]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
Use the new code_props interface for destructors and printers.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
c827f760
PE
33This manual is for @acronym{GNU} Bison (version @value{VERSION},
34@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 35
a06ea4aa 36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
32c29292 371999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
c827f760 41under the terms of the @acronym{GNU} Free Documentation License,
592fde95 42Version 1.2 or any later version published by the Free Software
c827f760
PE
43Foundation; with no Invariant Sections, with the Front-Cover texts
44being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
45(a) below. A copy of the license is included in the section entitled
46``@acronym{GNU} Free Documentation License.''
47
48(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
49and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
50Copies published by the Free Software Foundation raise funds for
51@acronym{GNU} development.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
c827f760 57* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
c827f760 75@acronym{ISBN} 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
c827f760 91* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
92 how you can copy and share Bison
93
94Tutorial sections:
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
97
98Reference sections:
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
103* Context Dependency:: What to do if your language syntax is too
104 messy for Bison to handle straightforwardly.
ec3bc396 105* Debugging:: Understanding or debugging Bison parsers.
bfa74976 106* Invocation:: How to run Bison (to produce the parser source file).
12545799
AD
107* C++ Language Interface:: Creating C++ parser objects.
108* FAQ:: Frequently Asked Questions
bfa74976
RS
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
f2b5126e 111* Copying This Manual:: License for copying this manual.
bfa74976
RS
112* Index:: Cross-references to the text.
113
93dd49ab
PE
114@detailmenu
115 --- The Detailed Node Listing ---
bfa74976
RS
116
117The Concepts of Bison
118
119* Language and Grammar:: Languages and context-free grammars,
120 as mathematical ideas.
121* Grammar in Bison:: How we represent grammars for Bison's sake.
122* Semantic Values:: Each token or syntactic grouping can have
123 a semantic value (the value of an integer,
124 the name of an identifier, etc.).
125* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 126* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 127* Locations Overview:: Tracking Locations.
bfa74976
RS
128* Bison Parser:: What are Bison's input and output,
129 how is the output used?
130* Stages:: Stages in writing and running Bison grammars.
131* Grammar Layout:: Overall structure of a Bison grammar file.
132
fa7e68c3
PE
133Writing @acronym{GLR} Parsers
134
32c29292
JD
135* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
136* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
137* GLR Semantic Actions:: Deferred semantic actions have special concerns.
138* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 139
bfa74976
RS
140Examples
141
142* RPN Calc:: Reverse polish notation calculator;
143 a first example with no operator precedence.
144* Infix Calc:: Infix (algebraic) notation calculator.
145 Operator precedence is introduced.
146* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 147* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
148* Multi-function Calc:: Calculator with memory and trig functions.
149 It uses multiple data-types for semantic values.
bfa74976
RS
150* Exercises:: Ideas for improving the multi-function calculator.
151
152Reverse Polish Notation Calculator
153
75f5aaea 154* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
155* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
156* Lexer: Rpcalc Lexer. The lexical analyzer.
157* Main: Rpcalc Main. The controlling function.
158* Error: Rpcalc Error. The error reporting function.
159* Gen: Rpcalc Gen. Running Bison on the grammar file.
160* Comp: Rpcalc Compile. Run the C compiler on the output code.
161
162Grammar Rules for @code{rpcalc}
163
13863333
AD
164* Rpcalc Input::
165* Rpcalc Line::
166* Rpcalc Expr::
bfa74976 167
342b8b6e
AD
168Location Tracking Calculator: @code{ltcalc}
169
170* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
171* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
172* Lexer: Ltcalc Lexer. The lexical analyzer.
173
bfa74976
RS
174Multi-Function Calculator: @code{mfcalc}
175
176* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
177* Rules: Mfcalc Rules. Grammar rules for the calculator.
178* Symtab: Mfcalc Symtab. Symbol table management subroutines.
179
180Bison Grammar Files
181
182* Grammar Outline:: Overall layout of the grammar file.
183* Symbols:: Terminal and nonterminal symbols.
184* Rules:: How to write grammar rules.
185* Recursion:: Writing recursive rules.
186* Semantics:: Semantic values and actions.
93dd49ab 187* Locations:: Locations and actions.
bfa74976
RS
188* Declarations:: All kinds of Bison declarations are described here.
189* Multiple Parsers:: Putting more than one Bison parser in one program.
190
191Outline of a Bison Grammar
192
93dd49ab 193* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 194* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
bfa74976
RS
195* Bison Declarations:: Syntax and usage of the Bison declarations section.
196* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 197* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
198
199Defining Language Semantics
200
201* Value Type:: Specifying one data type for all semantic values.
202* Multiple Types:: Specifying several alternative data types.
203* Actions:: An action is the semantic definition of a grammar rule.
204* Action Types:: Specifying data types for actions to operate on.
205* Mid-Rule Actions:: Most actions go at the end of a rule.
206 This says when, why and how to use the exceptional
207 action in the middle of a rule.
208
93dd49ab
PE
209Tracking Locations
210
211* Location Type:: Specifying a data type for locations.
212* Actions and Locations:: Using locations in actions.
213* Location Default Action:: Defining a general way to compute locations.
214
bfa74976
RS
215Bison Declarations
216
b50d2359 217* Require Decl:: Requiring a Bison version.
bfa74976
RS
218* Token Decl:: Declaring terminal symbols.
219* Precedence Decl:: Declaring terminals with precedence and associativity.
220* Union Decl:: Declaring the set of all semantic value types.
221* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 222* Initial Action Decl:: Code run before parsing starts.
72f889cc 223* Destructor Decl:: Declaring how symbols are freed.
d6328241 224* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
225* Start Decl:: Specifying the start symbol.
226* Pure Decl:: Requesting a reentrant parser.
227* Decl Summary:: Table of all Bison declarations.
228
229Parser C-Language Interface
230
231* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 232* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
233 which reads tokens.
234* Error Reporting:: You must supply a function @code{yyerror}.
235* Action Features:: Special features for use in actions.
f7ab6a50
PE
236* Internationalization:: How to let the parser speak in the user's
237 native language.
bfa74976
RS
238
239The Lexical Analyzer Function @code{yylex}
240
241* Calling Convention:: How @code{yyparse} calls @code{yylex}.
242* Token Values:: How @code{yylex} must return the semantic value
243 of the token it has read.
95923bd6 244* Token Locations:: How @code{yylex} must return the text location
bfa74976 245 (line number, etc.) of the token, if the
93dd49ab 246 actions want that.
bfa74976
RS
247* Pure Calling:: How the calling convention differs
248 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
249
13863333 250The Bison Parser Algorithm
bfa74976 251
742e4900 252* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
253* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
254* Precedence:: Operator precedence works by resolving conflicts.
255* Contextual Precedence:: When an operator's precedence depends on context.
256* Parser States:: The parser is a finite-state-machine with stack.
257* Reduce/Reduce:: When two rules are applicable in the same situation.
258* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 259* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 260* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
261
262Operator Precedence
263
264* Why Precedence:: An example showing why precedence is needed.
265* Using Precedence:: How to specify precedence in Bison grammars.
266* Precedence Examples:: How these features are used in the previous example.
267* How Precedence:: How they work.
268
269Handling Context Dependencies
270
271* Semantic Tokens:: Token parsing can depend on the semantic context.
272* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
273* Tie-in Recovery:: Lexical tie-ins have implications for how
274 error recovery rules must be written.
275
93dd49ab 276Debugging Your Parser
ec3bc396
AD
277
278* Understanding:: Understanding the structure of your parser.
279* Tracing:: Tracing the execution of your parser.
280
bfa74976
RS
281Invoking Bison
282
13863333 283* Bison Options:: All the options described in detail,
c827f760 284 in alphabetical order by short options.
bfa74976 285* Option Cross Key:: Alphabetical list of long options.
93dd49ab 286* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 287
12545799
AD
288C++ Language Interface
289
290* C++ Parsers:: The interface to generate C++ parser classes
291* A Complete C++ Example:: Demonstrating their use
292
293C++ Parsers
294
295* C++ Bison Interface:: Asking for C++ parser generation
296* C++ Semantic Values:: %union vs. C++
297* C++ Location Values:: The position and location classes
298* C++ Parser Interface:: Instantiating and running the parser
299* C++ Scanner Interface:: Exchanges between yylex and parse
300
301A Complete C++ Example
302
303* Calc++ --- C++ Calculator:: The specifications
304* Calc++ Parsing Driver:: An active parsing context
305* Calc++ Parser:: A parser class
306* Calc++ Scanner:: A pure C++ Flex scanner
307* Calc++ Top Level:: Conducting the band
308
d1a1114f
AD
309Frequently Asked Questions
310
1a059451 311* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 312* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 313* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 314* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 315* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
316* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
317* I can't build Bison:: Troubleshooting
318* Where can I find help?:: Troubleshouting
319* Bug Reports:: Troublereporting
320* Other Languages:: Parsers in Java and others
321* Beta Testing:: Experimenting development versions
322* Mailing Lists:: Meeting other Bison users
d1a1114f 323
f2b5126e
PB
324Copying This Manual
325
326* GNU Free Documentation License:: License for copying this manual.
327
342b8b6e 328@end detailmenu
bfa74976
RS
329@end menu
330
342b8b6e 331@node Introduction
bfa74976
RS
332@unnumbered Introduction
333@cindex introduction
334
6077da58
PE
335@dfn{Bison} is a general-purpose parser generator that converts an
336annotated context-free grammar into an @acronym{LALR}(1) or
337@acronym{GLR} parser for that grammar. Once you are proficient with
1e137b71 338Bison, you can use it to develop a wide range of language parsers, from those
bfa74976
RS
339used in simple desk calculators to complex programming languages.
340
341Bison is upward compatible with Yacc: all properly-written Yacc grammars
342ought to work with Bison with no change. Anyone familiar with Yacc
343should be able to use Bison with little trouble. You need to be fluent in
1e137b71 344C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
345
346We begin with tutorial chapters that explain the basic concepts of using
347Bison and show three explained examples, each building on the last. If you
348don't know Bison or Yacc, start by reading these chapters. Reference
349chapters follow which describe specific aspects of Bison in detail.
350
931c7513
RS
351Bison was written primarily by Robert Corbett; Richard Stallman made it
352Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 353multi-character string literals and other features.
931c7513 354
df1af54c 355This edition corresponds to version @value{VERSION} of Bison.
bfa74976 356
342b8b6e 357@node Conditions
bfa74976
RS
358@unnumbered Conditions for Using Bison
359
193d7c70
PE
360The distribution terms for Bison-generated parsers permit using the
361parsers in nonfree programs. Before Bison version 2.2, these extra
362permissions applied only when Bison was generating @acronym{LALR}(1)
363parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 364parsers could be used only in programs that were free software.
a31239f1 365
c827f760
PE
366The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
367compiler, have never
9ecbd125 368had such a requirement. They could always be used for nonfree
a31239f1
RS
369software. The reason Bison was different was not due to a special
370policy decision; it resulted from applying the usual General Public
371License to all of the Bison source code.
372
373The output of the Bison utility---the Bison parser file---contains a
374verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
375parser's implementation. (The actions from your grammar are inserted
376into this implementation at one point, but most of the rest of the
377implementation is not changed.) When we applied the @acronym{GPL}
378terms to the skeleton code for the parser's implementation,
a31239f1
RS
379the effect was to restrict the use of Bison output to free software.
380
381We didn't change the terms because of sympathy for people who want to
382make software proprietary. @strong{Software should be free.} But we
383concluded that limiting Bison's use to free software was doing little to
384encourage people to make other software free. So we decided to make the
385practical conditions for using Bison match the practical conditions for
c827f760 386using the other @acronym{GNU} tools.
bfa74976 387
193d7c70
PE
388This exception applies when Bison is generating code for a parser.
389You can tell whether the exception applies to a Bison output file by
390inspecting the file for text beginning with ``As a special
391exception@dots{}''. The text spells out the exact terms of the
392exception.
262aa8dd 393
c67a198d 394@include gpl.texi
bfa74976 395
342b8b6e 396@node Concepts
bfa74976
RS
397@chapter The Concepts of Bison
398
399This chapter introduces many of the basic concepts without which the
400details of Bison will not make sense. If you do not already know how to
401use Bison or Yacc, we suggest you start by reading this chapter carefully.
402
403@menu
404* Language and Grammar:: Languages and context-free grammars,
405 as mathematical ideas.
406* Grammar in Bison:: How we represent grammars for Bison's sake.
407* Semantic Values:: Each token or syntactic grouping can have
408 a semantic value (the value of an integer,
409 the name of an identifier, etc.).
410* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 411* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 412* Locations Overview:: Tracking Locations.
bfa74976
RS
413* Bison Parser:: What are Bison's input and output,
414 how is the output used?
415* Stages:: Stages in writing and running Bison grammars.
416* Grammar Layout:: Overall structure of a Bison grammar file.
417@end menu
418
342b8b6e 419@node Language and Grammar
bfa74976
RS
420@section Languages and Context-Free Grammars
421
bfa74976
RS
422@cindex context-free grammar
423@cindex grammar, context-free
424In order for Bison to parse a language, it must be described by a
425@dfn{context-free grammar}. This means that you specify one or more
426@dfn{syntactic groupings} and give rules for constructing them from their
427parts. For example, in the C language, one kind of grouping is called an
428`expression'. One rule for making an expression might be, ``An expression
429can be made of a minus sign and another expression''. Another would be,
430``An expression can be an integer''. As you can see, rules are often
431recursive, but there must be at least one rule which leads out of the
432recursion.
433
c827f760 434@cindex @acronym{BNF}
bfa74976
RS
435@cindex Backus-Naur form
436The most common formal system for presenting such rules for humans to read
c827f760
PE
437is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
438order to specify the language Algol 60. Any grammar expressed in
439@acronym{BNF} is a context-free grammar. The input to Bison is
440essentially machine-readable @acronym{BNF}.
bfa74976 441
c827f760
PE
442@cindex @acronym{LALR}(1) grammars
443@cindex @acronym{LR}(1) grammars
676385e2
PH
444There are various important subclasses of context-free grammar. Although it
445can handle almost all context-free grammars, Bison is optimized for what
c827f760 446are called @acronym{LALR}(1) grammars.
676385e2 447In brief, in these grammars, it must be possible to
bfa74976 448tell how to parse any portion of an input string with just a single
742e4900 449token of lookahead. Strictly speaking, that is a description of an
c827f760
PE
450@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
451restrictions that are
bfa74976 452hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
453@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
454@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
455more information on this.
bfa74976 456
c827f760
PE
457@cindex @acronym{GLR} parsing
458@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 459@cindex ambiguous grammars
9d9b8b70 460@cindex nondeterministic parsing
9501dc6e
AD
461
462Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
463roughly that the next grammar rule to apply at any point in the input is
464uniquely determined by the preceding input and a fixed, finite portion
742e4900 465(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 466grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 467apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 468grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 469lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
470With the proper declarations, Bison is also able to parse these more
471general context-free grammars, using a technique known as @acronym{GLR}
472parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
473are able to handle any context-free grammar for which the number of
474possible parses of any given string is finite.
676385e2 475
bfa74976
RS
476@cindex symbols (abstract)
477@cindex token
478@cindex syntactic grouping
479@cindex grouping, syntactic
9501dc6e
AD
480In the formal grammatical rules for a language, each kind of syntactic
481unit or grouping is named by a @dfn{symbol}. Those which are built by
482grouping smaller constructs according to grammatical rules are called
bfa74976
RS
483@dfn{nonterminal symbols}; those which can't be subdivided are called
484@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
485corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 486corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
487
488We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
489nonterminal, mean. The tokens of C are identifiers, constants (numeric
490and string), and the various keywords, arithmetic operators and
491punctuation marks. So the terminal symbols of a grammar for C include
492`identifier', `number', `string', plus one symbol for each keyword,
493operator or punctuation mark: `if', `return', `const', `static', `int',
494`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
495(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
496lexicography, not grammar.)
497
498Here is a simple C function subdivided into tokens:
499
9edcd895
AD
500@ifinfo
501@example
502int /* @r{keyword `int'} */
14d4662b 503square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
504 @r{identifier, close-paren} */
505@{ /* @r{open-brace} */
aa08666d
AD
506 return x * x; /* @r{keyword `return', identifier, asterisk,}
507 @r{identifier, semicolon} */
9edcd895
AD
508@} /* @r{close-brace} */
509@end example
510@end ifinfo
511@ifnotinfo
bfa74976
RS
512@example
513int /* @r{keyword `int'} */
14d4662b 514square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 515@{ /* @r{open-brace} */
9edcd895 516 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
517@} /* @r{close-brace} */
518@end example
9edcd895 519@end ifnotinfo
bfa74976
RS
520
521The syntactic groupings of C include the expression, the statement, the
522declaration, and the function definition. These are represented in the
523grammar of C by nonterminal symbols `expression', `statement',
524`declaration' and `function definition'. The full grammar uses dozens of
525additional language constructs, each with its own nonterminal symbol, in
526order to express the meanings of these four. The example above is a
527function definition; it contains one declaration, and one statement. In
528the statement, each @samp{x} is an expression and so is @samp{x * x}.
529
530Each nonterminal symbol must have grammatical rules showing how it is made
531out of simpler constructs. For example, one kind of C statement is the
532@code{return} statement; this would be described with a grammar rule which
533reads informally as follows:
534
535@quotation
536A `statement' can be made of a `return' keyword, an `expression' and a
537`semicolon'.
538@end quotation
539
540@noindent
541There would be many other rules for `statement', one for each kind of
542statement in C.
543
544@cindex start symbol
545One nonterminal symbol must be distinguished as the special one which
546defines a complete utterance in the language. It is called the @dfn{start
547symbol}. In a compiler, this means a complete input program. In the C
548language, the nonterminal symbol `sequence of definitions and declarations'
549plays this role.
550
551For example, @samp{1 + 2} is a valid C expression---a valid part of a C
552program---but it is not valid as an @emph{entire} C program. In the
553context-free grammar of C, this follows from the fact that `expression' is
554not the start symbol.
555
556The Bison parser reads a sequence of tokens as its input, and groups the
557tokens using the grammar rules. If the input is valid, the end result is
558that the entire token sequence reduces to a single grouping whose symbol is
559the grammar's start symbol. If we use a grammar for C, the entire input
560must be a `sequence of definitions and declarations'. If not, the parser
561reports a syntax error.
562
342b8b6e 563@node Grammar in Bison
bfa74976
RS
564@section From Formal Rules to Bison Input
565@cindex Bison grammar
566@cindex grammar, Bison
567@cindex formal grammar
568
569A formal grammar is a mathematical construct. To define the language
570for Bison, you must write a file expressing the grammar in Bison syntax:
571a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
572
573A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 574as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
575in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
576
577The Bison representation for a terminal symbol is also called a @dfn{token
578type}. Token types as well can be represented as C-like identifiers. By
579convention, these identifiers should be upper case to distinguish them from
580nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
581@code{RETURN}. A terminal symbol that stands for a particular keyword in
582the language should be named after that keyword converted to upper case.
583The terminal symbol @code{error} is reserved for error recovery.
931c7513 584@xref{Symbols}.
bfa74976
RS
585
586A terminal symbol can also be represented as a character literal, just like
587a C character constant. You should do this whenever a token is just a
588single character (parenthesis, plus-sign, etc.): use that same character in
589a literal as the terminal symbol for that token.
590
931c7513
RS
591A third way to represent a terminal symbol is with a C string constant
592containing several characters. @xref{Symbols}, for more information.
593
bfa74976
RS
594The grammar rules also have an expression in Bison syntax. For example,
595here is the Bison rule for a C @code{return} statement. The semicolon in
596quotes is a literal character token, representing part of the C syntax for
597the statement; the naked semicolon, and the colon, are Bison punctuation
598used in every rule.
599
600@example
601stmt: RETURN expr ';'
602 ;
603@end example
604
605@noindent
606@xref{Rules, ,Syntax of Grammar Rules}.
607
342b8b6e 608@node Semantic Values
bfa74976
RS
609@section Semantic Values
610@cindex semantic value
611@cindex value, semantic
612
613A formal grammar selects tokens only by their classifications: for example,
614if a rule mentions the terminal symbol `integer constant', it means that
615@emph{any} integer constant is grammatically valid in that position. The
616precise value of the constant is irrelevant to how to parse the input: if
617@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 618grammatical.
bfa74976
RS
619
620But the precise value is very important for what the input means once it is
621parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6223989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
623has both a token type and a @dfn{semantic value}. @xref{Semantics,
624,Defining Language Semantics},
bfa74976
RS
625for details.
626
627The token type is a terminal symbol defined in the grammar, such as
628@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
629you need to know to decide where the token may validly appear and how to
630group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 631except their types.
bfa74976
RS
632
633The semantic value has all the rest of the information about the
634meaning of the token, such as the value of an integer, or the name of an
635identifier. (A token such as @code{','} which is just punctuation doesn't
636need to have any semantic value.)
637
638For example, an input token might be classified as token type
639@code{INTEGER} and have the semantic value 4. Another input token might
640have the same token type @code{INTEGER} but value 3989. When a grammar
641rule says that @code{INTEGER} is allowed, either of these tokens is
642acceptable because each is an @code{INTEGER}. When the parser accepts the
643token, it keeps track of the token's semantic value.
644
645Each grouping can also have a semantic value as well as its nonterminal
646symbol. For example, in a calculator, an expression typically has a
647semantic value that is a number. In a compiler for a programming
648language, an expression typically has a semantic value that is a tree
649structure describing the meaning of the expression.
650
342b8b6e 651@node Semantic Actions
bfa74976
RS
652@section Semantic Actions
653@cindex semantic actions
654@cindex actions, semantic
655
656In order to be useful, a program must do more than parse input; it must
657also produce some output based on the input. In a Bison grammar, a grammar
658rule can have an @dfn{action} made up of C statements. Each time the
659parser recognizes a match for that rule, the action is executed.
660@xref{Actions}.
13863333 661
bfa74976
RS
662Most of the time, the purpose of an action is to compute the semantic value
663of the whole construct from the semantic values of its parts. For example,
664suppose we have a rule which says an expression can be the sum of two
665expressions. When the parser recognizes such a sum, each of the
666subexpressions has a semantic value which describes how it was built up.
667The action for this rule should create a similar sort of value for the
668newly recognized larger expression.
669
670For example, here is a rule that says an expression can be the sum of
671two subexpressions:
672
673@example
674expr: expr '+' expr @{ $$ = $1 + $3; @}
675 ;
676@end example
677
678@noindent
679The action says how to produce the semantic value of the sum expression
680from the values of the two subexpressions.
681
676385e2 682@node GLR Parsers
c827f760
PE
683@section Writing @acronym{GLR} Parsers
684@cindex @acronym{GLR} parsing
685@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
686@findex %glr-parser
687@cindex conflicts
688@cindex shift/reduce conflicts
fa7e68c3 689@cindex reduce/reduce conflicts
676385e2 690
fa7e68c3 691In some grammars, Bison's standard
9501dc6e
AD
692@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
693certain grammar rule at a given point. That is, it may not be able to
694decide (on the basis of the input read so far) which of two possible
695reductions (applications of a grammar rule) applies, or whether to apply
696a reduction or read more of the input and apply a reduction later in the
697input. These are known respectively as @dfn{reduce/reduce} conflicts
698(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
699(@pxref{Shift/Reduce}).
700
701To use a grammar that is not easily modified to be @acronym{LALR}(1), a
702more general parsing algorithm is sometimes necessary. If you include
676385e2 703@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 704(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
705(@acronym{GLR}) parser. These parsers handle Bison grammars that
706contain no unresolved conflicts (i.e., after applying precedence
707declarations) identically to @acronym{LALR}(1) parsers. However, when
708faced with unresolved shift/reduce and reduce/reduce conflicts,
709@acronym{GLR} parsers use the simple expedient of doing both,
710effectively cloning the parser to follow both possibilities. Each of
711the resulting parsers can again split, so that at any given time, there
712can be any number of possible parses being explored. The parsers
676385e2
PH
713proceed in lockstep; that is, all of them consume (shift) a given input
714symbol before any of them proceed to the next. Each of the cloned
715parsers eventually meets one of two possible fates: either it runs into
716a parsing error, in which case it simply vanishes, or it merges with
717another parser, because the two of them have reduced the input to an
718identical set of symbols.
719
720During the time that there are multiple parsers, semantic actions are
721recorded, but not performed. When a parser disappears, its recorded
722semantic actions disappear as well, and are never performed. When a
723reduction makes two parsers identical, causing them to merge, Bison
724records both sets of semantic actions. Whenever the last two parsers
725merge, reverting to the single-parser case, Bison resolves all the
726outstanding actions either by precedences given to the grammar rules
727involved, or by performing both actions, and then calling a designated
728user-defined function on the resulting values to produce an arbitrary
729merged result.
730
fa7e68c3 731@menu
32c29292
JD
732* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
733* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
734* GLR Semantic Actions:: Deferred semantic actions have special concerns.
735* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
736@end menu
737
738@node Simple GLR Parsers
739@subsection Using @acronym{GLR} on Unambiguous Grammars
740@cindex @acronym{GLR} parsing, unambiguous grammars
741@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
742@findex %glr-parser
743@findex %expect-rr
744@cindex conflicts
745@cindex reduce/reduce conflicts
746@cindex shift/reduce conflicts
747
748In the simplest cases, you can use the @acronym{GLR} algorithm
749to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
742e4900 750Such grammars typically require more than one symbol of lookahead,
fa7e68c3
PE
751or (in rare cases) fall into the category of grammars in which the
752@acronym{LALR}(1) algorithm throws away too much information (they are in
753@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
754
755Consider a problem that
756arises in the declaration of enumerated and subrange types in the
757programming language Pascal. Here are some examples:
758
759@example
760type subrange = lo .. hi;
761type enum = (a, b, c);
762@end example
763
764@noindent
765The original language standard allows only numeric
766literals and constant identifiers for the subrange bounds (@samp{lo}
767and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
76810206) and many other
769Pascal implementations allow arbitrary expressions there. This gives
770rise to the following situation, containing a superfluous pair of
771parentheses:
772
773@example
774type subrange = (a) .. b;
775@end example
776
777@noindent
778Compare this to the following declaration of an enumerated
779type with only one value:
780
781@example
782type enum = (a);
783@end example
784
785@noindent
786(These declarations are contrived, but they are syntactically
787valid, and more-complicated cases can come up in practical programs.)
788
789These two declarations look identical until the @samp{..} token.
742e4900 790With normal @acronym{LALR}(1) one-token lookahead it is not
fa7e68c3
PE
791possible to decide between the two forms when the identifier
792@samp{a} is parsed. It is, however, desirable
793for a parser to decide this, since in the latter case
794@samp{a} must become a new identifier to represent the enumeration
795value, while in the former case @samp{a} must be evaluated with its
796current meaning, which may be a constant or even a function call.
797
798You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
799to be resolved later, but this typically requires substantial
800contortions in both semantic actions and large parts of the
801grammar, where the parentheses are nested in the recursive rules for
802expressions.
803
804You might think of using the lexer to distinguish between the two
805forms by returning different tokens for currently defined and
806undefined identifiers. But if these declarations occur in a local
807scope, and @samp{a} is defined in an outer scope, then both forms
808are possible---either locally redefining @samp{a}, or using the
809value of @samp{a} from the outer scope. So this approach cannot
810work.
811
e757bb10 812A simple solution to this problem is to declare the parser to
fa7e68c3
PE
813use the @acronym{GLR} algorithm.
814When the @acronym{GLR} parser reaches the critical state, it
815merely splits into two branches and pursues both syntax rules
816simultaneously. Sooner or later, one of them runs into a parsing
817error. If there is a @samp{..} token before the next
818@samp{;}, the rule for enumerated types fails since it cannot
819accept @samp{..} anywhere; otherwise, the subrange type rule
820fails since it requires a @samp{..} token. So one of the branches
821fails silently, and the other one continues normally, performing
822all the intermediate actions that were postponed during the split.
823
824If the input is syntactically incorrect, both branches fail and the parser
825reports a syntax error as usual.
826
827The effect of all this is that the parser seems to ``guess'' the
828correct branch to take, or in other words, it seems to use more
742e4900 829lookahead than the underlying @acronym{LALR}(1) algorithm actually allows
fa7e68c3
PE
830for. In this example, @acronym{LALR}(2) would suffice, but also some cases
831that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
832
833In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
834and the current Bison parser even takes exponential time and space
835for some grammars. In practice, this rarely happens, and for many
836grammars it is possible to prove that it cannot happen.
837The present example contains only one conflict between two
838rules, and the type-declaration context containing the conflict
839cannot be nested. So the number of
840branches that can exist at any time is limited by the constant 2,
841and the parsing time is still linear.
842
843Here is a Bison grammar corresponding to the example above. It
844parses a vastly simplified form of Pascal type declarations.
845
846@example
847%token TYPE DOTDOT ID
848
849@group
850%left '+' '-'
851%left '*' '/'
852@end group
853
854%%
855
856@group
857type_decl : TYPE ID '=' type ';'
858 ;
859@end group
860
861@group
862type : '(' id_list ')'
863 | expr DOTDOT expr
864 ;
865@end group
866
867@group
868id_list : ID
869 | id_list ',' ID
870 ;
871@end group
872
873@group
874expr : '(' expr ')'
875 | expr '+' expr
876 | expr '-' expr
877 | expr '*' expr
878 | expr '/' expr
879 | ID
880 ;
881@end group
882@end example
883
884When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
885about one reduce/reduce conflict. In the conflicting situation the
886parser chooses one of the alternatives, arbitrarily the one
887declared first. Therefore the following correct input is not
888recognized:
889
890@example
891type t = (a) .. b;
892@end example
893
894The parser can be turned into a @acronym{GLR} parser, while also telling Bison
895to be silent about the one known reduce/reduce conflict, by
e757bb10 896adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
897@samp{%%}):
898
899@example
900%glr-parser
901%expect-rr 1
902@end example
903
904@noindent
905No change in the grammar itself is required. Now the
906parser recognizes all valid declarations, according to the
907limited syntax above, transparently. In fact, the user does not even
908notice when the parser splits.
909
f8e1c9e5
AD
910So here we have a case where we can use the benefits of @acronym{GLR},
911almost without disadvantages. Even in simple cases like this, however,
912there are at least two potential problems to beware. First, always
913analyze the conflicts reported by Bison to make sure that @acronym{GLR}
914splitting is only done where it is intended. A @acronym{GLR} parser
915splitting inadvertently may cause problems less obvious than an
916@acronym{LALR} parser statically choosing the wrong alternative in a
917conflict. Second, consider interactions with the lexer (@pxref{Semantic
918Tokens}) with great care. Since a split parser consumes tokens without
919performing any actions during the split, the lexer cannot obtain
920information via parser actions. Some cases of lexer interactions can be
921eliminated by using @acronym{GLR} to shift the complications from the
922lexer to the parser. You must check the remaining cases for
923correctness.
924
925In our example, it would be safe for the lexer to return tokens based on
926their current meanings in some symbol table, because no new symbols are
927defined in the middle of a type declaration. Though it is possible for
928a parser to define the enumeration constants as they are parsed, before
929the type declaration is completed, it actually makes no difference since
930they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
931
932@node Merging GLR Parses
933@subsection Using @acronym{GLR} to Resolve Ambiguities
934@cindex @acronym{GLR} parsing, ambiguous grammars
935@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
936@findex %dprec
937@findex %merge
938@cindex conflicts
939@cindex reduce/reduce conflicts
940
2a8d363a 941Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
942
943@example
944%@{
38a92d50
PE
945 #include <stdio.h>
946 #define YYSTYPE char const *
947 int yylex (void);
948 void yyerror (char const *);
676385e2
PH
949%@}
950
951%token TYPENAME ID
952
953%right '='
954%left '+'
955
956%glr-parser
957
958%%
959
fae437e8 960prog :
676385e2
PH
961 | prog stmt @{ printf ("\n"); @}
962 ;
963
964stmt : expr ';' %dprec 1
965 | decl %dprec 2
966 ;
967
2a8d363a 968expr : ID @{ printf ("%s ", $$); @}
fae437e8 969 | TYPENAME '(' expr ')'
2a8d363a
AD
970 @{ printf ("%s <cast> ", $1); @}
971 | expr '+' expr @{ printf ("+ "); @}
972 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
973 ;
974
fae437e8 975decl : TYPENAME declarator ';'
2a8d363a 976 @{ printf ("%s <declare> ", $1); @}
676385e2 977 | TYPENAME declarator '=' expr ';'
2a8d363a 978 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
979 ;
980
2a8d363a 981declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
982 | '(' declarator ')'
983 ;
984@end example
985
986@noindent
987This models a problematic part of the C++ grammar---the ambiguity between
988certain declarations and statements. For example,
989
990@example
991T (x) = y+z;
992@end example
993
994@noindent
995parses as either an @code{expr} or a @code{stmt}
c827f760
PE
996(assuming that @samp{T} is recognized as a @code{TYPENAME} and
997@samp{x} as an @code{ID}).
676385e2 998Bison detects this as a reduce/reduce conflict between the rules
fae437e8 999@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1000time it encounters @code{x} in the example above. Since this is a
1001@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1002each choice of resolving the reduce/reduce conflict.
1003Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1004however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1005ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1006the other reduces @code{stmt : decl}, after which both parsers are in an
1007identical state: they've seen @samp{prog stmt} and have the same unprocessed
1008input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1009
1010At this point, the @acronym{GLR} parser requires a specification in the
1011grammar of how to choose between the competing parses.
1012In the example above, the two @code{%dprec}
e757bb10 1013declarations specify that Bison is to give precedence
fa7e68c3 1014to the parse that interprets the example as a
676385e2
PH
1015@code{decl}, which implies that @code{x} is a declarator.
1016The parser therefore prints
1017
1018@example
fae437e8 1019"x" y z + T <init-declare>
676385e2
PH
1020@end example
1021
fa7e68c3
PE
1022The @code{%dprec} declarations only come into play when more than one
1023parse survives. Consider a different input string for this parser:
676385e2
PH
1024
1025@example
1026T (x) + y;
1027@end example
1028
1029@noindent
e757bb10 1030This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1031construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1032Here, there is no ambiguity (this cannot be parsed as a declaration).
1033However, at the time the Bison parser encounters @code{x}, it does not
1034have enough information to resolve the reduce/reduce conflict (again,
1035between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1036case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1037into two, one assuming that @code{x} is an @code{expr}, and the other
1038assuming @code{x} is a @code{declarator}. The second of these parsers
1039then vanishes when it sees @code{+}, and the parser prints
1040
1041@example
fae437e8 1042x T <cast> y +
676385e2
PH
1043@end example
1044
1045Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1046the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1047actions of the two possible parsers, rather than choosing one over the
1048other. To do so, you could change the declaration of @code{stmt} as
1049follows:
1050
1051@example
1052stmt : expr ';' %merge <stmtMerge>
1053 | decl %merge <stmtMerge>
1054 ;
1055@end example
1056
1057@noindent
676385e2
PH
1058and define the @code{stmtMerge} function as:
1059
1060@example
38a92d50
PE
1061static YYSTYPE
1062stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1063@{
1064 printf ("<OR> ");
1065 return "";
1066@}
1067@end example
1068
1069@noindent
1070with an accompanying forward declaration
1071in the C declarations at the beginning of the file:
1072
1073@example
1074%@{
38a92d50 1075 #define YYSTYPE char const *
676385e2
PH
1076 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1077%@}
1078@end example
1079
1080@noindent
fa7e68c3
PE
1081With these declarations, the resulting parser parses the first example
1082as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1083
1084@example
fae437e8 1085"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1086@end example
1087
fa7e68c3 1088Bison requires that all of the
e757bb10 1089productions that participate in any particular merge have identical
fa7e68c3
PE
1090@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1091and the parser will report an error during any parse that results in
1092the offending merge.
9501dc6e 1093
32c29292
JD
1094@node GLR Semantic Actions
1095@subsection GLR Semantic Actions
1096
1097@cindex deferred semantic actions
1098By definition, a deferred semantic action is not performed at the same time as
1099the associated reduction.
1100This raises caveats for several Bison features you might use in a semantic
1101action in a @acronym{GLR} parser.
1102
1103@vindex yychar
1104@cindex @acronym{GLR} parsers and @code{yychar}
1105@vindex yylval
1106@cindex @acronym{GLR} parsers and @code{yylval}
1107@vindex yylloc
1108@cindex @acronym{GLR} parsers and @code{yylloc}
1109In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1110the lookahead token present at the time of the associated reduction.
32c29292
JD
1111After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1112you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1113lookahead token's semantic value and location, if any.
32c29292
JD
1114In a nondeferred semantic action, you can also modify any of these variables to
1115influence syntax analysis.
742e4900 1116@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1117
1118@findex yyclearin
1119@cindex @acronym{GLR} parsers and @code{yyclearin}
1120In a deferred semantic action, it's too late to influence syntax analysis.
1121In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1122shallow copies of the values they had at the time of the associated reduction.
1123For this reason alone, modifying them is dangerous.
1124Moreover, the result of modifying them is undefined and subject to change with
1125future versions of Bison.
1126For example, if a semantic action might be deferred, you should never write it
1127to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1128memory referenced by @code{yylval}.
1129
1130@findex YYERROR
1131@cindex @acronym{GLR} parsers and @code{YYERROR}
1132Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1133(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1134initiate error recovery.
1135During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
1136the same as its effect in an @acronym{LALR}(1) parser.
1137In a deferred semantic action, its effect is undefined.
1138@c The effect is probably a syntax error at the split point.
1139
8710fc41
JD
1140Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1141describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1142
fa7e68c3
PE
1143@node Compiler Requirements
1144@subsection Considerations when Compiling @acronym{GLR} Parsers
1145@cindex @code{inline}
9501dc6e 1146@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1147
38a92d50
PE
1148The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1149later. In addition, they use the @code{inline} keyword, which is not
1150C89, but is C99 and is a common extension in pre-C99 compilers. It is
1151up to the user of these parsers to handle
9501dc6e
AD
1152portability issues. For instance, if using Autoconf and the Autoconf
1153macro @code{AC_C_INLINE}, a mere
1154
1155@example
1156%@{
38a92d50 1157 #include <config.h>
9501dc6e
AD
1158%@}
1159@end example
1160
1161@noindent
1162will suffice. Otherwise, we suggest
1163
1164@example
1165%@{
38a92d50
PE
1166 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1167 #define inline
1168 #endif
9501dc6e
AD
1169%@}
1170@end example
676385e2 1171
342b8b6e 1172@node Locations Overview
847bf1f5
AD
1173@section Locations
1174@cindex location
95923bd6
AD
1175@cindex textual location
1176@cindex location, textual
847bf1f5
AD
1177
1178Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1179and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1180the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1181Bison provides a mechanism for handling these locations.
1182
72d2299c 1183Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1184associated location, but the type of locations is the same for all tokens and
72d2299c 1185groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1186structure for storing locations (@pxref{Locations}, for more details).
1187
1188Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1189set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1190is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1191@code{@@3}.
1192
1193When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1194of its left hand side (@pxref{Actions}). In the same way, another default
1195action is used for locations. However, the action for locations is general
847bf1f5 1196enough for most cases, meaning there is usually no need to describe for each
72d2299c 1197rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1198grouping, the default behavior of the output parser is to take the beginning
1199of the first symbol, and the end of the last symbol.
1200
342b8b6e 1201@node Bison Parser
bfa74976
RS
1202@section Bison Output: the Parser File
1203@cindex Bison parser
1204@cindex Bison utility
1205@cindex lexical analyzer, purpose
1206@cindex parser
1207
1208When you run Bison, you give it a Bison grammar file as input. The output
1209is a C source file that parses the language described by the grammar.
1210This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1211utility and the Bison parser are two distinct programs: the Bison utility
1212is a program whose output is the Bison parser that becomes part of your
1213program.
1214
1215The job of the Bison parser is to group tokens into groupings according to
1216the grammar rules---for example, to build identifiers and operators into
1217expressions. As it does this, it runs the actions for the grammar rules it
1218uses.
1219
704a47c4
AD
1220The tokens come from a function called the @dfn{lexical analyzer} that
1221you must supply in some fashion (such as by writing it in C). The Bison
1222parser calls the lexical analyzer each time it wants a new token. It
1223doesn't know what is ``inside'' the tokens (though their semantic values
1224may reflect this). Typically the lexical analyzer makes the tokens by
1225parsing characters of text, but Bison does not depend on this.
1226@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1227
1228The Bison parser file is C code which defines a function named
1229@code{yyparse} which implements that grammar. This function does not make
1230a complete C program: you must supply some additional functions. One is
1231the lexical analyzer. Another is an error-reporting function which the
1232parser calls to report an error. In addition, a complete C program must
1233start with a function called @code{main}; you have to provide this, and
1234arrange for it to call @code{yyparse} or the parser will never run.
1235@xref{Interface, ,Parser C-Language Interface}.
1236
f7ab6a50 1237Aside from the token type names and the symbols in the actions you
7093d0f5 1238write, all symbols defined in the Bison parser file itself
bfa74976
RS
1239begin with @samp{yy} or @samp{YY}. This includes interface functions
1240such as the lexical analyzer function @code{yylex}, the error reporting
1241function @code{yyerror} and the parser function @code{yyparse} itself.
1242This also includes numerous identifiers used for internal purposes.
1243Therefore, you should avoid using C identifiers starting with @samp{yy}
1244or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1245this manual. Also, you should avoid using the C identifiers
1246@samp{malloc} and @samp{free} for anything other than their usual
1247meanings.
bfa74976 1248
7093d0f5
AD
1249In some cases the Bison parser file includes system headers, and in
1250those cases your code should respect the identifiers reserved by those
55289366 1251headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1252@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1253declare memory allocators and related types. @code{<libintl.h>} is
1254included if message translation is in use
1255(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1256be included if you define @code{YYDEBUG} to a nonzero value
1257(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1258
342b8b6e 1259@node Stages
bfa74976
RS
1260@section Stages in Using Bison
1261@cindex stages in using Bison
1262@cindex using Bison
1263
1264The actual language-design process using Bison, from grammar specification
1265to a working compiler or interpreter, has these parts:
1266
1267@enumerate
1268@item
1269Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1270(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1271in the language, describe the action that is to be taken when an
1272instance of that rule is recognized. The action is described by a
1273sequence of C statements.
bfa74976
RS
1274
1275@item
704a47c4
AD
1276Write a lexical analyzer to process input and pass tokens to the parser.
1277The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1278Lexical Analyzer Function @code{yylex}}). It could also be produced
1279using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1280
1281@item
1282Write a controlling function that calls the Bison-produced parser.
1283
1284@item
1285Write error-reporting routines.
1286@end enumerate
1287
1288To turn this source code as written into a runnable program, you
1289must follow these steps:
1290
1291@enumerate
1292@item
1293Run Bison on the grammar to produce the parser.
1294
1295@item
1296Compile the code output by Bison, as well as any other source files.
1297
1298@item
1299Link the object files to produce the finished product.
1300@end enumerate
1301
342b8b6e 1302@node Grammar Layout
bfa74976
RS
1303@section The Overall Layout of a Bison Grammar
1304@cindex grammar file
1305@cindex file format
1306@cindex format of grammar file
1307@cindex layout of Bison grammar
1308
1309The input file for the Bison utility is a @dfn{Bison grammar file}. The
1310general form of a Bison grammar file is as follows:
1311
1312@example
1313%@{
08e49d20 1314@var{Prologue}
bfa74976
RS
1315%@}
1316
1317@var{Bison declarations}
1318
1319%%
1320@var{Grammar rules}
1321%%
08e49d20 1322@var{Epilogue}
bfa74976
RS
1323@end example
1324
1325@noindent
1326The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1327in every Bison grammar file to separate the sections.
1328
72d2299c 1329The prologue may define types and variables used in the actions. You can
342b8b6e 1330also use preprocessor commands to define macros used there, and use
bfa74976 1331@code{#include} to include header files that do any of these things.
38a92d50
PE
1332You need to declare the lexical analyzer @code{yylex} and the error
1333printer @code{yyerror} here, along with any other global identifiers
1334used by the actions in the grammar rules.
bfa74976
RS
1335
1336The Bison declarations declare the names of the terminal and nonterminal
1337symbols, and may also describe operator precedence and the data types of
1338semantic values of various symbols.
1339
1340The grammar rules define how to construct each nonterminal symbol from its
1341parts.
1342
38a92d50
PE
1343The epilogue can contain any code you want to use. Often the
1344definitions of functions declared in the prologue go here. In a
1345simple program, all the rest of the program can go here.
bfa74976 1346
342b8b6e 1347@node Examples
bfa74976
RS
1348@chapter Examples
1349@cindex simple examples
1350@cindex examples, simple
1351
1352Now we show and explain three sample programs written using Bison: a
1353reverse polish notation calculator, an algebraic (infix) notation
1354calculator, and a multi-function calculator. All three have been tested
1355under BSD Unix 4.3; each produces a usable, though limited, interactive
1356desk-top calculator.
1357
1358These examples are simple, but Bison grammars for real programming
aa08666d
AD
1359languages are written the same way. You can copy these examples into a
1360source file to try them.
bfa74976
RS
1361
1362@menu
1363* RPN Calc:: Reverse polish notation calculator;
1364 a first example with no operator precedence.
1365* Infix Calc:: Infix (algebraic) notation calculator.
1366 Operator precedence is introduced.
1367* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1368* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1369* Multi-function Calc:: Calculator with memory and trig functions.
1370 It uses multiple data-types for semantic values.
1371* Exercises:: Ideas for improving the multi-function calculator.
1372@end menu
1373
342b8b6e 1374@node RPN Calc
bfa74976
RS
1375@section Reverse Polish Notation Calculator
1376@cindex reverse polish notation
1377@cindex polish notation calculator
1378@cindex @code{rpcalc}
1379@cindex calculator, simple
1380
1381The first example is that of a simple double-precision @dfn{reverse polish
1382notation} calculator (a calculator using postfix operators). This example
1383provides a good starting point, since operator precedence is not an issue.
1384The second example will illustrate how operator precedence is handled.
1385
1386The source code for this calculator is named @file{rpcalc.y}. The
1387@samp{.y} extension is a convention used for Bison input files.
1388
1389@menu
75f5aaea 1390* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1391* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1392* Lexer: Rpcalc Lexer. The lexical analyzer.
1393* Main: Rpcalc Main. The controlling function.
1394* Error: Rpcalc Error. The error reporting function.
1395* Gen: Rpcalc Gen. Running Bison on the grammar file.
1396* Comp: Rpcalc Compile. Run the C compiler on the output code.
1397@end menu
1398
342b8b6e 1399@node Rpcalc Decls
bfa74976
RS
1400@subsection Declarations for @code{rpcalc}
1401
1402Here are the C and Bison declarations for the reverse polish notation
1403calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1404
1405@example
72d2299c 1406/* Reverse polish notation calculator. */
bfa74976
RS
1407
1408%@{
38a92d50
PE
1409 #define YYSTYPE double
1410 #include <math.h>
1411 int yylex (void);
1412 void yyerror (char const *);
bfa74976
RS
1413%@}
1414
1415%token NUM
1416
72d2299c 1417%% /* Grammar rules and actions follow. */
bfa74976
RS
1418@end example
1419
75f5aaea 1420The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1421preprocessor directives and two forward declarations.
bfa74976
RS
1422
1423The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1424specifying the C data type for semantic values of both tokens and
1425groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1426Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1427don't define it, @code{int} is the default. Because we specify
1428@code{double}, each token and each expression has an associated value,
1429which is a floating point number.
bfa74976
RS
1430
1431The @code{#include} directive is used to declare the exponentiation
1432function @code{pow}.
1433
38a92d50
PE
1434The forward declarations for @code{yylex} and @code{yyerror} are
1435needed because the C language requires that functions be declared
1436before they are used. These functions will be defined in the
1437epilogue, but the parser calls them so they must be declared in the
1438prologue.
1439
704a47c4
AD
1440The second section, Bison declarations, provides information to Bison
1441about the token types (@pxref{Bison Declarations, ,The Bison
1442Declarations Section}). Each terminal symbol that is not a
1443single-character literal must be declared here. (Single-character
bfa74976
RS
1444literals normally don't need to be declared.) In this example, all the
1445arithmetic operators are designated by single-character literals, so the
1446only terminal symbol that needs to be declared is @code{NUM}, the token
1447type for numeric constants.
1448
342b8b6e 1449@node Rpcalc Rules
bfa74976
RS
1450@subsection Grammar Rules for @code{rpcalc}
1451
1452Here are the grammar rules for the reverse polish notation calculator.
1453
1454@example
1455input: /* empty */
1456 | input line
1457;
1458
1459line: '\n'
18b519c0 1460 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1461;
1462
18b519c0
AD
1463exp: NUM @{ $$ = $1; @}
1464 | exp exp '+' @{ $$ = $1 + $2; @}
1465 | exp exp '-' @{ $$ = $1 - $2; @}
1466 | exp exp '*' @{ $$ = $1 * $2; @}
1467 | exp exp '/' @{ $$ = $1 / $2; @}
1468 /* Exponentiation */
1469 | exp exp '^' @{ $$ = pow ($1, $2); @}
1470 /* Unary minus */
1471 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1472;
1473%%
1474@end example
1475
1476The groupings of the rpcalc ``language'' defined here are the expression
1477(given the name @code{exp}), the line of input (@code{line}), and the
1478complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1479symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1480which is read as ``or''. The following sections explain what these rules
1481mean.
1482
1483The semantics of the language is determined by the actions taken when a
1484grouping is recognized. The actions are the C code that appears inside
1485braces. @xref{Actions}.
1486
1487You must specify these actions in C, but Bison provides the means for
1488passing semantic values between the rules. In each action, the
1489pseudo-variable @code{$$} stands for the semantic value for the grouping
1490that the rule is going to construct. Assigning a value to @code{$$} is the
1491main job of most actions. The semantic values of the components of the
1492rule are referred to as @code{$1}, @code{$2}, and so on.
1493
1494@menu
13863333
AD
1495* Rpcalc Input::
1496* Rpcalc Line::
1497* Rpcalc Expr::
bfa74976
RS
1498@end menu
1499
342b8b6e 1500@node Rpcalc Input
bfa74976
RS
1501@subsubsection Explanation of @code{input}
1502
1503Consider the definition of @code{input}:
1504
1505@example
1506input: /* empty */
1507 | input line
1508;
1509@end example
1510
1511This definition reads as follows: ``A complete input is either an empty
1512string, or a complete input followed by an input line''. Notice that
1513``complete input'' is defined in terms of itself. This definition is said
1514to be @dfn{left recursive} since @code{input} appears always as the
1515leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1516
1517The first alternative is empty because there are no symbols between the
1518colon and the first @samp{|}; this means that @code{input} can match an
1519empty string of input (no tokens). We write the rules this way because it
1520is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1521It's conventional to put an empty alternative first and write the comment
1522@samp{/* empty */} in it.
1523
1524The second alternate rule (@code{input line}) handles all nontrivial input.
1525It means, ``After reading any number of lines, read one more line if
1526possible.'' The left recursion makes this rule into a loop. Since the
1527first alternative matches empty input, the loop can be executed zero or
1528more times.
1529
1530The parser function @code{yyparse} continues to process input until a
1531grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1532input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1533
342b8b6e 1534@node Rpcalc Line
bfa74976
RS
1535@subsubsection Explanation of @code{line}
1536
1537Now consider the definition of @code{line}:
1538
1539@example
1540line: '\n'
1541 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1542;
1543@end example
1544
1545The first alternative is a token which is a newline character; this means
1546that rpcalc accepts a blank line (and ignores it, since there is no
1547action). The second alternative is an expression followed by a newline.
1548This is the alternative that makes rpcalc useful. The semantic value of
1549the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1550question is the first symbol in the alternative. The action prints this
1551value, which is the result of the computation the user asked for.
1552
1553This action is unusual because it does not assign a value to @code{$$}. As
1554a consequence, the semantic value associated with the @code{line} is
1555uninitialized (its value will be unpredictable). This would be a bug if
1556that value were ever used, but we don't use it: once rpcalc has printed the
1557value of the user's input line, that value is no longer needed.
1558
342b8b6e 1559@node Rpcalc Expr
bfa74976
RS
1560@subsubsection Explanation of @code{expr}
1561
1562The @code{exp} grouping has several rules, one for each kind of expression.
1563The first rule handles the simplest expressions: those that are just numbers.
1564The second handles an addition-expression, which looks like two expressions
1565followed by a plus-sign. The third handles subtraction, and so on.
1566
1567@example
1568exp: NUM
1569 | exp exp '+' @{ $$ = $1 + $2; @}
1570 | exp exp '-' @{ $$ = $1 - $2; @}
1571 @dots{}
1572 ;
1573@end example
1574
1575We have used @samp{|} to join all the rules for @code{exp}, but we could
1576equally well have written them separately:
1577
1578@example
1579exp: NUM ;
1580exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1581exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1582 @dots{}
1583@end example
1584
1585Most of the rules have actions that compute the value of the expression in
1586terms of the value of its parts. For example, in the rule for addition,
1587@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1588the second one. The third component, @code{'+'}, has no meaningful
1589associated semantic value, but if it had one you could refer to it as
1590@code{$3}. When @code{yyparse} recognizes a sum expression using this
1591rule, the sum of the two subexpressions' values is produced as the value of
1592the entire expression. @xref{Actions}.
1593
1594You don't have to give an action for every rule. When a rule has no
1595action, Bison by default copies the value of @code{$1} into @code{$$}.
1596This is what happens in the first rule (the one that uses @code{NUM}).
1597
1598The formatting shown here is the recommended convention, but Bison does
72d2299c 1599not require it. You can add or change white space as much as you wish.
bfa74976
RS
1600For example, this:
1601
1602@example
99a9344e 1603exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1604@end example
1605
1606@noindent
1607means the same thing as this:
1608
1609@example
1610exp: NUM
1611 | exp exp '+' @{ $$ = $1 + $2; @}
1612 | @dots{}
99a9344e 1613;
bfa74976
RS
1614@end example
1615
1616@noindent
1617The latter, however, is much more readable.
1618
342b8b6e 1619@node Rpcalc Lexer
bfa74976
RS
1620@subsection The @code{rpcalc} Lexical Analyzer
1621@cindex writing a lexical analyzer
1622@cindex lexical analyzer, writing
1623
704a47c4
AD
1624The lexical analyzer's job is low-level parsing: converting characters
1625or sequences of characters into tokens. The Bison parser gets its
1626tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1627Analyzer Function @code{yylex}}.
bfa74976 1628
c827f760
PE
1629Only a simple lexical analyzer is needed for the @acronym{RPN}
1630calculator. This
bfa74976
RS
1631lexical analyzer skips blanks and tabs, then reads in numbers as
1632@code{double} and returns them as @code{NUM} tokens. Any other character
1633that isn't part of a number is a separate token. Note that the token-code
1634for such a single-character token is the character itself.
1635
1636The return value of the lexical analyzer function is a numeric code which
1637represents a token type. The same text used in Bison rules to stand for
1638this token type is also a C expression for the numeric code for the type.
1639This works in two ways. If the token type is a character literal, then its
e966383b 1640numeric code is that of the character; you can use the same
bfa74976
RS
1641character literal in the lexical analyzer to express the number. If the
1642token type is an identifier, that identifier is defined by Bison as a C
1643macro whose definition is the appropriate number. In this example,
1644therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1645
1964ad8c
AD
1646The semantic value of the token (if it has one) is stored into the
1647global variable @code{yylval}, which is where the Bison parser will look
1648for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1649defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1650,Declarations for @code{rpcalc}}.)
bfa74976 1651
72d2299c
PE
1652A token type code of zero is returned if the end-of-input is encountered.
1653(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1654
1655Here is the code for the lexical analyzer:
1656
1657@example
1658@group
72d2299c 1659/* The lexical analyzer returns a double floating point
e966383b 1660 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1661 of the character read if not a number. It skips all blanks
1662 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1663
1664#include <ctype.h>
1665@end group
1666
1667@group
13863333
AD
1668int
1669yylex (void)
bfa74976
RS
1670@{
1671 int c;
1672
72d2299c 1673 /* Skip white space. */
13863333 1674 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1675 ;
1676@end group
1677@group
72d2299c 1678 /* Process numbers. */
13863333 1679 if (c == '.' || isdigit (c))
bfa74976
RS
1680 @{
1681 ungetc (c, stdin);
1682 scanf ("%lf", &yylval);
1683 return NUM;
1684 @}
1685@end group
1686@group
72d2299c 1687 /* Return end-of-input. */
13863333 1688 if (c == EOF)
bfa74976 1689 return 0;
72d2299c 1690 /* Return a single char. */
13863333 1691 return c;
bfa74976
RS
1692@}
1693@end group
1694@end example
1695
342b8b6e 1696@node Rpcalc Main
bfa74976
RS
1697@subsection The Controlling Function
1698@cindex controlling function
1699@cindex main function in simple example
1700
1701In keeping with the spirit of this example, the controlling function is
1702kept to the bare minimum. The only requirement is that it call
1703@code{yyparse} to start the process of parsing.
1704
1705@example
1706@group
13863333
AD
1707int
1708main (void)
bfa74976 1709@{
13863333 1710 return yyparse ();
bfa74976
RS
1711@}
1712@end group
1713@end example
1714
342b8b6e 1715@node Rpcalc Error
bfa74976
RS
1716@subsection The Error Reporting Routine
1717@cindex error reporting routine
1718
1719When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1720function @code{yyerror} to print an error message (usually but not
6e649e65 1721always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1722@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1723here is the definition we will use:
bfa74976
RS
1724
1725@example
1726@group
1727#include <stdio.h>
1728
38a92d50 1729/* Called by yyparse on error. */
13863333 1730void
38a92d50 1731yyerror (char const *s)
bfa74976 1732@{
4e03e201 1733 fprintf (stderr, "%s\n", s);
bfa74976
RS
1734@}
1735@end group
1736@end example
1737
1738After @code{yyerror} returns, the Bison parser may recover from the error
1739and continue parsing if the grammar contains a suitable error rule
1740(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1741have not written any error rules in this example, so any invalid input will
1742cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1743real calculator, but it is adequate for the first example.
bfa74976 1744
342b8b6e 1745@node Rpcalc Gen
bfa74976
RS
1746@subsection Running Bison to Make the Parser
1747@cindex running Bison (introduction)
1748
ceed8467
AD
1749Before running Bison to produce a parser, we need to decide how to
1750arrange all the source code in one or more source files. For such a
1751simple example, the easiest thing is to put everything in one file. The
1752definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1753end, in the epilogue of the file
75f5aaea 1754(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1755
1756For a large project, you would probably have several source files, and use
1757@code{make} to arrange to recompile them.
1758
1759With all the source in a single file, you use the following command to
1760convert it into a parser file:
1761
1762@example
fa4d969f 1763bison @var{file}.y
bfa74976
RS
1764@end example
1765
1766@noindent
1767In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1768@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1769removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1770Bison contains the source code for @code{yyparse}. The additional
1771functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1772are copied verbatim to the output.
1773
342b8b6e 1774@node Rpcalc Compile
bfa74976
RS
1775@subsection Compiling the Parser File
1776@cindex compiling the parser
1777
1778Here is how to compile and run the parser file:
1779
1780@example
1781@group
1782# @r{List files in current directory.}
9edcd895 1783$ @kbd{ls}
bfa74976
RS
1784rpcalc.tab.c rpcalc.y
1785@end group
1786
1787@group
1788# @r{Compile the Bison parser.}
1789# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1790$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1791@end group
1792
1793@group
1794# @r{List files again.}
9edcd895 1795$ @kbd{ls}
bfa74976
RS
1796rpcalc rpcalc.tab.c rpcalc.y
1797@end group
1798@end example
1799
1800The file @file{rpcalc} now contains the executable code. Here is an
1801example session using @code{rpcalc}.
1802
1803@example
9edcd895
AD
1804$ @kbd{rpcalc}
1805@kbd{4 9 +}
bfa74976 180613
9edcd895 1807@kbd{3 7 + 3 4 5 *+-}
bfa74976 1808-13
9edcd895 1809@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 181013
9edcd895 1811@kbd{5 6 / 4 n +}
bfa74976 1812-3.166666667
9edcd895 1813@kbd{3 4 ^} @r{Exponentiation}
bfa74976 181481
9edcd895
AD
1815@kbd{^D} @r{End-of-file indicator}
1816$
bfa74976
RS
1817@end example
1818
342b8b6e 1819@node Infix Calc
bfa74976
RS
1820@section Infix Notation Calculator: @code{calc}
1821@cindex infix notation calculator
1822@cindex @code{calc}
1823@cindex calculator, infix notation
1824
1825We now modify rpcalc to handle infix operators instead of postfix. Infix
1826notation involves the concept of operator precedence and the need for
1827parentheses nested to arbitrary depth. Here is the Bison code for
1828@file{calc.y}, an infix desk-top calculator.
1829
1830@example
38a92d50 1831/* Infix notation calculator. */
bfa74976
RS
1832
1833%@{
38a92d50
PE
1834 #define YYSTYPE double
1835 #include <math.h>
1836 #include <stdio.h>
1837 int yylex (void);
1838 void yyerror (char const *);
bfa74976
RS
1839%@}
1840
38a92d50 1841/* Bison declarations. */
bfa74976
RS
1842%token NUM
1843%left '-' '+'
1844%left '*' '/'
1845%left NEG /* negation--unary minus */
38a92d50 1846%right '^' /* exponentiation */
bfa74976 1847
38a92d50
PE
1848%% /* The grammar follows. */
1849input: /* empty */
bfa74976
RS
1850 | input line
1851;
1852
1853line: '\n'
1854 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1855;
1856
1857exp: NUM @{ $$ = $1; @}
1858 | exp '+' exp @{ $$ = $1 + $3; @}
1859 | exp '-' exp @{ $$ = $1 - $3; @}
1860 | exp '*' exp @{ $$ = $1 * $3; @}
1861 | exp '/' exp @{ $$ = $1 / $3; @}
1862 | '-' exp %prec NEG @{ $$ = -$2; @}
1863 | exp '^' exp @{ $$ = pow ($1, $3); @}
1864 | '(' exp ')' @{ $$ = $2; @}
1865;
1866%%
1867@end example
1868
1869@noindent
ceed8467
AD
1870The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1871same as before.
bfa74976
RS
1872
1873There are two important new features shown in this code.
1874
1875In the second section (Bison declarations), @code{%left} declares token
1876types and says they are left-associative operators. The declarations
1877@code{%left} and @code{%right} (right associativity) take the place of
1878@code{%token} which is used to declare a token type name without
1879associativity. (These tokens are single-character literals, which
1880ordinarily don't need to be declared. We declare them here to specify
1881the associativity.)
1882
1883Operator precedence is determined by the line ordering of the
1884declarations; the higher the line number of the declaration (lower on
1885the page or screen), the higher the precedence. Hence, exponentiation
1886has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1887by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1888Precedence}.
bfa74976 1889
704a47c4
AD
1890The other important new feature is the @code{%prec} in the grammar
1891section for the unary minus operator. The @code{%prec} simply instructs
1892Bison that the rule @samp{| '-' exp} has the same precedence as
1893@code{NEG}---in this case the next-to-highest. @xref{Contextual
1894Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1895
1896Here is a sample run of @file{calc.y}:
1897
1898@need 500
1899@example
9edcd895
AD
1900$ @kbd{calc}
1901@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19026.880952381
9edcd895 1903@kbd{-56 + 2}
bfa74976 1904-54
9edcd895 1905@kbd{3 ^ 2}
bfa74976
RS
19069
1907@end example
1908
342b8b6e 1909@node Simple Error Recovery
bfa74976
RS
1910@section Simple Error Recovery
1911@cindex error recovery, simple
1912
1913Up to this point, this manual has not addressed the issue of @dfn{error
1914recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1915error. All we have handled is error reporting with @code{yyerror}.
1916Recall that by default @code{yyparse} returns after calling
1917@code{yyerror}. This means that an erroneous input line causes the
1918calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1919
1920The Bison language itself includes the reserved word @code{error}, which
1921may be included in the grammar rules. In the example below it has
1922been added to one of the alternatives for @code{line}:
1923
1924@example
1925@group
1926line: '\n'
1927 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1928 | error '\n' @{ yyerrok; @}
1929;
1930@end group
1931@end example
1932
ceed8467 1933This addition to the grammar allows for simple error recovery in the
6e649e65 1934event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1935read, the error will be recognized by the third rule for @code{line},
1936and parsing will continue. (The @code{yyerror} function is still called
1937upon to print its message as well.) The action executes the statement
1938@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1939that error recovery is complete (@pxref{Error Recovery}). Note the
1940difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1941misprint.
bfa74976
RS
1942
1943This form of error recovery deals with syntax errors. There are other
1944kinds of errors; for example, division by zero, which raises an exception
1945signal that is normally fatal. A real calculator program must handle this
1946signal and use @code{longjmp} to return to @code{main} and resume parsing
1947input lines; it would also have to discard the rest of the current line of
1948input. We won't discuss this issue further because it is not specific to
1949Bison programs.
1950
342b8b6e
AD
1951@node Location Tracking Calc
1952@section Location Tracking Calculator: @code{ltcalc}
1953@cindex location tracking calculator
1954@cindex @code{ltcalc}
1955@cindex calculator, location tracking
1956
9edcd895
AD
1957This example extends the infix notation calculator with location
1958tracking. This feature will be used to improve the error messages. For
1959the sake of clarity, this example is a simple integer calculator, since
1960most of the work needed to use locations will be done in the lexical
72d2299c 1961analyzer.
342b8b6e
AD
1962
1963@menu
1964* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1965* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1966* Lexer: Ltcalc Lexer. The lexical analyzer.
1967@end menu
1968
1969@node Ltcalc Decls
1970@subsection Declarations for @code{ltcalc}
1971
9edcd895
AD
1972The C and Bison declarations for the location tracking calculator are
1973the same as the declarations for the infix notation calculator.
342b8b6e
AD
1974
1975@example
1976/* Location tracking calculator. */
1977
1978%@{
38a92d50
PE
1979 #define YYSTYPE int
1980 #include <math.h>
1981 int yylex (void);
1982 void yyerror (char const *);
342b8b6e
AD
1983%@}
1984
1985/* Bison declarations. */
1986%token NUM
1987
1988%left '-' '+'
1989%left '*' '/'
1990%left NEG
1991%right '^'
1992
38a92d50 1993%% /* The grammar follows. */
342b8b6e
AD
1994@end example
1995
9edcd895
AD
1996@noindent
1997Note there are no declarations specific to locations. Defining a data
1998type for storing locations is not needed: we will use the type provided
1999by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2000four member structure with the following integer fields:
2001@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2002@code{last_column}. By conventions, and in accordance with the GNU
2003Coding Standards and common practice, the line and column count both
2004start at 1.
342b8b6e
AD
2005
2006@node Ltcalc Rules
2007@subsection Grammar Rules for @code{ltcalc}
2008
9edcd895
AD
2009Whether handling locations or not has no effect on the syntax of your
2010language. Therefore, grammar rules for this example will be very close
2011to those of the previous example: we will only modify them to benefit
2012from the new information.
342b8b6e 2013
9edcd895
AD
2014Here, we will use locations to report divisions by zero, and locate the
2015wrong expressions or subexpressions.
342b8b6e
AD
2016
2017@example
2018@group
2019input : /* empty */
2020 | input line
2021;
2022@end group
2023
2024@group
2025line : '\n'
2026 | exp '\n' @{ printf ("%d\n", $1); @}
2027;
2028@end group
2029
2030@group
2031exp : NUM @{ $$ = $1; @}
2032 | exp '+' exp @{ $$ = $1 + $3; @}
2033 | exp '-' exp @{ $$ = $1 - $3; @}
2034 | exp '*' exp @{ $$ = $1 * $3; @}
2035@end group
342b8b6e 2036@group
9edcd895 2037 | exp '/' exp
342b8b6e
AD
2038 @{
2039 if ($3)
2040 $$ = $1 / $3;
2041 else
2042 @{
2043 $$ = 1;
9edcd895
AD
2044 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2045 @@3.first_line, @@3.first_column,
2046 @@3.last_line, @@3.last_column);
342b8b6e
AD
2047 @}
2048 @}
2049@end group
2050@group
178e123e 2051 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2052 | exp '^' exp @{ $$ = pow ($1, $3); @}
2053 | '(' exp ')' @{ $$ = $2; @}
2054@end group
2055@end example
2056
2057This code shows how to reach locations inside of semantic actions, by
2058using the pseudo-variables @code{@@@var{n}} for rule components, and the
2059pseudo-variable @code{@@$} for groupings.
2060
9edcd895
AD
2061We don't need to assign a value to @code{@@$}: the output parser does it
2062automatically. By default, before executing the C code of each action,
2063@code{@@$} is set to range from the beginning of @code{@@1} to the end
2064of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2065can be redefined (@pxref{Location Default Action, , Default Action for
2066Locations}), and for very specific rules, @code{@@$} can be computed by
2067hand.
342b8b6e
AD
2068
2069@node Ltcalc Lexer
2070@subsection The @code{ltcalc} Lexical Analyzer.
2071
9edcd895 2072Until now, we relied on Bison's defaults to enable location
72d2299c 2073tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2074able to feed the parser with the token locations, as it already does for
2075semantic values.
342b8b6e 2076
9edcd895
AD
2077To this end, we must take into account every single character of the
2078input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2079
2080@example
2081@group
2082int
2083yylex (void)
2084@{
2085 int c;
18b519c0 2086@end group
342b8b6e 2087
18b519c0 2088@group
72d2299c 2089 /* Skip white space. */
342b8b6e
AD
2090 while ((c = getchar ()) == ' ' || c == '\t')
2091 ++yylloc.last_column;
18b519c0 2092@end group
342b8b6e 2093
18b519c0 2094@group
72d2299c 2095 /* Step. */
342b8b6e
AD
2096 yylloc.first_line = yylloc.last_line;
2097 yylloc.first_column = yylloc.last_column;
2098@end group
2099
2100@group
72d2299c 2101 /* Process numbers. */
342b8b6e
AD
2102 if (isdigit (c))
2103 @{
2104 yylval = c - '0';
2105 ++yylloc.last_column;
2106 while (isdigit (c = getchar ()))
2107 @{
2108 ++yylloc.last_column;
2109 yylval = yylval * 10 + c - '0';
2110 @}
2111 ungetc (c, stdin);
2112 return NUM;
2113 @}
2114@end group
2115
72d2299c 2116 /* Return end-of-input. */
342b8b6e
AD
2117 if (c == EOF)
2118 return 0;
2119
72d2299c 2120 /* Return a single char, and update location. */
342b8b6e
AD
2121 if (c == '\n')
2122 @{
2123 ++yylloc.last_line;
2124 yylloc.last_column = 0;
2125 @}
2126 else
2127 ++yylloc.last_column;
2128 return c;
2129@}
2130@end example
2131
9edcd895
AD
2132Basically, the lexical analyzer performs the same processing as before:
2133it skips blanks and tabs, and reads numbers or single-character tokens.
2134In addition, it updates @code{yylloc}, the global variable (of type
2135@code{YYLTYPE}) containing the token's location.
342b8b6e 2136
9edcd895 2137Now, each time this function returns a token, the parser has its number
72d2299c 2138as well as its semantic value, and its location in the text. The last
9edcd895
AD
2139needed change is to initialize @code{yylloc}, for example in the
2140controlling function:
342b8b6e
AD
2141
2142@example
9edcd895 2143@group
342b8b6e
AD
2144int
2145main (void)
2146@{
2147 yylloc.first_line = yylloc.last_line = 1;
2148 yylloc.first_column = yylloc.last_column = 0;
2149 return yyparse ();
2150@}
9edcd895 2151@end group
342b8b6e
AD
2152@end example
2153
9edcd895
AD
2154Remember that computing locations is not a matter of syntax. Every
2155character must be associated to a location update, whether it is in
2156valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2157
2158@node Multi-function Calc
bfa74976
RS
2159@section Multi-Function Calculator: @code{mfcalc}
2160@cindex multi-function calculator
2161@cindex @code{mfcalc}
2162@cindex calculator, multi-function
2163
2164Now that the basics of Bison have been discussed, it is time to move on to
2165a more advanced problem. The above calculators provided only five
2166functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2167be nice to have a calculator that provides other mathematical functions such
2168as @code{sin}, @code{cos}, etc.
2169
2170It is easy to add new operators to the infix calculator as long as they are
2171only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2172back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2173adding a new operator. But we want something more flexible: built-in
2174functions whose syntax has this form:
2175
2176@example
2177@var{function_name} (@var{argument})
2178@end example
2179
2180@noindent
2181At the same time, we will add memory to the calculator, by allowing you
2182to create named variables, store values in them, and use them later.
2183Here is a sample session with the multi-function calculator:
2184
2185@example
9edcd895
AD
2186$ @kbd{mfcalc}
2187@kbd{pi = 3.141592653589}
bfa74976 21883.1415926536
9edcd895 2189@kbd{sin(pi)}
bfa74976 21900.0000000000
9edcd895 2191@kbd{alpha = beta1 = 2.3}
bfa74976 21922.3000000000
9edcd895 2193@kbd{alpha}
bfa74976 21942.3000000000
9edcd895 2195@kbd{ln(alpha)}
bfa74976 21960.8329091229
9edcd895 2197@kbd{exp(ln(beta1))}
bfa74976 21982.3000000000
9edcd895 2199$
bfa74976
RS
2200@end example
2201
2202Note that multiple assignment and nested function calls are permitted.
2203
2204@menu
2205* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2206* Rules: Mfcalc Rules. Grammar rules for the calculator.
2207* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2208@end menu
2209
342b8b6e 2210@node Mfcalc Decl
bfa74976
RS
2211@subsection Declarations for @code{mfcalc}
2212
2213Here are the C and Bison declarations for the multi-function calculator.
2214
2215@smallexample
18b519c0 2216@group
bfa74976 2217%@{
38a92d50
PE
2218 #include <math.h> /* For math functions, cos(), sin(), etc. */
2219 #include "calc.h" /* Contains definition of `symrec'. */
2220 int yylex (void);
2221 void yyerror (char const *);
bfa74976 2222%@}
18b519c0
AD
2223@end group
2224@group
bfa74976 2225%union @{
38a92d50
PE
2226 double val; /* For returning numbers. */
2227 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2228@}
18b519c0 2229@end group
38a92d50
PE
2230%token <val> NUM /* Simple double precision number. */
2231%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2232%type <val> exp
2233
18b519c0 2234@group
bfa74976
RS
2235%right '='
2236%left '-' '+'
2237%left '*' '/'
38a92d50
PE
2238%left NEG /* negation--unary minus */
2239%right '^' /* exponentiation */
18b519c0 2240@end group
38a92d50 2241%% /* The grammar follows. */
bfa74976
RS
2242@end smallexample
2243
2244The above grammar introduces only two new features of the Bison language.
2245These features allow semantic values to have various data types
2246(@pxref{Multiple Types, ,More Than One Value Type}).
2247
2248The @code{%union} declaration specifies the entire list of possible types;
2249this is instead of defining @code{YYSTYPE}. The allowable types are now
2250double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2251the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2252
2253Since values can now have various types, it is necessary to associate a
2254type with each grammar symbol whose semantic value is used. These symbols
2255are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2256declarations are augmented with information about their data type (placed
2257between angle brackets).
2258
704a47c4
AD
2259The Bison construct @code{%type} is used for declaring nonterminal
2260symbols, just as @code{%token} is used for declaring token types. We
2261have not used @code{%type} before because nonterminal symbols are
2262normally declared implicitly by the rules that define them. But
2263@code{exp} must be declared explicitly so we can specify its value type.
2264@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2265
342b8b6e 2266@node Mfcalc Rules
bfa74976
RS
2267@subsection Grammar Rules for @code{mfcalc}
2268
2269Here are the grammar rules for the multi-function calculator.
2270Most of them are copied directly from @code{calc}; three rules,
2271those which mention @code{VAR} or @code{FNCT}, are new.
2272
2273@smallexample
18b519c0 2274@group
bfa74976
RS
2275input: /* empty */
2276 | input line
2277;
18b519c0 2278@end group
bfa74976 2279
18b519c0 2280@group
bfa74976
RS
2281line:
2282 '\n'
2283 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2284 | error '\n' @{ yyerrok; @}
2285;
18b519c0 2286@end group
bfa74976 2287
18b519c0 2288@group
bfa74976
RS
2289exp: NUM @{ $$ = $1; @}
2290 | VAR @{ $$ = $1->value.var; @}
2291 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2292 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2293 | exp '+' exp @{ $$ = $1 + $3; @}
2294 | exp '-' exp @{ $$ = $1 - $3; @}
2295 | exp '*' exp @{ $$ = $1 * $3; @}
2296 | exp '/' exp @{ $$ = $1 / $3; @}
2297 | '-' exp %prec NEG @{ $$ = -$2; @}
2298 | exp '^' exp @{ $$ = pow ($1, $3); @}
2299 | '(' exp ')' @{ $$ = $2; @}
2300;
18b519c0 2301@end group
38a92d50 2302/* End of grammar. */
bfa74976
RS
2303%%
2304@end smallexample
2305
342b8b6e 2306@node Mfcalc Symtab
bfa74976
RS
2307@subsection The @code{mfcalc} Symbol Table
2308@cindex symbol table example
2309
2310The multi-function calculator requires a symbol table to keep track of the
2311names and meanings of variables and functions. This doesn't affect the
2312grammar rules (except for the actions) or the Bison declarations, but it
2313requires some additional C functions for support.
2314
2315The symbol table itself consists of a linked list of records. Its
2316definition, which is kept in the header @file{calc.h}, is as follows. It
2317provides for either functions or variables to be placed in the table.
2318
2319@smallexample
2320@group
38a92d50 2321/* Function type. */
32dfccf8 2322typedef double (*func_t) (double);
72f889cc 2323@end group
32dfccf8 2324
72f889cc 2325@group
38a92d50 2326/* Data type for links in the chain of symbols. */
bfa74976
RS
2327struct symrec
2328@{
38a92d50 2329 char *name; /* name of symbol */
bfa74976 2330 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2331 union
2332 @{
38a92d50
PE
2333 double var; /* value of a VAR */
2334 func_t fnctptr; /* value of a FNCT */
bfa74976 2335 @} value;
38a92d50 2336 struct symrec *next; /* link field */
bfa74976
RS
2337@};
2338@end group
2339
2340@group
2341typedef struct symrec symrec;
2342
38a92d50 2343/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2344extern symrec *sym_table;
2345
a730d142 2346symrec *putsym (char const *, int);
38a92d50 2347symrec *getsym (char const *);
bfa74976
RS
2348@end group
2349@end smallexample
2350
2351The new version of @code{main} includes a call to @code{init_table}, a
2352function that initializes the symbol table. Here it is, and
2353@code{init_table} as well:
2354
2355@smallexample
bfa74976
RS
2356#include <stdio.h>
2357
18b519c0 2358@group
38a92d50 2359/* Called by yyparse on error. */
13863333 2360void
38a92d50 2361yyerror (char const *s)
bfa74976
RS
2362@{
2363 printf ("%s\n", s);
2364@}
18b519c0 2365@end group
bfa74976 2366
18b519c0 2367@group
bfa74976
RS
2368struct init
2369@{
38a92d50
PE
2370 char const *fname;
2371 double (*fnct) (double);
bfa74976
RS
2372@};
2373@end group
2374
2375@group
38a92d50 2376struct init const arith_fncts[] =
13863333 2377@{
32dfccf8
AD
2378 "sin", sin,
2379 "cos", cos,
13863333 2380 "atan", atan,
32dfccf8
AD
2381 "ln", log,
2382 "exp", exp,
13863333
AD
2383 "sqrt", sqrt,
2384 0, 0
2385@};
18b519c0 2386@end group
bfa74976 2387
18b519c0 2388@group
bfa74976 2389/* The symbol table: a chain of `struct symrec'. */
38a92d50 2390symrec *sym_table;
bfa74976
RS
2391@end group
2392
2393@group
72d2299c 2394/* Put arithmetic functions in table. */
13863333
AD
2395void
2396init_table (void)
bfa74976
RS
2397@{
2398 int i;
2399 symrec *ptr;
2400 for (i = 0; arith_fncts[i].fname != 0; i++)
2401 @{
2402 ptr = putsym (arith_fncts[i].fname, FNCT);
2403 ptr->value.fnctptr = arith_fncts[i].fnct;
2404 @}
2405@}
2406@end group
38a92d50
PE
2407
2408@group
2409int
2410main (void)
2411@{
2412 init_table ();
2413 return yyparse ();
2414@}
2415@end group
bfa74976
RS
2416@end smallexample
2417
2418By simply editing the initialization list and adding the necessary include
2419files, you can add additional functions to the calculator.
2420
2421Two important functions allow look-up and installation of symbols in the
2422symbol table. The function @code{putsym} is passed a name and the type
2423(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2424linked to the front of the list, and a pointer to the object is returned.
2425The function @code{getsym} is passed the name of the symbol to look up. If
2426found, a pointer to that symbol is returned; otherwise zero is returned.
2427
2428@smallexample
2429symrec *
38a92d50 2430putsym (char const *sym_name, int sym_type)
bfa74976
RS
2431@{
2432 symrec *ptr;
2433 ptr = (symrec *) malloc (sizeof (symrec));
2434 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2435 strcpy (ptr->name,sym_name);
2436 ptr->type = sym_type;
72d2299c 2437 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2438 ptr->next = (struct symrec *)sym_table;
2439 sym_table = ptr;
2440 return ptr;
2441@}
2442
2443symrec *
38a92d50 2444getsym (char const *sym_name)
bfa74976
RS
2445@{
2446 symrec *ptr;
2447 for (ptr = sym_table; ptr != (symrec *) 0;
2448 ptr = (symrec *)ptr->next)
2449 if (strcmp (ptr->name,sym_name) == 0)
2450 return ptr;
2451 return 0;
2452@}
2453@end smallexample
2454
2455The function @code{yylex} must now recognize variables, numeric values, and
2456the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2457characters with a leading letter are recognized as either variables or
bfa74976
RS
2458functions depending on what the symbol table says about them.
2459
2460The string is passed to @code{getsym} for look up in the symbol table. If
2461the name appears in the table, a pointer to its location and its type
2462(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2463already in the table, then it is installed as a @code{VAR} using
2464@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2465returned to @code{yyparse}.
bfa74976
RS
2466
2467No change is needed in the handling of numeric values and arithmetic
2468operators in @code{yylex}.
2469
2470@smallexample
2471@group
2472#include <ctype.h>
18b519c0 2473@end group
13863333 2474
18b519c0 2475@group
13863333
AD
2476int
2477yylex (void)
bfa74976
RS
2478@{
2479 int c;
2480
72d2299c 2481 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2482 while ((c = getchar ()) == ' ' || c == '\t');
2483
2484 if (c == EOF)
2485 return 0;
2486@end group
2487
2488@group
2489 /* Char starts a number => parse the number. */
2490 if (c == '.' || isdigit (c))
2491 @{
2492 ungetc (c, stdin);
2493 scanf ("%lf", &yylval.val);
2494 return NUM;
2495 @}
2496@end group
2497
2498@group
2499 /* Char starts an identifier => read the name. */
2500 if (isalpha (c))
2501 @{
2502 symrec *s;
2503 static char *symbuf = 0;
2504 static int length = 0;
2505 int i;
2506@end group
2507
2508@group
2509 /* Initially make the buffer long enough
2510 for a 40-character symbol name. */
2511 if (length == 0)
2512 length = 40, symbuf = (char *)malloc (length + 1);
2513
2514 i = 0;
2515 do
2516@end group
2517@group
2518 @{
2519 /* If buffer is full, make it bigger. */
2520 if (i == length)
2521 @{
2522 length *= 2;
18b519c0 2523 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2524 @}
2525 /* Add this character to the buffer. */
2526 symbuf[i++] = c;
2527 /* Get another character. */
2528 c = getchar ();
2529 @}
2530@end group
2531@group
72d2299c 2532 while (isalnum (c));
bfa74976
RS
2533
2534 ungetc (c, stdin);
2535 symbuf[i] = '\0';
2536@end group
2537
2538@group
2539 s = getsym (symbuf);
2540 if (s == 0)
2541 s = putsym (symbuf, VAR);
2542 yylval.tptr = s;
2543 return s->type;
2544 @}
2545
2546 /* Any other character is a token by itself. */
2547 return c;
2548@}
2549@end group
2550@end smallexample
2551
72d2299c 2552This program is both powerful and flexible. You may easily add new
704a47c4
AD
2553functions, and it is a simple job to modify this code to install
2554predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2555
342b8b6e 2556@node Exercises
bfa74976
RS
2557@section Exercises
2558@cindex exercises
2559
2560@enumerate
2561@item
2562Add some new functions from @file{math.h} to the initialization list.
2563
2564@item
2565Add another array that contains constants and their values. Then
2566modify @code{init_table} to add these constants to the symbol table.
2567It will be easiest to give the constants type @code{VAR}.
2568
2569@item
2570Make the program report an error if the user refers to an
2571uninitialized variable in any way except to store a value in it.
2572@end enumerate
2573
342b8b6e 2574@node Grammar File
bfa74976
RS
2575@chapter Bison Grammar Files
2576
2577Bison takes as input a context-free grammar specification and produces a
2578C-language function that recognizes correct instances of the grammar.
2579
2580The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2581@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2582
2583@menu
2584* Grammar Outline:: Overall layout of the grammar file.
2585* Symbols:: Terminal and nonterminal symbols.
2586* Rules:: How to write grammar rules.
2587* Recursion:: Writing recursive rules.
2588* Semantics:: Semantic values and actions.
847bf1f5 2589* Locations:: Locations and actions.
bfa74976
RS
2590* Declarations:: All kinds of Bison declarations are described here.
2591* Multiple Parsers:: Putting more than one Bison parser in one program.
2592@end menu
2593
342b8b6e 2594@node Grammar Outline
bfa74976
RS
2595@section Outline of a Bison Grammar
2596
2597A Bison grammar file has four main sections, shown here with the
2598appropriate delimiters:
2599
2600@example
2601%@{
38a92d50 2602 @var{Prologue}
bfa74976
RS
2603%@}
2604
2605@var{Bison declarations}
2606
2607%%
2608@var{Grammar rules}
2609%%
2610
75f5aaea 2611@var{Epilogue}
bfa74976
RS
2612@end example
2613
2614Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2615As a @acronym{GNU} extension, @samp{//} introduces a comment that
2616continues until end of line.
bfa74976
RS
2617
2618@menu
75f5aaea 2619* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2620* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
bfa74976
RS
2621* Bison Declarations:: Syntax and usage of the Bison declarations section.
2622* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2623* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2624@end menu
2625
38a92d50 2626@node Prologue
75f5aaea
MA
2627@subsection The prologue
2628@cindex declarations section
2629@cindex Prologue
2630@cindex declarations
bfa74976 2631
f8e1c9e5
AD
2632The @var{Prologue} section contains macro definitions and declarations
2633of functions and variables that are used in the actions in the grammar
2634rules. These are copied to the beginning of the parser file so that
2635they precede the definition of @code{yyparse}. You can use
2636@samp{#include} to get the declarations from a header file. If you
2637don't need any C declarations, you may omit the @samp{%@{} and
2638@samp{%@}} delimiters that bracket this section.
bfa74976 2639
9c437126 2640The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2641of @samp{%@}} that is outside a comment, a string literal, or a
2642character constant.
2643
c732d2c6
AD
2644You may have more than one @var{Prologue} section, intermixed with the
2645@var{Bison declarations}. This allows you to have C and Bison
2646declarations that refer to each other. For example, the @code{%union}
2647declaration may use types defined in a header file, and you may wish to
2648prototype functions that take arguments of type @code{YYSTYPE}. This
2649can be done with two @var{Prologue} blocks, one before and one after the
2650@code{%union} declaration.
2651
2652@smallexample
2653%@{
aef3da86 2654 #define _GNU_SOURCE
38a92d50
PE
2655 #include <stdio.h>
2656 #include "ptypes.h"
c732d2c6
AD
2657%@}
2658
2659%union @{
779e7ceb 2660 long int n;
c732d2c6
AD
2661 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2662@}
2663
2664%@{
38a92d50
PE
2665 static void print_token_value (FILE *, int, YYSTYPE);
2666 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2667%@}
2668
2669@dots{}
2670@end smallexample
2671
aef3da86
PE
2672When in doubt, it is usually safer to put prologue code before all
2673Bison declarations, rather than after. For example, any definitions
2674of feature test macros like @code{_GNU_SOURCE} or
2675@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2676feature test macros can affect the behavior of Bison-generated
2677@code{#include} directives.
2678
2cbe6b7f
JD
2679@node Prologue Alternatives
2680@subsection Prologue Alternatives
2681@cindex Prologue Alternatives
2682
136a0f76 2683@findex %code
2cbe6b7f
JD
2684@findex %requires
2685@findex %provides
2686@findex %code-top
85894313
JD
2687(The prologue alternatives described here are experimental.
2688More user feedback will help to determine whether they should become permanent
2689features.)
2690
2cbe6b7f
JD
2691The functionality of @var{Prologue} sections can often be subtle and
2692inflexible.
2693As an alternative, Bison provides a set of more explicit directives:
a501eca9
JD
2694@code{%code}, @code{%requires}, @code{%provides}, and @code{%code-top}.
2695@xref{Table of Symbols,,Bison Symbols}.
2cbe6b7f
JD
2696
2697Look again at the example of the previous section:
2698
2699@smallexample
2700%@{
2701 #define _GNU_SOURCE
2702 #include <stdio.h>
2703 #include "ptypes.h"
2704%@}
2705
2706%union @{
2707 long int n;
2708 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2709@}
2710
2711%@{
2712 static void print_token_value (FILE *, int, YYSTYPE);
2713 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2714%@}
2715
2716@dots{}
2717@end smallexample
2718
2719@noindent
2720Notice that there are two @var{Prologue} sections here, but there's a subtle
2721distinction between their functionality.
2722For example, if you decide to override Bison's default definition for
2723@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2724definition?
2725You should write it in the first since Bison will insert that code into the
2726parser code file @emph{before} the default @code{YYLTYPE} definition.
2727In which @var{Prologue} section should you prototype an internal function,
2728@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2729arguments?
2730You should prototype it in the second since Bison will insert that code
2731@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2732
2733This distinction in functionality between the two @var{Prologue} sections is
2734established by the appearance of the @code{%union} between them.
a501eca9 2735This behavior raises a few questions.
2cbe6b7f
JD
2736First, why should the position of a @code{%union} affect definitions related to
2737@code{YYLTYPE} and @code{yytokentype}?
2738Second, what if there is no @code{%union}?
2739In that case, the second kind of @var{Prologue} section is not available.
2740This behavior is not intuitive.
2741
2742To avoid this subtle @code{%union} dependency, rewrite the example using
2743@code{%code-top} and @code{%code}.
2744Let's go ahead and add the new @code{YYLTYPE} definition and the
2745@code{trace_token} prototype at the same time:
2746
2747@smallexample
2748%code-top @{
2749 #define _GNU_SOURCE
2750 #include <stdio.h>
2751 /* The following code really belongs in a %requires; see below. */
2752 #include "ptypes.h"
2753 #define YYLTYPE YYLTYPE
2754 typedef struct YYLTYPE
2755 @{
2756 int first_line;
2757 int first_column;
2758 int last_line;
2759 int last_column;
2760 char *filename;
2761 @} YYLTYPE;
2762@}
2763
2764%union @{
2765 long int n;
2766 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2767@}
2768
2769%code @{
2770 static void print_token_value (FILE *, int, YYSTYPE);
2771 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2772 static void trace_token (enum yytokentype token, YYLTYPE loc);
2773@}
2774
2775@dots{}
2776@end smallexample
2777
2778@noindent
2779In this way, @code{%code-top} and @code{%code} achieve the same functionality
2780as the two kinds of @var{Prologue} sections, but it's always explicit which
2781kind you intend.
2782Moreover, both kinds are always available even in the absence of @code{%union}.
2783
a501eca9 2784The @code{%code-top} block above logically contains two parts.
2cbe6b7f
JD
2785The first two lines need to appear in the parser code file.
2786The fourth line is required by @code{YYSTYPE} and thus also needs to appear in
2787the parser code file.
2788However, if you've instructed Bison to generate a parser header file
67a9768e 2789(@pxref{Table of Symbols, ,%defines}), you probably want the fourth line to
2cbe6b7f
JD
2790appear before the @code{YYSTYPE} definition in that header file as well.
2791Also, the @code{YYLTYPE} definition should appear in the parser header file to
2792override the default @code{YYLTYPE} definition there.
2793
a501eca9 2794In other words, in the @code{%code-top} block above, all but the first two
2cbe6b7f
JD
2795lines are dependency code for externally exposed definitions (@code{YYSTYPE}
2796and @code{YYLTYPE}) required by Bison.
2797Thus, they belong in one or more @code{%requires}:
9bc0dd67
JD
2798
2799@smallexample
2cbe6b7f
JD
2800%code-top @{
2801 #define _GNU_SOURCE
2802 #include <stdio.h>
2803@}
2804
136a0f76 2805%requires @{
9bc0dd67
JD
2806 #include "ptypes.h"
2807@}
2808%union @{
2809 long int n;
2810 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2811@}
2812
2cbe6b7f
JD
2813%requires @{
2814 #define YYLTYPE YYLTYPE
2815 typedef struct YYLTYPE
2816 @{
2817 int first_line;
2818 int first_column;
2819 int last_line;
2820 int last_column;
2821 char *filename;
2822 @} YYLTYPE;
2823@}
2824
136a0f76 2825%code @{
2cbe6b7f
JD
2826 static void print_token_value (FILE *, int, YYSTYPE);
2827 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2828 static void trace_token (enum yytokentype token, YYLTYPE loc);
2829@}
2830
2831@dots{}
2832@end smallexample
2833
2834@noindent
2835Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2836definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
2837definitions in both the parser code file and the parser header file.
2838(By the same reasoning, @code{%requires} would also be the appropriate place to
2839write your own definition for @code{YYSTYPE}.)
2840
a501eca9
JD
2841When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
2842should prefer @code{%requires} over @code{%code-top} regardless of whether you
2843instruct Bison to generate a parser header file.
2844When you are writing code that you need Bison to insert only into the parser
2845code file and that has no special need to appear at the top of the code file,
2846you should prefer @code{%code} over @code{%code-top}.
2847These practices will make the purpose of each block of your code explicit to
2848Bison and to other developers reading your grammar file.
2849Following these practices, we expect @code{%code} and @code{%requires} to be
2850the most important of the four @var{Prologue} alternative directives discussed
2851in this section.
2852
2cbe6b7f
JD
2853At some point while developing your parser, you might decide to provide
2854@code{trace_token} to modules that are external to your parser.
2855Thus, you might wish for Bison to insert the prototype into both the parser
2856header file and the parser code file.
2857Since this function is not a dependency of any Bison-required definition (such
2858as @code{YYSTYPE}), it doesn't make sense to move its prototype to a
2859@code{%requires}.
2860More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
2861@code{%requires} is not sufficient.
2862Instead, move its prototype from the @code{%code} to a @code{%provides}:
2863
2864@smallexample
2865%code-top @{
2866 #define _GNU_SOURCE
136a0f76 2867 #include <stdio.h>
2cbe6b7f 2868@}
136a0f76 2869
2cbe6b7f
JD
2870%requires @{
2871 #include "ptypes.h"
2872@}
2873%union @{
2874 long int n;
2875 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2876@}
2877
2878%requires @{
2879 #define YYLTYPE YYLTYPE
2880 typedef struct YYLTYPE
2881 @{
2882 int first_line;
2883 int first_column;
2884 int last_line;
2885 int last_column;
2886 char *filename;
2887 @} YYLTYPE;
2888@}
2889
2890%provides @{
2891 void trace_token (enum yytokentype token, YYLTYPE loc);
2892@}
2893
2894%code @{
9bc0dd67
JD
2895 static void print_token_value (FILE *, int, YYSTYPE);
2896 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2897@}
9bc0dd67
JD
2898
2899@dots{}
2900@end smallexample
2901
2cbe6b7f
JD
2902@noindent
2903Bison will insert the @code{trace_token} prototype into both the parser header
2904file and the parser code file after the definitions for @code{yytokentype},
2905@code{YYLTYPE}, and @code{YYSTYPE}.
2906
2907The above examples are careful to write directives in an order that reflects
2908the layout of the generated parser code and header files:
2909@code{%code-top}, @code{%requires}, @code{%provides}, and then @code{%code}.
a501eca9 2910While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
2911this order, Bison does not require it.
2912Instead, Bison lets you choose an organization that makes sense to you.
2913
a501eca9 2914You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2915In that case, Bison concatenates the contained code in declaration order.
2916This is the only way in which the position of one of these directives within
2917the grammar file affects its functionality.
2918
2919The result of the previous two properties is greater flexibility in how you may
2920organize your grammar file.
2921For example, you may organize semantic-type-related directives by semantic
2922type:
2923
2924@smallexample
2925%requires @{ #include "type1.h" @}
2926%union @{ type1 field1; @}
2927%destructor @{ type1_free ($$); @} <field1>
2928%printer @{ type1_print ($$); @} <field1>
2929
2930%requires @{ #include "type2.h" @}
2931%union @{ type2 field2; @}
2932%destructor @{ type2_free ($$); @} <field2>
2933%printer @{ type2_print ($$); @} <field2>
2934@end smallexample
2935
2936@noindent
2937You could even place each of the above directive groups in the rules section of
2938the grammar file next to the set of rules that uses the associated semantic
2939type.
2940And you don't have to worry that some directive (like a @code{%union}) in the
2941definitions section is going to adversely affect their functionality in some
2942counter-intuitive manner just because it comes first.
2943Such an organization is not possible using @var{Prologue} sections.
2944
a501eca9
JD
2945This section has been concerned with explaining the advantages of the four
2946@var{Prologue} alternative directives over the original Yacc @var{Prologue}.
2947However, in most cases when using these directives, you shouldn't need to
2948think about all the low-level ordering issues discussed here.
2949Instead, you should simply use these directives to label each block of your
2950code according to its purpose and let Bison handle the ordering.
2951@code{%code} is the most generic label.
2952Move code to @code{%requires}, @code{%provides}, or @code{%code-top} as needed.
2953
342b8b6e 2954@node Bison Declarations
bfa74976
RS
2955@subsection The Bison Declarations Section
2956@cindex Bison declarations (introduction)
2957@cindex declarations, Bison (introduction)
2958
2959The @var{Bison declarations} section contains declarations that define
2960terminal and nonterminal symbols, specify precedence, and so on.
2961In some simple grammars you may not need any declarations.
2962@xref{Declarations, ,Bison Declarations}.
2963
342b8b6e 2964@node Grammar Rules
bfa74976
RS
2965@subsection The Grammar Rules Section
2966@cindex grammar rules section
2967@cindex rules section for grammar
2968
2969The @dfn{grammar rules} section contains one or more Bison grammar
2970rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2971
2972There must always be at least one grammar rule, and the first
2973@samp{%%} (which precedes the grammar rules) may never be omitted even
2974if it is the first thing in the file.
2975
38a92d50 2976@node Epilogue
75f5aaea 2977@subsection The epilogue
bfa74976 2978@cindex additional C code section
75f5aaea 2979@cindex epilogue
bfa74976
RS
2980@cindex C code, section for additional
2981
08e49d20
PE
2982The @var{Epilogue} is copied verbatim to the end of the parser file, just as
2983the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
2984place to put anything that you want to have in the parser file but which need
2985not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
2986definitions of @code{yylex} and @code{yyerror} often go here. Because
2987C requires functions to be declared before being used, you often need
2988to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 2989even if you define them in the Epilogue.
75f5aaea 2990@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
2991
2992If the last section is empty, you may omit the @samp{%%} that separates it
2993from the grammar rules.
2994
f8e1c9e5
AD
2995The Bison parser itself contains many macros and identifiers whose names
2996start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
2997any such names (except those documented in this manual) in the epilogue
2998of the grammar file.
bfa74976 2999
342b8b6e 3000@node Symbols
bfa74976
RS
3001@section Symbols, Terminal and Nonterminal
3002@cindex nonterminal symbol
3003@cindex terminal symbol
3004@cindex token type
3005@cindex symbol
3006
3007@dfn{Symbols} in Bison grammars represent the grammatical classifications
3008of the language.
3009
3010A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3011class of syntactically equivalent tokens. You use the symbol in grammar
3012rules to mean that a token in that class is allowed. The symbol is
3013represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3014function returns a token type code to indicate what kind of token has
3015been read. You don't need to know what the code value is; you can use
3016the symbol to stand for it.
bfa74976 3017
f8e1c9e5
AD
3018A @dfn{nonterminal symbol} stands for a class of syntactically
3019equivalent groupings. The symbol name is used in writing grammar rules.
3020By convention, it should be all lower case.
bfa74976
RS
3021
3022Symbol names can contain letters, digits (not at the beginning),
3023underscores and periods. Periods make sense only in nonterminals.
3024
931c7513 3025There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3026
3027@itemize @bullet
3028@item
3029A @dfn{named token type} is written with an identifier, like an
c827f760 3030identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3031such name must be defined with a Bison declaration such as
3032@code{%token}. @xref{Token Decl, ,Token Type Names}.
3033
3034@item
3035@cindex character token
3036@cindex literal token
3037@cindex single-character literal
931c7513
RS
3038A @dfn{character token type} (or @dfn{literal character token}) is
3039written in the grammar using the same syntax used in C for character
3040constants; for example, @code{'+'} is a character token type. A
3041character token type doesn't need to be declared unless you need to
3042specify its semantic value data type (@pxref{Value Type, ,Data Types of
3043Semantic Values}), associativity, or precedence (@pxref{Precedence,
3044,Operator Precedence}).
bfa74976
RS
3045
3046By convention, a character token type is used only to represent a
3047token that consists of that particular character. Thus, the token
3048type @code{'+'} is used to represent the character @samp{+} as a
3049token. Nothing enforces this convention, but if you depart from it,
3050your program will confuse other readers.
3051
3052All the usual escape sequences used in character literals in C can be
3053used in Bison as well, but you must not use the null character as a
72d2299c
PE
3054character literal because its numeric code, zero, signifies
3055end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3056for @code{yylex}}). Also, unlike standard C, trigraphs have no
3057special meaning in Bison character literals, nor is backslash-newline
3058allowed.
931c7513
RS
3059
3060@item
3061@cindex string token
3062@cindex literal string token
9ecbd125 3063@cindex multicharacter literal
931c7513
RS
3064A @dfn{literal string token} is written like a C string constant; for
3065example, @code{"<="} is a literal string token. A literal string token
3066doesn't need to be declared unless you need to specify its semantic
14ded682 3067value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3068(@pxref{Precedence}).
3069
3070You can associate the literal string token with a symbolic name as an
3071alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3072Declarations}). If you don't do that, the lexical analyzer has to
3073retrieve the token number for the literal string token from the
3074@code{yytname} table (@pxref{Calling Convention}).
3075
c827f760 3076@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3077
3078By convention, a literal string token is used only to represent a token
3079that consists of that particular string. Thus, you should use the token
3080type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3081does not enforce this convention, but if you depart from it, people who
931c7513
RS
3082read your program will be confused.
3083
3084All the escape sequences used in string literals in C can be used in
92ac3705
PE
3085Bison as well, except that you must not use a null character within a
3086string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3087meaning in Bison string literals, nor is backslash-newline allowed. A
3088literal string token must contain two or more characters; for a token
3089containing just one character, use a character token (see above).
bfa74976
RS
3090@end itemize
3091
3092How you choose to write a terminal symbol has no effect on its
3093grammatical meaning. That depends only on where it appears in rules and
3094on when the parser function returns that symbol.
3095
72d2299c
PE
3096The value returned by @code{yylex} is always one of the terminal
3097symbols, except that a zero or negative value signifies end-of-input.
3098Whichever way you write the token type in the grammar rules, you write
3099it the same way in the definition of @code{yylex}. The numeric code
3100for a character token type is simply the positive numeric code of the
3101character, so @code{yylex} can use the identical value to generate the
3102requisite code, though you may need to convert it to @code{unsigned
3103char} to avoid sign-extension on hosts where @code{char} is signed.
3104Each named token type becomes a C macro in
bfa74976 3105the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3106(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3107@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3108
3109If @code{yylex} is defined in a separate file, you need to arrange for the
3110token-type macro definitions to be available there. Use the @samp{-d}
3111option when you run Bison, so that it will write these macro definitions
3112into a separate header file @file{@var{name}.tab.h} which you can include
3113in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3114
72d2299c 3115If you want to write a grammar that is portable to any Standard C
9d9b8b70 3116host, you must use only nonnull character tokens taken from the basic
c827f760 3117execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3118digits, the 52 lower- and upper-case English letters, and the
3119characters in the following C-language string:
3120
3121@example
3122"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3123@end example
3124
f8e1c9e5
AD
3125The @code{yylex} function and Bison must use a consistent character set
3126and encoding for character tokens. For example, if you run Bison in an
3127@acronym{ASCII} environment, but then compile and run the resulting
3128program in an environment that uses an incompatible character set like
3129@acronym{EBCDIC}, the resulting program may not work because the tables
3130generated by Bison will assume @acronym{ASCII} numeric values for
3131character tokens. It is standard practice for software distributions to
3132contain C source files that were generated by Bison in an
3133@acronym{ASCII} environment, so installers on platforms that are
3134incompatible with @acronym{ASCII} must rebuild those files before
3135compiling them.
e966383b 3136
bfa74976
RS
3137The symbol @code{error} is a terminal symbol reserved for error recovery
3138(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3139In particular, @code{yylex} should never return this value. The default
3140value of the error token is 256, unless you explicitly assigned 256 to
3141one of your tokens with a @code{%token} declaration.
bfa74976 3142
342b8b6e 3143@node Rules
bfa74976
RS
3144@section Syntax of Grammar Rules
3145@cindex rule syntax
3146@cindex grammar rule syntax
3147@cindex syntax of grammar rules
3148
3149A Bison grammar rule has the following general form:
3150
3151@example
e425e872 3152@group
bfa74976
RS
3153@var{result}: @var{components}@dots{}
3154 ;
e425e872 3155@end group
bfa74976
RS
3156@end example
3157
3158@noindent
9ecbd125 3159where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3160and @var{components} are various terminal and nonterminal symbols that
13863333 3161are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3162
3163For example,
3164
3165@example
3166@group
3167exp: exp '+' exp
3168 ;
3169@end group
3170@end example
3171
3172@noindent
3173says that two groupings of type @code{exp}, with a @samp{+} token in between,
3174can be combined into a larger grouping of type @code{exp}.
3175
72d2299c
PE
3176White space in rules is significant only to separate symbols. You can add
3177extra white space as you wish.
bfa74976
RS
3178
3179Scattered among the components can be @var{actions} that determine
3180the semantics of the rule. An action looks like this:
3181
3182@example
3183@{@var{C statements}@}
3184@end example
3185
3186@noindent
287c78f6
PE
3187@cindex braced code
3188This is an example of @dfn{braced code}, that is, C code surrounded by
3189braces, much like a compound statement in C@. Braced code can contain
3190any sequence of C tokens, so long as its braces are balanced. Bison
3191does not check the braced code for correctness directly; it merely
3192copies the code to the output file, where the C compiler can check it.
3193
3194Within braced code, the balanced-brace count is not affected by braces
3195within comments, string literals, or character constants, but it is
3196affected by the C digraphs @samp{<%} and @samp{%>} that represent
3197braces. At the top level braced code must be terminated by @samp{@}}
3198and not by a digraph. Bison does not look for trigraphs, so if braced
3199code uses trigraphs you should ensure that they do not affect the
3200nesting of braces or the boundaries of comments, string literals, or
3201character constants.
3202
bfa74976
RS
3203Usually there is only one action and it follows the components.
3204@xref{Actions}.
3205
3206@findex |
3207Multiple rules for the same @var{result} can be written separately or can
3208be joined with the vertical-bar character @samp{|} as follows:
3209
bfa74976
RS
3210@example
3211@group
3212@var{result}: @var{rule1-components}@dots{}
3213 | @var{rule2-components}@dots{}
3214 @dots{}
3215 ;
3216@end group
3217@end example
bfa74976
RS
3218
3219@noindent
3220They are still considered distinct rules even when joined in this way.
3221
3222If @var{components} in a rule is empty, it means that @var{result} can
3223match the empty string. For example, here is how to define a
3224comma-separated sequence of zero or more @code{exp} groupings:
3225
3226@example
3227@group
3228expseq: /* empty */
3229 | expseq1
3230 ;
3231@end group
3232
3233@group
3234expseq1: exp
3235 | expseq1 ',' exp
3236 ;
3237@end group
3238@end example
3239
3240@noindent
3241It is customary to write a comment @samp{/* empty */} in each rule
3242with no components.
3243
342b8b6e 3244@node Recursion
bfa74976
RS
3245@section Recursive Rules
3246@cindex recursive rule
3247
f8e1c9e5
AD
3248A rule is called @dfn{recursive} when its @var{result} nonterminal
3249appears also on its right hand side. Nearly all Bison grammars need to
3250use recursion, because that is the only way to define a sequence of any
3251number of a particular thing. Consider this recursive definition of a
9ecbd125 3252comma-separated sequence of one or more expressions:
bfa74976
RS
3253
3254@example
3255@group
3256expseq1: exp
3257 | expseq1 ',' exp
3258 ;
3259@end group
3260@end example
3261
3262@cindex left recursion
3263@cindex right recursion
3264@noindent
3265Since the recursive use of @code{expseq1} is the leftmost symbol in the
3266right hand side, we call this @dfn{left recursion}. By contrast, here
3267the same construct is defined using @dfn{right recursion}:
3268
3269@example
3270@group
3271expseq1: exp
3272 | exp ',' expseq1
3273 ;
3274@end group
3275@end example
3276
3277@noindent
ec3bc396
AD
3278Any kind of sequence can be defined using either left recursion or right
3279recursion, but you should always use left recursion, because it can
3280parse a sequence of any number of elements with bounded stack space.
3281Right recursion uses up space on the Bison stack in proportion to the
3282number of elements in the sequence, because all the elements must be
3283shifted onto the stack before the rule can be applied even once.
3284@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3285of this.
bfa74976
RS
3286
3287@cindex mutual recursion
3288@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3289rule does not appear directly on its right hand side, but does appear
3290in rules for other nonterminals which do appear on its right hand
13863333 3291side.
bfa74976
RS
3292
3293For example:
3294
3295@example
3296@group
3297expr: primary
3298 | primary '+' primary
3299 ;
3300@end group
3301
3302@group
3303primary: constant
3304 | '(' expr ')'
3305 ;
3306@end group
3307@end example
3308
3309@noindent
3310defines two mutually-recursive nonterminals, since each refers to the
3311other.
3312
342b8b6e 3313@node Semantics
bfa74976
RS
3314@section Defining Language Semantics
3315@cindex defining language semantics
13863333 3316@cindex language semantics, defining
bfa74976
RS
3317
3318The grammar rules for a language determine only the syntax. The semantics
3319are determined by the semantic values associated with various tokens and
3320groupings, and by the actions taken when various groupings are recognized.
3321
3322For example, the calculator calculates properly because the value
3323associated with each expression is the proper number; it adds properly
3324because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3325the numbers associated with @var{x} and @var{y}.
3326
3327@menu
3328* Value Type:: Specifying one data type for all semantic values.
3329* Multiple Types:: Specifying several alternative data types.
3330* Actions:: An action is the semantic definition of a grammar rule.
3331* Action Types:: Specifying data types for actions to operate on.
3332* Mid-Rule Actions:: Most actions go at the end of a rule.
3333 This says when, why and how to use the exceptional
3334 action in the middle of a rule.
3335@end menu
3336
342b8b6e 3337@node Value Type
bfa74976
RS
3338@subsection Data Types of Semantic Values
3339@cindex semantic value type
3340@cindex value type, semantic
3341@cindex data types of semantic values
3342@cindex default data type
3343
3344In a simple program it may be sufficient to use the same data type for
3345the semantic values of all language constructs. This was true in the
c827f760 3346@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3347Notation Calculator}).
bfa74976 3348
ddc8ede1
PE
3349Bison normally uses the type @code{int} for semantic values if your
3350program uses the same data type for all language constructs. To
bfa74976
RS
3351specify some other type, define @code{YYSTYPE} as a macro, like this:
3352
3353@example
3354#define YYSTYPE double
3355@end example
3356
3357@noindent
50cce58e
PE
3358@code{YYSTYPE}'s replacement list should be a type name
3359that does not contain parentheses or square brackets.
342b8b6e 3360This macro definition must go in the prologue of the grammar file
75f5aaea 3361(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3362
342b8b6e 3363@node Multiple Types
bfa74976
RS
3364@subsection More Than One Value Type
3365
3366In most programs, you will need different data types for different kinds
3367of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3368@code{int} or @code{long int}, while a string constant needs type
3369@code{char *}, and an identifier might need a pointer to an entry in the
3370symbol table.
bfa74976
RS
3371
3372To use more than one data type for semantic values in one parser, Bison
3373requires you to do two things:
3374
3375@itemize @bullet
3376@item
ddc8ede1 3377Specify the entire collection of possible data types, either by using the
704a47c4 3378@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3379Value Types}), or by using a @code{typedef} or a @code{#define} to
3380define @code{YYSTYPE} to be a union type whose member names are
3381the type tags.
bfa74976
RS
3382
3383@item
14ded682
AD
3384Choose one of those types for each symbol (terminal or nonterminal) for
3385which semantic values are used. This is done for tokens with the
3386@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3387and for groupings with the @code{%type} Bison declaration (@pxref{Type
3388Decl, ,Nonterminal Symbols}).
bfa74976
RS
3389@end itemize
3390
342b8b6e 3391@node Actions
bfa74976
RS
3392@subsection Actions
3393@cindex action
3394@vindex $$
3395@vindex $@var{n}
3396
3397An action accompanies a syntactic rule and contains C code to be executed
3398each time an instance of that rule is recognized. The task of most actions
3399is to compute a semantic value for the grouping built by the rule from the
3400semantic values associated with tokens or smaller groupings.
3401
287c78f6
PE
3402An action consists of braced code containing C statements, and can be
3403placed at any position in the rule;
704a47c4
AD
3404it is executed at that position. Most rules have just one action at the
3405end of the rule, following all the components. Actions in the middle of
3406a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3407Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3408
3409The C code in an action can refer to the semantic values of the components
3410matched by the rule with the construct @code{$@var{n}}, which stands for
3411the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3412being constructed is @code{$$}. Bison translates both of these
3413constructs into expressions of the appropriate type when it copies the
3414actions into the parser file. @code{$$} is translated to a modifiable
3415lvalue, so it can be assigned to.
bfa74976
RS
3416
3417Here is a typical example:
3418
3419@example
3420@group
3421exp: @dots{}
3422 | exp '+' exp
3423 @{ $$ = $1 + $3; @}
3424@end group
3425@end example
3426
3427@noindent
3428This rule constructs an @code{exp} from two smaller @code{exp} groupings
3429connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3430refer to the semantic values of the two component @code{exp} groupings,
3431which are the first and third symbols on the right hand side of the rule.
3432The sum is stored into @code{$$} so that it becomes the semantic value of
3433the addition-expression just recognized by the rule. If there were a
3434useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3435referred to as @code{$2}.
bfa74976 3436
3ded9a63
AD
3437Note that the vertical-bar character @samp{|} is really a rule
3438separator, and actions are attached to a single rule. This is a
3439difference with tools like Flex, for which @samp{|} stands for either
3440``or'', or ``the same action as that of the next rule''. In the
3441following example, the action is triggered only when @samp{b} is found:
3442
3443@example
3444@group
3445a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3446@end group
3447@end example
3448
bfa74976
RS
3449@cindex default action
3450If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3451@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3452becomes the value of the whole rule. Of course, the default action is
3453valid only if the two data types match. There is no meaningful default
3454action for an empty rule; every empty rule must have an explicit action
3455unless the rule's value does not matter.
bfa74976
RS
3456
3457@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3458to tokens and groupings on the stack @emph{before} those that match the
3459current rule. This is a very risky practice, and to use it reliably
3460you must be certain of the context in which the rule is applied. Here
3461is a case in which you can use this reliably:
3462
3463@example
3464@group
3465foo: expr bar '+' expr @{ @dots{} @}
3466 | expr bar '-' expr @{ @dots{} @}
3467 ;
3468@end group
3469
3470@group
3471bar: /* empty */
3472 @{ previous_expr = $0; @}
3473 ;
3474@end group
3475@end example
3476
3477As long as @code{bar} is used only in the fashion shown here, @code{$0}
3478always refers to the @code{expr} which precedes @code{bar} in the
3479definition of @code{foo}.
3480
32c29292 3481@vindex yylval
742e4900 3482It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3483any, from a semantic action.
3484This semantic value is stored in @code{yylval}.
3485@xref{Action Features, ,Special Features for Use in Actions}.
3486
342b8b6e 3487@node Action Types
bfa74976
RS
3488@subsection Data Types of Values in Actions
3489@cindex action data types
3490@cindex data types in actions
3491
3492If you have chosen a single data type for semantic values, the @code{$$}
3493and @code{$@var{n}} constructs always have that data type.
3494
3495If you have used @code{%union} to specify a variety of data types, then you
3496must declare a choice among these types for each terminal or nonterminal
3497symbol that can have a semantic value. Then each time you use @code{$$} or
3498@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3499in the rule. In this example,
bfa74976
RS
3500
3501@example
3502@group
3503exp: @dots{}
3504 | exp '+' exp
3505 @{ $$ = $1 + $3; @}
3506@end group
3507@end example
3508
3509@noindent
3510@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3511have the data type declared for the nonterminal symbol @code{exp}. If
3512@code{$2} were used, it would have the data type declared for the
e0c471a9 3513terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3514
3515Alternatively, you can specify the data type when you refer to the value,
3516by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3517reference. For example, if you have defined types as shown here:
3518
3519@example
3520@group
3521%union @{
3522 int itype;
3523 double dtype;
3524@}
3525@end group
3526@end example
3527
3528@noindent
3529then you can write @code{$<itype>1} to refer to the first subunit of the
3530rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3531
342b8b6e 3532@node Mid-Rule Actions
bfa74976
RS
3533@subsection Actions in Mid-Rule
3534@cindex actions in mid-rule
3535@cindex mid-rule actions
3536
3537Occasionally it is useful to put an action in the middle of a rule.
3538These actions are written just like usual end-of-rule actions, but they
3539are executed before the parser even recognizes the following components.
3540
3541A mid-rule action may refer to the components preceding it using
3542@code{$@var{n}}, but it may not refer to subsequent components because
3543it is run before they are parsed.
3544
3545The mid-rule action itself counts as one of the components of the rule.
3546This makes a difference when there is another action later in the same rule
3547(and usually there is another at the end): you have to count the actions
3548along with the symbols when working out which number @var{n} to use in
3549@code{$@var{n}}.
3550
3551The mid-rule action can also have a semantic value. The action can set
3552its value with an assignment to @code{$$}, and actions later in the rule
3553can refer to the value using @code{$@var{n}}. Since there is no symbol
3554to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3555in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3556specify a data type each time you refer to this value.
bfa74976
RS
3557
3558There is no way to set the value of the entire rule with a mid-rule
3559action, because assignments to @code{$$} do not have that effect. The
3560only way to set the value for the entire rule is with an ordinary action
3561at the end of the rule.
3562
3563Here is an example from a hypothetical compiler, handling a @code{let}
3564statement that looks like @samp{let (@var{variable}) @var{statement}} and
3565serves to create a variable named @var{variable} temporarily for the
3566duration of @var{statement}. To parse this construct, we must put
3567@var{variable} into the symbol table while @var{statement} is parsed, then
3568remove it afterward. Here is how it is done:
3569
3570@example
3571@group
3572stmt: LET '(' var ')'
3573 @{ $<context>$ = push_context ();
3574 declare_variable ($3); @}
3575 stmt @{ $$ = $6;
3576 pop_context ($<context>5); @}
3577@end group
3578@end example
3579
3580@noindent
3581As soon as @samp{let (@var{variable})} has been recognized, the first
3582action is run. It saves a copy of the current semantic context (the
3583list of accessible variables) as its semantic value, using alternative
3584@code{context} in the data-type union. Then it calls
3585@code{declare_variable} to add the new variable to that list. Once the
3586first action is finished, the embedded statement @code{stmt} can be
3587parsed. Note that the mid-rule action is component number 5, so the
3588@samp{stmt} is component number 6.
3589
3590After the embedded statement is parsed, its semantic value becomes the
3591value of the entire @code{let}-statement. Then the semantic value from the
3592earlier action is used to restore the prior list of variables. This
3593removes the temporary @code{let}-variable from the list so that it won't
3594appear to exist while the rest of the program is parsed.
3595
841a7737
JD
3596@findex %destructor
3597@cindex discarded symbols, mid-rule actions
3598@cindex error recovery, mid-rule actions
3599In the above example, if the parser initiates error recovery (@pxref{Error
3600Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3601it might discard the previous semantic context @code{$<context>5} without
3602restoring it.
3603Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3604Discarded Symbols}).
ec5479ce
JD
3605However, Bison currently provides no means to declare a destructor specific to
3606a particular mid-rule action's semantic value.
841a7737
JD
3607
3608One solution is to bury the mid-rule action inside a nonterminal symbol and to
3609declare a destructor for that symbol:
3610
3611@example
3612@group
3613%type <context> let
3614%destructor @{ pop_context ($$); @} let
3615
3616%%
3617
3618stmt: let stmt
3619 @{ $$ = $2;
3620 pop_context ($1); @}
3621 ;
3622
3623let: LET '(' var ')'
3624 @{ $$ = push_context ();
3625 declare_variable ($3); @}
3626 ;
3627
3628@end group
3629@end example
3630
3631@noindent
3632Note that the action is now at the end of its rule.
3633Any mid-rule action can be converted to an end-of-rule action in this way, and
3634this is what Bison actually does to implement mid-rule actions.
3635
bfa74976
RS
3636Taking action before a rule is completely recognized often leads to
3637conflicts since the parser must commit to a parse in order to execute the
3638action. For example, the following two rules, without mid-rule actions,
3639can coexist in a working parser because the parser can shift the open-brace
3640token and look at what follows before deciding whether there is a
3641declaration or not:
3642
3643@example
3644@group
3645compound: '@{' declarations statements '@}'
3646 | '@{' statements '@}'
3647 ;
3648@end group
3649@end example
3650
3651@noindent
3652But when we add a mid-rule action as follows, the rules become nonfunctional:
3653
3654@example
3655@group
3656compound: @{ prepare_for_local_variables (); @}
3657 '@{' declarations statements '@}'
3658@end group
3659@group
3660 | '@{' statements '@}'
3661 ;
3662@end group
3663@end example
3664
3665@noindent
3666Now the parser is forced to decide whether to run the mid-rule action
3667when it has read no farther than the open-brace. In other words, it
3668must commit to using one rule or the other, without sufficient
3669information to do it correctly. (The open-brace token is what is called
742e4900
JD
3670the @dfn{lookahead} token at this time, since the parser is still
3671deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3672
3673You might think that you could correct the problem by putting identical
3674actions into the two rules, like this:
3675
3676@example
3677@group
3678compound: @{ prepare_for_local_variables (); @}
3679 '@{' declarations statements '@}'
3680 | @{ prepare_for_local_variables (); @}
3681 '@{' statements '@}'
3682 ;
3683@end group
3684@end example
3685
3686@noindent
3687But this does not help, because Bison does not realize that the two actions
3688are identical. (Bison never tries to understand the C code in an action.)
3689
3690If the grammar is such that a declaration can be distinguished from a
3691statement by the first token (which is true in C), then one solution which
3692does work is to put the action after the open-brace, like this:
3693
3694@example
3695@group
3696compound: '@{' @{ prepare_for_local_variables (); @}
3697 declarations statements '@}'
3698 | '@{' statements '@}'
3699 ;
3700@end group
3701@end example
3702
3703@noindent
3704Now the first token of the following declaration or statement,
3705which would in any case tell Bison which rule to use, can still do so.
3706
3707Another solution is to bury the action inside a nonterminal symbol which
3708serves as a subroutine:
3709
3710@example
3711@group
3712subroutine: /* empty */
3713 @{ prepare_for_local_variables (); @}
3714 ;
3715
3716@end group
3717
3718@group
3719compound: subroutine
3720 '@{' declarations statements '@}'
3721 | subroutine
3722 '@{' statements '@}'
3723 ;
3724@end group
3725@end example
3726
3727@noindent
3728Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3729deciding which rule for @code{compound} it will eventually use.
bfa74976 3730
342b8b6e 3731@node Locations
847bf1f5
AD
3732@section Tracking Locations
3733@cindex location
95923bd6
AD
3734@cindex textual location
3735@cindex location, textual
847bf1f5
AD
3736
3737Though grammar rules and semantic actions are enough to write a fully
72d2299c 3738functional parser, it can be useful to process some additional information,
3e259915
MA
3739especially symbol locations.
3740
704a47c4
AD
3741The way locations are handled is defined by providing a data type, and
3742actions to take when rules are matched.
847bf1f5
AD
3743
3744@menu
3745* Location Type:: Specifying a data type for locations.
3746* Actions and Locations:: Using locations in actions.
3747* Location Default Action:: Defining a general way to compute locations.
3748@end menu
3749
342b8b6e 3750@node Location Type
847bf1f5
AD
3751@subsection Data Type of Locations
3752@cindex data type of locations
3753@cindex default location type
3754
3755Defining a data type for locations is much simpler than for semantic values,
3756since all tokens and groupings always use the same type.
3757
50cce58e
PE
3758You can specify the type of locations by defining a macro called
3759@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3760defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3761When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3762four members:
3763
3764@example
6273355b 3765typedef struct YYLTYPE
847bf1f5
AD
3766@{
3767 int first_line;
3768 int first_column;
3769 int last_line;
3770 int last_column;
6273355b 3771@} YYLTYPE;
847bf1f5
AD
3772@end example
3773
cd48d21d
AD
3774At the beginning of the parsing, Bison initializes all these fields to 1
3775for @code{yylloc}.
3776
342b8b6e 3777@node Actions and Locations
847bf1f5
AD
3778@subsection Actions and Locations
3779@cindex location actions
3780@cindex actions, location
3781@vindex @@$
3782@vindex @@@var{n}
3783
3784Actions are not only useful for defining language semantics, but also for
3785describing the behavior of the output parser with locations.
3786
3787The most obvious way for building locations of syntactic groupings is very
72d2299c 3788similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3789constructs can be used to access the locations of the elements being matched.
3790The location of the @var{n}th component of the right hand side is
3791@code{@@@var{n}}, while the location of the left hand side grouping is
3792@code{@@$}.
3793
3e259915 3794Here is a basic example using the default data type for locations:
847bf1f5
AD
3795
3796@example
3797@group
3798exp: @dots{}
3e259915 3799 | exp '/' exp
847bf1f5 3800 @{
3e259915
MA
3801 @@$.first_column = @@1.first_column;
3802 @@$.first_line = @@1.first_line;
847bf1f5
AD
3803 @@$.last_column = @@3.last_column;
3804 @@$.last_line = @@3.last_line;
3e259915
MA
3805 if ($3)
3806 $$ = $1 / $3;
3807 else
3808 @{
3809 $$ = 1;
4e03e201
AD
3810 fprintf (stderr,
3811 "Division by zero, l%d,c%d-l%d,c%d",
3812 @@3.first_line, @@3.first_column,
3813 @@3.last_line, @@3.last_column);
3e259915 3814 @}
847bf1f5
AD
3815 @}
3816@end group
3817@end example
3818
3e259915 3819As for semantic values, there is a default action for locations that is
72d2299c 3820run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3821beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3822last symbol.
3e259915 3823
72d2299c 3824With this default action, the location tracking can be fully automatic. The
3e259915
MA
3825example above simply rewrites this way:
3826
3827@example
3828@group
3829exp: @dots{}
3830 | exp '/' exp
3831 @{
3832 if ($3)
3833 $$ = $1 / $3;
3834 else
3835 @{
3836 $$ = 1;
4e03e201
AD
3837 fprintf (stderr,
3838 "Division by zero, l%d,c%d-l%d,c%d",
3839 @@3.first_line, @@3.first_column,
3840 @@3.last_line, @@3.last_column);
3e259915
MA
3841 @}
3842 @}
3843@end group
3844@end example
847bf1f5 3845
32c29292 3846@vindex yylloc
742e4900 3847It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3848from a semantic action.
3849This location is stored in @code{yylloc}.
3850@xref{Action Features, ,Special Features for Use in Actions}.
3851
342b8b6e 3852@node Location Default Action
847bf1f5
AD
3853@subsection Default Action for Locations
3854@vindex YYLLOC_DEFAULT
8710fc41 3855@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3856
72d2299c 3857Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3858locations are much more general than semantic values, there is room in
3859the output parser to redefine the default action to take for each
72d2299c 3860rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3861matched, before the associated action is run. It is also invoked
3862while processing a syntax error, to compute the error's location.
8710fc41
JD
3863Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3864parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3865of that ambiguity.
847bf1f5 3866
3e259915 3867Most of the time, this macro is general enough to suppress location
79282c6c 3868dedicated code from semantic actions.
847bf1f5 3869
72d2299c 3870The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3871the location of the grouping (the result of the computation). When a
766de5eb 3872rule is matched, the second parameter identifies locations of
96b93a3d 3873all right hand side elements of the rule being matched, and the third
8710fc41
JD
3874parameter is the size of the rule's right hand side.
3875When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3876right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3877When processing a syntax error, the second parameter identifies locations
3878of the symbols that were discarded during error processing, and the third
96b93a3d 3879parameter is the number of discarded symbols.
847bf1f5 3880
766de5eb 3881By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3882
766de5eb 3883@smallexample
847bf1f5 3884@group
766de5eb
PE
3885# define YYLLOC_DEFAULT(Current, Rhs, N) \
3886 do \
3887 if (N) \
3888 @{ \
3889 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3890 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3891 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3892 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3893 @} \
3894 else \
3895 @{ \
3896 (Current).first_line = (Current).last_line = \
3897 YYRHSLOC(Rhs, 0).last_line; \
3898 (Current).first_column = (Current).last_column = \
3899 YYRHSLOC(Rhs, 0).last_column; \
3900 @} \
3901 while (0)
847bf1f5 3902@end group
766de5eb 3903@end smallexample
676385e2 3904
766de5eb
PE
3905where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3906in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3907just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3908
3e259915 3909When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3910
3e259915 3911@itemize @bullet
79282c6c 3912@item
72d2299c 3913All arguments are free of side-effects. However, only the first one (the
3e259915 3914result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3915
3e259915 3916@item
766de5eb
PE
3917For consistency with semantic actions, valid indexes within the
3918right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3919valid index, and it refers to the symbol just before the reduction.
3920During error processing @var{n} is always positive.
0ae99356
PE
3921
3922@item
3923Your macro should parenthesize its arguments, if need be, since the
3924actual arguments may not be surrounded by parentheses. Also, your
3925macro should expand to something that can be used as a single
3926statement when it is followed by a semicolon.
3e259915 3927@end itemize
847bf1f5 3928
342b8b6e 3929@node Declarations
bfa74976
RS
3930@section Bison Declarations
3931@cindex declarations, Bison
3932@cindex Bison declarations
3933
3934The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3935used in formulating the grammar and the data types of semantic values.
3936@xref{Symbols}.
3937
3938All token type names (but not single-character literal tokens such as
3939@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3940declared if you need to specify which data type to use for the semantic
3941value (@pxref{Multiple Types, ,More Than One Value Type}).
3942
3943The first rule in the file also specifies the start symbol, by default.
3944If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3945it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3946Grammars}).
bfa74976
RS
3947
3948@menu
b50d2359 3949* Require Decl:: Requiring a Bison version.
bfa74976
RS
3950* Token Decl:: Declaring terminal symbols.
3951* Precedence Decl:: Declaring terminals with precedence and associativity.
3952* Union Decl:: Declaring the set of all semantic value types.
3953* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3954* Initial Action Decl:: Code run before parsing starts.
72f889cc 3955* Destructor Decl:: Declaring how symbols are freed.
d6328241 3956* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3957* Start Decl:: Specifying the start symbol.
3958* Pure Decl:: Requesting a reentrant parser.
3959* Decl Summary:: Table of all Bison declarations.
3960@end menu
3961
b50d2359
AD
3962@node Require Decl
3963@subsection Require a Version of Bison
3964@cindex version requirement
3965@cindex requiring a version of Bison
3966@findex %require
3967
3968You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
3969the requirement is not met, @command{bison} exits with an error (exit
3970status 63).
b50d2359
AD
3971
3972@example
3973%require "@var{version}"
3974@end example
3975
342b8b6e 3976@node Token Decl
bfa74976
RS
3977@subsection Token Type Names
3978@cindex declaring token type names
3979@cindex token type names, declaring
931c7513 3980@cindex declaring literal string tokens
bfa74976
RS
3981@findex %token
3982
3983The basic way to declare a token type name (terminal symbol) is as follows:
3984
3985@example
3986%token @var{name}
3987@end example
3988
3989Bison will convert this into a @code{#define} directive in
3990the parser, so that the function @code{yylex} (if it is in this file)
3991can use the name @var{name} to stand for this token type's code.
3992
14ded682
AD
3993Alternatively, you can use @code{%left}, @code{%right}, or
3994@code{%nonassoc} instead of @code{%token}, if you wish to specify
3995associativity and precedence. @xref{Precedence Decl, ,Operator
3996Precedence}.
bfa74976
RS
3997
3998You can explicitly specify the numeric code for a token type by appending
1452af69
PE
3999a decimal or hexadecimal integer value in the field immediately
4000following the token name:
bfa74976
RS
4001
4002@example
4003%token NUM 300
1452af69 4004%token XNUM 0x12d // a GNU extension
bfa74976
RS
4005@end example
4006
4007@noindent
4008It is generally best, however, to let Bison choose the numeric codes for
4009all token types. Bison will automatically select codes that don't conflict
e966383b 4010with each other or with normal characters.
bfa74976
RS
4011
4012In the event that the stack type is a union, you must augment the
4013@code{%token} or other token declaration to include the data type
704a47c4
AD
4014alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4015Than One Value Type}).
bfa74976
RS
4016
4017For example:
4018
4019@example
4020@group
4021%union @{ /* define stack type */
4022 double val;
4023 symrec *tptr;
4024@}
4025%token <val> NUM /* define token NUM and its type */
4026@end group
4027@end example
4028
931c7513
RS
4029You can associate a literal string token with a token type name by
4030writing the literal string at the end of a @code{%token}
4031declaration which declares the name. For example:
4032
4033@example
4034%token arrow "=>"
4035@end example
4036
4037@noindent
4038For example, a grammar for the C language might specify these names with
4039equivalent literal string tokens:
4040
4041@example
4042%token <operator> OR "||"
4043%token <operator> LE 134 "<="
4044%left OR "<="
4045@end example
4046
4047@noindent
4048Once you equate the literal string and the token name, you can use them
4049interchangeably in further declarations or the grammar rules. The
4050@code{yylex} function can use the token name or the literal string to
4051obtain the token type code number (@pxref{Calling Convention}).
4052
342b8b6e 4053@node Precedence Decl
bfa74976
RS
4054@subsection Operator Precedence
4055@cindex precedence declarations
4056@cindex declaring operator precedence
4057@cindex operator precedence, declaring
4058
4059Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4060declare a token and specify its precedence and associativity, all at
4061once. These are called @dfn{precedence declarations}.
704a47c4
AD
4062@xref{Precedence, ,Operator Precedence}, for general information on
4063operator precedence.
bfa74976
RS
4064
4065The syntax of a precedence declaration is the same as that of
4066@code{%token}: either
4067
4068@example
4069%left @var{symbols}@dots{}
4070@end example
4071
4072@noindent
4073or
4074
4075@example
4076%left <@var{type}> @var{symbols}@dots{}
4077@end example
4078
4079And indeed any of these declarations serves the purposes of @code{%token}.
4080But in addition, they specify the associativity and relative precedence for
4081all the @var{symbols}:
4082
4083@itemize @bullet
4084@item
4085The associativity of an operator @var{op} determines how repeated uses
4086of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4087@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4088grouping @var{y} with @var{z} first. @code{%left} specifies
4089left-associativity (grouping @var{x} with @var{y} first) and
4090@code{%right} specifies right-associativity (grouping @var{y} with
4091@var{z} first). @code{%nonassoc} specifies no associativity, which
4092means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4093considered a syntax error.
4094
4095@item
4096The precedence of an operator determines how it nests with other operators.
4097All the tokens declared in a single precedence declaration have equal
4098precedence and nest together according to their associativity.
4099When two tokens declared in different precedence declarations associate,
4100the one declared later has the higher precedence and is grouped first.
4101@end itemize
4102
342b8b6e 4103@node Union Decl
bfa74976
RS
4104@subsection The Collection of Value Types
4105@cindex declaring value types
4106@cindex value types, declaring
4107@findex %union
4108
287c78f6
PE
4109The @code{%union} declaration specifies the entire collection of
4110possible data types for semantic values. The keyword @code{%union} is
4111followed by braced code containing the same thing that goes inside a
4112@code{union} in C@.
bfa74976
RS
4113
4114For example:
4115
4116@example
4117@group
4118%union @{
4119 double val;
4120 symrec *tptr;
4121@}
4122@end group
4123@end example
4124
4125@noindent
4126This says that the two alternative types are @code{double} and @code{symrec
4127*}. They are given names @code{val} and @code{tptr}; these names are used
4128in the @code{%token} and @code{%type} declarations to pick one of the types
4129for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4130
6273355b
PE
4131As an extension to @acronym{POSIX}, a tag is allowed after the
4132@code{union}. For example:
4133
4134@example
4135@group
4136%union value @{
4137 double val;
4138 symrec *tptr;
4139@}
4140@end group
4141@end example
4142
d6ca7905 4143@noindent
6273355b
PE
4144specifies the union tag @code{value}, so the corresponding C type is
4145@code{union value}. If you do not specify a tag, it defaults to
4146@code{YYSTYPE}.
4147
d6ca7905
PE
4148As another extension to @acronym{POSIX}, you may specify multiple
4149@code{%union} declarations; their contents are concatenated. However,
4150only the first @code{%union} declaration can specify a tag.
4151
6273355b 4152Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4153a semicolon after the closing brace.
4154
ddc8ede1
PE
4155Instead of @code{%union}, you can define and use your own union type
4156@code{YYSTYPE} if your grammar contains at least one
4157@samp{<@var{type}>} tag. For example, you can put the following into
4158a header file @file{parser.h}:
4159
4160@example
4161@group
4162union YYSTYPE @{
4163 double val;
4164 symrec *tptr;
4165@};
4166typedef union YYSTYPE YYSTYPE;
4167@end group
4168@end example
4169
4170@noindent
4171and then your grammar can use the following
4172instead of @code{%union}:
4173
4174@example
4175@group
4176%@{
4177#include "parser.h"
4178%@}
4179%type <val> expr
4180%token <tptr> ID
4181@end group
4182@end example
4183
342b8b6e 4184@node Type Decl
bfa74976
RS
4185@subsection Nonterminal Symbols
4186@cindex declaring value types, nonterminals
4187@cindex value types, nonterminals, declaring
4188@findex %type
4189
4190@noindent
4191When you use @code{%union} to specify multiple value types, you must
4192declare the value type of each nonterminal symbol for which values are
4193used. This is done with a @code{%type} declaration, like this:
4194
4195@example
4196%type <@var{type}> @var{nonterminal}@dots{}
4197@end example
4198
4199@noindent
704a47c4
AD
4200Here @var{nonterminal} is the name of a nonterminal symbol, and
4201@var{type} is the name given in the @code{%union} to the alternative
4202that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4203can give any number of nonterminal symbols in the same @code{%type}
4204declaration, if they have the same value type. Use spaces to separate
4205the symbol names.
bfa74976 4206
931c7513
RS
4207You can also declare the value type of a terminal symbol. To do this,
4208use the same @code{<@var{type}>} construction in a declaration for the
4209terminal symbol. All kinds of token declarations allow
4210@code{<@var{type}>}.
4211
18d192f0
AD
4212@node Initial Action Decl
4213@subsection Performing Actions before Parsing
4214@findex %initial-action
4215
4216Sometimes your parser needs to perform some initializations before
4217parsing. The @code{%initial-action} directive allows for such arbitrary
4218code.
4219
4220@deffn {Directive} %initial-action @{ @var{code} @}
4221@findex %initial-action
287c78f6 4222Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4223@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4224@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4225@code{%parse-param}.
18d192f0
AD
4226@end deffn
4227
451364ed
AD
4228For instance, if your locations use a file name, you may use
4229
4230@example
48b16bbc 4231%parse-param @{ char const *file_name @};
451364ed
AD
4232%initial-action
4233@{
4626a15d 4234 @@$.initialize (file_name);
451364ed
AD
4235@};
4236@end example
4237
18d192f0 4238
72f889cc
AD
4239@node Destructor Decl
4240@subsection Freeing Discarded Symbols
4241@cindex freeing discarded symbols
4242@findex %destructor
12e35840 4243@findex <*>
3ebecc24 4244@findex <>
a85284cf
AD
4245During error recovery (@pxref{Error Recovery}), symbols already pushed
4246on the stack and tokens coming from the rest of the file are discarded
4247until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4248or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4249symbols on the stack must be discarded. Even if the parser succeeds, it
4250must discard the start symbol.
258b75ca
PE
4251
4252When discarded symbols convey heap based information, this memory is
4253lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4254in traditional compilers, it is unacceptable for programs like shells or
4255protocol implementations that may parse and execute indefinitely.
258b75ca 4256
a85284cf
AD
4257The @code{%destructor} directive defines code that is called when a
4258symbol is automatically discarded.
72f889cc
AD
4259
4260@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4261@findex %destructor
287c78f6
PE
4262Invoke the braced @var{code} whenever the parser discards one of the
4263@var{symbols}.
4b367315 4264Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4265with the discarded symbol, and @code{@@$} designates its location.
4266The additional parser parameters are also available (@pxref{Parser Function, ,
4267The Parser Function @code{yyparse}}).
ec5479ce 4268
b2a0b7ca
JD
4269When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4270per-symbol @code{%destructor}.
4271You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4272tag among @var{symbols}.
b2a0b7ca 4273In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4274grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4275per-symbol @code{%destructor}.
4276
12e35840 4277Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4278(These default forms are experimental.
4279More user feedback will help to determine whether they should become permanent
4280features.)
3ebecc24 4281You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4282exactly one @code{%destructor} declaration in your grammar file.
4283The parser will invoke the @var{code} associated with one of these whenever it
4284discards any user-defined grammar symbol that has no per-symbol and no per-type
4285@code{%destructor}.
4286The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4287symbol for which you have formally declared a semantic type tag (@code{%type}
4288counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4289The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4290symbol that has no declared semantic type tag.
72f889cc
AD
4291@end deffn
4292
b2a0b7ca 4293@noindent
12e35840 4294For example:
72f889cc
AD
4295
4296@smallexample
ec5479ce
JD
4297%union @{ char *string; @}
4298%token <string> STRING1
4299%token <string> STRING2
4300%type <string> string1
4301%type <string> string2
b2a0b7ca
JD
4302%union @{ char character; @}
4303%token <character> CHR
4304%type <character> chr
12e35840
JD
4305%token TAGLESS
4306
b2a0b7ca 4307%destructor @{ @} <character>
12e35840
JD
4308%destructor @{ free ($$); @} <*>
4309%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4310%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4311@end smallexample
4312
4313@noindent
b2a0b7ca
JD
4314guarantees that, when the parser discards any user-defined symbol that has a
4315semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4316to @code{free} by default.
ec5479ce
JD
4317However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4318prints its line number to @code{stdout}.
4319It performs only the second @code{%destructor} in this case, so it invokes
4320@code{free} only once.
12e35840
JD
4321Finally, the parser merely prints a message whenever it discards any symbol,
4322such as @code{TAGLESS}, that has no semantic type tag.
4323
4324A Bison-generated parser invokes the default @code{%destructor}s only for
4325user-defined as opposed to Bison-defined symbols.
4326For example, the parser will not invoke either kind of default
4327@code{%destructor} for the special Bison-defined symbols @code{$accept},
4328@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4329none of which you can reference in your grammar.
4330It also will not invoke either for the @code{error} token (@pxref{Table of
4331Symbols, ,error}), which is always defined by Bison regardless of whether you
4332reference it in your grammar.
4333However, it may invoke one of them for the end token (token 0) if you
4334redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4335
4336@smallexample
4337%token END 0
4338@end smallexample
4339
12e35840
JD
4340@cindex actions in mid-rule
4341@cindex mid-rule actions
4342Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4343mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4344That is, Bison does not consider a mid-rule to have a semantic value if you do
4345not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4346@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4347rule.
4348However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4349@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4350
3508ce36
JD
4351@ignore
4352@noindent
4353In the future, it may be possible to redefine the @code{error} token as a
4354nonterminal that captures the discarded symbols.
4355In that case, the parser will invoke the default destructor for it as well.
4356@end ignore
4357
e757bb10
AD
4358@sp 1
4359
4360@cindex discarded symbols
4361@dfn{Discarded symbols} are the following:
4362
4363@itemize
4364@item
4365stacked symbols popped during the first phase of error recovery,
4366@item
4367incoming terminals during the second phase of error recovery,
4368@item
742e4900 4369the current lookahead and the entire stack (except the current
9d9b8b70 4370right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4371@item
4372the start symbol, when the parser succeeds.
e757bb10
AD
4373@end itemize
4374
9d9b8b70
PE
4375The parser can @dfn{return immediately} because of an explicit call to
4376@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4377exhaustion.
4378
4379Right-hand size symbols of a rule that explicitly triggers a syntax
4380error via @code{YYERROR} are not discarded automatically. As a rule
4381of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4382the memory.
e757bb10 4383
342b8b6e 4384@node Expect Decl
bfa74976
RS
4385@subsection Suppressing Conflict Warnings
4386@cindex suppressing conflict warnings
4387@cindex preventing warnings about conflicts
4388@cindex warnings, preventing
4389@cindex conflicts, suppressing warnings of
4390@findex %expect
d6328241 4391@findex %expect-rr
bfa74976
RS
4392
4393Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4394(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4395have harmless shift/reduce conflicts which are resolved in a predictable
4396way and would be difficult to eliminate. It is desirable to suppress
4397the warning about these conflicts unless the number of conflicts
4398changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4399
4400The declaration looks like this:
4401
4402@example
4403%expect @var{n}
4404@end example
4405
035aa4a0
PE
4406Here @var{n} is a decimal integer. The declaration says there should
4407be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4408Bison reports an error if the number of shift/reduce conflicts differs
4409from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4410
035aa4a0
PE
4411For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more
4412serious, and should be eliminated entirely. Bison will always report
4413reduce/reduce conflicts for these parsers. With @acronym{GLR}
4414parsers, however, both kinds of conflicts are routine; otherwise,
4415there would be no need to use @acronym{GLR} parsing. Therefore, it is
4416also possible to specify an expected number of reduce/reduce conflicts
4417in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4418
4419@example
4420%expect-rr @var{n}
4421@end example
4422
bfa74976
RS
4423In general, using @code{%expect} involves these steps:
4424
4425@itemize @bullet
4426@item
4427Compile your grammar without @code{%expect}. Use the @samp{-v} option
4428to get a verbose list of where the conflicts occur. Bison will also
4429print the number of conflicts.
4430
4431@item
4432Check each of the conflicts to make sure that Bison's default
4433resolution is what you really want. If not, rewrite the grammar and
4434go back to the beginning.
4435
4436@item
4437Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4438number which Bison printed. With @acronym{GLR} parsers, add an
4439@code{%expect-rr} declaration as well.
bfa74976
RS
4440@end itemize
4441
035aa4a0
PE
4442Now Bison will warn you if you introduce an unexpected conflict, but
4443will keep silent otherwise.
bfa74976 4444
342b8b6e 4445@node Start Decl
bfa74976
RS
4446@subsection The Start-Symbol
4447@cindex declaring the start symbol
4448@cindex start symbol, declaring
4449@cindex default start symbol
4450@findex %start
4451
4452Bison assumes by default that the start symbol for the grammar is the first
4453nonterminal specified in the grammar specification section. The programmer
4454may override this restriction with the @code{%start} declaration as follows:
4455
4456@example
4457%start @var{symbol}
4458@end example
4459
342b8b6e 4460@node Pure Decl
bfa74976
RS
4461@subsection A Pure (Reentrant) Parser
4462@cindex reentrant parser
4463@cindex pure parser
8c9a50be 4464@findex %pure-parser
bfa74976
RS
4465
4466A @dfn{reentrant} program is one which does not alter in the course of
4467execution; in other words, it consists entirely of @dfn{pure} (read-only)
4468code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4469for example, a nonreentrant program may not be safe to call from a signal
4470handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4471program must be called only within interlocks.
4472
70811b85 4473Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4474suitable for most uses, and it permits compatibility with Yacc. (The
4475standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4476statically allocated variables for communication with @code{yylex},
4477including @code{yylval} and @code{yylloc}.)
bfa74976 4478
70811b85 4479Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 4480declaration @code{%pure-parser} says that you want the parser to be
70811b85 4481reentrant. It looks like this:
bfa74976
RS
4482
4483@example
8c9a50be 4484%pure-parser
bfa74976
RS
4485@end example
4486
70811b85
RS
4487The result is that the communication variables @code{yylval} and
4488@code{yylloc} become local variables in @code{yyparse}, and a different
4489calling convention is used for the lexical analyzer function
4490@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
4491Parsers}, for the details of this. The variable @code{yynerrs} also
4492becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
4493Reporting Function @code{yyerror}}). The convention for calling
4494@code{yyparse} itself is unchanged.
4495
4496Whether the parser is pure has nothing to do with the grammar rules.
4497You can generate either a pure parser or a nonreentrant parser from any
4498valid grammar.
bfa74976 4499
342b8b6e 4500@node Decl Summary
bfa74976
RS
4501@subsection Bison Declaration Summary
4502@cindex Bison declaration summary
4503@cindex declaration summary
4504@cindex summary, Bison declaration
4505
d8988b2f 4506Here is a summary of the declarations used to define a grammar:
bfa74976 4507
18b519c0 4508@deffn {Directive} %union
bfa74976
RS
4509Declare the collection of data types that semantic values may have
4510(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4511@end deffn
bfa74976 4512
18b519c0 4513@deffn {Directive} %token
bfa74976
RS
4514Declare a terminal symbol (token type name) with no precedence
4515or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4516@end deffn
bfa74976 4517
18b519c0 4518@deffn {Directive} %right
bfa74976
RS
4519Declare a terminal symbol (token type name) that is right-associative
4520(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4521@end deffn
bfa74976 4522
18b519c0 4523@deffn {Directive} %left
bfa74976
RS
4524Declare a terminal symbol (token type name) that is left-associative
4525(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4526@end deffn
bfa74976 4527
18b519c0 4528@deffn {Directive} %nonassoc
bfa74976 4529Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4530(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4531Using it in a way that would be associative is a syntax error.
4532@end deffn
4533
91d2c560 4534@ifset defaultprec
39a06c25 4535@deffn {Directive} %default-prec
22fccf95 4536Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4537(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4538@end deffn
91d2c560 4539@end ifset
bfa74976 4540
18b519c0 4541@deffn {Directive} %type
bfa74976
RS
4542Declare the type of semantic values for a nonterminal symbol
4543(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4544@end deffn
bfa74976 4545
18b519c0 4546@deffn {Directive} %start
89cab50d
AD
4547Specify the grammar's start symbol (@pxref{Start Decl, ,The
4548Start-Symbol}).
18b519c0 4549@end deffn
bfa74976 4550
18b519c0 4551@deffn {Directive} %expect
bfa74976
RS
4552Declare the expected number of shift-reduce conflicts
4553(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4554@end deffn
4555
bfa74976 4556
d8988b2f
AD
4557@sp 1
4558@noindent
4559In order to change the behavior of @command{bison}, use the following
4560directives:
4561
18b519c0 4562@deffn {Directive} %debug
4947ebdb
PE
4563In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4564already defined, so that the debugging facilities are compiled.
18b519c0 4565@end deffn
ec3bc396 4566@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 4567
18b519c0 4568@deffn {Directive} %defines
4bfd5e4e
PE
4569Write a header file containing macro definitions for the token type
4570names defined in the grammar as well as a few other declarations.
d8988b2f 4571If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 4572is named @file{@var{name}.h}.
d8988b2f 4573
b321737f 4574For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
4575@code{YYSTYPE} is already defined as a macro or you have used a
4576@code{<@var{type}>} tag without using @code{%union}.
4577Therefore, if you are using a @code{%union}
f8e1c9e5
AD
4578(@pxref{Multiple Types, ,More Than One Value Type}) with components that
4579require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 4580or type definition
f8e1c9e5
AD
4581(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
4582arrange for these definitions to be propagated to all modules, e.g., by
4583putting them in a prerequisite header that is included both by your
4584parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
4585
4586Unless your parser is pure, the output header declares @code{yylval}
4587as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
4588Parser}.
4589
4590If you have also used locations, the output header declares
4591@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 4592the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
4593Locations}.
4594
f8e1c9e5
AD
4595This output file is normally essential if you wish to put the definition
4596of @code{yylex} in a separate source file, because @code{yylex}
4597typically needs to be able to refer to the above-mentioned declarations
4598and to the token type codes. @xref{Token Values, ,Semantic Values of
4599Tokens}.
9bc0dd67 4600
136a0f76
PB
4601@findex %requires
4602@findex %provides
4603If you have declared @code{%requires} or @code{%provides}, the output
34f98f46 4604header also contains their code.
136a0f76 4605@xref{Table of Symbols, ,%requires}.
18b519c0 4606@end deffn
d8988b2f 4607
02975b9a
JD
4608@deffn {Directive} %defines @var{defines-file}
4609Same as above, but save in the file @var{defines-file}.
4610@end deffn
4611
18b519c0 4612@deffn {Directive} %destructor
258b75ca 4613Specify how the parser should reclaim the memory associated to
fa7e68c3 4614discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 4615@end deffn
72f889cc 4616
02975b9a 4617@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
4618Specify a prefix to use for all Bison output file names. The names are
4619chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 4620@end deffn
d8988b2f 4621
e6e704dc 4622@deffn {Directive} %language "@var{language}"
0e021770
PE
4623Specify the programming language for the generated parser. Currently
4624supported languages include C and C++.
e6e704dc 4625@var{language} is case-insensitive.
0e021770
PE
4626@end deffn
4627
18b519c0 4628@deffn {Directive} %locations
89cab50d
AD
4629Generate the code processing the locations (@pxref{Action Features,
4630,Special Features for Use in Actions}). This mode is enabled as soon as
4631the grammar uses the special @samp{@@@var{n}} tokens, but if your
4632grammar does not use it, using @samp{%locations} allows for more
6e649e65 4633accurate syntax error messages.
18b519c0 4634@end deffn
89cab50d 4635
02975b9a 4636@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
4637Rename the external symbols used in the parser so that they start with
4638@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 4639in C parsers
d8988b2f 4640is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a
PE
4641@code{yylval}, @code{yychar}, @code{yydebug}, and
4642(if locations are used) @code{yylloc}. For example, if you use
02975b9a 4643@samp{%name-prefix "c_"}, the names become @code{c_parse}, @code{c_lex},
aa08666d
AD
4644and so on. In C++ parsers, it is only the surrounding namespace which is
4645named @var{prefix} instead of @samp{yy}.
4646@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 4647@end deffn
931c7513 4648
91d2c560 4649@ifset defaultprec
22fccf95
PE
4650@deffn {Directive} %no-default-prec
4651Do not assign a precedence to rules lacking an explicit @code{%prec}
4652modifier (@pxref{Contextual Precedence, ,Context-Dependent
4653Precedence}).
4654@end deffn
91d2c560 4655@end ifset
22fccf95 4656
18b519c0 4657@deffn {Directive} %no-parser
6deb4447
AD
4658Do not include any C code in the parser file; generate tables only. The
4659parser file contains just @code{#define} directives and static variable
4660declarations.
4661
4662This option also tells Bison to write the C code for the grammar actions
fa4d969f 4663into a file named @file{@var{file}.act}, in the form of a
6deb4447 4664brace-surrounded body fit for a @code{switch} statement.
18b519c0 4665@end deffn
6deb4447 4666
18b519c0 4667@deffn {Directive} %no-lines
931c7513
RS
4668Don't generate any @code{#line} preprocessor commands in the parser
4669file. Ordinarily Bison writes these commands in the parser file so that
4670the C compiler and debuggers will associate errors and object code with
4671your source file (the grammar file). This directive causes them to
4672associate errors with the parser file, treating it an independent source
4673file in its own right.
18b519c0 4674@end deffn
931c7513 4675
02975b9a 4676@deffn {Directive} %output "@var{file}"
fa4d969f 4677Specify @var{file} for the parser file.
18b519c0 4678@end deffn
6deb4447 4679
18b519c0 4680@deffn {Directive} %pure-parser
d8988b2f
AD
4681Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
4682(Reentrant) Parser}).
18b519c0 4683@end deffn
6deb4447 4684
b50d2359 4685@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
4686Require version @var{version} or higher of Bison. @xref{Require Decl, ,
4687Require a Version of Bison}.
b50d2359
AD
4688@end deffn
4689
0e021770
PE
4690@deffn {Directive} %skeleton "@var{file}"
4691Specify the skeleton to use. You probably don't need this option unless
e6e704dc
JD
4692you are developing Bison; you should use @code{%language} if you want to
4693specify the skeleton for a different language, because it is clearer and
4694because it will always choose the correct skeleton for non-deterministic
4695or push parsers.
0e021770
PE
4696@end deffn
4697
18b519c0 4698@deffn {Directive} %token-table
931c7513
RS
4699Generate an array of token names in the parser file. The name of the
4700array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 4701token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
4702three elements of @code{yytname} correspond to the predefined tokens
4703@code{"$end"},
88bce5a2
AD
4704@code{"error"}, and @code{"$undefined"}; after these come the symbols
4705defined in the grammar file.
931c7513 4706
9e0876fb
PE
4707The name in the table includes all the characters needed to represent
4708the token in Bison. For single-character literals and literal
4709strings, this includes the surrounding quoting characters and any
4710escape sequences. For example, the Bison single-character literal
4711@code{'+'} corresponds to a three-character name, represented in C as
4712@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
4713corresponds to a five-character name, represented in C as
4714@code{"\"\\\\/\""}.
931c7513 4715
8c9a50be 4716When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
4717definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
4718@code{YYNRULES}, and @code{YYNSTATES}:
4719
4720@table @code
4721@item YYNTOKENS
4722The highest token number, plus one.
4723@item YYNNTS
9ecbd125 4724The number of nonterminal symbols.
931c7513
RS
4725@item YYNRULES
4726The number of grammar rules,
4727@item YYNSTATES
4728The number of parser states (@pxref{Parser States}).
4729@end table
18b519c0 4730@end deffn
d8988b2f 4731
18b519c0 4732@deffn {Directive} %verbose
d8988b2f 4733Write an extra output file containing verbose descriptions of the
742e4900 4734parser states and what is done for each type of lookahead token in
72d2299c 4735that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 4736information.
18b519c0 4737@end deffn
d8988b2f 4738
18b519c0 4739@deffn {Directive} %yacc
d8988b2f
AD
4740Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
4741including its naming conventions. @xref{Bison Options}, for more.
18b519c0 4742@end deffn
d8988b2f
AD
4743
4744
342b8b6e 4745@node Multiple Parsers
bfa74976
RS
4746@section Multiple Parsers in the Same Program
4747
4748Most programs that use Bison parse only one language and therefore contain
4749only one Bison parser. But what if you want to parse more than one
4750language with the same program? Then you need to avoid a name conflict
4751between different definitions of @code{yyparse}, @code{yylval}, and so on.
4752
4753The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
4754(@pxref{Invocation, ,Invoking Bison}). This renames the interface
4755functions and variables of the Bison parser to start with @var{prefix}
4756instead of @samp{yy}. You can use this to give each parser distinct
4757names that do not conflict.
bfa74976
RS
4758
4759The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a
AD
4760@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
4761@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
4762the names become @code{cparse}, @code{clex}, and so on.
bfa74976
RS
4763
4764@strong{All the other variables and macros associated with Bison are not
4765renamed.} These others are not global; there is no conflict if the same
4766name is used in different parsers. For example, @code{YYSTYPE} is not
4767renamed, but defining this in different ways in different parsers causes
4768no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
4769
4770The @samp{-p} option works by adding macro definitions to the beginning
4771of the parser source file, defining @code{yyparse} as
4772@code{@var{prefix}parse}, and so on. This effectively substitutes one
4773name for the other in the entire parser file.
4774
342b8b6e 4775@node Interface
bfa74976
RS
4776@chapter Parser C-Language Interface
4777@cindex C-language interface
4778@cindex interface
4779
4780The Bison parser is actually a C function named @code{yyparse}. Here we
4781describe the interface conventions of @code{yyparse} and the other
4782functions that it needs to use.
4783
4784Keep in mind that the parser uses many C identifiers starting with
4785@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
4786identifier (aside from those in this manual) in an action or in epilogue
4787in the grammar file, you are likely to run into trouble.
bfa74976
RS
4788
4789@menu
4790* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 4791* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
4792 which reads tokens.
4793* Error Reporting:: You must supply a function @code{yyerror}.
4794* Action Features:: Special features for use in actions.
f7ab6a50
PE
4795* Internationalization:: How to let the parser speak in the user's
4796 native language.
bfa74976
RS
4797@end menu
4798
342b8b6e 4799@node Parser Function
bfa74976
RS
4800@section The Parser Function @code{yyparse}
4801@findex yyparse
4802
4803You call the function @code{yyparse} to cause parsing to occur. This
4804function reads tokens, executes actions, and ultimately returns when it
4805encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
4806write an action which directs @code{yyparse} to return immediately
4807without reading further.
bfa74976 4808
2a8d363a
AD
4809
4810@deftypefun int yyparse (void)
bfa74976
RS
4811The value returned by @code{yyparse} is 0 if parsing was successful (return
4812is due to end-of-input).
4813
b47dbebe
PE
4814The value is 1 if parsing failed because of invalid input, i.e., input
4815that contains a syntax error or that causes @code{YYABORT} to be
4816invoked.
4817
4818The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 4819@end deftypefun
bfa74976
RS
4820
4821In an action, you can cause immediate return from @code{yyparse} by using
4822these macros:
4823
2a8d363a 4824@defmac YYACCEPT
bfa74976
RS
4825@findex YYACCEPT
4826Return immediately with value 0 (to report success).
2a8d363a 4827@end defmac
bfa74976 4828
2a8d363a 4829@defmac YYABORT
bfa74976
RS
4830@findex YYABORT
4831Return immediately with value 1 (to report failure).
2a8d363a
AD
4832@end defmac
4833
4834If you use a reentrant parser, you can optionally pass additional
4835parameter information to it in a reentrant way. To do so, use the
4836declaration @code{%parse-param}:
4837
feeb0eda 4838@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 4839@findex %parse-param
287c78f6
PE
4840Declare that an argument declared by the braced-code
4841@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 4842The @var{argument-declaration} is used when declaring
feeb0eda
PE
4843functions or prototypes. The last identifier in
4844@var{argument-declaration} must be the argument name.
2a8d363a
AD
4845@end deffn
4846
4847Here's an example. Write this in the parser:
4848
4849@example
feeb0eda
PE
4850%parse-param @{int *nastiness@}
4851%parse-param @{int *randomness@}
2a8d363a
AD
4852@end example
4853
4854@noindent
4855Then call the parser like this:
4856
4857@example
4858@{
4859 int nastiness, randomness;
4860 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
4861 value = yyparse (&nastiness, &randomness);
4862 @dots{}
4863@}
4864@end example
4865
4866@noindent
4867In the grammar actions, use expressions like this to refer to the data:
4868
4869@example
4870exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
4871@end example
4872
bfa74976 4873
342b8b6e 4874@node Lexical
bfa74976
RS
4875@section The Lexical Analyzer Function @code{yylex}
4876@findex yylex
4877@cindex lexical analyzer
4878
4879The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
4880the input stream and returns them to the parser. Bison does not create
4881this function automatically; you must write it so that @code{yyparse} can
4882call it. The function is sometimes referred to as a lexical scanner.
4883
4884In simple programs, @code{yylex} is often defined at the end of the Bison
4885grammar file. If @code{yylex} is defined in a separate source file, you
4886need to arrange for the token-type macro definitions to be available there.
4887To do this, use the @samp{-d} option when you run Bison, so that it will
4888write these macro definitions into a separate header file
4889@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 4890that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
4891
4892@menu
4893* Calling Convention:: How @code{yyparse} calls @code{yylex}.
4894* Token Values:: How @code{yylex} must return the semantic value
4895 of the token it has read.
95923bd6 4896* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
4897 (line number, etc.) of the token, if the
4898 actions want that.
4899* Pure Calling:: How the calling convention differs
4900 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
4901@end menu
4902
342b8b6e 4903@node Calling Convention
bfa74976
RS
4904@subsection Calling Convention for @code{yylex}
4905
72d2299c
PE
4906The value that @code{yylex} returns must be the positive numeric code
4907for the type of token it has just found; a zero or negative value
4908signifies end-of-input.
bfa74976
RS
4909
4910When a token is referred to in the grammar rules by a name, that name
4911in the parser file becomes a C macro whose definition is the proper
4912numeric code for that token type. So @code{yylex} can use the name
4913to indicate that type. @xref{Symbols}.
4914
4915When a token is referred to in the grammar rules by a character literal,
4916the numeric code for that character is also the code for the token type.
72d2299c
PE
4917So @code{yylex} can simply return that character code, possibly converted
4918to @code{unsigned char} to avoid sign-extension. The null character
4919must not be used this way, because its code is zero and that
bfa74976
RS
4920signifies end-of-input.
4921
4922Here is an example showing these things:
4923
4924@example
13863333
AD
4925int
4926yylex (void)
bfa74976
RS
4927@{
4928 @dots{}
72d2299c 4929 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
4930 return 0;
4931 @dots{}
4932 if (c == '+' || c == '-')
72d2299c 4933 return c; /* Assume token type for `+' is '+'. */
bfa74976 4934 @dots{}
72d2299c 4935 return INT; /* Return the type of the token. */
bfa74976
RS
4936 @dots{}
4937@}
4938@end example
4939
4940@noindent
4941This interface has been designed so that the output from the @code{lex}
4942utility can be used without change as the definition of @code{yylex}.
4943
931c7513
RS
4944If the grammar uses literal string tokens, there are two ways that
4945@code{yylex} can determine the token type codes for them:
4946
4947@itemize @bullet
4948@item
4949If the grammar defines symbolic token names as aliases for the
4950literal string tokens, @code{yylex} can use these symbolic names like
4951all others. In this case, the use of the literal string tokens in
4952the grammar file has no effect on @code{yylex}.
4953
4954@item
9ecbd125 4955@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 4956table. The index of the token in the table is the token type's code.
9ecbd125 4957The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 4958double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
4959token's characters are escaped as necessary to be suitable as input
4960to Bison.
931c7513 4961
9e0876fb
PE
4962Here's code for looking up a multicharacter token in @code{yytname},
4963assuming that the characters of the token are stored in
4964@code{token_buffer}, and assuming that the token does not contain any
4965characters like @samp{"} that require escaping.
931c7513
RS
4966
4967@smallexample
4968for (i = 0; i < YYNTOKENS; i++)
4969 @{
4970 if (yytname[i] != 0
4971 && yytname[i][0] == '"'
68449b3a
PE
4972 && ! strncmp (yytname[i] + 1, token_buffer,
4973 strlen (token_buffer))
931c7513
RS
4974 && yytname[i][strlen (token_buffer) + 1] == '"'
4975 && yytname[i][strlen (token_buffer) + 2] == 0)
4976 break;
4977 @}
4978@end smallexample
4979
4980The @code{yytname} table is generated only if you use the
8c9a50be 4981@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
4982@end itemize
4983
342b8b6e 4984@node Token Values
bfa74976
RS
4985@subsection Semantic Values of Tokens
4986
4987@vindex yylval
9d9b8b70 4988In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
4989be stored into the global variable @code{yylval}. When you are using
4990just one data type for semantic values, @code{yylval} has that type.
4991Thus, if the type is @code{int} (the default), you might write this in
4992@code{yylex}:
4993
4994@example
4995@group
4996 @dots{}
72d2299c
PE
4997 yylval = value; /* Put value onto Bison stack. */
4998 return INT; /* Return the type of the token. */
bfa74976
RS
4999 @dots{}
5000@end group
5001@end example
5002
5003When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5004made from the @code{%union} declaration (@pxref{Union Decl, ,The
5005Collection of Value Types}). So when you store a token's value, you
5006must use the proper member of the union. If the @code{%union}
5007declaration looks like this:
bfa74976
RS
5008
5009@example
5010@group
5011%union @{
5012 int intval;
5013 double val;
5014 symrec *tptr;
5015@}
5016@end group
5017@end example
5018
5019@noindent
5020then the code in @code{yylex} might look like this:
5021
5022@example
5023@group
5024 @dots{}
72d2299c
PE
5025 yylval.intval = value; /* Put value onto Bison stack. */
5026 return INT; /* Return the type of the token. */
bfa74976
RS
5027 @dots{}
5028@end group
5029@end example
5030
95923bd6
AD
5031@node Token Locations
5032@subsection Textual Locations of Tokens
bfa74976
RS
5033
5034@vindex yylloc
847bf1f5 5035If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5036Tracking Locations}) in actions to keep track of the textual locations
5037of tokens and groupings, then you must provide this information in
5038@code{yylex}. The function @code{yyparse} expects to find the textual
5039location of a token just parsed in the global variable @code{yylloc}.
5040So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5041
5042By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5043initialize the members that are going to be used by the actions. The
5044four members are called @code{first_line}, @code{first_column},
5045@code{last_line} and @code{last_column}. Note that the use of this
5046feature makes the parser noticeably slower.
bfa74976
RS
5047
5048@tindex YYLTYPE
5049The data type of @code{yylloc} has the name @code{YYLTYPE}.
5050
342b8b6e 5051@node Pure Calling
c656404a 5052@subsection Calling Conventions for Pure Parsers
bfa74976 5053
8c9a50be 5054When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
5055pure, reentrant parser, the global communication variables @code{yylval}
5056and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5057Parser}.) In such parsers the two global variables are replaced by
5058pointers passed as arguments to @code{yylex}. You must declare them as
5059shown here, and pass the information back by storing it through those
5060pointers.
bfa74976
RS
5061
5062@example
13863333
AD
5063int
5064yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5065@{
5066 @dots{}
5067 *lvalp = value; /* Put value onto Bison stack. */
5068 return INT; /* Return the type of the token. */
5069 @dots{}
5070@}
5071@end example
5072
5073If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5074textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5075this case, omit the second argument; @code{yylex} will be called with
5076only one argument.
5077
e425e872 5078
2a8d363a
AD
5079If you wish to pass the additional parameter data to @code{yylex}, use
5080@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5081Function}).
e425e872 5082
feeb0eda 5083@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5084@findex %lex-param
287c78f6
PE
5085Declare that the braced-code @var{argument-declaration} is an
5086additional @code{yylex} argument declaration.
2a8d363a 5087@end deffn
e425e872 5088
2a8d363a 5089For instance:
e425e872
RS
5090
5091@example
feeb0eda
PE
5092%parse-param @{int *nastiness@}
5093%lex-param @{int *nastiness@}
5094%parse-param @{int *randomness@}
e425e872
RS
5095@end example
5096
5097@noindent
2a8d363a 5098results in the following signature:
e425e872
RS
5099
5100@example
2a8d363a
AD
5101int yylex (int *nastiness);
5102int yyparse (int *nastiness, int *randomness);
e425e872
RS
5103@end example
5104
2a8d363a 5105If @code{%pure-parser} is added:
c656404a
RS
5106
5107@example
2a8d363a
AD
5108int yylex (YYSTYPE *lvalp, int *nastiness);
5109int yyparse (int *nastiness, int *randomness);
c656404a
RS
5110@end example
5111
2a8d363a
AD
5112@noindent
5113and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 5114
2a8d363a
AD
5115@example
5116int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5117int yyparse (int *nastiness, int *randomness);
5118@end example
931c7513 5119
342b8b6e 5120@node Error Reporting
bfa74976
RS
5121@section The Error Reporting Function @code{yyerror}
5122@cindex error reporting function
5123@findex yyerror
5124@cindex parse error
5125@cindex syntax error
5126
6e649e65 5127The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 5128whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 5129action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
5130macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
5131in Actions}).
bfa74976
RS
5132
5133The Bison parser expects to report the error by calling an error
5134reporting function named @code{yyerror}, which you must supply. It is
5135called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
5136receives one argument. For a syntax error, the string is normally
5137@w{@code{"syntax error"}}.
bfa74976 5138
2a8d363a
AD
5139@findex %error-verbose
5140If you invoke the directive @code{%error-verbose} in the Bison
5141declarations section (@pxref{Bison Declarations, ,The Bison Declarations
5142Section}), then Bison provides a more verbose and specific error message
6e649e65 5143string instead of just plain @w{@code{"syntax error"}}.
bfa74976 5144
1a059451
PE
5145The parser can detect one other kind of error: memory exhaustion. This
5146can happen when the input contains constructions that are very deeply
bfa74976 5147nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
5148parser normally extends its stack automatically up to a very large limit. But
5149if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
5150fashion, except that the argument string is @w{@code{"memory exhausted"}}.
5151
5152In some cases diagnostics like @w{@code{"syntax error"}} are
5153translated automatically from English to some other language before
5154they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
5155
5156The following definition suffices in simple programs:
5157
5158@example
5159@group
13863333 5160void
38a92d50 5161yyerror (char const *s)
bfa74976
RS
5162@{
5163@end group
5164@group
5165 fprintf (stderr, "%s\n", s);
5166@}
5167@end group
5168@end example
5169
5170After @code{yyerror} returns to @code{yyparse}, the latter will attempt
5171error recovery if you have written suitable error recovery grammar rules
5172(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
5173immediately return 1.
5174
93724f13 5175Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
5176an access to the current location.
5177This is indeed the case for the @acronym{GLR}
2a8d363a
AD
5178parsers, but not for the Yacc parser, for historical reasons. I.e., if
5179@samp{%locations %pure-parser} is passed then the prototypes for
5180@code{yyerror} are:
5181
5182@example
38a92d50
PE
5183void yyerror (char const *msg); /* Yacc parsers. */
5184void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
5185@end example
5186
feeb0eda 5187If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
5188
5189@example
b317297e
PE
5190void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
5191void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
5192@end example
5193
fa7e68c3 5194Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
5195convention for absolutely pure parsers, i.e., when the calling
5196convention of @code{yylex} @emph{and} the calling convention of
5197@code{%pure-parser} are pure. I.e.:
5198
5199@example
5200/* Location tracking. */
5201%locations
5202/* Pure yylex. */
5203%pure-parser
feeb0eda 5204%lex-param @{int *nastiness@}
2a8d363a 5205/* Pure yyparse. */
feeb0eda
PE
5206%parse-param @{int *nastiness@}
5207%parse-param @{int *randomness@}
2a8d363a
AD
5208@end example
5209
5210@noindent
5211results in the following signatures for all the parser kinds:
5212
5213@example
5214int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5215int yyparse (int *nastiness, int *randomness);
93724f13
AD
5216void yyerror (YYLTYPE *locp,
5217 int *nastiness, int *randomness,
38a92d50 5218 char const *msg);
2a8d363a
AD
5219@end example
5220
1c0c3e95 5221@noindent
38a92d50
PE
5222The prototypes are only indications of how the code produced by Bison
5223uses @code{yyerror}. Bison-generated code always ignores the returned
5224value, so @code{yyerror} can return any type, including @code{void}.
5225Also, @code{yyerror} can be a variadic function; that is why the
5226message is always passed last.
5227
5228Traditionally @code{yyerror} returns an @code{int} that is always
5229ignored, but this is purely for historical reasons, and @code{void} is
5230preferable since it more accurately describes the return type for
5231@code{yyerror}.
93724f13 5232
bfa74976
RS
5233@vindex yynerrs
5234The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 5235reported so far. Normally this variable is global; but if you
704a47c4
AD
5236request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
5237then it is a local variable which only the actions can access.
bfa74976 5238
342b8b6e 5239@node Action Features
bfa74976
RS
5240@section Special Features for Use in Actions
5241@cindex summary, action features
5242@cindex action features summary
5243
5244Here is a table of Bison constructs, variables and macros that
5245are useful in actions.
5246
18b519c0 5247@deffn {Variable} $$
bfa74976
RS
5248Acts like a variable that contains the semantic value for the
5249grouping made by the current rule. @xref{Actions}.
18b519c0 5250@end deffn
bfa74976 5251
18b519c0 5252@deffn {Variable} $@var{n}
bfa74976
RS
5253Acts like a variable that contains the semantic value for the
5254@var{n}th component of the current rule. @xref{Actions}.
18b519c0 5255@end deffn
bfa74976 5256
18b519c0 5257@deffn {Variable} $<@var{typealt}>$
bfa74976 5258Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
5259specified by the @code{%union} declaration. @xref{Action Types, ,Data
5260Types of Values in Actions}.
18b519c0 5261@end deffn
bfa74976 5262
18b519c0 5263@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 5264Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 5265union specified by the @code{%union} declaration.
e0c471a9 5266@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 5267@end deffn
bfa74976 5268
18b519c0 5269@deffn {Macro} YYABORT;
bfa74976
RS
5270Return immediately from @code{yyparse}, indicating failure.
5271@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5272@end deffn
bfa74976 5273
18b519c0 5274@deffn {Macro} YYACCEPT;
bfa74976
RS
5275Return immediately from @code{yyparse}, indicating success.
5276@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5277@end deffn
bfa74976 5278
18b519c0 5279@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
5280@findex YYBACKUP
5281Unshift a token. This macro is allowed only for rules that reduce
742e4900 5282a single value, and only when there is no lookahead token.
c827f760 5283It is also disallowed in @acronym{GLR} parsers.
742e4900 5284It installs a lookahead token with token type @var{token} and
bfa74976
RS
5285semantic value @var{value}; then it discards the value that was
5286going to be reduced by this rule.
5287
5288If the macro is used when it is not valid, such as when there is
742e4900 5289a lookahead token already, then it reports a syntax error with
bfa74976
RS
5290a message @samp{cannot back up} and performs ordinary error
5291recovery.
5292
5293In either case, the rest of the action is not executed.
18b519c0 5294@end deffn
bfa74976 5295
18b519c0 5296@deffn {Macro} YYEMPTY
bfa74976 5297@vindex YYEMPTY
742e4900 5298Value stored in @code{yychar} when there is no lookahead token.
18b519c0 5299@end deffn
bfa74976 5300
32c29292
JD
5301@deffn {Macro} YYEOF
5302@vindex YYEOF
742e4900 5303Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
5304stream.
5305@end deffn
5306
18b519c0 5307@deffn {Macro} YYERROR;
bfa74976
RS
5308@findex YYERROR
5309Cause an immediate syntax error. This statement initiates error
5310recovery just as if the parser itself had detected an error; however, it
5311does not call @code{yyerror}, and does not print any message. If you
5312want to print an error message, call @code{yyerror} explicitly before
5313the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 5314@end deffn
bfa74976 5315
18b519c0 5316@deffn {Macro} YYRECOVERING
02103984
PE
5317@findex YYRECOVERING
5318The expression @code{YYRECOVERING ()} yields 1 when the parser
5319is recovering from a syntax error, and 0 otherwise.
bfa74976 5320@xref{Error Recovery}.
18b519c0 5321@end deffn
bfa74976 5322
18b519c0 5323@deffn {Variable} yychar
742e4900
JD
5324Variable containing either the lookahead token, or @code{YYEOF} when the
5325lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
5326has been performed so the next token is not yet known.
5327Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
5328Actions}).
742e4900 5329@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 5330@end deffn
bfa74976 5331
18b519c0 5332@deffn {Macro} yyclearin;
742e4900 5333Discard the current lookahead token. This is useful primarily in
32c29292
JD
5334error rules.
5335Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
5336Semantic Actions}).
5337@xref{Error Recovery}.
18b519c0 5338@end deffn
bfa74976 5339
18b519c0 5340@deffn {Macro} yyerrok;
bfa74976 5341Resume generating error messages immediately for subsequent syntax
13863333 5342errors. This is useful primarily in error rules.
bfa74976 5343@xref{Error Recovery}.
18b519c0 5344@end deffn
bfa74976 5345
32c29292 5346@deffn {Variable} yylloc
742e4900 5347Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
5348to @code{YYEMPTY} or @code{YYEOF}.
5349Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
5350Actions}).
5351@xref{Actions and Locations, ,Actions and Locations}.
5352@end deffn
5353
5354@deffn {Variable} yylval
742e4900 5355Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
5356not set to @code{YYEMPTY} or @code{YYEOF}.
5357Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
5358Actions}).
5359@xref{Actions, ,Actions}.
5360@end deffn
5361
18b519c0 5362@deffn {Value} @@$
847bf1f5 5363@findex @@$
95923bd6 5364Acts like a structure variable containing information on the textual location
847bf1f5
AD
5365of the grouping made by the current rule. @xref{Locations, ,
5366Tracking Locations}.
bfa74976 5367
847bf1f5
AD
5368@c Check if those paragraphs are still useful or not.
5369
5370@c @example
5371@c struct @{
5372@c int first_line, last_line;
5373@c int first_column, last_column;
5374@c @};
5375@c @end example
5376
5377@c Thus, to get the starting line number of the third component, you would
5378@c use @samp{@@3.first_line}.
bfa74976 5379
847bf1f5
AD
5380@c In order for the members of this structure to contain valid information,
5381@c you must make @code{yylex} supply this information about each token.
5382@c If you need only certain members, then @code{yylex} need only fill in
5383@c those members.
bfa74976 5384
847bf1f5 5385@c The use of this feature makes the parser noticeably slower.
18b519c0 5386@end deffn
847bf1f5 5387
18b519c0 5388@deffn {Value} @@@var{n}
847bf1f5 5389@findex @@@var{n}
95923bd6 5390Acts like a structure variable containing information on the textual location
847bf1f5
AD
5391of the @var{n}th component of the current rule. @xref{Locations, ,
5392Tracking Locations}.
18b519c0 5393@end deffn
bfa74976 5394
f7ab6a50
PE
5395@node Internationalization
5396@section Parser Internationalization
5397@cindex internationalization
5398@cindex i18n
5399@cindex NLS
5400@cindex gettext
5401@cindex bison-po
5402
5403A Bison-generated parser can print diagnostics, including error and
5404tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
5405also supports outputting diagnostics in the user's native language. To
5406make this work, the user should set the usual environment variables.
5407@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
5408For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
5409set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
5410encoding. The exact set of available locales depends on the user's
5411installation.
5412
5413The maintainer of a package that uses a Bison-generated parser enables
5414the internationalization of the parser's output through the following
5415steps. Here we assume a package that uses @acronym{GNU} Autoconf and
5416@acronym{GNU} Automake.
5417
5418@enumerate
5419@item
30757c8c 5420@cindex bison-i18n.m4
f7ab6a50
PE
5421Into the directory containing the @acronym{GNU} Autoconf macros used
5422by the package---often called @file{m4}---copy the
5423@file{bison-i18n.m4} file installed by Bison under
5424@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
5425For example:
5426
5427@example
5428cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
5429@end example
5430
5431@item
30757c8c
PE
5432@findex BISON_I18N
5433@vindex BISON_LOCALEDIR
5434@vindex YYENABLE_NLS
f7ab6a50
PE
5435In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
5436invocation, add an invocation of @code{BISON_I18N}. This macro is
5437defined in the file @file{bison-i18n.m4} that you copied earlier. It
5438causes @samp{configure} to find the value of the
30757c8c
PE
5439@code{BISON_LOCALEDIR} variable, and it defines the source-language
5440symbol @code{YYENABLE_NLS} to enable translations in the
5441Bison-generated parser.
f7ab6a50
PE
5442
5443@item
5444In the @code{main} function of your program, designate the directory
5445containing Bison's runtime message catalog, through a call to
5446@samp{bindtextdomain} with domain name @samp{bison-runtime}.
5447For example:
5448
5449@example
5450bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
5451@end example
5452
5453Typically this appears after any other call @code{bindtextdomain
5454(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
5455@samp{BISON_LOCALEDIR} to be defined as a string through the
5456@file{Makefile}.
5457
5458@item
5459In the @file{Makefile.am} that controls the compilation of the @code{main}
5460function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
5461either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
5462
5463@example
5464DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5465@end example
5466
5467or:
5468
5469@example
5470AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5471@end example
5472
5473@item
5474Finally, invoke the command @command{autoreconf} to generate the build
5475infrastructure.
5476@end enumerate
5477
bfa74976 5478
342b8b6e 5479@node Algorithm
13863333
AD
5480@chapter The Bison Parser Algorithm
5481@cindex Bison parser algorithm
bfa74976
RS
5482@cindex algorithm of parser
5483@cindex shifting
5484@cindex reduction
5485@cindex parser stack
5486@cindex stack, parser
5487
5488As Bison reads tokens, it pushes them onto a stack along with their
5489semantic values. The stack is called the @dfn{parser stack}. Pushing a
5490token is traditionally called @dfn{shifting}.
5491
5492For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
5493@samp{3} to come. The stack will have four elements, one for each token
5494that was shifted.
5495
5496But the stack does not always have an element for each token read. When
5497the last @var{n} tokens and groupings shifted match the components of a
5498grammar rule, they can be combined according to that rule. This is called
5499@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
5500single grouping whose symbol is the result (left hand side) of that rule.
5501Running the rule's action is part of the process of reduction, because this
5502is what computes the semantic value of the resulting grouping.
5503
5504For example, if the infix calculator's parser stack contains this:
5505
5506@example
55071 + 5 * 3
5508@end example
5509
5510@noindent
5511and the next input token is a newline character, then the last three
5512elements can be reduced to 15 via the rule:
5513
5514@example
5515expr: expr '*' expr;
5516@end example
5517
5518@noindent
5519Then the stack contains just these three elements:
5520
5521@example
55221 + 15
5523@end example
5524
5525@noindent
5526At this point, another reduction can be made, resulting in the single value
552716. Then the newline token can be shifted.
5528
5529The parser tries, by shifts and reductions, to reduce the entire input down
5530to a single grouping whose symbol is the grammar's start-symbol
5531(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
5532
5533This kind of parser is known in the literature as a bottom-up parser.
5534
5535@menu
742e4900 5536* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
5537* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
5538* Precedence:: Operator precedence works by resolving conflicts.
5539* Contextual Precedence:: When an operator's precedence depends on context.
5540* Parser States:: The parser is a finite-state-machine with stack.
5541* Reduce/Reduce:: When two rules are applicable in the same situation.
5542* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 5543* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 5544* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
5545@end menu
5546
742e4900
JD
5547@node Lookahead
5548@section Lookahead Tokens
5549@cindex lookahead token
bfa74976
RS
5550
5551The Bison parser does @emph{not} always reduce immediately as soon as the
5552last @var{n} tokens and groupings match a rule. This is because such a
5553simple strategy is inadequate to handle most languages. Instead, when a
5554reduction is possible, the parser sometimes ``looks ahead'' at the next
5555token in order to decide what to do.
5556
5557When a token is read, it is not immediately shifted; first it becomes the
742e4900 5558@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 5559perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
5560the lookahead token remains off to the side. When no more reductions
5561should take place, the lookahead token is shifted onto the stack. This
bfa74976 5562does not mean that all possible reductions have been done; depending on the
742e4900 5563token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
5564application.
5565
742e4900 5566Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
5567expressions which contain binary addition operators and postfix unary
5568factorial operators (@samp{!}), and allow parentheses for grouping.
5569
5570@example
5571@group
5572expr: term '+' expr
5573 | term
5574 ;
5575@end group
5576
5577@group
5578term: '(' expr ')'
5579 | term '!'
5580 | NUMBER
5581 ;
5582@end group
5583@end example
5584
5585Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
5586should be done? If the following token is @samp{)}, then the first three
5587tokens must be reduced to form an @code{expr}. This is the only valid
5588course, because shifting the @samp{)} would produce a sequence of symbols
5589@w{@code{term ')'}}, and no rule allows this.
5590
5591If the following token is @samp{!}, then it must be shifted immediately so
5592that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
5593parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
5594@code{expr}. It would then be impossible to shift the @samp{!} because
5595doing so would produce on the stack the sequence of symbols @code{expr
5596'!'}. No rule allows that sequence.
5597
5598@vindex yychar
32c29292
JD
5599@vindex yylval
5600@vindex yylloc
742e4900 5601The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
5602Its semantic value and location, if any, are stored in the variables
5603@code{yylval} and @code{yylloc}.
bfa74976
RS
5604@xref{Action Features, ,Special Features for Use in Actions}.
5605
342b8b6e 5606@node Shift/Reduce
bfa74976
RS
5607@section Shift/Reduce Conflicts
5608@cindex conflicts
5609@cindex shift/reduce conflicts
5610@cindex dangling @code{else}
5611@cindex @code{else}, dangling
5612
5613Suppose we are parsing a language which has if-then and if-then-else
5614statements, with a pair of rules like this:
5615
5616@example
5617@group
5618if_stmt:
5619 IF expr THEN stmt
5620 | IF expr THEN stmt ELSE stmt
5621 ;
5622@end group
5623@end example
5624
5625@noindent
5626Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
5627terminal symbols for specific keyword tokens.
5628
742e4900 5629When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
5630contents of the stack (assuming the input is valid) are just right for
5631reduction by the first rule. But it is also legitimate to shift the
5632@code{ELSE}, because that would lead to eventual reduction by the second
5633rule.
5634
5635This situation, where either a shift or a reduction would be valid, is
5636called a @dfn{shift/reduce conflict}. Bison is designed to resolve
5637these conflicts by choosing to shift, unless otherwise directed by
5638operator precedence declarations. To see the reason for this, let's
5639contrast it with the other alternative.
5640
5641Since the parser prefers to shift the @code{ELSE}, the result is to attach
5642the else-clause to the innermost if-statement, making these two inputs
5643equivalent:
5644
5645@example
5646if x then if y then win (); else lose;
5647
5648if x then do; if y then win (); else lose; end;
5649@end example
5650
5651But if the parser chose to reduce when possible rather than shift, the
5652result would be to attach the else-clause to the outermost if-statement,
5653making these two inputs equivalent:
5654
5655@example
5656if x then if y then win (); else lose;
5657
5658if x then do; if y then win (); end; else lose;
5659@end example
5660
5661The conflict exists because the grammar as written is ambiguous: either
5662parsing of the simple nested if-statement is legitimate. The established
5663convention is that these ambiguities are resolved by attaching the
5664else-clause to the innermost if-statement; this is what Bison accomplishes
5665by choosing to shift rather than reduce. (It would ideally be cleaner to
5666write an unambiguous grammar, but that is very hard to do in this case.)
5667This particular ambiguity was first encountered in the specifications of
5668Algol 60 and is called the ``dangling @code{else}'' ambiguity.
5669
5670To avoid warnings from Bison about predictable, legitimate shift/reduce
5671conflicts, use the @code{%expect @var{n}} declaration. There will be no
5672warning as long as the number of shift/reduce conflicts is exactly @var{n}.
5673@xref{Expect Decl, ,Suppressing Conflict Warnings}.
5674
5675The definition of @code{if_stmt} above is solely to blame for the
5676conflict, but the conflict does not actually appear without additional
5677rules. Here is a complete Bison input file that actually manifests the
5678conflict:
5679
5680@example
5681@group
5682%token IF THEN ELSE variable
5683%%
5684@end group
5685@group
5686stmt: expr
5687 | if_stmt
5688 ;
5689@end group
5690
5691@group
5692if_stmt:
5693 IF expr THEN stmt
5694 | IF expr THEN stmt ELSE stmt
5695 ;
5696@end group
5697
5698expr: variable
5699 ;
5700@end example
5701
342b8b6e 5702@node Precedence
bfa74976
RS
5703@section Operator Precedence
5704@cindex operator precedence
5705@cindex precedence of operators
5706
5707Another situation where shift/reduce conflicts appear is in arithmetic
5708expressions. Here shifting is not always the preferred resolution; the
5709Bison declarations for operator precedence allow you to specify when to
5710shift and when to reduce.
5711
5712@menu
5713* Why Precedence:: An example showing why precedence is needed.
5714* Using Precedence:: How to specify precedence in Bison grammars.
5715* Precedence Examples:: How these features are used in the previous example.
5716* How Precedence:: How they work.
5717@end menu
5718
342b8b6e 5719@node Why Precedence
bfa74976
RS
5720@subsection When Precedence is Needed
5721
5722Consider the following ambiguous grammar fragment (ambiguous because the
5723input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
5724
5725@example
5726@group
5727expr: expr '-' expr
5728 | expr '*' expr
5729 | expr '<' expr
5730 | '(' expr ')'
5731 @dots{}
5732 ;
5733@end group
5734@end example
5735
5736@noindent
5737Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
5738should it reduce them via the rule for the subtraction operator? It
5739depends on the next token. Of course, if the next token is @samp{)}, we
5740must reduce; shifting is invalid because no single rule can reduce the
5741token sequence @w{@samp{- 2 )}} or anything starting with that. But if
5742the next token is @samp{*} or @samp{<}, we have a choice: either
5743shifting or reduction would allow the parse to complete, but with
5744different results.
5745
5746To decide which one Bison should do, we must consider the results. If
5747the next operator token @var{op} is shifted, then it must be reduced
5748first in order to permit another opportunity to reduce the difference.
5749The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
5750hand, if the subtraction is reduced before shifting @var{op}, the result
5751is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
5752reduce should depend on the relative precedence of the operators
5753@samp{-} and @var{op}: @samp{*} should be shifted first, but not
5754@samp{<}.
bfa74976
RS
5755
5756@cindex associativity
5757What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
5758@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
5759operators we prefer the former, which is called @dfn{left association}.
5760The latter alternative, @dfn{right association}, is desirable for
5761assignment operators. The choice of left or right association is a
5762matter of whether the parser chooses to shift or reduce when the stack
742e4900 5763contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 5764makes right-associativity.
bfa74976 5765
342b8b6e 5766@node Using Precedence
bfa74976
RS
5767@subsection Specifying Operator Precedence
5768@findex %left
5769@findex %right
5770@findex %nonassoc
5771
5772Bison allows you to specify these choices with the operator precedence
5773declarations @code{%left} and @code{%right}. Each such declaration
5774contains a list of tokens, which are operators whose precedence and
5775associativity is being declared. The @code{%left} declaration makes all
5776those operators left-associative and the @code{%right} declaration makes
5777them right-associative. A third alternative is @code{%nonassoc}, which
5778declares that it is a syntax error to find the same operator twice ``in a
5779row''.
5780
5781The relative precedence of different operators is controlled by the
5782order in which they are declared. The first @code{%left} or
5783@code{%right} declaration in the file declares the operators whose
5784precedence is lowest, the next such declaration declares the operators
5785whose precedence is a little higher, and so on.
5786
342b8b6e 5787@node Precedence Examples
bfa74976
RS
5788@subsection Precedence Examples
5789
5790In our example, we would want the following declarations:
5791
5792@example
5793%left '<'
5794%left '-'
5795%left '*'
5796@end example
5797
5798In a more complete example, which supports other operators as well, we
5799would declare them in groups of equal precedence. For example, @code{'+'} is
5800declared with @code{'-'}:
5801
5802@example
5803%left '<' '>' '=' NE LE GE
5804%left '+' '-'
5805%left '*' '/'
5806@end example
5807
5808@noindent
5809(Here @code{NE} and so on stand for the operators for ``not equal''
5810and so on. We assume that these tokens are more than one character long
5811and therefore are represented by names, not character literals.)
5812
342b8b6e 5813@node How Precedence
bfa74976
RS
5814@subsection How Precedence Works
5815
5816The first effect of the precedence declarations is to assign precedence
5817levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
5818precedence levels to certain rules: each rule gets its precedence from
5819the last terminal symbol mentioned in the components. (You can also
5820specify explicitly the precedence of a rule. @xref{Contextual
5821Precedence, ,Context-Dependent Precedence}.)
5822
5823Finally, the resolution of conflicts works by comparing the precedence
742e4900 5824of the rule being considered with that of the lookahead token. If the
704a47c4
AD
5825token's precedence is higher, the choice is to shift. If the rule's
5826precedence is higher, the choice is to reduce. If they have equal
5827precedence, the choice is made based on the associativity of that
5828precedence level. The verbose output file made by @samp{-v}
5829(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
5830resolved.
bfa74976
RS
5831
5832Not all rules and not all tokens have precedence. If either the rule or
742e4900 5833the lookahead token has no precedence, then the default is to shift.
bfa74976 5834
342b8b6e 5835@node Contextual Precedence
bfa74976
RS
5836@section Context-Dependent Precedence
5837@cindex context-dependent precedence
5838@cindex unary operator precedence
5839@cindex precedence, context-dependent
5840@cindex precedence, unary operator
5841@findex %prec
5842
5843Often the precedence of an operator depends on the context. This sounds
5844outlandish at first, but it is really very common. For example, a minus
5845sign typically has a very high precedence as a unary operator, and a
5846somewhat lower precedence (lower than multiplication) as a binary operator.
5847
5848The Bison precedence declarations, @code{%left}, @code{%right} and
5849@code{%nonassoc}, can only be used once for a given token; so a token has
5850only one precedence declared in this way. For context-dependent
5851precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 5852modifier for rules.
bfa74976
RS
5853
5854The @code{%prec} modifier declares the precedence of a particular rule by
5855specifying a terminal symbol whose precedence should be used for that rule.
5856It's not necessary for that symbol to appear otherwise in the rule. The
5857modifier's syntax is:
5858
5859@example
5860%prec @var{terminal-symbol}
5861@end example
5862
5863@noindent
5864and it is written after the components of the rule. Its effect is to
5865assign the rule the precedence of @var{terminal-symbol}, overriding
5866the precedence that would be deduced for it in the ordinary way. The
5867altered rule precedence then affects how conflicts involving that rule
5868are resolved (@pxref{Precedence, ,Operator Precedence}).
5869
5870Here is how @code{%prec} solves the problem of unary minus. First, declare
5871a precedence for a fictitious terminal symbol named @code{UMINUS}. There
5872are no tokens of this type, but the symbol serves to stand for its
5873precedence:
5874
5875@example
5876@dots{}
5877%left '+' '-'
5878%left '*'
5879%left UMINUS
5880@end example
5881
5882Now the precedence of @code{UMINUS} can be used in specific rules:
5883
5884@example
5885@group
5886exp: @dots{}
5887 | exp '-' exp
5888 @dots{}
5889 | '-' exp %prec UMINUS
5890@end group
5891@end example
5892
91d2c560 5893@ifset defaultprec
39a06c25
PE
5894If you forget to append @code{%prec UMINUS} to the rule for unary
5895minus, Bison silently assumes that minus has its usual precedence.
5896This kind of problem can be tricky to debug, since one typically
5897discovers the mistake only by testing the code.
5898
22fccf95 5899The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
5900this kind of problem systematically. It causes rules that lack a
5901@code{%prec} modifier to have no precedence, even if the last terminal
5902symbol mentioned in their components has a declared precedence.
5903
22fccf95 5904If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
5905for all rules that participate in precedence conflict resolution.
5906Then you will see any shift/reduce conflict until you tell Bison how
5907to resolve it, either by changing your grammar or by adding an
5908explicit precedence. This will probably add declarations to the
5909grammar, but it helps to protect against incorrect rule precedences.
5910
22fccf95
PE
5911The effect of @code{%no-default-prec;} can be reversed by giving
5912@code{%default-prec;}, which is the default.
91d2c560 5913@end ifset
39a06c25 5914
342b8b6e 5915@node Parser States
bfa74976
RS
5916@section Parser States
5917@cindex finite-state machine
5918@cindex parser state
5919@cindex state (of parser)
5920
5921The function @code{yyparse} is implemented using a finite-state machine.
5922The values pushed on the parser stack are not simply token type codes; they
5923represent the entire sequence of terminal and nonterminal symbols at or
5924near the top of the stack. The current state collects all the information
5925about previous input which is relevant to deciding what to do next.
5926
742e4900
JD
5927Each time a lookahead token is read, the current parser state together
5928with the type of lookahead token are looked up in a table. This table
5929entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
5930specifies the new parser state, which is pushed onto the top of the
5931parser stack. Or it can say, ``Reduce using rule number @var{n}.''
5932This means that a certain number of tokens or groupings are taken off
5933the top of the stack, and replaced by one grouping. In other words,
5934that number of states are popped from the stack, and one new state is
5935pushed.
5936
742e4900 5937There is one other alternative: the table can say that the lookahead token
bfa74976
RS
5938is erroneous in the current state. This causes error processing to begin
5939(@pxref{Error Recovery}).
5940
342b8b6e 5941@node Reduce/Reduce
bfa74976
RS
5942@section Reduce/Reduce Conflicts
5943@cindex reduce/reduce conflict
5944@cindex conflicts, reduce/reduce
5945
5946A reduce/reduce conflict occurs if there are two or more rules that apply
5947to the same sequence of input. This usually indicates a serious error
5948in the grammar.
5949
5950For example, here is an erroneous attempt to define a sequence
5951of zero or more @code{word} groupings.
5952
5953@example
5954sequence: /* empty */
5955 @{ printf ("empty sequence\n"); @}
5956 | maybeword
5957 | sequence word
5958 @{ printf ("added word %s\n", $2); @}
5959 ;
5960
5961maybeword: /* empty */
5962 @{ printf ("empty maybeword\n"); @}
5963 | word
5964 @{ printf ("single word %s\n", $1); @}
5965 ;
5966@end example
5967
5968@noindent
5969The error is an ambiguity: there is more than one way to parse a single
5970@code{word} into a @code{sequence}. It could be reduced to a
5971@code{maybeword} and then into a @code{sequence} via the second rule.
5972Alternatively, nothing-at-all could be reduced into a @code{sequence}
5973via the first rule, and this could be combined with the @code{word}
5974using the third rule for @code{sequence}.
5975
5976There is also more than one way to reduce nothing-at-all into a
5977@code{sequence}. This can be done directly via the first rule,
5978or indirectly via @code{maybeword} and then the second rule.
5979
5980You might think that this is a distinction without a difference, because it
5981does not change whether any particular input is valid or not. But it does
5982affect which actions are run. One parsing order runs the second rule's
5983action; the other runs the first rule's action and the third rule's action.
5984In this example, the output of the program changes.
5985
5986Bison resolves a reduce/reduce conflict by choosing to use the rule that
5987appears first in the grammar, but it is very risky to rely on this. Every
5988reduce/reduce conflict must be studied and usually eliminated. Here is the
5989proper way to define @code{sequence}:
5990
5991@example
5992sequence: /* empty */
5993 @{ printf ("empty sequence\n"); @}
5994 | sequence word
5995 @{ printf ("added word %s\n", $2); @}
5996 ;
5997@end example
5998
5999Here is another common error that yields a reduce/reduce conflict:
6000
6001@example
6002sequence: /* empty */
6003 | sequence words
6004 | sequence redirects
6005 ;
6006
6007words: /* empty */
6008 | words word
6009 ;
6010
6011redirects:/* empty */
6012 | redirects redirect
6013 ;
6014@end example
6015
6016@noindent
6017The intention here is to define a sequence which can contain either
6018@code{word} or @code{redirect} groupings. The individual definitions of
6019@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6020three together make a subtle ambiguity: even an empty input can be parsed
6021in infinitely many ways!
6022
6023Consider: nothing-at-all could be a @code{words}. Or it could be two
6024@code{words} in a row, or three, or any number. It could equally well be a
6025@code{redirects}, or two, or any number. Or it could be a @code{words}
6026followed by three @code{redirects} and another @code{words}. And so on.
6027
6028Here are two ways to correct these rules. First, to make it a single level
6029of sequence:
6030
6031@example
6032sequence: /* empty */
6033 | sequence word
6034 | sequence redirect
6035 ;
6036@end example
6037
6038Second, to prevent either a @code{words} or a @code{redirects}
6039from being empty:
6040
6041@example
6042sequence: /* empty */
6043 | sequence words
6044 | sequence redirects
6045 ;
6046
6047words: word
6048 | words word
6049 ;
6050
6051redirects:redirect
6052 | redirects redirect
6053 ;
6054@end example
6055
342b8b6e 6056@node Mystery Conflicts
bfa74976
RS
6057@section Mysterious Reduce/Reduce Conflicts
6058
6059Sometimes reduce/reduce conflicts can occur that don't look warranted.
6060Here is an example:
6061
6062@example
6063@group
6064%token ID
6065
6066%%
6067def: param_spec return_spec ','
6068 ;
6069param_spec:
6070 type
6071 | name_list ':' type
6072 ;
6073@end group
6074@group
6075return_spec:
6076 type
6077 | name ':' type
6078 ;
6079@end group
6080@group
6081type: ID
6082 ;
6083@end group
6084@group
6085name: ID
6086 ;
6087name_list:
6088 name
6089 | name ',' name_list
6090 ;
6091@end group
6092@end example
6093
6094It would seem that this grammar can be parsed with only a single token
742e4900 6095of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6096a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 6097@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 6098
c827f760
PE
6099@cindex @acronym{LR}(1)
6100@cindex @acronym{LALR}(1)
bfa74976 6101However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
6102@acronym{LR}(1) grammars. In this grammar, two contexts, that after
6103an @code{ID}
bfa74976
RS
6104at the beginning of a @code{param_spec} and likewise at the beginning of
6105a @code{return_spec}, are similar enough that Bison assumes they are the
6106same. They appear similar because the same set of rules would be
6107active---the rule for reducing to a @code{name} and that for reducing to
6108a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6109that the rules would require different lookahead tokens in the two
bfa74976
RS
6110contexts, so it makes a single parser state for them both. Combining
6111the two contexts causes a conflict later. In parser terminology, this
c827f760 6112occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
6113
6114In general, it is better to fix deficiencies than to document them. But
6115this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
6116generators that can handle @acronym{LR}(1) grammars are hard to write
6117and tend to
bfa74976
RS
6118produce parsers that are very large. In practice, Bison is more useful
6119as it is now.
6120
6121When the problem arises, you can often fix it by identifying the two
a220f555
MA
6122parser states that are being confused, and adding something to make them
6123look distinct. In the above example, adding one rule to
bfa74976
RS
6124@code{return_spec} as follows makes the problem go away:
6125
6126@example
6127@group
6128%token BOGUS
6129@dots{}
6130%%
6131@dots{}
6132return_spec:
6133 type
6134 | name ':' type
6135 /* This rule is never used. */
6136 | ID BOGUS
6137 ;
6138@end group
6139@end example
6140
6141This corrects the problem because it introduces the possibility of an
6142additional active rule in the context after the @code{ID} at the beginning of
6143@code{return_spec}. This rule is not active in the corresponding context
6144in a @code{param_spec}, so the two contexts receive distinct parser states.
6145As long as the token @code{BOGUS} is never generated by @code{yylex},
6146the added rule cannot alter the way actual input is parsed.
6147
6148In this particular example, there is another way to solve the problem:
6149rewrite the rule for @code{return_spec} to use @code{ID} directly
6150instead of via @code{name}. This also causes the two confusing
6151contexts to have different sets of active rules, because the one for
6152@code{return_spec} activates the altered rule for @code{return_spec}
6153rather than the one for @code{name}.
6154
6155@example
6156param_spec:
6157 type
6158 | name_list ':' type
6159 ;
6160return_spec:
6161 type
6162 | ID ':' type
6163 ;
6164@end example
6165
e054b190
PE
6166For a more detailed exposition of @acronym{LALR}(1) parsers and parser
6167generators, please see:
6168Frank DeRemer and Thomas Pennello, Efficient Computation of
6169@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
6170Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
6171pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
6172
fae437e8 6173@node Generalized LR Parsing
c827f760
PE
6174@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
6175@cindex @acronym{GLR} parsing
6176@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 6177@cindex ambiguous grammars
9d9b8b70 6178@cindex nondeterministic parsing
676385e2 6179
fae437e8
AD
6180Bison produces @emph{deterministic} parsers that choose uniquely
6181when to reduce and which reduction to apply
742e4900 6182based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
6183As a result, normal Bison handles a proper subset of the family of
6184context-free languages.
fae437e8 6185Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
6186sequence of reductions cannot have deterministic parsers in this sense.
6187The same is true of languages that require more than one symbol of
742e4900 6188lookahead, since the parser lacks the information necessary to make a
676385e2 6189decision at the point it must be made in a shift-reduce parser.
fae437e8 6190Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
6191there are languages where Bison's particular choice of how to
6192summarize the input seen so far loses necessary information.
6193
6194When you use the @samp{%glr-parser} declaration in your grammar file,
6195Bison generates a parser that uses a different algorithm, called
c827f760
PE
6196Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
6197parser uses the same basic
676385e2
PH
6198algorithm for parsing as an ordinary Bison parser, but behaves
6199differently in cases where there is a shift-reduce conflict that has not
fae437e8 6200been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
6201reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
6202situation, it
fae437e8 6203effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
6204shift or reduction. These parsers then proceed as usual, consuming
6205tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 6206and split further, with the result that instead of a sequence of states,
c827f760 6207a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
6208
6209In effect, each stack represents a guess as to what the proper parse
6210is. Additional input may indicate that a guess was wrong, in which case
6211the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 6212actions generated in each stack are saved, rather than being executed
676385e2 6213immediately. When a stack disappears, its saved semantic actions never
fae437e8 6214get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
6215their sets of semantic actions are both saved with the state that
6216results from the reduction. We say that two stacks are equivalent
fae437e8 6217when they both represent the same sequence of states,
676385e2
PH
6218and each pair of corresponding states represents a
6219grammar symbol that produces the same segment of the input token
6220stream.
6221
6222Whenever the parser makes a transition from having multiple
c827f760 6223states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
6224algorithm, after resolving and executing the saved-up actions.
6225At this transition, some of the states on the stack will have semantic
6226values that are sets (actually multisets) of possible actions. The
6227parser tries to pick one of the actions by first finding one whose rule
6228has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 6229declaration. Otherwise, if the alternative actions are not ordered by
676385e2 6230precedence, but there the same merging function is declared for both
fae437e8 6231rules by the @samp{%merge} declaration,
676385e2
PH
6232Bison resolves and evaluates both and then calls the merge function on
6233the result. Otherwise, it reports an ambiguity.
6234
c827f760
PE
6235It is possible to use a data structure for the @acronym{GLR} parsing tree that
6236permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
6237size of the input), any unambiguous (not necessarily
6238@acronym{LALR}(1)) grammar in
fae437e8 6239quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
6240context-free grammar in cubic worst-case time. However, Bison currently
6241uses a simpler data structure that requires time proportional to the
6242length of the input times the maximum number of stacks required for any
9d9b8b70 6243prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
6244grammars can require exponential time and space to process. Such badly
6245behaving examples, however, are not generally of practical interest.
9d9b8b70 6246Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 6247doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 6248structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
6249grammar, in particular, it is only slightly slower than with the default
6250Bison parser.
6251
fa7e68c3 6252For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
6253Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
6254Generalised @acronym{LR} Parsers, Royal Holloway, University of
6255London, Department of Computer Science, TR-00-12,
6256@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
6257(2000-12-24).
6258
1a059451
PE
6259@node Memory Management
6260@section Memory Management, and How to Avoid Memory Exhaustion
6261@cindex memory exhaustion
6262@cindex memory management
bfa74976
RS
6263@cindex stack overflow
6264@cindex parser stack overflow
6265@cindex overflow of parser stack
6266
1a059451 6267The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 6268not reduced. When this happens, the parser function @code{yyparse}
1a059451 6269calls @code{yyerror} and then returns 2.
bfa74976 6270
c827f760 6271Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
6272usually results from using a right recursion instead of a left
6273recursion, @xref{Recursion, ,Recursive Rules}.
6274
bfa74976
RS
6275@vindex YYMAXDEPTH
6276By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 6277parser stack can become before memory is exhausted. Define the
bfa74976
RS
6278macro with a value that is an integer. This value is the maximum number
6279of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
6280
6281The stack space allowed is not necessarily allocated. If you specify a
1a059451 6282large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
6283stack at first, and then makes it bigger by stages as needed. This
6284increasing allocation happens automatically and silently. Therefore,
6285you do not need to make @code{YYMAXDEPTH} painfully small merely to save
6286space for ordinary inputs that do not need much stack.
6287
d7e14fc0
PE
6288However, do not allow @code{YYMAXDEPTH} to be a value so large that
6289arithmetic overflow could occur when calculating the size of the stack
6290space. Also, do not allow @code{YYMAXDEPTH} to be less than
6291@code{YYINITDEPTH}.
6292
bfa74976
RS
6293@cindex default stack limit
6294The default value of @code{YYMAXDEPTH}, if you do not define it, is
629510000.
6296
6297@vindex YYINITDEPTH
6298You can control how much stack is allocated initially by defining the
d7e14fc0
PE
6299macro @code{YYINITDEPTH} to a positive integer. For the C
6300@acronym{LALR}(1) parser, this value must be a compile-time constant
6301unless you are assuming C99 or some other target language or compiler
6302that allows variable-length arrays. The default is 200.
6303
1a059451 6304Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 6305
d1a1114f 6306@c FIXME: C++ output.
c827f760 6307Because of semantical differences between C and C++, the
1a059451
PE
6308@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
6309by C++ compilers. In this precise case (compiling a C parser as C++) you are
6310suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
6311this deficiency in a future release.
d1a1114f 6312
342b8b6e 6313@node Error Recovery
bfa74976
RS
6314@chapter Error Recovery
6315@cindex error recovery
6316@cindex recovery from errors
6317
6e649e65 6318It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
6319error. For example, a compiler should recover sufficiently to parse the
6320rest of the input file and check it for errors; a calculator should accept
6321another expression.
6322
6323In a simple interactive command parser where each input is one line, it may
6324be sufficient to allow @code{yyparse} to return 1 on error and have the
6325caller ignore the rest of the input line when that happens (and then call
6326@code{yyparse} again). But this is inadequate for a compiler, because it
6327forgets all the syntactic context leading up to the error. A syntax error
6328deep within a function in the compiler input should not cause the compiler
6329to treat the following line like the beginning of a source file.
6330
6331@findex error
6332You can define how to recover from a syntax error by writing rules to
6333recognize the special token @code{error}. This is a terminal symbol that
6334is always defined (you need not declare it) and reserved for error
6335handling. The Bison parser generates an @code{error} token whenever a
6336syntax error happens; if you have provided a rule to recognize this token
13863333 6337in the current context, the parse can continue.
bfa74976
RS
6338
6339For example:
6340
6341@example
6342stmnts: /* empty string */
6343 | stmnts '\n'
6344 | stmnts exp '\n'
6345 | stmnts error '\n'
6346@end example
6347
6348The fourth rule in this example says that an error followed by a newline
6349makes a valid addition to any @code{stmnts}.
6350
6351What happens if a syntax error occurs in the middle of an @code{exp}? The
6352error recovery rule, interpreted strictly, applies to the precise sequence
6353of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
6354the middle of an @code{exp}, there will probably be some additional tokens
6355and subexpressions on the stack after the last @code{stmnts}, and there
6356will be tokens to read before the next newline. So the rule is not
6357applicable in the ordinary way.
6358
6359But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
6360the semantic context and part of the input. First it discards states
6361and objects from the stack until it gets back to a state in which the
bfa74976 6362@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
6363already parsed are discarded, back to the last complete @code{stmnts}.)
6364At this point the @code{error} token can be shifted. Then, if the old
742e4900 6365lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 6366tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
6367this example, Bison reads and discards input until the next newline so
6368that the fourth rule can apply. Note that discarded symbols are
6369possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
6370Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
6371
6372The choice of error rules in the grammar is a choice of strategies for
6373error recovery. A simple and useful strategy is simply to skip the rest of
6374the current input line or current statement if an error is detected:
6375
6376@example
72d2299c 6377stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
6378@end example
6379
6380It is also useful to recover to the matching close-delimiter of an
6381opening-delimiter that has already been parsed. Otherwise the
6382close-delimiter will probably appear to be unmatched, and generate another,
6383spurious error message:
6384
6385@example
6386primary: '(' expr ')'
6387 | '(' error ')'
6388 @dots{}
6389 ;
6390@end example
6391
6392Error recovery strategies are necessarily guesses. When they guess wrong,
6393one syntax error often leads to another. In the above example, the error
6394recovery rule guesses that an error is due to bad input within one
6395@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
6396middle of a valid @code{stmnt}. After the error recovery rule recovers
6397from the first error, another syntax error will be found straightaway,
6398since the text following the spurious semicolon is also an invalid
6399@code{stmnt}.
6400
6401To prevent an outpouring of error messages, the parser will output no error
6402message for another syntax error that happens shortly after the first; only
6403after three consecutive input tokens have been successfully shifted will
6404error messages resume.
6405
6406Note that rules which accept the @code{error} token may have actions, just
6407as any other rules can.
6408
6409@findex yyerrok
6410You can make error messages resume immediately by using the macro
6411@code{yyerrok} in an action. If you do this in the error rule's action, no
6412error messages will be suppressed. This macro requires no arguments;
6413@samp{yyerrok;} is a valid C statement.
6414
6415@findex yyclearin
742e4900 6416The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
6417this is unacceptable, then the macro @code{yyclearin} may be used to clear
6418this token. Write the statement @samp{yyclearin;} in the error rule's
6419action.
32c29292 6420@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 6421
6e649e65 6422For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
6423called that advances the input stream to some point where parsing should
6424once again commence. The next symbol returned by the lexical scanner is
742e4900 6425probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
6426with @samp{yyclearin;}.
6427
6428@vindex YYRECOVERING
02103984
PE
6429The expression @code{YYRECOVERING ()} yields 1 when the parser
6430is recovering from a syntax error, and 0 otherwise.
6431Syntax error diagnostics are suppressed while recovering from a syntax
6432error.
bfa74976 6433
342b8b6e 6434@node Context Dependency
bfa74976
RS
6435@chapter Handling Context Dependencies
6436
6437The Bison paradigm is to parse tokens first, then group them into larger
6438syntactic units. In many languages, the meaning of a token is affected by
6439its context. Although this violates the Bison paradigm, certain techniques
6440(known as @dfn{kludges}) may enable you to write Bison parsers for such
6441languages.
6442
6443@menu
6444* Semantic Tokens:: Token parsing can depend on the semantic context.
6445* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
6446* Tie-in Recovery:: Lexical tie-ins have implications for how
6447 error recovery rules must be written.
6448@end menu
6449
6450(Actually, ``kludge'' means any technique that gets its job done but is
6451neither clean nor robust.)
6452
342b8b6e 6453@node Semantic Tokens
bfa74976
RS
6454@section Semantic Info in Token Types
6455
6456The C language has a context dependency: the way an identifier is used
6457depends on what its current meaning is. For example, consider this:
6458
6459@example
6460foo (x);
6461@end example
6462
6463This looks like a function call statement, but if @code{foo} is a typedef
6464name, then this is actually a declaration of @code{x}. How can a Bison
6465parser for C decide how to parse this input?
6466
c827f760 6467The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
6468@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
6469identifier, it looks up the current declaration of the identifier in order
6470to decide which token type to return: @code{TYPENAME} if the identifier is
6471declared as a typedef, @code{IDENTIFIER} otherwise.
6472
6473The grammar rules can then express the context dependency by the choice of
6474token type to recognize. @code{IDENTIFIER} is accepted as an expression,
6475but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
6476@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
6477is @emph{not} significant, such as in declarations that can shadow a
6478typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
6479accepted---there is one rule for each of the two token types.
6480
6481This technique is simple to use if the decision of which kinds of
6482identifiers to allow is made at a place close to where the identifier is
6483parsed. But in C this is not always so: C allows a declaration to
6484redeclare a typedef name provided an explicit type has been specified
6485earlier:
6486
6487@example
3a4f411f
PE
6488typedef int foo, bar;
6489int baz (void)
6490@{
6491 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
6492 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
6493 return foo (bar);
6494@}
bfa74976
RS
6495@end example
6496
6497Unfortunately, the name being declared is separated from the declaration
6498construct itself by a complicated syntactic structure---the ``declarator''.
6499
9ecbd125 6500As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
6501all the nonterminal names changed: once for parsing a declaration in
6502which a typedef name can be redefined, and once for parsing a
6503declaration in which that can't be done. Here is a part of the
6504duplication, with actions omitted for brevity:
bfa74976
RS
6505
6506@example
6507initdcl:
6508 declarator maybeasm '='
6509 init
6510 | declarator maybeasm
6511 ;
6512
6513notype_initdcl:
6514 notype_declarator maybeasm '='
6515 init
6516 | notype_declarator maybeasm
6517 ;
6518@end example
6519
6520@noindent
6521Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
6522cannot. The distinction between @code{declarator} and
6523@code{notype_declarator} is the same sort of thing.
6524
6525There is some similarity between this technique and a lexical tie-in
6526(described next), in that information which alters the lexical analysis is
6527changed during parsing by other parts of the program. The difference is
6528here the information is global, and is used for other purposes in the
6529program. A true lexical tie-in has a special-purpose flag controlled by
6530the syntactic context.
6531
342b8b6e 6532@node Lexical Tie-ins
bfa74976
RS
6533@section Lexical Tie-ins
6534@cindex lexical tie-in
6535
6536One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
6537which is set by Bison actions, whose purpose is to alter the way tokens are
6538parsed.
6539
6540For example, suppose we have a language vaguely like C, but with a special
6541construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
6542an expression in parentheses in which all integers are hexadecimal. In
6543particular, the token @samp{a1b} must be treated as an integer rather than
6544as an identifier if it appears in that context. Here is how you can do it:
6545
6546@example
6547@group
6548%@{
38a92d50
PE
6549 int hexflag;
6550 int yylex (void);
6551 void yyerror (char const *);
bfa74976
RS
6552%@}
6553%%
6554@dots{}
6555@end group
6556@group
6557expr: IDENTIFIER
6558 | constant
6559 | HEX '('
6560 @{ hexflag = 1; @}
6561 expr ')'
6562 @{ hexflag = 0;
6563 $$ = $4; @}
6564 | expr '+' expr
6565 @{ $$ = make_sum ($1, $3); @}
6566 @dots{}
6567 ;
6568@end group
6569
6570@group
6571constant:
6572 INTEGER
6573 | STRING
6574 ;
6575@end group
6576@end example
6577
6578@noindent
6579Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
6580it is nonzero, all integers are parsed in hexadecimal, and tokens starting
6581with letters are parsed as integers if possible.
6582
342b8b6e
AD
6583The declaration of @code{hexflag} shown in the prologue of the parser file
6584is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 6585You must also write the code in @code{yylex} to obey the flag.
bfa74976 6586
342b8b6e 6587@node Tie-in Recovery
bfa74976
RS
6588@section Lexical Tie-ins and Error Recovery
6589
6590Lexical tie-ins make strict demands on any error recovery rules you have.
6591@xref{Error Recovery}.
6592
6593The reason for this is that the purpose of an error recovery rule is to
6594abort the parsing of one construct and resume in some larger construct.
6595For example, in C-like languages, a typical error recovery rule is to skip
6596tokens until the next semicolon, and then start a new statement, like this:
6597
6598@example
6599stmt: expr ';'
6600 | IF '(' expr ')' stmt @{ @dots{} @}
6601 @dots{}
6602 error ';'
6603 @{ hexflag = 0; @}
6604 ;
6605@end example
6606
6607If there is a syntax error in the middle of a @samp{hex (@var{expr})}
6608construct, this error rule will apply, and then the action for the
6609completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
6610remain set for the entire rest of the input, or until the next @code{hex}
6611keyword, causing identifiers to be misinterpreted as integers.
6612
6613To avoid this problem the error recovery rule itself clears @code{hexflag}.
6614
6615There may also be an error recovery rule that works within expressions.
6616For example, there could be a rule which applies within parentheses
6617and skips to the close-parenthesis:
6618
6619@example
6620@group
6621expr: @dots{}
6622 | '(' expr ')'
6623 @{ $$ = $2; @}
6624 | '(' error ')'
6625 @dots{}
6626@end group
6627@end example
6628
6629If this rule acts within the @code{hex} construct, it is not going to abort
6630that construct (since it applies to an inner level of parentheses within
6631the construct). Therefore, it should not clear the flag: the rest of
6632the @code{hex} construct should be parsed with the flag still in effect.
6633
6634What if there is an error recovery rule which might abort out of the
6635@code{hex} construct or might not, depending on circumstances? There is no
6636way you can write the action to determine whether a @code{hex} construct is
6637being aborted or not. So if you are using a lexical tie-in, you had better
6638make sure your error recovery rules are not of this kind. Each rule must
6639be such that you can be sure that it always will, or always won't, have to
6640clear the flag.
6641
ec3bc396
AD
6642@c ================================================== Debugging Your Parser
6643
342b8b6e 6644@node Debugging
bfa74976 6645@chapter Debugging Your Parser
ec3bc396
AD
6646
6647Developing a parser can be a challenge, especially if you don't
6648understand the algorithm (@pxref{Algorithm, ,The Bison Parser
6649Algorithm}). Even so, sometimes a detailed description of the automaton
6650can help (@pxref{Understanding, , Understanding Your Parser}), or
6651tracing the execution of the parser can give some insight on why it
6652behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
6653
6654@menu
6655* Understanding:: Understanding the structure of your parser.
6656* Tracing:: Tracing the execution of your parser.
6657@end menu
6658
6659@node Understanding
6660@section Understanding Your Parser
6661
6662As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
6663Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
6664frequent than one would hope), looking at this automaton is required to
6665tune or simply fix a parser. Bison provides two different
35fe0834 6666representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
6667
6668The textual file is generated when the options @option{--report} or
6669@option{--verbose} are specified, see @xref{Invocation, , Invoking
6670Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
6671the parser output file name, and adding @samp{.output} instead.
6672Therefore, if the input file is @file{foo.y}, then the parser file is
6673called @file{foo.tab.c} by default. As a consequence, the verbose
6674output file is called @file{foo.output}.
6675
6676The following grammar file, @file{calc.y}, will be used in the sequel:
6677
6678@example
6679%token NUM STR
6680%left '+' '-'
6681%left '*'
6682%%
6683exp: exp '+' exp
6684 | exp '-' exp
6685 | exp '*' exp
6686 | exp '/' exp
6687 | NUM
6688 ;
6689useless: STR;
6690%%
6691@end example
6692
88bce5a2
AD
6693@command{bison} reports:
6694
6695@example
6696calc.y: warning: 1 useless nonterminal and 1 useless rule
6697calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
6698calc.y:11.10-12: warning: useless rule: useless: STR
6699calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
6700@end example
6701
6702When given @option{--report=state}, in addition to @file{calc.tab.c}, it
6703creates a file @file{calc.output} with contents detailed below. The
6704order of the output and the exact presentation might vary, but the
6705interpretation is the same.
ec3bc396
AD
6706
6707The first section includes details on conflicts that were solved thanks
6708to precedence and/or associativity:
6709
6710@example
6711Conflict in state 8 between rule 2 and token '+' resolved as reduce.
6712Conflict in state 8 between rule 2 and token '-' resolved as reduce.
6713Conflict in state 8 between rule 2 and token '*' resolved as shift.
6714@exdent @dots{}
6715@end example
6716
6717@noindent
6718The next section lists states that still have conflicts.
6719
6720@example
5a99098d
PE
6721State 8 conflicts: 1 shift/reduce
6722State 9 conflicts: 1 shift/reduce
6723State 10 conflicts: 1 shift/reduce
6724State 11 conflicts: 4 shift/reduce
ec3bc396
AD
6725@end example
6726
6727@noindent
6728@cindex token, useless
6729@cindex useless token
6730@cindex nonterminal, useless
6731@cindex useless nonterminal
6732@cindex rule, useless
6733@cindex useless rule
6734The next section reports useless tokens, nonterminal and rules. Useless
6735nonterminals and rules are removed in order to produce a smaller parser,
6736but useless tokens are preserved, since they might be used by the
6737scanner (note the difference between ``useless'' and ``not used''
6738below):
6739
6740@example
6741Useless nonterminals:
6742 useless
6743
6744Terminals which are not used:
6745 STR
6746
6747Useless rules:
6748#6 useless: STR;
6749@end example
6750
6751@noindent
6752The next section reproduces the exact grammar that Bison used:
6753
6754@example
6755Grammar
6756
6757 Number, Line, Rule
88bce5a2 6758 0 5 $accept -> exp $end
ec3bc396
AD
6759 1 5 exp -> exp '+' exp
6760 2 6 exp -> exp '-' exp
6761 3 7 exp -> exp '*' exp
6762 4 8 exp -> exp '/' exp
6763 5 9 exp -> NUM
6764@end example
6765
6766@noindent
6767and reports the uses of the symbols:
6768
6769@example
6770Terminals, with rules where they appear
6771
88bce5a2 6772$end (0) 0
ec3bc396
AD
6773'*' (42) 3
6774'+' (43) 1
6775'-' (45) 2
6776'/' (47) 4
6777error (256)
6778NUM (258) 5
6779
6780Nonterminals, with rules where they appear
6781
88bce5a2 6782$accept (8)
ec3bc396
AD
6783 on left: 0
6784exp (9)
6785 on left: 1 2 3 4 5, on right: 0 1 2 3 4
6786@end example
6787
6788@noindent
6789@cindex item
6790@cindex pointed rule
6791@cindex rule, pointed
6792Bison then proceeds onto the automaton itself, describing each state
6793with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
6794item is a production rule together with a point (marked by @samp{.})
6795that the input cursor.
6796
6797@example
6798state 0
6799
88bce5a2 6800 $accept -> . exp $ (rule 0)
ec3bc396 6801
2a8d363a 6802 NUM shift, and go to state 1
ec3bc396 6803
2a8d363a 6804 exp go to state 2
ec3bc396
AD
6805@end example
6806
6807This reads as follows: ``state 0 corresponds to being at the very
6808beginning of the parsing, in the initial rule, right before the start
6809symbol (here, @code{exp}). When the parser returns to this state right
6810after having reduced a rule that produced an @code{exp}, the control
6811flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 6812symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 6813the parse stack, and the control flow jumps to state 1. Any other
742e4900 6814lookahead triggers a syntax error.''
ec3bc396
AD
6815
6816@cindex core, item set
6817@cindex item set core
6818@cindex kernel, item set
6819@cindex item set core
6820Even though the only active rule in state 0 seems to be rule 0, the
742e4900 6821report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
6822at the beginning of any rule deriving an @code{exp}. By default Bison
6823reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
6824you want to see more detail you can invoke @command{bison} with
6825@option{--report=itemset} to list all the items, include those that can
6826be derived:
6827
6828@example
6829state 0
6830
88bce5a2 6831 $accept -> . exp $ (rule 0)
ec3bc396
AD
6832 exp -> . exp '+' exp (rule 1)
6833 exp -> . exp '-' exp (rule 2)
6834 exp -> . exp '*' exp (rule 3)
6835 exp -> . exp '/' exp (rule 4)
6836 exp -> . NUM (rule 5)
6837
6838 NUM shift, and go to state 1
6839
6840 exp go to state 2
6841@end example
6842
6843@noindent
6844In the state 1...
6845
6846@example
6847state 1
6848
6849 exp -> NUM . (rule 5)
6850
2a8d363a 6851 $default reduce using rule 5 (exp)
ec3bc396
AD
6852@end example
6853
6854@noindent
742e4900 6855the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
6856(@samp{$default}), the parser will reduce it. If it was coming from
6857state 0, then, after this reduction it will return to state 0, and will
6858jump to state 2 (@samp{exp: go to state 2}).
6859
6860@example
6861state 2
6862
88bce5a2 6863 $accept -> exp . $ (rule 0)
ec3bc396
AD
6864 exp -> exp . '+' exp (rule 1)
6865 exp -> exp . '-' exp (rule 2)
6866 exp -> exp . '*' exp (rule 3)
6867 exp -> exp . '/' exp (rule 4)
6868
2a8d363a
AD
6869 $ shift, and go to state 3
6870 '+' shift, and go to state 4
6871 '-' shift, and go to state 5
6872 '*' shift, and go to state 6
6873 '/' shift, and go to state 7
ec3bc396
AD
6874@end example
6875
6876@noindent
6877In state 2, the automaton can only shift a symbol. For instance,
742e4900 6878because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
6879@samp{+}, it will be shifted on the parse stack, and the automaton
6880control will jump to state 4, corresponding to the item @samp{exp -> exp
6881'+' . exp}. Since there is no default action, any other token than
6e649e65 6882those listed above will trigger a syntax error.
ec3bc396
AD
6883
6884The state 3 is named the @dfn{final state}, or the @dfn{accepting
6885state}:
6886
6887@example
6888state 3
6889
88bce5a2 6890 $accept -> exp $ . (rule 0)
ec3bc396 6891
2a8d363a 6892 $default accept
ec3bc396
AD
6893@end example
6894
6895@noindent
6896the initial rule is completed (the start symbol and the end
6897of input were read), the parsing exits successfully.
6898
6899The interpretation of states 4 to 7 is straightforward, and is left to
6900the reader.
6901
6902@example
6903state 4
6904
6905 exp -> exp '+' . exp (rule 1)
6906
2a8d363a 6907 NUM shift, and go to state 1
ec3bc396 6908
2a8d363a 6909 exp go to state 8
ec3bc396
AD
6910
6911state 5
6912
6913 exp -> exp '-' . exp (rule 2)
6914
2a8d363a 6915 NUM shift, and go to state 1
ec3bc396 6916
2a8d363a 6917 exp go to state 9
ec3bc396
AD
6918
6919state 6
6920
6921 exp -> exp '*' . exp (rule 3)
6922
2a8d363a 6923 NUM shift, and go to state 1
ec3bc396 6924
2a8d363a 6925 exp go to state 10
ec3bc396
AD
6926
6927state 7
6928
6929 exp -> exp '/' . exp (rule 4)
6930
2a8d363a 6931 NUM shift, and go to state 1
ec3bc396 6932
2a8d363a 6933 exp go to state 11
ec3bc396
AD
6934@end example
6935
5a99098d
PE
6936As was announced in beginning of the report, @samp{State 8 conflicts:
69371 shift/reduce}:
ec3bc396
AD
6938
6939@example
6940state 8
6941
6942 exp -> exp . '+' exp (rule 1)
6943 exp -> exp '+' exp . (rule 1)
6944 exp -> exp . '-' exp (rule 2)
6945 exp -> exp . '*' exp (rule 3)
6946 exp -> exp . '/' exp (rule 4)
6947
2a8d363a
AD
6948 '*' shift, and go to state 6
6949 '/' shift, and go to state 7
ec3bc396 6950
2a8d363a
AD
6951 '/' [reduce using rule 1 (exp)]
6952 $default reduce using rule 1 (exp)
ec3bc396
AD
6953@end example
6954
742e4900 6955Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
6956either shifting (and going to state 7), or reducing rule 1. The
6957conflict means that either the grammar is ambiguous, or the parser lacks
6958information to make the right decision. Indeed the grammar is
6959ambiguous, as, since we did not specify the precedence of @samp{/}, the
6960sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
6961NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
6962NUM}, which corresponds to reducing rule 1.
6963
c827f760 6964Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
6965arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
6966Shift/Reduce Conflicts}. Discarded actions are reported in between
6967square brackets.
6968
6969Note that all the previous states had a single possible action: either
6970shifting the next token and going to the corresponding state, or
6971reducing a single rule. In the other cases, i.e., when shifting
6972@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
6973possible, the lookahead is required to select the action. State 8 is
6974one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
6975is shifting, otherwise the action is reducing rule 1. In other words,
6976the first two items, corresponding to rule 1, are not eligible when the
742e4900 6977lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 6978precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
6979with some set of possible lookahead tokens. When run with
6980@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
6981
6982@example
6983state 8
6984
6985 exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
6986 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
6987 exp -> exp . '-' exp (rule 2)
6988 exp -> exp . '*' exp (rule 3)
6989 exp -> exp . '/' exp (rule 4)
6990
6991 '*' shift, and go to state 6
6992 '/' shift, and go to state 7
6993
6994 '/' [reduce using rule 1 (exp)]
6995 $default reduce using rule 1 (exp)
6996@end example
6997
6998The remaining states are similar:
6999
7000@example
7001state 9
7002
7003 exp -> exp . '+' exp (rule 1)
7004 exp -> exp . '-' exp (rule 2)
7005 exp -> exp '-' exp . (rule 2)
7006 exp -> exp . '*' exp (rule 3)
7007 exp -> exp . '/' exp (rule 4)
7008
2a8d363a
AD
7009 '*' shift, and go to state 6
7010 '/' shift, and go to state 7
ec3bc396 7011
2a8d363a
AD
7012 '/' [reduce using rule 2 (exp)]
7013 $default reduce using rule 2 (exp)
ec3bc396
AD
7014
7015state 10
7016
7017 exp -> exp . '+' exp (rule 1)
7018 exp -> exp . '-' exp (rule 2)
7019 exp -> exp . '*' exp (rule 3)
7020 exp -> exp '*' exp . (rule 3)
7021 exp -> exp . '/' exp (rule 4)
7022
2a8d363a 7023 '/' shift, and go to state 7
ec3bc396 7024
2a8d363a
AD
7025 '/' [reduce using rule 3 (exp)]
7026 $default reduce using rule 3 (exp)
ec3bc396
AD
7027
7028state 11
7029
7030 exp -> exp . '+' exp (rule 1)
7031 exp -> exp . '-' exp (rule 2)
7032 exp -> exp . '*' exp (rule 3)
7033 exp -> exp . '/' exp (rule 4)
7034 exp -> exp '/' exp . (rule 4)
7035
2a8d363a
AD
7036 '+' shift, and go to state 4
7037 '-' shift, and go to state 5
7038 '*' shift, and go to state 6
7039 '/' shift, and go to state 7
ec3bc396 7040
2a8d363a
AD
7041 '+' [reduce using rule 4 (exp)]
7042 '-' [reduce using rule 4 (exp)]
7043 '*' [reduce using rule 4 (exp)]
7044 '/' [reduce using rule 4 (exp)]
7045 $default reduce using rule 4 (exp)
ec3bc396
AD
7046@end example
7047
7048@noindent
fa7e68c3
PE
7049Observe that state 11 contains conflicts not only due to the lack of
7050precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7051@samp{*}, but also because the
ec3bc396
AD
7052associativity of @samp{/} is not specified.
7053
7054
7055@node Tracing
7056@section Tracing Your Parser
bfa74976
RS
7057@findex yydebug
7058@cindex debugging
7059@cindex tracing the parser
7060
7061If a Bison grammar compiles properly but doesn't do what you want when it
7062runs, the @code{yydebug} parser-trace feature can help you figure out why.
7063
3ded9a63
AD
7064There are several means to enable compilation of trace facilities:
7065
7066@table @asis
7067@item the macro @code{YYDEBUG}
7068@findex YYDEBUG
7069Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 7070parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
7071@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7072YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7073Prologue}).
7074
7075@item the option @option{-t}, @option{--debug}
7076Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 7077,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
7078
7079@item the directive @samp{%debug}
7080@findex %debug
7081Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
7082Declaration Summary}). This is a Bison extension, which will prove
7083useful when Bison will output parsers for languages that don't use a
c827f760
PE
7084preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
7085you, this is
3ded9a63
AD
7086the preferred solution.
7087@end table
7088
7089We suggest that you always enable the debug option so that debugging is
7090always possible.
bfa74976 7091
02a81e05 7092The trace facility outputs messages with macro calls of the form
e2742e46 7093@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
02a81e05 7094@var{format} and @var{args} are the usual @code{printf} format and
4947ebdb
PE
7095arguments. If you define @code{YYDEBUG} to a nonzero value but do not
7096define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 7097and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
7098
7099Once you have compiled the program with trace facilities, the way to
7100request a trace is to store a nonzero value in the variable @code{yydebug}.
7101You can do this by making the C code do it (in @code{main}, perhaps), or
7102you can alter the value with a C debugger.
7103
7104Each step taken by the parser when @code{yydebug} is nonzero produces a
7105line or two of trace information, written on @code{stderr}. The trace
7106messages tell you these things:
7107
7108@itemize @bullet
7109@item
7110Each time the parser calls @code{yylex}, what kind of token was read.
7111
7112@item
7113Each time a token is shifted, the depth and complete contents of the
7114state stack (@pxref{Parser States}).
7115
7116@item
7117Each time a rule is reduced, which rule it is, and the complete contents
7118of the state stack afterward.
7119@end itemize
7120
7121To make sense of this information, it helps to refer to the listing file
704a47c4
AD
7122produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
7123Bison}). This file shows the meaning of each state in terms of
7124positions in various rules, and also what each state will do with each
7125possible input token. As you read the successive trace messages, you
7126can see that the parser is functioning according to its specification in
7127the listing file. Eventually you will arrive at the place where
7128something undesirable happens, and you will see which parts of the
7129grammar are to blame.
bfa74976
RS
7130
7131The parser file is a C program and you can use C debuggers on it, but it's
7132not easy to interpret what it is doing. The parser function is a
7133finite-state machine interpreter, and aside from the actions it executes
7134the same code over and over. Only the values of variables show where in
7135the grammar it is working.
7136
7137@findex YYPRINT
7138The debugging information normally gives the token type of each token
7139read, but not its semantic value. You can optionally define a macro
7140named @code{YYPRINT} to provide a way to print the value. If you define
7141@code{YYPRINT}, it should take three arguments. The parser will pass a
7142standard I/O stream, the numeric code for the token type, and the token
7143value (from @code{yylval}).
7144
7145Here is an example of @code{YYPRINT} suitable for the multi-function
7146calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
7147
7148@smallexample
38a92d50
PE
7149%@{
7150 static void print_token_value (FILE *, int, YYSTYPE);
7151 #define YYPRINT(file, type, value) print_token_value (file, type, value)
7152%@}
7153
7154@dots{} %% @dots{} %% @dots{}
bfa74976
RS
7155
7156static void
831d3c99 7157print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
7158@{
7159 if (type == VAR)
d3c4e709 7160 fprintf (file, "%s", value.tptr->name);
bfa74976 7161 else if (type == NUM)
d3c4e709 7162 fprintf (file, "%d", value.val);
bfa74976
RS
7163@}
7164@end smallexample
7165
ec3bc396
AD
7166@c ================================================= Invoking Bison
7167
342b8b6e 7168@node Invocation
bfa74976
RS
7169@chapter Invoking Bison
7170@cindex invoking Bison
7171@cindex Bison invocation
7172@cindex options for invoking Bison
7173
7174The usual way to invoke Bison is as follows:
7175
7176@example
7177bison @var{infile}
7178@end example
7179
7180Here @var{infile} is the grammar file name, which usually ends in
7181@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
7182with @samp{.tab.c} and removing any leading directory. Thus, the
7183@samp{bison foo.y} file name yields
7184@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
7185@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 7186C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
7187or @file{foo.y++}. Then, the output files will take an extension like
7188the given one as input (respectively @file{foo.tab.cpp} and
7189@file{foo.tab.c++}).
fa4d969f 7190This feature takes effect with all options that manipulate file names like
234a3be3
AD
7191@samp{-o} or @samp{-d}.
7192
7193For example :
7194
7195@example
7196bison -d @var{infile.yxx}
7197@end example
84163231 7198@noindent
72d2299c 7199will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
7200
7201@example
b56471a6 7202bison -d -o @var{output.c++} @var{infile.y}
234a3be3 7203@end example
84163231 7204@noindent
234a3be3
AD
7205will produce @file{output.c++} and @file{outfile.h++}.
7206
397ec073
PE
7207For compatibility with @acronym{POSIX}, the standard Bison
7208distribution also contains a shell script called @command{yacc} that
7209invokes Bison with the @option{-y} option.
7210
bfa74976 7211@menu
13863333 7212* Bison Options:: All the options described in detail,
c827f760 7213 in alphabetical order by short options.
bfa74976 7214* Option Cross Key:: Alphabetical list of long options.
93dd49ab 7215* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
7216@end menu
7217
342b8b6e 7218@node Bison Options
bfa74976
RS
7219@section Bison Options
7220
7221Bison supports both traditional single-letter options and mnemonic long
7222option names. Long option names are indicated with @samp{--} instead of
7223@samp{-}. Abbreviations for option names are allowed as long as they
7224are unique. When a long option takes an argument, like
7225@samp{--file-prefix}, connect the option name and the argument with
7226@samp{=}.
7227
7228Here is a list of options that can be used with Bison, alphabetized by
7229short option. It is followed by a cross key alphabetized by long
7230option.
7231
89cab50d
AD
7232@c Please, keep this ordered as in `bison --help'.
7233@noindent
7234Operations modes:
7235@table @option
7236@item -h
7237@itemx --help
7238Print a summary of the command-line options to Bison and exit.
bfa74976 7239
89cab50d
AD
7240@item -V
7241@itemx --version
7242Print the version number of Bison and exit.
bfa74976 7243
f7ab6a50
PE
7244@item --print-localedir
7245Print the name of the directory containing locale-dependent data.
7246
89cab50d
AD
7247@item -y
7248@itemx --yacc
54662697
PE
7249Act more like the traditional Yacc command. This can cause
7250different diagnostics to be generated, and may change behavior in
7251other minor ways. Most importantly, imitate Yacc's output
7252file name conventions, so that the parser output file is called
89cab50d 7253@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e
JD
7254@file{y.tab.h}.
7255Also, if generating an @acronym{LALR}(1) parser in C, generate @code{#define}
7256statements in addition to an @code{enum} to associate token numbers with token
7257names.
7258Thus, the following shell script can substitute for Yacc, and the Bison
7259distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 7260
89cab50d 7261@example
397ec073 7262#! /bin/sh
26e06a21 7263bison -y "$@@"
89cab50d 7264@end example
54662697
PE
7265
7266The @option{-y}/@option{--yacc} option is intended for use with
7267traditional Yacc grammars. If your grammar uses a Bison extension
7268like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
7269this option is specified.
7270
89cab50d
AD
7271@end table
7272
7273@noindent
7274Tuning the parser:
7275
7276@table @option
7277@item -t
7278@itemx --debug
4947ebdb
PE
7279In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
7280already defined, so that the debugging facilities are compiled.
ec3bc396 7281@xref{Tracing, ,Tracing Your Parser}.
89cab50d 7282
0e021770
PE
7283@item -L @var{language}
7284@itemx --language=@var{language}
7285Specify the programming language for the generated parser, as if
7286@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
7287Summary}). Currently supported languages include C and C++.
e6e704dc 7288@var{language} is case-insensitive.
0e021770 7289
89cab50d 7290@item --locations
d8988b2f 7291Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
7292
7293@item -p @var{prefix}
7294@itemx --name-prefix=@var{prefix}
02975b9a 7295Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 7296@xref{Decl Summary}.
bfa74976
RS
7297
7298@item -l
7299@itemx --no-lines
7300Don't put any @code{#line} preprocessor commands in the parser file.
7301Ordinarily Bison puts them in the parser file so that the C compiler
7302and debuggers will associate errors with your source file, the
7303grammar file. This option causes them to associate errors with the
95e742f7 7304parser file, treating it as an independent source file in its own right.
bfa74976 7305
931c7513
RS
7306@item -n
7307@itemx --no-parser
d8988b2f 7308Pretend that @code{%no-parser} was specified. @xref{Decl Summary}.
931c7513 7309
e6e704dc
JD
7310@item -S @var{file}
7311@itemx --skeleton=@var{file}
7312Specify the skeleton to use, as if @code{%skeleton} was specified
7313(@pxref{Decl Summary, , Bison Declaration Summary}).
7314
7315You probably don't need this option unless you are developing Bison;
7316you should use @option{--language} if you want to specify the skeleton for a
7317different language, because it is clearer and because it will always
7318choose the correct skeleton for non-deterministic or push parsers.
7319
89cab50d
AD
7320@item -k
7321@itemx --token-table
d8988b2f 7322Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 7323@end table
bfa74976 7324
89cab50d
AD
7325@noindent
7326Adjust the output:
bfa74976 7327
89cab50d
AD
7328@table @option
7329@item -d
d8988b2f
AD
7330@itemx --defines
7331Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 7332file containing macro definitions for the token type names defined in
4bfd5e4e 7333the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 7334
342b8b6e 7335@item --defines=@var{defines-file}
d8988b2f 7336Same as above, but save in the file @var{defines-file}.
342b8b6e 7337
89cab50d
AD
7338@item -b @var{file-prefix}
7339@itemx --file-prefix=@var{prefix}
9c437126 7340Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 7341for all Bison output file names. @xref{Decl Summary}.
bfa74976 7342
ec3bc396
AD
7343@item -r @var{things}
7344@itemx --report=@var{things}
7345Write an extra output file containing verbose description of the comma
7346separated list of @var{things} among:
7347
7348@table @code
7349@item state
7350Description of the grammar, conflicts (resolved and unresolved), and
c827f760 7351@acronym{LALR} automaton.
ec3bc396 7352
742e4900 7353@item lookahead
ec3bc396 7354Implies @code{state} and augments the description of the automaton with
742e4900 7355each rule's lookahead set.
ec3bc396
AD
7356
7357@item itemset
7358Implies @code{state} and augments the description of the automaton with
7359the full set of items for each state, instead of its core only.
7360@end table
7361
bfa74976
RS
7362@item -v
7363@itemx --verbose
9c437126 7364Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 7365file containing verbose descriptions of the grammar and
72d2299c 7366parser. @xref{Decl Summary}.
bfa74976 7367
fa4d969f
PE
7368@item -o @var{file}
7369@itemx --output=@var{file}
7370Specify the @var{file} for the parser file.
bfa74976 7371
fa4d969f 7372The other output files' names are constructed from @var{file} as
d8988b2f 7373described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
7374
7375@item -g
35fe0834
PE
7376Output a graphical representation of the @acronym{LALR}(1) grammar
7377automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
7378@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
7379If the grammar file is @file{foo.y}, the output file will
7380be @file{foo.dot}.
342b8b6e
AD
7381
7382@item --graph=@var{graph-file}
72d2299c
PE
7383The behavior of @var{--graph} is the same than @samp{-g}. The only
7384difference is that it has an optional argument which is the name of
fa4d969f 7385the output graph file.
bfa74976
RS
7386@end table
7387
342b8b6e 7388@node Option Cross Key
bfa74976
RS
7389@section Option Cross Key
7390
aa08666d 7391@c FIXME: How about putting the directives too?
bfa74976
RS
7392Here is a list of options, alphabetized by long option, to help you find
7393the corresponding short option.
7394
aa08666d
AD
7395@multitable {@option{--defines=@var{defines-file}}} {@option{-b @var{file-prefix}XXX}}
7396@headitem Long Option @tab Short Option
7397@item @option{--debug} @tab @option{-t}
7398@item @option{--defines=@var{defines-file}} @tab @option{-d}
7399@item @option{--file-prefix=@var{prefix}} @tab @option{-b @var{file-prefix}}
7400@item @option{--graph=@var{graph-file}} @tab @option{-d}
7401@item @option{--help} @tab @option{-h}
7402@item @option{--name-prefix=@var{prefix}} @tab @option{-p @var{name-prefix}}
7403@item @option{--no-lines} @tab @option{-l}
7404@item @option{--no-parser} @tab @option{-n}
7405@item @option{--output=@var{outfile}} @tab @option{-o @var{outfile}}
7406@item @option{--print-localedir} @tab
7407@item @option{--token-table} @tab @option{-k}
7408@item @option{--verbose} @tab @option{-v}
7409@item @option{--version} @tab @option{-V}
7410@item @option{--yacc} @tab @option{-y}
7411@end multitable
bfa74976 7412
93dd49ab
PE
7413@node Yacc Library
7414@section Yacc Library
7415
7416The Yacc library contains default implementations of the
7417@code{yyerror} and @code{main} functions. These default
7418implementations are normally not useful, but @acronym{POSIX} requires
7419them. To use the Yacc library, link your program with the
7420@option{-ly} option. Note that Bison's implementation of the Yacc
7421library is distributed under the terms of the @acronym{GNU} General
7422Public License (@pxref{Copying}).
7423
7424If you use the Yacc library's @code{yyerror} function, you should
7425declare @code{yyerror} as follows:
7426
7427@example
7428int yyerror (char const *);
7429@end example
7430
7431Bison ignores the @code{int} value returned by this @code{yyerror}.
7432If you use the Yacc library's @code{main} function, your
7433@code{yyparse} function should have the following type signature:
7434
7435@example
7436int yyparse (void);
7437@end example
7438
12545799
AD
7439@c ================================================= C++ Bison
7440
7441@node C++ Language Interface
7442@chapter C++ Language Interface
7443
7444@menu
7445* C++ Parsers:: The interface to generate C++ parser classes
7446* A Complete C++ Example:: Demonstrating their use
7447@end menu
7448
7449@node C++ Parsers
7450@section C++ Parsers
7451
7452@menu
7453* C++ Bison Interface:: Asking for C++ parser generation
7454* C++ Semantic Values:: %union vs. C++
7455* C++ Location Values:: The position and location classes
7456* C++ Parser Interface:: Instantiating and running the parser
7457* C++ Scanner Interface:: Exchanges between yylex and parse
7458@end menu
7459
7460@node C++ Bison Interface
7461@subsection C++ Bison Interface
0e021770 7462@c - %language "C++"
12545799
AD
7463@c - Always pure
7464@c - initial action
7465
e6e704dc
JD
7466The C++ @acronym{LALR}(1) parser is selected using the language directive,
7467@samp{%language "C++"}, or the synonymous command-line option
7468@option{--language=c++}.
7469@xref{Decl Summary}.
0e021770
PE
7470
7471When run, @command{bison} will create several
aa08666d
AD
7472entities in the @samp{yy} namespace. Use the @samp{%name-prefix}
7473directive to change the namespace name, see @ref{Decl Summary}. The
7474various classes are generated in the following files:
7475
12545799
AD
7476@table @file
7477@item position.hh
7478@itemx location.hh
7479The definition of the classes @code{position} and @code{location},
7480used for location tracking. @xref{C++ Location Values}.
7481
7482@item stack.hh
7483An auxiliary class @code{stack} used by the parser.
7484
fa4d969f
PE
7485@item @var{file}.hh
7486@itemx @var{file}.cc
cd8b5791
AD
7487(Assuming the extension of the input file was @samp{.yy}.) The
7488declaration and implementation of the C++ parser class. The basename
7489and extension of these two files follow the same rules as with regular C
7490parsers (@pxref{Invocation}).
12545799 7491
cd8b5791
AD
7492The header is @emph{mandatory}; you must either pass
7493@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
7494@samp{%defines} directive.
7495@end table
7496
7497All these files are documented using Doxygen; run @command{doxygen}
7498for a complete and accurate documentation.
7499
7500@node C++ Semantic Values
7501@subsection C++ Semantic Values
7502@c - No objects in unions
178e123e 7503@c - YYSTYPE
12545799
AD
7504@c - Printer and destructor
7505
7506The @code{%union} directive works as for C, see @ref{Union Decl, ,The
7507Collection of Value Types}. In particular it produces a genuine
7508@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
7509within pseudo-unions (similar to Boost variants) might be implemented to
7510alleviate these issues.}, which have a few specific features in C++.
12545799
AD
7511@itemize @minus
7512@item
fb9712a9
AD
7513The type @code{YYSTYPE} is defined but its use is discouraged: rather
7514you should refer to the parser's encapsulated type
7515@code{yy::parser::semantic_type}.
12545799
AD
7516@item
7517Non POD (Plain Old Data) types cannot be used. C++ forbids any
7518instance of classes with constructors in unions: only @emph{pointers}
7519to such objects are allowed.
7520@end itemize
7521
7522Because objects have to be stored via pointers, memory is not
7523reclaimed automatically: using the @code{%destructor} directive is the
7524only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
7525Symbols}.
7526
7527
7528@node C++ Location Values
7529@subsection C++ Location Values
7530@c - %locations
7531@c - class Position
7532@c - class Location
b47dbebe 7533@c - %define "filename_type" "const symbol::Symbol"
12545799
AD
7534
7535When the directive @code{%locations} is used, the C++ parser supports
7536location tracking, see @ref{Locations, , Locations Overview}. Two
7537auxiliary classes define a @code{position}, a single point in a file,
7538and a @code{location}, a range composed of a pair of
7539@code{position}s (possibly spanning several files).
7540
fa4d969f 7541@deftypemethod {position} {std::string*} file
12545799
AD
7542The name of the file. It will always be handled as a pointer, the
7543parser will never duplicate nor deallocate it. As an experimental
7544feature you may change it to @samp{@var{type}*} using @samp{%define
b47dbebe 7545"filename_type" "@var{type}"}.
12545799
AD
7546@end deftypemethod
7547
7548@deftypemethod {position} {unsigned int} line
7549The line, starting at 1.
7550@end deftypemethod
7551
7552@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
7553Advance by @var{height} lines, resetting the column number.
7554@end deftypemethod
7555
7556@deftypemethod {position} {unsigned int} column
7557The column, starting at 0.
7558@end deftypemethod
7559
7560@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
7561Advance by @var{width} columns, without changing the line number.
7562@end deftypemethod
7563
7564@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
7565@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
7566@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
7567@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
7568Various forms of syntactic sugar for @code{columns}.
7569@end deftypemethod
7570
7571@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
7572Report @var{p} on @var{o} like this:
fa4d969f
PE
7573@samp{@var{file}:@var{line}.@var{column}}, or
7574@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
7575@end deftypemethod
7576
7577@deftypemethod {location} {position} begin
7578@deftypemethodx {location} {position} end
7579The first, inclusive, position of the range, and the first beyond.
7580@end deftypemethod
7581
7582@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
7583@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
7584Advance the @code{end} position.
7585@end deftypemethod
7586
7587@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
7588@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
7589@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
7590Various forms of syntactic sugar.
7591@end deftypemethod
7592
7593@deftypemethod {location} {void} step ()
7594Move @code{begin} onto @code{end}.
7595@end deftypemethod
7596
7597
7598@node C++ Parser Interface
7599@subsection C++ Parser Interface
7600@c - define parser_class_name
7601@c - Ctor
7602@c - parse, error, set_debug_level, debug_level, set_debug_stream,
7603@c debug_stream.
7604@c - Reporting errors
7605
7606The output files @file{@var{output}.hh} and @file{@var{output}.cc}
7607declare and define the parser class in the namespace @code{yy}. The
7608class name defaults to @code{parser}, but may be changed using
7609@samp{%define "parser_class_name" "@var{name}"}. The interface of
9d9b8b70 7610this class is detailed below. It can be extended using the
12545799
AD
7611@code{%parse-param} feature: its semantics is slightly changed since
7612it describes an additional member of the parser class, and an
7613additional argument for its constructor.
7614
8a0adb01
AD
7615@defcv {Type} {parser} {semantic_value_type}
7616@defcvx {Type} {parser} {location_value_type}
12545799 7617The types for semantics value and locations.
8a0adb01 7618@end defcv
12545799
AD
7619
7620@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
7621Build a new parser object. There are no arguments by default, unless
7622@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
7623@end deftypemethod
7624
7625@deftypemethod {parser} {int} parse ()
7626Run the syntactic analysis, and return 0 on success, 1 otherwise.
7627@end deftypemethod
7628
7629@deftypemethod {parser} {std::ostream&} debug_stream ()
7630@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
7631Get or set the stream used for tracing the parsing. It defaults to
7632@code{std::cerr}.
7633@end deftypemethod
7634
7635@deftypemethod {parser} {debug_level_type} debug_level ()
7636@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
7637Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 7638or nonzero, full tracing.
12545799
AD
7639@end deftypemethod
7640
7641@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
7642The definition for this member function must be supplied by the user:
7643the parser uses it to report a parser error occurring at @var{l},
7644described by @var{m}.
7645@end deftypemethod
7646
7647
7648@node C++ Scanner Interface
7649@subsection C++ Scanner Interface
7650@c - prefix for yylex.
7651@c - Pure interface to yylex
7652@c - %lex-param
7653
7654The parser invokes the scanner by calling @code{yylex}. Contrary to C
7655parsers, C++ parsers are always pure: there is no point in using the
7656@code{%pure-parser} directive. Therefore the interface is as follows.
7657
7658@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
7659Return the next token. Its type is the return value, its semantic
7660value and location being @var{yylval} and @var{yylloc}. Invocations of
7661@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
7662@end deftypemethod
7663
7664
7665@node A Complete C++ Example
7666@section A Complete C++ Example
7667
7668This section demonstrates the use of a C++ parser with a simple but
7669complete example. This example should be available on your system,
7670ready to compile, in the directory @dfn{../bison/examples/calc++}. It
7671focuses on the use of Bison, therefore the design of the various C++
7672classes is very naive: no accessors, no encapsulation of members etc.
7673We will use a Lex scanner, and more precisely, a Flex scanner, to
7674demonstrate the various interaction. A hand written scanner is
7675actually easier to interface with.
7676
7677@menu
7678* Calc++ --- C++ Calculator:: The specifications
7679* Calc++ Parsing Driver:: An active parsing context
7680* Calc++ Parser:: A parser class
7681* Calc++ Scanner:: A pure C++ Flex scanner
7682* Calc++ Top Level:: Conducting the band
7683@end menu
7684
7685@node Calc++ --- C++ Calculator
7686@subsection Calc++ --- C++ Calculator
7687
7688Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 7689expression, possibly preceded by variable assignments. An
12545799
AD
7690environment containing possibly predefined variables such as
7691@code{one} and @code{two}, is exchanged with the parser. An example
7692of valid input follows.
7693
7694@example
7695three := 3
7696seven := one + two * three
7697seven * seven
7698@end example
7699
7700@node Calc++ Parsing Driver
7701@subsection Calc++ Parsing Driver
7702@c - An env
7703@c - A place to store error messages
7704@c - A place for the result
7705
7706To support a pure interface with the parser (and the scanner) the
7707technique of the ``parsing context'' is convenient: a structure
7708containing all the data to exchange. Since, in addition to simply
7709launch the parsing, there are several auxiliary tasks to execute (open
7710the file for parsing, instantiate the parser etc.), we recommend
7711transforming the simple parsing context structure into a fully blown
7712@dfn{parsing driver} class.
7713
7714The declaration of this driver class, @file{calc++-driver.hh}, is as
7715follows. The first part includes the CPP guard and imports the
fb9712a9
AD
7716required standard library components, and the declaration of the parser
7717class.
12545799 7718
1c59e0a1 7719@comment file: calc++-driver.hh
12545799
AD
7720@example
7721#ifndef CALCXX_DRIVER_HH
7722# define CALCXX_DRIVER_HH
7723# include <string>
7724# include <map>
fb9712a9 7725# include "calc++-parser.hh"
12545799
AD
7726@end example
7727
12545799
AD
7728
7729@noindent
7730Then comes the declaration of the scanning function. Flex expects
7731the signature of @code{yylex} to be defined in the macro
7732@code{YY_DECL}, and the C++ parser expects it to be declared. We can
7733factor both as follows.
1c59e0a1
AD
7734
7735@comment file: calc++-driver.hh
12545799 7736@example
3dc5e96b
PE
7737// Tell Flex the lexer's prototype ...
7738# define YY_DECL \
c095d689
AD
7739 yy::calcxx_parser::token_type \
7740 yylex (yy::calcxx_parser::semantic_type* yylval, \
7741 yy::calcxx_parser::location_type* yylloc, \
7742 calcxx_driver& driver)
12545799
AD
7743// ... and declare it for the parser's sake.
7744YY_DECL;
7745@end example
7746
7747@noindent
7748The @code{calcxx_driver} class is then declared with its most obvious
7749members.
7750
1c59e0a1 7751@comment file: calc++-driver.hh
12545799
AD
7752@example
7753// Conducting the whole scanning and parsing of Calc++.
7754class calcxx_driver
7755@{
7756public:
7757 calcxx_driver ();
7758 virtual ~calcxx_driver ();
7759
7760 std::map<std::string, int> variables;
7761
7762 int result;
7763@end example
7764
7765@noindent
7766To encapsulate the coordination with the Flex scanner, it is useful to
7767have two members function to open and close the scanning phase.
12545799 7768
1c59e0a1 7769@comment file: calc++-driver.hh
12545799
AD
7770@example
7771 // Handling the scanner.
7772 void scan_begin ();
7773 void scan_end ();
7774 bool trace_scanning;
7775@end example
7776
7777@noindent
7778Similarly for the parser itself.
7779
1c59e0a1 7780@comment file: calc++-driver.hh
12545799
AD
7781@example
7782 // Handling the parser.
7783 void parse (const std::string& f);
7784 std::string file;
7785 bool trace_parsing;
7786@end example
7787
7788@noindent
7789To demonstrate pure handling of parse errors, instead of simply
7790dumping them on the standard error output, we will pass them to the
7791compiler driver using the following two member functions. Finally, we
7792close the class declaration and CPP guard.
7793
1c59e0a1 7794@comment file: calc++-driver.hh
12545799
AD
7795@example
7796 // Error handling.
7797 void error (const yy::location& l, const std::string& m);
7798 void error (const std::string& m);
7799@};
7800#endif // ! CALCXX_DRIVER_HH
7801@end example
7802
7803The implementation of the driver is straightforward. The @code{parse}
7804member function deserves some attention. The @code{error} functions
7805are simple stubs, they should actually register the located error
7806messages and set error state.
7807
1c59e0a1 7808@comment file: calc++-driver.cc
12545799
AD
7809@example
7810#include "calc++-driver.hh"
7811#include "calc++-parser.hh"
7812
7813calcxx_driver::calcxx_driver ()
7814 : trace_scanning (false), trace_parsing (false)
7815@{
7816 variables["one"] = 1;
7817 variables["two"] = 2;
7818@}
7819
7820calcxx_driver::~calcxx_driver ()
7821@{
7822@}
7823
7824void
7825calcxx_driver::parse (const std::string &f)
7826@{
7827 file = f;
7828 scan_begin ();
7829 yy::calcxx_parser parser (*this);
7830 parser.set_debug_level (trace_parsing);
7831 parser.parse ();
7832 scan_end ();
7833@}
7834
7835void
7836calcxx_driver::error (const yy::location& l, const std::string& m)
7837@{
7838 std::cerr << l << ": " << m << std::endl;
7839@}
7840
7841void
7842calcxx_driver::error (const std::string& m)
7843@{
7844 std::cerr << m << std::endl;
7845@}
7846@end example
7847
7848@node Calc++ Parser
7849@subsection Calc++ Parser
7850
b50d2359
AD
7851The parser definition file @file{calc++-parser.yy} starts by asking for
7852the C++ LALR(1) skeleton, the creation of the parser header file, and
7853specifies the name of the parser class. Because the C++ skeleton
7854changed several times, it is safer to require the version you designed
7855the grammar for.
1c59e0a1
AD
7856
7857@comment file: calc++-parser.yy
12545799 7858@example
0e021770 7859%language "C++" /* -*- C++ -*- */
e6e704dc 7860%require "@value{VERSION}"
12545799 7861%defines
fb9712a9
AD
7862%define "parser_class_name" "calcxx_parser"
7863@end example
7864
7865@noindent
136a0f76 7866@findex %requires
fb9712a9
AD
7867Then come the declarations/inclusions needed to define the
7868@code{%union}. Because the parser uses the parsing driver and
7869reciprocally, both cannot include the header of the other. Because the
7870driver's header needs detailed knowledge about the parser class (in
7871particular its inner types), it is the parser's header which will simply
7872use a forward declaration of the driver.
136a0f76 7873@xref{Table of Symbols, ,%requires}.
fb9712a9
AD
7874
7875@comment file: calc++-parser.yy
7876@example
136a0f76 7877%requires @{
12545799 7878# include <string>
fb9712a9 7879class calcxx_driver;
9bc0dd67 7880@}
12545799
AD
7881@end example
7882
7883@noindent
7884The driver is passed by reference to the parser and to the scanner.
7885This provides a simple but effective pure interface, not relying on
7886global variables.
7887
1c59e0a1 7888@comment file: calc++-parser.yy
12545799
AD
7889@example
7890// The parsing context.
7891%parse-param @{ calcxx_driver& driver @}
7892%lex-param @{ calcxx_driver& driver @}
7893@end example
7894
7895@noindent
7896Then we request the location tracking feature, and initialize the
7897first location's file name. Afterwards new locations are computed
7898relatively to the previous locations: the file name will be
7899automatically propagated.
7900
1c59e0a1 7901@comment file: calc++-parser.yy
12545799
AD
7902@example
7903%locations
7904%initial-action
7905@{
7906 // Initialize the initial location.
b47dbebe 7907 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
7908@};
7909@end example
7910
7911@noindent
7912Use the two following directives to enable parser tracing and verbose
7913error messages.
7914
1c59e0a1 7915@comment file: calc++-parser.yy
12545799
AD
7916@example
7917%debug
7918%error-verbose
7919@end example
7920
7921@noindent
7922Semantic values cannot use ``real'' objects, but only pointers to
7923them.
7924
1c59e0a1 7925@comment file: calc++-parser.yy
12545799
AD
7926@example
7927// Symbols.
7928%union
7929@{
7930 int ival;
7931 std::string *sval;
7932@};
7933@end example
7934
fb9712a9 7935@noindent
136a0f76
PB
7936@findex %code
7937The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 7938@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
7939
7940@comment file: calc++-parser.yy
7941@example
136a0f76 7942%code @{
fb9712a9 7943# include "calc++-driver.hh"
34f98f46 7944@}
fb9712a9
AD
7945@end example
7946
7947
12545799
AD
7948@noindent
7949The token numbered as 0 corresponds to end of file; the following line
7950allows for nicer error messages referring to ``end of file'' instead
7951of ``$end''. Similarly user friendly named are provided for each
7952symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
7953avoid name clashes.
7954
1c59e0a1 7955@comment file: calc++-parser.yy
12545799 7956@example
fb9712a9
AD
7957%token END 0 "end of file"
7958%token ASSIGN ":="
7959%token <sval> IDENTIFIER "identifier"
7960%token <ival> NUMBER "number"
7961%type <ival> exp "expression"
12545799
AD
7962@end example
7963
7964@noindent
7965To enable memory deallocation during error recovery, use
7966@code{%destructor}.
7967
287c78f6 7968@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 7969@comment file: calc++-parser.yy
12545799
AD
7970@example
7971%printer @{ debug_stream () << *$$; @} "identifier"
7972%destructor @{ delete $$; @} "identifier"
7973
7974%printer @{ debug_stream () << $$; @} "number" "expression"
7975@end example
7976
7977@noindent
7978The grammar itself is straightforward.
7979
1c59e0a1 7980@comment file: calc++-parser.yy
12545799
AD
7981@example
7982%%
7983%start unit;
7984unit: assignments exp @{ driver.result = $2; @};
7985
7986assignments: assignments assignment @{@}
9d9b8b70 7987 | /* Nothing. */ @{@};
12545799 7988
3dc5e96b
PE
7989assignment:
7990 "identifier" ":=" exp
7991 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
7992
7993%left '+' '-';
7994%left '*' '/';
7995exp: exp '+' exp @{ $$ = $1 + $3; @}
7996 | exp '-' exp @{ $$ = $1 - $3; @}
7997 | exp '*' exp @{ $$ = $1 * $3; @}
7998 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 7999 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 8000 | "number" @{ $$ = $1; @};
12545799
AD
8001%%
8002@end example
8003
8004@noindent
8005Finally the @code{error} member function registers the errors to the
8006driver.
8007
1c59e0a1 8008@comment file: calc++-parser.yy
12545799
AD
8009@example
8010void
1c59e0a1
AD
8011yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
8012 const std::string& m)
12545799
AD
8013@{
8014 driver.error (l, m);
8015@}
8016@end example
8017
8018@node Calc++ Scanner
8019@subsection Calc++ Scanner
8020
8021The Flex scanner first includes the driver declaration, then the
8022parser's to get the set of defined tokens.
8023
1c59e0a1 8024@comment file: calc++-scanner.ll
12545799
AD
8025@example
8026%@{ /* -*- C++ -*- */
04098407
PE
8027# include <cstdlib>
8028# include <errno.h>
8029# include <limits.h>
12545799
AD
8030# include <string>
8031# include "calc++-driver.hh"
8032# include "calc++-parser.hh"
eaea13f5
PE
8033
8034/* Work around an incompatibility in flex (at least versions
8035 2.5.31 through 2.5.33): it generates code that does
8036 not conform to C89. See Debian bug 333231
8037 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
8038# undef yywrap
8039# define yywrap() 1
eaea13f5 8040
c095d689
AD
8041/* By default yylex returns int, we use token_type.
8042 Unfortunately yyterminate by default returns 0, which is
8043 not of token_type. */
8c5b881d 8044#define yyterminate() return token::END
12545799
AD
8045%@}
8046@end example
8047
8048@noindent
8049Because there is no @code{#include}-like feature we don't need
8050@code{yywrap}, we don't need @code{unput} either, and we parse an
8051actual file, this is not an interactive session with the user.
8052Finally we enable the scanner tracing features.
8053
1c59e0a1 8054@comment file: calc++-scanner.ll
12545799
AD
8055@example
8056%option noyywrap nounput batch debug
8057@end example
8058
8059@noindent
8060Abbreviations allow for more readable rules.
8061
1c59e0a1 8062@comment file: calc++-scanner.ll
12545799
AD
8063@example
8064id [a-zA-Z][a-zA-Z_0-9]*
8065int [0-9]+
8066blank [ \t]
8067@end example
8068
8069@noindent
9d9b8b70 8070The following paragraph suffices to track locations accurately. Each
12545799
AD
8071time @code{yylex} is invoked, the begin position is moved onto the end
8072position. Then when a pattern is matched, the end position is
8073advanced of its width. In case it matched ends of lines, the end
8074cursor is adjusted, and each time blanks are matched, the begin cursor
8075is moved onto the end cursor to effectively ignore the blanks
8076preceding tokens. Comments would be treated equally.
8077
1c59e0a1 8078@comment file: calc++-scanner.ll
12545799 8079@example
828c373b
AD
8080%@{
8081# define YY_USER_ACTION yylloc->columns (yyleng);
8082%@}
12545799
AD
8083%%
8084%@{
8085 yylloc->step ();
12545799
AD
8086%@}
8087@{blank@}+ yylloc->step ();
8088[\n]+ yylloc->lines (yyleng); yylloc->step ();
8089@end example
8090
8091@noindent
fb9712a9
AD
8092The rules are simple, just note the use of the driver to report errors.
8093It is convenient to use a typedef to shorten
8094@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 8095@code{token::identifier} for instance.
12545799 8096
1c59e0a1 8097@comment file: calc++-scanner.ll
12545799 8098@example
fb9712a9
AD
8099%@{
8100 typedef yy::calcxx_parser::token token;
8101%@}
8c5b881d 8102 /* Convert ints to the actual type of tokens. */
c095d689 8103[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 8104":=" return token::ASSIGN;
04098407
PE
8105@{int@} @{
8106 errno = 0;
8107 long n = strtol (yytext, NULL, 10);
8108 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
8109 driver.error (*yylloc, "integer is out of range");
8110 yylval->ival = n;
fb9712a9 8111 return token::NUMBER;
04098407 8112@}
fb9712a9 8113@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
8114. driver.error (*yylloc, "invalid character");
8115%%
8116@end example
8117
8118@noindent
8119Finally, because the scanner related driver's member function depend
8120on the scanner's data, it is simpler to implement them in this file.
8121
1c59e0a1 8122@comment file: calc++-scanner.ll
12545799
AD
8123@example
8124void
8125calcxx_driver::scan_begin ()
8126@{
8127 yy_flex_debug = trace_scanning;
8128 if (!(yyin = fopen (file.c_str (), "r")))
8129 error (std::string ("cannot open ") + file);
8130@}
8131
8132void
8133calcxx_driver::scan_end ()
8134@{
8135 fclose (yyin);
8136@}
8137@end example
8138
8139@node Calc++ Top Level
8140@subsection Calc++ Top Level
8141
8142The top level file, @file{calc++.cc}, poses no problem.
8143
1c59e0a1 8144@comment file: calc++.cc
12545799
AD
8145@example
8146#include <iostream>
8147#include "calc++-driver.hh"
8148
8149int
fa4d969f 8150main (int argc, char *argv[])
12545799
AD
8151@{
8152 calcxx_driver driver;
8153 for (++argv; argv[0]; ++argv)
8154 if (*argv == std::string ("-p"))
8155 driver.trace_parsing = true;
8156 else if (*argv == std::string ("-s"))
8157 driver.trace_scanning = true;
8158 else
8159 @{
3dc5e96b
PE
8160 driver.parse (*argv);
8161 std::cout << driver.result << std::endl;
12545799
AD
8162 @}
8163@}
8164@end example
8165
8166@c ================================================= FAQ
d1a1114f
AD
8167
8168@node FAQ
8169@chapter Frequently Asked Questions
8170@cindex frequently asked questions
8171@cindex questions
8172
8173Several questions about Bison come up occasionally. Here some of them
8174are addressed.
8175
8176@menu
55ba27be
AD
8177* Memory Exhausted:: Breaking the Stack Limits
8178* How Can I Reset the Parser:: @code{yyparse} Keeps some State
8179* Strings are Destroyed:: @code{yylval} Loses Track of Strings
8180* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 8181* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
8182* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
8183* I can't build Bison:: Troubleshooting
8184* Where can I find help?:: Troubleshouting
8185* Bug Reports:: Troublereporting
8186* Other Languages:: Parsers in Java and others
8187* Beta Testing:: Experimenting development versions
8188* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
8189@end menu
8190
1a059451
PE
8191@node Memory Exhausted
8192@section Memory Exhausted
d1a1114f
AD
8193
8194@display
1a059451 8195My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
8196message. What can I do?
8197@end display
8198
8199This question is already addressed elsewhere, @xref{Recursion,
8200,Recursive Rules}.
8201
e64fec0a
PE
8202@node How Can I Reset the Parser
8203@section How Can I Reset the Parser
5b066063 8204
0e14ad77
PE
8205The following phenomenon has several symptoms, resulting in the
8206following typical questions:
5b066063
AD
8207
8208@display
8209I invoke @code{yyparse} several times, and on correct input it works
8210properly; but when a parse error is found, all the other calls fail
0e14ad77 8211too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
8212@end display
8213
8214@noindent
8215or
8216
8217@display
0e14ad77 8218My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
8219which case I run @code{yyparse} from @code{yyparse}. This fails
8220although I did specify I needed a @code{%pure-parser}.
8221@end display
8222
0e14ad77
PE
8223These problems typically come not from Bison itself, but from
8224Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
8225speed, they might not notice a change of input file. As a
8226demonstration, consider the following source file,
8227@file{first-line.l}:
8228
8229@verbatim
8230%{
8231#include <stdio.h>
8232#include <stdlib.h>
8233%}
8234%%
8235.*\n ECHO; return 1;
8236%%
8237int
0e14ad77 8238yyparse (char const *file)
5b066063
AD
8239{
8240 yyin = fopen (file, "r");
8241 if (!yyin)
8242 exit (2);
fa7e68c3 8243 /* One token only. */
5b066063 8244 yylex ();
0e14ad77 8245 if (fclose (yyin) != 0)
5b066063
AD
8246 exit (3);
8247 return 0;
8248}
8249
8250int
0e14ad77 8251main (void)
5b066063
AD
8252{
8253 yyparse ("input");
8254 yyparse ("input");
8255 return 0;
8256}
8257@end verbatim
8258
8259@noindent
8260If the file @file{input} contains
8261
8262@verbatim
8263input:1: Hello,
8264input:2: World!
8265@end verbatim
8266
8267@noindent
0e14ad77 8268then instead of getting the first line twice, you get:
5b066063
AD
8269
8270@example
8271$ @kbd{flex -ofirst-line.c first-line.l}
8272$ @kbd{gcc -ofirst-line first-line.c -ll}
8273$ @kbd{./first-line}
8274input:1: Hello,
8275input:2: World!
8276@end example
8277
0e14ad77
PE
8278Therefore, whenever you change @code{yyin}, you must tell the
8279Lex-generated scanner to discard its current buffer and switch to the
8280new one. This depends upon your implementation of Lex; see its
8281documentation for more. For Flex, it suffices to call
8282@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
8283Flex-generated scanner needs to read from several input streams to
8284handle features like include files, you might consider using Flex
8285functions like @samp{yy_switch_to_buffer} that manipulate multiple
8286input buffers.
5b066063 8287
b165c324
AD
8288If your Flex-generated scanner uses start conditions (@pxref{Start
8289conditions, , Start conditions, flex, The Flex Manual}), you might
8290also want to reset the scanner's state, i.e., go back to the initial
8291start condition, through a call to @samp{BEGIN (0)}.
8292
fef4cb51
AD
8293@node Strings are Destroyed
8294@section Strings are Destroyed
8295
8296@display
c7e441b4 8297My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
8298them. Instead of reporting @samp{"foo", "bar"}, it reports
8299@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
8300@end display
8301
8302This error is probably the single most frequent ``bug report'' sent to
8303Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 8304of the scanner. Consider the following Lex code:
fef4cb51
AD
8305
8306@verbatim
8307%{
8308#include <stdio.h>
8309char *yylval = NULL;
8310%}
8311%%
8312.* yylval = yytext; return 1;
8313\n /* IGNORE */
8314%%
8315int
8316main ()
8317{
fa7e68c3 8318 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
8319 char *fst = (yylex (), yylval);
8320 char *snd = (yylex (), yylval);
8321 printf ("\"%s\", \"%s\"\n", fst, snd);
8322 return 0;
8323}
8324@end verbatim
8325
8326If you compile and run this code, you get:
8327
8328@example
8329$ @kbd{flex -osplit-lines.c split-lines.l}
8330$ @kbd{gcc -osplit-lines split-lines.c -ll}
8331$ @kbd{printf 'one\ntwo\n' | ./split-lines}
8332"one
8333two", "two"
8334@end example
8335
8336@noindent
8337this is because @code{yytext} is a buffer provided for @emph{reading}
8338in the action, but if you want to keep it, you have to duplicate it
8339(e.g., using @code{strdup}). Note that the output may depend on how
8340your implementation of Lex handles @code{yytext}. For instance, when
8341given the Lex compatibility option @option{-l} (which triggers the
8342option @samp{%array}) Flex generates a different behavior:
8343
8344@example
8345$ @kbd{flex -l -osplit-lines.c split-lines.l}
8346$ @kbd{gcc -osplit-lines split-lines.c -ll}
8347$ @kbd{printf 'one\ntwo\n' | ./split-lines}
8348"two", "two"
8349@end example
8350
8351
2fa09258
AD
8352@node Implementing Gotos/Loops
8353@section Implementing Gotos/Loops
a06ea4aa
AD
8354
8355@display
8356My simple calculator supports variables, assignments, and functions,
2fa09258 8357but how can I implement gotos, or loops?
a06ea4aa
AD
8358@end display
8359
8360Although very pedagogical, the examples included in the document blur
a1c84f45 8361the distinction to make between the parser---whose job is to recover
a06ea4aa 8362the structure of a text and to transmit it to subsequent modules of
a1c84f45 8363the program---and the processing (such as the execution) of this
a06ea4aa
AD
8364structure. This works well with so called straight line programs,
8365i.e., precisely those that have a straightforward execution model:
8366execute simple instructions one after the others.
8367
8368@cindex abstract syntax tree
8369@cindex @acronym{AST}
8370If you want a richer model, you will probably need to use the parser
8371to construct a tree that does represent the structure it has
8372recovered; this tree is usually called the @dfn{abstract syntax tree},
8373or @dfn{@acronym{AST}} for short. Then, walking through this tree,
8374traversing it in various ways, will enable treatments such as its
8375execution or its translation, which will result in an interpreter or a
8376compiler.
8377
8378This topic is way beyond the scope of this manual, and the reader is
8379invited to consult the dedicated literature.
8380
8381
ed2e6384
AD
8382@node Multiple start-symbols
8383@section Multiple start-symbols
8384
8385@display
8386I have several closely related grammars, and I would like to share their
8387implementations. In fact, I could use a single grammar but with
8388multiple entry points.
8389@end display
8390
8391Bison does not support multiple start-symbols, but there is a very
8392simple means to simulate them. If @code{foo} and @code{bar} are the two
8393pseudo start-symbols, then introduce two new tokens, say
8394@code{START_FOO} and @code{START_BAR}, and use them as switches from the
8395real start-symbol:
8396
8397@example
8398%token START_FOO START_BAR;
8399%start start;
8400start: START_FOO foo
8401 | START_BAR bar;
8402@end example
8403
8404These tokens prevents the introduction of new conflicts. As far as the
8405parser goes, that is all that is needed.
8406
8407Now the difficult part is ensuring that the scanner will send these
8408tokens first. If your scanner is hand-written, that should be
8409straightforward. If your scanner is generated by Lex, them there is
8410simple means to do it: recall that anything between @samp{%@{ ... %@}}
8411after the first @code{%%} is copied verbatim in the top of the generated
8412@code{yylex} function. Make sure a variable @code{start_token} is
8413available in the scanner (e.g., a global variable or using
8414@code{%lex-param} etc.), and use the following:
8415
8416@example
8417 /* @r{Prologue.} */
8418%%
8419%@{
8420 if (start_token)
8421 @{
8422 int t = start_token;
8423 start_token = 0;
8424 return t;
8425 @}
8426%@}
8427 /* @r{The rules.} */
8428@end example
8429
8430
55ba27be
AD
8431@node Secure? Conform?
8432@section Secure? Conform?
8433
8434@display
8435Is Bison secure? Does it conform to POSIX?
8436@end display
8437
8438If you're looking for a guarantee or certification, we don't provide it.
8439However, Bison is intended to be a reliable program that conforms to the
8440@acronym{POSIX} specification for Yacc. If you run into problems,
8441please send us a bug report.
8442
8443@node I can't build Bison
8444@section I can't build Bison
8445
8446@display
8c5b881d
PE
8447I can't build Bison because @command{make} complains that
8448@code{msgfmt} is not found.
55ba27be
AD
8449What should I do?
8450@end display
8451
8452Like most GNU packages with internationalization support, that feature
8453is turned on by default. If you have problems building in the @file{po}
8454subdirectory, it indicates that your system's internationalization
8455support is lacking. You can re-configure Bison with
8456@option{--disable-nls} to turn off this support, or you can install GNU
8457gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
8458Bison. See the file @file{ABOUT-NLS} for more information.
8459
8460
8461@node Where can I find help?
8462@section Where can I find help?
8463
8464@display
8465I'm having trouble using Bison. Where can I find help?
8466@end display
8467
8468First, read this fine manual. Beyond that, you can send mail to
8469@email{help-bison@@gnu.org}. This mailing list is intended to be
8470populated with people who are willing to answer questions about using
8471and installing Bison. Please keep in mind that (most of) the people on
8472the list have aspects of their lives which are not related to Bison (!),
8473so you may not receive an answer to your question right away. This can
8474be frustrating, but please try not to honk them off; remember that any
8475help they provide is purely voluntary and out of the kindness of their
8476hearts.
8477
8478@node Bug Reports
8479@section Bug Reports
8480
8481@display
8482I found a bug. What should I include in the bug report?
8483@end display
8484
8485Before you send a bug report, make sure you are using the latest
8486version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
8487mirrors. Be sure to include the version number in your bug report. If
8488the bug is present in the latest version but not in a previous version,
8489try to determine the most recent version which did not contain the bug.
8490
8491If the bug is parser-related, you should include the smallest grammar
8492you can which demonstrates the bug. The grammar file should also be
8493complete (i.e., I should be able to run it through Bison without having
8494to edit or add anything). The smaller and simpler the grammar, the
8495easier it will be to fix the bug.
8496
8497Include information about your compilation environment, including your
8498operating system's name and version and your compiler's name and
8499version. If you have trouble compiling, you should also include a
8500transcript of the build session, starting with the invocation of
8501`configure'. Depending on the nature of the bug, you may be asked to
8502send additional files as well (such as `config.h' or `config.cache').
8503
8504Patches are most welcome, but not required. That is, do not hesitate to
8505send a bug report just because you can not provide a fix.
8506
8507Send bug reports to @email{bug-bison@@gnu.org}.
8508
8509@node Other Languages
8510@section Other Languages
8511
8512@display
8513Will Bison ever have C++ support? How about Java or @var{insert your
8514favorite language here}?
8515@end display
8516
8517C++ support is there now, and is documented. We'd love to add other
8518languages; contributions are welcome.
8519
8520@node Beta Testing
8521@section Beta Testing
8522
8523@display
8524What is involved in being a beta tester?
8525@end display
8526
8527It's not terribly involved. Basically, you would download a test
8528release, compile it, and use it to build and run a parser or two. After
8529that, you would submit either a bug report or a message saying that
8530everything is okay. It is important to report successes as well as
8531failures because test releases eventually become mainstream releases,
8532but only if they are adequately tested. If no one tests, development is
8533essentially halted.
8534
8535Beta testers are particularly needed for operating systems to which the
8536developers do not have easy access. They currently have easy access to
8537recent GNU/Linux and Solaris versions. Reports about other operating
8538systems are especially welcome.
8539
8540@node Mailing Lists
8541@section Mailing Lists
8542
8543@display
8544How do I join the help-bison and bug-bison mailing lists?
8545@end display
8546
8547See @url{http://lists.gnu.org/}.
a06ea4aa 8548
d1a1114f
AD
8549@c ================================================= Table of Symbols
8550
342b8b6e 8551@node Table of Symbols
bfa74976
RS
8552@appendix Bison Symbols
8553@cindex Bison symbols, table of
8554@cindex symbols in Bison, table of
8555
18b519c0 8556@deffn {Variable} @@$
3ded9a63 8557In an action, the location of the left-hand side of the rule.
88bce5a2 8558@xref{Locations, , Locations Overview}.
18b519c0 8559@end deffn
3ded9a63 8560
18b519c0 8561@deffn {Variable} @@@var{n}
3ded9a63
AD
8562In an action, the location of the @var{n}-th symbol of the right-hand
8563side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 8564@end deffn
3ded9a63 8565
18b519c0 8566@deffn {Variable} $$
3ded9a63
AD
8567In an action, the semantic value of the left-hand side of the rule.
8568@xref{Actions}.
18b519c0 8569@end deffn
3ded9a63 8570
18b519c0 8571@deffn {Variable} $@var{n}
3ded9a63
AD
8572In an action, the semantic value of the @var{n}-th symbol of the
8573right-hand side of the rule. @xref{Actions}.
18b519c0 8574@end deffn
3ded9a63 8575
dd8d9022
AD
8576@deffn {Delimiter} %%
8577Delimiter used to separate the grammar rule section from the
8578Bison declarations section or the epilogue.
8579@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 8580@end deffn
bfa74976 8581
dd8d9022
AD
8582@c Don't insert spaces, or check the DVI output.
8583@deffn {Delimiter} %@{@var{code}%@}
8584All code listed between @samp{%@{} and @samp{%@}} is copied directly to
8585the output file uninterpreted. Such code forms the prologue of the input
8586file. @xref{Grammar Outline, ,Outline of a Bison
8587Grammar}.
18b519c0 8588@end deffn
bfa74976 8589
dd8d9022
AD
8590@deffn {Construct} /*@dots{}*/
8591Comment delimiters, as in C.
18b519c0 8592@end deffn
bfa74976 8593
dd8d9022
AD
8594@deffn {Delimiter} :
8595Separates a rule's result from its components. @xref{Rules, ,Syntax of
8596Grammar Rules}.
18b519c0 8597@end deffn
bfa74976 8598
dd8d9022
AD
8599@deffn {Delimiter} ;
8600Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 8601@end deffn
bfa74976 8602
dd8d9022
AD
8603@deffn {Delimiter} |
8604Separates alternate rules for the same result nonterminal.
8605@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 8606@end deffn
bfa74976 8607
12e35840
JD
8608@deffn {Directive} <*>
8609Used to define a default tagged @code{%destructor} or default tagged
8610@code{%printer}.
85894313
JD
8611
8612This feature is experimental.
8613More user feedback will help to determine whether it should become a permanent
8614feature.
8615
12e35840
JD
8616@xref{Destructor Decl, , Freeing Discarded Symbols}.
8617@end deffn
8618
3ebecc24 8619@deffn {Directive} <>
12e35840
JD
8620Used to define a default tagless @code{%destructor} or default tagless
8621@code{%printer}.
85894313
JD
8622
8623This feature is experimental.
8624More user feedback will help to determine whether it should become a permanent
8625feature.
8626
12e35840
JD
8627@xref{Destructor Decl, , Freeing Discarded Symbols}.
8628@end deffn
8629
dd8d9022
AD
8630@deffn {Symbol} $accept
8631The predefined nonterminal whose only rule is @samp{$accept: @var{start}
8632$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
8633Start-Symbol}. It cannot be used in the grammar.
18b519c0 8634@end deffn
bfa74976 8635
136a0f76 8636@deffn {Directive} %code @{@var{code}@}
2cbe6b7f
JD
8637Other than semantic actions, this is probably the most common place you should
8638write verbatim code for the parser implementation.
85894313
JD
8639It replaces the traditional Yacc prologue,
8640@comment For C/C++, it replaces the traditional Yacc prologue,
2cbe6b7f 8641@code{%@{@var{code}%@}}, for most purposes.
85894313 8642@comment For Java, it inserts code into the parser class.
9bc0dd67
JD
8643
8644@cindex Prologue
9bc0dd67 8645@findex %union
2cbe6b7f
JD
8646Compare with @code{%@{@var{code}%@}} (@pxref{Prologue, ,The Prologue})
8647appearing after the first @code{%union @{@var{code}@}} in a C/C++ based grammar
8648file.
8649While Bison will continue to support @code{%@{@var{code}%@}} for backward
8650compatibility, @code{%code @{@var{code}@}} is cleaner as its functionality does
8651not depend on its position in the grammar file relative to any
8652@code{%union @{@var{code}@}}.
8653Specifically, @code{%code @{@var{code}@}} always inserts your @var{code} into
8654the parser code file after the usual contents of the parser header file.
8655
85894313
JD
8656(Like all the Yacc prologue alternative directives, this directive is
8657experimental.
8658More user feedback will help to determine whether it should become a permanent
8659feature.)
8660
2cbe6b7f
JD
8661@xref{Prologue Alternatives}.
8662@end deffn
8663
8664@deffn {Directive} %code-top @{@var{code}@}
85894313
JD
8665Occasionally it is desirable to insert code near the top of the
8666@comment Occasionally for C/C++ it is desirable to insert code near the top of the
2cbe6b7f
JD
8667parser code file.
8668For example:
9bc0dd67
JD
8669
8670@smallexample
2cbe6b7f
JD
8671%code-top @{
8672 #define _GNU_SOURCE
8673 #include <stdio.h>
9bc0dd67 8674@}
9bc0dd67
JD
8675@end smallexample
8676
85894313
JD
8677@comment @noindent
8678@comment For Java, @code{%code-top @{@var{code}@}} is currently unused.
2cbe6b7f
JD
8679
8680@cindex Prologue
8681@findex %union
8682Compare with @code{%@{@var{code}%@}} appearing before the first
8683@code{%union @{@var{code}@}} in a C/C++ based grammar file.
8684@code{%code-top @{@var{code}@}} is cleaner as its functionality does not depend
8685on its position in the grammar file relative to any
8686@code{%union @{@var{code}@}}.
34f98f46 8687
85894313
JD
8688(Like all the Yacc prologue alternative directives, this directive is
8689experimental.
8690More user feedback will help to determine whether it should become a permanent
8691feature.)
8692
2cbe6b7f 8693@xref{Prologue Alternatives}.
9bc0dd67
JD
8694@end deffn
8695
8696@deffn {Directive} %debug
8697Equip the parser for debugging. @xref{Decl Summary}.
8698@end deffn
8699
18b519c0 8700@deffn {Directive} %debug
6deb4447 8701Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 8702@end deffn
6deb4447 8703
91d2c560 8704@ifset defaultprec
22fccf95
PE
8705@deffn {Directive} %default-prec
8706Assign a precedence to rules that lack an explicit @samp{%prec}
8707modifier. @xref{Contextual Precedence, ,Context-Dependent
8708Precedence}.
39a06c25 8709@end deffn
91d2c560 8710@end ifset
39a06c25 8711
18b519c0 8712@deffn {Directive} %defines
6deb4447
AD
8713Bison declaration to create a header file meant for the scanner.
8714@xref{Decl Summary}.
18b519c0 8715@end deffn
6deb4447 8716
02975b9a
JD
8717@deffn {Directive} %defines @var{defines-file}
8718Same as above, but save in the file @var{defines-file}.
8719@xref{Decl Summary}.
8720@end deffn
8721
18b519c0 8722@deffn {Directive} %destructor
258b75ca 8723Specify how the parser should reclaim the memory associated to
fa7e68c3 8724discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 8725@end deffn
72f889cc 8726
18b519c0 8727@deffn {Directive} %dprec
676385e2 8728Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
8729time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8730@acronym{GLR} Parsers}.
18b519c0 8731@end deffn
676385e2 8732
dd8d9022
AD
8733@deffn {Symbol} $end
8734The predefined token marking the end of the token stream. It cannot be
8735used in the grammar.
8736@end deffn
8737
8738@deffn {Symbol} error
8739A token name reserved for error recovery. This token may be used in
8740grammar rules so as to allow the Bison parser to recognize an error in
8741the grammar without halting the process. In effect, a sentence
8742containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
8743token @code{error} becomes the current lookahead token. Actions
8744corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
8745token is reset to the token that originally caused the violation.
8746@xref{Error Recovery}.
18d192f0
AD
8747@end deffn
8748
18b519c0 8749@deffn {Directive} %error-verbose
2a8d363a
AD
8750Bison declaration to request verbose, specific error message strings
8751when @code{yyerror} is called.
18b519c0 8752@end deffn
2a8d363a 8753
02975b9a 8754@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 8755Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 8756Summary}.
18b519c0 8757@end deffn
d8988b2f 8758
18b519c0 8759@deffn {Directive} %glr-parser
c827f760
PE
8760Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
8761Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8762@end deffn
676385e2 8763
dd8d9022
AD
8764@deffn {Directive} %initial-action
8765Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
8766@end deffn
8767
e6e704dc
JD
8768@deffn {Directive} %language
8769Specify the programming language for the generated parser.
8770@xref{Decl Summary}.
8771@end deffn
8772
18b519c0 8773@deffn {Directive} %left
bfa74976
RS
8774Bison declaration to assign left associativity to token(s).
8775@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8776@end deffn
bfa74976 8777
feeb0eda 8778@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
8779Bison declaration to specifying an additional parameter that
8780@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
8781for Pure Parsers}.
18b519c0 8782@end deffn
2a8d363a 8783
18b519c0 8784@deffn {Directive} %merge
676385e2 8785Bison declaration to assign a merging function to a rule. If there is a
fae437e8 8786reduce/reduce conflict with a rule having the same merging function, the
676385e2 8787function is applied to the two semantic values to get a single result.
c827f760 8788@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8789@end deffn
676385e2 8790
02975b9a 8791@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 8792Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 8793@end deffn
d8988b2f 8794
91d2c560 8795@ifset defaultprec
22fccf95
PE
8796@deffn {Directive} %no-default-prec
8797Do not assign a precedence to rules that lack an explicit @samp{%prec}
8798modifier. @xref{Contextual Precedence, ,Context-Dependent
8799Precedence}.
8800@end deffn
91d2c560 8801@end ifset
22fccf95 8802
18b519c0 8803@deffn {Directive} %no-lines
931c7513
RS
8804Bison declaration to avoid generating @code{#line} directives in the
8805parser file. @xref{Decl Summary}.
18b519c0 8806@end deffn
931c7513 8807
18b519c0 8808@deffn {Directive} %nonassoc
9d9b8b70 8809Bison declaration to assign nonassociativity to token(s).
bfa74976 8810@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8811@end deffn
bfa74976 8812
02975b9a 8813@deffn {Directive} %output "@var{file}"
72d2299c 8814Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 8815Summary}.
18b519c0 8816@end deffn
d8988b2f 8817
feeb0eda 8818@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
8819Bison declaration to specifying an additional parameter that
8820@code{yyparse} should accept. @xref{Parser Function,, The Parser
8821Function @code{yyparse}}.
18b519c0 8822@end deffn
2a8d363a 8823
18b519c0 8824@deffn {Directive} %prec
bfa74976
RS
8825Bison declaration to assign a precedence to a specific rule.
8826@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 8827@end deffn
bfa74976 8828
2cbe6b7f
JD
8829@deffn {Directive} %provides @{@var{code}@}
8830This is the right place to write additional definitions you would like Bison to
8831expose externally.
85894313
JD
8832That is, this directive inserts your @var{code} both into the parser header
8833@comment For C/C++, this directive inserts your @var{code} both into the parser header
2cbe6b7f
JD
8834file (if generated; @pxref{Table of Symbols, ,%defines}) and into the parser
8835code file after Bison's required definitions.
85894313
JD
8836@comment For Java, it inserts your @var{code} into the parser java file after the parser
8837@comment class.
8838
8839(Like all the Yacc prologue alternative directives, this directive is
8840experimental.
8841More user feedback will help to determine whether it should become a permanent
8842feature.)
2cbe6b7f
JD
8843
8844@xref{Prologue Alternatives}.
8845@end deffn
8846
18b519c0 8847@deffn {Directive} %pure-parser
bfa74976
RS
8848Bison declaration to request a pure (reentrant) parser.
8849@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 8850@end deffn
bfa74976 8851
b50d2359 8852@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
8853Require version @var{version} or higher of Bison. @xref{Require Decl, ,
8854Require a Version of Bison}.
b50d2359
AD
8855@end deffn
8856
2cbe6b7f
JD
8857@deffn {Directive} %requires @{@var{code}@}
8858This is the right place to write dependency code for externally exposed
8859definitions required by Bison.
85894313
JD
8860Such exposed definitions are those usually appearing in the parser
8861@comment For C/C++, such exposed definitions are those usually appearing in the parser
2cbe6b7f
JD
8862header file.
8863Thus, this is the right place to define types referenced in
8864@code{%union @{@var{code}@}} directives, and it is the right place to override
8865Bison's default @code{YYSTYPE} and @code{YYLTYPE} definitions.
85894313 8866@comment For Java, this is the right place to write import directives.
2cbe6b7f
JD
8867
8868@cindex Prologue
8869@findex %union
8870Compare with @code{%@{@var{code}%@}} (@pxref{Prologue, ,The Prologue})
8871appearing before the first @code{%union @{@var{code}@}} in a C/C++ based
8872grammar file.
8873Unlike @code{%@{@var{code}%@}}, @code{%requires @{@var{code}@}} inserts your
8874@var{code} both into the parser code file and into the parser header file (if
8875generated; @pxref{Table of Symbols, ,%defines}) since Bison's required
8876definitions should depend on it in both places.
8877
85894313
JD
8878(Like all the Yacc prologue alternative directives, this directive is
8879experimental.
8880More user feedback will help to determine whether it should become a permanent
8881feature.)
8882
2cbe6b7f
JD
8883@xref{Prologue Alternatives}.
8884@end deffn
8885
18b519c0 8886@deffn {Directive} %right
bfa74976
RS
8887Bison declaration to assign right associativity to token(s).
8888@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8889@end deffn
bfa74976 8890
e6e704dc
JD
8891@deffn {Directive} %skeleton
8892Specify the skeleton to use; usually for development.
8893@xref{Decl Summary}.
8894@end deffn
8895
18b519c0 8896@deffn {Directive} %start
704a47c4
AD
8897Bison declaration to specify the start symbol. @xref{Start Decl, ,The
8898Start-Symbol}.
18b519c0 8899@end deffn
bfa74976 8900
18b519c0 8901@deffn {Directive} %token
bfa74976
RS
8902Bison declaration to declare token(s) without specifying precedence.
8903@xref{Token Decl, ,Token Type Names}.
18b519c0 8904@end deffn
bfa74976 8905
18b519c0 8906@deffn {Directive} %token-table
931c7513
RS
8907Bison declaration to include a token name table in the parser file.
8908@xref{Decl Summary}.
18b519c0 8909@end deffn
931c7513 8910
18b519c0 8911@deffn {Directive} %type
704a47c4
AD
8912Bison declaration to declare nonterminals. @xref{Type Decl,
8913,Nonterminal Symbols}.
18b519c0 8914@end deffn
bfa74976 8915
dd8d9022
AD
8916@deffn {Symbol} $undefined
8917The predefined token onto which all undefined values returned by
8918@code{yylex} are mapped. It cannot be used in the grammar, rather, use
8919@code{error}.
8920@end deffn
8921
18b519c0 8922@deffn {Directive} %union
bfa74976
RS
8923Bison declaration to specify several possible data types for semantic
8924values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 8925@end deffn
bfa74976 8926
dd8d9022
AD
8927@deffn {Macro} YYABORT
8928Macro to pretend that an unrecoverable syntax error has occurred, by
8929making @code{yyparse} return 1 immediately. The error reporting
8930function @code{yyerror} is not called. @xref{Parser Function, ,The
8931Parser Function @code{yyparse}}.
8932@end deffn
3ded9a63 8933
dd8d9022
AD
8934@deffn {Macro} YYACCEPT
8935Macro to pretend that a complete utterance of the language has been
8936read, by making @code{yyparse} return 0 immediately.
8937@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8938@end deffn
bfa74976 8939
dd8d9022 8940@deffn {Macro} YYBACKUP
742e4900 8941Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 8942token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8943@end deffn
bfa74976 8944
dd8d9022 8945@deffn {Variable} yychar
32c29292 8946External integer variable that contains the integer value of the
742e4900 8947lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
8948@code{yyparse}.) Error-recovery rule actions may examine this variable.
8949@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8950@end deffn
bfa74976 8951
dd8d9022
AD
8952@deffn {Variable} yyclearin
8953Macro used in error-recovery rule actions. It clears the previous
742e4900 8954lookahead token. @xref{Error Recovery}.
18b519c0 8955@end deffn
bfa74976 8956
dd8d9022
AD
8957@deffn {Macro} YYDEBUG
8958Macro to define to equip the parser with tracing code. @xref{Tracing,
8959,Tracing Your Parser}.
18b519c0 8960@end deffn
bfa74976 8961
dd8d9022
AD
8962@deffn {Variable} yydebug
8963External integer variable set to zero by default. If @code{yydebug}
8964is given a nonzero value, the parser will output information on input
8965symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 8966@end deffn
bfa74976 8967
dd8d9022
AD
8968@deffn {Macro} yyerrok
8969Macro to cause parser to recover immediately to its normal mode
8970after a syntax error. @xref{Error Recovery}.
8971@end deffn
8972
8973@deffn {Macro} YYERROR
8974Macro to pretend that a syntax error has just been detected: call
8975@code{yyerror} and then perform normal error recovery if possible
8976(@pxref{Error Recovery}), or (if recovery is impossible) make
8977@code{yyparse} return 1. @xref{Error Recovery}.
8978@end deffn
8979
8980@deffn {Function} yyerror
8981User-supplied function to be called by @code{yyparse} on error.
8982@xref{Error Reporting, ,The Error
8983Reporting Function @code{yyerror}}.
8984@end deffn
8985
8986@deffn {Macro} YYERROR_VERBOSE
8987An obsolete macro that you define with @code{#define} in the prologue
8988to request verbose, specific error message strings
8989when @code{yyerror} is called. It doesn't matter what definition you
8990use for @code{YYERROR_VERBOSE}, just whether you define it. Using
8991@code{%error-verbose} is preferred.
8992@end deffn
8993
8994@deffn {Macro} YYINITDEPTH
8995Macro for specifying the initial size of the parser stack.
1a059451 8996@xref{Memory Management}.
dd8d9022
AD
8997@end deffn
8998
8999@deffn {Function} yylex
9000User-supplied lexical analyzer function, called with no arguments to get
9001the next token. @xref{Lexical, ,The Lexical Analyzer Function
9002@code{yylex}}.
9003@end deffn
9004
9005@deffn {Macro} YYLEX_PARAM
9006An obsolete macro for specifying an extra argument (or list of extra
32c29292 9007arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
9008macro is deprecated, and is supported only for Yacc like parsers.
9009@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
9010@end deffn
9011
9012@deffn {Variable} yylloc
9013External variable in which @code{yylex} should place the line and column
9014numbers associated with a token. (In a pure parser, it is a local
9015variable within @code{yyparse}, and its address is passed to
32c29292
JD
9016@code{yylex}.)
9017You can ignore this variable if you don't use the @samp{@@} feature in the
9018grammar actions.
9019@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 9020In semantic actions, it stores the location of the lookahead token.
32c29292 9021@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
9022@end deffn
9023
9024@deffn {Type} YYLTYPE
9025Data type of @code{yylloc}; by default, a structure with four
9026members. @xref{Location Type, , Data Types of Locations}.
9027@end deffn
9028
9029@deffn {Variable} yylval
9030External variable in which @code{yylex} should place the semantic
9031value associated with a token. (In a pure parser, it is a local
9032variable within @code{yyparse}, and its address is passed to
32c29292
JD
9033@code{yylex}.)
9034@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 9035In semantic actions, it stores the semantic value of the lookahead token.
32c29292 9036@xref{Actions, ,Actions}.
dd8d9022
AD
9037@end deffn
9038
9039@deffn {Macro} YYMAXDEPTH
1a059451
PE
9040Macro for specifying the maximum size of the parser stack. @xref{Memory
9041Management}.
dd8d9022
AD
9042@end deffn
9043
9044@deffn {Variable} yynerrs
8a2800e7 9045Global variable which Bison increments each time it reports a syntax error.
dd8d9022
AD
9046(In a pure parser, it is a local variable within @code{yyparse}.)
9047@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
9048@end deffn
9049
9050@deffn {Function} yyparse
9051The parser function produced by Bison; call this function to start
9052parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
9053@end deffn
9054
9055@deffn {Macro} YYPARSE_PARAM
9056An obsolete macro for specifying the name of a parameter that
9057@code{yyparse} should accept. The use of this macro is deprecated, and
9058is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
9059Conventions for Pure Parsers}.
9060@end deffn
9061
9062@deffn {Macro} YYRECOVERING
02103984
PE
9063The expression @code{YYRECOVERING ()} yields 1 when the parser
9064is recovering from a syntax error, and 0 otherwise.
9065@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
9066@end deffn
9067
9068@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
9069Macro used to control the use of @code{alloca} when the C
9070@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
9071the parser will use @code{malloc} to extend its stacks. If defined to
90721, the parser will use @code{alloca}. Values other than 0 and 1 are
9073reserved for future Bison extensions. If not defined,
9074@code{YYSTACK_USE_ALLOCA} defaults to 0.
9075
55289366 9076In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
9077limited stack and with unreliable stack-overflow checking, you should
9078set @code{YYMAXDEPTH} to a value that cannot possibly result in
9079unchecked stack overflow on any of your target hosts when
9080@code{alloca} is called. You can inspect the code that Bison
9081generates in order to determine the proper numeric values. This will
9082require some expertise in low-level implementation details.
dd8d9022
AD
9083@end deffn
9084
9085@deffn {Type} YYSTYPE
9086Data type of semantic values; @code{int} by default.
9087@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 9088@end deffn
bfa74976 9089
342b8b6e 9090@node Glossary
bfa74976
RS
9091@appendix Glossary
9092@cindex glossary
9093
9094@table @asis
c827f760
PE
9095@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
9096Formal method of specifying context-free grammars originally proposed
9097by John Backus, and slightly improved by Peter Naur in his 1960-01-02
9098committee document contributing to what became the Algol 60 report.
9099@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
9100
9101@item Context-free grammars
9102Grammars specified as rules that can be applied regardless of context.
9103Thus, if there is a rule which says that an integer can be used as an
9104expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
9105permitted. @xref{Language and Grammar, ,Languages and Context-Free
9106Grammars}.
bfa74976
RS
9107
9108@item Dynamic allocation
9109Allocation of memory that occurs during execution, rather than at
9110compile time or on entry to a function.
9111
9112@item Empty string
9113Analogous to the empty set in set theory, the empty string is a
9114character string of length zero.
9115
9116@item Finite-state stack machine
9117A ``machine'' that has discrete states in which it is said to exist at
9118each instant in time. As input to the machine is processed, the
9119machine moves from state to state as specified by the logic of the
9120machine. In the case of the parser, the input is the language being
9121parsed, and the states correspond to various stages in the grammar
c827f760 9122rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 9123
c827f760 9124@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 9125A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
9126that are not @acronym{LALR}(1). It resolves situations that Bison's
9127usual @acronym{LALR}(1)
676385e2
PH
9128algorithm cannot by effectively splitting off multiple parsers, trying all
9129possible parsers, and discarding those that fail in the light of additional
c827f760
PE
9130right context. @xref{Generalized LR Parsing, ,Generalized
9131@acronym{LR} Parsing}.
676385e2 9132
bfa74976
RS
9133@item Grouping
9134A language construct that is (in general) grammatically divisible;
c827f760 9135for example, `expression' or `declaration' in C@.
bfa74976
RS
9136@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
9137
9138@item Infix operator
9139An arithmetic operator that is placed between the operands on which it
9140performs some operation.
9141
9142@item Input stream
9143A continuous flow of data between devices or programs.
9144
9145@item Language construct
9146One of the typical usage schemas of the language. For example, one of
9147the constructs of the C language is the @code{if} statement.
9148@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
9149
9150@item Left associativity
9151Operators having left associativity are analyzed from left to right:
9152@samp{a+b+c} first computes @samp{a+b} and then combines with
9153@samp{c}. @xref{Precedence, ,Operator Precedence}.
9154
9155@item Left recursion
89cab50d
AD
9156A rule whose result symbol is also its first component symbol; for
9157example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
9158Rules}.
bfa74976
RS
9159
9160@item Left-to-right parsing
9161Parsing a sentence of a language by analyzing it token by token from
c827f760 9162left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
9163
9164@item Lexical analyzer (scanner)
9165A function that reads an input stream and returns tokens one by one.
9166@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
9167
9168@item Lexical tie-in
9169A flag, set by actions in the grammar rules, which alters the way
9170tokens are parsed. @xref{Lexical Tie-ins}.
9171
931c7513 9172@item Literal string token
14ded682 9173A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 9174
742e4900
JD
9175@item Lookahead token
9176A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 9177Tokens}.
bfa74976 9178
c827f760 9179@item @acronym{LALR}(1)
bfa74976 9180The class of context-free grammars that Bison (like most other parser
c827f760
PE
9181generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
9182Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 9183
c827f760 9184@item @acronym{LR}(1)
bfa74976 9185The class of context-free grammars in which at most one token of
742e4900 9186lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
9187
9188@item Nonterminal symbol
9189A grammar symbol standing for a grammatical construct that can
9190be expressed through rules in terms of smaller constructs; in other
9191words, a construct that is not a token. @xref{Symbols}.
9192
bfa74976
RS
9193@item Parser
9194A function that recognizes valid sentences of a language by analyzing
9195the syntax structure of a set of tokens passed to it from a lexical
9196analyzer.
9197
9198@item Postfix operator
9199An arithmetic operator that is placed after the operands upon which it
9200performs some operation.
9201
9202@item Reduction
9203Replacing a string of nonterminals and/or terminals with a single
89cab50d 9204nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 9205Parser Algorithm}.
bfa74976
RS
9206
9207@item Reentrant
9208A reentrant subprogram is a subprogram which can be in invoked any
9209number of times in parallel, without interference between the various
9210invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
9211
9212@item Reverse polish notation
9213A language in which all operators are postfix operators.
9214
9215@item Right recursion
89cab50d
AD
9216A rule whose result symbol is also its last component symbol; for
9217example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
9218Rules}.
bfa74976
RS
9219
9220@item Semantics
9221In computer languages, the semantics are specified by the actions
9222taken for each instance of the language, i.e., the meaning of
9223each statement. @xref{Semantics, ,Defining Language Semantics}.
9224
9225@item Shift
9226A parser is said to shift when it makes the choice of analyzing
9227further input from the stream rather than reducing immediately some
c827f760 9228already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
9229
9230@item Single-character literal
9231A single character that is recognized and interpreted as is.
9232@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
9233
9234@item Start symbol
9235The nonterminal symbol that stands for a complete valid utterance in
9236the language being parsed. The start symbol is usually listed as the
13863333 9237first nonterminal symbol in a language specification.
bfa74976
RS
9238@xref{Start Decl, ,The Start-Symbol}.
9239
9240@item Symbol table
9241A data structure where symbol names and associated data are stored
9242during parsing to allow for recognition and use of existing
9243information in repeated uses of a symbol. @xref{Multi-function Calc}.
9244
6e649e65
PE
9245@item Syntax error
9246An error encountered during parsing of an input stream due to invalid
9247syntax. @xref{Error Recovery}.
9248
bfa74976
RS
9249@item Token
9250A basic, grammatically indivisible unit of a language. The symbol
9251that describes a token in the grammar is a terminal symbol.
9252The input of the Bison parser is a stream of tokens which comes from
9253the lexical analyzer. @xref{Symbols}.
9254
9255@item Terminal symbol
89cab50d
AD
9256A grammar symbol that has no rules in the grammar and therefore is
9257grammatically indivisible. The piece of text it represents is a token.
9258@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
9259@end table
9260
342b8b6e 9261@node Copying This Manual
f2b5126e 9262@appendix Copying This Manual
f9a8293a 9263
f2b5126e
PB
9264@menu
9265* GNU Free Documentation License:: License for copying this manual.
9266@end menu
f9a8293a 9267
f2b5126e
PB
9268@include fdl.texi
9269
342b8b6e 9270@node Index
bfa74976
RS
9271@unnumbered Index
9272
9273@printindex cp
9274
bfa74976 9275@bye
a06ea4aa
AD
9276
9277@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
9278@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
9279@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
9280@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
9281@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
9282@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
9283@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
9284@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
9285@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
9286@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
9287@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
9288@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
178e123e 9289@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln
a06ea4aa
AD
9290@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
9291@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
9292@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
9293@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
178e123e 9294@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs
a06ea4aa
AD
9295@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
9296@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
9297@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 9298@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa 9299@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
35fe0834 9300@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype
a06ea4aa 9301@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
35fe0834 9302@c LocalWords: infile ypp yxx outfile itemx tex leaderfill
a06ea4aa 9303@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
178e123e 9304@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST
a06ea4aa 9305@c LocalWords: YYSTACK DVI fdl printindex