]> git.saurik.com Git - bison.git/blame - doc/bison.texi
muscle: factor conditionals on defined %define variables
[bison.git] / doc / bison.texi
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
7d6bad19 36Copyright @copyright{} 1988-1993, 1995, 1998-2013 Free Software
575619af 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 106* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
5e528941 112* Bibliography:: Publications cited in this manual.
f9b86351 113* Index of Terms:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 128* Locations:: Overview of location tracking.
f5f419de
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
8a4281b9 134Writing GLR Parsers
fa7e68c3 135
8a4281b9
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 140* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
24ec0837
AD
166* Rpcalc Input:: Explanation of the @code{input} nonterminal
167* Rpcalc Line:: Explanation of the @code{line} nonterminal
168* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
181* Mfcalc Lexer:: The lexical analyzer.
182* Mfcalc Main:: The controlling function.
bfa74976
RS
183
184Bison Grammar Files
185
303834cc
JD
186* Grammar Outline:: Overall layout of the grammar file.
187* Symbols:: Terminal and nonterminal symbols.
188* Rules:: How to write grammar rules.
303834cc
JD
189* Semantics:: Semantic values and actions.
190* Tracking Locations:: Locations and actions.
191* Named References:: Using named references in actions.
192* Declarations:: All kinds of Bison declarations are described here.
193* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
194
195Outline of a Bison Grammar
196
f5f419de 197* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 198* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
199* Bison Declarations:: Syntax and usage of the Bison declarations section.
200* Grammar Rules:: Syntax and usage of the grammar rules section.
201* Epilogue:: Syntax and usage of the epilogue.
bfa74976 202
09add9c2
AD
203Grammar Rules
204
205* Rules Syntax:: Syntax of the rules.
206* Empty Rules:: Symbols that can match the empty string.
207* Recursion:: Writing recursive rules.
208
209
bfa74976
RS
210Defining Language Semantics
211
212* Value Type:: Specifying one data type for all semantic values.
213* Multiple Types:: Specifying several alternative data types.
90b89dad 214* Type Generation:: Generating the semantic value type.
e4d49586
AD
215* Union Decl:: Declaring the set of all semantic value types.
216* Structured Value Type:: Providing a structured semantic value type.
bfa74976
RS
217* Actions:: An action is the semantic definition of a grammar rule.
218* Action Types:: Specifying data types for actions to operate on.
219* Mid-Rule Actions:: Most actions go at the end of a rule.
220 This says when, why and how to use the exceptional
221 action in the middle of a rule.
222
be22823e
AD
223Actions in Mid-Rule
224
225* Using Mid-Rule Actions:: Putting an action in the middle of a rule.
226* Mid-Rule Action Translation:: How mid-rule actions are actually processed.
227* Mid-Rule Conflicts:: Mid-rule actions can cause conflicts.
228
93dd49ab
PE
229Tracking Locations
230
231* Location Type:: Specifying a data type for locations.
232* Actions and Locations:: Using locations in actions.
233* Location Default Action:: Defining a general way to compute locations.
234
bfa74976
RS
235Bison Declarations
236
b50d2359 237* Require Decl:: Requiring a Bison version.
bfa74976
RS
238* Token Decl:: Declaring terminal symbols.
239* Precedence Decl:: Declaring terminals with precedence and associativity.
bfa74976 240* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 241* Initial Action Decl:: Code run before parsing starts.
72f889cc 242* Destructor Decl:: Declaring how symbols are freed.
93c150b6 243* Printer Decl:: Declaring how symbol values are displayed.
d6328241 244* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
245* Start Decl:: Specifying the start symbol.
246* Pure Decl:: Requesting a reentrant parser.
9987d1b3 247* Push Decl:: Requesting a push parser.
bfa74976 248* Decl Summary:: Table of all Bison declarations.
35c1e5f0 249* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 250* %code Summary:: Inserting code into the parser source.
bfa74976
RS
251
252Parser C-Language Interface
253
f5f419de
DJ
254* Parser Function:: How to call @code{yyparse} and what it returns.
255* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
256* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
257* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
258* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
259* Lexical:: You must supply a function @code{yylex}
260 which reads tokens.
261* Error Reporting:: You must supply a function @code{yyerror}.
262* Action Features:: Special features for use in actions.
263* Internationalization:: How to let the parser speak in the user's
264 native language.
bfa74976
RS
265
266The Lexical Analyzer Function @code{yylex}
267
268* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
269* Token Values:: How @code{yylex} must return the semantic value
270 of the token it has read.
271* Token Locations:: How @code{yylex} must return the text location
272 (line number, etc.) of the token, if the
273 actions want that.
274* Pure Calling:: How the calling convention differs in a pure parser
275 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 276
13863333 277The Bison Parser Algorithm
bfa74976 278
742e4900 279* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
280* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
281* Precedence:: Operator precedence works by resolving conflicts.
282* Contextual Precedence:: When an operator's precedence depends on context.
283* Parser States:: The parser is a finite-state-machine with stack.
284* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 285* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 286* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 287* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 288* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
289
290Operator Precedence
291
292* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
293* Using Precedence:: How to specify precedence and associativity.
294* Precedence Only:: How to specify precedence only.
bfa74976
RS
295* Precedence Examples:: How these features are used in the previous example.
296* How Precedence:: How they work.
c28cd5dc 297* Non Operators:: Using precedence for general conflicts.
bfa74976 298
7fceb615
JD
299Tuning LR
300
301* LR Table Construction:: Choose a different construction algorithm.
302* Default Reductions:: Disable default reductions.
303* LAC:: Correct lookahead sets in the parser states.
304* Unreachable States:: Keep unreachable parser states for debugging.
305
bfa74976
RS
306Handling Context Dependencies
307
308* Semantic Tokens:: Token parsing can depend on the semantic context.
309* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
310* Tie-in Recovery:: Lexical tie-ins have implications for how
311 error recovery rules must be written.
312
93dd49ab 313Debugging Your Parser
ec3bc396
AD
314
315* Understanding:: Understanding the structure of your parser.
fc4fdd62 316* Graphviz:: Getting a visual representation of the parser.
9c16d399 317* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
318* Tracing:: Tracing the execution of your parser.
319
93c150b6
AD
320Tracing Your Parser
321
322* Enabling Traces:: Activating run-time trace support
323* Mfcalc Traces:: Extending @code{mfcalc} to support traces
324* The YYPRINT Macro:: Obsolete interface for semantic value reports
325
bfa74976
RS
326Invoking Bison
327
13863333 328* Bison Options:: All the options described in detail,
c827f760 329 in alphabetical order by short options.
bfa74976 330* Option Cross Key:: Alphabetical list of long options.
93dd49ab 331* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 332
8405b70c 333Parsers Written In Other Languages
12545799
AD
334
335* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 336* Java Parsers:: The interface to generate Java parser classes
12545799
AD
337
338C++ Parsers
339
340* C++ Bison Interface:: Asking for C++ parser generation
341* C++ Semantic Values:: %union vs. C++
342* C++ Location Values:: The position and location classes
343* C++ Parser Interface:: Instantiating and running the parser
344* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 345* A Complete C++ Example:: Demonstrating their use
12545799 346
936c88d1
AD
347C++ Location Values
348
349* C++ position:: One point in the source file
350* C++ location:: Two points in the source file
db8ab2be 351* User Defined Location Type:: Required interface for locations
936c88d1 352
12545799
AD
353A Complete C++ Example
354
355* Calc++ --- C++ Calculator:: The specifications
356* Calc++ Parsing Driver:: An active parsing context
357* Calc++ Parser:: A parser class
358* Calc++ Scanner:: A pure C++ Flex scanner
359* Calc++ Top Level:: Conducting the band
360
8405b70c
PB
361Java Parsers
362
f5f419de
DJ
363* Java Bison Interface:: Asking for Java parser generation
364* Java Semantic Values:: %type and %token vs. Java
365* Java Location Values:: The position and location classes
366* Java Parser Interface:: Instantiating and running the parser
367* Java Scanner Interface:: Specifying the scanner for the parser
368* Java Action Features:: Special features for use in actions
369* Java Differences:: Differences between C/C++ and Java Grammars
370* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 371
d1a1114f
AD
372Frequently Asked Questions
373
f5f419de
DJ
374* Memory Exhausted:: Breaking the Stack Limits
375* How Can I Reset the Parser:: @code{yyparse} Keeps some State
376* Strings are Destroyed:: @code{yylval} Loses Track of Strings
377* Implementing Gotos/Loops:: Control Flow in the Calculator
378* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 379* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
380* I can't build Bison:: Troubleshooting
381* Where can I find help?:: Troubleshouting
382* Bug Reports:: Troublereporting
383* More Languages:: Parsers in C++, Java, and so on
384* Beta Testing:: Experimenting development versions
385* Mailing Lists:: Meeting other Bison users
d1a1114f 386
f2b5126e
PB
387Copying This Manual
388
f5f419de 389* Copying This Manual:: License for copying this manual.
f2b5126e 390
342b8b6e 391@end detailmenu
bfa74976
RS
392@end menu
393
342b8b6e 394@node Introduction
bfa74976
RS
395@unnumbered Introduction
396@cindex introduction
397
6077da58 398@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
399annotated context-free grammar into a deterministic LR or generalized
400LR (GLR) parser employing LALR(1) parser tables. As an experimental
401feature, Bison can also generate IELR(1) or canonical LR(1) parser
402tables. Once you are proficient with Bison, you can use it to develop
403a wide range of language parsers, from those used in simple desk
404calculators to complex programming languages.
405
406Bison is upward compatible with Yacc: all properly-written Yacc
407grammars ought to work with Bison with no change. Anyone familiar
408with Yacc should be able to use Bison with little trouble. You need
409to be fluent in C or C++ programming in order to use Bison or to
410understand this manual. Java is also supported as an experimental
411feature.
412
413We begin with tutorial chapters that explain the basic concepts of
414using Bison and show three explained examples, each building on the
415last. If you don't know Bison or Yacc, start by reading these
416chapters. Reference chapters follow, which describe specific aspects
417of Bison in detail.
bfa74976 418
679e9935
JD
419Bison was written originally by Robert Corbett. Richard Stallman made
420it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
421added multi-character string literals and other features. Since then,
422Bison has grown more robust and evolved many other new features thanks
423to the hard work of a long list of volunteers. For details, see the
424@file{THANKS} and @file{ChangeLog} files included in the Bison
425distribution.
931c7513 426
df1af54c 427This edition corresponds to version @value{VERSION} of Bison.
bfa74976 428
342b8b6e 429@node Conditions
bfa74976
RS
430@unnumbered Conditions for Using Bison
431
193d7c70
PE
432The distribution terms for Bison-generated parsers permit using the
433parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 434permissions applied only when Bison was generating LALR(1)
193d7c70 435parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 436parsers could be used only in programs that were free software.
a31239f1 437
8a4281b9 438The other GNU programming tools, such as the GNU C
c827f760 439compiler, have never
9ecbd125 440had such a requirement. They could always be used for nonfree
a31239f1
RS
441software. The reason Bison was different was not due to a special
442policy decision; it resulted from applying the usual General Public
443License to all of the Bison source code.
444
ff7571c0
JD
445The main output of the Bison utility---the Bison parser implementation
446file---contains a verbatim copy of a sizable piece of Bison, which is
447the code for the parser's implementation. (The actions from your
448grammar are inserted into this implementation at one point, but most
449of the rest of the implementation is not changed.) When we applied
450the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
451the effect was to restrict the use of Bison output to free software.
452
453We didn't change the terms because of sympathy for people who want to
454make software proprietary. @strong{Software should be free.} But we
455concluded that limiting Bison's use to free software was doing little to
456encourage people to make other software free. So we decided to make the
457practical conditions for using Bison match the practical conditions for
8a4281b9 458using the other GNU tools.
bfa74976 459
193d7c70
PE
460This exception applies when Bison is generating code for a parser.
461You can tell whether the exception applies to a Bison output file by
462inspecting the file for text beginning with ``As a special
463exception@dots{}''. The text spells out the exact terms of the
464exception.
262aa8dd 465
f16b0819
PE
466@node Copying
467@unnumbered GNU GENERAL PUBLIC LICENSE
468@include gpl-3.0.texi
bfa74976 469
342b8b6e 470@node Concepts
bfa74976
RS
471@chapter The Concepts of Bison
472
473This chapter introduces many of the basic concepts without which the
474details of Bison will not make sense. If you do not already know how to
475use Bison or Yacc, we suggest you start by reading this chapter carefully.
476
477@menu
f5f419de
DJ
478* Language and Grammar:: Languages and context-free grammars,
479 as mathematical ideas.
480* Grammar in Bison:: How we represent grammars for Bison's sake.
481* Semantic Values:: Each token or syntactic grouping can have
482 a semantic value (the value of an integer,
483 the name of an identifier, etc.).
484* Semantic Actions:: Each rule can have an action containing C code.
485* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 486* Locations:: Overview of location tracking.
f5f419de
DJ
487* Bison Parser:: What are Bison's input and output,
488 how is the output used?
489* Stages:: Stages in writing and running Bison grammars.
490* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
491@end menu
492
342b8b6e 493@node Language and Grammar
bfa74976
RS
494@section Languages and Context-Free Grammars
495
bfa74976
RS
496@cindex context-free grammar
497@cindex grammar, context-free
498In order for Bison to parse a language, it must be described by a
499@dfn{context-free grammar}. This means that you specify one or more
500@dfn{syntactic groupings} and give rules for constructing them from their
501parts. For example, in the C language, one kind of grouping is called an
502`expression'. One rule for making an expression might be, ``An expression
503can be made of a minus sign and another expression''. Another would be,
504``An expression can be an integer''. As you can see, rules are often
505recursive, but there must be at least one rule which leads out of the
506recursion.
507
8a4281b9 508@cindex BNF
bfa74976
RS
509@cindex Backus-Naur form
510The most common formal system for presenting such rules for humans to read
8a4281b9 511is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 512order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
513BNF is a context-free grammar. The input to Bison is
514essentially machine-readable BNF.
bfa74976 515
7fceb615
JD
516@cindex LALR grammars
517@cindex IELR grammars
518@cindex LR grammars
519There are various important subclasses of context-free grammars. Although
520it can handle almost all context-free grammars, Bison is optimized for what
521are called LR(1) grammars. In brief, in these grammars, it must be possible
522to tell how to parse any portion of an input string with just a single token
523of lookahead. For historical reasons, Bison by default is limited by the
524additional restrictions of LALR(1), which is hard to explain simply.
cc09e5be
JD
525@xref{Mysterious Conflicts}, for more information on this. As an
526experimental feature, you can escape these additional restrictions by
527requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
528Construction}, to learn how.
bfa74976 529
8a4281b9
JD
530@cindex GLR parsing
531@cindex generalized LR (GLR) parsing
676385e2 532@cindex ambiguous grammars
9d9b8b70 533@cindex nondeterministic parsing
9501dc6e 534
8a4281b9 535Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
536roughly that the next grammar rule to apply at any point in the input is
537uniquely determined by the preceding input and a fixed, finite portion
742e4900 538(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 539grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 540apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 541grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 542lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 543With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
544general context-free grammars, using a technique known as GLR
545parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
546are able to handle any context-free grammar for which the number of
547possible parses of any given string is finite.
676385e2 548
bfa74976
RS
549@cindex symbols (abstract)
550@cindex token
551@cindex syntactic grouping
552@cindex grouping, syntactic
9501dc6e
AD
553In the formal grammatical rules for a language, each kind of syntactic
554unit or grouping is named by a @dfn{symbol}. Those which are built by
555grouping smaller constructs according to grammatical rules are called
bfa74976
RS
556@dfn{nonterminal symbols}; those which can't be subdivided are called
557@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
558corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 559corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
560
561We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
562nonterminal, mean. The tokens of C are identifiers, constants (numeric
563and string), and the various keywords, arithmetic operators and
564punctuation marks. So the terminal symbols of a grammar for C include
565`identifier', `number', `string', plus one symbol for each keyword,
566operator or punctuation mark: `if', `return', `const', `static', `int',
567`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
568(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
569lexicography, not grammar.)
570
571Here is a simple C function subdivided into tokens:
572
9edcd895
AD
573@example
574int /* @r{keyword `int'} */
14d4662b 575square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
576 @r{identifier, close-paren} */
577@{ /* @r{open-brace} */
aa08666d
AD
578 return x * x; /* @r{keyword `return', identifier, asterisk,}
579 @r{identifier, semicolon} */
9edcd895
AD
580@} /* @r{close-brace} */
581@end example
bfa74976
RS
582
583The syntactic groupings of C include the expression, the statement, the
584declaration, and the function definition. These are represented in the
585grammar of C by nonterminal symbols `expression', `statement',
586`declaration' and `function definition'. The full grammar uses dozens of
587additional language constructs, each with its own nonterminal symbol, in
588order to express the meanings of these four. The example above is a
589function definition; it contains one declaration, and one statement. In
590the statement, each @samp{x} is an expression and so is @samp{x * x}.
591
592Each nonterminal symbol must have grammatical rules showing how it is made
593out of simpler constructs. For example, one kind of C statement is the
594@code{return} statement; this would be described with a grammar rule which
595reads informally as follows:
596
597@quotation
598A `statement' can be made of a `return' keyword, an `expression' and a
599`semicolon'.
600@end quotation
601
602@noindent
603There would be many other rules for `statement', one for each kind of
604statement in C.
605
606@cindex start symbol
607One nonterminal symbol must be distinguished as the special one which
608defines a complete utterance in the language. It is called the @dfn{start
609symbol}. In a compiler, this means a complete input program. In the C
610language, the nonterminal symbol `sequence of definitions and declarations'
611plays this role.
612
613For example, @samp{1 + 2} is a valid C expression---a valid part of a C
614program---but it is not valid as an @emph{entire} C program. In the
615context-free grammar of C, this follows from the fact that `expression' is
616not the start symbol.
617
618The Bison parser reads a sequence of tokens as its input, and groups the
619tokens using the grammar rules. If the input is valid, the end result is
620that the entire token sequence reduces to a single grouping whose symbol is
621the grammar's start symbol. If we use a grammar for C, the entire input
622must be a `sequence of definitions and declarations'. If not, the parser
623reports a syntax error.
624
342b8b6e 625@node Grammar in Bison
bfa74976
RS
626@section From Formal Rules to Bison Input
627@cindex Bison grammar
628@cindex grammar, Bison
629@cindex formal grammar
630
631A formal grammar is a mathematical construct. To define the language
632for Bison, you must write a file expressing the grammar in Bison syntax:
633a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
634
635A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 636as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
637in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
638
639The Bison representation for a terminal symbol is also called a @dfn{token
640type}. Token types as well can be represented as C-like identifiers. By
641convention, these identifiers should be upper case to distinguish them from
642nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
643@code{RETURN}. A terminal symbol that stands for a particular keyword in
644the language should be named after that keyword converted to upper case.
645The terminal symbol @code{error} is reserved for error recovery.
931c7513 646@xref{Symbols}.
bfa74976
RS
647
648A terminal symbol can also be represented as a character literal, just like
649a C character constant. You should do this whenever a token is just a
650single character (parenthesis, plus-sign, etc.): use that same character in
651a literal as the terminal symbol for that token.
652
931c7513
RS
653A third way to represent a terminal symbol is with a C string constant
654containing several characters. @xref{Symbols}, for more information.
655
bfa74976
RS
656The grammar rules also have an expression in Bison syntax. For example,
657here is the Bison rule for a C @code{return} statement. The semicolon in
658quotes is a literal character token, representing part of the C syntax for
659the statement; the naked semicolon, and the colon, are Bison punctuation
660used in every rule.
661
662@example
5e9b6624 663stmt: RETURN expr ';' ;
bfa74976
RS
664@end example
665
666@noindent
667@xref{Rules, ,Syntax of Grammar Rules}.
668
342b8b6e 669@node Semantic Values
bfa74976
RS
670@section Semantic Values
671@cindex semantic value
672@cindex value, semantic
673
674A formal grammar selects tokens only by their classifications: for example,
675if a rule mentions the terminal symbol `integer constant', it means that
676@emph{any} integer constant is grammatically valid in that position. The
677precise value of the constant is irrelevant to how to parse the input: if
678@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 679grammatical.
bfa74976
RS
680
681But the precise value is very important for what the input means once it is
682parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6833989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
684has both a token type and a @dfn{semantic value}. @xref{Semantics,
685,Defining Language Semantics},
bfa74976
RS
686for details.
687
688The token type is a terminal symbol defined in the grammar, such as
689@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
690you need to know to decide where the token may validly appear and how to
691group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 692except their types.
bfa74976
RS
693
694The semantic value has all the rest of the information about the
695meaning of the token, such as the value of an integer, or the name of an
696identifier. (A token such as @code{','} which is just punctuation doesn't
697need to have any semantic value.)
698
699For example, an input token might be classified as token type
700@code{INTEGER} and have the semantic value 4. Another input token might
701have the same token type @code{INTEGER} but value 3989. When a grammar
702rule says that @code{INTEGER} is allowed, either of these tokens is
703acceptable because each is an @code{INTEGER}. When the parser accepts the
704token, it keeps track of the token's semantic value.
705
706Each grouping can also have a semantic value as well as its nonterminal
707symbol. For example, in a calculator, an expression typically has a
708semantic value that is a number. In a compiler for a programming
709language, an expression typically has a semantic value that is a tree
710structure describing the meaning of the expression.
711
342b8b6e 712@node Semantic Actions
bfa74976
RS
713@section Semantic Actions
714@cindex semantic actions
715@cindex actions, semantic
716
717In order to be useful, a program must do more than parse input; it must
718also produce some output based on the input. In a Bison grammar, a grammar
719rule can have an @dfn{action} made up of C statements. Each time the
720parser recognizes a match for that rule, the action is executed.
721@xref{Actions}.
13863333 722
bfa74976
RS
723Most of the time, the purpose of an action is to compute the semantic value
724of the whole construct from the semantic values of its parts. For example,
725suppose we have a rule which says an expression can be the sum of two
726expressions. When the parser recognizes such a sum, each of the
727subexpressions has a semantic value which describes how it was built up.
728The action for this rule should create a similar sort of value for the
729newly recognized larger expression.
730
731For example, here is a rule that says an expression can be the sum of
732two subexpressions:
733
734@example
5e9b6624 735expr: expr '+' expr @{ $$ = $1 + $3; @} ;
bfa74976
RS
736@end example
737
738@noindent
739The action says how to produce the semantic value of the sum expression
740from the values of the two subexpressions.
741
676385e2 742@node GLR Parsers
8a4281b9
JD
743@section Writing GLR Parsers
744@cindex GLR parsing
745@cindex generalized LR (GLR) parsing
676385e2
PH
746@findex %glr-parser
747@cindex conflicts
748@cindex shift/reduce conflicts
fa7e68c3 749@cindex reduce/reduce conflicts
676385e2 750
eb45ef3b 751In some grammars, Bison's deterministic
8a4281b9 752LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
753certain grammar rule at a given point. That is, it may not be able to
754decide (on the basis of the input read so far) which of two possible
755reductions (applications of a grammar rule) applies, or whether to apply
756a reduction or read more of the input and apply a reduction later in the
757input. These are known respectively as @dfn{reduce/reduce} conflicts
758(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
759(@pxref{Shift/Reduce}).
760
8a4281b9 761To use a grammar that is not easily modified to be LR(1), a
9501dc6e 762more general parsing algorithm is sometimes necessary. If you include
676385e2 763@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
764(@pxref{Grammar Outline}), the result is a Generalized LR
765(GLR) parser. These parsers handle Bison grammars that
9501dc6e 766contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 767declarations) identically to deterministic parsers. However, when
9501dc6e 768faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 769GLR parsers use the simple expedient of doing both,
9501dc6e
AD
770effectively cloning the parser to follow both possibilities. Each of
771the resulting parsers can again split, so that at any given time, there
772can be any number of possible parses being explored. The parsers
676385e2
PH
773proceed in lockstep; that is, all of them consume (shift) a given input
774symbol before any of them proceed to the next. Each of the cloned
775parsers eventually meets one of two possible fates: either it runs into
776a parsing error, in which case it simply vanishes, or it merges with
777another parser, because the two of them have reduced the input to an
778identical set of symbols.
779
780During the time that there are multiple parsers, semantic actions are
781recorded, but not performed. When a parser disappears, its recorded
782semantic actions disappear as well, and are never performed. When a
783reduction makes two parsers identical, causing them to merge, Bison
784records both sets of semantic actions. Whenever the last two parsers
785merge, reverting to the single-parser case, Bison resolves all the
786outstanding actions either by precedences given to the grammar rules
787involved, or by performing both actions, and then calling a designated
788user-defined function on the resulting values to produce an arbitrary
789merged result.
790
fa7e68c3 791@menu
8a4281b9
JD
792* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
793* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 794* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 795* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 796* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
797@end menu
798
799@node Simple GLR Parsers
8a4281b9
JD
800@subsection Using GLR on Unambiguous Grammars
801@cindex GLR parsing, unambiguous grammars
802@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
803@findex %glr-parser
804@findex %expect-rr
805@cindex conflicts
806@cindex reduce/reduce conflicts
807@cindex shift/reduce conflicts
808
8a4281b9
JD
809In the simplest cases, you can use the GLR algorithm
810to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 811Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
812
813Consider a problem that
814arises in the declaration of enumerated and subrange types in the
815programming language Pascal. Here are some examples:
816
817@example
818type subrange = lo .. hi;
819type enum = (a, b, c);
820@end example
821
822@noindent
823The original language standard allows only numeric
824literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 825and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
82610206) and many other
827Pascal implementations allow arbitrary expressions there. This gives
828rise to the following situation, containing a superfluous pair of
829parentheses:
830
831@example
832type subrange = (a) .. b;
833@end example
834
835@noindent
836Compare this to the following declaration of an enumerated
837type with only one value:
838
839@example
840type enum = (a);
841@end example
842
843@noindent
844(These declarations are contrived, but they are syntactically
845valid, and more-complicated cases can come up in practical programs.)
846
847These two declarations look identical until the @samp{..} token.
8a4281b9 848With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
849possible to decide between the two forms when the identifier
850@samp{a} is parsed. It is, however, desirable
851for a parser to decide this, since in the latter case
852@samp{a} must become a new identifier to represent the enumeration
853value, while in the former case @samp{a} must be evaluated with its
854current meaning, which may be a constant or even a function call.
855
856You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
857to be resolved later, but this typically requires substantial
858contortions in both semantic actions and large parts of the
859grammar, where the parentheses are nested in the recursive rules for
860expressions.
861
862You might think of using the lexer to distinguish between the two
863forms by returning different tokens for currently defined and
864undefined identifiers. But if these declarations occur in a local
865scope, and @samp{a} is defined in an outer scope, then both forms
866are possible---either locally redefining @samp{a}, or using the
867value of @samp{a} from the outer scope. So this approach cannot
868work.
869
e757bb10 870A simple solution to this problem is to declare the parser to
8a4281b9
JD
871use the GLR algorithm.
872When the GLR parser reaches the critical state, it
fa7e68c3
PE
873merely splits into two branches and pursues both syntax rules
874simultaneously. Sooner or later, one of them runs into a parsing
875error. If there is a @samp{..} token before the next
876@samp{;}, the rule for enumerated types fails since it cannot
877accept @samp{..} anywhere; otherwise, the subrange type rule
878fails since it requires a @samp{..} token. So one of the branches
879fails silently, and the other one continues normally, performing
880all the intermediate actions that were postponed during the split.
881
882If the input is syntactically incorrect, both branches fail and the parser
883reports a syntax error as usual.
884
885The effect of all this is that the parser seems to ``guess'' the
886correct branch to take, or in other words, it seems to use more
8a4281b9
JD
887lookahead than the underlying LR(1) algorithm actually allows
888for. In this example, LR(2) would suffice, but also some cases
889that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 890
8a4281b9 891In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
892and the current Bison parser even takes exponential time and space
893for some grammars. In practice, this rarely happens, and for many
894grammars it is possible to prove that it cannot happen.
895The present example contains only one conflict between two
896rules, and the type-declaration context containing the conflict
897cannot be nested. So the number of
898branches that can exist at any time is limited by the constant 2,
899and the parsing time is still linear.
900
901Here is a Bison grammar corresponding to the example above. It
902parses a vastly simplified form of Pascal type declarations.
903
904@example
905%token TYPE DOTDOT ID
906
907@group
908%left '+' '-'
909%left '*' '/'
910@end group
911
912%%
5e9b6624 913type_decl: TYPE ID '=' type ';' ;
fa7e68c3
PE
914
915@group
5e9b6624
AD
916type:
917 '(' id_list ')'
918| expr DOTDOT expr
919;
fa7e68c3
PE
920@end group
921
922@group
5e9b6624
AD
923id_list:
924 ID
925| id_list ',' ID
926;
fa7e68c3
PE
927@end group
928
929@group
5e9b6624
AD
930expr:
931 '(' expr ')'
932| expr '+' expr
933| expr '-' expr
934| expr '*' expr
935| expr '/' expr
936| ID
937;
fa7e68c3
PE
938@end group
939@end example
940
8a4281b9 941When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
942about one reduce/reduce conflict. In the conflicting situation the
943parser chooses one of the alternatives, arbitrarily the one
944declared first. Therefore the following correct input is not
945recognized:
946
947@example
948type t = (a) .. b;
949@end example
950
8a4281b9 951The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
952to be silent about the one known reduce/reduce conflict, by adding
953these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
954@samp{%%}):
955
956@example
957%glr-parser
958%expect-rr 1
959@end example
960
961@noindent
962No change in the grammar itself is required. Now the
963parser recognizes all valid declarations, according to the
964limited syntax above, transparently. In fact, the user does not even
965notice when the parser splits.
966
8a4281b9 967So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
968almost without disadvantages. Even in simple cases like this, however,
969there are at least two potential problems to beware. First, always
8a4281b9
JD
970analyze the conflicts reported by Bison to make sure that GLR
971splitting is only done where it is intended. A GLR parser
f8e1c9e5 972splitting inadvertently may cause problems less obvious than an
8a4281b9 973LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
974conflict. Second, consider interactions with the lexer (@pxref{Semantic
975Tokens}) with great care. Since a split parser consumes tokens without
976performing any actions during the split, the lexer cannot obtain
977information via parser actions. Some cases of lexer interactions can be
8a4281b9 978eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
979lexer to the parser. You must check the remaining cases for
980correctness.
981
982In our example, it would be safe for the lexer to return tokens based on
983their current meanings in some symbol table, because no new symbols are
984defined in the middle of a type declaration. Though it is possible for
985a parser to define the enumeration constants as they are parsed, before
986the type declaration is completed, it actually makes no difference since
987they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
988
989@node Merging GLR Parses
8a4281b9
JD
990@subsection Using GLR to Resolve Ambiguities
991@cindex GLR parsing, ambiguous grammars
992@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
993@findex %dprec
994@findex %merge
995@cindex conflicts
996@cindex reduce/reduce conflicts
997
2a8d363a 998Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
999
1000@example
1001%@{
38a92d50
PE
1002 #include <stdio.h>
1003 #define YYSTYPE char const *
1004 int yylex (void);
1005 void yyerror (char const *);
676385e2
PH
1006%@}
1007
1008%token TYPENAME ID
1009
1010%right '='
1011%left '+'
1012
1013%glr-parser
1014
1015%%
1016
5e9b6624 1017prog:
6240346a 1018 %empty
5e9b6624
AD
1019| prog stmt @{ printf ("\n"); @}
1020;
676385e2 1021
5e9b6624
AD
1022stmt:
1023 expr ';' %dprec 1
1024| decl %dprec 2
1025;
676385e2 1026
5e9b6624
AD
1027expr:
1028 ID @{ printf ("%s ", $$); @}
1029| TYPENAME '(' expr ')'
1030 @{ printf ("%s <cast> ", $1); @}
1031| expr '+' expr @{ printf ("+ "); @}
1032| expr '=' expr @{ printf ("= "); @}
1033;
676385e2 1034
5e9b6624
AD
1035decl:
1036 TYPENAME declarator ';'
1037 @{ printf ("%s <declare> ", $1); @}
1038| TYPENAME declarator '=' expr ';'
1039 @{ printf ("%s <init-declare> ", $1); @}
1040;
676385e2 1041
5e9b6624
AD
1042declarator:
1043 ID @{ printf ("\"%s\" ", $1); @}
1044| '(' declarator ')'
1045;
676385e2
PH
1046@end example
1047
1048@noindent
1049This models a problematic part of the C++ grammar---the ambiguity between
1050certain declarations and statements. For example,
1051
1052@example
1053T (x) = y+z;
1054@end example
1055
1056@noindent
1057parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1058(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1059@samp{x} as an @code{ID}).
676385e2 1060Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1061@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1062time it encounters @code{x} in the example above. Since this is a
8a4281b9 1063GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1064each choice of resolving the reduce/reduce conflict.
1065Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1066however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1067ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1068the other reduces @code{stmt : decl}, after which both parsers are in an
1069identical state: they've seen @samp{prog stmt} and have the same unprocessed
1070input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1071
8a4281b9 1072At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1073grammar of how to choose between the competing parses.
1074In the example above, the two @code{%dprec}
e757bb10 1075declarations specify that Bison is to give precedence
fa7e68c3 1076to the parse that interprets the example as a
676385e2
PH
1077@code{decl}, which implies that @code{x} is a declarator.
1078The parser therefore prints
1079
1080@example
fae437e8 1081"x" y z + T <init-declare>
676385e2
PH
1082@end example
1083
fa7e68c3
PE
1084The @code{%dprec} declarations only come into play when more than one
1085parse survives. Consider a different input string for this parser:
676385e2
PH
1086
1087@example
1088T (x) + y;
1089@end example
1090
1091@noindent
8a4281b9 1092This is another example of using GLR to parse an unambiguous
fa7e68c3 1093construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1094Here, there is no ambiguity (this cannot be parsed as a declaration).
1095However, at the time the Bison parser encounters @code{x}, it does not
1096have enough information to resolve the reduce/reduce conflict (again,
1097between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1098case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1099into two, one assuming that @code{x} is an @code{expr}, and the other
1100assuming @code{x} is a @code{declarator}. The second of these parsers
1101then vanishes when it sees @code{+}, and the parser prints
1102
1103@example
fae437e8 1104x T <cast> y +
676385e2
PH
1105@end example
1106
1107Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1108the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1109actions of the two possible parsers, rather than choosing one over the
1110other. To do so, you could change the declaration of @code{stmt} as
1111follows:
1112
1113@example
5e9b6624
AD
1114stmt:
1115 expr ';' %merge <stmtMerge>
1116| decl %merge <stmtMerge>
1117;
676385e2
PH
1118@end example
1119
1120@noindent
676385e2
PH
1121and define the @code{stmtMerge} function as:
1122
1123@example
38a92d50
PE
1124static YYSTYPE
1125stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1126@{
1127 printf ("<OR> ");
1128 return "";
1129@}
1130@end example
1131
1132@noindent
1133with an accompanying forward declaration
1134in the C declarations at the beginning of the file:
1135
1136@example
1137%@{
38a92d50 1138 #define YYSTYPE char const *
676385e2
PH
1139 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1140%@}
1141@end example
1142
1143@noindent
fa7e68c3
PE
1144With these declarations, the resulting parser parses the first example
1145as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1146
1147@example
fae437e8 1148"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1149@end example
1150
fa7e68c3 1151Bison requires that all of the
e757bb10 1152productions that participate in any particular merge have identical
fa7e68c3
PE
1153@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1154and the parser will report an error during any parse that results in
1155the offending merge.
9501dc6e 1156
32c29292
JD
1157@node GLR Semantic Actions
1158@subsection GLR Semantic Actions
1159
8a4281b9 1160The nature of GLR parsing and the structure of the generated
20be2f92
PH
1161parsers give rise to certain restrictions on semantic values and actions.
1162
1163@subsubsection Deferred semantic actions
32c29292
JD
1164@cindex deferred semantic actions
1165By definition, a deferred semantic action is not performed at the same time as
1166the associated reduction.
1167This raises caveats for several Bison features you might use in a semantic
8a4281b9 1168action in a GLR parser.
32c29292
JD
1169
1170@vindex yychar
8a4281b9 1171@cindex GLR parsers and @code{yychar}
32c29292 1172@vindex yylval
8a4281b9 1173@cindex GLR parsers and @code{yylval}
32c29292 1174@vindex yylloc
8a4281b9 1175@cindex GLR parsers and @code{yylloc}
32c29292 1176In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1177the lookahead token present at the time of the associated reduction.
32c29292
JD
1178After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1179you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1180lookahead token's semantic value and location, if any.
32c29292
JD
1181In a nondeferred semantic action, you can also modify any of these variables to
1182influence syntax analysis.
742e4900 1183@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1184
1185@findex yyclearin
8a4281b9 1186@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1187In a deferred semantic action, it's too late to influence syntax analysis.
1188In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1189shallow copies of the values they had at the time of the associated reduction.
1190For this reason alone, modifying them is dangerous.
1191Moreover, the result of modifying them is undefined and subject to change with
1192future versions of Bison.
1193For example, if a semantic action might be deferred, you should never write it
1194to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1195memory referenced by @code{yylval}.
1196
20be2f92 1197@subsubsection YYERROR
32c29292 1198@findex YYERROR
8a4281b9 1199@cindex GLR parsers and @code{YYERROR}
32c29292 1200Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1201(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1202initiate error recovery.
8a4281b9 1203During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1204the same as its effect in a deterministic parser.
411614fa
JM
1205The effect in a deferred action is similar, but the precise point of the
1206error is undefined; instead, the parser reverts to deterministic operation,
20be2f92
PH
1207selecting an unspecified stack on which to continue with a syntax error.
1208In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1209parsing, @code{YYERROR} silently prunes
1210the parse that invoked the test.
1211
1212@subsubsection Restrictions on semantic values and locations
8a4281b9 1213GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1214semantic values and location types when using the generated parsers as
1215C++ code.
8710fc41 1216
ca2a6d15
PH
1217@node Semantic Predicates
1218@subsection Controlling a Parse with Arbitrary Predicates
1219@findex %?
8a4281b9 1220@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1221
1222In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1223GLR parsers
ca2a6d15
PH
1224allow you to reject parses on the basis of arbitrary computations executed
1225in user code, without having Bison treat this rejection as an error
1226if there are alternative parses. (This feature is experimental and may
1227evolve. We welcome user feedback.) For example,
1228
c93f22fc
AD
1229@example
1230widget:
5e9b6624
AD
1231 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1232| %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1233;
c93f22fc 1234@end example
ca2a6d15
PH
1235
1236@noindent
411614fa 1237is one way to allow the same parser to handle two different syntaxes for
ca2a6d15
PH
1238widgets. The clause preceded by @code{%?} is treated like an ordinary
1239action, except that its text is treated as an expression and is always
411614fa 1240evaluated immediately (even when in nondeterministic mode). If the
ca2a6d15 1241expression yields 0 (false), the clause is treated as a syntax error,
411614fa 1242which, in a nondeterministic parser, causes the stack in which it is reduced
ca2a6d15
PH
1243to die. In a deterministic parser, it acts like YYERROR.
1244
1245As the example shows, predicates otherwise look like semantic actions, and
1246therefore you must be take them into account when determining the numbers
1247to use for denoting the semantic values of right-hand side symbols.
1248Predicate actions, however, have no defined value, and may not be given
1249labels.
1250
1251There is a subtle difference between semantic predicates and ordinary
1252actions in nondeterministic mode, since the latter are deferred.
411614fa 1253For example, we could try to rewrite the previous example as
ca2a6d15 1254
c93f22fc
AD
1255@example
1256widget:
5e9b6624
AD
1257 @{ if (!new_syntax) YYERROR; @}
1258 "widget" id new_args @{ $$ = f($3, $4); @}
1259| @{ if (new_syntax) YYERROR; @}
1260 "widget" id old_args @{ $$ = f($3, $4); @}
1261;
c93f22fc 1262@end example
ca2a6d15
PH
1263
1264@noindent
1265(reversing the sense of the predicate tests to cause an error when they are
1266false). However, this
1267does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1268have overlapping syntax.
411614fa 1269Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1270a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1271for cases where @code{new_args} and @code{old_args} recognize the same string
1272@emph{before} performing the tests of @code{new_syntax}. It therefore
1273reports an error.
1274
1275Finally, be careful in writing predicates: deferred actions have not been
1276evaluated, so that using them in a predicate will have undefined effects.
1277
fa7e68c3 1278@node Compiler Requirements
8a4281b9 1279@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1280@cindex @code{inline}
8a4281b9 1281@cindex GLR parsers and @code{inline}
fa7e68c3 1282
8a4281b9 1283The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1284later. In addition, they use the @code{inline} keyword, which is not
1285C89, but is C99 and is a common extension in pre-C99 compilers. It is
1286up to the user of these parsers to handle
9501dc6e
AD
1287portability issues. For instance, if using Autoconf and the Autoconf
1288macro @code{AC_C_INLINE}, a mere
1289
1290@example
1291%@{
38a92d50 1292 #include <config.h>
9501dc6e
AD
1293%@}
1294@end example
1295
1296@noindent
1297will suffice. Otherwise, we suggest
1298
1299@example
1300%@{
aaaa2aae
AD
1301 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1302 && ! defined inline)
1303 # define inline
38a92d50 1304 #endif
9501dc6e
AD
1305%@}
1306@end example
676385e2 1307
1769eb30 1308@node Locations
847bf1f5
AD
1309@section Locations
1310@cindex location
95923bd6
AD
1311@cindex textual location
1312@cindex location, textual
847bf1f5
AD
1313
1314Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1315and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1316the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1317Bison provides a mechanism for handling these locations.
1318
72d2299c 1319Each token has a semantic value. In a similar fashion, each token has an
303834cc
JD
1320associated location, but the type of locations is the same for all tokens
1321and groupings. Moreover, the output parser is equipped with a default data
1322structure for storing locations (@pxref{Tracking Locations}, for more
1323details).
847bf1f5
AD
1324
1325Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1326set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1327is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1328@code{@@3}.
1329
1330When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1331of its left hand side (@pxref{Actions}). In the same way, another default
1332action is used for locations. However, the action for locations is general
847bf1f5 1333enough for most cases, meaning there is usually no need to describe for each
72d2299c 1334rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1335grouping, the default behavior of the output parser is to take the beginning
1336of the first symbol, and the end of the last symbol.
1337
342b8b6e 1338@node Bison Parser
ff7571c0 1339@section Bison Output: the Parser Implementation File
bfa74976
RS
1340@cindex Bison parser
1341@cindex Bison utility
1342@cindex lexical analyzer, purpose
1343@cindex parser
1344
ff7571c0
JD
1345When you run Bison, you give it a Bison grammar file as input. The
1346most important output is a C source file that implements a parser for
1347the language described by the grammar. This parser is called a
1348@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1349implementation file}. Keep in mind that the Bison utility and the
1350Bison parser are two distinct programs: the Bison utility is a program
1351whose output is the Bison parser implementation file that becomes part
1352of your program.
bfa74976
RS
1353
1354The job of the Bison parser is to group tokens into groupings according to
1355the grammar rules---for example, to build identifiers and operators into
1356expressions. As it does this, it runs the actions for the grammar rules it
1357uses.
1358
704a47c4
AD
1359The tokens come from a function called the @dfn{lexical analyzer} that
1360you must supply in some fashion (such as by writing it in C). The Bison
1361parser calls the lexical analyzer each time it wants a new token. It
1362doesn't know what is ``inside'' the tokens (though their semantic values
1363may reflect this). Typically the lexical analyzer makes the tokens by
1364parsing characters of text, but Bison does not depend on this.
1365@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1366
ff7571c0
JD
1367The Bison parser implementation file is C code which defines a
1368function named @code{yyparse} which implements that grammar. This
1369function does not make a complete C program: you must supply some
1370additional functions. One is the lexical analyzer. Another is an
1371error-reporting function which the parser calls to report an error.
1372In addition, a complete C program must start with a function called
1373@code{main}; you have to provide this, and arrange for it to call
1374@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1375C-Language Interface}.
bfa74976 1376
f7ab6a50 1377Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1378write, all symbols defined in the Bison parser implementation file
1379itself begin with @samp{yy} or @samp{YY}. This includes interface
1380functions such as the lexical analyzer function @code{yylex}, the
1381error reporting function @code{yyerror} and the parser function
1382@code{yyparse} itself. This also includes numerous identifiers used
1383for internal purposes. Therefore, you should avoid using C
1384identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1385file except for the ones defined in this manual. Also, you should
1386avoid using the C identifiers @samp{malloc} and @samp{free} for
1387anything other than their usual meanings.
1388
1389In some cases the Bison parser implementation file includes system
1390headers, and in those cases your code should respect the identifiers
1391reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1392@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1393included as needed to declare memory allocators and related types.
1394@code{<libintl.h>} is included if message translation is in use
1395(@pxref{Internationalization}). Other system headers may be included
1396if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1397,Tracing Your Parser}).
7093d0f5 1398
342b8b6e 1399@node Stages
bfa74976
RS
1400@section Stages in Using Bison
1401@cindex stages in using Bison
1402@cindex using Bison
1403
1404The actual language-design process using Bison, from grammar specification
1405to a working compiler or interpreter, has these parts:
1406
1407@enumerate
1408@item
1409Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1410(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1411in the language, describe the action that is to be taken when an
1412instance of that rule is recognized. The action is described by a
1413sequence of C statements.
bfa74976
RS
1414
1415@item
704a47c4
AD
1416Write a lexical analyzer to process input and pass tokens to the parser.
1417The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1418Lexical Analyzer Function @code{yylex}}). It could also be produced
1419using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1420
1421@item
1422Write a controlling function that calls the Bison-produced parser.
1423
1424@item
1425Write error-reporting routines.
1426@end enumerate
1427
1428To turn this source code as written into a runnable program, you
1429must follow these steps:
1430
1431@enumerate
1432@item
1433Run Bison on the grammar to produce the parser.
1434
1435@item
1436Compile the code output by Bison, as well as any other source files.
1437
1438@item
1439Link the object files to produce the finished product.
1440@end enumerate
1441
342b8b6e 1442@node Grammar Layout
bfa74976
RS
1443@section The Overall Layout of a Bison Grammar
1444@cindex grammar file
1445@cindex file format
1446@cindex format of grammar file
1447@cindex layout of Bison grammar
1448
1449The input file for the Bison utility is a @dfn{Bison grammar file}. The
1450general form of a Bison grammar file is as follows:
1451
1452@example
1453%@{
08e49d20 1454@var{Prologue}
bfa74976
RS
1455%@}
1456
1457@var{Bison declarations}
1458
1459%%
1460@var{Grammar rules}
1461%%
08e49d20 1462@var{Epilogue}
bfa74976
RS
1463@end example
1464
1465@noindent
1466The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1467in every Bison grammar file to separate the sections.
1468
72d2299c 1469The prologue may define types and variables used in the actions. You can
342b8b6e 1470also use preprocessor commands to define macros used there, and use
bfa74976 1471@code{#include} to include header files that do any of these things.
38a92d50
PE
1472You need to declare the lexical analyzer @code{yylex} and the error
1473printer @code{yyerror} here, along with any other global identifiers
1474used by the actions in the grammar rules.
bfa74976
RS
1475
1476The Bison declarations declare the names of the terminal and nonterminal
1477symbols, and may also describe operator precedence and the data types of
1478semantic values of various symbols.
1479
1480The grammar rules define how to construct each nonterminal symbol from its
1481parts.
1482
38a92d50
PE
1483The epilogue can contain any code you want to use. Often the
1484definitions of functions declared in the prologue go here. In a
1485simple program, all the rest of the program can go here.
bfa74976 1486
342b8b6e 1487@node Examples
bfa74976
RS
1488@chapter Examples
1489@cindex simple examples
1490@cindex examples, simple
1491
aaaa2aae 1492Now we show and explain several sample programs written using Bison: a
bfa74976 1493reverse polish notation calculator, an algebraic (infix) notation
aaaa2aae
AD
1494calculator --- later extended to track ``locations'' ---
1495and a multi-function calculator. All
1496produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1497
1498These examples are simple, but Bison grammars for real programming
aa08666d
AD
1499languages are written the same way. You can copy these examples into a
1500source file to try them.
bfa74976
RS
1501
1502@menu
f5f419de
DJ
1503* RPN Calc:: Reverse polish notation calculator;
1504 a first example with no operator precedence.
1505* Infix Calc:: Infix (algebraic) notation calculator.
1506 Operator precedence is introduced.
bfa74976 1507* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1508* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1509* Multi-function Calc:: Calculator with memory and trig functions.
1510 It uses multiple data-types for semantic values.
1511* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1512@end menu
1513
342b8b6e 1514@node RPN Calc
bfa74976
RS
1515@section Reverse Polish Notation Calculator
1516@cindex reverse polish notation
1517@cindex polish notation calculator
1518@cindex @code{rpcalc}
1519@cindex calculator, simple
1520
1521The first example is that of a simple double-precision @dfn{reverse polish
1522notation} calculator (a calculator using postfix operators). This example
1523provides a good starting point, since operator precedence is not an issue.
1524The second example will illustrate how operator precedence is handled.
1525
1526The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1527@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1528
1529@menu
f5f419de
DJ
1530* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1531* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1532* Rpcalc Lexer:: The lexical analyzer.
1533* Rpcalc Main:: The controlling function.
1534* Rpcalc Error:: The error reporting function.
1535* Rpcalc Generate:: Running Bison on the grammar file.
1536* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1537@end menu
1538
f5f419de 1539@node Rpcalc Declarations
bfa74976
RS
1540@subsection Declarations for @code{rpcalc}
1541
1542Here are the C and Bison declarations for the reverse polish notation
1543calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1544
24ec0837 1545@comment file: rpcalc.y
bfa74976 1546@example
72d2299c 1547/* Reverse polish notation calculator. */
bfa74976 1548
efbc95a7 1549@group
bfa74976 1550%@{
24ec0837 1551 #include <stdio.h>
38a92d50
PE
1552 #include <math.h>
1553 int yylex (void);
1554 void yyerror (char const *);
bfa74976 1555%@}
efbc95a7 1556@end group
bfa74976 1557
435575cb 1558%define api.value.type @{double@}
bfa74976
RS
1559%token NUM
1560
72d2299c 1561%% /* Grammar rules and actions follow. */
bfa74976
RS
1562@end example
1563
75f5aaea 1564The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1565preprocessor directives and two forward declarations.
bfa74976 1566
bfa74976
RS
1567The @code{#include} directive is used to declare the exponentiation
1568function @code{pow}.
1569
38a92d50
PE
1570The forward declarations for @code{yylex} and @code{yyerror} are
1571needed because the C language requires that functions be declared
1572before they are used. These functions will be defined in the
1573epilogue, but the parser calls them so they must be declared in the
1574prologue.
1575
21e3a2b5
AD
1576The second section, Bison declarations, provides information to Bison about
1577the tokens and their types (@pxref{Bison Declarations, ,The Bison
1578Declarations Section}).
1579
1580The @code{%define} directive defines the variable @code{api.value.type},
1581thus specifying the C data type for semantic values of both tokens and
1582groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The Bison
1583parser will use whatever type @code{api.value.type} is defined as; if you
1584don't define it, @code{int} is the default. Because we specify
435575cb
AD
1585@samp{@{double@}}, each token and each expression has an associated value,
1586which is a floating point number. C code can use @code{YYSTYPE} to refer to
1587the value @code{api.value.type}.
21e3a2b5
AD
1588
1589Each terminal symbol that is not a single-character literal must be
1590declared. (Single-character literals normally don't need to be declared.)
1591In this example, all the arithmetic operators are designated by
1592single-character literals, so the only terminal symbol that needs to be
1593declared is @code{NUM}, the token type for numeric constants.
bfa74976 1594
342b8b6e 1595@node Rpcalc Rules
bfa74976
RS
1596@subsection Grammar Rules for @code{rpcalc}
1597
1598Here are the grammar rules for the reverse polish notation calculator.
1599
24ec0837 1600@comment file: rpcalc.y
bfa74976 1601@example
aaaa2aae 1602@group
5e9b6624 1603input:
6240346a 1604 %empty
5e9b6624 1605| input line
bfa74976 1606;
aaaa2aae 1607@end group
bfa74976 1608
aaaa2aae 1609@group
5e9b6624
AD
1610line:
1611 '\n'
1612| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1613;
aaaa2aae 1614@end group
bfa74976 1615
aaaa2aae 1616@group
5e9b6624
AD
1617exp:
1618 NUM @{ $$ = $1; @}
1619| exp exp '+' @{ $$ = $1 + $2; @}
1620| exp exp '-' @{ $$ = $1 - $2; @}
1621| exp exp '*' @{ $$ = $1 * $2; @}
1622| exp exp '/' @{ $$ = $1 / $2; @}
1623| exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1624| exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1625;
aaaa2aae 1626@end group
bfa74976
RS
1627%%
1628@end example
1629
1630The groupings of the rpcalc ``language'' defined here are the expression
1631(given the name @code{exp}), the line of input (@code{line}), and the
1632complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1633symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1634which is read as ``or''. The following sections explain what these rules
1635mean.
1636
1637The semantics of the language is determined by the actions taken when a
1638grouping is recognized. The actions are the C code that appears inside
1639braces. @xref{Actions}.
1640
1641You must specify these actions in C, but Bison provides the means for
1642passing semantic values between the rules. In each action, the
1643pseudo-variable @code{$$} stands for the semantic value for the grouping
1644that the rule is going to construct. Assigning a value to @code{$$} is the
1645main job of most actions. The semantic values of the components of the
1646rule are referred to as @code{$1}, @code{$2}, and so on.
1647
1648@menu
24ec0837
AD
1649* Rpcalc Input:: Explanation of the @code{input} nonterminal
1650* Rpcalc Line:: Explanation of the @code{line} nonterminal
1651* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976
RS
1652@end menu
1653
342b8b6e 1654@node Rpcalc Input
bfa74976
RS
1655@subsubsection Explanation of @code{input}
1656
1657Consider the definition of @code{input}:
1658
1659@example
5e9b6624 1660input:
6240346a 1661 %empty
5e9b6624 1662| input line
bfa74976
RS
1663;
1664@end example
1665
1666This definition reads as follows: ``A complete input is either an empty
1667string, or a complete input followed by an input line''. Notice that
1668``complete input'' is defined in terms of itself. This definition is said
1669to be @dfn{left recursive} since @code{input} appears always as the
1670leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1671
1672The first alternative is empty because there are no symbols between the
1673colon and the first @samp{|}; this means that @code{input} can match an
1674empty string of input (no tokens). We write the rules this way because it
1675is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
6240346a
AD
1676It's conventional to put an empty alternative first and to use the
1677(optional) @code{%empty} directive, or to write the comment @samp{/* empty
1678*/} in it (@pxref{Empty Rules}).
bfa74976
RS
1679
1680The second alternate rule (@code{input line}) handles all nontrivial input.
1681It means, ``After reading any number of lines, read one more line if
1682possible.'' The left recursion makes this rule into a loop. Since the
1683first alternative matches empty input, the loop can be executed zero or
1684more times.
1685
1686The parser function @code{yyparse} continues to process input until a
1687grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1688input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1689
342b8b6e 1690@node Rpcalc Line
bfa74976
RS
1691@subsubsection Explanation of @code{line}
1692
1693Now consider the definition of @code{line}:
1694
1695@example
5e9b6624
AD
1696line:
1697 '\n'
1698| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1699;
1700@end example
1701
1702The first alternative is a token which is a newline character; this means
1703that rpcalc accepts a blank line (and ignores it, since there is no
1704action). The second alternative is an expression followed by a newline.
1705This is the alternative that makes rpcalc useful. The semantic value of
1706the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1707question is the first symbol in the alternative. The action prints this
1708value, which is the result of the computation the user asked for.
1709
1710This action is unusual because it does not assign a value to @code{$$}. As
1711a consequence, the semantic value associated with the @code{line} is
1712uninitialized (its value will be unpredictable). This would be a bug if
1713that value were ever used, but we don't use it: once rpcalc has printed the
1714value of the user's input line, that value is no longer needed.
1715
342b8b6e 1716@node Rpcalc Expr
bfa74976
RS
1717@subsubsection Explanation of @code{expr}
1718
1719The @code{exp} grouping has several rules, one for each kind of expression.
1720The first rule handles the simplest expressions: those that are just numbers.
1721The second handles an addition-expression, which looks like two expressions
1722followed by a plus-sign. The third handles subtraction, and so on.
1723
1724@example
5e9b6624
AD
1725exp:
1726 NUM
1727| exp exp '+' @{ $$ = $1 + $2; @}
1728| exp exp '-' @{ $$ = $1 - $2; @}
1729@dots{}
1730;
bfa74976
RS
1731@end example
1732
1733We have used @samp{|} to join all the rules for @code{exp}, but we could
1734equally well have written them separately:
1735
1736@example
5e9b6624
AD
1737exp: NUM ;
1738exp: exp exp '+' @{ $$ = $1 + $2; @};
1739exp: exp exp '-' @{ $$ = $1 - $2; @};
1740@dots{}
bfa74976
RS
1741@end example
1742
1743Most of the rules have actions that compute the value of the expression in
1744terms of the value of its parts. For example, in the rule for addition,
1745@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1746the second one. The third component, @code{'+'}, has no meaningful
1747associated semantic value, but if it had one you could refer to it as
1748@code{$3}. When @code{yyparse} recognizes a sum expression using this
1749rule, the sum of the two subexpressions' values is produced as the value of
1750the entire expression. @xref{Actions}.
1751
1752You don't have to give an action for every rule. When a rule has no
1753action, Bison by default copies the value of @code{$1} into @code{$$}.
1754This is what happens in the first rule (the one that uses @code{NUM}).
1755
1756The formatting shown here is the recommended convention, but Bison does
72d2299c 1757not require it. You can add or change white space as much as you wish.
bfa74976
RS
1758For example, this:
1759
1760@example
5e9b6624 1761exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1762@end example
1763
1764@noindent
1765means the same thing as this:
1766
1767@example
5e9b6624
AD
1768exp:
1769 NUM
1770| exp exp '+' @{ $$ = $1 + $2; @}
1771| @dots{}
99a9344e 1772;
bfa74976
RS
1773@end example
1774
1775@noindent
1776The latter, however, is much more readable.
1777
342b8b6e 1778@node Rpcalc Lexer
bfa74976
RS
1779@subsection The @code{rpcalc} Lexical Analyzer
1780@cindex writing a lexical analyzer
1781@cindex lexical analyzer, writing
1782
704a47c4
AD
1783The lexical analyzer's job is low-level parsing: converting characters
1784or sequences of characters into tokens. The Bison parser gets its
1785tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1786Analyzer Function @code{yylex}}.
bfa74976 1787
8a4281b9 1788Only a simple lexical analyzer is needed for the RPN
c827f760 1789calculator. This
bfa74976
RS
1790lexical analyzer skips blanks and tabs, then reads in numbers as
1791@code{double} and returns them as @code{NUM} tokens. Any other character
1792that isn't part of a number is a separate token. Note that the token-code
1793for such a single-character token is the character itself.
1794
1795The return value of the lexical analyzer function is a numeric code which
1796represents a token type. The same text used in Bison rules to stand for
1797this token type is also a C expression for the numeric code for the type.
1798This works in two ways. If the token type is a character literal, then its
e966383b 1799numeric code is that of the character; you can use the same
bfa74976
RS
1800character literal in the lexical analyzer to express the number. If the
1801token type is an identifier, that identifier is defined by Bison as a C
1802macro whose definition is the appropriate number. In this example,
1803therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1804
1964ad8c
AD
1805The semantic value of the token (if it has one) is stored into the
1806global variable @code{yylval}, which is where the Bison parser will look
21e3a2b5
AD
1807for it. (The C data type of @code{yylval} is @code{YYSTYPE}, whose value
1808was defined at the beginning of the grammar via @samp{%define api.value.type
435575cb 1809@{double@}}; @pxref{Rpcalc Declarations,,Declarations for @code{rpcalc}}.)
bfa74976 1810
72d2299c
PE
1811A token type code of zero is returned if the end-of-input is encountered.
1812(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1813
1814Here is the code for the lexical analyzer:
1815
24ec0837 1816@comment file: rpcalc.y
bfa74976
RS
1817@example
1818@group
72d2299c 1819/* The lexical analyzer returns a double floating point
e966383b 1820 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1821 of the character read if not a number. It skips all blanks
1822 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1823
1824#include <ctype.h>
1825@end group
1826
1827@group
13863333
AD
1828int
1829yylex (void)
bfa74976
RS
1830@{
1831 int c;
1832
72d2299c 1833 /* Skip white space. */
13863333 1834 while ((c = getchar ()) == ' ' || c == '\t')
d4fca427 1835 continue;
bfa74976
RS
1836@end group
1837@group
72d2299c 1838 /* Process numbers. */
13863333 1839 if (c == '.' || isdigit (c))
bfa74976
RS
1840 @{
1841 ungetc (c, stdin);
1842 scanf ("%lf", &yylval);
1843 return NUM;
1844 @}
1845@end group
1846@group
72d2299c 1847 /* Return end-of-input. */
13863333 1848 if (c == EOF)
bfa74976 1849 return 0;
72d2299c 1850 /* Return a single char. */
13863333 1851 return c;
bfa74976
RS
1852@}
1853@end group
1854@end example
1855
342b8b6e 1856@node Rpcalc Main
bfa74976
RS
1857@subsection The Controlling Function
1858@cindex controlling function
1859@cindex main function in simple example
1860
1861In keeping with the spirit of this example, the controlling function is
1862kept to the bare minimum. The only requirement is that it call
1863@code{yyparse} to start the process of parsing.
1864
24ec0837 1865@comment file: rpcalc.y
bfa74976
RS
1866@example
1867@group
13863333
AD
1868int
1869main (void)
bfa74976 1870@{
13863333 1871 return yyparse ();
bfa74976
RS
1872@}
1873@end group
1874@end example
1875
342b8b6e 1876@node Rpcalc Error
bfa74976
RS
1877@subsection The Error Reporting Routine
1878@cindex error reporting routine
1879
1880When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1881function @code{yyerror} to print an error message (usually but not
6e649e65 1882always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1883@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1884here is the definition we will use:
bfa74976 1885
24ec0837 1886@comment file: rpcalc.y
bfa74976 1887@example
bfa74976
RS
1888#include <stdio.h>
1889
aaaa2aae 1890@group
38a92d50 1891/* Called by yyparse on error. */
13863333 1892void
38a92d50 1893yyerror (char const *s)
bfa74976 1894@{
4e03e201 1895 fprintf (stderr, "%s\n", s);
bfa74976
RS
1896@}
1897@end group
1898@end example
1899
1900After @code{yyerror} returns, the Bison parser may recover from the error
1901and continue parsing if the grammar contains a suitable error rule
1902(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1903have not written any error rules in this example, so any invalid input will
1904cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1905real calculator, but it is adequate for the first example.
bfa74976 1906
f5f419de 1907@node Rpcalc Generate
bfa74976
RS
1908@subsection Running Bison to Make the Parser
1909@cindex running Bison (introduction)
1910
ceed8467
AD
1911Before running Bison to produce a parser, we need to decide how to
1912arrange all the source code in one or more source files. For such a
ff7571c0
JD
1913simple example, the easiest thing is to put everything in one file,
1914the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1915@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1916(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1917
1918For a large project, you would probably have several source files, and use
1919@code{make} to arrange to recompile them.
1920
ff7571c0
JD
1921With all the source in the grammar file, you use the following command
1922to convert it into a parser implementation file:
bfa74976
RS
1923
1924@example
fa4d969f 1925bison @var{file}.y
bfa74976
RS
1926@end example
1927
1928@noindent
ff7571c0
JD
1929In this example, the grammar file is called @file{rpcalc.y} (for
1930``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1931implementation file named @file{@var{file}.tab.c}, removing the
1932@samp{.y} from the grammar file name. The parser implementation file
1933contains the source code for @code{yyparse}. The additional functions
1934in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1935copied verbatim to the parser implementation file.
bfa74976 1936
342b8b6e 1937@node Rpcalc Compile
ff7571c0 1938@subsection Compiling the Parser Implementation File
bfa74976
RS
1939@cindex compiling the parser
1940
ff7571c0 1941Here is how to compile and run the parser implementation file:
bfa74976
RS
1942
1943@example
1944@group
1945# @r{List files in current directory.}
9edcd895 1946$ @kbd{ls}
bfa74976
RS
1947rpcalc.tab.c rpcalc.y
1948@end group
1949
1950@group
1951# @r{Compile the Bison parser.}
1952# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1953$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1954@end group
1955
1956@group
1957# @r{List files again.}
9edcd895 1958$ @kbd{ls}
bfa74976
RS
1959rpcalc rpcalc.tab.c rpcalc.y
1960@end group
1961@end example
1962
1963The file @file{rpcalc} now contains the executable code. Here is an
1964example session using @code{rpcalc}.
1965
1966@example
9edcd895
AD
1967$ @kbd{rpcalc}
1968@kbd{4 9 +}
24ec0837 1969@result{} 13
9edcd895 1970@kbd{3 7 + 3 4 5 *+-}
24ec0837 1971@result{} -13
9edcd895 1972@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
24ec0837 1973@result{} 13
9edcd895 1974@kbd{5 6 / 4 n +}
24ec0837 1975@result{} -3.166666667
9edcd895 1976@kbd{3 4 ^} @r{Exponentiation}
24ec0837 1977@result{} 81
9edcd895
AD
1978@kbd{^D} @r{End-of-file indicator}
1979$
bfa74976
RS
1980@end example
1981
342b8b6e 1982@node Infix Calc
bfa74976
RS
1983@section Infix Notation Calculator: @code{calc}
1984@cindex infix notation calculator
1985@cindex @code{calc}
1986@cindex calculator, infix notation
1987
1988We now modify rpcalc to handle infix operators instead of postfix. Infix
1989notation involves the concept of operator precedence and the need for
1990parentheses nested to arbitrary depth. Here is the Bison code for
1991@file{calc.y}, an infix desk-top calculator.
1992
1993@example
38a92d50 1994/* Infix notation calculator. */
bfa74976 1995
aaaa2aae 1996@group
bfa74976 1997%@{
38a92d50
PE
1998 #include <math.h>
1999 #include <stdio.h>
2000 int yylex (void);
2001 void yyerror (char const *);
bfa74976 2002%@}
aaaa2aae 2003@end group
bfa74976 2004
aaaa2aae 2005@group
38a92d50 2006/* Bison declarations. */
435575cb 2007%define api.value.type @{double@}
bfa74976
RS
2008%token NUM
2009%left '-' '+'
2010%left '*' '/'
d78f0ac9
AD
2011%precedence NEG /* negation--unary minus */
2012%right '^' /* exponentiation */
aaaa2aae 2013@end group
bfa74976 2014
38a92d50 2015%% /* The grammar follows. */
aaaa2aae 2016@group
5e9b6624 2017input:
6240346a 2018 %empty
5e9b6624 2019| input line
bfa74976 2020;
aaaa2aae 2021@end group
bfa74976 2022
aaaa2aae 2023@group
5e9b6624
AD
2024line:
2025 '\n'
2026| exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976 2027;
aaaa2aae 2028@end group
bfa74976 2029
aaaa2aae 2030@group
5e9b6624
AD
2031exp:
2032 NUM @{ $$ = $1; @}
2033| exp '+' exp @{ $$ = $1 + $3; @}
2034| exp '-' exp @{ $$ = $1 - $3; @}
2035| exp '*' exp @{ $$ = $1 * $3; @}
2036| exp '/' exp @{ $$ = $1 / $3; @}
2037| '-' exp %prec NEG @{ $$ = -$2; @}
2038| exp '^' exp @{ $$ = pow ($1, $3); @}
2039| '(' exp ')' @{ $$ = $2; @}
bfa74976 2040;
aaaa2aae 2041@end group
bfa74976
RS
2042%%
2043@end example
2044
2045@noindent
ceed8467
AD
2046The functions @code{yylex}, @code{yyerror} and @code{main} can be the
2047same as before.
bfa74976
RS
2048
2049There are two important new features shown in this code.
2050
2051In the second section (Bison declarations), @code{%left} declares token
2052types and says they are left-associative operators. The declarations
2053@code{%left} and @code{%right} (right associativity) take the place of
2054@code{%token} which is used to declare a token type name without
d78f0ac9 2055associativity/precedence. (These tokens are single-character literals, which
bfa74976 2056ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 2057the associativity/precedence.)
bfa74976
RS
2058
2059Operator precedence is determined by the line ordering of the
2060declarations; the higher the line number of the declaration (lower on
2061the page or screen), the higher the precedence. Hence, exponentiation
2062has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
2063by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
2064only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 2065Precedence}.
bfa74976 2066
704a47c4
AD
2067The other important new feature is the @code{%prec} in the grammar
2068section for the unary minus operator. The @code{%prec} simply instructs
2069Bison that the rule @samp{| '-' exp} has the same precedence as
2070@code{NEG}---in this case the next-to-highest. @xref{Contextual
2071Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2072
2073Here is a sample run of @file{calc.y}:
2074
2075@need 500
2076@example
9edcd895
AD
2077$ @kbd{calc}
2078@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20796.880952381
9edcd895 2080@kbd{-56 + 2}
bfa74976 2081-54
9edcd895 2082@kbd{3 ^ 2}
bfa74976
RS
20839
2084@end example
2085
342b8b6e 2086@node Simple Error Recovery
bfa74976
RS
2087@section Simple Error Recovery
2088@cindex error recovery, simple
2089
2090Up to this point, this manual has not addressed the issue of @dfn{error
2091recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2092error. All we have handled is error reporting with @code{yyerror}.
2093Recall that by default @code{yyparse} returns after calling
2094@code{yyerror}. This means that an erroneous input line causes the
2095calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2096
2097The Bison language itself includes the reserved word @code{error}, which
2098may be included in the grammar rules. In the example below it has
2099been added to one of the alternatives for @code{line}:
2100
2101@example
2102@group
5e9b6624
AD
2103line:
2104 '\n'
2105| exp '\n' @{ printf ("\t%.10g\n", $1); @}
2106| error '\n' @{ yyerrok; @}
bfa74976
RS
2107;
2108@end group
2109@end example
2110
ceed8467 2111This addition to the grammar allows for simple error recovery in the
6e649e65 2112event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2113read, the error will be recognized by the third rule for @code{line},
2114and parsing will continue. (The @code{yyerror} function is still called
2115upon to print its message as well.) The action executes the statement
2116@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2117that error recovery is complete (@pxref{Error Recovery}). Note the
2118difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2119misprint.
bfa74976
RS
2120
2121This form of error recovery deals with syntax errors. There are other
2122kinds of errors; for example, division by zero, which raises an exception
2123signal that is normally fatal. A real calculator program must handle this
2124signal and use @code{longjmp} to return to @code{main} and resume parsing
2125input lines; it would also have to discard the rest of the current line of
2126input. We won't discuss this issue further because it is not specific to
2127Bison programs.
2128
342b8b6e
AD
2129@node Location Tracking Calc
2130@section Location Tracking Calculator: @code{ltcalc}
2131@cindex location tracking calculator
2132@cindex @code{ltcalc}
2133@cindex calculator, location tracking
2134
9edcd895
AD
2135This example extends the infix notation calculator with location
2136tracking. This feature will be used to improve the error messages. For
2137the sake of clarity, this example is a simple integer calculator, since
2138most of the work needed to use locations will be done in the lexical
72d2299c 2139analyzer.
342b8b6e
AD
2140
2141@menu
f5f419de
DJ
2142* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2143* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2144* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2145@end menu
2146
f5f419de 2147@node Ltcalc Declarations
342b8b6e
AD
2148@subsection Declarations for @code{ltcalc}
2149
9edcd895
AD
2150The C and Bison declarations for the location tracking calculator are
2151the same as the declarations for the infix notation calculator.
342b8b6e
AD
2152
2153@example
2154/* Location tracking calculator. */
2155
2156%@{
38a92d50
PE
2157 #include <math.h>
2158 int yylex (void);
2159 void yyerror (char const *);
342b8b6e
AD
2160%@}
2161
2162/* Bison declarations. */
21e3a2b5 2163%define api.value.type int
342b8b6e
AD
2164%token NUM
2165
2166%left '-' '+'
2167%left '*' '/'
d78f0ac9 2168%precedence NEG
342b8b6e
AD
2169%right '^'
2170
38a92d50 2171%% /* The grammar follows. */
342b8b6e
AD
2172@end example
2173
9edcd895
AD
2174@noindent
2175Note there are no declarations specific to locations. Defining a data
2176type for storing locations is not needed: we will use the type provided
2177by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2178four member structure with the following integer fields:
2179@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2180@code{last_column}. By conventions, and in accordance with the GNU
2181Coding Standards and common practice, the line and column count both
2182start at 1.
342b8b6e
AD
2183
2184@node Ltcalc Rules
2185@subsection Grammar Rules for @code{ltcalc}
2186
9edcd895
AD
2187Whether handling locations or not has no effect on the syntax of your
2188language. Therefore, grammar rules for this example will be very close
2189to those of the previous example: we will only modify them to benefit
2190from the new information.
342b8b6e 2191
9edcd895
AD
2192Here, we will use locations to report divisions by zero, and locate the
2193wrong expressions or subexpressions.
342b8b6e
AD
2194
2195@example
2196@group
5e9b6624 2197input:
6240346a 2198 %empty
5e9b6624 2199| input line
342b8b6e
AD
2200;
2201@end group
2202
2203@group
5e9b6624
AD
2204line:
2205 '\n'
2206| exp '\n' @{ printf ("%d\n", $1); @}
342b8b6e
AD
2207;
2208@end group
2209
2210@group
5e9b6624
AD
2211exp:
2212 NUM @{ $$ = $1; @}
2213| exp '+' exp @{ $$ = $1 + $3; @}
2214| exp '-' exp @{ $$ = $1 - $3; @}
2215| exp '*' exp @{ $$ = $1 * $3; @}
342b8b6e 2216@end group
342b8b6e 2217@group
5e9b6624
AD
2218| exp '/' exp
2219 @{
2220 if ($3)
2221 $$ = $1 / $3;
2222 else
2223 @{
2224 $$ = 1;
2225 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2226 @@3.first_line, @@3.first_column,
2227 @@3.last_line, @@3.last_column);
2228 @}
2229 @}
342b8b6e
AD
2230@end group
2231@group
5e9b6624
AD
2232| '-' exp %prec NEG @{ $$ = -$2; @}
2233| exp '^' exp @{ $$ = pow ($1, $3); @}
2234| '(' exp ')' @{ $$ = $2; @}
342b8b6e
AD
2235@end group
2236@end example
2237
2238This code shows how to reach locations inside of semantic actions, by
2239using the pseudo-variables @code{@@@var{n}} for rule components, and the
2240pseudo-variable @code{@@$} for groupings.
2241
9edcd895
AD
2242We don't need to assign a value to @code{@@$}: the output parser does it
2243automatically. By default, before executing the C code of each action,
2244@code{@@$} is set to range from the beginning of @code{@@1} to the end
2245of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2246can be redefined (@pxref{Location Default Action, , Default Action for
2247Locations}), and for very specific rules, @code{@@$} can be computed by
2248hand.
342b8b6e
AD
2249
2250@node Ltcalc Lexer
2251@subsection The @code{ltcalc} Lexical Analyzer.
2252
9edcd895 2253Until now, we relied on Bison's defaults to enable location
72d2299c 2254tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2255able to feed the parser with the token locations, as it already does for
2256semantic values.
342b8b6e 2257
9edcd895
AD
2258To this end, we must take into account every single character of the
2259input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2260
2261@example
2262@group
2263int
2264yylex (void)
2265@{
2266 int c;
18b519c0 2267@end group
342b8b6e 2268
18b519c0 2269@group
72d2299c 2270 /* Skip white space. */
342b8b6e
AD
2271 while ((c = getchar ()) == ' ' || c == '\t')
2272 ++yylloc.last_column;
18b519c0 2273@end group
342b8b6e 2274
18b519c0 2275@group
72d2299c 2276 /* Step. */
342b8b6e
AD
2277 yylloc.first_line = yylloc.last_line;
2278 yylloc.first_column = yylloc.last_column;
2279@end group
2280
2281@group
72d2299c 2282 /* Process numbers. */
342b8b6e
AD
2283 if (isdigit (c))
2284 @{
2285 yylval = c - '0';
2286 ++yylloc.last_column;
2287 while (isdigit (c = getchar ()))
2288 @{
2289 ++yylloc.last_column;
2290 yylval = yylval * 10 + c - '0';
2291 @}
2292 ungetc (c, stdin);
2293 return NUM;
2294 @}
2295@end group
2296
72d2299c 2297 /* Return end-of-input. */
342b8b6e
AD
2298 if (c == EOF)
2299 return 0;
2300
d4fca427 2301@group
72d2299c 2302 /* Return a single char, and update location. */
342b8b6e
AD
2303 if (c == '\n')
2304 @{
2305 ++yylloc.last_line;
2306 yylloc.last_column = 0;
2307 @}
2308 else
2309 ++yylloc.last_column;
2310 return c;
2311@}
d4fca427 2312@end group
342b8b6e
AD
2313@end example
2314
9edcd895
AD
2315Basically, the lexical analyzer performs the same processing as before:
2316it skips blanks and tabs, and reads numbers or single-character tokens.
2317In addition, it updates @code{yylloc}, the global variable (of type
2318@code{YYLTYPE}) containing the token's location.
342b8b6e 2319
9edcd895 2320Now, each time this function returns a token, the parser has its number
72d2299c 2321as well as its semantic value, and its location in the text. The last
9edcd895
AD
2322needed change is to initialize @code{yylloc}, for example in the
2323controlling function:
342b8b6e
AD
2324
2325@example
9edcd895 2326@group
342b8b6e
AD
2327int
2328main (void)
2329@{
2330 yylloc.first_line = yylloc.last_line = 1;
2331 yylloc.first_column = yylloc.last_column = 0;
2332 return yyparse ();
2333@}
9edcd895 2334@end group
342b8b6e
AD
2335@end example
2336
9edcd895
AD
2337Remember that computing locations is not a matter of syntax. Every
2338character must be associated to a location update, whether it is in
2339valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2340
2341@node Multi-function Calc
bfa74976
RS
2342@section Multi-Function Calculator: @code{mfcalc}
2343@cindex multi-function calculator
2344@cindex @code{mfcalc}
2345@cindex calculator, multi-function
2346
2347Now that the basics of Bison have been discussed, it is time to move on to
2348a more advanced problem. The above calculators provided only five
2349functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2350be nice to have a calculator that provides other mathematical functions such
2351as @code{sin}, @code{cos}, etc.
2352
2353It is easy to add new operators to the infix calculator as long as they are
2354only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2355back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2356adding a new operator. But we want something more flexible: built-in
2357functions whose syntax has this form:
2358
2359@example
2360@var{function_name} (@var{argument})
2361@end example
2362
2363@noindent
2364At the same time, we will add memory to the calculator, by allowing you
2365to create named variables, store values in them, and use them later.
2366Here is a sample session with the multi-function calculator:
2367
2368@example
d4fca427 2369@group
9edcd895
AD
2370$ @kbd{mfcalc}
2371@kbd{pi = 3.141592653589}
f9c75dd0 2372@result{} 3.1415926536
d4fca427
AD
2373@end group
2374@group
9edcd895 2375@kbd{sin(pi)}
f9c75dd0 2376@result{} 0.0000000000
d4fca427 2377@end group
9edcd895 2378@kbd{alpha = beta1 = 2.3}
f9c75dd0 2379@result{} 2.3000000000
9edcd895 2380@kbd{alpha}
f9c75dd0 2381@result{} 2.3000000000
9edcd895 2382@kbd{ln(alpha)}
f9c75dd0 2383@result{} 0.8329091229
9edcd895 2384@kbd{exp(ln(beta1))}
f9c75dd0 2385@result{} 2.3000000000
9edcd895 2386$
bfa74976
RS
2387@end example
2388
2389Note that multiple assignment and nested function calls are permitted.
2390
2391@menu
f5f419de
DJ
2392* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2393* Mfcalc Rules:: Grammar rules for the calculator.
2394* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
2395* Mfcalc Lexer:: The lexical analyzer.
2396* Mfcalc Main:: The controlling function.
bfa74976
RS
2397@end menu
2398
f5f419de 2399@node Mfcalc Declarations
bfa74976
RS
2400@subsection Declarations for @code{mfcalc}
2401
2402Here are the C and Bison declarations for the multi-function calculator.
2403
93c150b6 2404@comment file: mfcalc.y: 1
c93f22fc 2405@example
18b519c0 2406@group
bfa74976 2407%@{
f9c75dd0 2408 #include <stdio.h> /* For printf, etc. */
578e3413 2409 #include <math.h> /* For pow, used in the grammar. */
4c9b8f13 2410 #include "calc.h" /* Contains definition of 'symrec'. */
38a92d50
PE
2411 int yylex (void);
2412 void yyerror (char const *);
bfa74976 2413%@}
18b519c0 2414@end group
93c150b6 2415
90b89dad
AD
2416%define api.value.type union /* Generate YYSTYPE from these types: */
2417%token <double> NUM /* Simple double precision number. */
2418%token <symrec*> VAR FNCT /* Symbol table pointer: variable and function. */
2419%type <double> exp
bfa74976 2420
18b519c0 2421@group
e8f7155d 2422%precedence '='
bfa74976
RS
2423%left '-' '+'
2424%left '*' '/'
d78f0ac9
AD
2425%precedence NEG /* negation--unary minus */
2426%right '^' /* exponentiation */
18b519c0 2427@end group
c93f22fc 2428@end example
bfa74976
RS
2429
2430The above grammar introduces only two new features of the Bison language.
2431These features allow semantic values to have various data types
2432(@pxref{Multiple Types, ,More Than One Value Type}).
2433
90b89dad
AD
2434The special @code{union} value assigned to the @code{%define} variable
2435@code{api.value.type} specifies that the symbols are defined with their data
2436types. Bison will generate an appropriate definition of @code{YYSTYPE} to
2437store these values.
bfa74976 2438
90b89dad
AD
2439Since values can now have various types, it is necessary to associate a type
2440with each grammar symbol whose semantic value is used. These symbols are
2441@code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their declarations are
2442augmented with their data type (placed between angle brackets). For
2443instance, values of @code{NUM} are stored in @code{double}.
bfa74976 2444
90b89dad
AD
2445The Bison construct @code{%type} is used for declaring nonterminal symbols,
2446just as @code{%token} is used for declaring token types. Previously we did
2447not use @code{%type} before because nonterminal symbols are normally
2448declared implicitly by the rules that define them. But @code{exp} must be
2449declared explicitly so we can specify its value type. @xref{Type Decl,
2450,Nonterminal Symbols}.
bfa74976 2451
342b8b6e 2452@node Mfcalc Rules
bfa74976
RS
2453@subsection Grammar Rules for @code{mfcalc}
2454
2455Here are the grammar rules for the multi-function calculator.
2456Most of them are copied directly from @code{calc}; three rules,
2457those which mention @code{VAR} or @code{FNCT}, are new.
2458
93c150b6 2459@comment file: mfcalc.y: 3
c93f22fc 2460@example
93c150b6 2461%% /* The grammar follows. */
18b519c0 2462@group
5e9b6624 2463input:
6240346a 2464 %empty
5e9b6624 2465| input line
bfa74976 2466;
18b519c0 2467@end group
bfa74976 2468
18b519c0 2469@group
bfa74976 2470line:
5e9b6624
AD
2471 '\n'
2472| exp '\n' @{ printf ("%.10g\n", $1); @}
2473| error '\n' @{ yyerrok; @}
bfa74976 2474;
18b519c0 2475@end group
bfa74976 2476
18b519c0 2477@group
5e9b6624
AD
2478exp:
2479 NUM @{ $$ = $1; @}
2480| VAR @{ $$ = $1->value.var; @}
2481| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2482| FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2483| exp '+' exp @{ $$ = $1 + $3; @}
2484| exp '-' exp @{ $$ = $1 - $3; @}
2485| exp '*' exp @{ $$ = $1 * $3; @}
2486| exp '/' exp @{ $$ = $1 / $3; @}
2487| '-' exp %prec NEG @{ $$ = -$2; @}
2488| exp '^' exp @{ $$ = pow ($1, $3); @}
2489| '(' exp ')' @{ $$ = $2; @}
bfa74976 2490;
18b519c0 2491@end group
38a92d50 2492/* End of grammar. */
bfa74976 2493%%
c93f22fc 2494@end example
bfa74976 2495
f5f419de 2496@node Mfcalc Symbol Table
bfa74976
RS
2497@subsection The @code{mfcalc} Symbol Table
2498@cindex symbol table example
2499
2500The multi-function calculator requires a symbol table to keep track of the
2501names and meanings of variables and functions. This doesn't affect the
2502grammar rules (except for the actions) or the Bison declarations, but it
2503requires some additional C functions for support.
2504
2505The symbol table itself consists of a linked list of records. Its
2506definition, which is kept in the header @file{calc.h}, is as follows. It
2507provides for either functions or variables to be placed in the table.
2508
f9c75dd0 2509@comment file: calc.h
c93f22fc 2510@example
bfa74976 2511@group
38a92d50 2512/* Function type. */
32dfccf8 2513typedef double (*func_t) (double);
72f889cc 2514@end group
32dfccf8 2515
72f889cc 2516@group
38a92d50 2517/* Data type for links in the chain of symbols. */
bfa74976
RS
2518struct symrec
2519@{
38a92d50 2520 char *name; /* name of symbol */
bfa74976 2521 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2522 union
2523 @{
38a92d50
PE
2524 double var; /* value of a VAR */
2525 func_t fnctptr; /* value of a FNCT */
bfa74976 2526 @} value;
38a92d50 2527 struct symrec *next; /* link field */
bfa74976
RS
2528@};
2529@end group
2530
2531@group
2532typedef struct symrec symrec;
2533
4c9b8f13 2534/* The symbol table: a chain of 'struct symrec'. */
bfa74976
RS
2535extern symrec *sym_table;
2536
a730d142 2537symrec *putsym (char const *, int);
38a92d50 2538symrec *getsym (char const *);
bfa74976 2539@end group
c93f22fc 2540@end example
bfa74976 2541
aeb57fb6
AD
2542The new version of @code{main} will call @code{init_table} to initialize
2543the symbol table:
bfa74976 2544
93c150b6 2545@comment file: mfcalc.y: 3
c93f22fc 2546@example
18b519c0 2547@group
bfa74976
RS
2548struct init
2549@{
38a92d50
PE
2550 char const *fname;
2551 double (*fnct) (double);
bfa74976
RS
2552@};
2553@end group
2554
2555@group
38a92d50 2556struct init const arith_fncts[] =
13863333 2557@{
f9c75dd0
AD
2558 @{ "atan", atan @},
2559 @{ "cos", cos @},
2560 @{ "exp", exp @},
2561 @{ "ln", log @},
2562 @{ "sin", sin @},
2563 @{ "sqrt", sqrt @},
2564 @{ 0, 0 @},
13863333 2565@};
18b519c0 2566@end group
bfa74976 2567
18b519c0 2568@group
4c9b8f13 2569/* The symbol table: a chain of 'struct symrec'. */
38a92d50 2570symrec *sym_table;
bfa74976
RS
2571@end group
2572
2573@group
72d2299c 2574/* Put arithmetic functions in table. */
f9c75dd0 2575static
13863333
AD
2576void
2577init_table (void)
bfa74976
RS
2578@{
2579 int i;
bfa74976
RS
2580 for (i = 0; arith_fncts[i].fname != 0; i++)
2581 @{
aaaa2aae 2582 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2583 ptr->value.fnctptr = arith_fncts[i].fnct;
2584 @}
2585@}
2586@end group
c93f22fc 2587@end example
bfa74976
RS
2588
2589By simply editing the initialization list and adding the necessary include
2590files, you can add additional functions to the calculator.
2591
2592Two important functions allow look-up and installation of symbols in the
2593symbol table. The function @code{putsym} is passed a name and the type
2594(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2595linked to the front of the list, and a pointer to the object is returned.
2596The function @code{getsym} is passed the name of the symbol to look up. If
2597found, a pointer to that symbol is returned; otherwise zero is returned.
2598
93c150b6 2599@comment file: mfcalc.y: 3
c93f22fc 2600@example
f9c75dd0
AD
2601#include <stdlib.h> /* malloc. */
2602#include <string.h> /* strlen. */
2603
d4fca427 2604@group
bfa74976 2605symrec *
38a92d50 2606putsym (char const *sym_name, int sym_type)
bfa74976 2607@{
aaaa2aae 2608 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2609 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2610 strcpy (ptr->name,sym_name);
2611 ptr->type = sym_type;
72d2299c 2612 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2613 ptr->next = (struct symrec *)sym_table;
2614 sym_table = ptr;
2615 return ptr;
2616@}
d4fca427 2617@end group
bfa74976 2618
d4fca427 2619@group
bfa74976 2620symrec *
38a92d50 2621getsym (char const *sym_name)
bfa74976
RS
2622@{
2623 symrec *ptr;
2624 for (ptr = sym_table; ptr != (symrec *) 0;
2625 ptr = (symrec *)ptr->next)
f518dbaf 2626 if (strcmp (ptr->name, sym_name) == 0)
bfa74976
RS
2627 return ptr;
2628 return 0;
2629@}
d4fca427 2630@end group
c93f22fc 2631@end example
bfa74976 2632
aeb57fb6
AD
2633@node Mfcalc Lexer
2634@subsection The @code{mfcalc} Lexer
2635
bfa74976
RS
2636The function @code{yylex} must now recognize variables, numeric values, and
2637the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2638characters with a leading letter are recognized as either variables or
bfa74976
RS
2639functions depending on what the symbol table says about them.
2640
2641The string is passed to @code{getsym} for look up in the symbol table. If
2642the name appears in the table, a pointer to its location and its type
2643(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2644already in the table, then it is installed as a @code{VAR} using
2645@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2646returned to @code{yyparse}.
bfa74976
RS
2647
2648No change is needed in the handling of numeric values and arithmetic
2649operators in @code{yylex}.
2650
93c150b6 2651@comment file: mfcalc.y: 3
c93f22fc 2652@example
bfa74976 2653#include <ctype.h>
13863333 2654
18b519c0 2655@group
13863333
AD
2656int
2657yylex (void)
bfa74976
RS
2658@{
2659 int c;
2660
72d2299c 2661 /* Ignore white space, get first nonwhite character. */
d4fca427
AD
2662 while ((c = getchar ()) == ' ' || c == '\t')
2663 continue;
bfa74976
RS
2664
2665 if (c == EOF)
2666 return 0;
2667@end group
2668
2669@group
2670 /* Char starts a number => parse the number. */
2671 if (c == '.' || isdigit (c))
2672 @{
2673 ungetc (c, stdin);
90b89dad 2674 scanf ("%lf", &yylval.NUM);
bfa74976
RS
2675 return NUM;
2676 @}
2677@end group
90b89dad 2678@end example
bfa74976 2679
90b89dad
AD
2680@noindent
2681Bison generated a definition of @code{YYSTYPE} with a member named
2682@code{NUM} to store value of @code{NUM} symbols.
2683
2684@comment file: mfcalc.y: 3
2685@example
bfa74976
RS
2686@group
2687 /* Char starts an identifier => read the name. */
2688 if (isalpha (c))
2689 @{
aaaa2aae
AD
2690 /* Initially make the buffer long enough
2691 for a 40-character symbol name. */
2692 static size_t length = 40;
bfa74976 2693 static char *symbuf = 0;
aaaa2aae 2694 symrec *s;
bfa74976
RS
2695 int i;
2696@end group
aaaa2aae
AD
2697 if (!symbuf)
2698 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2699
2700 i = 0;
2701 do
bfa74976
RS
2702@group
2703 @{
2704 /* If buffer is full, make it bigger. */
2705 if (i == length)
2706 @{
2707 length *= 2;
18b519c0 2708 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2709 @}
2710 /* Add this character to the buffer. */
2711 symbuf[i++] = c;
2712 /* Get another character. */
2713 c = getchar ();
2714 @}
2715@end group
2716@group
72d2299c 2717 while (isalnum (c));
bfa74976
RS
2718
2719 ungetc (c, stdin);
2720 symbuf[i] = '\0';
2721@end group
2722
2723@group
2724 s = getsym (symbuf);
2725 if (s == 0)
2726 s = putsym (symbuf, VAR);
90b89dad 2727 *((symrec**) &yylval) = s;
bfa74976
RS
2728 return s->type;
2729 @}
2730
2731 /* Any other character is a token by itself. */
2732 return c;
2733@}
2734@end group
c93f22fc 2735@end example
bfa74976 2736
aeb57fb6
AD
2737@node Mfcalc Main
2738@subsection The @code{mfcalc} Main
2739
2740The error reporting function is unchanged, and the new version of
93c150b6
AD
2741@code{main} includes a call to @code{init_table} and sets the @code{yydebug}
2742on user demand (@xref{Tracing, , Tracing Your Parser}, for details):
aeb57fb6 2743
93c150b6 2744@comment file: mfcalc.y: 3
c93f22fc 2745@example
aeb57fb6
AD
2746@group
2747/* Called by yyparse on error. */
2748void
2749yyerror (char const *s)
2750@{
2751 fprintf (stderr, "%s\n", s);
2752@}
2753@end group
2754
aaaa2aae 2755@group
aeb57fb6
AD
2756int
2757main (int argc, char const* argv[])
2758@{
93c150b6
AD
2759 int i;
2760 /* Enable parse traces on option -p. */
2761 for (i = 1; i < argc; ++i)
2762 if (!strcmp(argv[i], "-p"))
2763 yydebug = 1;
aeb57fb6
AD
2764 init_table ();
2765 return yyparse ();
2766@}
2767@end group
c93f22fc 2768@end example
aeb57fb6 2769
72d2299c 2770This program is both powerful and flexible. You may easily add new
704a47c4
AD
2771functions, and it is a simple job to modify this code to install
2772predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2773
342b8b6e 2774@node Exercises
bfa74976
RS
2775@section Exercises
2776@cindex exercises
2777
2778@enumerate
2779@item
2780Add some new functions from @file{math.h} to the initialization list.
2781
2782@item
2783Add another array that contains constants and their values. Then
2784modify @code{init_table} to add these constants to the symbol table.
2785It will be easiest to give the constants type @code{VAR}.
2786
2787@item
2788Make the program report an error if the user refers to an
2789uninitialized variable in any way except to store a value in it.
2790@end enumerate
2791
342b8b6e 2792@node Grammar File
bfa74976
RS
2793@chapter Bison Grammar Files
2794
2795Bison takes as input a context-free grammar specification and produces a
2796C-language function that recognizes correct instances of the grammar.
2797
ff7571c0 2798The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2799@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2800
2801@menu
303834cc
JD
2802* Grammar Outline:: Overall layout of the grammar file.
2803* Symbols:: Terminal and nonterminal symbols.
2804* Rules:: How to write grammar rules.
303834cc
JD
2805* Semantics:: Semantic values and actions.
2806* Tracking Locations:: Locations and actions.
2807* Named References:: Using named references in actions.
2808* Declarations:: All kinds of Bison declarations are described here.
2809* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2810@end menu
2811
342b8b6e 2812@node Grammar Outline
bfa74976 2813@section Outline of a Bison Grammar
c949ada3
AD
2814@cindex comment
2815@findex // @dots{}
2816@findex /* @dots{} */
bfa74976
RS
2817
2818A Bison grammar file has four main sections, shown here with the
2819appropriate delimiters:
2820
2821@example
2822%@{
38a92d50 2823 @var{Prologue}
bfa74976
RS
2824%@}
2825
2826@var{Bison declarations}
2827
2828%%
2829@var{Grammar rules}
2830%%
2831
75f5aaea 2832@var{Epilogue}
bfa74976
RS
2833@end example
2834
2835Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
c949ada3
AD
2836As a GNU extension, @samp{//} introduces a comment that continues until end
2837of line.
bfa74976
RS
2838
2839@menu
f5f419de 2840* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2841* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2842* Bison Declarations:: Syntax and usage of the Bison declarations section.
2843* Grammar Rules:: Syntax and usage of the grammar rules section.
2844* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2845@end menu
2846
38a92d50 2847@node Prologue
75f5aaea
MA
2848@subsection The prologue
2849@cindex declarations section
2850@cindex Prologue
2851@cindex declarations
bfa74976 2852
f8e1c9e5
AD
2853The @var{Prologue} section contains macro definitions and declarations
2854of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2855rules. These are copied to the beginning of the parser implementation
2856file so that they precede the definition of @code{yyparse}. You can
2857use @samp{#include} to get the declarations from a header file. If
2858you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2859@samp{%@}} delimiters that bracket this section.
bfa74976 2860
9c437126 2861The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2862of @samp{%@}} that is outside a comment, a string literal, or a
2863character constant.
2864
c732d2c6
AD
2865You may have more than one @var{Prologue} section, intermixed with the
2866@var{Bison declarations}. This allows you to have C and Bison
2867declarations that refer to each other. For example, the @code{%union}
2868declaration may use types defined in a header file, and you may wish to
2869prototype functions that take arguments of type @code{YYSTYPE}. This
2870can be done with two @var{Prologue} blocks, one before and one after the
2871@code{%union} declaration.
2872
c93f22fc 2873@example
efbc95a7 2874@group
c732d2c6 2875%@{
aef3da86 2876 #define _GNU_SOURCE
38a92d50
PE
2877 #include <stdio.h>
2878 #include "ptypes.h"
c732d2c6 2879%@}
efbc95a7 2880@end group
c732d2c6 2881
efbc95a7 2882@group
c732d2c6 2883%union @{
779e7ceb 2884 long int n;
c732d2c6
AD
2885 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2886@}
efbc95a7 2887@end group
c732d2c6 2888
efbc95a7 2889@group
c732d2c6 2890%@{
38a92d50
PE
2891 static void print_token_value (FILE *, int, YYSTYPE);
2892 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6 2893%@}
efbc95a7 2894@end group
c732d2c6
AD
2895
2896@dots{}
c93f22fc 2897@end example
c732d2c6 2898
aef3da86
PE
2899When in doubt, it is usually safer to put prologue code before all
2900Bison declarations, rather than after. For example, any definitions
2901of feature test macros like @code{_GNU_SOURCE} or
2902@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2903feature test macros can affect the behavior of Bison-generated
2904@code{#include} directives.
2905
2cbe6b7f
JD
2906@node Prologue Alternatives
2907@subsection Prologue Alternatives
2908@cindex Prologue Alternatives
2909
136a0f76 2910@findex %code
16dc6a9e
JD
2911@findex %code requires
2912@findex %code provides
2913@findex %code top
85894313 2914
2cbe6b7f 2915The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2916inflexible. As an alternative, Bison provides a @code{%code}
2917directive with an explicit qualifier field, which identifies the
2918purpose of the code and thus the location(s) where Bison should
2919generate it. For C/C++, the qualifier can be omitted for the default
2920location, or it can be one of @code{requires}, @code{provides},
e0c07222 2921@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2922
2923Look again at the example of the previous section:
2924
c93f22fc 2925@example
efbc95a7 2926@group
2cbe6b7f
JD
2927%@{
2928 #define _GNU_SOURCE
2929 #include <stdio.h>
2930 #include "ptypes.h"
2931%@}
efbc95a7 2932@end group
2cbe6b7f 2933
efbc95a7 2934@group
2cbe6b7f
JD
2935%union @{
2936 long int n;
2937 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2938@}
efbc95a7 2939@end group
2cbe6b7f 2940
efbc95a7 2941@group
2cbe6b7f
JD
2942%@{
2943 static void print_token_value (FILE *, int, YYSTYPE);
2944 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2945%@}
efbc95a7 2946@end group
2cbe6b7f
JD
2947
2948@dots{}
c93f22fc 2949@end example
2cbe6b7f
JD
2950
2951@noindent
ff7571c0
JD
2952Notice that there are two @var{Prologue} sections here, but there's a
2953subtle distinction between their functionality. For example, if you
2954decide to override Bison's default definition for @code{YYLTYPE}, in
2955which @var{Prologue} section should you write your new definition?
2956You should write it in the first since Bison will insert that code
2957into the parser implementation file @emph{before} the default
2958@code{YYLTYPE} definition. In which @var{Prologue} section should you
2959prototype an internal function, @code{trace_token}, that accepts
2960@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2961prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2962@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2963
2964This distinction in functionality between the two @var{Prologue} sections is
2965established by the appearance of the @code{%union} between them.
a501eca9 2966This behavior raises a few questions.
2cbe6b7f
JD
2967First, why should the position of a @code{%union} affect definitions related to
2968@code{YYLTYPE} and @code{yytokentype}?
2969Second, what if there is no @code{%union}?
2970In that case, the second kind of @var{Prologue} section is not available.
2971This behavior is not intuitive.
2972
8e0a5e9e 2973To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2974@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2975Let's go ahead and add the new @code{YYLTYPE} definition and the
2976@code{trace_token} prototype at the same time:
2977
c93f22fc 2978@example
16dc6a9e 2979%code top @{
2cbe6b7f
JD
2980 #define _GNU_SOURCE
2981 #include <stdio.h>
8e0a5e9e
JD
2982
2983 /* WARNING: The following code really belongs
4c9b8f13 2984 * in a '%code requires'; see below. */
8e0a5e9e 2985
2cbe6b7f
JD
2986 #include "ptypes.h"
2987 #define YYLTYPE YYLTYPE
2988 typedef struct YYLTYPE
2989 @{
2990 int first_line;
2991 int first_column;
2992 int last_line;
2993 int last_column;
2994 char *filename;
2995 @} YYLTYPE;
2996@}
2997
efbc95a7 2998@group
2cbe6b7f
JD
2999%union @{
3000 long int n;
3001 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3002@}
efbc95a7 3003@end group
2cbe6b7f 3004
efbc95a7 3005@group
2cbe6b7f
JD
3006%code @{
3007 static void print_token_value (FILE *, int, YYSTYPE);
3008 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3009 static void trace_token (enum yytokentype token, YYLTYPE loc);
3010@}
efbc95a7 3011@end group
2cbe6b7f
JD
3012
3013@dots{}
c93f22fc 3014@end example
2cbe6b7f
JD
3015
3016@noindent
16dc6a9e
JD
3017In this way, @code{%code top} and the unqualified @code{%code} achieve the same
3018functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 3019explicit which kind you intend.
2cbe6b7f
JD
3020Moreover, both kinds are always available even in the absence of @code{%union}.
3021
ff7571c0
JD
3022The @code{%code top} block above logically contains two parts. The
3023first two lines before the warning need to appear near the top of the
3024parser implementation file. The first line after the warning is
3025required by @code{YYSTYPE} and thus also needs to appear in the parser
3026implementation file. However, if you've instructed Bison to generate
3027a parser header file (@pxref{Decl Summary, ,%defines}), you probably
3028want that line to appear before the @code{YYSTYPE} definition in that
3029header file as well. The @code{YYLTYPE} definition should also appear
3030in the parser header file to override the default @code{YYLTYPE}
3031definition there.
2cbe6b7f 3032
16dc6a9e 3033In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
3034lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
3035definitions.
16dc6a9e 3036Thus, they belong in one or more @code{%code requires}:
9bc0dd67 3037
c93f22fc 3038@example
d4fca427 3039@group
16dc6a9e 3040%code top @{
2cbe6b7f
JD
3041 #define _GNU_SOURCE
3042 #include <stdio.h>
3043@}
d4fca427 3044@end group
2cbe6b7f 3045
d4fca427 3046@group
16dc6a9e 3047%code requires @{
9bc0dd67
JD
3048 #include "ptypes.h"
3049@}
d4fca427
AD
3050@end group
3051@group
9bc0dd67
JD
3052%union @{
3053 long int n;
3054 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3055@}
d4fca427 3056@end group
9bc0dd67 3057
d4fca427 3058@group
16dc6a9e 3059%code requires @{
2cbe6b7f
JD
3060 #define YYLTYPE YYLTYPE
3061 typedef struct YYLTYPE
3062 @{
3063 int first_line;
3064 int first_column;
3065 int last_line;
3066 int last_column;
3067 char *filename;
3068 @} YYLTYPE;
3069@}
d4fca427 3070@end group
2cbe6b7f 3071
d4fca427 3072@group
136a0f76 3073%code @{
2cbe6b7f
JD
3074 static void print_token_value (FILE *, int, YYSTYPE);
3075 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3076 static void trace_token (enum yytokentype token, YYLTYPE loc);
3077@}
d4fca427 3078@end group
2cbe6b7f
JD
3079
3080@dots{}
c93f22fc 3081@end example
2cbe6b7f
JD
3082
3083@noindent
ff7571c0
JD
3084Now Bison will insert @code{#include "ptypes.h"} and the new
3085@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
3086and @code{YYLTYPE} definitions in both the parser implementation file
3087and the parser header file. (By the same reasoning, @code{%code
3088requires} would also be the appropriate place to write your own
3089definition for @code{YYSTYPE}.)
3090
3091When you are writing dependency code for @code{YYSTYPE} and
3092@code{YYLTYPE}, you should prefer @code{%code requires} over
3093@code{%code top} regardless of whether you instruct Bison to generate
3094a parser header file. When you are writing code that you need Bison
3095to insert only into the parser implementation file and that has no
3096special need to appear at the top of that file, you should prefer the
3097unqualified @code{%code} over @code{%code top}. These practices will
3098make the purpose of each block of your code explicit to Bison and to
3099other developers reading your grammar file. Following these
3100practices, we expect the unqualified @code{%code} and @code{%code
3101requires} to be the most important of the four @var{Prologue}
16dc6a9e 3102alternatives.
a501eca9 3103
ff7571c0
JD
3104At some point while developing your parser, you might decide to
3105provide @code{trace_token} to modules that are external to your
3106parser. Thus, you might wish for Bison to insert the prototype into
3107both the parser header file and the parser implementation file. Since
3108this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 3109@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
3110@code{%code requires}. More importantly, since it depends upon
3111@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3112sufficient. Instead, move its prototype from the unqualified
3113@code{%code} to a @code{%code provides}:
2cbe6b7f 3114
c93f22fc 3115@example
d4fca427 3116@group
16dc6a9e 3117%code top @{
2cbe6b7f 3118 #define _GNU_SOURCE
136a0f76 3119 #include <stdio.h>
2cbe6b7f 3120@}
d4fca427 3121@end group
136a0f76 3122
d4fca427 3123@group
16dc6a9e 3124%code requires @{
2cbe6b7f
JD
3125 #include "ptypes.h"
3126@}
d4fca427
AD
3127@end group
3128@group
2cbe6b7f
JD
3129%union @{
3130 long int n;
3131 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3132@}
d4fca427 3133@end group
2cbe6b7f 3134
d4fca427 3135@group
16dc6a9e 3136%code requires @{
2cbe6b7f
JD
3137 #define YYLTYPE YYLTYPE
3138 typedef struct YYLTYPE
3139 @{
3140 int first_line;
3141 int first_column;
3142 int last_line;
3143 int last_column;
3144 char *filename;
3145 @} YYLTYPE;
3146@}
d4fca427 3147@end group
2cbe6b7f 3148
d4fca427 3149@group
16dc6a9e 3150%code provides @{
2cbe6b7f
JD
3151 void trace_token (enum yytokentype token, YYLTYPE loc);
3152@}
d4fca427 3153@end group
2cbe6b7f 3154
d4fca427 3155@group
2cbe6b7f 3156%code @{
9bc0dd67
JD
3157 static void print_token_value (FILE *, int, YYSTYPE);
3158 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3159@}
d4fca427 3160@end group
9bc0dd67
JD
3161
3162@dots{}
c93f22fc 3163@end example
9bc0dd67 3164
2cbe6b7f 3165@noindent
ff7571c0
JD
3166Bison will insert the @code{trace_token} prototype into both the
3167parser header file and the parser implementation file after the
3168definitions for @code{yytokentype}, @code{YYLTYPE}, and
3169@code{YYSTYPE}.
2cbe6b7f 3170
ff7571c0
JD
3171The above examples are careful to write directives in an order that
3172reflects the layout of the generated parser implementation and header
3173files: @code{%code top}, @code{%code requires}, @code{%code provides},
3174and then @code{%code}. While your grammar files may generally be
3175easier to read if you also follow this order, Bison does not require
3176it. Instead, Bison lets you choose an organization that makes sense
3177to you.
2cbe6b7f 3178
a501eca9 3179You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3180In that case, Bison concatenates the contained code in declaration order.
3181This is the only way in which the position of one of these directives within
3182the grammar file affects its functionality.
3183
3184The result of the previous two properties is greater flexibility in how you may
3185organize your grammar file.
3186For example, you may organize semantic-type-related directives by semantic
3187type:
3188
c93f22fc 3189@example
d4fca427 3190@group
16dc6a9e 3191%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3192%union @{ type1 field1; @}
3193%destructor @{ type1_free ($$); @} <field1>
c5026327 3194%printer @{ type1_print (yyoutput, $$); @} <field1>
d4fca427 3195@end group
2cbe6b7f 3196
d4fca427 3197@group
16dc6a9e 3198%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3199%union @{ type2 field2; @}
3200%destructor @{ type2_free ($$); @} <field2>
c5026327 3201%printer @{ type2_print (yyoutput, $$); @} <field2>
d4fca427 3202@end group
c93f22fc 3203@end example
2cbe6b7f
JD
3204
3205@noindent
3206You could even place each of the above directive groups in the rules section of
3207the grammar file next to the set of rules that uses the associated semantic
3208type.
61fee93e
JD
3209(In the rules section, you must terminate each of those directives with a
3210semicolon.)
2cbe6b7f
JD
3211And you don't have to worry that some directive (like a @code{%union}) in the
3212definitions section is going to adversely affect their functionality in some
3213counter-intuitive manner just because it comes first.
3214Such an organization is not possible using @var{Prologue} sections.
3215
a501eca9 3216This section has been concerned with explaining the advantages of the four
8e0a5e9e 3217@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3218However, in most cases when using these directives, you shouldn't need to
3219think about all the low-level ordering issues discussed here.
3220Instead, you should simply use these directives to label each block of your
3221code according to its purpose and let Bison handle the ordering.
3222@code{%code} is the most generic label.
16dc6a9e
JD
3223Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3224as needed.
a501eca9 3225
342b8b6e 3226@node Bison Declarations
bfa74976
RS
3227@subsection The Bison Declarations Section
3228@cindex Bison declarations (introduction)
3229@cindex declarations, Bison (introduction)
3230
3231The @var{Bison declarations} section contains declarations that define
3232terminal and nonterminal symbols, specify precedence, and so on.
3233In some simple grammars you may not need any declarations.
3234@xref{Declarations, ,Bison Declarations}.
3235
342b8b6e 3236@node Grammar Rules
bfa74976
RS
3237@subsection The Grammar Rules Section
3238@cindex grammar rules section
3239@cindex rules section for grammar
3240
3241The @dfn{grammar rules} section contains one or more Bison grammar
3242rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3243
3244There must always be at least one grammar rule, and the first
3245@samp{%%} (which precedes the grammar rules) may never be omitted even
3246if it is the first thing in the file.
3247
38a92d50 3248@node Epilogue
75f5aaea 3249@subsection The epilogue
bfa74976 3250@cindex additional C code section
75f5aaea 3251@cindex epilogue
bfa74976
RS
3252@cindex C code, section for additional
3253
ff7571c0
JD
3254The @var{Epilogue} is copied verbatim to the end of the parser
3255implementation file, just as the @var{Prologue} is copied to the
3256beginning. This is the most convenient place to put anything that you
3257want to have in the parser implementation file but which need not come
3258before the definition of @code{yyparse}. For example, the definitions
3259of @code{yylex} and @code{yyerror} often go here. Because C requires
3260functions to be declared before being used, you often need to declare
3261functions like @code{yylex} and @code{yyerror} in the Prologue, even
3262if you define them in the Epilogue. @xref{Interface, ,Parser
3263C-Language Interface}.
bfa74976
RS
3264
3265If the last section is empty, you may omit the @samp{%%} that separates it
3266from the grammar rules.
3267
f8e1c9e5
AD
3268The Bison parser itself contains many macros and identifiers whose names
3269start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3270any such names (except those documented in this manual) in the epilogue
3271of the grammar file.
bfa74976 3272
342b8b6e 3273@node Symbols
bfa74976
RS
3274@section Symbols, Terminal and Nonterminal
3275@cindex nonterminal symbol
3276@cindex terminal symbol
3277@cindex token type
3278@cindex symbol
3279
3280@dfn{Symbols} in Bison grammars represent the grammatical classifications
3281of the language.
3282
3283A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3284class of syntactically equivalent tokens. You use the symbol in grammar
3285rules to mean that a token in that class is allowed. The symbol is
3286represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3287function returns a token type code to indicate what kind of token has
3288been read. You don't need to know what the code value is; you can use
3289the symbol to stand for it.
bfa74976 3290
f8e1c9e5
AD
3291A @dfn{nonterminal symbol} stands for a class of syntactically
3292equivalent groupings. The symbol name is used in writing grammar rules.
3293By convention, it should be all lower case.
bfa74976 3294
82f3355e
JD
3295Symbol names can contain letters, underscores, periods, and non-initial
3296digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3297with POSIX Yacc. Periods and dashes make symbol names less convenient to
3298use with named references, which require brackets around such names
3299(@pxref{Named References}). Terminal symbols that contain periods or dashes
3300make little sense: since they are not valid symbols (in most programming
3301languages) they are not exported as token names.
bfa74976 3302
931c7513 3303There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3304
3305@itemize @bullet
3306@item
3307A @dfn{named token type} is written with an identifier, like an
c827f760 3308identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3309such name must be defined with a Bison declaration such as
3310@code{%token}. @xref{Token Decl, ,Token Type Names}.
3311
3312@item
3313@cindex character token
3314@cindex literal token
3315@cindex single-character literal
931c7513
RS
3316A @dfn{character token type} (or @dfn{literal character token}) is
3317written in the grammar using the same syntax used in C for character
3318constants; for example, @code{'+'} is a character token type. A
3319character token type doesn't need to be declared unless you need to
3320specify its semantic value data type (@pxref{Value Type, ,Data Types of
3321Semantic Values}), associativity, or precedence (@pxref{Precedence,
3322,Operator Precedence}).
bfa74976
RS
3323
3324By convention, a character token type is used only to represent a
3325token that consists of that particular character. Thus, the token
3326type @code{'+'} is used to represent the character @samp{+} as a
3327token. Nothing enforces this convention, but if you depart from it,
3328your program will confuse other readers.
3329
3330All the usual escape sequences used in character literals in C can be
3331used in Bison as well, but you must not use the null character as a
72d2299c
PE
3332character literal because its numeric code, zero, signifies
3333end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3334for @code{yylex}}). Also, unlike standard C, trigraphs have no
3335special meaning in Bison character literals, nor is backslash-newline
3336allowed.
931c7513
RS
3337
3338@item
3339@cindex string token
3340@cindex literal string token
9ecbd125 3341@cindex multicharacter literal
931c7513
RS
3342A @dfn{literal string token} is written like a C string constant; for
3343example, @code{"<="} is a literal string token. A literal string token
3344doesn't need to be declared unless you need to specify its semantic
14ded682 3345value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3346(@pxref{Precedence}).
3347
3348You can associate the literal string token with a symbolic name as an
3349alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3350Declarations}). If you don't do that, the lexical analyzer has to
3351retrieve the token number for the literal string token from the
3352@code{yytname} table (@pxref{Calling Convention}).
3353
c827f760 3354@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3355
3356By convention, a literal string token is used only to represent a token
3357that consists of that particular string. Thus, you should use the token
3358type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3359does not enforce this convention, but if you depart from it, people who
931c7513
RS
3360read your program will be confused.
3361
3362All the escape sequences used in string literals in C can be used in
92ac3705
PE
3363Bison as well, except that you must not use a null character within a
3364string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3365meaning in Bison string literals, nor is backslash-newline allowed. A
3366literal string token must contain two or more characters; for a token
3367containing just one character, use a character token (see above).
bfa74976
RS
3368@end itemize
3369
3370How you choose to write a terminal symbol has no effect on its
3371grammatical meaning. That depends only on where it appears in rules and
3372on when the parser function returns that symbol.
3373
72d2299c
PE
3374The value returned by @code{yylex} is always one of the terminal
3375symbols, except that a zero or negative value signifies end-of-input.
3376Whichever way you write the token type in the grammar rules, you write
3377it the same way in the definition of @code{yylex}. The numeric code
3378for a character token type is simply the positive numeric code of the
3379character, so @code{yylex} can use the identical value to generate the
3380requisite code, though you may need to convert it to @code{unsigned
3381char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3382Each named token type becomes a C macro in the parser implementation
3383file, so @code{yylex} can use the name to stand for the code. (This
3384is why periods don't make sense in terminal symbols.) @xref{Calling
3385Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3386
3387If @code{yylex} is defined in a separate file, you need to arrange for the
3388token-type macro definitions to be available there. Use the @samp{-d}
3389option when you run Bison, so that it will write these macro definitions
3390into a separate header file @file{@var{name}.tab.h} which you can include
3391in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3392
72d2299c 3393If you want to write a grammar that is portable to any Standard C
9d9b8b70 3394host, you must use only nonnull character tokens taken from the basic
c827f760 3395execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3396digits, the 52 lower- and upper-case English letters, and the
3397characters in the following C-language string:
3398
3399@example
3400"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3401@end example
3402
f8e1c9e5
AD
3403The @code{yylex} function and Bison must use a consistent character set
3404and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3405ASCII environment, but then compile and run the resulting
f8e1c9e5 3406program in an environment that uses an incompatible character set like
8a4281b9
JD
3407EBCDIC, the resulting program may not work because the tables
3408generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3409character tokens. It is standard practice for software distributions to
3410contain C source files that were generated by Bison in an
8a4281b9
JD
3411ASCII environment, so installers on platforms that are
3412incompatible with ASCII must rebuild those files before
f8e1c9e5 3413compiling them.
e966383b 3414
bfa74976
RS
3415The symbol @code{error} is a terminal symbol reserved for error recovery
3416(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3417In particular, @code{yylex} should never return this value. The default
3418value of the error token is 256, unless you explicitly assigned 256 to
3419one of your tokens with a @code{%token} declaration.
bfa74976 3420
342b8b6e 3421@node Rules
09add9c2
AD
3422@section Grammar Rules
3423
3424A Bison grammar is a list of rules.
3425
3426@menu
3427* Rules Syntax:: Syntax of the rules.
3428* Empty Rules:: Symbols that can match the empty string.
3429* Recursion:: Writing recursive rules.
3430@end menu
3431
3432@node Rules Syntax
3433@subsection Syntax of Grammar Rules
bfa74976
RS
3434@cindex rule syntax
3435@cindex grammar rule syntax
3436@cindex syntax of grammar rules
3437
3438A Bison grammar rule has the following general form:
3439
3440@example
5e9b6624 3441@var{result}: @var{components}@dots{};
bfa74976
RS
3442@end example
3443
3444@noindent
9ecbd125 3445where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3446and @var{components} are various terminal and nonterminal symbols that
13863333 3447are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3448
3449For example,
3450
3451@example
5e9b6624 3452exp: exp '+' exp;
bfa74976
RS
3453@end example
3454
3455@noindent
3456says that two groupings of type @code{exp}, with a @samp{+} token in between,
3457can be combined into a larger grouping of type @code{exp}.
3458
72d2299c
PE
3459White space in rules is significant only to separate symbols. You can add
3460extra white space as you wish.
bfa74976
RS
3461
3462Scattered among the components can be @var{actions} that determine
3463the semantics of the rule. An action looks like this:
3464
3465@example
3466@{@var{C statements}@}
3467@end example
3468
3469@noindent
287c78f6
PE
3470@cindex braced code
3471This is an example of @dfn{braced code}, that is, C code surrounded by
3472braces, much like a compound statement in C@. Braced code can contain
3473any sequence of C tokens, so long as its braces are balanced. Bison
3474does not check the braced code for correctness directly; it merely
ff7571c0
JD
3475copies the code to the parser implementation file, where the C
3476compiler can check it.
287c78f6
PE
3477
3478Within braced code, the balanced-brace count is not affected by braces
3479within comments, string literals, or character constants, but it is
3480affected by the C digraphs @samp{<%} and @samp{%>} that represent
3481braces. At the top level braced code must be terminated by @samp{@}}
3482and not by a digraph. Bison does not look for trigraphs, so if braced
3483code uses trigraphs you should ensure that they do not affect the
3484nesting of braces or the boundaries of comments, string literals, or
3485character constants.
3486
bfa74976
RS
3487Usually there is only one action and it follows the components.
3488@xref{Actions}.
3489
3490@findex |
3491Multiple rules for the same @var{result} can be written separately or can
3492be joined with the vertical-bar character @samp{|} as follows:
3493
bfa74976
RS
3494@example
3495@group
5e9b6624
AD
3496@var{result}:
3497 @var{rule1-components}@dots{}
3498| @var{rule2-components}@dots{}
3499@dots{}
3500;
bfa74976
RS
3501@end group
3502@end example
bfa74976
RS
3503
3504@noindent
3505They are still considered distinct rules even when joined in this way.
3506
09add9c2
AD
3507@node Empty Rules
3508@subsection Empty Rules
3509@cindex empty rule
3510@cindex rule, empty
3511@findex %empty
3512
3513A rule is said to be @dfn{empty} if its right-hand side (@var{components})
3514is empty. It means that @var{result} can match the empty string. For
3515example, here is how to define an optional semicolon:
3516
3517@example
3518semicolon.opt: | ";";
3519@end example
3520
3521@noindent
3522It is easy not to see an empty rule, especially when @code{|} is used. The
3523@code{%empty} directive allows to make explicit that a rule is empty on
3524purpose:
bfa74976
RS
3525
3526@example
3527@group
09add9c2
AD
3528semicolon.opt:
3529 %empty
3530| ";"
5e9b6624 3531;
bfa74976 3532@end group
09add9c2 3533@end example
bfa74976 3534
09add9c2
AD
3535Flagging a non-empty rule with @code{%empty} is an error. If run with
3536@option{-Wempty-rule}, @command{bison} will report empty rules without
3537@code{%empty}. Using @code{%empty} enables this warning, unless
3538@option{-Wno-empty-rule} was specified.
3539
3540The @code{%empty} directive is a Bison extension, it does not work with
3541Yacc. To remain compatible with POSIX Yacc, it is customary to write a
3542comment @samp{/* empty */} in each rule with no components:
3543
3544@example
bfa74976 3545@group
09add9c2
AD
3546semicolon.opt:
3547 /* empty */
3548| ";"
5e9b6624 3549;
bfa74976
RS
3550@end group
3551@end example
3552
bfa74976 3553
342b8b6e 3554@node Recursion
09add9c2 3555@subsection Recursive Rules
bfa74976 3556@cindex recursive rule
09add9c2 3557@cindex rule, recursive
bfa74976 3558
f8e1c9e5
AD
3559A rule is called @dfn{recursive} when its @var{result} nonterminal
3560appears also on its right hand side. Nearly all Bison grammars need to
3561use recursion, because that is the only way to define a sequence of any
3562number of a particular thing. Consider this recursive definition of a
9ecbd125 3563comma-separated sequence of one or more expressions:
bfa74976
RS
3564
3565@example
3566@group
5e9b6624
AD
3567expseq1:
3568 exp
3569| expseq1 ',' exp
3570;
bfa74976
RS
3571@end group
3572@end example
3573
3574@cindex left recursion
3575@cindex right recursion
3576@noindent
3577Since the recursive use of @code{expseq1} is the leftmost symbol in the
3578right hand side, we call this @dfn{left recursion}. By contrast, here
3579the same construct is defined using @dfn{right recursion}:
3580
3581@example
3582@group
5e9b6624
AD
3583expseq1:
3584 exp
3585| exp ',' expseq1
3586;
bfa74976
RS
3587@end group
3588@end example
3589
3590@noindent
ec3bc396
AD
3591Any kind of sequence can be defined using either left recursion or right
3592recursion, but you should always use left recursion, because it can
3593parse a sequence of any number of elements with bounded stack space.
3594Right recursion uses up space on the Bison stack in proportion to the
3595number of elements in the sequence, because all the elements must be
3596shifted onto the stack before the rule can be applied even once.
3597@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3598of this.
bfa74976
RS
3599
3600@cindex mutual recursion
3601@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3602rule does not appear directly on its right hand side, but does appear
3603in rules for other nonterminals which do appear on its right hand
13863333 3604side.
bfa74976
RS
3605
3606For example:
3607
3608@example
3609@group
5e9b6624
AD
3610expr:
3611 primary
3612| primary '+' primary
3613;
bfa74976
RS
3614@end group
3615
3616@group
5e9b6624
AD
3617primary:
3618 constant
3619| '(' expr ')'
3620;
bfa74976
RS
3621@end group
3622@end example
3623
3624@noindent
3625defines two mutually-recursive nonterminals, since each refers to the
3626other.
3627
342b8b6e 3628@node Semantics
bfa74976
RS
3629@section Defining Language Semantics
3630@cindex defining language semantics
13863333 3631@cindex language semantics, defining
bfa74976
RS
3632
3633The grammar rules for a language determine only the syntax. The semantics
3634are determined by the semantic values associated with various tokens and
3635groupings, and by the actions taken when various groupings are recognized.
3636
3637For example, the calculator calculates properly because the value
3638associated with each expression is the proper number; it adds properly
3639because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3640the numbers associated with @var{x} and @var{y}.
3641
3642@menu
3643* Value Type:: Specifying one data type for all semantic values.
3644* Multiple Types:: Specifying several alternative data types.
90b89dad 3645* Type Generation:: Generating the semantic value type.
e4d49586
AD
3646* Union Decl:: Declaring the set of all semantic value types.
3647* Structured Value Type:: Providing a structured semantic value type.
bfa74976
RS
3648* Actions:: An action is the semantic definition of a grammar rule.
3649* Action Types:: Specifying data types for actions to operate on.
3650* Mid-Rule Actions:: Most actions go at the end of a rule.
3651 This says when, why and how to use the exceptional
3652 action in the middle of a rule.
3653@end menu
3654
342b8b6e 3655@node Value Type
bfa74976
RS
3656@subsection Data Types of Semantic Values
3657@cindex semantic value type
3658@cindex value type, semantic
3659@cindex data types of semantic values
3660@cindex default data type
3661
3662In a simple program it may be sufficient to use the same data type for
3663the semantic values of all language constructs. This was true in the
8a4281b9 3664RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3665Notation Calculator}).
bfa74976 3666
ddc8ede1
PE
3667Bison normally uses the type @code{int} for semantic values if your
3668program uses the same data type for all language constructs. To
21e3a2b5
AD
3669specify some other type, define the @code{%define} variable
3670@code{api.value.type} like this:
3671
3672@example
435575cb 3673%define api.value.type @{double@}
21e3a2b5
AD
3674@end example
3675
3676@noindent
3677or
3678
3679@example
435575cb 3680%define api.value.type @{struct semantic_type@}
21e3a2b5
AD
3681@end example
3682
3683The value of @code{api.value.type} should be a type name that does not
3684contain parentheses or square brackets.
3685
3686Alternatively, instead of relying of Bison's @code{%define} support, you may
3687rely on the C/C++ preprocessor and define @code{YYSTYPE} as a macro, like
3688this:
bfa74976
RS
3689
3690@example
3691#define YYSTYPE double
3692@end example
3693
3694@noindent
342b8b6e 3695This macro definition must go in the prologue of the grammar file
21e3a2b5
AD
3696(@pxref{Grammar Outline, ,Outline of a Bison Grammar}). If compatibility
3697with POSIX Yacc matters to you, use this. Note however that Bison cannot
3698know @code{YYSTYPE}'s value, not even whether it is defined, so there are
3699services it cannot provide. Besides this works only for languages that have
3700a preprocessor.
bfa74976 3701
342b8b6e 3702@node Multiple Types
bfa74976
RS
3703@subsection More Than One Value Type
3704
3705In most programs, you will need different data types for different kinds
3706of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3707@code{int} or @code{long int}, while a string constant needs type
3708@code{char *}, and an identifier might need a pointer to an entry in the
3709symbol table.
bfa74976
RS
3710
3711To use more than one data type for semantic values in one parser, Bison
3712requires you to do two things:
3713
3714@itemize @bullet
3715@item
e4d49586
AD
3716Specify the entire collection of possible data types. There are several
3717options:
3718@itemize @bullet
90b89dad
AD
3719@item
3720let Bison compute the union type from the tags you assign to symbols;
3721
e4d49586
AD
3722@item
3723use the @code{%union} Bison declaration (@pxref{Union Decl, ,The Union
3724Declaration});
3725
3726@item
3727define the @code{%define} variable @code{api.value.type} to be a union type
3728whose members are the type tags (@pxref{Structured Value Type,, Providing a
3729Structured Semantic Value Type});
3730
3731@item
3732use a @code{typedef} or a @code{#define} to define @code{YYSTYPE} to be a
3733union type whose member names are the type tags.
3734@end itemize
bfa74976
RS
3735
3736@item
14ded682
AD
3737Choose one of those types for each symbol (terminal or nonterminal) for
3738which semantic values are used. This is done for tokens with the
3739@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3740and for groupings with the @code{%type} Bison declaration (@pxref{Type
3741Decl, ,Nonterminal Symbols}).
bfa74976
RS
3742@end itemize
3743
90b89dad
AD
3744@node Type Generation
3745@subsection Generating the Semantic Value Type
3746@cindex declaring value types
3747@cindex value types, declaring
3748@findex %define api.value.type union
3749
3750The special value @code{union} of the @code{%define} variable
3751@code{api.value.type} instructs Bison that the tags used with the
3752@code{%token} and @code{%type} directives are genuine types, not names of
3753members of @code{YYSTYPE}.
3754
3755For example:
3756
3757@example
3758%define api.value.type union
3759%token <int> INT "integer"
3760%token <int> 'n'
3761%type <int> expr
3762%token <char const *> ID "identifier"
3763@end example
3764
3765@noindent
3766generates an appropriate value of @code{YYSTYPE} to support each symbol
3767type. The name of the member of @code{YYSTYPE} for tokens than have a
3768declared identifier @var{id} (such as @code{INT} and @code{ID} above, but
3769not @code{'n'}) is @code{@var{id}}. The other symbols have unspecified
3770names on which you should not depend; instead, relying on C casts to access
3771the semantic value with the appropriate type:
3772
3773@example
3774/* For an "integer". */
3775yylval.INT = 42;
3776return INT;
3777
3778/* For an 'n', also declared as int. */
3779*((int*)&yylval) = 42;
3780return 'n';
3781
3782/* For an "identifier". */
3783yylval.ID = "42";
3784return ID;
3785@end example
3786
3787If the @code{%define} variable @code{api.token.prefix} is defined
3788(@pxref{%define Summary,,api.token.prefix}), then it is also used to prefix
3789the union member names. For instance, with @samp{%define api.token.prefix
630a0218 3790@{TOK_@}}:
90b89dad
AD
3791
3792@example
3793/* For an "integer". */
3794yylval.TOK_INT = 42;
3795return TOK_INT;
3796@end example
3797
1fa19a76
AD
3798This Bison extension cannot work if @code{%yacc} (or
3799@option{-y}/@option{--yacc}) is enabled, as POSIX mandates that Yacc
3800generate tokens as macros (e.g., @samp{#define INT 258}, or @samp{#define
3801TOK_INT 258}).
3802
90b89dad
AD
3803This feature is new, and user feedback would be most welcome.
3804
3805A similar feature is provided for C++ that in addition overcomes C++
3806limitations (that forbid non-trivial objects to be part of a @code{union}):
3807@samp{%define api.value.type variant}, see @ref{C++ Variants}.
3808
e4d49586
AD
3809@node Union Decl
3810@subsection The Union Declaration
3811@cindex declaring value types
3812@cindex value types, declaring
3813@findex %union
3814
3815The @code{%union} declaration specifies the entire collection of possible
3816data types for semantic values. The keyword @code{%union} is followed by
3817braced code containing the same thing that goes inside a @code{union} in C@.
3818
3819For example:
3820
3821@example
3822@group
3823%union @{
3824 double val;
3825 symrec *tptr;
3826@}
3827@end group
3828@end example
3829
3830@noindent
3831This says that the two alternative types are @code{double} and @code{symrec
3832*}. They are given names @code{val} and @code{tptr}; these names are used
3833in the @code{%token} and @code{%type} declarations to pick one of the types
3834for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
3835
3836As an extension to POSIX, a tag is allowed after the @code{%union}. For
3837example:
3838
3839@example
3840@group
3841%union value @{
3842 double val;
3843 symrec *tptr;
3844@}
3845@end group
3846@end example
3847
3848@noindent
3849specifies the union tag @code{value}, so the corresponding C type is
3850@code{union value}. If you do not specify a tag, it defaults to
3851@code{YYSTYPE}.
3852
3853As another extension to POSIX, you may specify multiple @code{%union}
3854declarations; their contents are concatenated. However, only the first
3855@code{%union} declaration can specify a tag.
3856
3857Note that, unlike making a @code{union} declaration in C, you need not write
3858a semicolon after the closing brace.
3859
3860@node Structured Value Type
3861@subsection Providing a Structured Semantic Value Type
3862@cindex declaring value types
3863@cindex value types, declaring
3864@findex %union
3865
3866Instead of @code{%union}, you can define and use your own union type
3867@code{YYSTYPE} if your grammar contains at least one @samp{<@var{type}>}
3868tag. For example, you can put the following into a header file
3869@file{parser.h}:
3870
3871@example
3872@group
3873union YYSTYPE @{
3874 double val;
3875 symrec *tptr;
3876@};
3877@end group
3878@end example
3879
3880@noindent
3881and then your grammar can use the following instead of @code{%union}:
3882
3883@example
3884@group
3885%@{
3886#include "parser.h"
3887%@}
3888%define api.value.type "union YYSTYPE"
3889%type <val> expr
3890%token <tptr> ID
3891@end group
3892@end example
3893
3894Actually, you may also provide a @code{struct} rather that a @code{union},
3895which may be handy if you want to track information for every symbol (such
3896as preceding comments).
3897
3898The type you provide may even be structured and include pointers, in which
3899case the type tags you provide may be composite, with @samp{.} and @samp{->}
3900operators.
3901
342b8b6e 3902@node Actions
bfa74976
RS
3903@subsection Actions
3904@cindex action
3905@vindex $$
3906@vindex $@var{n}
d013372c
AR
3907@vindex $@var{name}
3908@vindex $[@var{name}]
bfa74976
RS
3909
3910An action accompanies a syntactic rule and contains C code to be executed
3911each time an instance of that rule is recognized. The task of most actions
3912is to compute a semantic value for the grouping built by the rule from the
3913semantic values associated with tokens or smaller groupings.
3914
287c78f6
PE
3915An action consists of braced code containing C statements, and can be
3916placed at any position in the rule;
704a47c4
AD
3917it is executed at that position. Most rules have just one action at the
3918end of the rule, following all the components. Actions in the middle of
3919a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3920Actions, ,Actions in Mid-Rule}).
bfa74976 3921
ff7571c0
JD
3922The C code in an action can refer to the semantic values of the
3923components matched by the rule with the construct @code{$@var{n}},
3924which stands for the value of the @var{n}th component. The semantic
3925value for the grouping being constructed is @code{$$}. In addition,
3926the semantic values of symbols can be accessed with the named
3927references construct @code{$@var{name}} or @code{$[@var{name}]}.
3928Bison translates both of these constructs into expressions of the
3929appropriate type when it copies the actions into the parser
3930implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3931for the current grouping) is translated to a modifiable lvalue, so it
3932can be assigned to.
bfa74976
RS
3933
3934Here is a typical example:
3935
3936@example
3937@group
5e9b6624
AD
3938exp:
3939@dots{}
3940| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3941@end group
3942@end example
3943
d013372c
AR
3944Or, in terms of named references:
3945
3946@example
3947@group
5e9b6624
AD
3948exp[result]:
3949@dots{}
3950| exp[left] '+' exp[right] @{ $result = $left + $right; @}
d013372c
AR
3951@end group
3952@end example
3953
bfa74976
RS
3954@noindent
3955This rule constructs an @code{exp} from two smaller @code{exp} groupings
3956connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3957(@code{$left} and @code{$right})
bfa74976
RS
3958refer to the semantic values of the two component @code{exp} groupings,
3959which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3960The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3961semantic value of
bfa74976
RS
3962the addition-expression just recognized by the rule. If there were a
3963useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3964referred to as @code{$2}.
bfa74976 3965
a7b15ab9
JD
3966@xref{Named References}, for more information about using the named
3967references construct.
d013372c 3968
3ded9a63
AD
3969Note that the vertical-bar character @samp{|} is really a rule
3970separator, and actions are attached to a single rule. This is a
3971difference with tools like Flex, for which @samp{|} stands for either
3972``or'', or ``the same action as that of the next rule''. In the
3973following example, the action is triggered only when @samp{b} is found:
3974
3975@example
3ded9a63 3976a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3ded9a63
AD
3977@end example
3978
bfa74976
RS
3979@cindex default action
3980If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3981@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3982becomes the value of the whole rule. Of course, the default action is
3983valid only if the two data types match. There is no meaningful default
3984action for an empty rule; every empty rule must have an explicit action
3985unless the rule's value does not matter.
bfa74976
RS
3986
3987@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3988to tokens and groupings on the stack @emph{before} those that match the
3989current rule. This is a very risky practice, and to use it reliably
3990you must be certain of the context in which the rule is applied. Here
3991is a case in which you can use this reliably:
3992
3993@example
3994@group
5e9b6624
AD
3995foo:
3996 expr bar '+' expr @{ @dots{} @}
3997| expr bar '-' expr @{ @dots{} @}
3998;
bfa74976
RS
3999@end group
4000
4001@group
5e9b6624 4002bar:
6240346a 4003 %empty @{ previous_expr = $0; @}
5e9b6624 4004;
bfa74976
RS
4005@end group
4006@end example
4007
4008As long as @code{bar} is used only in the fashion shown here, @code{$0}
4009always refers to the @code{expr} which precedes @code{bar} in the
4010definition of @code{foo}.
4011
32c29292 4012@vindex yylval
742e4900 4013It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
4014any, from a semantic action.
4015This semantic value is stored in @code{yylval}.
4016@xref{Action Features, ,Special Features for Use in Actions}.
4017
342b8b6e 4018@node Action Types
bfa74976
RS
4019@subsection Data Types of Values in Actions
4020@cindex action data types
4021@cindex data types in actions
4022
4023If you have chosen a single data type for semantic values, the @code{$$}
4024and @code{$@var{n}} constructs always have that data type.
4025
4026If you have used @code{%union} to specify a variety of data types, then you
4027must declare a choice among these types for each terminal or nonterminal
4028symbol that can have a semantic value. Then each time you use @code{$$} or
4029@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 4030in the rule. In this example,
bfa74976
RS
4031
4032@example
4033@group
5e9b6624
AD
4034exp:
4035 @dots{}
4036| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
4037@end group
4038@end example
4039
4040@noindent
4041@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
4042have the data type declared for the nonterminal symbol @code{exp}. If
4043@code{$2} were used, it would have the data type declared for the
e0c471a9 4044terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
4045
4046Alternatively, you can specify the data type when you refer to the value,
4047by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
4048reference. For example, if you have defined types as shown here:
4049
4050@example
4051@group
4052%union @{
4053 int itype;
4054 double dtype;
4055@}
4056@end group
4057@end example
4058
4059@noindent
4060then you can write @code{$<itype>1} to refer to the first subunit of the
4061rule as an integer, or @code{$<dtype>1} to refer to it as a double.
4062
342b8b6e 4063@node Mid-Rule Actions
bfa74976
RS
4064@subsection Actions in Mid-Rule
4065@cindex actions in mid-rule
4066@cindex mid-rule actions
4067
4068Occasionally it is useful to put an action in the middle of a rule.
4069These actions are written just like usual end-of-rule actions, but they
4070are executed before the parser even recognizes the following components.
4071
be22823e
AD
4072@menu
4073* Using Mid-Rule Actions:: Putting an action in the middle of a rule.
4074* Mid-Rule Action Translation:: How mid-rule actions are actually processed.
4075* Mid-Rule Conflicts:: Mid-rule actions can cause conflicts.
4076@end menu
4077
4078@node Using Mid-Rule Actions
4079@subsubsection Using Mid-Rule Actions
4080
bfa74976
RS
4081A mid-rule action may refer to the components preceding it using
4082@code{$@var{n}}, but it may not refer to subsequent components because
4083it is run before they are parsed.
4084
4085The mid-rule action itself counts as one of the components of the rule.
4086This makes a difference when there is another action later in the same rule
4087(and usually there is another at the end): you have to count the actions
4088along with the symbols when working out which number @var{n} to use in
4089@code{$@var{n}}.
4090
4091The mid-rule action can also have a semantic value. The action can set
4092its value with an assignment to @code{$$}, and actions later in the rule
4093can refer to the value using @code{$@var{n}}. Since there is no symbol
4094to name the action, there is no way to declare a data type for the value
fdc6758b
MA
4095in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
4096specify a data type each time you refer to this value.
bfa74976
RS
4097
4098There is no way to set the value of the entire rule with a mid-rule
4099action, because assignments to @code{$$} do not have that effect. The
4100only way to set the value for the entire rule is with an ordinary action
4101at the end of the rule.
4102
4103Here is an example from a hypothetical compiler, handling a @code{let}
4104statement that looks like @samp{let (@var{variable}) @var{statement}} and
4105serves to create a variable named @var{variable} temporarily for the
4106duration of @var{statement}. To parse this construct, we must put
4107@var{variable} into the symbol table while @var{statement} is parsed, then
4108remove it afterward. Here is how it is done:
4109
4110@example
4111@group
5e9b6624 4112stmt:
c949ada3
AD
4113 "let" '(' var ')'
4114 @{
4115 $<context>$ = push_context ();
4116 declare_variable ($3);
4117 @}
5e9b6624 4118 stmt
c949ada3
AD
4119 @{
4120 $$ = $6;
4121 pop_context ($<context>5);
4122 @}
bfa74976
RS
4123@end group
4124@end example
4125
4126@noindent
4127As soon as @samp{let (@var{variable})} has been recognized, the first
4128action is run. It saves a copy of the current semantic context (the
4129list of accessible variables) as its semantic value, using alternative
4130@code{context} in the data-type union. Then it calls
4131@code{declare_variable} to add the new variable to that list. Once the
4132first action is finished, the embedded statement @code{stmt} can be
be22823e
AD
4133parsed.
4134
4135Note that the mid-rule action is component number 5, so the @samp{stmt} is
4136component number 6. Named references can be used to improve the readability
4137and maintainability (@pxref{Named References}):
4138
4139@example
4140@group
4141stmt:
4142 "let" '(' var ')'
4143 @{
4144 $<context>let = push_context ();
4145 declare_variable ($3);
4146 @}[let]
4147 stmt
4148 @{
4149 $$ = $6;
4150 pop_context ($<context>let);
4151 @}
4152@end group
4153@end example
bfa74976
RS
4154
4155After the embedded statement is parsed, its semantic value becomes the
4156value of the entire @code{let}-statement. Then the semantic value from the
4157earlier action is used to restore the prior list of variables. This
4158removes the temporary @code{let}-variable from the list so that it won't
4159appear to exist while the rest of the program is parsed.
4160
841a7737
JD
4161@findex %destructor
4162@cindex discarded symbols, mid-rule actions
4163@cindex error recovery, mid-rule actions
4164In the above example, if the parser initiates error recovery (@pxref{Error
4165Recovery}) while parsing the tokens in the embedded statement @code{stmt},
4166it might discard the previous semantic context @code{$<context>5} without
4167restoring it.
4168Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
4169Discarded Symbols}).
ec5479ce
JD
4170However, Bison currently provides no means to declare a destructor specific to
4171a particular mid-rule action's semantic value.
841a7737
JD
4172
4173One solution is to bury the mid-rule action inside a nonterminal symbol and to
4174declare a destructor for that symbol:
4175
4176@example
4177@group
4178%type <context> let
4179%destructor @{ pop_context ($$); @} let
09add9c2 4180@end group
841a7737
JD
4181
4182%%
4183
09add9c2 4184@group
5e9b6624
AD
4185stmt:
4186 let stmt
4187 @{
4188 $$ = $2;
be22823e 4189 pop_context ($let);
5e9b6624 4190 @};
09add9c2 4191@end group
841a7737 4192
09add9c2 4193@group
5e9b6624 4194let:
c949ada3 4195 "let" '(' var ')'
5e9b6624 4196 @{
be22823e 4197 $let = push_context ();
5e9b6624
AD
4198 declare_variable ($3);
4199 @};
841a7737
JD
4200
4201@end group
4202@end example
4203
4204@noindent
4205Note that the action is now at the end of its rule.
4206Any mid-rule action can be converted to an end-of-rule action in this way, and
4207this is what Bison actually does to implement mid-rule actions.
4208
be22823e
AD
4209@node Mid-Rule Action Translation
4210@subsubsection Mid-Rule Action Translation
4211@vindex $@@@var{n}
4212@vindex @@@var{n}
4213
4214As hinted earlier, mid-rule actions are actually transformed into regular
4215rules and actions. The various reports generated by Bison (textual,
4216graphical, etc., see @ref{Understanding, , Understanding Your Parser})
4217reveal this translation, best explained by means of an example. The
4218following rule:
4219
4220@example
4221exp: @{ a(); @} "b" @{ c(); @} @{ d(); @} "e" @{ f(); @};
4222@end example
4223
4224@noindent
4225is translated into:
4226
4227@example
6240346a
AD
4228$@@1: %empty @{ a(); @};
4229$@@2: %empty @{ c(); @};
4230$@@3: %empty @{ d(); @};
be22823e
AD
4231exp: $@@1 "b" $@@2 $@@3 "e" @{ f(); @};
4232@end example
4233
4234@noindent
4235with new nonterminal symbols @code{$@@@var{n}}, where @var{n} is a number.
4236
4237A mid-rule action is expected to generate a value if it uses @code{$$}, or
4238the (final) action uses @code{$@var{n}} where @var{n} denote the mid-rule
4239action. In that case its nonterminal is rather named @code{@@@var{n}}:
4240
4241@example
4242exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4243@end example
4244
4245@noindent
4246is translated into
4247
4248@example
6240346a
AD
4249@@1: %empty @{ a(); @};
4250@@2: %empty @{ $$ = c(); @};
4251$@@3: %empty @{ d(); @};
be22823e
AD
4252exp: @@1 "b" @@2 $@@3 "e" @{ f = $1; @}
4253@end example
4254
4255There are probably two errors in the above example: the first mid-rule
4256action does not generate a value (it does not use @code{$$} although the
4257final action uses it), and the value of the second one is not used (the
4258final action does not use @code{$3}). Bison reports these errors when the
4259@code{midrule-value} warnings are enabled (@pxref{Invocation, ,Invoking
4260Bison}):
4261
4262@example
4263$ bison -fcaret -Wmidrule-value mid.y
4264@group
4265mid.y:2.6-13: warning: unset value: $$
4266 exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4267 ^^^^^^^^
4268@end group
4269@group
4270mid.y:2.19-31: warning: unused value: $3
4271 exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4272 ^^^^^^^^^^^^^
4273@end group
4274@end example
4275
4276
4277@node Mid-Rule Conflicts
4278@subsubsection Conflicts due to Mid-Rule Actions
bfa74976
RS
4279Taking action before a rule is completely recognized often leads to
4280conflicts since the parser must commit to a parse in order to execute the
4281action. For example, the following two rules, without mid-rule actions,
4282can coexist in a working parser because the parser can shift the open-brace
4283token and look at what follows before deciding whether there is a
4284declaration or not:
4285
4286@example
4287@group
5e9b6624
AD
4288compound:
4289 '@{' declarations statements '@}'
4290| '@{' statements '@}'
4291;
bfa74976
RS
4292@end group
4293@end example
4294
4295@noindent
4296But when we add a mid-rule action as follows, the rules become nonfunctional:
4297
4298@example
4299@group
5e9b6624
AD
4300compound:
4301 @{ prepare_for_local_variables (); @}
4302 '@{' declarations statements '@}'
bfa74976
RS
4303@end group
4304@group
5e9b6624
AD
4305| '@{' statements '@}'
4306;
bfa74976
RS
4307@end group
4308@end example
4309
4310@noindent
4311Now the parser is forced to decide whether to run the mid-rule action
4312when it has read no farther than the open-brace. In other words, it
4313must commit to using one rule or the other, without sufficient
4314information to do it correctly. (The open-brace token is what is called
742e4900
JD
4315the @dfn{lookahead} token at this time, since the parser is still
4316deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
4317
4318You might think that you could correct the problem by putting identical
4319actions into the two rules, like this:
4320
4321@example
4322@group
5e9b6624
AD
4323compound:
4324 @{ prepare_for_local_variables (); @}
4325 '@{' declarations statements '@}'
4326| @{ prepare_for_local_variables (); @}
4327 '@{' statements '@}'
4328;
bfa74976
RS
4329@end group
4330@end example
4331
4332@noindent
4333But this does not help, because Bison does not realize that the two actions
4334are identical. (Bison never tries to understand the C code in an action.)
4335
4336If the grammar is such that a declaration can be distinguished from a
4337statement by the first token (which is true in C), then one solution which
4338does work is to put the action after the open-brace, like this:
4339
4340@example
4341@group
5e9b6624
AD
4342compound:
4343 '@{' @{ prepare_for_local_variables (); @}
4344 declarations statements '@}'
4345| '@{' statements '@}'
4346;
bfa74976
RS
4347@end group
4348@end example
4349
4350@noindent
4351Now the first token of the following declaration or statement,
4352which would in any case tell Bison which rule to use, can still do so.
4353
4354Another solution is to bury the action inside a nonterminal symbol which
4355serves as a subroutine:
4356
4357@example
4358@group
5e9b6624 4359subroutine:
6240346a 4360 %empty @{ prepare_for_local_variables (); @}
5e9b6624 4361;
bfa74976
RS
4362@end group
4363
4364@group
5e9b6624
AD
4365compound:
4366 subroutine '@{' declarations statements '@}'
4367| subroutine '@{' statements '@}'
4368;
bfa74976
RS
4369@end group
4370@end example
4371
4372@noindent
4373Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 4374deciding which rule for @code{compound} it will eventually use.
bfa74976 4375
be22823e 4376
303834cc 4377@node Tracking Locations
847bf1f5
AD
4378@section Tracking Locations
4379@cindex location
95923bd6
AD
4380@cindex textual location
4381@cindex location, textual
847bf1f5
AD
4382
4383Though grammar rules and semantic actions are enough to write a fully
72d2299c 4384functional parser, it can be useful to process some additional information,
3e259915
MA
4385especially symbol locations.
4386
704a47c4
AD
4387The way locations are handled is defined by providing a data type, and
4388actions to take when rules are matched.
847bf1f5
AD
4389
4390@menu
4391* Location Type:: Specifying a data type for locations.
4392* Actions and Locations:: Using locations in actions.
4393* Location Default Action:: Defining a general way to compute locations.
4394@end menu
4395
342b8b6e 4396@node Location Type
847bf1f5
AD
4397@subsection Data Type of Locations
4398@cindex data type of locations
4399@cindex default location type
4400
4401Defining a data type for locations is much simpler than for semantic values,
4402since all tokens and groupings always use the same type.
4403
50cce58e
PE
4404You can specify the type of locations by defining a macro called
4405@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 4406defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
4407When @code{YYLTYPE} is not defined, Bison uses a default structure type with
4408four members:
4409
4410@example
6273355b 4411typedef struct YYLTYPE
847bf1f5
AD
4412@{
4413 int first_line;
4414 int first_column;
4415 int last_line;
4416 int last_column;
6273355b 4417@} YYLTYPE;
847bf1f5
AD
4418@end example
4419
d59e456d
AD
4420When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
4421initializes all these fields to 1 for @code{yylloc}. To initialize
4422@code{yylloc} with a custom location type (or to chose a different
4423initialization), use the @code{%initial-action} directive. @xref{Initial
4424Action Decl, , Performing Actions before Parsing}.
cd48d21d 4425
342b8b6e 4426@node Actions and Locations
847bf1f5
AD
4427@subsection Actions and Locations
4428@cindex location actions
4429@cindex actions, location
4430@vindex @@$
4431@vindex @@@var{n}
d013372c
AR
4432@vindex @@@var{name}
4433@vindex @@[@var{name}]
847bf1f5
AD
4434
4435Actions are not only useful for defining language semantics, but also for
4436describing the behavior of the output parser with locations.
4437
4438The most obvious way for building locations of syntactic groupings is very
72d2299c 4439similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4440constructs can be used to access the locations of the elements being matched.
4441The location of the @var{n}th component of the right hand side is
4442@code{@@@var{n}}, while the location of the left hand side grouping is
4443@code{@@$}.
4444
d013372c
AR
4445In addition, the named references construct @code{@@@var{name}} and
4446@code{@@[@var{name}]} may also be used to address the symbol locations.
a7b15ab9
JD
4447@xref{Named References}, for more information about using the named
4448references construct.
d013372c 4449
3e259915 4450Here is a basic example using the default data type for locations:
847bf1f5
AD
4451
4452@example
4453@group
5e9b6624
AD
4454exp:
4455 @dots{}
4456| exp '/' exp
4457 @{
4458 @@$.first_column = @@1.first_column;
4459 @@$.first_line = @@1.first_line;
4460 @@$.last_column = @@3.last_column;
4461 @@$.last_line = @@3.last_line;
4462 if ($3)
4463 $$ = $1 / $3;
4464 else
4465 @{
4466 $$ = 1;
71846502 4467 fprintf (stderr, "%d.%d-%d.%d: division by zero",
5e9b6624
AD
4468 @@3.first_line, @@3.first_column,
4469 @@3.last_line, @@3.last_column);
4470 @}
4471 @}
847bf1f5
AD
4472@end group
4473@end example
4474
3e259915 4475As for semantic values, there is a default action for locations that is
72d2299c 4476run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4477beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4478last symbol.
3e259915 4479
72d2299c 4480With this default action, the location tracking can be fully automatic. The
3e259915
MA
4481example above simply rewrites this way:
4482
4483@example
4484@group
5e9b6624
AD
4485exp:
4486 @dots{}
4487| exp '/' exp
4488 @{
4489 if ($3)
4490 $$ = $1 / $3;
4491 else
4492 @{
4493 $$ = 1;
71846502 4494 fprintf (stderr, "%d.%d-%d.%d: division by zero",
5e9b6624
AD
4495 @@3.first_line, @@3.first_column,
4496 @@3.last_line, @@3.last_column);
4497 @}
4498 @}
3e259915
MA
4499@end group
4500@end example
847bf1f5 4501
32c29292 4502@vindex yylloc
742e4900 4503It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4504from a semantic action.
4505This location is stored in @code{yylloc}.
4506@xref{Action Features, ,Special Features for Use in Actions}.
4507
342b8b6e 4508@node Location Default Action
847bf1f5
AD
4509@subsection Default Action for Locations
4510@vindex YYLLOC_DEFAULT
8a4281b9 4511@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4512
72d2299c 4513Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4514locations are much more general than semantic values, there is room in
4515the output parser to redefine the default action to take for each
72d2299c 4516rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4517matched, before the associated action is run. It is also invoked
4518while processing a syntax error, to compute the error's location.
8a4281b9 4519Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4520parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4521of that ambiguity.
847bf1f5 4522
3e259915 4523Most of the time, this macro is general enough to suppress location
79282c6c 4524dedicated code from semantic actions.
847bf1f5 4525
72d2299c 4526The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4527the location of the grouping (the result of the computation). When a
766de5eb 4528rule is matched, the second parameter identifies locations of
96b93a3d 4529all right hand side elements of the rule being matched, and the third
8710fc41 4530parameter is the size of the rule's right hand side.
8a4281b9 4531When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4532right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4533When processing a syntax error, the second parameter identifies locations
4534of the symbols that were discarded during error processing, and the third
96b93a3d 4535parameter is the number of discarded symbols.
847bf1f5 4536
766de5eb 4537By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4538
c93f22fc
AD
4539@example
4540@group
4541# define YYLLOC_DEFAULT(Cur, Rhs, N) \
4542do \
4543 if (N) \
4544 @{ \
4545 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4546 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4547 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4548 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4549 @} \
4550 else \
4551 @{ \
4552 (Cur).first_line = (Cur).last_line = \
4553 YYRHSLOC(Rhs, 0).last_line; \
4554 (Cur).first_column = (Cur).last_column = \
4555 YYRHSLOC(Rhs, 0).last_column; \
4556 @} \
4557while (0)
4558@end group
4559@end example
676385e2 4560
aaaa2aae 4561@noindent
766de5eb
PE
4562where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4563in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4564just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4565
3e259915 4566When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4567
3e259915 4568@itemize @bullet
79282c6c 4569@item
72d2299c 4570All arguments are free of side-effects. However, only the first one (the
3e259915 4571result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4572
3e259915 4573@item
766de5eb
PE
4574For consistency with semantic actions, valid indexes within the
4575right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4576valid index, and it refers to the symbol just before the reduction.
4577During error processing @var{n} is always positive.
0ae99356
PE
4578
4579@item
4580Your macro should parenthesize its arguments, if need be, since the
4581actual arguments may not be surrounded by parentheses. Also, your
4582macro should expand to something that can be used as a single
4583statement when it is followed by a semicolon.
3e259915 4584@end itemize
847bf1f5 4585
378e917c 4586@node Named References
a7b15ab9 4587@section Named References
378e917c
JD
4588@cindex named references
4589
a40e77eb
JD
4590As described in the preceding sections, the traditional way to refer to any
4591semantic value or location is a @dfn{positional reference}, which takes the
4592form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4593such a reference is not very descriptive. Moreover, if you later decide to
4594insert or remove symbols in the right-hand side of a grammar rule, the need
4595to renumber such references can be tedious and error-prone.
4596
4597To avoid these issues, you can also refer to a semantic value or location
4598using a @dfn{named reference}. First of all, original symbol names may be
4599used as named references. For example:
378e917c
JD
4600
4601@example
4602@group
4603invocation: op '(' args ')'
4604 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4605@end group
4606@end example
4607
4608@noindent
a40e77eb 4609Positional and named references can be mixed arbitrarily. For example:
378e917c
JD
4610
4611@example
4612@group
4613invocation: op '(' args ')'
4614 @{ $$ = new_invocation ($op, $args, @@$); @}
4615@end group
4616@end example
4617
4618@noindent
4619However, sometimes regular symbol names are not sufficient due to
4620ambiguities:
4621
4622@example
4623@group
4624exp: exp '/' exp
4625 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4626
4627exp: exp '/' exp
4628 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4629
4630exp: exp '/' exp
4631 @{ $$ = $1 / $3; @} // No error.
4632@end group
4633@end example
4634
4635@noindent
4636When ambiguity occurs, explicitly declared names may be used for values and
4637locations. Explicit names are declared as a bracketed name after a symbol
4638appearance in rule definitions. For example:
4639@example
4640@group
4641exp[result]: exp[left] '/' exp[right]
4642 @{ $result = $left / $right; @}
4643@end group
4644@end example
4645
4646@noindent
a7b15ab9
JD
4647In order to access a semantic value generated by a mid-rule action, an
4648explicit name may also be declared by putting a bracketed name after the
4649closing brace of the mid-rule action code:
378e917c
JD
4650@example
4651@group
4652exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4653 @{ $res = $left + $right; @}
4654@end group
4655@end example
4656
4657@noindent
4658
4659In references, in order to specify names containing dots and dashes, an explicit
4660bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4661@example
4662@group
762caaf6 4663if-stmt: "if" '(' expr ')' "then" then.stmt ';'
378e917c
JD
4664 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4665@end group
4666@end example
4667
4668It often happens that named references are followed by a dot, dash or other
4669C punctuation marks and operators. By default, Bison will read
a7b15ab9
JD
4670@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4671@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4672value. In order to force Bison to recognize @samp{name.suffix} in its
4673entirety as the name of a semantic value, the bracketed syntax
4674@samp{$[name.suffix]} must be used.
4675
4676The named references feature is experimental. More user feedback will help
4677to stabilize it.
378e917c 4678
342b8b6e 4679@node Declarations
bfa74976
RS
4680@section Bison Declarations
4681@cindex declarations, Bison
4682@cindex Bison declarations
4683
4684The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4685used in formulating the grammar and the data types of semantic values.
4686@xref{Symbols}.
4687
4688All token type names (but not single-character literal tokens such as
4689@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4690declared if you need to specify which data type to use for the semantic
4691value (@pxref{Multiple Types, ,More Than One Value Type}).
4692
ff7571c0
JD
4693The first rule in the grammar file also specifies the start symbol, by
4694default. If you want some other symbol to be the start symbol, you
4695must declare it explicitly (@pxref{Language and Grammar, ,Languages
4696and Context-Free Grammars}).
bfa74976
RS
4697
4698@menu
b50d2359 4699* Require Decl:: Requiring a Bison version.
bfa74976
RS
4700* Token Decl:: Declaring terminal symbols.
4701* Precedence Decl:: Declaring terminals with precedence and associativity.
bfa74976 4702* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4703* Initial Action Decl:: Code run before parsing starts.
72f889cc 4704* Destructor Decl:: Declaring how symbols are freed.
93c150b6 4705* Printer Decl:: Declaring how symbol values are displayed.
d6328241 4706* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4707* Start Decl:: Specifying the start symbol.
4708* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4709* Push Decl:: Requesting a push parser.
bfa74976 4710* Decl Summary:: Table of all Bison declarations.
35c1e5f0 4711* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 4712* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4713@end menu
4714
b50d2359
AD
4715@node Require Decl
4716@subsection Require a Version of Bison
4717@cindex version requirement
4718@cindex requiring a version of Bison
4719@findex %require
4720
4721You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4722the requirement is not met, @command{bison} exits with an error (exit
4723status 63).
b50d2359
AD
4724
4725@example
4726%require "@var{version}"
4727@end example
4728
342b8b6e 4729@node Token Decl
bfa74976
RS
4730@subsection Token Type Names
4731@cindex declaring token type names
4732@cindex token type names, declaring
931c7513 4733@cindex declaring literal string tokens
bfa74976
RS
4734@findex %token
4735
4736The basic way to declare a token type name (terminal symbol) is as follows:
4737
4738@example
4739%token @var{name}
4740@end example
4741
4742Bison will convert this into a @code{#define} directive in
4743the parser, so that the function @code{yylex} (if it is in this file)
4744can use the name @var{name} to stand for this token type's code.
4745
d78f0ac9
AD
4746Alternatively, you can use @code{%left}, @code{%right},
4747@code{%precedence}, or
14ded682
AD
4748@code{%nonassoc} instead of @code{%token}, if you wish to specify
4749associativity and precedence. @xref{Precedence Decl, ,Operator
4750Precedence}.
bfa74976
RS
4751
4752You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4753a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4754following the token name:
bfa74976
RS
4755
4756@example
4757%token NUM 300
1452af69 4758%token XNUM 0x12d // a GNU extension
bfa74976
RS
4759@end example
4760
4761@noindent
4762It is generally best, however, to let Bison choose the numeric codes for
4763all token types. Bison will automatically select codes that don't conflict
e966383b 4764with each other or with normal characters.
bfa74976
RS
4765
4766In the event that the stack type is a union, you must augment the
4767@code{%token} or other token declaration to include the data type
704a47c4
AD
4768alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4769Than One Value Type}).
bfa74976
RS
4770
4771For example:
4772
4773@example
4774@group
4775%union @{ /* define stack type */
4776 double val;
4777 symrec *tptr;
4778@}
4779%token <val> NUM /* define token NUM and its type */
4780@end group
4781@end example
4782
931c7513
RS
4783You can associate a literal string token with a token type name by
4784writing the literal string at the end of a @code{%token}
4785declaration which declares the name. For example:
4786
4787@example
4788%token arrow "=>"
4789@end example
4790
4791@noindent
4792For example, a grammar for the C language might specify these names with
4793equivalent literal string tokens:
4794
4795@example
4796%token <operator> OR "||"
4797%token <operator> LE 134 "<="
4798%left OR "<="
4799@end example
4800
4801@noindent
4802Once you equate the literal string and the token name, you can use them
4803interchangeably in further declarations or the grammar rules. The
4804@code{yylex} function can use the token name or the literal string to
4805obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4806Syntax error messages passed to @code{yyerror} from the parser will reference
4807the literal string instead of the token name.
4808
4809The token numbered as 0 corresponds to end of file; the following line
4810allows for nicer error messages referring to ``end of file'' instead
4811of ``$end'':
4812
4813@example
4814%token END 0 "end of file"
4815@end example
931c7513 4816
342b8b6e 4817@node Precedence Decl
bfa74976
RS
4818@subsection Operator Precedence
4819@cindex precedence declarations
4820@cindex declaring operator precedence
4821@cindex operator precedence, declaring
4822
d78f0ac9
AD
4823Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4824@code{%precedence} declaration to
bfa74976
RS
4825declare a token and specify its precedence and associativity, all at
4826once. These are called @dfn{precedence declarations}.
704a47c4
AD
4827@xref{Precedence, ,Operator Precedence}, for general information on
4828operator precedence.
bfa74976 4829
ab7f29f8 4830The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4831@code{%token}: either
4832
4833@example
4834%left @var{symbols}@dots{}
4835@end example
4836
4837@noindent
4838or
4839
4840@example
4841%left <@var{type}> @var{symbols}@dots{}
4842@end example
4843
4844And indeed any of these declarations serves the purposes of @code{%token}.
4845But in addition, they specify the associativity and relative precedence for
4846all the @var{symbols}:
4847
4848@itemize @bullet
4849@item
4850The associativity of an operator @var{op} determines how repeated uses
4851of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4852@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4853grouping @var{y} with @var{z} first. @code{%left} specifies
4854left-associativity (grouping @var{x} with @var{y} first) and
4855@code{%right} specifies right-associativity (grouping @var{y} with
4856@var{z} first). @code{%nonassoc} specifies no associativity, which
4857means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4858considered a syntax error.
4859
d78f0ac9
AD
4860@code{%precedence} gives only precedence to the @var{symbols}, and
4861defines no associativity at all. Use this to define precedence only,
4862and leave any potential conflict due to associativity enabled.
4863
bfa74976
RS
4864@item
4865The precedence of an operator determines how it nests with other operators.
4866All the tokens declared in a single precedence declaration have equal
4867precedence and nest together according to their associativity.
4868When two tokens declared in different precedence declarations associate,
4869the one declared later has the higher precedence and is grouped first.
4870@end itemize
4871
ab7f29f8
JD
4872For backward compatibility, there is a confusing difference between the
4873argument lists of @code{%token} and precedence declarations.
4874Only a @code{%token} can associate a literal string with a token type name.
4875A precedence declaration always interprets a literal string as a reference to a
4876separate token.
4877For example:
4878
4879@example
4880%left OR "<=" // Does not declare an alias.
4881%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4882@end example
4883
342b8b6e 4884@node Type Decl
bfa74976
RS
4885@subsection Nonterminal Symbols
4886@cindex declaring value types, nonterminals
4887@cindex value types, nonterminals, declaring
4888@findex %type
4889
4890@noindent
4891When you use @code{%union} to specify multiple value types, you must
4892declare the value type of each nonterminal symbol for which values are
4893used. This is done with a @code{%type} declaration, like this:
4894
4895@example
4896%type <@var{type}> @var{nonterminal}@dots{}
4897@end example
4898
4899@noindent
704a47c4
AD
4900Here @var{nonterminal} is the name of a nonterminal symbol, and
4901@var{type} is the name given in the @code{%union} to the alternative
e4d49586 4902that you want (@pxref{Union Decl, ,The Union Declaration}). You
704a47c4
AD
4903can give any number of nonterminal symbols in the same @code{%type}
4904declaration, if they have the same value type. Use spaces to separate
4905the symbol names.
bfa74976 4906
931c7513
RS
4907You can also declare the value type of a terminal symbol. To do this,
4908use the same @code{<@var{type}>} construction in a declaration for the
4909terminal symbol. All kinds of token declarations allow
4910@code{<@var{type}>}.
4911
18d192f0
AD
4912@node Initial Action Decl
4913@subsection Performing Actions before Parsing
4914@findex %initial-action
4915
4916Sometimes your parser needs to perform some initializations before
4917parsing. The @code{%initial-action} directive allows for such arbitrary
4918code.
4919
4920@deffn {Directive} %initial-action @{ @var{code} @}
4921@findex %initial-action
287c78f6 4922Declare that the braced @var{code} must be invoked before parsing each time
cd735a8c
AD
4923@code{yyparse} is called. The @var{code} may use @code{$$} (or
4924@code{$<@var{tag}>$}) and @code{@@$} --- initial value and location of the
4925lookahead --- and the @code{%parse-param}.
18d192f0
AD
4926@end deffn
4927
451364ed
AD
4928For instance, if your locations use a file name, you may use
4929
4930@example
48b16bbc 4931%parse-param @{ char const *file_name @};
451364ed
AD
4932%initial-action
4933@{
4626a15d 4934 @@$.initialize (file_name);
451364ed
AD
4935@};
4936@end example
4937
18d192f0 4938
72f889cc
AD
4939@node Destructor Decl
4940@subsection Freeing Discarded Symbols
4941@cindex freeing discarded symbols
4942@findex %destructor
12e35840 4943@findex <*>
3ebecc24 4944@findex <>
a85284cf
AD
4945During error recovery (@pxref{Error Recovery}), symbols already pushed
4946on the stack and tokens coming from the rest of the file are discarded
4947until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4948or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4949symbols on the stack must be discarded. Even if the parser succeeds, it
4950must discard the start symbol.
258b75ca
PE
4951
4952When discarded symbols convey heap based information, this memory is
4953lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4954in traditional compilers, it is unacceptable for programs like shells or
4955protocol implementations that may parse and execute indefinitely.
258b75ca 4956
a85284cf
AD
4957The @code{%destructor} directive defines code that is called when a
4958symbol is automatically discarded.
72f889cc
AD
4959
4960@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4961@findex %destructor
287c78f6 4962Invoke the braced @var{code} whenever the parser discards one of the
4982f078
AD
4963@var{symbols}. Within @var{code}, @code{$$} (or @code{$<@var{tag}>$})
4964designates the semantic value associated with the discarded symbol, and
4965@code{@@$} designates its location. The additional parser parameters are
4966also available (@pxref{Parser Function, , The Parser Function
4967@code{yyparse}}).
ec5479ce 4968
b2a0b7ca
JD
4969When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4970per-symbol @code{%destructor}.
4971You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4972tag among @var{symbols}.
b2a0b7ca 4973In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4974grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4975per-symbol @code{%destructor}.
4976
12e35840 4977Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4978(These default forms are experimental.
4979More user feedback will help to determine whether they should become permanent
4980features.)
3ebecc24 4981You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4982exactly one @code{%destructor} declaration in your grammar file.
4983The parser will invoke the @var{code} associated with one of these whenever it
4984discards any user-defined grammar symbol that has no per-symbol and no per-type
4985@code{%destructor}.
4986The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4987symbol for which you have formally declared a semantic type tag (@code{%type}
4988counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4989The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4990symbol that has no declared semantic type tag.
72f889cc
AD
4991@end deffn
4992
b2a0b7ca 4993@noindent
12e35840 4994For example:
72f889cc 4995
c93f22fc 4996@example
ec5479ce 4997%union @{ char *string; @}
d1a07886
AD
4998%token <string> STRING1 STRING2
4999%type <string> string1 string2
b2a0b7ca
JD
5000%union @{ char character; @}
5001%token <character> CHR
5002%type <character> chr
12e35840
JD
5003%token TAGLESS
5004
b2a0b7ca 5005%destructor @{ @} <character>
12e35840
JD
5006%destructor @{ free ($$); @} <*>
5007%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 5008%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
c93f22fc 5009@end example
72f889cc
AD
5010
5011@noindent
b2a0b7ca
JD
5012guarantees that, when the parser discards any user-defined symbol that has a
5013semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 5014to @code{free} by default.
ec5479ce
JD
5015However, when the parser discards a @code{STRING1} or a @code{string1}, it also
5016prints its line number to @code{stdout}.
5017It performs only the second @code{%destructor} in this case, so it invokes
5018@code{free} only once.
12e35840
JD
5019Finally, the parser merely prints a message whenever it discards any symbol,
5020such as @code{TAGLESS}, that has no semantic type tag.
5021
5022A Bison-generated parser invokes the default @code{%destructor}s only for
5023user-defined as opposed to Bison-defined symbols.
5024For example, the parser will not invoke either kind of default
5025@code{%destructor} for the special Bison-defined symbols @code{$accept},
5026@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
5027none of which you can reference in your grammar.
5028It also will not invoke either for the @code{error} token (@pxref{Table of
5029Symbols, ,error}), which is always defined by Bison regardless of whether you
5030reference it in your grammar.
5031However, it may invoke one of them for the end token (token 0) if you
5032redefine it from @code{$end} to, for example, @code{END}:
3508ce36 5033
c93f22fc 5034@example
3508ce36 5035%token END 0
c93f22fc 5036@end example
3508ce36 5037
12e35840
JD
5038@cindex actions in mid-rule
5039@cindex mid-rule actions
5040Finally, Bison will never invoke a @code{%destructor} for an unreferenced
5041mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
a7b15ab9
JD
5042That is, Bison does not consider a mid-rule to have a semantic value if you
5043do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
5044(where @var{n} is the right-hand side symbol position of the mid-rule) in
5045any later action in that rule. However, if you do reference either, the
5046Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
5047it discards the mid-rule symbol.
12e35840 5048
3508ce36
JD
5049@ignore
5050@noindent
5051In the future, it may be possible to redefine the @code{error} token as a
5052nonterminal that captures the discarded symbols.
5053In that case, the parser will invoke the default destructor for it as well.
5054@end ignore
5055
e757bb10
AD
5056@sp 1
5057
5058@cindex discarded symbols
5059@dfn{Discarded symbols} are the following:
5060
5061@itemize
5062@item
5063stacked symbols popped during the first phase of error recovery,
5064@item
5065incoming terminals during the second phase of error recovery,
5066@item
742e4900 5067the current lookahead and the entire stack (except the current
9d9b8b70 5068right-hand side symbols) when the parser returns immediately, and
258b75ca 5069@item
d3e4409a
AD
5070the current lookahead and the entire stack (including the current right-hand
5071side symbols) when the C++ parser (@file{lalr1.cc}) catches an exception in
5072@code{parse},
5073@item
258b75ca 5074the start symbol, when the parser succeeds.
e757bb10
AD
5075@end itemize
5076
9d9b8b70
PE
5077The parser can @dfn{return immediately} because of an explicit call to
5078@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
5079exhaustion.
5080
29553547 5081Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
5082error via @code{YYERROR} are not discarded automatically. As a rule
5083of thumb, destructors are invoked only when user actions cannot manage
a85284cf 5084the memory.
e757bb10 5085
93c150b6
AD
5086@node Printer Decl
5087@subsection Printing Semantic Values
5088@cindex printing semantic values
5089@findex %printer
5090@findex <*>
5091@findex <>
5092When run-time traces are enabled (@pxref{Tracing, ,Tracing Your Parser}),
5093the parser reports its actions, such as reductions. When a symbol involved
5094in an action is reported, only its kind is displayed, as the parser cannot
5095know how semantic values should be formatted.
5096
5097The @code{%printer} directive defines code that is called when a symbol is
5098reported. Its syntax is the same as @code{%destructor} (@pxref{Destructor
5099Decl, , Freeing Discarded Symbols}).
5100
5101@deffn {Directive} %printer @{ @var{code} @} @var{symbols}
5102@findex %printer
5103@vindex yyoutput
5104@c This is the same text as for %destructor.
5105Invoke the braced @var{code} whenever the parser displays one of the
5106@var{symbols}. Within @var{code}, @code{yyoutput} denotes the output stream
4982f078
AD
5107(a @code{FILE*} in C, and an @code{std::ostream&} in C++), @code{$$} (or
5108@code{$<@var{tag}>$}) designates the semantic value associated with the
5109symbol, and @code{@@$} its location. The additional parser parameters are
5110also available (@pxref{Parser Function, , The Parser Function
5111@code{yyparse}}).
93c150b6
AD
5112
5113The @var{symbols} are defined as for @code{%destructor} (@pxref{Destructor
5114Decl, , Freeing Discarded Symbols}.): they can be per-type (e.g.,
5115@samp{<ival>}), per-symbol (e.g., @samp{exp}, @samp{NUM}, @samp{"float"}),
5116typed per-default (i.e., @samp{<*>}, or untyped per-default (i.e.,
5117@samp{<>}).
5118@end deffn
5119
5120@noindent
5121For example:
5122
5123@example
5124%union @{ char *string; @}
d1a07886
AD
5125%token <string> STRING1 STRING2
5126%type <string> string1 string2
93c150b6
AD
5127%union @{ char character; @}
5128%token <character> CHR
5129%type <character> chr
5130%token TAGLESS
5131
5132%printer @{ fprintf (yyoutput, "'%c'", $$); @} <character>
5133%printer @{ fprintf (yyoutput, "&%p", $$); @} <*>
5134%printer @{ fprintf (yyoutput, "\"%s\"", $$); @} STRING1 string1
5135%printer @{ fprintf (yyoutput, "<>"); @} <>
5136@end example
5137
5138@noindent
5139guarantees that, when the parser print any symbol that has a semantic type
5140tag other than @code{<character>}, it display the address of the semantic
5141value by default. However, when the parser displays a @code{STRING1} or a
5142@code{string1}, it formats it as a string in double quotes. It performs
5143only the second @code{%printer} in this case, so it prints only once.
5144Finally, the parser print @samp{<>} for any symbol, such as @code{TAGLESS},
5145that has no semantic type tag. See also
5146
5147
342b8b6e 5148@node Expect Decl
bfa74976
RS
5149@subsection Suppressing Conflict Warnings
5150@cindex suppressing conflict warnings
5151@cindex preventing warnings about conflicts
5152@cindex warnings, preventing
5153@cindex conflicts, suppressing warnings of
5154@findex %expect
d6328241 5155@findex %expect-rr
bfa74976
RS
5156
5157Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
5158(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
5159have harmless shift/reduce conflicts which are resolved in a predictable
5160way and would be difficult to eliminate. It is desirable to suppress
5161the warning about these conflicts unless the number of conflicts
5162changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
5163
5164The declaration looks like this:
5165
5166@example
5167%expect @var{n}
5168@end example
5169
035aa4a0
PE
5170Here @var{n} is a decimal integer. The declaration says there should
5171be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
5172Bison reports an error if the number of shift/reduce conflicts differs
5173from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 5174
eb45ef3b 5175For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 5176serious, and should be eliminated entirely. Bison will always report
8a4281b9 5177reduce/reduce conflicts for these parsers. With GLR
035aa4a0 5178parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 5179there would be no need to use GLR parsing. Therefore, it is
035aa4a0 5180also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 5181in GLR parsers, using the declaration:
d6328241
PH
5182
5183@example
5184%expect-rr @var{n}
5185@end example
5186
bfa74976
RS
5187In general, using @code{%expect} involves these steps:
5188
5189@itemize @bullet
5190@item
5191Compile your grammar without @code{%expect}. Use the @samp{-v} option
5192to get a verbose list of where the conflicts occur. Bison will also
5193print the number of conflicts.
5194
5195@item
5196Check each of the conflicts to make sure that Bison's default
5197resolution is what you really want. If not, rewrite the grammar and
5198go back to the beginning.
5199
5200@item
5201Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 5202number which Bison printed. With GLR parsers, add an
035aa4a0 5203@code{%expect-rr} declaration as well.
bfa74976
RS
5204@end itemize
5205
93d7dde9
JD
5206Now Bison will report an error if you introduce an unexpected conflict,
5207but will keep silent otherwise.
bfa74976 5208
342b8b6e 5209@node Start Decl
bfa74976
RS
5210@subsection The Start-Symbol
5211@cindex declaring the start symbol
5212@cindex start symbol, declaring
5213@cindex default start symbol
5214@findex %start
5215
5216Bison assumes by default that the start symbol for the grammar is the first
5217nonterminal specified in the grammar specification section. The programmer
5218may override this restriction with the @code{%start} declaration as follows:
5219
5220@example
5221%start @var{symbol}
5222@end example
5223
342b8b6e 5224@node Pure Decl
bfa74976
RS
5225@subsection A Pure (Reentrant) Parser
5226@cindex reentrant parser
5227@cindex pure parser
d9df47b6 5228@findex %define api.pure
bfa74976
RS
5229
5230A @dfn{reentrant} program is one which does not alter in the course of
5231execution; in other words, it consists entirely of @dfn{pure} (read-only)
5232code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
5233for example, a nonreentrant program may not be safe to call from a signal
5234handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
5235program must be called only within interlocks.
5236
70811b85 5237Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
5238suitable for most uses, and it permits compatibility with Yacc. (The
5239standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
5240statically allocated variables for communication with @code{yylex},
5241including @code{yylval} and @code{yylloc}.)
bfa74976 5242
70811b85 5243Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 5244declaration @samp{%define api.pure} says that you want the parser to be
70811b85 5245reentrant. It looks like this:
bfa74976
RS
5246
5247@example
1f1bd572 5248%define api.pure full
bfa74976
RS
5249@end example
5250
70811b85
RS
5251The result is that the communication variables @code{yylval} and
5252@code{yylloc} become local variables in @code{yyparse}, and a different
5253calling convention is used for the lexical analyzer function
5254@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
5255Parsers}, for the details of this. The variable @code{yynerrs}
5256becomes local in @code{yyparse} in pull mode but it becomes a member
a73aa764 5257of @code{yypstate} in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
5258Reporting Function @code{yyerror}}). The convention for calling
5259@code{yyparse} itself is unchanged.
5260
5261Whether the parser is pure has nothing to do with the grammar rules.
5262You can generate either a pure parser or a nonreentrant parser from any
5263valid grammar.
bfa74976 5264
9987d1b3
JD
5265@node Push Decl
5266@subsection A Push Parser
5267@cindex push parser
5268@cindex push parser
67212941 5269@findex %define api.push-pull
9987d1b3 5270
59da312b
JD
5271(The current push parsing interface is experimental and may evolve.
5272More user feedback will help to stabilize it.)
5273
f4101aa6
AD
5274A pull parser is called once and it takes control until all its input
5275is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
5276each time a new token is made available.
5277
f4101aa6 5278A push parser is typically useful when the parser is part of a
9987d1b3 5279main event loop in the client's application. This is typically
f4101aa6
AD
5280a requirement of a GUI, when the main event loop needs to be triggered
5281within a certain time period.
9987d1b3 5282
d782395d
JD
5283Normally, Bison generates a pull parser.
5284The following Bison declaration says that you want the parser to be a push
35c1e5f0 5285parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
5286
5287@example
cf499cff 5288%define api.push-pull push
9987d1b3
JD
5289@end example
5290
5291In almost all cases, you want to ensure that your push parser is also
5292a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 5293time you should create an impure push parser is to have backwards
9987d1b3
JD
5294compatibility with the impure Yacc pull mode interface. Unless you know
5295what you are doing, your declarations should look like this:
5296
5297@example
1f1bd572 5298%define api.pure full
cf499cff 5299%define api.push-pull push
9987d1b3
JD
5300@end example
5301
f4101aa6
AD
5302There is a major notable functional difference between the pure push parser
5303and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
5304many parser instances, of the same type of parser, in memory at the same time.
5305An impure push parser should only use one parser at a time.
5306
5307When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
5308the generated parser. @code{yypstate} is a structure that the generated
5309parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
5310function that will create a new parser instance. @code{yypstate_delete}
5311will free the resources associated with the corresponding parser instance.
f4101aa6 5312Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
5313token is available to provide the parser. A trivial example
5314of using a pure push parser would look like this:
5315
5316@example
5317int status;
5318yypstate *ps = yypstate_new ();
5319do @{
5320 status = yypush_parse (ps, yylex (), NULL);
5321@} while (status == YYPUSH_MORE);
5322yypstate_delete (ps);
5323@end example
5324
5325If the user decided to use an impure push parser, a few things about
f4101aa6 5326the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
5327a global variable instead of a variable in the @code{yypush_parse} function.
5328For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 5329changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
5330example would thus look like this:
5331
5332@example
5333extern int yychar;
5334int status;
5335yypstate *ps = yypstate_new ();
5336do @{
5337 yychar = yylex ();
5338 status = yypush_parse (ps);
5339@} while (status == YYPUSH_MORE);
5340yypstate_delete (ps);
5341@end example
5342
f4101aa6 5343That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
5344for use by the next invocation of the @code{yypush_parse} function.
5345
f4101aa6 5346Bison also supports both the push parser interface along with the pull parser
9987d1b3 5347interface in the same generated parser. In order to get this functionality,
cf499cff
JD
5348you should replace the @samp{%define api.push-pull push} declaration with the
5349@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 5350the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
5351and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
5352would be used. However, the user should note that it is implemented in the
d782395d
JD
5353generated parser by calling @code{yypull_parse}.
5354This makes the @code{yyparse} function that is generated with the
cf499cff 5355@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
5356@code{yyparse} function. If the user
5357calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
5358stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
5359and then @code{yypull_parse} the rest of the input stream. If you would like
5360to switch back and forth between between parsing styles, you would have to
5361write your own @code{yypull_parse} function that knows when to quit looking
5362for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
5363like this:
5364
5365@example
5366yypstate *ps = yypstate_new ();
5367yypull_parse (ps); /* Will call the lexer */
5368yypstate_delete (ps);
5369@end example
5370
67501061 5371Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
5372the generated parser with @samp{%define api.push-pull both} as it did for
5373@samp{%define api.push-pull push}.
9987d1b3 5374
342b8b6e 5375@node Decl Summary
bfa74976
RS
5376@subsection Bison Declaration Summary
5377@cindex Bison declaration summary
5378@cindex declaration summary
5379@cindex summary, Bison declaration
5380
d8988b2f 5381Here is a summary of the declarations used to define a grammar:
bfa74976 5382
18b519c0 5383@deffn {Directive} %union
bfa74976 5384Declare the collection of data types that semantic values may have
e4d49586 5385(@pxref{Union Decl, ,The Union Declaration}).
18b519c0 5386@end deffn
bfa74976 5387
18b519c0 5388@deffn {Directive} %token
bfa74976
RS
5389Declare a terminal symbol (token type name) with no precedence
5390or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 5391@end deffn
bfa74976 5392
18b519c0 5393@deffn {Directive} %right
bfa74976
RS
5394Declare a terminal symbol (token type name) that is right-associative
5395(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5396@end deffn
bfa74976 5397
18b519c0 5398@deffn {Directive} %left
bfa74976
RS
5399Declare a terminal symbol (token type name) that is left-associative
5400(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5401@end deffn
bfa74976 5402
18b519c0 5403@deffn {Directive} %nonassoc
bfa74976 5404Declare a terminal symbol (token type name) that is nonassociative
bfa74976 5405(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
5406Using it in a way that would be associative is a syntax error.
5407@end deffn
5408
91d2c560 5409@ifset defaultprec
39a06c25 5410@deffn {Directive} %default-prec
22fccf95 5411Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
5412(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5413@end deffn
91d2c560 5414@end ifset
bfa74976 5415
18b519c0 5416@deffn {Directive} %type
bfa74976
RS
5417Declare the type of semantic values for a nonterminal symbol
5418(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 5419@end deffn
bfa74976 5420
18b519c0 5421@deffn {Directive} %start
89cab50d
AD
5422Specify the grammar's start symbol (@pxref{Start Decl, ,The
5423Start-Symbol}).
18b519c0 5424@end deffn
bfa74976 5425
18b519c0 5426@deffn {Directive} %expect
bfa74976
RS
5427Declare the expected number of shift-reduce conflicts
5428(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
5429@end deffn
5430
bfa74976 5431
d8988b2f
AD
5432@sp 1
5433@noindent
5434In order to change the behavior of @command{bison}, use the following
5435directives:
5436
148d66d8 5437@deffn {Directive} %code @{@var{code}@}
e0c07222 5438@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 5439@findex %code
e0c07222
JD
5440Insert @var{code} verbatim into the output parser source at the
5441default location or at the location specified by @var{qualifier}.
5442@xref{%code Summary}.
148d66d8
JD
5443@end deffn
5444
18b519c0 5445@deffn {Directive} %debug
60aa04a2 5446Instrument the parser for traces. Obsoleted by @samp{%define
fa819509 5447parse.trace}.
ec3bc396 5448@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5449@end deffn
d8988b2f 5450
35c1e5f0
JD
5451@deffn {Directive} %define @var{variable}
5452@deffnx {Directive} %define @var{variable} @var{value}
5453@deffnx {Directive} %define @var{variable} "@var{value}"
5454Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5455@end deffn
5456
5457@deffn {Directive} %defines
5458Write a parser header file containing macro definitions for the token
5459type names defined in the grammar as well as a few other declarations.
5460If the parser implementation file is named @file{@var{name}.c} then
5461the parser header file is named @file{@var{name}.h}.
5462
5463For C parsers, the parser header file declares @code{YYSTYPE} unless
5464@code{YYSTYPE} is already defined as a macro or you have used a
5465@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5466you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5467Value Type}) with components that require other definitions, or if you
5468have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5469Type, ,Data Types of Semantic Values}), you need to arrange for these
5470definitions to be propagated to all modules, e.g., by putting them in
5471a prerequisite header that is included both by your parser and by any
5472other module that needs @code{YYSTYPE}.
5473
5474Unless your parser is pure, the parser header file declares
5475@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5476(Reentrant) Parser}.
5477
5478If you have also used locations, the parser header file declares
303834cc
JD
5479@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5480@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
35c1e5f0
JD
5481
5482This parser header file is normally essential if you wish to put the
5483definition of @code{yylex} in a separate source file, because
5484@code{yylex} typically needs to be able to refer to the
5485above-mentioned declarations and to the token type codes. @xref{Token
5486Values, ,Semantic Values of Tokens}.
5487
5488@findex %code requires
5489@findex %code provides
5490If you have declared @code{%code requires} or @code{%code provides}, the output
5491header also contains their code.
5492@xref{%code Summary}.
c9d5bcc9
AD
5493
5494@cindex Header guard
5495The generated header is protected against multiple inclusions with a C
5496preprocessor guard: @samp{YY_@var{PREFIX}_@var{FILE}_INCLUDED}, where
5497@var{PREFIX} and @var{FILE} are the prefix (@pxref{Multiple Parsers,
5498,Multiple Parsers in the Same Program}) and generated file name turned
5499uppercase, with each series of non alphanumerical characters converted to a
5500single underscore.
5501
5502For instance with @samp{%define api.prefix "calc"} and @samp{%defines
5503"lib/parse.h"}, the header will be guarded as follows.
5504@example
5505#ifndef YY_CALC_LIB_PARSE_H_INCLUDED
5506# define YY_CALC_LIB_PARSE_H_INCLUDED
5507...
5508#endif /* ! YY_CALC_LIB_PARSE_H_INCLUDED */
5509@end example
35c1e5f0
JD
5510@end deffn
5511
5512@deffn {Directive} %defines @var{defines-file}
fe65b144 5513Same as above, but save in the file @file{@var{defines-file}}.
35c1e5f0
JD
5514@end deffn
5515
5516@deffn {Directive} %destructor
5517Specify how the parser should reclaim the memory associated to
5518discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5519@end deffn
5520
5521@deffn {Directive} %file-prefix "@var{prefix}"
5522Specify a prefix to use for all Bison output file names. The names
5523are chosen as if the grammar file were named @file{@var{prefix}.y}.
5524@end deffn
5525
5526@deffn {Directive} %language "@var{language}"
5527Specify the programming language for the generated parser. Currently
5528supported languages include C, C++, and Java.
5529@var{language} is case-insensitive.
5530
35c1e5f0
JD
5531@end deffn
5532
5533@deffn {Directive} %locations
5534Generate the code processing the locations (@pxref{Action Features,
5535,Special Features for Use in Actions}). This mode is enabled as soon as
5536the grammar uses the special @samp{@@@var{n}} tokens, but if your
5537grammar does not use it, using @samp{%locations} allows for more
5538accurate syntax error messages.
5539@end deffn
5540
5541@deffn {Directive} %name-prefix "@var{prefix}"
5542Rename the external symbols used in the parser so that they start with
5543@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5544in C parsers
5545is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5546@code{yylval}, @code{yychar}, @code{yydebug}, and
5547(if locations are used) @code{yylloc}. If you use a push parser,
5548@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5549@code{yypstate_new} and @code{yypstate_delete} will
5550also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5551names become @code{c_parse}, @code{c_lex}, and so on.
5552For C++ parsers, see the @samp{%define api.namespace} documentation in this
5553section.
5554@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5555@end deffn
5556
5557@ifset defaultprec
5558@deffn {Directive} %no-default-prec
5559Do not assign a precedence to rules lacking an explicit @code{%prec}
5560modifier (@pxref{Contextual Precedence, ,Context-Dependent
5561Precedence}).
5562@end deffn
5563@end ifset
5564
5565@deffn {Directive} %no-lines
5566Don't generate any @code{#line} preprocessor commands in the parser
5567implementation file. Ordinarily Bison writes these commands in the
5568parser implementation file so that the C compiler and debuggers will
5569associate errors and object code with your source file (the grammar
5570file). This directive causes them to associate errors with the parser
5571implementation file, treating it as an independent source file in its
5572own right.
5573@end deffn
5574
5575@deffn {Directive} %output "@var{file}"
fe65b144 5576Generate the parser implementation in @file{@var{file}}.
35c1e5f0
JD
5577@end deffn
5578
5579@deffn {Directive} %pure-parser
5580Deprecated version of @samp{%define api.pure} (@pxref{%define
5581Summary,,api.pure}), for which Bison is more careful to warn about
5582unreasonable usage.
5583@end deffn
5584
5585@deffn {Directive} %require "@var{version}"
5586Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5587Require a Version of Bison}.
5588@end deffn
5589
5590@deffn {Directive} %skeleton "@var{file}"
5591Specify the skeleton to use.
5592
5593@c You probably don't need this option unless you are developing Bison.
5594@c You should use @code{%language} if you want to specify the skeleton for a
5595@c different language, because it is clearer and because it will always choose the
5596@c correct skeleton for non-deterministic or push parsers.
5597
5598If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5599file in the Bison installation directory.
5600If it does, @var{file} is an absolute file name or a file name relative to the
5601directory of the grammar file.
5602This is similar to how most shells resolve commands.
5603@end deffn
5604
5605@deffn {Directive} %token-table
5606Generate an array of token names in the parser implementation file.
5607The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5608the name of the token whose internal Bison token code number is
5609@var{i}. The first three elements of @code{yytname} correspond to the
5610predefined tokens @code{"$end"}, @code{"error"}, and
5611@code{"$undefined"}; after these come the symbols defined in the
5612grammar file.
5613
5614The name in the table includes all the characters needed to represent
5615the token in Bison. For single-character literals and literal
5616strings, this includes the surrounding quoting characters and any
5617escape sequences. For example, the Bison single-character literal
5618@code{'+'} corresponds to a three-character name, represented in C as
5619@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5620corresponds to a five-character name, represented in C as
5621@code{"\"\\\\/\""}.
5622
5623When you specify @code{%token-table}, Bison also generates macro
5624definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5625@code{YYNRULES}, and @code{YYNSTATES}:
5626
5627@table @code
5628@item YYNTOKENS
5629The highest token number, plus one.
5630@item YYNNTS
5631The number of nonterminal symbols.
5632@item YYNRULES
5633The number of grammar rules,
5634@item YYNSTATES
5635The number of parser states (@pxref{Parser States}).
5636@end table
5637@end deffn
5638
5639@deffn {Directive} %verbose
5640Write an extra output file containing verbose descriptions of the
5641parser states and what is done for each type of lookahead token in
5642that state. @xref{Understanding, , Understanding Your Parser}, for more
5643information.
5644@end deffn
5645
5646@deffn {Directive} %yacc
5647Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5648including its naming conventions. @xref{Bison Options}, for more.
5649@end deffn
5650
5651
5652@node %define Summary
5653@subsection %define Summary
51151d91
JD
5654
5655There are many features of Bison's behavior that can be controlled by
5656assigning the feature a single value. For historical reasons, some
5657such features are assigned values by dedicated directives, such as
5658@code{%start}, which assigns the start symbol. However, newer such
5659features are associated with variables, which are assigned by the
5660@code{%define} directive:
5661
c1d19e10 5662@deffn {Directive} %define @var{variable}
cf499cff 5663@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5664@deffnx {Directive} %define @var{variable} "@var{value}"
51151d91 5665Define @var{variable} to @var{value}.
9611cfa2 5666
51151d91
JD
5667@var{value} must be placed in quotation marks if it contains any
5668character other than a letter, underscore, period, or non-initial dash
5669or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5670to specifying @code{""}.
9611cfa2 5671
51151d91
JD
5672It is an error if a @var{variable} is defined by @code{%define}
5673multiple times, but see @ref{Bison Options,,-D
5674@var{name}[=@var{value}]}.
5675@end deffn
cf499cff 5676
51151d91
JD
5677The rest of this section summarizes variables and values that
5678@code{%define} accepts.
9611cfa2 5679
51151d91
JD
5680Some @var{variable}s take Boolean values. In this case, Bison will
5681complain if the variable definition does not meet one of the following
5682four conditions:
9611cfa2
JD
5683
5684@enumerate
cf499cff 5685@item @code{@var{value}} is @code{true}
9611cfa2 5686
cf499cff
JD
5687@item @code{@var{value}} is omitted (or @code{""} is specified).
5688This is equivalent to @code{true}.
9611cfa2 5689
cf499cff 5690@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5691
5692@item @var{variable} is never defined.
c6abeab1 5693In this case, Bison selects a default value.
9611cfa2 5694@end enumerate
148d66d8 5695
c6abeab1
JD
5696What @var{variable}s are accepted, as well as their meanings and default
5697values, depend on the selected target language and/or the parser
5698skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5699Summary,,%skeleton}).
5700Unaccepted @var{variable}s produce an error.
dbf3962c 5701Some of the accepted @var{variable}s are described below.
793fbca5 5702
6574576c 5703@c ================================================== api.namespace
eb0e86ac 5704@deffn Directive {%define api.namespace} @{@var{namespace}@}
67501061
AD
5705@itemize
5706@item Languages(s): C++
5707
f1b238df 5708@item Purpose: Specify the namespace for the parser class.
67501061
AD
5709For example, if you specify:
5710
c93f22fc 5711@example
eb0e86ac 5712%define api.namespace @{foo::bar@}
c93f22fc 5713@end example
67501061
AD
5714
5715Bison uses @code{foo::bar} verbatim in references such as:
5716
c93f22fc 5717@example
67501061 5718foo::bar::parser::semantic_type
c93f22fc 5719@end example
67501061
AD
5720
5721However, to open a namespace, Bison removes any leading @code{::} and then
5722splits on any remaining occurrences:
5723
c93f22fc 5724@example
67501061
AD
5725namespace foo @{ namespace bar @{
5726 class position;
5727 class location;
5728@} @}
c93f22fc 5729@end example
67501061
AD
5730
5731@item Accepted Values:
5732Any absolute or relative C++ namespace reference without a trailing
5733@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5734
5735@item Default Value:
5736The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5737This usage of @code{%name-prefix} is for backward compatibility and can
5738be confusing since @code{%name-prefix} also specifies the textual prefix
5739for the lexical analyzer function. Thus, if you specify
5740@code{%name-prefix}, it is best to also specify @samp{%define
5741api.namespace} so that @code{%name-prefix} @emph{only} affects the
5742lexical analyzer function. For example, if you specify:
5743
c93f22fc 5744@example
eb0e86ac 5745%define api.namespace @{foo@}
67501061 5746%name-prefix "bar::"
c93f22fc 5747@end example
67501061
AD
5748
5749The parser namespace is @code{foo} and @code{yylex} is referenced as
5750@code{bar::lex}.
5751@end itemize
dbf3962c
AD
5752@end deffn
5753@c api.namespace
67501061 5754
db8ab2be 5755@c ================================================== api.location.type
dbf3962c 5756@deffn {Directive} {%define api.location.type} @var{type}
db8ab2be
AD
5757
5758@itemize @bullet
7287be84 5759@item Language(s): C++, Java
db8ab2be
AD
5760
5761@item Purpose: Define the location type.
5762@xref{User Defined Location Type}.
5763
5764@item Accepted Values: String
5765
5766@item Default Value: none
5767
a256496a
AD
5768@item History:
5769Introduced in Bison 2.7 for C, C++ and Java. Introduced under the name
5770@code{location_type} for C++ in Bison 2.5 and for Java in Bison 2.4.
db8ab2be 5771@end itemize
dbf3962c 5772@end deffn
67501061 5773
4b3847c3 5774@c ================================================== api.prefix
dbf3962c 5775@deffn {Directive} {%define api.prefix} @var{prefix}
4b3847c3
AD
5776
5777@itemize @bullet
5778@item Language(s): All
5779
db8ab2be 5780@item Purpose: Rename exported symbols.
4b3847c3
AD
5781@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5782
5783@item Accepted Values: String
5784
5785@item Default Value: @code{yy}
e358222b
AD
5786
5787@item History: introduced in Bison 2.6
4b3847c3 5788@end itemize
dbf3962c 5789@end deffn
67501061
AD
5790
5791@c ================================================== api.pure
dbf3962c 5792@deffn Directive {%define api.pure}
d9df47b6
JD
5793
5794@itemize @bullet
5795@item Language(s): C
5796
5797@item Purpose: Request a pure (reentrant) parser program.
5798@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5799
1f1bd572
TR
5800@item Accepted Values: @code{true}, @code{false}, @code{full}
5801
5802The value may be omitted: this is equivalent to specifying @code{true}, as is
5803the case for Boolean values.
5804
5805When @code{%define api.pure full} is used, the parser is made reentrant. This
511dd971
AD
5806changes the signature for @code{yylex} (@pxref{Pure Calling}), and also that of
5807@code{yyerror} when the tracking of locations has been activated, as shown
5808below.
1f1bd572
TR
5809
5810The @code{true} value is very similar to the @code{full} value, the only
5811difference is in the signature of @code{yyerror} on Yacc parsers without
5812@code{%parse-param}, for historical reasons.
5813
5814I.e., if @samp{%locations %define api.pure} is passed then the prototypes for
5815@code{yyerror} are:
5816
5817@example
c949ada3
AD
5818void yyerror (char const *msg); // Yacc parsers.
5819void yyerror (YYLTYPE *locp, char const *msg); // GLR parsers.
1f1bd572
TR
5820@end example
5821
5822But if @samp{%locations %define api.pure %parse-param @{int *nastiness@}} is
5823used, then both parsers have the same signature:
5824
5825@example
5826void yyerror (YYLTYPE *llocp, int *nastiness, char const *msg);
5827@end example
5828
5829(@pxref{Error Reporting, ,The Error
5830Reporting Function @code{yyerror}})
d9df47b6 5831
cf499cff 5832@item Default Value: @code{false}
1f1bd572 5833
a256496a
AD
5834@item History:
5835the @code{full} value was introduced in Bison 2.7
d9df47b6 5836@end itemize
dbf3962c 5837@end deffn
71b00ed8 5838@c api.pure
d9df47b6 5839
67501061
AD
5840
5841
5842@c ================================================== api.push-pull
dbf3962c 5843@deffn Directive {%define api.push-pull} @var{kind}
793fbca5
JD
5844
5845@itemize @bullet
eb45ef3b 5846@item Language(s): C (deterministic parsers only)
793fbca5 5847
f1b238df 5848@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5849@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5850(The current push parsing interface is experimental and may evolve.
5851More user feedback will help to stabilize it.)
793fbca5 5852
cf499cff 5853@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5854
cf499cff 5855@item Default Value: @code{pull}
793fbca5 5856@end itemize
dbf3962c 5857@end deffn
67212941 5858@c api.push-pull
71b00ed8 5859
6b5a0de9
AD
5860
5861
e36ec1f4 5862@c ================================================== api.token.constructor
dbf3962c 5863@deffn Directive {%define api.token.constructor}
e36ec1f4
AD
5864
5865@itemize @bullet
5866@item Language(s):
5867C++
5868
5869@item Purpose:
5870When variant-based semantic values are enabled (@pxref{C++ Variants}),
5871request that symbols be handled as a whole (type, value, and possibly
5872location) in the scanner. @xref{Complete Symbols}, for details.
5873
5874@item Accepted Values:
5875Boolean.
5876
5877@item Default Value:
5878@code{false}
5879@item History:
5880introduced in Bison 2.8
5881@end itemize
dbf3962c 5882@end deffn
e36ec1f4
AD
5883@c api.token.constructor
5884
5885
2a6b66c5 5886@c ================================================== api.token.prefix
630a0218 5887@deffn Directive {%define api.token.prefix} @{@var{prefix}@}
4c6622c2
AD
5888
5889@itemize
5890@item Languages(s): all
5891
5892@item Purpose:
5893Add a prefix to the token names when generating their definition in the
5894target language. For instance
5895
5896@example
5897%token FILE for ERROR
630a0218 5898%define api.token.prefix @{TOK_@}
4c6622c2
AD
5899%%
5900start: FILE for ERROR;
5901@end example
5902
5903@noindent
5904generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5905and @code{TOK_ERROR} in the generated source files. In particular, the
5906scanner must use these prefixed token names, while the grammar itself
5907may still use the short names (as in the sample rule given above). The
5908generated informational files (@file{*.output}, @file{*.xml},
90b89dad
AD
5909@file{*.dot}) are not modified by this prefix.
5910
5911Bison also prefixes the generated member names of the semantic value union.
5912@xref{Type Generation,, Generating the Semantic Value Type}, for more
5913details.
5914
5915See @ref{Calc++ Parser} and @ref{Calc++ Scanner}, for a complete example.
4c6622c2
AD
5916
5917@item Accepted Values:
5918Any string. Should be a valid identifier prefix in the target language,
5919in other words, it should typically be an identifier itself (sequence of
5920letters, underscores, and ---not at the beginning--- digits).
5921
5922@item Default Value:
5923empty
2a6b66c5 5924@item History:
630a0218 5925introduced in Bison 3.0
4c6622c2 5926@end itemize
dbf3962c 5927@end deffn
2a6b66c5 5928@c api.token.prefix
4c6622c2
AD
5929
5930
ae8880de 5931@c ================================================== api.value.type
dbf3962c 5932@deffn Directive {%define api.value.type} @var{type}
ae8880de
AD
5933@itemize @bullet
5934@item Language(s):
6574576c 5935all
ae8880de
AD
5936
5937@item Purpose:
6574576c
AD
5938The type for semantic values.
5939
5940@item Accepted Values:
5941@table @asis
5942@item @code{""}
5943This grammar has no semantic value at all. This is not properly supported
5944yet.
5945@item @code{%union} (C, C++)
5946The type is defined thanks to the @code{%union} directive. You don't have
5947to define @code{api.value.type} in that case, using @code{%union} suffices.
e4d49586 5948@xref{Union Decl, ,The Union Declaration}.
6574576c
AD
5949For instance:
5950@example
5951%define api.value.type "%union"
5952%union
5953@{
5954 int ival;
5955 char *sval;
5956@}
5957%token <ival> INT "integer"
5958%token <sval> STR "string"
5959@end example
5960
5961@item @code{union} (C, C++)
5962The symbols are defined with type names, from which Bison will generate a
5963@code{union}. For instance:
5964@example
5965%define api.value.type "union"
5966%token <int> INT "integer"
5967%token <char *> STR "string"
5968@end example
5969This feature needs user feedback to stabilize. Note that most C++ objects
5970cannot be stored in a @code{union}.
5971
5972@item @code{variant} (C++)
5973This is similar to @code{union}, but special storage techniques are used to
5974allow any kind of C++ object to be used. For instance:
5975@example
5976%define api.value.type "variant"
5977%token <int> INT "integer"
5978%token <std::string> STR "string"
5979@end example
5980This feature needs user feedback to stabilize.
ae8880de
AD
5981@xref{C++ Variants}.
5982
6574576c
AD
5983@item any other identifier
5984Use this name as semantic value.
5985@example
5986%code requires
5987@{
5988 struct my_value
5989 @{
5990 enum
5991 @{
5992 is_int, is_str
5993 @} kind;
5994 union
5995 @{
5996 int ival;
5997 char *sval;
5998 @} u;
5999 @};
6000@}
6001%define api.value.type "struct my_value"
6002%token <u.ival> INT "integer"
6003%token <u.sval> STR "string"
6004@end example
6005@end table
6006
dbf3962c 6007@item Default Value:
6574576c
AD
6008@itemize @minus
6009@item
6010@code{%union} if @code{%union} is used, otherwise @dots{}
6011@item
6012@code{int} if type tags are used (i.e., @samp{%token <@var{type}>@dots{}} or
6013@samp{%token <@var{type}>@dots{}} is used), otherwise @dots{}
6014@item
6015@code{""}
6016@end itemize
6017
dbf3962c
AD
6018@item History:
6019introduced in Bison 2.8. Was introduced for Java only in 2.3b as
6020@code{stype}.
6021@end itemize
6022@end deffn
ae8880de
AD
6023@c api.value.type
6024
a256496a
AD
6025
6026@c ================================================== location_type
dbf3962c 6027@deffn Directive {%define location_type}
a256496a 6028Obsoleted by @code{api.location.type} since Bison 2.7.
dbf3962c 6029@end deffn
a256496a
AD
6030
6031
f3bc3386 6032@c ================================================== lr.default-reduction
6b5a0de9 6033
dbf3962c 6034@deffn Directive {%define lr.default-reduction} @var{when}
eb45ef3b
JD
6035
6036@itemize @bullet
6037@item Language(s): all
6038
fcf834f9 6039@item Purpose: Specify the kind of states that are permitted to
7fceb615
JD
6040contain default reductions. @xref{Default Reductions}. (The ability to
6041specify where default reductions should be used is experimental. More user
6042feedback will help to stabilize it.)
eb45ef3b 6043
f0ad1b2f 6044@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
eb45ef3b
JD
6045@item Default Value:
6046@itemize
cf499cff 6047@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
f0ad1b2f 6048@item @code{most} otherwise.
eb45ef3b 6049@end itemize
f3bc3386
AD
6050@item History:
6051introduced as @code{lr.default-reduction} in 2.5, renamed as
6052@code{lr.default-reduction} in 2.8.
eb45ef3b 6053@end itemize
dbf3962c 6054@end deffn
eb45ef3b 6055
f3bc3386 6056@c ============================================ lr.keep-unreachable-state
6b5a0de9 6057
dbf3962c 6058@deffn Directive {%define lr.keep-unreachable-state}
31984206
JD
6059
6060@itemize @bullet
6061@item Language(s): all
f1b238df 6062@item Purpose: Request that Bison allow unreachable parser states to
7fceb615 6063remain in the parser tables. @xref{Unreachable States}.
31984206 6064@item Accepted Values: Boolean
cf499cff 6065@item Default Value: @code{false}
a256496a 6066@item History:
f3bc3386 6067introduced as @code{lr.keep_unreachable_states} in 2.3b, renamed as
5807bb91 6068@code{lr.keep-unreachable-states} in 2.5, and as
f3bc3386 6069@code{lr.keep-unreachable-state} in 2.8.
dbf3962c
AD
6070@end itemize
6071@end deffn
f3bc3386 6072@c lr.keep-unreachable-state
31984206 6073
6b5a0de9
AD
6074@c ================================================== lr.type
6075
dbf3962c 6076@deffn Directive {%define lr.type} @var{type}
eb45ef3b
JD
6077
6078@itemize @bullet
6079@item Language(s): all
6080
f1b238df 6081@item Purpose: Specify the type of parser tables within the
7fceb615 6082LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
eb45ef3b
JD
6083More user feedback will help to stabilize it.)
6084
7fceb615 6085@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
eb45ef3b 6086
cf499cff 6087@item Default Value: @code{lalr}
eb45ef3b 6088@end itemize
dbf3962c 6089@end deffn
67501061
AD
6090
6091@c ================================================== namespace
eb0e86ac 6092@deffn Directive %define namespace @{@var{namespace}@}
67501061 6093Obsoleted by @code{api.namespace}
fa819509 6094@c namespace
dbf3962c 6095@end deffn
31b850d2
AD
6096
6097@c ================================================== parse.assert
dbf3962c 6098@deffn Directive {%define parse.assert}
0c90a1f5
AD
6099
6100@itemize
6101@item Languages(s): C++
6102
6103@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
6104In C++, when variants are used (@pxref{C++ Variants}), symbols must be
6105constructed and
0c90a1f5
AD
6106destroyed properly. This option checks these constraints.
6107
6108@item Accepted Values: Boolean
6109
6110@item Default Value: @code{false}
6111@end itemize
dbf3962c 6112@end deffn
0c90a1f5
AD
6113@c parse.assert
6114
31b850d2
AD
6115
6116@c ================================================== parse.error
dbf3962c 6117@deffn Directive {%define parse.error}
31b850d2
AD
6118@itemize
6119@item Languages(s):
fcf834f9 6120all
31b850d2
AD
6121@item Purpose:
6122Control the kind of error messages passed to the error reporting
6123function. @xref{Error Reporting, ,The Error Reporting Function
6124@code{yyerror}}.
6125@item Accepted Values:
6126@itemize
cf499cff 6127@item @code{simple}
31b850d2
AD
6128Error messages passed to @code{yyerror} are simply @w{@code{"syntax
6129error"}}.
cf499cff 6130@item @code{verbose}
7fceb615
JD
6131Error messages report the unexpected token, and possibly the expected ones.
6132However, this report can often be incorrect when LAC is not enabled
6133(@pxref{LAC}).
31b850d2
AD
6134@end itemize
6135
6136@item Default Value:
6137@code{simple}
6138@end itemize
dbf3962c 6139@end deffn
31b850d2
AD
6140@c parse.error
6141
6142
fcf834f9 6143@c ================================================== parse.lac
dbf3962c 6144@deffn Directive {%define parse.lac}
fcf834f9
JD
6145
6146@itemize
7fceb615 6147@item Languages(s): C (deterministic parsers only)
fcf834f9 6148
8a4281b9 6149@item Purpose: Enable LAC (lookahead correction) to improve
7fceb615 6150syntax error handling. @xref{LAC}.
fcf834f9 6151@item Accepted Values: @code{none}, @code{full}
fcf834f9
JD
6152@item Default Value: @code{none}
6153@end itemize
dbf3962c 6154@end deffn
fcf834f9
JD
6155@c parse.lac
6156
31b850d2 6157@c ================================================== parse.trace
dbf3962c 6158@deffn Directive {%define parse.trace}
fa819509
AD
6159
6160@itemize
60aa04a2 6161@item Languages(s): C, C++, Java
fa819509
AD
6162
6163@item Purpose: Require parser instrumentation for tracing.
60aa04a2
AD
6164@xref{Tracing, ,Tracing Your Parser}.
6165
6166In C/C++, define the macro @code{YYDEBUG} (or @code{@var{prefix}DEBUG} with
6167@samp{%define api.prefix @var{prefix}}), see @ref{Multiple Parsers,
6168,Multiple Parsers in the Same Program}) to 1 in the parser implementation
ff7571c0 6169file if it is not already defined, so that the debugging facilities are
60aa04a2 6170compiled.
793fbca5 6171
fa819509
AD
6172@item Accepted Values: Boolean
6173
6174@item Default Value: @code{false}
6175@end itemize
dbf3962c 6176@end deffn
fa819509 6177@c parse.trace
592d0b1e 6178
e0c07222
JD
6179@node %code Summary
6180@subsection %code Summary
e0c07222 6181@findex %code
e0c07222 6182@cindex Prologue
51151d91
JD
6183
6184The @code{%code} directive inserts code verbatim into the output
6185parser source at any of a predefined set of locations. It thus serves
6186as a flexible and user-friendly alternative to the traditional Yacc
6187prologue, @code{%@{@var{code}%@}}. This section summarizes the
6188functionality of @code{%code} for the various target languages
6189supported by Bison. For a detailed discussion of how to use
6190@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
6191is advantageous to do so, @pxref{Prologue Alternatives}.
6192
6193@deffn {Directive} %code @{@var{code}@}
6194This is the unqualified form of the @code{%code} directive. It
6195inserts @var{code} verbatim at a language-dependent default location
6196in the parser implementation.
6197
e0c07222 6198For C/C++, the default location is the parser implementation file
51151d91
JD
6199after the usual contents of the parser header file. Thus, the
6200unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
e0c07222
JD
6201
6202For Java, the default location is inside the parser class.
6203@end deffn
6204
6205@deffn {Directive} %code @var{qualifier} @{@var{code}@}
6206This is the qualified form of the @code{%code} directive.
51151d91
JD
6207@var{qualifier} identifies the purpose of @var{code} and thus the
6208location(s) where Bison should insert it. That is, if you need to
6209specify location-sensitive @var{code} that does not belong at the
6210default location selected by the unqualified @code{%code} form, use
6211this form instead.
6212@end deffn
6213
6214For any particular qualifier or for the unqualified form, if there are
6215multiple occurrences of the @code{%code} directive, Bison concatenates
6216the specified code in the order in which it appears in the grammar
6217file.
e0c07222 6218
51151d91
JD
6219Not all qualifiers are accepted for all target languages. Unaccepted
6220qualifiers produce an error. Some of the accepted qualifiers are:
e0c07222 6221
84072495 6222@table @code
e0c07222
JD
6223@item requires
6224@findex %code requires
6225
6226@itemize @bullet
6227@item Language(s): C, C++
6228
6229@item Purpose: This is the best place to write dependency code required for
21e3a2b5
AD
6230@code{YYSTYPE} and @code{YYLTYPE}. In other words, it's the best place to
6231define types referenced in @code{%union} directives. If you use
6232@code{#define} to override Bison's default @code{YYSTYPE} and @code{YYLTYPE}
6233definitions, then it is also the best place. However you should rather
6234@code{%define} @code{api.value.type} and @code{api.location.type}.
e0c07222
JD
6235
6236@item Location(s): The parser header file and the parser implementation file
6237before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
6238definitions.
6239@end itemize
6240
6241@item provides
6242@findex %code provides
6243
6244@itemize @bullet
6245@item Language(s): C, C++
6246
6247@item Purpose: This is the best place to write additional definitions and
6248declarations that should be provided to other modules.
6249
6250@item Location(s): The parser header file and the parser implementation
6251file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
6252token definitions.
6253@end itemize
6254
6255@item top
6256@findex %code top
6257
6258@itemize @bullet
6259@item Language(s): C, C++
6260
6261@item Purpose: The unqualified @code{%code} or @code{%code requires}
6262should usually be more appropriate than @code{%code top}. However,
6263occasionally it is necessary to insert code much nearer the top of the
6264parser implementation file. For example:
6265
c93f22fc 6266@example
e0c07222
JD
6267%code top @{
6268 #define _GNU_SOURCE
6269 #include <stdio.h>
6270@}
c93f22fc 6271@end example
e0c07222
JD
6272
6273@item Location(s): Near the top of the parser implementation file.
6274@end itemize
6275
6276@item imports
6277@findex %code imports
6278
6279@itemize @bullet
6280@item Language(s): Java
6281
6282@item Purpose: This is the best place to write Java import directives.
6283
6284@item Location(s): The parser Java file after any Java package directive and
6285before any class definitions.
6286@end itemize
84072495 6287@end table
e0c07222 6288
51151d91
JD
6289Though we say the insertion locations are language-dependent, they are
6290technically skeleton-dependent. Writers of non-standard skeletons
6291however should choose their locations consistently with the behavior
6292of the standard Bison skeletons.
e0c07222 6293
d8988b2f 6294
342b8b6e 6295@node Multiple Parsers
bfa74976
RS
6296@section Multiple Parsers in the Same Program
6297
6298Most programs that use Bison parse only one language and therefore contain
4b3847c3
AD
6299only one Bison parser. But what if you want to parse more than one language
6300with the same program? Then you need to avoid name conflicts between
6301different definitions of functions and variables such as @code{yyparse},
6302@code{yylval}. To use different parsers from the same compilation unit, you
6303also need to avoid conflicts on types and macros (e.g., @code{YYSTYPE})
6304exported in the generated header.
6305
6306The easy way to do this is to define the @code{%define} variable
e358222b
AD
6307@code{api.prefix}. With different @code{api.prefix}s it is guaranteed that
6308headers do not conflict when included together, and that compiled objects
6309can be linked together too. Specifying @samp{%define api.prefix
6310@var{prefix}} (or passing the option @samp{-Dapi.prefix=@var{prefix}}, see
6311@ref{Invocation, ,Invoking Bison}) renames the interface functions and
6312variables of the Bison parser to start with @var{prefix} instead of
6313@samp{yy}, and all the macros to start by @var{PREFIX} (i.e., @var{prefix}
6314upper-cased) instead of @samp{YY}.
4b3847c3
AD
6315
6316The renamed symbols include @code{yyparse}, @code{yylex}, @code{yyerror},
6317@code{yynerrs}, @code{yylval}, @code{yylloc}, @code{yychar} and
6318@code{yydebug}. If you use a push parser, @code{yypush_parse},
6319@code{yypull_parse}, @code{yypstate}, @code{yypstate_new} and
6320@code{yypstate_delete} will also be renamed. The renamed macros include
e358222b
AD
6321@code{YYSTYPE}, @code{YYLTYPE}, and @code{YYDEBUG}, which is treated
6322specifically --- more about this below.
4b3847c3
AD
6323
6324For example, if you use @samp{%define api.prefix c}, the names become
6325@code{cparse}, @code{clex}, @dots{}, @code{CSTYPE}, @code{CLTYPE}, and so
6326on.
6327
6328The @code{%define} variable @code{api.prefix} works in two different ways.
6329In the implementation file, it works by adding macro definitions to the
6330beginning of the parser implementation file, defining @code{yyparse} as
6331@code{@var{prefix}parse}, and so on:
6332
6333@example
6334#define YYSTYPE CTYPE
6335#define yyparse cparse
6336#define yylval clval
6337...
6338YYSTYPE yylval;
6339int yyparse (void);
6340@end example
6341
6342This effectively substitutes one name for the other in the entire parser
6343implementation file, thus the ``original'' names (@code{yylex},
6344@code{YYSTYPE}, @dots{}) are also usable in the parser implementation file.
6345
6346However, in the parser header file, the symbols are defined renamed, for
6347instance:
bfa74976 6348
4b3847c3
AD
6349@example
6350extern CSTYPE clval;
6351int cparse (void);
6352@end example
bfa74976 6353
e358222b
AD
6354The macro @code{YYDEBUG} is commonly used to enable the tracing support in
6355parsers. To comply with this tradition, when @code{api.prefix} is used,
6356@code{YYDEBUG} (not renamed) is used as a default value:
6357
6358@example
4d9bdbe3 6359/* Debug traces. */
e358222b
AD
6360#ifndef CDEBUG
6361# if defined YYDEBUG
6362# if YYDEBUG
6363# define CDEBUG 1
6364# else
6365# define CDEBUG 0
6366# endif
6367# else
6368# define CDEBUG 0
6369# endif
6370#endif
6371#if CDEBUG
6372extern int cdebug;
6373#endif
6374@end example
6375
6376@sp 2
6377
6378Prior to Bison 2.6, a feature similar to @code{api.prefix} was provided by
6379the obsolete directive @code{%name-prefix} (@pxref{Table of Symbols, ,Bison
6380Symbols}) and the option @code{--name-prefix} (@pxref{Bison Options}).
bfa74976 6381
342b8b6e 6382@node Interface
bfa74976
RS
6383@chapter Parser C-Language Interface
6384@cindex C-language interface
6385@cindex interface
6386
6387The Bison parser is actually a C function named @code{yyparse}. Here we
6388describe the interface conventions of @code{yyparse} and the other
6389functions that it needs to use.
6390
6391Keep in mind that the parser uses many C identifiers starting with
6392@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
6393identifier (aside from those in this manual) in an action or in epilogue
6394in the grammar file, you are likely to run into trouble.
bfa74976
RS
6395
6396@menu
f5f419de
DJ
6397* Parser Function:: How to call @code{yyparse} and what it returns.
6398* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
6399* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
6400* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
6401* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
6402* Lexical:: You must supply a function @code{yylex}
6403 which reads tokens.
6404* Error Reporting:: You must supply a function @code{yyerror}.
6405* Action Features:: Special features for use in actions.
6406* Internationalization:: How to let the parser speak in the user's
6407 native language.
bfa74976
RS
6408@end menu
6409
342b8b6e 6410@node Parser Function
bfa74976
RS
6411@section The Parser Function @code{yyparse}
6412@findex yyparse
6413
6414You call the function @code{yyparse} to cause parsing to occur. This
6415function reads tokens, executes actions, and ultimately returns when it
6416encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
6417write an action which directs @code{yyparse} to return immediately
6418without reading further.
bfa74976 6419
2a8d363a
AD
6420
6421@deftypefun int yyparse (void)
bfa74976
RS
6422The value returned by @code{yyparse} is 0 if parsing was successful (return
6423is due to end-of-input).
6424
b47dbebe
PE
6425The value is 1 if parsing failed because of invalid input, i.e., input
6426that contains a syntax error or that causes @code{YYABORT} to be
6427invoked.
6428
6429The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 6430@end deftypefun
bfa74976
RS
6431
6432In an action, you can cause immediate return from @code{yyparse} by using
6433these macros:
6434
2a8d363a 6435@defmac YYACCEPT
bfa74976
RS
6436@findex YYACCEPT
6437Return immediately with value 0 (to report success).
2a8d363a 6438@end defmac
bfa74976 6439
2a8d363a 6440@defmac YYABORT
bfa74976
RS
6441@findex YYABORT
6442Return immediately with value 1 (to report failure).
2a8d363a
AD
6443@end defmac
6444
6445If you use a reentrant parser, you can optionally pass additional
6446parameter information to it in a reentrant way. To do so, use the
6447declaration @code{%parse-param}:
6448
2055a44e 6449@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6450@findex %parse-param
2055a44e
AD
6451Declare that one or more
6452@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 6453The @var{argument-declaration} is used when declaring
feeb0eda
PE
6454functions or prototypes. The last identifier in
6455@var{argument-declaration} must be the argument name.
2a8d363a
AD
6456@end deffn
6457
6458Here's an example. Write this in the parser:
6459
6460@example
2055a44e 6461%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
6462@end example
6463
6464@noindent
6465Then call the parser like this:
6466
6467@example
6468@{
6469 int nastiness, randomness;
6470 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
6471 value = yyparse (&nastiness, &randomness);
6472 @dots{}
6473@}
6474@end example
6475
6476@noindent
6477In the grammar actions, use expressions like this to refer to the data:
6478
6479@example
6480exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
6481@end example
6482
1f1bd572
TR
6483@noindent
6484Using the following:
6485@example
6486%parse-param @{int *randomness@}
6487@end example
6488
6489Results in these signatures:
6490@example
6491void yyerror (int *randomness, const char *msg);
6492int yyparse (int *randomness);
6493@end example
6494
6495@noindent
6496Or, if both @code{%define api.pure full} (or just @code{%define api.pure})
6497and @code{%locations} are used:
6498
6499@example
6500void yyerror (YYLTYPE *llocp, int *randomness, const char *msg);
6501int yyparse (int *randomness);
6502@end example
6503
9987d1b3
JD
6504@node Push Parser Function
6505@section The Push Parser Function @code{yypush_parse}
6506@findex yypush_parse
6507
59da312b
JD
6508(The current push parsing interface is experimental and may evolve.
6509More user feedback will help to stabilize it.)
6510
f4101aa6 6511You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
6512function is available if either the @samp{%define api.push-pull push} or
6513@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6514@xref{Push Decl, ,A Push Parser}.
6515
a73aa764 6516@deftypefun int yypush_parse (yypstate *@var{yyps})
ad60e80f
AD
6517The value returned by @code{yypush_parse} is the same as for yyparse with
6518the following exception: it returns @code{YYPUSH_MORE} if more input is
6519required to finish parsing the grammar.
9987d1b3
JD
6520@end deftypefun
6521
6522@node Pull Parser Function
6523@section The Pull Parser Function @code{yypull_parse}
6524@findex yypull_parse
6525
59da312b
JD
6526(The current push parsing interface is experimental and may evolve.
6527More user feedback will help to stabilize it.)
6528
f4101aa6 6529You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 6530stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 6531declaration is used.
9987d1b3
JD
6532@xref{Push Decl, ,A Push Parser}.
6533
a73aa764 6534@deftypefun int yypull_parse (yypstate *@var{yyps})
9987d1b3
JD
6535The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
6536@end deftypefun
6537
6538@node Parser Create Function
6539@section The Parser Create Function @code{yystate_new}
6540@findex yypstate_new
6541
59da312b
JD
6542(The current push parsing interface is experimental and may evolve.
6543More user feedback will help to stabilize it.)
6544
f4101aa6 6545You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
6546This function is available if either the @samp{%define api.push-pull push} or
6547@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6548@xref{Push Decl, ,A Push Parser}.
6549
34a41a93 6550@deftypefun {yypstate*} yypstate_new (void)
f50bfcd6 6551The function will return a valid parser instance if there was memory available
333e670c
JD
6552or 0 if no memory was available.
6553In impure mode, it will also return 0 if a parser instance is currently
6554allocated.
9987d1b3
JD
6555@end deftypefun
6556
6557@node Parser Delete Function
6558@section The Parser Delete Function @code{yystate_delete}
6559@findex yypstate_delete
6560
59da312b
JD
6561(The current push parsing interface is experimental and may evolve.
6562More user feedback will help to stabilize it.)
6563
9987d1b3 6564You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
6565function is available if either the @samp{%define api.push-pull push} or
6566@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6567@xref{Push Decl, ,A Push Parser}.
6568
a73aa764 6569@deftypefun void yypstate_delete (yypstate *@var{yyps})
9987d1b3
JD
6570This function will reclaim the memory associated with a parser instance.
6571After this call, you should no longer attempt to use the parser instance.
6572@end deftypefun
bfa74976 6573
342b8b6e 6574@node Lexical
bfa74976
RS
6575@section The Lexical Analyzer Function @code{yylex}
6576@findex yylex
6577@cindex lexical analyzer
6578
6579The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
6580the input stream and returns them to the parser. Bison does not create
6581this function automatically; you must write it so that @code{yyparse} can
6582call it. The function is sometimes referred to as a lexical scanner.
6583
ff7571c0
JD
6584In simple programs, @code{yylex} is often defined at the end of the
6585Bison grammar file. If @code{yylex} is defined in a separate source
6586file, you need to arrange for the token-type macro definitions to be
6587available there. To do this, use the @samp{-d} option when you run
6588Bison, so that it will write these macro definitions into the separate
6589parser header file, @file{@var{name}.tab.h}, which you can include in
6590the other source files that need it. @xref{Invocation, ,Invoking
6591Bison}.
bfa74976
RS
6592
6593@menu
6594* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
6595* Token Values:: How @code{yylex} must return the semantic value
6596 of the token it has read.
6597* Token Locations:: How @code{yylex} must return the text location
6598 (line number, etc.) of the token, if the
6599 actions want that.
6600* Pure Calling:: How the calling convention differs in a pure parser
6601 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
6602@end menu
6603
342b8b6e 6604@node Calling Convention
bfa74976
RS
6605@subsection Calling Convention for @code{yylex}
6606
72d2299c
PE
6607The value that @code{yylex} returns must be the positive numeric code
6608for the type of token it has just found; a zero or negative value
6609signifies end-of-input.
bfa74976
RS
6610
6611When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
6612in the parser implementation file becomes a C macro whose definition
6613is the proper numeric code for that token type. So @code{yylex} can
6614use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
6615
6616When a token is referred to in the grammar rules by a character literal,
6617the numeric code for that character is also the code for the token type.
72d2299c
PE
6618So @code{yylex} can simply return that character code, possibly converted
6619to @code{unsigned char} to avoid sign-extension. The null character
6620must not be used this way, because its code is zero and that
bfa74976
RS
6621signifies end-of-input.
6622
6623Here is an example showing these things:
6624
6625@example
13863333
AD
6626int
6627yylex (void)
bfa74976
RS
6628@{
6629 @dots{}
72d2299c 6630 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
6631 return 0;
6632 @dots{}
6633 if (c == '+' || c == '-')
4c9b8f13 6634 return c; /* Assume token type for '+' is '+'. */
bfa74976 6635 @dots{}
72d2299c 6636 return INT; /* Return the type of the token. */
bfa74976
RS
6637 @dots{}
6638@}
6639@end example
6640
6641@noindent
6642This interface has been designed so that the output from the @code{lex}
6643utility can be used without change as the definition of @code{yylex}.
6644
931c7513
RS
6645If the grammar uses literal string tokens, there are two ways that
6646@code{yylex} can determine the token type codes for them:
6647
6648@itemize @bullet
6649@item
6650If the grammar defines symbolic token names as aliases for the
6651literal string tokens, @code{yylex} can use these symbolic names like
6652all others. In this case, the use of the literal string tokens in
6653the grammar file has no effect on @code{yylex}.
6654
6655@item
9ecbd125 6656@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6657table. The index of the token in the table is the token type's code.
9ecbd125 6658The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6659double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6660token's characters are escaped as necessary to be suitable as input
6661to Bison.
931c7513 6662
9e0876fb
PE
6663Here's code for looking up a multicharacter token in @code{yytname},
6664assuming that the characters of the token are stored in
6665@code{token_buffer}, and assuming that the token does not contain any
6666characters like @samp{"} that require escaping.
931c7513 6667
c93f22fc 6668@example
931c7513
RS
6669for (i = 0; i < YYNTOKENS; i++)
6670 @{
6671 if (yytname[i] != 0
6672 && yytname[i][0] == '"'
68449b3a
PE
6673 && ! strncmp (yytname[i] + 1, token_buffer,
6674 strlen (token_buffer))
931c7513
RS
6675 && yytname[i][strlen (token_buffer) + 1] == '"'
6676 && yytname[i][strlen (token_buffer) + 2] == 0)
6677 break;
6678 @}
c93f22fc 6679@end example
931c7513
RS
6680
6681The @code{yytname} table is generated only if you use the
8c9a50be 6682@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6683@end itemize
6684
342b8b6e 6685@node Token Values
bfa74976
RS
6686@subsection Semantic Values of Tokens
6687
6688@vindex yylval
9d9b8b70 6689In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6690be stored into the global variable @code{yylval}. When you are using
6691just one data type for semantic values, @code{yylval} has that type.
6692Thus, if the type is @code{int} (the default), you might write this in
6693@code{yylex}:
6694
6695@example
6696@group
6697 @dots{}
72d2299c
PE
6698 yylval = value; /* Put value onto Bison stack. */
6699 return INT; /* Return the type of the token. */
bfa74976
RS
6700 @dots{}
6701@end group
6702@end example
6703
6704When you are using multiple data types, @code{yylval}'s type is a union
704a47c4 6705made from the @code{%union} declaration (@pxref{Union Decl, ,The
e4d49586 6706Union Declaration}). So when you store a token's value, you
704a47c4
AD
6707must use the proper member of the union. If the @code{%union}
6708declaration looks like this:
bfa74976
RS
6709
6710@example
6711@group
6712%union @{
6713 int intval;
6714 double val;
6715 symrec *tptr;
6716@}
6717@end group
6718@end example
6719
6720@noindent
6721then the code in @code{yylex} might look like this:
6722
6723@example
6724@group
6725 @dots{}
72d2299c
PE
6726 yylval.intval = value; /* Put value onto Bison stack. */
6727 return INT; /* Return the type of the token. */
bfa74976
RS
6728 @dots{}
6729@end group
6730@end example
6731
95923bd6
AD
6732@node Token Locations
6733@subsection Textual Locations of Tokens
bfa74976
RS
6734
6735@vindex yylloc
303834cc
JD
6736If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6737in actions to keep track of the textual locations of tokens and groupings,
6738then you must provide this information in @code{yylex}. The function
6739@code{yyparse} expects to find the textual location of a token just parsed
6740in the global variable @code{yylloc}. So @code{yylex} must store the proper
6741data in that variable.
847bf1f5
AD
6742
6743By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6744initialize the members that are going to be used by the actions. The
6745four members are called @code{first_line}, @code{first_column},
6746@code{last_line} and @code{last_column}. Note that the use of this
6747feature makes the parser noticeably slower.
bfa74976
RS
6748
6749@tindex YYLTYPE
6750The data type of @code{yylloc} has the name @code{YYLTYPE}.
6751
342b8b6e 6752@node Pure Calling
c656404a 6753@subsection Calling Conventions for Pure Parsers
bfa74976 6754
1f1bd572 6755When you use the Bison declaration @code{%define api.pure full} to request a
e425e872
RS
6756pure, reentrant parser, the global communication variables @code{yylval}
6757and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6758Parser}.) In such parsers the two global variables are replaced by
6759pointers passed as arguments to @code{yylex}. You must declare them as
6760shown here, and pass the information back by storing it through those
6761pointers.
bfa74976
RS
6762
6763@example
13863333
AD
6764int
6765yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6766@{
6767 @dots{}
6768 *lvalp = value; /* Put value onto Bison stack. */
6769 return INT; /* Return the type of the token. */
6770 @dots{}
6771@}
6772@end example
6773
6774If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6775textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6776this case, omit the second argument; @code{yylex} will be called with
6777only one argument.
6778
2055a44e 6779If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6780@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6781Function}). To pass additional arguments to both @code{yylex} and
6782@code{yyparse}, use @code{%param}.
e425e872 6783
2055a44e 6784@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6785@findex %lex-param
2055a44e
AD
6786Specify that @var{argument-declaration} are additional @code{yylex} argument
6787declarations. You may pass one or more such declarations, which is
6788equivalent to repeating @code{%lex-param}.
6789@end deffn
6790
6791@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6792@findex %param
6793Specify that @var{argument-declaration} are additional
6794@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6795@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6796@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6797declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6798@end deffn
e425e872 6799
1f1bd572 6800@noindent
2a8d363a 6801For instance:
e425e872
RS
6802
6803@example
2055a44e
AD
6804%lex-param @{scanner_mode *mode@}
6805%parse-param @{parser_mode *mode@}
6806%param @{environment_type *env@}
e425e872
RS
6807@end example
6808
6809@noindent
18ad57b3 6810results in the following signatures:
e425e872
RS
6811
6812@example
2055a44e
AD
6813int yylex (scanner_mode *mode, environment_type *env);
6814int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6815@end example
6816
5807bb91 6817If @samp{%define api.pure full} is added:
c656404a
RS
6818
6819@example
2055a44e
AD
6820int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6821int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6822@end example
6823
2a8d363a 6824@noindent
5807bb91
AD
6825and finally, if both @samp{%define api.pure full} and @code{%locations} are
6826used:
c656404a 6827
2a8d363a 6828@example
2055a44e
AD
6829int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6830 scanner_mode *mode, environment_type *env);
6831int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6832@end example
931c7513 6833
342b8b6e 6834@node Error Reporting
bfa74976
RS
6835@section The Error Reporting Function @code{yyerror}
6836@cindex error reporting function
6837@findex yyerror
6838@cindex parse error
6839@cindex syntax error
6840
31b850d2 6841The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6842whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6843action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6844macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6845in Actions}).
bfa74976
RS
6846
6847The Bison parser expects to report the error by calling an error
6848reporting function named @code{yyerror}, which you must supply. It is
6849called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6850receives one argument. For a syntax error, the string is normally
6851@w{@code{"syntax error"}}.
bfa74976 6852
31b850d2 6853@findex %define parse.error
7fceb615
JD
6854If you invoke @samp{%define parse.error verbose} in the Bison declarations
6855section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6856Bison provides a more verbose and specific error message string instead of
6857just plain @w{@code{"syntax error"}}. However, that message sometimes
6858contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6859
1a059451
PE
6860The parser can detect one other kind of error: memory exhaustion. This
6861can happen when the input contains constructions that are very deeply
bfa74976 6862nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6863parser normally extends its stack automatically up to a very large limit. But
6864if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6865fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6866
6867In some cases diagnostics like @w{@code{"syntax error"}} are
6868translated automatically from English to some other language before
6869they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6870
6871The following definition suffices in simple programs:
6872
6873@example
6874@group
13863333 6875void
38a92d50 6876yyerror (char const *s)
bfa74976
RS
6877@{
6878@end group
6879@group
6880 fprintf (stderr, "%s\n", s);
6881@}
6882@end group
6883@end example
6884
6885After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6886error recovery if you have written suitable error recovery grammar rules
6887(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6888immediately return 1.
6889
93724f13 6890Obviously, in location tracking pure parsers, @code{yyerror} should have
1f1bd572
TR
6891an access to the current location. With @code{%define api.pure}, this is
6892indeed the case for the GLR parsers, but not for the Yacc parser, for
6893historical reasons, and this is the why @code{%define api.pure full} should be
6894prefered over @code{%define api.pure}.
2a8d363a 6895
1f1bd572
TR
6896When @code{%locations %define api.pure full} is used, @code{yyerror} has the
6897following signature:
2a8d363a
AD
6898
6899@example
1f1bd572 6900void yyerror (YYLTYPE *locp, char const *msg);
2a8d363a
AD
6901@end example
6902
1c0c3e95 6903@noindent
38a92d50
PE
6904The prototypes are only indications of how the code produced by Bison
6905uses @code{yyerror}. Bison-generated code always ignores the returned
6906value, so @code{yyerror} can return any type, including @code{void}.
6907Also, @code{yyerror} can be a variadic function; that is why the
6908message is always passed last.
6909
6910Traditionally @code{yyerror} returns an @code{int} that is always
6911ignored, but this is purely for historical reasons, and @code{void} is
6912preferable since it more accurately describes the return type for
6913@code{yyerror}.
93724f13 6914
bfa74976
RS
6915@vindex yynerrs
6916The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6917reported so far. Normally this variable is global; but if you
704a47c4
AD
6918request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6919then it is a local variable which only the actions can access.
bfa74976 6920
342b8b6e 6921@node Action Features
bfa74976
RS
6922@section Special Features for Use in Actions
6923@cindex summary, action features
6924@cindex action features summary
6925
6926Here is a table of Bison constructs, variables and macros that
6927are useful in actions.
6928
18b519c0 6929@deffn {Variable} $$
bfa74976
RS
6930Acts like a variable that contains the semantic value for the
6931grouping made by the current rule. @xref{Actions}.
18b519c0 6932@end deffn
bfa74976 6933
18b519c0 6934@deffn {Variable} $@var{n}
bfa74976
RS
6935Acts like a variable that contains the semantic value for the
6936@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6937@end deffn
bfa74976 6938
18b519c0 6939@deffn {Variable} $<@var{typealt}>$
bfa74976 6940Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6941specified by the @code{%union} declaration. @xref{Action Types, ,Data
6942Types of Values in Actions}.
18b519c0 6943@end deffn
bfa74976 6944
18b519c0 6945@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6946Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6947union specified by the @code{%union} declaration.
e0c471a9 6948@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6949@end deffn
bfa74976 6950
34a41a93 6951@deffn {Macro} YYABORT @code{;}
bfa74976
RS
6952Return immediately from @code{yyparse}, indicating failure.
6953@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6954@end deffn
bfa74976 6955
34a41a93 6956@deffn {Macro} YYACCEPT @code{;}
bfa74976
RS
6957Return immediately from @code{yyparse}, indicating success.
6958@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6959@end deffn
bfa74976 6960
34a41a93 6961@deffn {Macro} YYBACKUP (@var{token}, @var{value})@code{;}
bfa74976
RS
6962@findex YYBACKUP
6963Unshift a token. This macro is allowed only for rules that reduce
742e4900 6964a single value, and only when there is no lookahead token.
8a4281b9 6965It is also disallowed in GLR parsers.
742e4900 6966It installs a lookahead token with token type @var{token} and
bfa74976
RS
6967semantic value @var{value}; then it discards the value that was
6968going to be reduced by this rule.
6969
6970If the macro is used when it is not valid, such as when there is
742e4900 6971a lookahead token already, then it reports a syntax error with
bfa74976
RS
6972a message @samp{cannot back up} and performs ordinary error
6973recovery.
6974
6975In either case, the rest of the action is not executed.
18b519c0 6976@end deffn
bfa74976 6977
18b519c0 6978@deffn {Macro} YYEMPTY
742e4900 6979Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6980@end deffn
bfa74976 6981
32c29292 6982@deffn {Macro} YYEOF
742e4900 6983Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6984stream.
6985@end deffn
6986
34a41a93 6987@deffn {Macro} YYERROR @code{;}
bfa74976
RS
6988Cause an immediate syntax error. This statement initiates error
6989recovery just as if the parser itself had detected an error; however, it
6990does not call @code{yyerror}, and does not print any message. If you
6991want to print an error message, call @code{yyerror} explicitly before
6992the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6993@end deffn
bfa74976 6994
18b519c0 6995@deffn {Macro} YYRECOVERING
02103984
PE
6996@findex YYRECOVERING
6997The expression @code{YYRECOVERING ()} yields 1 when the parser
6998is recovering from a syntax error, and 0 otherwise.
bfa74976 6999@xref{Error Recovery}.
18b519c0 7000@end deffn
bfa74976 7001
18b519c0 7002@deffn {Variable} yychar
742e4900
JD
7003Variable containing either the lookahead token, or @code{YYEOF} when the
7004lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
7005has been performed so the next token is not yet known.
7006Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
7007Actions}).
742e4900 7008@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 7009@end deffn
bfa74976 7010
34a41a93 7011@deffn {Macro} yyclearin @code{;}
742e4900 7012Discard the current lookahead token. This is useful primarily in
32c29292
JD
7013error rules.
7014Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
7015Semantic Actions}).
7016@xref{Error Recovery}.
18b519c0 7017@end deffn
bfa74976 7018
34a41a93 7019@deffn {Macro} yyerrok @code{;}
bfa74976 7020Resume generating error messages immediately for subsequent syntax
13863333 7021errors. This is useful primarily in error rules.
bfa74976 7022@xref{Error Recovery}.
18b519c0 7023@end deffn
bfa74976 7024
32c29292 7025@deffn {Variable} yylloc
742e4900 7026Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
7027to @code{YYEMPTY} or @code{YYEOF}.
7028Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
7029Actions}).
7030@xref{Actions and Locations, ,Actions and Locations}.
7031@end deffn
7032
7033@deffn {Variable} yylval
742e4900 7034Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
7035not set to @code{YYEMPTY} or @code{YYEOF}.
7036Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
7037Actions}).
7038@xref{Actions, ,Actions}.
7039@end deffn
7040
18b519c0 7041@deffn {Value} @@$
303834cc
JD
7042Acts like a structure variable containing information on the textual
7043location of the grouping made by the current rule. @xref{Tracking
7044Locations}.
bfa74976 7045
847bf1f5
AD
7046@c Check if those paragraphs are still useful or not.
7047
7048@c @example
7049@c struct @{
7050@c int first_line, last_line;
7051@c int first_column, last_column;
7052@c @};
7053@c @end example
7054
7055@c Thus, to get the starting line number of the third component, you would
7056@c use @samp{@@3.first_line}.
bfa74976 7057
847bf1f5
AD
7058@c In order for the members of this structure to contain valid information,
7059@c you must make @code{yylex} supply this information about each token.
7060@c If you need only certain members, then @code{yylex} need only fill in
7061@c those members.
bfa74976 7062
847bf1f5 7063@c The use of this feature makes the parser noticeably slower.
18b519c0 7064@end deffn
847bf1f5 7065
18b519c0 7066@deffn {Value} @@@var{n}
847bf1f5 7067@findex @@@var{n}
303834cc
JD
7068Acts like a structure variable containing information on the textual
7069location of the @var{n}th component of the current rule. @xref{Tracking
7070Locations}.
18b519c0 7071@end deffn
bfa74976 7072
f7ab6a50
PE
7073@node Internationalization
7074@section Parser Internationalization
7075@cindex internationalization
7076@cindex i18n
7077@cindex NLS
7078@cindex gettext
7079@cindex bison-po
7080
7081A Bison-generated parser can print diagnostics, including error and
7082tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
7083also supports outputting diagnostics in the user's native language. To
7084make this work, the user should set the usual environment variables.
7085@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
7086For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 7087set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
7088encoding. The exact set of available locales depends on the user's
7089installation.
7090
7091The maintainer of a package that uses a Bison-generated parser enables
7092the internationalization of the parser's output through the following
8a4281b9
JD
7093steps. Here we assume a package that uses GNU Autoconf and
7094GNU Automake.
f7ab6a50
PE
7095
7096@enumerate
7097@item
30757c8c 7098@cindex bison-i18n.m4
8a4281b9 7099Into the directory containing the GNU Autoconf macros used
c949ada3 7100by the package ---often called @file{m4}--- copy the
f7ab6a50
PE
7101@file{bison-i18n.m4} file installed by Bison under
7102@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
7103For example:
7104
7105@example
7106cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
7107@end example
7108
7109@item
30757c8c
PE
7110@findex BISON_I18N
7111@vindex BISON_LOCALEDIR
7112@vindex YYENABLE_NLS
f7ab6a50
PE
7113In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
7114invocation, add an invocation of @code{BISON_I18N}. This macro is
7115defined in the file @file{bison-i18n.m4} that you copied earlier. It
7116causes @samp{configure} to find the value of the
30757c8c
PE
7117@code{BISON_LOCALEDIR} variable, and it defines the source-language
7118symbol @code{YYENABLE_NLS} to enable translations in the
7119Bison-generated parser.
f7ab6a50
PE
7120
7121@item
7122In the @code{main} function of your program, designate the directory
7123containing Bison's runtime message catalog, through a call to
7124@samp{bindtextdomain} with domain name @samp{bison-runtime}.
7125For example:
7126
7127@example
7128bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
7129@end example
7130
7131Typically this appears after any other call @code{bindtextdomain
7132(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
7133@samp{BISON_LOCALEDIR} to be defined as a string through the
7134@file{Makefile}.
7135
7136@item
7137In the @file{Makefile.am} that controls the compilation of the @code{main}
7138function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
7139either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
7140
7141@example
7142DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
7143@end example
7144
7145or:
7146
7147@example
7148AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
7149@end example
7150
7151@item
7152Finally, invoke the command @command{autoreconf} to generate the build
7153infrastructure.
7154@end enumerate
7155
bfa74976 7156
342b8b6e 7157@node Algorithm
13863333
AD
7158@chapter The Bison Parser Algorithm
7159@cindex Bison parser algorithm
bfa74976
RS
7160@cindex algorithm of parser
7161@cindex shifting
7162@cindex reduction
7163@cindex parser stack
7164@cindex stack, parser
7165
7166As Bison reads tokens, it pushes them onto a stack along with their
7167semantic values. The stack is called the @dfn{parser stack}. Pushing a
7168token is traditionally called @dfn{shifting}.
7169
7170For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
7171@samp{3} to come. The stack will have four elements, one for each token
7172that was shifted.
7173
7174But the stack does not always have an element for each token read. When
7175the last @var{n} tokens and groupings shifted match the components of a
7176grammar rule, they can be combined according to that rule. This is called
7177@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
7178single grouping whose symbol is the result (left hand side) of that rule.
7179Running the rule's action is part of the process of reduction, because this
7180is what computes the semantic value of the resulting grouping.
7181
7182For example, if the infix calculator's parser stack contains this:
7183
7184@example
71851 + 5 * 3
7186@end example
7187
7188@noindent
7189and the next input token is a newline character, then the last three
7190elements can be reduced to 15 via the rule:
7191
7192@example
7193expr: expr '*' expr;
7194@end example
7195
7196@noindent
7197Then the stack contains just these three elements:
7198
7199@example
72001 + 15
7201@end example
7202
7203@noindent
7204At this point, another reduction can be made, resulting in the single value
720516. Then the newline token can be shifted.
7206
7207The parser tries, by shifts and reductions, to reduce the entire input down
7208to a single grouping whose symbol is the grammar's start-symbol
7209(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
7210
7211This kind of parser is known in the literature as a bottom-up parser.
7212
7213@menu
742e4900 7214* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
7215* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
7216* Precedence:: Operator precedence works by resolving conflicts.
7217* Contextual Precedence:: When an operator's precedence depends on context.
7218* Parser States:: The parser is a finite-state-machine with stack.
7219* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 7220* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 7221* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 7222* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 7223* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
7224@end menu
7225
742e4900
JD
7226@node Lookahead
7227@section Lookahead Tokens
7228@cindex lookahead token
bfa74976
RS
7229
7230The Bison parser does @emph{not} always reduce immediately as soon as the
7231last @var{n} tokens and groupings match a rule. This is because such a
7232simple strategy is inadequate to handle most languages. Instead, when a
7233reduction is possible, the parser sometimes ``looks ahead'' at the next
7234token in order to decide what to do.
7235
7236When a token is read, it is not immediately shifted; first it becomes the
742e4900 7237@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 7238perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
7239the lookahead token remains off to the side. When no more reductions
7240should take place, the lookahead token is shifted onto the stack. This
bfa74976 7241does not mean that all possible reductions have been done; depending on the
742e4900 7242token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
7243application.
7244
742e4900 7245Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
7246expressions which contain binary addition operators and postfix unary
7247factorial operators (@samp{!}), and allow parentheses for grouping.
7248
7249@example
7250@group
5e9b6624
AD
7251expr:
7252 term '+' expr
7253| term
7254;
bfa74976
RS
7255@end group
7256
7257@group
5e9b6624
AD
7258term:
7259 '(' expr ')'
7260| term '!'
534cee7a 7261| "number"
5e9b6624 7262;
bfa74976
RS
7263@end group
7264@end example
7265
7266Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
7267should be done? If the following token is @samp{)}, then the first three
7268tokens must be reduced to form an @code{expr}. This is the only valid
7269course, because shifting the @samp{)} would produce a sequence of symbols
7270@w{@code{term ')'}}, and no rule allows this.
7271
7272If the following token is @samp{!}, then it must be shifted immediately so
7273that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
7274parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
7275@code{expr}. It would then be impossible to shift the @samp{!} because
7276doing so would produce on the stack the sequence of symbols @code{expr
7277'!'}. No rule allows that sequence.
7278
7279@vindex yychar
32c29292
JD
7280@vindex yylval
7281@vindex yylloc
742e4900 7282The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
7283Its semantic value and location, if any, are stored in the variables
7284@code{yylval} and @code{yylloc}.
bfa74976
RS
7285@xref{Action Features, ,Special Features for Use in Actions}.
7286
342b8b6e 7287@node Shift/Reduce
bfa74976
RS
7288@section Shift/Reduce Conflicts
7289@cindex conflicts
7290@cindex shift/reduce conflicts
7291@cindex dangling @code{else}
7292@cindex @code{else}, dangling
7293
7294Suppose we are parsing a language which has if-then and if-then-else
7295statements, with a pair of rules like this:
7296
7297@example
7298@group
7299if_stmt:
534cee7a
AD
7300 "if" expr "then" stmt
7301| "if" expr "then" stmt "else" stmt
5e9b6624 7302;
bfa74976
RS
7303@end group
7304@end example
7305
7306@noindent
534cee7a
AD
7307Here @code{"if"}, @code{"then"} and @code{"else"} are terminal symbols for
7308specific keyword tokens.
bfa74976 7309
534cee7a 7310When the @code{"else"} token is read and becomes the lookahead token, the
bfa74976
RS
7311contents of the stack (assuming the input is valid) are just right for
7312reduction by the first rule. But it is also legitimate to shift the
534cee7a 7313@code{"else"}, because that would lead to eventual reduction by the second
bfa74976
RS
7314rule.
7315
7316This situation, where either a shift or a reduction would be valid, is
7317called a @dfn{shift/reduce conflict}. Bison is designed to resolve
7318these conflicts by choosing to shift, unless otherwise directed by
7319operator precedence declarations. To see the reason for this, let's
7320contrast it with the other alternative.
7321
534cee7a 7322Since the parser prefers to shift the @code{"else"}, the result is to attach
bfa74976
RS
7323the else-clause to the innermost if-statement, making these two inputs
7324equivalent:
7325
7326@example
534cee7a 7327if x then if y then win; else lose;
bfa74976 7328
534cee7a 7329if x then do; if y then win; else lose; end;
bfa74976
RS
7330@end example
7331
7332But if the parser chose to reduce when possible rather than shift, the
7333result would be to attach the else-clause to the outermost if-statement,
7334making these two inputs equivalent:
7335
7336@example
534cee7a 7337if x then if y then win; else lose;
bfa74976 7338
534cee7a 7339if x then do; if y then win; end; else lose;
bfa74976
RS
7340@end example
7341
7342The conflict exists because the grammar as written is ambiguous: either
7343parsing of the simple nested if-statement is legitimate. The established
7344convention is that these ambiguities are resolved by attaching the
7345else-clause to the innermost if-statement; this is what Bison accomplishes
7346by choosing to shift rather than reduce. (It would ideally be cleaner to
7347write an unambiguous grammar, but that is very hard to do in this case.)
7348This particular ambiguity was first encountered in the specifications of
7349Algol 60 and is called the ``dangling @code{else}'' ambiguity.
7350
7351To avoid warnings from Bison about predictable, legitimate shift/reduce
c28cd5dc 7352conflicts, you can use the @code{%expect @var{n}} declaration.
93d7dde9
JD
7353There will be no warning as long as the number of shift/reduce conflicts
7354is exactly @var{n}, and Bison will report an error if there is a
7355different number.
c28cd5dc
AD
7356@xref{Expect Decl, ,Suppressing Conflict Warnings}. However, we don't
7357recommend the use of @code{%expect} (except @samp{%expect 0}!), as an equal
7358number of conflicts does not mean that they are the @emph{same}. When
7359possible, you should rather use precedence directives to @emph{fix} the
7360conflicts explicitly (@pxref{Non Operators,, Using Precedence For Non
7361Operators}).
bfa74976
RS
7362
7363The definition of @code{if_stmt} above is solely to blame for the
7364conflict, but the conflict does not actually appear without additional
ff7571c0
JD
7365rules. Here is a complete Bison grammar file that actually manifests
7366the conflict:
bfa74976
RS
7367
7368@example
bfa74976 7369%%
bfa74976 7370@group
5e9b6624
AD
7371stmt:
7372 expr
7373| if_stmt
7374;
bfa74976
RS
7375@end group
7376
7377@group
7378if_stmt:
534cee7a
AD
7379 "if" expr "then" stmt
7380| "if" expr "then" stmt "else" stmt
5e9b6624 7381;
bfa74976
RS
7382@end group
7383
5e9b6624 7384expr:
534cee7a 7385 "identifier"
5e9b6624 7386;
bfa74976
RS
7387@end example
7388
342b8b6e 7389@node Precedence
bfa74976
RS
7390@section Operator Precedence
7391@cindex operator precedence
7392@cindex precedence of operators
7393
7394Another situation where shift/reduce conflicts appear is in arithmetic
7395expressions. Here shifting is not always the preferred resolution; the
7396Bison declarations for operator precedence allow you to specify when to
7397shift and when to reduce.
7398
7399@menu
7400* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
7401* Using Precedence:: How to specify precedence and associativity.
7402* Precedence Only:: How to specify precedence only.
bfa74976
RS
7403* Precedence Examples:: How these features are used in the previous example.
7404* How Precedence:: How they work.
c28cd5dc 7405* Non Operators:: Using precedence for general conflicts.
bfa74976
RS
7406@end menu
7407
342b8b6e 7408@node Why Precedence
bfa74976
RS
7409@subsection When Precedence is Needed
7410
7411Consider the following ambiguous grammar fragment (ambiguous because the
7412input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
7413
7414@example
7415@group
5e9b6624
AD
7416expr:
7417 expr '-' expr
7418| expr '*' expr
7419| expr '<' expr
7420| '(' expr ')'
7421@dots{}
7422;
bfa74976
RS
7423@end group
7424@end example
7425
7426@noindent
7427Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
7428should it reduce them via the rule for the subtraction operator? It
7429depends on the next token. Of course, if the next token is @samp{)}, we
7430must reduce; shifting is invalid because no single rule can reduce the
7431token sequence @w{@samp{- 2 )}} or anything starting with that. But if
7432the next token is @samp{*} or @samp{<}, we have a choice: either
7433shifting or reduction would allow the parse to complete, but with
7434different results.
7435
7436To decide which one Bison should do, we must consider the results. If
7437the next operator token @var{op} is shifted, then it must be reduced
7438first in order to permit another opportunity to reduce the difference.
7439The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
7440hand, if the subtraction is reduced before shifting @var{op}, the result
7441is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
7442reduce should depend on the relative precedence of the operators
7443@samp{-} and @var{op}: @samp{*} should be shifted first, but not
7444@samp{<}.
bfa74976
RS
7445
7446@cindex associativity
7447What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
7448@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
7449operators we prefer the former, which is called @dfn{left association}.
7450The latter alternative, @dfn{right association}, is desirable for
7451assignment operators. The choice of left or right association is a
7452matter of whether the parser chooses to shift or reduce when the stack
742e4900 7453contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 7454makes right-associativity.
bfa74976 7455
342b8b6e 7456@node Using Precedence
bfa74976
RS
7457@subsection Specifying Operator Precedence
7458@findex %left
bfa74976 7459@findex %nonassoc
d78f0ac9
AD
7460@findex %precedence
7461@findex %right
bfa74976
RS
7462
7463Bison allows you to specify these choices with the operator precedence
7464declarations @code{%left} and @code{%right}. Each such declaration
7465contains a list of tokens, which are operators whose precedence and
7466associativity is being declared. The @code{%left} declaration makes all
7467those operators left-associative and the @code{%right} declaration makes
7468them right-associative. A third alternative is @code{%nonassoc}, which
7469declares that it is a syntax error to find the same operator twice ``in a
7470row''.
d78f0ac9
AD
7471The last alternative, @code{%precedence}, allows to define only
7472precedence and no associativity at all. As a result, any
7473associativity-related conflict that remains will be reported as an
7474compile-time error. The directive @code{%nonassoc} creates run-time
7475error: using the operator in a associative way is a syntax error. The
7476directive @code{%precedence} creates compile-time errors: an operator
7477@emph{can} be involved in an associativity-related conflict, contrary to
7478what expected the grammar author.
bfa74976
RS
7479
7480The relative precedence of different operators is controlled by the
d78f0ac9
AD
7481order in which they are declared. The first precedence/associativity
7482declaration in the file declares the operators whose
bfa74976
RS
7483precedence is lowest, the next such declaration declares the operators
7484whose precedence is a little higher, and so on.
7485
d78f0ac9
AD
7486@node Precedence Only
7487@subsection Specifying Precedence Only
7488@findex %precedence
7489
8a4281b9 7490Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
7491@code{%nonassoc}, which all defines precedence and associativity, little
7492attention is paid to the fact that precedence cannot be defined without
7493defining associativity. Yet, sometimes, when trying to solve a
7494conflict, precedence suffices. In such a case, using @code{%left},
7495@code{%right}, or @code{%nonassoc} might hide future (associativity
7496related) conflicts that would remain hidden.
7497
7498The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 7499Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
7500in the following situation, where the period denotes the current parsing
7501state:
7502
7503@example
7504if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
7505@end example
7506
7507The conflict involves the reduction of the rule @samp{IF expr THEN
7508stmt}, which precedence is by default that of its last token
7509(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
7510disambiguation (attach the @code{else} to the closest @code{if}),
7511shifting must be preferred, i.e., the precedence of @code{ELSE} must be
7512higher than that of @code{THEN}. But neither is expected to be involved
7513in an associativity related conflict, which can be specified as follows.
7514
7515@example
7516%precedence THEN
7517%precedence ELSE
7518@end example
7519
7520The unary-minus is another typical example where associativity is
7521usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 7522Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
7523used to declare the precedence of @code{NEG}, which is more than needed
7524since it also defines its associativity. While this is harmless in the
7525traditional example, who knows how @code{NEG} might be used in future
7526evolutions of the grammar@dots{}
7527
342b8b6e 7528@node Precedence Examples
bfa74976
RS
7529@subsection Precedence Examples
7530
7531In our example, we would want the following declarations:
7532
7533@example
7534%left '<'
7535%left '-'
7536%left '*'
7537@end example
7538
7539In a more complete example, which supports other operators as well, we
7540would declare them in groups of equal precedence. For example, @code{'+'} is
7541declared with @code{'-'}:
7542
7543@example
534cee7a 7544%left '<' '>' '=' "!=" "<=" ">="
bfa74976
RS
7545%left '+' '-'
7546%left '*' '/'
7547@end example
7548
342b8b6e 7549@node How Precedence
bfa74976
RS
7550@subsection How Precedence Works
7551
7552The first effect of the precedence declarations is to assign precedence
7553levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
7554precedence levels to certain rules: each rule gets its precedence from
7555the last terminal symbol mentioned in the components. (You can also
7556specify explicitly the precedence of a rule. @xref{Contextual
7557Precedence, ,Context-Dependent Precedence}.)
7558
7559Finally, the resolution of conflicts works by comparing the precedence
742e4900 7560of the rule being considered with that of the lookahead token. If the
704a47c4
AD
7561token's precedence is higher, the choice is to shift. If the rule's
7562precedence is higher, the choice is to reduce. If they have equal
7563precedence, the choice is made based on the associativity of that
7564precedence level. The verbose output file made by @samp{-v}
7565(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
7566resolved.
bfa74976
RS
7567
7568Not all rules and not all tokens have precedence. If either the rule or
742e4900 7569the lookahead token has no precedence, then the default is to shift.
bfa74976 7570
c28cd5dc
AD
7571@node Non Operators
7572@subsection Using Precedence For Non Operators
7573
7574Using properly precedence and associativity directives can help fixing
7575shift/reduce conflicts that do not involve arithmetics-like operators. For
7576instance, the ``dangling @code{else}'' problem (@pxref{Shift/Reduce, ,
7577Shift/Reduce Conflicts}) can be solved elegantly in two different ways.
7578
7579In the present case, the conflict is between the token @code{"else"} willing
7580to be shifted, and the rule @samp{if_stmt: "if" expr "then" stmt}, asking
7581for reduction. By default, the precedence of a rule is that of its last
7582token, here @code{"then"}, so the conflict will be solved appropriately
7583by giving @code{"else"} a precedence higher than that of @code{"then"}, for
7584instance as follows:
7585
7586@example
7587@group
589149dc
AD
7588%precedence "then"
7589%precedence "else"
c28cd5dc
AD
7590@end group
7591@end example
7592
7593Alternatively, you may give both tokens the same precedence, in which case
7594associativity is used to solve the conflict. To preserve the shift action,
7595use right associativity:
7596
7597@example
7598%right "then" "else"
7599@end example
7600
7601Neither solution is perfect however. Since Bison does not provide, so far,
589149dc 7602``scoped'' precedence, both force you to declare the precedence
c28cd5dc
AD
7603of these keywords with respect to the other operators your grammar.
7604Therefore, instead of being warned about new conflicts you would be unaware
7605of (e.g., a shift/reduce conflict due to @samp{if test then 1 else 2 + 3}
7606being ambiguous: @samp{if test then 1 else (2 + 3)} or @samp{(if test then 1
7607else 2) + 3}?), the conflict will be already ``fixed''.
7608
342b8b6e 7609@node Contextual Precedence
bfa74976
RS
7610@section Context-Dependent Precedence
7611@cindex context-dependent precedence
7612@cindex unary operator precedence
7613@cindex precedence, context-dependent
7614@cindex precedence, unary operator
7615@findex %prec
7616
7617Often the precedence of an operator depends on the context. This sounds
7618outlandish at first, but it is really very common. For example, a minus
7619sign typically has a very high precedence as a unary operator, and a
7620somewhat lower precedence (lower than multiplication) as a binary operator.
7621
d78f0ac9
AD
7622The Bison precedence declarations
7623can only be used once for a given token; so a token has
bfa74976
RS
7624only one precedence declared in this way. For context-dependent
7625precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 7626modifier for rules.
bfa74976
RS
7627
7628The @code{%prec} modifier declares the precedence of a particular rule by
7629specifying a terminal symbol whose precedence should be used for that rule.
7630It's not necessary for that symbol to appear otherwise in the rule. The
7631modifier's syntax is:
7632
7633@example
7634%prec @var{terminal-symbol}
7635@end example
7636
7637@noindent
7638and it is written after the components of the rule. Its effect is to
7639assign the rule the precedence of @var{terminal-symbol}, overriding
7640the precedence that would be deduced for it in the ordinary way. The
7641altered rule precedence then affects how conflicts involving that rule
7642are resolved (@pxref{Precedence, ,Operator Precedence}).
7643
7644Here is how @code{%prec} solves the problem of unary minus. First, declare
7645a precedence for a fictitious terminal symbol named @code{UMINUS}. There
7646are no tokens of this type, but the symbol serves to stand for its
7647precedence:
7648
7649@example
7650@dots{}
7651%left '+' '-'
7652%left '*'
7653%left UMINUS
7654@end example
7655
7656Now the precedence of @code{UMINUS} can be used in specific rules:
7657
7658@example
7659@group
5e9b6624
AD
7660exp:
7661 @dots{}
7662| exp '-' exp
7663 @dots{}
7664| '-' exp %prec UMINUS
bfa74976
RS
7665@end group
7666@end example
7667
91d2c560 7668@ifset defaultprec
39a06c25
PE
7669If you forget to append @code{%prec UMINUS} to the rule for unary
7670minus, Bison silently assumes that minus has its usual precedence.
7671This kind of problem can be tricky to debug, since one typically
7672discovers the mistake only by testing the code.
7673
22fccf95 7674The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
7675this kind of problem systematically. It causes rules that lack a
7676@code{%prec} modifier to have no precedence, even if the last terminal
7677symbol mentioned in their components has a declared precedence.
7678
22fccf95 7679If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
7680for all rules that participate in precedence conflict resolution.
7681Then you will see any shift/reduce conflict until you tell Bison how
7682to resolve it, either by changing your grammar or by adding an
7683explicit precedence. This will probably add declarations to the
7684grammar, but it helps to protect against incorrect rule precedences.
7685
22fccf95
PE
7686The effect of @code{%no-default-prec;} can be reversed by giving
7687@code{%default-prec;}, which is the default.
91d2c560 7688@end ifset
39a06c25 7689
342b8b6e 7690@node Parser States
bfa74976
RS
7691@section Parser States
7692@cindex finite-state machine
7693@cindex parser state
7694@cindex state (of parser)
7695
7696The function @code{yyparse} is implemented using a finite-state machine.
7697The values pushed on the parser stack are not simply token type codes; they
7698represent the entire sequence of terminal and nonterminal symbols at or
7699near the top of the stack. The current state collects all the information
7700about previous input which is relevant to deciding what to do next.
7701
742e4900
JD
7702Each time a lookahead token is read, the current parser state together
7703with the type of lookahead token are looked up in a table. This table
7704entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7705specifies the new parser state, which is pushed onto the top of the
7706parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7707This means that a certain number of tokens or groupings are taken off
7708the top of the stack, and replaced by one grouping. In other words,
7709that number of states are popped from the stack, and one new state is
7710pushed.
7711
742e4900 7712There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7713is erroneous in the current state. This causes error processing to begin
7714(@pxref{Error Recovery}).
7715
342b8b6e 7716@node Reduce/Reduce
bfa74976
RS
7717@section Reduce/Reduce Conflicts
7718@cindex reduce/reduce conflict
7719@cindex conflicts, reduce/reduce
7720
7721A reduce/reduce conflict occurs if there are two or more rules that apply
7722to the same sequence of input. This usually indicates a serious error
7723in the grammar.
7724
7725For example, here is an erroneous attempt to define a sequence
7726of zero or more @code{word} groupings.
7727
7728@example
d4fca427 7729@group
5e9b6624 7730sequence:
6240346a 7731 %empty @{ printf ("empty sequence\n"); @}
5e9b6624
AD
7732| maybeword
7733| sequence word @{ printf ("added word %s\n", $2); @}
7734;
d4fca427 7735@end group
bfa74976 7736
d4fca427 7737@group
5e9b6624 7738maybeword:
6240346a
AD
7739 %empty @{ printf ("empty maybeword\n"); @}
7740| word @{ printf ("single word %s\n", $1); @}
5e9b6624 7741;
d4fca427 7742@end group
bfa74976
RS
7743@end example
7744
7745@noindent
7746The error is an ambiguity: there is more than one way to parse a single
7747@code{word} into a @code{sequence}. It could be reduced to a
7748@code{maybeword} and then into a @code{sequence} via the second rule.
7749Alternatively, nothing-at-all could be reduced into a @code{sequence}
7750via the first rule, and this could be combined with the @code{word}
7751using the third rule for @code{sequence}.
7752
7753There is also more than one way to reduce nothing-at-all into a
7754@code{sequence}. This can be done directly via the first rule,
7755or indirectly via @code{maybeword} and then the second rule.
7756
7757You might think that this is a distinction without a difference, because it
7758does not change whether any particular input is valid or not. But it does
7759affect which actions are run. One parsing order runs the second rule's
7760action; the other runs the first rule's action and the third rule's action.
7761In this example, the output of the program changes.
7762
7763Bison resolves a reduce/reduce conflict by choosing to use the rule that
7764appears first in the grammar, but it is very risky to rely on this. Every
7765reduce/reduce conflict must be studied and usually eliminated. Here is the
7766proper way to define @code{sequence}:
7767
7768@example
51356dd2 7769@group
5e9b6624 7770sequence:
6240346a 7771 %empty @{ printf ("empty sequence\n"); @}
5e9b6624
AD
7772| sequence word @{ printf ("added word %s\n", $2); @}
7773;
51356dd2 7774@end group
bfa74976
RS
7775@end example
7776
7777Here is another common error that yields a reduce/reduce conflict:
7778
7779@example
51356dd2 7780@group
589149dc 7781sequence:
6240346a 7782 %empty
5e9b6624
AD
7783| sequence words
7784| sequence redirects
7785;
51356dd2 7786@end group
bfa74976 7787
51356dd2 7788@group
5e9b6624 7789words:
6240346a 7790 %empty
5e9b6624
AD
7791| words word
7792;
51356dd2 7793@end group
bfa74976 7794
51356dd2 7795@group
5e9b6624 7796redirects:
6240346a 7797 %empty
5e9b6624
AD
7798| redirects redirect
7799;
51356dd2 7800@end group
bfa74976
RS
7801@end example
7802
7803@noindent
7804The intention here is to define a sequence which can contain either
7805@code{word} or @code{redirect} groupings. The individual definitions of
7806@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7807three together make a subtle ambiguity: even an empty input can be parsed
7808in infinitely many ways!
7809
7810Consider: nothing-at-all could be a @code{words}. Or it could be two
7811@code{words} in a row, or three, or any number. It could equally well be a
7812@code{redirects}, or two, or any number. Or it could be a @code{words}
7813followed by three @code{redirects} and another @code{words}. And so on.
7814
7815Here are two ways to correct these rules. First, to make it a single level
7816of sequence:
7817
7818@example
5e9b6624 7819sequence:
6240346a 7820 %empty
5e9b6624
AD
7821| sequence word
7822| sequence redirect
7823;
bfa74976
RS
7824@end example
7825
7826Second, to prevent either a @code{words} or a @code{redirects}
7827from being empty:
7828
7829@example
d4fca427 7830@group
5e9b6624 7831sequence:
6240346a 7832 %empty
5e9b6624
AD
7833| sequence words
7834| sequence redirects
7835;
d4fca427 7836@end group
bfa74976 7837
d4fca427 7838@group
5e9b6624
AD
7839words:
7840 word
7841| words word
7842;
d4fca427 7843@end group
bfa74976 7844
d4fca427 7845@group
5e9b6624
AD
7846redirects:
7847 redirect
7848| redirects redirect
7849;
d4fca427 7850@end group
bfa74976
RS
7851@end example
7852
53e2cd1e
AD
7853Yet this proposal introduces another kind of ambiguity! The input
7854@samp{word word} can be parsed as a single @code{words} composed of two
7855@samp{word}s, or as two one-@code{word} @code{words} (and likewise for
7856@code{redirect}/@code{redirects}). However this ambiguity is now a
7857shift/reduce conflict, and therefore it can now be addressed with precedence
7858directives.
7859
7860To simplify the matter, we will proceed with @code{word} and @code{redirect}
7861being tokens: @code{"word"} and @code{"redirect"}.
7862
7863To prefer the longest @code{words}, the conflict between the token
7864@code{"word"} and the rule @samp{sequence: sequence words} must be resolved
7865as a shift. To this end, we use the same techniques as exposed above, see
7866@ref{Non Operators,, Using Precedence For Non Operators}. One solution
7867relies on precedences: use @code{%prec} to give a lower precedence to the
7868rule:
7869
7870@example
589149dc
AD
7871%precedence "word"
7872%precedence "sequence"
53e2cd1e
AD
7873%%
7874@group
7875sequence:
6240346a 7876 %empty
53e2cd1e
AD
7877| sequence word %prec "sequence"
7878| sequence redirect %prec "sequence"
7879;
7880@end group
7881
7882@group
7883words:
7884 word
7885| words "word"
7886;
7887@end group
7888@end example
7889
7890Another solution relies on associativity: provide both the token and the
7891rule with the same precedence, but make them right-associative:
7892
7893@example
7894%right "word" "redirect"
7895%%
7896@group
7897sequence:
6240346a 7898 %empty
53e2cd1e
AD
7899| sequence word %prec "word"
7900| sequence redirect %prec "redirect"
7901;
7902@end group
7903@end example
7904
cc09e5be
JD
7905@node Mysterious Conflicts
7906@section Mysterious Conflicts
7fceb615 7907@cindex Mysterious Conflicts
bfa74976
RS
7908
7909Sometimes reduce/reduce conflicts can occur that don't look warranted.
7910Here is an example:
7911
7912@example
7913@group
bfa74976 7914%%
5e9b6624 7915def: param_spec return_spec ',';
bfa74976 7916param_spec:
5e9b6624
AD
7917 type
7918| name_list ':' type
7919;
bfa74976 7920@end group
589149dc 7921
bfa74976
RS
7922@group
7923return_spec:
5e9b6624
AD
7924 type
7925| name ':' type
7926;
bfa74976 7927@end group
589149dc 7928
534cee7a 7929type: "id";
589149dc 7930
bfa74976 7931@group
534cee7a 7932name: "id";
bfa74976 7933name_list:
5e9b6624
AD
7934 name
7935| name ',' name_list
7936;
bfa74976
RS
7937@end group
7938@end example
7939
534cee7a
AD
7940It would seem that this grammar can be parsed with only a single token of
7941lookahead: when a @code{param_spec} is being read, an @code{"id"} is a
7942@code{name} if a comma or colon follows, or a @code{type} if another
7943@code{"id"} follows. In other words, this grammar is LR(1).
bfa74976 7944
7fceb615
JD
7945@cindex LR
7946@cindex LALR
eb45ef3b 7947However, for historical reasons, Bison cannot by default handle all
8a4281b9 7948LR(1) grammars.
534cee7a 7949In this grammar, two contexts, that after an @code{"id"} at the beginning
eb45ef3b
JD
7950of a @code{param_spec} and likewise at the beginning of a
7951@code{return_spec}, are similar enough that Bison assumes they are the
7952same.
7953They appear similar because the same set of rules would be
bfa74976
RS
7954active---the rule for reducing to a @code{name} and that for reducing to
7955a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7956that the rules would require different lookahead tokens in the two
bfa74976
RS
7957contexts, so it makes a single parser state for them both. Combining
7958the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7959occurrence means that the grammar is not LALR(1).
bfa74976 7960
7fceb615
JD
7961@cindex IELR
7962@cindex canonical LR
7963For many practical grammars (specifically those that fall into the non-LR(1)
7964class), the limitations of LALR(1) result in difficulties beyond just
7965mysterious reduce/reduce conflicts. The best way to fix all these problems
7966is to select a different parser table construction algorithm. Either
7967IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7968and easier to debug during development. @xref{LR Table Construction}, for
7969details. (Bison's IELR(1) and canonical LR(1) implementations are
7970experimental. More user feedback will help to stabilize them.)
eb45ef3b 7971
8a4281b9 7972If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7973can often fix a mysterious conflict by identifying the two parser states
7974that are being confused, and adding something to make them look
7975distinct. In the above example, adding one rule to
bfa74976
RS
7976@code{return_spec} as follows makes the problem go away:
7977
7978@example
7979@group
bfa74976
RS
7980@dots{}
7981return_spec:
5e9b6624
AD
7982 type
7983| name ':' type
534cee7a 7984| "id" "bogus" /* This rule is never used. */
5e9b6624 7985;
bfa74976
RS
7986@end group
7987@end example
7988
7989This corrects the problem because it introduces the possibility of an
534cee7a 7990additional active rule in the context after the @code{"id"} at the beginning of
bfa74976
RS
7991@code{return_spec}. This rule is not active in the corresponding context
7992in a @code{param_spec}, so the two contexts receive distinct parser states.
534cee7a 7993As long as the token @code{"bogus"} is never generated by @code{yylex},
bfa74976
RS
7994the added rule cannot alter the way actual input is parsed.
7995
7996In this particular example, there is another way to solve the problem:
534cee7a 7997rewrite the rule for @code{return_spec} to use @code{"id"} directly
bfa74976
RS
7998instead of via @code{name}. This also causes the two confusing
7999contexts to have different sets of active rules, because the one for
8000@code{return_spec} activates the altered rule for @code{return_spec}
8001rather than the one for @code{name}.
8002
8003@example
589149dc 8004@group
bfa74976 8005param_spec:
5e9b6624
AD
8006 type
8007| name_list ':' type
8008;
589149dc
AD
8009@end group
8010
8011@group
bfa74976 8012return_spec:
5e9b6624 8013 type
534cee7a 8014| "id" ':' type
5e9b6624 8015;
589149dc 8016@end group
bfa74976
RS
8017@end example
8018
8a4281b9 8019For a more detailed exposition of LALR(1) parsers and parser
5e528941 8020generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 8021
7fceb615
JD
8022@node Tuning LR
8023@section Tuning LR
8024
8025The default behavior of Bison's LR-based parsers is chosen mostly for
8026historical reasons, but that behavior is often not robust. For example, in
8027the previous section, we discussed the mysterious conflicts that can be
8028produced by LALR(1), Bison's default parser table construction algorithm.
8029Another example is Bison's @code{%define parse.error verbose} directive,
8030which instructs the generated parser to produce verbose syntax error
8031messages, which can sometimes contain incorrect information.
8032
8033In this section, we explore several modern features of Bison that allow you
8034to tune fundamental aspects of the generated LR-based parsers. Some of
8035these features easily eliminate shortcomings like those mentioned above.
8036Others can be helpful purely for understanding your parser.
8037
8038Most of the features discussed in this section are still experimental. More
8039user feedback will help to stabilize them.
8040
8041@menu
8042* LR Table Construction:: Choose a different construction algorithm.
8043* Default Reductions:: Disable default reductions.
8044* LAC:: Correct lookahead sets in the parser states.
8045* Unreachable States:: Keep unreachable parser states for debugging.
8046@end menu
8047
8048@node LR Table Construction
8049@subsection LR Table Construction
8050@cindex Mysterious Conflict
8051@cindex LALR
8052@cindex IELR
8053@cindex canonical LR
8054@findex %define lr.type
8055
8056For historical reasons, Bison constructs LALR(1) parser tables by default.
8057However, LALR does not possess the full language-recognition power of LR.
8058As a result, the behavior of parsers employing LALR parser tables is often
cc09e5be 8059mysterious. We presented a simple example of this effect in @ref{Mysterious
7fceb615
JD
8060Conflicts}.
8061
8062As we also demonstrated in that example, the traditional approach to
8063eliminating such mysterious behavior is to restructure the grammar.
8064Unfortunately, doing so correctly is often difficult. Moreover, merely
8065discovering that LALR causes mysterious behavior in your parser can be
8066difficult as well.
8067
8068Fortunately, Bison provides an easy way to eliminate the possibility of such
8069mysterious behavior altogether. You simply need to activate a more powerful
8070parser table construction algorithm by using the @code{%define lr.type}
8071directive.
8072
511dd971 8073@deffn {Directive} {%define lr.type} @var{type}
7fceb615 8074Specify the type of parser tables within the LR(1) family. The accepted
511dd971 8075values for @var{type} are:
7fceb615
JD
8076
8077@itemize
8078@item @code{lalr} (default)
8079@item @code{ielr}
8080@item @code{canonical-lr}
8081@end itemize
8082
8083(This feature is experimental. More user feedback will help to stabilize
8084it.)
8085@end deffn
8086
8087For example, to activate IELR, you might add the following directive to you
8088grammar file:
8089
8090@example
8091%define lr.type ielr
8092@end example
8093
cc09e5be 8094@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7fceb615
JD
8095conflict is then eliminated, so there is no need to invest time in
8096comprehending the conflict or restructuring the grammar to fix it. If,
8097during future development, the grammar evolves such that all mysterious
8098behavior would have disappeared using just LALR, you need not fear that
8099continuing to use IELR will result in unnecessarily large parser tables.
8100That is, IELR generates LALR tables when LALR (using a deterministic parsing
8101algorithm) is sufficient to support the full language-recognition power of
8102LR. Thus, by enabling IELR at the start of grammar development, you can
8103safely and completely eliminate the need to consider LALR's shortcomings.
8104
8105While IELR is almost always preferable, there are circumstances where LALR
8106or the canonical LR parser tables described by Knuth
8107(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
8108relative advantages of each parser table construction algorithm within
8109Bison:
8110
8111@itemize
8112@item LALR
8113
8114There are at least two scenarios where LALR can be worthwhile:
8115
8116@itemize
8117@item GLR without static conflict resolution.
8118
8119@cindex GLR with LALR
8120When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
589149dc
AD
8121conflicts statically (for example, with @code{%left} or @code{%precedence}),
8122then
7fceb615
JD
8123the parser explores all potential parses of any given input. In this case,
8124the choice of parser table construction algorithm is guaranteed not to alter
8125the language accepted by the parser. LALR parser tables are the smallest
8126parser tables Bison can currently construct, so they may then be preferable.
8127Nevertheless, once you begin to resolve conflicts statically, GLR behaves
8128more like a deterministic parser in the syntactic contexts where those
8129conflicts appear, and so either IELR or canonical LR can then be helpful to
8130avoid LALR's mysterious behavior.
8131
8132@item Malformed grammars.
8133
8134Occasionally during development, an especially malformed grammar with a
8135major recurring flaw may severely impede the IELR or canonical LR parser
8136table construction algorithm. LALR can be a quick way to construct parser
8137tables in order to investigate such problems while ignoring the more subtle
8138differences from IELR and canonical LR.
8139@end itemize
8140
8141@item IELR
8142
8143IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
8144any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
8145always accept exactly the same set of sentences. However, like LALR, IELR
8146merges parser states during parser table construction so that the number of
8147parser states is often an order of magnitude less than for canonical LR.
8148More importantly, because canonical LR's extra parser states may contain
8149duplicate conflicts in the case of non-LR grammars, the number of conflicts
8150for IELR is often an order of magnitude less as well. This effect can
8151significantly reduce the complexity of developing a grammar.
8152
8153@item Canonical LR
8154
8155@cindex delayed syntax error detection
8156@cindex LAC
8157@findex %nonassoc
8158While inefficient, canonical LR parser tables can be an interesting means to
8159explore a grammar because they possess a property that IELR and LALR tables
8160do not. That is, if @code{%nonassoc} is not used and default reductions are
8161left disabled (@pxref{Default Reductions}), then, for every left context of
8162every canonical LR state, the set of tokens accepted by that state is
8163guaranteed to be the exact set of tokens that is syntactically acceptable in
8164that left context. It might then seem that an advantage of canonical LR
8165parsers in production is that, under the above constraints, they are
8166guaranteed to detect a syntax error as soon as possible without performing
8167any unnecessary reductions. However, IELR parsers that use LAC are also
8168able to achieve this behavior without sacrificing @code{%nonassoc} or
8169default reductions. For details and a few caveats of LAC, @pxref{LAC}.
8170@end itemize
8171
8172For a more detailed exposition of the mysterious behavior in LALR parsers
8173and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
8174@ref{Bibliography,,Denny 2010 November}.
8175
8176@node Default Reductions
8177@subsection Default Reductions
8178@cindex default reductions
f3bc3386 8179@findex %define lr.default-reduction
7fceb615
JD
8180@findex %nonassoc
8181
8182After parser table construction, Bison identifies the reduction with the
8183largest lookahead set in each parser state. To reduce the size of the
8184parser state, traditional Bison behavior is to remove that lookahead set and
8185to assign that reduction to be the default parser action. Such a reduction
8186is known as a @dfn{default reduction}.
8187
8188Default reductions affect more than the size of the parser tables. They
8189also affect the behavior of the parser:
8190
8191@itemize
8192@item Delayed @code{yylex} invocations.
8193
8194@cindex delayed yylex invocations
8195@cindex consistent states
8196@cindex defaulted states
8197A @dfn{consistent state} is a state that has only one possible parser
8198action. If that action is a reduction and is encoded as a default
8199reduction, then that consistent state is called a @dfn{defaulted state}.
8200Upon reaching a defaulted state, a Bison-generated parser does not bother to
8201invoke @code{yylex} to fetch the next token before performing the reduction.
8202In other words, whether default reductions are enabled in consistent states
8203determines how soon a Bison-generated parser invokes @code{yylex} for a
8204token: immediately when it @emph{reaches} that token in the input or when it
8205eventually @emph{needs} that token as a lookahead to determine the next
8206parser action. Traditionally, default reductions are enabled, and so the
8207parser exhibits the latter behavior.
8208
8209The presence of defaulted states is an important consideration when
8210designing @code{yylex} and the grammar file. That is, if the behavior of
8211@code{yylex} can influence or be influenced by the semantic actions
8212associated with the reductions in defaulted states, then the delay of the
8213next @code{yylex} invocation until after those reductions is significant.
8214For example, the semantic actions might pop a scope stack that @code{yylex}
8215uses to determine what token to return. Thus, the delay might be necessary
8216to ensure that @code{yylex} does not look up the next token in a scope that
8217should already be considered closed.
8218
8219@item Delayed syntax error detection.
8220
8221@cindex delayed syntax error detection
8222When the parser fetches a new token by invoking @code{yylex}, it checks
8223whether there is an action for that token in the current parser state. The
8224parser detects a syntax error if and only if either (1) there is no action
8225for that token or (2) the action for that token is the error action (due to
8226the use of @code{%nonassoc}). However, if there is a default reduction in
8227that state (which might or might not be a defaulted state), then it is
8228impossible for condition 1 to exist. That is, all tokens have an action.
8229Thus, the parser sometimes fails to detect the syntax error until it reaches
8230a later state.
8231
8232@cindex LAC
8233@c If there's an infinite loop, default reductions can prevent an incorrect
8234@c sentence from being rejected.
8235While default reductions never cause the parser to accept syntactically
8236incorrect sentences, the delay of syntax error detection can have unexpected
8237effects on the behavior of the parser. However, the delay can be caused
8238anyway by parser state merging and the use of @code{%nonassoc}, and it can
8239be fixed by another Bison feature, LAC. We discuss the effects of delayed
8240syntax error detection and LAC more in the next section (@pxref{LAC}).
8241@end itemize
8242
8243For canonical LR, the only default reduction that Bison enables by default
8244is the accept action, which appears only in the accepting state, which has
8245no other action and is thus a defaulted state. However, the default accept
8246action does not delay any @code{yylex} invocation or syntax error detection
8247because the accept action ends the parse.
8248
8249For LALR and IELR, Bison enables default reductions in nearly all states by
8250default. There are only two exceptions. First, states that have a shift
8251action on the @code{error} token do not have default reductions because
8252delayed syntax error detection could then prevent the @code{error} token
8253from ever being shifted in that state. However, parser state merging can
8254cause the same effect anyway, and LAC fixes it in both cases, so future
8255versions of Bison might drop this exception when LAC is activated. Second,
8256GLR parsers do not record the default reduction as the action on a lookahead
8257token for which there is a conflict. The correct action in this case is to
8258split the parse instead.
8259
8260To adjust which states have default reductions enabled, use the
f3bc3386 8261@code{%define lr.default-reduction} directive.
7fceb615 8262
5807bb91 8263@deffn {Directive} {%define lr.default-reduction} @var{where}
7fceb615 8264Specify the kind of states that are permitted to contain default reductions.
511dd971 8265The accepted values of @var{where} are:
7fceb615 8266@itemize
f0ad1b2f 8267@item @code{most} (default for LALR and IELR)
7fceb615
JD
8268@item @code{consistent}
8269@item @code{accepting} (default for canonical LR)
8270@end itemize
8271
8272(The ability to specify where default reductions are permitted is
8273experimental. More user feedback will help to stabilize it.)
8274@end deffn
8275
7fceb615
JD
8276@node LAC
8277@subsection LAC
8278@findex %define parse.lac
8279@cindex LAC
8280@cindex lookahead correction
8281
8282Canonical LR, IELR, and LALR can suffer from a couple of problems upon
8283encountering a syntax error. First, the parser might perform additional
8284parser stack reductions before discovering the syntax error. Such
8285reductions can perform user semantic actions that are unexpected because
8286they are based on an invalid token, and they cause error recovery to begin
8287in a different syntactic context than the one in which the invalid token was
8288encountered. Second, when verbose error messages are enabled (@pxref{Error
8289Reporting}), the expected token list in the syntax error message can both
8290contain invalid tokens and omit valid tokens.
8291
8292The culprits for the above problems are @code{%nonassoc}, default reductions
8293in inconsistent states (@pxref{Default Reductions}), and parser state
8294merging. Because IELR and LALR merge parser states, they suffer the most.
8295Canonical LR can suffer only if @code{%nonassoc} is used or if default
8296reductions are enabled for inconsistent states.
8297
8298LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
8299that solves these problems for canonical LR, IELR, and LALR without
8300sacrificing @code{%nonassoc}, default reductions, or state merging. You can
8301enable LAC with the @code{%define parse.lac} directive.
8302
511dd971 8303@deffn {Directive} {%define parse.lac} @var{value}
7fceb615
JD
8304Enable LAC to improve syntax error handling.
8305@itemize
8306@item @code{none} (default)
8307@item @code{full}
8308@end itemize
8309(This feature is experimental. More user feedback will help to stabilize
8310it. Moreover, it is currently only available for deterministic parsers in
8311C.)
8312@end deffn
8313
8314Conceptually, the LAC mechanism is straight-forward. Whenever the parser
8315fetches a new token from the scanner so that it can determine the next
8316parser action, it immediately suspends normal parsing and performs an
8317exploratory parse using a temporary copy of the normal parser state stack.
8318During this exploratory parse, the parser does not perform user semantic
8319actions. If the exploratory parse reaches a shift action, normal parsing
8320then resumes on the normal parser stacks. If the exploratory parse reaches
8321an error instead, the parser reports a syntax error. If verbose syntax
8322error messages are enabled, the parser must then discover the list of
8323expected tokens, so it performs a separate exploratory parse for each token
8324in the grammar.
8325
8326There is one subtlety about the use of LAC. That is, when in a consistent
8327parser state with a default reduction, the parser will not attempt to fetch
8328a token from the scanner because no lookahead is needed to determine the
8329next parser action. Thus, whether default reductions are enabled in
8330consistent states (@pxref{Default Reductions}) affects how soon the parser
8331detects a syntax error: immediately when it @emph{reaches} an erroneous
8332token or when it eventually @emph{needs} that token as a lookahead to
8333determine the next parser action. The latter behavior is probably more
8334intuitive, so Bison currently provides no way to achieve the former behavior
8335while default reductions are enabled in consistent states.
8336
8337Thus, when LAC is in use, for some fixed decision of whether to enable
8338default reductions in consistent states, canonical LR and IELR behave almost
8339exactly the same for both syntactically acceptable and syntactically
8340unacceptable input. While LALR still does not support the full
8341language-recognition power of canonical LR and IELR, LAC at least enables
8342LALR's syntax error handling to correctly reflect LALR's
8343language-recognition power.
8344
8345There are a few caveats to consider when using LAC:
8346
8347@itemize
8348@item Infinite parsing loops.
8349
8350IELR plus LAC does have one shortcoming relative to canonical LR. Some
8351parsers generated by Bison can loop infinitely. LAC does not fix infinite
8352parsing loops that occur between encountering a syntax error and detecting
8353it, but enabling canonical LR or disabling default reductions sometimes
8354does.
8355
8356@item Verbose error message limitations.
8357
8358Because of internationalization considerations, Bison-generated parsers
8359limit the size of the expected token list they are willing to report in a
8360verbose syntax error message. If the number of expected tokens exceeds that
8361limit, the list is simply dropped from the message. Enabling LAC can
8362increase the size of the list and thus cause the parser to drop it. Of
8363course, dropping the list is better than reporting an incorrect list.
8364
8365@item Performance.
8366
8367Because LAC requires many parse actions to be performed twice, it can have a
8368performance penalty. However, not all parse actions must be performed
8369twice. Specifically, during a series of default reductions in consistent
8370states and shift actions, the parser never has to initiate an exploratory
8371parse. Moreover, the most time-consuming tasks in a parse are often the
8372file I/O, the lexical analysis performed by the scanner, and the user's
8373semantic actions, but none of these are performed during the exploratory
8374parse. Finally, the base of the temporary stack used during an exploratory
8375parse is a pointer into the normal parser state stack so that the stack is
8376never physically copied. In our experience, the performance penalty of LAC
5a321748 8377has proved insignificant for practical grammars.
7fceb615
JD
8378@end itemize
8379
709c7d11
JD
8380While the LAC algorithm shares techniques that have been recognized in the
8381parser community for years, for the publication that introduces LAC,
8382@pxref{Bibliography,,Denny 2010 May}.
15e46f2d 8383
7fceb615
JD
8384@node Unreachable States
8385@subsection Unreachable States
f3bc3386 8386@findex %define lr.keep-unreachable-state
7fceb615
JD
8387@cindex unreachable states
8388
8389If there exists no sequence of transitions from the parser's start state to
8390some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
8391state}. A state can become unreachable during conflict resolution if Bison
8392disables a shift action leading to it from a predecessor state.
8393
8394By default, Bison removes unreachable states from the parser after conflict
8395resolution because they are useless in the generated parser. However,
8396keeping unreachable states is sometimes useful when trying to understand the
8397relationship between the parser and the grammar.
8398
5807bb91 8399@deffn {Directive} {%define lr.keep-unreachable-state} @var{value}
7fceb615 8400Request that Bison allow unreachable states to remain in the parser tables.
511dd971 8401@var{value} must be a Boolean. The default is @code{false}.
7fceb615
JD
8402@end deffn
8403
8404There are a few caveats to consider:
8405
8406@itemize @bullet
8407@item Missing or extraneous warnings.
8408
8409Unreachable states may contain conflicts and may use rules not used in any
8410other state. Thus, keeping unreachable states may induce warnings that are
8411irrelevant to your parser's behavior, and it may eliminate warnings that are
8412relevant. Of course, the change in warnings may actually be relevant to a
8413parser table analysis that wants to keep unreachable states, so this
8414behavior will likely remain in future Bison releases.
8415
8416@item Other useless states.
8417
8418While Bison is able to remove unreachable states, it is not guaranteed to
8419remove other kinds of useless states. Specifically, when Bison disables
8420reduce actions during conflict resolution, some goto actions may become
8421useless, and thus some additional states may become useless. If Bison were
8422to compute which goto actions were useless and then disable those actions,
8423it could identify such states as unreachable and then remove those states.
8424However, Bison does not compute which goto actions are useless.
8425@end itemize
8426
fae437e8 8427@node Generalized LR Parsing
8a4281b9
JD
8428@section Generalized LR (GLR) Parsing
8429@cindex GLR parsing
8430@cindex generalized LR (GLR) parsing
676385e2 8431@cindex ambiguous grammars
9d9b8b70 8432@cindex nondeterministic parsing
676385e2 8433
fae437e8
AD
8434Bison produces @emph{deterministic} parsers that choose uniquely
8435when to reduce and which reduction to apply
742e4900 8436based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
8437As a result, normal Bison handles a proper subset of the family of
8438context-free languages.
fae437e8 8439Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
8440sequence of reductions cannot have deterministic parsers in this sense.
8441The same is true of languages that require more than one symbol of
742e4900 8442lookahead, since the parser lacks the information necessary to make a
676385e2 8443decision at the point it must be made in a shift-reduce parser.
cc09e5be 8444Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
eb45ef3b 8445there are languages where Bison's default choice of how to
676385e2
PH
8446summarize the input seen so far loses necessary information.
8447
8448When you use the @samp{%glr-parser} declaration in your grammar file,
8449Bison generates a parser that uses a different algorithm, called
8a4281b9 8450Generalized LR (or GLR). A Bison GLR
c827f760 8451parser uses the same basic
676385e2
PH
8452algorithm for parsing as an ordinary Bison parser, but behaves
8453differently in cases where there is a shift-reduce conflict that has not
fae437e8 8454been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 8455reduce-reduce conflict. When a GLR parser encounters such a
c827f760 8456situation, it
fae437e8 8457effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
8458shift or reduction. These parsers then proceed as usual, consuming
8459tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 8460and split further, with the result that instead of a sequence of states,
8a4281b9 8461a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
8462
8463In effect, each stack represents a guess as to what the proper parse
8464is. Additional input may indicate that a guess was wrong, in which case
8465the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 8466actions generated in each stack are saved, rather than being executed
676385e2 8467immediately. When a stack disappears, its saved semantic actions never
fae437e8 8468get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
8469their sets of semantic actions are both saved with the state that
8470results from the reduction. We say that two stacks are equivalent
fae437e8 8471when they both represent the same sequence of states,
676385e2
PH
8472and each pair of corresponding states represents a
8473grammar symbol that produces the same segment of the input token
8474stream.
8475
8476Whenever the parser makes a transition from having multiple
eb45ef3b 8477states to having one, it reverts to the normal deterministic parsing
676385e2
PH
8478algorithm, after resolving and executing the saved-up actions.
8479At this transition, some of the states on the stack will have semantic
8480values that are sets (actually multisets) of possible actions. The
8481parser tries to pick one of the actions by first finding one whose rule
8482has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 8483declaration. Otherwise, if the alternative actions are not ordered by
676385e2 8484precedence, but there the same merging function is declared for both
fae437e8 8485rules by the @samp{%merge} declaration,
676385e2
PH
8486Bison resolves and evaluates both and then calls the merge function on
8487the result. Otherwise, it reports an ambiguity.
8488
8a4281b9
JD
8489It is possible to use a data structure for the GLR parsing tree that
8490permits the processing of any LR(1) grammar in linear time (in the
c827f760 8491size of the input), any unambiguous (not necessarily
8a4281b9 8492LR(1)) grammar in
fae437e8 8493quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
8494context-free grammar in cubic worst-case time. However, Bison currently
8495uses a simpler data structure that requires time proportional to the
8496length of the input times the maximum number of stacks required for any
9d9b8b70 8497prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
8498grammars can require exponential time and space to process. Such badly
8499behaving examples, however, are not generally of practical interest.
9d9b8b70 8500Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 8501doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 8502structure should generally be adequate. On LR(1) portions of a
eb45ef3b 8503grammar, in particular, it is only slightly slower than with the
8a4281b9 8504deterministic LR(1) Bison parser.
676385e2 8505
5e528941
JD
8506For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
85072000}.
f6481e2f 8508
1a059451
PE
8509@node Memory Management
8510@section Memory Management, and How to Avoid Memory Exhaustion
8511@cindex memory exhaustion
8512@cindex memory management
bfa74976
RS
8513@cindex stack overflow
8514@cindex parser stack overflow
8515@cindex overflow of parser stack
8516
1a059451 8517The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 8518not reduced. When this happens, the parser function @code{yyparse}
1a059451 8519calls @code{yyerror} and then returns 2.
bfa74976 8520
c827f760 8521Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f 8522usually results from using a right recursion instead of a left
188867ac 8523recursion, see @ref{Recursion, ,Recursive Rules}.
d1a1114f 8524
bfa74976
RS
8525@vindex YYMAXDEPTH
8526By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 8527parser stack can become before memory is exhausted. Define the
bfa74976
RS
8528macro with a value that is an integer. This value is the maximum number
8529of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
8530
8531The stack space allowed is not necessarily allocated. If you specify a
1a059451 8532large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
8533stack at first, and then makes it bigger by stages as needed. This
8534increasing allocation happens automatically and silently. Therefore,
8535you do not need to make @code{YYMAXDEPTH} painfully small merely to save
8536space for ordinary inputs that do not need much stack.
8537
d7e14fc0
PE
8538However, do not allow @code{YYMAXDEPTH} to be a value so large that
8539arithmetic overflow could occur when calculating the size of the stack
8540space. Also, do not allow @code{YYMAXDEPTH} to be less than
8541@code{YYINITDEPTH}.
8542
bfa74976
RS
8543@cindex default stack limit
8544The default value of @code{YYMAXDEPTH}, if you do not define it, is
854510000.
8546
8547@vindex YYINITDEPTH
8548You can control how much stack is allocated initially by defining the
eb45ef3b
JD
8549macro @code{YYINITDEPTH} to a positive integer. For the deterministic
8550parser in C, this value must be a compile-time constant
d7e14fc0
PE
8551unless you are assuming C99 or some other target language or compiler
8552that allows variable-length arrays. The default is 200.
8553
1a059451 8554Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 8555
20be2f92 8556You can generate a deterministic parser containing C++ user code from
411614fa 8557the default (C) skeleton, as well as from the C++ skeleton
20be2f92
PH
8558(@pxref{C++ Parsers}). However, if you do use the default skeleton
8559and want to allow the parsing stack to grow,
8560be careful not to use semantic types or location types that require
8561non-trivial copy constructors.
8562The C skeleton bypasses these constructors when copying data to
8563new, larger stacks.
d1a1114f 8564
342b8b6e 8565@node Error Recovery
bfa74976
RS
8566@chapter Error Recovery
8567@cindex error recovery
8568@cindex recovery from errors
8569
6e649e65 8570It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
8571error. For example, a compiler should recover sufficiently to parse the
8572rest of the input file and check it for errors; a calculator should accept
8573another expression.
8574
8575In a simple interactive command parser where each input is one line, it may
8576be sufficient to allow @code{yyparse} to return 1 on error and have the
8577caller ignore the rest of the input line when that happens (and then call
8578@code{yyparse} again). But this is inadequate for a compiler, because it
8579forgets all the syntactic context leading up to the error. A syntax error
8580deep within a function in the compiler input should not cause the compiler
8581to treat the following line like the beginning of a source file.
8582
8583@findex error
8584You can define how to recover from a syntax error by writing rules to
8585recognize the special token @code{error}. This is a terminal symbol that
8586is always defined (you need not declare it) and reserved for error
8587handling. The Bison parser generates an @code{error} token whenever a
8588syntax error happens; if you have provided a rule to recognize this token
13863333 8589in the current context, the parse can continue.
bfa74976
RS
8590
8591For example:
8592
8593@example
0860e383 8594stmts:
6240346a 8595 %empty
0860e383
AD
8596| stmts '\n'
8597| stmts exp '\n'
8598| stmts error '\n'
bfa74976
RS
8599@end example
8600
8601The fourth rule in this example says that an error followed by a newline
0860e383 8602makes a valid addition to any @code{stmts}.
bfa74976
RS
8603
8604What happens if a syntax error occurs in the middle of an @code{exp}? The
8605error recovery rule, interpreted strictly, applies to the precise sequence
0860e383 8606of a @code{stmts}, an @code{error} and a newline. If an error occurs in
bfa74976 8607the middle of an @code{exp}, there will probably be some additional tokens
0860e383 8608and subexpressions on the stack after the last @code{stmts}, and there
bfa74976
RS
8609will be tokens to read before the next newline. So the rule is not
8610applicable in the ordinary way.
8611
8612But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
8613the semantic context and part of the input. First it discards states
8614and objects from the stack until it gets back to a state in which the
bfa74976 8615@code{error} token is acceptable. (This means that the subexpressions
0860e383 8616already parsed are discarded, back to the last complete @code{stmts}.)
72f889cc 8617At this point the @code{error} token can be shifted. Then, if the old
742e4900 8618lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 8619tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
8620this example, Bison reads and discards input until the next newline so
8621that the fourth rule can apply. Note that discarded symbols are
8622possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
8623Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
8624
8625The choice of error rules in the grammar is a choice of strategies for
8626error recovery. A simple and useful strategy is simply to skip the rest of
8627the current input line or current statement if an error is detected:
8628
8629@example
0860e383 8630stmt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
8631@end example
8632
8633It is also useful to recover to the matching close-delimiter of an
8634opening-delimiter that has already been parsed. Otherwise the
8635close-delimiter will probably appear to be unmatched, and generate another,
8636spurious error message:
8637
8638@example
5e9b6624
AD
8639primary:
8640 '(' expr ')'
8641| '(' error ')'
8642@dots{}
8643;
bfa74976
RS
8644@end example
8645
8646Error recovery strategies are necessarily guesses. When they guess wrong,
8647one syntax error often leads to another. In the above example, the error
8648recovery rule guesses that an error is due to bad input within one
0860e383
AD
8649@code{stmt}. Suppose that instead a spurious semicolon is inserted in the
8650middle of a valid @code{stmt}. After the error recovery rule recovers
bfa74976
RS
8651from the first error, another syntax error will be found straightaway,
8652since the text following the spurious semicolon is also an invalid
0860e383 8653@code{stmt}.
bfa74976
RS
8654
8655To prevent an outpouring of error messages, the parser will output no error
8656message for another syntax error that happens shortly after the first; only
8657after three consecutive input tokens have been successfully shifted will
8658error messages resume.
8659
8660Note that rules which accept the @code{error} token may have actions, just
8661as any other rules can.
8662
8663@findex yyerrok
8664You can make error messages resume immediately by using the macro
8665@code{yyerrok} in an action. If you do this in the error rule's action, no
8666error messages will be suppressed. This macro requires no arguments;
8667@samp{yyerrok;} is a valid C statement.
8668
8669@findex yyclearin
742e4900 8670The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
8671this is unacceptable, then the macro @code{yyclearin} may be used to clear
8672this token. Write the statement @samp{yyclearin;} in the error rule's
8673action.
32c29292 8674@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 8675
6e649e65 8676For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
8677called that advances the input stream to some point where parsing should
8678once again commence. The next symbol returned by the lexical scanner is
742e4900 8679probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
8680with @samp{yyclearin;}.
8681
8682@vindex YYRECOVERING
02103984
PE
8683The expression @code{YYRECOVERING ()} yields 1 when the parser
8684is recovering from a syntax error, and 0 otherwise.
8685Syntax error diagnostics are suppressed while recovering from a syntax
8686error.
bfa74976 8687
342b8b6e 8688@node Context Dependency
bfa74976
RS
8689@chapter Handling Context Dependencies
8690
8691The Bison paradigm is to parse tokens first, then group them into larger
8692syntactic units. In many languages, the meaning of a token is affected by
8693its context. Although this violates the Bison paradigm, certain techniques
8694(known as @dfn{kludges}) may enable you to write Bison parsers for such
8695languages.
8696
8697@menu
8698* Semantic Tokens:: Token parsing can depend on the semantic context.
8699* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
8700* Tie-in Recovery:: Lexical tie-ins have implications for how
8701 error recovery rules must be written.
8702@end menu
8703
8704(Actually, ``kludge'' means any technique that gets its job done but is
8705neither clean nor robust.)
8706
342b8b6e 8707@node Semantic Tokens
bfa74976
RS
8708@section Semantic Info in Token Types
8709
8710The C language has a context dependency: the way an identifier is used
8711depends on what its current meaning is. For example, consider this:
8712
8713@example
8714foo (x);
8715@end example
8716
8717This looks like a function call statement, but if @code{foo} is a typedef
8718name, then this is actually a declaration of @code{x}. How can a Bison
8719parser for C decide how to parse this input?
8720
8a4281b9 8721The method used in GNU C is to have two different token types,
bfa74976
RS
8722@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
8723identifier, it looks up the current declaration of the identifier in order
8724to decide which token type to return: @code{TYPENAME} if the identifier is
8725declared as a typedef, @code{IDENTIFIER} otherwise.
8726
8727The grammar rules can then express the context dependency by the choice of
8728token type to recognize. @code{IDENTIFIER} is accepted as an expression,
8729but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
8730@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
8731is @emph{not} significant, such as in declarations that can shadow a
8732typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
8733accepted---there is one rule for each of the two token types.
8734
8735This technique is simple to use if the decision of which kinds of
8736identifiers to allow is made at a place close to where the identifier is
8737parsed. But in C this is not always so: C allows a declaration to
8738redeclare a typedef name provided an explicit type has been specified
8739earlier:
8740
8741@example
3a4f411f
PE
8742typedef int foo, bar;
8743int baz (void)
d4fca427 8744@group
3a4f411f
PE
8745@{
8746 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
8747 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
8748 return foo (bar);
8749@}
d4fca427 8750@end group
bfa74976
RS
8751@end example
8752
8753Unfortunately, the name being declared is separated from the declaration
8754construct itself by a complicated syntactic structure---the ``declarator''.
8755
9ecbd125 8756As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
8757all the nonterminal names changed: once for parsing a declaration in
8758which a typedef name can be redefined, and once for parsing a
8759declaration in which that can't be done. Here is a part of the
8760duplication, with actions omitted for brevity:
bfa74976
RS
8761
8762@example
d4fca427 8763@group
bfa74976 8764initdcl:
5e9b6624
AD
8765 declarator maybeasm '=' init
8766| declarator maybeasm
8767;
d4fca427 8768@end group
bfa74976 8769
d4fca427 8770@group
bfa74976 8771notype_initdcl:
5e9b6624
AD
8772 notype_declarator maybeasm '=' init
8773| notype_declarator maybeasm
8774;
d4fca427 8775@end group
bfa74976
RS
8776@end example
8777
8778@noindent
8779Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
8780cannot. The distinction between @code{declarator} and
8781@code{notype_declarator} is the same sort of thing.
8782
8783There is some similarity between this technique and a lexical tie-in
8784(described next), in that information which alters the lexical analysis is
8785changed during parsing by other parts of the program. The difference is
8786here the information is global, and is used for other purposes in the
8787program. A true lexical tie-in has a special-purpose flag controlled by
8788the syntactic context.
8789
342b8b6e 8790@node Lexical Tie-ins
bfa74976
RS
8791@section Lexical Tie-ins
8792@cindex lexical tie-in
8793
8794One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
8795which is set by Bison actions, whose purpose is to alter the way tokens are
8796parsed.
8797
8798For example, suppose we have a language vaguely like C, but with a special
8799construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
8800an expression in parentheses in which all integers are hexadecimal. In
8801particular, the token @samp{a1b} must be treated as an integer rather than
8802as an identifier if it appears in that context. Here is how you can do it:
8803
8804@example
8805@group
8806%@{
38a92d50
PE
8807 int hexflag;
8808 int yylex (void);
8809 void yyerror (char const *);
bfa74976
RS
8810%@}
8811%%
8812@dots{}
8813@end group
8814@group
5e9b6624
AD
8815expr:
8816 IDENTIFIER
8817| constant
8818| HEX '(' @{ hexflag = 1; @}
8819 expr ')' @{ hexflag = 0; $$ = $4; @}
8820| expr '+' expr @{ $$ = make_sum ($1, $3); @}
8821@dots{}
8822;
bfa74976
RS
8823@end group
8824
8825@group
8826constant:
5e9b6624
AD
8827 INTEGER
8828| STRING
8829;
bfa74976
RS
8830@end group
8831@end example
8832
8833@noindent
8834Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8835it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8836with letters are parsed as integers if possible.
8837
ff7571c0
JD
8838The declaration of @code{hexflag} shown in the prologue of the grammar
8839file is needed to make it accessible to the actions (@pxref{Prologue,
8840,The Prologue}). You must also write the code in @code{yylex} to obey
8841the flag.
bfa74976 8842
342b8b6e 8843@node Tie-in Recovery
bfa74976
RS
8844@section Lexical Tie-ins and Error Recovery
8845
8846Lexical tie-ins make strict demands on any error recovery rules you have.
8847@xref{Error Recovery}.
8848
8849The reason for this is that the purpose of an error recovery rule is to
8850abort the parsing of one construct and resume in some larger construct.
8851For example, in C-like languages, a typical error recovery rule is to skip
8852tokens until the next semicolon, and then start a new statement, like this:
8853
8854@example
5e9b6624
AD
8855stmt:
8856 expr ';'
8857| IF '(' expr ')' stmt @{ @dots{} @}
8858@dots{}
8859| error ';' @{ hexflag = 0; @}
8860;
bfa74976
RS
8861@end example
8862
8863If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8864construct, this error rule will apply, and then the action for the
8865completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8866remain set for the entire rest of the input, or until the next @code{hex}
8867keyword, causing identifiers to be misinterpreted as integers.
8868
8869To avoid this problem the error recovery rule itself clears @code{hexflag}.
8870
8871There may also be an error recovery rule that works within expressions.
8872For example, there could be a rule which applies within parentheses
8873and skips to the close-parenthesis:
8874
8875@example
8876@group
5e9b6624
AD
8877expr:
8878 @dots{}
8879| '(' expr ')' @{ $$ = $2; @}
8880| '(' error ')'
8881@dots{}
bfa74976
RS
8882@end group
8883@end example
8884
8885If this rule acts within the @code{hex} construct, it is not going to abort
8886that construct (since it applies to an inner level of parentheses within
8887the construct). Therefore, it should not clear the flag: the rest of
8888the @code{hex} construct should be parsed with the flag still in effect.
8889
8890What if there is an error recovery rule which might abort out of the
8891@code{hex} construct or might not, depending on circumstances? There is no
8892way you can write the action to determine whether a @code{hex} construct is
8893being aborted or not. So if you are using a lexical tie-in, you had better
8894make sure your error recovery rules are not of this kind. Each rule must
8895be such that you can be sure that it always will, or always won't, have to
8896clear the flag.
8897
ec3bc396
AD
8898@c ================================================== Debugging Your Parser
8899
342b8b6e 8900@node Debugging
bfa74976 8901@chapter Debugging Your Parser
ec3bc396 8902
93c150b6
AD
8903Developing a parser can be a challenge, especially if you don't understand
8904the algorithm (@pxref{Algorithm, ,The Bison Parser Algorithm}). This
c949ada3
AD
8905chapter explains how understand and debug a parser.
8906
8907The first sections focus on the static part of the parser: its structure.
8908They explain how to generate and read the detailed description of the
8909automaton. There are several formats available:
8910@itemize @minus
8911@item
8912as text, see @ref{Understanding, , Understanding Your Parser};
8913
8914@item
8915as a graph, see @ref{Graphviz,, Visualizing Your Parser};
8916
8917@item
8918or as a markup report that can be turned, for instance, into HTML, see
8919@ref{Xml,, Visualizing your parser in multiple formats}.
8920@end itemize
8921
8922The last section focuses on the dynamic part of the parser: how to enable
8923and understand the parser run-time traces (@pxref{Tracing, ,Tracing Your
8924Parser}).
ec3bc396
AD
8925
8926@menu
8927* Understanding:: Understanding the structure of your parser.
fc4fdd62 8928* Graphviz:: Getting a visual representation of the parser.
9c16d399 8929* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
8930* Tracing:: Tracing the execution of your parser.
8931@end menu
8932
8933@node Understanding
8934@section Understanding Your Parser
8935
8936As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8937Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8938frequent than one would hope), looking at this automaton is required to
c949ada3 8939tune or simply fix a parser.
ec3bc396
AD
8940
8941The textual file is generated when the options @option{--report} or
e3fd1dcb 8942@option{--verbose} are specified, see @ref{Invocation, , Invoking
ec3bc396 8943Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
8944the parser implementation file name, and adding @samp{.output}
8945instead. Therefore, if the grammar file is @file{foo.y}, then the
8946parser implementation file is called @file{foo.tab.c} by default. As
8947a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8948
8949The following grammar file, @file{calc.y}, will be used in the sequel:
8950
8951@example
8952%token NUM STR
c949ada3 8953@group
ec3bc396
AD
8954%left '+' '-'
8955%left '*'
c949ada3 8956@end group
ec3bc396 8957%%
c949ada3 8958@group
5e9b6624
AD
8959exp:
8960 exp '+' exp
8961| exp '-' exp
8962| exp '*' exp
8963| exp '/' exp
8964| NUM
8965;
c949ada3 8966@end group
ec3bc396
AD
8967useless: STR;
8968%%
8969@end example
8970
88bce5a2
AD
8971@command{bison} reports:
8972
8973@example
8f0d265e
JD
8974calc.y: warning: 1 nonterminal useless in grammar
8975calc.y: warning: 1 rule useless in grammar
c949ada3
AD
8976calc.y:12.1-7: warning: nonterminal useless in grammar: useless
8977calc.y:12.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8978calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8979@end example
8980
8981When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8982creates a file @file{calc.output} with contents detailed below. The
8983order of the output and the exact presentation might vary, but the
8984interpretation is the same.
ec3bc396 8985
ec3bc396
AD
8986@noindent
8987@cindex token, useless
8988@cindex useless token
8989@cindex nonterminal, useless
8990@cindex useless nonterminal
8991@cindex rule, useless
8992@cindex useless rule
62243aa5 8993The first section reports useless tokens, nonterminals and rules. Useless
29e20e22
AD
8994nonterminals and rules are removed in order to produce a smaller parser, but
8995useless tokens are preserved, since they might be used by the scanner (note
8996the difference between ``useless'' and ``unused'' below):
ec3bc396
AD
8997
8998@example
29e20e22 8999Nonterminals useless in grammar
ec3bc396
AD
9000 useless
9001
29e20e22 9002Terminals unused in grammar
ec3bc396
AD
9003 STR
9004
29e20e22
AD
9005Rules useless in grammar
9006 6 useless: STR
ec3bc396
AD
9007@end example
9008
9009@noindent
29e20e22
AD
9010The next section lists states that still have conflicts.
9011
9012@example
9013State 8 conflicts: 1 shift/reduce
9014State 9 conflicts: 1 shift/reduce
9015State 10 conflicts: 1 shift/reduce
9016State 11 conflicts: 4 shift/reduce
9017@end example
9018
9019@noindent
9020Then Bison reproduces the exact grammar it used:
ec3bc396
AD
9021
9022@example
9023Grammar
9024
29e20e22
AD
9025 0 $accept: exp $end
9026
9027 1 exp: exp '+' exp
9028 2 | exp '-' exp
9029 3 | exp '*' exp
9030 4 | exp '/' exp
9031 5 | NUM
ec3bc396
AD
9032@end example
9033
9034@noindent
9035and reports the uses of the symbols:
9036
9037@example
d4fca427 9038@group
ec3bc396
AD
9039Terminals, with rules where they appear
9040
88bce5a2 9041$end (0) 0
ec3bc396
AD
9042'*' (42) 3
9043'+' (43) 1
9044'-' (45) 2
9045'/' (47) 4
9046error (256)
9047NUM (258) 5
29e20e22 9048STR (259)
d4fca427 9049@end group
ec3bc396 9050
d4fca427 9051@group
ec3bc396
AD
9052Nonterminals, with rules where they appear
9053
29e20e22 9054$accept (9)
ec3bc396 9055 on left: 0
29e20e22 9056exp (10)
ec3bc396 9057 on left: 1 2 3 4 5, on right: 0 1 2 3 4
d4fca427 9058@end group
ec3bc396
AD
9059@end example
9060
9061@noindent
9062@cindex item
9063@cindex pointed rule
9064@cindex rule, pointed
9065Bison then proceeds onto the automaton itself, describing each state
35880c82
PE
9066with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
9067item is a production rule together with a point (@samp{.}) marking
9068the location of the input cursor.
ec3bc396
AD
9069
9070@example
c949ada3 9071State 0
ec3bc396 9072
29e20e22 9073 0 $accept: . exp $end
ec3bc396 9074
29e20e22 9075 NUM shift, and go to state 1
ec3bc396 9076
29e20e22 9077 exp go to state 2
ec3bc396
AD
9078@end example
9079
9080This reads as follows: ``state 0 corresponds to being at the very
9081beginning of the parsing, in the initial rule, right before the start
9082symbol (here, @code{exp}). When the parser returns to this state right
9083after having reduced a rule that produced an @code{exp}, the control
9084flow jumps to state 2. If there is no such transition on a nonterminal
35880c82 9085symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 9086the parse stack, and the control flow jumps to state 1. Any other
742e4900 9087lookahead triggers a syntax error.''
ec3bc396
AD
9088
9089@cindex core, item set
9090@cindex item set core
9091@cindex kernel, item set
9092@cindex item set core
9093Even though the only active rule in state 0 seems to be rule 0, the
742e4900 9094report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
9095at the beginning of any rule deriving an @code{exp}. By default Bison
9096reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
9097you want to see more detail you can invoke @command{bison} with
35880c82 9098@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
9099
9100@example
c949ada3 9101State 0
ec3bc396 9102
29e20e22
AD
9103 0 $accept: . exp $end
9104 1 exp: . exp '+' exp
9105 2 | . exp '-' exp
9106 3 | . exp '*' exp
9107 4 | . exp '/' exp
9108 5 | . NUM
ec3bc396 9109
29e20e22 9110 NUM shift, and go to state 1
ec3bc396 9111
29e20e22 9112 exp go to state 2
ec3bc396
AD
9113@end example
9114
9115@noindent
29e20e22 9116In the state 1@dots{}
ec3bc396
AD
9117
9118@example
c949ada3 9119State 1
ec3bc396 9120
29e20e22 9121 5 exp: NUM .
ec3bc396 9122
29e20e22 9123 $default reduce using rule 5 (exp)
ec3bc396
AD
9124@end example
9125
9126@noindent
742e4900 9127the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396 9128(@samp{$default}), the parser will reduce it. If it was coming from
c949ada3 9129State 0, then, after this reduction it will return to state 0, and will
ec3bc396
AD
9130jump to state 2 (@samp{exp: go to state 2}).
9131
9132@example
c949ada3 9133State 2
ec3bc396 9134
29e20e22
AD
9135 0 $accept: exp . $end
9136 1 exp: exp . '+' exp
9137 2 | exp . '-' exp
9138 3 | exp . '*' exp
9139 4 | exp . '/' exp
ec3bc396 9140
29e20e22
AD
9141 $end shift, and go to state 3
9142 '+' shift, and go to state 4
9143 '-' shift, and go to state 5
9144 '*' shift, and go to state 6
9145 '/' shift, and go to state 7
ec3bc396
AD
9146@end example
9147
9148@noindent
9149In state 2, the automaton can only shift a symbol. For instance,
29e20e22 9150because of the item @samp{exp: exp . '+' exp}, if the lookahead is
35880c82 9151@samp{+} it is shifted onto the parse stack, and the automaton
29e20e22 9152jumps to state 4, corresponding to the item @samp{exp: exp '+' . exp}.
35880c82
PE
9153Since there is no default action, any lookahead not listed triggers a syntax
9154error.
ec3bc396 9155
eb45ef3b 9156@cindex accepting state
ec3bc396
AD
9157The state 3 is named the @dfn{final state}, or the @dfn{accepting
9158state}:
9159
9160@example
c949ada3 9161State 3
ec3bc396 9162
29e20e22 9163 0 $accept: exp $end .
ec3bc396 9164
29e20e22 9165 $default accept
ec3bc396
AD
9166@end example
9167
9168@noindent
29e20e22
AD
9169the initial rule is completed (the start symbol and the end-of-input were
9170read), the parsing exits successfully.
ec3bc396
AD
9171
9172The interpretation of states 4 to 7 is straightforward, and is left to
9173the reader.
9174
9175@example
c949ada3 9176State 4
ec3bc396 9177
29e20e22 9178 1 exp: exp '+' . exp
ec3bc396 9179
29e20e22
AD
9180 NUM shift, and go to state 1
9181
9182 exp go to state 8
ec3bc396 9183
ec3bc396 9184
c949ada3 9185State 5
ec3bc396 9186
29e20e22
AD
9187 2 exp: exp '-' . exp
9188
9189 NUM shift, and go to state 1
ec3bc396 9190
29e20e22 9191 exp go to state 9
ec3bc396 9192
ec3bc396 9193
c949ada3 9194State 6
ec3bc396 9195
29e20e22 9196 3 exp: exp '*' . exp
ec3bc396 9197
29e20e22
AD
9198 NUM shift, and go to state 1
9199
9200 exp go to state 10
ec3bc396 9201
ec3bc396 9202
c949ada3 9203State 7
ec3bc396 9204
29e20e22 9205 4 exp: exp '/' . exp
ec3bc396 9206
29e20e22 9207 NUM shift, and go to state 1
ec3bc396 9208
29e20e22 9209 exp go to state 11
ec3bc396
AD
9210@end example
9211
5a99098d
PE
9212As was announced in beginning of the report, @samp{State 8 conflicts:
92131 shift/reduce}:
ec3bc396
AD
9214
9215@example
c949ada3 9216State 8
ec3bc396 9217
29e20e22
AD
9218 1 exp: exp . '+' exp
9219 1 | exp '+' exp .
9220 2 | exp . '-' exp
9221 3 | exp . '*' exp
9222 4 | exp . '/' exp
ec3bc396 9223
29e20e22
AD
9224 '*' shift, and go to state 6
9225 '/' shift, and go to state 7
ec3bc396 9226
29e20e22
AD
9227 '/' [reduce using rule 1 (exp)]
9228 $default reduce using rule 1 (exp)
ec3bc396
AD
9229@end example
9230
742e4900 9231Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
9232either shifting (and going to state 7), or reducing rule 1. The
9233conflict means that either the grammar is ambiguous, or the parser lacks
9234information to make the right decision. Indeed the grammar is
9235ambiguous, as, since we did not specify the precedence of @samp{/}, the
9236sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
9237NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
9238NUM}, which corresponds to reducing rule 1.
9239
eb45ef3b 9240Because in deterministic parsing a single decision can be made, Bison
ec3bc396 9241arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
29e20e22 9242Shift/Reduce Conflicts}. Discarded actions are reported between
ec3bc396
AD
9243square brackets.
9244
9245Note that all the previous states had a single possible action: either
9246shifting the next token and going to the corresponding state, or
9247reducing a single rule. In the other cases, i.e., when shifting
9248@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
9249possible, the lookahead is required to select the action. State 8 is
9250one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
9251is shifting, otherwise the action is reducing rule 1. In other words,
9252the first two items, corresponding to rule 1, are not eligible when the
742e4900 9253lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 9254precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
9255with some set of possible lookahead tokens. When run with
9256@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
9257
9258@example
c949ada3 9259State 8
ec3bc396 9260
29e20e22
AD
9261 1 exp: exp . '+' exp
9262 1 | exp '+' exp . [$end, '+', '-', '/']
9263 2 | exp . '-' exp
9264 3 | exp . '*' exp
9265 4 | exp . '/' exp
9266
9267 '*' shift, and go to state 6
9268 '/' shift, and go to state 7
ec3bc396 9269
29e20e22
AD
9270 '/' [reduce using rule 1 (exp)]
9271 $default reduce using rule 1 (exp)
9272@end example
9273
9274Note however that while @samp{NUM + NUM / NUM} is ambiguous (which results in
9275the conflicts on @samp{/}), @samp{NUM + NUM * NUM} is not: the conflict was
9276solved thanks to associativity and precedence directives. If invoked with
9277@option{--report=solved}, Bison includes information about the solved
9278conflicts in the report:
ec3bc396 9279
29e20e22
AD
9280@example
9281Conflict between rule 1 and token '+' resolved as reduce (%left '+').
9282Conflict between rule 1 and token '-' resolved as reduce (%left '-').
9283Conflict between rule 1 and token '*' resolved as shift ('+' < '*').
ec3bc396
AD
9284@end example
9285
29e20e22 9286
ec3bc396
AD
9287The remaining states are similar:
9288
9289@example
d4fca427 9290@group
c949ada3 9291State 9
ec3bc396 9292
29e20e22
AD
9293 1 exp: exp . '+' exp
9294 2 | exp . '-' exp
9295 2 | exp '-' exp .
9296 3 | exp . '*' exp
9297 4 | exp . '/' exp
ec3bc396 9298
29e20e22
AD
9299 '*' shift, and go to state 6
9300 '/' shift, and go to state 7
ec3bc396 9301
29e20e22
AD
9302 '/' [reduce using rule 2 (exp)]
9303 $default reduce using rule 2 (exp)
d4fca427 9304@end group
ec3bc396 9305
d4fca427 9306@group
c949ada3 9307State 10
ec3bc396 9308
29e20e22
AD
9309 1 exp: exp . '+' exp
9310 2 | exp . '-' exp
9311 3 | exp . '*' exp
9312 3 | exp '*' exp .
9313 4 | exp . '/' exp
ec3bc396 9314
29e20e22 9315 '/' shift, and go to state 7
ec3bc396 9316
29e20e22
AD
9317 '/' [reduce using rule 3 (exp)]
9318 $default reduce using rule 3 (exp)
d4fca427 9319@end group
ec3bc396 9320
d4fca427 9321@group
c949ada3 9322State 11
ec3bc396 9323
29e20e22
AD
9324 1 exp: exp . '+' exp
9325 2 | exp . '-' exp
9326 3 | exp . '*' exp
9327 4 | exp . '/' exp
9328 4 | exp '/' exp .
9329
9330 '+' shift, and go to state 4
9331 '-' shift, and go to state 5
9332 '*' shift, and go to state 6
9333 '/' shift, and go to state 7
9334
9335 '+' [reduce using rule 4 (exp)]
9336 '-' [reduce using rule 4 (exp)]
9337 '*' [reduce using rule 4 (exp)]
9338 '/' [reduce using rule 4 (exp)]
9339 $default reduce using rule 4 (exp)
d4fca427 9340@end group
ec3bc396
AD
9341@end example
9342
9343@noindent
fa7e68c3 9344Observe that state 11 contains conflicts not only due to the lack of
c949ada3
AD
9345precedence of @samp{/} with respect to @samp{+}, @samp{-}, and @samp{*}, but
9346also because the associativity of @samp{/} is not specified.
ec3bc396 9347
c949ada3
AD
9348Bison may also produce an HTML version of this output, via an XML file and
9349XSLT processing (@pxref{Xml,,Visualizing your parser in multiple formats}).
9c16d399 9350
fc4fdd62
TR
9351@c ================================================= Graphical Representation
9352
9353@node Graphviz
9354@section Visualizing Your Parser
9355@cindex dot
9356
9357As another means to gain better understanding of the shift/reduce
9358automaton corresponding to the Bison parser, a DOT file can be generated. Note
9359that debugging a real grammar with this is tedious at best, and impractical
9360most of the times, because the generated files are huge (the generation of
9361a PDF or PNG file from it will take very long, and more often than not it will
9362fail due to memory exhaustion). This option was rather designed for beginners,
9363to help them understand LR parsers.
9364
bfdcc3a0
AD
9365This file is generated when the @option{--graph} option is specified
9366(@pxref{Invocation, , Invoking Bison}). Its name is made by removing
fc4fdd62
TR
9367@samp{.tab.c} or @samp{.c} from the parser implementation file name, and
9368adding @samp{.dot} instead. If the grammar file is @file{foo.y}, the
c949ada3
AD
9369Graphviz output file is called @file{foo.dot}. A DOT file may also be
9370produced via an XML file and XSLT processing (@pxref{Xml,,Visualizing your
9371parser in multiple formats}).
9372
fc4fdd62
TR
9373
9374The following grammar file, @file{rr.y}, will be used in the sequel:
9375
9376@example
9377%%
9378@group
9379exp: a ";" | b ".";
9380a: "0";
9381b: "0";
9382@end group
9383@end example
9384
c949ada3
AD
9385The graphical output
9386@ifnotinfo
9387(see @ref{fig:graph})
9388@end ifnotinfo
9389is very similar to the textual one, and as such it is easier understood by
9390making direct comparisons between them. @xref{Debugging, , Debugging Your
9391Parser}, for a detailled analysis of the textual report.
9392
9393@ifnotinfo
9394@float Figure,fig:graph
9395@image{figs/example, 430pt}
9396@caption{A graphical rendering of the parser.}
9397@end float
9398@end ifnotinfo
fc4fdd62
TR
9399
9400@subheading Graphical Representation of States
9401
9402The items (pointed rules) for each state are grouped together in graph nodes.
9403Their numbering is the same as in the verbose file. See the following points,
9404about transitions, for examples
9405
9406When invoked with @option{--report=lookaheads}, the lookahead tokens, when
9407needed, are shown next to the relevant rule between square brackets as a
9408comma separated list. This is the case in the figure for the representation of
9409reductions, below.
9410
9411@sp 1
9412
9413The transitions are represented as directed edges between the current and
9414the target states.
9415
9416@subheading Graphical Representation of Shifts
9417
9418Shifts are shown as solid arrows, labelled with the lookahead token for that
9419shift. The following describes a reduction in the @file{rr.output} file:
9420
9421@example
9422@group
c949ada3 9423State 3
fc4fdd62
TR
9424
9425 1 exp: a . ";"
9426
9427 ";" shift, and go to state 6
9428@end group
9429@end example
9430
9431A Graphviz rendering of this portion of the graph could be:
9432
9433@center @image{figs/example-shift, 100pt}
9434
9435@subheading Graphical Representation of Reductions
9436
9437Reductions are shown as solid arrows, leading to a diamond-shaped node
9438bearing the number of the reduction rule. The arrow is labelled with the
9439appropriate comma separated lookahead tokens. If the reduction is the default
9440action for the given state, there is no such label.
9441
9442This is how reductions are represented in the verbose file @file{rr.output}:
9443@example
c949ada3 9444State 1
fc4fdd62
TR
9445
9446 3 a: "0" . [";"]
9447 4 b: "0" . ["."]
9448
9449 "." reduce using rule 4 (b)
9450 $default reduce using rule 3 (a)
9451@end example
9452
9453A Graphviz rendering of this portion of the graph could be:
9454
9455@center @image{figs/example-reduce, 120pt}
9456
9457When unresolved conflicts are present, because in deterministic parsing
9458a single decision can be made, Bison can arbitrarily choose to disable a
9459reduction, see @ref{Shift/Reduce, , Shift/Reduce Conflicts}. Discarded actions
9460are distinguished by a red filling color on these nodes, just like how they are
9461reported between square brackets in the verbose file.
9462
c949ada3
AD
9463The reduction corresponding to the rule number 0 is the acceptation
9464state. It is shown as a blue diamond, labelled ``Acc''.
fc4fdd62
TR
9465
9466@subheading Graphical representation of go tos
9467
9468The @samp{go to} jump transitions are represented as dotted lines bearing
9469the name of the rule being jumped to.
9470
9c16d399
TR
9471@c ================================================= XML
9472
9473@node Xml
9474@section Visualizing your parser in multiple formats
9475@cindex xml
9476
9477Bison supports two major report formats: textual output
c949ada3
AD
9478(@pxref{Understanding, ,Understanding Your Parser}) when invoked
9479with option @option{--verbose}, and DOT
9480(@pxref{Graphviz,, Visualizing Your Parser}) when invoked with
9481option @option{--graph}. However,
9c16d399
TR
9482another alternative is to output an XML file that may then be, with
9483@command{xsltproc}, rendered as either a raw text format equivalent to the
9484verbose file, or as an HTML version of the same file, with clickable
9485transitions, or even as a DOT. The @file{.output} and DOT files obtained via
be3517b0
TR
9486XSLT have no difference whatsoever with those obtained by invoking
9487@command{bison} with options @option{--verbose} or @option{--graph}.
9c16d399 9488
c949ada3 9489The XML file is generated when the options @option{-x} or
9c16d399
TR
9490@option{--xml[=FILE]} are specified, see @ref{Invocation,,Invoking Bison}.
9491If not specified, its name is made by removing @samp{.tab.c} or @samp{.c}
9492from the parser implementation file name, and adding @samp{.xml} instead.
9493For instance, if the grammar file is @file{foo.y}, the default XML output
9494file is @file{foo.xml}.
9495
9496Bison ships with a @file{data/xslt} directory, containing XSL Transformation
9497files to apply to the XML file. Their names are non-ambiguous:
9498
9499@table @file
9500@item xml2dot.xsl
be3517b0 9501Used to output a copy of the DOT visualization of the automaton.
9c16d399 9502@item xml2text.xsl
c949ada3 9503Used to output a copy of the @samp{.output} file.
9c16d399 9504@item xml2xhtml.xsl
c949ada3 9505Used to output an xhtml enhancement of the @samp{.output} file.
9c16d399
TR
9506@end table
9507
c949ada3 9508Sample usage (requires @command{xsltproc}):
9c16d399 9509@example
c949ada3 9510$ bison -x gr.y
9c16d399
TR
9511@group
9512$ bison --print-datadir
9513/usr/local/share/bison
9514@end group
c949ada3 9515$ xsltproc /usr/local/share/bison/xslt/xml2xhtml.xsl gr.xml >gr.html
9c16d399
TR
9516@end example
9517
fc4fdd62 9518@c ================================================= Tracing
ec3bc396
AD
9519
9520@node Tracing
9521@section Tracing Your Parser
bfa74976
RS
9522@findex yydebug
9523@cindex debugging
9524@cindex tracing the parser
9525
93c150b6
AD
9526When a Bison grammar compiles properly but parses ``incorrectly'', the
9527@code{yydebug} parser-trace feature helps figuring out why.
9528
9529@menu
9530* Enabling Traces:: Activating run-time trace support
9531* Mfcalc Traces:: Extending @code{mfcalc} to support traces
9532* The YYPRINT Macro:: Obsolete interface for semantic value reports
9533@end menu
bfa74976 9534
93c150b6
AD
9535@node Enabling Traces
9536@subsection Enabling Traces
3ded9a63
AD
9537There are several means to enable compilation of trace facilities:
9538
9539@table @asis
9540@item the macro @code{YYDEBUG}
9541@findex YYDEBUG
9542Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 9543parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
9544@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
9545YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
9546Prologue}).
9547
e6ae99fe 9548If the @code{%define} variable @code{api.prefix} is used (@pxref{Multiple
e358222b
AD
9549Parsers, ,Multiple Parsers in the Same Program}), for instance @samp{%define
9550api.prefix x}, then if @code{CDEBUG} is defined, its value controls the
5a05f42e
AD
9551tracing feature (enabled if and only if nonzero); otherwise tracing is
9552enabled if and only if @code{YYDEBUG} is nonzero.
e358222b
AD
9553
9554@item the option @option{-t} (POSIX Yacc compliant)
9555@itemx the option @option{--debug} (Bison extension)
9556Use the @samp{-t} option when you run Bison (@pxref{Invocation, ,Invoking
9557Bison}). With @samp{%define api.prefix c}, it defines @code{CDEBUG} to 1,
9558otherwise it defines @code{YYDEBUG} to 1.
3ded9a63
AD
9559
9560@item the directive @samp{%debug}
9561@findex %debug
fa819509
AD
9562Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
9563Summary}). This Bison extension is maintained for backward
9564compatibility with previous versions of Bison.
9565
9566@item the variable @samp{parse.trace}
9567@findex %define parse.trace
35c1e5f0
JD
9568Add the @samp{%define parse.trace} directive (@pxref{%define
9569Summary,,parse.trace}), or pass the @option{-Dparse.trace} option
fa819509 9570(@pxref{Bison Options}). This is a Bison extension, which is especially
35c1e5f0
JD
9571useful for languages that don't use a preprocessor. Unless POSIX and Yacc
9572portability matter to you, this is the preferred solution.
3ded9a63
AD
9573@end table
9574
fa819509 9575We suggest that you always enable the trace option so that debugging is
3ded9a63 9576always possible.
bfa74976 9577
93c150b6 9578@findex YYFPRINTF
02a81e05 9579The trace facility outputs messages with macro calls of the form
e2742e46 9580@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 9581@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
9582arguments. If you define @code{YYDEBUG} to a nonzero value but do not
9583define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 9584and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
9585
9586Once you have compiled the program with trace facilities, the way to
9587request a trace is to store a nonzero value in the variable @code{yydebug}.
9588You can do this by making the C code do it (in @code{main}, perhaps), or
9589you can alter the value with a C debugger.
9590
9591Each step taken by the parser when @code{yydebug} is nonzero produces a
9592line or two of trace information, written on @code{stderr}. The trace
9593messages tell you these things:
9594
9595@itemize @bullet
9596@item
9597Each time the parser calls @code{yylex}, what kind of token was read.
9598
9599@item
9600Each time a token is shifted, the depth and complete contents of the
9601state stack (@pxref{Parser States}).
9602
9603@item
9604Each time a rule is reduced, which rule it is, and the complete contents
9605of the state stack afterward.
9606@end itemize
9607
93c150b6
AD
9608To make sense of this information, it helps to refer to the automaton
9609description file (@pxref{Understanding, ,Understanding Your Parser}).
9610This file shows the meaning of each state in terms of
704a47c4
AD
9611positions in various rules, and also what each state will do with each
9612possible input token. As you read the successive trace messages, you
9613can see that the parser is functioning according to its specification in
9614the listing file. Eventually you will arrive at the place where
9615something undesirable happens, and you will see which parts of the
9616grammar are to blame.
bfa74976 9617
93c150b6 9618The parser implementation file is a C/C++/Java program and you can use
ff7571c0
JD
9619debuggers on it, but it's not easy to interpret what it is doing. The
9620parser function is a finite-state machine interpreter, and aside from
9621the actions it executes the same code over and over. Only the values
9622of variables show where in the grammar it is working.
bfa74976 9623
93c150b6
AD
9624@node Mfcalc Traces
9625@subsection Enabling Debug Traces for @code{mfcalc}
9626
9627The debugging information normally gives the token type of each token read,
9628but not its semantic value. The @code{%printer} directive allows specify
9629how semantic values are reported, see @ref{Printer Decl, , Printing
9630Semantic Values}. For backward compatibility, Yacc like C parsers may also
9631use the @code{YYPRINT} (@pxref{The YYPRINT Macro, , The @code{YYPRINT}
9632Macro}), but its use is discouraged.
9633
9634As a demonstration of @code{%printer}, consider the multi-function
9635calculator, @code{mfcalc} (@pxref{Multi-function Calc}). To enable run-time
9636traces, and semantic value reports, insert the following directives in its
9637prologue:
9638
9639@comment file: mfcalc.y: 2
9640@example
9641/* Generate the parser description file. */
9642%verbose
9643/* Enable run-time traces (yydebug). */
9644%define parse.trace
9645
9646/* Formatting semantic values. */
9647%printer @{ fprintf (yyoutput, "%s", $$->name); @} VAR;
9648%printer @{ fprintf (yyoutput, "%s()", $$->name); @} FNCT;
90b89dad 9649%printer @{ fprintf (yyoutput, "%g", $$); @} <double>;
93c150b6
AD
9650@end example
9651
9652The @code{%define} directive instructs Bison to generate run-time trace
9653support. Then, activation of these traces is controlled at run-time by the
9654@code{yydebug} variable, which is disabled by default. Because these traces
9655will refer to the ``states'' of the parser, it is helpful to ask for the
9656creation of a description of that parser; this is the purpose of (admittedly
9657ill-named) @code{%verbose} directive.
9658
9659The set of @code{%printer} directives demonstrates how to format the
9660semantic value in the traces. Note that the specification can be done
9661either on the symbol type (e.g., @code{VAR} or @code{FNCT}), or on the type
90b89dad
AD
9662tag: since @code{<double>} is the type for both @code{NUM} and @code{exp},
9663this printer will be used for them.
93c150b6
AD
9664
9665Here is a sample of the information provided by run-time traces. The traces
9666are sent onto standard error.
9667
9668@example
9669$ @kbd{echo 'sin(1-1)' | ./mfcalc -p}
9670Starting parse
9671Entering state 0
9672Reducing stack by rule 1 (line 34):
9673-> $$ = nterm input ()
9674Stack now 0
9675Entering state 1
9676@end example
9677
9678@noindent
9679This first batch shows a specific feature of this grammar: the first rule
9680(which is in line 34 of @file{mfcalc.y} can be reduced without even having
9681to look for the first token. The resulting left-hand symbol (@code{$$}) is
9682a valueless (@samp{()}) @code{input} non terminal (@code{nterm}).
9683
9684Then the parser calls the scanner.
9685@example
9686Reading a token: Next token is token FNCT (sin())
9687Shifting token FNCT (sin())
9688Entering state 6
9689@end example
9690
9691@noindent
9692That token (@code{token}) is a function (@code{FNCT}) whose value is
9693@samp{sin} as formatted per our @code{%printer} specification: @samp{sin()}.
9694The parser stores (@code{Shifting}) that token, and others, until it can do
9695something about it.
9696
9697@example
9698Reading a token: Next token is token '(' ()
9699Shifting token '(' ()
9700Entering state 14
9701Reading a token: Next token is token NUM (1.000000)
9702Shifting token NUM (1.000000)
9703Entering state 4
9704Reducing stack by rule 6 (line 44):
9705 $1 = token NUM (1.000000)
9706-> $$ = nterm exp (1.000000)
9707Stack now 0 1 6 14
9708Entering state 24
9709@end example
9710
9711@noindent
9712The previous reduction demonstrates the @code{%printer} directive for
90b89dad 9713@code{<double>}: both the token @code{NUM} and the resulting nonterminal
93c150b6
AD
9714@code{exp} have @samp{1} as value.
9715
9716@example
9717Reading a token: Next token is token '-' ()
9718Shifting token '-' ()
9719Entering state 17
9720Reading a token: Next token is token NUM (1.000000)
9721Shifting token NUM (1.000000)
9722Entering state 4
9723Reducing stack by rule 6 (line 44):
9724 $1 = token NUM (1.000000)
9725-> $$ = nterm exp (1.000000)
9726Stack now 0 1 6 14 24 17
9727Entering state 26
9728Reading a token: Next token is token ')' ()
9729Reducing stack by rule 11 (line 49):
9730 $1 = nterm exp (1.000000)
9731 $2 = token '-' ()
9732 $3 = nterm exp (1.000000)
9733-> $$ = nterm exp (0.000000)
9734Stack now 0 1 6 14
9735Entering state 24
9736@end example
9737
9738@noindent
9739The rule for the subtraction was just reduced. The parser is about to
9740discover the end of the call to @code{sin}.
9741
9742@example
9743Next token is token ')' ()
9744Shifting token ')' ()
9745Entering state 31
9746Reducing stack by rule 9 (line 47):
9747 $1 = token FNCT (sin())
9748 $2 = token '(' ()
9749 $3 = nterm exp (0.000000)
9750 $4 = token ')' ()
9751-> $$ = nterm exp (0.000000)
9752Stack now 0 1
9753Entering state 11
9754@end example
9755
9756@noindent
9757Finally, the end-of-line allow the parser to complete the computation, and
9758display its result.
9759
9760@example
9761Reading a token: Next token is token '\n' ()
9762Shifting token '\n' ()
9763Entering state 22
9764Reducing stack by rule 4 (line 40):
9765 $1 = nterm exp (0.000000)
9766 $2 = token '\n' ()
9767@result{} 0
9768-> $$ = nterm line ()
9769Stack now 0 1
9770Entering state 10
9771Reducing stack by rule 2 (line 35):
9772 $1 = nterm input ()
9773 $2 = nterm line ()
9774-> $$ = nterm input ()
9775Stack now 0
9776Entering state 1
9777@end example
9778
9779The parser has returned into state 1, in which it is waiting for the next
9780expression to evaluate, or for the end-of-file token, which causes the
9781completion of the parsing.
9782
9783@example
9784Reading a token: Now at end of input.
9785Shifting token $end ()
9786Entering state 2
9787Stack now 0 1 2
9788Cleanup: popping token $end ()
9789Cleanup: popping nterm input ()
9790@end example
9791
9792
9793@node The YYPRINT Macro
9794@subsection The @code{YYPRINT} Macro
9795
bfa74976 9796@findex YYPRINT
93c150b6
AD
9797Before @code{%printer} support, semantic values could be displayed using the
9798@code{YYPRINT} macro, which works only for terminal symbols and only with
9799the @file{yacc.c} skeleton.
9800
9801@deffn {Macro} YYPRINT (@var{stream}, @var{token}, @var{value});
9802@findex YYPRINT
9803If you define @code{YYPRINT}, it should take three arguments. The parser
9804will pass a standard I/O stream, the numeric code for the token type, and
9805the token value (from @code{yylval}).
9806
9807For @file{yacc.c} only. Obsoleted by @code{%printer}.
9808@end deffn
bfa74976
RS
9809
9810Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 9811calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976 9812
c93f22fc 9813@example
38a92d50
PE
9814%@{
9815 static void print_token_value (FILE *, int, YYSTYPE);
93c150b6
AD
9816 #define YYPRINT(File, Type, Value) \
9817 print_token_value (File, Type, Value)
38a92d50
PE
9818%@}
9819
9820@dots{} %% @dots{} %% @dots{}
bfa74976
RS
9821
9822static void
831d3c99 9823print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
9824@{
9825 if (type == VAR)
d3c4e709 9826 fprintf (file, "%s", value.tptr->name);
bfa74976 9827 else if (type == NUM)
d3c4e709 9828 fprintf (file, "%d", value.val);
bfa74976 9829@}
c93f22fc 9830@end example
bfa74976 9831
ec3bc396
AD
9832@c ================================================= Invoking Bison
9833
342b8b6e 9834@node Invocation
bfa74976
RS
9835@chapter Invoking Bison
9836@cindex invoking Bison
9837@cindex Bison invocation
9838@cindex options for invoking Bison
9839
9840The usual way to invoke Bison is as follows:
9841
9842@example
9843bison @var{infile}
9844@end example
9845
9846Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
9847@samp{.y}. The parser implementation file's name is made by replacing
9848the @samp{.y} with @samp{.tab.c} and removing any leading directory.
9849Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
9850the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
9851also possible, in case you are writing C++ code instead of C in your
9852grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
9853output files will take an extension like the given one as input
9854(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
9855feature takes effect with all options that manipulate file names like
234a3be3
AD
9856@samp{-o} or @samp{-d}.
9857
9858For example :
9859
9860@example
9861bison -d @var{infile.yxx}
9862@end example
84163231 9863@noindent
72d2299c 9864will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
9865
9866@example
b56471a6 9867bison -d -o @var{output.c++} @var{infile.y}
234a3be3 9868@end example
84163231 9869@noindent
234a3be3
AD
9870will produce @file{output.c++} and @file{outfile.h++}.
9871
8a4281b9 9872For compatibility with POSIX, the standard Bison
397ec073
PE
9873distribution also contains a shell script called @command{yacc} that
9874invokes Bison with the @option{-y} option.
9875
bfa74976 9876@menu
13863333 9877* Bison Options:: All the options described in detail,
c827f760 9878 in alphabetical order by short options.
bfa74976 9879* Option Cross Key:: Alphabetical list of long options.
93dd49ab 9880* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
9881@end menu
9882
342b8b6e 9883@node Bison Options
bfa74976
RS
9884@section Bison Options
9885
9886Bison supports both traditional single-letter options and mnemonic long
9887option names. Long option names are indicated with @samp{--} instead of
9888@samp{-}. Abbreviations for option names are allowed as long as they
9889are unique. When a long option takes an argument, like
9890@samp{--file-prefix}, connect the option name and the argument with
9891@samp{=}.
9892
9893Here is a list of options that can be used with Bison, alphabetized by
9894short option. It is followed by a cross key alphabetized by long
9895option.
9896
4c9b8f13 9897@c Please, keep this ordered as in 'bison --help'.
89cab50d
AD
9898@noindent
9899Operations modes:
9900@table @option
9901@item -h
9902@itemx --help
9903Print a summary of the command-line options to Bison and exit.
bfa74976 9904
89cab50d
AD
9905@item -V
9906@itemx --version
9907Print the version number of Bison and exit.
bfa74976 9908
f7ab6a50
PE
9909@item --print-localedir
9910Print the name of the directory containing locale-dependent data.
9911
a0de5091
JD
9912@item --print-datadir
9913Print the name of the directory containing skeletons and XSLT.
9914
89cab50d
AD
9915@item -y
9916@itemx --yacc
ff7571c0
JD
9917Act more like the traditional Yacc command. This can cause different
9918diagnostics to be generated, and may change behavior in other minor
9919ways. Most importantly, imitate Yacc's output file name conventions,
9920so that the parser implementation file is called @file{y.tab.c}, and
9921the other outputs are called @file{y.output} and @file{y.tab.h}.
9922Also, if generating a deterministic parser in C, generate
9923@code{#define} statements in addition to an @code{enum} to associate
9924token numbers with token names. Thus, the following shell script can
9925substitute for Yacc, and the Bison distribution contains such a script
9926for compatibility with POSIX:
bfa74976 9927
89cab50d 9928@example
397ec073 9929#! /bin/sh
26e06a21 9930bison -y "$@@"
89cab50d 9931@end example
54662697
PE
9932
9933The @option{-y}/@option{--yacc} option is intended for use with
9934traditional Yacc grammars. If your grammar uses a Bison extension
9935like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
9936this option is specified.
9937
1d5b3c08
JD
9938@item -W [@var{category}]
9939@itemx --warnings[=@var{category}]
118d4978
AD
9940Output warnings falling in @var{category}. @var{category} can be one
9941of:
9942@table @code
9943@item midrule-values
8e55b3aa
JD
9944Warn about mid-rule values that are set but not used within any of the actions
9945of the parent rule.
9946For example, warn about unused @code{$2} in:
118d4978
AD
9947
9948@example
9949exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
9950@end example
9951
8e55b3aa
JD
9952Also warn about mid-rule values that are used but not set.
9953For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
9954
9955@example
5e9b6624 9956exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
118d4978
AD
9957@end example
9958
9959These warnings are not enabled by default since they sometimes prove to
9960be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 9961@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 9962
118d4978 9963@item yacc
8a4281b9 9964Incompatibilities with POSIX Yacc.
118d4978 9965
786743d5
JD
9966@item conflicts-sr
9967@itemx conflicts-rr
9968S/R and R/R conflicts. These warnings are enabled by default. However, if
9969the @code{%expect} or @code{%expect-rr} directive is specified, an
9970unexpected number of conflicts is an error, and an expected number of
9971conflicts is not reported, so @option{-W} and @option{--warning} then have
9972no effect on the conflict report.
9973
518e8830
AD
9974@item deprecated
9975Deprecated constructs whose support will be removed in future versions of
9976Bison.
9977
09add9c2
AD
9978@item empty-rule
9979Empty rules without @code{%empty}. @xref{Empty Rules}. Disabled by
9980default, but enabled by uses of @code{%empty}, unless
9981@option{-Wno-empty-rule} was specified.
9982
cc2235ac
VT
9983@item precedence
9984Useless precedence and associativity directives. Disabled by default.
9985
9986Consider for instance the following grammar:
9987
9988@example
9989@group
9990%nonassoc "="
9991%left "+"
9992%left "*"
9993%precedence "("
9994@end group
9995%%
9996@group
9997stmt:
9998 exp
9999| "var" "=" exp
10000;
10001@end group
10002
10003@group
10004exp:
10005 exp "+" exp
10006| exp "*" "num"
10007| "(" exp ")"
10008| "num"
10009;
10010@end group
10011@end example
10012
10013Bison reports:
10014
10015@c cannot leave the location and the [-Wprecedence] for lack of
10016@c width in PDF.
10017@example
10018@group
10019warning: useless precedence and associativity for "="
10020 %nonassoc "="
10021 ^^^
10022@end group
10023@group
10024warning: useless associativity for "*", use %precedence
10025 %left "*"
10026 ^^^
10027@end group
10028@group
10029warning: useless precedence for "("
10030 %precedence "("
10031 ^^^
10032@end group
10033@end example
10034
10035One would get the exact same parser with the following directives instead:
10036
10037@example
10038@group
10039%left "+"
10040%precedence "*"
10041@end group
10042@end example
10043
c39014ae
JD
10044@item other
10045All warnings not categorized above. These warnings are enabled by default.
10046
10047This category is provided merely for the sake of completeness. Future
10048releases of Bison may move warnings from this category to new, more specific
10049categories.
10050
118d4978 10051@item all
f24695ef
AD
10052All the warnings except @code{yacc}.
10053
118d4978 10054@item none
8e55b3aa 10055Turn off all the warnings.
f24695ef 10056
118d4978 10057@item error
1048a1c9 10058See @option{-Werror}, below.
118d4978
AD
10059@end table
10060
10061A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 10062instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 10063POSIX Yacc incompatibilities.
1048a1c9
AD
10064
10065@item -Werror[=@var{category}]
10066@itemx -Wno-error[=@var{category}]
10067Enable warnings falling in @var{category}, and treat them as errors. If no
10068@var{category} is given, it defaults to making all enabled warnings into errors.
10069
10070@var{category} is the same as for @option{--warnings}, with the exception that
10071it may not be prefixed with @samp{no-} (see above).
10072
10073Prefixed with @samp{no}, it deactivates the error treatment for this
10074@var{category}. However, the warning itself won't be disabled, or enabled, by
10075this option.
10076
10077Note that the precedence of the @samp{=} and @samp{,} operators is such that
10078the following commands are @emph{not} equivalent, as the first will not treat
10079S/R conflicts as errors.
10080
10081@example
10082$ bison -Werror=yacc,conflicts-sr input.y
10083$ bison -Werror=yacc,error=conflicts-sr input.y
10084@end example
f3ead217 10085
7bada535
TR
10086@item -f [@var{feature}]
10087@itemx --feature[=@var{feature}]
10088Activate miscellaneous @var{feature}. @var{feature} can be one of:
10089@table @code
10090@item caret
10091@itemx diagnostics-show-caret
10092Show caret errors, in a manner similar to GCC's
10093@option{-fdiagnostics-show-caret}, or Clang's @option{-fcaret-diagnotics}. The
10094location provided with the message is used to quote the corresponding line of
10095the source file, underlining the important part of it with carets (^). Here is
c949ada3 10096an example, using the following file @file{in.y}:
7bada535
TR
10097
10098@example
10099%type <ival> exp
10100%%
10101exp: exp '+' exp @{ $exp = $1 + $2; @};
10102@end example
10103
016426c1 10104When invoked with @option{-fcaret} (or nothing), Bison will report:
7bada535
TR
10105
10106@example
10107@group
c949ada3 10108in.y:3.20-23: error: ambiguous reference: '$exp'
7bada535
TR
10109 exp: exp '+' exp @{ $exp = $1 + $2; @};
10110 ^^^^
10111@end group
10112@group
c949ada3 10113in.y:3.1-3: refers to: $exp at $$
7bada535
TR
10114 exp: exp '+' exp @{ $exp = $1 + $2; @};
10115 ^^^
10116@end group
10117@group
c949ada3 10118in.y:3.6-8: refers to: $exp at $1
7bada535
TR
10119 exp: exp '+' exp @{ $exp = $1 + $2; @};
10120 ^^^
10121@end group
10122@group
c949ada3 10123in.y:3.14-16: refers to: $exp at $3
7bada535
TR
10124 exp: exp '+' exp @{ $exp = $1 + $2; @};
10125 ^^^
10126@end group
10127@group
c949ada3 10128in.y:3.32-33: error: $2 of 'exp' has no declared type
7bada535
TR
10129 exp: exp '+' exp @{ $exp = $1 + $2; @};
10130 ^^
10131@end group
10132@end example
10133
016426c1
TR
10134Whereas, when invoked with @option{-fno-caret}, Bison will only report:
10135
10136@example
10137@group
10138in.y:3.20-23: error: ambiguous reference: ‘$exp’
10139in.y:3.1-3: refers to: $exp at $$
10140in.y:3.6-8: refers to: $exp at $1
10141in.y:3.14-16: refers to: $exp at $3
10142in.y:3.32-33: error: $2 of ‘exp’ has no declared type
10143@end group
10144@end example
10145
10146This option is activated by default.
10147
7bada535 10148@end table
89cab50d
AD
10149@end table
10150
10151@noindent
10152Tuning the parser:
10153
10154@table @option
10155@item -t
10156@itemx --debug
ff7571c0
JD
10157In the parser implementation file, define the macro @code{YYDEBUG} to
101581 if it is not already defined, so that the debugging facilities are
10159compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 10160
58697c6d
AD
10161@item -D @var{name}[=@var{value}]
10162@itemx --define=@var{name}[=@var{value}]
17aed602 10163@itemx -F @var{name}[=@var{value}]
de5ab940
JD
10164@itemx --force-define=@var{name}[=@var{value}]
10165Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
35c1e5f0 10166(@pxref{%define Summary}) except that Bison processes multiple
de5ab940
JD
10167definitions for the same @var{name} as follows:
10168
10169@itemize
10170@item
0b6d43c5
JD
10171Bison quietly ignores all command-line definitions for @var{name} except
10172the last.
de5ab940 10173@item
0b6d43c5
JD
10174If that command-line definition is specified by a @code{-D} or
10175@code{--define}, Bison reports an error for any @code{%define}
10176definition for @var{name}.
de5ab940 10177@item
0b6d43c5
JD
10178If that command-line definition is specified by a @code{-F} or
10179@code{--force-define} instead, Bison quietly ignores all @code{%define}
10180definitions for @var{name}.
10181@item
10182Otherwise, Bison reports an error if there are multiple @code{%define}
10183definitions for @var{name}.
de5ab940
JD
10184@end itemize
10185
10186You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
10187make files unless you are confident that it is safe to quietly ignore
10188any conflicting @code{%define} that may be added to the grammar file.
58697c6d 10189
0e021770
PE
10190@item -L @var{language}
10191@itemx --language=@var{language}
10192Specify the programming language for the generated parser, as if
10193@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 10194Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 10195@var{language} is case-insensitive.
0e021770 10196
89cab50d 10197@item --locations
d8988b2f 10198Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
10199
10200@item -p @var{prefix}
10201@itemx --name-prefix=@var{prefix}
4b3847c3
AD
10202Pretend that @code{%name-prefix "@var{prefix}"} was specified (@pxref{Decl
10203Summary}). Obsoleted by @code{-Dapi.prefix=@var{prefix}}. @xref{Multiple
10204Parsers, ,Multiple Parsers in the Same Program}.
bfa74976
RS
10205
10206@item -l
10207@itemx --no-lines
ff7571c0
JD
10208Don't put any @code{#line} preprocessor commands in the parser
10209implementation file. Ordinarily Bison puts them in the parser
10210implementation file so that the C compiler and debuggers will
10211associate errors with your source file, the grammar file. This option
10212causes them to associate errors with the parser implementation file,
10213treating it as an independent source file in its own right.
bfa74976 10214
e6e704dc
JD
10215@item -S @var{file}
10216@itemx --skeleton=@var{file}
a7867f53 10217Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
10218(@pxref{Decl Summary, , Bison Declaration Summary}).
10219
ed4d67dc
JD
10220@c You probably don't need this option unless you are developing Bison.
10221@c You should use @option{--language} if you want to specify the skeleton for a
10222@c different language, because it is clearer and because it will always
10223@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 10224
a7867f53
JD
10225If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
10226file in the Bison installation directory.
10227If it does, @var{file} is an absolute file name or a file name relative to the
10228current working directory.
10229This is similar to how most shells resolve commands.
10230
89cab50d
AD
10231@item -k
10232@itemx --token-table
d8988b2f 10233Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 10234@end table
bfa74976 10235
89cab50d
AD
10236@noindent
10237Adjust the output:
bfa74976 10238
89cab50d 10239@table @option
8e55b3aa 10240@item --defines[=@var{file}]
d8988b2f 10241Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 10242file containing macro definitions for the token type names defined in
4bfd5e4e 10243the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 10244
8e55b3aa
JD
10245@item -d
10246This is the same as @code{--defines} except @code{-d} does not accept a
10247@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
10248with other short options.
342b8b6e 10249
89cab50d
AD
10250@item -b @var{file-prefix}
10251@itemx --file-prefix=@var{prefix}
9c437126 10252Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 10253for all Bison output file names. @xref{Decl Summary}.
bfa74976 10254
ec3bc396
AD
10255@item -r @var{things}
10256@itemx --report=@var{things}
10257Write an extra output file containing verbose description of the comma
10258separated list of @var{things} among:
10259
10260@table @code
10261@item state
10262Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 10263parser's automaton.
ec3bc396 10264
57f8bd8d
AD
10265@item itemset
10266Implies @code{state} and augments the description of the automaton with
10267the full set of items for each state, instead of its core only.
10268
742e4900 10269@item lookahead
ec3bc396 10270Implies @code{state} and augments the description of the automaton with
742e4900 10271each rule's lookahead set.
ec3bc396 10272
57f8bd8d
AD
10273@item solved
10274Implies @code{state}. Explain how conflicts were solved thanks to
10275precedence and associativity directives.
10276
10277@item all
10278Enable all the items.
10279
10280@item none
10281Do not generate the report.
ec3bc396
AD
10282@end table
10283
1bb2bd75
JD
10284@item --report-file=@var{file}
10285Specify the @var{file} for the verbose description.
10286
bfa74976
RS
10287@item -v
10288@itemx --verbose
9c437126 10289Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 10290file containing verbose descriptions of the grammar and
72d2299c 10291parser. @xref{Decl Summary}.
bfa74976 10292
fa4d969f
PE
10293@item -o @var{file}
10294@itemx --output=@var{file}
ff7571c0 10295Specify the @var{file} for the parser implementation file.
bfa74976 10296
fa4d969f 10297The other output files' names are constructed from @var{file} as
d8988b2f 10298described under the @samp{-v} and @samp{-d} options.
342b8b6e 10299
a7c09cba 10300@item -g [@var{file}]
8e55b3aa 10301@itemx --graph[=@var{file}]
eb45ef3b 10302Output a graphical representation of the parser's
35fe0834 10303automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 10304@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
10305@code{@var{file}} is optional.
10306If omitted and the grammar file is @file{foo.y}, the output file will be
10307@file{foo.dot}.
59da312b 10308
a7c09cba 10309@item -x [@var{file}]
8e55b3aa 10310@itemx --xml[=@var{file}]
eb45ef3b 10311Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 10312@code{@var{file}} is optional.
59da312b
JD
10313If omitted and the grammar file is @file{foo.y}, the output file will be
10314@file{foo.xml}.
10315(The current XML schema is experimental and may evolve.
10316More user feedback will help to stabilize it.)
bfa74976
RS
10317@end table
10318
342b8b6e 10319@node Option Cross Key
bfa74976
RS
10320@section Option Cross Key
10321
10322Here is a list of options, alphabetized by long option, to help you find
de5ab940 10323the corresponding short option and directive.
bfa74976 10324
de5ab940 10325@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 10326@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 10327@include cross-options.texi
aa08666d 10328@end multitable
bfa74976 10329
93dd49ab
PE
10330@node Yacc Library
10331@section Yacc Library
10332
10333The Yacc library contains default implementations of the
10334@code{yyerror} and @code{main} functions. These default
8a4281b9 10335implementations are normally not useful, but POSIX requires
93dd49ab
PE
10336them. To use the Yacc library, link your program with the
10337@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 10338library is distributed under the terms of the GNU General
93dd49ab
PE
10339Public License (@pxref{Copying}).
10340
10341If you use the Yacc library's @code{yyerror} function, you should
10342declare @code{yyerror} as follows:
10343
10344@example
10345int yyerror (char const *);
10346@end example
10347
10348Bison ignores the @code{int} value returned by this @code{yyerror}.
10349If you use the Yacc library's @code{main} function, your
10350@code{yyparse} function should have the following type signature:
10351
10352@example
10353int yyparse (void);
10354@end example
10355
12545799
AD
10356@c ================================================= C++ Bison
10357
8405b70c
PB
10358@node Other Languages
10359@chapter Parsers Written In Other Languages
12545799
AD
10360
10361@menu
10362* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 10363* Java Parsers:: The interface to generate Java parser classes
12545799
AD
10364@end menu
10365
10366@node C++ Parsers
10367@section C++ Parsers
10368
10369@menu
10370* C++ Bison Interface:: Asking for C++ parser generation
10371* C++ Semantic Values:: %union vs. C++
10372* C++ Location Values:: The position and location classes
10373* C++ Parser Interface:: Instantiating and running the parser
10374* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 10375* A Complete C++ Example:: Demonstrating their use
12545799
AD
10376@end menu
10377
10378@node C++ Bison Interface
10379@subsection C++ Bison Interface
ed4d67dc 10380@c - %skeleton "lalr1.cc"
12545799
AD
10381@c - Always pure
10382@c - initial action
10383
eb45ef3b 10384The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
10385@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
10386@option{--skeleton=lalr1.cc}.
e6e704dc 10387@xref{Decl Summary}.
0e021770 10388
793fbca5
JD
10389When run, @command{bison} will create several entities in the @samp{yy}
10390namespace.
67501061 10391@findex %define api.namespace
35c1e5f0
JD
10392Use the @samp{%define api.namespace} directive to change the namespace name,
10393see @ref{%define Summary,,api.namespace}. The various classes are generated
10394in the following files:
aa08666d 10395
12545799
AD
10396@table @file
10397@item position.hh
10398@itemx location.hh
db8ab2be 10399The definition of the classes @code{position} and @code{location}, used for
f6b561d9
AD
10400location tracking when enabled. These files are not generated if the
10401@code{%define} variable @code{api.location.type} is defined. @xref{C++
10402Location Values}.
12545799
AD
10403
10404@item stack.hh
10405An auxiliary class @code{stack} used by the parser.
10406
fa4d969f
PE
10407@item @var{file}.hh
10408@itemx @var{file}.cc
ff7571c0 10409(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
10410declaration and implementation of the C++ parser class. The basename
10411and extension of these two files follow the same rules as with regular C
10412parsers (@pxref{Invocation}).
12545799 10413
cd8b5791
AD
10414The header is @emph{mandatory}; you must either pass
10415@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
10416@samp{%defines} directive.
10417@end table
10418
10419All these files are documented using Doxygen; run @command{doxygen}
10420for a complete and accurate documentation.
10421
10422@node C++ Semantic Values
10423@subsection C++ Semantic Values
10424@c - No objects in unions
178e123e 10425@c - YYSTYPE
12545799
AD
10426@c - Printer and destructor
10427
3cdc21cf
AD
10428Bison supports two different means to handle semantic values in C++. One is
10429alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
10430practitioners know, unions are inconvenient in C++, therefore another
10431approach is provided, based on variants (@pxref{C++ Variants}).
10432
10433@menu
10434* C++ Unions:: Semantic values cannot be objects
10435* C++ Variants:: Using objects as semantic values
10436@end menu
10437
10438@node C++ Unions
10439@subsubsection C++ Unions
10440
12545799 10441The @code{%union} directive works as for C, see @ref{Union Decl, ,The
e4d49586 10442Union Declaration}. In particular it produces a genuine
3cdc21cf 10443@code{union}, which have a few specific features in C++.
12545799
AD
10444@itemize @minus
10445@item
fb9712a9
AD
10446The type @code{YYSTYPE} is defined but its use is discouraged: rather
10447you should refer to the parser's encapsulated type
10448@code{yy::parser::semantic_type}.
12545799
AD
10449@item
10450Non POD (Plain Old Data) types cannot be used. C++ forbids any
10451instance of classes with constructors in unions: only @emph{pointers}
10452to such objects are allowed.
10453@end itemize
10454
10455Because objects have to be stored via pointers, memory is not
10456reclaimed automatically: using the @code{%destructor} directive is the
10457only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
10458Symbols}.
10459
3cdc21cf
AD
10460@node C++ Variants
10461@subsubsection C++ Variants
10462
ae8880de
AD
10463Bison provides a @emph{variant} based implementation of semantic values for
10464C++. This alleviates all the limitations reported in the previous section,
10465and in particular, object types can be used without pointers.
3cdc21cf
AD
10466
10467To enable variant-based semantic values, set @code{%define} variable
35c1e5f0 10468@code{variant} (@pxref{%define Summary,, variant}). Once this defined,
3cdc21cf
AD
10469@code{%union} is ignored, and instead of using the name of the fields of the
10470@code{%union} to ``type'' the symbols, use genuine types.
10471
10472For instance, instead of
10473
10474@example
10475%union
10476@{
10477 int ival;
10478 std::string* sval;
10479@}
10480%token <ival> NUMBER;
10481%token <sval> STRING;
10482@end example
10483
10484@noindent
10485write
10486
10487@example
10488%token <int> NUMBER;
10489%token <std::string> STRING;
10490@end example
10491
10492@code{STRING} is no longer a pointer, which should fairly simplify the user
10493actions in the grammar and in the scanner (in particular the memory
10494management).
10495
10496Since C++ features destructors, and since it is customary to specialize
10497@code{operator<<} to support uniform printing of values, variants also
10498typically simplify Bison printers and destructors.
10499
10500Variants are stricter than unions. When based on unions, you may play any
10501dirty game with @code{yylval}, say storing an @code{int}, reading a
10502@code{char*}, and then storing a @code{double} in it. This is no longer
10503possible with variants: they must be initialized, then assigned to, and
10504eventually, destroyed.
10505
10506@deftypemethod {semantic_type} {T&} build<T> ()
10507Initialize, but leave empty. Returns the address where the actual value may
10508be stored. Requires that the variant was not initialized yet.
10509@end deftypemethod
10510
10511@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
10512Initialize, and copy-construct from @var{t}.
10513@end deftypemethod
10514
10515
10516@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
10517appeared unacceptable to require Boost on the user's machine (i.e., the
10518machine on which the generated parser will be compiled, not the machine on
10519which @command{bison} was run). Second, for each possible semantic value,
10520Boost.Variant not only stores the value, but also a tag specifying its
10521type. But the parser already ``knows'' the type of the semantic value, so
10522that would be duplicating the information.
10523
10524Therefore we developed light-weight variants whose type tag is external (so
10525they are really like @code{unions} for C++ actually). But our code is much
10526less mature that Boost.Variant. So there is a number of limitations in
10527(the current implementation of) variants:
10528@itemize
10529@item
10530Alignment must be enforced: values should be aligned in memory according to
10531the most demanding type. Computing the smallest alignment possible requires
10532meta-programming techniques that are not currently implemented in Bison, and
10533therefore, since, as far as we know, @code{double} is the most demanding
10534type on all platforms, alignments are enforced for @code{double} whatever
10535types are actually used. This may waste space in some cases.
10536
3cdc21cf
AD
10537@item
10538There might be portability issues we are not aware of.
10539@end itemize
10540
a6ca4ce2 10541As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 10542is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
10543
10544@node C++ Location Values
10545@subsection C++ Location Values
10546@c - %locations
10547@c - class Position
10548@c - class Location
16dc6a9e 10549@c - %define filename_type "const symbol::Symbol"
12545799
AD
10550
10551When the directive @code{%locations} is used, the C++ parser supports
db8ab2be
AD
10552location tracking, see @ref{Tracking Locations}.
10553
10554By default, two auxiliary classes define a @code{position}, a single point
10555in a file, and a @code{location}, a range composed of a pair of
10556@code{position}s (possibly spanning several files). But if the
10557@code{%define} variable @code{api.location.type} is defined, then these
10558classes will not be generated, and the user defined type will be used.
12545799 10559
936c88d1
AD
10560@tindex uint
10561In this section @code{uint} is an abbreviation for @code{unsigned int}: in
10562genuine code only the latter is used.
10563
10564@menu
10565* C++ position:: One point in the source file
10566* C++ location:: Two points in the source file
db8ab2be 10567* User Defined Location Type:: Required interface for locations
936c88d1
AD
10568@end menu
10569
10570@node C++ position
10571@subsubsection C++ @code{position}
10572
10573@deftypeop {Constructor} {position} {} position (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10574Create a @code{position} denoting a given point. Note that @code{file} is
10575not reclaimed when the @code{position} is destroyed: memory managed must be
10576handled elsewhere.
10577@end deftypeop
10578
10579@deftypemethod {position} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10580Reset the position to the given values.
10581@end deftypemethod
10582
10583@deftypeivar {position} {std::string*} file
12545799
AD
10584The name of the file. It will always be handled as a pointer, the
10585parser will never duplicate nor deallocate it. As an experimental
10586feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 10587filename_type "@var{type}"}.
936c88d1 10588@end deftypeivar
12545799 10589
936c88d1 10590@deftypeivar {position} {uint} line
12545799 10591The line, starting at 1.
936c88d1 10592@end deftypeivar
12545799 10593
75ae8299
AD
10594@deftypemethod {position} {void} lines (int @var{height} = 1)
10595If @var{height} is not null, advance by @var{height} lines, resetting the
10596column number. The resulting line number cannot be less than 1.
12545799
AD
10597@end deftypemethod
10598
936c88d1
AD
10599@deftypeivar {position} {uint} column
10600The column, starting at 1.
10601@end deftypeivar
12545799 10602
75ae8299
AD
10603@deftypemethod {position} {void} columns (int @var{width} = 1)
10604Advance by @var{width} columns, without changing the line number. The
10605resulting column number cannot be less than 1.
12545799
AD
10606@end deftypemethod
10607
936c88d1
AD
10608@deftypemethod {position} {position&} operator+= (int @var{width})
10609@deftypemethodx {position} {position} operator+ (int @var{width})
10610@deftypemethodx {position} {position&} operator-= (int @var{width})
10611@deftypemethodx {position} {position} operator- (int @var{width})
12545799
AD
10612Various forms of syntactic sugar for @code{columns}.
10613@end deftypemethod
10614
936c88d1
AD
10615@deftypemethod {position} {bool} operator== (const position& @var{that})
10616@deftypemethodx {position} {bool} operator!= (const position& @var{that})
10617Whether @code{*this} and @code{that} denote equal/different positions.
10618@end deftypemethod
10619
10620@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const position& @var{p})
12545799 10621Report @var{p} on @var{o} like this:
fa4d969f
PE
10622@samp{@var{file}:@var{line}.@var{column}}, or
10623@samp{@var{line}.@var{column}} if @var{file} is null.
936c88d1
AD
10624@end deftypefun
10625
10626@node C++ location
10627@subsubsection C++ @code{location}
10628
10629@deftypeop {Constructor} {location} {} location (const position& @var{begin}, const position& @var{end})
10630Create a @code{Location} from the endpoints of the range.
10631@end deftypeop
10632
10633@deftypeop {Constructor} {location} {} location (const position& @var{pos} = position())
10634@deftypeopx {Constructor} {location} {} location (std::string* @var{file}, uint @var{line}, uint @var{col})
10635Create a @code{Location} denoting an empty range located at a given point.
10636@end deftypeop
10637
10638@deftypemethod {location} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10639Reset the location to an empty range at the given values.
12545799
AD
10640@end deftypemethod
10641
936c88d1
AD
10642@deftypeivar {location} {position} begin
10643@deftypeivarx {location} {position} end
12545799 10644The first, inclusive, position of the range, and the first beyond.
936c88d1 10645@end deftypeivar
12545799 10646
75ae8299
AD
10647@deftypemethod {location} {void} columns (int @var{width} = 1)
10648@deftypemethodx {location} {void} lines (int @var{height} = 1)
10649Forwarded to the @code{end} position.
12545799
AD
10650@end deftypemethod
10651
936c88d1
AD
10652@deftypemethod {location} {location} operator+ (const location& @var{end})
10653@deftypemethodx {location} {location} operator+ (int @var{width})
10654@deftypemethodx {location} {location} operator+= (int @var{width})
75ae8299
AD
10655@deftypemethodx {location} {location} operator- (int @var{width})
10656@deftypemethodx {location} {location} operator-= (int @var{width})
12545799
AD
10657Various forms of syntactic sugar.
10658@end deftypemethod
10659
10660@deftypemethod {location} {void} step ()
10661Move @code{begin} onto @code{end}.
10662@end deftypemethod
10663
936c88d1
AD
10664@deftypemethod {location} {bool} operator== (const location& @var{that})
10665@deftypemethodx {location} {bool} operator!= (const location& @var{that})
10666Whether @code{*this} and @code{that} denote equal/different ranges of
10667positions.
10668@end deftypemethod
10669
10670@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const location& @var{p})
10671Report @var{p} on @var{o}, taking care of special cases such as: no
10672@code{filename} defined, or equal filename/line or column.
10673@end deftypefun
12545799 10674
db8ab2be
AD
10675@node User Defined Location Type
10676@subsubsection User Defined Location Type
10677@findex %define api.location.type
10678
10679Instead of using the built-in types you may use the @code{%define} variable
10680@code{api.location.type} to specify your own type:
10681
10682@example
10683%define api.location.type @var{LocationType}
10684@end example
10685
10686The requirements over your @var{LocationType} are:
10687@itemize
10688@item
10689it must be copyable;
10690
10691@item
10692in order to compute the (default) value of @code{@@$} in a reduction, the
10693parser basically runs
10694@example
10695@@$.begin = @@$1.begin;
10696@@$.end = @@$@var{N}.end; // The location of last right-hand side symbol.
10697@end example
10698@noindent
10699so there must be copyable @code{begin} and @code{end} members;
10700
10701@item
10702alternatively you may redefine the computation of the default location, in
10703which case these members are not required (@pxref{Location Default Action});
10704
10705@item
10706if traces are enabled, then there must exist an @samp{std::ostream&
10707 operator<< (std::ostream& o, const @var{LocationType}& s)} function.
10708@end itemize
10709
10710@sp 1
10711
10712In programs with several C++ parsers, you may also use the @code{%define}
10713variable @code{api.location.type} to share a common set of built-in
10714definitions for @code{position} and @code{location}. For instance, one
10715parser @file{master/parser.yy} might use:
10716
10717@example
10718%defines
10719%locations
10720%define namespace "master::"
10721@end example
10722
10723@noindent
10724to generate the @file{master/position.hh} and @file{master/location.hh}
10725files, reused by other parsers as follows:
10726
10727@example
7287be84 10728%define api.location.type "master::location"
db8ab2be
AD
10729%code requires @{ #include <master/location.hh> @}
10730@end example
10731
12545799
AD
10732@node C++ Parser Interface
10733@subsection C++ Parser Interface
10734@c - define parser_class_name
10735@c - Ctor
10736@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10737@c debug_stream.
10738@c - Reporting errors
10739
10740The output files @file{@var{output}.hh} and @file{@var{output}.cc}
10741declare and define the parser class in the namespace @code{yy}. The
10742class name defaults to @code{parser}, but may be changed using
16dc6a9e 10743@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 10744this class is detailed below. It can be extended using the
12545799
AD
10745@code{%parse-param} feature: its semantics is slightly changed since
10746it describes an additional member of the parser class, and an
10747additional argument for its constructor.
10748
3cdc21cf
AD
10749@defcv {Type} {parser} {semantic_type}
10750@defcvx {Type} {parser} {location_type}
10751The types for semantic values and locations (if enabled).
10752@end defcv
10753
86e5b440 10754@defcv {Type} {parser} {token}
aaaa2aae
AD
10755A structure that contains (only) the @code{yytokentype} enumeration, which
10756defines the tokens. To refer to the token @code{FOO},
10757use @code{yy::parser::token::FOO}. The scanner can use
86e5b440
AD
10758@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
10759(@pxref{Calc++ Scanner}).
10760@end defcv
10761
3cdc21cf
AD
10762@defcv {Type} {parser} {syntax_error}
10763This class derives from @code{std::runtime_error}. Throw instances of it
a6552c5d
AD
10764from the scanner or from the user actions to raise parse errors. This is
10765equivalent with first
3cdc21cf
AD
10766invoking @code{error} to report the location and message of the syntax
10767error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
10768But contrary to @code{YYERROR} which can only be invoked from user actions
10769(i.e., written in the action itself), the exception can be thrown from
10770function invoked from the user action.
8a0adb01 10771@end defcv
12545799
AD
10772
10773@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
10774Build a new parser object. There are no arguments by default, unless
10775@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
10776@end deftypemethod
10777
3cdc21cf
AD
10778@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
10779@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
10780Instantiate a syntax-error exception.
10781@end deftypemethod
10782
12545799
AD
10783@deftypemethod {parser} {int} parse ()
10784Run the syntactic analysis, and return 0 on success, 1 otherwise.
d3e4409a
AD
10785
10786@cindex exceptions
10787The whole function is wrapped in a @code{try}/@code{catch} block, so that
10788when an exception is thrown, the @code{%destructor}s are called to release
10789the lookahead symbol, and the symbols pushed on the stack.
12545799
AD
10790@end deftypemethod
10791
10792@deftypemethod {parser} {std::ostream&} debug_stream ()
10793@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
10794Get or set the stream used for tracing the parsing. It defaults to
10795@code{std::cerr}.
10796@end deftypemethod
10797
10798@deftypemethod {parser} {debug_level_type} debug_level ()
10799@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
10800Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 10801or nonzero, full tracing.
12545799
AD
10802@end deftypemethod
10803
10804@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 10805@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
10806The definition for this member function must be supplied by the user:
10807the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
10808described by @var{m}. If location tracking is not enabled, the second
10809signature is used.
12545799
AD
10810@end deftypemethod
10811
10812
10813@node C++ Scanner Interface
10814@subsection C++ Scanner Interface
10815@c - prefix for yylex.
10816@c - Pure interface to yylex
10817@c - %lex-param
10818
10819The parser invokes the scanner by calling @code{yylex}. Contrary to C
10820parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
10821@samp{%define api.pure} directive. The actual interface with @code{yylex}
10822depends whether you use unions, or variants.
12545799 10823
3cdc21cf
AD
10824@menu
10825* Split Symbols:: Passing symbols as two/three components
10826* Complete Symbols:: Making symbols a whole
10827@end menu
10828
10829@node Split Symbols
10830@subsubsection Split Symbols
10831
5807bb91 10832The interface is as follows.
3cdc21cf 10833
86e5b440
AD
10834@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
10835@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
10836Return the next token. Its type is the return value, its semantic value and
10837location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
10838@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
10839@end deftypemethod
10840
3cdc21cf
AD
10841Note that when using variants, the interface for @code{yylex} is the same,
10842but @code{yylval} is handled differently.
10843
10844Regular union-based code in Lex scanner typically look like:
10845
10846@example
10847[0-9]+ @{
10848 yylval.ival = text_to_int (yytext);
10849 return yy::parser::INTEGER;
10850 @}
10851[a-z]+ @{
10852 yylval.sval = new std::string (yytext);
10853 return yy::parser::IDENTIFIER;
10854 @}
10855@end example
10856
10857Using variants, @code{yylval} is already constructed, but it is not
10858initialized. So the code would look like:
10859
10860@example
10861[0-9]+ @{
10862 yylval.build<int>() = text_to_int (yytext);
10863 return yy::parser::INTEGER;
10864 @}
10865[a-z]+ @{
10866 yylval.build<std::string> = yytext;
10867 return yy::parser::IDENTIFIER;
10868 @}
10869@end example
10870
10871@noindent
10872or
10873
10874@example
10875[0-9]+ @{
10876 yylval.build(text_to_int (yytext));
10877 return yy::parser::INTEGER;
10878 @}
10879[a-z]+ @{
10880 yylval.build(yytext);
10881 return yy::parser::IDENTIFIER;
10882 @}
10883@end example
10884
10885
10886@node Complete Symbols
10887@subsubsection Complete Symbols
10888
ae8880de 10889If you specified both @code{%define api.value.type variant} and
e36ec1f4 10890@code{%define api.token.constructor},
3cdc21cf
AD
10891the @code{parser} class also defines the class @code{parser::symbol_type}
10892which defines a @emph{complete} symbol, aggregating its type (i.e., the
10893traditional value returned by @code{yylex}), its semantic value (i.e., the
10894value passed in @code{yylval}, and possibly its location (@code{yylloc}).
10895
10896@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
10897Build a complete terminal symbol which token type is @var{type}, and which
10898semantic value is @var{value}. If location tracking is enabled, also pass
10899the @var{location}.
10900@end deftypemethod
10901
10902This interface is low-level and should not be used for two reasons. First,
10903it is inconvenient, as you still have to build the semantic value, which is
10904a variant, and second, because consistency is not enforced: as with unions,
10905it is still possible to give an integer as semantic value for a string.
10906
10907So for each token type, Bison generates named constructors as follows.
10908
10909@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
10910@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
10911Build a complete terminal symbol for the token type @var{token} (not
2a6b66c5 10912including the @code{api.token.prefix}) whose possible semantic value is
3cdc21cf
AD
10913@var{value} of adequate @var{value_type}. If location tracking is enabled,
10914also pass the @var{location}.
10915@end deftypemethod
10916
10917For instance, given the following declarations:
10918
10919@example
630a0218 10920%define api.token.prefix @{TOK_@}
3cdc21cf
AD
10921%token <std::string> IDENTIFIER;
10922%token <int> INTEGER;
10923%token COLON;
10924@end example
10925
10926@noindent
10927Bison generates the following functions:
10928
10929@example
10930symbol_type make_IDENTIFIER(const std::string& v,
10931 const location_type& l);
10932symbol_type make_INTEGER(const int& v,
10933 const location_type& loc);
10934symbol_type make_COLON(const location_type& loc);
10935@end example
10936
10937@noindent
10938which should be used in a Lex-scanner as follows.
10939
10940@example
10941[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
10942[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
10943":" return yy::parser::make_COLON(loc);
10944@end example
10945
10946Tokens that do not have an identifier are not accessible: you cannot simply
10947use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
10948
10949@node A Complete C++ Example
8405b70c 10950@subsection A Complete C++ Example
12545799
AD
10951
10952This section demonstrates the use of a C++ parser with a simple but
10953complete example. This example should be available on your system,
3cdc21cf 10954ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
10955focuses on the use of Bison, therefore the design of the various C++
10956classes is very naive: no accessors, no encapsulation of members etc.
10957We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 10958demonstrate the various interactions. A hand-written scanner is
12545799
AD
10959actually easier to interface with.
10960
10961@menu
10962* Calc++ --- C++ Calculator:: The specifications
10963* Calc++ Parsing Driver:: An active parsing context
10964* Calc++ Parser:: A parser class
10965* Calc++ Scanner:: A pure C++ Flex scanner
10966* Calc++ Top Level:: Conducting the band
10967@end menu
10968
10969@node Calc++ --- C++ Calculator
8405b70c 10970@subsubsection Calc++ --- C++ Calculator
12545799
AD
10971
10972Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 10973expression, possibly preceded by variable assignments. An
12545799
AD
10974environment containing possibly predefined variables such as
10975@code{one} and @code{two}, is exchanged with the parser. An example
10976of valid input follows.
10977
10978@example
10979three := 3
10980seven := one + two * three
10981seven * seven
10982@end example
10983
10984@node Calc++ Parsing Driver
8405b70c 10985@subsubsection Calc++ Parsing Driver
12545799
AD
10986@c - An env
10987@c - A place to store error messages
10988@c - A place for the result
10989
10990To support a pure interface with the parser (and the scanner) the
10991technique of the ``parsing context'' is convenient: a structure
10992containing all the data to exchange. Since, in addition to simply
10993launch the parsing, there are several auxiliary tasks to execute (open
10994the file for parsing, instantiate the parser etc.), we recommend
10995transforming the simple parsing context structure into a fully blown
10996@dfn{parsing driver} class.
10997
10998The declaration of this driver class, @file{calc++-driver.hh}, is as
10999follows. The first part includes the CPP guard and imports the
fb9712a9
AD
11000required standard library components, and the declaration of the parser
11001class.
12545799 11002
1c59e0a1 11003@comment file: calc++-driver.hh
12545799
AD
11004@example
11005#ifndef CALCXX_DRIVER_HH
11006# define CALCXX_DRIVER_HH
11007# include <string>
11008# include <map>
fb9712a9 11009# include "calc++-parser.hh"
12545799
AD
11010@end example
11011
12545799
AD
11012
11013@noindent
11014Then comes the declaration of the scanning function. Flex expects
11015the signature of @code{yylex} to be defined in the macro
11016@code{YY_DECL}, and the C++ parser expects it to be declared. We can
11017factor both as follows.
1c59e0a1
AD
11018
11019@comment file: calc++-driver.hh
12545799 11020@example
3dc5e96b 11021// Tell Flex the lexer's prototype ...
3cdc21cf
AD
11022# define YY_DECL \
11023 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
11024// ... and declare it for the parser's sake.
11025YY_DECL;
11026@end example
11027
11028@noindent
11029The @code{calcxx_driver} class is then declared with its most obvious
11030members.
11031
1c59e0a1 11032@comment file: calc++-driver.hh
12545799
AD
11033@example
11034// Conducting the whole scanning and parsing of Calc++.
11035class calcxx_driver
11036@{
11037public:
11038 calcxx_driver ();
11039 virtual ~calcxx_driver ();
11040
11041 std::map<std::string, int> variables;
11042
11043 int result;
11044@end example
11045
11046@noindent
3cdc21cf
AD
11047To encapsulate the coordination with the Flex scanner, it is useful to have
11048member functions to open and close the scanning phase.
12545799 11049
1c59e0a1 11050@comment file: calc++-driver.hh
12545799
AD
11051@example
11052 // Handling the scanner.
11053 void scan_begin ();
11054 void scan_end ();
11055 bool trace_scanning;
11056@end example
11057
11058@noindent
11059Similarly for the parser itself.
11060
1c59e0a1 11061@comment file: calc++-driver.hh
12545799 11062@example
3cdc21cf
AD
11063 // Run the parser on file F.
11064 // Return 0 on success.
bb32f4f2 11065 int parse (const std::string& f);
3cdc21cf
AD
11066 // The name of the file being parsed.
11067 // Used later to pass the file name to the location tracker.
12545799 11068 std::string file;
3cdc21cf 11069 // Whether parser traces should be generated.
12545799
AD
11070 bool trace_parsing;
11071@end example
11072
11073@noindent
11074To demonstrate pure handling of parse errors, instead of simply
11075dumping them on the standard error output, we will pass them to the
11076compiler driver using the following two member functions. Finally, we
11077close the class declaration and CPP guard.
11078
1c59e0a1 11079@comment file: calc++-driver.hh
12545799
AD
11080@example
11081 // Error handling.
11082 void error (const yy::location& l, const std::string& m);
11083 void error (const std::string& m);
11084@};
11085#endif // ! CALCXX_DRIVER_HH
11086@end example
11087
11088The implementation of the driver is straightforward. The @code{parse}
11089member function deserves some attention. The @code{error} functions
11090are simple stubs, they should actually register the located error
11091messages and set error state.
11092
1c59e0a1 11093@comment file: calc++-driver.cc
12545799
AD
11094@example
11095#include "calc++-driver.hh"
11096#include "calc++-parser.hh"
11097
11098calcxx_driver::calcxx_driver ()
11099 : trace_scanning (false), trace_parsing (false)
11100@{
11101 variables["one"] = 1;
11102 variables["two"] = 2;
11103@}
11104
11105calcxx_driver::~calcxx_driver ()
11106@{
11107@}
11108
bb32f4f2 11109int
12545799
AD
11110calcxx_driver::parse (const std::string &f)
11111@{
11112 file = f;
11113 scan_begin ();
11114 yy::calcxx_parser parser (*this);
11115 parser.set_debug_level (trace_parsing);
bb32f4f2 11116 int res = parser.parse ();
12545799 11117 scan_end ();
bb32f4f2 11118 return res;
12545799
AD
11119@}
11120
11121void
11122calcxx_driver::error (const yy::location& l, const std::string& m)
11123@{
11124 std::cerr << l << ": " << m << std::endl;
11125@}
11126
11127void
11128calcxx_driver::error (const std::string& m)
11129@{
11130 std::cerr << m << std::endl;
11131@}
11132@end example
11133
11134@node Calc++ Parser
8405b70c 11135@subsubsection Calc++ Parser
12545799 11136
ff7571c0
JD
11137The grammar file @file{calc++-parser.yy} starts by asking for the C++
11138deterministic parser skeleton, the creation of the parser header file,
11139and specifies the name of the parser class. Because the C++ skeleton
11140changed several times, it is safer to require the version you designed
11141the grammar for.
1c59e0a1
AD
11142
11143@comment file: calc++-parser.yy
12545799 11144@example
c93f22fc 11145%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 11146%require "@value{VERSION}"
12545799 11147%defines
16dc6a9e 11148%define parser_class_name "calcxx_parser"
fb9712a9
AD
11149@end example
11150
3cdc21cf 11151@noindent
e36ec1f4 11152@findex %define api.token.constructor
ae8880de 11153@findex %define api.value.type variant
3cdc21cf
AD
11154This example will use genuine C++ objects as semantic values, therefore, we
11155require the variant-based interface. To make sure we properly use it, we
11156enable assertions. To fully benefit from type-safety and more natural
e36ec1f4 11157definition of ``symbol'', we enable @code{api.token.constructor}.
3cdc21cf
AD
11158
11159@comment file: calc++-parser.yy
11160@example
e36ec1f4 11161%define api.token.constructor
ae8880de 11162%define api.value.type variant
3cdc21cf 11163%define parse.assert
3cdc21cf
AD
11164@end example
11165
fb9712a9 11166@noindent
16dc6a9e 11167@findex %code requires
3cdc21cf
AD
11168Then come the declarations/inclusions needed by the semantic values.
11169Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 11170to include the header of the other, which is, of course, insane. This
3cdc21cf 11171mutual dependency will be broken using forward declarations. Because the
fb9712a9 11172driver's header needs detailed knowledge about the parser class (in
3cdc21cf 11173particular its inner types), it is the parser's header which will use a
e0c07222 11174forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
11175
11176@comment file: calc++-parser.yy
11177@example
3cdc21cf
AD
11178%code requires
11179@{
12545799 11180# include <string>
fb9712a9 11181class calcxx_driver;
9bc0dd67 11182@}
12545799
AD
11183@end example
11184
11185@noindent
11186The driver is passed by reference to the parser and to the scanner.
11187This provides a simple but effective pure interface, not relying on
11188global variables.
11189
1c59e0a1 11190@comment file: calc++-parser.yy
12545799
AD
11191@example
11192// The parsing context.
2055a44e 11193%param @{ calcxx_driver& driver @}
12545799
AD
11194@end example
11195
11196@noindent
2055a44e 11197Then we request location tracking, and initialize the
f50bfcd6 11198first location's file name. Afterward new locations are computed
12545799 11199relatively to the previous locations: the file name will be
2055a44e 11200propagated.
12545799 11201
1c59e0a1 11202@comment file: calc++-parser.yy
12545799
AD
11203@example
11204%locations
11205%initial-action
11206@{
11207 // Initialize the initial location.
b47dbebe 11208 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
11209@};
11210@end example
11211
11212@noindent
7fceb615
JD
11213Use the following two directives to enable parser tracing and verbose error
11214messages. However, verbose error messages can contain incorrect information
11215(@pxref{LAC}).
12545799 11216
1c59e0a1 11217@comment file: calc++-parser.yy
12545799 11218@example
fa819509 11219%define parse.trace
cf499cff 11220%define parse.error verbose
12545799
AD
11221@end example
11222
fb9712a9 11223@noindent
136a0f76
PB
11224@findex %code
11225The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 11226@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
11227
11228@comment file: calc++-parser.yy
11229@example
3cdc21cf
AD
11230%code
11231@{
fb9712a9 11232# include "calc++-driver.hh"
34f98f46 11233@}
fb9712a9
AD
11234@end example
11235
11236
12545799
AD
11237@noindent
11238The token numbered as 0 corresponds to end of file; the following line
99c08fb6 11239allows for nicer error messages referring to ``end of file'' instead of
35c1e5f0
JD
11240``$end''. Similarly user friendly names are provided for each symbol. To
11241avoid name clashes in the generated files (@pxref{Calc++ Scanner}), prefix
2a6b66c5 11242tokens with @code{TOK_} (@pxref{%define Summary,,api.token.prefix}).
12545799 11243
1c59e0a1 11244@comment file: calc++-parser.yy
12545799 11245@example
630a0218 11246%define api.token.prefix @{TOK_@}
3cdc21cf
AD
11247%token
11248 END 0 "end of file"
11249 ASSIGN ":="
11250 MINUS "-"
11251 PLUS "+"
11252 STAR "*"
11253 SLASH "/"
11254 LPAREN "("
11255 RPAREN ")"
11256;
12545799
AD
11257@end example
11258
11259@noindent
3cdc21cf
AD
11260Since we use variant-based semantic values, @code{%union} is not used, and
11261both @code{%type} and @code{%token} expect genuine types, as opposed to type
11262tags.
12545799 11263
1c59e0a1 11264@comment file: calc++-parser.yy
12545799 11265@example
3cdc21cf
AD
11266%token <std::string> IDENTIFIER "identifier"
11267%token <int> NUMBER "number"
11268%type <int> exp
11269@end example
11270
11271@noindent
11272No @code{%destructor} is needed to enable memory deallocation during error
11273recovery; the memory, for strings for instance, will be reclaimed by the
11274regular destructors. All the values are printed using their
a76c741d 11275@code{operator<<} (@pxref{Printer Decl, , Printing Semantic Values}).
12545799 11276
3cdc21cf
AD
11277@comment file: calc++-parser.yy
11278@example
c5026327 11279%printer @{ yyoutput << $$; @} <*>;
12545799
AD
11280@end example
11281
11282@noindent
3cdc21cf
AD
11283The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
11284Location Tracking Calculator: @code{ltcalc}}).
12545799 11285
1c59e0a1 11286@comment file: calc++-parser.yy
12545799
AD
11287@example
11288%%
11289%start unit;
11290unit: assignments exp @{ driver.result = $2; @};
11291
99c08fb6 11292assignments:
6240346a 11293 %empty @{@}
5e9b6624 11294| assignments assignment @{@};
12545799 11295
3dc5e96b 11296assignment:
3cdc21cf 11297 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 11298
3cdc21cf
AD
11299%left "+" "-";
11300%left "*" "/";
99c08fb6 11301exp:
3cdc21cf
AD
11302 exp "+" exp @{ $$ = $1 + $3; @}
11303| exp "-" exp @{ $$ = $1 - $3; @}
11304| exp "*" exp @{ $$ = $1 * $3; @}
11305| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 11306| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 11307| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 11308| "number" @{ std::swap ($$, $1); @};
12545799
AD
11309%%
11310@end example
11311
11312@noindent
11313Finally the @code{error} member function registers the errors to the
11314driver.
11315
1c59e0a1 11316@comment file: calc++-parser.yy
12545799
AD
11317@example
11318void
3cdc21cf 11319yy::calcxx_parser::error (const location_type& l,
1c59e0a1 11320 const std::string& m)
12545799
AD
11321@{
11322 driver.error (l, m);
11323@}
11324@end example
11325
11326@node Calc++ Scanner
8405b70c 11327@subsubsection Calc++ Scanner
12545799
AD
11328
11329The Flex scanner first includes the driver declaration, then the
11330parser's to get the set of defined tokens.
11331
1c59e0a1 11332@comment file: calc++-scanner.ll
12545799 11333@example
c93f22fc 11334%@{ /* -*- C++ -*- */
3c248d70
AD
11335# include <cerrno>
11336# include <climits>
3cdc21cf 11337# include <cstdlib>
12545799
AD
11338# include <string>
11339# include "calc++-driver.hh"
11340# include "calc++-parser.hh"
eaea13f5 11341
3cdc21cf
AD
11342// Work around an incompatibility in flex (at least versions
11343// 2.5.31 through 2.5.33): it generates code that does
11344// not conform to C89. See Debian bug 333231
11345// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
11346# undef yywrap
11347# define yywrap() 1
eaea13f5 11348
3cdc21cf
AD
11349// The location of the current token.
11350static yy::location loc;
12545799
AD
11351%@}
11352@end example
11353
11354@noindent
11355Because there is no @code{#include}-like feature we don't need
11356@code{yywrap}, we don't need @code{unput} either, and we parse an
11357actual file, this is not an interactive session with the user.
3cdc21cf 11358Finally, we enable scanner tracing.
12545799 11359
1c59e0a1 11360@comment file: calc++-scanner.ll
12545799 11361@example
6908c2e1 11362%option noyywrap nounput batch debug noinput
12545799
AD
11363@end example
11364
11365@noindent
11366Abbreviations allow for more readable rules.
11367
1c59e0a1 11368@comment file: calc++-scanner.ll
12545799
AD
11369@example
11370id [a-zA-Z][a-zA-Z_0-9]*
11371int [0-9]+
11372blank [ \t]
11373@end example
11374
11375@noindent
9d9b8b70 11376The following paragraph suffices to track locations accurately. Each
12545799 11377time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
11378position. Then when a pattern is matched, its width is added to the end
11379column. When matching ends of lines, the end
12545799
AD
11380cursor is adjusted, and each time blanks are matched, the begin cursor
11381is moved onto the end cursor to effectively ignore the blanks
11382preceding tokens. Comments would be treated equally.
11383
1c59e0a1 11384@comment file: calc++-scanner.ll
12545799 11385@example
d4fca427 11386@group
828c373b 11387%@{
3cdc21cf
AD
11388 // Code run each time a pattern is matched.
11389 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 11390%@}
d4fca427 11391@end group
12545799 11392%%
d4fca427 11393@group
12545799 11394%@{
3cdc21cf
AD
11395 // Code run each time yylex is called.
11396 loc.step ();
12545799 11397%@}
d4fca427 11398@end group
3cdc21cf
AD
11399@{blank@}+ loc.step ();
11400[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
11401@end example
11402
11403@noindent
3cdc21cf 11404The rules are simple. The driver is used to report errors.
12545799 11405
1c59e0a1 11406@comment file: calc++-scanner.ll
12545799 11407@example
3cdc21cf
AD
11408"-" return yy::calcxx_parser::make_MINUS(loc);
11409"+" return yy::calcxx_parser::make_PLUS(loc);
11410"*" return yy::calcxx_parser::make_STAR(loc);
11411"/" return yy::calcxx_parser::make_SLASH(loc);
11412"(" return yy::calcxx_parser::make_LPAREN(loc);
11413")" return yy::calcxx_parser::make_RPAREN(loc);
11414":=" return yy::calcxx_parser::make_ASSIGN(loc);
11415
d4fca427 11416@group
04098407
PE
11417@{int@} @{
11418 errno = 0;
11419 long n = strtol (yytext, NULL, 10);
11420 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
11421 driver.error (loc, "integer is out of range");
11422 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 11423@}
d4fca427 11424@end group
3cdc21cf
AD
11425@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
11426. driver.error (loc, "invalid character");
11427<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
11428%%
11429@end example
11430
11431@noindent
3cdc21cf 11432Finally, because the scanner-related driver's member-functions depend
12545799
AD
11433on the scanner's data, it is simpler to implement them in this file.
11434
1c59e0a1 11435@comment file: calc++-scanner.ll
12545799 11436@example
d4fca427 11437@group
12545799
AD
11438void
11439calcxx_driver::scan_begin ()
11440@{
11441 yy_flex_debug = trace_scanning;
93c150b6 11442 if (file.empty () || file == "-")
bb32f4f2
AD
11443 yyin = stdin;
11444 else if (!(yyin = fopen (file.c_str (), "r")))
11445 @{
aaaa2aae 11446 error ("cannot open " + file + ": " + strerror(errno));
d0f2b7f8 11447 exit (EXIT_FAILURE);
bb32f4f2 11448 @}
12545799 11449@}
d4fca427 11450@end group
12545799 11451
d4fca427 11452@group
12545799
AD
11453void
11454calcxx_driver::scan_end ()
11455@{
11456 fclose (yyin);
11457@}
d4fca427 11458@end group
12545799
AD
11459@end example
11460
11461@node Calc++ Top Level
8405b70c 11462@subsubsection Calc++ Top Level
12545799
AD
11463
11464The top level file, @file{calc++.cc}, poses no problem.
11465
1c59e0a1 11466@comment file: calc++.cc
12545799
AD
11467@example
11468#include <iostream>
11469#include "calc++-driver.hh"
11470
d4fca427 11471@group
12545799 11472int
fa4d969f 11473main (int argc, char *argv[])
12545799 11474@{
414c76a4 11475 int res = 0;
12545799 11476 calcxx_driver driver;
93c150b6
AD
11477 for (int i = 1; i < argc; ++i)
11478 if (argv[i] == std::string ("-p"))
12545799 11479 driver.trace_parsing = true;
93c150b6 11480 else if (argv[i] == std::string ("-s"))
12545799 11481 driver.trace_scanning = true;
93c150b6 11482 else if (!driver.parse (argv[i]))
bb32f4f2 11483 std::cout << driver.result << std::endl;
414c76a4
AD
11484 else
11485 res = 1;
11486 return res;
12545799 11487@}
d4fca427 11488@end group
12545799
AD
11489@end example
11490
8405b70c
PB
11491@node Java Parsers
11492@section Java Parsers
11493
11494@menu
f5f419de
DJ
11495* Java Bison Interface:: Asking for Java parser generation
11496* Java Semantic Values:: %type and %token vs. Java
11497* Java Location Values:: The position and location classes
11498* Java Parser Interface:: Instantiating and running the parser
11499* Java Scanner Interface:: Specifying the scanner for the parser
11500* Java Action Features:: Special features for use in actions
11501* Java Differences:: Differences between C/C++ and Java Grammars
11502* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
11503@end menu
11504
11505@node Java Bison Interface
11506@subsection Java Bison Interface
11507@c - %language "Java"
8405b70c 11508
59da312b
JD
11509(The current Java interface is experimental and may evolve.
11510More user feedback will help to stabilize it.)
11511
e254a580
DJ
11512The Java parser skeletons are selected using the @code{%language "Java"}
11513directive or the @option{-L java}/@option{--language=java} option.
8405b70c 11514
e254a580 11515@c FIXME: Documented bug.
ff7571c0
JD
11516When generating a Java parser, @code{bison @var{basename}.y} will
11517create a single Java source file named @file{@var{basename}.java}
11518containing the parser implementation. Using a grammar file without a
11519@file{.y} suffix is currently broken. The basename of the parser
11520implementation file can be changed by the @code{%file-prefix}
11521directive or the @option{-p}/@option{--name-prefix} option. The
11522entire parser implementation file name can be changed by the
11523@code{%output} directive or the @option{-o}/@option{--output} option.
11524The parser implementation file contains a single class for the parser.
8405b70c 11525
e254a580 11526You can create documentation for generated parsers using Javadoc.
8405b70c 11527
e254a580
DJ
11528Contrary to C parsers, Java parsers do not use global variables; the
11529state of the parser is always local to an instance of the parser class.
11530Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
5807bb91 11531and @code{%define api.pure} directives do nothing when used in Java.
8405b70c 11532
e254a580 11533Push parsers are currently unsupported in Java and @code{%define
67212941 11534api.push-pull} have no effect.
01b477c6 11535
8a4281b9 11536GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
11537@code{glr-parser} directive.
11538
11539No header file can be generated for Java parsers. Do not use the
11540@code{%defines} directive or the @option{-d}/@option{--defines} options.
11541
11542@c FIXME: Possible code change.
fa819509
AD
11543Currently, support for tracing is always compiled
11544in. Thus the @samp{%define parse.trace} and @samp{%token-table}
11545directives and the
e254a580
DJ
11546@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
11547options have no effect. This may change in the future to eliminate
fa819509
AD
11548unused code in the generated parser, so use @samp{%define parse.trace}
11549explicitly
1979121c 11550if needed. Also, in the future the
e254a580
DJ
11551@code{%token-table} directive might enable a public interface to
11552access the token names and codes.
8405b70c 11553
09ccae9b 11554Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 11555hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
11556Try reducing the amount of code in actions and static initializers;
11557otherwise, report a bug so that the parser skeleton will be improved.
11558
11559
8405b70c
PB
11560@node Java Semantic Values
11561@subsection Java Semantic Values
11562@c - No %union, specify type in %type/%token.
11563@c - YYSTYPE
11564@c - Printer and destructor
11565
11566There is no @code{%union} directive in Java parsers. Instead, the
11567semantic values' types (class names) should be specified in the
11568@code{%type} or @code{%token} directive:
11569
11570@example
11571%type <Expression> expr assignment_expr term factor
11572%type <Integer> number
11573@end example
11574
11575By default, the semantic stack is declared to have @code{Object} members,
11576which means that the class types you specify can be of any class.
11577To improve the type safety of the parser, you can declare the common
4119d1ea 11578superclass of all the semantic values using the @samp{%define api.value.type}
e254a580 11579directive. For example, after the following declaration:
8405b70c
PB
11580
11581@example
4119d1ea 11582%define api.value.type "ASTNode"
8405b70c
PB
11583@end example
11584
11585@noindent
11586any @code{%type} or @code{%token} specifying a semantic type which
11587is not a subclass of ASTNode, will cause a compile-time error.
11588
e254a580 11589@c FIXME: Documented bug.
8405b70c
PB
11590Types used in the directives may be qualified with a package name.
11591Primitive data types are accepted for Java version 1.5 or later. Note
11592that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
11593Generic types may not be used; this is due to a limitation in the
11594implementation of Bison, and may change in future releases.
8405b70c
PB
11595
11596Java parsers do not support @code{%destructor}, since the language
11597adopts garbage collection. The parser will try to hold references
11598to semantic values for as little time as needed.
11599
11600Java parsers do not support @code{%printer}, as @code{toString()}
11601can be used to print the semantic values. This however may change
11602(in a backwards-compatible way) in future versions of Bison.
11603
11604
11605@node Java Location Values
11606@subsection Java Location Values
11607@c - %locations
11608@c - class Position
11609@c - class Location
11610
303834cc
JD
11611When the directive @code{%locations} is used, the Java parser supports
11612location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
11613class defines a @dfn{position}, a single point in a file; Bison itself
11614defines a class representing a @dfn{location}, a range composed of a pair of
11615positions (possibly spanning several files). The location class is an inner
11616class of the parser; the name is @code{Location} by default, and may also be
7287be84 11617renamed using @code{%define api.location.type "@var{class-name}"}.
8405b70c
PB
11618
11619The location class treats the position as a completely opaque value.
11620By default, the class name is @code{Position}, but this can be changed
7287be84 11621with @code{%define api.position.type "@var{class-name}"}. This class must
e254a580 11622be supplied by the user.
8405b70c
PB
11623
11624
e254a580
DJ
11625@deftypeivar {Location} {Position} begin
11626@deftypeivarx {Location} {Position} end
8405b70c 11627The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
11628@end deftypeivar
11629
11630@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 11631Create a @code{Location} denoting an empty range located at a given point.
e254a580 11632@end deftypeop
8405b70c 11633
e254a580
DJ
11634@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
11635Create a @code{Location} from the endpoints of the range.
11636@end deftypeop
11637
11638@deftypemethod {Location} {String} toString ()
8405b70c
PB
11639Prints the range represented by the location. For this to work
11640properly, the position class should override the @code{equals} and
11641@code{toString} methods appropriately.
11642@end deftypemethod
11643
11644
11645@node Java Parser Interface
11646@subsection Java Parser Interface
11647@c - define parser_class_name
11648@c - Ctor
11649@c - parse, error, set_debug_level, debug_level, set_debug_stream,
11650@c debug_stream.
11651@c - Reporting errors
11652
e254a580
DJ
11653The name of the generated parser class defaults to @code{YYParser}. The
11654@code{YY} prefix may be changed using the @code{%name-prefix} directive
11655or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 11656@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 11657the class. The interface of this class is detailed below.
8405b70c 11658
e254a580 11659By default, the parser class has package visibility. A declaration
67501061 11660@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
11661according to the Java language specification, the name of the @file{.java}
11662file should match the name of the class in this case. Similarly, you can
11663use @code{abstract}, @code{final} and @code{strictfp} with the
11664@code{%define} declaration to add other modifiers to the parser class.
67501061 11665A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 11666be used to add any number of annotations to the parser class.
e254a580
DJ
11667
11668The Java package name of the parser class can be specified using the
67501061 11669@samp{%define package} directive. The superclass and the implemented
e254a580 11670interfaces of the parser class can be specified with the @code{%define
67501061 11671extends} and @samp{%define implements} directives.
e254a580
DJ
11672
11673The parser class defines an inner class, @code{Location}, that is used
11674for location tracking (see @ref{Java Location Values}), and a inner
11675interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
11676these inner class/interface, and the members described in the interface
11677below, all the other members and fields are preceded with a @code{yy} or
11678@code{YY} prefix to avoid clashes with user code.
11679
e254a580
DJ
11680The parser class can be extended using the @code{%parse-param}
11681directive. Each occurrence of the directive will add a @code{protected
11682final} field to the parser class, and an argument to its constructor,
11683which initialize them automatically.
11684
e254a580
DJ
11685@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
11686Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
11687no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
11688@code{%lex-param}s are used.
1979121c
DJ
11689
11690Use @code{%code init} for code added to the start of the constructor
11691body. This is especially useful to initialize superclasses. Use
f50bfcd6 11692@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
11693@end deftypeop
11694
11695@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
11696Build a new parser object using the specified scanner. There are no
2055a44e
AD
11697additional parameters unless @code{%param}s and/or @code{%parse-param}s are
11698used.
e254a580
DJ
11699
11700If the scanner is defined by @code{%code lexer}, this constructor is
11701declared @code{protected} and is called automatically with a scanner
2055a44e 11702created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
11703
11704Use @code{%code init} for code added to the start of the constructor
11705body. This is especially useful to initialize superclasses. Use
5a321748 11706@samp{%define init_throws} to specify any uncaught exceptions.
e254a580 11707@end deftypeop
8405b70c
PB
11708
11709@deftypemethod {YYParser} {boolean} parse ()
11710Run the syntactic analysis, and return @code{true} on success,
11711@code{false} otherwise.
11712@end deftypemethod
11713
1979121c
DJ
11714@deftypemethod {YYParser} {boolean} getErrorVerbose ()
11715@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
11716Get or set the option to produce verbose error messages. These are only
cf499cff 11717available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
11718verbose error messages.
11719@end deftypemethod
11720
11721@deftypemethod {YYParser} {void} yyerror (String @var{msg})
11722@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
11723@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
11724Print an error message using the @code{yyerror} method of the scanner
11725instance in use. The @code{Location} and @code{Position} parameters are
11726available only if location tracking is active.
11727@end deftypemethod
11728
01b477c6 11729@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 11730During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
11731from a syntax error.
11732@xref{Error Recovery}.
8405b70c
PB
11733@end deftypemethod
11734
11735@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
11736@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
11737Get or set the stream used for tracing the parsing. It defaults to
11738@code{System.err}.
11739@end deftypemethod
11740
11741@deftypemethod {YYParser} {int} getDebugLevel ()
11742@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
11743Get or set the tracing level. Currently its value is either 0, no trace,
11744or nonzero, full tracing.
11745@end deftypemethod
11746
1979121c
DJ
11747@deftypecv {Constant} {YYParser} {String} {bisonVersion}
11748@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
11749Identify the Bison version and skeleton used to generate this parser.
11750@end deftypecv
11751
8405b70c
PB
11752
11753@node Java Scanner Interface
11754@subsection Java Scanner Interface
01b477c6 11755@c - %code lexer
8405b70c 11756@c - %lex-param
01b477c6 11757@c - Lexer interface
8405b70c 11758
e254a580
DJ
11759There are two possible ways to interface a Bison-generated Java parser
11760with a scanner: the scanner may be defined by @code{%code lexer}, or
11761defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
11762@code{Lexer} inner interface of the parser class. This interface also
11763contain constants for all user-defined token names and the predefined
11764@code{EOF} token.
e254a580
DJ
11765
11766In the first case, the body of the scanner class is placed in
11767@code{%code lexer} blocks. If you want to pass parameters from the
11768parser constructor to the scanner constructor, specify them with
11769@code{%lex-param}; they are passed before @code{%parse-param}s to the
11770constructor.
01b477c6 11771
59c5ac72 11772In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
11773which is defined within the parser class (e.g., @code{YYParser.Lexer}).
11774The constructor of the parser object will then accept an object
11775implementing the interface; @code{%lex-param} is not used in this
11776case.
11777
11778In both cases, the scanner has to implement the following methods.
11779
e254a580
DJ
11780@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
11781This method is defined by the user to emit an error message. The first
11782parameter is omitted if location tracking is not active. Its type can be
7287be84 11783changed using @code{%define api.location.type "@var{class-name}".}
8405b70c
PB
11784@end deftypemethod
11785
e254a580 11786@deftypemethod {Lexer} {int} yylex ()
8405b70c 11787Return the next token. Its type is the return value, its semantic
f50bfcd6 11788value and location are saved and returned by the their methods in the
e254a580
DJ
11789interface.
11790
67501061 11791Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 11792Default is @code{java.io.IOException}.
8405b70c
PB
11793@end deftypemethod
11794
11795@deftypemethod {Lexer} {Position} getStartPos ()
11796@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
11797Return respectively the first position of the last token that
11798@code{yylex} returned, and the first position beyond it. These
11799methods are not needed unless location tracking is active.
8405b70c 11800
7287be84 11801The return type can be changed using @code{%define api.position.type
8405b70c
PB
11802"@var{class-name}".}
11803@end deftypemethod
11804
11805@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 11806Return the semantic value of the last token that yylex returned.
8405b70c 11807
4119d1ea 11808The return type can be changed using @samp{%define api.value.type
8405b70c
PB
11809"@var{class-name}".}
11810@end deftypemethod
11811
11812
e254a580
DJ
11813@node Java Action Features
11814@subsection Special Features for Use in Java Actions
11815
11816The following special constructs can be uses in Java actions.
11817Other analogous C action features are currently unavailable for Java.
11818
67501061 11819Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
11820actions, and initial actions specified by @code{%initial-action}.
11821
11822@defvar $@var{n}
11823The semantic value for the @var{n}th component of the current rule.
11824This may not be assigned to.
11825@xref{Java Semantic Values}.
11826@end defvar
11827
11828@defvar $<@var{typealt}>@var{n}
11829Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
11830@xref{Java Semantic Values}.
11831@end defvar
11832
11833@defvar $$
11834The semantic value for the grouping made by the current rule. As a
11835value, this is in the base type (@code{Object} or as specified by
4119d1ea 11836@samp{%define api.value.type}) as in not cast to the declared subtype because
e254a580
DJ
11837casts are not allowed on the left-hand side of Java assignments.
11838Use an explicit Java cast if the correct subtype is needed.
11839@xref{Java Semantic Values}.
11840@end defvar
11841
11842@defvar $<@var{typealt}>$
11843Same as @code{$$} since Java always allow assigning to the base type.
11844Perhaps we should use this and @code{$<>$} for the value and @code{$$}
11845for setting the value but there is currently no easy way to distinguish
11846these constructs.
11847@xref{Java Semantic Values}.
11848@end defvar
11849
11850@defvar @@@var{n}
11851The location information of the @var{n}th component of the current rule.
11852This may not be assigned to.
11853@xref{Java Location Values}.
11854@end defvar
11855
11856@defvar @@$
11857The location information of the grouping made by the current rule.
11858@xref{Java Location Values}.
11859@end defvar
11860
34a41a93 11861@deftypefn {Statement} return YYABORT @code{;}
e254a580
DJ
11862Return immediately from the parser, indicating failure.
11863@xref{Java Parser Interface}.
34a41a93 11864@end deftypefn
8405b70c 11865
34a41a93 11866@deftypefn {Statement} return YYACCEPT @code{;}
e254a580
DJ
11867Return immediately from the parser, indicating success.
11868@xref{Java Parser Interface}.
34a41a93 11869@end deftypefn
8405b70c 11870
34a41a93 11871@deftypefn {Statement} {return} YYERROR @code{;}
4a11b852 11872Start error recovery (without printing an error message).
e254a580 11873@xref{Error Recovery}.
34a41a93 11874@end deftypefn
8405b70c 11875
e254a580
DJ
11876@deftypefn {Function} {boolean} recovering ()
11877Return whether error recovery is being done. In this state, the parser
11878reads token until it reaches a known state, and then restarts normal
11879operation.
11880@xref{Error Recovery}.
11881@end deftypefn
8405b70c 11882
1979121c
DJ
11883@deftypefn {Function} {void} yyerror (String @var{msg})
11884@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
11885@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 11886Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
11887instance in use. The @code{Location} and @code{Position} parameters are
11888available only if location tracking is active.
e254a580 11889@end deftypefn
8405b70c 11890
8405b70c 11891
8405b70c
PB
11892@node Java Differences
11893@subsection Differences between C/C++ and Java Grammars
11894
11895The different structure of the Java language forces several differences
11896between C/C++ grammars, and grammars designed for Java parsers. This
29553547 11897section summarizes these differences.
8405b70c
PB
11898
11899@itemize
11900@item
01b477c6 11901Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 11902@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
11903macros. Instead, they should be preceded by @code{return} when they
11904appear in an action. The actual definition of these symbols is
8405b70c
PB
11905opaque to the Bison grammar, and it might change in the future. The
11906only meaningful operation that you can do, is to return them.
e3fd1dcb 11907@xref{Java Action Features}.
8405b70c
PB
11908
11909Note that of these three symbols, only @code{YYACCEPT} and
11910@code{YYABORT} will cause a return from the @code{yyparse}
11911method@footnote{Java parsers include the actions in a separate
11912method than @code{yyparse} in order to have an intuitive syntax that
11913corresponds to these C macros.}.
11914
e254a580
DJ
11915@item
11916Java lacks unions, so @code{%union} has no effect. Instead, semantic
11917values have a common base type: @code{Object} or as specified by
4119d1ea 11918@samp{%define api.value.type}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
11919@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
11920an union. The type of @code{$$}, even with angle brackets, is the base
11921type since Java casts are not allow on the left-hand side of assignments.
11922Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
15cd62c2 11923left-hand side of assignments. @xref{Java Semantic Values}, and
e3fd1dcb 11924@ref{Java Action Features}.
e254a580 11925
8405b70c 11926@item
f50bfcd6 11927The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
11928@table @asis
11929@item @code{%code imports}
11930blocks are placed at the beginning of the Java source code. They may
11931include copyright notices. For a @code{package} declarations, it is
67501061 11932suggested to use @samp{%define package} instead.
8405b70c 11933
01b477c6
PB
11934@item unqualified @code{%code}
11935blocks are placed inside the parser class.
11936
11937@item @code{%code lexer}
11938blocks, if specified, should include the implementation of the
11939scanner. If there is no such block, the scanner can be any class
e3fd1dcb 11940that implements the appropriate interface (@pxref{Java Scanner
01b477c6 11941Interface}).
29553547 11942@end table
8405b70c
PB
11943
11944Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
11945In particular, @code{%@{ @dots{} %@}} blocks should not be used
11946and may give an error in future versions of Bison.
11947
01b477c6 11948The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
11949be used to define other classes used by the parser @emph{outside}
11950the parser class.
8405b70c
PB
11951@end itemize
11952
e254a580
DJ
11953
11954@node Java Declarations Summary
11955@subsection Java Declarations Summary
11956
11957This summary only include declarations specific to Java or have special
11958meaning when used in a Java parser.
11959
11960@deffn {Directive} {%language "Java"}
11961Generate a Java class for the parser.
11962@end deffn
11963
11964@deffn {Directive} %lex-param @{@var{type} @var{name}@}
11965A parameter for the lexer class defined by @code{%code lexer}
11966@emph{only}, added as parameters to the lexer constructor and the parser
11967constructor that @emph{creates} a lexer. Default is none.
11968@xref{Java Scanner Interface}.
11969@end deffn
11970
11971@deffn {Directive} %name-prefix "@var{prefix}"
11972The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 11973@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
11974@xref{Java Bison Interface}.
11975@end deffn
11976
11977@deffn {Directive} %parse-param @{@var{type} @var{name}@}
11978A parameter for the parser class added as parameters to constructor(s)
11979and as fields initialized by the constructor(s). Default is none.
11980@xref{Java Parser Interface}.
11981@end deffn
11982
11983@deffn {Directive} %token <@var{type}> @var{token} @dots{}
11984Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
11985@xref{Java Semantic Values}.
11986@end deffn
11987
11988@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
11989Declare the type of nonterminals. Note that the angle brackets enclose
11990a Java @emph{type}.
11991@xref{Java Semantic Values}.
11992@end deffn
11993
11994@deffn {Directive} %code @{ @var{code} @dots{} @}
11995Code appended to the inside of the parser class.
11996@xref{Java Differences}.
11997@end deffn
11998
11999@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
12000Code inserted just after the @code{package} declaration.
12001@xref{Java Differences}.
12002@end deffn
12003
1979121c
DJ
12004@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
12005Code inserted at the beginning of the parser constructor body.
12006@xref{Java Parser Interface}.
12007@end deffn
12008
e254a580
DJ
12009@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
12010Code added to the body of a inner lexer class within the parser class.
12011@xref{Java Scanner Interface}.
12012@end deffn
12013
12014@deffn {Directive} %% @var{code} @dots{}
12015Code (after the second @code{%%}) appended to the end of the file,
12016@emph{outside} the parser class.
12017@xref{Java Differences}.
12018@end deffn
12019
12020@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 12021Not supported. Use @code{%code imports} instead.
e254a580
DJ
12022@xref{Java Differences}.
12023@end deffn
12024
12025@deffn {Directive} {%define abstract}
12026Whether the parser class is declared @code{abstract}. Default is false.
12027@xref{Java Bison Interface}.
12028@end deffn
12029
1979121c
DJ
12030@deffn {Directive} {%define annotations} "@var{annotations}"
12031The Java annotations for the parser class. Default is none.
12032@xref{Java Bison Interface}.
12033@end deffn
12034
e254a580
DJ
12035@deffn {Directive} {%define extends} "@var{superclass}"
12036The superclass of the parser class. Default is none.
12037@xref{Java Bison Interface}.
12038@end deffn
12039
12040@deffn {Directive} {%define final}
12041Whether the parser class is declared @code{final}. Default is false.
12042@xref{Java Bison Interface}.
12043@end deffn
12044
12045@deffn {Directive} {%define implements} "@var{interfaces}"
12046The implemented interfaces of the parser class, a comma-separated list.
12047Default is none.
12048@xref{Java Bison Interface}.
12049@end deffn
12050
1979121c
DJ
12051@deffn {Directive} {%define init_throws} "@var{exceptions}"
12052The exceptions thrown by @code{%code init} from the parser class
12053constructor. Default is none.
12054@xref{Java Parser Interface}.
12055@end deffn
12056
e254a580
DJ
12057@deffn {Directive} {%define lex_throws} "@var{exceptions}"
12058The exceptions thrown by the @code{yylex} method of the lexer, a
12059comma-separated list. Default is @code{java.io.IOException}.
12060@xref{Java Scanner Interface}.
12061@end deffn
12062
7287be84 12063@deffn {Directive} {%define api.location.type} "@var{class}"
e254a580
DJ
12064The name of the class used for locations (a range between two
12065positions). This class is generated as an inner class of the parser
12066class by @command{bison}. Default is @code{Location}.
7287be84 12067Formerly named @code{location_type}.
e254a580
DJ
12068@xref{Java Location Values}.
12069@end deffn
12070
12071@deffn {Directive} {%define package} "@var{package}"
12072The package to put the parser class in. Default is none.
12073@xref{Java Bison Interface}.
12074@end deffn
12075
12076@deffn {Directive} {%define parser_class_name} "@var{name}"
12077The name of the parser class. Default is @code{YYParser} or
12078@code{@var{name-prefix}Parser}.
12079@xref{Java Bison Interface}.
12080@end deffn
12081
7287be84 12082@deffn {Directive} {%define api.position.type} "@var{class}"
e254a580
DJ
12083The name of the class used for positions. This class must be supplied by
12084the user. Default is @code{Position}.
7287be84 12085Formerly named @code{position_type}.
e254a580
DJ
12086@xref{Java Location Values}.
12087@end deffn
12088
12089@deffn {Directive} {%define public}
12090Whether the parser class is declared @code{public}. Default is false.
12091@xref{Java Bison Interface}.
12092@end deffn
12093
4119d1ea 12094@deffn {Directive} {%define api.value.type} "@var{class}"
e254a580
DJ
12095The base type of semantic values. Default is @code{Object}.
12096@xref{Java Semantic Values}.
12097@end deffn
12098
12099@deffn {Directive} {%define strictfp}
12100Whether the parser class is declared @code{strictfp}. Default is false.
12101@xref{Java Bison Interface}.
12102@end deffn
12103
12104@deffn {Directive} {%define throws} "@var{exceptions}"
12105The exceptions thrown by user-supplied parser actions and
12106@code{%initial-action}, a comma-separated list. Default is none.
12107@xref{Java Parser Interface}.
12108@end deffn
12109
12110
12545799 12111@c ================================================= FAQ
d1a1114f
AD
12112
12113@node FAQ
12114@chapter Frequently Asked Questions
12115@cindex frequently asked questions
12116@cindex questions
12117
12118Several questions about Bison come up occasionally. Here some of them
12119are addressed.
12120
12121@menu
55ba27be
AD
12122* Memory Exhausted:: Breaking the Stack Limits
12123* How Can I Reset the Parser:: @code{yyparse} Keeps some State
12124* Strings are Destroyed:: @code{yylval} Loses Track of Strings
12125* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 12126* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 12127* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
12128* I can't build Bison:: Troubleshooting
12129* Where can I find help?:: Troubleshouting
12130* Bug Reports:: Troublereporting
8405b70c 12131* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
12132* Beta Testing:: Experimenting development versions
12133* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
12134@end menu
12135
1a059451
PE
12136@node Memory Exhausted
12137@section Memory Exhausted
d1a1114f 12138
71b52b13 12139@quotation
1a059451 12140My parser returns with error with a @samp{memory exhausted}
d1a1114f 12141message. What can I do?
71b52b13 12142@end quotation
d1a1114f 12143
188867ac
AD
12144This question is already addressed elsewhere, see @ref{Recursion, ,Recursive
12145Rules}.
d1a1114f 12146
e64fec0a
PE
12147@node How Can I Reset the Parser
12148@section How Can I Reset the Parser
5b066063 12149
0e14ad77
PE
12150The following phenomenon has several symptoms, resulting in the
12151following typical questions:
5b066063 12152
71b52b13 12153@quotation
5b066063
AD
12154I invoke @code{yyparse} several times, and on correct input it works
12155properly; but when a parse error is found, all the other calls fail
0e14ad77 12156too. How can I reset the error flag of @code{yyparse}?
71b52b13 12157@end quotation
5b066063
AD
12158
12159@noindent
12160or
12161
71b52b13 12162@quotation
0e14ad77 12163My parser includes support for an @samp{#include}-like feature, in
5b066063 12164which case I run @code{yyparse} from @code{yyparse}. This fails
1f1bd572 12165although I did specify @samp{%define api.pure full}.
71b52b13 12166@end quotation
5b066063 12167
0e14ad77
PE
12168These problems typically come not from Bison itself, but from
12169Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
12170speed, they might not notice a change of input file. As a
12171demonstration, consider the following source file,
12172@file{first-line.l}:
12173
d4fca427
AD
12174@example
12175@group
12176%@{
5b066063
AD
12177#include <stdio.h>
12178#include <stdlib.h>
d4fca427
AD
12179%@}
12180@end group
5b066063
AD
12181%%
12182.*\n ECHO; return 1;
12183%%
d4fca427 12184@group
5b066063 12185int
0e14ad77 12186yyparse (char const *file)
d4fca427 12187@{
5b066063
AD
12188 yyin = fopen (file, "r");
12189 if (!yyin)
d4fca427
AD
12190 @{
12191 perror ("fopen");
12192 exit (EXIT_FAILURE);
12193 @}
12194@end group
12195@group
fa7e68c3 12196 /* One token only. */
5b066063 12197 yylex ();
0e14ad77 12198 if (fclose (yyin) != 0)
d4fca427
AD
12199 @{
12200 perror ("fclose");
12201 exit (EXIT_FAILURE);
12202 @}
5b066063 12203 return 0;
d4fca427
AD
12204@}
12205@end group
5b066063 12206
d4fca427 12207@group
5b066063 12208int
0e14ad77 12209main (void)
d4fca427 12210@{
5b066063
AD
12211 yyparse ("input");
12212 yyparse ("input");
12213 return 0;
d4fca427
AD
12214@}
12215@end group
12216@end example
5b066063
AD
12217
12218@noindent
12219If the file @file{input} contains
12220
71b52b13 12221@example
5b066063
AD
12222input:1: Hello,
12223input:2: World!
71b52b13 12224@end example
5b066063
AD
12225
12226@noindent
0e14ad77 12227then instead of getting the first line twice, you get:
5b066063
AD
12228
12229@example
12230$ @kbd{flex -ofirst-line.c first-line.l}
12231$ @kbd{gcc -ofirst-line first-line.c -ll}
12232$ @kbd{./first-line}
12233input:1: Hello,
12234input:2: World!
12235@end example
12236
0e14ad77
PE
12237Therefore, whenever you change @code{yyin}, you must tell the
12238Lex-generated scanner to discard its current buffer and switch to the
12239new one. This depends upon your implementation of Lex; see its
12240documentation for more. For Flex, it suffices to call
12241@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
12242Flex-generated scanner needs to read from several input streams to
12243handle features like include files, you might consider using Flex
12244functions like @samp{yy_switch_to_buffer} that manipulate multiple
12245input buffers.
5b066063 12246
b165c324
AD
12247If your Flex-generated scanner uses start conditions (@pxref{Start
12248conditions, , Start conditions, flex, The Flex Manual}), you might
12249also want to reset the scanner's state, i.e., go back to the initial
12250start condition, through a call to @samp{BEGIN (0)}.
12251
fef4cb51
AD
12252@node Strings are Destroyed
12253@section Strings are Destroyed
12254
71b52b13 12255@quotation
c7e441b4 12256My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
12257them. Instead of reporting @samp{"foo", "bar"}, it reports
12258@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
71b52b13 12259@end quotation
fef4cb51
AD
12260
12261This error is probably the single most frequent ``bug report'' sent to
12262Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 12263of the scanner. Consider the following Lex code:
fef4cb51 12264
71b52b13 12265@example
d4fca427 12266@group
71b52b13 12267%@{
fef4cb51
AD
12268#include <stdio.h>
12269char *yylval = NULL;
71b52b13 12270%@}
d4fca427
AD
12271@end group
12272@group
fef4cb51
AD
12273%%
12274.* yylval = yytext; return 1;
12275\n /* IGNORE */
12276%%
d4fca427
AD
12277@end group
12278@group
fef4cb51
AD
12279int
12280main ()
71b52b13 12281@{
fa7e68c3 12282 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
12283 char *fst = (yylex (), yylval);
12284 char *snd = (yylex (), yylval);
12285 printf ("\"%s\", \"%s\"\n", fst, snd);
12286 return 0;
71b52b13 12287@}
d4fca427 12288@end group
71b52b13 12289@end example
fef4cb51
AD
12290
12291If you compile and run this code, you get:
12292
12293@example
12294$ @kbd{flex -osplit-lines.c split-lines.l}
12295$ @kbd{gcc -osplit-lines split-lines.c -ll}
12296$ @kbd{printf 'one\ntwo\n' | ./split-lines}
12297"one
12298two", "two"
12299@end example
12300
12301@noindent
12302this is because @code{yytext} is a buffer provided for @emph{reading}
12303in the action, but if you want to keep it, you have to duplicate it
12304(e.g., using @code{strdup}). Note that the output may depend on how
12305your implementation of Lex handles @code{yytext}. For instance, when
12306given the Lex compatibility option @option{-l} (which triggers the
12307option @samp{%array}) Flex generates a different behavior:
12308
12309@example
12310$ @kbd{flex -l -osplit-lines.c split-lines.l}
12311$ @kbd{gcc -osplit-lines split-lines.c -ll}
12312$ @kbd{printf 'one\ntwo\n' | ./split-lines}
12313"two", "two"
12314@end example
12315
12316
2fa09258
AD
12317@node Implementing Gotos/Loops
12318@section Implementing Gotos/Loops
a06ea4aa 12319
71b52b13 12320@quotation
a06ea4aa 12321My simple calculator supports variables, assignments, and functions,
2fa09258 12322but how can I implement gotos, or loops?
71b52b13 12323@end quotation
a06ea4aa
AD
12324
12325Although very pedagogical, the examples included in the document blur
a1c84f45 12326the distinction to make between the parser---whose job is to recover
a06ea4aa 12327the structure of a text and to transmit it to subsequent modules of
a1c84f45 12328the program---and the processing (such as the execution) of this
a06ea4aa
AD
12329structure. This works well with so called straight line programs,
12330i.e., precisely those that have a straightforward execution model:
12331execute simple instructions one after the others.
12332
12333@cindex abstract syntax tree
8a4281b9 12334@cindex AST
a06ea4aa
AD
12335If you want a richer model, you will probably need to use the parser
12336to construct a tree that does represent the structure it has
12337recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 12338or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
12339traversing it in various ways, will enable treatments such as its
12340execution or its translation, which will result in an interpreter or a
12341compiler.
12342
12343This topic is way beyond the scope of this manual, and the reader is
12344invited to consult the dedicated literature.
12345
12346
ed2e6384
AD
12347@node Multiple start-symbols
12348@section Multiple start-symbols
12349
71b52b13 12350@quotation
ed2e6384
AD
12351I have several closely related grammars, and I would like to share their
12352implementations. In fact, I could use a single grammar but with
12353multiple entry points.
71b52b13 12354@end quotation
ed2e6384
AD
12355
12356Bison does not support multiple start-symbols, but there is a very
12357simple means to simulate them. If @code{foo} and @code{bar} are the two
12358pseudo start-symbols, then introduce two new tokens, say
12359@code{START_FOO} and @code{START_BAR}, and use them as switches from the
12360real start-symbol:
12361
12362@example
12363%token START_FOO START_BAR;
12364%start start;
5e9b6624
AD
12365start:
12366 START_FOO foo
12367| START_BAR bar;
ed2e6384
AD
12368@end example
12369
12370These tokens prevents the introduction of new conflicts. As far as the
12371parser goes, that is all that is needed.
12372
12373Now the difficult part is ensuring that the scanner will send these
12374tokens first. If your scanner is hand-written, that should be
12375straightforward. If your scanner is generated by Lex, them there is
12376simple means to do it: recall that anything between @samp{%@{ ... %@}}
12377after the first @code{%%} is copied verbatim in the top of the generated
12378@code{yylex} function. Make sure a variable @code{start_token} is
12379available in the scanner (e.g., a global variable or using
12380@code{%lex-param} etc.), and use the following:
12381
12382@example
12383 /* @r{Prologue.} */
12384%%
12385%@{
12386 if (start_token)
12387 @{
12388 int t = start_token;
12389 start_token = 0;
12390 return t;
12391 @}
12392%@}
12393 /* @r{The rules.} */
12394@end example
12395
12396
55ba27be
AD
12397@node Secure? Conform?
12398@section Secure? Conform?
12399
71b52b13 12400@quotation
55ba27be 12401Is Bison secure? Does it conform to POSIX?
71b52b13 12402@end quotation
55ba27be
AD
12403
12404If you're looking for a guarantee or certification, we don't provide it.
12405However, Bison is intended to be a reliable program that conforms to the
8a4281b9 12406POSIX specification for Yacc. If you run into problems,
55ba27be
AD
12407please send us a bug report.
12408
12409@node I can't build Bison
12410@section I can't build Bison
12411
71b52b13 12412@quotation
8c5b881d
PE
12413I can't build Bison because @command{make} complains that
12414@code{msgfmt} is not found.
55ba27be 12415What should I do?
71b52b13 12416@end quotation
55ba27be
AD
12417
12418Like most GNU packages with internationalization support, that feature
12419is turned on by default. If you have problems building in the @file{po}
12420subdirectory, it indicates that your system's internationalization
12421support is lacking. You can re-configure Bison with
12422@option{--disable-nls} to turn off this support, or you can install GNU
12423gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
12424Bison. See the file @file{ABOUT-NLS} for more information.
12425
12426
12427@node Where can I find help?
12428@section Where can I find help?
12429
71b52b13 12430@quotation
55ba27be 12431I'm having trouble using Bison. Where can I find help?
71b52b13 12432@end quotation
55ba27be
AD
12433
12434First, read this fine manual. Beyond that, you can send mail to
12435@email{help-bison@@gnu.org}. This mailing list is intended to be
12436populated with people who are willing to answer questions about using
12437and installing Bison. Please keep in mind that (most of) the people on
12438the list have aspects of their lives which are not related to Bison (!),
12439so you may not receive an answer to your question right away. This can
12440be frustrating, but please try not to honk them off; remember that any
12441help they provide is purely voluntary and out of the kindness of their
12442hearts.
12443
12444@node Bug Reports
12445@section Bug Reports
12446
71b52b13 12447@quotation
55ba27be 12448I found a bug. What should I include in the bug report?
71b52b13 12449@end quotation
55ba27be
AD
12450
12451Before you send a bug report, make sure you are using the latest
12452version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
12453mirrors. Be sure to include the version number in your bug report. If
12454the bug is present in the latest version but not in a previous version,
12455try to determine the most recent version which did not contain the bug.
12456
12457If the bug is parser-related, you should include the smallest grammar
12458you can which demonstrates the bug. The grammar file should also be
12459complete (i.e., I should be able to run it through Bison without having
12460to edit or add anything). The smaller and simpler the grammar, the
12461easier it will be to fix the bug.
12462
12463Include information about your compilation environment, including your
12464operating system's name and version and your compiler's name and
12465version. If you have trouble compiling, you should also include a
12466transcript of the build session, starting with the invocation of
12467`configure'. Depending on the nature of the bug, you may be asked to
4c9b8f13 12468send additional files as well (such as @file{config.h} or @file{config.cache}).
55ba27be
AD
12469
12470Patches are most welcome, but not required. That is, do not hesitate to
411614fa 12471send a bug report just because you cannot provide a fix.
55ba27be
AD
12472
12473Send bug reports to @email{bug-bison@@gnu.org}.
12474
8405b70c
PB
12475@node More Languages
12476@section More Languages
55ba27be 12477
71b52b13 12478@quotation
8405b70c 12479Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 12480favorite language here}?
71b52b13 12481@end quotation
55ba27be 12482
8405b70c 12483C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
12484languages; contributions are welcome.
12485
12486@node Beta Testing
12487@section Beta Testing
12488
71b52b13 12489@quotation
55ba27be 12490What is involved in being a beta tester?
71b52b13 12491@end quotation
55ba27be
AD
12492
12493It's not terribly involved. Basically, you would download a test
12494release, compile it, and use it to build and run a parser or two. After
12495that, you would submit either a bug report or a message saying that
12496everything is okay. It is important to report successes as well as
12497failures because test releases eventually become mainstream releases,
12498but only if they are adequately tested. If no one tests, development is
12499essentially halted.
12500
12501Beta testers are particularly needed for operating systems to which the
12502developers do not have easy access. They currently have easy access to
12503recent GNU/Linux and Solaris versions. Reports about other operating
12504systems are especially welcome.
12505
12506@node Mailing Lists
12507@section Mailing Lists
12508
71b52b13 12509@quotation
55ba27be 12510How do I join the help-bison and bug-bison mailing lists?
71b52b13 12511@end quotation
55ba27be
AD
12512
12513See @url{http://lists.gnu.org/}.
a06ea4aa 12514
d1a1114f
AD
12515@c ================================================= Table of Symbols
12516
342b8b6e 12517@node Table of Symbols
bfa74976
RS
12518@appendix Bison Symbols
12519@cindex Bison symbols, table of
12520@cindex symbols in Bison, table of
12521
18b519c0 12522@deffn {Variable} @@$
3ded9a63 12523In an action, the location of the left-hand side of the rule.
303834cc 12524@xref{Tracking Locations}.
18b519c0 12525@end deffn
3ded9a63 12526
18b519c0 12527@deffn {Variable} @@@var{n}
be22823e 12528@deffnx {Symbol} @@@var{n}
303834cc
JD
12529In an action, the location of the @var{n}-th symbol of the right-hand side
12530of the rule. @xref{Tracking Locations}.
be22823e
AD
12531
12532In a grammar, the Bison-generated nonterminal symbol for a mid-rule action
12533with a semantical value. @xref{Mid-Rule Action Translation}.
18b519c0 12534@end deffn
3ded9a63 12535
d013372c 12536@deffn {Variable} @@@var{name}
c949ada3
AD
12537@deffnx {Variable} @@[@var{name}]
12538In an action, the location of a symbol addressed by @var{name}.
12539@xref{Tracking Locations}.
d013372c
AR
12540@end deffn
12541
be22823e
AD
12542@deffn {Symbol} $@@@var{n}
12543In a grammar, the Bison-generated nonterminal symbol for a mid-rule action
12544with no semantical value. @xref{Mid-Rule Action Translation}.
d013372c
AR
12545@end deffn
12546
18b519c0 12547@deffn {Variable} $$
3ded9a63
AD
12548In an action, the semantic value of the left-hand side of the rule.
12549@xref{Actions}.
18b519c0 12550@end deffn
3ded9a63 12551
18b519c0 12552@deffn {Variable} $@var{n}
3ded9a63
AD
12553In an action, the semantic value of the @var{n}-th symbol of the
12554right-hand side of the rule. @xref{Actions}.
18b519c0 12555@end deffn
3ded9a63 12556
d013372c 12557@deffn {Variable} $@var{name}
c949ada3
AD
12558@deffnx {Variable} $[@var{name}]
12559In an action, the semantic value of a symbol addressed by @var{name}.
d013372c
AR
12560@xref{Actions}.
12561@end deffn
12562
dd8d9022
AD
12563@deffn {Delimiter} %%
12564Delimiter used to separate the grammar rule section from the
12565Bison declarations section or the epilogue.
12566@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 12567@end deffn
bfa74976 12568
dd8d9022
AD
12569@c Don't insert spaces, or check the DVI output.
12570@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
12571All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
12572to the parser implementation file. Such code forms the prologue of
12573the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 12574Grammar}.
18b519c0 12575@end deffn
bfa74976 12576
ca2a6d15
PH
12577@deffn {Directive} %?@{@var{expression}@}
12578Predicate actions. This is a type of action clause that may appear in
12579rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 12580GLR parsers during nondeterministic operation,
ca2a6d15
PH
12581this silently causes an alternative parse to die. During deterministic
12582operation, it is the same as the effect of YYERROR.
12583@xref{Semantic Predicates}.
12584
12585This feature is experimental.
12586More user feedback will help to determine whether it should become a permanent
12587feature.
12588@end deffn
12589
c949ada3
AD
12590@deffn {Construct} /* @dots{} */
12591@deffnx {Construct} // @dots{}
12592Comments, as in C/C++.
18b519c0 12593@end deffn
bfa74976 12594
dd8d9022
AD
12595@deffn {Delimiter} :
12596Separates a rule's result from its components. @xref{Rules, ,Syntax of
12597Grammar Rules}.
18b519c0 12598@end deffn
bfa74976 12599
dd8d9022
AD
12600@deffn {Delimiter} ;
12601Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 12602@end deffn
bfa74976 12603
dd8d9022
AD
12604@deffn {Delimiter} |
12605Separates alternate rules for the same result nonterminal.
12606@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 12607@end deffn
bfa74976 12608
12e35840
JD
12609@deffn {Directive} <*>
12610Used to define a default tagged @code{%destructor} or default tagged
12611@code{%printer}.
85894313
JD
12612
12613This feature is experimental.
12614More user feedback will help to determine whether it should become a permanent
12615feature.
12616
12e35840
JD
12617@xref{Destructor Decl, , Freeing Discarded Symbols}.
12618@end deffn
12619
3ebecc24 12620@deffn {Directive} <>
12e35840
JD
12621Used to define a default tagless @code{%destructor} or default tagless
12622@code{%printer}.
85894313
JD
12623
12624This feature is experimental.
12625More user feedback will help to determine whether it should become a permanent
12626feature.
12627
12e35840
JD
12628@xref{Destructor Decl, , Freeing Discarded Symbols}.
12629@end deffn
12630
dd8d9022
AD
12631@deffn {Symbol} $accept
12632The predefined nonterminal whose only rule is @samp{$accept: @var{start}
12633$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
12634Start-Symbol}. It cannot be used in the grammar.
18b519c0 12635@end deffn
bfa74976 12636
136a0f76 12637@deffn {Directive} %code @{@var{code}@}
148d66d8 12638@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
51151d91
JD
12639Insert @var{code} verbatim into the output parser source at the
12640default location or at the location specified by @var{qualifier}.
e0c07222 12641@xref{%code Summary}.
9bc0dd67
JD
12642@end deffn
12643
12644@deffn {Directive} %debug
12645Equip the parser for debugging. @xref{Decl Summary}.
12646@end deffn
12647
91d2c560 12648@ifset defaultprec
22fccf95
PE
12649@deffn {Directive} %default-prec
12650Assign a precedence to rules that lack an explicit @samp{%prec}
12651modifier. @xref{Contextual Precedence, ,Context-Dependent
12652Precedence}.
39a06c25 12653@end deffn
91d2c560 12654@end ifset
39a06c25 12655
7fceb615
JD
12656@deffn {Directive} %define @var{variable}
12657@deffnx {Directive} %define @var{variable} @var{value}
12658@deffnx {Directive} %define @var{variable} "@var{value}"
35c1e5f0 12659Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
12660@end deffn
12661
18b519c0 12662@deffn {Directive} %defines
ff7571c0
JD
12663Bison declaration to create a parser header file, which is usually
12664meant for the scanner. @xref{Decl Summary}.
18b519c0 12665@end deffn
6deb4447 12666
02975b9a
JD
12667@deffn {Directive} %defines @var{defines-file}
12668Same as above, but save in the file @var{defines-file}.
12669@xref{Decl Summary}.
12670@end deffn
12671
18b519c0 12672@deffn {Directive} %destructor
258b75ca 12673Specify how the parser should reclaim the memory associated to
fa7e68c3 12674discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 12675@end deffn
72f889cc 12676
18b519c0 12677@deffn {Directive} %dprec
676385e2 12678Bison declaration to assign a precedence to a rule that is used at parse
c827f760 12679time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 12680GLR Parsers}.
18b519c0 12681@end deffn
676385e2 12682
09add9c2
AD
12683@deffn {Directive} %empty
12684Bison declaration to declare make explicit that a rule has an empty
12685right-hand side. @xref{Empty Rules}.
12686@end deffn
12687
dd8d9022
AD
12688@deffn {Symbol} $end
12689The predefined token marking the end of the token stream. It cannot be
12690used in the grammar.
12691@end deffn
12692
12693@deffn {Symbol} error
12694A token name reserved for error recovery. This token may be used in
12695grammar rules so as to allow the Bison parser to recognize an error in
12696the grammar without halting the process. In effect, a sentence
12697containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
12698token @code{error} becomes the current lookahead token. Actions
12699corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
12700token is reset to the token that originally caused the violation.
12701@xref{Error Recovery}.
18d192f0
AD
12702@end deffn
12703
18b519c0 12704@deffn {Directive} %error-verbose
7fceb615
JD
12705An obsolete directive standing for @samp{%define parse.error verbose}
12706(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
18b519c0 12707@end deffn
2a8d363a 12708
02975b9a 12709@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 12710Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 12711Summary}.
18b519c0 12712@end deffn
d8988b2f 12713
18b519c0 12714@deffn {Directive} %glr-parser
8a4281b9
JD
12715Bison declaration to produce a GLR parser. @xref{GLR
12716Parsers, ,Writing GLR Parsers}.
18b519c0 12717@end deffn
676385e2 12718
dd8d9022
AD
12719@deffn {Directive} %initial-action
12720Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
12721@end deffn
12722
e6e704dc
JD
12723@deffn {Directive} %language
12724Specify the programming language for the generated parser.
12725@xref{Decl Summary}.
12726@end deffn
12727
18b519c0 12728@deffn {Directive} %left
d78f0ac9 12729Bison declaration to assign precedence and left associativity to token(s).
bfa74976 12730@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12731@end deffn
bfa74976 12732
2055a44e
AD
12733@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
12734Bison declaration to specifying additional arguments that
2a8d363a
AD
12735@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
12736for Pure Parsers}.
18b519c0 12737@end deffn
2a8d363a 12738
18b519c0 12739@deffn {Directive} %merge
676385e2 12740Bison declaration to assign a merging function to a rule. If there is a
fae437e8 12741reduce/reduce conflict with a rule having the same merging function, the
676385e2 12742function is applied to the two semantic values to get a single result.
8a4281b9 12743@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 12744@end deffn
676385e2 12745
02975b9a 12746@deffn {Directive} %name-prefix "@var{prefix}"
4b3847c3
AD
12747Obsoleted by the @code{%define} variable @code{api.prefix} (@pxref{Multiple
12748Parsers, ,Multiple Parsers in the Same Program}).
12749
12750Rename the external symbols (variables and functions) used in the parser so
12751that they start with @var{prefix} instead of @samp{yy}. Contrary to
12752@code{api.prefix}, do no rename types and macros.
12753
12754The precise list of symbols renamed in C parsers is @code{yyparse},
12755@code{yylex}, @code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yychar},
12756@code{yydebug}, and (if locations are used) @code{yylloc}. If you use a
12757push parser, @code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
12758@code{yypstate_new} and @code{yypstate_delete} will also be renamed. For
12759example, if you use @samp{%name-prefix "c_"}, the names become
12760@code{c_parse}, @code{c_lex}, and so on. For C++ parsers, see the
12761@code{%define namespace} documentation in this section.
18b519c0 12762@end deffn
d8988b2f 12763
4b3847c3 12764
91d2c560 12765@ifset defaultprec
22fccf95
PE
12766@deffn {Directive} %no-default-prec
12767Do not assign a precedence to rules that lack an explicit @samp{%prec}
12768modifier. @xref{Contextual Precedence, ,Context-Dependent
12769Precedence}.
12770@end deffn
91d2c560 12771@end ifset
22fccf95 12772
18b519c0 12773@deffn {Directive} %no-lines
931c7513 12774Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 12775parser implementation file. @xref{Decl Summary}.
18b519c0 12776@end deffn
931c7513 12777
18b519c0 12778@deffn {Directive} %nonassoc
d78f0ac9 12779Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 12780@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12781@end deffn
bfa74976 12782
02975b9a 12783@deffn {Directive} %output "@var{file}"
ff7571c0
JD
12784Bison declaration to set the name of the parser implementation file.
12785@xref{Decl Summary}.
18b519c0 12786@end deffn
d8988b2f 12787
2055a44e
AD
12788@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
12789Bison declaration to specify additional arguments that both
12790@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
12791Parser Function @code{yyparse}}.
12792@end deffn
12793
12794@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
12795Bison declaration to specify additional arguments that @code{yyparse}
12796should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 12797@end deffn
2a8d363a 12798
18b519c0 12799@deffn {Directive} %prec
bfa74976
RS
12800Bison declaration to assign a precedence to a specific rule.
12801@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 12802@end deffn
bfa74976 12803
d78f0ac9
AD
12804@deffn {Directive} %precedence
12805Bison declaration to assign precedence to token(s), but no associativity
12806@xref{Precedence Decl, ,Operator Precedence}.
12807@end deffn
12808
18b519c0 12809@deffn {Directive} %pure-parser
35c1e5f0
JD
12810Deprecated version of @samp{%define api.pure} (@pxref{%define
12811Summary,,api.pure}), for which Bison is more careful to warn about
12812unreasonable usage.
18b519c0 12813@end deffn
bfa74976 12814
b50d2359 12815@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
12816Require version @var{version} or higher of Bison. @xref{Require Decl, ,
12817Require a Version of Bison}.
b50d2359
AD
12818@end deffn
12819
18b519c0 12820@deffn {Directive} %right
d78f0ac9 12821Bison declaration to assign precedence and right associativity to token(s).
bfa74976 12822@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12823@end deffn
bfa74976 12824
e6e704dc
JD
12825@deffn {Directive} %skeleton
12826Specify the skeleton to use; usually for development.
12827@xref{Decl Summary}.
12828@end deffn
12829
18b519c0 12830@deffn {Directive} %start
704a47c4
AD
12831Bison declaration to specify the start symbol. @xref{Start Decl, ,The
12832Start-Symbol}.
18b519c0 12833@end deffn
bfa74976 12834
18b519c0 12835@deffn {Directive} %token
bfa74976
RS
12836Bison declaration to declare token(s) without specifying precedence.
12837@xref{Token Decl, ,Token Type Names}.
18b519c0 12838@end deffn
bfa74976 12839
18b519c0 12840@deffn {Directive} %token-table
ff7571c0
JD
12841Bison declaration to include a token name table in the parser
12842implementation file. @xref{Decl Summary}.
18b519c0 12843@end deffn
931c7513 12844
18b519c0 12845@deffn {Directive} %type
704a47c4
AD
12846Bison declaration to declare nonterminals. @xref{Type Decl,
12847,Nonterminal Symbols}.
18b519c0 12848@end deffn
bfa74976 12849
dd8d9022
AD
12850@deffn {Symbol} $undefined
12851The predefined token onto which all undefined values returned by
12852@code{yylex} are mapped. It cannot be used in the grammar, rather, use
12853@code{error}.
12854@end deffn
12855
18b519c0 12856@deffn {Directive} %union
bfa74976 12857Bison declaration to specify several possible data types for semantic
e4d49586 12858values. @xref{Union Decl, ,The Union Declaration}.
18b519c0 12859@end deffn
bfa74976 12860
dd8d9022
AD
12861@deffn {Macro} YYABORT
12862Macro to pretend that an unrecoverable syntax error has occurred, by
12863making @code{yyparse} return 1 immediately. The error reporting
12864function @code{yyerror} is not called. @xref{Parser Function, ,The
12865Parser Function @code{yyparse}}.
8405b70c
PB
12866
12867For Java parsers, this functionality is invoked using @code{return YYABORT;}
12868instead.
dd8d9022 12869@end deffn
3ded9a63 12870
dd8d9022
AD
12871@deffn {Macro} YYACCEPT
12872Macro to pretend that a complete utterance of the language has been
12873read, by making @code{yyparse} return 0 immediately.
12874@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
12875
12876For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
12877instead.
dd8d9022 12878@end deffn
bfa74976 12879
dd8d9022 12880@deffn {Macro} YYBACKUP
742e4900 12881Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 12882token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 12883@end deffn
bfa74976 12884
dd8d9022 12885@deffn {Variable} yychar
32c29292 12886External integer variable that contains the integer value of the
742e4900 12887lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
12888@code{yyparse}.) Error-recovery rule actions may examine this variable.
12889@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 12890@end deffn
bfa74976 12891
dd8d9022
AD
12892@deffn {Variable} yyclearin
12893Macro used in error-recovery rule actions. It clears the previous
742e4900 12894lookahead token. @xref{Error Recovery}.
18b519c0 12895@end deffn
bfa74976 12896
dd8d9022
AD
12897@deffn {Macro} YYDEBUG
12898Macro to define to equip the parser with tracing code. @xref{Tracing,
12899,Tracing Your Parser}.
18b519c0 12900@end deffn
bfa74976 12901
dd8d9022
AD
12902@deffn {Variable} yydebug
12903External integer variable set to zero by default. If @code{yydebug}
12904is given a nonzero value, the parser will output information on input
12905symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 12906@end deffn
bfa74976 12907
dd8d9022
AD
12908@deffn {Macro} yyerrok
12909Macro to cause parser to recover immediately to its normal mode
12910after a syntax error. @xref{Error Recovery}.
12911@end deffn
12912
12913@deffn {Macro} YYERROR
4a11b852
AD
12914Cause an immediate syntax error. This statement initiates error
12915recovery just as if the parser itself had detected an error; however, it
12916does not call @code{yyerror}, and does not print any message. If you
12917want to print an error message, call @code{yyerror} explicitly before
12918the @samp{YYERROR;} statement. @xref{Error Recovery}.
8405b70c
PB
12919
12920For Java parsers, this functionality is invoked using @code{return YYERROR;}
12921instead.
dd8d9022
AD
12922@end deffn
12923
12924@deffn {Function} yyerror
12925User-supplied function to be called by @code{yyparse} on error.
71b00ed8 12926@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
12927@end deffn
12928
12929@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
12930An obsolete macro used in the @file{yacc.c} skeleton, that you define
12931with @code{#define} in the prologue to request verbose, specific error
12932message strings when @code{yyerror} is called. It doesn't matter what
12933definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 12934it. Using @samp{%define parse.error verbose} is preferred
31b850d2 12935(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
12936@end deffn
12937
93c150b6
AD
12938@deffn {Macro} YYFPRINTF
12939Macro used to output run-time traces.
12940@xref{Enabling Traces}.
12941@end deffn
12942
dd8d9022
AD
12943@deffn {Macro} YYINITDEPTH
12944Macro for specifying the initial size of the parser stack.
1a059451 12945@xref{Memory Management}.
dd8d9022
AD
12946@end deffn
12947
12948@deffn {Function} yylex
12949User-supplied lexical analyzer function, called with no arguments to get
12950the next token. @xref{Lexical, ,The Lexical Analyzer Function
12951@code{yylex}}.
12952@end deffn
12953
dd8d9022
AD
12954@deffn {Variable} yylloc
12955External variable in which @code{yylex} should place the line and column
12956numbers associated with a token. (In a pure parser, it is a local
12957variable within @code{yyparse}, and its address is passed to
32c29292
JD
12958@code{yylex}.)
12959You can ignore this variable if you don't use the @samp{@@} feature in the
12960grammar actions.
12961@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 12962In semantic actions, it stores the location of the lookahead token.
32c29292 12963@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
12964@end deffn
12965
12966@deffn {Type} YYLTYPE
12967Data type of @code{yylloc}; by default, a structure with four
12968members. @xref{Location Type, , Data Types of Locations}.
12969@end deffn
12970
12971@deffn {Variable} yylval
12972External variable in which @code{yylex} should place the semantic
12973value associated with a token. (In a pure parser, it is a local
12974variable within @code{yyparse}, and its address is passed to
32c29292
JD
12975@code{yylex}.)
12976@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 12977In semantic actions, it stores the semantic value of the lookahead token.
32c29292 12978@xref{Actions, ,Actions}.
dd8d9022
AD
12979@end deffn
12980
12981@deffn {Macro} YYMAXDEPTH
1a059451
PE
12982Macro for specifying the maximum size of the parser stack. @xref{Memory
12983Management}.
dd8d9022
AD
12984@end deffn
12985
12986@deffn {Variable} yynerrs
8a2800e7 12987Global variable which Bison increments each time it reports a syntax error.
f4101aa6 12988(In a pure parser, it is a local variable within @code{yyparse}. In a
a73aa764 12989pure push parser, it is a member of @code{yypstate}.)
dd8d9022
AD
12990@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
12991@end deffn
12992
12993@deffn {Function} yyparse
12994The parser function produced by Bison; call this function to start
12995parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
12996@end deffn
12997
93c150b6
AD
12998@deffn {Macro} YYPRINT
12999Macro used to output token semantic values. For @file{yacc.c} only.
13000Obsoleted by @code{%printer}.
13001@xref{The YYPRINT Macro, , The @code{YYPRINT} Macro}.
13002@end deffn
13003
9987d1b3 13004@deffn {Function} yypstate_delete
f4101aa6 13005The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 13006call this function to delete the memory associated with a parser.
f4101aa6 13007@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 13008@code{yypstate_delete}}.
59da312b
JD
13009(The current push parsing interface is experimental and may evolve.
13010More user feedback will help to stabilize it.)
9987d1b3
JD
13011@end deffn
13012
13013@deffn {Function} yypstate_new
f4101aa6 13014The function to create a parser instance, produced by Bison in push mode;
9987d1b3 13015call this function to create a new parser.
f4101aa6 13016@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 13017@code{yypstate_new}}.
59da312b
JD
13018(The current push parsing interface is experimental and may evolve.
13019More user feedback will help to stabilize it.)
9987d1b3
JD
13020@end deffn
13021
13022@deffn {Function} yypull_parse
f4101aa6
AD
13023The parser function produced by Bison in push mode; call this function to
13024parse the rest of the input stream.
13025@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 13026@code{yypull_parse}}.
59da312b
JD
13027(The current push parsing interface is experimental and may evolve.
13028More user feedback will help to stabilize it.)
9987d1b3
JD
13029@end deffn
13030
13031@deffn {Function} yypush_parse
f4101aa6
AD
13032The parser function produced by Bison in push mode; call this function to
13033parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 13034@code{yypush_parse}}.
59da312b
JD
13035(The current push parsing interface is experimental and may evolve.
13036More user feedback will help to stabilize it.)
9987d1b3
JD
13037@end deffn
13038
dd8d9022 13039@deffn {Macro} YYRECOVERING
02103984
PE
13040The expression @code{YYRECOVERING ()} yields 1 when the parser
13041is recovering from a syntax error, and 0 otherwise.
13042@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
13043@end deffn
13044
13045@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
13046Macro used to control the use of @code{alloca} when the
13047deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
13048the parser will use @code{malloc} to extend its stacks. If defined to
130491, the parser will use @code{alloca}. Values other than 0 and 1 are
13050reserved for future Bison extensions. If not defined,
13051@code{YYSTACK_USE_ALLOCA} defaults to 0.
13052
55289366 13053In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
13054limited stack and with unreliable stack-overflow checking, you should
13055set @code{YYMAXDEPTH} to a value that cannot possibly result in
13056unchecked stack overflow on any of your target hosts when
13057@code{alloca} is called. You can inspect the code that Bison
13058generates in order to determine the proper numeric values. This will
13059require some expertise in low-level implementation details.
dd8d9022
AD
13060@end deffn
13061
13062@deffn {Type} YYSTYPE
21e3a2b5 13063Deprecated in favor of the @code{%define} variable @code{api.value.type}.
dd8d9022
AD
13064Data type of semantic values; @code{int} by default.
13065@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 13066@end deffn
bfa74976 13067
342b8b6e 13068@node Glossary
bfa74976
RS
13069@appendix Glossary
13070@cindex glossary
13071
13072@table @asis
7fceb615 13073@item Accepting state
eb45ef3b
JD
13074A state whose only action is the accept action.
13075The accepting state is thus a consistent state.
c949ada3 13076@xref{Understanding, ,Understanding Your Parser}.
eb45ef3b 13077
8a4281b9 13078@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
13079Formal method of specifying context-free grammars originally proposed
13080by John Backus, and slightly improved by Peter Naur in his 1960-01-02
13081committee document contributing to what became the Algol 60 report.
13082@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 13083
7fceb615
JD
13084@item Consistent state
13085A state containing only one possible action. @xref{Default Reductions}.
eb45ef3b 13086
bfa74976
RS
13087@item Context-free grammars
13088Grammars specified as rules that can be applied regardless of context.
13089Thus, if there is a rule which says that an integer can be used as an
13090expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
13091permitted. @xref{Language and Grammar, ,Languages and Context-Free
13092Grammars}.
bfa74976 13093
7fceb615 13094@item Default reduction
110ef36a 13095The reduction that a parser should perform if the current parser state
35c1e5f0 13096contains no other action for the lookahead token. In permitted parser
7fceb615
JD
13097states, Bison declares the reduction with the largest lookahead set to be
13098the default reduction and removes that lookahead set. @xref{Default
13099Reductions}.
13100
13101@item Defaulted state
13102A consistent state with a default reduction. @xref{Default Reductions}.
eb45ef3b 13103
bfa74976
RS
13104@item Dynamic allocation
13105Allocation of memory that occurs during execution, rather than at
13106compile time or on entry to a function.
13107
13108@item Empty string
13109Analogous to the empty set in set theory, the empty string is a
13110character string of length zero.
13111
13112@item Finite-state stack machine
13113A ``machine'' that has discrete states in which it is said to exist at
13114each instant in time. As input to the machine is processed, the
13115machine moves from state to state as specified by the logic of the
13116machine. In the case of the parser, the input is the language being
13117parsed, and the states correspond to various stages in the grammar
c827f760 13118rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 13119
8a4281b9 13120@item Generalized LR (GLR)
676385e2 13121A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 13122that are not LR(1). It resolves situations that Bison's
eb45ef3b 13123deterministic parsing
676385e2
PH
13124algorithm cannot by effectively splitting off multiple parsers, trying all
13125possible parsers, and discarding those that fail in the light of additional
c827f760 13126right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 13127LR Parsing}.
676385e2 13128
bfa74976
RS
13129@item Grouping
13130A language construct that is (in general) grammatically divisible;
c827f760 13131for example, `expression' or `declaration' in C@.
bfa74976
RS
13132@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
13133
7fceb615
JD
13134@item IELR(1) (Inadequacy Elimination LR(1))
13135A minimal LR(1) parser table construction algorithm. That is, given any
35c1e5f0 13136context-free grammar, IELR(1) generates parser tables with the full
7fceb615
JD
13137language-recognition power of canonical LR(1) but with nearly the same
13138number of parser states as LALR(1). This reduction in parser states is
13139often an order of magnitude. More importantly, because canonical LR(1)'s
13140extra parser states may contain duplicate conflicts in the case of non-LR(1)
13141grammars, the number of conflicts for IELR(1) is often an order of magnitude
13142less as well. This can significantly reduce the complexity of developing a
13143grammar. @xref{LR Table Construction}.
eb45ef3b 13144
bfa74976
RS
13145@item Infix operator
13146An arithmetic operator that is placed between the operands on which it
13147performs some operation.
13148
13149@item Input stream
13150A continuous flow of data between devices or programs.
13151
8a4281b9 13152@item LAC (Lookahead Correction)
fcf834f9 13153A parsing mechanism that fixes the problem of delayed syntax error
7fceb615
JD
13154detection, which is caused by LR state merging, default reductions, and the
13155use of @code{%nonassoc}. Delayed syntax error detection results in
13156unexpected semantic actions, initiation of error recovery in the wrong
13157syntactic context, and an incorrect list of expected tokens in a verbose
13158syntax error message. @xref{LAC}.
fcf834f9 13159
bfa74976
RS
13160@item Language construct
13161One of the typical usage schemas of the language. For example, one of
13162the constructs of the C language is the @code{if} statement.
13163@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
13164
13165@item Left associativity
13166Operators having left associativity are analyzed from left to right:
13167@samp{a+b+c} first computes @samp{a+b} and then combines with
13168@samp{c}. @xref{Precedence, ,Operator Precedence}.
13169
13170@item Left recursion
89cab50d
AD
13171A rule whose result symbol is also its first component symbol; for
13172example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
13173Rules}.
bfa74976
RS
13174
13175@item Left-to-right parsing
13176Parsing a sentence of a language by analyzing it token by token from
c827f760 13177left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
13178
13179@item Lexical analyzer (scanner)
13180A function that reads an input stream and returns tokens one by one.
13181@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
13182
13183@item Lexical tie-in
13184A flag, set by actions in the grammar rules, which alters the way
13185tokens are parsed. @xref{Lexical Tie-ins}.
13186
931c7513 13187@item Literal string token
14ded682 13188A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 13189
742e4900
JD
13190@item Lookahead token
13191A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 13192Tokens}.
bfa74976 13193
8a4281b9 13194@item LALR(1)
bfa74976 13195The class of context-free grammars that Bison (like most other parser
8a4281b9 13196generators) can handle by default; a subset of LR(1).
cc09e5be 13197@xref{Mysterious Conflicts}.
bfa74976 13198
8a4281b9 13199@item LR(1)
bfa74976 13200The class of context-free grammars in which at most one token of
742e4900 13201lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
13202
13203@item Nonterminal symbol
13204A grammar symbol standing for a grammatical construct that can
13205be expressed through rules in terms of smaller constructs; in other
13206words, a construct that is not a token. @xref{Symbols}.
13207
bfa74976
RS
13208@item Parser
13209A function that recognizes valid sentences of a language by analyzing
13210the syntax structure of a set of tokens passed to it from a lexical
13211analyzer.
13212
13213@item Postfix operator
13214An arithmetic operator that is placed after the operands upon which it
13215performs some operation.
13216
13217@item Reduction
13218Replacing a string of nonterminals and/or terminals with a single
89cab50d 13219nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 13220Parser Algorithm}.
bfa74976
RS
13221
13222@item Reentrant
13223A reentrant subprogram is a subprogram which can be in invoked any
13224number of times in parallel, without interference between the various
13225invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
13226
13227@item Reverse polish notation
13228A language in which all operators are postfix operators.
13229
13230@item Right recursion
89cab50d
AD
13231A rule whose result symbol is also its last component symbol; for
13232example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
13233Rules}.
bfa74976
RS
13234
13235@item Semantics
13236In computer languages, the semantics are specified by the actions
13237taken for each instance of the language, i.e., the meaning of
13238each statement. @xref{Semantics, ,Defining Language Semantics}.
13239
13240@item Shift
13241A parser is said to shift when it makes the choice of analyzing
13242further input from the stream rather than reducing immediately some
c827f760 13243already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
13244
13245@item Single-character literal
13246A single character that is recognized and interpreted as is.
13247@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
13248
13249@item Start symbol
13250The nonterminal symbol that stands for a complete valid utterance in
13251the language being parsed. The start symbol is usually listed as the
13863333 13252first nonterminal symbol in a language specification.
bfa74976
RS
13253@xref{Start Decl, ,The Start-Symbol}.
13254
13255@item Symbol table
13256A data structure where symbol names and associated data are stored
13257during parsing to allow for recognition and use of existing
13258information in repeated uses of a symbol. @xref{Multi-function Calc}.
13259
6e649e65
PE
13260@item Syntax error
13261An error encountered during parsing of an input stream due to invalid
13262syntax. @xref{Error Recovery}.
13263
bfa74976
RS
13264@item Token
13265A basic, grammatically indivisible unit of a language. The symbol
13266that describes a token in the grammar is a terminal symbol.
13267The input of the Bison parser is a stream of tokens which comes from
13268the lexical analyzer. @xref{Symbols}.
13269
13270@item Terminal symbol
89cab50d
AD
13271A grammar symbol that has no rules in the grammar and therefore is
13272grammatically indivisible. The piece of text it represents is a token.
13273@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7fceb615
JD
13274
13275@item Unreachable state
13276A parser state to which there does not exist a sequence of transitions from
13277the parser's start state. A state can become unreachable during conflict
13278resolution. @xref{Unreachable States}.
bfa74976
RS
13279@end table
13280
342b8b6e 13281@node Copying This Manual
f2b5126e 13282@appendix Copying This Manual
f2b5126e
PB
13283@include fdl.texi
13284
5e528941
JD
13285@node Bibliography
13286@unnumbered Bibliography
13287
13288@table @asis
13289@item [Denny 2008]
13290Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
13291for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
132922008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
13293pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
13294
13295@item [Denny 2010 May]
13296Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
13297Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
13298University, Clemson, SC, USA (May 2010).
13299@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
13300
13301@item [Denny 2010 November]
13302Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
13303Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
13304in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
133052010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
13306
13307@item [DeRemer 1982]
13308Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
13309Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
13310Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
13311615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
13312
13313@item [Knuth 1965]
13314Donald E. Knuth, On the Translation of Languages from Left to Right, in
13315@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
13316607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
13317
13318@item [Scott 2000]
13319Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
13320@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
13321London, Department of Computer Science, TR-00-12 (December 2000).
13322@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
13323@end table
13324
f9b86351
AD
13325@node Index of Terms
13326@unnumbered Index of Terms
bfa74976
RS
13327
13328@printindex cp
13329
bfa74976 13330@bye
a06ea4aa 13331
6b5a0de9
AD
13332@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
13333@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
13334@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
13335@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
13336@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
13337@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
13338@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
13339@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
13340@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
13341@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
13342@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
13343@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
13344@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
5a321748 13345@c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum IEC syntaxes
6b5a0de9
AD
13346@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
13347@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
13348@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
13349@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
13350@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
13351@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
13352@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
13353@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
13354@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
5a321748 13355@c LocalWords: YYINITDEPTH stmts ref initdcl maybeasm notype Lookahead yyoutput
6b5a0de9
AD
13356@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
13357@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
13358@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
13359@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
13360@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 13361@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
5a321748
AD
13362@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs sr
13363@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC nterm LR's
6b5a0de9 13364@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
5a321748 13365@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative Ph
6b5a0de9
AD
13366@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
13367@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
13368@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
5a321748 13369@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz ACM
6b5a0de9 13370@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
5a321748 13371@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno filename
6b5a0de9
AD
13372@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
13373@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
13374@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
13375@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
5a321748 13376@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc PSLR
6b5a0de9
AD
13377@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
13378@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
13379@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
13380@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
5a05f42e 13381@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos uint
5a321748 13382@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett LALR's
5a05f42e
AD
13383@c LocalWords: subdirectory Solaris nonassociativity perror schemas Malloy ints
13384@c LocalWords: Scannerless ispell american ChangeLog smallexample CSTYPE CLTYPE
7287be84 13385@c LocalWords: clval CDEBUG cdebug deftypeopx yyterminate LocationType
53e2cd1e
AD
13386@c LocalWords: parsers parser's
13387@c LocalWords: associativity subclasses precedences unresolvable runnable
13388@c LocalWords: allocators subunit initializations unreferenced untyped
13389@c LocalWords: errorVerbose subtype subtypes
e944aaff
AD
13390
13391@c Local Variables:
13392@c ispell-dictionary: "american"
13393@c fill-column: 76
13394@c End: