]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
Finish implementing %define lr.type.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
e1145ad8
AD
33This manual (@value{UPDATED}) is for @acronym{GNU} Bison (version
34@value{VERSION}), the @acronym{GNU} parser generator.
fae437e8 35
a06ea4aa 36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
1d5b3c08
JD
371999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free
38Software Foundation, Inc.
fae437e8
AD
39
40@quotation
41Permission is granted to copy, distribute and/or modify this document
c827f760 42under the terms of the @acronym{GNU} Free Documentation License,
592fde95 43Version 1.2 or any later version published by the Free Software
c827f760
PE
44Foundation; with no Invariant Sections, with the Front-Cover texts
45being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
46(a) below. A copy of the license is included in the section entitled
47``@acronym{GNU} Free Documentation License.''
48
389c8cfd
PE
49(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
50modify this @acronym{GNU} manual. Buying copies from the @acronym{FSF}
51supports it in developing @acronym{GNU} and promoting software
52freedom.''
fae437e8
AD
53@end quotation
54@end copying
55
e62f1a89 56@dircategory Software development
fae437e8 57@direntry
c827f760 58* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 59@end direntry
bfa74976 60
bfa74976
RS
61@titlepage
62@title Bison
c827f760 63@subtitle The Yacc-compatible Parser Generator
df1af54c 64@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
65
66@author by Charles Donnelly and Richard Stallman
67
68@page
69@vskip 0pt plus 1filll
fae437e8 70@insertcopying
bfa74976
RS
71@sp 2
72Published by the Free Software Foundation @*
0fb669f9
PE
7351 Franklin Street, Fifth Floor @*
74Boston, MA 02110-1301 USA @*
9ecbd125 75Printed copies are available from the Free Software Foundation.@*
c827f760 76@acronym{ISBN} 1-882114-44-2
bfa74976
RS
77@sp 2
78Cover art by Etienne Suvasa.
79@end titlepage
d5796688
JT
80
81@contents
bfa74976 82
342b8b6e
AD
83@ifnottex
84@node Top
85@top Bison
fae437e8 86@insertcopying
342b8b6e 87@end ifnottex
bfa74976
RS
88
89@menu
13863333
AD
90* Introduction::
91* Conditions::
f5f419de
DJ
92* Copying:: The @acronym{GNU} General Public License says
93 how you can copy and share Bison.
bfa74976
RS
94
95Tutorial sections:
f5f419de
DJ
96* Concepts:: Basic concepts for understanding Bison.
97* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
98
99Reference sections:
f5f419de
DJ
100* Grammar File:: Writing Bison declarations and rules.
101* Interface:: C-language interface to the parser function @code{yyparse}.
102* Algorithm:: How the Bison parser works at run-time.
103* Error Recovery:: Writing rules for error recovery.
bfa74976 104* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
105 messy for Bison to handle straightforwardly.
106* Debugging:: Understanding or debugging Bison parsers.
107* Invocation:: How to run Bison (to produce the parser source file).
108* Other Languages:: Creating C++ and Java parsers.
109* FAQ:: Frequently Asked Questions
110* Table of Symbols:: All the keywords of the Bison language are explained.
111* Glossary:: Basic concepts are explained.
112* Copying This Manual:: License for copying this manual.
113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
128* Locations Overview:: Tracking Locations.
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
fa7e68c3
PE
134Writing @acronym{GLR} Parsers
135
f5f419de
DJ
136* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
137* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
138* GLR Semantic Actions:: Deferred semantic actions have special concerns.
139* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 140
bfa74976
RS
141Examples
142
f5f419de
DJ
143* RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145* Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
bfa74976 147* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 148* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
149* Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
151* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
152
153Reverse Polish Notation Calculator
154
f5f419de
DJ
155* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
156* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
157* Rpcalc Lexer:: The lexical analyzer.
158* Rpcalc Main:: The controlling function.
159* Rpcalc Error:: The error reporting function.
160* Rpcalc Generate:: Running Bison on the grammar file.
161* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
162
163Grammar Rules for @code{rpcalc}
164
13863333
AD
165* Rpcalc Input::
166* Rpcalc Line::
167* Rpcalc Expr::
bfa74976 168
342b8b6e
AD
169Location Tracking Calculator: @code{ltcalc}
170
f5f419de
DJ
171* Ltcalc Declarations:: Bison and C declarations for ltcalc.
172* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
173* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 174
bfa74976
RS
175Multi-Function Calculator: @code{mfcalc}
176
f5f419de
DJ
177* Mfcalc Declarations:: Bison declarations for multi-function calculator.
178* Mfcalc Rules:: Grammar rules for the calculator.
179* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
180
181Bison Grammar Files
182
183* Grammar Outline:: Overall layout of the grammar file.
184* Symbols:: Terminal and nonterminal symbols.
185* Rules:: How to write grammar rules.
186* Recursion:: Writing recursive rules.
187* Semantics:: Semantic values and actions.
93dd49ab 188* Locations:: Locations and actions.
bfa74976
RS
189* Declarations:: All kinds of Bison declarations are described here.
190* Multiple Parsers:: Putting more than one Bison parser in one program.
191
192Outline of a Bison Grammar
193
f5f419de 194* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 195* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
196* Bison Declarations:: Syntax and usage of the Bison declarations section.
197* Grammar Rules:: Syntax and usage of the grammar rules section.
198* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
199
200Defining Language Semantics
201
202* Value Type:: Specifying one data type for all semantic values.
203* Multiple Types:: Specifying several alternative data types.
204* Actions:: An action is the semantic definition of a grammar rule.
205* Action Types:: Specifying data types for actions to operate on.
206* Mid-Rule Actions:: Most actions go at the end of a rule.
207 This says when, why and how to use the exceptional
208 action in the middle of a rule.
209
93dd49ab
PE
210Tracking Locations
211
212* Location Type:: Specifying a data type for locations.
213* Actions and Locations:: Using locations in actions.
214* Location Default Action:: Defining a general way to compute locations.
215
bfa74976
RS
216Bison Declarations
217
b50d2359 218* Require Decl:: Requiring a Bison version.
bfa74976
RS
219* Token Decl:: Declaring terminal symbols.
220* Precedence Decl:: Declaring terminals with precedence and associativity.
221* Union Decl:: Declaring the set of all semantic value types.
222* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 223* Initial Action Decl:: Code run before parsing starts.
72f889cc 224* Destructor Decl:: Declaring how symbols are freed.
d6328241 225* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
226* Start Decl:: Specifying the start symbol.
227* Pure Decl:: Requesting a reentrant parser.
9987d1b3 228* Push Decl:: Requesting a push parser.
bfa74976
RS
229* Decl Summary:: Table of all Bison declarations.
230
231Parser C-Language Interface
232
f5f419de
DJ
233* Parser Function:: How to call @code{yyparse} and what it returns.
234* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
235* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
236* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
237* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
238* Lexical:: You must supply a function @code{yylex}
239 which reads tokens.
240* Error Reporting:: You must supply a function @code{yyerror}.
241* Action Features:: Special features for use in actions.
242* Internationalization:: How to let the parser speak in the user's
243 native language.
bfa74976
RS
244
245The Lexical Analyzer Function @code{yylex}
246
247* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
248* Token Values:: How @code{yylex} must return the semantic value
249 of the token it has read.
250* Token Locations:: How @code{yylex} must return the text location
251 (line number, etc.) of the token, if the
252 actions want that.
253* Pure Calling:: How the calling convention differs in a pure parser
254 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 255
13863333 256The Bison Parser Algorithm
bfa74976 257
742e4900 258* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
259* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
260* Precedence:: Operator precedence works by resolving conflicts.
261* Contextual Precedence:: When an operator's precedence depends on context.
262* Parser States:: The parser is a finite-state-machine with stack.
263* Reduce/Reduce:: When two rules are applicable in the same situation.
f5f419de 264* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 265* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 266* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
267
268Operator Precedence
269
270* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
271* Using Precedence:: How to specify precedence and associativity.
272* Precedence Only:: How to specify precedence only.
bfa74976
RS
273* Precedence Examples:: How these features are used in the previous example.
274* How Precedence:: How they work.
275
276Handling Context Dependencies
277
278* Semantic Tokens:: Token parsing can depend on the semantic context.
279* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
280* Tie-in Recovery:: Lexical tie-ins have implications for how
281 error recovery rules must be written.
282
93dd49ab 283Debugging Your Parser
ec3bc396
AD
284
285* Understanding:: Understanding the structure of your parser.
286* Tracing:: Tracing the execution of your parser.
287
bfa74976
RS
288Invoking Bison
289
13863333 290* Bison Options:: All the options described in detail,
c827f760 291 in alphabetical order by short options.
bfa74976 292* Option Cross Key:: Alphabetical list of long options.
93dd49ab 293* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 294
8405b70c 295Parsers Written In Other Languages
12545799
AD
296
297* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 298* Java Parsers:: The interface to generate Java parser classes
12545799
AD
299
300C++ Parsers
301
302* C++ Bison Interface:: Asking for C++ parser generation
303* C++ Semantic Values:: %union vs. C++
304* C++ Location Values:: The position and location classes
305* C++ Parser Interface:: Instantiating and running the parser
306* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 307* A Complete C++ Example:: Demonstrating their use
12545799
AD
308
309A Complete C++ Example
310
311* Calc++ --- C++ Calculator:: The specifications
312* Calc++ Parsing Driver:: An active parsing context
313* Calc++ Parser:: A parser class
314* Calc++ Scanner:: A pure C++ Flex scanner
315* Calc++ Top Level:: Conducting the band
316
8405b70c
PB
317Java Parsers
318
f5f419de
DJ
319* Java Bison Interface:: Asking for Java parser generation
320* Java Semantic Values:: %type and %token vs. Java
321* Java Location Values:: The position and location classes
322* Java Parser Interface:: Instantiating and running the parser
323* Java Scanner Interface:: Specifying the scanner for the parser
324* Java Action Features:: Special features for use in actions
325* Java Differences:: Differences between C/C++ and Java Grammars
326* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 327
d1a1114f
AD
328Frequently Asked Questions
329
f5f419de
DJ
330* Memory Exhausted:: Breaking the Stack Limits
331* How Can I Reset the Parser:: @code{yyparse} Keeps some State
332* Strings are Destroyed:: @code{yylval} Loses Track of Strings
333* Implementing Gotos/Loops:: Control Flow in the Calculator
334* Multiple start-symbols:: Factoring closely related grammars
335* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
336* I can't build Bison:: Troubleshooting
337* Where can I find help?:: Troubleshouting
338* Bug Reports:: Troublereporting
339* More Languages:: Parsers in C++, Java, and so on
340* Beta Testing:: Experimenting development versions
341* Mailing Lists:: Meeting other Bison users
d1a1114f 342
f2b5126e
PB
343Copying This Manual
344
f5f419de 345* Copying This Manual:: License for copying this manual.
f2b5126e 346
342b8b6e 347@end detailmenu
bfa74976
RS
348@end menu
349
342b8b6e 350@node Introduction
bfa74976
RS
351@unnumbered Introduction
352@cindex introduction
353
6077da58
PE
354@dfn{Bison} is a general-purpose parser generator that converts an
355annotated context-free grammar into an @acronym{LALR}(1) or
356@acronym{GLR} parser for that grammar. Once you are proficient with
1e137b71 357Bison, you can use it to develop a wide range of language parsers, from those
bfa74976
RS
358used in simple desk calculators to complex programming languages.
359
360Bison is upward compatible with Yacc: all properly-written Yacc grammars
361ought to work with Bison with no change. Anyone familiar with Yacc
362should be able to use Bison with little trouble. You need to be fluent in
1e137b71 363C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
364
365We begin with tutorial chapters that explain the basic concepts of using
366Bison and show three explained examples, each building on the last. If you
367don't know Bison or Yacc, start by reading these chapters. Reference
368chapters follow which describe specific aspects of Bison in detail.
369
931c7513
RS
370Bison was written primarily by Robert Corbett; Richard Stallman made it
371Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 372multi-character string literals and other features.
931c7513 373
df1af54c 374This edition corresponds to version @value{VERSION} of Bison.
bfa74976 375
342b8b6e 376@node Conditions
bfa74976
RS
377@unnumbered Conditions for Using Bison
378
193d7c70
PE
379The distribution terms for Bison-generated parsers permit using the
380parsers in nonfree programs. Before Bison version 2.2, these extra
381permissions applied only when Bison was generating @acronym{LALR}(1)
382parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 383parsers could be used only in programs that were free software.
a31239f1 384
c827f760
PE
385The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
386compiler, have never
9ecbd125 387had such a requirement. They could always be used for nonfree
a31239f1
RS
388software. The reason Bison was different was not due to a special
389policy decision; it resulted from applying the usual General Public
390License to all of the Bison source code.
391
392The output of the Bison utility---the Bison parser file---contains a
393verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
394parser's implementation. (The actions from your grammar are inserted
395into this implementation at one point, but most of the rest of the
396implementation is not changed.) When we applied the @acronym{GPL}
397terms to the skeleton code for the parser's implementation,
a31239f1
RS
398the effect was to restrict the use of Bison output to free software.
399
400We didn't change the terms because of sympathy for people who want to
401make software proprietary. @strong{Software should be free.} But we
402concluded that limiting Bison's use to free software was doing little to
403encourage people to make other software free. So we decided to make the
404practical conditions for using Bison match the practical conditions for
c827f760 405using the other @acronym{GNU} tools.
bfa74976 406
193d7c70
PE
407This exception applies when Bison is generating code for a parser.
408You can tell whether the exception applies to a Bison output file by
409inspecting the file for text beginning with ``As a special
410exception@dots{}''. The text spells out the exact terms of the
411exception.
262aa8dd 412
f16b0819
PE
413@node Copying
414@unnumbered GNU GENERAL PUBLIC LICENSE
415@include gpl-3.0.texi
bfa74976 416
342b8b6e 417@node Concepts
bfa74976
RS
418@chapter The Concepts of Bison
419
420This chapter introduces many of the basic concepts without which the
421details of Bison will not make sense. If you do not already know how to
422use Bison or Yacc, we suggest you start by reading this chapter carefully.
423
424@menu
f5f419de
DJ
425* Language and Grammar:: Languages and context-free grammars,
426 as mathematical ideas.
427* Grammar in Bison:: How we represent grammars for Bison's sake.
428* Semantic Values:: Each token or syntactic grouping can have
429 a semantic value (the value of an integer,
430 the name of an identifier, etc.).
431* Semantic Actions:: Each rule can have an action containing C code.
432* GLR Parsers:: Writing parsers for general context-free languages.
433* Locations Overview:: Tracking Locations.
434* Bison Parser:: What are Bison's input and output,
435 how is the output used?
436* Stages:: Stages in writing and running Bison grammars.
437* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
438@end menu
439
342b8b6e 440@node Language and Grammar
bfa74976
RS
441@section Languages and Context-Free Grammars
442
bfa74976
RS
443@cindex context-free grammar
444@cindex grammar, context-free
445In order for Bison to parse a language, it must be described by a
446@dfn{context-free grammar}. This means that you specify one or more
447@dfn{syntactic groupings} and give rules for constructing them from their
448parts. For example, in the C language, one kind of grouping is called an
449`expression'. One rule for making an expression might be, ``An expression
450can be made of a minus sign and another expression''. Another would be,
451``An expression can be an integer''. As you can see, rules are often
452recursive, but there must be at least one rule which leads out of the
453recursion.
454
c827f760 455@cindex @acronym{BNF}
bfa74976
RS
456@cindex Backus-Naur form
457The most common formal system for presenting such rules for humans to read
c827f760
PE
458is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
459order to specify the language Algol 60. Any grammar expressed in
460@acronym{BNF} is a context-free grammar. The input to Bison is
461essentially machine-readable @acronym{BNF}.
bfa74976 462
c827f760
PE
463@cindex @acronym{LALR}(1) grammars
464@cindex @acronym{LR}(1) grammars
676385e2
PH
465There are various important subclasses of context-free grammar. Although it
466can handle almost all context-free grammars, Bison is optimized for what
c827f760 467are called @acronym{LALR}(1) grammars.
676385e2 468In brief, in these grammars, it must be possible to
bfa74976 469tell how to parse any portion of an input string with just a single
742e4900 470token of lookahead. Strictly speaking, that is a description of an
c827f760
PE
471@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
472restrictions that are
bfa74976 473hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
474@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
475@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
476more information on this.
bfa74976 477
c827f760
PE
478@cindex @acronym{GLR} parsing
479@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 480@cindex ambiguous grammars
9d9b8b70 481@cindex nondeterministic parsing
9501dc6e
AD
482
483Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
484roughly that the next grammar rule to apply at any point in the input is
485uniquely determined by the preceding input and a fixed, finite portion
742e4900 486(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 487grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 488apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 489grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 490lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
491With the proper declarations, Bison is also able to parse these more
492general context-free grammars, using a technique known as @acronym{GLR}
493parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
494are able to handle any context-free grammar for which the number of
495possible parses of any given string is finite.
676385e2 496
bfa74976
RS
497@cindex symbols (abstract)
498@cindex token
499@cindex syntactic grouping
500@cindex grouping, syntactic
9501dc6e
AD
501In the formal grammatical rules for a language, each kind of syntactic
502unit or grouping is named by a @dfn{symbol}. Those which are built by
503grouping smaller constructs according to grammatical rules are called
bfa74976
RS
504@dfn{nonterminal symbols}; those which can't be subdivided are called
505@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
506corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 507corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
508
509We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
510nonterminal, mean. The tokens of C are identifiers, constants (numeric
511and string), and the various keywords, arithmetic operators and
512punctuation marks. So the terminal symbols of a grammar for C include
513`identifier', `number', `string', plus one symbol for each keyword,
514operator or punctuation mark: `if', `return', `const', `static', `int',
515`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
516(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
517lexicography, not grammar.)
518
519Here is a simple C function subdivided into tokens:
520
9edcd895
AD
521@ifinfo
522@example
523int /* @r{keyword `int'} */
14d4662b 524square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
525 @r{identifier, close-paren} */
526@{ /* @r{open-brace} */
aa08666d
AD
527 return x * x; /* @r{keyword `return', identifier, asterisk,}
528 @r{identifier, semicolon} */
9edcd895
AD
529@} /* @r{close-brace} */
530@end example
531@end ifinfo
532@ifnotinfo
bfa74976
RS
533@example
534int /* @r{keyword `int'} */
14d4662b 535square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 536@{ /* @r{open-brace} */
9edcd895 537 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
538@} /* @r{close-brace} */
539@end example
9edcd895 540@end ifnotinfo
bfa74976
RS
541
542The syntactic groupings of C include the expression, the statement, the
543declaration, and the function definition. These are represented in the
544grammar of C by nonterminal symbols `expression', `statement',
545`declaration' and `function definition'. The full grammar uses dozens of
546additional language constructs, each with its own nonterminal symbol, in
547order to express the meanings of these four. The example above is a
548function definition; it contains one declaration, and one statement. In
549the statement, each @samp{x} is an expression and so is @samp{x * x}.
550
551Each nonterminal symbol must have grammatical rules showing how it is made
552out of simpler constructs. For example, one kind of C statement is the
553@code{return} statement; this would be described with a grammar rule which
554reads informally as follows:
555
556@quotation
557A `statement' can be made of a `return' keyword, an `expression' and a
558`semicolon'.
559@end quotation
560
561@noindent
562There would be many other rules for `statement', one for each kind of
563statement in C.
564
565@cindex start symbol
566One nonterminal symbol must be distinguished as the special one which
567defines a complete utterance in the language. It is called the @dfn{start
568symbol}. In a compiler, this means a complete input program. In the C
569language, the nonterminal symbol `sequence of definitions and declarations'
570plays this role.
571
572For example, @samp{1 + 2} is a valid C expression---a valid part of a C
573program---but it is not valid as an @emph{entire} C program. In the
574context-free grammar of C, this follows from the fact that `expression' is
575not the start symbol.
576
577The Bison parser reads a sequence of tokens as its input, and groups the
578tokens using the grammar rules. If the input is valid, the end result is
579that the entire token sequence reduces to a single grouping whose symbol is
580the grammar's start symbol. If we use a grammar for C, the entire input
581must be a `sequence of definitions and declarations'. If not, the parser
582reports a syntax error.
583
342b8b6e 584@node Grammar in Bison
bfa74976
RS
585@section From Formal Rules to Bison Input
586@cindex Bison grammar
587@cindex grammar, Bison
588@cindex formal grammar
589
590A formal grammar is a mathematical construct. To define the language
591for Bison, you must write a file expressing the grammar in Bison syntax:
592a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
593
594A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 595as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
596in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
597
598The Bison representation for a terminal symbol is also called a @dfn{token
599type}. Token types as well can be represented as C-like identifiers. By
600convention, these identifiers should be upper case to distinguish them from
601nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
602@code{RETURN}. A terminal symbol that stands for a particular keyword in
603the language should be named after that keyword converted to upper case.
604The terminal symbol @code{error} is reserved for error recovery.
931c7513 605@xref{Symbols}.
bfa74976
RS
606
607A terminal symbol can also be represented as a character literal, just like
608a C character constant. You should do this whenever a token is just a
609single character (parenthesis, plus-sign, etc.): use that same character in
610a literal as the terminal symbol for that token.
611
931c7513
RS
612A third way to represent a terminal symbol is with a C string constant
613containing several characters. @xref{Symbols}, for more information.
614
bfa74976
RS
615The grammar rules also have an expression in Bison syntax. For example,
616here is the Bison rule for a C @code{return} statement. The semicolon in
617quotes is a literal character token, representing part of the C syntax for
618the statement; the naked semicolon, and the colon, are Bison punctuation
619used in every rule.
620
621@example
622stmt: RETURN expr ';'
623 ;
624@end example
625
626@noindent
627@xref{Rules, ,Syntax of Grammar Rules}.
628
342b8b6e 629@node Semantic Values
bfa74976
RS
630@section Semantic Values
631@cindex semantic value
632@cindex value, semantic
633
634A formal grammar selects tokens only by their classifications: for example,
635if a rule mentions the terminal symbol `integer constant', it means that
636@emph{any} integer constant is grammatically valid in that position. The
637precise value of the constant is irrelevant to how to parse the input: if
638@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 639grammatical.
bfa74976
RS
640
641But the precise value is very important for what the input means once it is
642parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6433989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
644has both a token type and a @dfn{semantic value}. @xref{Semantics,
645,Defining Language Semantics},
bfa74976
RS
646for details.
647
648The token type is a terminal symbol defined in the grammar, such as
649@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
650you need to know to decide where the token may validly appear and how to
651group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 652except their types.
bfa74976
RS
653
654The semantic value has all the rest of the information about the
655meaning of the token, such as the value of an integer, or the name of an
656identifier. (A token such as @code{','} which is just punctuation doesn't
657need to have any semantic value.)
658
659For example, an input token might be classified as token type
660@code{INTEGER} and have the semantic value 4. Another input token might
661have the same token type @code{INTEGER} but value 3989. When a grammar
662rule says that @code{INTEGER} is allowed, either of these tokens is
663acceptable because each is an @code{INTEGER}. When the parser accepts the
664token, it keeps track of the token's semantic value.
665
666Each grouping can also have a semantic value as well as its nonterminal
667symbol. For example, in a calculator, an expression typically has a
668semantic value that is a number. In a compiler for a programming
669language, an expression typically has a semantic value that is a tree
670structure describing the meaning of the expression.
671
342b8b6e 672@node Semantic Actions
bfa74976
RS
673@section Semantic Actions
674@cindex semantic actions
675@cindex actions, semantic
676
677In order to be useful, a program must do more than parse input; it must
678also produce some output based on the input. In a Bison grammar, a grammar
679rule can have an @dfn{action} made up of C statements. Each time the
680parser recognizes a match for that rule, the action is executed.
681@xref{Actions}.
13863333 682
bfa74976
RS
683Most of the time, the purpose of an action is to compute the semantic value
684of the whole construct from the semantic values of its parts. For example,
685suppose we have a rule which says an expression can be the sum of two
686expressions. When the parser recognizes such a sum, each of the
687subexpressions has a semantic value which describes how it was built up.
688The action for this rule should create a similar sort of value for the
689newly recognized larger expression.
690
691For example, here is a rule that says an expression can be the sum of
692two subexpressions:
693
694@example
695expr: expr '+' expr @{ $$ = $1 + $3; @}
696 ;
697@end example
698
699@noindent
700The action says how to produce the semantic value of the sum expression
701from the values of the two subexpressions.
702
676385e2 703@node GLR Parsers
c827f760
PE
704@section Writing @acronym{GLR} Parsers
705@cindex @acronym{GLR} parsing
706@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
707@findex %glr-parser
708@cindex conflicts
709@cindex shift/reduce conflicts
fa7e68c3 710@cindex reduce/reduce conflicts
676385e2 711
fa7e68c3 712In some grammars, Bison's standard
9501dc6e
AD
713@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
714certain grammar rule at a given point. That is, it may not be able to
715decide (on the basis of the input read so far) which of two possible
716reductions (applications of a grammar rule) applies, or whether to apply
717a reduction or read more of the input and apply a reduction later in the
718input. These are known respectively as @dfn{reduce/reduce} conflicts
719(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
720(@pxref{Shift/Reduce}).
721
722To use a grammar that is not easily modified to be @acronym{LALR}(1), a
723more general parsing algorithm is sometimes necessary. If you include
676385e2 724@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 725(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
726(@acronym{GLR}) parser. These parsers handle Bison grammars that
727contain no unresolved conflicts (i.e., after applying precedence
728declarations) identically to @acronym{LALR}(1) parsers. However, when
729faced with unresolved shift/reduce and reduce/reduce conflicts,
730@acronym{GLR} parsers use the simple expedient of doing both,
731effectively cloning the parser to follow both possibilities. Each of
732the resulting parsers can again split, so that at any given time, there
733can be any number of possible parses being explored. The parsers
676385e2
PH
734proceed in lockstep; that is, all of them consume (shift) a given input
735symbol before any of them proceed to the next. Each of the cloned
736parsers eventually meets one of two possible fates: either it runs into
737a parsing error, in which case it simply vanishes, or it merges with
738another parser, because the two of them have reduced the input to an
739identical set of symbols.
740
741During the time that there are multiple parsers, semantic actions are
742recorded, but not performed. When a parser disappears, its recorded
743semantic actions disappear as well, and are never performed. When a
744reduction makes two parsers identical, causing them to merge, Bison
745records both sets of semantic actions. Whenever the last two parsers
746merge, reverting to the single-parser case, Bison resolves all the
747outstanding actions either by precedences given to the grammar rules
748involved, or by performing both actions, and then calling a designated
749user-defined function on the resulting values to produce an arbitrary
750merged result.
751
fa7e68c3 752@menu
f5f419de
DJ
753* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
754* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
755* GLR Semantic Actions:: Deferred semantic actions have special concerns.
756* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
757@end menu
758
759@node Simple GLR Parsers
760@subsection Using @acronym{GLR} on Unambiguous Grammars
761@cindex @acronym{GLR} parsing, unambiguous grammars
762@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
763@findex %glr-parser
764@findex %expect-rr
765@cindex conflicts
766@cindex reduce/reduce conflicts
767@cindex shift/reduce conflicts
768
769In the simplest cases, you can use the @acronym{GLR} algorithm
770to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
742e4900 771Such grammars typically require more than one symbol of lookahead,
fa7e68c3
PE
772or (in rare cases) fall into the category of grammars in which the
773@acronym{LALR}(1) algorithm throws away too much information (they are in
774@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
775
776Consider a problem that
777arises in the declaration of enumerated and subrange types in the
778programming language Pascal. Here are some examples:
779
780@example
781type subrange = lo .. hi;
782type enum = (a, b, c);
783@end example
784
785@noindent
786The original language standard allows only numeric
787literals and constant identifiers for the subrange bounds (@samp{lo}
788and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
78910206) and many other
790Pascal implementations allow arbitrary expressions there. This gives
791rise to the following situation, containing a superfluous pair of
792parentheses:
793
794@example
795type subrange = (a) .. b;
796@end example
797
798@noindent
799Compare this to the following declaration of an enumerated
800type with only one value:
801
802@example
803type enum = (a);
804@end example
805
806@noindent
807(These declarations are contrived, but they are syntactically
808valid, and more-complicated cases can come up in practical programs.)
809
810These two declarations look identical until the @samp{..} token.
742e4900 811With normal @acronym{LALR}(1) one-token lookahead it is not
fa7e68c3
PE
812possible to decide between the two forms when the identifier
813@samp{a} is parsed. It is, however, desirable
814for a parser to decide this, since in the latter case
815@samp{a} must become a new identifier to represent the enumeration
816value, while in the former case @samp{a} must be evaluated with its
817current meaning, which may be a constant or even a function call.
818
819You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
820to be resolved later, but this typically requires substantial
821contortions in both semantic actions and large parts of the
822grammar, where the parentheses are nested in the recursive rules for
823expressions.
824
825You might think of using the lexer to distinguish between the two
826forms by returning different tokens for currently defined and
827undefined identifiers. But if these declarations occur in a local
828scope, and @samp{a} is defined in an outer scope, then both forms
829are possible---either locally redefining @samp{a}, or using the
830value of @samp{a} from the outer scope. So this approach cannot
831work.
832
e757bb10 833A simple solution to this problem is to declare the parser to
fa7e68c3
PE
834use the @acronym{GLR} algorithm.
835When the @acronym{GLR} parser reaches the critical state, it
836merely splits into two branches and pursues both syntax rules
837simultaneously. Sooner or later, one of them runs into a parsing
838error. If there is a @samp{..} token before the next
839@samp{;}, the rule for enumerated types fails since it cannot
840accept @samp{..} anywhere; otherwise, the subrange type rule
841fails since it requires a @samp{..} token. So one of the branches
842fails silently, and the other one continues normally, performing
843all the intermediate actions that were postponed during the split.
844
845If the input is syntactically incorrect, both branches fail and the parser
846reports a syntax error as usual.
847
848The effect of all this is that the parser seems to ``guess'' the
849correct branch to take, or in other words, it seems to use more
742e4900 850lookahead than the underlying @acronym{LALR}(1) algorithm actually allows
fa7e68c3
PE
851for. In this example, @acronym{LALR}(2) would suffice, but also some cases
852that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
853
854In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
855and the current Bison parser even takes exponential time and space
856for some grammars. In practice, this rarely happens, and for many
857grammars it is possible to prove that it cannot happen.
858The present example contains only one conflict between two
859rules, and the type-declaration context containing the conflict
860cannot be nested. So the number of
861branches that can exist at any time is limited by the constant 2,
862and the parsing time is still linear.
863
864Here is a Bison grammar corresponding to the example above. It
865parses a vastly simplified form of Pascal type declarations.
866
867@example
868%token TYPE DOTDOT ID
869
870@group
871%left '+' '-'
872%left '*' '/'
873@end group
874
875%%
876
877@group
878type_decl : TYPE ID '=' type ';'
879 ;
880@end group
881
882@group
883type : '(' id_list ')'
884 | expr DOTDOT expr
885 ;
886@end group
887
888@group
889id_list : ID
890 | id_list ',' ID
891 ;
892@end group
893
894@group
895expr : '(' expr ')'
896 | expr '+' expr
897 | expr '-' expr
898 | expr '*' expr
899 | expr '/' expr
900 | ID
901 ;
902@end group
903@end example
904
905When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
906about one reduce/reduce conflict. In the conflicting situation the
907parser chooses one of the alternatives, arbitrarily the one
908declared first. Therefore the following correct input is not
909recognized:
910
911@example
912type t = (a) .. b;
913@end example
914
915The parser can be turned into a @acronym{GLR} parser, while also telling Bison
916to be silent about the one known reduce/reduce conflict, by
e757bb10 917adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
918@samp{%%}):
919
920@example
921%glr-parser
922%expect-rr 1
923@end example
924
925@noindent
926No change in the grammar itself is required. Now the
927parser recognizes all valid declarations, according to the
928limited syntax above, transparently. In fact, the user does not even
929notice when the parser splits.
930
f8e1c9e5
AD
931So here we have a case where we can use the benefits of @acronym{GLR},
932almost without disadvantages. Even in simple cases like this, however,
933there are at least two potential problems to beware. First, always
934analyze the conflicts reported by Bison to make sure that @acronym{GLR}
935splitting is only done where it is intended. A @acronym{GLR} parser
936splitting inadvertently may cause problems less obvious than an
937@acronym{LALR} parser statically choosing the wrong alternative in a
938conflict. Second, consider interactions with the lexer (@pxref{Semantic
939Tokens}) with great care. Since a split parser consumes tokens without
940performing any actions during the split, the lexer cannot obtain
941information via parser actions. Some cases of lexer interactions can be
942eliminated by using @acronym{GLR} to shift the complications from the
943lexer to the parser. You must check the remaining cases for
944correctness.
945
946In our example, it would be safe for the lexer to return tokens based on
947their current meanings in some symbol table, because no new symbols are
948defined in the middle of a type declaration. Though it is possible for
949a parser to define the enumeration constants as they are parsed, before
950the type declaration is completed, it actually makes no difference since
951they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
952
953@node Merging GLR Parses
954@subsection Using @acronym{GLR} to Resolve Ambiguities
955@cindex @acronym{GLR} parsing, ambiguous grammars
956@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
957@findex %dprec
958@findex %merge
959@cindex conflicts
960@cindex reduce/reduce conflicts
961
2a8d363a 962Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
963
964@example
965%@{
38a92d50
PE
966 #include <stdio.h>
967 #define YYSTYPE char const *
968 int yylex (void);
969 void yyerror (char const *);
676385e2
PH
970%@}
971
972%token TYPENAME ID
973
974%right '='
975%left '+'
976
977%glr-parser
978
979%%
980
fae437e8 981prog :
676385e2
PH
982 | prog stmt @{ printf ("\n"); @}
983 ;
984
985stmt : expr ';' %dprec 1
986 | decl %dprec 2
987 ;
988
2a8d363a 989expr : ID @{ printf ("%s ", $$); @}
fae437e8 990 | TYPENAME '(' expr ')'
2a8d363a
AD
991 @{ printf ("%s <cast> ", $1); @}
992 | expr '+' expr @{ printf ("+ "); @}
993 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
994 ;
995
fae437e8 996decl : TYPENAME declarator ';'
2a8d363a 997 @{ printf ("%s <declare> ", $1); @}
676385e2 998 | TYPENAME declarator '=' expr ';'
2a8d363a 999 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1000 ;
1001
2a8d363a 1002declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1003 | '(' declarator ')'
1004 ;
1005@end example
1006
1007@noindent
1008This models a problematic part of the C++ grammar---the ambiguity between
1009certain declarations and statements. For example,
1010
1011@example
1012T (x) = y+z;
1013@end example
1014
1015@noindent
1016parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1017(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1018@samp{x} as an @code{ID}).
676385e2 1019Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1020@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1021time it encounters @code{x} in the example above. Since this is a
1022@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1023each choice of resolving the reduce/reduce conflict.
1024Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1025however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1026ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1027the other reduces @code{stmt : decl}, after which both parsers are in an
1028identical state: they've seen @samp{prog stmt} and have the same unprocessed
1029input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1030
1031At this point, the @acronym{GLR} parser requires a specification in the
1032grammar of how to choose between the competing parses.
1033In the example above, the two @code{%dprec}
e757bb10 1034declarations specify that Bison is to give precedence
fa7e68c3 1035to the parse that interprets the example as a
676385e2
PH
1036@code{decl}, which implies that @code{x} is a declarator.
1037The parser therefore prints
1038
1039@example
fae437e8 1040"x" y z + T <init-declare>
676385e2
PH
1041@end example
1042
fa7e68c3
PE
1043The @code{%dprec} declarations only come into play when more than one
1044parse survives. Consider a different input string for this parser:
676385e2
PH
1045
1046@example
1047T (x) + y;
1048@end example
1049
1050@noindent
e757bb10 1051This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1052construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1053Here, there is no ambiguity (this cannot be parsed as a declaration).
1054However, at the time the Bison parser encounters @code{x}, it does not
1055have enough information to resolve the reduce/reduce conflict (again,
1056between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1057case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1058into two, one assuming that @code{x} is an @code{expr}, and the other
1059assuming @code{x} is a @code{declarator}. The second of these parsers
1060then vanishes when it sees @code{+}, and the parser prints
1061
1062@example
fae437e8 1063x T <cast> y +
676385e2
PH
1064@end example
1065
1066Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1067the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1068actions of the two possible parsers, rather than choosing one over the
1069other. To do so, you could change the declaration of @code{stmt} as
1070follows:
1071
1072@example
1073stmt : expr ';' %merge <stmtMerge>
1074 | decl %merge <stmtMerge>
1075 ;
1076@end example
1077
1078@noindent
676385e2
PH
1079and define the @code{stmtMerge} function as:
1080
1081@example
38a92d50
PE
1082static YYSTYPE
1083stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1084@{
1085 printf ("<OR> ");
1086 return "";
1087@}
1088@end example
1089
1090@noindent
1091with an accompanying forward declaration
1092in the C declarations at the beginning of the file:
1093
1094@example
1095%@{
38a92d50 1096 #define YYSTYPE char const *
676385e2
PH
1097 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1098%@}
1099@end example
1100
1101@noindent
fa7e68c3
PE
1102With these declarations, the resulting parser parses the first example
1103as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1104
1105@example
fae437e8 1106"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1107@end example
1108
fa7e68c3 1109Bison requires that all of the
e757bb10 1110productions that participate in any particular merge have identical
fa7e68c3
PE
1111@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1112and the parser will report an error during any parse that results in
1113the offending merge.
9501dc6e 1114
32c29292
JD
1115@node GLR Semantic Actions
1116@subsection GLR Semantic Actions
1117
1118@cindex deferred semantic actions
1119By definition, a deferred semantic action is not performed at the same time as
1120the associated reduction.
1121This raises caveats for several Bison features you might use in a semantic
1122action in a @acronym{GLR} parser.
1123
1124@vindex yychar
1125@cindex @acronym{GLR} parsers and @code{yychar}
1126@vindex yylval
1127@cindex @acronym{GLR} parsers and @code{yylval}
1128@vindex yylloc
1129@cindex @acronym{GLR} parsers and @code{yylloc}
1130In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1131the lookahead token present at the time of the associated reduction.
32c29292
JD
1132After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1133you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1134lookahead token's semantic value and location, if any.
32c29292
JD
1135In a nondeferred semantic action, you can also modify any of these variables to
1136influence syntax analysis.
742e4900 1137@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1138
1139@findex yyclearin
1140@cindex @acronym{GLR} parsers and @code{yyclearin}
1141In a deferred semantic action, it's too late to influence syntax analysis.
1142In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1143shallow copies of the values they had at the time of the associated reduction.
1144For this reason alone, modifying them is dangerous.
1145Moreover, the result of modifying them is undefined and subject to change with
1146future versions of Bison.
1147For example, if a semantic action might be deferred, you should never write it
1148to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1149memory referenced by @code{yylval}.
1150
1151@findex YYERROR
1152@cindex @acronym{GLR} parsers and @code{YYERROR}
1153Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1154(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1155initiate error recovery.
1156During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
1157the same as its effect in an @acronym{LALR}(1) parser.
1158In a deferred semantic action, its effect is undefined.
1159@c The effect is probably a syntax error at the split point.
1160
8710fc41
JD
1161Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1162describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1163
fa7e68c3
PE
1164@node Compiler Requirements
1165@subsection Considerations when Compiling @acronym{GLR} Parsers
1166@cindex @code{inline}
9501dc6e 1167@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1168
38a92d50
PE
1169The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1170later. In addition, they use the @code{inline} keyword, which is not
1171C89, but is C99 and is a common extension in pre-C99 compilers. It is
1172up to the user of these parsers to handle
9501dc6e
AD
1173portability issues. For instance, if using Autoconf and the Autoconf
1174macro @code{AC_C_INLINE}, a mere
1175
1176@example
1177%@{
38a92d50 1178 #include <config.h>
9501dc6e
AD
1179%@}
1180@end example
1181
1182@noindent
1183will suffice. Otherwise, we suggest
1184
1185@example
1186%@{
38a92d50
PE
1187 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1188 #define inline
1189 #endif
9501dc6e
AD
1190%@}
1191@end example
676385e2 1192
342b8b6e 1193@node Locations Overview
847bf1f5
AD
1194@section Locations
1195@cindex location
95923bd6
AD
1196@cindex textual location
1197@cindex location, textual
847bf1f5
AD
1198
1199Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1200and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1201the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1202Bison provides a mechanism for handling these locations.
1203
72d2299c 1204Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1205associated location, but the type of locations is the same for all tokens and
72d2299c 1206groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1207structure for storing locations (@pxref{Locations}, for more details).
1208
1209Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1210set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1211is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1212@code{@@3}.
1213
1214When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1215of its left hand side (@pxref{Actions}). In the same way, another default
1216action is used for locations. However, the action for locations is general
847bf1f5 1217enough for most cases, meaning there is usually no need to describe for each
72d2299c 1218rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1219grouping, the default behavior of the output parser is to take the beginning
1220of the first symbol, and the end of the last symbol.
1221
342b8b6e 1222@node Bison Parser
bfa74976
RS
1223@section Bison Output: the Parser File
1224@cindex Bison parser
1225@cindex Bison utility
1226@cindex lexical analyzer, purpose
1227@cindex parser
1228
1229When you run Bison, you give it a Bison grammar file as input. The output
1230is a C source file that parses the language described by the grammar.
1231This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1232utility and the Bison parser are two distinct programs: the Bison utility
1233is a program whose output is the Bison parser that becomes part of your
1234program.
1235
1236The job of the Bison parser is to group tokens into groupings according to
1237the grammar rules---for example, to build identifiers and operators into
1238expressions. As it does this, it runs the actions for the grammar rules it
1239uses.
1240
704a47c4
AD
1241The tokens come from a function called the @dfn{lexical analyzer} that
1242you must supply in some fashion (such as by writing it in C). The Bison
1243parser calls the lexical analyzer each time it wants a new token. It
1244doesn't know what is ``inside'' the tokens (though their semantic values
1245may reflect this). Typically the lexical analyzer makes the tokens by
1246parsing characters of text, but Bison does not depend on this.
1247@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1248
1249The Bison parser file is C code which defines a function named
1250@code{yyparse} which implements that grammar. This function does not make
1251a complete C program: you must supply some additional functions. One is
1252the lexical analyzer. Another is an error-reporting function which the
1253parser calls to report an error. In addition, a complete C program must
1254start with a function called @code{main}; you have to provide this, and
1255arrange for it to call @code{yyparse} or the parser will never run.
1256@xref{Interface, ,Parser C-Language Interface}.
1257
f7ab6a50 1258Aside from the token type names and the symbols in the actions you
7093d0f5 1259write, all symbols defined in the Bison parser file itself
bfa74976
RS
1260begin with @samp{yy} or @samp{YY}. This includes interface functions
1261such as the lexical analyzer function @code{yylex}, the error reporting
1262function @code{yyerror} and the parser function @code{yyparse} itself.
1263This also includes numerous identifiers used for internal purposes.
1264Therefore, you should avoid using C identifiers starting with @samp{yy}
1265or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1266this manual. Also, you should avoid using the C identifiers
1267@samp{malloc} and @samp{free} for anything other than their usual
1268meanings.
bfa74976 1269
7093d0f5
AD
1270In some cases the Bison parser file includes system headers, and in
1271those cases your code should respect the identifiers reserved by those
55289366 1272headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1273@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1274declare memory allocators and related types. @code{<libintl.h>} is
1275included if message translation is in use
1276(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1277be included if you define @code{YYDEBUG} to a nonzero value
1278(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1279
342b8b6e 1280@node Stages
bfa74976
RS
1281@section Stages in Using Bison
1282@cindex stages in using Bison
1283@cindex using Bison
1284
1285The actual language-design process using Bison, from grammar specification
1286to a working compiler or interpreter, has these parts:
1287
1288@enumerate
1289@item
1290Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1291(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1292in the language, describe the action that is to be taken when an
1293instance of that rule is recognized. The action is described by a
1294sequence of C statements.
bfa74976
RS
1295
1296@item
704a47c4
AD
1297Write a lexical analyzer to process input and pass tokens to the parser.
1298The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1299Lexical Analyzer Function @code{yylex}}). It could also be produced
1300using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1301
1302@item
1303Write a controlling function that calls the Bison-produced parser.
1304
1305@item
1306Write error-reporting routines.
1307@end enumerate
1308
1309To turn this source code as written into a runnable program, you
1310must follow these steps:
1311
1312@enumerate
1313@item
1314Run Bison on the grammar to produce the parser.
1315
1316@item
1317Compile the code output by Bison, as well as any other source files.
1318
1319@item
1320Link the object files to produce the finished product.
1321@end enumerate
1322
342b8b6e 1323@node Grammar Layout
bfa74976
RS
1324@section The Overall Layout of a Bison Grammar
1325@cindex grammar file
1326@cindex file format
1327@cindex format of grammar file
1328@cindex layout of Bison grammar
1329
1330The input file for the Bison utility is a @dfn{Bison grammar file}. The
1331general form of a Bison grammar file is as follows:
1332
1333@example
1334%@{
08e49d20 1335@var{Prologue}
bfa74976
RS
1336%@}
1337
1338@var{Bison declarations}
1339
1340%%
1341@var{Grammar rules}
1342%%
08e49d20 1343@var{Epilogue}
bfa74976
RS
1344@end example
1345
1346@noindent
1347The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1348in every Bison grammar file to separate the sections.
1349
72d2299c 1350The prologue may define types and variables used in the actions. You can
342b8b6e 1351also use preprocessor commands to define macros used there, and use
bfa74976 1352@code{#include} to include header files that do any of these things.
38a92d50
PE
1353You need to declare the lexical analyzer @code{yylex} and the error
1354printer @code{yyerror} here, along with any other global identifiers
1355used by the actions in the grammar rules.
bfa74976
RS
1356
1357The Bison declarations declare the names of the terminal and nonterminal
1358symbols, and may also describe operator precedence and the data types of
1359semantic values of various symbols.
1360
1361The grammar rules define how to construct each nonterminal symbol from its
1362parts.
1363
38a92d50
PE
1364The epilogue can contain any code you want to use. Often the
1365definitions of functions declared in the prologue go here. In a
1366simple program, all the rest of the program can go here.
bfa74976 1367
342b8b6e 1368@node Examples
bfa74976
RS
1369@chapter Examples
1370@cindex simple examples
1371@cindex examples, simple
1372
1373Now we show and explain three sample programs written using Bison: a
1374reverse polish notation calculator, an algebraic (infix) notation
1375calculator, and a multi-function calculator. All three have been tested
1376under BSD Unix 4.3; each produces a usable, though limited, interactive
1377desk-top calculator.
1378
1379These examples are simple, but Bison grammars for real programming
aa08666d
AD
1380languages are written the same way. You can copy these examples into a
1381source file to try them.
bfa74976
RS
1382
1383@menu
f5f419de
DJ
1384* RPN Calc:: Reverse polish notation calculator;
1385 a first example with no operator precedence.
1386* Infix Calc:: Infix (algebraic) notation calculator.
1387 Operator precedence is introduced.
bfa74976 1388* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1389* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1390* Multi-function Calc:: Calculator with memory and trig functions.
1391 It uses multiple data-types for semantic values.
1392* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1393@end menu
1394
342b8b6e 1395@node RPN Calc
bfa74976
RS
1396@section Reverse Polish Notation Calculator
1397@cindex reverse polish notation
1398@cindex polish notation calculator
1399@cindex @code{rpcalc}
1400@cindex calculator, simple
1401
1402The first example is that of a simple double-precision @dfn{reverse polish
1403notation} calculator (a calculator using postfix operators). This example
1404provides a good starting point, since operator precedence is not an issue.
1405The second example will illustrate how operator precedence is handled.
1406
1407The source code for this calculator is named @file{rpcalc.y}. The
1408@samp{.y} extension is a convention used for Bison input files.
1409
1410@menu
f5f419de
DJ
1411* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1412* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1413* Rpcalc Lexer:: The lexical analyzer.
1414* Rpcalc Main:: The controlling function.
1415* Rpcalc Error:: The error reporting function.
1416* Rpcalc Generate:: Running Bison on the grammar file.
1417* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1418@end menu
1419
f5f419de 1420@node Rpcalc Declarations
bfa74976
RS
1421@subsection Declarations for @code{rpcalc}
1422
1423Here are the C and Bison declarations for the reverse polish notation
1424calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1425
1426@example
72d2299c 1427/* Reverse polish notation calculator. */
bfa74976
RS
1428
1429%@{
38a92d50
PE
1430 #define YYSTYPE double
1431 #include <math.h>
1432 int yylex (void);
1433 void yyerror (char const *);
bfa74976
RS
1434%@}
1435
1436%token NUM
1437
72d2299c 1438%% /* Grammar rules and actions follow. */
bfa74976
RS
1439@end example
1440
75f5aaea 1441The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1442preprocessor directives and two forward declarations.
bfa74976
RS
1443
1444The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1445specifying the C data type for semantic values of both tokens and
1446groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1447Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1448don't define it, @code{int} is the default. Because we specify
1449@code{double}, each token and each expression has an associated value,
1450which is a floating point number.
bfa74976
RS
1451
1452The @code{#include} directive is used to declare the exponentiation
1453function @code{pow}.
1454
38a92d50
PE
1455The forward declarations for @code{yylex} and @code{yyerror} are
1456needed because the C language requires that functions be declared
1457before they are used. These functions will be defined in the
1458epilogue, but the parser calls them so they must be declared in the
1459prologue.
1460
704a47c4
AD
1461The second section, Bison declarations, provides information to Bison
1462about the token types (@pxref{Bison Declarations, ,The Bison
1463Declarations Section}). Each terminal symbol that is not a
1464single-character literal must be declared here. (Single-character
bfa74976
RS
1465literals normally don't need to be declared.) In this example, all the
1466arithmetic operators are designated by single-character literals, so the
1467only terminal symbol that needs to be declared is @code{NUM}, the token
1468type for numeric constants.
1469
342b8b6e 1470@node Rpcalc Rules
bfa74976
RS
1471@subsection Grammar Rules for @code{rpcalc}
1472
1473Here are the grammar rules for the reverse polish notation calculator.
1474
1475@example
1476input: /* empty */
1477 | input line
1478;
1479
1480line: '\n'
18b519c0 1481 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1482;
1483
18b519c0
AD
1484exp: NUM @{ $$ = $1; @}
1485 | exp exp '+' @{ $$ = $1 + $2; @}
1486 | exp exp '-' @{ $$ = $1 - $2; @}
1487 | exp exp '*' @{ $$ = $1 * $2; @}
1488 | exp exp '/' @{ $$ = $1 / $2; @}
1489 /* Exponentiation */
1490 | exp exp '^' @{ $$ = pow ($1, $2); @}
1491 /* Unary minus */
1492 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1493;
1494%%
1495@end example
1496
1497The groupings of the rpcalc ``language'' defined here are the expression
1498(given the name @code{exp}), the line of input (@code{line}), and the
1499complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1500symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1501which is read as ``or''. The following sections explain what these rules
1502mean.
1503
1504The semantics of the language is determined by the actions taken when a
1505grouping is recognized. The actions are the C code that appears inside
1506braces. @xref{Actions}.
1507
1508You must specify these actions in C, but Bison provides the means for
1509passing semantic values between the rules. In each action, the
1510pseudo-variable @code{$$} stands for the semantic value for the grouping
1511that the rule is going to construct. Assigning a value to @code{$$} is the
1512main job of most actions. The semantic values of the components of the
1513rule are referred to as @code{$1}, @code{$2}, and so on.
1514
1515@menu
13863333
AD
1516* Rpcalc Input::
1517* Rpcalc Line::
1518* Rpcalc Expr::
bfa74976
RS
1519@end menu
1520
342b8b6e 1521@node Rpcalc Input
bfa74976
RS
1522@subsubsection Explanation of @code{input}
1523
1524Consider the definition of @code{input}:
1525
1526@example
1527input: /* empty */
1528 | input line
1529;
1530@end example
1531
1532This definition reads as follows: ``A complete input is either an empty
1533string, or a complete input followed by an input line''. Notice that
1534``complete input'' is defined in terms of itself. This definition is said
1535to be @dfn{left recursive} since @code{input} appears always as the
1536leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1537
1538The first alternative is empty because there are no symbols between the
1539colon and the first @samp{|}; this means that @code{input} can match an
1540empty string of input (no tokens). We write the rules this way because it
1541is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1542It's conventional to put an empty alternative first and write the comment
1543@samp{/* empty */} in it.
1544
1545The second alternate rule (@code{input line}) handles all nontrivial input.
1546It means, ``After reading any number of lines, read one more line if
1547possible.'' The left recursion makes this rule into a loop. Since the
1548first alternative matches empty input, the loop can be executed zero or
1549more times.
1550
1551The parser function @code{yyparse} continues to process input until a
1552grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1553input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1554
342b8b6e 1555@node Rpcalc Line
bfa74976
RS
1556@subsubsection Explanation of @code{line}
1557
1558Now consider the definition of @code{line}:
1559
1560@example
1561line: '\n'
1562 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1563;
1564@end example
1565
1566The first alternative is a token which is a newline character; this means
1567that rpcalc accepts a blank line (and ignores it, since there is no
1568action). The second alternative is an expression followed by a newline.
1569This is the alternative that makes rpcalc useful. The semantic value of
1570the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1571question is the first symbol in the alternative. The action prints this
1572value, which is the result of the computation the user asked for.
1573
1574This action is unusual because it does not assign a value to @code{$$}. As
1575a consequence, the semantic value associated with the @code{line} is
1576uninitialized (its value will be unpredictable). This would be a bug if
1577that value were ever used, but we don't use it: once rpcalc has printed the
1578value of the user's input line, that value is no longer needed.
1579
342b8b6e 1580@node Rpcalc Expr
bfa74976
RS
1581@subsubsection Explanation of @code{expr}
1582
1583The @code{exp} grouping has several rules, one for each kind of expression.
1584The first rule handles the simplest expressions: those that are just numbers.
1585The second handles an addition-expression, which looks like two expressions
1586followed by a plus-sign. The third handles subtraction, and so on.
1587
1588@example
1589exp: NUM
1590 | exp exp '+' @{ $$ = $1 + $2; @}
1591 | exp exp '-' @{ $$ = $1 - $2; @}
1592 @dots{}
1593 ;
1594@end example
1595
1596We have used @samp{|} to join all the rules for @code{exp}, but we could
1597equally well have written them separately:
1598
1599@example
1600exp: NUM ;
1601exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1602exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1603 @dots{}
1604@end example
1605
1606Most of the rules have actions that compute the value of the expression in
1607terms of the value of its parts. For example, in the rule for addition,
1608@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1609the second one. The third component, @code{'+'}, has no meaningful
1610associated semantic value, but if it had one you could refer to it as
1611@code{$3}. When @code{yyparse} recognizes a sum expression using this
1612rule, the sum of the two subexpressions' values is produced as the value of
1613the entire expression. @xref{Actions}.
1614
1615You don't have to give an action for every rule. When a rule has no
1616action, Bison by default copies the value of @code{$1} into @code{$$}.
1617This is what happens in the first rule (the one that uses @code{NUM}).
1618
1619The formatting shown here is the recommended convention, but Bison does
72d2299c 1620not require it. You can add or change white space as much as you wish.
bfa74976
RS
1621For example, this:
1622
1623@example
99a9344e 1624exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1625@end example
1626
1627@noindent
1628means the same thing as this:
1629
1630@example
1631exp: NUM
1632 | exp exp '+' @{ $$ = $1 + $2; @}
1633 | @dots{}
99a9344e 1634;
bfa74976
RS
1635@end example
1636
1637@noindent
1638The latter, however, is much more readable.
1639
342b8b6e 1640@node Rpcalc Lexer
bfa74976
RS
1641@subsection The @code{rpcalc} Lexical Analyzer
1642@cindex writing a lexical analyzer
1643@cindex lexical analyzer, writing
1644
704a47c4
AD
1645The lexical analyzer's job is low-level parsing: converting characters
1646or sequences of characters into tokens. The Bison parser gets its
1647tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1648Analyzer Function @code{yylex}}.
bfa74976 1649
c827f760
PE
1650Only a simple lexical analyzer is needed for the @acronym{RPN}
1651calculator. This
bfa74976
RS
1652lexical analyzer skips blanks and tabs, then reads in numbers as
1653@code{double} and returns them as @code{NUM} tokens. Any other character
1654that isn't part of a number is a separate token. Note that the token-code
1655for such a single-character token is the character itself.
1656
1657The return value of the lexical analyzer function is a numeric code which
1658represents a token type. The same text used in Bison rules to stand for
1659this token type is also a C expression for the numeric code for the type.
1660This works in two ways. If the token type is a character literal, then its
e966383b 1661numeric code is that of the character; you can use the same
bfa74976
RS
1662character literal in the lexical analyzer to express the number. If the
1663token type is an identifier, that identifier is defined by Bison as a C
1664macro whose definition is the appropriate number. In this example,
1665therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1666
1964ad8c
AD
1667The semantic value of the token (if it has one) is stored into the
1668global variable @code{yylval}, which is where the Bison parser will look
1669for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1670defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1671,Declarations for @code{rpcalc}}.)
bfa74976 1672
72d2299c
PE
1673A token type code of zero is returned if the end-of-input is encountered.
1674(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1675
1676Here is the code for the lexical analyzer:
1677
1678@example
1679@group
72d2299c 1680/* The lexical analyzer returns a double floating point
e966383b 1681 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1682 of the character read if not a number. It skips all blanks
1683 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1684
1685#include <ctype.h>
1686@end group
1687
1688@group
13863333
AD
1689int
1690yylex (void)
bfa74976
RS
1691@{
1692 int c;
1693
72d2299c 1694 /* Skip white space. */
13863333 1695 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1696 ;
1697@end group
1698@group
72d2299c 1699 /* Process numbers. */
13863333 1700 if (c == '.' || isdigit (c))
bfa74976
RS
1701 @{
1702 ungetc (c, stdin);
1703 scanf ("%lf", &yylval);
1704 return NUM;
1705 @}
1706@end group
1707@group
72d2299c 1708 /* Return end-of-input. */
13863333 1709 if (c == EOF)
bfa74976 1710 return 0;
72d2299c 1711 /* Return a single char. */
13863333 1712 return c;
bfa74976
RS
1713@}
1714@end group
1715@end example
1716
342b8b6e 1717@node Rpcalc Main
bfa74976
RS
1718@subsection The Controlling Function
1719@cindex controlling function
1720@cindex main function in simple example
1721
1722In keeping with the spirit of this example, the controlling function is
1723kept to the bare minimum. The only requirement is that it call
1724@code{yyparse} to start the process of parsing.
1725
1726@example
1727@group
13863333
AD
1728int
1729main (void)
bfa74976 1730@{
13863333 1731 return yyparse ();
bfa74976
RS
1732@}
1733@end group
1734@end example
1735
342b8b6e 1736@node Rpcalc Error
bfa74976
RS
1737@subsection The Error Reporting Routine
1738@cindex error reporting routine
1739
1740When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1741function @code{yyerror} to print an error message (usually but not
6e649e65 1742always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1743@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1744here is the definition we will use:
bfa74976
RS
1745
1746@example
1747@group
1748#include <stdio.h>
1749
38a92d50 1750/* Called by yyparse on error. */
13863333 1751void
38a92d50 1752yyerror (char const *s)
bfa74976 1753@{
4e03e201 1754 fprintf (stderr, "%s\n", s);
bfa74976
RS
1755@}
1756@end group
1757@end example
1758
1759After @code{yyerror} returns, the Bison parser may recover from the error
1760and continue parsing if the grammar contains a suitable error rule
1761(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1762have not written any error rules in this example, so any invalid input will
1763cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1764real calculator, but it is adequate for the first example.
bfa74976 1765
f5f419de 1766@node Rpcalc Generate
bfa74976
RS
1767@subsection Running Bison to Make the Parser
1768@cindex running Bison (introduction)
1769
ceed8467
AD
1770Before running Bison to produce a parser, we need to decide how to
1771arrange all the source code in one or more source files. For such a
1772simple example, the easiest thing is to put everything in one file. The
1773definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1774end, in the epilogue of the file
75f5aaea 1775(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1776
1777For a large project, you would probably have several source files, and use
1778@code{make} to arrange to recompile them.
1779
1780With all the source in a single file, you use the following command to
1781convert it into a parser file:
1782
1783@example
fa4d969f 1784bison @var{file}.y
bfa74976
RS
1785@end example
1786
1787@noindent
1788In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1789@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1790removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1791Bison contains the source code for @code{yyparse}. The additional
1792functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1793are copied verbatim to the output.
1794
342b8b6e 1795@node Rpcalc Compile
bfa74976
RS
1796@subsection Compiling the Parser File
1797@cindex compiling the parser
1798
1799Here is how to compile and run the parser file:
1800
1801@example
1802@group
1803# @r{List files in current directory.}
9edcd895 1804$ @kbd{ls}
bfa74976
RS
1805rpcalc.tab.c rpcalc.y
1806@end group
1807
1808@group
1809# @r{Compile the Bison parser.}
1810# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1811$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1812@end group
1813
1814@group
1815# @r{List files again.}
9edcd895 1816$ @kbd{ls}
bfa74976
RS
1817rpcalc rpcalc.tab.c rpcalc.y
1818@end group
1819@end example
1820
1821The file @file{rpcalc} now contains the executable code. Here is an
1822example session using @code{rpcalc}.
1823
1824@example
9edcd895
AD
1825$ @kbd{rpcalc}
1826@kbd{4 9 +}
bfa74976 182713
9edcd895 1828@kbd{3 7 + 3 4 5 *+-}
bfa74976 1829-13
9edcd895 1830@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 183113
9edcd895 1832@kbd{5 6 / 4 n +}
bfa74976 1833-3.166666667
9edcd895 1834@kbd{3 4 ^} @r{Exponentiation}
bfa74976 183581
9edcd895
AD
1836@kbd{^D} @r{End-of-file indicator}
1837$
bfa74976
RS
1838@end example
1839
342b8b6e 1840@node Infix Calc
bfa74976
RS
1841@section Infix Notation Calculator: @code{calc}
1842@cindex infix notation calculator
1843@cindex @code{calc}
1844@cindex calculator, infix notation
1845
1846We now modify rpcalc to handle infix operators instead of postfix. Infix
1847notation involves the concept of operator precedence and the need for
1848parentheses nested to arbitrary depth. Here is the Bison code for
1849@file{calc.y}, an infix desk-top calculator.
1850
1851@example
38a92d50 1852/* Infix notation calculator. */
bfa74976
RS
1853
1854%@{
38a92d50
PE
1855 #define YYSTYPE double
1856 #include <math.h>
1857 #include <stdio.h>
1858 int yylex (void);
1859 void yyerror (char const *);
bfa74976
RS
1860%@}
1861
38a92d50 1862/* Bison declarations. */
bfa74976
RS
1863%token NUM
1864%left '-' '+'
1865%left '*' '/'
d78f0ac9
AD
1866%precedence NEG /* negation--unary minus */
1867%right '^' /* exponentiation */
bfa74976 1868
38a92d50
PE
1869%% /* The grammar follows. */
1870input: /* empty */
bfa74976
RS
1871 | input line
1872;
1873
1874line: '\n'
1875 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1876;
1877
1878exp: NUM @{ $$ = $1; @}
1879 | exp '+' exp @{ $$ = $1 + $3; @}
1880 | exp '-' exp @{ $$ = $1 - $3; @}
1881 | exp '*' exp @{ $$ = $1 * $3; @}
1882 | exp '/' exp @{ $$ = $1 / $3; @}
1883 | '-' exp %prec NEG @{ $$ = -$2; @}
1884 | exp '^' exp @{ $$ = pow ($1, $3); @}
1885 | '(' exp ')' @{ $$ = $2; @}
1886;
1887%%
1888@end example
1889
1890@noindent
ceed8467
AD
1891The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1892same as before.
bfa74976
RS
1893
1894There are two important new features shown in this code.
1895
1896In the second section (Bison declarations), @code{%left} declares token
1897types and says they are left-associative operators. The declarations
1898@code{%left} and @code{%right} (right associativity) take the place of
1899@code{%token} which is used to declare a token type name without
d78f0ac9 1900associativity/precedence. (These tokens are single-character literals, which
bfa74976 1901ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 1902the associativity/precedence.)
bfa74976
RS
1903
1904Operator precedence is determined by the line ordering of the
1905declarations; the higher the line number of the declaration (lower on
1906the page or screen), the higher the precedence. Hence, exponentiation
1907has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
1908by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
1909only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 1910Precedence}.
bfa74976 1911
704a47c4
AD
1912The other important new feature is the @code{%prec} in the grammar
1913section for the unary minus operator. The @code{%prec} simply instructs
1914Bison that the rule @samp{| '-' exp} has the same precedence as
1915@code{NEG}---in this case the next-to-highest. @xref{Contextual
1916Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1917
1918Here is a sample run of @file{calc.y}:
1919
1920@need 500
1921@example
9edcd895
AD
1922$ @kbd{calc}
1923@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19246.880952381
9edcd895 1925@kbd{-56 + 2}
bfa74976 1926-54
9edcd895 1927@kbd{3 ^ 2}
bfa74976
RS
19289
1929@end example
1930
342b8b6e 1931@node Simple Error Recovery
bfa74976
RS
1932@section Simple Error Recovery
1933@cindex error recovery, simple
1934
1935Up to this point, this manual has not addressed the issue of @dfn{error
1936recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1937error. All we have handled is error reporting with @code{yyerror}.
1938Recall that by default @code{yyparse} returns after calling
1939@code{yyerror}. This means that an erroneous input line causes the
1940calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1941
1942The Bison language itself includes the reserved word @code{error}, which
1943may be included in the grammar rules. In the example below it has
1944been added to one of the alternatives for @code{line}:
1945
1946@example
1947@group
1948line: '\n'
1949 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1950 | error '\n' @{ yyerrok; @}
1951;
1952@end group
1953@end example
1954
ceed8467 1955This addition to the grammar allows for simple error recovery in the
6e649e65 1956event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1957read, the error will be recognized by the third rule for @code{line},
1958and parsing will continue. (The @code{yyerror} function is still called
1959upon to print its message as well.) The action executes the statement
1960@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1961that error recovery is complete (@pxref{Error Recovery}). Note the
1962difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1963misprint.
bfa74976
RS
1964
1965This form of error recovery deals with syntax errors. There are other
1966kinds of errors; for example, division by zero, which raises an exception
1967signal that is normally fatal. A real calculator program must handle this
1968signal and use @code{longjmp} to return to @code{main} and resume parsing
1969input lines; it would also have to discard the rest of the current line of
1970input. We won't discuss this issue further because it is not specific to
1971Bison programs.
1972
342b8b6e
AD
1973@node Location Tracking Calc
1974@section Location Tracking Calculator: @code{ltcalc}
1975@cindex location tracking calculator
1976@cindex @code{ltcalc}
1977@cindex calculator, location tracking
1978
9edcd895
AD
1979This example extends the infix notation calculator with location
1980tracking. This feature will be used to improve the error messages. For
1981the sake of clarity, this example is a simple integer calculator, since
1982most of the work needed to use locations will be done in the lexical
72d2299c 1983analyzer.
342b8b6e
AD
1984
1985@menu
f5f419de
DJ
1986* Ltcalc Declarations:: Bison and C declarations for ltcalc.
1987* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
1988* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
1989@end menu
1990
f5f419de 1991@node Ltcalc Declarations
342b8b6e
AD
1992@subsection Declarations for @code{ltcalc}
1993
9edcd895
AD
1994The C and Bison declarations for the location tracking calculator are
1995the same as the declarations for the infix notation calculator.
342b8b6e
AD
1996
1997@example
1998/* Location tracking calculator. */
1999
2000%@{
38a92d50
PE
2001 #define YYSTYPE int
2002 #include <math.h>
2003 int yylex (void);
2004 void yyerror (char const *);
342b8b6e
AD
2005%@}
2006
2007/* Bison declarations. */
2008%token NUM
2009
2010%left '-' '+'
2011%left '*' '/'
d78f0ac9 2012%precedence NEG
342b8b6e
AD
2013%right '^'
2014
38a92d50 2015%% /* The grammar follows. */
342b8b6e
AD
2016@end example
2017
9edcd895
AD
2018@noindent
2019Note there are no declarations specific to locations. Defining a data
2020type for storing locations is not needed: we will use the type provided
2021by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2022four member structure with the following integer fields:
2023@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2024@code{last_column}. By conventions, and in accordance with the GNU
2025Coding Standards and common practice, the line and column count both
2026start at 1.
342b8b6e
AD
2027
2028@node Ltcalc Rules
2029@subsection Grammar Rules for @code{ltcalc}
2030
9edcd895
AD
2031Whether handling locations or not has no effect on the syntax of your
2032language. Therefore, grammar rules for this example will be very close
2033to those of the previous example: we will only modify them to benefit
2034from the new information.
342b8b6e 2035
9edcd895
AD
2036Here, we will use locations to report divisions by zero, and locate the
2037wrong expressions or subexpressions.
342b8b6e
AD
2038
2039@example
2040@group
2041input : /* empty */
2042 | input line
2043;
2044@end group
2045
2046@group
2047line : '\n'
2048 | exp '\n' @{ printf ("%d\n", $1); @}
2049;
2050@end group
2051
2052@group
2053exp : NUM @{ $$ = $1; @}
2054 | exp '+' exp @{ $$ = $1 + $3; @}
2055 | exp '-' exp @{ $$ = $1 - $3; @}
2056 | exp '*' exp @{ $$ = $1 * $3; @}
2057@end group
342b8b6e 2058@group
9edcd895 2059 | exp '/' exp
342b8b6e
AD
2060 @{
2061 if ($3)
2062 $$ = $1 / $3;
2063 else
2064 @{
2065 $$ = 1;
9edcd895
AD
2066 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2067 @@3.first_line, @@3.first_column,
2068 @@3.last_line, @@3.last_column);
342b8b6e
AD
2069 @}
2070 @}
2071@end group
2072@group
178e123e 2073 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2074 | exp '^' exp @{ $$ = pow ($1, $3); @}
2075 | '(' exp ')' @{ $$ = $2; @}
2076@end group
2077@end example
2078
2079This code shows how to reach locations inside of semantic actions, by
2080using the pseudo-variables @code{@@@var{n}} for rule components, and the
2081pseudo-variable @code{@@$} for groupings.
2082
9edcd895
AD
2083We don't need to assign a value to @code{@@$}: the output parser does it
2084automatically. By default, before executing the C code of each action,
2085@code{@@$} is set to range from the beginning of @code{@@1} to the end
2086of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2087can be redefined (@pxref{Location Default Action, , Default Action for
2088Locations}), and for very specific rules, @code{@@$} can be computed by
2089hand.
342b8b6e
AD
2090
2091@node Ltcalc Lexer
2092@subsection The @code{ltcalc} Lexical Analyzer.
2093
9edcd895 2094Until now, we relied on Bison's defaults to enable location
72d2299c 2095tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2096able to feed the parser with the token locations, as it already does for
2097semantic values.
342b8b6e 2098
9edcd895
AD
2099To this end, we must take into account every single character of the
2100input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2101
2102@example
2103@group
2104int
2105yylex (void)
2106@{
2107 int c;
18b519c0 2108@end group
342b8b6e 2109
18b519c0 2110@group
72d2299c 2111 /* Skip white space. */
342b8b6e
AD
2112 while ((c = getchar ()) == ' ' || c == '\t')
2113 ++yylloc.last_column;
18b519c0 2114@end group
342b8b6e 2115
18b519c0 2116@group
72d2299c 2117 /* Step. */
342b8b6e
AD
2118 yylloc.first_line = yylloc.last_line;
2119 yylloc.first_column = yylloc.last_column;
2120@end group
2121
2122@group
72d2299c 2123 /* Process numbers. */
342b8b6e
AD
2124 if (isdigit (c))
2125 @{
2126 yylval = c - '0';
2127 ++yylloc.last_column;
2128 while (isdigit (c = getchar ()))
2129 @{
2130 ++yylloc.last_column;
2131 yylval = yylval * 10 + c - '0';
2132 @}
2133 ungetc (c, stdin);
2134 return NUM;
2135 @}
2136@end group
2137
72d2299c 2138 /* Return end-of-input. */
342b8b6e
AD
2139 if (c == EOF)
2140 return 0;
2141
72d2299c 2142 /* Return a single char, and update location. */
342b8b6e
AD
2143 if (c == '\n')
2144 @{
2145 ++yylloc.last_line;
2146 yylloc.last_column = 0;
2147 @}
2148 else
2149 ++yylloc.last_column;
2150 return c;
2151@}
2152@end example
2153
9edcd895
AD
2154Basically, the lexical analyzer performs the same processing as before:
2155it skips blanks and tabs, and reads numbers or single-character tokens.
2156In addition, it updates @code{yylloc}, the global variable (of type
2157@code{YYLTYPE}) containing the token's location.
342b8b6e 2158
9edcd895 2159Now, each time this function returns a token, the parser has its number
72d2299c 2160as well as its semantic value, and its location in the text. The last
9edcd895
AD
2161needed change is to initialize @code{yylloc}, for example in the
2162controlling function:
342b8b6e
AD
2163
2164@example
9edcd895 2165@group
342b8b6e
AD
2166int
2167main (void)
2168@{
2169 yylloc.first_line = yylloc.last_line = 1;
2170 yylloc.first_column = yylloc.last_column = 0;
2171 return yyparse ();
2172@}
9edcd895 2173@end group
342b8b6e
AD
2174@end example
2175
9edcd895
AD
2176Remember that computing locations is not a matter of syntax. Every
2177character must be associated to a location update, whether it is in
2178valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2179
2180@node Multi-function Calc
bfa74976
RS
2181@section Multi-Function Calculator: @code{mfcalc}
2182@cindex multi-function calculator
2183@cindex @code{mfcalc}
2184@cindex calculator, multi-function
2185
2186Now that the basics of Bison have been discussed, it is time to move on to
2187a more advanced problem. The above calculators provided only five
2188functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2189be nice to have a calculator that provides other mathematical functions such
2190as @code{sin}, @code{cos}, etc.
2191
2192It is easy to add new operators to the infix calculator as long as they are
2193only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2194back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2195adding a new operator. But we want something more flexible: built-in
2196functions whose syntax has this form:
2197
2198@example
2199@var{function_name} (@var{argument})
2200@end example
2201
2202@noindent
2203At the same time, we will add memory to the calculator, by allowing you
2204to create named variables, store values in them, and use them later.
2205Here is a sample session with the multi-function calculator:
2206
2207@example
9edcd895
AD
2208$ @kbd{mfcalc}
2209@kbd{pi = 3.141592653589}
bfa74976 22103.1415926536
9edcd895 2211@kbd{sin(pi)}
bfa74976 22120.0000000000
9edcd895 2213@kbd{alpha = beta1 = 2.3}
bfa74976 22142.3000000000
9edcd895 2215@kbd{alpha}
bfa74976 22162.3000000000
9edcd895 2217@kbd{ln(alpha)}
bfa74976 22180.8329091229
9edcd895 2219@kbd{exp(ln(beta1))}
bfa74976 22202.3000000000
9edcd895 2221$
bfa74976
RS
2222@end example
2223
2224Note that multiple assignment and nested function calls are permitted.
2225
2226@menu
f5f419de
DJ
2227* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2228* Mfcalc Rules:: Grammar rules for the calculator.
2229* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2230@end menu
2231
f5f419de 2232@node Mfcalc Declarations
bfa74976
RS
2233@subsection Declarations for @code{mfcalc}
2234
2235Here are the C and Bison declarations for the multi-function calculator.
2236
2237@smallexample
18b519c0 2238@group
bfa74976 2239%@{
38a92d50
PE
2240 #include <math.h> /* For math functions, cos(), sin(), etc. */
2241 #include "calc.h" /* Contains definition of `symrec'. */
2242 int yylex (void);
2243 void yyerror (char const *);
bfa74976 2244%@}
18b519c0
AD
2245@end group
2246@group
bfa74976 2247%union @{
38a92d50
PE
2248 double val; /* For returning numbers. */
2249 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2250@}
18b519c0 2251@end group
38a92d50
PE
2252%token <val> NUM /* Simple double precision number. */
2253%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2254%type <val> exp
2255
18b519c0 2256@group
bfa74976
RS
2257%right '='
2258%left '-' '+'
2259%left '*' '/'
d78f0ac9
AD
2260%precedence NEG /* negation--unary minus */
2261%right '^' /* exponentiation */
18b519c0 2262@end group
38a92d50 2263%% /* The grammar follows. */
bfa74976
RS
2264@end smallexample
2265
2266The above grammar introduces only two new features of the Bison language.
2267These features allow semantic values to have various data types
2268(@pxref{Multiple Types, ,More Than One Value Type}).
2269
2270The @code{%union} declaration specifies the entire list of possible types;
2271this is instead of defining @code{YYSTYPE}. The allowable types are now
2272double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2273the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2274
2275Since values can now have various types, it is necessary to associate a
2276type with each grammar symbol whose semantic value is used. These symbols
2277are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2278declarations are augmented with information about their data type (placed
2279between angle brackets).
2280
704a47c4
AD
2281The Bison construct @code{%type} is used for declaring nonterminal
2282symbols, just as @code{%token} is used for declaring token types. We
2283have not used @code{%type} before because nonterminal symbols are
2284normally declared implicitly by the rules that define them. But
2285@code{exp} must be declared explicitly so we can specify its value type.
2286@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2287
342b8b6e 2288@node Mfcalc Rules
bfa74976
RS
2289@subsection Grammar Rules for @code{mfcalc}
2290
2291Here are the grammar rules for the multi-function calculator.
2292Most of them are copied directly from @code{calc}; three rules,
2293those which mention @code{VAR} or @code{FNCT}, are new.
2294
2295@smallexample
18b519c0 2296@group
bfa74976
RS
2297input: /* empty */
2298 | input line
2299;
18b519c0 2300@end group
bfa74976 2301
18b519c0 2302@group
bfa74976
RS
2303line:
2304 '\n'
2305 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2306 | error '\n' @{ yyerrok; @}
2307;
18b519c0 2308@end group
bfa74976 2309
18b519c0 2310@group
bfa74976
RS
2311exp: NUM @{ $$ = $1; @}
2312 | VAR @{ $$ = $1->value.var; @}
2313 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2314 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2315 | exp '+' exp @{ $$ = $1 + $3; @}
2316 | exp '-' exp @{ $$ = $1 - $3; @}
2317 | exp '*' exp @{ $$ = $1 * $3; @}
2318 | exp '/' exp @{ $$ = $1 / $3; @}
2319 | '-' exp %prec NEG @{ $$ = -$2; @}
2320 | exp '^' exp @{ $$ = pow ($1, $3); @}
2321 | '(' exp ')' @{ $$ = $2; @}
2322;
18b519c0 2323@end group
38a92d50 2324/* End of grammar. */
bfa74976
RS
2325%%
2326@end smallexample
2327
f5f419de 2328@node Mfcalc Symbol Table
bfa74976
RS
2329@subsection The @code{mfcalc} Symbol Table
2330@cindex symbol table example
2331
2332The multi-function calculator requires a symbol table to keep track of the
2333names and meanings of variables and functions. This doesn't affect the
2334grammar rules (except for the actions) or the Bison declarations, but it
2335requires some additional C functions for support.
2336
2337The symbol table itself consists of a linked list of records. Its
2338definition, which is kept in the header @file{calc.h}, is as follows. It
2339provides for either functions or variables to be placed in the table.
2340
2341@smallexample
2342@group
38a92d50 2343/* Function type. */
32dfccf8 2344typedef double (*func_t) (double);
72f889cc 2345@end group
32dfccf8 2346
72f889cc 2347@group
38a92d50 2348/* Data type for links in the chain of symbols. */
bfa74976
RS
2349struct symrec
2350@{
38a92d50 2351 char *name; /* name of symbol */
bfa74976 2352 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2353 union
2354 @{
38a92d50
PE
2355 double var; /* value of a VAR */
2356 func_t fnctptr; /* value of a FNCT */
bfa74976 2357 @} value;
38a92d50 2358 struct symrec *next; /* link field */
bfa74976
RS
2359@};
2360@end group
2361
2362@group
2363typedef struct symrec symrec;
2364
38a92d50 2365/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2366extern symrec *sym_table;
2367
a730d142 2368symrec *putsym (char const *, int);
38a92d50 2369symrec *getsym (char const *);
bfa74976
RS
2370@end group
2371@end smallexample
2372
2373The new version of @code{main} includes a call to @code{init_table}, a
2374function that initializes the symbol table. Here it is, and
2375@code{init_table} as well:
2376
2377@smallexample
bfa74976
RS
2378#include <stdio.h>
2379
18b519c0 2380@group
38a92d50 2381/* Called by yyparse on error. */
13863333 2382void
38a92d50 2383yyerror (char const *s)
bfa74976
RS
2384@{
2385 printf ("%s\n", s);
2386@}
18b519c0 2387@end group
bfa74976 2388
18b519c0 2389@group
bfa74976
RS
2390struct init
2391@{
38a92d50
PE
2392 char const *fname;
2393 double (*fnct) (double);
bfa74976
RS
2394@};
2395@end group
2396
2397@group
38a92d50 2398struct init const arith_fncts[] =
13863333 2399@{
32dfccf8
AD
2400 "sin", sin,
2401 "cos", cos,
13863333 2402 "atan", atan,
32dfccf8
AD
2403 "ln", log,
2404 "exp", exp,
13863333
AD
2405 "sqrt", sqrt,
2406 0, 0
2407@};
18b519c0 2408@end group
bfa74976 2409
18b519c0 2410@group
bfa74976 2411/* The symbol table: a chain of `struct symrec'. */
38a92d50 2412symrec *sym_table;
bfa74976
RS
2413@end group
2414
2415@group
72d2299c 2416/* Put arithmetic functions in table. */
13863333
AD
2417void
2418init_table (void)
bfa74976
RS
2419@{
2420 int i;
2421 symrec *ptr;
2422 for (i = 0; arith_fncts[i].fname != 0; i++)
2423 @{
2424 ptr = putsym (arith_fncts[i].fname, FNCT);
2425 ptr->value.fnctptr = arith_fncts[i].fnct;
2426 @}
2427@}
2428@end group
38a92d50
PE
2429
2430@group
2431int
2432main (void)
2433@{
2434 init_table ();
2435 return yyparse ();
2436@}
2437@end group
bfa74976
RS
2438@end smallexample
2439
2440By simply editing the initialization list and adding the necessary include
2441files, you can add additional functions to the calculator.
2442
2443Two important functions allow look-up and installation of symbols in the
2444symbol table. The function @code{putsym} is passed a name and the type
2445(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2446linked to the front of the list, and a pointer to the object is returned.
2447The function @code{getsym} is passed the name of the symbol to look up. If
2448found, a pointer to that symbol is returned; otherwise zero is returned.
2449
2450@smallexample
2451symrec *
38a92d50 2452putsym (char const *sym_name, int sym_type)
bfa74976
RS
2453@{
2454 symrec *ptr;
2455 ptr = (symrec *) malloc (sizeof (symrec));
2456 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2457 strcpy (ptr->name,sym_name);
2458 ptr->type = sym_type;
72d2299c 2459 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2460 ptr->next = (struct symrec *)sym_table;
2461 sym_table = ptr;
2462 return ptr;
2463@}
2464
2465symrec *
38a92d50 2466getsym (char const *sym_name)
bfa74976
RS
2467@{
2468 symrec *ptr;
2469 for (ptr = sym_table; ptr != (symrec *) 0;
2470 ptr = (symrec *)ptr->next)
2471 if (strcmp (ptr->name,sym_name) == 0)
2472 return ptr;
2473 return 0;
2474@}
2475@end smallexample
2476
2477The function @code{yylex} must now recognize variables, numeric values, and
2478the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2479characters with a leading letter are recognized as either variables or
bfa74976
RS
2480functions depending on what the symbol table says about them.
2481
2482The string is passed to @code{getsym} for look up in the symbol table. If
2483the name appears in the table, a pointer to its location and its type
2484(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2485already in the table, then it is installed as a @code{VAR} using
2486@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2487returned to @code{yyparse}.
bfa74976
RS
2488
2489No change is needed in the handling of numeric values and arithmetic
2490operators in @code{yylex}.
2491
2492@smallexample
2493@group
2494#include <ctype.h>
18b519c0 2495@end group
13863333 2496
18b519c0 2497@group
13863333
AD
2498int
2499yylex (void)
bfa74976
RS
2500@{
2501 int c;
2502
72d2299c 2503 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2504 while ((c = getchar ()) == ' ' || c == '\t');
2505
2506 if (c == EOF)
2507 return 0;
2508@end group
2509
2510@group
2511 /* Char starts a number => parse the number. */
2512 if (c == '.' || isdigit (c))
2513 @{
2514 ungetc (c, stdin);
2515 scanf ("%lf", &yylval.val);
2516 return NUM;
2517 @}
2518@end group
2519
2520@group
2521 /* Char starts an identifier => read the name. */
2522 if (isalpha (c))
2523 @{
2524 symrec *s;
2525 static char *symbuf = 0;
2526 static int length = 0;
2527 int i;
2528@end group
2529
2530@group
2531 /* Initially make the buffer long enough
2532 for a 40-character symbol name. */
2533 if (length == 0)
2534 length = 40, symbuf = (char *)malloc (length + 1);
2535
2536 i = 0;
2537 do
2538@end group
2539@group
2540 @{
2541 /* If buffer is full, make it bigger. */
2542 if (i == length)
2543 @{
2544 length *= 2;
18b519c0 2545 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2546 @}
2547 /* Add this character to the buffer. */
2548 symbuf[i++] = c;
2549 /* Get another character. */
2550 c = getchar ();
2551 @}
2552@end group
2553@group
72d2299c 2554 while (isalnum (c));
bfa74976
RS
2555
2556 ungetc (c, stdin);
2557 symbuf[i] = '\0';
2558@end group
2559
2560@group
2561 s = getsym (symbuf);
2562 if (s == 0)
2563 s = putsym (symbuf, VAR);
2564 yylval.tptr = s;
2565 return s->type;
2566 @}
2567
2568 /* Any other character is a token by itself. */
2569 return c;
2570@}
2571@end group
2572@end smallexample
2573
72d2299c 2574This program is both powerful and flexible. You may easily add new
704a47c4
AD
2575functions, and it is a simple job to modify this code to install
2576predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2577
342b8b6e 2578@node Exercises
bfa74976
RS
2579@section Exercises
2580@cindex exercises
2581
2582@enumerate
2583@item
2584Add some new functions from @file{math.h} to the initialization list.
2585
2586@item
2587Add another array that contains constants and their values. Then
2588modify @code{init_table} to add these constants to the symbol table.
2589It will be easiest to give the constants type @code{VAR}.
2590
2591@item
2592Make the program report an error if the user refers to an
2593uninitialized variable in any way except to store a value in it.
2594@end enumerate
2595
342b8b6e 2596@node Grammar File
bfa74976
RS
2597@chapter Bison Grammar Files
2598
2599Bison takes as input a context-free grammar specification and produces a
2600C-language function that recognizes correct instances of the grammar.
2601
2602The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2603@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2604
2605@menu
2606* Grammar Outline:: Overall layout of the grammar file.
2607* Symbols:: Terminal and nonterminal symbols.
2608* Rules:: How to write grammar rules.
2609* Recursion:: Writing recursive rules.
2610* Semantics:: Semantic values and actions.
847bf1f5 2611* Locations:: Locations and actions.
bfa74976
RS
2612* Declarations:: All kinds of Bison declarations are described here.
2613* Multiple Parsers:: Putting more than one Bison parser in one program.
2614@end menu
2615
342b8b6e 2616@node Grammar Outline
bfa74976
RS
2617@section Outline of a Bison Grammar
2618
2619A Bison grammar file has four main sections, shown here with the
2620appropriate delimiters:
2621
2622@example
2623%@{
38a92d50 2624 @var{Prologue}
bfa74976
RS
2625%@}
2626
2627@var{Bison declarations}
2628
2629%%
2630@var{Grammar rules}
2631%%
2632
75f5aaea 2633@var{Epilogue}
bfa74976
RS
2634@end example
2635
2636Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2637As a @acronym{GNU} extension, @samp{//} introduces a comment that
2638continues until end of line.
bfa74976
RS
2639
2640@menu
f5f419de 2641* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2642* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2643* Bison Declarations:: Syntax and usage of the Bison declarations section.
2644* Grammar Rules:: Syntax and usage of the grammar rules section.
2645* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2646@end menu
2647
38a92d50 2648@node Prologue
75f5aaea
MA
2649@subsection The prologue
2650@cindex declarations section
2651@cindex Prologue
2652@cindex declarations
bfa74976 2653
f8e1c9e5
AD
2654The @var{Prologue} section contains macro definitions and declarations
2655of functions and variables that are used in the actions in the grammar
2656rules. These are copied to the beginning of the parser file so that
2657they precede the definition of @code{yyparse}. You can use
2658@samp{#include} to get the declarations from a header file. If you
2659don't need any C declarations, you may omit the @samp{%@{} and
2660@samp{%@}} delimiters that bracket this section.
bfa74976 2661
9c437126 2662The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2663of @samp{%@}} that is outside a comment, a string literal, or a
2664character constant.
2665
c732d2c6
AD
2666You may have more than one @var{Prologue} section, intermixed with the
2667@var{Bison declarations}. This allows you to have C and Bison
2668declarations that refer to each other. For example, the @code{%union}
2669declaration may use types defined in a header file, and you may wish to
2670prototype functions that take arguments of type @code{YYSTYPE}. This
2671can be done with two @var{Prologue} blocks, one before and one after the
2672@code{%union} declaration.
2673
2674@smallexample
2675%@{
aef3da86 2676 #define _GNU_SOURCE
38a92d50
PE
2677 #include <stdio.h>
2678 #include "ptypes.h"
c732d2c6
AD
2679%@}
2680
2681%union @{
779e7ceb 2682 long int n;
c732d2c6
AD
2683 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2684@}
2685
2686%@{
38a92d50
PE
2687 static void print_token_value (FILE *, int, YYSTYPE);
2688 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2689%@}
2690
2691@dots{}
2692@end smallexample
2693
aef3da86
PE
2694When in doubt, it is usually safer to put prologue code before all
2695Bison declarations, rather than after. For example, any definitions
2696of feature test macros like @code{_GNU_SOURCE} or
2697@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2698feature test macros can affect the behavior of Bison-generated
2699@code{#include} directives.
2700
2cbe6b7f
JD
2701@node Prologue Alternatives
2702@subsection Prologue Alternatives
2703@cindex Prologue Alternatives
2704
136a0f76 2705@findex %code
16dc6a9e
JD
2706@findex %code requires
2707@findex %code provides
2708@findex %code top
85894313
JD
2709(The prologue alternatives described here are experimental.
2710More user feedback will help to determine whether they should become permanent
2711features.)
2712
2cbe6b7f
JD
2713The functionality of @var{Prologue} sections can often be subtle and
2714inflexible.
8e0a5e9e
JD
2715As an alternative, Bison provides a %code directive with an explicit qualifier
2716field, which identifies the purpose of the code and thus the location(s) where
2717Bison should generate it.
2718For C/C++, the qualifier can be omitted for the default location, or it can be
8405b70c 2719one of @code{requires}, @code{provides}, @code{top}.
148d66d8 2720@xref{Decl Summary,,%code}.
2cbe6b7f
JD
2721
2722Look again at the example of the previous section:
2723
2724@smallexample
2725%@{
2726 #define _GNU_SOURCE
2727 #include <stdio.h>
2728 #include "ptypes.h"
2729%@}
2730
2731%union @{
2732 long int n;
2733 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2734@}
2735
2736%@{
2737 static void print_token_value (FILE *, int, YYSTYPE);
2738 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2739%@}
2740
2741@dots{}
2742@end smallexample
2743
2744@noindent
2745Notice that there are two @var{Prologue} sections here, but there's a subtle
2746distinction between their functionality.
2747For example, if you decide to override Bison's default definition for
2748@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2749definition?
2750You should write it in the first since Bison will insert that code into the
8e0a5e9e 2751parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2752In which @var{Prologue} section should you prototype an internal function,
2753@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2754arguments?
2755You should prototype it in the second since Bison will insert that code
2756@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2757
2758This distinction in functionality between the two @var{Prologue} sections is
2759established by the appearance of the @code{%union} between them.
a501eca9 2760This behavior raises a few questions.
2cbe6b7f
JD
2761First, why should the position of a @code{%union} affect definitions related to
2762@code{YYLTYPE} and @code{yytokentype}?
2763Second, what if there is no @code{%union}?
2764In that case, the second kind of @var{Prologue} section is not available.
2765This behavior is not intuitive.
2766
8e0a5e9e 2767To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2768@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2769Let's go ahead and add the new @code{YYLTYPE} definition and the
2770@code{trace_token} prototype at the same time:
2771
2772@smallexample
16dc6a9e 2773%code top @{
2cbe6b7f
JD
2774 #define _GNU_SOURCE
2775 #include <stdio.h>
8e0a5e9e
JD
2776
2777 /* WARNING: The following code really belongs
16dc6a9e 2778 * in a `%code requires'; see below. */
8e0a5e9e 2779
2cbe6b7f
JD
2780 #include "ptypes.h"
2781 #define YYLTYPE YYLTYPE
2782 typedef struct YYLTYPE
2783 @{
2784 int first_line;
2785 int first_column;
2786 int last_line;
2787 int last_column;
2788 char *filename;
2789 @} YYLTYPE;
2790@}
2791
2792%union @{
2793 long int n;
2794 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2795@}
2796
2797%code @{
2798 static void print_token_value (FILE *, int, YYSTYPE);
2799 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2800 static void trace_token (enum yytokentype token, YYLTYPE loc);
2801@}
2802
2803@dots{}
2804@end smallexample
2805
2806@noindent
16dc6a9e
JD
2807In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2808functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2809explicit which kind you intend.
2cbe6b7f
JD
2810Moreover, both kinds are always available even in the absence of @code{%union}.
2811
16dc6a9e 2812The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2813The first two lines before the warning need to appear near the top of the
2814parser source code file.
2815The first line after the warning is required by @code{YYSTYPE} and thus also
2816needs to appear in the parser source code file.
2cbe6b7f 2817However, if you've instructed Bison to generate a parser header file
148d66d8
JD
2818(@pxref{Decl Summary, ,%defines}), you probably want that line to appear before
2819the @code{YYSTYPE} definition in that header file as well.
8e0a5e9e 2820The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2821override the default @code{YYLTYPE} definition there.
2822
16dc6a9e 2823In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2824lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2825definitions.
16dc6a9e 2826Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2827
2828@smallexample
16dc6a9e 2829%code top @{
2cbe6b7f
JD
2830 #define _GNU_SOURCE
2831 #include <stdio.h>
2832@}
2833
16dc6a9e 2834%code requires @{
9bc0dd67
JD
2835 #include "ptypes.h"
2836@}
2837%union @{
2838 long int n;
2839 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2840@}
2841
16dc6a9e 2842%code requires @{
2cbe6b7f
JD
2843 #define YYLTYPE YYLTYPE
2844 typedef struct YYLTYPE
2845 @{
2846 int first_line;
2847 int first_column;
2848 int last_line;
2849 int last_column;
2850 char *filename;
2851 @} YYLTYPE;
2852@}
2853
136a0f76 2854%code @{
2cbe6b7f
JD
2855 static void print_token_value (FILE *, int, YYSTYPE);
2856 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2857 static void trace_token (enum yytokentype token, YYLTYPE loc);
2858@}
2859
2860@dots{}
2861@end smallexample
2862
2863@noindent
2864Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2865definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2866definitions in both the parser source code file and the parser header file.
16dc6a9e 2867(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2868place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2869
a501eca9 2870When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2871should prefer @code{%code requires} over @code{%code top} regardless of whether
2872you instruct Bison to generate a parser header file.
a501eca9 2873When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2874source code file and that has no special need to appear at the top of that
16dc6a9e 2875file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2876These practices will make the purpose of each block of your code explicit to
2877Bison and to other developers reading your grammar file.
8e0a5e9e 2878Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2879@code{%code requires} to be the most important of the four @var{Prologue}
2880alternatives.
a501eca9 2881
2cbe6b7f
JD
2882At some point while developing your parser, you might decide to provide
2883@code{trace_token} to modules that are external to your parser.
2884Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2885header file and the parser source code file.
2886Since this function is not a dependency required by @code{YYSTYPE} or
2887@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2888@code{%code requires}.
2cbe6b7f 2889More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2890@code{%code requires} is not sufficient.
8e0a5e9e 2891Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2892@code{%code provides}:
2cbe6b7f
JD
2893
2894@smallexample
16dc6a9e 2895%code top @{
2cbe6b7f 2896 #define _GNU_SOURCE
136a0f76 2897 #include <stdio.h>
2cbe6b7f 2898@}
136a0f76 2899
16dc6a9e 2900%code requires @{
2cbe6b7f
JD
2901 #include "ptypes.h"
2902@}
2903%union @{
2904 long int n;
2905 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2906@}
2907
16dc6a9e 2908%code requires @{
2cbe6b7f
JD
2909 #define YYLTYPE YYLTYPE
2910 typedef struct YYLTYPE
2911 @{
2912 int first_line;
2913 int first_column;
2914 int last_line;
2915 int last_column;
2916 char *filename;
2917 @} YYLTYPE;
2918@}
2919
16dc6a9e 2920%code provides @{
2cbe6b7f
JD
2921 void trace_token (enum yytokentype token, YYLTYPE loc);
2922@}
2923
2924%code @{
9bc0dd67
JD
2925 static void print_token_value (FILE *, int, YYSTYPE);
2926 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2927@}
9bc0dd67
JD
2928
2929@dots{}
2930@end smallexample
2931
2cbe6b7f
JD
2932@noindent
2933Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
2934file and the parser source code file after the definitions for
2935@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
2936
2937The above examples are careful to write directives in an order that reflects
8e0a5e9e 2938the layout of the generated parser source code and header files:
16dc6a9e 2939@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 2940@code{%code}.
a501eca9 2941While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
2942this order, Bison does not require it.
2943Instead, Bison lets you choose an organization that makes sense to you.
2944
a501eca9 2945You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2946In that case, Bison concatenates the contained code in declaration order.
2947This is the only way in which the position of one of these directives within
2948the grammar file affects its functionality.
2949
2950The result of the previous two properties is greater flexibility in how you may
2951organize your grammar file.
2952For example, you may organize semantic-type-related directives by semantic
2953type:
2954
2955@smallexample
16dc6a9e 2956%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2957%union @{ type1 field1; @}
2958%destructor @{ type1_free ($$); @} <field1>
2959%printer @{ type1_print ($$); @} <field1>
2960
16dc6a9e 2961%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2962%union @{ type2 field2; @}
2963%destructor @{ type2_free ($$); @} <field2>
2964%printer @{ type2_print ($$); @} <field2>
2965@end smallexample
2966
2967@noindent
2968You could even place each of the above directive groups in the rules section of
2969the grammar file next to the set of rules that uses the associated semantic
2970type.
61fee93e
JD
2971(In the rules section, you must terminate each of those directives with a
2972semicolon.)
2cbe6b7f
JD
2973And you don't have to worry that some directive (like a @code{%union}) in the
2974definitions section is going to adversely affect their functionality in some
2975counter-intuitive manner just because it comes first.
2976Such an organization is not possible using @var{Prologue} sections.
2977
a501eca9 2978This section has been concerned with explaining the advantages of the four
8e0a5e9e 2979@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2980However, in most cases when using these directives, you shouldn't need to
2981think about all the low-level ordering issues discussed here.
2982Instead, you should simply use these directives to label each block of your
2983code according to its purpose and let Bison handle the ordering.
2984@code{%code} is the most generic label.
16dc6a9e
JD
2985Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
2986as needed.
a501eca9 2987
342b8b6e 2988@node Bison Declarations
bfa74976
RS
2989@subsection The Bison Declarations Section
2990@cindex Bison declarations (introduction)
2991@cindex declarations, Bison (introduction)
2992
2993The @var{Bison declarations} section contains declarations that define
2994terminal and nonterminal symbols, specify precedence, and so on.
2995In some simple grammars you may not need any declarations.
2996@xref{Declarations, ,Bison Declarations}.
2997
342b8b6e 2998@node Grammar Rules
bfa74976
RS
2999@subsection The Grammar Rules Section
3000@cindex grammar rules section
3001@cindex rules section for grammar
3002
3003The @dfn{grammar rules} section contains one or more Bison grammar
3004rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3005
3006There must always be at least one grammar rule, and the first
3007@samp{%%} (which precedes the grammar rules) may never be omitted even
3008if it is the first thing in the file.
3009
38a92d50 3010@node Epilogue
75f5aaea 3011@subsection The epilogue
bfa74976 3012@cindex additional C code section
75f5aaea 3013@cindex epilogue
bfa74976
RS
3014@cindex C code, section for additional
3015
08e49d20
PE
3016The @var{Epilogue} is copied verbatim to the end of the parser file, just as
3017the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
3018place to put anything that you want to have in the parser file but which need
3019not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
3020definitions of @code{yylex} and @code{yyerror} often go here. Because
3021C requires functions to be declared before being used, you often need
3022to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 3023even if you define them in the Epilogue.
75f5aaea 3024@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3025
3026If the last section is empty, you may omit the @samp{%%} that separates it
3027from the grammar rules.
3028
f8e1c9e5
AD
3029The Bison parser itself contains many macros and identifiers whose names
3030start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3031any such names (except those documented in this manual) in the epilogue
3032of the grammar file.
bfa74976 3033
342b8b6e 3034@node Symbols
bfa74976
RS
3035@section Symbols, Terminal and Nonterminal
3036@cindex nonterminal symbol
3037@cindex terminal symbol
3038@cindex token type
3039@cindex symbol
3040
3041@dfn{Symbols} in Bison grammars represent the grammatical classifications
3042of the language.
3043
3044A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3045class of syntactically equivalent tokens. You use the symbol in grammar
3046rules to mean that a token in that class is allowed. The symbol is
3047represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3048function returns a token type code to indicate what kind of token has
3049been read. You don't need to know what the code value is; you can use
3050the symbol to stand for it.
bfa74976 3051
f8e1c9e5
AD
3052A @dfn{nonterminal symbol} stands for a class of syntactically
3053equivalent groupings. The symbol name is used in writing grammar rules.
3054By convention, it should be all lower case.
bfa74976 3055
4f646c37
AD
3056Symbol names can contain letters, underscores, period, and (not at the
3057beginning) digits and dashes. Dashes in symbol names are a GNU
3058extension, incompatible with @acronym{POSIX} Yacc. Terminal symbols
3059that contain periods or dashes make little sense: since they are not
3060valid symbols (in most programming languages) they are not exported as
3061token names.
bfa74976 3062
931c7513 3063There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3064
3065@itemize @bullet
3066@item
3067A @dfn{named token type} is written with an identifier, like an
c827f760 3068identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3069such name must be defined with a Bison declaration such as
3070@code{%token}. @xref{Token Decl, ,Token Type Names}.
3071
3072@item
3073@cindex character token
3074@cindex literal token
3075@cindex single-character literal
931c7513
RS
3076A @dfn{character token type} (or @dfn{literal character token}) is
3077written in the grammar using the same syntax used in C for character
3078constants; for example, @code{'+'} is a character token type. A
3079character token type doesn't need to be declared unless you need to
3080specify its semantic value data type (@pxref{Value Type, ,Data Types of
3081Semantic Values}), associativity, or precedence (@pxref{Precedence,
3082,Operator Precedence}).
bfa74976
RS
3083
3084By convention, a character token type is used only to represent a
3085token that consists of that particular character. Thus, the token
3086type @code{'+'} is used to represent the character @samp{+} as a
3087token. Nothing enforces this convention, but if you depart from it,
3088your program will confuse other readers.
3089
3090All the usual escape sequences used in character literals in C can be
3091used in Bison as well, but you must not use the null character as a
72d2299c
PE
3092character literal because its numeric code, zero, signifies
3093end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3094for @code{yylex}}). Also, unlike standard C, trigraphs have no
3095special meaning in Bison character literals, nor is backslash-newline
3096allowed.
931c7513
RS
3097
3098@item
3099@cindex string token
3100@cindex literal string token
9ecbd125 3101@cindex multicharacter literal
931c7513
RS
3102A @dfn{literal string token} is written like a C string constant; for
3103example, @code{"<="} is a literal string token. A literal string token
3104doesn't need to be declared unless you need to specify its semantic
14ded682 3105value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3106(@pxref{Precedence}).
3107
3108You can associate the literal string token with a symbolic name as an
3109alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3110Declarations}). If you don't do that, the lexical analyzer has to
3111retrieve the token number for the literal string token from the
3112@code{yytname} table (@pxref{Calling Convention}).
3113
c827f760 3114@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3115
3116By convention, a literal string token is used only to represent a token
3117that consists of that particular string. Thus, you should use the token
3118type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3119does not enforce this convention, but if you depart from it, people who
931c7513
RS
3120read your program will be confused.
3121
3122All the escape sequences used in string literals in C can be used in
92ac3705
PE
3123Bison as well, except that you must not use a null character within a
3124string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3125meaning in Bison string literals, nor is backslash-newline allowed. A
3126literal string token must contain two or more characters; for a token
3127containing just one character, use a character token (see above).
bfa74976
RS
3128@end itemize
3129
3130How you choose to write a terminal symbol has no effect on its
3131grammatical meaning. That depends only on where it appears in rules and
3132on when the parser function returns that symbol.
3133
72d2299c
PE
3134The value returned by @code{yylex} is always one of the terminal
3135symbols, except that a zero or negative value signifies end-of-input.
3136Whichever way you write the token type in the grammar rules, you write
3137it the same way in the definition of @code{yylex}. The numeric code
3138for a character token type is simply the positive numeric code of the
3139character, so @code{yylex} can use the identical value to generate the
3140requisite code, though you may need to convert it to @code{unsigned
3141char} to avoid sign-extension on hosts where @code{char} is signed.
3142Each named token type becomes a C macro in
bfa74976 3143the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3144(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3145@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3146
3147If @code{yylex} is defined in a separate file, you need to arrange for the
3148token-type macro definitions to be available there. Use the @samp{-d}
3149option when you run Bison, so that it will write these macro definitions
3150into a separate header file @file{@var{name}.tab.h} which you can include
3151in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3152
72d2299c 3153If you want to write a grammar that is portable to any Standard C
9d9b8b70 3154host, you must use only nonnull character tokens taken from the basic
c827f760 3155execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3156digits, the 52 lower- and upper-case English letters, and the
3157characters in the following C-language string:
3158
3159@example
3160"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3161@end example
3162
f8e1c9e5
AD
3163The @code{yylex} function and Bison must use a consistent character set
3164and encoding for character tokens. For example, if you run Bison in an
3165@acronym{ASCII} environment, but then compile and run the resulting
3166program in an environment that uses an incompatible character set like
3167@acronym{EBCDIC}, the resulting program may not work because the tables
3168generated by Bison will assume @acronym{ASCII} numeric values for
3169character tokens. It is standard practice for software distributions to
3170contain C source files that were generated by Bison in an
3171@acronym{ASCII} environment, so installers on platforms that are
3172incompatible with @acronym{ASCII} must rebuild those files before
3173compiling them.
e966383b 3174
bfa74976
RS
3175The symbol @code{error} is a terminal symbol reserved for error recovery
3176(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3177In particular, @code{yylex} should never return this value. The default
3178value of the error token is 256, unless you explicitly assigned 256 to
3179one of your tokens with a @code{%token} declaration.
bfa74976 3180
342b8b6e 3181@node Rules
bfa74976
RS
3182@section Syntax of Grammar Rules
3183@cindex rule syntax
3184@cindex grammar rule syntax
3185@cindex syntax of grammar rules
3186
3187A Bison grammar rule has the following general form:
3188
3189@example
e425e872 3190@group
bfa74976
RS
3191@var{result}: @var{components}@dots{}
3192 ;
e425e872 3193@end group
bfa74976
RS
3194@end example
3195
3196@noindent
9ecbd125 3197where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3198and @var{components} are various terminal and nonterminal symbols that
13863333 3199are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3200
3201For example,
3202
3203@example
3204@group
3205exp: exp '+' exp
3206 ;
3207@end group
3208@end example
3209
3210@noindent
3211says that two groupings of type @code{exp}, with a @samp{+} token in between,
3212can be combined into a larger grouping of type @code{exp}.
3213
72d2299c
PE
3214White space in rules is significant only to separate symbols. You can add
3215extra white space as you wish.
bfa74976
RS
3216
3217Scattered among the components can be @var{actions} that determine
3218the semantics of the rule. An action looks like this:
3219
3220@example
3221@{@var{C statements}@}
3222@end example
3223
3224@noindent
287c78f6
PE
3225@cindex braced code
3226This is an example of @dfn{braced code}, that is, C code surrounded by
3227braces, much like a compound statement in C@. Braced code can contain
3228any sequence of C tokens, so long as its braces are balanced. Bison
3229does not check the braced code for correctness directly; it merely
3230copies the code to the output file, where the C compiler can check it.
3231
3232Within braced code, the balanced-brace count is not affected by braces
3233within comments, string literals, or character constants, but it is
3234affected by the C digraphs @samp{<%} and @samp{%>} that represent
3235braces. At the top level braced code must be terminated by @samp{@}}
3236and not by a digraph. Bison does not look for trigraphs, so if braced
3237code uses trigraphs you should ensure that they do not affect the
3238nesting of braces or the boundaries of comments, string literals, or
3239character constants.
3240
bfa74976
RS
3241Usually there is only one action and it follows the components.
3242@xref{Actions}.
3243
3244@findex |
3245Multiple rules for the same @var{result} can be written separately or can
3246be joined with the vertical-bar character @samp{|} as follows:
3247
bfa74976
RS
3248@example
3249@group
3250@var{result}: @var{rule1-components}@dots{}
3251 | @var{rule2-components}@dots{}
3252 @dots{}
3253 ;
3254@end group
3255@end example
bfa74976
RS
3256
3257@noindent
3258They are still considered distinct rules even when joined in this way.
3259
3260If @var{components} in a rule is empty, it means that @var{result} can
3261match the empty string. For example, here is how to define a
3262comma-separated sequence of zero or more @code{exp} groupings:
3263
3264@example
3265@group
3266expseq: /* empty */
3267 | expseq1
3268 ;
3269@end group
3270
3271@group
3272expseq1: exp
3273 | expseq1 ',' exp
3274 ;
3275@end group
3276@end example
3277
3278@noindent
3279It is customary to write a comment @samp{/* empty */} in each rule
3280with no components.
3281
342b8b6e 3282@node Recursion
bfa74976
RS
3283@section Recursive Rules
3284@cindex recursive rule
3285
f8e1c9e5
AD
3286A rule is called @dfn{recursive} when its @var{result} nonterminal
3287appears also on its right hand side. Nearly all Bison grammars need to
3288use recursion, because that is the only way to define a sequence of any
3289number of a particular thing. Consider this recursive definition of a
9ecbd125 3290comma-separated sequence of one or more expressions:
bfa74976
RS
3291
3292@example
3293@group
3294expseq1: exp
3295 | expseq1 ',' exp
3296 ;
3297@end group
3298@end example
3299
3300@cindex left recursion
3301@cindex right recursion
3302@noindent
3303Since the recursive use of @code{expseq1} is the leftmost symbol in the
3304right hand side, we call this @dfn{left recursion}. By contrast, here
3305the same construct is defined using @dfn{right recursion}:
3306
3307@example
3308@group
3309expseq1: exp
3310 | exp ',' expseq1
3311 ;
3312@end group
3313@end example
3314
3315@noindent
ec3bc396
AD
3316Any kind of sequence can be defined using either left recursion or right
3317recursion, but you should always use left recursion, because it can
3318parse a sequence of any number of elements with bounded stack space.
3319Right recursion uses up space on the Bison stack in proportion to the
3320number of elements in the sequence, because all the elements must be
3321shifted onto the stack before the rule can be applied even once.
3322@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3323of this.
bfa74976
RS
3324
3325@cindex mutual recursion
3326@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3327rule does not appear directly on its right hand side, but does appear
3328in rules for other nonterminals which do appear on its right hand
13863333 3329side.
bfa74976
RS
3330
3331For example:
3332
3333@example
3334@group
3335expr: primary
3336 | primary '+' primary
3337 ;
3338@end group
3339
3340@group
3341primary: constant
3342 | '(' expr ')'
3343 ;
3344@end group
3345@end example
3346
3347@noindent
3348defines two mutually-recursive nonterminals, since each refers to the
3349other.
3350
342b8b6e 3351@node Semantics
bfa74976
RS
3352@section Defining Language Semantics
3353@cindex defining language semantics
13863333 3354@cindex language semantics, defining
bfa74976
RS
3355
3356The grammar rules for a language determine only the syntax. The semantics
3357are determined by the semantic values associated with various tokens and
3358groupings, and by the actions taken when various groupings are recognized.
3359
3360For example, the calculator calculates properly because the value
3361associated with each expression is the proper number; it adds properly
3362because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3363the numbers associated with @var{x} and @var{y}.
3364
3365@menu
3366* Value Type:: Specifying one data type for all semantic values.
3367* Multiple Types:: Specifying several alternative data types.
3368* Actions:: An action is the semantic definition of a grammar rule.
3369* Action Types:: Specifying data types for actions to operate on.
3370* Mid-Rule Actions:: Most actions go at the end of a rule.
3371 This says when, why and how to use the exceptional
3372 action in the middle of a rule.
3373@end menu
3374
342b8b6e 3375@node Value Type
bfa74976
RS
3376@subsection Data Types of Semantic Values
3377@cindex semantic value type
3378@cindex value type, semantic
3379@cindex data types of semantic values
3380@cindex default data type
3381
3382In a simple program it may be sufficient to use the same data type for
3383the semantic values of all language constructs. This was true in the
c827f760 3384@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3385Notation Calculator}).
bfa74976 3386
ddc8ede1
PE
3387Bison normally uses the type @code{int} for semantic values if your
3388program uses the same data type for all language constructs. To
bfa74976
RS
3389specify some other type, define @code{YYSTYPE} as a macro, like this:
3390
3391@example
3392#define YYSTYPE double
3393@end example
3394
3395@noindent
50cce58e
PE
3396@code{YYSTYPE}'s replacement list should be a type name
3397that does not contain parentheses or square brackets.
342b8b6e 3398This macro definition must go in the prologue of the grammar file
75f5aaea 3399(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3400
342b8b6e 3401@node Multiple Types
bfa74976
RS
3402@subsection More Than One Value Type
3403
3404In most programs, you will need different data types for different kinds
3405of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3406@code{int} or @code{long int}, while a string constant needs type
3407@code{char *}, and an identifier might need a pointer to an entry in the
3408symbol table.
bfa74976
RS
3409
3410To use more than one data type for semantic values in one parser, Bison
3411requires you to do two things:
3412
3413@itemize @bullet
3414@item
ddc8ede1 3415Specify the entire collection of possible data types, either by using the
704a47c4 3416@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3417Value Types}), or by using a @code{typedef} or a @code{#define} to
3418define @code{YYSTYPE} to be a union type whose member names are
3419the type tags.
bfa74976
RS
3420
3421@item
14ded682
AD
3422Choose one of those types for each symbol (terminal or nonterminal) for
3423which semantic values are used. This is done for tokens with the
3424@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3425and for groupings with the @code{%type} Bison declaration (@pxref{Type
3426Decl, ,Nonterminal Symbols}).
bfa74976
RS
3427@end itemize
3428
342b8b6e 3429@node Actions
bfa74976
RS
3430@subsection Actions
3431@cindex action
3432@vindex $$
3433@vindex $@var{n}
3434
3435An action accompanies a syntactic rule and contains C code to be executed
3436each time an instance of that rule is recognized. The task of most actions
3437is to compute a semantic value for the grouping built by the rule from the
3438semantic values associated with tokens or smaller groupings.
3439
287c78f6
PE
3440An action consists of braced code containing C statements, and can be
3441placed at any position in the rule;
704a47c4
AD
3442it is executed at that position. Most rules have just one action at the
3443end of the rule, following all the components. Actions in the middle of
3444a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3445Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3446
3447The C code in an action can refer to the semantic values of the components
3448matched by the rule with the construct @code{$@var{n}}, which stands for
3449the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3450being constructed is @code{$$}. Bison translates both of these
3451constructs into expressions of the appropriate type when it copies the
3452actions into the parser file. @code{$$} is translated to a modifiable
3453lvalue, so it can be assigned to.
bfa74976
RS
3454
3455Here is a typical example:
3456
3457@example
3458@group
3459exp: @dots{}
3460 | exp '+' exp
3461 @{ $$ = $1 + $3; @}
3462@end group
3463@end example
3464
3465@noindent
3466This rule constructs an @code{exp} from two smaller @code{exp} groupings
3467connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3468refer to the semantic values of the two component @code{exp} groupings,
3469which are the first and third symbols on the right hand side of the rule.
3470The sum is stored into @code{$$} so that it becomes the semantic value of
3471the addition-expression just recognized by the rule. If there were a
3472useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3473referred to as @code{$2}.
bfa74976 3474
3ded9a63
AD
3475Note that the vertical-bar character @samp{|} is really a rule
3476separator, and actions are attached to a single rule. This is a
3477difference with tools like Flex, for which @samp{|} stands for either
3478``or'', or ``the same action as that of the next rule''. In the
3479following example, the action is triggered only when @samp{b} is found:
3480
3481@example
3482@group
3483a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3484@end group
3485@end example
3486
bfa74976
RS
3487@cindex default action
3488If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3489@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3490becomes the value of the whole rule. Of course, the default action is
3491valid only if the two data types match. There is no meaningful default
3492action for an empty rule; every empty rule must have an explicit action
3493unless the rule's value does not matter.
bfa74976
RS
3494
3495@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3496to tokens and groupings on the stack @emph{before} those that match the
3497current rule. This is a very risky practice, and to use it reliably
3498you must be certain of the context in which the rule is applied. Here
3499is a case in which you can use this reliably:
3500
3501@example
3502@group
3503foo: expr bar '+' expr @{ @dots{} @}
3504 | expr bar '-' expr @{ @dots{} @}
3505 ;
3506@end group
3507
3508@group
3509bar: /* empty */
3510 @{ previous_expr = $0; @}
3511 ;
3512@end group
3513@end example
3514
3515As long as @code{bar} is used only in the fashion shown here, @code{$0}
3516always refers to the @code{expr} which precedes @code{bar} in the
3517definition of @code{foo}.
3518
32c29292 3519@vindex yylval
742e4900 3520It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3521any, from a semantic action.
3522This semantic value is stored in @code{yylval}.
3523@xref{Action Features, ,Special Features for Use in Actions}.
3524
342b8b6e 3525@node Action Types
bfa74976
RS
3526@subsection Data Types of Values in Actions
3527@cindex action data types
3528@cindex data types in actions
3529
3530If you have chosen a single data type for semantic values, the @code{$$}
3531and @code{$@var{n}} constructs always have that data type.
3532
3533If you have used @code{%union} to specify a variety of data types, then you
3534must declare a choice among these types for each terminal or nonterminal
3535symbol that can have a semantic value. Then each time you use @code{$$} or
3536@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3537in the rule. In this example,
bfa74976
RS
3538
3539@example
3540@group
3541exp: @dots{}
3542 | exp '+' exp
3543 @{ $$ = $1 + $3; @}
3544@end group
3545@end example
3546
3547@noindent
3548@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3549have the data type declared for the nonterminal symbol @code{exp}. If
3550@code{$2} were used, it would have the data type declared for the
e0c471a9 3551terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3552
3553Alternatively, you can specify the data type when you refer to the value,
3554by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3555reference. For example, if you have defined types as shown here:
3556
3557@example
3558@group
3559%union @{
3560 int itype;
3561 double dtype;
3562@}
3563@end group
3564@end example
3565
3566@noindent
3567then you can write @code{$<itype>1} to refer to the first subunit of the
3568rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3569
342b8b6e 3570@node Mid-Rule Actions
bfa74976
RS
3571@subsection Actions in Mid-Rule
3572@cindex actions in mid-rule
3573@cindex mid-rule actions
3574
3575Occasionally it is useful to put an action in the middle of a rule.
3576These actions are written just like usual end-of-rule actions, but they
3577are executed before the parser even recognizes the following components.
3578
3579A mid-rule action may refer to the components preceding it using
3580@code{$@var{n}}, but it may not refer to subsequent components because
3581it is run before they are parsed.
3582
3583The mid-rule action itself counts as one of the components of the rule.
3584This makes a difference when there is another action later in the same rule
3585(and usually there is another at the end): you have to count the actions
3586along with the symbols when working out which number @var{n} to use in
3587@code{$@var{n}}.
3588
3589The mid-rule action can also have a semantic value. The action can set
3590its value with an assignment to @code{$$}, and actions later in the rule
3591can refer to the value using @code{$@var{n}}. Since there is no symbol
3592to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3593in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3594specify a data type each time you refer to this value.
bfa74976
RS
3595
3596There is no way to set the value of the entire rule with a mid-rule
3597action, because assignments to @code{$$} do not have that effect. The
3598only way to set the value for the entire rule is with an ordinary action
3599at the end of the rule.
3600
3601Here is an example from a hypothetical compiler, handling a @code{let}
3602statement that looks like @samp{let (@var{variable}) @var{statement}} and
3603serves to create a variable named @var{variable} temporarily for the
3604duration of @var{statement}. To parse this construct, we must put
3605@var{variable} into the symbol table while @var{statement} is parsed, then
3606remove it afterward. Here is how it is done:
3607
3608@example
3609@group
3610stmt: LET '(' var ')'
3611 @{ $<context>$ = push_context ();
3612 declare_variable ($3); @}
3613 stmt @{ $$ = $6;
3614 pop_context ($<context>5); @}
3615@end group
3616@end example
3617
3618@noindent
3619As soon as @samp{let (@var{variable})} has been recognized, the first
3620action is run. It saves a copy of the current semantic context (the
3621list of accessible variables) as its semantic value, using alternative
3622@code{context} in the data-type union. Then it calls
3623@code{declare_variable} to add the new variable to that list. Once the
3624first action is finished, the embedded statement @code{stmt} can be
3625parsed. Note that the mid-rule action is component number 5, so the
3626@samp{stmt} is component number 6.
3627
3628After the embedded statement is parsed, its semantic value becomes the
3629value of the entire @code{let}-statement. Then the semantic value from the
3630earlier action is used to restore the prior list of variables. This
3631removes the temporary @code{let}-variable from the list so that it won't
3632appear to exist while the rest of the program is parsed.
3633
841a7737
JD
3634@findex %destructor
3635@cindex discarded symbols, mid-rule actions
3636@cindex error recovery, mid-rule actions
3637In the above example, if the parser initiates error recovery (@pxref{Error
3638Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3639it might discard the previous semantic context @code{$<context>5} without
3640restoring it.
3641Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3642Discarded Symbols}).
ec5479ce
JD
3643However, Bison currently provides no means to declare a destructor specific to
3644a particular mid-rule action's semantic value.
841a7737
JD
3645
3646One solution is to bury the mid-rule action inside a nonterminal symbol and to
3647declare a destructor for that symbol:
3648
3649@example
3650@group
3651%type <context> let
3652%destructor @{ pop_context ($$); @} let
3653
3654%%
3655
3656stmt: let stmt
3657 @{ $$ = $2;
3658 pop_context ($1); @}
3659 ;
3660
3661let: LET '(' var ')'
3662 @{ $$ = push_context ();
3663 declare_variable ($3); @}
3664 ;
3665
3666@end group
3667@end example
3668
3669@noindent
3670Note that the action is now at the end of its rule.
3671Any mid-rule action can be converted to an end-of-rule action in this way, and
3672this is what Bison actually does to implement mid-rule actions.
3673
bfa74976
RS
3674Taking action before a rule is completely recognized often leads to
3675conflicts since the parser must commit to a parse in order to execute the
3676action. For example, the following two rules, without mid-rule actions,
3677can coexist in a working parser because the parser can shift the open-brace
3678token and look at what follows before deciding whether there is a
3679declaration or not:
3680
3681@example
3682@group
3683compound: '@{' declarations statements '@}'
3684 | '@{' statements '@}'
3685 ;
3686@end group
3687@end example
3688
3689@noindent
3690But when we add a mid-rule action as follows, the rules become nonfunctional:
3691
3692@example
3693@group
3694compound: @{ prepare_for_local_variables (); @}
3695 '@{' declarations statements '@}'
3696@end group
3697@group
3698 | '@{' statements '@}'
3699 ;
3700@end group
3701@end example
3702
3703@noindent
3704Now the parser is forced to decide whether to run the mid-rule action
3705when it has read no farther than the open-brace. In other words, it
3706must commit to using one rule or the other, without sufficient
3707information to do it correctly. (The open-brace token is what is called
742e4900
JD
3708the @dfn{lookahead} token at this time, since the parser is still
3709deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3710
3711You might think that you could correct the problem by putting identical
3712actions into the two rules, like this:
3713
3714@example
3715@group
3716compound: @{ prepare_for_local_variables (); @}
3717 '@{' declarations statements '@}'
3718 | @{ prepare_for_local_variables (); @}
3719 '@{' statements '@}'
3720 ;
3721@end group
3722@end example
3723
3724@noindent
3725But this does not help, because Bison does not realize that the two actions
3726are identical. (Bison never tries to understand the C code in an action.)
3727
3728If the grammar is such that a declaration can be distinguished from a
3729statement by the first token (which is true in C), then one solution which
3730does work is to put the action after the open-brace, like this:
3731
3732@example
3733@group
3734compound: '@{' @{ prepare_for_local_variables (); @}
3735 declarations statements '@}'
3736 | '@{' statements '@}'
3737 ;
3738@end group
3739@end example
3740
3741@noindent
3742Now the first token of the following declaration or statement,
3743which would in any case tell Bison which rule to use, can still do so.
3744
3745Another solution is to bury the action inside a nonterminal symbol which
3746serves as a subroutine:
3747
3748@example
3749@group
3750subroutine: /* empty */
3751 @{ prepare_for_local_variables (); @}
3752 ;
3753
3754@end group
3755
3756@group
3757compound: subroutine
3758 '@{' declarations statements '@}'
3759 | subroutine
3760 '@{' statements '@}'
3761 ;
3762@end group
3763@end example
3764
3765@noindent
3766Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3767deciding which rule for @code{compound} it will eventually use.
bfa74976 3768
342b8b6e 3769@node Locations
847bf1f5
AD
3770@section Tracking Locations
3771@cindex location
95923bd6
AD
3772@cindex textual location
3773@cindex location, textual
847bf1f5
AD
3774
3775Though grammar rules and semantic actions are enough to write a fully
72d2299c 3776functional parser, it can be useful to process some additional information,
3e259915
MA
3777especially symbol locations.
3778
704a47c4
AD
3779The way locations are handled is defined by providing a data type, and
3780actions to take when rules are matched.
847bf1f5
AD
3781
3782@menu
3783* Location Type:: Specifying a data type for locations.
3784* Actions and Locations:: Using locations in actions.
3785* Location Default Action:: Defining a general way to compute locations.
3786@end menu
3787
342b8b6e 3788@node Location Type
847bf1f5
AD
3789@subsection Data Type of Locations
3790@cindex data type of locations
3791@cindex default location type
3792
3793Defining a data type for locations is much simpler than for semantic values,
3794since all tokens and groupings always use the same type.
3795
50cce58e
PE
3796You can specify the type of locations by defining a macro called
3797@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3798defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3799When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3800four members:
3801
3802@example
6273355b 3803typedef struct YYLTYPE
847bf1f5
AD
3804@{
3805 int first_line;
3806 int first_column;
3807 int last_line;
3808 int last_column;
6273355b 3809@} YYLTYPE;
847bf1f5
AD
3810@end example
3811
cd48d21d
AD
3812At the beginning of the parsing, Bison initializes all these fields to 1
3813for @code{yylloc}.
3814
342b8b6e 3815@node Actions and Locations
847bf1f5
AD
3816@subsection Actions and Locations
3817@cindex location actions
3818@cindex actions, location
3819@vindex @@$
3820@vindex @@@var{n}
3821
3822Actions are not only useful for defining language semantics, but also for
3823describing the behavior of the output parser with locations.
3824
3825The most obvious way for building locations of syntactic groupings is very
72d2299c 3826similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3827constructs can be used to access the locations of the elements being matched.
3828The location of the @var{n}th component of the right hand side is
3829@code{@@@var{n}}, while the location of the left hand side grouping is
3830@code{@@$}.
3831
3e259915 3832Here is a basic example using the default data type for locations:
847bf1f5
AD
3833
3834@example
3835@group
3836exp: @dots{}
3e259915 3837 | exp '/' exp
847bf1f5 3838 @{
3e259915
MA
3839 @@$.first_column = @@1.first_column;
3840 @@$.first_line = @@1.first_line;
847bf1f5
AD
3841 @@$.last_column = @@3.last_column;
3842 @@$.last_line = @@3.last_line;
3e259915
MA
3843 if ($3)
3844 $$ = $1 / $3;
3845 else
3846 @{
3847 $$ = 1;
4e03e201
AD
3848 fprintf (stderr,
3849 "Division by zero, l%d,c%d-l%d,c%d",
3850 @@3.first_line, @@3.first_column,
3851 @@3.last_line, @@3.last_column);
3e259915 3852 @}
847bf1f5
AD
3853 @}
3854@end group
3855@end example
3856
3e259915 3857As for semantic values, there is a default action for locations that is
72d2299c 3858run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3859beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3860last symbol.
3e259915 3861
72d2299c 3862With this default action, the location tracking can be fully automatic. The
3e259915
MA
3863example above simply rewrites this way:
3864
3865@example
3866@group
3867exp: @dots{}
3868 | exp '/' exp
3869 @{
3870 if ($3)
3871 $$ = $1 / $3;
3872 else
3873 @{
3874 $$ = 1;
4e03e201
AD
3875 fprintf (stderr,
3876 "Division by zero, l%d,c%d-l%d,c%d",
3877 @@3.first_line, @@3.first_column,
3878 @@3.last_line, @@3.last_column);
3e259915
MA
3879 @}
3880 @}
3881@end group
3882@end example
847bf1f5 3883
32c29292 3884@vindex yylloc
742e4900 3885It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3886from a semantic action.
3887This location is stored in @code{yylloc}.
3888@xref{Action Features, ,Special Features for Use in Actions}.
3889
342b8b6e 3890@node Location Default Action
847bf1f5
AD
3891@subsection Default Action for Locations
3892@vindex YYLLOC_DEFAULT
8710fc41 3893@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3894
72d2299c 3895Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3896locations are much more general than semantic values, there is room in
3897the output parser to redefine the default action to take for each
72d2299c 3898rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3899matched, before the associated action is run. It is also invoked
3900while processing a syntax error, to compute the error's location.
8710fc41
JD
3901Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3902parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3903of that ambiguity.
847bf1f5 3904
3e259915 3905Most of the time, this macro is general enough to suppress location
79282c6c 3906dedicated code from semantic actions.
847bf1f5 3907
72d2299c 3908The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3909the location of the grouping (the result of the computation). When a
766de5eb 3910rule is matched, the second parameter identifies locations of
96b93a3d 3911all right hand side elements of the rule being matched, and the third
8710fc41
JD
3912parameter is the size of the rule's right hand side.
3913When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3914right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3915When processing a syntax error, the second parameter identifies locations
3916of the symbols that were discarded during error processing, and the third
96b93a3d 3917parameter is the number of discarded symbols.
847bf1f5 3918
766de5eb 3919By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3920
766de5eb 3921@smallexample
847bf1f5 3922@group
766de5eb
PE
3923# define YYLLOC_DEFAULT(Current, Rhs, N) \
3924 do \
3925 if (N) \
3926 @{ \
3927 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3928 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3929 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3930 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3931 @} \
3932 else \
3933 @{ \
3934 (Current).first_line = (Current).last_line = \
3935 YYRHSLOC(Rhs, 0).last_line; \
3936 (Current).first_column = (Current).last_column = \
3937 YYRHSLOC(Rhs, 0).last_column; \
3938 @} \
3939 while (0)
847bf1f5 3940@end group
766de5eb 3941@end smallexample
676385e2 3942
766de5eb
PE
3943where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3944in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3945just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3946
3e259915 3947When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3948
3e259915 3949@itemize @bullet
79282c6c 3950@item
72d2299c 3951All arguments are free of side-effects. However, only the first one (the
3e259915 3952result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3953
3e259915 3954@item
766de5eb
PE
3955For consistency with semantic actions, valid indexes within the
3956right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3957valid index, and it refers to the symbol just before the reduction.
3958During error processing @var{n} is always positive.
0ae99356
PE
3959
3960@item
3961Your macro should parenthesize its arguments, if need be, since the
3962actual arguments may not be surrounded by parentheses. Also, your
3963macro should expand to something that can be used as a single
3964statement when it is followed by a semicolon.
3e259915 3965@end itemize
847bf1f5 3966
342b8b6e 3967@node Declarations
bfa74976
RS
3968@section Bison Declarations
3969@cindex declarations, Bison
3970@cindex Bison declarations
3971
3972The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3973used in formulating the grammar and the data types of semantic values.
3974@xref{Symbols}.
3975
3976All token type names (but not single-character literal tokens such as
3977@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3978declared if you need to specify which data type to use for the semantic
3979value (@pxref{Multiple Types, ,More Than One Value Type}).
3980
3981The first rule in the file also specifies the start symbol, by default.
3982If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3983it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3984Grammars}).
bfa74976
RS
3985
3986@menu
b50d2359 3987* Require Decl:: Requiring a Bison version.
bfa74976
RS
3988* Token Decl:: Declaring terminal symbols.
3989* Precedence Decl:: Declaring terminals with precedence and associativity.
3990* Union Decl:: Declaring the set of all semantic value types.
3991* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3992* Initial Action Decl:: Code run before parsing starts.
72f889cc 3993* Destructor Decl:: Declaring how symbols are freed.
d6328241 3994* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3995* Start Decl:: Specifying the start symbol.
3996* Pure Decl:: Requesting a reentrant parser.
9987d1b3 3997* Push Decl:: Requesting a push parser.
bfa74976
RS
3998* Decl Summary:: Table of all Bison declarations.
3999@end menu
4000
b50d2359
AD
4001@node Require Decl
4002@subsection Require a Version of Bison
4003@cindex version requirement
4004@cindex requiring a version of Bison
4005@findex %require
4006
4007You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4008the requirement is not met, @command{bison} exits with an error (exit
4009status 63).
b50d2359
AD
4010
4011@example
4012%require "@var{version}"
4013@end example
4014
342b8b6e 4015@node Token Decl
bfa74976
RS
4016@subsection Token Type Names
4017@cindex declaring token type names
4018@cindex token type names, declaring
931c7513 4019@cindex declaring literal string tokens
bfa74976
RS
4020@findex %token
4021
4022The basic way to declare a token type name (terminal symbol) is as follows:
4023
4024@example
4025%token @var{name}
4026@end example
4027
4028Bison will convert this into a @code{#define} directive in
4029the parser, so that the function @code{yylex} (if it is in this file)
4030can use the name @var{name} to stand for this token type's code.
4031
d78f0ac9
AD
4032Alternatively, you can use @code{%left}, @code{%right},
4033@code{%precedence}, or
14ded682
AD
4034@code{%nonassoc} instead of @code{%token}, if you wish to specify
4035associativity and precedence. @xref{Precedence Decl, ,Operator
4036Precedence}.
bfa74976
RS
4037
4038You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4039a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4040following the token name:
bfa74976
RS
4041
4042@example
4043%token NUM 300
1452af69 4044%token XNUM 0x12d // a GNU extension
bfa74976
RS
4045@end example
4046
4047@noindent
4048It is generally best, however, to let Bison choose the numeric codes for
4049all token types. Bison will automatically select codes that don't conflict
e966383b 4050with each other or with normal characters.
bfa74976
RS
4051
4052In the event that the stack type is a union, you must augment the
4053@code{%token} or other token declaration to include the data type
704a47c4
AD
4054alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4055Than One Value Type}).
bfa74976
RS
4056
4057For example:
4058
4059@example
4060@group
4061%union @{ /* define stack type */
4062 double val;
4063 symrec *tptr;
4064@}
4065%token <val> NUM /* define token NUM and its type */
4066@end group
4067@end example
4068
931c7513
RS
4069You can associate a literal string token with a token type name by
4070writing the literal string at the end of a @code{%token}
4071declaration which declares the name. For example:
4072
4073@example
4074%token arrow "=>"
4075@end example
4076
4077@noindent
4078For example, a grammar for the C language might specify these names with
4079equivalent literal string tokens:
4080
4081@example
4082%token <operator> OR "||"
4083%token <operator> LE 134 "<="
4084%left OR "<="
4085@end example
4086
4087@noindent
4088Once you equate the literal string and the token name, you can use them
4089interchangeably in further declarations or the grammar rules. The
4090@code{yylex} function can use the token name or the literal string to
4091obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4092Syntax error messages passed to @code{yyerror} from the parser will reference
4093the literal string instead of the token name.
4094
4095The token numbered as 0 corresponds to end of file; the following line
4096allows for nicer error messages referring to ``end of file'' instead
4097of ``$end'':
4098
4099@example
4100%token END 0 "end of file"
4101@end example
931c7513 4102
342b8b6e 4103@node Precedence Decl
bfa74976
RS
4104@subsection Operator Precedence
4105@cindex precedence declarations
4106@cindex declaring operator precedence
4107@cindex operator precedence, declaring
4108
d78f0ac9
AD
4109Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4110@code{%precedence} declaration to
bfa74976
RS
4111declare a token and specify its precedence and associativity, all at
4112once. These are called @dfn{precedence declarations}.
704a47c4
AD
4113@xref{Precedence, ,Operator Precedence}, for general information on
4114operator precedence.
bfa74976 4115
ab7f29f8 4116The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4117@code{%token}: either
4118
4119@example
4120%left @var{symbols}@dots{}
4121@end example
4122
4123@noindent
4124or
4125
4126@example
4127%left <@var{type}> @var{symbols}@dots{}
4128@end example
4129
4130And indeed any of these declarations serves the purposes of @code{%token}.
4131But in addition, they specify the associativity and relative precedence for
4132all the @var{symbols}:
4133
4134@itemize @bullet
4135@item
4136The associativity of an operator @var{op} determines how repeated uses
4137of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4138@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4139grouping @var{y} with @var{z} first. @code{%left} specifies
4140left-associativity (grouping @var{x} with @var{y} first) and
4141@code{%right} specifies right-associativity (grouping @var{y} with
4142@var{z} first). @code{%nonassoc} specifies no associativity, which
4143means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4144considered a syntax error.
4145
d78f0ac9
AD
4146@code{%precedence} gives only precedence to the @var{symbols}, and
4147defines no associativity at all. Use this to define precedence only,
4148and leave any potential conflict due to associativity enabled.
4149
bfa74976
RS
4150@item
4151The precedence of an operator determines how it nests with other operators.
4152All the tokens declared in a single precedence declaration have equal
4153precedence and nest together according to their associativity.
4154When two tokens declared in different precedence declarations associate,
4155the one declared later has the higher precedence and is grouped first.
4156@end itemize
4157
ab7f29f8
JD
4158For backward compatibility, there is a confusing difference between the
4159argument lists of @code{%token} and precedence declarations.
4160Only a @code{%token} can associate a literal string with a token type name.
4161A precedence declaration always interprets a literal string as a reference to a
4162separate token.
4163For example:
4164
4165@example
4166%left OR "<=" // Does not declare an alias.
4167%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4168@end example
4169
342b8b6e 4170@node Union Decl
bfa74976
RS
4171@subsection The Collection of Value Types
4172@cindex declaring value types
4173@cindex value types, declaring
4174@findex %union
4175
287c78f6
PE
4176The @code{%union} declaration specifies the entire collection of
4177possible data types for semantic values. The keyword @code{%union} is
4178followed by braced code containing the same thing that goes inside a
4179@code{union} in C@.
bfa74976
RS
4180
4181For example:
4182
4183@example
4184@group
4185%union @{
4186 double val;
4187 symrec *tptr;
4188@}
4189@end group
4190@end example
4191
4192@noindent
4193This says that the two alternative types are @code{double} and @code{symrec
4194*}. They are given names @code{val} and @code{tptr}; these names are used
4195in the @code{%token} and @code{%type} declarations to pick one of the types
4196for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4197
6273355b
PE
4198As an extension to @acronym{POSIX}, a tag is allowed after the
4199@code{union}. For example:
4200
4201@example
4202@group
4203%union value @{
4204 double val;
4205 symrec *tptr;
4206@}
4207@end group
4208@end example
4209
d6ca7905 4210@noindent
6273355b
PE
4211specifies the union tag @code{value}, so the corresponding C type is
4212@code{union value}. If you do not specify a tag, it defaults to
4213@code{YYSTYPE}.
4214
d6ca7905
PE
4215As another extension to @acronym{POSIX}, you may specify multiple
4216@code{%union} declarations; their contents are concatenated. However,
4217only the first @code{%union} declaration can specify a tag.
4218
6273355b 4219Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4220a semicolon after the closing brace.
4221
ddc8ede1
PE
4222Instead of @code{%union}, you can define and use your own union type
4223@code{YYSTYPE} if your grammar contains at least one
4224@samp{<@var{type}>} tag. For example, you can put the following into
4225a header file @file{parser.h}:
4226
4227@example
4228@group
4229union YYSTYPE @{
4230 double val;
4231 symrec *tptr;
4232@};
4233typedef union YYSTYPE YYSTYPE;
4234@end group
4235@end example
4236
4237@noindent
4238and then your grammar can use the following
4239instead of @code{%union}:
4240
4241@example
4242@group
4243%@{
4244#include "parser.h"
4245%@}
4246%type <val> expr
4247%token <tptr> ID
4248@end group
4249@end example
4250
342b8b6e 4251@node Type Decl
bfa74976
RS
4252@subsection Nonterminal Symbols
4253@cindex declaring value types, nonterminals
4254@cindex value types, nonterminals, declaring
4255@findex %type
4256
4257@noindent
4258When you use @code{%union} to specify multiple value types, you must
4259declare the value type of each nonterminal symbol for which values are
4260used. This is done with a @code{%type} declaration, like this:
4261
4262@example
4263%type <@var{type}> @var{nonterminal}@dots{}
4264@end example
4265
4266@noindent
704a47c4
AD
4267Here @var{nonterminal} is the name of a nonterminal symbol, and
4268@var{type} is the name given in the @code{%union} to the alternative
4269that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4270can give any number of nonterminal symbols in the same @code{%type}
4271declaration, if they have the same value type. Use spaces to separate
4272the symbol names.
bfa74976 4273
931c7513
RS
4274You can also declare the value type of a terminal symbol. To do this,
4275use the same @code{<@var{type}>} construction in a declaration for the
4276terminal symbol. All kinds of token declarations allow
4277@code{<@var{type}>}.
4278
18d192f0
AD
4279@node Initial Action Decl
4280@subsection Performing Actions before Parsing
4281@findex %initial-action
4282
4283Sometimes your parser needs to perform some initializations before
4284parsing. The @code{%initial-action} directive allows for such arbitrary
4285code.
4286
4287@deffn {Directive} %initial-action @{ @var{code} @}
4288@findex %initial-action
287c78f6 4289Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4290@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4291@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4292@code{%parse-param}.
18d192f0
AD
4293@end deffn
4294
451364ed
AD
4295For instance, if your locations use a file name, you may use
4296
4297@example
48b16bbc 4298%parse-param @{ char const *file_name @};
451364ed
AD
4299%initial-action
4300@{
4626a15d 4301 @@$.initialize (file_name);
451364ed
AD
4302@};
4303@end example
4304
18d192f0 4305
72f889cc
AD
4306@node Destructor Decl
4307@subsection Freeing Discarded Symbols
4308@cindex freeing discarded symbols
4309@findex %destructor
12e35840 4310@findex <*>
3ebecc24 4311@findex <>
a85284cf
AD
4312During error recovery (@pxref{Error Recovery}), symbols already pushed
4313on the stack and tokens coming from the rest of the file are discarded
4314until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4315or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4316symbols on the stack must be discarded. Even if the parser succeeds, it
4317must discard the start symbol.
258b75ca
PE
4318
4319When discarded symbols convey heap based information, this memory is
4320lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4321in traditional compilers, it is unacceptable for programs like shells or
4322protocol implementations that may parse and execute indefinitely.
258b75ca 4323
a85284cf
AD
4324The @code{%destructor} directive defines code that is called when a
4325symbol is automatically discarded.
72f889cc
AD
4326
4327@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4328@findex %destructor
287c78f6
PE
4329Invoke the braced @var{code} whenever the parser discards one of the
4330@var{symbols}.
4b367315 4331Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4332with the discarded symbol, and @code{@@$} designates its location.
4333The additional parser parameters are also available (@pxref{Parser Function, ,
4334The Parser Function @code{yyparse}}).
ec5479ce 4335
b2a0b7ca
JD
4336When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4337per-symbol @code{%destructor}.
4338You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4339tag among @var{symbols}.
b2a0b7ca 4340In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4341grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4342per-symbol @code{%destructor}.
4343
12e35840 4344Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4345(These default forms are experimental.
4346More user feedback will help to determine whether they should become permanent
4347features.)
3ebecc24 4348You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4349exactly one @code{%destructor} declaration in your grammar file.
4350The parser will invoke the @var{code} associated with one of these whenever it
4351discards any user-defined grammar symbol that has no per-symbol and no per-type
4352@code{%destructor}.
4353The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4354symbol for which you have formally declared a semantic type tag (@code{%type}
4355counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4356The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4357symbol that has no declared semantic type tag.
72f889cc
AD
4358@end deffn
4359
b2a0b7ca 4360@noindent
12e35840 4361For example:
72f889cc
AD
4362
4363@smallexample
ec5479ce
JD
4364%union @{ char *string; @}
4365%token <string> STRING1
4366%token <string> STRING2
4367%type <string> string1
4368%type <string> string2
b2a0b7ca
JD
4369%union @{ char character; @}
4370%token <character> CHR
4371%type <character> chr
12e35840
JD
4372%token TAGLESS
4373
b2a0b7ca 4374%destructor @{ @} <character>
12e35840
JD
4375%destructor @{ free ($$); @} <*>
4376%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4377%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4378@end smallexample
4379
4380@noindent
b2a0b7ca
JD
4381guarantees that, when the parser discards any user-defined symbol that has a
4382semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4383to @code{free} by default.
ec5479ce
JD
4384However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4385prints its line number to @code{stdout}.
4386It performs only the second @code{%destructor} in this case, so it invokes
4387@code{free} only once.
12e35840
JD
4388Finally, the parser merely prints a message whenever it discards any symbol,
4389such as @code{TAGLESS}, that has no semantic type tag.
4390
4391A Bison-generated parser invokes the default @code{%destructor}s only for
4392user-defined as opposed to Bison-defined symbols.
4393For example, the parser will not invoke either kind of default
4394@code{%destructor} for the special Bison-defined symbols @code{$accept},
4395@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4396none of which you can reference in your grammar.
4397It also will not invoke either for the @code{error} token (@pxref{Table of
4398Symbols, ,error}), which is always defined by Bison regardless of whether you
4399reference it in your grammar.
4400However, it may invoke one of them for the end token (token 0) if you
4401redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4402
4403@smallexample
4404%token END 0
4405@end smallexample
4406
12e35840
JD
4407@cindex actions in mid-rule
4408@cindex mid-rule actions
4409Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4410mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4411That is, Bison does not consider a mid-rule to have a semantic value if you do
4412not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4413@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4414rule.
4415However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4416@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4417
3508ce36
JD
4418@ignore
4419@noindent
4420In the future, it may be possible to redefine the @code{error} token as a
4421nonterminal that captures the discarded symbols.
4422In that case, the parser will invoke the default destructor for it as well.
4423@end ignore
4424
e757bb10
AD
4425@sp 1
4426
4427@cindex discarded symbols
4428@dfn{Discarded symbols} are the following:
4429
4430@itemize
4431@item
4432stacked symbols popped during the first phase of error recovery,
4433@item
4434incoming terminals during the second phase of error recovery,
4435@item
742e4900 4436the current lookahead and the entire stack (except the current
9d9b8b70 4437right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4438@item
4439the start symbol, when the parser succeeds.
e757bb10
AD
4440@end itemize
4441
9d9b8b70
PE
4442The parser can @dfn{return immediately} because of an explicit call to
4443@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4444exhaustion.
4445
29553547 4446Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4447error via @code{YYERROR} are not discarded automatically. As a rule
4448of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4449the memory.
e757bb10 4450
342b8b6e 4451@node Expect Decl
bfa74976
RS
4452@subsection Suppressing Conflict Warnings
4453@cindex suppressing conflict warnings
4454@cindex preventing warnings about conflicts
4455@cindex warnings, preventing
4456@cindex conflicts, suppressing warnings of
4457@findex %expect
d6328241 4458@findex %expect-rr
bfa74976
RS
4459
4460Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4461(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4462have harmless shift/reduce conflicts which are resolved in a predictable
4463way and would be difficult to eliminate. It is desirable to suppress
4464the warning about these conflicts unless the number of conflicts
4465changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4466
4467The declaration looks like this:
4468
4469@example
4470%expect @var{n}
4471@end example
4472
035aa4a0
PE
4473Here @var{n} is a decimal integer. The declaration says there should
4474be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4475Bison reports an error if the number of shift/reduce conflicts differs
4476from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4477
035aa4a0
PE
4478For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more
4479serious, and should be eliminated entirely. Bison will always report
4480reduce/reduce conflicts for these parsers. With @acronym{GLR}
4481parsers, however, both kinds of conflicts are routine; otherwise,
4482there would be no need to use @acronym{GLR} parsing. Therefore, it is
4483also possible to specify an expected number of reduce/reduce conflicts
4484in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4485
4486@example
4487%expect-rr @var{n}
4488@end example
4489
bfa74976
RS
4490In general, using @code{%expect} involves these steps:
4491
4492@itemize @bullet
4493@item
4494Compile your grammar without @code{%expect}. Use the @samp{-v} option
4495to get a verbose list of where the conflicts occur. Bison will also
4496print the number of conflicts.
4497
4498@item
4499Check each of the conflicts to make sure that Bison's default
4500resolution is what you really want. If not, rewrite the grammar and
4501go back to the beginning.
4502
4503@item
4504Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4505number which Bison printed. With @acronym{GLR} parsers, add an
4506@code{%expect-rr} declaration as well.
bfa74976
RS
4507@end itemize
4508
035aa4a0
PE
4509Now Bison will warn you if you introduce an unexpected conflict, but
4510will keep silent otherwise.
bfa74976 4511
342b8b6e 4512@node Start Decl
bfa74976
RS
4513@subsection The Start-Symbol
4514@cindex declaring the start symbol
4515@cindex start symbol, declaring
4516@cindex default start symbol
4517@findex %start
4518
4519Bison assumes by default that the start symbol for the grammar is the first
4520nonterminal specified in the grammar specification section. The programmer
4521may override this restriction with the @code{%start} declaration as follows:
4522
4523@example
4524%start @var{symbol}
4525@end example
4526
342b8b6e 4527@node Pure Decl
bfa74976
RS
4528@subsection A Pure (Reentrant) Parser
4529@cindex reentrant parser
4530@cindex pure parser
d9df47b6 4531@findex %define api.pure
bfa74976
RS
4532
4533A @dfn{reentrant} program is one which does not alter in the course of
4534execution; in other words, it consists entirely of @dfn{pure} (read-only)
4535code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4536for example, a nonreentrant program may not be safe to call from a signal
4537handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4538program must be called only within interlocks.
4539
70811b85 4540Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4541suitable for most uses, and it permits compatibility with Yacc. (The
4542standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4543statically allocated variables for communication with @code{yylex},
4544including @code{yylval} and @code{yylloc}.)
bfa74976 4545
70811b85 4546Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4547declaration @code{%define api.pure} says that you want the parser to be
70811b85 4548reentrant. It looks like this:
bfa74976
RS
4549
4550@example
d9df47b6 4551%define api.pure
bfa74976
RS
4552@end example
4553
70811b85
RS
4554The result is that the communication variables @code{yylval} and
4555@code{yylloc} become local variables in @code{yyparse}, and a different
4556calling convention is used for the lexical analyzer function
4557@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4558Parsers}, for the details of this. The variable @code{yynerrs}
4559becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4560of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4561Reporting Function @code{yyerror}}). The convention for calling
4562@code{yyparse} itself is unchanged.
4563
4564Whether the parser is pure has nothing to do with the grammar rules.
4565You can generate either a pure parser or a nonreentrant parser from any
4566valid grammar.
bfa74976 4567
9987d1b3
JD
4568@node Push Decl
4569@subsection A Push Parser
4570@cindex push parser
4571@cindex push parser
c373bf8b 4572@findex %define api.push_pull
9987d1b3 4573
59da312b
JD
4574(The current push parsing interface is experimental and may evolve.
4575More user feedback will help to stabilize it.)
4576
f4101aa6
AD
4577A pull parser is called once and it takes control until all its input
4578is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4579each time a new token is made available.
4580
f4101aa6 4581A push parser is typically useful when the parser is part of a
9987d1b3 4582main event loop in the client's application. This is typically
f4101aa6
AD
4583a requirement of a GUI, when the main event loop needs to be triggered
4584within a certain time period.
9987d1b3 4585
d782395d
JD
4586Normally, Bison generates a pull parser.
4587The following Bison declaration says that you want the parser to be a push
c373bf8b 4588parser (@pxref{Decl Summary,,%define api.push_pull}):
9987d1b3
JD
4589
4590@example
c373bf8b 4591%define api.push_pull "push"
9987d1b3
JD
4592@end example
4593
4594In almost all cases, you want to ensure that your push parser is also
4595a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4596time you should create an impure push parser is to have backwards
9987d1b3
JD
4597compatibility with the impure Yacc pull mode interface. Unless you know
4598what you are doing, your declarations should look like this:
4599
4600@example
d9df47b6 4601%define api.pure
c373bf8b 4602%define api.push_pull "push"
9987d1b3
JD
4603@end example
4604
f4101aa6
AD
4605There is a major notable functional difference between the pure push parser
4606and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4607many parser instances, of the same type of parser, in memory at the same time.
4608An impure push parser should only use one parser at a time.
4609
4610When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4611the generated parser. @code{yypstate} is a structure that the generated
4612parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4613function that will create a new parser instance. @code{yypstate_delete}
4614will free the resources associated with the corresponding parser instance.
f4101aa6 4615Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4616token is available to provide the parser. A trivial example
4617of using a pure push parser would look like this:
4618
4619@example
4620int status;
4621yypstate *ps = yypstate_new ();
4622do @{
4623 status = yypush_parse (ps, yylex (), NULL);
4624@} while (status == YYPUSH_MORE);
4625yypstate_delete (ps);
4626@end example
4627
4628If the user decided to use an impure push parser, a few things about
f4101aa6 4629the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4630a global variable instead of a variable in the @code{yypush_parse} function.
4631For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4632changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4633example would thus look like this:
4634
4635@example
4636extern int yychar;
4637int status;
4638yypstate *ps = yypstate_new ();
4639do @{
4640 yychar = yylex ();
4641 status = yypush_parse (ps);
4642@} while (status == YYPUSH_MORE);
4643yypstate_delete (ps);
4644@end example
4645
f4101aa6 4646That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4647for use by the next invocation of the @code{yypush_parse} function.
4648
f4101aa6 4649Bison also supports both the push parser interface along with the pull parser
9987d1b3 4650interface in the same generated parser. In order to get this functionality,
f4101aa6 4651you should replace the @code{%define api.push_pull "push"} declaration with the
c373bf8b
JD
4652@code{%define api.push_pull "both"} declaration. Doing this will create all of
4653the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4654and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4655would be used. However, the user should note that it is implemented in the
d782395d
JD
4656generated parser by calling @code{yypull_parse}.
4657This makes the @code{yyparse} function that is generated with the
c373bf8b 4658@code{%define api.push_pull "both"} declaration slower than the normal
d782395d
JD
4659@code{yyparse} function. If the user
4660calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4661stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4662and then @code{yypull_parse} the rest of the input stream. If you would like
4663to switch back and forth between between parsing styles, you would have to
4664write your own @code{yypull_parse} function that knows when to quit looking
4665for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4666like this:
4667
4668@example
4669yypstate *ps = yypstate_new ();
4670yypull_parse (ps); /* Will call the lexer */
4671yypstate_delete (ps);
4672@end example
4673
d9df47b6 4674Adding the @code{%define api.pure} declaration does exactly the same thing to
f4101aa6 4675the generated parser with @code{%define api.push_pull "both"} as it did for
c373bf8b 4676@code{%define api.push_pull "push"}.
9987d1b3 4677
342b8b6e 4678@node Decl Summary
bfa74976
RS
4679@subsection Bison Declaration Summary
4680@cindex Bison declaration summary
4681@cindex declaration summary
4682@cindex summary, Bison declaration
4683
d8988b2f 4684Here is a summary of the declarations used to define a grammar:
bfa74976 4685
18b519c0 4686@deffn {Directive} %union
bfa74976
RS
4687Declare the collection of data types that semantic values may have
4688(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4689@end deffn
bfa74976 4690
18b519c0 4691@deffn {Directive} %token
bfa74976
RS
4692Declare a terminal symbol (token type name) with no precedence
4693or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4694@end deffn
bfa74976 4695
18b519c0 4696@deffn {Directive} %right
bfa74976
RS
4697Declare a terminal symbol (token type name) that is right-associative
4698(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4699@end deffn
bfa74976 4700
18b519c0 4701@deffn {Directive} %left
bfa74976
RS
4702Declare a terminal symbol (token type name) that is left-associative
4703(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4704@end deffn
bfa74976 4705
18b519c0 4706@deffn {Directive} %nonassoc
bfa74976 4707Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4708(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4709Using it in a way that would be associative is a syntax error.
4710@end deffn
4711
91d2c560 4712@ifset defaultprec
39a06c25 4713@deffn {Directive} %default-prec
22fccf95 4714Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4715(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4716@end deffn
91d2c560 4717@end ifset
bfa74976 4718
18b519c0 4719@deffn {Directive} %type
bfa74976
RS
4720Declare the type of semantic values for a nonterminal symbol
4721(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4722@end deffn
bfa74976 4723
18b519c0 4724@deffn {Directive} %start
89cab50d
AD
4725Specify the grammar's start symbol (@pxref{Start Decl, ,The
4726Start-Symbol}).
18b519c0 4727@end deffn
bfa74976 4728
18b519c0 4729@deffn {Directive} %expect
bfa74976
RS
4730Declare the expected number of shift-reduce conflicts
4731(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4732@end deffn
4733
bfa74976 4734
d8988b2f
AD
4735@sp 1
4736@noindent
4737In order to change the behavior of @command{bison}, use the following
4738directives:
4739
148d66d8
JD
4740@deffn {Directive} %code @{@var{code}@}
4741@findex %code
4742This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4743It inserts @var{code} verbatim at a language-dependent default location in the
4744output@footnote{The default location is actually skeleton-dependent;
4745 writers of non-standard skeletons however should choose the default location
4746 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4747
4748@cindex Prologue
8405b70c 4749For C/C++, the default location is the parser source code
148d66d8
JD
4750file after the usual contents of the parser header file.
4751Thus, @code{%code} replaces the traditional Yacc prologue,
4752@code{%@{@var{code}%@}}, for most purposes.
4753For a detailed discussion, see @ref{Prologue Alternatives}.
4754
8405b70c 4755For Java, the default location is inside the parser class.
148d66d8
JD
4756
4757(Like all the Yacc prologue alternatives, this directive is experimental.
4758More user feedback will help to determine whether it should become a permanent
4759feature.)
4760@end deffn
4761
4762@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4763This is the qualified form of the @code{%code} directive.
4764If you need to specify location-sensitive verbatim @var{code} that does not
4765belong at the default location selected by the unqualified @code{%code} form,
4766use this form instead.
4767
4768@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4769where Bison should generate it.
4770Not all values of @var{qualifier} are available for all target languages:
4771
4772@itemize @bullet
148d66d8 4773@item requires
793fbca5 4774@findex %code requires
148d66d8
JD
4775
4776@itemize @bullet
4777@item Language(s): C, C++
4778
4779@item Purpose: This is the best place to write dependency code required for
4780@code{YYSTYPE} and @code{YYLTYPE}.
4781In other words, it's the best place to define types referenced in @code{%union}
4782directives, and it's the best place to override Bison's default @code{YYSTYPE}
4783and @code{YYLTYPE} definitions.
4784
4785@item Location(s): The parser header file and the parser source code file
4786before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
4787@end itemize
4788
4789@item provides
4790@findex %code provides
4791
4792@itemize @bullet
4793@item Language(s): C, C++
4794
4795@item Purpose: This is the best place to write additional definitions and
4796declarations that should be provided to other modules.
4797
4798@item Location(s): The parser header file and the parser source code file after
4799the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
4800@end itemize
4801
4802@item top
4803@findex %code top
4804
4805@itemize @bullet
4806@item Language(s): C, C++
4807
4808@item Purpose: The unqualified @code{%code} or @code{%code requires} should
4809usually be more appropriate than @code{%code top}.
4810However, occasionally it is necessary to insert code much nearer the top of the
4811parser source code file.
4812For example:
4813
4814@smallexample
4815%code top @{
4816 #define _GNU_SOURCE
4817 #include <stdio.h>
4818@}
4819@end smallexample
4820
4821@item Location(s): Near the top of the parser source code file.
4822@end itemize
8405b70c 4823
148d66d8
JD
4824@item imports
4825@findex %code imports
4826
4827@itemize @bullet
4828@item Language(s): Java
4829
4830@item Purpose: This is the best place to write Java import directives.
4831
4832@item Location(s): The parser Java file after any Java package directive and
4833before any class definitions.
4834@end itemize
148d66d8
JD
4835@end itemize
4836
4837(Like all the Yacc prologue alternatives, this directive is experimental.
4838More user feedback will help to determine whether it should become a permanent
4839feature.)
4840
4841@cindex Prologue
4842For a detailed discussion of how to use @code{%code} in place of the
4843traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
4844@end deffn
4845
18b519c0 4846@deffn {Directive} %debug
fa819509
AD
4847Instrument the output parser for traces. Obsoleted by @samp{%define
4848parse.trace}.
ec3bc396 4849@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 4850@end deffn
d8988b2f 4851
c1d19e10
PB
4852@deffn {Directive} %define @var{variable}
4853@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2
JD
4854Define a variable to adjust Bison's behavior.
4855The possible choices for @var{variable}, as well as their meanings, depend on
4856the selected target language and/or the parser skeleton (@pxref{Decl
ed4d67dc 4857Summary,,%language}, @pxref{Decl Summary,,%skeleton}).
9611cfa2
JD
4858
4859Bison will warn if a @var{variable} is defined multiple times.
4860
4861Omitting @code{"@var{value}"} is always equivalent to specifying it as
4862@code{""}.
4863
922bdd7f 4864Some @var{variable}s may be used as Booleans.
9611cfa2
JD
4865In this case, Bison will complain if the variable definition does not meet one
4866of the following four conditions:
4867
4868@enumerate
4869@item @code{"@var{value}"} is @code{"true"}
4870
4871@item @code{"@var{value}"} is omitted (or is @code{""}).
4872This is equivalent to @code{"true"}.
4873
4874@item @code{"@var{value}"} is @code{"false"}.
4875
4876@item @var{variable} is never defined.
4877In this case, Bison selects a default value, which may depend on the selected
4878target language and/or parser skeleton.
4879@end enumerate
148d66d8 4880
793fbca5
JD
4881Some of the accepted @var{variable}s are:
4882
fa819509 4883@table @code
d9df47b6
JD
4884@item api.pure
4885@findex %define api.pure
4886
4887@itemize @bullet
4888@item Language(s): C
4889
4890@item Purpose: Request a pure (reentrant) parser program.
4891@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
4892
4893@item Accepted Values: Boolean
4894
4895@item Default Value: @code{"false"}
4896@end itemize
71b00ed8 4897@c api.pure
d9df47b6 4898
c373bf8b
JD
4899@item api.push_pull
4900@findex %define api.push_pull
793fbca5
JD
4901
4902@itemize @bullet
4903@item Language(s): C (LALR(1) only)
4904
4905@item Purpose: Requests a pull parser, a push parser, or both.
d782395d 4906@xref{Push Decl, ,A Push Parser}.
59da312b
JD
4907(The current push parsing interface is experimental and may evolve.
4908More user feedback will help to stabilize it.)
793fbca5
JD
4909
4910@item Accepted Values: @code{"pull"}, @code{"push"}, @code{"both"}
4911
4912@item Default Value: @code{"pull"}
4913@end itemize
71b00ed8
AD
4914@c api.push_pull
4915
4916@item error-verbose
4917@findex %define error-verbose
4918@itemize
4919@item Languages(s):
4920all.
4921@item Purpose:
4922Enable the generation of more verbose error messages than a instead of
4923just plain @w{@code{"syntax error"}}. @xref{Error Reporting, ,The Error
4924Reporting Function @code{yyerror}}.
4925@item Accepted Values:
4926Boolean
4927@item Default Value:
4928@code{false}
4929@end itemize
4930@c error-verbose
4931
793fbca5 4932
31984206
JD
4933@item lr.keep_unreachable_states
4934@findex %define lr.keep_unreachable_states
4935
4936@itemize @bullet
4937@item Language(s): all
4938
4939@item Purpose: Requests that Bison allow unreachable parser states to remain in
4940the parser tables.
4941Bison considers a state to be unreachable if there exists no sequence of
4942transitions from the start state to that state.
4943A state can become unreachable during conflict resolution if Bison disables a
4944shift action leading to it from a predecessor state.
4945Keeping unreachable states is sometimes useful for analysis purposes, but they
4946are useless in the generated parser.
4947
4948@item Accepted Values: Boolean
4949
4950@item Default Value: @code{"false"}
4951
4952@item Caveats:
4953
4954@itemize @bullet
cff03fb2
JD
4955
4956@item Unreachable states may contain conflicts and may use rules not used in
4957any other state.
31984206
JD
4958Thus, keeping unreachable states may induce warnings that are irrelevant to
4959your parser's behavior, and it may eliminate warnings that are relevant.
4960Of course, the change in warnings may actually be relevant to a parser table
4961analysis that wants to keep unreachable states, so this behavior will likely
4962remain in future Bison releases.
4963
4964@item While Bison is able to remove unreachable states, it is not guaranteed to
4965remove other kinds of useless states.
4966Specifically, when Bison disables reduce actions during conflict resolution,
4967some goto actions may become useless, and thus some additional states may
4968become useless.
4969If Bison were to compute which goto actions were useless and then disable those
4970actions, it could identify such states as unreachable and then remove those
4971states.
4972However, Bison does not compute which goto actions are useless.
4973@end itemize
4974@end itemize
71b00ed8 4975@c lr.keep_unreachable_states
31984206 4976
793fbca5
JD
4977@item namespace
4978@findex %define namespace
4979
4980@itemize
4981@item Languages(s): C++
4982
4983@item Purpose: Specifies the namespace for the parser class.
4984For example, if you specify:
4985
4986@smallexample
4987%define namespace "foo::bar"
4988@end smallexample
4989
4990Bison uses @code{foo::bar} verbatim in references such as:
4991
4992@smallexample
4993foo::bar::parser::semantic_type
4994@end smallexample
4995
4996However, to open a namespace, Bison removes any leading @code{::} and then
4997splits on any remaining occurrences:
4998
4999@smallexample
5000namespace foo @{ namespace bar @{
5001 class position;
5002 class location;
5003@} @}
5004@end smallexample
5005
5006@item Accepted Values: Any absolute or relative C++ namespace reference without
5007a trailing @code{"::"}.
5008For example, @code{"foo"} or @code{"::foo::bar"}.
5009
5010@item Default Value: The value specified by @code{%name-prefix}, which defaults
5011to @code{yy}.
5012This usage of @code{%name-prefix} is for backward compatibility and can be
5013confusing since @code{%name-prefix} also specifies the textual prefix for the
5014lexical analyzer function.
5015Thus, if you specify @code{%name-prefix}, it is best to also specify
5016@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
5017lexical analyzer function.
5018For example, if you specify:
5019
5020@smallexample
5021%define namespace "foo"
5022%name-prefix "bar::"
5023@end smallexample
5024
5025The parser namespace is @code{foo} and @code{yylex} is referenced as
5026@code{bar::lex}.
5027@end itemize
fa819509
AD
5028@c namespace
5029
0c90a1f5
AD
5030@item parse.assert
5031@findex %define parse.assert
5032
5033@itemize
5034@item Languages(s): C++
5035
5036@item Purpose: Issue runtime assertions to catch invalid uses.
5037In C++, when variants are used, symbols must be constructed and
5038destroyed properly. This option checks these constraints.
5039
5040@item Accepted Values: Boolean
5041
5042@item Default Value: @code{false}
5043@end itemize
5044@c parse.assert
5045
fa819509
AD
5046@item parse.trace
5047@findex %define parse.trace
5048
5049@itemize
5050@item Languages(s): C, C++
5051
5052@item Purpose: Require parser instrumentation for tracing.
5053In C/C++, define the macro @code{YYDEBUG} to 1 in the parser file if it
5054is not already defined, so that the debugging facilities are compiled.
5055@xref{Tracing, ,Tracing Your Parser}.
793fbca5 5056
fa819509
AD
5057@item Accepted Values: Boolean
5058
5059@item Default Value: @code{false}
5060@end itemize
5061@end table
5062@c parse.trace
d782395d 5063@end deffn
fa819509 5064@c %define
d782395d 5065
18b519c0 5066@deffn {Directive} %defines
4bfd5e4e
PE
5067Write a header file containing macro definitions for the token type
5068names defined in the grammar as well as a few other declarations.
d8988b2f 5069If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 5070is named @file{@var{name}.h}.
d8988b2f 5071
b321737f 5072For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
5073@code{YYSTYPE} is already defined as a macro or you have used a
5074@code{<@var{type}>} tag without using @code{%union}.
5075Therefore, if you are using a @code{%union}
f8e1c9e5
AD
5076(@pxref{Multiple Types, ,More Than One Value Type}) with components that
5077require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 5078or type definition
f8e1c9e5
AD
5079(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
5080arrange for these definitions to be propagated to all modules, e.g., by
5081putting them in a prerequisite header that is included both by your
5082parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
5083
5084Unless your parser is pure, the output header declares @code{yylval}
5085as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
5086Parser}.
5087
5088If you have also used locations, the output header declares
5089@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 5090the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
5091Locations}.
5092
f8e1c9e5
AD
5093This output file is normally essential if you wish to put the definition
5094of @code{yylex} in a separate source file, because @code{yylex}
5095typically needs to be able to refer to the above-mentioned declarations
5096and to the token type codes. @xref{Token Values, ,Semantic Values of
5097Tokens}.
9bc0dd67 5098
16dc6a9e
JD
5099@findex %code requires
5100@findex %code provides
5101If you have declared @code{%code requires} or @code{%code provides}, the output
5102header also contains their code.
148d66d8 5103@xref{Decl Summary, ,%code}.
592d0b1e
PB
5104@end deffn
5105
02975b9a
JD
5106@deffn {Directive} %defines @var{defines-file}
5107Same as above, but save in the file @var{defines-file}.
5108@end deffn
5109
18b519c0 5110@deffn {Directive} %destructor
258b75ca 5111Specify how the parser should reclaim the memory associated to
fa7e68c3 5112discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 5113@end deffn
72f889cc 5114
02975b9a 5115@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
5116Specify a prefix to use for all Bison output file names. The names are
5117chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 5118@end deffn
d8988b2f 5119
e6e704dc 5120@deffn {Directive} %language "@var{language}"
0e021770 5121Specify the programming language for the generated parser. Currently
59da312b 5122supported languages include C, C++, and Java.
e6e704dc 5123@var{language} is case-insensitive.
ed4d67dc
JD
5124
5125This directive is experimental and its effect may be modified in future
5126releases.
0e021770
PE
5127@end deffn
5128
18b519c0 5129@deffn {Directive} %locations
89cab50d
AD
5130Generate the code processing the locations (@pxref{Action Features,
5131,Special Features for Use in Actions}). This mode is enabled as soon as
5132the grammar uses the special @samp{@@@var{n}} tokens, but if your
5133grammar does not use it, using @samp{%locations} allows for more
6e649e65 5134accurate syntax error messages.
18b519c0 5135@end deffn
89cab50d 5136
02975b9a 5137@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5138Rename the external symbols used in the parser so that they start with
5139@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5140in C parsers
d8988b2f 5141is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5142@code{yylval}, @code{yychar}, @code{yydebug}, and
f4101aa6
AD
5143(if locations are used) @code{yylloc}. If you use a push parser,
5144@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5145@code{yypstate_new} and @code{yypstate_delete} will
5146also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5
JD
5147names become @code{c_parse}, @code{c_lex}, and so on.
5148For C++ parsers, see the @code{%define namespace} documentation in this
5149section.
aa08666d 5150@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5151@end deffn
931c7513 5152
91d2c560 5153@ifset defaultprec
22fccf95
PE
5154@deffn {Directive} %no-default-prec
5155Do not assign a precedence to rules lacking an explicit @code{%prec}
5156modifier (@pxref{Contextual Precedence, ,Context-Dependent
5157Precedence}).
5158@end deffn
91d2c560 5159@end ifset
22fccf95 5160
18b519c0 5161@deffn {Directive} %no-lines
931c7513
RS
5162Don't generate any @code{#line} preprocessor commands in the parser
5163file. Ordinarily Bison writes these commands in the parser file so that
5164the C compiler and debuggers will associate errors and object code with
5165your source file (the grammar file). This directive causes them to
5166associate errors with the parser file, treating it an independent source
5167file in its own right.
18b519c0 5168@end deffn
931c7513 5169
02975b9a 5170@deffn {Directive} %output "@var{file}"
fa4d969f 5171Specify @var{file} for the parser file.
18b519c0 5172@end deffn
6deb4447 5173
18b519c0 5174@deffn {Directive} %pure-parser
d9df47b6
JD
5175Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
5176for which Bison is more careful to warn about unreasonable usage.
18b519c0 5177@end deffn
6deb4447 5178
b50d2359 5179@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5180Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5181Require a Version of Bison}.
b50d2359
AD
5182@end deffn
5183
0e021770 5184@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5185Specify the skeleton to use.
5186
ed4d67dc
JD
5187@c You probably don't need this option unless you are developing Bison.
5188@c You should use @code{%language} if you want to specify the skeleton for a
5189@c different language, because it is clearer and because it will always choose the
5190@c correct skeleton for non-deterministic or push parsers.
a7867f53
JD
5191
5192If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5193file in the Bison installation directory.
5194If it does, @var{file} is an absolute file name or a file name relative to the
5195directory of the grammar file.
5196This is similar to how most shells resolve commands.
0e021770
PE
5197@end deffn
5198
18b519c0 5199@deffn {Directive} %token-table
931c7513
RS
5200Generate an array of token names in the parser file. The name of the
5201array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 5202token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
5203three elements of @code{yytname} correspond to the predefined tokens
5204@code{"$end"},
88bce5a2
AD
5205@code{"error"}, and @code{"$undefined"}; after these come the symbols
5206defined in the grammar file.
931c7513 5207
9e0876fb
PE
5208The name in the table includes all the characters needed to represent
5209the token in Bison. For single-character literals and literal
5210strings, this includes the surrounding quoting characters and any
5211escape sequences. For example, the Bison single-character literal
5212@code{'+'} corresponds to a three-character name, represented in C as
5213@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5214corresponds to a five-character name, represented in C as
5215@code{"\"\\\\/\""}.
931c7513 5216
8c9a50be 5217When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5218definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5219@code{YYNRULES}, and @code{YYNSTATES}:
5220
5221@table @code
5222@item YYNTOKENS
5223The highest token number, plus one.
5224@item YYNNTS
9ecbd125 5225The number of nonterminal symbols.
931c7513
RS
5226@item YYNRULES
5227The number of grammar rules,
5228@item YYNSTATES
5229The number of parser states (@pxref{Parser States}).
5230@end table
18b519c0 5231@end deffn
d8988b2f 5232
18b519c0 5233@deffn {Directive} %verbose
d8988b2f 5234Write an extra output file containing verbose descriptions of the
742e4900 5235parser states and what is done for each type of lookahead token in
72d2299c 5236that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5237information.
18b519c0 5238@end deffn
d8988b2f 5239
18b519c0 5240@deffn {Directive} %yacc
d8988b2f
AD
5241Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5242including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5243@end deffn
d8988b2f
AD
5244
5245
342b8b6e 5246@node Multiple Parsers
bfa74976
RS
5247@section Multiple Parsers in the Same Program
5248
5249Most programs that use Bison parse only one language and therefore contain
5250only one Bison parser. But what if you want to parse more than one
5251language with the same program? Then you need to avoid a name conflict
5252between different definitions of @code{yyparse}, @code{yylval}, and so on.
5253
5254The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5255(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5256functions and variables of the Bison parser to start with @var{prefix}
5257instead of @samp{yy}. You can use this to give each parser distinct
5258names that do not conflict.
bfa74976
RS
5259
5260The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5261@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5262@code{yychar} and @code{yydebug}. If you use a push parser,
5263@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5264@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5265For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5266@code{clex}, and so on.
bfa74976
RS
5267
5268@strong{All the other variables and macros associated with Bison are not
5269renamed.} These others are not global; there is no conflict if the same
5270name is used in different parsers. For example, @code{YYSTYPE} is not
5271renamed, but defining this in different ways in different parsers causes
5272no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5273
5274The @samp{-p} option works by adding macro definitions to the beginning
5275of the parser source file, defining @code{yyparse} as
5276@code{@var{prefix}parse}, and so on. This effectively substitutes one
5277name for the other in the entire parser file.
5278
342b8b6e 5279@node Interface
bfa74976
RS
5280@chapter Parser C-Language Interface
5281@cindex C-language interface
5282@cindex interface
5283
5284The Bison parser is actually a C function named @code{yyparse}. Here we
5285describe the interface conventions of @code{yyparse} and the other
5286functions that it needs to use.
5287
5288Keep in mind that the parser uses many C identifiers starting with
5289@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5290identifier (aside from those in this manual) in an action or in epilogue
5291in the grammar file, you are likely to run into trouble.
bfa74976
RS
5292
5293@menu
f5f419de
DJ
5294* Parser Function:: How to call @code{yyparse} and what it returns.
5295* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5296* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5297* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5298* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5299* Lexical:: You must supply a function @code{yylex}
5300 which reads tokens.
5301* Error Reporting:: You must supply a function @code{yyerror}.
5302* Action Features:: Special features for use in actions.
5303* Internationalization:: How to let the parser speak in the user's
5304 native language.
bfa74976
RS
5305@end menu
5306
342b8b6e 5307@node Parser Function
bfa74976
RS
5308@section The Parser Function @code{yyparse}
5309@findex yyparse
5310
5311You call the function @code{yyparse} to cause parsing to occur. This
5312function reads tokens, executes actions, and ultimately returns when it
5313encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5314write an action which directs @code{yyparse} to return immediately
5315without reading further.
bfa74976 5316
2a8d363a
AD
5317
5318@deftypefun int yyparse (void)
bfa74976
RS
5319The value returned by @code{yyparse} is 0 if parsing was successful (return
5320is due to end-of-input).
5321
b47dbebe
PE
5322The value is 1 if parsing failed because of invalid input, i.e., input
5323that contains a syntax error or that causes @code{YYABORT} to be
5324invoked.
5325
5326The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5327@end deftypefun
bfa74976
RS
5328
5329In an action, you can cause immediate return from @code{yyparse} by using
5330these macros:
5331
2a8d363a 5332@defmac YYACCEPT
bfa74976
RS
5333@findex YYACCEPT
5334Return immediately with value 0 (to report success).
2a8d363a 5335@end defmac
bfa74976 5336
2a8d363a 5337@defmac YYABORT
bfa74976
RS
5338@findex YYABORT
5339Return immediately with value 1 (to report failure).
2a8d363a
AD
5340@end defmac
5341
5342If you use a reentrant parser, you can optionally pass additional
5343parameter information to it in a reentrant way. To do so, use the
5344declaration @code{%parse-param}:
5345
feeb0eda 5346@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5347@findex %parse-param
287c78f6
PE
5348Declare that an argument declared by the braced-code
5349@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5350The @var{argument-declaration} is used when declaring
feeb0eda
PE
5351functions or prototypes. The last identifier in
5352@var{argument-declaration} must be the argument name.
2a8d363a
AD
5353@end deffn
5354
5355Here's an example. Write this in the parser:
5356
5357@example
feeb0eda
PE
5358%parse-param @{int *nastiness@}
5359%parse-param @{int *randomness@}
2a8d363a
AD
5360@end example
5361
5362@noindent
5363Then call the parser like this:
5364
5365@example
5366@{
5367 int nastiness, randomness;
5368 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5369 value = yyparse (&nastiness, &randomness);
5370 @dots{}
5371@}
5372@end example
5373
5374@noindent
5375In the grammar actions, use expressions like this to refer to the data:
5376
5377@example
5378exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5379@end example
5380
9987d1b3
JD
5381@node Push Parser Function
5382@section The Push Parser Function @code{yypush_parse}
5383@findex yypush_parse
5384
59da312b
JD
5385(The current push parsing interface is experimental and may evolve.
5386More user feedback will help to stabilize it.)
5387
f4101aa6
AD
5388You call the function @code{yypush_parse} to parse a single token. This
5389function is available if either the @code{%define api.push_pull "push"} or
5390@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5391@xref{Push Decl, ,A Push Parser}.
5392
5393@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5394The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5395following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5396is required to finish parsing the grammar.
5397@end deftypefun
5398
5399@node Pull Parser Function
5400@section The Pull Parser Function @code{yypull_parse}
5401@findex yypull_parse
5402
59da312b
JD
5403(The current push parsing interface is experimental and may evolve.
5404More user feedback will help to stabilize it.)
5405
f4101aa6
AD
5406You call the function @code{yypull_parse} to parse the rest of the input
5407stream. This function is available if the @code{%define api.push_pull "both"}
5408declaration is used.
9987d1b3
JD
5409@xref{Push Decl, ,A Push Parser}.
5410
5411@deftypefun int yypull_parse (yypstate *yyps)
5412The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5413@end deftypefun
5414
5415@node Parser Create Function
5416@section The Parser Create Function @code{yystate_new}
5417@findex yypstate_new
5418
59da312b
JD
5419(The current push parsing interface is experimental and may evolve.
5420More user feedback will help to stabilize it.)
5421
f4101aa6
AD
5422You call the function @code{yypstate_new} to create a new parser instance.
5423This function is available if either the @code{%define api.push_pull "push"} or
5424@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5425@xref{Push Decl, ,A Push Parser}.
5426
5427@deftypefun yypstate *yypstate_new (void)
5428The fuction will return a valid parser instance if there was memory available
333e670c
JD
5429or 0 if no memory was available.
5430In impure mode, it will also return 0 if a parser instance is currently
5431allocated.
9987d1b3
JD
5432@end deftypefun
5433
5434@node Parser Delete Function
5435@section The Parser Delete Function @code{yystate_delete}
5436@findex yypstate_delete
5437
59da312b
JD
5438(The current push parsing interface is experimental and may evolve.
5439More user feedback will help to stabilize it.)
5440
9987d1b3 5441You call the function @code{yypstate_delete} to delete a parser instance.
f4101aa6
AD
5442function is available if either the @code{%define api.push_pull "push"} or
5443@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5444@xref{Push Decl, ,A Push Parser}.
5445
5446@deftypefun void yypstate_delete (yypstate *yyps)
5447This function will reclaim the memory associated with a parser instance.
5448After this call, you should no longer attempt to use the parser instance.
5449@end deftypefun
bfa74976 5450
342b8b6e 5451@node Lexical
bfa74976
RS
5452@section The Lexical Analyzer Function @code{yylex}
5453@findex yylex
5454@cindex lexical analyzer
5455
5456The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5457the input stream and returns them to the parser. Bison does not create
5458this function automatically; you must write it so that @code{yyparse} can
5459call it. The function is sometimes referred to as a lexical scanner.
5460
5461In simple programs, @code{yylex} is often defined at the end of the Bison
5462grammar file. If @code{yylex} is defined in a separate source file, you
5463need to arrange for the token-type macro definitions to be available there.
5464To do this, use the @samp{-d} option when you run Bison, so that it will
5465write these macro definitions into a separate header file
5466@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 5467that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
5468
5469@menu
5470* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
5471* Token Values:: How @code{yylex} must return the semantic value
5472 of the token it has read.
5473* Token Locations:: How @code{yylex} must return the text location
5474 (line number, etc.) of the token, if the
5475 actions want that.
5476* Pure Calling:: How the calling convention differs in a pure parser
5477 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5478@end menu
5479
342b8b6e 5480@node Calling Convention
bfa74976
RS
5481@subsection Calling Convention for @code{yylex}
5482
72d2299c
PE
5483The value that @code{yylex} returns must be the positive numeric code
5484for the type of token it has just found; a zero or negative value
5485signifies end-of-input.
bfa74976
RS
5486
5487When a token is referred to in the grammar rules by a name, that name
5488in the parser file becomes a C macro whose definition is the proper
5489numeric code for that token type. So @code{yylex} can use the name
5490to indicate that type. @xref{Symbols}.
5491
5492When a token is referred to in the grammar rules by a character literal,
5493the numeric code for that character is also the code for the token type.
72d2299c
PE
5494So @code{yylex} can simply return that character code, possibly converted
5495to @code{unsigned char} to avoid sign-extension. The null character
5496must not be used this way, because its code is zero and that
bfa74976
RS
5497signifies end-of-input.
5498
5499Here is an example showing these things:
5500
5501@example
13863333
AD
5502int
5503yylex (void)
bfa74976
RS
5504@{
5505 @dots{}
72d2299c 5506 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5507 return 0;
5508 @dots{}
5509 if (c == '+' || c == '-')
72d2299c 5510 return c; /* Assume token type for `+' is '+'. */
bfa74976 5511 @dots{}
72d2299c 5512 return INT; /* Return the type of the token. */
bfa74976
RS
5513 @dots{}
5514@}
5515@end example
5516
5517@noindent
5518This interface has been designed so that the output from the @code{lex}
5519utility can be used without change as the definition of @code{yylex}.
5520
931c7513
RS
5521If the grammar uses literal string tokens, there are two ways that
5522@code{yylex} can determine the token type codes for them:
5523
5524@itemize @bullet
5525@item
5526If the grammar defines symbolic token names as aliases for the
5527literal string tokens, @code{yylex} can use these symbolic names like
5528all others. In this case, the use of the literal string tokens in
5529the grammar file has no effect on @code{yylex}.
5530
5531@item
9ecbd125 5532@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5533table. The index of the token in the table is the token type's code.
9ecbd125 5534The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5535double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5536token's characters are escaped as necessary to be suitable as input
5537to Bison.
931c7513 5538
9e0876fb
PE
5539Here's code for looking up a multicharacter token in @code{yytname},
5540assuming that the characters of the token are stored in
5541@code{token_buffer}, and assuming that the token does not contain any
5542characters like @samp{"} that require escaping.
931c7513
RS
5543
5544@smallexample
5545for (i = 0; i < YYNTOKENS; i++)
5546 @{
5547 if (yytname[i] != 0
5548 && yytname[i][0] == '"'
68449b3a
PE
5549 && ! strncmp (yytname[i] + 1, token_buffer,
5550 strlen (token_buffer))
931c7513
RS
5551 && yytname[i][strlen (token_buffer) + 1] == '"'
5552 && yytname[i][strlen (token_buffer) + 2] == 0)
5553 break;
5554 @}
5555@end smallexample
5556
5557The @code{yytname} table is generated only if you use the
8c9a50be 5558@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5559@end itemize
5560
342b8b6e 5561@node Token Values
bfa74976
RS
5562@subsection Semantic Values of Tokens
5563
5564@vindex yylval
9d9b8b70 5565In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5566be stored into the global variable @code{yylval}. When you are using
5567just one data type for semantic values, @code{yylval} has that type.
5568Thus, if the type is @code{int} (the default), you might write this in
5569@code{yylex}:
5570
5571@example
5572@group
5573 @dots{}
72d2299c
PE
5574 yylval = value; /* Put value onto Bison stack. */
5575 return INT; /* Return the type of the token. */
bfa74976
RS
5576 @dots{}
5577@end group
5578@end example
5579
5580When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5581made from the @code{%union} declaration (@pxref{Union Decl, ,The
5582Collection of Value Types}). So when you store a token's value, you
5583must use the proper member of the union. If the @code{%union}
5584declaration looks like this:
bfa74976
RS
5585
5586@example
5587@group
5588%union @{
5589 int intval;
5590 double val;
5591 symrec *tptr;
5592@}
5593@end group
5594@end example
5595
5596@noindent
5597then the code in @code{yylex} might look like this:
5598
5599@example
5600@group
5601 @dots{}
72d2299c
PE
5602 yylval.intval = value; /* Put value onto Bison stack. */
5603 return INT; /* Return the type of the token. */
bfa74976
RS
5604 @dots{}
5605@end group
5606@end example
5607
95923bd6
AD
5608@node Token Locations
5609@subsection Textual Locations of Tokens
bfa74976
RS
5610
5611@vindex yylloc
847bf1f5 5612If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5613Tracking Locations}) in actions to keep track of the textual locations
5614of tokens and groupings, then you must provide this information in
5615@code{yylex}. The function @code{yyparse} expects to find the textual
5616location of a token just parsed in the global variable @code{yylloc}.
5617So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5618
5619By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5620initialize the members that are going to be used by the actions. The
5621four members are called @code{first_line}, @code{first_column},
5622@code{last_line} and @code{last_column}. Note that the use of this
5623feature makes the parser noticeably slower.
bfa74976
RS
5624
5625@tindex YYLTYPE
5626The data type of @code{yylloc} has the name @code{YYLTYPE}.
5627
342b8b6e 5628@node Pure Calling
c656404a 5629@subsection Calling Conventions for Pure Parsers
bfa74976 5630
d9df47b6 5631When you use the Bison declaration @code{%define api.pure} to request a
e425e872
RS
5632pure, reentrant parser, the global communication variables @code{yylval}
5633and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5634Parser}.) In such parsers the two global variables are replaced by
5635pointers passed as arguments to @code{yylex}. You must declare them as
5636shown here, and pass the information back by storing it through those
5637pointers.
bfa74976
RS
5638
5639@example
13863333
AD
5640int
5641yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5642@{
5643 @dots{}
5644 *lvalp = value; /* Put value onto Bison stack. */
5645 return INT; /* Return the type of the token. */
5646 @dots{}
5647@}
5648@end example
5649
5650If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5651textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5652this case, omit the second argument; @code{yylex} will be called with
5653only one argument.
5654
e425e872 5655
2a8d363a
AD
5656If you wish to pass the additional parameter data to @code{yylex}, use
5657@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5658Function}).
e425e872 5659
feeb0eda 5660@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5661@findex %lex-param
287c78f6
PE
5662Declare that the braced-code @var{argument-declaration} is an
5663additional @code{yylex} argument declaration.
2a8d363a 5664@end deffn
e425e872 5665
2a8d363a 5666For instance:
e425e872
RS
5667
5668@example
feeb0eda
PE
5669%parse-param @{int *nastiness@}
5670%lex-param @{int *nastiness@}
5671%parse-param @{int *randomness@}
e425e872
RS
5672@end example
5673
5674@noindent
2a8d363a 5675results in the following signature:
e425e872
RS
5676
5677@example
2a8d363a
AD
5678int yylex (int *nastiness);
5679int yyparse (int *nastiness, int *randomness);
e425e872
RS
5680@end example
5681
d9df47b6 5682If @code{%define api.pure} is added:
c656404a
RS
5683
5684@example
2a8d363a
AD
5685int yylex (YYSTYPE *lvalp, int *nastiness);
5686int yyparse (int *nastiness, int *randomness);
c656404a
RS
5687@end example
5688
2a8d363a 5689@noindent
d9df47b6 5690and finally, if both @code{%define api.pure} and @code{%locations} are used:
c656404a 5691
2a8d363a
AD
5692@example
5693int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5694int yyparse (int *nastiness, int *randomness);
5695@end example
931c7513 5696
342b8b6e 5697@node Error Reporting
bfa74976
RS
5698@section The Error Reporting Function @code{yyerror}
5699@cindex error reporting function
5700@findex yyerror
5701@cindex parse error
5702@cindex syntax error
5703
6e649e65 5704The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 5705whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 5706action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
5707macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
5708in Actions}).
bfa74976
RS
5709
5710The Bison parser expects to report the error by calling an error
5711reporting function named @code{yyerror}, which you must supply. It is
5712called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
5713receives one argument. For a syntax error, the string is normally
5714@w{@code{"syntax error"}}.
bfa74976 5715
71b00ed8
AD
5716@findex %define error-verbose
5717If you invoke the directive @code{%define error-verbose} in the Bison
2a8d363a
AD
5718declarations section (@pxref{Bison Declarations, ,The Bison Declarations
5719Section}), then Bison provides a more verbose and specific error message
6e649e65 5720string instead of just plain @w{@code{"syntax error"}}.
bfa74976 5721
1a059451
PE
5722The parser can detect one other kind of error: memory exhaustion. This
5723can happen when the input contains constructions that are very deeply
bfa74976 5724nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
5725parser normally extends its stack automatically up to a very large limit. But
5726if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
5727fashion, except that the argument string is @w{@code{"memory exhausted"}}.
5728
5729In some cases diagnostics like @w{@code{"syntax error"}} are
5730translated automatically from English to some other language before
5731they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
5732
5733The following definition suffices in simple programs:
5734
5735@example
5736@group
13863333 5737void
38a92d50 5738yyerror (char const *s)
bfa74976
RS
5739@{
5740@end group
5741@group
5742 fprintf (stderr, "%s\n", s);
5743@}
5744@end group
5745@end example
5746
5747After @code{yyerror} returns to @code{yyparse}, the latter will attempt
5748error recovery if you have written suitable error recovery grammar rules
5749(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
5750immediately return 1.
5751
93724f13 5752Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
5753an access to the current location.
5754This is indeed the case for the @acronym{GLR}
2a8d363a 5755parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 5756@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
5757@code{yyerror} are:
5758
5759@example
38a92d50
PE
5760void yyerror (char const *msg); /* Yacc parsers. */
5761void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
5762@end example
5763
feeb0eda 5764If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
5765
5766@example
b317297e
PE
5767void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
5768void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
5769@end example
5770
fa7e68c3 5771Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
5772convention for absolutely pure parsers, i.e., when the calling
5773convention of @code{yylex} @emph{and} the calling convention of
d9df47b6
JD
5774@code{%define api.pure} are pure.
5775I.e.:
2a8d363a
AD
5776
5777@example
5778/* Location tracking. */
5779%locations
5780/* Pure yylex. */
d9df47b6 5781%define api.pure
feeb0eda 5782%lex-param @{int *nastiness@}
2a8d363a 5783/* Pure yyparse. */
feeb0eda
PE
5784%parse-param @{int *nastiness@}
5785%parse-param @{int *randomness@}
2a8d363a
AD
5786@end example
5787
5788@noindent
5789results in the following signatures for all the parser kinds:
5790
5791@example
5792int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5793int yyparse (int *nastiness, int *randomness);
93724f13
AD
5794void yyerror (YYLTYPE *locp,
5795 int *nastiness, int *randomness,
38a92d50 5796 char const *msg);
2a8d363a
AD
5797@end example
5798
1c0c3e95 5799@noindent
38a92d50
PE
5800The prototypes are only indications of how the code produced by Bison
5801uses @code{yyerror}. Bison-generated code always ignores the returned
5802value, so @code{yyerror} can return any type, including @code{void}.
5803Also, @code{yyerror} can be a variadic function; that is why the
5804message is always passed last.
5805
5806Traditionally @code{yyerror} returns an @code{int} that is always
5807ignored, but this is purely for historical reasons, and @code{void} is
5808preferable since it more accurately describes the return type for
5809@code{yyerror}.
93724f13 5810
bfa74976
RS
5811@vindex yynerrs
5812The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 5813reported so far. Normally this variable is global; but if you
704a47c4
AD
5814request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
5815then it is a local variable which only the actions can access.
bfa74976 5816
342b8b6e 5817@node Action Features
bfa74976
RS
5818@section Special Features for Use in Actions
5819@cindex summary, action features
5820@cindex action features summary
5821
5822Here is a table of Bison constructs, variables and macros that
5823are useful in actions.
5824
18b519c0 5825@deffn {Variable} $$
bfa74976
RS
5826Acts like a variable that contains the semantic value for the
5827grouping made by the current rule. @xref{Actions}.
18b519c0 5828@end deffn
bfa74976 5829
18b519c0 5830@deffn {Variable} $@var{n}
bfa74976
RS
5831Acts like a variable that contains the semantic value for the
5832@var{n}th component of the current rule. @xref{Actions}.
18b519c0 5833@end deffn
bfa74976 5834
18b519c0 5835@deffn {Variable} $<@var{typealt}>$
bfa74976 5836Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
5837specified by the @code{%union} declaration. @xref{Action Types, ,Data
5838Types of Values in Actions}.
18b519c0 5839@end deffn
bfa74976 5840
18b519c0 5841@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 5842Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 5843union specified by the @code{%union} declaration.
e0c471a9 5844@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 5845@end deffn
bfa74976 5846
18b519c0 5847@deffn {Macro} YYABORT;
bfa74976
RS
5848Return immediately from @code{yyparse}, indicating failure.
5849@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5850@end deffn
bfa74976 5851
18b519c0 5852@deffn {Macro} YYACCEPT;
bfa74976
RS
5853Return immediately from @code{yyparse}, indicating success.
5854@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5855@end deffn
bfa74976 5856
18b519c0 5857@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
5858@findex YYBACKUP
5859Unshift a token. This macro is allowed only for rules that reduce
742e4900 5860a single value, and only when there is no lookahead token.
c827f760 5861It is also disallowed in @acronym{GLR} parsers.
742e4900 5862It installs a lookahead token with token type @var{token} and
bfa74976
RS
5863semantic value @var{value}; then it discards the value that was
5864going to be reduced by this rule.
5865
5866If the macro is used when it is not valid, such as when there is
742e4900 5867a lookahead token already, then it reports a syntax error with
bfa74976
RS
5868a message @samp{cannot back up} and performs ordinary error
5869recovery.
5870
5871In either case, the rest of the action is not executed.
18b519c0 5872@end deffn
bfa74976 5873
18b519c0 5874@deffn {Macro} YYEMPTY
bfa74976 5875@vindex YYEMPTY
742e4900 5876Value stored in @code{yychar} when there is no lookahead token.
18b519c0 5877@end deffn
bfa74976 5878
32c29292
JD
5879@deffn {Macro} YYEOF
5880@vindex YYEOF
742e4900 5881Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
5882stream.
5883@end deffn
5884
18b519c0 5885@deffn {Macro} YYERROR;
bfa74976
RS
5886@findex YYERROR
5887Cause an immediate syntax error. This statement initiates error
5888recovery just as if the parser itself had detected an error; however, it
5889does not call @code{yyerror}, and does not print any message. If you
5890want to print an error message, call @code{yyerror} explicitly before
5891the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 5892@end deffn
bfa74976 5893
18b519c0 5894@deffn {Macro} YYRECOVERING
02103984
PE
5895@findex YYRECOVERING
5896The expression @code{YYRECOVERING ()} yields 1 when the parser
5897is recovering from a syntax error, and 0 otherwise.
bfa74976 5898@xref{Error Recovery}.
18b519c0 5899@end deffn
bfa74976 5900
18b519c0 5901@deffn {Variable} yychar
742e4900
JD
5902Variable containing either the lookahead token, or @code{YYEOF} when the
5903lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
5904has been performed so the next token is not yet known.
5905Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
5906Actions}).
742e4900 5907@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 5908@end deffn
bfa74976 5909
18b519c0 5910@deffn {Macro} yyclearin;
742e4900 5911Discard the current lookahead token. This is useful primarily in
32c29292
JD
5912error rules.
5913Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
5914Semantic Actions}).
5915@xref{Error Recovery}.
18b519c0 5916@end deffn
bfa74976 5917
18b519c0 5918@deffn {Macro} yyerrok;
bfa74976 5919Resume generating error messages immediately for subsequent syntax
13863333 5920errors. This is useful primarily in error rules.
bfa74976 5921@xref{Error Recovery}.
18b519c0 5922@end deffn
bfa74976 5923
32c29292 5924@deffn {Variable} yylloc
742e4900 5925Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
5926to @code{YYEMPTY} or @code{YYEOF}.
5927Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
5928Actions}).
5929@xref{Actions and Locations, ,Actions and Locations}.
5930@end deffn
5931
5932@deffn {Variable} yylval
742e4900 5933Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
5934not set to @code{YYEMPTY} or @code{YYEOF}.
5935Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
5936Actions}).
5937@xref{Actions, ,Actions}.
5938@end deffn
5939
18b519c0 5940@deffn {Value} @@$
847bf1f5 5941@findex @@$
95923bd6 5942Acts like a structure variable containing information on the textual location
847bf1f5
AD
5943of the grouping made by the current rule. @xref{Locations, ,
5944Tracking Locations}.
bfa74976 5945
847bf1f5
AD
5946@c Check if those paragraphs are still useful or not.
5947
5948@c @example
5949@c struct @{
5950@c int first_line, last_line;
5951@c int first_column, last_column;
5952@c @};
5953@c @end example
5954
5955@c Thus, to get the starting line number of the third component, you would
5956@c use @samp{@@3.first_line}.
bfa74976 5957
847bf1f5
AD
5958@c In order for the members of this structure to contain valid information,
5959@c you must make @code{yylex} supply this information about each token.
5960@c If you need only certain members, then @code{yylex} need only fill in
5961@c those members.
bfa74976 5962
847bf1f5 5963@c The use of this feature makes the parser noticeably slower.
18b519c0 5964@end deffn
847bf1f5 5965
18b519c0 5966@deffn {Value} @@@var{n}
847bf1f5 5967@findex @@@var{n}
95923bd6 5968Acts like a structure variable containing information on the textual location
847bf1f5
AD
5969of the @var{n}th component of the current rule. @xref{Locations, ,
5970Tracking Locations}.
18b519c0 5971@end deffn
bfa74976 5972
f7ab6a50
PE
5973@node Internationalization
5974@section Parser Internationalization
5975@cindex internationalization
5976@cindex i18n
5977@cindex NLS
5978@cindex gettext
5979@cindex bison-po
5980
5981A Bison-generated parser can print diagnostics, including error and
5982tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
5983also supports outputting diagnostics in the user's native language. To
5984make this work, the user should set the usual environment variables.
5985@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
5986For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
5987set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
5988encoding. The exact set of available locales depends on the user's
5989installation.
5990
5991The maintainer of a package that uses a Bison-generated parser enables
5992the internationalization of the parser's output through the following
5993steps. Here we assume a package that uses @acronym{GNU} Autoconf and
5994@acronym{GNU} Automake.
5995
5996@enumerate
5997@item
30757c8c 5998@cindex bison-i18n.m4
f7ab6a50
PE
5999Into the directory containing the @acronym{GNU} Autoconf macros used
6000by the package---often called @file{m4}---copy the
6001@file{bison-i18n.m4} file installed by Bison under
6002@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6003For example:
6004
6005@example
6006cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6007@end example
6008
6009@item
30757c8c
PE
6010@findex BISON_I18N
6011@vindex BISON_LOCALEDIR
6012@vindex YYENABLE_NLS
f7ab6a50
PE
6013In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6014invocation, add an invocation of @code{BISON_I18N}. This macro is
6015defined in the file @file{bison-i18n.m4} that you copied earlier. It
6016causes @samp{configure} to find the value of the
30757c8c
PE
6017@code{BISON_LOCALEDIR} variable, and it defines the source-language
6018symbol @code{YYENABLE_NLS} to enable translations in the
6019Bison-generated parser.
f7ab6a50
PE
6020
6021@item
6022In the @code{main} function of your program, designate the directory
6023containing Bison's runtime message catalog, through a call to
6024@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6025For example:
6026
6027@example
6028bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6029@end example
6030
6031Typically this appears after any other call @code{bindtextdomain
6032(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6033@samp{BISON_LOCALEDIR} to be defined as a string through the
6034@file{Makefile}.
6035
6036@item
6037In the @file{Makefile.am} that controls the compilation of the @code{main}
6038function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6039either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6040
6041@example
6042DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6043@end example
6044
6045or:
6046
6047@example
6048AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6049@end example
6050
6051@item
6052Finally, invoke the command @command{autoreconf} to generate the build
6053infrastructure.
6054@end enumerate
6055
bfa74976 6056
342b8b6e 6057@node Algorithm
13863333
AD
6058@chapter The Bison Parser Algorithm
6059@cindex Bison parser algorithm
bfa74976
RS
6060@cindex algorithm of parser
6061@cindex shifting
6062@cindex reduction
6063@cindex parser stack
6064@cindex stack, parser
6065
6066As Bison reads tokens, it pushes them onto a stack along with their
6067semantic values. The stack is called the @dfn{parser stack}. Pushing a
6068token is traditionally called @dfn{shifting}.
6069
6070For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6071@samp{3} to come. The stack will have four elements, one for each token
6072that was shifted.
6073
6074But the stack does not always have an element for each token read. When
6075the last @var{n} tokens and groupings shifted match the components of a
6076grammar rule, they can be combined according to that rule. This is called
6077@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6078single grouping whose symbol is the result (left hand side) of that rule.
6079Running the rule's action is part of the process of reduction, because this
6080is what computes the semantic value of the resulting grouping.
6081
6082For example, if the infix calculator's parser stack contains this:
6083
6084@example
60851 + 5 * 3
6086@end example
6087
6088@noindent
6089and the next input token is a newline character, then the last three
6090elements can be reduced to 15 via the rule:
6091
6092@example
6093expr: expr '*' expr;
6094@end example
6095
6096@noindent
6097Then the stack contains just these three elements:
6098
6099@example
61001 + 15
6101@end example
6102
6103@noindent
6104At this point, another reduction can be made, resulting in the single value
610516. Then the newline token can be shifted.
6106
6107The parser tries, by shifts and reductions, to reduce the entire input down
6108to a single grouping whose symbol is the grammar's start-symbol
6109(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6110
6111This kind of parser is known in the literature as a bottom-up parser.
6112
6113@menu
742e4900 6114* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6115* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6116* Precedence:: Operator precedence works by resolving conflicts.
6117* Contextual Precedence:: When an operator's precedence depends on context.
6118* Parser States:: The parser is a finite-state-machine with stack.
6119* Reduce/Reduce:: When two rules are applicable in the same situation.
f5f419de 6120* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6121* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6122* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6123@end menu
6124
742e4900
JD
6125@node Lookahead
6126@section Lookahead Tokens
6127@cindex lookahead token
bfa74976
RS
6128
6129The Bison parser does @emph{not} always reduce immediately as soon as the
6130last @var{n} tokens and groupings match a rule. This is because such a
6131simple strategy is inadequate to handle most languages. Instead, when a
6132reduction is possible, the parser sometimes ``looks ahead'' at the next
6133token in order to decide what to do.
6134
6135When a token is read, it is not immediately shifted; first it becomes the
742e4900 6136@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6137perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6138the lookahead token remains off to the side. When no more reductions
6139should take place, the lookahead token is shifted onto the stack. This
bfa74976 6140does not mean that all possible reductions have been done; depending on the
742e4900 6141token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6142application.
6143
742e4900 6144Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6145expressions which contain binary addition operators and postfix unary
6146factorial operators (@samp{!}), and allow parentheses for grouping.
6147
6148@example
6149@group
6150expr: term '+' expr
6151 | term
6152 ;
6153@end group
6154
6155@group
6156term: '(' expr ')'
6157 | term '!'
6158 | NUMBER
6159 ;
6160@end group
6161@end example
6162
6163Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6164should be done? If the following token is @samp{)}, then the first three
6165tokens must be reduced to form an @code{expr}. This is the only valid
6166course, because shifting the @samp{)} would produce a sequence of symbols
6167@w{@code{term ')'}}, and no rule allows this.
6168
6169If the following token is @samp{!}, then it must be shifted immediately so
6170that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6171parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6172@code{expr}. It would then be impossible to shift the @samp{!} because
6173doing so would produce on the stack the sequence of symbols @code{expr
6174'!'}. No rule allows that sequence.
6175
6176@vindex yychar
32c29292
JD
6177@vindex yylval
6178@vindex yylloc
742e4900 6179The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6180Its semantic value and location, if any, are stored in the variables
6181@code{yylval} and @code{yylloc}.
bfa74976
RS
6182@xref{Action Features, ,Special Features for Use in Actions}.
6183
342b8b6e 6184@node Shift/Reduce
bfa74976
RS
6185@section Shift/Reduce Conflicts
6186@cindex conflicts
6187@cindex shift/reduce conflicts
6188@cindex dangling @code{else}
6189@cindex @code{else}, dangling
6190
6191Suppose we are parsing a language which has if-then and if-then-else
6192statements, with a pair of rules like this:
6193
6194@example
6195@group
6196if_stmt:
6197 IF expr THEN stmt
6198 | IF expr THEN stmt ELSE stmt
6199 ;
6200@end group
6201@end example
6202
6203@noindent
6204Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6205terminal symbols for specific keyword tokens.
6206
742e4900 6207When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6208contents of the stack (assuming the input is valid) are just right for
6209reduction by the first rule. But it is also legitimate to shift the
6210@code{ELSE}, because that would lead to eventual reduction by the second
6211rule.
6212
6213This situation, where either a shift or a reduction would be valid, is
6214called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6215these conflicts by choosing to shift, unless otherwise directed by
6216operator precedence declarations. To see the reason for this, let's
6217contrast it with the other alternative.
6218
6219Since the parser prefers to shift the @code{ELSE}, the result is to attach
6220the else-clause to the innermost if-statement, making these two inputs
6221equivalent:
6222
6223@example
6224if x then if y then win (); else lose;
6225
6226if x then do; if y then win (); else lose; end;
6227@end example
6228
6229But if the parser chose to reduce when possible rather than shift, the
6230result would be to attach the else-clause to the outermost if-statement,
6231making these two inputs equivalent:
6232
6233@example
6234if x then if y then win (); else lose;
6235
6236if x then do; if y then win (); end; else lose;
6237@end example
6238
6239The conflict exists because the grammar as written is ambiguous: either
6240parsing of the simple nested if-statement is legitimate. The established
6241convention is that these ambiguities are resolved by attaching the
6242else-clause to the innermost if-statement; this is what Bison accomplishes
6243by choosing to shift rather than reduce. (It would ideally be cleaner to
6244write an unambiguous grammar, but that is very hard to do in this case.)
6245This particular ambiguity was first encountered in the specifications of
6246Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6247
6248To avoid warnings from Bison about predictable, legitimate shift/reduce
6249conflicts, use the @code{%expect @var{n}} declaration. There will be no
6250warning as long as the number of shift/reduce conflicts is exactly @var{n}.
6251@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6252
6253The definition of @code{if_stmt} above is solely to blame for the
6254conflict, but the conflict does not actually appear without additional
6255rules. Here is a complete Bison input file that actually manifests the
6256conflict:
6257
6258@example
6259@group
6260%token IF THEN ELSE variable
6261%%
6262@end group
6263@group
6264stmt: expr
6265 | if_stmt
6266 ;
6267@end group
6268
6269@group
6270if_stmt:
6271 IF expr THEN stmt
6272 | IF expr THEN stmt ELSE stmt
6273 ;
6274@end group
6275
6276expr: variable
6277 ;
6278@end example
6279
342b8b6e 6280@node Precedence
bfa74976
RS
6281@section Operator Precedence
6282@cindex operator precedence
6283@cindex precedence of operators
6284
6285Another situation where shift/reduce conflicts appear is in arithmetic
6286expressions. Here shifting is not always the preferred resolution; the
6287Bison declarations for operator precedence allow you to specify when to
6288shift and when to reduce.
6289
6290@menu
6291* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
6292* Using Precedence:: How to specify precedence and associativity.
6293* Precedence Only:: How to specify precedence only.
bfa74976
RS
6294* Precedence Examples:: How these features are used in the previous example.
6295* How Precedence:: How they work.
6296@end menu
6297
342b8b6e 6298@node Why Precedence
bfa74976
RS
6299@subsection When Precedence is Needed
6300
6301Consider the following ambiguous grammar fragment (ambiguous because the
6302input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6303
6304@example
6305@group
6306expr: expr '-' expr
6307 | expr '*' expr
6308 | expr '<' expr
6309 | '(' expr ')'
6310 @dots{}
6311 ;
6312@end group
6313@end example
6314
6315@noindent
6316Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6317should it reduce them via the rule for the subtraction operator? It
6318depends on the next token. Of course, if the next token is @samp{)}, we
6319must reduce; shifting is invalid because no single rule can reduce the
6320token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6321the next token is @samp{*} or @samp{<}, we have a choice: either
6322shifting or reduction would allow the parse to complete, but with
6323different results.
6324
6325To decide which one Bison should do, we must consider the results. If
6326the next operator token @var{op} is shifted, then it must be reduced
6327first in order to permit another opportunity to reduce the difference.
6328The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6329hand, if the subtraction is reduced before shifting @var{op}, the result
6330is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6331reduce should depend on the relative precedence of the operators
6332@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6333@samp{<}.
bfa74976
RS
6334
6335@cindex associativity
6336What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6337@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6338operators we prefer the former, which is called @dfn{left association}.
6339The latter alternative, @dfn{right association}, is desirable for
6340assignment operators. The choice of left or right association is a
6341matter of whether the parser chooses to shift or reduce when the stack
742e4900 6342contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6343makes right-associativity.
bfa74976 6344
342b8b6e 6345@node Using Precedence
bfa74976
RS
6346@subsection Specifying Operator Precedence
6347@findex %left
bfa74976 6348@findex %nonassoc
d78f0ac9
AD
6349@findex %precedence
6350@findex %right
bfa74976
RS
6351
6352Bison allows you to specify these choices with the operator precedence
6353declarations @code{%left} and @code{%right}. Each such declaration
6354contains a list of tokens, which are operators whose precedence and
6355associativity is being declared. The @code{%left} declaration makes all
6356those operators left-associative and the @code{%right} declaration makes
6357them right-associative. A third alternative is @code{%nonassoc}, which
6358declares that it is a syntax error to find the same operator twice ``in a
6359row''.
d78f0ac9
AD
6360The last alternative, @code{%precedence}, allows to define only
6361precedence and no associativity at all. As a result, any
6362associativity-related conflict that remains will be reported as an
6363compile-time error. The directive @code{%nonassoc} creates run-time
6364error: using the operator in a associative way is a syntax error. The
6365directive @code{%precedence} creates compile-time errors: an operator
6366@emph{can} be involved in an associativity-related conflict, contrary to
6367what expected the grammar author.
bfa74976
RS
6368
6369The relative precedence of different operators is controlled by the
d78f0ac9
AD
6370order in which they are declared. The first precedence/associativity
6371declaration in the file declares the operators whose
bfa74976
RS
6372precedence is lowest, the next such declaration declares the operators
6373whose precedence is a little higher, and so on.
6374
d78f0ac9
AD
6375@node Precedence Only
6376@subsection Specifying Precedence Only
6377@findex %precedence
6378
6379Since @acronym{POSIX} Yacc defines only @code{%left}, @code{%right}, and
6380@code{%nonassoc}, which all defines precedence and associativity, little
6381attention is paid to the fact that precedence cannot be defined without
6382defining associativity. Yet, sometimes, when trying to solve a
6383conflict, precedence suffices. In such a case, using @code{%left},
6384@code{%right}, or @code{%nonassoc} might hide future (associativity
6385related) conflicts that would remain hidden.
6386
6387The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
6388Conflicts}) can be solved explictly. This shift/reduce conflicts occurs
6389in the following situation, where the period denotes the current parsing
6390state:
6391
6392@example
6393if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
6394@end example
6395
6396The conflict involves the reduction of the rule @samp{IF expr THEN
6397stmt}, which precedence is by default that of its last token
6398(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
6399disambiguation (attach the @code{else} to the closest @code{if}),
6400shifting must be preferred, i.e., the precedence of @code{ELSE} must be
6401higher than that of @code{THEN}. But neither is expected to be involved
6402in an associativity related conflict, which can be specified as follows.
6403
6404@example
6405%precedence THEN
6406%precedence ELSE
6407@end example
6408
6409The unary-minus is another typical example where associativity is
6410usually over-specified, see @ref{Infix Calc, , Infix Notation
6411Calculator: @code{calc}}. The @code{%left} directive is traditionaly
6412used to declare the precedence of @code{NEG}, which is more than needed
6413since it also defines its associativity. While this is harmless in the
6414traditional example, who knows how @code{NEG} might be used in future
6415evolutions of the grammar@dots{}
6416
342b8b6e 6417@node Precedence Examples
bfa74976
RS
6418@subsection Precedence Examples
6419
6420In our example, we would want the following declarations:
6421
6422@example
6423%left '<'
6424%left '-'
6425%left '*'
6426@end example
6427
6428In a more complete example, which supports other operators as well, we
6429would declare them in groups of equal precedence. For example, @code{'+'} is
6430declared with @code{'-'}:
6431
6432@example
6433%left '<' '>' '=' NE LE GE
6434%left '+' '-'
6435%left '*' '/'
6436@end example
6437
6438@noindent
6439(Here @code{NE} and so on stand for the operators for ``not equal''
6440and so on. We assume that these tokens are more than one character long
6441and therefore are represented by names, not character literals.)
6442
342b8b6e 6443@node How Precedence
bfa74976
RS
6444@subsection How Precedence Works
6445
6446The first effect of the precedence declarations is to assign precedence
6447levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6448precedence levels to certain rules: each rule gets its precedence from
6449the last terminal symbol mentioned in the components. (You can also
6450specify explicitly the precedence of a rule. @xref{Contextual
6451Precedence, ,Context-Dependent Precedence}.)
6452
6453Finally, the resolution of conflicts works by comparing the precedence
742e4900 6454of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6455token's precedence is higher, the choice is to shift. If the rule's
6456precedence is higher, the choice is to reduce. If they have equal
6457precedence, the choice is made based on the associativity of that
6458precedence level. The verbose output file made by @samp{-v}
6459(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6460resolved.
bfa74976
RS
6461
6462Not all rules and not all tokens have precedence. If either the rule or
742e4900 6463the lookahead token has no precedence, then the default is to shift.
bfa74976 6464
342b8b6e 6465@node Contextual Precedence
bfa74976
RS
6466@section Context-Dependent Precedence
6467@cindex context-dependent precedence
6468@cindex unary operator precedence
6469@cindex precedence, context-dependent
6470@cindex precedence, unary operator
6471@findex %prec
6472
6473Often the precedence of an operator depends on the context. This sounds
6474outlandish at first, but it is really very common. For example, a minus
6475sign typically has a very high precedence as a unary operator, and a
6476somewhat lower precedence (lower than multiplication) as a binary operator.
6477
d78f0ac9
AD
6478The Bison precedence declarations
6479can only be used once for a given token; so a token has
bfa74976
RS
6480only one precedence declared in this way. For context-dependent
6481precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6482modifier for rules.
bfa74976
RS
6483
6484The @code{%prec} modifier declares the precedence of a particular rule by
6485specifying a terminal symbol whose precedence should be used for that rule.
6486It's not necessary for that symbol to appear otherwise in the rule. The
6487modifier's syntax is:
6488
6489@example
6490%prec @var{terminal-symbol}
6491@end example
6492
6493@noindent
6494and it is written after the components of the rule. Its effect is to
6495assign the rule the precedence of @var{terminal-symbol}, overriding
6496the precedence that would be deduced for it in the ordinary way. The
6497altered rule precedence then affects how conflicts involving that rule
6498are resolved (@pxref{Precedence, ,Operator Precedence}).
6499
6500Here is how @code{%prec} solves the problem of unary minus. First, declare
6501a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6502are no tokens of this type, but the symbol serves to stand for its
6503precedence:
6504
6505@example
6506@dots{}
6507%left '+' '-'
6508%left '*'
6509%left UMINUS
6510@end example
6511
6512Now the precedence of @code{UMINUS} can be used in specific rules:
6513
6514@example
6515@group
6516exp: @dots{}
6517 | exp '-' exp
6518 @dots{}
6519 | '-' exp %prec UMINUS
6520@end group
6521@end example
6522
91d2c560 6523@ifset defaultprec
39a06c25
PE
6524If you forget to append @code{%prec UMINUS} to the rule for unary
6525minus, Bison silently assumes that minus has its usual precedence.
6526This kind of problem can be tricky to debug, since one typically
6527discovers the mistake only by testing the code.
6528
22fccf95 6529The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6530this kind of problem systematically. It causes rules that lack a
6531@code{%prec} modifier to have no precedence, even if the last terminal
6532symbol mentioned in their components has a declared precedence.
6533
22fccf95 6534If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6535for all rules that participate in precedence conflict resolution.
6536Then you will see any shift/reduce conflict until you tell Bison how
6537to resolve it, either by changing your grammar or by adding an
6538explicit precedence. This will probably add declarations to the
6539grammar, but it helps to protect against incorrect rule precedences.
6540
22fccf95
PE
6541The effect of @code{%no-default-prec;} can be reversed by giving
6542@code{%default-prec;}, which is the default.
91d2c560 6543@end ifset
39a06c25 6544
342b8b6e 6545@node Parser States
bfa74976
RS
6546@section Parser States
6547@cindex finite-state machine
6548@cindex parser state
6549@cindex state (of parser)
6550
6551The function @code{yyparse} is implemented using a finite-state machine.
6552The values pushed on the parser stack are not simply token type codes; they
6553represent the entire sequence of terminal and nonterminal symbols at or
6554near the top of the stack. The current state collects all the information
6555about previous input which is relevant to deciding what to do next.
6556
742e4900
JD
6557Each time a lookahead token is read, the current parser state together
6558with the type of lookahead token are looked up in a table. This table
6559entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6560specifies the new parser state, which is pushed onto the top of the
6561parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6562This means that a certain number of tokens or groupings are taken off
6563the top of the stack, and replaced by one grouping. In other words,
6564that number of states are popped from the stack, and one new state is
6565pushed.
6566
742e4900 6567There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6568is erroneous in the current state. This causes error processing to begin
6569(@pxref{Error Recovery}).
6570
342b8b6e 6571@node Reduce/Reduce
bfa74976
RS
6572@section Reduce/Reduce Conflicts
6573@cindex reduce/reduce conflict
6574@cindex conflicts, reduce/reduce
6575
6576A reduce/reduce conflict occurs if there are two or more rules that apply
6577to the same sequence of input. This usually indicates a serious error
6578in the grammar.
6579
6580For example, here is an erroneous attempt to define a sequence
6581of zero or more @code{word} groupings.
6582
6583@example
6584sequence: /* empty */
6585 @{ printf ("empty sequence\n"); @}
6586 | maybeword
6587 | sequence word
6588 @{ printf ("added word %s\n", $2); @}
6589 ;
6590
6591maybeword: /* empty */
6592 @{ printf ("empty maybeword\n"); @}
6593 | word
6594 @{ printf ("single word %s\n", $1); @}
6595 ;
6596@end example
6597
6598@noindent
6599The error is an ambiguity: there is more than one way to parse a single
6600@code{word} into a @code{sequence}. It could be reduced to a
6601@code{maybeword} and then into a @code{sequence} via the second rule.
6602Alternatively, nothing-at-all could be reduced into a @code{sequence}
6603via the first rule, and this could be combined with the @code{word}
6604using the third rule for @code{sequence}.
6605
6606There is also more than one way to reduce nothing-at-all into a
6607@code{sequence}. This can be done directly via the first rule,
6608or indirectly via @code{maybeword} and then the second rule.
6609
6610You might think that this is a distinction without a difference, because it
6611does not change whether any particular input is valid or not. But it does
6612affect which actions are run. One parsing order runs the second rule's
6613action; the other runs the first rule's action and the third rule's action.
6614In this example, the output of the program changes.
6615
6616Bison resolves a reduce/reduce conflict by choosing to use the rule that
6617appears first in the grammar, but it is very risky to rely on this. Every
6618reduce/reduce conflict must be studied and usually eliminated. Here is the
6619proper way to define @code{sequence}:
6620
6621@example
6622sequence: /* empty */
6623 @{ printf ("empty sequence\n"); @}
6624 | sequence word
6625 @{ printf ("added word %s\n", $2); @}
6626 ;
6627@end example
6628
6629Here is another common error that yields a reduce/reduce conflict:
6630
6631@example
6632sequence: /* empty */
6633 | sequence words
6634 | sequence redirects
6635 ;
6636
6637words: /* empty */
6638 | words word
6639 ;
6640
6641redirects:/* empty */
6642 | redirects redirect
6643 ;
6644@end example
6645
6646@noindent
6647The intention here is to define a sequence which can contain either
6648@code{word} or @code{redirect} groupings. The individual definitions of
6649@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6650three together make a subtle ambiguity: even an empty input can be parsed
6651in infinitely many ways!
6652
6653Consider: nothing-at-all could be a @code{words}. Or it could be two
6654@code{words} in a row, or three, or any number. It could equally well be a
6655@code{redirects}, or two, or any number. Or it could be a @code{words}
6656followed by three @code{redirects} and another @code{words}. And so on.
6657
6658Here are two ways to correct these rules. First, to make it a single level
6659of sequence:
6660
6661@example
6662sequence: /* empty */
6663 | sequence word
6664 | sequence redirect
6665 ;
6666@end example
6667
6668Second, to prevent either a @code{words} or a @code{redirects}
6669from being empty:
6670
6671@example
6672sequence: /* empty */
6673 | sequence words
6674 | sequence redirects
6675 ;
6676
6677words: word
6678 | words word
6679 ;
6680
6681redirects:redirect
6682 | redirects redirect
6683 ;
6684@end example
6685
342b8b6e 6686@node Mystery Conflicts
bfa74976
RS
6687@section Mysterious Reduce/Reduce Conflicts
6688
6689Sometimes reduce/reduce conflicts can occur that don't look warranted.
6690Here is an example:
6691
6692@example
6693@group
6694%token ID
6695
6696%%
6697def: param_spec return_spec ','
6698 ;
6699param_spec:
6700 type
6701 | name_list ':' type
6702 ;
6703@end group
6704@group
6705return_spec:
6706 type
6707 | name ':' type
6708 ;
6709@end group
6710@group
6711type: ID
6712 ;
6713@end group
6714@group
6715name: ID
6716 ;
6717name_list:
6718 name
6719 | name ',' name_list
6720 ;
6721@end group
6722@end example
6723
6724It would seem that this grammar can be parsed with only a single token
742e4900 6725of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6726a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 6727@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 6728
c827f760
PE
6729@cindex @acronym{LR}(1)
6730@cindex @acronym{LALR}(1)
bfa74976 6731However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
6732@acronym{LR}(1) grammars. In this grammar, two contexts, that after
6733an @code{ID}
bfa74976
RS
6734at the beginning of a @code{param_spec} and likewise at the beginning of
6735a @code{return_spec}, are similar enough that Bison assumes they are the
6736same. They appear similar because the same set of rules would be
6737active---the rule for reducing to a @code{name} and that for reducing to
6738a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6739that the rules would require different lookahead tokens in the two
bfa74976
RS
6740contexts, so it makes a single parser state for them both. Combining
6741the two contexts causes a conflict later. In parser terminology, this
c827f760 6742occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
6743
6744In general, it is better to fix deficiencies than to document them. But
6745this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
6746generators that can handle @acronym{LR}(1) grammars are hard to write
6747and tend to
bfa74976
RS
6748produce parsers that are very large. In practice, Bison is more useful
6749as it is now.
6750
6751When the problem arises, you can often fix it by identifying the two
a220f555
MA
6752parser states that are being confused, and adding something to make them
6753look distinct. In the above example, adding one rule to
bfa74976
RS
6754@code{return_spec} as follows makes the problem go away:
6755
6756@example
6757@group
6758%token BOGUS
6759@dots{}
6760%%
6761@dots{}
6762return_spec:
6763 type
6764 | name ':' type
6765 /* This rule is never used. */
6766 | ID BOGUS
6767 ;
6768@end group
6769@end example
6770
6771This corrects the problem because it introduces the possibility of an
6772additional active rule in the context after the @code{ID} at the beginning of
6773@code{return_spec}. This rule is not active in the corresponding context
6774in a @code{param_spec}, so the two contexts receive distinct parser states.
6775As long as the token @code{BOGUS} is never generated by @code{yylex},
6776the added rule cannot alter the way actual input is parsed.
6777
6778In this particular example, there is another way to solve the problem:
6779rewrite the rule for @code{return_spec} to use @code{ID} directly
6780instead of via @code{name}. This also causes the two confusing
6781contexts to have different sets of active rules, because the one for
6782@code{return_spec} activates the altered rule for @code{return_spec}
6783rather than the one for @code{name}.
6784
6785@example
6786param_spec:
6787 type
6788 | name_list ':' type
6789 ;
6790return_spec:
6791 type
6792 | ID ':' type
6793 ;
6794@end example
6795
e054b190
PE
6796For a more detailed exposition of @acronym{LALR}(1) parsers and parser
6797generators, please see:
6798Frank DeRemer and Thomas Pennello, Efficient Computation of
6799@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
6800Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
6801pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
6802
fae437e8 6803@node Generalized LR Parsing
c827f760
PE
6804@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
6805@cindex @acronym{GLR} parsing
6806@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 6807@cindex ambiguous grammars
9d9b8b70 6808@cindex nondeterministic parsing
676385e2 6809
fae437e8
AD
6810Bison produces @emph{deterministic} parsers that choose uniquely
6811when to reduce and which reduction to apply
742e4900 6812based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
6813As a result, normal Bison handles a proper subset of the family of
6814context-free languages.
fae437e8 6815Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
6816sequence of reductions cannot have deterministic parsers in this sense.
6817The same is true of languages that require more than one symbol of
742e4900 6818lookahead, since the parser lacks the information necessary to make a
676385e2 6819decision at the point it must be made in a shift-reduce parser.
fae437e8 6820Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
6821there are languages where Bison's particular choice of how to
6822summarize the input seen so far loses necessary information.
6823
6824When you use the @samp{%glr-parser} declaration in your grammar file,
6825Bison generates a parser that uses a different algorithm, called
c827f760
PE
6826Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
6827parser uses the same basic
676385e2
PH
6828algorithm for parsing as an ordinary Bison parser, but behaves
6829differently in cases where there is a shift-reduce conflict that has not
fae437e8 6830been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
6831reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
6832situation, it
fae437e8 6833effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
6834shift or reduction. These parsers then proceed as usual, consuming
6835tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 6836and split further, with the result that instead of a sequence of states,
c827f760 6837a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
6838
6839In effect, each stack represents a guess as to what the proper parse
6840is. Additional input may indicate that a guess was wrong, in which case
6841the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 6842actions generated in each stack are saved, rather than being executed
676385e2 6843immediately. When a stack disappears, its saved semantic actions never
fae437e8 6844get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
6845their sets of semantic actions are both saved with the state that
6846results from the reduction. We say that two stacks are equivalent
fae437e8 6847when they both represent the same sequence of states,
676385e2
PH
6848and each pair of corresponding states represents a
6849grammar symbol that produces the same segment of the input token
6850stream.
6851
6852Whenever the parser makes a transition from having multiple
c827f760 6853states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
6854algorithm, after resolving and executing the saved-up actions.
6855At this transition, some of the states on the stack will have semantic
6856values that are sets (actually multisets) of possible actions. The
6857parser tries to pick one of the actions by first finding one whose rule
6858has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 6859declaration. Otherwise, if the alternative actions are not ordered by
676385e2 6860precedence, but there the same merging function is declared for both
fae437e8 6861rules by the @samp{%merge} declaration,
676385e2
PH
6862Bison resolves and evaluates both and then calls the merge function on
6863the result. Otherwise, it reports an ambiguity.
6864
c827f760
PE
6865It is possible to use a data structure for the @acronym{GLR} parsing tree that
6866permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
6867size of the input), any unambiguous (not necessarily
6868@acronym{LALR}(1)) grammar in
fae437e8 6869quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
6870context-free grammar in cubic worst-case time. However, Bison currently
6871uses a simpler data structure that requires time proportional to the
6872length of the input times the maximum number of stacks required for any
9d9b8b70 6873prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
6874grammars can require exponential time and space to process. Such badly
6875behaving examples, however, are not generally of practical interest.
9d9b8b70 6876Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 6877doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 6878structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
6879grammar, in particular, it is only slightly slower than with the default
6880Bison parser.
6881
fa7e68c3 6882For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
6883Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
6884Generalised @acronym{LR} Parsers, Royal Holloway, University of
6885London, Department of Computer Science, TR-00-12,
6886@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
6887(2000-12-24).
6888
1a059451
PE
6889@node Memory Management
6890@section Memory Management, and How to Avoid Memory Exhaustion
6891@cindex memory exhaustion
6892@cindex memory management
bfa74976
RS
6893@cindex stack overflow
6894@cindex parser stack overflow
6895@cindex overflow of parser stack
6896
1a059451 6897The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 6898not reduced. When this happens, the parser function @code{yyparse}
1a059451 6899calls @code{yyerror} and then returns 2.
bfa74976 6900
c827f760 6901Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
6902usually results from using a right recursion instead of a left
6903recursion, @xref{Recursion, ,Recursive Rules}.
6904
bfa74976
RS
6905@vindex YYMAXDEPTH
6906By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 6907parser stack can become before memory is exhausted. Define the
bfa74976
RS
6908macro with a value that is an integer. This value is the maximum number
6909of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
6910
6911The stack space allowed is not necessarily allocated. If you specify a
1a059451 6912large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
6913stack at first, and then makes it bigger by stages as needed. This
6914increasing allocation happens automatically and silently. Therefore,
6915you do not need to make @code{YYMAXDEPTH} painfully small merely to save
6916space for ordinary inputs that do not need much stack.
6917
d7e14fc0
PE
6918However, do not allow @code{YYMAXDEPTH} to be a value so large that
6919arithmetic overflow could occur when calculating the size of the stack
6920space. Also, do not allow @code{YYMAXDEPTH} to be less than
6921@code{YYINITDEPTH}.
6922
bfa74976
RS
6923@cindex default stack limit
6924The default value of @code{YYMAXDEPTH}, if you do not define it, is
692510000.
6926
6927@vindex YYINITDEPTH
6928You can control how much stack is allocated initially by defining the
d7e14fc0
PE
6929macro @code{YYINITDEPTH} to a positive integer. For the C
6930@acronym{LALR}(1) parser, this value must be a compile-time constant
6931unless you are assuming C99 or some other target language or compiler
6932that allows variable-length arrays. The default is 200.
6933
1a059451 6934Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 6935
d1a1114f 6936@c FIXME: C++ output.
c827f760 6937Because of semantical differences between C and C++, the
1a059451
PE
6938@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
6939by C++ compilers. In this precise case (compiling a C parser as C++) you are
6940suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
6941this deficiency in a future release.
d1a1114f 6942
342b8b6e 6943@node Error Recovery
bfa74976
RS
6944@chapter Error Recovery
6945@cindex error recovery
6946@cindex recovery from errors
6947
6e649e65 6948It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
6949error. For example, a compiler should recover sufficiently to parse the
6950rest of the input file and check it for errors; a calculator should accept
6951another expression.
6952
6953In a simple interactive command parser where each input is one line, it may
6954be sufficient to allow @code{yyparse} to return 1 on error and have the
6955caller ignore the rest of the input line when that happens (and then call
6956@code{yyparse} again). But this is inadequate for a compiler, because it
6957forgets all the syntactic context leading up to the error. A syntax error
6958deep within a function in the compiler input should not cause the compiler
6959to treat the following line like the beginning of a source file.
6960
6961@findex error
6962You can define how to recover from a syntax error by writing rules to
6963recognize the special token @code{error}. This is a terminal symbol that
6964is always defined (you need not declare it) and reserved for error
6965handling. The Bison parser generates an @code{error} token whenever a
6966syntax error happens; if you have provided a rule to recognize this token
13863333 6967in the current context, the parse can continue.
bfa74976
RS
6968
6969For example:
6970
6971@example
6972stmnts: /* empty string */
6973 | stmnts '\n'
6974 | stmnts exp '\n'
6975 | stmnts error '\n'
6976@end example
6977
6978The fourth rule in this example says that an error followed by a newline
6979makes a valid addition to any @code{stmnts}.
6980
6981What happens if a syntax error occurs in the middle of an @code{exp}? The
6982error recovery rule, interpreted strictly, applies to the precise sequence
6983of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
6984the middle of an @code{exp}, there will probably be some additional tokens
6985and subexpressions on the stack after the last @code{stmnts}, and there
6986will be tokens to read before the next newline. So the rule is not
6987applicable in the ordinary way.
6988
6989But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
6990the semantic context and part of the input. First it discards states
6991and objects from the stack until it gets back to a state in which the
bfa74976 6992@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
6993already parsed are discarded, back to the last complete @code{stmnts}.)
6994At this point the @code{error} token can be shifted. Then, if the old
742e4900 6995lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 6996tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
6997this example, Bison reads and discards input until the next newline so
6998that the fourth rule can apply. Note that discarded symbols are
6999possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7000Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7001
7002The choice of error rules in the grammar is a choice of strategies for
7003error recovery. A simple and useful strategy is simply to skip the rest of
7004the current input line or current statement if an error is detected:
7005
7006@example
72d2299c 7007stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7008@end example
7009
7010It is also useful to recover to the matching close-delimiter of an
7011opening-delimiter that has already been parsed. Otherwise the
7012close-delimiter will probably appear to be unmatched, and generate another,
7013spurious error message:
7014
7015@example
7016primary: '(' expr ')'
7017 | '(' error ')'
7018 @dots{}
7019 ;
7020@end example
7021
7022Error recovery strategies are necessarily guesses. When they guess wrong,
7023one syntax error often leads to another. In the above example, the error
7024recovery rule guesses that an error is due to bad input within one
7025@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7026middle of a valid @code{stmnt}. After the error recovery rule recovers
7027from the first error, another syntax error will be found straightaway,
7028since the text following the spurious semicolon is also an invalid
7029@code{stmnt}.
7030
7031To prevent an outpouring of error messages, the parser will output no error
7032message for another syntax error that happens shortly after the first; only
7033after three consecutive input tokens have been successfully shifted will
7034error messages resume.
7035
7036Note that rules which accept the @code{error} token may have actions, just
7037as any other rules can.
7038
7039@findex yyerrok
7040You can make error messages resume immediately by using the macro
7041@code{yyerrok} in an action. If you do this in the error rule's action, no
7042error messages will be suppressed. This macro requires no arguments;
7043@samp{yyerrok;} is a valid C statement.
7044
7045@findex yyclearin
742e4900 7046The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7047this is unacceptable, then the macro @code{yyclearin} may be used to clear
7048this token. Write the statement @samp{yyclearin;} in the error rule's
7049action.
32c29292 7050@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7051
6e649e65 7052For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7053called that advances the input stream to some point where parsing should
7054once again commence. The next symbol returned by the lexical scanner is
742e4900 7055probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7056with @samp{yyclearin;}.
7057
7058@vindex YYRECOVERING
02103984
PE
7059The expression @code{YYRECOVERING ()} yields 1 when the parser
7060is recovering from a syntax error, and 0 otherwise.
7061Syntax error diagnostics are suppressed while recovering from a syntax
7062error.
bfa74976 7063
342b8b6e 7064@node Context Dependency
bfa74976
RS
7065@chapter Handling Context Dependencies
7066
7067The Bison paradigm is to parse tokens first, then group them into larger
7068syntactic units. In many languages, the meaning of a token is affected by
7069its context. Although this violates the Bison paradigm, certain techniques
7070(known as @dfn{kludges}) may enable you to write Bison parsers for such
7071languages.
7072
7073@menu
7074* Semantic Tokens:: Token parsing can depend on the semantic context.
7075* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7076* Tie-in Recovery:: Lexical tie-ins have implications for how
7077 error recovery rules must be written.
7078@end menu
7079
7080(Actually, ``kludge'' means any technique that gets its job done but is
7081neither clean nor robust.)
7082
342b8b6e 7083@node Semantic Tokens
bfa74976
RS
7084@section Semantic Info in Token Types
7085
7086The C language has a context dependency: the way an identifier is used
7087depends on what its current meaning is. For example, consider this:
7088
7089@example
7090foo (x);
7091@end example
7092
7093This looks like a function call statement, but if @code{foo} is a typedef
7094name, then this is actually a declaration of @code{x}. How can a Bison
7095parser for C decide how to parse this input?
7096
c827f760 7097The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
7098@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7099identifier, it looks up the current declaration of the identifier in order
7100to decide which token type to return: @code{TYPENAME} if the identifier is
7101declared as a typedef, @code{IDENTIFIER} otherwise.
7102
7103The grammar rules can then express the context dependency by the choice of
7104token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7105but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7106@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7107is @emph{not} significant, such as in declarations that can shadow a
7108typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7109accepted---there is one rule for each of the two token types.
7110
7111This technique is simple to use if the decision of which kinds of
7112identifiers to allow is made at a place close to where the identifier is
7113parsed. But in C this is not always so: C allows a declaration to
7114redeclare a typedef name provided an explicit type has been specified
7115earlier:
7116
7117@example
3a4f411f
PE
7118typedef int foo, bar;
7119int baz (void)
7120@{
7121 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7122 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7123 return foo (bar);
7124@}
bfa74976
RS
7125@end example
7126
7127Unfortunately, the name being declared is separated from the declaration
7128construct itself by a complicated syntactic structure---the ``declarator''.
7129
9ecbd125 7130As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7131all the nonterminal names changed: once for parsing a declaration in
7132which a typedef name can be redefined, and once for parsing a
7133declaration in which that can't be done. Here is a part of the
7134duplication, with actions omitted for brevity:
bfa74976
RS
7135
7136@example
7137initdcl:
7138 declarator maybeasm '='
7139 init
7140 | declarator maybeasm
7141 ;
7142
7143notype_initdcl:
7144 notype_declarator maybeasm '='
7145 init
7146 | notype_declarator maybeasm
7147 ;
7148@end example
7149
7150@noindent
7151Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7152cannot. The distinction between @code{declarator} and
7153@code{notype_declarator} is the same sort of thing.
7154
7155There is some similarity between this technique and a lexical tie-in
7156(described next), in that information which alters the lexical analysis is
7157changed during parsing by other parts of the program. The difference is
7158here the information is global, and is used for other purposes in the
7159program. A true lexical tie-in has a special-purpose flag controlled by
7160the syntactic context.
7161
342b8b6e 7162@node Lexical Tie-ins
bfa74976
RS
7163@section Lexical Tie-ins
7164@cindex lexical tie-in
7165
7166One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7167which is set by Bison actions, whose purpose is to alter the way tokens are
7168parsed.
7169
7170For example, suppose we have a language vaguely like C, but with a special
7171construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7172an expression in parentheses in which all integers are hexadecimal. In
7173particular, the token @samp{a1b} must be treated as an integer rather than
7174as an identifier if it appears in that context. Here is how you can do it:
7175
7176@example
7177@group
7178%@{
38a92d50
PE
7179 int hexflag;
7180 int yylex (void);
7181 void yyerror (char const *);
bfa74976
RS
7182%@}
7183%%
7184@dots{}
7185@end group
7186@group
7187expr: IDENTIFIER
7188 | constant
7189 | HEX '('
7190 @{ hexflag = 1; @}
7191 expr ')'
7192 @{ hexflag = 0;
7193 $$ = $4; @}
7194 | expr '+' expr
7195 @{ $$ = make_sum ($1, $3); @}
7196 @dots{}
7197 ;
7198@end group
7199
7200@group
7201constant:
7202 INTEGER
7203 | STRING
7204 ;
7205@end group
7206@end example
7207
7208@noindent
7209Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7210it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7211with letters are parsed as integers if possible.
7212
342b8b6e
AD
7213The declaration of @code{hexflag} shown in the prologue of the parser file
7214is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 7215You must also write the code in @code{yylex} to obey the flag.
bfa74976 7216
342b8b6e 7217@node Tie-in Recovery
bfa74976
RS
7218@section Lexical Tie-ins and Error Recovery
7219
7220Lexical tie-ins make strict demands on any error recovery rules you have.
7221@xref{Error Recovery}.
7222
7223The reason for this is that the purpose of an error recovery rule is to
7224abort the parsing of one construct and resume in some larger construct.
7225For example, in C-like languages, a typical error recovery rule is to skip
7226tokens until the next semicolon, and then start a new statement, like this:
7227
7228@example
7229stmt: expr ';'
7230 | IF '(' expr ')' stmt @{ @dots{} @}
7231 @dots{}
7232 error ';'
7233 @{ hexflag = 0; @}
7234 ;
7235@end example
7236
7237If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7238construct, this error rule will apply, and then the action for the
7239completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7240remain set for the entire rest of the input, or until the next @code{hex}
7241keyword, causing identifiers to be misinterpreted as integers.
7242
7243To avoid this problem the error recovery rule itself clears @code{hexflag}.
7244
7245There may also be an error recovery rule that works within expressions.
7246For example, there could be a rule which applies within parentheses
7247and skips to the close-parenthesis:
7248
7249@example
7250@group
7251expr: @dots{}
7252 | '(' expr ')'
7253 @{ $$ = $2; @}
7254 | '(' error ')'
7255 @dots{}
7256@end group
7257@end example
7258
7259If this rule acts within the @code{hex} construct, it is not going to abort
7260that construct (since it applies to an inner level of parentheses within
7261the construct). Therefore, it should not clear the flag: the rest of
7262the @code{hex} construct should be parsed with the flag still in effect.
7263
7264What if there is an error recovery rule which might abort out of the
7265@code{hex} construct or might not, depending on circumstances? There is no
7266way you can write the action to determine whether a @code{hex} construct is
7267being aborted or not. So if you are using a lexical tie-in, you had better
7268make sure your error recovery rules are not of this kind. Each rule must
7269be such that you can be sure that it always will, or always won't, have to
7270clear the flag.
7271
ec3bc396
AD
7272@c ================================================== Debugging Your Parser
7273
342b8b6e 7274@node Debugging
bfa74976 7275@chapter Debugging Your Parser
ec3bc396
AD
7276
7277Developing a parser can be a challenge, especially if you don't
7278understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7279Algorithm}). Even so, sometimes a detailed description of the automaton
7280can help (@pxref{Understanding, , Understanding Your Parser}), or
7281tracing the execution of the parser can give some insight on why it
7282behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7283
7284@menu
7285* Understanding:: Understanding the structure of your parser.
7286* Tracing:: Tracing the execution of your parser.
7287@end menu
7288
7289@node Understanding
7290@section Understanding Your Parser
7291
7292As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7293Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7294frequent than one would hope), looking at this automaton is required to
7295tune or simply fix a parser. Bison provides two different
35fe0834 7296representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7297
7298The textual file is generated when the options @option{--report} or
7299@option{--verbose} are specified, see @xref{Invocation, , Invoking
7300Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
7301the parser output file name, and adding @samp{.output} instead.
7302Therefore, if the input file is @file{foo.y}, then the parser file is
7303called @file{foo.tab.c} by default. As a consequence, the verbose
7304output file is called @file{foo.output}.
7305
7306The following grammar file, @file{calc.y}, will be used in the sequel:
7307
7308@example
7309%token NUM STR
7310%left '+' '-'
7311%left '*'
7312%%
7313exp: exp '+' exp
7314 | exp '-' exp
7315 | exp '*' exp
7316 | exp '/' exp
7317 | NUM
7318 ;
7319useless: STR;
7320%%
7321@end example
7322
88bce5a2
AD
7323@command{bison} reports:
7324
7325@example
cff03fb2
JD
7326calc.y: warning: 1 nonterminal and 1 rule useless in grammar
7327calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7328calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7329calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7330@end example
7331
7332When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7333creates a file @file{calc.output} with contents detailed below. The
7334order of the output and the exact presentation might vary, but the
7335interpretation is the same.
ec3bc396
AD
7336
7337The first section includes details on conflicts that were solved thanks
7338to precedence and/or associativity:
7339
7340@example
7341Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7342Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7343Conflict in state 8 between rule 2 and token '*' resolved as shift.
7344@exdent @dots{}
7345@end example
7346
7347@noindent
7348The next section lists states that still have conflicts.
7349
7350@example
5a99098d
PE
7351State 8 conflicts: 1 shift/reduce
7352State 9 conflicts: 1 shift/reduce
7353State 10 conflicts: 1 shift/reduce
7354State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7355@end example
7356
7357@noindent
7358@cindex token, useless
7359@cindex useless token
7360@cindex nonterminal, useless
7361@cindex useless nonterminal
7362@cindex rule, useless
7363@cindex useless rule
7364The next section reports useless tokens, nonterminal and rules. Useless
7365nonterminals and rules are removed in order to produce a smaller parser,
7366but useless tokens are preserved, since they might be used by the
d80fb37a 7367scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7368below):
7369
7370@example
d80fb37a 7371Nonterminals useless in grammar:
ec3bc396
AD
7372 useless
7373
d80fb37a 7374Terminals unused in grammar:
ec3bc396
AD
7375 STR
7376
cff03fb2 7377Rules useless in grammar:
ec3bc396
AD
7378#6 useless: STR;
7379@end example
7380
7381@noindent
7382The next section reproduces the exact grammar that Bison used:
7383
7384@example
7385Grammar
7386
7387 Number, Line, Rule
88bce5a2 7388 0 5 $accept -> exp $end
ec3bc396
AD
7389 1 5 exp -> exp '+' exp
7390 2 6 exp -> exp '-' exp
7391 3 7 exp -> exp '*' exp
7392 4 8 exp -> exp '/' exp
7393 5 9 exp -> NUM
7394@end example
7395
7396@noindent
7397and reports the uses of the symbols:
7398
7399@example
7400Terminals, with rules where they appear
7401
88bce5a2 7402$end (0) 0
ec3bc396
AD
7403'*' (42) 3
7404'+' (43) 1
7405'-' (45) 2
7406'/' (47) 4
7407error (256)
7408NUM (258) 5
7409
7410Nonterminals, with rules where they appear
7411
88bce5a2 7412$accept (8)
ec3bc396
AD
7413 on left: 0
7414exp (9)
7415 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7416@end example
7417
7418@noindent
7419@cindex item
7420@cindex pointed rule
7421@cindex rule, pointed
7422Bison then proceeds onto the automaton itself, describing each state
7423with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7424item is a production rule together with a point (marked by @samp{.})
7425that the input cursor.
7426
7427@example
7428state 0
7429
88bce5a2 7430 $accept -> . exp $ (rule 0)
ec3bc396 7431
2a8d363a 7432 NUM shift, and go to state 1
ec3bc396 7433
2a8d363a 7434 exp go to state 2
ec3bc396
AD
7435@end example
7436
7437This reads as follows: ``state 0 corresponds to being at the very
7438beginning of the parsing, in the initial rule, right before the start
7439symbol (here, @code{exp}). When the parser returns to this state right
7440after having reduced a rule that produced an @code{exp}, the control
7441flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7442symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7443the parse stack, and the control flow jumps to state 1. Any other
742e4900 7444lookahead triggers a syntax error.''
ec3bc396
AD
7445
7446@cindex core, item set
7447@cindex item set core
7448@cindex kernel, item set
7449@cindex item set core
7450Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7451report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7452at the beginning of any rule deriving an @code{exp}. By default Bison
7453reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7454you want to see more detail you can invoke @command{bison} with
7455@option{--report=itemset} to list all the items, include those that can
7456be derived:
7457
7458@example
7459state 0
7460
88bce5a2 7461 $accept -> . exp $ (rule 0)
ec3bc396
AD
7462 exp -> . exp '+' exp (rule 1)
7463 exp -> . exp '-' exp (rule 2)
7464 exp -> . exp '*' exp (rule 3)
7465 exp -> . exp '/' exp (rule 4)
7466 exp -> . NUM (rule 5)
7467
7468 NUM shift, and go to state 1
7469
7470 exp go to state 2
7471@end example
7472
7473@noindent
7474In the state 1...
7475
7476@example
7477state 1
7478
7479 exp -> NUM . (rule 5)
7480
2a8d363a 7481 $default reduce using rule 5 (exp)
ec3bc396
AD
7482@end example
7483
7484@noindent
742e4900 7485the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7486(@samp{$default}), the parser will reduce it. If it was coming from
7487state 0, then, after this reduction it will return to state 0, and will
7488jump to state 2 (@samp{exp: go to state 2}).
7489
7490@example
7491state 2
7492
88bce5a2 7493 $accept -> exp . $ (rule 0)
ec3bc396
AD
7494 exp -> exp . '+' exp (rule 1)
7495 exp -> exp . '-' exp (rule 2)
7496 exp -> exp . '*' exp (rule 3)
7497 exp -> exp . '/' exp (rule 4)
7498
2a8d363a
AD
7499 $ shift, and go to state 3
7500 '+' shift, and go to state 4
7501 '-' shift, and go to state 5
7502 '*' shift, and go to state 6
7503 '/' shift, and go to state 7
ec3bc396
AD
7504@end example
7505
7506@noindent
7507In state 2, the automaton can only shift a symbol. For instance,
742e4900 7508because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
7509@samp{+}, it will be shifted on the parse stack, and the automaton
7510control will jump to state 4, corresponding to the item @samp{exp -> exp
7511'+' . exp}. Since there is no default action, any other token than
6e649e65 7512those listed above will trigger a syntax error.
ec3bc396
AD
7513
7514The state 3 is named the @dfn{final state}, or the @dfn{accepting
7515state}:
7516
7517@example
7518state 3
7519
88bce5a2 7520 $accept -> exp $ . (rule 0)
ec3bc396 7521
2a8d363a 7522 $default accept
ec3bc396
AD
7523@end example
7524
7525@noindent
7526the initial rule is completed (the start symbol and the end
7527of input were read), the parsing exits successfully.
7528
7529The interpretation of states 4 to 7 is straightforward, and is left to
7530the reader.
7531
7532@example
7533state 4
7534
7535 exp -> exp '+' . exp (rule 1)
7536
2a8d363a 7537 NUM shift, and go to state 1
ec3bc396 7538
2a8d363a 7539 exp go to state 8
ec3bc396
AD
7540
7541state 5
7542
7543 exp -> exp '-' . exp (rule 2)
7544
2a8d363a 7545 NUM shift, and go to state 1
ec3bc396 7546
2a8d363a 7547 exp go to state 9
ec3bc396
AD
7548
7549state 6
7550
7551 exp -> exp '*' . exp (rule 3)
7552
2a8d363a 7553 NUM shift, and go to state 1
ec3bc396 7554
2a8d363a 7555 exp go to state 10
ec3bc396
AD
7556
7557state 7
7558
7559 exp -> exp '/' . exp (rule 4)
7560
2a8d363a 7561 NUM shift, and go to state 1
ec3bc396 7562
2a8d363a 7563 exp go to state 11
ec3bc396
AD
7564@end example
7565
5a99098d
PE
7566As was announced in beginning of the report, @samp{State 8 conflicts:
75671 shift/reduce}:
ec3bc396
AD
7568
7569@example
7570state 8
7571
7572 exp -> exp . '+' exp (rule 1)
7573 exp -> exp '+' exp . (rule 1)
7574 exp -> exp . '-' exp (rule 2)
7575 exp -> exp . '*' exp (rule 3)
7576 exp -> exp . '/' exp (rule 4)
7577
2a8d363a
AD
7578 '*' shift, and go to state 6
7579 '/' shift, and go to state 7
ec3bc396 7580
2a8d363a
AD
7581 '/' [reduce using rule 1 (exp)]
7582 $default reduce using rule 1 (exp)
ec3bc396
AD
7583@end example
7584
742e4900 7585Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
7586either shifting (and going to state 7), or reducing rule 1. The
7587conflict means that either the grammar is ambiguous, or the parser lacks
7588information to make the right decision. Indeed the grammar is
7589ambiguous, as, since we did not specify the precedence of @samp{/}, the
7590sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
7591NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
7592NUM}, which corresponds to reducing rule 1.
7593
c827f760 7594Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
7595arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
7596Shift/Reduce Conflicts}. Discarded actions are reported in between
7597square brackets.
7598
7599Note that all the previous states had a single possible action: either
7600shifting the next token and going to the corresponding state, or
7601reducing a single rule. In the other cases, i.e., when shifting
7602@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
7603possible, the lookahead is required to select the action. State 8 is
7604one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
7605is shifting, otherwise the action is reducing rule 1. In other words,
7606the first two items, corresponding to rule 1, are not eligible when the
742e4900 7607lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 7608precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
7609with some set of possible lookahead tokens. When run with
7610@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
7611
7612@example
7613state 8
7614
88c78747 7615 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
7616 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
7617 exp -> exp . '-' exp (rule 2)
7618 exp -> exp . '*' exp (rule 3)
7619 exp -> exp . '/' exp (rule 4)
7620
7621 '*' shift, and go to state 6
7622 '/' shift, and go to state 7
7623
7624 '/' [reduce using rule 1 (exp)]
7625 $default reduce using rule 1 (exp)
7626@end example
7627
7628The remaining states are similar:
7629
7630@example
7631state 9
7632
7633 exp -> exp . '+' exp (rule 1)
7634 exp -> exp . '-' exp (rule 2)
7635 exp -> exp '-' exp . (rule 2)
7636 exp -> exp . '*' exp (rule 3)
7637 exp -> exp . '/' exp (rule 4)
7638
2a8d363a
AD
7639 '*' shift, and go to state 6
7640 '/' shift, and go to state 7
ec3bc396 7641
2a8d363a
AD
7642 '/' [reduce using rule 2 (exp)]
7643 $default reduce using rule 2 (exp)
ec3bc396
AD
7644
7645state 10
7646
7647 exp -> exp . '+' exp (rule 1)
7648 exp -> exp . '-' exp (rule 2)
7649 exp -> exp . '*' exp (rule 3)
7650 exp -> exp '*' exp . (rule 3)
7651 exp -> exp . '/' exp (rule 4)
7652
2a8d363a 7653 '/' shift, and go to state 7
ec3bc396 7654
2a8d363a
AD
7655 '/' [reduce using rule 3 (exp)]
7656 $default reduce using rule 3 (exp)
ec3bc396
AD
7657
7658state 11
7659
7660 exp -> exp . '+' exp (rule 1)
7661 exp -> exp . '-' exp (rule 2)
7662 exp -> exp . '*' exp (rule 3)
7663 exp -> exp . '/' exp (rule 4)
7664 exp -> exp '/' exp . (rule 4)
7665
2a8d363a
AD
7666 '+' shift, and go to state 4
7667 '-' shift, and go to state 5
7668 '*' shift, and go to state 6
7669 '/' shift, and go to state 7
ec3bc396 7670
2a8d363a
AD
7671 '+' [reduce using rule 4 (exp)]
7672 '-' [reduce using rule 4 (exp)]
7673 '*' [reduce using rule 4 (exp)]
7674 '/' [reduce using rule 4 (exp)]
7675 $default reduce using rule 4 (exp)
ec3bc396
AD
7676@end example
7677
7678@noindent
fa7e68c3
PE
7679Observe that state 11 contains conflicts not only due to the lack of
7680precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7681@samp{*}, but also because the
ec3bc396
AD
7682associativity of @samp{/} is not specified.
7683
7684
7685@node Tracing
7686@section Tracing Your Parser
bfa74976
RS
7687@findex yydebug
7688@cindex debugging
7689@cindex tracing the parser
7690
7691If a Bison grammar compiles properly but doesn't do what you want when it
7692runs, the @code{yydebug} parser-trace feature can help you figure out why.
7693
3ded9a63
AD
7694There are several means to enable compilation of trace facilities:
7695
7696@table @asis
7697@item the macro @code{YYDEBUG}
7698@findex YYDEBUG
7699Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 7700parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
7701@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7702YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7703Prologue}).
7704
7705@item the option @option{-t}, @option{--debug}
7706Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 7707,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
7708
7709@item the directive @samp{%debug}
7710@findex %debug
fa819509
AD
7711Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
7712Summary}). This Bison extension is maintained for backward
7713compatibility with previous versions of Bison.
7714
7715@item the variable @samp{parse.trace}
7716@findex %define parse.trace
7717Add the @samp{%define parse.trace} directive (@pxref{Decl Summary,
7718,Bison Declaration Summary}), or pass the @option{-Dparse.trace} option
7719(@pxref{Bison Options}). This is a Bison extension, which is especially
7720useful for languages that don't use a preprocessor. Unless
7721@acronym{POSIX} and Yacc portability matter to you, this is the
7722preferred solution.
3ded9a63
AD
7723@end table
7724
fa819509 7725We suggest that you always enable the trace option so that debugging is
3ded9a63 7726always possible.
bfa74976 7727
02a81e05 7728The trace facility outputs messages with macro calls of the form
e2742e46 7729@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 7730@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
7731arguments. If you define @code{YYDEBUG} to a nonzero value but do not
7732define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 7733and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
7734
7735Once you have compiled the program with trace facilities, the way to
7736request a trace is to store a nonzero value in the variable @code{yydebug}.
7737You can do this by making the C code do it (in @code{main}, perhaps), or
7738you can alter the value with a C debugger.
7739
7740Each step taken by the parser when @code{yydebug} is nonzero produces a
7741line or two of trace information, written on @code{stderr}. The trace
7742messages tell you these things:
7743
7744@itemize @bullet
7745@item
7746Each time the parser calls @code{yylex}, what kind of token was read.
7747
7748@item
7749Each time a token is shifted, the depth and complete contents of the
7750state stack (@pxref{Parser States}).
7751
7752@item
7753Each time a rule is reduced, which rule it is, and the complete contents
7754of the state stack afterward.
7755@end itemize
7756
7757To make sense of this information, it helps to refer to the listing file
704a47c4
AD
7758produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
7759Bison}). This file shows the meaning of each state in terms of
7760positions in various rules, and also what each state will do with each
7761possible input token. As you read the successive trace messages, you
7762can see that the parser is functioning according to its specification in
7763the listing file. Eventually you will arrive at the place where
7764something undesirable happens, and you will see which parts of the
7765grammar are to blame.
bfa74976
RS
7766
7767The parser file is a C program and you can use C debuggers on it, but it's
7768not easy to interpret what it is doing. The parser function is a
7769finite-state machine interpreter, and aside from the actions it executes
7770the same code over and over. Only the values of variables show where in
7771the grammar it is working.
7772
7773@findex YYPRINT
7774The debugging information normally gives the token type of each token
7775read, but not its semantic value. You can optionally define a macro
7776named @code{YYPRINT} to provide a way to print the value. If you define
7777@code{YYPRINT}, it should take three arguments. The parser will pass a
7778standard I/O stream, the numeric code for the token type, and the token
7779value (from @code{yylval}).
7780
7781Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 7782calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
7783
7784@smallexample
38a92d50
PE
7785%@{
7786 static void print_token_value (FILE *, int, YYSTYPE);
7787 #define YYPRINT(file, type, value) print_token_value (file, type, value)
7788%@}
7789
7790@dots{} %% @dots{} %% @dots{}
bfa74976
RS
7791
7792static void
831d3c99 7793print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
7794@{
7795 if (type == VAR)
d3c4e709 7796 fprintf (file, "%s", value.tptr->name);
bfa74976 7797 else if (type == NUM)
d3c4e709 7798 fprintf (file, "%d", value.val);
bfa74976
RS
7799@}
7800@end smallexample
7801
ec3bc396
AD
7802@c ================================================= Invoking Bison
7803
342b8b6e 7804@node Invocation
bfa74976
RS
7805@chapter Invoking Bison
7806@cindex invoking Bison
7807@cindex Bison invocation
7808@cindex options for invoking Bison
7809
7810The usual way to invoke Bison is as follows:
7811
7812@example
7813bison @var{infile}
7814@end example
7815
7816Here @var{infile} is the grammar file name, which usually ends in
7817@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
7818with @samp{.tab.c} and removing any leading directory. Thus, the
7819@samp{bison foo.y} file name yields
7820@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
7821@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 7822C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
7823or @file{foo.y++}. Then, the output files will take an extension like
7824the given one as input (respectively @file{foo.tab.cpp} and
7825@file{foo.tab.c++}).
fa4d969f 7826This feature takes effect with all options that manipulate file names like
234a3be3
AD
7827@samp{-o} or @samp{-d}.
7828
7829For example :
7830
7831@example
7832bison -d @var{infile.yxx}
7833@end example
84163231 7834@noindent
72d2299c 7835will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
7836
7837@example
b56471a6 7838bison -d -o @var{output.c++} @var{infile.y}
234a3be3 7839@end example
84163231 7840@noindent
234a3be3
AD
7841will produce @file{output.c++} and @file{outfile.h++}.
7842
397ec073
PE
7843For compatibility with @acronym{POSIX}, the standard Bison
7844distribution also contains a shell script called @command{yacc} that
7845invokes Bison with the @option{-y} option.
7846
bfa74976 7847@menu
13863333 7848* Bison Options:: All the options described in detail,
c827f760 7849 in alphabetical order by short options.
bfa74976 7850* Option Cross Key:: Alphabetical list of long options.
93dd49ab 7851* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
7852@end menu
7853
342b8b6e 7854@node Bison Options
bfa74976
RS
7855@section Bison Options
7856
7857Bison supports both traditional single-letter options and mnemonic long
7858option names. Long option names are indicated with @samp{--} instead of
7859@samp{-}. Abbreviations for option names are allowed as long as they
7860are unique. When a long option takes an argument, like
7861@samp{--file-prefix}, connect the option name and the argument with
7862@samp{=}.
7863
7864Here is a list of options that can be used with Bison, alphabetized by
7865short option. It is followed by a cross key alphabetized by long
7866option.
7867
89cab50d
AD
7868@c Please, keep this ordered as in `bison --help'.
7869@noindent
7870Operations modes:
7871@table @option
7872@item -h
7873@itemx --help
7874Print a summary of the command-line options to Bison and exit.
bfa74976 7875
89cab50d
AD
7876@item -V
7877@itemx --version
7878Print the version number of Bison and exit.
bfa74976 7879
f7ab6a50
PE
7880@item --print-localedir
7881Print the name of the directory containing locale-dependent data.
7882
a0de5091
JD
7883@item --print-datadir
7884Print the name of the directory containing skeletons and XSLT.
7885
89cab50d
AD
7886@item -y
7887@itemx --yacc
54662697
PE
7888Act more like the traditional Yacc command. This can cause
7889different diagnostics to be generated, and may change behavior in
7890other minor ways. Most importantly, imitate Yacc's output
7891file name conventions, so that the parser output file is called
89cab50d 7892@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e
JD
7893@file{y.tab.h}.
7894Also, if generating an @acronym{LALR}(1) parser in C, generate @code{#define}
7895statements in addition to an @code{enum} to associate token numbers with token
7896names.
7897Thus, the following shell script can substitute for Yacc, and the Bison
7898distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 7899
89cab50d 7900@example
397ec073 7901#! /bin/sh
26e06a21 7902bison -y "$@@"
89cab50d 7903@end example
54662697
PE
7904
7905The @option{-y}/@option{--yacc} option is intended for use with
7906traditional Yacc grammars. If your grammar uses a Bison extension
7907like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
7908this option is specified.
7909
1d5b3c08
JD
7910@item -W [@var{category}]
7911@itemx --warnings[=@var{category}]
118d4978
AD
7912Output warnings falling in @var{category}. @var{category} can be one
7913of:
7914@table @code
7915@item midrule-values
8e55b3aa
JD
7916Warn about mid-rule values that are set but not used within any of the actions
7917of the parent rule.
7918For example, warn about unused @code{$2} in:
118d4978
AD
7919
7920@example
7921exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
7922@end example
7923
8e55b3aa
JD
7924Also warn about mid-rule values that are used but not set.
7925For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
7926
7927@example
7928 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
7929@end example
7930
7931These warnings are not enabled by default since they sometimes prove to
7932be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 7933@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
7934
7935
7936@item yacc
7937Incompatibilities with @acronym{POSIX} Yacc.
7938
7939@item all
8e55b3aa 7940All the warnings.
118d4978 7941@item none
8e55b3aa 7942Turn off all the warnings.
118d4978 7943@item error
8e55b3aa 7944Treat warnings as errors.
118d4978
AD
7945@end table
7946
7947A category can be turned off by prefixing its name with @samp{no-}. For
7948instance, @option{-Wno-syntax} will hide the warnings about unused
7949variables.
89cab50d
AD
7950@end table
7951
7952@noindent
7953Tuning the parser:
7954
7955@table @option
7956@item -t
7957@itemx --debug
4947ebdb
PE
7958In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
7959already defined, so that the debugging facilities are compiled.
ec3bc396 7960@xref{Tracing, ,Tracing Your Parser}.
89cab50d 7961
58697c6d
AD
7962@item -D @var{name}[=@var{value}]
7963@itemx --define=@var{name}[=@var{value}]
7964Same as running @samp{%define @var{name} "@var{value}"} (@pxref{Decl
7965Summary, ,%define}).
7966
0e021770
PE
7967@item -L @var{language}
7968@itemx --language=@var{language}
7969Specify the programming language for the generated parser, as if
7970@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 7971Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 7972@var{language} is case-insensitive.
0e021770 7973
ed4d67dc
JD
7974This option is experimental and its effect may be modified in future
7975releases.
7976
89cab50d 7977@item --locations
d8988b2f 7978Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
7979
7980@item -p @var{prefix}
7981@itemx --name-prefix=@var{prefix}
02975b9a 7982Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 7983@xref{Decl Summary}.
bfa74976
RS
7984
7985@item -l
7986@itemx --no-lines
7987Don't put any @code{#line} preprocessor commands in the parser file.
7988Ordinarily Bison puts them in the parser file so that the C compiler
7989and debuggers will associate errors with your source file, the
7990grammar file. This option causes them to associate errors with the
95e742f7 7991parser file, treating it as an independent source file in its own right.
bfa74976 7992
e6e704dc
JD
7993@item -S @var{file}
7994@itemx --skeleton=@var{file}
a7867f53 7995Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
7996(@pxref{Decl Summary, , Bison Declaration Summary}).
7997
ed4d67dc
JD
7998@c You probably don't need this option unless you are developing Bison.
7999@c You should use @option{--language} if you want to specify the skeleton for a
8000@c different language, because it is clearer and because it will always
8001@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8002
a7867f53
JD
8003If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8004file in the Bison installation directory.
8005If it does, @var{file} is an absolute file name or a file name relative to the
8006current working directory.
8007This is similar to how most shells resolve commands.
8008
89cab50d
AD
8009@item -k
8010@itemx --token-table
d8988b2f 8011Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8012@end table
bfa74976 8013
89cab50d
AD
8014@noindent
8015Adjust the output:
bfa74976 8016
89cab50d 8017@table @option
8e55b3aa 8018@item --defines[=@var{file}]
d8988b2f 8019Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8020file containing macro definitions for the token type names defined in
4bfd5e4e 8021the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8022
8e55b3aa
JD
8023@item -d
8024This is the same as @code{--defines} except @code{-d} does not accept a
8025@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8026with other short options.
342b8b6e 8027
89cab50d
AD
8028@item -b @var{file-prefix}
8029@itemx --file-prefix=@var{prefix}
9c437126 8030Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8031for all Bison output file names. @xref{Decl Summary}.
bfa74976 8032
ec3bc396
AD
8033@item -r @var{things}
8034@itemx --report=@var{things}
8035Write an extra output file containing verbose description of the comma
8036separated list of @var{things} among:
8037
8038@table @code
8039@item state
8040Description of the grammar, conflicts (resolved and unresolved), and
c827f760 8041@acronym{LALR} automaton.
ec3bc396 8042
742e4900 8043@item lookahead
ec3bc396 8044Implies @code{state} and augments the description of the automaton with
742e4900 8045each rule's lookahead set.
ec3bc396
AD
8046
8047@item itemset
8048Implies @code{state} and augments the description of the automaton with
8049the full set of items for each state, instead of its core only.
8050@end table
8051
1bb2bd75
JD
8052@item --report-file=@var{file}
8053Specify the @var{file} for the verbose description.
8054
bfa74976
RS
8055@item -v
8056@itemx --verbose
9c437126 8057Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8058file containing verbose descriptions of the grammar and
72d2299c 8059parser. @xref{Decl Summary}.
bfa74976 8060
fa4d969f
PE
8061@item -o @var{file}
8062@itemx --output=@var{file}
8063Specify the @var{file} for the parser file.
bfa74976 8064
fa4d969f 8065The other output files' names are constructed from @var{file} as
d8988b2f 8066described under the @samp{-v} and @samp{-d} options.
342b8b6e 8067
a7c09cba 8068@item -g [@var{file}]
8e55b3aa 8069@itemx --graph[=@var{file}]
35fe0834
PE
8070Output a graphical representation of the @acronym{LALR}(1) grammar
8071automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8072@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
8e55b3aa
JD
8073@code{@var{file}} is optional.
8074If omitted and the grammar file is @file{foo.y}, the output file will be
8075@file{foo.dot}.
59da312b 8076
a7c09cba 8077@item -x [@var{file}]
8e55b3aa 8078@itemx --xml[=@var{file}]
59da312b 8079Output an XML report of the @acronym{LALR}(1) automaton computed by Bison.
8e55b3aa 8080@code{@var{file}} is optional.
59da312b
JD
8081If omitted and the grammar file is @file{foo.y}, the output file will be
8082@file{foo.xml}.
8083(The current XML schema is experimental and may evolve.
8084More user feedback will help to stabilize it.)
bfa74976
RS
8085@end table
8086
342b8b6e 8087@node Option Cross Key
bfa74976
RS
8088@section Option Cross Key
8089
8090Here is a list of options, alphabetized by long option, to help you find
8091the corresponding short option.
8092
a7c09cba
DJ
8093@multitable {@option{--defines=@var{defines-file}}} {@option{-D @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
8094@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8095@include cross-options.texi
aa08666d 8096@end multitable
bfa74976 8097
93dd49ab
PE
8098@node Yacc Library
8099@section Yacc Library
8100
8101The Yacc library contains default implementations of the
8102@code{yyerror} and @code{main} functions. These default
8103implementations are normally not useful, but @acronym{POSIX} requires
8104them. To use the Yacc library, link your program with the
8105@option{-ly} option. Note that Bison's implementation of the Yacc
8106library is distributed under the terms of the @acronym{GNU} General
8107Public License (@pxref{Copying}).
8108
8109If you use the Yacc library's @code{yyerror} function, you should
8110declare @code{yyerror} as follows:
8111
8112@example
8113int yyerror (char const *);
8114@end example
8115
8116Bison ignores the @code{int} value returned by this @code{yyerror}.
8117If you use the Yacc library's @code{main} function, your
8118@code{yyparse} function should have the following type signature:
8119
8120@example
8121int yyparse (void);
8122@end example
8123
12545799
AD
8124@c ================================================= C++ Bison
8125
8405b70c
PB
8126@node Other Languages
8127@chapter Parsers Written In Other Languages
12545799
AD
8128
8129@menu
8130* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8131* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8132@end menu
8133
8134@node C++ Parsers
8135@section C++ Parsers
8136
8137@menu
8138* C++ Bison Interface:: Asking for C++ parser generation
8139* C++ Semantic Values:: %union vs. C++
8140* C++ Location Values:: The position and location classes
8141* C++ Parser Interface:: Instantiating and running the parser
8142* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8143* A Complete C++ Example:: Demonstrating their use
12545799
AD
8144@end menu
8145
8146@node C++ Bison Interface
8147@subsection C++ Bison Interface
ed4d67dc 8148@c - %skeleton "lalr1.cc"
12545799
AD
8149@c - Always pure
8150@c - initial action
8151
ed4d67dc
JD
8152The C++ @acronym{LALR}(1) parser is selected using the skeleton directive,
8153@samp{%skeleton "lalr1.c"}, or the synonymous command-line option
8154@option{--skeleton=lalr1.c}.
e6e704dc 8155@xref{Decl Summary}.
0e021770 8156
793fbca5
JD
8157When run, @command{bison} will create several entities in the @samp{yy}
8158namespace.
8159@findex %define namespace
8160Use the @samp{%define namespace} directive to change the namespace name, see
8161@ref{Decl Summary}.
8162The various classes are generated in the following files:
aa08666d 8163
12545799
AD
8164@table @file
8165@item position.hh
8166@itemx location.hh
8167The definition of the classes @code{position} and @code{location},
8168used for location tracking. @xref{C++ Location Values}.
8169
8170@item stack.hh
8171An auxiliary class @code{stack} used by the parser.
8172
fa4d969f
PE
8173@item @var{file}.hh
8174@itemx @var{file}.cc
cd8b5791
AD
8175(Assuming the extension of the input file was @samp{.yy}.) The
8176declaration and implementation of the C++ parser class. The basename
8177and extension of these two files follow the same rules as with regular C
8178parsers (@pxref{Invocation}).
12545799 8179
cd8b5791
AD
8180The header is @emph{mandatory}; you must either pass
8181@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8182@samp{%defines} directive.
8183@end table
8184
8185All these files are documented using Doxygen; run @command{doxygen}
8186for a complete and accurate documentation.
8187
8188@node C++ Semantic Values
8189@subsection C++ Semantic Values
8190@c - No objects in unions
178e123e 8191@c - YYSTYPE
12545799
AD
8192@c - Printer and destructor
8193
8194The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8195Collection of Value Types}. In particular it produces a genuine
8196@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
8197within pseudo-unions (similar to Boost variants) might be implemented to
8198alleviate these issues.}, which have a few specific features in C++.
12545799
AD
8199@itemize @minus
8200@item
fb9712a9
AD
8201The type @code{YYSTYPE} is defined but its use is discouraged: rather
8202you should refer to the parser's encapsulated type
8203@code{yy::parser::semantic_type}.
12545799
AD
8204@item
8205Non POD (Plain Old Data) types cannot be used. C++ forbids any
8206instance of classes with constructors in unions: only @emph{pointers}
8207to such objects are allowed.
8208@end itemize
8209
8210Because objects have to be stored via pointers, memory is not
8211reclaimed automatically: using the @code{%destructor} directive is the
8212only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8213Symbols}.
8214
8215
8216@node C++ Location Values
8217@subsection C++ Location Values
8218@c - %locations
8219@c - class Position
8220@c - class Location
16dc6a9e 8221@c - %define filename_type "const symbol::Symbol"
12545799
AD
8222
8223When the directive @code{%locations} is used, the C++ parser supports
8224location tracking, see @ref{Locations, , Locations Overview}. Two
8225auxiliary classes define a @code{position}, a single point in a file,
8226and a @code{location}, a range composed of a pair of
8227@code{position}s (possibly spanning several files).
8228
fa4d969f 8229@deftypemethod {position} {std::string*} file
12545799
AD
8230The name of the file. It will always be handled as a pointer, the
8231parser will never duplicate nor deallocate it. As an experimental
8232feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8233filename_type "@var{type}"}.
12545799
AD
8234@end deftypemethod
8235
8236@deftypemethod {position} {unsigned int} line
8237The line, starting at 1.
8238@end deftypemethod
8239
8240@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8241Advance by @var{height} lines, resetting the column number.
8242@end deftypemethod
8243
8244@deftypemethod {position} {unsigned int} column
8245The column, starting at 0.
8246@end deftypemethod
8247
8248@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8249Advance by @var{width} columns, without changing the line number.
8250@end deftypemethod
8251
8252@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8253@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8254@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8255@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8256Various forms of syntactic sugar for @code{columns}.
8257@end deftypemethod
8258
8259@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8260Report @var{p} on @var{o} like this:
fa4d969f
PE
8261@samp{@var{file}:@var{line}.@var{column}}, or
8262@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8263@end deftypemethod
8264
8265@deftypemethod {location} {position} begin
8266@deftypemethodx {location} {position} end
8267The first, inclusive, position of the range, and the first beyond.
8268@end deftypemethod
8269
8270@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8271@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8272Advance the @code{end} position.
8273@end deftypemethod
8274
8275@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8276@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8277@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8278Various forms of syntactic sugar.
8279@end deftypemethod
8280
8281@deftypemethod {location} {void} step ()
8282Move @code{begin} onto @code{end}.
8283@end deftypemethod
8284
8285
8286@node C++ Parser Interface
8287@subsection C++ Parser Interface
8288@c - define parser_class_name
8289@c - Ctor
8290@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8291@c debug_stream.
8292@c - Reporting errors
8293
8294The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8295declare and define the parser class in the namespace @code{yy}. The
8296class name defaults to @code{parser}, but may be changed using
16dc6a9e 8297@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8298this class is detailed below. It can be extended using the
12545799
AD
8299@code{%parse-param} feature: its semantics is slightly changed since
8300it describes an additional member of the parser class, and an
8301additional argument for its constructor.
8302
8a0adb01
AD
8303@defcv {Type} {parser} {semantic_value_type}
8304@defcvx {Type} {parser} {location_value_type}
12545799 8305The types for semantics value and locations.
8a0adb01 8306@end defcv
12545799
AD
8307
8308@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8309Build a new parser object. There are no arguments by default, unless
8310@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8311@end deftypemethod
8312
8313@deftypemethod {parser} {int} parse ()
8314Run the syntactic analysis, and return 0 on success, 1 otherwise.
8315@end deftypemethod
8316
8317@deftypemethod {parser} {std::ostream&} debug_stream ()
8318@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8319Get or set the stream used for tracing the parsing. It defaults to
8320@code{std::cerr}.
8321@end deftypemethod
8322
8323@deftypemethod {parser} {debug_level_type} debug_level ()
8324@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8325Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8326or nonzero, full tracing.
12545799
AD
8327@end deftypemethod
8328
8329@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
8330The definition for this member function must be supplied by the user:
8331the parser uses it to report a parser error occurring at @var{l},
8332described by @var{m}.
8333@end deftypemethod
8334
8335
8336@node C++ Scanner Interface
8337@subsection C++ Scanner Interface
8338@c - prefix for yylex.
8339@c - Pure interface to yylex
8340@c - %lex-param
8341
8342The parser invokes the scanner by calling @code{yylex}. Contrary to C
8343parsers, C++ parsers are always pure: there is no point in using the
d9df47b6 8344@code{%define api.pure} directive. Therefore the interface is as follows.
12545799
AD
8345
8346@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
8347Return the next token. Its type is the return value, its semantic
8348value and location being @var{yylval} and @var{yylloc}. Invocations of
8349@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8350@end deftypemethod
8351
8352
8353@node A Complete C++ Example
8405b70c 8354@subsection A Complete C++ Example
12545799
AD
8355
8356This section demonstrates the use of a C++ parser with a simple but
8357complete example. This example should be available on your system,
8358ready to compile, in the directory @dfn{../bison/examples/calc++}. It
8359focuses on the use of Bison, therefore the design of the various C++
8360classes is very naive: no accessors, no encapsulation of members etc.
8361We will use a Lex scanner, and more precisely, a Flex scanner, to
8362demonstrate the various interaction. A hand written scanner is
8363actually easier to interface with.
8364
8365@menu
8366* Calc++ --- C++ Calculator:: The specifications
8367* Calc++ Parsing Driver:: An active parsing context
8368* Calc++ Parser:: A parser class
8369* Calc++ Scanner:: A pure C++ Flex scanner
8370* Calc++ Top Level:: Conducting the band
8371@end menu
8372
8373@node Calc++ --- C++ Calculator
8405b70c 8374@subsubsection Calc++ --- C++ Calculator
12545799
AD
8375
8376Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 8377expression, possibly preceded by variable assignments. An
12545799
AD
8378environment containing possibly predefined variables such as
8379@code{one} and @code{two}, is exchanged with the parser. An example
8380of valid input follows.
8381
8382@example
8383three := 3
8384seven := one + two * three
8385seven * seven
8386@end example
8387
8388@node Calc++ Parsing Driver
8405b70c 8389@subsubsection Calc++ Parsing Driver
12545799
AD
8390@c - An env
8391@c - A place to store error messages
8392@c - A place for the result
8393
8394To support a pure interface with the parser (and the scanner) the
8395technique of the ``parsing context'' is convenient: a structure
8396containing all the data to exchange. Since, in addition to simply
8397launch the parsing, there are several auxiliary tasks to execute (open
8398the file for parsing, instantiate the parser etc.), we recommend
8399transforming the simple parsing context structure into a fully blown
8400@dfn{parsing driver} class.
8401
8402The declaration of this driver class, @file{calc++-driver.hh}, is as
8403follows. The first part includes the CPP guard and imports the
fb9712a9
AD
8404required standard library components, and the declaration of the parser
8405class.
12545799 8406
1c59e0a1 8407@comment file: calc++-driver.hh
12545799
AD
8408@example
8409#ifndef CALCXX_DRIVER_HH
8410# define CALCXX_DRIVER_HH
8411# include <string>
8412# include <map>
fb9712a9 8413# include "calc++-parser.hh"
12545799
AD
8414@end example
8415
12545799
AD
8416
8417@noindent
8418Then comes the declaration of the scanning function. Flex expects
8419the signature of @code{yylex} to be defined in the macro
8420@code{YY_DECL}, and the C++ parser expects it to be declared. We can
8421factor both as follows.
1c59e0a1
AD
8422
8423@comment file: calc++-driver.hh
12545799 8424@example
3dc5e96b
PE
8425// Tell Flex the lexer's prototype ...
8426# define YY_DECL \
c095d689
AD
8427 yy::calcxx_parser::token_type \
8428 yylex (yy::calcxx_parser::semantic_type* yylval, \
8429 yy::calcxx_parser::location_type* yylloc, \
8430 calcxx_driver& driver)
12545799
AD
8431// ... and declare it for the parser's sake.
8432YY_DECL;
8433@end example
8434
8435@noindent
8436The @code{calcxx_driver} class is then declared with its most obvious
8437members.
8438
1c59e0a1 8439@comment file: calc++-driver.hh
12545799
AD
8440@example
8441// Conducting the whole scanning and parsing of Calc++.
8442class calcxx_driver
8443@{
8444public:
8445 calcxx_driver ();
8446 virtual ~calcxx_driver ();
8447
8448 std::map<std::string, int> variables;
8449
8450 int result;
8451@end example
8452
8453@noindent
8454To encapsulate the coordination with the Flex scanner, it is useful to
8455have two members function to open and close the scanning phase.
12545799 8456
1c59e0a1 8457@comment file: calc++-driver.hh
12545799
AD
8458@example
8459 // Handling the scanner.
8460 void scan_begin ();
8461 void scan_end ();
8462 bool trace_scanning;
8463@end example
8464
8465@noindent
8466Similarly for the parser itself.
8467
1c59e0a1 8468@comment file: calc++-driver.hh
12545799 8469@example
bb32f4f2
AD
8470 // Run the parser. Return 0 on success.
8471 int parse (const std::string& f);
12545799
AD
8472 std::string file;
8473 bool trace_parsing;
8474@end example
8475
8476@noindent
8477To demonstrate pure handling of parse errors, instead of simply
8478dumping them on the standard error output, we will pass them to the
8479compiler driver using the following two member functions. Finally, we
8480close the class declaration and CPP guard.
8481
1c59e0a1 8482@comment file: calc++-driver.hh
12545799
AD
8483@example
8484 // Error handling.
8485 void error (const yy::location& l, const std::string& m);
8486 void error (const std::string& m);
8487@};
8488#endif // ! CALCXX_DRIVER_HH
8489@end example
8490
8491The implementation of the driver is straightforward. The @code{parse}
8492member function deserves some attention. The @code{error} functions
8493are simple stubs, they should actually register the located error
8494messages and set error state.
8495
1c59e0a1 8496@comment file: calc++-driver.cc
12545799
AD
8497@example
8498#include "calc++-driver.hh"
8499#include "calc++-parser.hh"
8500
8501calcxx_driver::calcxx_driver ()
8502 : trace_scanning (false), trace_parsing (false)
8503@{
8504 variables["one"] = 1;
8505 variables["two"] = 2;
8506@}
8507
8508calcxx_driver::~calcxx_driver ()
8509@{
8510@}
8511
bb32f4f2 8512int
12545799
AD
8513calcxx_driver::parse (const std::string &f)
8514@{
8515 file = f;
8516 scan_begin ();
8517 yy::calcxx_parser parser (*this);
8518 parser.set_debug_level (trace_parsing);
bb32f4f2 8519 int res = parser.parse ();
12545799 8520 scan_end ();
bb32f4f2 8521 return res;
12545799
AD
8522@}
8523
8524void
8525calcxx_driver::error (const yy::location& l, const std::string& m)
8526@{
8527 std::cerr << l << ": " << m << std::endl;
8528@}
8529
8530void
8531calcxx_driver::error (const std::string& m)
8532@{
8533 std::cerr << m << std::endl;
8534@}
8535@end example
8536
8537@node Calc++ Parser
8405b70c 8538@subsubsection Calc++ Parser
12545799 8539
b50d2359
AD
8540The parser definition file @file{calc++-parser.yy} starts by asking for
8541the C++ LALR(1) skeleton, the creation of the parser header file, and
8542specifies the name of the parser class. Because the C++ skeleton
8543changed several times, it is safer to require the version you designed
8544the grammar for.
1c59e0a1
AD
8545
8546@comment file: calc++-parser.yy
12545799 8547@example
ed4d67dc 8548%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 8549%require "@value{VERSION}"
12545799 8550%defines
16dc6a9e 8551%define parser_class_name "calcxx_parser"
fb9712a9
AD
8552@end example
8553
8554@noindent
16dc6a9e 8555@findex %code requires
fb9712a9
AD
8556Then come the declarations/inclusions needed to define the
8557@code{%union}. Because the parser uses the parsing driver and
8558reciprocally, both cannot include the header of the other. Because the
8559driver's header needs detailed knowledge about the parser class (in
8560particular its inner types), it is the parser's header which will simply
8561use a forward declaration of the driver.
148d66d8 8562@xref{Decl Summary, ,%code}.
fb9712a9
AD
8563
8564@comment file: calc++-parser.yy
8565@example
16dc6a9e 8566%code requires @{
12545799 8567# include <string>
fb9712a9 8568class calcxx_driver;
9bc0dd67 8569@}
12545799
AD
8570@end example
8571
8572@noindent
8573The driver is passed by reference to the parser and to the scanner.
8574This provides a simple but effective pure interface, not relying on
8575global variables.
8576
1c59e0a1 8577@comment file: calc++-parser.yy
12545799
AD
8578@example
8579// The parsing context.
8580%parse-param @{ calcxx_driver& driver @}
8581%lex-param @{ calcxx_driver& driver @}
8582@end example
8583
8584@noindent
8585Then we request the location tracking feature, and initialize the
8586first location's file name. Afterwards new locations are computed
8587relatively to the previous locations: the file name will be
8588automatically propagated.
8589
1c59e0a1 8590@comment file: calc++-parser.yy
12545799
AD
8591@example
8592%locations
8593%initial-action
8594@{
8595 // Initialize the initial location.
b47dbebe 8596 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
8597@};
8598@end example
8599
8600@noindent
8601Use the two following directives to enable parser tracing and verbose
8602error messages.
8603
1c59e0a1 8604@comment file: calc++-parser.yy
12545799 8605@example
fa819509 8606%define parse.trace
71b00ed8 8607%define error-verbose
12545799
AD
8608@end example
8609
8610@noindent
8611Semantic values cannot use ``real'' objects, but only pointers to
8612them.
8613
1c59e0a1 8614@comment file: calc++-parser.yy
12545799
AD
8615@example
8616// Symbols.
8617%union
8618@{
8619 int ival;
8620 std::string *sval;
8621@};
8622@end example
8623
fb9712a9 8624@noindent
136a0f76
PB
8625@findex %code
8626The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 8627@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
8628
8629@comment file: calc++-parser.yy
8630@example
136a0f76 8631%code @{
fb9712a9 8632# include "calc++-driver.hh"
34f98f46 8633@}
fb9712a9
AD
8634@end example
8635
8636
12545799
AD
8637@noindent
8638The token numbered as 0 corresponds to end of file; the following line
8639allows for nicer error messages referring to ``end of file'' instead
8640of ``$end''. Similarly user friendly named are provided for each
8641symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
8642avoid name clashes.
8643
1c59e0a1 8644@comment file: calc++-parser.yy
12545799 8645@example
fb9712a9
AD
8646%token END 0 "end of file"
8647%token ASSIGN ":="
8648%token <sval> IDENTIFIER "identifier"
8649%token <ival> NUMBER "number"
a8c2e813 8650%type <ival> exp
12545799
AD
8651@end example
8652
8653@noindent
8654To enable memory deallocation during error recovery, use
8655@code{%destructor}.
8656
287c78f6 8657@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 8658@comment file: calc++-parser.yy
12545799
AD
8659@example
8660%printer @{ debug_stream () << *$$; @} "identifier"
8661%destructor @{ delete $$; @} "identifier"
8662
a8c2e813 8663%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
8664@end example
8665
8666@noindent
8667The grammar itself is straightforward.
8668
1c59e0a1 8669@comment file: calc++-parser.yy
12545799
AD
8670@example
8671%%
8672%start unit;
8673unit: assignments exp @{ driver.result = $2; @};
8674
8675assignments: assignments assignment @{@}
9d9b8b70 8676 | /* Nothing. */ @{@};
12545799 8677
3dc5e96b
PE
8678assignment:
8679 "identifier" ":=" exp
8680 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
8681
8682%left '+' '-';
8683%left '*' '/';
8684exp: exp '+' exp @{ $$ = $1 + $3; @}
8685 | exp '-' exp @{ $$ = $1 - $3; @}
8686 | exp '*' exp @{ $$ = $1 * $3; @}
8687 | exp '/' exp @{ $$ = $1 / $3; @}
1a7a65f9 8688 | '(' exp ')' @{ $$ = $2; @}
3dc5e96b 8689 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 8690 | "number" @{ $$ = $1; @};
12545799
AD
8691%%
8692@end example
8693
8694@noindent
8695Finally the @code{error} member function registers the errors to the
8696driver.
8697
1c59e0a1 8698@comment file: calc++-parser.yy
12545799
AD
8699@example
8700void
1c59e0a1
AD
8701yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
8702 const std::string& m)
12545799
AD
8703@{
8704 driver.error (l, m);
8705@}
8706@end example
8707
8708@node Calc++ Scanner
8405b70c 8709@subsubsection Calc++ Scanner
12545799
AD
8710
8711The Flex scanner first includes the driver declaration, then the
8712parser's to get the set of defined tokens.
8713
1c59e0a1 8714@comment file: calc++-scanner.ll
12545799
AD
8715@example
8716%@{ /* -*- C++ -*- */
04098407
PE
8717# include <cstdlib>
8718# include <errno.h>
8719# include <limits.h>
12545799
AD
8720# include <string>
8721# include "calc++-driver.hh"
8722# include "calc++-parser.hh"
eaea13f5
PE
8723
8724/* Work around an incompatibility in flex (at least versions
8725 2.5.31 through 2.5.33): it generates code that does
8726 not conform to C89. See Debian bug 333231
8727 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
8728# undef yywrap
8729# define yywrap() 1
eaea13f5 8730
c095d689
AD
8731/* By default yylex returns int, we use token_type.
8732 Unfortunately yyterminate by default returns 0, which is
8733 not of token_type. */
8c5b881d 8734#define yyterminate() return token::END
12545799
AD
8735%@}
8736@end example
8737
8738@noindent
8739Because there is no @code{#include}-like feature we don't need
8740@code{yywrap}, we don't need @code{unput} either, and we parse an
8741actual file, this is not an interactive session with the user.
8742Finally we enable the scanner tracing features.
8743
1c59e0a1 8744@comment file: calc++-scanner.ll
12545799
AD
8745@example
8746%option noyywrap nounput batch debug
8747@end example
8748
8749@noindent
8750Abbreviations allow for more readable rules.
8751
1c59e0a1 8752@comment file: calc++-scanner.ll
12545799
AD
8753@example
8754id [a-zA-Z][a-zA-Z_0-9]*
8755int [0-9]+
8756blank [ \t]
8757@end example
8758
8759@noindent
9d9b8b70 8760The following paragraph suffices to track locations accurately. Each
12545799
AD
8761time @code{yylex} is invoked, the begin position is moved onto the end
8762position. Then when a pattern is matched, the end position is
8763advanced of its width. In case it matched ends of lines, the end
8764cursor is adjusted, and each time blanks are matched, the begin cursor
8765is moved onto the end cursor to effectively ignore the blanks
8766preceding tokens. Comments would be treated equally.
8767
1c59e0a1 8768@comment file: calc++-scanner.ll
12545799 8769@example
828c373b
AD
8770%@{
8771# define YY_USER_ACTION yylloc->columns (yyleng);
8772%@}
12545799
AD
8773%%
8774%@{
8775 yylloc->step ();
12545799
AD
8776%@}
8777@{blank@}+ yylloc->step ();
8778[\n]+ yylloc->lines (yyleng); yylloc->step ();
8779@end example
8780
8781@noindent
fb9712a9
AD
8782The rules are simple, just note the use of the driver to report errors.
8783It is convenient to use a typedef to shorten
8784@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 8785@code{token::identifier} for instance.
12545799 8786
1c59e0a1 8787@comment file: calc++-scanner.ll
12545799 8788@example
fb9712a9
AD
8789%@{
8790 typedef yy::calcxx_parser::token token;
8791%@}
8c5b881d 8792 /* Convert ints to the actual type of tokens. */
1a7a65f9 8793[-+*/()] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 8794":=" return token::ASSIGN;
04098407
PE
8795@{int@} @{
8796 errno = 0;
8797 long n = strtol (yytext, NULL, 10);
8798 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
8799 driver.error (*yylloc, "integer is out of range");
8800 yylval->ival = n;
fb9712a9 8801 return token::NUMBER;
04098407 8802@}
fb9712a9 8803@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
8804. driver.error (*yylloc, "invalid character");
8805%%
8806@end example
8807
8808@noindent
8809Finally, because the scanner related driver's member function depend
8810on the scanner's data, it is simpler to implement them in this file.
8811
1c59e0a1 8812@comment file: calc++-scanner.ll
12545799
AD
8813@example
8814void
8815calcxx_driver::scan_begin ()
8816@{
8817 yy_flex_debug = trace_scanning;
bb32f4f2
AD
8818 if (file == "-")
8819 yyin = stdin;
8820 else if (!(yyin = fopen (file.c_str (), "r")))
8821 @{
8822 error (std::string ("cannot open ") + file);
8823 exit (1);
8824 @}
12545799
AD
8825@}
8826
8827void
8828calcxx_driver::scan_end ()
8829@{
8830 fclose (yyin);
8831@}
8832@end example
8833
8834@node Calc++ Top Level
8405b70c 8835@subsubsection Calc++ Top Level
12545799
AD
8836
8837The top level file, @file{calc++.cc}, poses no problem.
8838
1c59e0a1 8839@comment file: calc++.cc
12545799
AD
8840@example
8841#include <iostream>
8842#include "calc++-driver.hh"
8843
8844int
fa4d969f 8845main (int argc, char *argv[])
12545799 8846@{
414c76a4 8847 int res = 0;
12545799
AD
8848 calcxx_driver driver;
8849 for (++argv; argv[0]; ++argv)
8850 if (*argv == std::string ("-p"))
8851 driver.trace_parsing = true;
8852 else if (*argv == std::string ("-s"))
8853 driver.trace_scanning = true;
bb32f4f2
AD
8854 else if (!driver.parse (*argv))
8855 std::cout << driver.result << std::endl;
414c76a4
AD
8856 else
8857 res = 1;
8858 return res;
12545799
AD
8859@}
8860@end example
8861
8405b70c
PB
8862@node Java Parsers
8863@section Java Parsers
8864
8865@menu
f5f419de
DJ
8866* Java Bison Interface:: Asking for Java parser generation
8867* Java Semantic Values:: %type and %token vs. Java
8868* Java Location Values:: The position and location classes
8869* Java Parser Interface:: Instantiating and running the parser
8870* Java Scanner Interface:: Specifying the scanner for the parser
8871* Java Action Features:: Special features for use in actions
8872* Java Differences:: Differences between C/C++ and Java Grammars
8873* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
8874@end menu
8875
8876@node Java Bison Interface
8877@subsection Java Bison Interface
8878@c - %language "Java"
8405b70c 8879
59da312b
JD
8880(The current Java interface is experimental and may evolve.
8881More user feedback will help to stabilize it.)
8882
e254a580
DJ
8883The Java parser skeletons are selected using the @code{%language "Java"}
8884directive or the @option{-L java}/@option{--language=java} option.
8405b70c 8885
e254a580
DJ
8886@c FIXME: Documented bug.
8887When generating a Java parser, @code{bison @var{basename}.y} will create
8888a single Java source file named @file{@var{basename}.java}. Using an
8889input file without a @file{.y} suffix is currently broken. The basename
8890of the output file can be changed by the @code{%file-prefix} directive
8891or the @option{-p}/@option{--name-prefix} option. The entire output file
8892name can be changed by the @code{%output} directive or the
8893@option{-o}/@option{--output} option. The output file contains a single
8894class for the parser.
8405b70c 8895
e254a580 8896You can create documentation for generated parsers using Javadoc.
8405b70c 8897
e254a580
DJ
8898Contrary to C parsers, Java parsers do not use global variables; the
8899state of the parser is always local to an instance of the parser class.
8900Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
8901and @code{%define api.pure} directives does not do anything when used in
8902Java.
8405b70c 8903
e254a580
DJ
8904Push parsers are currently unsupported in Java and @code{%define
8905api.push_pull} have no effect.
01b477c6 8906
e254a580
DJ
8907@acronym{GLR} parsers are currently unsupported in Java. Do not use the
8908@code{glr-parser} directive.
8909
8910No header file can be generated for Java parsers. Do not use the
8911@code{%defines} directive or the @option{-d}/@option{--defines} options.
8912
8913@c FIXME: Possible code change.
fa819509
AD
8914Currently, support for tracing is always compiled
8915in. Thus the @samp{%define parse.trace} and @samp{%token-table}
8916directives and the
e254a580
DJ
8917@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
8918options have no effect. This may change in the future to eliminate
fa819509
AD
8919unused code in the generated parser, so use @samp{%define parse.trace}
8920explicitly
1979121c 8921if needed. Also, in the future the
e254a580
DJ
8922@code{%token-table} directive might enable a public interface to
8923access the token names and codes.
8405b70c 8924
09ccae9b
DJ
8925Getting a ``code too large'' error from the Java compiler means the code
8926hit the 64KB bytecode per method limination of the Java class file.
8927Try reducing the amount of code in actions and static initializers;
8928otherwise, report a bug so that the parser skeleton will be improved.
8929
8930
8405b70c
PB
8931@node Java Semantic Values
8932@subsection Java Semantic Values
8933@c - No %union, specify type in %type/%token.
8934@c - YYSTYPE
8935@c - Printer and destructor
8936
8937There is no @code{%union} directive in Java parsers. Instead, the
8938semantic values' types (class names) should be specified in the
8939@code{%type} or @code{%token} directive:
8940
8941@example
8942%type <Expression> expr assignment_expr term factor
8943%type <Integer> number
8944@end example
8945
8946By default, the semantic stack is declared to have @code{Object} members,
8947which means that the class types you specify can be of any class.
8948To improve the type safety of the parser, you can declare the common
e254a580
DJ
8949superclass of all the semantic values using the @code{%define stype}
8950directive. For example, after the following declaration:
8405b70c
PB
8951
8952@example
e254a580 8953%define stype "ASTNode"
8405b70c
PB
8954@end example
8955
8956@noindent
8957any @code{%type} or @code{%token} specifying a semantic type which
8958is not a subclass of ASTNode, will cause a compile-time error.
8959
e254a580 8960@c FIXME: Documented bug.
8405b70c
PB
8961Types used in the directives may be qualified with a package name.
8962Primitive data types are accepted for Java version 1.5 or later. Note
8963that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
8964Generic types may not be used; this is due to a limitation in the
8965implementation of Bison, and may change in future releases.
8405b70c
PB
8966
8967Java parsers do not support @code{%destructor}, since the language
8968adopts garbage collection. The parser will try to hold references
8969to semantic values for as little time as needed.
8970
8971Java parsers do not support @code{%printer}, as @code{toString()}
8972can be used to print the semantic values. This however may change
8973(in a backwards-compatible way) in future versions of Bison.
8974
8975
8976@node Java Location Values
8977@subsection Java Location Values
8978@c - %locations
8979@c - class Position
8980@c - class Location
8981
8982When the directive @code{%locations} is used, the Java parser
8983supports location tracking, see @ref{Locations, , Locations Overview}.
8984An auxiliary user-defined class defines a @dfn{position}, a single point
8985in a file; Bison itself defines a class representing a @dfn{location},
8986a range composed of a pair of positions (possibly spanning several
8987files). The location class is an inner class of the parser; the name
e254a580
DJ
8988is @code{Location} by default, and may also be renamed using
8989@code{%define location_type "@var{class-name}}.
8405b70c
PB
8990
8991The location class treats the position as a completely opaque value.
8992By default, the class name is @code{Position}, but this can be changed
e254a580
DJ
8993with @code{%define position_type "@var{class-name}"}. This class must
8994be supplied by the user.
8405b70c
PB
8995
8996
e254a580
DJ
8997@deftypeivar {Location} {Position} begin
8998@deftypeivarx {Location} {Position} end
8405b70c 8999The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
9000@end deftypeivar
9001
9002@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 9003Create a @code{Location} denoting an empty range located at a given point.
e254a580 9004@end deftypeop
8405b70c 9005
e254a580
DJ
9006@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
9007Create a @code{Location} from the endpoints of the range.
9008@end deftypeop
9009
9010@deftypemethod {Location} {String} toString ()
8405b70c
PB
9011Prints the range represented by the location. For this to work
9012properly, the position class should override the @code{equals} and
9013@code{toString} methods appropriately.
9014@end deftypemethod
9015
9016
9017@node Java Parser Interface
9018@subsection Java Parser Interface
9019@c - define parser_class_name
9020@c - Ctor
9021@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9022@c debug_stream.
9023@c - Reporting errors
9024
e254a580
DJ
9025The name of the generated parser class defaults to @code{YYParser}. The
9026@code{YY} prefix may be changed using the @code{%name-prefix} directive
9027or the @option{-p}/@option{--name-prefix} option. Alternatively, use
9028@code{%define parser_class_name "@var{name}"} to give a custom name to
9029the class. The interface of this class is detailed below.
8405b70c 9030
e254a580
DJ
9031By default, the parser class has package visibility. A declaration
9032@code{%define public} will change to public visibility. Remember that,
9033according to the Java language specification, the name of the @file{.java}
9034file should match the name of the class in this case. Similarly, you can
9035use @code{abstract}, @code{final} and @code{strictfp} with the
9036@code{%define} declaration to add other modifiers to the parser class.
1979121c
DJ
9037A single @code{%define annotations "@var{annotations}"} directive can
9038be used to add any number of annotations to the parser class.
e254a580
DJ
9039
9040The Java package name of the parser class can be specified using the
9041@code{%define package} directive. The superclass and the implemented
9042interfaces of the parser class can be specified with the @code{%define
9043extends} and @code{%define implements} directives.
9044
9045The parser class defines an inner class, @code{Location}, that is used
9046for location tracking (see @ref{Java Location Values}), and a inner
9047interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
9048these inner class/interface, and the members described in the interface
9049below, all the other members and fields are preceded with a @code{yy} or
9050@code{YY} prefix to avoid clashes with user code.
9051
e254a580
DJ
9052The parser class can be extended using the @code{%parse-param}
9053directive. Each occurrence of the directive will add a @code{protected
9054final} field to the parser class, and an argument to its constructor,
9055which initialize them automatically.
9056
e254a580
DJ
9057@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
9058Build a new parser object with embedded @code{%code lexer}. There are
9059no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
9060used.
1979121c
DJ
9061
9062Use @code{%code init} for code added to the start of the constructor
9063body. This is especially useful to initialize superclasses. Use
9064@code{%define init_throws} to specify any uncatch exceptions.
e254a580
DJ
9065@end deftypeop
9066
9067@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
9068Build a new parser object using the specified scanner. There are no
9069additional parameters unless @code{%parse-param}s are used.
9070
9071If the scanner is defined by @code{%code lexer}, this constructor is
9072declared @code{protected} and is called automatically with a scanner
9073created with the correct @code{%lex-param}s.
1979121c
DJ
9074
9075Use @code{%code init} for code added to the start of the constructor
9076body. This is especially useful to initialize superclasses. Use
9077@code{%define init_throws} to specify any uncatch exceptions.
e254a580 9078@end deftypeop
8405b70c
PB
9079
9080@deftypemethod {YYParser} {boolean} parse ()
9081Run the syntactic analysis, and return @code{true} on success,
9082@code{false} otherwise.
9083@end deftypemethod
9084
1979121c
DJ
9085@deftypemethod {YYParser} {boolean} getErrorVerbose ()
9086@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
9087Get or set the option to produce verbose error messages. These are only
71b00ed8 9088available with the @code{%define error-verbose} directive, which also turn on
1979121c
DJ
9089verbose error messages.
9090@end deftypemethod
9091
9092@deftypemethod {YYParser} {void} yyerror (String @var{msg})
9093@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
9094@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
9095Print an error message using the @code{yyerror} method of the scanner
9096instance in use. The @code{Location} and @code{Position} parameters are
9097available only if location tracking is active.
9098@end deftypemethod
9099
01b477c6 9100@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9101During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9102from a syntax error.
9103@xref{Error Recovery}.
8405b70c
PB
9104@end deftypemethod
9105
9106@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9107@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9108Get or set the stream used for tracing the parsing. It defaults to
9109@code{System.err}.
9110@end deftypemethod
9111
9112@deftypemethod {YYParser} {int} getDebugLevel ()
9113@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
9114Get or set the tracing level. Currently its value is either 0, no trace,
9115or nonzero, full tracing.
9116@end deftypemethod
9117
1979121c
DJ
9118@deftypecv {Constant} {YYParser} {String} {bisonVersion}
9119@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
9120Identify the Bison version and skeleton used to generate this parser.
9121@end deftypecv
9122
8405b70c
PB
9123
9124@node Java Scanner Interface
9125@subsection Java Scanner Interface
01b477c6 9126@c - %code lexer
8405b70c 9127@c - %lex-param
01b477c6 9128@c - Lexer interface
8405b70c 9129
e254a580
DJ
9130There are two possible ways to interface a Bison-generated Java parser
9131with a scanner: the scanner may be defined by @code{%code lexer}, or
9132defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
9133@code{Lexer} inner interface of the parser class. This interface also
9134contain constants for all user-defined token names and the predefined
9135@code{EOF} token.
e254a580
DJ
9136
9137In the first case, the body of the scanner class is placed in
9138@code{%code lexer} blocks. If you want to pass parameters from the
9139parser constructor to the scanner constructor, specify them with
9140@code{%lex-param}; they are passed before @code{%parse-param}s to the
9141constructor.
01b477c6 9142
59c5ac72 9143In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
9144which is defined within the parser class (e.g., @code{YYParser.Lexer}).
9145The constructor of the parser object will then accept an object
9146implementing the interface; @code{%lex-param} is not used in this
9147case.
9148
9149In both cases, the scanner has to implement the following methods.
9150
e254a580
DJ
9151@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
9152This method is defined by the user to emit an error message. The first
9153parameter is omitted if location tracking is not active. Its type can be
9154changed using @code{%define location_type "@var{class-name}".}
8405b70c
PB
9155@end deftypemethod
9156
e254a580 9157@deftypemethod {Lexer} {int} yylex ()
8405b70c
PB
9158Return the next token. Its type is the return value, its semantic
9159value and location are saved and returned by the ther methods in the
e254a580
DJ
9160interface.
9161
9162Use @code{%define lex_throws} to specify any uncaught exceptions.
9163Default is @code{java.io.IOException}.
8405b70c
PB
9164@end deftypemethod
9165
9166@deftypemethod {Lexer} {Position} getStartPos ()
9167@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
9168Return respectively the first position of the last token that
9169@code{yylex} returned, and the first position beyond it. These
9170methods are not needed unless location tracking is active.
8405b70c 9171
e254a580 9172The return type can be changed using @code{%define position_type
8405b70c
PB
9173"@var{class-name}".}
9174@end deftypemethod
9175
9176@deftypemethod {Lexer} {Object} getLVal ()
59c5ac72 9177Return the semantical value of the last token that yylex returned.
8405b70c 9178
e254a580 9179The return type can be changed using @code{%define stype
8405b70c
PB
9180"@var{class-name}".}
9181@end deftypemethod
9182
9183
e254a580
DJ
9184@node Java Action Features
9185@subsection Special Features for Use in Java Actions
9186
9187The following special constructs can be uses in Java actions.
9188Other analogous C action features are currently unavailable for Java.
9189
9190Use @code{%define throws} to specify any uncaught exceptions from parser
9191actions, and initial actions specified by @code{%initial-action}.
9192
9193@defvar $@var{n}
9194The semantic value for the @var{n}th component of the current rule.
9195This may not be assigned to.
9196@xref{Java Semantic Values}.
9197@end defvar
9198
9199@defvar $<@var{typealt}>@var{n}
9200Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9201@xref{Java Semantic Values}.
9202@end defvar
9203
9204@defvar $$
9205The semantic value for the grouping made by the current rule. As a
9206value, this is in the base type (@code{Object} or as specified by
9207@code{%define stype}) as in not cast to the declared subtype because
9208casts are not allowed on the left-hand side of Java assignments.
9209Use an explicit Java cast if the correct subtype is needed.
9210@xref{Java Semantic Values}.
9211@end defvar
9212
9213@defvar $<@var{typealt}>$
9214Same as @code{$$} since Java always allow assigning to the base type.
9215Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9216for setting the value but there is currently no easy way to distinguish
9217these constructs.
9218@xref{Java Semantic Values}.
9219@end defvar
9220
9221@defvar @@@var{n}
9222The location information of the @var{n}th component of the current rule.
9223This may not be assigned to.
9224@xref{Java Location Values}.
9225@end defvar
9226
9227@defvar @@$
9228The location information of the grouping made by the current rule.
9229@xref{Java Location Values}.
9230@end defvar
9231
9232@deffn {Statement} {return YYABORT;}
9233Return immediately from the parser, indicating failure.
9234@xref{Java Parser Interface}.
9235@end deffn
8405b70c 9236
e254a580
DJ
9237@deffn {Statement} {return YYACCEPT;}
9238Return immediately from the parser, indicating success.
9239@xref{Java Parser Interface}.
9240@end deffn
8405b70c 9241
e254a580 9242@deffn {Statement} {return YYERROR;}
c265fd6b 9243Start error recovery without printing an error message.
e254a580
DJ
9244@xref{Error Recovery}.
9245@end deffn
8405b70c 9246
e254a580 9247@deffn {Statement} {return YYFAIL;}
c265fd6b 9248Print an error message and start error recovery.
e254a580
DJ
9249@xref{Error Recovery}.
9250@end deffn
8405b70c 9251
e254a580
DJ
9252@deftypefn {Function} {boolean} recovering ()
9253Return whether error recovery is being done. In this state, the parser
9254reads token until it reaches a known state, and then restarts normal
9255operation.
9256@xref{Error Recovery}.
9257@end deftypefn
8405b70c 9258
1979121c
DJ
9259@deftypefn {Function} {void} yyerror (String @var{msg})
9260@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
9261@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 9262Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
9263instance in use. The @code{Location} and @code{Position} parameters are
9264available only if location tracking is active.
e254a580 9265@end deftypefn
8405b70c 9266
8405b70c 9267
8405b70c
PB
9268@node Java Differences
9269@subsection Differences between C/C++ and Java Grammars
9270
9271The different structure of the Java language forces several differences
9272between C/C++ grammars, and grammars designed for Java parsers. This
29553547 9273section summarizes these differences.
8405b70c
PB
9274
9275@itemize
9276@item
01b477c6 9277Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 9278@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
9279macros. Instead, they should be preceded by @code{return} when they
9280appear in an action. The actual definition of these symbols is
8405b70c
PB
9281opaque to the Bison grammar, and it might change in the future. The
9282only meaningful operation that you can do, is to return them.
e254a580 9283See @pxref{Java Action Features}.
8405b70c
PB
9284
9285Note that of these three symbols, only @code{YYACCEPT} and
9286@code{YYABORT} will cause a return from the @code{yyparse}
9287method@footnote{Java parsers include the actions in a separate
9288method than @code{yyparse} in order to have an intuitive syntax that
9289corresponds to these C macros.}.
9290
e254a580
DJ
9291@item
9292Java lacks unions, so @code{%union} has no effect. Instead, semantic
9293values have a common base type: @code{Object} or as specified by
9294@code{%define stype}. Angle backets on @code{%token}, @code{type},
9295@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
9296an union. The type of @code{$$}, even with angle brackets, is the base
9297type since Java casts are not allow on the left-hand side of assignments.
9298Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
9299left-hand side of assignments. See @pxref{Java Semantic Values} and
9300@pxref{Java Action Features}.
9301
8405b70c
PB
9302@item
9303The prolog declarations have a different meaning than in C/C++ code.
01b477c6
PB
9304@table @asis
9305@item @code{%code imports}
9306blocks are placed at the beginning of the Java source code. They may
9307include copyright notices. For a @code{package} declarations, it is
9308suggested to use @code{%define package} instead.
8405b70c 9309
01b477c6
PB
9310@item unqualified @code{%code}
9311blocks are placed inside the parser class.
9312
9313@item @code{%code lexer}
9314blocks, if specified, should include the implementation of the
9315scanner. If there is no such block, the scanner can be any class
9316that implements the appropriate interface (see @pxref{Java Scanner
9317Interface}).
29553547 9318@end table
8405b70c
PB
9319
9320Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
9321In particular, @code{%@{ @dots{} %@}} blocks should not be used
9322and may give an error in future versions of Bison.
9323
01b477c6 9324The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
9325be used to define other classes used by the parser @emph{outside}
9326the parser class.
8405b70c
PB
9327@end itemize
9328
e254a580
DJ
9329
9330@node Java Declarations Summary
9331@subsection Java Declarations Summary
9332
9333This summary only include declarations specific to Java or have special
9334meaning when used in a Java parser.
9335
9336@deffn {Directive} {%language "Java"}
9337Generate a Java class for the parser.
9338@end deffn
9339
9340@deffn {Directive} %lex-param @{@var{type} @var{name}@}
9341A parameter for the lexer class defined by @code{%code lexer}
9342@emph{only}, added as parameters to the lexer constructor and the parser
9343constructor that @emph{creates} a lexer. Default is none.
9344@xref{Java Scanner Interface}.
9345@end deffn
9346
9347@deffn {Directive} %name-prefix "@var{prefix}"
9348The prefix of the parser class name @code{@var{prefix}Parser} if
9349@code{%define parser_class_name} is not used. Default is @code{YY}.
9350@xref{Java Bison Interface}.
9351@end deffn
9352
9353@deffn {Directive} %parse-param @{@var{type} @var{name}@}
9354A parameter for the parser class added as parameters to constructor(s)
9355and as fields initialized by the constructor(s). Default is none.
9356@xref{Java Parser Interface}.
9357@end deffn
9358
9359@deffn {Directive} %token <@var{type}> @var{token} @dots{}
9360Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
9361@xref{Java Semantic Values}.
9362@end deffn
9363
9364@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
9365Declare the type of nonterminals. Note that the angle brackets enclose
9366a Java @emph{type}.
9367@xref{Java Semantic Values}.
9368@end deffn
9369
9370@deffn {Directive} %code @{ @var{code} @dots{} @}
9371Code appended to the inside of the parser class.
9372@xref{Java Differences}.
9373@end deffn
9374
9375@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
9376Code inserted just after the @code{package} declaration.
9377@xref{Java Differences}.
9378@end deffn
9379
1979121c
DJ
9380@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
9381Code inserted at the beginning of the parser constructor body.
9382@xref{Java Parser Interface}.
9383@end deffn
9384
e254a580
DJ
9385@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
9386Code added to the body of a inner lexer class within the parser class.
9387@xref{Java Scanner Interface}.
9388@end deffn
9389
9390@deffn {Directive} %% @var{code} @dots{}
9391Code (after the second @code{%%}) appended to the end of the file,
9392@emph{outside} the parser class.
9393@xref{Java Differences}.
9394@end deffn
9395
9396@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 9397Not supported. Use @code{%code imports} instead.
e254a580
DJ
9398@xref{Java Differences}.
9399@end deffn
9400
9401@deffn {Directive} {%define abstract}
9402Whether the parser class is declared @code{abstract}. Default is false.
9403@xref{Java Bison Interface}.
9404@end deffn
9405
1979121c
DJ
9406@deffn {Directive} {%define annotations} "@var{annotations}"
9407The Java annotations for the parser class. Default is none.
9408@xref{Java Bison Interface}.
9409@end deffn
9410
e254a580
DJ
9411@deffn {Directive} {%define extends} "@var{superclass}"
9412The superclass of the parser class. Default is none.
9413@xref{Java Bison Interface}.
9414@end deffn
9415
9416@deffn {Directive} {%define final}
9417Whether the parser class is declared @code{final}. Default is false.
9418@xref{Java Bison Interface}.
9419@end deffn
9420
9421@deffn {Directive} {%define implements} "@var{interfaces}"
9422The implemented interfaces of the parser class, a comma-separated list.
9423Default is none.
9424@xref{Java Bison Interface}.
9425@end deffn
9426
1979121c
DJ
9427@deffn {Directive} {%define init_throws} "@var{exceptions}"
9428The exceptions thrown by @code{%code init} from the parser class
9429constructor. Default is none.
9430@xref{Java Parser Interface}.
9431@end deffn
9432
e254a580
DJ
9433@deffn {Directive} {%define lex_throws} "@var{exceptions}"
9434The exceptions thrown by the @code{yylex} method of the lexer, a
9435comma-separated list. Default is @code{java.io.IOException}.
9436@xref{Java Scanner Interface}.
9437@end deffn
9438
9439@deffn {Directive} {%define location_type} "@var{class}"
9440The name of the class used for locations (a range between two
9441positions). This class is generated as an inner class of the parser
9442class by @command{bison}. Default is @code{Location}.
9443@xref{Java Location Values}.
9444@end deffn
9445
9446@deffn {Directive} {%define package} "@var{package}"
9447The package to put the parser class in. Default is none.
9448@xref{Java Bison Interface}.
9449@end deffn
9450
9451@deffn {Directive} {%define parser_class_name} "@var{name}"
9452The name of the parser class. Default is @code{YYParser} or
9453@code{@var{name-prefix}Parser}.
9454@xref{Java Bison Interface}.
9455@end deffn
9456
9457@deffn {Directive} {%define position_type} "@var{class}"
9458The name of the class used for positions. This class must be supplied by
9459the user. Default is @code{Position}.
9460@xref{Java Location Values}.
9461@end deffn
9462
9463@deffn {Directive} {%define public}
9464Whether the parser class is declared @code{public}. Default is false.
9465@xref{Java Bison Interface}.
9466@end deffn
9467
9468@deffn {Directive} {%define stype} "@var{class}"
9469The base type of semantic values. Default is @code{Object}.
9470@xref{Java Semantic Values}.
9471@end deffn
9472
9473@deffn {Directive} {%define strictfp}
9474Whether the parser class is declared @code{strictfp}. Default is false.
9475@xref{Java Bison Interface}.
9476@end deffn
9477
9478@deffn {Directive} {%define throws} "@var{exceptions}"
9479The exceptions thrown by user-supplied parser actions and
9480@code{%initial-action}, a comma-separated list. Default is none.
9481@xref{Java Parser Interface}.
9482@end deffn
9483
9484
12545799 9485@c ================================================= FAQ
d1a1114f
AD
9486
9487@node FAQ
9488@chapter Frequently Asked Questions
9489@cindex frequently asked questions
9490@cindex questions
9491
9492Several questions about Bison come up occasionally. Here some of them
9493are addressed.
9494
9495@menu
55ba27be
AD
9496* Memory Exhausted:: Breaking the Stack Limits
9497* How Can I Reset the Parser:: @code{yyparse} Keeps some State
9498* Strings are Destroyed:: @code{yylval} Loses Track of Strings
9499* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 9500* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
9501* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
9502* I can't build Bison:: Troubleshooting
9503* Where can I find help?:: Troubleshouting
9504* Bug Reports:: Troublereporting
8405b70c 9505* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
9506* Beta Testing:: Experimenting development versions
9507* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
9508@end menu
9509
1a059451
PE
9510@node Memory Exhausted
9511@section Memory Exhausted
d1a1114f
AD
9512
9513@display
1a059451 9514My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
9515message. What can I do?
9516@end display
9517
9518This question is already addressed elsewhere, @xref{Recursion,
9519,Recursive Rules}.
9520
e64fec0a
PE
9521@node How Can I Reset the Parser
9522@section How Can I Reset the Parser
5b066063 9523
0e14ad77
PE
9524The following phenomenon has several symptoms, resulting in the
9525following typical questions:
5b066063
AD
9526
9527@display
9528I invoke @code{yyparse} several times, and on correct input it works
9529properly; but when a parse error is found, all the other calls fail
0e14ad77 9530too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
9531@end display
9532
9533@noindent
9534or
9535
9536@display
0e14ad77 9537My parser includes support for an @samp{#include}-like feature, in
5b066063 9538which case I run @code{yyparse} from @code{yyparse}. This fails
d9df47b6 9539although I did specify @code{%define api.pure}.
5b066063
AD
9540@end display
9541
0e14ad77
PE
9542These problems typically come not from Bison itself, but from
9543Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
9544speed, they might not notice a change of input file. As a
9545demonstration, consider the following source file,
9546@file{first-line.l}:
9547
9548@verbatim
9549%{
9550#include <stdio.h>
9551#include <stdlib.h>
9552%}
9553%%
9554.*\n ECHO; return 1;
9555%%
9556int
0e14ad77 9557yyparse (char const *file)
5b066063
AD
9558{
9559 yyin = fopen (file, "r");
9560 if (!yyin)
9561 exit (2);
fa7e68c3 9562 /* One token only. */
5b066063 9563 yylex ();
0e14ad77 9564 if (fclose (yyin) != 0)
5b066063
AD
9565 exit (3);
9566 return 0;
9567}
9568
9569int
0e14ad77 9570main (void)
5b066063
AD
9571{
9572 yyparse ("input");
9573 yyparse ("input");
9574 return 0;
9575}
9576@end verbatim
9577
9578@noindent
9579If the file @file{input} contains
9580
9581@verbatim
9582input:1: Hello,
9583input:2: World!
9584@end verbatim
9585
9586@noindent
0e14ad77 9587then instead of getting the first line twice, you get:
5b066063
AD
9588
9589@example
9590$ @kbd{flex -ofirst-line.c first-line.l}
9591$ @kbd{gcc -ofirst-line first-line.c -ll}
9592$ @kbd{./first-line}
9593input:1: Hello,
9594input:2: World!
9595@end example
9596
0e14ad77
PE
9597Therefore, whenever you change @code{yyin}, you must tell the
9598Lex-generated scanner to discard its current buffer and switch to the
9599new one. This depends upon your implementation of Lex; see its
9600documentation for more. For Flex, it suffices to call
9601@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
9602Flex-generated scanner needs to read from several input streams to
9603handle features like include files, you might consider using Flex
9604functions like @samp{yy_switch_to_buffer} that manipulate multiple
9605input buffers.
5b066063 9606
b165c324
AD
9607If your Flex-generated scanner uses start conditions (@pxref{Start
9608conditions, , Start conditions, flex, The Flex Manual}), you might
9609also want to reset the scanner's state, i.e., go back to the initial
9610start condition, through a call to @samp{BEGIN (0)}.
9611
fef4cb51
AD
9612@node Strings are Destroyed
9613@section Strings are Destroyed
9614
9615@display
c7e441b4 9616My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
9617them. Instead of reporting @samp{"foo", "bar"}, it reports
9618@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
9619@end display
9620
9621This error is probably the single most frequent ``bug report'' sent to
9622Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 9623of the scanner. Consider the following Lex code:
fef4cb51
AD
9624
9625@verbatim
9626%{
9627#include <stdio.h>
9628char *yylval = NULL;
9629%}
9630%%
9631.* yylval = yytext; return 1;
9632\n /* IGNORE */
9633%%
9634int
9635main ()
9636{
fa7e68c3 9637 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
9638 char *fst = (yylex (), yylval);
9639 char *snd = (yylex (), yylval);
9640 printf ("\"%s\", \"%s\"\n", fst, snd);
9641 return 0;
9642}
9643@end verbatim
9644
9645If you compile and run this code, you get:
9646
9647@example
9648$ @kbd{flex -osplit-lines.c split-lines.l}
9649$ @kbd{gcc -osplit-lines split-lines.c -ll}
9650$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9651"one
9652two", "two"
9653@end example
9654
9655@noindent
9656this is because @code{yytext} is a buffer provided for @emph{reading}
9657in the action, but if you want to keep it, you have to duplicate it
9658(e.g., using @code{strdup}). Note that the output may depend on how
9659your implementation of Lex handles @code{yytext}. For instance, when
9660given the Lex compatibility option @option{-l} (which triggers the
9661option @samp{%array}) Flex generates a different behavior:
9662
9663@example
9664$ @kbd{flex -l -osplit-lines.c split-lines.l}
9665$ @kbd{gcc -osplit-lines split-lines.c -ll}
9666$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9667"two", "two"
9668@end example
9669
9670
2fa09258
AD
9671@node Implementing Gotos/Loops
9672@section Implementing Gotos/Loops
a06ea4aa
AD
9673
9674@display
9675My simple calculator supports variables, assignments, and functions,
2fa09258 9676but how can I implement gotos, or loops?
a06ea4aa
AD
9677@end display
9678
9679Although very pedagogical, the examples included in the document blur
a1c84f45 9680the distinction to make between the parser---whose job is to recover
a06ea4aa 9681the structure of a text and to transmit it to subsequent modules of
a1c84f45 9682the program---and the processing (such as the execution) of this
a06ea4aa
AD
9683structure. This works well with so called straight line programs,
9684i.e., precisely those that have a straightforward execution model:
9685execute simple instructions one after the others.
9686
9687@cindex abstract syntax tree
9688@cindex @acronym{AST}
9689If you want a richer model, you will probably need to use the parser
9690to construct a tree that does represent the structure it has
9691recovered; this tree is usually called the @dfn{abstract syntax tree},
9692or @dfn{@acronym{AST}} for short. Then, walking through this tree,
9693traversing it in various ways, will enable treatments such as its
9694execution or its translation, which will result in an interpreter or a
9695compiler.
9696
9697This topic is way beyond the scope of this manual, and the reader is
9698invited to consult the dedicated literature.
9699
9700
ed2e6384
AD
9701@node Multiple start-symbols
9702@section Multiple start-symbols
9703
9704@display
9705I have several closely related grammars, and I would like to share their
9706implementations. In fact, I could use a single grammar but with
9707multiple entry points.
9708@end display
9709
9710Bison does not support multiple start-symbols, but there is a very
9711simple means to simulate them. If @code{foo} and @code{bar} are the two
9712pseudo start-symbols, then introduce two new tokens, say
9713@code{START_FOO} and @code{START_BAR}, and use them as switches from the
9714real start-symbol:
9715
9716@example
9717%token START_FOO START_BAR;
9718%start start;
9719start: START_FOO foo
9720 | START_BAR bar;
9721@end example
9722
9723These tokens prevents the introduction of new conflicts. As far as the
9724parser goes, that is all that is needed.
9725
9726Now the difficult part is ensuring that the scanner will send these
9727tokens first. If your scanner is hand-written, that should be
9728straightforward. If your scanner is generated by Lex, them there is
9729simple means to do it: recall that anything between @samp{%@{ ... %@}}
9730after the first @code{%%} is copied verbatim in the top of the generated
9731@code{yylex} function. Make sure a variable @code{start_token} is
9732available in the scanner (e.g., a global variable or using
9733@code{%lex-param} etc.), and use the following:
9734
9735@example
9736 /* @r{Prologue.} */
9737%%
9738%@{
9739 if (start_token)
9740 @{
9741 int t = start_token;
9742 start_token = 0;
9743 return t;
9744 @}
9745%@}
9746 /* @r{The rules.} */
9747@end example
9748
9749
55ba27be
AD
9750@node Secure? Conform?
9751@section Secure? Conform?
9752
9753@display
9754Is Bison secure? Does it conform to POSIX?
9755@end display
9756
9757If you're looking for a guarantee or certification, we don't provide it.
9758However, Bison is intended to be a reliable program that conforms to the
9759@acronym{POSIX} specification for Yacc. If you run into problems,
9760please send us a bug report.
9761
9762@node I can't build Bison
9763@section I can't build Bison
9764
9765@display
8c5b881d
PE
9766I can't build Bison because @command{make} complains that
9767@code{msgfmt} is not found.
55ba27be
AD
9768What should I do?
9769@end display
9770
9771Like most GNU packages with internationalization support, that feature
9772is turned on by default. If you have problems building in the @file{po}
9773subdirectory, it indicates that your system's internationalization
9774support is lacking. You can re-configure Bison with
9775@option{--disable-nls} to turn off this support, or you can install GNU
9776gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
9777Bison. See the file @file{ABOUT-NLS} for more information.
9778
9779
9780@node Where can I find help?
9781@section Where can I find help?
9782
9783@display
9784I'm having trouble using Bison. Where can I find help?
9785@end display
9786
9787First, read this fine manual. Beyond that, you can send mail to
9788@email{help-bison@@gnu.org}. This mailing list is intended to be
9789populated with people who are willing to answer questions about using
9790and installing Bison. Please keep in mind that (most of) the people on
9791the list have aspects of their lives which are not related to Bison (!),
9792so you may not receive an answer to your question right away. This can
9793be frustrating, but please try not to honk them off; remember that any
9794help they provide is purely voluntary and out of the kindness of their
9795hearts.
9796
9797@node Bug Reports
9798@section Bug Reports
9799
9800@display
9801I found a bug. What should I include in the bug report?
9802@end display
9803
9804Before you send a bug report, make sure you are using the latest
9805version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
9806mirrors. Be sure to include the version number in your bug report. If
9807the bug is present in the latest version but not in a previous version,
9808try to determine the most recent version which did not contain the bug.
9809
9810If the bug is parser-related, you should include the smallest grammar
9811you can which demonstrates the bug. The grammar file should also be
9812complete (i.e., I should be able to run it through Bison without having
9813to edit or add anything). The smaller and simpler the grammar, the
9814easier it will be to fix the bug.
9815
9816Include information about your compilation environment, including your
9817operating system's name and version and your compiler's name and
9818version. If you have trouble compiling, you should also include a
9819transcript of the build session, starting with the invocation of
9820`configure'. Depending on the nature of the bug, you may be asked to
9821send additional files as well (such as `config.h' or `config.cache').
9822
9823Patches are most welcome, but not required. That is, do not hesitate to
9824send a bug report just because you can not provide a fix.
9825
9826Send bug reports to @email{bug-bison@@gnu.org}.
9827
8405b70c
PB
9828@node More Languages
9829@section More Languages
55ba27be
AD
9830
9831@display
8405b70c 9832Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
9833favorite language here}?
9834@end display
9835
8405b70c 9836C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
9837languages; contributions are welcome.
9838
9839@node Beta Testing
9840@section Beta Testing
9841
9842@display
9843What is involved in being a beta tester?
9844@end display
9845
9846It's not terribly involved. Basically, you would download a test
9847release, compile it, and use it to build and run a parser or two. After
9848that, you would submit either a bug report or a message saying that
9849everything is okay. It is important to report successes as well as
9850failures because test releases eventually become mainstream releases,
9851but only if they are adequately tested. If no one tests, development is
9852essentially halted.
9853
9854Beta testers are particularly needed for operating systems to which the
9855developers do not have easy access. They currently have easy access to
9856recent GNU/Linux and Solaris versions. Reports about other operating
9857systems are especially welcome.
9858
9859@node Mailing Lists
9860@section Mailing Lists
9861
9862@display
9863How do I join the help-bison and bug-bison mailing lists?
9864@end display
9865
9866See @url{http://lists.gnu.org/}.
a06ea4aa 9867
d1a1114f
AD
9868@c ================================================= Table of Symbols
9869
342b8b6e 9870@node Table of Symbols
bfa74976
RS
9871@appendix Bison Symbols
9872@cindex Bison symbols, table of
9873@cindex symbols in Bison, table of
9874
18b519c0 9875@deffn {Variable} @@$
3ded9a63 9876In an action, the location of the left-hand side of the rule.
88bce5a2 9877@xref{Locations, , Locations Overview}.
18b519c0 9878@end deffn
3ded9a63 9879
18b519c0 9880@deffn {Variable} @@@var{n}
3ded9a63
AD
9881In an action, the location of the @var{n}-th symbol of the right-hand
9882side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 9883@end deffn
3ded9a63 9884
18b519c0 9885@deffn {Variable} $$
3ded9a63
AD
9886In an action, the semantic value of the left-hand side of the rule.
9887@xref{Actions}.
18b519c0 9888@end deffn
3ded9a63 9889
18b519c0 9890@deffn {Variable} $@var{n}
3ded9a63
AD
9891In an action, the semantic value of the @var{n}-th symbol of the
9892right-hand side of the rule. @xref{Actions}.
18b519c0 9893@end deffn
3ded9a63 9894
dd8d9022
AD
9895@deffn {Delimiter} %%
9896Delimiter used to separate the grammar rule section from the
9897Bison declarations section or the epilogue.
9898@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 9899@end deffn
bfa74976 9900
dd8d9022
AD
9901@c Don't insert spaces, or check the DVI output.
9902@deffn {Delimiter} %@{@var{code}%@}
9903All code listed between @samp{%@{} and @samp{%@}} is copied directly to
9904the output file uninterpreted. Such code forms the prologue of the input
9905file. @xref{Grammar Outline, ,Outline of a Bison
9906Grammar}.
18b519c0 9907@end deffn
bfa74976 9908
dd8d9022
AD
9909@deffn {Construct} /*@dots{}*/
9910Comment delimiters, as in C.
18b519c0 9911@end deffn
bfa74976 9912
dd8d9022
AD
9913@deffn {Delimiter} :
9914Separates a rule's result from its components. @xref{Rules, ,Syntax of
9915Grammar Rules}.
18b519c0 9916@end deffn
bfa74976 9917
dd8d9022
AD
9918@deffn {Delimiter} ;
9919Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9920@end deffn
bfa74976 9921
dd8d9022
AD
9922@deffn {Delimiter} |
9923Separates alternate rules for the same result nonterminal.
9924@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9925@end deffn
bfa74976 9926
12e35840
JD
9927@deffn {Directive} <*>
9928Used to define a default tagged @code{%destructor} or default tagged
9929@code{%printer}.
85894313
JD
9930
9931This feature is experimental.
9932More user feedback will help to determine whether it should become a permanent
9933feature.
9934
12e35840
JD
9935@xref{Destructor Decl, , Freeing Discarded Symbols}.
9936@end deffn
9937
3ebecc24 9938@deffn {Directive} <>
12e35840
JD
9939Used to define a default tagless @code{%destructor} or default tagless
9940@code{%printer}.
85894313
JD
9941
9942This feature is experimental.
9943More user feedback will help to determine whether it should become a permanent
9944feature.
9945
12e35840
JD
9946@xref{Destructor Decl, , Freeing Discarded Symbols}.
9947@end deffn
9948
dd8d9022
AD
9949@deffn {Symbol} $accept
9950The predefined nonterminal whose only rule is @samp{$accept: @var{start}
9951$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
9952Start-Symbol}. It cannot be used in the grammar.
18b519c0 9953@end deffn
bfa74976 9954
136a0f76 9955@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
9956@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
9957Insert @var{code} verbatim into output parser source.
9958@xref{Decl Summary,,%code}.
9bc0dd67
JD
9959@end deffn
9960
9961@deffn {Directive} %debug
9962Equip the parser for debugging. @xref{Decl Summary}.
9963@end deffn
9964
91d2c560 9965@ifset defaultprec
22fccf95
PE
9966@deffn {Directive} %default-prec
9967Assign a precedence to rules that lack an explicit @samp{%prec}
9968modifier. @xref{Contextual Precedence, ,Context-Dependent
9969Precedence}.
39a06c25 9970@end deffn
91d2c560 9971@end ifset
39a06c25 9972
148d66d8
JD
9973@deffn {Directive} %define @var{define-variable}
9974@deffnx {Directive} %define @var{define-variable} @var{value}
9975Define a variable to adjust Bison's behavior.
9976@xref{Decl Summary,,%define}.
9977@end deffn
9978
18b519c0 9979@deffn {Directive} %defines
6deb4447
AD
9980Bison declaration to create a header file meant for the scanner.
9981@xref{Decl Summary}.
18b519c0 9982@end deffn
6deb4447 9983
02975b9a
JD
9984@deffn {Directive} %defines @var{defines-file}
9985Same as above, but save in the file @var{defines-file}.
9986@xref{Decl Summary}.
9987@end deffn
9988
18b519c0 9989@deffn {Directive} %destructor
258b75ca 9990Specify how the parser should reclaim the memory associated to
fa7e68c3 9991discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 9992@end deffn
72f889cc 9993
18b519c0 9994@deffn {Directive} %dprec
676385e2 9995Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
9996time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
9997@acronym{GLR} Parsers}.
18b519c0 9998@end deffn
676385e2 9999
dd8d9022
AD
10000@deffn {Symbol} $end
10001The predefined token marking the end of the token stream. It cannot be
10002used in the grammar.
10003@end deffn
10004
10005@deffn {Symbol} error
10006A token name reserved for error recovery. This token may be used in
10007grammar rules so as to allow the Bison parser to recognize an error in
10008the grammar without halting the process. In effect, a sentence
10009containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
10010token @code{error} becomes the current lookahead token. Actions
10011corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
10012token is reset to the token that originally caused the violation.
10013@xref{Error Recovery}.
18d192f0
AD
10014@end deffn
10015
18b519c0 10016@deffn {Directive} %error-verbose
71b00ed8 10017An obsolete directive standing for @samp{%define error-verbose}.
18b519c0 10018@end deffn
2a8d363a 10019
02975b9a 10020@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 10021Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 10022Summary}.
18b519c0 10023@end deffn
d8988b2f 10024
18b519c0 10025@deffn {Directive} %glr-parser
c827f760
PE
10026Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
10027Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10028@end deffn
676385e2 10029
dd8d9022
AD
10030@deffn {Directive} %initial-action
10031Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
10032@end deffn
10033
e6e704dc
JD
10034@deffn {Directive} %language
10035Specify the programming language for the generated parser.
10036@xref{Decl Summary}.
10037@end deffn
10038
18b519c0 10039@deffn {Directive} %left
d78f0ac9 10040Bison declaration to assign precedence and left associativity to token(s).
bfa74976 10041@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10042@end deffn
bfa74976 10043
feeb0eda 10044@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
10045Bison declaration to specifying an additional parameter that
10046@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
10047for Pure Parsers}.
18b519c0 10048@end deffn
2a8d363a 10049
18b519c0 10050@deffn {Directive} %merge
676385e2 10051Bison declaration to assign a merging function to a rule. If there is a
fae437e8 10052reduce/reduce conflict with a rule having the same merging function, the
676385e2 10053function is applied to the two semantic values to get a single result.
c827f760 10054@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10055@end deffn
676385e2 10056
02975b9a 10057@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 10058Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 10059@end deffn
d8988b2f 10060
91d2c560 10061@ifset defaultprec
22fccf95
PE
10062@deffn {Directive} %no-default-prec
10063Do not assign a precedence to rules that lack an explicit @samp{%prec}
10064modifier. @xref{Contextual Precedence, ,Context-Dependent
10065Precedence}.
10066@end deffn
91d2c560 10067@end ifset
22fccf95 10068
18b519c0 10069@deffn {Directive} %no-lines
931c7513
RS
10070Bison declaration to avoid generating @code{#line} directives in the
10071parser file. @xref{Decl Summary}.
18b519c0 10072@end deffn
931c7513 10073
18b519c0 10074@deffn {Directive} %nonassoc
d78f0ac9 10075Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 10076@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10077@end deffn
bfa74976 10078
02975b9a 10079@deffn {Directive} %output "@var{file}"
72d2299c 10080Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 10081Summary}.
18b519c0 10082@end deffn
d8988b2f 10083
feeb0eda 10084@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
10085Bison declaration to specifying an additional parameter that
10086@code{yyparse} should accept. @xref{Parser Function,, The Parser
10087Function @code{yyparse}}.
18b519c0 10088@end deffn
2a8d363a 10089
18b519c0 10090@deffn {Directive} %prec
bfa74976
RS
10091Bison declaration to assign a precedence to a specific rule.
10092@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 10093@end deffn
bfa74976 10094
d78f0ac9
AD
10095@deffn {Directive} %precedence
10096Bison declaration to assign precedence to token(s), but no associativity
10097@xref{Precedence Decl, ,Operator Precedence}.
10098@end deffn
10099
18b519c0 10100@deffn {Directive} %pure-parser
d9df47b6
JD
10101Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
10102for which Bison is more careful to warn about unreasonable usage.
18b519c0 10103@end deffn
bfa74976 10104
b50d2359 10105@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
10106Require version @var{version} or higher of Bison. @xref{Require Decl, ,
10107Require a Version of Bison}.
b50d2359
AD
10108@end deffn
10109
18b519c0 10110@deffn {Directive} %right
d78f0ac9 10111Bison declaration to assign precedence and right associativity to token(s).
bfa74976 10112@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10113@end deffn
bfa74976 10114
e6e704dc
JD
10115@deffn {Directive} %skeleton
10116Specify the skeleton to use; usually for development.
10117@xref{Decl Summary}.
10118@end deffn
10119
18b519c0 10120@deffn {Directive} %start
704a47c4
AD
10121Bison declaration to specify the start symbol. @xref{Start Decl, ,The
10122Start-Symbol}.
18b519c0 10123@end deffn
bfa74976 10124
18b519c0 10125@deffn {Directive} %token
bfa74976
RS
10126Bison declaration to declare token(s) without specifying precedence.
10127@xref{Token Decl, ,Token Type Names}.
18b519c0 10128@end deffn
bfa74976 10129
18b519c0 10130@deffn {Directive} %token-table
931c7513
RS
10131Bison declaration to include a token name table in the parser file.
10132@xref{Decl Summary}.
18b519c0 10133@end deffn
931c7513 10134
18b519c0 10135@deffn {Directive} %type
704a47c4
AD
10136Bison declaration to declare nonterminals. @xref{Type Decl,
10137,Nonterminal Symbols}.
18b519c0 10138@end deffn
bfa74976 10139
dd8d9022
AD
10140@deffn {Symbol} $undefined
10141The predefined token onto which all undefined values returned by
10142@code{yylex} are mapped. It cannot be used in the grammar, rather, use
10143@code{error}.
10144@end deffn
10145
18b519c0 10146@deffn {Directive} %union
bfa74976
RS
10147Bison declaration to specify several possible data types for semantic
10148values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 10149@end deffn
bfa74976 10150
dd8d9022
AD
10151@deffn {Macro} YYABORT
10152Macro to pretend that an unrecoverable syntax error has occurred, by
10153making @code{yyparse} return 1 immediately. The error reporting
10154function @code{yyerror} is not called. @xref{Parser Function, ,The
10155Parser Function @code{yyparse}}.
8405b70c
PB
10156
10157For Java parsers, this functionality is invoked using @code{return YYABORT;}
10158instead.
dd8d9022 10159@end deffn
3ded9a63 10160
dd8d9022
AD
10161@deffn {Macro} YYACCEPT
10162Macro to pretend that a complete utterance of the language has been
10163read, by making @code{yyparse} return 0 immediately.
10164@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
10165
10166For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
10167instead.
dd8d9022 10168@end deffn
bfa74976 10169
dd8d9022 10170@deffn {Macro} YYBACKUP
742e4900 10171Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 10172token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10173@end deffn
bfa74976 10174
dd8d9022 10175@deffn {Variable} yychar
32c29292 10176External integer variable that contains the integer value of the
742e4900 10177lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
10178@code{yyparse}.) Error-recovery rule actions may examine this variable.
10179@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10180@end deffn
bfa74976 10181
dd8d9022
AD
10182@deffn {Variable} yyclearin
10183Macro used in error-recovery rule actions. It clears the previous
742e4900 10184lookahead token. @xref{Error Recovery}.
18b519c0 10185@end deffn
bfa74976 10186
dd8d9022
AD
10187@deffn {Macro} YYDEBUG
10188Macro to define to equip the parser with tracing code. @xref{Tracing,
10189,Tracing Your Parser}.
18b519c0 10190@end deffn
bfa74976 10191
dd8d9022
AD
10192@deffn {Variable} yydebug
10193External integer variable set to zero by default. If @code{yydebug}
10194is given a nonzero value, the parser will output information on input
10195symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 10196@end deffn
bfa74976 10197
dd8d9022
AD
10198@deffn {Macro} yyerrok
10199Macro to cause parser to recover immediately to its normal mode
10200after a syntax error. @xref{Error Recovery}.
10201@end deffn
10202
10203@deffn {Macro} YYERROR
10204Macro to pretend that a syntax error has just been detected: call
10205@code{yyerror} and then perform normal error recovery if possible
10206(@pxref{Error Recovery}), or (if recovery is impossible) make
10207@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
10208
10209For Java parsers, this functionality is invoked using @code{return YYERROR;}
10210instead.
dd8d9022
AD
10211@end deffn
10212
10213@deffn {Function} yyerror
10214User-supplied function to be called by @code{yyparse} on error.
71b00ed8 10215@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
10216@end deffn
10217
10218@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
10219An obsolete macro used in the @file{yacc.c} skeleton, that you define
10220with @code{#define} in the prologue to request verbose, specific error
10221message strings when @code{yyerror} is called. It doesn't matter what
10222definition you use for @code{YYERROR_VERBOSE}, just whether you define
10223it. Using @code{%define error-verbose} is preferred (@pxref{Error
10224Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
10225@end deffn
10226
10227@deffn {Macro} YYINITDEPTH
10228Macro for specifying the initial size of the parser stack.
1a059451 10229@xref{Memory Management}.
dd8d9022
AD
10230@end deffn
10231
10232@deffn {Function} yylex
10233User-supplied lexical analyzer function, called with no arguments to get
10234the next token. @xref{Lexical, ,The Lexical Analyzer Function
10235@code{yylex}}.
10236@end deffn
10237
10238@deffn {Macro} YYLEX_PARAM
10239An obsolete macro for specifying an extra argument (or list of extra
32c29292 10240arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
10241macro is deprecated, and is supported only for Yacc like parsers.
10242@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
10243@end deffn
10244
10245@deffn {Variable} yylloc
10246External variable in which @code{yylex} should place the line and column
10247numbers associated with a token. (In a pure parser, it is a local
10248variable within @code{yyparse}, and its address is passed to
32c29292
JD
10249@code{yylex}.)
10250You can ignore this variable if you don't use the @samp{@@} feature in the
10251grammar actions.
10252@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 10253In semantic actions, it stores the location of the lookahead token.
32c29292 10254@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
10255@end deffn
10256
10257@deffn {Type} YYLTYPE
10258Data type of @code{yylloc}; by default, a structure with four
10259members. @xref{Location Type, , Data Types of Locations}.
10260@end deffn
10261
10262@deffn {Variable} yylval
10263External variable in which @code{yylex} should place the semantic
10264value associated with a token. (In a pure parser, it is a local
10265variable within @code{yyparse}, and its address is passed to
32c29292
JD
10266@code{yylex}.)
10267@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 10268In semantic actions, it stores the semantic value of the lookahead token.
32c29292 10269@xref{Actions, ,Actions}.
dd8d9022
AD
10270@end deffn
10271
10272@deffn {Macro} YYMAXDEPTH
1a059451
PE
10273Macro for specifying the maximum size of the parser stack. @xref{Memory
10274Management}.
dd8d9022
AD
10275@end deffn
10276
10277@deffn {Variable} yynerrs
8a2800e7 10278Global variable which Bison increments each time it reports a syntax error.
f4101aa6 10279(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 10280pure push parser, it is a member of yypstate.)
dd8d9022
AD
10281@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
10282@end deffn
10283
10284@deffn {Function} yyparse
10285The parser function produced by Bison; call this function to start
10286parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
10287@end deffn
10288
9987d1b3 10289@deffn {Function} yypstate_delete
f4101aa6 10290The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 10291call this function to delete the memory associated with a parser.
f4101aa6 10292@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 10293@code{yypstate_delete}}.
59da312b
JD
10294(The current push parsing interface is experimental and may evolve.
10295More user feedback will help to stabilize it.)
9987d1b3
JD
10296@end deffn
10297
10298@deffn {Function} yypstate_new
f4101aa6 10299The function to create a parser instance, produced by Bison in push mode;
9987d1b3 10300call this function to create a new parser.
f4101aa6 10301@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 10302@code{yypstate_new}}.
59da312b
JD
10303(The current push parsing interface is experimental and may evolve.
10304More user feedback will help to stabilize it.)
9987d1b3
JD
10305@end deffn
10306
10307@deffn {Function} yypull_parse
f4101aa6
AD
10308The parser function produced by Bison in push mode; call this function to
10309parse the rest of the input stream.
10310@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 10311@code{yypull_parse}}.
59da312b
JD
10312(The current push parsing interface is experimental and may evolve.
10313More user feedback will help to stabilize it.)
9987d1b3
JD
10314@end deffn
10315
10316@deffn {Function} yypush_parse
f4101aa6
AD
10317The parser function produced by Bison in push mode; call this function to
10318parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 10319@code{yypush_parse}}.
59da312b
JD
10320(The current push parsing interface is experimental and may evolve.
10321More user feedback will help to stabilize it.)
9987d1b3
JD
10322@end deffn
10323
dd8d9022
AD
10324@deffn {Macro} YYPARSE_PARAM
10325An obsolete macro for specifying the name of a parameter that
10326@code{yyparse} should accept. The use of this macro is deprecated, and
10327is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
10328Conventions for Pure Parsers}.
10329@end deffn
10330
10331@deffn {Macro} YYRECOVERING
02103984
PE
10332The expression @code{YYRECOVERING ()} yields 1 when the parser
10333is recovering from a syntax error, and 0 otherwise.
10334@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
10335@end deffn
10336
10337@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
10338Macro used to control the use of @code{alloca} when the C
10339@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
10340the parser will use @code{malloc} to extend its stacks. If defined to
103411, the parser will use @code{alloca}. Values other than 0 and 1 are
10342reserved for future Bison extensions. If not defined,
10343@code{YYSTACK_USE_ALLOCA} defaults to 0.
10344
55289366 10345In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
10346limited stack and with unreliable stack-overflow checking, you should
10347set @code{YYMAXDEPTH} to a value that cannot possibly result in
10348unchecked stack overflow on any of your target hosts when
10349@code{alloca} is called. You can inspect the code that Bison
10350generates in order to determine the proper numeric values. This will
10351require some expertise in low-level implementation details.
dd8d9022
AD
10352@end deffn
10353
10354@deffn {Type} YYSTYPE
10355Data type of semantic values; @code{int} by default.
10356@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 10357@end deffn
bfa74976 10358
342b8b6e 10359@node Glossary
bfa74976
RS
10360@appendix Glossary
10361@cindex glossary
10362
10363@table @asis
c827f760
PE
10364@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
10365Formal method of specifying context-free grammars originally proposed
10366by John Backus, and slightly improved by Peter Naur in his 1960-01-02
10367committee document contributing to what became the Algol 60 report.
10368@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
10369
10370@item Context-free grammars
10371Grammars specified as rules that can be applied regardless of context.
10372Thus, if there is a rule which says that an integer can be used as an
10373expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
10374permitted. @xref{Language and Grammar, ,Languages and Context-Free
10375Grammars}.
bfa74976
RS
10376
10377@item Dynamic allocation
10378Allocation of memory that occurs during execution, rather than at
10379compile time or on entry to a function.
10380
10381@item Empty string
10382Analogous to the empty set in set theory, the empty string is a
10383character string of length zero.
10384
10385@item Finite-state stack machine
10386A ``machine'' that has discrete states in which it is said to exist at
10387each instant in time. As input to the machine is processed, the
10388machine moves from state to state as specified by the logic of the
10389machine. In the case of the parser, the input is the language being
10390parsed, and the states correspond to various stages in the grammar
c827f760 10391rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 10392
c827f760 10393@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 10394A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
10395that are not @acronym{LALR}(1). It resolves situations that Bison's
10396usual @acronym{LALR}(1)
676385e2
PH
10397algorithm cannot by effectively splitting off multiple parsers, trying all
10398possible parsers, and discarding those that fail in the light of additional
c827f760
PE
10399right context. @xref{Generalized LR Parsing, ,Generalized
10400@acronym{LR} Parsing}.
676385e2 10401
bfa74976
RS
10402@item Grouping
10403A language construct that is (in general) grammatically divisible;
c827f760 10404for example, `expression' or `declaration' in C@.
bfa74976
RS
10405@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10406
10407@item Infix operator
10408An arithmetic operator that is placed between the operands on which it
10409performs some operation.
10410
10411@item Input stream
10412A continuous flow of data between devices or programs.
10413
10414@item Language construct
10415One of the typical usage schemas of the language. For example, one of
10416the constructs of the C language is the @code{if} statement.
10417@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10418
10419@item Left associativity
10420Operators having left associativity are analyzed from left to right:
10421@samp{a+b+c} first computes @samp{a+b} and then combines with
10422@samp{c}. @xref{Precedence, ,Operator Precedence}.
10423
10424@item Left recursion
89cab50d
AD
10425A rule whose result symbol is also its first component symbol; for
10426example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
10427Rules}.
bfa74976
RS
10428
10429@item Left-to-right parsing
10430Parsing a sentence of a language by analyzing it token by token from
c827f760 10431left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10432
10433@item Lexical analyzer (scanner)
10434A function that reads an input stream and returns tokens one by one.
10435@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
10436
10437@item Lexical tie-in
10438A flag, set by actions in the grammar rules, which alters the way
10439tokens are parsed. @xref{Lexical Tie-ins}.
10440
931c7513 10441@item Literal string token
14ded682 10442A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 10443
742e4900
JD
10444@item Lookahead token
10445A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 10446Tokens}.
bfa74976 10447
c827f760 10448@item @acronym{LALR}(1)
bfa74976 10449The class of context-free grammars that Bison (like most other parser
c827f760
PE
10450generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
10451Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 10452
c827f760 10453@item @acronym{LR}(1)
bfa74976 10454The class of context-free grammars in which at most one token of
742e4900 10455lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
10456
10457@item Nonterminal symbol
10458A grammar symbol standing for a grammatical construct that can
10459be expressed through rules in terms of smaller constructs; in other
10460words, a construct that is not a token. @xref{Symbols}.
10461
bfa74976
RS
10462@item Parser
10463A function that recognizes valid sentences of a language by analyzing
10464the syntax structure of a set of tokens passed to it from a lexical
10465analyzer.
10466
10467@item Postfix operator
10468An arithmetic operator that is placed after the operands upon which it
10469performs some operation.
10470
10471@item Reduction
10472Replacing a string of nonterminals and/or terminals with a single
89cab50d 10473nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 10474Parser Algorithm}.
bfa74976
RS
10475
10476@item Reentrant
10477A reentrant subprogram is a subprogram which can be in invoked any
10478number of times in parallel, without interference between the various
10479invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
10480
10481@item Reverse polish notation
10482A language in which all operators are postfix operators.
10483
10484@item Right recursion
89cab50d
AD
10485A rule whose result symbol is also its last component symbol; for
10486example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
10487Rules}.
bfa74976
RS
10488
10489@item Semantics
10490In computer languages, the semantics are specified by the actions
10491taken for each instance of the language, i.e., the meaning of
10492each statement. @xref{Semantics, ,Defining Language Semantics}.
10493
10494@item Shift
10495A parser is said to shift when it makes the choice of analyzing
10496further input from the stream rather than reducing immediately some
c827f760 10497already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10498
10499@item Single-character literal
10500A single character that is recognized and interpreted as is.
10501@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
10502
10503@item Start symbol
10504The nonterminal symbol that stands for a complete valid utterance in
10505the language being parsed. The start symbol is usually listed as the
13863333 10506first nonterminal symbol in a language specification.
bfa74976
RS
10507@xref{Start Decl, ,The Start-Symbol}.
10508
10509@item Symbol table
10510A data structure where symbol names and associated data are stored
10511during parsing to allow for recognition and use of existing
10512information in repeated uses of a symbol. @xref{Multi-function Calc}.
10513
6e649e65
PE
10514@item Syntax error
10515An error encountered during parsing of an input stream due to invalid
10516syntax. @xref{Error Recovery}.
10517
bfa74976
RS
10518@item Token
10519A basic, grammatically indivisible unit of a language. The symbol
10520that describes a token in the grammar is a terminal symbol.
10521The input of the Bison parser is a stream of tokens which comes from
10522the lexical analyzer. @xref{Symbols}.
10523
10524@item Terminal symbol
89cab50d
AD
10525A grammar symbol that has no rules in the grammar and therefore is
10526grammatically indivisible. The piece of text it represents is a token.
10527@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
10528@end table
10529
342b8b6e 10530@node Copying This Manual
f2b5126e 10531@appendix Copying This Manual
f2b5126e
PB
10532@include fdl.texi
10533
342b8b6e 10534@node Index
bfa74976
RS
10535@unnumbered Index
10536
10537@printindex cp
10538
bfa74976 10539@bye
a06ea4aa
AD
10540
10541@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
10542@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
10543@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
10544@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
10545@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
f5f419de 10546@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex
a06ea4aa
AD
10547@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
10548@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
10549@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
10550@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
10551@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
10552@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
178e123e 10553@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln
a06ea4aa
AD
10554@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
10555@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
10556@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
10557@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
178e123e 10558@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs
a06ea4aa
AD
10559@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
10560@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
10561@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 10562@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa 10563@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
35fe0834 10564@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype
a06ea4aa 10565@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
35fe0834 10566@c LocalWords: infile ypp yxx outfile itemx tex leaderfill
a06ea4aa 10567@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
178e123e 10568@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST
a06ea4aa 10569@c LocalWords: YYSTACK DVI fdl printindex