%lex-param @{int *nastiness@}
4194%parse-param @{int *randomness@}
e425e872
RS
4195@end example
4196
4197@noindent
2a8d363a 4198results in the following signature:
e425e872
RS
4199
4200@example
2a8d363a
AD
4201int yylex (int *nastiness);
4202int yyparse (int *nastiness, int *randomness);
e425e872
RS
4203@end example
4204
2a8d363a 4205If @code{%pure-parser} is added:
c656404a
RS
4206
4207@example
2a8d363a
AD
4208int yylex (YYSTYPE *lvalp, int *nastiness);
4209int yyparse (int *nastiness, int *randomness);
c656404a
RS
4210@end example
4211
2a8d363a
AD
4212@noindent
4213and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 4214
2a8d363a
AD
4215@example
4216int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4217int yyparse (int *nastiness, int *randomness);
4218@end example
931c7513 4219
342b8b6e 4220@node Error Reporting
bfa74976
RS
4221@section The Error Reporting Function @code{yyerror}
4222@cindex error reporting function
4223@findex yyerror
4224@cindex parse error
4225@cindex syntax error
4226
6e649e65 4227The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 4228whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 4229action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
4230macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
4231in Actions}).
bfa74976
RS
4232
4233The Bison parser expects to report the error by calling an error
4234reporting function named @code{yyerror}, which you must supply. It is
4235called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
4236receives one argument. For a syntax error, the string is normally
4237@w{@code{"syntax error"}}.
bfa74976 4238
2a8d363a
AD
4239@findex %error-verbose
4240If you invoke the directive @code{%error-verbose} in the Bison
4241declarations section (@pxref{Bison Declarations, ,The Bison Declarations
4242Section}), then Bison provides a more verbose and specific error message
6e649e65 4243string instead of just plain @w{@code{"syntax error"}}.
bfa74976
RS
4244
4245The parser can detect one other kind of error: stack overflow. This
4246happens when the input contains constructions that are very deeply
4247nested. It isn't likely you will encounter this, since the Bison
4248parser extends its stack automatically up to a very large limit. But
4249if overflow happens, @code{yyparse} calls @code{yyerror} in the usual
4250fashion, except that the argument string is @w{@code{"parser stack
4251overflow"}}.
4252
4253The following definition suffices in simple programs:
4254
4255@example
4256@group
13863333 4257void
38a92d50 4258yyerror (char const *s)
bfa74976
RS
4259@{
4260@end group
4261@group
4262 fprintf (stderr, "%s\n", s);
4263@}
4264@end group
4265@end example
4266
4267After @code{yyerror} returns to @code{yyparse}, the latter will attempt
4268error recovery if you have written suitable error recovery grammar rules
4269(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
4270immediately return 1.
4271
93724f13 4272Obviously, in location tracking pure parsers, @code{yyerror} should have
2a8d363a
AD
4273an access to the current location. This is indeed the case for the GLR
4274parsers, but not for the Yacc parser, for historical reasons. I.e., if
4275@samp{%locations %pure-parser} is passed then the prototypes for
4276@code{yyerror} are:
4277
4278@example
38a92d50
PE
4279void yyerror (char const *msg); /* Yacc parsers. */
4280void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
4281@end example
4282
feeb0eda 4283If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
4284
4285@example
b317297e
PE
4286void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
4287void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
4288@end example
4289
4290Finally, GLR and Yacc parsers share the same @code{yyerror} calling
4291convention for absolutely pure parsers, i.e., when the calling
4292convention of @code{yylex} @emph{and} the calling convention of
4293@code{%pure-parser} are pure. I.e.:
4294
4295@example
4296/* Location tracking. */
4297%locations
4298/* Pure yylex. */
4299%pure-parser
feeb0eda 4300%lex-param @{int *nastiness@}
2a8d363a 4301/* Pure yyparse. */
feeb0eda
PE
4302%parse-param @{int *nastiness@}
4303%parse-param @{int *randomness@}
2a8d363a
AD
4304@end example
4305
4306@noindent
4307results in the following signatures for all the parser kinds:
4308
4309@example
4310int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4311int yyparse (int *nastiness, int *randomness);
93724f13
AD
4312void yyerror (YYLTYPE *locp,
4313 int *nastiness, int *randomness,
38a92d50 4314 char const *msg);
2a8d363a
AD
4315@end example
4316
1c0c3e95 4317@noindent
38a92d50
PE
4318The prototypes are only indications of how the code produced by Bison
4319uses @code{yyerror}. Bison-generated code always ignores the returned
4320value, so @code{yyerror} can return any type, including @code{void}.
4321Also, @code{yyerror} can be a variadic function; that is why the
4322message is always passed last.
4323
4324Traditionally @code{yyerror} returns an @code{int} that is always
4325ignored, but this is purely for historical reasons, and @code{void} is
4326preferable since it more accurately describes the return type for
4327@code{yyerror}.
93724f13 4328
bfa74976
RS
4329@vindex yynerrs
4330The variable @code{yynerrs} contains the number of syntax errors
4331encountered so far. Normally this variable is global; but if you
704a47c4
AD
4332request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
4333then it is a local variable which only the actions can access.
bfa74976 4334
342b8b6e 4335@node Action Features
bfa74976
RS
4336@section Special Features for Use in Actions
4337@cindex summary, action features
4338@cindex action features summary
4339
4340Here is a table of Bison constructs, variables and macros that
4341are useful in actions.
4342
18b519c0 4343@deffn {Variable} $$
bfa74976
RS
4344Acts like a variable that contains the semantic value for the
4345grouping made by the current rule. @xref{Actions}.
18b519c0 4346@end deffn
bfa74976 4347
18b519c0 4348@deffn {Variable} $@var{n}
bfa74976
RS
4349Acts like a variable that contains the semantic value for the
4350@var{n}th component of the current rule. @xref{Actions}.
18b519c0 4351@end deffn
bfa74976 4352
18b519c0 4353@deffn {Variable} $<@var{typealt}>$
bfa74976 4354Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
4355specified by the @code{%union} declaration. @xref{Action Types, ,Data
4356Types of Values in Actions}.
18b519c0 4357@end deffn
bfa74976 4358
18b519c0 4359@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 4360Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 4361union specified by the @code{%union} declaration.
e0c471a9 4362@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 4363@end deffn
bfa74976 4364
18b519c0 4365@deffn {Macro} YYABORT;
bfa74976
RS
4366Return immediately from @code{yyparse}, indicating failure.
4367@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4368@end deffn
bfa74976 4369
18b519c0 4370@deffn {Macro} YYACCEPT;
bfa74976
RS
4371Return immediately from @code{yyparse}, indicating success.
4372@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4373@end deffn
bfa74976 4374
18b519c0 4375@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
4376@findex YYBACKUP
4377Unshift a token. This macro is allowed only for rules that reduce
4378a single value, and only when there is no look-ahead token.
c827f760 4379It is also disallowed in @acronym{GLR} parsers.
bfa74976
RS
4380It installs a look-ahead token with token type @var{token} and
4381semantic value @var{value}; then it discards the value that was
4382going to be reduced by this rule.
4383
4384If the macro is used when it is not valid, such as when there is
4385a look-ahead token already, then it reports a syntax error with
4386a message @samp{cannot back up} and performs ordinary error
4387recovery.
4388
4389In either case, the rest of the action is not executed.
18b519c0 4390@end deffn
bfa74976 4391
18b519c0 4392@deffn {Macro} YYEMPTY
bfa74976
RS
4393@vindex YYEMPTY
4394Value stored in @code{yychar} when there is no look-ahead token.
18b519c0 4395@end deffn
bfa74976 4396
18b519c0 4397@deffn {Macro} YYERROR;
bfa74976
RS
4398@findex YYERROR
4399Cause an immediate syntax error. This statement initiates error
4400recovery just as if the parser itself had detected an error; however, it
4401does not call @code{yyerror}, and does not print any message. If you
4402want to print an error message, call @code{yyerror} explicitly before
4403the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 4404@end deffn
bfa74976 4405
18b519c0 4406@deffn {Macro} YYRECOVERING
bfa74976
RS
4407This macro stands for an expression that has the value 1 when the parser
4408is recovering from a syntax error, and 0 the rest of the time.
4409@xref{Error Recovery}.
18b519c0 4410@end deffn
bfa74976 4411
18b519c0 4412@deffn {Variable} yychar
bfa74976
RS
4413Variable containing the current look-ahead token. (In a pure parser,
4414this is actually a local variable within @code{yyparse}.) When there is
4415no look-ahead token, the value @code{YYEMPTY} is stored in the variable.
4416@xref{Look-Ahead, ,Look-Ahead Tokens}.
18b519c0 4417@end deffn
bfa74976 4418
18b519c0 4419@deffn {Macro} yyclearin;
bfa74976
RS
4420Discard the current look-ahead token. This is useful primarily in
4421error rules. @xref{Error Recovery}.
18b519c0 4422@end deffn
bfa74976 4423
18b519c0 4424@deffn {Macro} yyerrok;
bfa74976 4425Resume generating error messages immediately for subsequent syntax
13863333 4426errors. This is useful primarily in error rules.
bfa74976 4427@xref{Error Recovery}.
18b519c0 4428@end deffn
bfa74976 4429
18b519c0 4430@deffn {Value} @@$
847bf1f5 4431@findex @@$
95923bd6 4432Acts like a structure variable containing information on the textual location
847bf1f5
AD
4433of the grouping made by the current rule. @xref{Locations, ,
4434Tracking Locations}.
bfa74976 4435
847bf1f5
AD
4436@c Check if those paragraphs are still useful or not.
4437
4438@c @example
4439@c struct @{
4440@c int first_line, last_line;
4441@c int first_column, last_column;
4442@c @};
4443@c @end example
4444
4445@c Thus, to get the starting line number of the third component, you would
4446@c use @samp{@@3.first_line}.
bfa74976 4447
847bf1f5
AD
4448@c In order for the members of this structure to contain valid information,
4449@c you must make @code{yylex} supply this information about each token.
4450@c If you need only certain members, then @code{yylex} need only fill in
4451@c those members.
bfa74976 4452
847bf1f5 4453@c The use of this feature makes the parser noticeably slower.
18b519c0 4454@end deffn
847bf1f5 4455
18b519c0 4456@deffn {Value} @@@var{n}
847bf1f5 4457@findex @@@var{n}
95923bd6 4458Acts like a structure variable containing information on the textual location
847bf1f5
AD
4459of the @var{n}th component of the current rule. @xref{Locations, ,
4460Tracking Locations}.
18b519c0 4461@end deffn
bfa74976 4462
bfa74976 4463
342b8b6e 4464@node Algorithm
13863333
AD
4465@chapter The Bison Parser Algorithm
4466@cindex Bison parser algorithm
bfa74976
RS
4467@cindex algorithm of parser
4468@cindex shifting
4469@cindex reduction
4470@cindex parser stack
4471@cindex stack, parser
4472
4473As Bison reads tokens, it pushes them onto a stack along with their
4474semantic values. The stack is called the @dfn{parser stack}. Pushing a
4475token is traditionally called @dfn{shifting}.
4476
4477For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
4478@samp{3} to come. The stack will have four elements, one for each token
4479that was shifted.
4480
4481But the stack does not always have an element for each token read. When
4482the last @var{n} tokens and groupings shifted match the components of a
4483grammar rule, they can be combined according to that rule. This is called
4484@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
4485single grouping whose symbol is the result (left hand side) of that rule.
4486Running the rule's action is part of the process of reduction, because this
4487is what computes the semantic value of the resulting grouping.
4488
4489For example, if the infix calculator's parser stack contains this:
4490
4491@example
44921 + 5 * 3
4493@end example
4494
4495@noindent
4496and the next input token is a newline character, then the last three
4497elements can be reduced to 15 via the rule:
4498
4499@example
4500expr: expr '*' expr;
4501@end example
4502
4503@noindent
4504Then the stack contains just these three elements:
4505
4506@example
45071 + 15
4508@end example
4509
4510@noindent
4511At this point, another reduction can be made, resulting in the single value
451216. Then the newline token can be shifted.
4513
4514The parser tries, by shifts and reductions, to reduce the entire input down
4515to a single grouping whose symbol is the grammar's start-symbol
4516(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
4517
4518This kind of parser is known in the literature as a bottom-up parser.
4519
4520@menu
4521* Look-Ahead:: Parser looks one token ahead when deciding what to do.
4522* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
4523* Precedence:: Operator precedence works by resolving conflicts.
4524* Contextual Precedence:: When an operator's precedence depends on context.
4525* Parser States:: The parser is a finite-state-machine with stack.
4526* Reduce/Reduce:: When two rules are applicable in the same situation.
4527* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 4528* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
bfa74976
RS
4529* Stack Overflow:: What happens when stack gets full. How to avoid it.
4530@end menu
4531
342b8b6e 4532@node Look-Ahead
bfa74976
RS
4533@section Look-Ahead Tokens
4534@cindex look-ahead token
4535
4536The Bison parser does @emph{not} always reduce immediately as soon as the
4537last @var{n} tokens and groupings match a rule. This is because such a
4538simple strategy is inadequate to handle most languages. Instead, when a
4539reduction is possible, the parser sometimes ``looks ahead'' at the next
4540token in order to decide what to do.
4541
4542When a token is read, it is not immediately shifted; first it becomes the
4543@dfn{look-ahead token}, which is not on the stack. Now the parser can
4544perform one or more reductions of tokens and groupings on the stack, while
4545the look-ahead token remains off to the side. When no more reductions
4546should take place, the look-ahead token is shifted onto the stack. This
4547does not mean that all possible reductions have been done; depending on the
4548token type of the look-ahead token, some rules may choose to delay their
4549application.
4550
4551Here is a simple case where look-ahead is needed. These three rules define
4552expressions which contain binary addition operators and postfix unary
4553factorial operators (@samp{!}), and allow parentheses for grouping.
4554
4555@example
4556@group
4557expr: term '+' expr
4558 | term
4559 ;
4560@end group
4561
4562@group
4563term: '(' expr ')'
4564 | term '!'
4565 | NUMBER
4566 ;
4567@end group
4568@end example
4569
4570Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
4571should be done? If the following token is @samp{)}, then the first three
4572tokens must be reduced to form an @code{expr}. This is the only valid
4573course, because shifting the @samp{)} would produce a sequence of symbols
4574@w{@code{term ')'}}, and no rule allows this.
4575
4576If the following token is @samp{!}, then it must be shifted immediately so
4577that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
4578parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
4579@code{expr}. It would then be impossible to shift the @samp{!} because
4580doing so would produce on the stack the sequence of symbols @code{expr
4581'!'}. No rule allows that sequence.
4582
4583@vindex yychar
4584The current look-ahead token is stored in the variable @code{yychar}.
4585@xref{Action Features, ,Special Features for Use in Actions}.
4586
342b8b6e 4587@node Shift/Reduce
bfa74976
RS
4588@section Shift/Reduce Conflicts
4589@cindex conflicts
4590@cindex shift/reduce conflicts
4591@cindex dangling @code{else}
4592@cindex @code{else}, dangling
4593
4594Suppose we are parsing a language which has if-then and if-then-else
4595statements, with a pair of rules like this:
4596
4597@example
4598@group
4599if_stmt:
4600 IF expr THEN stmt
4601 | IF expr THEN stmt ELSE stmt
4602 ;
4603@end group
4604@end example
4605
4606@noindent
4607Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
4608terminal symbols for specific keyword tokens.
4609
4610When the @code{ELSE} token is read and becomes the look-ahead token, the
4611contents of the stack (assuming the input is valid) are just right for
4612reduction by the first rule. But it is also legitimate to shift the
4613@code{ELSE}, because that would lead to eventual reduction by the second
4614rule.
4615
4616This situation, where either a shift or a reduction would be valid, is
4617called a @dfn{shift/reduce conflict}. Bison is designed to resolve
4618these conflicts by choosing to shift, unless otherwise directed by
4619operator precedence declarations. To see the reason for this, let's
4620contrast it with the other alternative.
4621
4622Since the parser prefers to shift the @code{ELSE}, the result is to attach
4623the else-clause to the innermost if-statement, making these two inputs
4624equivalent:
4625
4626@example
4627if x then if y then win (); else lose;
4628
4629if x then do; if y then win (); else lose; end;
4630@end example
4631
4632But if the parser chose to reduce when possible rather than shift, the
4633result would be to attach the else-clause to the outermost if-statement,
4634making these two inputs equivalent:
4635
4636@example
4637if x then if y then win (); else lose;
4638
4639if x then do; if y then win (); end; else lose;
4640@end example
4641
4642The conflict exists because the grammar as written is ambiguous: either
4643parsing of the simple nested if-statement is legitimate. The established
4644convention is that these ambiguities are resolved by attaching the
4645else-clause to the innermost if-statement; this is what Bison accomplishes
4646by choosing to shift rather than reduce. (It would ideally be cleaner to
4647write an unambiguous grammar, but that is very hard to do in this case.)
4648This particular ambiguity was first encountered in the specifications of
4649Algol 60 and is called the ``dangling @code{else}'' ambiguity.
4650
4651To avoid warnings from Bison about predictable, legitimate shift/reduce
4652conflicts, use the @code{%expect @var{n}} declaration. There will be no
4653warning as long as the number of shift/reduce conflicts is exactly @var{n}.
4654@xref{Expect Decl, ,Suppressing Conflict Warnings}.
4655
4656The definition of @code{if_stmt} above is solely to blame for the
4657conflict, but the conflict does not actually appear without additional
4658rules. Here is a complete Bison input file that actually manifests the
4659conflict:
4660
4661@example
4662@group
4663%token IF THEN ELSE variable
4664%%
4665@end group
4666@group
4667stmt: expr
4668 | if_stmt
4669 ;
4670@end group
4671
4672@group
4673if_stmt:
4674 IF expr THEN stmt
4675 | IF expr THEN stmt ELSE stmt
4676 ;
4677@end group
4678
4679expr: variable
4680 ;
4681@end example
4682
342b8b6e 4683@node Precedence
bfa74976
RS
4684@section Operator Precedence
4685@cindex operator precedence
4686@cindex precedence of operators
4687
4688Another situation where shift/reduce conflicts appear is in arithmetic
4689expressions. Here shifting is not always the preferred resolution; the
4690Bison declarations for operator precedence allow you to specify when to
4691shift and when to reduce.
4692
4693@menu
4694* Why Precedence:: An example showing why precedence is needed.
4695* Using Precedence:: How to specify precedence in Bison grammars.
4696* Precedence Examples:: How these features are used in the previous example.
4697* How Precedence:: How they work.
4698@end menu
4699
342b8b6e 4700@node Why Precedence
bfa74976
RS
4701@subsection When Precedence is Needed
4702
4703Consider the following ambiguous grammar fragment (ambiguous because the
4704input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
4705
4706@example
4707@group
4708expr: expr '-' expr
4709 | expr '*' expr
4710 | expr '<' expr
4711 | '(' expr ')'
4712 @dots{}
4713 ;
4714@end group
4715@end example
4716
4717@noindent
4718Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
4719should it reduce them via the rule for the subtraction operator? It
4720depends on the next token. Of course, if the next token is @samp{)}, we
4721must reduce; shifting is invalid because no single rule can reduce the
4722token sequence @w{@samp{- 2 )}} or anything starting with that. But if
4723the next token is @samp{*} or @samp{<}, we have a choice: either
4724shifting or reduction would allow the parse to complete, but with
4725different results.
4726
4727To decide which one Bison should do, we must consider the results. If
4728the next operator token @var{op} is shifted, then it must be reduced
4729first in order to permit another opportunity to reduce the difference.
4730The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
4731hand, if the subtraction is reduced before shifting @var{op}, the result
4732is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
4733reduce should depend on the relative precedence of the operators
4734@samp{-} and @var{op}: @samp{*} should be shifted first, but not
4735@samp{<}.
bfa74976
RS
4736
4737@cindex associativity
4738What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
4739@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
4740operators we prefer the former, which is called @dfn{left association}.
4741The latter alternative, @dfn{right association}, is desirable for
4742assignment operators. The choice of left or right association is a
4743matter of whether the parser chooses to shift or reduce when the stack
4744contains @w{@samp{1 - 2}} and the look-ahead token is @samp{-}: shifting
4745makes right-associativity.
bfa74976 4746
342b8b6e 4747@node Using Precedence
bfa74976
RS
4748@subsection Specifying Operator Precedence
4749@findex %left
4750@findex %right
4751@findex %nonassoc
4752
4753Bison allows you to specify these choices with the operator precedence
4754declarations @code{%left} and @code{%right}. Each such declaration
4755contains a list of tokens, which are operators whose precedence and
4756associativity is being declared. The @code{%left} declaration makes all
4757those operators left-associative and the @code{%right} declaration makes
4758them right-associative. A third alternative is @code{%nonassoc}, which
4759declares that it is a syntax error to find the same operator twice ``in a
4760row''.
4761
4762The relative precedence of different operators is controlled by the
4763order in which they are declared. The first @code{%left} or
4764@code{%right} declaration in the file declares the operators whose
4765precedence is lowest, the next such declaration declares the operators
4766whose precedence is a little higher, and so on.
4767
342b8b6e 4768@node Precedence Examples
bfa74976
RS
4769@subsection Precedence Examples
4770
4771In our example, we would want the following declarations:
4772
4773@example
4774%left '<'
4775%left '-'
4776%left '*'
4777@end example
4778
4779In a more complete example, which supports other operators as well, we
4780would declare them in groups of equal precedence. For example, @code{'+'} is
4781declared with @code{'-'}:
4782
4783@example
4784%left '<' '>' '=' NE LE GE
4785%left '+' '-'
4786%left '*' '/'
4787@end example
4788
4789@noindent
4790(Here @code{NE} and so on stand for the operators for ``not equal''
4791and so on. We assume that these tokens are more than one character long
4792and therefore are represented by names, not character literals.)
4793
342b8b6e 4794@node How Precedence
bfa74976
RS
4795@subsection How Precedence Works
4796
4797The first effect of the precedence declarations is to assign precedence
4798levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
4799precedence levels to certain rules: each rule gets its precedence from
4800the last terminal symbol mentioned in the components. (You can also
4801specify explicitly the precedence of a rule. @xref{Contextual
4802Precedence, ,Context-Dependent Precedence}.)
4803
4804Finally, the resolution of conflicts works by comparing the precedence
4805of the rule being considered with that of the look-ahead token. If the
4806token's precedence is higher, the choice is to shift. If the rule's
4807precedence is higher, the choice is to reduce. If they have equal
4808precedence, the choice is made based on the associativity of that
4809precedence level. The verbose output file made by @samp{-v}
4810(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
4811resolved.
bfa74976
RS
4812
4813Not all rules and not all tokens have precedence. If either the rule or
4814the look-ahead token has no precedence, then the default is to shift.
4815
342b8b6e 4816@node Contextual Precedence
bfa74976
RS
4817@section Context-Dependent Precedence
4818@cindex context-dependent precedence
4819@cindex unary operator precedence
4820@cindex precedence, context-dependent
4821@cindex precedence, unary operator
4822@findex %prec
4823
4824Often the precedence of an operator depends on the context. This sounds
4825outlandish at first, but it is really very common. For example, a minus
4826sign typically has a very high precedence as a unary operator, and a
4827somewhat lower precedence (lower than multiplication) as a binary operator.
4828
4829The Bison precedence declarations, @code{%left}, @code{%right} and
4830@code{%nonassoc}, can only be used once for a given token; so a token has
4831only one precedence declared in this way. For context-dependent
4832precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 4833modifier for rules.
bfa74976
RS
4834
4835The @code{%prec} modifier declares the precedence of a particular rule by
4836specifying a terminal symbol whose precedence should be used for that rule.
4837It's not necessary for that symbol to appear otherwise in the rule. The
4838modifier's syntax is:
4839
4840@example
4841%prec @var{terminal-symbol}
4842@end example
4843
4844@noindent
4845and it is written after the components of the rule. Its effect is to
4846assign the rule the precedence of @var{terminal-symbol}, overriding
4847the precedence that would be deduced for it in the ordinary way. The
4848altered rule precedence then affects how conflicts involving that rule
4849are resolved (@pxref{Precedence, ,Operator Precedence}).
4850
4851Here is how @code{%prec} solves the problem of unary minus. First, declare
4852a precedence for a fictitious terminal symbol named @code{UMINUS}. There
4853are no tokens of this type, but the symbol serves to stand for its
4854precedence:
4855
4856@example
4857@dots{}
4858%left '+' '-'
4859%left '*'
4860%left UMINUS
4861@end example
4862
4863Now the precedence of @code{UMINUS} can be used in specific rules:
4864
4865@example
4866@group
4867exp: @dots{}
4868 | exp '-' exp
4869 @dots{}
4870 | '-' exp %prec UMINUS
4871@end group
4872@end example
4873
91d2c560 4874@ifset defaultprec
39a06c25
PE
4875If you forget to append @code{%prec UMINUS} to the rule for unary
4876minus, Bison silently assumes that minus has its usual precedence.
4877This kind of problem can be tricky to debug, since one typically
4878discovers the mistake only by testing the code.
4879
22fccf95 4880The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
4881this kind of problem systematically. It causes rules that lack a
4882@code{%prec} modifier to have no precedence, even if the last terminal
4883symbol mentioned in their components has a declared precedence.
4884
22fccf95 4885If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
4886for all rules that participate in precedence conflict resolution.
4887Then you will see any shift/reduce conflict until you tell Bison how
4888to resolve it, either by changing your grammar or by adding an
4889explicit precedence. This will probably add declarations to the
4890grammar, but it helps to protect against incorrect rule precedences.
4891
22fccf95
PE
4892The effect of @code{%no-default-prec;} can be reversed by giving
4893@code{%default-prec;}, which is the default.
91d2c560 4894@end ifset
39a06c25 4895
342b8b6e 4896@node Parser States
bfa74976
RS
4897@section Parser States
4898@cindex finite-state machine
4899@cindex parser state
4900@cindex state (of parser)
4901
4902The function @code{yyparse} is implemented using a finite-state machine.
4903The values pushed on the parser stack are not simply token type codes; they
4904represent the entire sequence of terminal and nonterminal symbols at or
4905near the top of the stack. The current state collects all the information
4906about previous input which is relevant to deciding what to do next.
4907
4908Each time a look-ahead token is read, the current parser state together
4909with the type of look-ahead token are looked up in a table. This table
4910entry can say, ``Shift the look-ahead token.'' In this case, it also
4911specifies the new parser state, which is pushed onto the top of the
4912parser stack. Or it can say, ``Reduce using rule number @var{n}.''
4913This means that a certain number of tokens or groupings are taken off
4914the top of the stack, and replaced by one grouping. In other words,
4915that number of states are popped from the stack, and one new state is
4916pushed.
4917
4918There is one other alternative: the table can say that the look-ahead token
4919is erroneous in the current state. This causes error processing to begin
4920(@pxref{Error Recovery}).
4921
342b8b6e 4922@node Reduce/Reduce
bfa74976
RS
4923@section Reduce/Reduce Conflicts
4924@cindex reduce/reduce conflict
4925@cindex conflicts, reduce/reduce
4926
4927A reduce/reduce conflict occurs if there are two or more rules that apply
4928to the same sequence of input. This usually indicates a serious error
4929in the grammar.
4930
4931For example, here is an erroneous attempt to define a sequence
4932of zero or more @code{word} groupings.
4933
4934@example
4935sequence: /* empty */
4936 @{ printf ("empty sequence\n"); @}
4937 | maybeword
4938 | sequence word
4939 @{ printf ("added word %s\n", $2); @}
4940 ;
4941
4942maybeword: /* empty */
4943 @{ printf ("empty maybeword\n"); @}
4944 | word
4945 @{ printf ("single word %s\n", $1); @}
4946 ;
4947@end example
4948
4949@noindent
4950The error is an ambiguity: there is more than one way to parse a single
4951@code{word} into a @code{sequence}. It could be reduced to a
4952@code{maybeword} and then into a @code{sequence} via the second rule.
4953Alternatively, nothing-at-all could be reduced into a @code{sequence}
4954via the first rule, and this could be combined with the @code{word}
4955using the third rule for @code{sequence}.
4956
4957There is also more than one way to reduce nothing-at-all into a
4958@code{sequence}. This can be done directly via the first rule,
4959or indirectly via @code{maybeword} and then the second rule.
4960
4961You might think that this is a distinction without a difference, because it
4962does not change whether any particular input is valid or not. But it does
4963affect which actions are run. One parsing order runs the second rule's
4964action; the other runs the first rule's action and the third rule's action.
4965In this example, the output of the program changes.
4966
4967Bison resolves a reduce/reduce conflict by choosing to use the rule that
4968appears first in the grammar, but it is very risky to rely on this. Every
4969reduce/reduce conflict must be studied and usually eliminated. Here is the
4970proper way to define @code{sequence}:
4971
4972@example
4973sequence: /* empty */
4974 @{ printf ("empty sequence\n"); @}
4975 | sequence word
4976 @{ printf ("added word %s\n", $2); @}
4977 ;
4978@end example
4979
4980Here is another common error that yields a reduce/reduce conflict:
4981
4982@example
4983sequence: /* empty */
4984 | sequence words
4985 | sequence redirects
4986 ;
4987
4988words: /* empty */
4989 | words word
4990 ;
4991
4992redirects:/* empty */
4993 | redirects redirect
4994 ;
4995@end example
4996
4997@noindent
4998The intention here is to define a sequence which can contain either
4999@code{word} or @code{redirect} groupings. The individual definitions of
5000@code{sequence}, @code{words} and @code{redirects} are error-free, but the
5001three together make a subtle ambiguity: even an empty input can be parsed
5002in infinitely many ways!
5003
5004Consider: nothing-at-all could be a @code{words}. Or it could be two
5005@code{words} in a row, or three, or any number. It could equally well be a
5006@code{redirects}, or two, or any number. Or it could be a @code{words}
5007followed by three @code{redirects} and another @code{words}. And so on.
5008
5009Here are two ways to correct these rules. First, to make it a single level
5010of sequence:
5011
5012@example
5013sequence: /* empty */
5014 | sequence word
5015 | sequence redirect
5016 ;
5017@end example
5018
5019Second, to prevent either a @code{words} or a @code{redirects}
5020from being empty:
5021
5022@example
5023sequence: /* empty */
5024 | sequence words
5025 | sequence redirects
5026 ;
5027
5028words: word
5029 | words word
5030 ;
5031
5032redirects:redirect
5033 | redirects redirect
5034 ;
5035@end example
5036
342b8b6e 5037@node Mystery Conflicts
bfa74976
RS
5038@section Mysterious Reduce/Reduce Conflicts
5039
5040Sometimes reduce/reduce conflicts can occur that don't look warranted.
5041Here is an example:
5042
5043@example
5044@group
5045%token ID
5046
5047%%
5048def: param_spec return_spec ','
5049 ;
5050param_spec:
5051 type
5052 | name_list ':' type
5053 ;
5054@end group
5055@group
5056return_spec:
5057 type
5058 | name ':' type
5059 ;
5060@end group
5061@group
5062type: ID
5063 ;
5064@end group
5065@group
5066name: ID
5067 ;
5068name_list:
5069 name
5070 | name ',' name_list
5071 ;
5072@end group
5073@end example
5074
5075It would seem that this grammar can be parsed with only a single token
13863333 5076of look-ahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 5077a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 5078@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 5079
c827f760
PE
5080@cindex @acronym{LR}(1)
5081@cindex @acronym{LALR}(1)
bfa74976 5082However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
5083@acronym{LR}(1) grammars. In this grammar, two contexts, that after
5084an @code{ID}
bfa74976
RS
5085at the beginning of a @code{param_spec} and likewise at the beginning of
5086a @code{return_spec}, are similar enough that Bison assumes they are the
5087same. They appear similar because the same set of rules would be
5088active---the rule for reducing to a @code{name} and that for reducing to
5089a @code{type}. Bison is unable to determine at that stage of processing
5090that the rules would require different look-ahead tokens in the two
5091contexts, so it makes a single parser state for them both. Combining
5092the two contexts causes a conflict later. In parser terminology, this
c827f760 5093occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
5094
5095In general, it is better to fix deficiencies than to document them. But
5096this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
5097generators that can handle @acronym{LR}(1) grammars are hard to write
5098and tend to
bfa74976
RS
5099produce parsers that are very large. In practice, Bison is more useful
5100as it is now.
5101
5102When the problem arises, you can often fix it by identifying the two
a220f555
MA
5103parser states that are being confused, and adding something to make them
5104look distinct. In the above example, adding one rule to
bfa74976
RS
5105@code{return_spec} as follows makes the problem go away:
5106
5107@example
5108@group
5109%token BOGUS
5110@dots{}
5111%%
5112@dots{}
5113return_spec:
5114 type
5115 | name ':' type
5116 /* This rule is never used. */
5117 | ID BOGUS
5118 ;
5119@end group
5120@end example
5121
5122This corrects the problem because it introduces the possibility of an
5123additional active rule in the context after the @code{ID} at the beginning of
5124@code{return_spec}. This rule is not active in the corresponding context
5125in a @code{param_spec}, so the two contexts receive distinct parser states.
5126As long as the token @code{BOGUS} is never generated by @code{yylex},
5127the added rule cannot alter the way actual input is parsed.
5128
5129In this particular example, there is another way to solve the problem:
5130rewrite the rule for @code{return_spec} to use @code{ID} directly
5131instead of via @code{name}. This also causes the two confusing
5132contexts to have different sets of active rules, because the one for
5133@code{return_spec} activates the altered rule for @code{return_spec}
5134rather than the one for @code{name}.
5135
5136@example
5137param_spec:
5138 type
5139 | name_list ':' type
5140 ;
5141return_spec:
5142 type
5143 | ID ':' type
5144 ;
5145@end example
5146
fae437e8 5147@node Generalized LR Parsing
c827f760
PE
5148@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
5149@cindex @acronym{GLR} parsing
5150@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
5151@cindex ambiguous grammars
5152@cindex non-deterministic parsing
5153
fae437e8
AD
5154Bison produces @emph{deterministic} parsers that choose uniquely
5155when to reduce and which reduction to apply
676385e2
PH
5156based on a summary of the preceding input and on one extra token of lookahead.
5157As a result, normal Bison handles a proper subset of the family of
5158context-free languages.
fae437e8 5159Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
5160sequence of reductions cannot have deterministic parsers in this sense.
5161The same is true of languages that require more than one symbol of
5162lookahead, since the parser lacks the information necessary to make a
5163decision at the point it must be made in a shift-reduce parser.
fae437e8 5164Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
5165there are languages where Bison's particular choice of how to
5166summarize the input seen so far loses necessary information.
5167
5168When you use the @samp{%glr-parser} declaration in your grammar file,
5169Bison generates a parser that uses a different algorithm, called
c827f760
PE
5170Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
5171parser uses the same basic
676385e2
PH
5172algorithm for parsing as an ordinary Bison parser, but behaves
5173differently in cases where there is a shift-reduce conflict that has not
fae437e8 5174been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
5175reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
5176situation, it
fae437e8 5177effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
5178shift or reduction. These parsers then proceed as usual, consuming
5179tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 5180and split further, with the result that instead of a sequence of states,
c827f760 5181a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
5182
5183In effect, each stack represents a guess as to what the proper parse
5184is. Additional input may indicate that a guess was wrong, in which case
5185the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 5186actions generated in each stack are saved, rather than being executed
676385e2 5187immediately. When a stack disappears, its saved semantic actions never
fae437e8 5188get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
5189their sets of semantic actions are both saved with the state that
5190results from the reduction. We say that two stacks are equivalent
fae437e8 5191when they both represent the same sequence of states,
676385e2
PH
5192and each pair of corresponding states represents a
5193grammar symbol that produces the same segment of the input token
5194stream.
5195
5196Whenever the parser makes a transition from having multiple
c827f760 5197states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
5198algorithm, after resolving and executing the saved-up actions.
5199At this transition, some of the states on the stack will have semantic
5200values that are sets (actually multisets) of possible actions. The
5201parser tries to pick one of the actions by first finding one whose rule
5202has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 5203declaration. Otherwise, if the alternative actions are not ordered by
676385e2 5204precedence, but there the same merging function is declared for both
fae437e8 5205rules by the @samp{%merge} declaration,
676385e2
PH
5206Bison resolves and evaluates both and then calls the merge function on
5207the result. Otherwise, it reports an ambiguity.
5208
c827f760
PE
5209It is possible to use a data structure for the @acronym{GLR} parsing tree that
5210permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
5211size of the input), any unambiguous (not necessarily
5212@acronym{LALR}(1)) grammar in
fae437e8 5213quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
5214context-free grammar in cubic worst-case time. However, Bison currently
5215uses a simpler data structure that requires time proportional to the
5216length of the input times the maximum number of stacks required for any
5217prefix of the input. Thus, really ambiguous or non-deterministic
5218grammars can require exponential time and space to process. Such badly
5219behaving examples, however, are not generally of practical interest.
5220Usually, non-determinism in a grammar is local---the parser is ``in
5221doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 5222structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
5223grammar, in particular, it is only slightly slower than with the default
5224Bison parser.
5225
f6481e2f
PE
5226For a more detailed exposition of GLR parsers, please see: Elizabeth
5227Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
5228Generalised @acronym{LR} Parsers, Royal Holloway, University of
5229London, Department of Computer Science, TR-00-12,
5230@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
5231(2000-12-24).
5232
342b8b6e 5233@node Stack Overflow
bfa74976
RS
5234@section Stack Overflow, and How to Avoid It
5235@cindex stack overflow
5236@cindex parser stack overflow
5237@cindex overflow of parser stack
5238
5239The Bison parser stack can overflow if too many tokens are shifted and
5240not reduced. When this happens, the parser function @code{yyparse}
5241returns a nonzero value, pausing only to call @code{yyerror} to report
5242the overflow.
5243
c827f760 5244Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
5245usually results from using a right recursion instead of a left
5246recursion, @xref{Recursion, ,Recursive Rules}.
5247
bfa74976
RS
5248@vindex YYMAXDEPTH
5249By defining the macro @code{YYMAXDEPTH}, you can control how deep the
5250parser stack can become before a stack overflow occurs. Define the
5251macro with a value that is an integer. This value is the maximum number
5252of tokens that can be shifted (and not reduced) before overflow.
5253It must be a constant expression whose value is known at compile time.
5254
5255The stack space allowed is not necessarily allocated. If you specify a
5256large value for @code{YYMAXDEPTH}, the parser actually allocates a small
5257stack at first, and then makes it bigger by stages as needed. This
5258increasing allocation happens automatically and silently. Therefore,
5259you do not need to make @code{YYMAXDEPTH} painfully small merely to save
5260space for ordinary inputs that do not need much stack.
5261
5262@cindex default stack limit
5263The default value of @code{YYMAXDEPTH}, if you do not define it, is
526410000.
5265
5266@vindex YYINITDEPTH
5267You can control how much stack is allocated initially by defining the
5268macro @code{YYINITDEPTH}. This value too must be a compile-time
5269constant integer. The default is 200.
5270
d1a1114f 5271@c FIXME: C++ output.
c827f760
PE
5272Because of semantical differences between C and C++, the
5273@acronym{LALR}(1) parsers
d1a1114f
AD
5274in C produced by Bison by compiled as C++ cannot grow. In this precise
5275case (compiling a C parser as C++) you are suggested to grow
5276@code{YYINITDEPTH}. In the near future, a C++ output output will be
5277provided which addresses this issue.
5278
342b8b6e 5279@node Error Recovery
bfa74976
RS
5280@chapter Error Recovery
5281@cindex error recovery
5282@cindex recovery from errors
5283
6e649e65 5284It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
5285error. For example, a compiler should recover sufficiently to parse the
5286rest of the input file and check it for errors; a calculator should accept
5287another expression.
5288
5289In a simple interactive command parser where each input is one line, it may
5290be sufficient to allow @code{yyparse} to return 1 on error and have the
5291caller ignore the rest of the input line when that happens (and then call
5292@code{yyparse} again). But this is inadequate for a compiler, because it
5293forgets all the syntactic context leading up to the error. A syntax error
5294deep within a function in the compiler input should not cause the compiler
5295to treat the following line like the beginning of a source file.
5296
5297@findex error
5298You can define how to recover from a syntax error by writing rules to
5299recognize the special token @code{error}. This is a terminal symbol that
5300is always defined (you need not declare it) and reserved for error
5301handling. The Bison parser generates an @code{error} token whenever a
5302syntax error happens; if you have provided a rule to recognize this token
13863333 5303in the current context, the parse can continue.
bfa74976
RS
5304
5305For example:
5306
5307@example
5308stmnts: /* empty string */
5309 | stmnts '\n'
5310 | stmnts exp '\n'
5311 | stmnts error '\n'
5312@end example
5313
5314The fourth rule in this example says that an error followed by a newline
5315makes a valid addition to any @code{stmnts}.
5316
5317What happens if a syntax error occurs in the middle of an @code{exp}? The
5318error recovery rule, interpreted strictly, applies to the precise sequence
5319of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
5320the middle of an @code{exp}, there will probably be some additional tokens
5321and subexpressions on the stack after the last @code{stmnts}, and there
5322will be tokens to read before the next newline. So the rule is not
5323applicable in the ordinary way.
5324
5325But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
5326the semantic context and part of the input. First it discards states
5327and objects from the stack until it gets back to a state in which the
bfa74976 5328@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
5329already parsed are discarded, back to the last complete @code{stmnts}.)
5330At this point the @code{error} token can be shifted. Then, if the old
bfa74976
RS
5331look-ahead token is not acceptable to be shifted next, the parser reads
5332tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
5333this example, Bison reads and discards input until the next newline so
5334that the fourth rule can apply. Note that discarded symbols are
5335possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
5336Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
5337
5338The choice of error rules in the grammar is a choice of strategies for
5339error recovery. A simple and useful strategy is simply to skip the rest of
5340the current input line or current statement if an error is detected:
5341
5342@example
72d2299c 5343stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
5344@end example
5345
5346It is also useful to recover to the matching close-delimiter of an
5347opening-delimiter that has already been parsed. Otherwise the
5348close-delimiter will probably appear to be unmatched, and generate another,
5349spurious error message:
5350
5351@example
5352primary: '(' expr ')'
5353 | '(' error ')'
5354 @dots{}
5355 ;
5356@end example
5357
5358Error recovery strategies are necessarily guesses. When they guess wrong,
5359one syntax error often leads to another. In the above example, the error
5360recovery rule guesses that an error is due to bad input within one
5361@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
5362middle of a valid @code{stmnt}. After the error recovery rule recovers
5363from the first error, another syntax error will be found straightaway,
5364since the text following the spurious semicolon is also an invalid
5365@code{stmnt}.
5366
5367To prevent an outpouring of error messages, the parser will output no error
5368message for another syntax error that happens shortly after the first; only
5369after three consecutive input tokens have been successfully shifted will
5370error messages resume.
5371
5372Note that rules which accept the @code{error} token may have actions, just
5373as any other rules can.
5374
5375@findex yyerrok
5376You can make error messages resume immediately by using the macro
5377@code{yyerrok} in an action. If you do this in the error rule's action, no
5378error messages will be suppressed. This macro requires no arguments;
5379@samp{yyerrok;} is a valid C statement.
5380
5381@findex yyclearin
5382The previous look-ahead token is reanalyzed immediately after an error. If
5383this is unacceptable, then the macro @code{yyclearin} may be used to clear
5384this token. Write the statement @samp{yyclearin;} in the error rule's
5385action.
5386
6e649e65 5387For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
5388called that advances the input stream to some point where parsing should
5389once again commence. The next symbol returned by the lexical scanner is
5390probably correct. The previous look-ahead token ought to be discarded
5391with @samp{yyclearin;}.
5392
5393@vindex YYRECOVERING
5394The macro @code{YYRECOVERING} stands for an expression that has the
5395value 1 when the parser is recovering from a syntax error, and 0 the
5396rest of the time. A value of 1 indicates that error messages are
5397currently suppressed for new syntax errors.
5398
342b8b6e 5399@node Context Dependency
bfa74976
RS
5400@chapter Handling Context Dependencies
5401
5402The Bison paradigm is to parse tokens first, then group them into larger
5403syntactic units. In many languages, the meaning of a token is affected by
5404its context. Although this violates the Bison paradigm, certain techniques
5405(known as @dfn{kludges}) may enable you to write Bison parsers for such
5406languages.
5407
5408@menu
5409* Semantic Tokens:: Token parsing can depend on the semantic context.
5410* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
5411* Tie-in Recovery:: Lexical tie-ins have implications for how
5412 error recovery rules must be written.
5413@end menu
5414
5415(Actually, ``kludge'' means any technique that gets its job done but is
5416neither clean nor robust.)
5417
342b8b6e 5418@node Semantic Tokens
bfa74976
RS
5419@section Semantic Info in Token Types
5420
5421The C language has a context dependency: the way an identifier is used
5422depends on what its current meaning is. For example, consider this:
5423
5424@example
5425foo (x);
5426@end example
5427
5428This looks like a function call statement, but if @code{foo} is a typedef
5429name, then this is actually a declaration of @code{x}. How can a Bison
5430parser for C decide how to parse this input?
5431
c827f760 5432The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
5433@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
5434identifier, it looks up the current declaration of the identifier in order
5435to decide which token type to return: @code{TYPENAME} if the identifier is
5436declared as a typedef, @code{IDENTIFIER} otherwise.
5437
5438The grammar rules can then express the context dependency by the choice of
5439token type to recognize. @code{IDENTIFIER} is accepted as an expression,
5440but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
5441@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
5442is @emph{not} significant, such as in declarations that can shadow a
5443typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
5444accepted---there is one rule for each of the two token types.
5445
5446This technique is simple to use if the decision of which kinds of
5447identifiers to allow is made at a place close to where the identifier is
5448parsed. But in C this is not always so: C allows a declaration to
5449redeclare a typedef name provided an explicit type has been specified
5450earlier:
5451
5452@example
5453typedef int foo, bar, lose;
5454static foo (bar); /* @r{redeclare @code{bar} as static variable} */
5455static int foo (lose); /* @r{redeclare @code{foo} as function} */
5456@end example
5457
5458Unfortunately, the name being declared is separated from the declaration
5459construct itself by a complicated syntactic structure---the ``declarator''.
5460
9ecbd125 5461As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
5462all the nonterminal names changed: once for parsing a declaration in
5463which a typedef name can be redefined, and once for parsing a
5464declaration in which that can't be done. Here is a part of the
5465duplication, with actions omitted for brevity:
bfa74976
RS
5466
5467@example
5468initdcl:
5469 declarator maybeasm '='
5470 init
5471 | declarator maybeasm
5472 ;
5473
5474notype_initdcl:
5475 notype_declarator maybeasm '='
5476 init
5477 | notype_declarator maybeasm
5478 ;
5479@end example
5480
5481@noindent
5482Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
5483cannot. The distinction between @code{declarator} and
5484@code{notype_declarator} is the same sort of thing.
5485
5486There is some similarity between this technique and a lexical tie-in
5487(described next), in that information which alters the lexical analysis is
5488changed during parsing by other parts of the program. The difference is
5489here the information is global, and is used for other purposes in the
5490program. A true lexical tie-in has a special-purpose flag controlled by
5491the syntactic context.
5492
342b8b6e 5493@node Lexical Tie-ins
bfa74976
RS
5494@section Lexical Tie-ins
5495@cindex lexical tie-in
5496
5497One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
5498which is set by Bison actions, whose purpose is to alter the way tokens are
5499parsed.
5500
5501For example, suppose we have a language vaguely like C, but with a special
5502construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
5503an expression in parentheses in which all integers are hexadecimal. In
5504particular, the token @samp{a1b} must be treated as an integer rather than
5505as an identifier if it appears in that context. Here is how you can do it:
5506
5507@example
5508@group
5509%@{
38a92d50
PE
5510 int hexflag;
5511 int yylex (void);
5512 void yyerror (char const *);
bfa74976
RS
5513%@}
5514%%
5515@dots{}
5516@end group
5517@group
5518expr: IDENTIFIER
5519 | constant
5520 | HEX '('
5521 @{ hexflag = 1; @}
5522 expr ')'
5523 @{ hexflag = 0;
5524 $$ = $4; @}
5525 | expr '+' expr
5526 @{ $$ = make_sum ($1, $3); @}
5527 @dots{}
5528 ;
5529@end group
5530
5531@group
5532constant:
5533 INTEGER
5534 | STRING
5535 ;
5536@end group
5537@end example
5538
5539@noindent
5540Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
5541it is nonzero, all integers are parsed in hexadecimal, and tokens starting
5542with letters are parsed as integers if possible.
5543
342b8b6e
AD
5544The declaration of @code{hexflag} shown in the prologue of the parser file
5545is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 5546You must also write the code in @code{yylex} to obey the flag.
bfa74976 5547
342b8b6e 5548@node Tie-in Recovery
bfa74976
RS
5549@section Lexical Tie-ins and Error Recovery
5550
5551Lexical tie-ins make strict demands on any error recovery rules you have.
5552@xref{Error Recovery}.
5553
5554The reason for this is that the purpose of an error recovery rule is to
5555abort the parsing of one construct and resume in some larger construct.
5556For example, in C-like languages, a typical error recovery rule is to skip
5557tokens until the next semicolon, and then start a new statement, like this:
5558
5559@example
5560stmt: expr ';'
5561 | IF '(' expr ')' stmt @{ @dots{} @}
5562 @dots{}
5563 error ';'
5564 @{ hexflag = 0; @}
5565 ;
5566@end example
5567
5568If there is a syntax error in the middle of a @samp{hex (@var{expr})}
5569construct, this error rule will apply, and then the action for the
5570completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
5571remain set for the entire rest of the input, or until the next @code{hex}
5572keyword, causing identifiers to be misinterpreted as integers.
5573
5574To avoid this problem the error recovery rule itself clears @code{hexflag}.
5575
5576There may also be an error recovery rule that works within expressions.
5577For example, there could be a rule which applies within parentheses
5578and skips to the close-parenthesis:
5579
5580@example
5581@group
5582expr: @dots{}
5583 | '(' expr ')'
5584 @{ $$ = $2; @}
5585 | '(' error ')'
5586 @dots{}
5587@end group
5588@end example
5589
5590If this rule acts within the @code{hex} construct, it is not going to abort
5591that construct (since it applies to an inner level of parentheses within
5592the construct). Therefore, it should not clear the flag: the rest of
5593the @code{hex} construct should be parsed with the flag still in effect.
5594
5595What if there is an error recovery rule which might abort out of the
5596@code{hex} construct or might not, depending on circumstances? There is no
5597way you can write the action to determine whether a @code{hex} construct is
5598being aborted or not. So if you are using a lexical tie-in, you had better
5599make sure your error recovery rules are not of this kind. Each rule must
5600be such that you can be sure that it always will, or always won't, have to
5601clear the flag.
5602
ec3bc396
AD
5603@c ================================================== Debugging Your Parser
5604
342b8b6e 5605@node Debugging
bfa74976 5606@chapter Debugging Your Parser
ec3bc396
AD
5607
5608Developing a parser can be a challenge, especially if you don't
5609understand the algorithm (@pxref{Algorithm, ,The Bison Parser
5610Algorithm}). Even so, sometimes a detailed description of the automaton
5611can help (@pxref{Understanding, , Understanding Your Parser}), or
5612tracing the execution of the parser can give some insight on why it
5613behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
5614
5615@menu
5616* Understanding:: Understanding the structure of your parser.
5617* Tracing:: Tracing the execution of your parser.
5618@end menu
5619
5620@node Understanding
5621@section Understanding Your Parser
5622
5623As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
5624Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
5625frequent than one would hope), looking at this automaton is required to
5626tune or simply fix a parser. Bison provides two different
c827f760 5627representation of it, either textually or graphically (as a @acronym{VCG}
ec3bc396
AD
5628file).
5629
5630The textual file is generated when the options @option{--report} or
5631@option{--verbose} are specified, see @xref{Invocation, , Invoking
5632Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
5633the parser output file name, and adding @samp{.output} instead.
5634Therefore, if the input file is @file{foo.y}, then the parser file is
5635called @file{foo.tab.c} by default. As a consequence, the verbose
5636output file is called @file{foo.output}.
5637
5638The following grammar file, @file{calc.y}, will be used in the sequel:
5639
5640@example
5641%token NUM STR
5642%left '+' '-'
5643%left '*'
5644%%
5645exp: exp '+' exp
5646 | exp '-' exp
5647 | exp '*' exp
5648 | exp '/' exp
5649 | NUM
5650 ;
5651useless: STR;
5652%%
5653@end example
5654
88bce5a2
AD
5655@command{bison} reports:
5656
5657@example
5658calc.y: warning: 1 useless nonterminal and 1 useless rule
5659calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
5660calc.y:11.10-12: warning: useless rule: useless: STR
5661calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
5662@end example
5663
5664When given @option{--report=state}, in addition to @file{calc.tab.c}, it
5665creates a file @file{calc.output} with contents detailed below. The
5666order of the output and the exact presentation might vary, but the
5667interpretation is the same.
ec3bc396
AD
5668
5669The first section includes details on conflicts that were solved thanks
5670to precedence and/or associativity:
5671
5672@example
5673Conflict in state 8 between rule 2 and token '+' resolved as reduce.
5674Conflict in state 8 between rule 2 and token '-' resolved as reduce.
5675Conflict in state 8 between rule 2 and token '*' resolved as shift.
5676@exdent @dots{}
5677@end example
5678
5679@noindent
5680The next section lists states that still have conflicts.
5681
5682@example
5a99098d
PE
5683State 8 conflicts: 1 shift/reduce
5684State 9 conflicts: 1 shift/reduce
5685State 10 conflicts: 1 shift/reduce
5686State 11 conflicts: 4 shift/reduce
ec3bc396
AD
5687@end example
5688
5689@noindent
5690@cindex token, useless
5691@cindex useless token
5692@cindex nonterminal, useless
5693@cindex useless nonterminal
5694@cindex rule, useless
5695@cindex useless rule
5696The next section reports useless tokens, nonterminal and rules. Useless
5697nonterminals and rules are removed in order to produce a smaller parser,
5698but useless tokens are preserved, since they might be used by the
5699scanner (note the difference between ``useless'' and ``not used''
5700below):
5701
5702@example
5703Useless nonterminals:
5704 useless
5705
5706Terminals which are not used:
5707 STR
5708
5709Useless rules:
5710#6 useless: STR;
5711@end example
5712
5713@noindent
5714The next section reproduces the exact grammar that Bison used:
5715
5716@example
5717Grammar
5718
5719 Number, Line, Rule
88bce5a2 5720 0 5 $accept -> exp $end
ec3bc396
AD
5721 1 5 exp -> exp '+' exp
5722 2 6 exp -> exp '-' exp
5723 3 7 exp -> exp '*' exp
5724 4 8 exp -> exp '/' exp
5725 5 9 exp -> NUM
5726@end example
5727
5728@noindent
5729and reports the uses of the symbols:
5730
5731@example
5732Terminals, with rules where they appear
5733
88bce5a2 5734$end (0) 0
ec3bc396
AD
5735'*' (42) 3
5736'+' (43) 1
5737'-' (45) 2
5738'/' (47) 4
5739error (256)
5740NUM (258) 5
5741
5742Nonterminals, with rules where they appear
5743
88bce5a2 5744$accept (8)
ec3bc396
AD
5745 on left: 0
5746exp (9)
5747 on left: 1 2 3 4 5, on right: 0 1 2 3 4
5748@end example
5749
5750@noindent
5751@cindex item
5752@cindex pointed rule
5753@cindex rule, pointed
5754Bison then proceeds onto the automaton itself, describing each state
5755with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
5756item is a production rule together with a point (marked by @samp{.})
5757that the input cursor.
5758
5759@example
5760state 0
5761
88bce5a2 5762 $accept -> . exp $ (rule 0)
ec3bc396 5763
2a8d363a 5764 NUM shift, and go to state 1
ec3bc396 5765
2a8d363a 5766 exp go to state 2
ec3bc396
AD
5767@end example
5768
5769This reads as follows: ``state 0 corresponds to being at the very
5770beginning of the parsing, in the initial rule, right before the start
5771symbol (here, @code{exp}). When the parser returns to this state right
5772after having reduced a rule that produced an @code{exp}, the control
5773flow jumps to state 2. If there is no such transition on a nonterminal
5774symbol, and the lookahead is a @code{NUM}, then this token is shifted on
5775the parse stack, and the control flow jumps to state 1. Any other
6e649e65 5776lookahead triggers a syntax error.''
ec3bc396
AD
5777
5778@cindex core, item set
5779@cindex item set core
5780@cindex kernel, item set
5781@cindex item set core
5782Even though the only active rule in state 0 seems to be rule 0, the
5783report lists @code{NUM} as a lookahead symbol because @code{NUM} can be
5784at the beginning of any rule deriving an @code{exp}. By default Bison
5785reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
5786you want to see more detail you can invoke @command{bison} with
5787@option{--report=itemset} to list all the items, include those that can
5788be derived:
5789
5790@example
5791state 0
5792
88bce5a2 5793 $accept -> . exp $ (rule 0)
ec3bc396
AD
5794 exp -> . exp '+' exp (rule 1)
5795 exp -> . exp '-' exp (rule 2)
5796 exp -> . exp '*' exp (rule 3)
5797 exp -> . exp '/' exp (rule 4)
5798 exp -> . NUM (rule 5)
5799
5800 NUM shift, and go to state 1
5801
5802 exp go to state 2
5803@end example
5804
5805@noindent
5806In the state 1...
5807
5808@example
5809state 1
5810
5811 exp -> NUM . (rule 5)
5812
2a8d363a 5813 $default reduce using rule 5 (exp)
ec3bc396
AD
5814@end example
5815
5816@noindent
5817the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead
5818(@samp{$default}), the parser will reduce it. If it was coming from
5819state 0, then, after this reduction it will return to state 0, and will
5820jump to state 2 (@samp{exp: go to state 2}).
5821
5822@example
5823state 2
5824
88bce5a2 5825 $accept -> exp . $ (rule 0)
ec3bc396
AD
5826 exp -> exp . '+' exp (rule 1)
5827 exp -> exp . '-' exp (rule 2)
5828 exp -> exp . '*' exp (rule 3)
5829 exp -> exp . '/' exp (rule 4)
5830
2a8d363a
AD
5831 $ shift, and go to state 3
5832 '+' shift, and go to state 4
5833 '-' shift, and go to state 5
5834 '*' shift, and go to state 6
5835 '/' shift, and go to state 7
ec3bc396
AD
5836@end example
5837
5838@noindent
5839In state 2, the automaton can only shift a symbol. For instance,
5840because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
5841@samp{+}, it will be shifted on the parse stack, and the automaton
5842control will jump to state 4, corresponding to the item @samp{exp -> exp
5843'+' . exp}. Since there is no default action, any other token than
6e649e65 5844those listed above will trigger a syntax error.
ec3bc396
AD
5845
5846The state 3 is named the @dfn{final state}, or the @dfn{accepting
5847state}:
5848
5849@example
5850state 3
5851
88bce5a2 5852 $accept -> exp $ . (rule 0)
ec3bc396 5853
2a8d363a 5854 $default accept
ec3bc396
AD
5855@end example
5856
5857@noindent
5858the initial rule is completed (the start symbol and the end
5859of input were read), the parsing exits successfully.
5860
5861The interpretation of states 4 to 7 is straightforward, and is left to
5862the reader.
5863
5864@example
5865state 4
5866
5867 exp -> exp '+' . exp (rule 1)
5868
2a8d363a 5869 NUM shift, and go to state 1
ec3bc396 5870
2a8d363a 5871 exp go to state 8
ec3bc396
AD
5872
5873state 5
5874
5875 exp -> exp '-' . exp (rule 2)
5876
2a8d363a 5877 NUM shift, and go to state 1
ec3bc396 5878
2a8d363a 5879 exp go to state 9
ec3bc396
AD
5880
5881state 6
5882
5883 exp -> exp '*' . exp (rule 3)
5884
2a8d363a 5885 NUM shift, and go to state 1
ec3bc396 5886
2a8d363a 5887 exp go to state 10
ec3bc396
AD
5888
5889state 7
5890
5891 exp -> exp '/' . exp (rule 4)
5892
2a8d363a 5893 NUM shift, and go to state 1
ec3bc396 5894
2a8d363a 5895 exp go to state 11
ec3bc396
AD
5896@end example
5897
5a99098d
PE
5898As was announced in beginning of the report, @samp{State 8 conflicts:
58991 shift/reduce}:
ec3bc396
AD
5900
5901@example
5902state 8
5903
5904 exp -> exp . '+' exp (rule 1)
5905 exp -> exp '+' exp . (rule 1)
5906 exp -> exp . '-' exp (rule 2)
5907 exp -> exp . '*' exp (rule 3)
5908 exp -> exp . '/' exp (rule 4)
5909
2a8d363a
AD
5910 '*' shift, and go to state 6
5911 '/' shift, and go to state 7
ec3bc396 5912
2a8d363a
AD
5913 '/' [reduce using rule 1 (exp)]
5914 $default reduce using rule 1 (exp)
ec3bc396
AD
5915@end example
5916
5917Indeed, there are two actions associated to the lookahead @samp{/}:
5918either shifting (and going to state 7), or reducing rule 1. The
5919conflict means that either the grammar is ambiguous, or the parser lacks
5920information to make the right decision. Indeed the grammar is
5921ambiguous, as, since we did not specify the precedence of @samp{/}, the
5922sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
5923NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
5924NUM}, which corresponds to reducing rule 1.
5925
c827f760 5926Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
5927arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
5928Shift/Reduce Conflicts}. Discarded actions are reported in between
5929square brackets.
5930
5931Note that all the previous states had a single possible action: either
5932shifting the next token and going to the corresponding state, or
5933reducing a single rule. In the other cases, i.e., when shifting
5934@emph{and} reducing is possible or when @emph{several} reductions are
5935possible, the lookahead is required to select the action. State 8 is
5936one such state: if the lookahead is @samp{*} or @samp{/} then the action
5937is shifting, otherwise the action is reducing rule 1. In other words,
5938the first two items, corresponding to rule 1, are not eligible when the
5939lookahead is @samp{*}, since we specified that @samp{*} has higher
5940precedence that @samp{+}. More generally, some items are eligible only
5941with some set of possible lookaheads. When run with
5942@option{--report=lookahead}, Bison specifies these lookaheads:
5943
5944@example
5945state 8
5946
5947 exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
5948 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
5949 exp -> exp . '-' exp (rule 2)
5950 exp -> exp . '*' exp (rule 3)
5951 exp -> exp . '/' exp (rule 4)
5952
5953 '*' shift, and go to state 6
5954 '/' shift, and go to state 7
5955
5956 '/' [reduce using rule 1 (exp)]
5957 $default reduce using rule 1 (exp)
5958@end example
5959
5960The remaining states are similar:
5961
5962@example
5963state 9
5964
5965 exp -> exp . '+' exp (rule 1)
5966 exp -> exp . '-' exp (rule 2)
5967 exp -> exp '-' exp . (rule 2)
5968 exp -> exp . '*' exp (rule 3)
5969 exp -> exp . '/' exp (rule 4)
5970
2a8d363a
AD
5971 '*' shift, and go to state 6
5972 '/' shift, and go to state 7
ec3bc396 5973
2a8d363a
AD
5974 '/' [reduce using rule 2 (exp)]
5975 $default reduce using rule 2 (exp)
ec3bc396
AD
5976
5977state 10
5978
5979 exp -> exp . '+' exp (rule 1)
5980 exp -> exp . '-' exp (rule 2)
5981 exp -> exp . '*' exp (rule 3)
5982 exp -> exp '*' exp . (rule 3)
5983 exp -> exp . '/' exp (rule 4)
5984
2a8d363a 5985 '/' shift, and go to state 7
ec3bc396 5986
2a8d363a
AD
5987 '/' [reduce using rule 3 (exp)]
5988 $default reduce using rule 3 (exp)
ec3bc396
AD
5989
5990state 11
5991
5992 exp -> exp . '+' exp (rule 1)
5993 exp -> exp . '-' exp (rule 2)
5994 exp -> exp . '*' exp (rule 3)
5995 exp -> exp . '/' exp (rule 4)
5996 exp -> exp '/' exp . (rule 4)
5997
2a8d363a
AD
5998 '+' shift, and go to state 4
5999 '-' shift, and go to state 5
6000 '*' shift, and go to state 6
6001 '/' shift, and go to state 7
ec3bc396 6002
2a8d363a
AD
6003 '+' [reduce using rule 4 (exp)]
6004 '-' [reduce using rule 4 (exp)]
6005 '*' [reduce using rule 4 (exp)]
6006 '/' [reduce using rule 4 (exp)]
6007 $default reduce using rule 4 (exp)
ec3bc396
AD
6008@end example
6009
6010@noindent
6011Observe that state 11 contains conflicts due to the lack of precedence
6012of @samp{/} wrt @samp{+}, @samp{-}, and @samp{*}, but also because the
6013associativity of @samp{/} is not specified.
6014
6015
6016@node Tracing
6017@section Tracing Your Parser
bfa74976
RS
6018@findex yydebug
6019@cindex debugging
6020@cindex tracing the parser
6021
6022If a Bison grammar compiles properly but doesn't do what you want when it
6023runs, the @code{yydebug} parser-trace feature can help you figure out why.
6024
3ded9a63
AD
6025There are several means to enable compilation of trace facilities:
6026
6027@table @asis
6028@item the macro @code{YYDEBUG}
6029@findex YYDEBUG
6030Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 6031parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
6032@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
6033YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
6034Prologue}).
6035
6036@item the option @option{-t}, @option{--debug}
6037Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 6038,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
6039
6040@item the directive @samp{%debug}
6041@findex %debug
6042Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
6043Declaration Summary}). This is a Bison extension, which will prove
6044useful when Bison will output parsers for languages that don't use a
c827f760
PE
6045preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
6046you, this is
3ded9a63
AD
6047the preferred solution.
6048@end table
6049
6050We suggest that you always enable the debug option so that debugging is
6051always possible.
bfa74976 6052
02a81e05 6053The trace facility outputs messages with macro calls of the form
e2742e46 6054@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
02a81e05 6055@var{format} and @var{args} are the usual @code{printf} format and
4947ebdb
PE
6056arguments. If you define @code{YYDEBUG} to a nonzero value but do not
6057define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
e4e1a4dc 6058and @code{YYPRINTF} is defined to @code{fprintf}.
bfa74976
RS
6059
6060Once you have compiled the program with trace facilities, the way to
6061request a trace is to store a nonzero value in the variable @code{yydebug}.
6062You can do this by making the C code do it (in @code{main}, perhaps), or
6063you can alter the value with a C debugger.
6064
6065Each step taken by the parser when @code{yydebug} is nonzero produces a
6066line or two of trace information, written on @code{stderr}. The trace
6067messages tell you these things:
6068
6069@itemize @bullet
6070@item
6071Each time the parser calls @code{yylex}, what kind of token was read.
6072
6073@item
6074Each time a token is shifted, the depth and complete contents of the
6075state stack (@pxref{Parser States}).
6076
6077@item
6078Each time a rule is reduced, which rule it is, and the complete contents
6079of the state stack afterward.
6080@end itemize
6081
6082To make sense of this information, it helps to refer to the listing file
704a47c4
AD
6083produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
6084Bison}). This file shows the meaning of each state in terms of
6085positions in various rules, and also what each state will do with each
6086possible input token. As you read the successive trace messages, you
6087can see that the parser is functioning according to its specification in
6088the listing file. Eventually you will arrive at the place where
6089something undesirable happens, and you will see which parts of the
6090grammar are to blame.
bfa74976
RS
6091
6092The parser file is a C program and you can use C debuggers on it, but it's
6093not easy to interpret what it is doing. The parser function is a
6094finite-state machine interpreter, and aside from the actions it executes
6095the same code over and over. Only the values of variables show where in
6096the grammar it is working.
6097
6098@findex YYPRINT
6099The debugging information normally gives the token type of each token
6100read, but not its semantic value. You can optionally define a macro
6101named @code{YYPRINT} to provide a way to print the value. If you define
6102@code{YYPRINT}, it should take three arguments. The parser will pass a
6103standard I/O stream, the numeric code for the token type, and the token
6104value (from @code{yylval}).
6105
6106Here is an example of @code{YYPRINT} suitable for the multi-function
6107calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
6108
6109@smallexample
38a92d50
PE
6110%@{
6111 static void print_token_value (FILE *, int, YYSTYPE);
6112 #define YYPRINT(file, type, value) print_token_value (file, type, value)
6113%@}
6114
6115@dots{} %% @dots{} %% @dots{}
bfa74976
RS
6116
6117static void
831d3c99 6118print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
6119@{
6120 if (type == VAR)
d3c4e709 6121 fprintf (file, "%s", value.tptr->name);
bfa74976 6122 else if (type == NUM)
d3c4e709 6123 fprintf (file, "%d", value.val);
bfa74976
RS
6124@}
6125@end smallexample
6126
ec3bc396
AD
6127@c ================================================= Invoking Bison
6128
342b8b6e 6129@node Invocation
bfa74976
RS
6130@chapter Invoking Bison
6131@cindex invoking Bison
6132@cindex Bison invocation
6133@cindex options for invoking Bison
6134
6135The usual way to invoke Bison is as follows:
6136
6137@example
6138bison @var{infile}
6139@end example
6140
6141Here @var{infile} is the grammar file name, which usually ends in
6142@samp{.y}. The parser file's name is made by replacing the @samp{.y}
6143with @samp{.tab.c}. Thus, the @samp{bison foo.y} filename yields
6144@file{foo.tab.c}, and the @samp{bison hack/foo.y} filename yields
72d2299c 6145@file{hack/foo.tab.c}. It's also possible, in case you are writing
79282c6c 6146C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
6147or @file{foo.y++}. Then, the output files will take an extension like
6148the given one as input (respectively @file{foo.tab.cpp} and
6149@file{foo.tab.c++}).
234a3be3
AD
6150This feature takes effect with all options that manipulate filenames like
6151@samp{-o} or @samp{-d}.
6152
6153For example :
6154
6155@example
6156bison -d @var{infile.yxx}
6157@end example
84163231 6158@noindent
72d2299c 6159will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
6160
6161@example
b56471a6 6162bison -d -o @var{output.c++} @var{infile.y}
234a3be3 6163@end example
84163231 6164@noindent
234a3be3
AD
6165will produce @file{output.c++} and @file{outfile.h++}.
6166
397ec073
PE
6167For compatibility with @acronym{POSIX}, the standard Bison
6168distribution also contains a shell script called @command{yacc} that
6169invokes Bison with the @option{-y} option.
6170
bfa74976 6171@menu
13863333 6172* Bison Options:: All the options described in detail,
c827f760 6173 in alphabetical order by short options.
bfa74976 6174* Option Cross Key:: Alphabetical list of long options.
93dd49ab 6175* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
6176@end menu
6177
342b8b6e 6178@node Bison Options
bfa74976
RS
6179@section Bison Options
6180
6181Bison supports both traditional single-letter options and mnemonic long
6182option names. Long option names are indicated with @samp{--} instead of
6183@samp{-}. Abbreviations for option names are allowed as long as they
6184are unique. When a long option takes an argument, like
6185@samp{--file-prefix}, connect the option name and the argument with
6186@samp{=}.
6187
6188Here is a list of options that can be used with Bison, alphabetized by
6189short option. It is followed by a cross key alphabetized by long
6190option.
6191
89cab50d
AD
6192@c Please, keep this ordered as in `bison --help'.
6193@noindent
6194Operations modes:
6195@table @option
6196@item -h
6197@itemx --help
6198Print a summary of the command-line options to Bison and exit.
bfa74976 6199
89cab50d
AD
6200@item -V
6201@itemx --version
6202Print the version number of Bison and exit.
bfa74976 6203
89cab50d
AD
6204@need 1750
6205@item -y
6206@itemx --yacc
89cab50d
AD
6207Equivalent to @samp{-o y.tab.c}; the parser output file is called
6208@file{y.tab.c}, and the other outputs are called @file{y.output} and
6209@file{y.tab.h}. The purpose of this option is to imitate Yacc's output
6210file name conventions. Thus, the following shell script can substitute
397ec073
PE
6211for Yacc, and the Bison distribution contains such a script for
6212compatibility with @acronym{POSIX}:
bfa74976 6213
89cab50d 6214@example
397ec073
PE
6215#! /bin/sh
6216bison -y "$@"
89cab50d
AD
6217@end example
6218@end table
6219
6220@noindent
6221Tuning the parser:
6222
6223@table @option
cd5bd6ac
AD
6224@item -S @var{file}
6225@itemx --skeleton=@var{file}
6226Specify the skeleton to use. You probably don't need this option unless
6227you are developing Bison.
6228
89cab50d
AD
6229@item -t
6230@itemx --debug
4947ebdb
PE
6231In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
6232already defined, so that the debugging facilities are compiled.
ec3bc396 6233@xref{Tracing, ,Tracing Your Parser}.
89cab50d
AD
6234
6235@item --locations
d8988b2f 6236Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
6237
6238@item -p @var{prefix}
6239@itemx --name-prefix=@var{prefix}
d8988b2f
AD
6240Pretend that @code{%name-prefix="@var{prefix}"} was specified.
6241@xref{Decl Summary}.
bfa74976
RS
6242
6243@item -l
6244@itemx --no-lines
6245Don't put any @code{#line} preprocessor commands in the parser file.
6246Ordinarily Bison puts them in the parser file so that the C compiler
6247and debuggers will associate errors with your source file, the
6248grammar file. This option causes them to associate errors with the
95e742f7 6249parser file, treating it as an independent source file in its own right.
bfa74976 6250
931c7513
RS
6251@item -n
6252@itemx --no-parser
d8988b2f 6253Pretend that @code{%no-parser} was specified. @xref{Decl Summary}.
931c7513 6254
89cab50d
AD
6255@item -k
6256@itemx --token-table
d8988b2f 6257Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 6258@end table
bfa74976 6259
89cab50d
AD
6260@noindent
6261Adjust the output:
bfa74976 6262
89cab50d
AD
6263@table @option
6264@item -d
d8988b2f
AD
6265@itemx --defines
6266Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447
AD
6267file containing macro definitions for the token type names defined in
6268the grammar and the semantic value type @code{YYSTYPE}, as well as a few
6269@code{extern} variable declarations. @xref{Decl Summary}.
931c7513 6270
342b8b6e 6271@item --defines=@var{defines-file}
d8988b2f 6272Same as above, but save in the file @var{defines-file}.
342b8b6e 6273
89cab50d
AD
6274@item -b @var{file-prefix}
6275@itemx --file-prefix=@var{prefix}
d8988b2f 6276Pretend that @code{%verbose} was specified, i.e, specify prefix to use
72d2299c 6277for all Bison output file names. @xref{Decl Summary}.
bfa74976 6278
ec3bc396
AD
6279@item -r @var{things}
6280@itemx --report=@var{things}
6281Write an extra output file containing verbose description of the comma
6282separated list of @var{things} among:
6283
6284@table @code
6285@item state
6286Description of the grammar, conflicts (resolved and unresolved), and
c827f760 6287@acronym{LALR} automaton.
ec3bc396
AD
6288
6289@item lookahead
6290Implies @code{state} and augments the description of the automaton with
6291each rule's lookahead set.
6292
6293@item itemset
6294Implies @code{state} and augments the description of the automaton with
6295the full set of items for each state, instead of its core only.
6296@end table
6297
6298For instance, on the following grammar
6299
bfa74976
RS
6300@item -v
6301@itemx --verbose
6deb4447
AD
6302Pretend that @code{%verbose} was specified, i.e, write an extra output
6303file containing verbose descriptions of the grammar and
72d2299c 6304parser. @xref{Decl Summary}.
bfa74976 6305
d8988b2f
AD
6306@item -o @var{filename}
6307@itemx --output=@var{filename}
6308Specify the @var{filename} for the parser file.
bfa74976 6309
d8988b2f
AD
6310The other output files' names are constructed from @var{filename} as
6311described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
6312
6313@item -g
c827f760
PE
6314Output a @acronym{VCG} definition of the @acronym{LALR}(1) grammar
6315automaton computed by Bison. If the grammar file is @file{foo.y}, the
6316@acronym{VCG} output file will
342b8b6e
AD
6317be @file{foo.vcg}.
6318
6319@item --graph=@var{graph-file}
72d2299c
PE
6320The behavior of @var{--graph} is the same than @samp{-g}. The only
6321difference is that it has an optional argument which is the name of
342b8b6e 6322the output graph filename.
bfa74976
RS
6323@end table
6324
342b8b6e 6325@node Option Cross Key
bfa74976
RS
6326@section Option Cross Key
6327
6328Here is a list of options, alphabetized by long option, to help you find
6329the corresponding short option.
6330
6331@tex
6332\def\leaderfill{\leaders\hbox to 1em{\hss.\hss}\hfill}
6333
6334{\tt
6335\line{ --debug \leaderfill -t}
6336\line{ --defines \leaderfill -d}
6337\line{ --file-prefix \leaderfill -b}
342b8b6e 6338\line{ --graph \leaderfill -g}
ff51d159 6339\line{ --help \leaderfill -h}
bfa74976
RS
6340\line{ --name-prefix \leaderfill -p}
6341\line{ --no-lines \leaderfill -l}
931c7513 6342\line{ --no-parser \leaderfill -n}
d8988b2f 6343\line{ --output \leaderfill -o}
931c7513 6344\line{ --token-table \leaderfill -k}
bfa74976
RS
6345\line{ --verbose \leaderfill -v}
6346\line{ --version \leaderfill -V}
6347\line{ --yacc \leaderfill -y}
6348}
6349@end tex
6350
6351@ifinfo
6352@example
6353--debug -t
342b8b6e 6354--defines=@var{defines-file} -d
bfa74976 6355--file-prefix=@var{prefix} -b @var{file-prefix}
342b8b6e 6356--graph=@var{graph-file} -d
ff51d159 6357--help -h
931c7513 6358--name-prefix=@var{prefix} -p @var{name-prefix}
bfa74976 6359--no-lines -l
931c7513 6360--no-parser -n
d8988b2f 6361--output=@var{outfile} -o @var{outfile}
931c7513 6362--token-table -k
bfa74976
RS
6363--verbose -v
6364--version -V
8c9a50be 6365--yacc -y
bfa74976
RS
6366@end example
6367@end ifinfo
6368
93dd49ab
PE
6369@node Yacc Library
6370@section Yacc Library
6371
6372The Yacc library contains default implementations of the
6373@code{yyerror} and @code{main} functions. These default
6374implementations are normally not useful, but @acronym{POSIX} requires
6375them. To use the Yacc library, link your program with the
6376@option{-ly} option. Note that Bison's implementation of the Yacc
6377library is distributed under the terms of the @acronym{GNU} General
6378Public License (@pxref{Copying}).
6379
6380If you use the Yacc library's @code{yyerror} function, you should
6381declare @code{yyerror} as follows:
6382
6383@example
6384int yyerror (char const *);
6385@end example
6386
6387Bison ignores the @code{int} value returned by this @code{yyerror}.
6388If you use the Yacc library's @code{main} function, your
6389@code{yyparse} function should have the following type signature:
6390
6391@example
6392int yyparse (void);
6393@end example
6394
d1a1114f
AD
6395@c ================================================= Invoking Bison
6396
6397@node FAQ
6398@chapter Frequently Asked Questions
6399@cindex frequently asked questions
6400@cindex questions
6401
6402Several questions about Bison come up occasionally. Here some of them
6403are addressed.
6404
6405@menu
6406* Parser Stack Overflow:: Breaking the Stack Limits
e64fec0a 6407* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 6408* Strings are Destroyed:: @code{yylval} Loses Track of Strings
a06ea4aa
AD
6409* C++ Parsers:: Compiling Parsers with C++ Compilers
6410* Implementing Loops:: Control Flow in the Calculator
d1a1114f
AD
6411@end menu
6412
6413@node Parser Stack Overflow
6414@section Parser Stack Overflow
6415
6416@display
6417My parser returns with error with a @samp{parser stack overflow}
6418message. What can I do?
6419@end display
6420
6421This question is already addressed elsewhere, @xref{Recursion,
6422,Recursive Rules}.
6423
e64fec0a
PE
6424@node How Can I Reset the Parser
6425@section How Can I Reset the Parser
5b066063 6426
0e14ad77
PE
6427The following phenomenon has several symptoms, resulting in the
6428following typical questions:
5b066063
AD
6429
6430@display
6431I invoke @code{yyparse} several times, and on correct input it works
6432properly; but when a parse error is found, all the other calls fail
0e14ad77 6433too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
6434@end display
6435
6436@noindent
6437or
6438
6439@display
0e14ad77 6440My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
6441which case I run @code{yyparse} from @code{yyparse}. This fails
6442although I did specify I needed a @code{%pure-parser}.
6443@end display
6444
0e14ad77
PE
6445These problems typically come not from Bison itself, but from
6446Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
6447speed, they might not notice a change of input file. As a
6448demonstration, consider the following source file,
6449@file{first-line.l}:
6450
6451@verbatim
6452%{
6453#include <stdio.h>
6454#include <stdlib.h>
6455%}
6456%%
6457.*\n ECHO; return 1;
6458%%
6459int
0e14ad77 6460yyparse (char const *file)
5b066063
AD
6461{
6462 yyin = fopen (file, "r");
6463 if (!yyin)
6464 exit (2);
6465 /* One token only. */
6466 yylex ();
0e14ad77 6467 if (fclose (yyin) != 0)
5b066063
AD
6468 exit (3);
6469 return 0;
6470}
6471
6472int
0e14ad77 6473main (void)
5b066063
AD
6474{
6475 yyparse ("input");
6476 yyparse ("input");
6477 return 0;
6478}
6479@end verbatim
6480
6481@noindent
6482If the file @file{input} contains
6483
6484@verbatim
6485input:1: Hello,
6486input:2: World!
6487@end verbatim
6488
6489@noindent
0e14ad77 6490then instead of getting the first line twice, you get:
5b066063
AD
6491
6492@example
6493$ @kbd{flex -ofirst-line.c first-line.l}
6494$ @kbd{gcc -ofirst-line first-line.c -ll}
6495$ @kbd{./first-line}
6496input:1: Hello,
6497input:2: World!
6498@end example
6499
0e14ad77
PE
6500Therefore, whenever you change @code{yyin}, you must tell the
6501Lex-generated scanner to discard its current buffer and switch to the
6502new one. This depends upon your implementation of Lex; see its
6503documentation for more. For Flex, it suffices to call
6504@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
6505Flex-generated scanner needs to read from several input streams to
6506handle features like include files, you might consider using Flex
6507functions like @samp{yy_switch_to_buffer} that manipulate multiple
6508input buffers.
5b066063 6509
fef4cb51
AD
6510@node Strings are Destroyed
6511@section Strings are Destroyed
6512
6513@display
c7e441b4 6514My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
6515them. Instead of reporting @samp{"foo", "bar"}, it reports
6516@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
6517@end display
6518
6519This error is probably the single most frequent ``bug report'' sent to
6520Bison lists, but is only concerned with a misunderstanding of the role
6521of scanner. Consider the following Lex code:
6522
6523@verbatim
6524%{
6525#include <stdio.h>
6526char *yylval = NULL;
6527%}
6528%%
6529.* yylval = yytext; return 1;
6530\n /* IGNORE */
6531%%
6532int
6533main ()
6534{
6535 /* Similar to using $1, $2 in a Bison action. */
6536 char *fst = (yylex (), yylval);
6537 char *snd = (yylex (), yylval);
6538 printf ("\"%s\", \"%s\"\n", fst, snd);
6539 return 0;
6540}
6541@end verbatim
6542
6543If you compile and run this code, you get:
6544
6545@example
6546$ @kbd{flex -osplit-lines.c split-lines.l}
6547$ @kbd{gcc -osplit-lines split-lines.c -ll}
6548$ @kbd{printf 'one\ntwo\n' | ./split-lines}
6549"one
6550two", "two"
6551@end example
6552
6553@noindent
6554this is because @code{yytext} is a buffer provided for @emph{reading}
6555in the action, but if you want to keep it, you have to duplicate it
6556(e.g., using @code{strdup}). Note that the output may depend on how
6557your implementation of Lex handles @code{yytext}. For instance, when
6558given the Lex compatibility option @option{-l} (which triggers the
6559option @samp{%array}) Flex generates a different behavior:
6560
6561@example
6562$ @kbd{flex -l -osplit-lines.c split-lines.l}
6563$ @kbd{gcc -osplit-lines split-lines.c -ll}
6564$ @kbd{printf 'one\ntwo\n' | ./split-lines}
6565"two", "two"
6566@end example
6567
6568
a06ea4aa
AD
6569@node C++ Parsers
6570@section C++ Parsers
6571
6572@display
6573How can I generate parsers in C++?
6574@end display
6575
6576We are working on a C++ output for Bison, but unfortunately, for lack
6577of time, the skeleton is not finished. It is functional, but in
6578numerous respects, it will require additional work which @emph{might}
6579break backward compatibility. Since the skeleton for C++ is not
6580documented, we do not consider ourselves bound to this interface,
6581nevertheless, as much as possible we will try to keep compatibility.
6582
6583Another possibility is to use the regular C parsers, and to compile
6584them with a C++ compiler. This works properly, provided that you bear
6585some simple C++ rules in mind, such as not including ``real classes''
6586(i.e., structure with constructors) in unions. Therefore, in the
6587@code{%union}, use pointers to classes, or better yet, a single
6588pointer type to the root of your lexical/syntactic hierarchy.
6589
6590
6591@node Implementing Loops
6592@section Implementing Loops
6593
6594@display
6595My simple calculator supports variables, assignments, and functions,
6596but how can I implement loops?
6597@end display
6598
6599Although very pedagogical, the examples included in the document blur
a1c84f45 6600the distinction to make between the parser---whose job is to recover
a06ea4aa 6601the structure of a text and to transmit it to subsequent modules of
a1c84f45 6602the program---and the processing (such as the execution) of this
a06ea4aa
AD
6603structure. This works well with so called straight line programs,
6604i.e., precisely those that have a straightforward execution model:
6605execute simple instructions one after the others.
6606
6607@cindex abstract syntax tree
6608@cindex @acronym{AST}
6609If you want a richer model, you will probably need to use the parser
6610to construct a tree that does represent the structure it has
6611recovered; this tree is usually called the @dfn{abstract syntax tree},
6612or @dfn{@acronym{AST}} for short. Then, walking through this tree,
6613traversing it in various ways, will enable treatments such as its
6614execution or its translation, which will result in an interpreter or a
6615compiler.
6616
6617This topic is way beyond the scope of this manual, and the reader is
6618invited to consult the dedicated literature.
6619
6620
6621
d1a1114f
AD
6622@c ================================================= Table of Symbols
6623
342b8b6e 6624@node Table of Symbols
bfa74976
RS
6625@appendix Bison Symbols
6626@cindex Bison symbols, table of
6627@cindex symbols in Bison, table of
6628
18b519c0 6629@deffn {Variable} @@$
3ded9a63 6630In an action, the location of the left-hand side of the rule.
88bce5a2 6631@xref{Locations, , Locations Overview}.
18b519c0 6632@end deffn
3ded9a63 6633
18b519c0 6634@deffn {Variable} @@@var{n}
3ded9a63
AD
6635In an action, the location of the @var{n}-th symbol of the right-hand
6636side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 6637@end deffn
3ded9a63 6638
18b519c0 6639@deffn {Variable} $$
3ded9a63
AD
6640In an action, the semantic value of the left-hand side of the rule.
6641@xref{Actions}.
18b519c0 6642@end deffn
3ded9a63 6643
18b519c0 6644@deffn {Variable} $@var{n}
3ded9a63
AD
6645In an action, the semantic value of the @var{n}-th symbol of the
6646right-hand side of the rule. @xref{Actions}.
18b519c0 6647@end deffn
3ded9a63 6648
18b519c0 6649@deffn {Symbol} $accept
88bce5a2
AD
6650The predefined nonterminal whose only rule is @samp{$accept: @var{start}
6651$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
6652Start-Symbol}. It cannot be used in the grammar.
18b519c0 6653@end deffn
88bce5a2 6654
18b519c0 6655@deffn {Symbol} $end
88bce5a2
AD
6656The predefined token marking the end of the token stream. It cannot be
6657used in the grammar.
18b519c0 6658@end deffn
88bce5a2 6659
18b519c0 6660@deffn {Symbol} $undefined
88bce5a2
AD
6661The predefined token onto which all undefined values returned by
6662@code{yylex} are mapped. It cannot be used in the grammar, rather, use
6663@code{error}.
18b519c0 6664@end deffn
88bce5a2 6665
18b519c0 6666@deffn {Symbol} error
bfa74976
RS
6667A token name reserved for error recovery. This token may be used in
6668grammar rules so as to allow the Bison parser to recognize an error in
6669the grammar without halting the process. In effect, a sentence
6e649e65 6670containing an error may be recognized as valid. On a syntax error, the
bfa74976
RS
6671token @code{error} becomes the current look-ahead token. Actions
6672corresponding to @code{error} are then executed, and the look-ahead
6673token is reset to the token that originally caused the violation.
6674@xref{Error Recovery}.
18b519c0 6675@end deffn
bfa74976 6676
18b519c0 6677@deffn {Macro} YYABORT
bfa74976
RS
6678Macro to pretend that an unrecoverable syntax error has occurred, by
6679making @code{yyparse} return 1 immediately. The error reporting
ceed8467
AD
6680function @code{yyerror} is not called. @xref{Parser Function, ,The
6681Parser Function @code{yyparse}}.
18b519c0 6682@end deffn
bfa74976 6683
18b519c0 6684@deffn {Macro} YYACCEPT
bfa74976 6685Macro to pretend that a complete utterance of the language has been
13863333 6686read, by making @code{yyparse} return 0 immediately.
bfa74976 6687@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6688@end deffn
bfa74976 6689
18b519c0 6690@deffn {Macro} YYBACKUP
bfa74976
RS
6691Macro to discard a value from the parser stack and fake a look-ahead
6692token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 6693@end deffn
bfa74976 6694
18b519c0 6695@deffn {Macro} YYDEBUG
72d2299c 6696Macro to define to equip the parser with tracing code. @xref{Tracing,
ec3bc396 6697,Tracing Your Parser}.
18b519c0 6698@end deffn
3ded9a63 6699
18b519c0 6700@deffn {Macro} YYERROR
bfa74976
RS
6701Macro to pretend that a syntax error has just been detected: call
6702@code{yyerror} and then perform normal error recovery if possible
6703(@pxref{Error Recovery}), or (if recovery is impossible) make
6704@code{yyparse} return 1. @xref{Error Recovery}.
18b519c0 6705@end deffn
bfa74976 6706
18b519c0 6707@deffn {Macro} YYERROR_VERBOSE
b69d743e
PE
6708An obsolete macro that you define with @code{#define} in the prologue
6709to request verbose, specific error message strings
2a8d363a
AD
6710when @code{yyerror} is called. It doesn't matter what definition you
6711use for @code{YYERROR_VERBOSE}, just whether you define it. Using
6712@code{%error-verbose} is preferred.
18b519c0 6713@end deffn
bfa74976 6714
18b519c0 6715@deffn {Macro} YYINITDEPTH
bfa74976
RS
6716Macro for specifying the initial size of the parser stack.
6717@xref{Stack Overflow}.
18b519c0 6718@end deffn
bfa74976 6719
18b519c0 6720@deffn {Macro} YYLEX_PARAM
2a8d363a
AD
6721An obsolete macro for specifying an extra argument (or list of extra
6722arguments) for @code{yyparse} to pass to @code{yylex}. he use of this
6723macro is deprecated, and is supported only for Yacc like parsers.
6724@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
18b519c0 6725@end deffn
c656404a 6726
6273355b
PE
6727@deffn {Type} YYLTYPE
6728Data type of @code{yylloc}; by default, a structure with four
847bf1f5 6729members. @xref{Location Type, , Data Types of Locations}.
18b519c0 6730@end deffn
bfa74976 6731
18b519c0
AD
6732@deffn {Macro} YYMAXDEPTH
6733Macro for specifying the maximum size of the parser stack. @xref{Stack
6734Overflow}.
6735@end deffn
bfa74976 6736
18b519c0 6737@deffn {Macro} YYPARSE_PARAM
2a8d363a
AD
6738An obsolete macro for specifying the name of a parameter that
6739@code{yyparse} should accept. The use of this macro is deprecated, and
6740is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
6741Conventions for Pure Parsers}.
18b519c0 6742@end deffn
c656404a 6743
18b519c0 6744@deffn {Macro} YYRECOVERING
bfa74976
RS
6745Macro whose value indicates whether the parser is recovering from a
6746syntax error. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 6747@end deffn
bfa74976 6748
18b519c0 6749@deffn {Macro} YYSTACK_USE_ALLOCA
72d2299c 6750Macro used to control the use of @code{alloca}. If defined to @samp{0},
f9a8293a 6751the parser will not use @code{alloca} but @code{malloc} when trying to
72d2299c 6752grow its internal stacks. Do @emph{not} define @code{YYSTACK_USE_ALLOCA}
f9a8293a 6753to anything else.
18b519c0 6754@end deffn
f9a8293a 6755
6273355b
PE
6756@deffn {Type} YYSTYPE
6757Data type of semantic values; @code{int} by default.
bfa74976 6758@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 6759@end deffn
bfa74976 6760
18b519c0 6761@deffn {Variable} yychar
13863333
AD
6762External integer variable that contains the integer value of the current
6763look-ahead token. (In a pure parser, it is a local variable within
6764@code{yyparse}.) Error-recovery rule actions may examine this variable.
6765@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 6766@end deffn
bfa74976 6767
18b519c0 6768@deffn {Variable} yyclearin
bfa74976
RS
6769Macro used in error-recovery rule actions. It clears the previous
6770look-ahead token. @xref{Error Recovery}.
18b519c0 6771@end deffn
bfa74976 6772
18b519c0 6773@deffn {Variable} yydebug
bfa74976
RS
6774External integer variable set to zero by default. If @code{yydebug}
6775is given a nonzero value, the parser will output information on input
ec3bc396 6776symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 6777@end deffn
bfa74976 6778
18b519c0 6779@deffn {Macro} yyerrok
bfa74976 6780Macro to cause parser to recover immediately to its normal mode
6e649e65 6781after a syntax error. @xref{Error Recovery}.
18b519c0 6782@end deffn
bfa74976 6783
18b519c0 6784@deffn {Function} yyerror
38a92d50
PE
6785User-supplied function to be called by @code{yyparse} on error.
6786@xref{Error Reporting, ,The Error
13863333 6787Reporting Function @code{yyerror}}.
18b519c0 6788@end deffn
bfa74976 6789
18b519c0 6790@deffn {Function} yylex
704a47c4
AD
6791User-supplied lexical analyzer function, called with no arguments to get
6792the next token. @xref{Lexical, ,The Lexical Analyzer Function
6793@code{yylex}}.
18b519c0 6794@end deffn
bfa74976 6795
18b519c0 6796@deffn {Variable} yylval
bfa74976
RS
6797External variable in which @code{yylex} should place the semantic
6798value associated with a token. (In a pure parser, it is a local
6799variable within @code{yyparse}, and its address is passed to
6800@code{yylex}.) @xref{Token Values, ,Semantic Values of Tokens}.
18b519c0 6801@end deffn
bfa74976 6802
18b519c0 6803@deffn {Variable} yylloc
13863333
AD
6804External variable in which @code{yylex} should place the line and column
6805numbers associated with a token. (In a pure parser, it is a local
6806variable within @code{yyparse}, and its address is passed to
bfa74976 6807@code{yylex}.) You can ignore this variable if you don't use the
95923bd6
AD
6808@samp{@@} feature in the grammar actions. @xref{Token Locations,
6809,Textual Locations of Tokens}.
18b519c0 6810@end deffn
bfa74976 6811
18b519c0 6812@deffn {Variable} yynerrs
6e649e65 6813Global variable which Bison increments each time there is a syntax error.
13863333
AD
6814(In a pure parser, it is a local variable within @code{yyparse}.)
6815@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
18b519c0 6816@end deffn
bfa74976 6817
18b519c0 6818@deffn {Function} yyparse
bfa74976
RS
6819The parser function produced by Bison; call this function to start
6820parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6821@end deffn
bfa74976 6822
18b519c0 6823@deffn {Directive} %debug
6deb4447 6824Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 6825@end deffn
6deb4447 6826
91d2c560 6827@ifset defaultprec
22fccf95
PE
6828@deffn {Directive} %default-prec
6829Assign a precedence to rules that lack an explicit @samp{%prec}
6830modifier. @xref{Contextual Precedence, ,Context-Dependent
6831Precedence}.
39a06c25 6832@end deffn
91d2c560 6833@end ifset
39a06c25 6834
18b519c0 6835@deffn {Directive} %defines
6deb4447
AD
6836Bison declaration to create a header file meant for the scanner.
6837@xref{Decl Summary}.
18b519c0 6838@end deffn
6deb4447 6839
18b519c0 6840@deffn {Directive} %destructor
72f889cc
AD
6841Specifying how the parser should reclaim the memory associated to
6842discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 6843@end deffn
72f889cc 6844
18b519c0 6845@deffn {Directive} %dprec
676385e2 6846Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
6847time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
6848@acronym{GLR} Parsers}.
18b519c0 6849@end deffn
676385e2 6850
18b519c0 6851@deffn {Directive} %error-verbose
2a8d363a
AD
6852Bison declaration to request verbose, specific error message strings
6853when @code{yyerror} is called.
18b519c0 6854@end deffn
2a8d363a 6855
18b519c0 6856@deffn {Directive} %file-prefix="@var{prefix}"
72d2299c 6857Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 6858Summary}.
18b519c0 6859@end deffn
d8988b2f 6860
18b519c0 6861@deffn {Directive} %glr-parser
c827f760
PE
6862Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
6863Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 6864@end deffn
676385e2 6865
18b519c0 6866@deffn {Directive} %left
bfa74976
RS
6867Bison declaration to assign left associativity to token(s).
6868@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 6869@end deffn
bfa74976 6870
feeb0eda 6871@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
6872Bison declaration to specifying an additional parameter that
6873@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
6874for Pure Parsers}.
18b519c0 6875@end deffn
2a8d363a 6876
18b519c0 6877@deffn {Directive} %merge
676385e2 6878Bison declaration to assign a merging function to a rule. If there is a
fae437e8 6879reduce/reduce conflict with a rule having the same merging function, the
676385e2 6880function is applied to the two semantic values to get a single result.
c827f760 6881@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 6882@end deffn
676385e2 6883
18b519c0 6884@deffn {Directive} %name-prefix="@var{prefix}"
72d2299c 6885Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 6886@end deffn
d8988b2f 6887
91d2c560 6888@ifset defaultprec
22fccf95
PE
6889@deffn {Directive} %no-default-prec
6890Do not assign a precedence to rules that lack an explicit @samp{%prec}
6891modifier. @xref{Contextual Precedence, ,Context-Dependent
6892Precedence}.
6893@end deffn
91d2c560 6894@end ifset
22fccf95 6895
18b519c0 6896@deffn {Directive} %no-lines
931c7513
RS
6897Bison declaration to avoid generating @code{#line} directives in the
6898parser file. @xref{Decl Summary}.
18b519c0 6899@end deffn
931c7513 6900
18b519c0 6901@deffn {Directive} %nonassoc
14ded682 6902Bison declaration to assign non-associativity to token(s).
bfa74976 6903@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 6904@end deffn
bfa74976 6905
18b519c0 6906@deffn {Directive} %output="@var{filename}"
72d2299c 6907Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 6908Summary}.
18b519c0 6909@end deffn
d8988b2f 6910
feeb0eda 6911@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
6912Bison declaration to specifying an additional parameter that
6913@code{yyparse} should accept. @xref{Parser Function,, The Parser
6914Function @code{yyparse}}.
18b519c0 6915@end deffn
2a8d363a 6916
18b519c0 6917@deffn {Directive} %prec
bfa74976
RS
6918Bison declaration to assign a precedence to a specific rule.
6919@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 6920@end deffn
bfa74976 6921
18b519c0 6922@deffn {Directive} %pure-parser
bfa74976
RS
6923Bison declaration to request a pure (reentrant) parser.
6924@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 6925@end deffn
bfa74976 6926
18b519c0 6927@deffn {Directive} %right
bfa74976
RS
6928Bison declaration to assign right associativity to token(s).
6929@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 6930@end deffn
bfa74976 6931
18b519c0 6932@deffn {Directive} %start
704a47c4
AD
6933Bison declaration to specify the start symbol. @xref{Start Decl, ,The
6934Start-Symbol}.
18b519c0 6935@end deffn
bfa74976 6936
18b519c0 6937@deffn {Directive} %token
bfa74976
RS
6938Bison declaration to declare token(s) without specifying precedence.
6939@xref{Token Decl, ,Token Type Names}.
18b519c0 6940@end deffn
bfa74976 6941
18b519c0 6942@deffn {Directive} %token-table
931c7513
RS
6943Bison declaration to include a token name table in the parser file.
6944@xref{Decl Summary}.
18b519c0 6945@end deffn
931c7513 6946
18b519c0 6947@deffn {Directive} %type
704a47c4
AD
6948Bison declaration to declare nonterminals. @xref{Type Decl,
6949,Nonterminal Symbols}.
18b519c0 6950@end deffn
bfa74976 6951
18b519c0 6952@deffn {Directive} %union
bfa74976
RS
6953Bison declaration to specify several possible data types for semantic
6954values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 6955@end deffn
bfa74976 6956
3ded9a63
AD
6957@sp 1
6958
bfa74976
RS
6959These are the punctuation and delimiters used in Bison input:
6960
18b519c0 6961@deffn {Delimiter} %%
bfa74976 6962Delimiter used to separate the grammar rule section from the
75f5aaea 6963Bison declarations section or the epilogue.
bfa74976 6964@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 6965@end deffn
bfa74976 6966
18b519c0
AD
6967@c Don't insert spaces, or check the DVI output.
6968@deffn {Delimiter} %@{@var{code}%@}
89cab50d 6969All code listed between @samp{%@{} and @samp{%@}} is copied directly to
342b8b6e 6970the output file uninterpreted. Such code forms the prologue of the input
75f5aaea 6971file. @xref{Grammar Outline, ,Outline of a Bison
89cab50d 6972Grammar}.
18b519c0 6973@end deffn
bfa74976 6974
18b519c0 6975@deffn {Construct} /*@dots{}*/
bfa74976 6976Comment delimiters, as in C.
18b519c0 6977@end deffn
bfa74976 6978
18b519c0 6979@deffn {Delimiter} :
89cab50d
AD
6980Separates a rule's result from its components. @xref{Rules, ,Syntax of
6981Grammar Rules}.
18b519c0 6982@end deffn
bfa74976 6983
18b519c0 6984@deffn {Delimiter} ;
bfa74976 6985Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 6986@end deffn
bfa74976 6987
18b519c0 6988@deffn {Delimiter} |
bfa74976
RS
6989Separates alternate rules for the same result nonterminal.
6990@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 6991@end deffn
bfa74976 6992
342b8b6e 6993@node Glossary
bfa74976
RS
6994@appendix Glossary
6995@cindex glossary
6996
6997@table @asis
c827f760
PE
6998@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
6999Formal method of specifying context-free grammars originally proposed
7000by John Backus, and slightly improved by Peter Naur in his 1960-01-02
7001committee document contributing to what became the Algol 60 report.
7002@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
7003
7004@item Context-free grammars
7005Grammars specified as rules that can be applied regardless of context.
7006Thus, if there is a rule which says that an integer can be used as an
7007expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
7008permitted. @xref{Language and Grammar, ,Languages and Context-Free
7009Grammars}.
bfa74976
RS
7010
7011@item Dynamic allocation
7012Allocation of memory that occurs during execution, rather than at
7013compile time or on entry to a function.
7014
7015@item Empty string
7016Analogous to the empty set in set theory, the empty string is a
7017character string of length zero.
7018
7019@item Finite-state stack machine
7020A ``machine'' that has discrete states in which it is said to exist at
7021each instant in time. As input to the machine is processed, the
7022machine moves from state to state as specified by the logic of the
7023machine. In the case of the parser, the input is the language being
7024parsed, and the states correspond to various stages in the grammar
c827f760 7025rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 7026
c827f760 7027@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 7028A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
7029that are not @acronym{LALR}(1). It resolves situations that Bison's
7030usual @acronym{LALR}(1)
676385e2
PH
7031algorithm cannot by effectively splitting off multiple parsers, trying all
7032possible parsers, and discarding those that fail in the light of additional
c827f760
PE
7033right context. @xref{Generalized LR Parsing, ,Generalized
7034@acronym{LR} Parsing}.
676385e2 7035
bfa74976
RS
7036@item Grouping
7037A language construct that is (in general) grammatically divisible;
c827f760 7038for example, `expression' or `declaration' in C@.
bfa74976
RS
7039@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7040
7041@item Infix operator
7042An arithmetic operator that is placed between the operands on which it
7043performs some operation.
7044
7045@item Input stream
7046A continuous flow of data between devices or programs.
7047
7048@item Language construct
7049One of the typical usage schemas of the language. For example, one of
7050the constructs of the C language is the @code{if} statement.
7051@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7052
7053@item Left associativity
7054Operators having left associativity are analyzed from left to right:
7055@samp{a+b+c} first computes @samp{a+b} and then combines with
7056@samp{c}. @xref{Precedence, ,Operator Precedence}.
7057
7058@item Left recursion
89cab50d
AD
7059A rule whose result symbol is also its first component symbol; for
7060example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
7061Rules}.
bfa74976
RS
7062
7063@item Left-to-right parsing
7064Parsing a sentence of a language by analyzing it token by token from
c827f760 7065left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
7066
7067@item Lexical analyzer (scanner)
7068A function that reads an input stream and returns tokens one by one.
7069@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
7070
7071@item Lexical tie-in
7072A flag, set by actions in the grammar rules, which alters the way
7073tokens are parsed. @xref{Lexical Tie-ins}.
7074
931c7513 7075@item Literal string token
14ded682 7076A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 7077
bfa74976 7078@item Look-ahead token
89cab50d
AD
7079A token already read but not yet shifted. @xref{Look-Ahead, ,Look-Ahead
7080Tokens}.
bfa74976 7081
c827f760 7082@item @acronym{LALR}(1)
bfa74976 7083The class of context-free grammars that Bison (like most other parser
c827f760
PE
7084generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
7085Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 7086
c827f760 7087@item @acronym{LR}(1)
bfa74976
RS
7088The class of context-free grammars in which at most one token of
7089look-ahead is needed to disambiguate the parsing of any piece of input.
7090
7091@item Nonterminal symbol
7092A grammar symbol standing for a grammatical construct that can
7093be expressed through rules in terms of smaller constructs; in other
7094words, a construct that is not a token. @xref{Symbols}.
7095
bfa74976
RS
7096@item Parser
7097A function that recognizes valid sentences of a language by analyzing
7098the syntax structure of a set of tokens passed to it from a lexical
7099analyzer.
7100
7101@item Postfix operator
7102An arithmetic operator that is placed after the operands upon which it
7103performs some operation.
7104
7105@item Reduction
7106Replacing a string of nonterminals and/or terminals with a single
89cab50d 7107nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 7108Parser Algorithm}.
bfa74976
RS
7109
7110@item Reentrant
7111A reentrant subprogram is a subprogram which can be in invoked any
7112number of times in parallel, without interference between the various
7113invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
7114
7115@item Reverse polish notation
7116A language in which all operators are postfix operators.
7117
7118@item Right recursion
89cab50d
AD
7119A rule whose result symbol is also its last component symbol; for
7120example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
7121Rules}.
bfa74976
RS
7122
7123@item Semantics
7124In computer languages, the semantics are specified by the actions
7125taken for each instance of the language, i.e., the meaning of
7126each statement. @xref{Semantics, ,Defining Language Semantics}.
7127
7128@item Shift
7129A parser is said to shift when it makes the choice of analyzing
7130further input from the stream rather than reducing immediately some
c827f760 7131already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
7132
7133@item Single-character literal
7134A single character that is recognized and interpreted as is.
7135@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
7136
7137@item Start symbol
7138The nonterminal symbol that stands for a complete valid utterance in
7139the language being parsed. The start symbol is usually listed as the
13863333 7140first nonterminal symbol in a language specification.
bfa74976
RS
7141@xref{Start Decl, ,The Start-Symbol}.
7142
7143@item Symbol table
7144A data structure where symbol names and associated data are stored
7145during parsing to allow for recognition and use of existing
7146information in repeated uses of a symbol. @xref{Multi-function Calc}.
7147
6e649e65
PE
7148@item Syntax error
7149An error encountered during parsing of an input stream due to invalid
7150syntax. @xref{Error Recovery}.
7151
bfa74976
RS
7152@item Token
7153A basic, grammatically indivisible unit of a language. The symbol
7154that describes a token in the grammar is a terminal symbol.
7155The input of the Bison parser is a stream of tokens which comes from
7156the lexical analyzer. @xref{Symbols}.
7157
7158@item Terminal symbol
89cab50d
AD
7159A grammar symbol that has no rules in the grammar and therefore is
7160grammatically indivisible. The piece of text it represents is a token.
7161@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
7162@end table
7163
342b8b6e 7164@node Copying This Manual
f2b5126e 7165@appendix Copying This Manual
f9a8293a 7166
f2b5126e
PB
7167@menu
7168* GNU Free Documentation License:: License for copying this manual.
7169@end menu
f9a8293a 7170
f2b5126e
PB
7171@include fdl.texi
7172
342b8b6e 7173@node Index
bfa74976
RS
7174@unnumbered Index
7175
7176@printindex cp
7177
bfa74976 7178@bye
a06ea4aa
AD
7179
7180@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
7181@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
7182@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
7183@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
7184@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
7185@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
7186@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
7187@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
7188@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
7189@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
7190@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
7191@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
7192@c LocalWords: longjmp fprintf stderr preg yylloc YYLTYPE cos ln
7193@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
7194@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
7195@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
7196@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
7197@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless typefull yynerrs
7198@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
7199@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
7200@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
7201@c LocalWords: YYEMPTY YYRECOVERING yyclearin GE def UMINUS maybeword
7202@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
7203@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm VCG notype
7204@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
7205@c LocalWords: YYPRINTF infile ypp yxx outfile itemx vcg tex leaderfill
7206@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
7207@c LocalWords: yyrestart nbar yytext fst snd osplit ntwo strdup AST
7208@c LocalWords: YYSTACK DVI fdl printindex