]> git.saurik.com Git - bison.git/blame - doc/bison.texi
api.tokens.prefix -> api.token.prefix
[bison.git] / doc / bison.texi
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
34136e65 36Copyright @copyright{} 1988-1993, 1995, 1998-2012 Free Software
575619af 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 106* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
5e528941 112* Bibliography:: Publications cited in this manual.
f9b86351 113* Index of Terms:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 128* Locations:: Overview of location tracking.
f5f419de
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
8a4281b9 134Writing GLR Parsers
fa7e68c3 135
8a4281b9
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 140* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
24ec0837
AD
166* Rpcalc Input:: Explanation of the @code{input} nonterminal
167* Rpcalc Line:: Explanation of the @code{line} nonterminal
168* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
181* Mfcalc Lexer:: The lexical analyzer.
182* Mfcalc Main:: The controlling function.
bfa74976
RS
183
184Bison Grammar Files
185
303834cc
JD
186* Grammar Outline:: Overall layout of the grammar file.
187* Symbols:: Terminal and nonterminal symbols.
188* Rules:: How to write grammar rules.
189* Recursion:: Writing recursive rules.
190* Semantics:: Semantic values and actions.
191* Tracking Locations:: Locations and actions.
192* Named References:: Using named references in actions.
193* Declarations:: All kinds of Bison declarations are described here.
194* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
195
196Outline of a Bison Grammar
197
f5f419de 198* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 199* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
200* Bison Declarations:: Syntax and usage of the Bison declarations section.
201* Grammar Rules:: Syntax and usage of the grammar rules section.
202* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
203
204Defining Language Semantics
205
206* Value Type:: Specifying one data type for all semantic values.
207* Multiple Types:: Specifying several alternative data types.
208* Actions:: An action is the semantic definition of a grammar rule.
209* Action Types:: Specifying data types for actions to operate on.
210* Mid-Rule Actions:: Most actions go at the end of a rule.
211 This says when, why and how to use the exceptional
212 action in the middle of a rule.
213
93dd49ab
PE
214Tracking Locations
215
216* Location Type:: Specifying a data type for locations.
217* Actions and Locations:: Using locations in actions.
218* Location Default Action:: Defining a general way to compute locations.
219
bfa74976
RS
220Bison Declarations
221
b50d2359 222* Require Decl:: Requiring a Bison version.
bfa74976
RS
223* Token Decl:: Declaring terminal symbols.
224* Precedence Decl:: Declaring terminals with precedence and associativity.
225* Union Decl:: Declaring the set of all semantic value types.
226* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 227* Initial Action Decl:: Code run before parsing starts.
72f889cc 228* Destructor Decl:: Declaring how symbols are freed.
93c150b6 229* Printer Decl:: Declaring how symbol values are displayed.
d6328241 230* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
231* Start Decl:: Specifying the start symbol.
232* Pure Decl:: Requesting a reentrant parser.
9987d1b3 233* Push Decl:: Requesting a push parser.
bfa74976 234* Decl Summary:: Table of all Bison declarations.
35c1e5f0 235* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 236* %code Summary:: Inserting code into the parser source.
bfa74976
RS
237
238Parser C-Language Interface
239
f5f419de
DJ
240* Parser Function:: How to call @code{yyparse} and what it returns.
241* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
242* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
243* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
244* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
245* Lexical:: You must supply a function @code{yylex}
246 which reads tokens.
247* Error Reporting:: You must supply a function @code{yyerror}.
248* Action Features:: Special features for use in actions.
249* Internationalization:: How to let the parser speak in the user's
250 native language.
bfa74976
RS
251
252The Lexical Analyzer Function @code{yylex}
253
254* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
255* Token Values:: How @code{yylex} must return the semantic value
256 of the token it has read.
257* Token Locations:: How @code{yylex} must return the text location
258 (line number, etc.) of the token, if the
259 actions want that.
260* Pure Calling:: How the calling convention differs in a pure parser
261 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 262
13863333 263The Bison Parser Algorithm
bfa74976 264
742e4900 265* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
266* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
267* Precedence:: Operator precedence works by resolving conflicts.
268* Contextual Precedence:: When an operator's precedence depends on context.
269* Parser States:: The parser is a finite-state-machine with stack.
270* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 271* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 272* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 273* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 274* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
275
276Operator Precedence
277
278* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
279* Using Precedence:: How to specify precedence and associativity.
280* Precedence Only:: How to specify precedence only.
bfa74976
RS
281* Precedence Examples:: How these features are used in the previous example.
282* How Precedence:: How they work.
283
7fceb615
JD
284Tuning LR
285
286* LR Table Construction:: Choose a different construction algorithm.
287* Default Reductions:: Disable default reductions.
288* LAC:: Correct lookahead sets in the parser states.
289* Unreachable States:: Keep unreachable parser states for debugging.
290
bfa74976
RS
291Handling Context Dependencies
292
293* Semantic Tokens:: Token parsing can depend on the semantic context.
294* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
295* Tie-in Recovery:: Lexical tie-ins have implications for how
296 error recovery rules must be written.
297
93dd49ab 298Debugging Your Parser
ec3bc396
AD
299
300* Understanding:: Understanding the structure of your parser.
301* Tracing:: Tracing the execution of your parser.
302
93c150b6
AD
303Tracing Your Parser
304
305* Enabling Traces:: Activating run-time trace support
306* Mfcalc Traces:: Extending @code{mfcalc} to support traces
307* The YYPRINT Macro:: Obsolete interface for semantic value reports
308
bfa74976
RS
309Invoking Bison
310
13863333 311* Bison Options:: All the options described in detail,
c827f760 312 in alphabetical order by short options.
bfa74976 313* Option Cross Key:: Alphabetical list of long options.
93dd49ab 314* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 315
8405b70c 316Parsers Written In Other Languages
12545799
AD
317
318* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 319* Java Parsers:: The interface to generate Java parser classes
12545799
AD
320
321C++ Parsers
322
323* C++ Bison Interface:: Asking for C++ parser generation
324* C++ Semantic Values:: %union vs. C++
325* C++ Location Values:: The position and location classes
326* C++ Parser Interface:: Instantiating and running the parser
327* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 328* A Complete C++ Example:: Demonstrating their use
12545799 329
936c88d1
AD
330C++ Location Values
331
332* C++ position:: One point in the source file
333* C++ location:: Two points in the source file
db8ab2be 334* User Defined Location Type:: Required interface for locations
936c88d1 335
12545799
AD
336A Complete C++ Example
337
338* Calc++ --- C++ Calculator:: The specifications
339* Calc++ Parsing Driver:: An active parsing context
340* Calc++ Parser:: A parser class
341* Calc++ Scanner:: A pure C++ Flex scanner
342* Calc++ Top Level:: Conducting the band
343
8405b70c
PB
344Java Parsers
345
f5f419de
DJ
346* Java Bison Interface:: Asking for Java parser generation
347* Java Semantic Values:: %type and %token vs. Java
348* Java Location Values:: The position and location classes
349* Java Parser Interface:: Instantiating and running the parser
350* Java Scanner Interface:: Specifying the scanner for the parser
351* Java Action Features:: Special features for use in actions
352* Java Differences:: Differences between C/C++ and Java Grammars
353* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 354
d1a1114f
AD
355Frequently Asked Questions
356
f5f419de
DJ
357* Memory Exhausted:: Breaking the Stack Limits
358* How Can I Reset the Parser:: @code{yyparse} Keeps some State
359* Strings are Destroyed:: @code{yylval} Loses Track of Strings
360* Implementing Gotos/Loops:: Control Flow in the Calculator
361* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 362* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
363* I can't build Bison:: Troubleshooting
364* Where can I find help?:: Troubleshouting
365* Bug Reports:: Troublereporting
366* More Languages:: Parsers in C++, Java, and so on
367* Beta Testing:: Experimenting development versions
368* Mailing Lists:: Meeting other Bison users
d1a1114f 369
f2b5126e
PB
370Copying This Manual
371
f5f419de 372* Copying This Manual:: License for copying this manual.
f2b5126e 373
342b8b6e 374@end detailmenu
bfa74976
RS
375@end menu
376
342b8b6e 377@node Introduction
bfa74976
RS
378@unnumbered Introduction
379@cindex introduction
380
6077da58 381@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
382annotated context-free grammar into a deterministic LR or generalized
383LR (GLR) parser employing LALR(1) parser tables. As an experimental
384feature, Bison can also generate IELR(1) or canonical LR(1) parser
385tables. Once you are proficient with Bison, you can use it to develop
386a wide range of language parsers, from those used in simple desk
387calculators to complex programming languages.
388
389Bison is upward compatible with Yacc: all properly-written Yacc
390grammars ought to work with Bison with no change. Anyone familiar
391with Yacc should be able to use Bison with little trouble. You need
392to be fluent in C or C++ programming in order to use Bison or to
393understand this manual. Java is also supported as an experimental
394feature.
395
396We begin with tutorial chapters that explain the basic concepts of
397using Bison and show three explained examples, each building on the
398last. If you don't know Bison or Yacc, start by reading these
399chapters. Reference chapters follow, which describe specific aspects
400of Bison in detail.
bfa74976 401
679e9935
JD
402Bison was written originally by Robert Corbett. Richard Stallman made
403it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
404added multi-character string literals and other features. Since then,
405Bison has grown more robust and evolved many other new features thanks
406to the hard work of a long list of volunteers. For details, see the
407@file{THANKS} and @file{ChangeLog} files included in the Bison
408distribution.
931c7513 409
df1af54c 410This edition corresponds to version @value{VERSION} of Bison.
bfa74976 411
342b8b6e 412@node Conditions
bfa74976
RS
413@unnumbered Conditions for Using Bison
414
193d7c70
PE
415The distribution terms for Bison-generated parsers permit using the
416parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 417permissions applied only when Bison was generating LALR(1)
193d7c70 418parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 419parsers could be used only in programs that were free software.
a31239f1 420
8a4281b9 421The other GNU programming tools, such as the GNU C
c827f760 422compiler, have never
9ecbd125 423had such a requirement. They could always be used for nonfree
a31239f1
RS
424software. The reason Bison was different was not due to a special
425policy decision; it resulted from applying the usual General Public
426License to all of the Bison source code.
427
ff7571c0
JD
428The main output of the Bison utility---the Bison parser implementation
429file---contains a verbatim copy of a sizable piece of Bison, which is
430the code for the parser's implementation. (The actions from your
431grammar are inserted into this implementation at one point, but most
432of the rest of the implementation is not changed.) When we applied
433the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
434the effect was to restrict the use of Bison output to free software.
435
436We didn't change the terms because of sympathy for people who want to
437make software proprietary. @strong{Software should be free.} But we
438concluded that limiting Bison's use to free software was doing little to
439encourage people to make other software free. So we decided to make the
440practical conditions for using Bison match the practical conditions for
8a4281b9 441using the other GNU tools.
bfa74976 442
193d7c70
PE
443This exception applies when Bison is generating code for a parser.
444You can tell whether the exception applies to a Bison output file by
445inspecting the file for text beginning with ``As a special
446exception@dots{}''. The text spells out the exact terms of the
447exception.
262aa8dd 448
f16b0819
PE
449@node Copying
450@unnumbered GNU GENERAL PUBLIC LICENSE
451@include gpl-3.0.texi
bfa74976 452
342b8b6e 453@node Concepts
bfa74976
RS
454@chapter The Concepts of Bison
455
456This chapter introduces many of the basic concepts without which the
457details of Bison will not make sense. If you do not already know how to
458use Bison or Yacc, we suggest you start by reading this chapter carefully.
459
460@menu
f5f419de
DJ
461* Language and Grammar:: Languages and context-free grammars,
462 as mathematical ideas.
463* Grammar in Bison:: How we represent grammars for Bison's sake.
464* Semantic Values:: Each token or syntactic grouping can have
465 a semantic value (the value of an integer,
466 the name of an identifier, etc.).
467* Semantic Actions:: Each rule can have an action containing C code.
468* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 469* Locations:: Overview of location tracking.
f5f419de
DJ
470* Bison Parser:: What are Bison's input and output,
471 how is the output used?
472* Stages:: Stages in writing and running Bison grammars.
473* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
474@end menu
475
342b8b6e 476@node Language and Grammar
bfa74976
RS
477@section Languages and Context-Free Grammars
478
bfa74976
RS
479@cindex context-free grammar
480@cindex grammar, context-free
481In order for Bison to parse a language, it must be described by a
482@dfn{context-free grammar}. This means that you specify one or more
483@dfn{syntactic groupings} and give rules for constructing them from their
484parts. For example, in the C language, one kind of grouping is called an
485`expression'. One rule for making an expression might be, ``An expression
486can be made of a minus sign and another expression''. Another would be,
487``An expression can be an integer''. As you can see, rules are often
488recursive, but there must be at least one rule which leads out of the
489recursion.
490
8a4281b9 491@cindex BNF
bfa74976
RS
492@cindex Backus-Naur form
493The most common formal system for presenting such rules for humans to read
8a4281b9 494is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 495order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
496BNF is a context-free grammar. The input to Bison is
497essentially machine-readable BNF.
bfa74976 498
7fceb615
JD
499@cindex LALR grammars
500@cindex IELR grammars
501@cindex LR grammars
502There are various important subclasses of context-free grammars. Although
503it can handle almost all context-free grammars, Bison is optimized for what
504are called LR(1) grammars. In brief, in these grammars, it must be possible
505to tell how to parse any portion of an input string with just a single token
506of lookahead. For historical reasons, Bison by default is limited by the
507additional restrictions of LALR(1), which is hard to explain simply.
cc09e5be
JD
508@xref{Mysterious Conflicts}, for more information on this. As an
509experimental feature, you can escape these additional restrictions by
510requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
511Construction}, to learn how.
bfa74976 512
8a4281b9
JD
513@cindex GLR parsing
514@cindex generalized LR (GLR) parsing
676385e2 515@cindex ambiguous grammars
9d9b8b70 516@cindex nondeterministic parsing
9501dc6e 517
8a4281b9 518Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
519roughly that the next grammar rule to apply at any point in the input is
520uniquely determined by the preceding input and a fixed, finite portion
742e4900 521(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 522grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 523apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 524grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 525lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 526With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
527general context-free grammars, using a technique known as GLR
528parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
529are able to handle any context-free grammar for which the number of
530possible parses of any given string is finite.
676385e2 531
bfa74976
RS
532@cindex symbols (abstract)
533@cindex token
534@cindex syntactic grouping
535@cindex grouping, syntactic
9501dc6e
AD
536In the formal grammatical rules for a language, each kind of syntactic
537unit or grouping is named by a @dfn{symbol}. Those which are built by
538grouping smaller constructs according to grammatical rules are called
bfa74976
RS
539@dfn{nonterminal symbols}; those which can't be subdivided are called
540@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
541corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 542corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
543
544We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
545nonterminal, mean. The tokens of C are identifiers, constants (numeric
546and string), and the various keywords, arithmetic operators and
547punctuation marks. So the terminal symbols of a grammar for C include
548`identifier', `number', `string', plus one symbol for each keyword,
549operator or punctuation mark: `if', `return', `const', `static', `int',
550`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
551(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
552lexicography, not grammar.)
553
554Here is a simple C function subdivided into tokens:
555
9edcd895
AD
556@example
557int /* @r{keyword `int'} */
14d4662b 558square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
559 @r{identifier, close-paren} */
560@{ /* @r{open-brace} */
aa08666d
AD
561 return x * x; /* @r{keyword `return', identifier, asterisk,}
562 @r{identifier, semicolon} */
9edcd895
AD
563@} /* @r{close-brace} */
564@end example
bfa74976
RS
565
566The syntactic groupings of C include the expression, the statement, the
567declaration, and the function definition. These are represented in the
568grammar of C by nonterminal symbols `expression', `statement',
569`declaration' and `function definition'. The full grammar uses dozens of
570additional language constructs, each with its own nonterminal symbol, in
571order to express the meanings of these four. The example above is a
572function definition; it contains one declaration, and one statement. In
573the statement, each @samp{x} is an expression and so is @samp{x * x}.
574
575Each nonterminal symbol must have grammatical rules showing how it is made
576out of simpler constructs. For example, one kind of C statement is the
577@code{return} statement; this would be described with a grammar rule which
578reads informally as follows:
579
580@quotation
581A `statement' can be made of a `return' keyword, an `expression' and a
582`semicolon'.
583@end quotation
584
585@noindent
586There would be many other rules for `statement', one for each kind of
587statement in C.
588
589@cindex start symbol
590One nonterminal symbol must be distinguished as the special one which
591defines a complete utterance in the language. It is called the @dfn{start
592symbol}. In a compiler, this means a complete input program. In the C
593language, the nonterminal symbol `sequence of definitions and declarations'
594plays this role.
595
596For example, @samp{1 + 2} is a valid C expression---a valid part of a C
597program---but it is not valid as an @emph{entire} C program. In the
598context-free grammar of C, this follows from the fact that `expression' is
599not the start symbol.
600
601The Bison parser reads a sequence of tokens as its input, and groups the
602tokens using the grammar rules. If the input is valid, the end result is
603that the entire token sequence reduces to a single grouping whose symbol is
604the grammar's start symbol. If we use a grammar for C, the entire input
605must be a `sequence of definitions and declarations'. If not, the parser
606reports a syntax error.
607
342b8b6e 608@node Grammar in Bison
bfa74976
RS
609@section From Formal Rules to Bison Input
610@cindex Bison grammar
611@cindex grammar, Bison
612@cindex formal grammar
613
614A formal grammar is a mathematical construct. To define the language
615for Bison, you must write a file expressing the grammar in Bison syntax:
616a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
617
618A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 619as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
620in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
621
622The Bison representation for a terminal symbol is also called a @dfn{token
623type}. Token types as well can be represented as C-like identifiers. By
624convention, these identifiers should be upper case to distinguish them from
625nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
626@code{RETURN}. A terminal symbol that stands for a particular keyword in
627the language should be named after that keyword converted to upper case.
628The terminal symbol @code{error} is reserved for error recovery.
931c7513 629@xref{Symbols}.
bfa74976
RS
630
631A terminal symbol can also be represented as a character literal, just like
632a C character constant. You should do this whenever a token is just a
633single character (parenthesis, plus-sign, etc.): use that same character in
634a literal as the terminal symbol for that token.
635
931c7513
RS
636A third way to represent a terminal symbol is with a C string constant
637containing several characters. @xref{Symbols}, for more information.
638
bfa74976
RS
639The grammar rules also have an expression in Bison syntax. For example,
640here is the Bison rule for a C @code{return} statement. The semicolon in
641quotes is a literal character token, representing part of the C syntax for
642the statement; the naked semicolon, and the colon, are Bison punctuation
643used in every rule.
644
645@example
5e9b6624 646stmt: RETURN expr ';' ;
bfa74976
RS
647@end example
648
649@noindent
650@xref{Rules, ,Syntax of Grammar Rules}.
651
342b8b6e 652@node Semantic Values
bfa74976
RS
653@section Semantic Values
654@cindex semantic value
655@cindex value, semantic
656
657A formal grammar selects tokens only by their classifications: for example,
658if a rule mentions the terminal symbol `integer constant', it means that
659@emph{any} integer constant is grammatically valid in that position. The
660precise value of the constant is irrelevant to how to parse the input: if
661@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 662grammatical.
bfa74976
RS
663
664But the precise value is very important for what the input means once it is
665parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6663989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
667has both a token type and a @dfn{semantic value}. @xref{Semantics,
668,Defining Language Semantics},
bfa74976
RS
669for details.
670
671The token type is a terminal symbol defined in the grammar, such as
672@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
673you need to know to decide where the token may validly appear and how to
674group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 675except their types.
bfa74976
RS
676
677The semantic value has all the rest of the information about the
678meaning of the token, such as the value of an integer, or the name of an
679identifier. (A token such as @code{','} which is just punctuation doesn't
680need to have any semantic value.)
681
682For example, an input token might be classified as token type
683@code{INTEGER} and have the semantic value 4. Another input token might
684have the same token type @code{INTEGER} but value 3989. When a grammar
685rule says that @code{INTEGER} is allowed, either of these tokens is
686acceptable because each is an @code{INTEGER}. When the parser accepts the
687token, it keeps track of the token's semantic value.
688
689Each grouping can also have a semantic value as well as its nonterminal
690symbol. For example, in a calculator, an expression typically has a
691semantic value that is a number. In a compiler for a programming
692language, an expression typically has a semantic value that is a tree
693structure describing the meaning of the expression.
694
342b8b6e 695@node Semantic Actions
bfa74976
RS
696@section Semantic Actions
697@cindex semantic actions
698@cindex actions, semantic
699
700In order to be useful, a program must do more than parse input; it must
701also produce some output based on the input. In a Bison grammar, a grammar
702rule can have an @dfn{action} made up of C statements. Each time the
703parser recognizes a match for that rule, the action is executed.
704@xref{Actions}.
13863333 705
bfa74976
RS
706Most of the time, the purpose of an action is to compute the semantic value
707of the whole construct from the semantic values of its parts. For example,
708suppose we have a rule which says an expression can be the sum of two
709expressions. When the parser recognizes such a sum, each of the
710subexpressions has a semantic value which describes how it was built up.
711The action for this rule should create a similar sort of value for the
712newly recognized larger expression.
713
714For example, here is a rule that says an expression can be the sum of
715two subexpressions:
716
717@example
5e9b6624 718expr: expr '+' expr @{ $$ = $1 + $3; @} ;
bfa74976
RS
719@end example
720
721@noindent
722The action says how to produce the semantic value of the sum expression
723from the values of the two subexpressions.
724
676385e2 725@node GLR Parsers
8a4281b9
JD
726@section Writing GLR Parsers
727@cindex GLR parsing
728@cindex generalized LR (GLR) parsing
676385e2
PH
729@findex %glr-parser
730@cindex conflicts
731@cindex shift/reduce conflicts
fa7e68c3 732@cindex reduce/reduce conflicts
676385e2 733
eb45ef3b 734In some grammars, Bison's deterministic
8a4281b9 735LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
736certain grammar rule at a given point. That is, it may not be able to
737decide (on the basis of the input read so far) which of two possible
738reductions (applications of a grammar rule) applies, or whether to apply
739a reduction or read more of the input and apply a reduction later in the
740input. These are known respectively as @dfn{reduce/reduce} conflicts
741(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
742(@pxref{Shift/Reduce}).
743
8a4281b9 744To use a grammar that is not easily modified to be LR(1), a
9501dc6e 745more general parsing algorithm is sometimes necessary. If you include
676385e2 746@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
747(@pxref{Grammar Outline}), the result is a Generalized LR
748(GLR) parser. These parsers handle Bison grammars that
9501dc6e 749contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 750declarations) identically to deterministic parsers. However, when
9501dc6e 751faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 752GLR parsers use the simple expedient of doing both,
9501dc6e
AD
753effectively cloning the parser to follow both possibilities. Each of
754the resulting parsers can again split, so that at any given time, there
755can be any number of possible parses being explored. The parsers
676385e2
PH
756proceed in lockstep; that is, all of them consume (shift) a given input
757symbol before any of them proceed to the next. Each of the cloned
758parsers eventually meets one of two possible fates: either it runs into
759a parsing error, in which case it simply vanishes, or it merges with
760another parser, because the two of them have reduced the input to an
761identical set of symbols.
762
763During the time that there are multiple parsers, semantic actions are
764recorded, but not performed. When a parser disappears, its recorded
765semantic actions disappear as well, and are never performed. When a
766reduction makes two parsers identical, causing them to merge, Bison
767records both sets of semantic actions. Whenever the last two parsers
768merge, reverting to the single-parser case, Bison resolves all the
769outstanding actions either by precedences given to the grammar rules
770involved, or by performing both actions, and then calling a designated
771user-defined function on the resulting values to produce an arbitrary
772merged result.
773
fa7e68c3 774@menu
8a4281b9
JD
775* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
776* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 777* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 778* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 779* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
780@end menu
781
782@node Simple GLR Parsers
8a4281b9
JD
783@subsection Using GLR on Unambiguous Grammars
784@cindex GLR parsing, unambiguous grammars
785@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
786@findex %glr-parser
787@findex %expect-rr
788@cindex conflicts
789@cindex reduce/reduce conflicts
790@cindex shift/reduce conflicts
791
8a4281b9
JD
792In the simplest cases, you can use the GLR algorithm
793to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 794Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
795
796Consider a problem that
797arises in the declaration of enumerated and subrange types in the
798programming language Pascal. Here are some examples:
799
800@example
801type subrange = lo .. hi;
802type enum = (a, b, c);
803@end example
804
805@noindent
806The original language standard allows only numeric
807literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 808and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
80910206) and many other
810Pascal implementations allow arbitrary expressions there. This gives
811rise to the following situation, containing a superfluous pair of
812parentheses:
813
814@example
815type subrange = (a) .. b;
816@end example
817
818@noindent
819Compare this to the following declaration of an enumerated
820type with only one value:
821
822@example
823type enum = (a);
824@end example
825
826@noindent
827(These declarations are contrived, but they are syntactically
828valid, and more-complicated cases can come up in practical programs.)
829
830These two declarations look identical until the @samp{..} token.
8a4281b9 831With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
832possible to decide between the two forms when the identifier
833@samp{a} is parsed. It is, however, desirable
834for a parser to decide this, since in the latter case
835@samp{a} must become a new identifier to represent the enumeration
836value, while in the former case @samp{a} must be evaluated with its
837current meaning, which may be a constant or even a function call.
838
839You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
840to be resolved later, but this typically requires substantial
841contortions in both semantic actions and large parts of the
842grammar, where the parentheses are nested in the recursive rules for
843expressions.
844
845You might think of using the lexer to distinguish between the two
846forms by returning different tokens for currently defined and
847undefined identifiers. But if these declarations occur in a local
848scope, and @samp{a} is defined in an outer scope, then both forms
849are possible---either locally redefining @samp{a}, or using the
850value of @samp{a} from the outer scope. So this approach cannot
851work.
852
e757bb10 853A simple solution to this problem is to declare the parser to
8a4281b9
JD
854use the GLR algorithm.
855When the GLR parser reaches the critical state, it
fa7e68c3
PE
856merely splits into two branches and pursues both syntax rules
857simultaneously. Sooner or later, one of them runs into a parsing
858error. If there is a @samp{..} token before the next
859@samp{;}, the rule for enumerated types fails since it cannot
860accept @samp{..} anywhere; otherwise, the subrange type rule
861fails since it requires a @samp{..} token. So one of the branches
862fails silently, and the other one continues normally, performing
863all the intermediate actions that were postponed during the split.
864
865If the input is syntactically incorrect, both branches fail and the parser
866reports a syntax error as usual.
867
868The effect of all this is that the parser seems to ``guess'' the
869correct branch to take, or in other words, it seems to use more
8a4281b9
JD
870lookahead than the underlying LR(1) algorithm actually allows
871for. In this example, LR(2) would suffice, but also some cases
872that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 873
8a4281b9 874In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
875and the current Bison parser even takes exponential time and space
876for some grammars. In practice, this rarely happens, and for many
877grammars it is possible to prove that it cannot happen.
878The present example contains only one conflict between two
879rules, and the type-declaration context containing the conflict
880cannot be nested. So the number of
881branches that can exist at any time is limited by the constant 2,
882and the parsing time is still linear.
883
884Here is a Bison grammar corresponding to the example above. It
885parses a vastly simplified form of Pascal type declarations.
886
887@example
888%token TYPE DOTDOT ID
889
890@group
891%left '+' '-'
892%left '*' '/'
893@end group
894
895%%
896
897@group
5e9b6624 898type_decl: TYPE ID '=' type ';' ;
fa7e68c3
PE
899@end group
900
901@group
5e9b6624
AD
902type:
903 '(' id_list ')'
904| expr DOTDOT expr
905;
fa7e68c3
PE
906@end group
907
908@group
5e9b6624
AD
909id_list:
910 ID
911| id_list ',' ID
912;
fa7e68c3
PE
913@end group
914
915@group
5e9b6624
AD
916expr:
917 '(' expr ')'
918| expr '+' expr
919| expr '-' expr
920| expr '*' expr
921| expr '/' expr
922| ID
923;
fa7e68c3
PE
924@end group
925@end example
926
8a4281b9 927When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
928about one reduce/reduce conflict. In the conflicting situation the
929parser chooses one of the alternatives, arbitrarily the one
930declared first. Therefore the following correct input is not
931recognized:
932
933@example
934type t = (a) .. b;
935@end example
936
8a4281b9 937The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
938to be silent about the one known reduce/reduce conflict, by adding
939these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
940@samp{%%}):
941
942@example
943%glr-parser
944%expect-rr 1
945@end example
946
947@noindent
948No change in the grammar itself is required. Now the
949parser recognizes all valid declarations, according to the
950limited syntax above, transparently. In fact, the user does not even
951notice when the parser splits.
952
8a4281b9 953So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
954almost without disadvantages. Even in simple cases like this, however,
955there are at least two potential problems to beware. First, always
8a4281b9
JD
956analyze the conflicts reported by Bison to make sure that GLR
957splitting is only done where it is intended. A GLR parser
f8e1c9e5 958splitting inadvertently may cause problems less obvious than an
8a4281b9 959LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
960conflict. Second, consider interactions with the lexer (@pxref{Semantic
961Tokens}) with great care. Since a split parser consumes tokens without
962performing any actions during the split, the lexer cannot obtain
963information via parser actions. Some cases of lexer interactions can be
8a4281b9 964eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
965lexer to the parser. You must check the remaining cases for
966correctness.
967
968In our example, it would be safe for the lexer to return tokens based on
969their current meanings in some symbol table, because no new symbols are
970defined in the middle of a type declaration. Though it is possible for
971a parser to define the enumeration constants as they are parsed, before
972the type declaration is completed, it actually makes no difference since
973they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
974
975@node Merging GLR Parses
8a4281b9
JD
976@subsection Using GLR to Resolve Ambiguities
977@cindex GLR parsing, ambiguous grammars
978@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
979@findex %dprec
980@findex %merge
981@cindex conflicts
982@cindex reduce/reduce conflicts
983
2a8d363a 984Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
985
986@example
987%@{
38a92d50
PE
988 #include <stdio.h>
989 #define YYSTYPE char const *
990 int yylex (void);
991 void yyerror (char const *);
676385e2
PH
992%@}
993
994%token TYPENAME ID
995
996%right '='
997%left '+'
998
999%glr-parser
1000
1001%%
1002
5e9b6624
AD
1003prog:
1004 /* Nothing. */
1005| prog stmt @{ printf ("\n"); @}
1006;
676385e2 1007
5e9b6624
AD
1008stmt:
1009 expr ';' %dprec 1
1010| decl %dprec 2
1011;
676385e2 1012
5e9b6624
AD
1013expr:
1014 ID @{ printf ("%s ", $$); @}
1015| TYPENAME '(' expr ')'
1016 @{ printf ("%s <cast> ", $1); @}
1017| expr '+' expr @{ printf ("+ "); @}
1018| expr '=' expr @{ printf ("= "); @}
1019;
676385e2 1020
5e9b6624
AD
1021decl:
1022 TYPENAME declarator ';'
1023 @{ printf ("%s <declare> ", $1); @}
1024| TYPENAME declarator '=' expr ';'
1025 @{ printf ("%s <init-declare> ", $1); @}
1026;
676385e2 1027
5e9b6624
AD
1028declarator:
1029 ID @{ printf ("\"%s\" ", $1); @}
1030| '(' declarator ')'
1031;
676385e2
PH
1032@end example
1033
1034@noindent
1035This models a problematic part of the C++ grammar---the ambiguity between
1036certain declarations and statements. For example,
1037
1038@example
1039T (x) = y+z;
1040@end example
1041
1042@noindent
1043parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1044(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1045@samp{x} as an @code{ID}).
676385e2 1046Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1047@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1048time it encounters @code{x} in the example above. Since this is a
8a4281b9 1049GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1050each choice of resolving the reduce/reduce conflict.
1051Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1052however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1053ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1054the other reduces @code{stmt : decl}, after which both parsers are in an
1055identical state: they've seen @samp{prog stmt} and have the same unprocessed
1056input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1057
8a4281b9 1058At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1059grammar of how to choose between the competing parses.
1060In the example above, the two @code{%dprec}
e757bb10 1061declarations specify that Bison is to give precedence
fa7e68c3 1062to the parse that interprets the example as a
676385e2
PH
1063@code{decl}, which implies that @code{x} is a declarator.
1064The parser therefore prints
1065
1066@example
fae437e8 1067"x" y z + T <init-declare>
676385e2
PH
1068@end example
1069
fa7e68c3
PE
1070The @code{%dprec} declarations only come into play when more than one
1071parse survives. Consider a different input string for this parser:
676385e2
PH
1072
1073@example
1074T (x) + y;
1075@end example
1076
1077@noindent
8a4281b9 1078This is another example of using GLR to parse an unambiguous
fa7e68c3 1079construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1080Here, there is no ambiguity (this cannot be parsed as a declaration).
1081However, at the time the Bison parser encounters @code{x}, it does not
1082have enough information to resolve the reduce/reduce conflict (again,
1083between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1084case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1085into two, one assuming that @code{x} is an @code{expr}, and the other
1086assuming @code{x} is a @code{declarator}. The second of these parsers
1087then vanishes when it sees @code{+}, and the parser prints
1088
1089@example
fae437e8 1090x T <cast> y +
676385e2
PH
1091@end example
1092
1093Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1094the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1095actions of the two possible parsers, rather than choosing one over the
1096other. To do so, you could change the declaration of @code{stmt} as
1097follows:
1098
1099@example
5e9b6624
AD
1100stmt:
1101 expr ';' %merge <stmtMerge>
1102| decl %merge <stmtMerge>
1103;
676385e2
PH
1104@end example
1105
1106@noindent
676385e2
PH
1107and define the @code{stmtMerge} function as:
1108
1109@example
38a92d50
PE
1110static YYSTYPE
1111stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1112@{
1113 printf ("<OR> ");
1114 return "";
1115@}
1116@end example
1117
1118@noindent
1119with an accompanying forward declaration
1120in the C declarations at the beginning of the file:
1121
1122@example
1123%@{
38a92d50 1124 #define YYSTYPE char const *
676385e2
PH
1125 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1126%@}
1127@end example
1128
1129@noindent
fa7e68c3
PE
1130With these declarations, the resulting parser parses the first example
1131as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1132
1133@example
fae437e8 1134"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1135@end example
1136
fa7e68c3 1137Bison requires that all of the
e757bb10 1138productions that participate in any particular merge have identical
fa7e68c3
PE
1139@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1140and the parser will report an error during any parse that results in
1141the offending merge.
9501dc6e 1142
32c29292
JD
1143@node GLR Semantic Actions
1144@subsection GLR Semantic Actions
1145
8a4281b9 1146The nature of GLR parsing and the structure of the generated
20be2f92
PH
1147parsers give rise to certain restrictions on semantic values and actions.
1148
1149@subsubsection Deferred semantic actions
32c29292
JD
1150@cindex deferred semantic actions
1151By definition, a deferred semantic action is not performed at the same time as
1152the associated reduction.
1153This raises caveats for several Bison features you might use in a semantic
8a4281b9 1154action in a GLR parser.
32c29292
JD
1155
1156@vindex yychar
8a4281b9 1157@cindex GLR parsers and @code{yychar}
32c29292 1158@vindex yylval
8a4281b9 1159@cindex GLR parsers and @code{yylval}
32c29292 1160@vindex yylloc
8a4281b9 1161@cindex GLR parsers and @code{yylloc}
32c29292 1162In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1163the lookahead token present at the time of the associated reduction.
32c29292
JD
1164After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1165you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1166lookahead token's semantic value and location, if any.
32c29292
JD
1167In a nondeferred semantic action, you can also modify any of these variables to
1168influence syntax analysis.
742e4900 1169@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1170
1171@findex yyclearin
8a4281b9 1172@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1173In a deferred semantic action, it's too late to influence syntax analysis.
1174In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1175shallow copies of the values they had at the time of the associated reduction.
1176For this reason alone, modifying them is dangerous.
1177Moreover, the result of modifying them is undefined and subject to change with
1178future versions of Bison.
1179For example, if a semantic action might be deferred, you should never write it
1180to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1181memory referenced by @code{yylval}.
1182
20be2f92 1183@subsubsection YYERROR
32c29292 1184@findex YYERROR
8a4281b9 1185@cindex GLR parsers and @code{YYERROR}
32c29292 1186Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1187(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1188initiate error recovery.
8a4281b9 1189During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1190the same as its effect in a deterministic parser.
411614fa
JM
1191The effect in a deferred action is similar, but the precise point of the
1192error is undefined; instead, the parser reverts to deterministic operation,
20be2f92
PH
1193selecting an unspecified stack on which to continue with a syntax error.
1194In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1195parsing, @code{YYERROR} silently prunes
1196the parse that invoked the test.
1197
1198@subsubsection Restrictions on semantic values and locations
8a4281b9 1199GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1200semantic values and location types when using the generated parsers as
1201C++ code.
8710fc41 1202
ca2a6d15
PH
1203@node Semantic Predicates
1204@subsection Controlling a Parse with Arbitrary Predicates
1205@findex %?
8a4281b9 1206@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1207
1208In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1209GLR parsers
ca2a6d15
PH
1210allow you to reject parses on the basis of arbitrary computations executed
1211in user code, without having Bison treat this rejection as an error
1212if there are alternative parses. (This feature is experimental and may
1213evolve. We welcome user feedback.) For example,
1214
c93f22fc
AD
1215@example
1216widget:
5e9b6624
AD
1217 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1218| %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1219;
c93f22fc 1220@end example
ca2a6d15
PH
1221
1222@noindent
411614fa 1223is one way to allow the same parser to handle two different syntaxes for
ca2a6d15
PH
1224widgets. The clause preceded by @code{%?} is treated like an ordinary
1225action, except that its text is treated as an expression and is always
411614fa 1226evaluated immediately (even when in nondeterministic mode). If the
ca2a6d15 1227expression yields 0 (false), the clause is treated as a syntax error,
411614fa 1228which, in a nondeterministic parser, causes the stack in which it is reduced
ca2a6d15
PH
1229to die. In a deterministic parser, it acts like YYERROR.
1230
1231As the example shows, predicates otherwise look like semantic actions, and
1232therefore you must be take them into account when determining the numbers
1233to use for denoting the semantic values of right-hand side symbols.
1234Predicate actions, however, have no defined value, and may not be given
1235labels.
1236
1237There is a subtle difference between semantic predicates and ordinary
1238actions in nondeterministic mode, since the latter are deferred.
411614fa 1239For example, we could try to rewrite the previous example as
ca2a6d15 1240
c93f22fc
AD
1241@example
1242widget:
5e9b6624
AD
1243 @{ if (!new_syntax) YYERROR; @}
1244 "widget" id new_args @{ $$ = f($3, $4); @}
1245| @{ if (new_syntax) YYERROR; @}
1246 "widget" id old_args @{ $$ = f($3, $4); @}
1247;
c93f22fc 1248@end example
ca2a6d15
PH
1249
1250@noindent
1251(reversing the sense of the predicate tests to cause an error when they are
1252false). However, this
1253does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1254have overlapping syntax.
411614fa 1255Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1256a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1257for cases where @code{new_args} and @code{old_args} recognize the same string
1258@emph{before} performing the tests of @code{new_syntax}. It therefore
1259reports an error.
1260
1261Finally, be careful in writing predicates: deferred actions have not been
1262evaluated, so that using them in a predicate will have undefined effects.
1263
fa7e68c3 1264@node Compiler Requirements
8a4281b9 1265@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1266@cindex @code{inline}
8a4281b9 1267@cindex GLR parsers and @code{inline}
fa7e68c3 1268
8a4281b9 1269The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1270later. In addition, they use the @code{inline} keyword, which is not
1271C89, but is C99 and is a common extension in pre-C99 compilers. It is
1272up to the user of these parsers to handle
9501dc6e
AD
1273portability issues. For instance, if using Autoconf and the Autoconf
1274macro @code{AC_C_INLINE}, a mere
1275
1276@example
1277%@{
38a92d50 1278 #include <config.h>
9501dc6e
AD
1279%@}
1280@end example
1281
1282@noindent
1283will suffice. Otherwise, we suggest
1284
1285@example
1286%@{
aaaa2aae
AD
1287 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1288 && ! defined inline)
1289 # define inline
38a92d50 1290 #endif
9501dc6e
AD
1291%@}
1292@end example
676385e2 1293
1769eb30 1294@node Locations
847bf1f5
AD
1295@section Locations
1296@cindex location
95923bd6
AD
1297@cindex textual location
1298@cindex location, textual
847bf1f5
AD
1299
1300Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1301and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1302the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1303Bison provides a mechanism for handling these locations.
1304
72d2299c 1305Each token has a semantic value. In a similar fashion, each token has an
303834cc
JD
1306associated location, but the type of locations is the same for all tokens
1307and groupings. Moreover, the output parser is equipped with a default data
1308structure for storing locations (@pxref{Tracking Locations}, for more
1309details).
847bf1f5
AD
1310
1311Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1312set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1313is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1314@code{@@3}.
1315
1316When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1317of its left hand side (@pxref{Actions}). In the same way, another default
1318action is used for locations. However, the action for locations is general
847bf1f5 1319enough for most cases, meaning there is usually no need to describe for each
72d2299c 1320rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1321grouping, the default behavior of the output parser is to take the beginning
1322of the first symbol, and the end of the last symbol.
1323
342b8b6e 1324@node Bison Parser
ff7571c0 1325@section Bison Output: the Parser Implementation File
bfa74976
RS
1326@cindex Bison parser
1327@cindex Bison utility
1328@cindex lexical analyzer, purpose
1329@cindex parser
1330
ff7571c0
JD
1331When you run Bison, you give it a Bison grammar file as input. The
1332most important output is a C source file that implements a parser for
1333the language described by the grammar. This parser is called a
1334@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1335implementation file}. Keep in mind that the Bison utility and the
1336Bison parser are two distinct programs: the Bison utility is a program
1337whose output is the Bison parser implementation file that becomes part
1338of your program.
bfa74976
RS
1339
1340The job of the Bison parser is to group tokens into groupings according to
1341the grammar rules---for example, to build identifiers and operators into
1342expressions. As it does this, it runs the actions for the grammar rules it
1343uses.
1344
704a47c4
AD
1345The tokens come from a function called the @dfn{lexical analyzer} that
1346you must supply in some fashion (such as by writing it in C). The Bison
1347parser calls the lexical analyzer each time it wants a new token. It
1348doesn't know what is ``inside'' the tokens (though their semantic values
1349may reflect this). Typically the lexical analyzer makes the tokens by
1350parsing characters of text, but Bison does not depend on this.
1351@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1352
ff7571c0
JD
1353The Bison parser implementation file is C code which defines a
1354function named @code{yyparse} which implements that grammar. This
1355function does not make a complete C program: you must supply some
1356additional functions. One is the lexical analyzer. Another is an
1357error-reporting function which the parser calls to report an error.
1358In addition, a complete C program must start with a function called
1359@code{main}; you have to provide this, and arrange for it to call
1360@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1361C-Language Interface}.
bfa74976 1362
f7ab6a50 1363Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1364write, all symbols defined in the Bison parser implementation file
1365itself begin with @samp{yy} or @samp{YY}. This includes interface
1366functions such as the lexical analyzer function @code{yylex}, the
1367error reporting function @code{yyerror} and the parser function
1368@code{yyparse} itself. This also includes numerous identifiers used
1369for internal purposes. Therefore, you should avoid using C
1370identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1371file except for the ones defined in this manual. Also, you should
1372avoid using the C identifiers @samp{malloc} and @samp{free} for
1373anything other than their usual meanings.
1374
1375In some cases the Bison parser implementation file includes system
1376headers, and in those cases your code should respect the identifiers
1377reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1378@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1379included as needed to declare memory allocators and related types.
1380@code{<libintl.h>} is included if message translation is in use
1381(@pxref{Internationalization}). Other system headers may be included
1382if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1383,Tracing Your Parser}).
7093d0f5 1384
342b8b6e 1385@node Stages
bfa74976
RS
1386@section Stages in Using Bison
1387@cindex stages in using Bison
1388@cindex using Bison
1389
1390The actual language-design process using Bison, from grammar specification
1391to a working compiler or interpreter, has these parts:
1392
1393@enumerate
1394@item
1395Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1396(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1397in the language, describe the action that is to be taken when an
1398instance of that rule is recognized. The action is described by a
1399sequence of C statements.
bfa74976
RS
1400
1401@item
704a47c4
AD
1402Write a lexical analyzer to process input and pass tokens to the parser.
1403The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1404Lexical Analyzer Function @code{yylex}}). It could also be produced
1405using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1406
1407@item
1408Write a controlling function that calls the Bison-produced parser.
1409
1410@item
1411Write error-reporting routines.
1412@end enumerate
1413
1414To turn this source code as written into a runnable program, you
1415must follow these steps:
1416
1417@enumerate
1418@item
1419Run Bison on the grammar to produce the parser.
1420
1421@item
1422Compile the code output by Bison, as well as any other source files.
1423
1424@item
1425Link the object files to produce the finished product.
1426@end enumerate
1427
342b8b6e 1428@node Grammar Layout
bfa74976
RS
1429@section The Overall Layout of a Bison Grammar
1430@cindex grammar file
1431@cindex file format
1432@cindex format of grammar file
1433@cindex layout of Bison grammar
1434
1435The input file for the Bison utility is a @dfn{Bison grammar file}. The
1436general form of a Bison grammar file is as follows:
1437
1438@example
1439%@{
08e49d20 1440@var{Prologue}
bfa74976
RS
1441%@}
1442
1443@var{Bison declarations}
1444
1445%%
1446@var{Grammar rules}
1447%%
08e49d20 1448@var{Epilogue}
bfa74976
RS
1449@end example
1450
1451@noindent
1452The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1453in every Bison grammar file to separate the sections.
1454
72d2299c 1455The prologue may define types and variables used in the actions. You can
342b8b6e 1456also use preprocessor commands to define macros used there, and use
bfa74976 1457@code{#include} to include header files that do any of these things.
38a92d50
PE
1458You need to declare the lexical analyzer @code{yylex} and the error
1459printer @code{yyerror} here, along with any other global identifiers
1460used by the actions in the grammar rules.
bfa74976
RS
1461
1462The Bison declarations declare the names of the terminal and nonterminal
1463symbols, and may also describe operator precedence and the data types of
1464semantic values of various symbols.
1465
1466The grammar rules define how to construct each nonterminal symbol from its
1467parts.
1468
38a92d50
PE
1469The epilogue can contain any code you want to use. Often the
1470definitions of functions declared in the prologue go here. In a
1471simple program, all the rest of the program can go here.
bfa74976 1472
342b8b6e 1473@node Examples
bfa74976
RS
1474@chapter Examples
1475@cindex simple examples
1476@cindex examples, simple
1477
aaaa2aae 1478Now we show and explain several sample programs written using Bison: a
bfa74976 1479reverse polish notation calculator, an algebraic (infix) notation
aaaa2aae
AD
1480calculator --- later extended to track ``locations'' ---
1481and a multi-function calculator. All
1482produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1483
1484These examples are simple, but Bison grammars for real programming
aa08666d
AD
1485languages are written the same way. You can copy these examples into a
1486source file to try them.
bfa74976
RS
1487
1488@menu
f5f419de
DJ
1489* RPN Calc:: Reverse polish notation calculator;
1490 a first example with no operator precedence.
1491* Infix Calc:: Infix (algebraic) notation calculator.
1492 Operator precedence is introduced.
bfa74976 1493* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1494* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1495* Multi-function Calc:: Calculator with memory and trig functions.
1496 It uses multiple data-types for semantic values.
1497* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1498@end menu
1499
342b8b6e 1500@node RPN Calc
bfa74976
RS
1501@section Reverse Polish Notation Calculator
1502@cindex reverse polish notation
1503@cindex polish notation calculator
1504@cindex @code{rpcalc}
1505@cindex calculator, simple
1506
1507The first example is that of a simple double-precision @dfn{reverse polish
1508notation} calculator (a calculator using postfix operators). This example
1509provides a good starting point, since operator precedence is not an issue.
1510The second example will illustrate how operator precedence is handled.
1511
1512The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1513@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1514
1515@menu
f5f419de
DJ
1516* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1517* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1518* Rpcalc Lexer:: The lexical analyzer.
1519* Rpcalc Main:: The controlling function.
1520* Rpcalc Error:: The error reporting function.
1521* Rpcalc Generate:: Running Bison on the grammar file.
1522* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1523@end menu
1524
f5f419de 1525@node Rpcalc Declarations
bfa74976
RS
1526@subsection Declarations for @code{rpcalc}
1527
1528Here are the C and Bison declarations for the reverse polish notation
1529calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1530
24ec0837 1531@comment file: rpcalc.y
bfa74976 1532@example
72d2299c 1533/* Reverse polish notation calculator. */
bfa74976
RS
1534
1535%@{
38a92d50 1536 #define YYSTYPE double
24ec0837 1537 #include <stdio.h>
38a92d50
PE
1538 #include <math.h>
1539 int yylex (void);
1540 void yyerror (char const *);
bfa74976
RS
1541%@}
1542
1543%token NUM
1544
72d2299c 1545%% /* Grammar rules and actions follow. */
bfa74976
RS
1546@end example
1547
75f5aaea 1548The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1549preprocessor directives and two forward declarations.
bfa74976
RS
1550
1551The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1552specifying the C data type for semantic values of both tokens and
1553groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1554Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1555don't define it, @code{int} is the default. Because we specify
1556@code{double}, each token and each expression has an associated value,
1557which is a floating point number.
bfa74976
RS
1558
1559The @code{#include} directive is used to declare the exponentiation
1560function @code{pow}.
1561
38a92d50
PE
1562The forward declarations for @code{yylex} and @code{yyerror} are
1563needed because the C language requires that functions be declared
1564before they are used. These functions will be defined in the
1565epilogue, but the parser calls them so they must be declared in the
1566prologue.
1567
704a47c4
AD
1568The second section, Bison declarations, provides information to Bison
1569about the token types (@pxref{Bison Declarations, ,The Bison
1570Declarations Section}). Each terminal symbol that is not a
1571single-character literal must be declared here. (Single-character
bfa74976
RS
1572literals normally don't need to be declared.) In this example, all the
1573arithmetic operators are designated by single-character literals, so the
1574only terminal symbol that needs to be declared is @code{NUM}, the token
1575type for numeric constants.
1576
342b8b6e 1577@node Rpcalc Rules
bfa74976
RS
1578@subsection Grammar Rules for @code{rpcalc}
1579
1580Here are the grammar rules for the reverse polish notation calculator.
1581
24ec0837 1582@comment file: rpcalc.y
bfa74976 1583@example
aaaa2aae 1584@group
5e9b6624
AD
1585input:
1586 /* empty */
1587| input line
bfa74976 1588;
aaaa2aae 1589@end group
bfa74976 1590
aaaa2aae 1591@group
5e9b6624
AD
1592line:
1593 '\n'
1594| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1595;
aaaa2aae 1596@end group
bfa74976 1597
aaaa2aae 1598@group
5e9b6624
AD
1599exp:
1600 NUM @{ $$ = $1; @}
1601| exp exp '+' @{ $$ = $1 + $2; @}
1602| exp exp '-' @{ $$ = $1 - $2; @}
1603| exp exp '*' @{ $$ = $1 * $2; @}
1604| exp exp '/' @{ $$ = $1 / $2; @}
1605| exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1606| exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1607;
aaaa2aae 1608@end group
bfa74976
RS
1609%%
1610@end example
1611
1612The groupings of the rpcalc ``language'' defined here are the expression
1613(given the name @code{exp}), the line of input (@code{line}), and the
1614complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1615symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1616which is read as ``or''. The following sections explain what these rules
1617mean.
1618
1619The semantics of the language is determined by the actions taken when a
1620grouping is recognized. The actions are the C code that appears inside
1621braces. @xref{Actions}.
1622
1623You must specify these actions in C, but Bison provides the means for
1624passing semantic values between the rules. In each action, the
1625pseudo-variable @code{$$} stands for the semantic value for the grouping
1626that the rule is going to construct. Assigning a value to @code{$$} is the
1627main job of most actions. The semantic values of the components of the
1628rule are referred to as @code{$1}, @code{$2}, and so on.
1629
1630@menu
24ec0837
AD
1631* Rpcalc Input:: Explanation of the @code{input} nonterminal
1632* Rpcalc Line:: Explanation of the @code{line} nonterminal
1633* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976
RS
1634@end menu
1635
342b8b6e 1636@node Rpcalc Input
bfa74976
RS
1637@subsubsection Explanation of @code{input}
1638
1639Consider the definition of @code{input}:
1640
1641@example
5e9b6624
AD
1642input:
1643 /* empty */
1644| input line
bfa74976
RS
1645;
1646@end example
1647
1648This definition reads as follows: ``A complete input is either an empty
1649string, or a complete input followed by an input line''. Notice that
1650``complete input'' is defined in terms of itself. This definition is said
1651to be @dfn{left recursive} since @code{input} appears always as the
1652leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1653
1654The first alternative is empty because there are no symbols between the
1655colon and the first @samp{|}; this means that @code{input} can match an
1656empty string of input (no tokens). We write the rules this way because it
1657is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1658It's conventional to put an empty alternative first and write the comment
1659@samp{/* empty */} in it.
1660
1661The second alternate rule (@code{input line}) handles all nontrivial input.
1662It means, ``After reading any number of lines, read one more line if
1663possible.'' The left recursion makes this rule into a loop. Since the
1664first alternative matches empty input, the loop can be executed zero or
1665more times.
1666
1667The parser function @code{yyparse} continues to process input until a
1668grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1669input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1670
342b8b6e 1671@node Rpcalc Line
bfa74976
RS
1672@subsubsection Explanation of @code{line}
1673
1674Now consider the definition of @code{line}:
1675
1676@example
5e9b6624
AD
1677line:
1678 '\n'
1679| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1680;
1681@end example
1682
1683The first alternative is a token which is a newline character; this means
1684that rpcalc accepts a blank line (and ignores it, since there is no
1685action). The second alternative is an expression followed by a newline.
1686This is the alternative that makes rpcalc useful. The semantic value of
1687the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1688question is the first symbol in the alternative. The action prints this
1689value, which is the result of the computation the user asked for.
1690
1691This action is unusual because it does not assign a value to @code{$$}. As
1692a consequence, the semantic value associated with the @code{line} is
1693uninitialized (its value will be unpredictable). This would be a bug if
1694that value were ever used, but we don't use it: once rpcalc has printed the
1695value of the user's input line, that value is no longer needed.
1696
342b8b6e 1697@node Rpcalc Expr
bfa74976
RS
1698@subsubsection Explanation of @code{expr}
1699
1700The @code{exp} grouping has several rules, one for each kind of expression.
1701The first rule handles the simplest expressions: those that are just numbers.
1702The second handles an addition-expression, which looks like two expressions
1703followed by a plus-sign. The third handles subtraction, and so on.
1704
1705@example
5e9b6624
AD
1706exp:
1707 NUM
1708| exp exp '+' @{ $$ = $1 + $2; @}
1709| exp exp '-' @{ $$ = $1 - $2; @}
1710@dots{}
1711;
bfa74976
RS
1712@end example
1713
1714We have used @samp{|} to join all the rules for @code{exp}, but we could
1715equally well have written them separately:
1716
1717@example
5e9b6624
AD
1718exp: NUM ;
1719exp: exp exp '+' @{ $$ = $1 + $2; @};
1720exp: exp exp '-' @{ $$ = $1 - $2; @};
1721@dots{}
bfa74976
RS
1722@end example
1723
1724Most of the rules have actions that compute the value of the expression in
1725terms of the value of its parts. For example, in the rule for addition,
1726@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1727the second one. The third component, @code{'+'}, has no meaningful
1728associated semantic value, but if it had one you could refer to it as
1729@code{$3}. When @code{yyparse} recognizes a sum expression using this
1730rule, the sum of the two subexpressions' values is produced as the value of
1731the entire expression. @xref{Actions}.
1732
1733You don't have to give an action for every rule. When a rule has no
1734action, Bison by default copies the value of @code{$1} into @code{$$}.
1735This is what happens in the first rule (the one that uses @code{NUM}).
1736
1737The formatting shown here is the recommended convention, but Bison does
72d2299c 1738not require it. You can add or change white space as much as you wish.
bfa74976
RS
1739For example, this:
1740
1741@example
5e9b6624 1742exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1743@end example
1744
1745@noindent
1746means the same thing as this:
1747
1748@example
5e9b6624
AD
1749exp:
1750 NUM
1751| exp exp '+' @{ $$ = $1 + $2; @}
1752| @dots{}
99a9344e 1753;
bfa74976
RS
1754@end example
1755
1756@noindent
1757The latter, however, is much more readable.
1758
342b8b6e 1759@node Rpcalc Lexer
bfa74976
RS
1760@subsection The @code{rpcalc} Lexical Analyzer
1761@cindex writing a lexical analyzer
1762@cindex lexical analyzer, writing
1763
704a47c4
AD
1764The lexical analyzer's job is low-level parsing: converting characters
1765or sequences of characters into tokens. The Bison parser gets its
1766tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1767Analyzer Function @code{yylex}}.
bfa74976 1768
8a4281b9 1769Only a simple lexical analyzer is needed for the RPN
c827f760 1770calculator. This
bfa74976
RS
1771lexical analyzer skips blanks and tabs, then reads in numbers as
1772@code{double} and returns them as @code{NUM} tokens. Any other character
1773that isn't part of a number is a separate token. Note that the token-code
1774for such a single-character token is the character itself.
1775
1776The return value of the lexical analyzer function is a numeric code which
1777represents a token type. The same text used in Bison rules to stand for
1778this token type is also a C expression for the numeric code for the type.
1779This works in two ways. If the token type is a character literal, then its
e966383b 1780numeric code is that of the character; you can use the same
bfa74976
RS
1781character literal in the lexical analyzer to express the number. If the
1782token type is an identifier, that identifier is defined by Bison as a C
1783macro whose definition is the appropriate number. In this example,
1784therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1785
1964ad8c
AD
1786The semantic value of the token (if it has one) is stored into the
1787global variable @code{yylval}, which is where the Bison parser will look
1788for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1789defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1790,Declarations for @code{rpcalc}}.)
bfa74976 1791
72d2299c
PE
1792A token type code of zero is returned if the end-of-input is encountered.
1793(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1794
1795Here is the code for the lexical analyzer:
1796
24ec0837 1797@comment file: rpcalc.y
bfa74976
RS
1798@example
1799@group
72d2299c 1800/* The lexical analyzer returns a double floating point
e966383b 1801 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1802 of the character read if not a number. It skips all blanks
1803 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1804
1805#include <ctype.h>
1806@end group
1807
1808@group
13863333
AD
1809int
1810yylex (void)
bfa74976
RS
1811@{
1812 int c;
1813
72d2299c 1814 /* Skip white space. */
13863333 1815 while ((c = getchar ()) == ' ' || c == '\t')
d4fca427 1816 continue;
bfa74976
RS
1817@end group
1818@group
72d2299c 1819 /* Process numbers. */
13863333 1820 if (c == '.' || isdigit (c))
bfa74976
RS
1821 @{
1822 ungetc (c, stdin);
1823 scanf ("%lf", &yylval);
1824 return NUM;
1825 @}
1826@end group
1827@group
72d2299c 1828 /* Return end-of-input. */
13863333 1829 if (c == EOF)
bfa74976 1830 return 0;
72d2299c 1831 /* Return a single char. */
13863333 1832 return c;
bfa74976
RS
1833@}
1834@end group
1835@end example
1836
342b8b6e 1837@node Rpcalc Main
bfa74976
RS
1838@subsection The Controlling Function
1839@cindex controlling function
1840@cindex main function in simple example
1841
1842In keeping with the spirit of this example, the controlling function is
1843kept to the bare minimum. The only requirement is that it call
1844@code{yyparse} to start the process of parsing.
1845
24ec0837 1846@comment file: rpcalc.y
bfa74976
RS
1847@example
1848@group
13863333
AD
1849int
1850main (void)
bfa74976 1851@{
13863333 1852 return yyparse ();
bfa74976
RS
1853@}
1854@end group
1855@end example
1856
342b8b6e 1857@node Rpcalc Error
bfa74976
RS
1858@subsection The Error Reporting Routine
1859@cindex error reporting routine
1860
1861When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1862function @code{yyerror} to print an error message (usually but not
6e649e65 1863always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1864@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1865here is the definition we will use:
bfa74976 1866
24ec0837 1867@comment file: rpcalc.y
bfa74976
RS
1868@example
1869@group
1870#include <stdio.h>
aaaa2aae 1871@end group
bfa74976 1872
aaaa2aae 1873@group
38a92d50 1874/* Called by yyparse on error. */
13863333 1875void
38a92d50 1876yyerror (char const *s)
bfa74976 1877@{
4e03e201 1878 fprintf (stderr, "%s\n", s);
bfa74976
RS
1879@}
1880@end group
1881@end example
1882
1883After @code{yyerror} returns, the Bison parser may recover from the error
1884and continue parsing if the grammar contains a suitable error rule
1885(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1886have not written any error rules in this example, so any invalid input will
1887cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1888real calculator, but it is adequate for the first example.
bfa74976 1889
f5f419de 1890@node Rpcalc Generate
bfa74976
RS
1891@subsection Running Bison to Make the Parser
1892@cindex running Bison (introduction)
1893
ceed8467
AD
1894Before running Bison to produce a parser, we need to decide how to
1895arrange all the source code in one or more source files. For such a
ff7571c0
JD
1896simple example, the easiest thing is to put everything in one file,
1897the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1898@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1899(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1900
1901For a large project, you would probably have several source files, and use
1902@code{make} to arrange to recompile them.
1903
ff7571c0
JD
1904With all the source in the grammar file, you use the following command
1905to convert it into a parser implementation file:
bfa74976
RS
1906
1907@example
fa4d969f 1908bison @var{file}.y
bfa74976
RS
1909@end example
1910
1911@noindent
ff7571c0
JD
1912In this example, the grammar file is called @file{rpcalc.y} (for
1913``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1914implementation file named @file{@var{file}.tab.c}, removing the
1915@samp{.y} from the grammar file name. The parser implementation file
1916contains the source code for @code{yyparse}. The additional functions
1917in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1918copied verbatim to the parser implementation file.
bfa74976 1919
342b8b6e 1920@node Rpcalc Compile
ff7571c0 1921@subsection Compiling the Parser Implementation File
bfa74976
RS
1922@cindex compiling the parser
1923
ff7571c0 1924Here is how to compile and run the parser implementation file:
bfa74976
RS
1925
1926@example
1927@group
1928# @r{List files in current directory.}
9edcd895 1929$ @kbd{ls}
bfa74976
RS
1930rpcalc.tab.c rpcalc.y
1931@end group
1932
1933@group
1934# @r{Compile the Bison parser.}
1935# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1936$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1937@end group
1938
1939@group
1940# @r{List files again.}
9edcd895 1941$ @kbd{ls}
bfa74976
RS
1942rpcalc rpcalc.tab.c rpcalc.y
1943@end group
1944@end example
1945
1946The file @file{rpcalc} now contains the executable code. Here is an
1947example session using @code{rpcalc}.
1948
1949@example
9edcd895
AD
1950$ @kbd{rpcalc}
1951@kbd{4 9 +}
24ec0837 1952@result{} 13
9edcd895 1953@kbd{3 7 + 3 4 5 *+-}
24ec0837 1954@result{} -13
9edcd895 1955@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
24ec0837 1956@result{} 13
9edcd895 1957@kbd{5 6 / 4 n +}
24ec0837 1958@result{} -3.166666667
9edcd895 1959@kbd{3 4 ^} @r{Exponentiation}
24ec0837 1960@result{} 81
9edcd895
AD
1961@kbd{^D} @r{End-of-file indicator}
1962$
bfa74976
RS
1963@end example
1964
342b8b6e 1965@node Infix Calc
bfa74976
RS
1966@section Infix Notation Calculator: @code{calc}
1967@cindex infix notation calculator
1968@cindex @code{calc}
1969@cindex calculator, infix notation
1970
1971We now modify rpcalc to handle infix operators instead of postfix. Infix
1972notation involves the concept of operator precedence and the need for
1973parentheses nested to arbitrary depth. Here is the Bison code for
1974@file{calc.y}, an infix desk-top calculator.
1975
1976@example
38a92d50 1977/* Infix notation calculator. */
bfa74976 1978
aaaa2aae 1979@group
bfa74976 1980%@{
38a92d50
PE
1981 #define YYSTYPE double
1982 #include <math.h>
1983 #include <stdio.h>
1984 int yylex (void);
1985 void yyerror (char const *);
bfa74976 1986%@}
aaaa2aae 1987@end group
bfa74976 1988
aaaa2aae 1989@group
38a92d50 1990/* Bison declarations. */
bfa74976
RS
1991%token NUM
1992%left '-' '+'
1993%left '*' '/'
d78f0ac9
AD
1994%precedence NEG /* negation--unary minus */
1995%right '^' /* exponentiation */
aaaa2aae 1996@end group
bfa74976 1997
38a92d50 1998%% /* The grammar follows. */
aaaa2aae 1999@group
5e9b6624
AD
2000input:
2001 /* empty */
2002| input line
bfa74976 2003;
aaaa2aae 2004@end group
bfa74976 2005
aaaa2aae 2006@group
5e9b6624
AD
2007line:
2008 '\n'
2009| exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976 2010;
aaaa2aae 2011@end group
bfa74976 2012
aaaa2aae 2013@group
5e9b6624
AD
2014exp:
2015 NUM @{ $$ = $1; @}
2016| exp '+' exp @{ $$ = $1 + $3; @}
2017| exp '-' exp @{ $$ = $1 - $3; @}
2018| exp '*' exp @{ $$ = $1 * $3; @}
2019| exp '/' exp @{ $$ = $1 / $3; @}
2020| '-' exp %prec NEG @{ $$ = -$2; @}
2021| exp '^' exp @{ $$ = pow ($1, $3); @}
2022| '(' exp ')' @{ $$ = $2; @}
bfa74976 2023;
aaaa2aae 2024@end group
bfa74976
RS
2025%%
2026@end example
2027
2028@noindent
ceed8467
AD
2029The functions @code{yylex}, @code{yyerror} and @code{main} can be the
2030same as before.
bfa74976
RS
2031
2032There are two important new features shown in this code.
2033
2034In the second section (Bison declarations), @code{%left} declares token
2035types and says they are left-associative operators. The declarations
2036@code{%left} and @code{%right} (right associativity) take the place of
2037@code{%token} which is used to declare a token type name without
d78f0ac9 2038associativity/precedence. (These tokens are single-character literals, which
bfa74976 2039ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 2040the associativity/precedence.)
bfa74976
RS
2041
2042Operator precedence is determined by the line ordering of the
2043declarations; the higher the line number of the declaration (lower on
2044the page or screen), the higher the precedence. Hence, exponentiation
2045has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
2046by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
2047only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 2048Precedence}.
bfa74976 2049
704a47c4
AD
2050The other important new feature is the @code{%prec} in the grammar
2051section for the unary minus operator. The @code{%prec} simply instructs
2052Bison that the rule @samp{| '-' exp} has the same precedence as
2053@code{NEG}---in this case the next-to-highest. @xref{Contextual
2054Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2055
2056Here is a sample run of @file{calc.y}:
2057
2058@need 500
2059@example
9edcd895
AD
2060$ @kbd{calc}
2061@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20626.880952381
9edcd895 2063@kbd{-56 + 2}
bfa74976 2064-54
9edcd895 2065@kbd{3 ^ 2}
bfa74976
RS
20669
2067@end example
2068
342b8b6e 2069@node Simple Error Recovery
bfa74976
RS
2070@section Simple Error Recovery
2071@cindex error recovery, simple
2072
2073Up to this point, this manual has not addressed the issue of @dfn{error
2074recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2075error. All we have handled is error reporting with @code{yyerror}.
2076Recall that by default @code{yyparse} returns after calling
2077@code{yyerror}. This means that an erroneous input line causes the
2078calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2079
2080The Bison language itself includes the reserved word @code{error}, which
2081may be included in the grammar rules. In the example below it has
2082been added to one of the alternatives for @code{line}:
2083
2084@example
2085@group
5e9b6624
AD
2086line:
2087 '\n'
2088| exp '\n' @{ printf ("\t%.10g\n", $1); @}
2089| error '\n' @{ yyerrok; @}
bfa74976
RS
2090;
2091@end group
2092@end example
2093
ceed8467 2094This addition to the grammar allows for simple error recovery in the
6e649e65 2095event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2096read, the error will be recognized by the third rule for @code{line},
2097and parsing will continue. (The @code{yyerror} function is still called
2098upon to print its message as well.) The action executes the statement
2099@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2100that error recovery is complete (@pxref{Error Recovery}). Note the
2101difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2102misprint.
bfa74976
RS
2103
2104This form of error recovery deals with syntax errors. There are other
2105kinds of errors; for example, division by zero, which raises an exception
2106signal that is normally fatal. A real calculator program must handle this
2107signal and use @code{longjmp} to return to @code{main} and resume parsing
2108input lines; it would also have to discard the rest of the current line of
2109input. We won't discuss this issue further because it is not specific to
2110Bison programs.
2111
342b8b6e
AD
2112@node Location Tracking Calc
2113@section Location Tracking Calculator: @code{ltcalc}
2114@cindex location tracking calculator
2115@cindex @code{ltcalc}
2116@cindex calculator, location tracking
2117
9edcd895
AD
2118This example extends the infix notation calculator with location
2119tracking. This feature will be used to improve the error messages. For
2120the sake of clarity, this example is a simple integer calculator, since
2121most of the work needed to use locations will be done in the lexical
72d2299c 2122analyzer.
342b8b6e
AD
2123
2124@menu
f5f419de
DJ
2125* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2126* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2127* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2128@end menu
2129
f5f419de 2130@node Ltcalc Declarations
342b8b6e
AD
2131@subsection Declarations for @code{ltcalc}
2132
9edcd895
AD
2133The C and Bison declarations for the location tracking calculator are
2134the same as the declarations for the infix notation calculator.
342b8b6e
AD
2135
2136@example
2137/* Location tracking calculator. */
2138
2139%@{
38a92d50
PE
2140 #define YYSTYPE int
2141 #include <math.h>
2142 int yylex (void);
2143 void yyerror (char const *);
342b8b6e
AD
2144%@}
2145
2146/* Bison declarations. */
2147%token NUM
2148
2149%left '-' '+'
2150%left '*' '/'
d78f0ac9 2151%precedence NEG
342b8b6e
AD
2152%right '^'
2153
38a92d50 2154%% /* The grammar follows. */
342b8b6e
AD
2155@end example
2156
9edcd895
AD
2157@noindent
2158Note there are no declarations specific to locations. Defining a data
2159type for storing locations is not needed: we will use the type provided
2160by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2161four member structure with the following integer fields:
2162@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2163@code{last_column}. By conventions, and in accordance with the GNU
2164Coding Standards and common practice, the line and column count both
2165start at 1.
342b8b6e
AD
2166
2167@node Ltcalc Rules
2168@subsection Grammar Rules for @code{ltcalc}
2169
9edcd895
AD
2170Whether handling locations or not has no effect on the syntax of your
2171language. Therefore, grammar rules for this example will be very close
2172to those of the previous example: we will only modify them to benefit
2173from the new information.
342b8b6e 2174
9edcd895
AD
2175Here, we will use locations to report divisions by zero, and locate the
2176wrong expressions or subexpressions.
342b8b6e
AD
2177
2178@example
2179@group
5e9b6624
AD
2180input:
2181 /* empty */
2182| input line
342b8b6e
AD
2183;
2184@end group
2185
2186@group
5e9b6624
AD
2187line:
2188 '\n'
2189| exp '\n' @{ printf ("%d\n", $1); @}
342b8b6e
AD
2190;
2191@end group
2192
2193@group
5e9b6624
AD
2194exp:
2195 NUM @{ $$ = $1; @}
2196| exp '+' exp @{ $$ = $1 + $3; @}
2197| exp '-' exp @{ $$ = $1 - $3; @}
2198| exp '*' exp @{ $$ = $1 * $3; @}
342b8b6e 2199@end group
342b8b6e 2200@group
5e9b6624
AD
2201| exp '/' exp
2202 @{
2203 if ($3)
2204 $$ = $1 / $3;
2205 else
2206 @{
2207 $$ = 1;
2208 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2209 @@3.first_line, @@3.first_column,
2210 @@3.last_line, @@3.last_column);
2211 @}
2212 @}
342b8b6e
AD
2213@end group
2214@group
5e9b6624
AD
2215| '-' exp %prec NEG @{ $$ = -$2; @}
2216| exp '^' exp @{ $$ = pow ($1, $3); @}
2217| '(' exp ')' @{ $$ = $2; @}
342b8b6e
AD
2218@end group
2219@end example
2220
2221This code shows how to reach locations inside of semantic actions, by
2222using the pseudo-variables @code{@@@var{n}} for rule components, and the
2223pseudo-variable @code{@@$} for groupings.
2224
9edcd895
AD
2225We don't need to assign a value to @code{@@$}: the output parser does it
2226automatically. By default, before executing the C code of each action,
2227@code{@@$} is set to range from the beginning of @code{@@1} to the end
2228of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2229can be redefined (@pxref{Location Default Action, , Default Action for
2230Locations}), and for very specific rules, @code{@@$} can be computed by
2231hand.
342b8b6e
AD
2232
2233@node Ltcalc Lexer
2234@subsection The @code{ltcalc} Lexical Analyzer.
2235
9edcd895 2236Until now, we relied on Bison's defaults to enable location
72d2299c 2237tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2238able to feed the parser with the token locations, as it already does for
2239semantic values.
342b8b6e 2240
9edcd895
AD
2241To this end, we must take into account every single character of the
2242input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2243
2244@example
2245@group
2246int
2247yylex (void)
2248@{
2249 int c;
18b519c0 2250@end group
342b8b6e 2251
18b519c0 2252@group
72d2299c 2253 /* Skip white space. */
342b8b6e
AD
2254 while ((c = getchar ()) == ' ' || c == '\t')
2255 ++yylloc.last_column;
18b519c0 2256@end group
342b8b6e 2257
18b519c0 2258@group
72d2299c 2259 /* Step. */
342b8b6e
AD
2260 yylloc.first_line = yylloc.last_line;
2261 yylloc.first_column = yylloc.last_column;
2262@end group
2263
2264@group
72d2299c 2265 /* Process numbers. */
342b8b6e
AD
2266 if (isdigit (c))
2267 @{
2268 yylval = c - '0';
2269 ++yylloc.last_column;
2270 while (isdigit (c = getchar ()))
2271 @{
2272 ++yylloc.last_column;
2273 yylval = yylval * 10 + c - '0';
2274 @}
2275 ungetc (c, stdin);
2276 return NUM;
2277 @}
2278@end group
2279
72d2299c 2280 /* Return end-of-input. */
342b8b6e
AD
2281 if (c == EOF)
2282 return 0;
2283
d4fca427 2284@group
72d2299c 2285 /* Return a single char, and update location. */
342b8b6e
AD
2286 if (c == '\n')
2287 @{
2288 ++yylloc.last_line;
2289 yylloc.last_column = 0;
2290 @}
2291 else
2292 ++yylloc.last_column;
2293 return c;
2294@}
d4fca427 2295@end group
342b8b6e
AD
2296@end example
2297
9edcd895
AD
2298Basically, the lexical analyzer performs the same processing as before:
2299it skips blanks and tabs, and reads numbers or single-character tokens.
2300In addition, it updates @code{yylloc}, the global variable (of type
2301@code{YYLTYPE}) containing the token's location.
342b8b6e 2302
9edcd895 2303Now, each time this function returns a token, the parser has its number
72d2299c 2304as well as its semantic value, and its location in the text. The last
9edcd895
AD
2305needed change is to initialize @code{yylloc}, for example in the
2306controlling function:
342b8b6e
AD
2307
2308@example
9edcd895 2309@group
342b8b6e
AD
2310int
2311main (void)
2312@{
2313 yylloc.first_line = yylloc.last_line = 1;
2314 yylloc.first_column = yylloc.last_column = 0;
2315 return yyparse ();
2316@}
9edcd895 2317@end group
342b8b6e
AD
2318@end example
2319
9edcd895
AD
2320Remember that computing locations is not a matter of syntax. Every
2321character must be associated to a location update, whether it is in
2322valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2323
2324@node Multi-function Calc
bfa74976
RS
2325@section Multi-Function Calculator: @code{mfcalc}
2326@cindex multi-function calculator
2327@cindex @code{mfcalc}
2328@cindex calculator, multi-function
2329
2330Now that the basics of Bison have been discussed, it is time to move on to
2331a more advanced problem. The above calculators provided only five
2332functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2333be nice to have a calculator that provides other mathematical functions such
2334as @code{sin}, @code{cos}, etc.
2335
2336It is easy to add new operators to the infix calculator as long as they are
2337only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2338back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2339adding a new operator. But we want something more flexible: built-in
2340functions whose syntax has this form:
2341
2342@example
2343@var{function_name} (@var{argument})
2344@end example
2345
2346@noindent
2347At the same time, we will add memory to the calculator, by allowing you
2348to create named variables, store values in them, and use them later.
2349Here is a sample session with the multi-function calculator:
2350
2351@example
d4fca427 2352@group
9edcd895
AD
2353$ @kbd{mfcalc}
2354@kbd{pi = 3.141592653589}
f9c75dd0 2355@result{} 3.1415926536
d4fca427
AD
2356@end group
2357@group
9edcd895 2358@kbd{sin(pi)}
f9c75dd0 2359@result{} 0.0000000000
d4fca427 2360@end group
9edcd895 2361@kbd{alpha = beta1 = 2.3}
f9c75dd0 2362@result{} 2.3000000000
9edcd895 2363@kbd{alpha}
f9c75dd0 2364@result{} 2.3000000000
9edcd895 2365@kbd{ln(alpha)}
f9c75dd0 2366@result{} 0.8329091229
9edcd895 2367@kbd{exp(ln(beta1))}
f9c75dd0 2368@result{} 2.3000000000
9edcd895 2369$
bfa74976
RS
2370@end example
2371
2372Note that multiple assignment and nested function calls are permitted.
2373
2374@menu
f5f419de
DJ
2375* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2376* Mfcalc Rules:: Grammar rules for the calculator.
2377* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
2378* Mfcalc Lexer:: The lexical analyzer.
2379* Mfcalc Main:: The controlling function.
bfa74976
RS
2380@end menu
2381
f5f419de 2382@node Mfcalc Declarations
bfa74976
RS
2383@subsection Declarations for @code{mfcalc}
2384
2385Here are the C and Bison declarations for the multi-function calculator.
2386
93c150b6 2387@comment file: mfcalc.y: 1
c93f22fc 2388@example
18b519c0 2389@group
bfa74976 2390%@{
f9c75dd0 2391 #include <stdio.h> /* For printf, etc. */
578e3413 2392 #include <math.h> /* For pow, used in the grammar. */
f9c75dd0 2393 #include "calc.h" /* Contains definition of `symrec'. */
38a92d50
PE
2394 int yylex (void);
2395 void yyerror (char const *);
bfa74976 2396%@}
18b519c0 2397@end group
93c150b6 2398
18b519c0 2399@group
bfa74976 2400%union @{
38a92d50
PE
2401 double val; /* For returning numbers. */
2402 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2403@}
18b519c0 2404@end group
38a92d50 2405%token <val> NUM /* Simple double precision number. */
93c150b6 2406%token <tptr> VAR FNCT /* Variable and function. */
bfa74976
RS
2407%type <val> exp
2408
18b519c0 2409@group
bfa74976
RS
2410%right '='
2411%left '-' '+'
2412%left '*' '/'
d78f0ac9
AD
2413%precedence NEG /* negation--unary minus */
2414%right '^' /* exponentiation */
18b519c0 2415@end group
c93f22fc 2416@end example
bfa74976
RS
2417
2418The above grammar introduces only two new features of the Bison language.
2419These features allow semantic values to have various data types
2420(@pxref{Multiple Types, ,More Than One Value Type}).
2421
2422The @code{%union} declaration specifies the entire list of possible types;
2423this is instead of defining @code{YYSTYPE}. The allowable types are now
2424double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2425the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2426
2427Since values can now have various types, it is necessary to associate a
2428type with each grammar symbol whose semantic value is used. These symbols
2429are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2430declarations are augmented with information about their data type (placed
2431between angle brackets).
2432
704a47c4
AD
2433The Bison construct @code{%type} is used for declaring nonterminal
2434symbols, just as @code{%token} is used for declaring token types. We
2435have not used @code{%type} before because nonterminal symbols are
2436normally declared implicitly by the rules that define them. But
2437@code{exp} must be declared explicitly so we can specify its value type.
2438@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2439
342b8b6e 2440@node Mfcalc Rules
bfa74976
RS
2441@subsection Grammar Rules for @code{mfcalc}
2442
2443Here are the grammar rules for the multi-function calculator.
2444Most of them are copied directly from @code{calc}; three rules,
2445those which mention @code{VAR} or @code{FNCT}, are new.
2446
93c150b6 2447@comment file: mfcalc.y: 3
c93f22fc 2448@example
93c150b6 2449%% /* The grammar follows. */
18b519c0 2450@group
5e9b6624
AD
2451input:
2452 /* empty */
2453| input line
bfa74976 2454;
18b519c0 2455@end group
bfa74976 2456
18b519c0 2457@group
bfa74976 2458line:
5e9b6624
AD
2459 '\n'
2460| exp '\n' @{ printf ("%.10g\n", $1); @}
2461| error '\n' @{ yyerrok; @}
bfa74976 2462;
18b519c0 2463@end group
bfa74976 2464
18b519c0 2465@group
5e9b6624
AD
2466exp:
2467 NUM @{ $$ = $1; @}
2468| VAR @{ $$ = $1->value.var; @}
2469| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2470| FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2471| exp '+' exp @{ $$ = $1 + $3; @}
2472| exp '-' exp @{ $$ = $1 - $3; @}
2473| exp '*' exp @{ $$ = $1 * $3; @}
2474| exp '/' exp @{ $$ = $1 / $3; @}
2475| '-' exp %prec NEG @{ $$ = -$2; @}
2476| exp '^' exp @{ $$ = pow ($1, $3); @}
2477| '(' exp ')' @{ $$ = $2; @}
bfa74976 2478;
18b519c0 2479@end group
38a92d50 2480/* End of grammar. */
bfa74976 2481%%
c93f22fc 2482@end example
bfa74976 2483
f5f419de 2484@node Mfcalc Symbol Table
bfa74976
RS
2485@subsection The @code{mfcalc} Symbol Table
2486@cindex symbol table example
2487
2488The multi-function calculator requires a symbol table to keep track of the
2489names and meanings of variables and functions. This doesn't affect the
2490grammar rules (except for the actions) or the Bison declarations, but it
2491requires some additional C functions for support.
2492
2493The symbol table itself consists of a linked list of records. Its
2494definition, which is kept in the header @file{calc.h}, is as follows. It
2495provides for either functions or variables to be placed in the table.
2496
f9c75dd0 2497@comment file: calc.h
c93f22fc 2498@example
bfa74976 2499@group
38a92d50 2500/* Function type. */
32dfccf8 2501typedef double (*func_t) (double);
72f889cc 2502@end group
32dfccf8 2503
72f889cc 2504@group
38a92d50 2505/* Data type for links in the chain of symbols. */
bfa74976
RS
2506struct symrec
2507@{
38a92d50 2508 char *name; /* name of symbol */
bfa74976 2509 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2510 union
2511 @{
38a92d50
PE
2512 double var; /* value of a VAR */
2513 func_t fnctptr; /* value of a FNCT */
bfa74976 2514 @} value;
38a92d50 2515 struct symrec *next; /* link field */
bfa74976
RS
2516@};
2517@end group
2518
2519@group
2520typedef struct symrec symrec;
2521
38a92d50 2522/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2523extern symrec *sym_table;
2524
a730d142 2525symrec *putsym (char const *, int);
38a92d50 2526symrec *getsym (char const *);
bfa74976 2527@end group
c93f22fc 2528@end example
bfa74976 2529
aeb57fb6
AD
2530The new version of @code{main} will call @code{init_table} to initialize
2531the symbol table:
bfa74976 2532
93c150b6 2533@comment file: mfcalc.y: 3
c93f22fc 2534@example
18b519c0 2535@group
bfa74976
RS
2536struct init
2537@{
38a92d50
PE
2538 char const *fname;
2539 double (*fnct) (double);
bfa74976
RS
2540@};
2541@end group
2542
2543@group
38a92d50 2544struct init const arith_fncts[] =
13863333 2545@{
f9c75dd0
AD
2546 @{ "atan", atan @},
2547 @{ "cos", cos @},
2548 @{ "exp", exp @},
2549 @{ "ln", log @},
2550 @{ "sin", sin @},
2551 @{ "sqrt", sqrt @},
2552 @{ 0, 0 @},
13863333 2553@};
18b519c0 2554@end group
bfa74976 2555
18b519c0 2556@group
bfa74976 2557/* The symbol table: a chain of `struct symrec'. */
38a92d50 2558symrec *sym_table;
bfa74976
RS
2559@end group
2560
2561@group
72d2299c 2562/* Put arithmetic functions in table. */
f9c75dd0 2563static
13863333
AD
2564void
2565init_table (void)
bfa74976
RS
2566@{
2567 int i;
bfa74976
RS
2568 for (i = 0; arith_fncts[i].fname != 0; i++)
2569 @{
aaaa2aae 2570 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2571 ptr->value.fnctptr = arith_fncts[i].fnct;
2572 @}
2573@}
2574@end group
c93f22fc 2575@end example
bfa74976
RS
2576
2577By simply editing the initialization list and adding the necessary include
2578files, you can add additional functions to the calculator.
2579
2580Two important functions allow look-up and installation of symbols in the
2581symbol table. The function @code{putsym} is passed a name and the type
2582(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2583linked to the front of the list, and a pointer to the object is returned.
2584The function @code{getsym} is passed the name of the symbol to look up. If
2585found, a pointer to that symbol is returned; otherwise zero is returned.
2586
93c150b6 2587@comment file: mfcalc.y: 3
c93f22fc 2588@example
f9c75dd0
AD
2589#include <stdlib.h> /* malloc. */
2590#include <string.h> /* strlen. */
2591
d4fca427 2592@group
bfa74976 2593symrec *
38a92d50 2594putsym (char const *sym_name, int sym_type)
bfa74976 2595@{
aaaa2aae 2596 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2597 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2598 strcpy (ptr->name,sym_name);
2599 ptr->type = sym_type;
72d2299c 2600 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2601 ptr->next = (struct symrec *)sym_table;
2602 sym_table = ptr;
2603 return ptr;
2604@}
d4fca427 2605@end group
bfa74976 2606
d4fca427 2607@group
bfa74976 2608symrec *
38a92d50 2609getsym (char const *sym_name)
bfa74976
RS
2610@{
2611 symrec *ptr;
2612 for (ptr = sym_table; ptr != (symrec *) 0;
2613 ptr = (symrec *)ptr->next)
f518dbaf 2614 if (strcmp (ptr->name, sym_name) == 0)
bfa74976
RS
2615 return ptr;
2616 return 0;
2617@}
d4fca427 2618@end group
c93f22fc 2619@end example
bfa74976 2620
aeb57fb6
AD
2621@node Mfcalc Lexer
2622@subsection The @code{mfcalc} Lexer
2623
bfa74976
RS
2624The function @code{yylex} must now recognize variables, numeric values, and
2625the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2626characters with a leading letter are recognized as either variables or
bfa74976
RS
2627functions depending on what the symbol table says about them.
2628
2629The string is passed to @code{getsym} for look up in the symbol table. If
2630the name appears in the table, a pointer to its location and its type
2631(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2632already in the table, then it is installed as a @code{VAR} using
2633@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2634returned to @code{yyparse}.
bfa74976
RS
2635
2636No change is needed in the handling of numeric values and arithmetic
2637operators in @code{yylex}.
2638
93c150b6 2639@comment file: mfcalc.y: 3
c93f22fc 2640@example
bfa74976
RS
2641@group
2642#include <ctype.h>
18b519c0 2643@end group
13863333 2644
18b519c0 2645@group
13863333
AD
2646int
2647yylex (void)
bfa74976
RS
2648@{
2649 int c;
2650
72d2299c 2651 /* Ignore white space, get first nonwhite character. */
d4fca427
AD
2652 while ((c = getchar ()) == ' ' || c == '\t')
2653 continue;
bfa74976
RS
2654
2655 if (c == EOF)
2656 return 0;
2657@end group
2658
2659@group
2660 /* Char starts a number => parse the number. */
2661 if (c == '.' || isdigit (c))
2662 @{
2663 ungetc (c, stdin);
2664 scanf ("%lf", &yylval.val);
2665 return NUM;
2666 @}
2667@end group
2668
2669@group
2670 /* Char starts an identifier => read the name. */
2671 if (isalpha (c))
2672 @{
aaaa2aae
AD
2673 /* Initially make the buffer long enough
2674 for a 40-character symbol name. */
2675 static size_t length = 40;
bfa74976 2676 static char *symbuf = 0;
aaaa2aae 2677 symrec *s;
bfa74976
RS
2678 int i;
2679@end group
aaaa2aae
AD
2680 if (!symbuf)
2681 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2682
2683 i = 0;
2684 do
bfa74976
RS
2685@group
2686 @{
2687 /* If buffer is full, make it bigger. */
2688 if (i == length)
2689 @{
2690 length *= 2;
18b519c0 2691 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2692 @}
2693 /* Add this character to the buffer. */
2694 symbuf[i++] = c;
2695 /* Get another character. */
2696 c = getchar ();
2697 @}
2698@end group
2699@group
72d2299c 2700 while (isalnum (c));
bfa74976
RS
2701
2702 ungetc (c, stdin);
2703 symbuf[i] = '\0';
2704@end group
2705
2706@group
2707 s = getsym (symbuf);
2708 if (s == 0)
2709 s = putsym (symbuf, VAR);
2710 yylval.tptr = s;
2711 return s->type;
2712 @}
2713
2714 /* Any other character is a token by itself. */
2715 return c;
2716@}
2717@end group
c93f22fc 2718@end example
bfa74976 2719
aeb57fb6
AD
2720@node Mfcalc Main
2721@subsection The @code{mfcalc} Main
2722
2723The error reporting function is unchanged, and the new version of
93c150b6
AD
2724@code{main} includes a call to @code{init_table} and sets the @code{yydebug}
2725on user demand (@xref{Tracing, , Tracing Your Parser}, for details):
aeb57fb6 2726
93c150b6 2727@comment file: mfcalc.y: 3
c93f22fc 2728@example
aeb57fb6
AD
2729@group
2730/* Called by yyparse on error. */
2731void
2732yyerror (char const *s)
2733@{
2734 fprintf (stderr, "%s\n", s);
2735@}
2736@end group
2737
aaaa2aae 2738@group
aeb57fb6
AD
2739int
2740main (int argc, char const* argv[])
2741@{
93c150b6
AD
2742 int i;
2743 /* Enable parse traces on option -p. */
2744 for (i = 1; i < argc; ++i)
2745 if (!strcmp(argv[i], "-p"))
2746 yydebug = 1;
aeb57fb6
AD
2747 init_table ();
2748 return yyparse ();
2749@}
2750@end group
c93f22fc 2751@end example
aeb57fb6 2752
72d2299c 2753This program is both powerful and flexible. You may easily add new
704a47c4
AD
2754functions, and it is a simple job to modify this code to install
2755predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2756
342b8b6e 2757@node Exercises
bfa74976
RS
2758@section Exercises
2759@cindex exercises
2760
2761@enumerate
2762@item
2763Add some new functions from @file{math.h} to the initialization list.
2764
2765@item
2766Add another array that contains constants and their values. Then
2767modify @code{init_table} to add these constants to the symbol table.
2768It will be easiest to give the constants type @code{VAR}.
2769
2770@item
2771Make the program report an error if the user refers to an
2772uninitialized variable in any way except to store a value in it.
2773@end enumerate
2774
342b8b6e 2775@node Grammar File
bfa74976
RS
2776@chapter Bison Grammar Files
2777
2778Bison takes as input a context-free grammar specification and produces a
2779C-language function that recognizes correct instances of the grammar.
2780
ff7571c0 2781The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2782@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2783
2784@menu
303834cc
JD
2785* Grammar Outline:: Overall layout of the grammar file.
2786* Symbols:: Terminal and nonterminal symbols.
2787* Rules:: How to write grammar rules.
2788* Recursion:: Writing recursive rules.
2789* Semantics:: Semantic values and actions.
2790* Tracking Locations:: Locations and actions.
2791* Named References:: Using named references in actions.
2792* Declarations:: All kinds of Bison declarations are described here.
2793* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2794@end menu
2795
342b8b6e 2796@node Grammar Outline
bfa74976
RS
2797@section Outline of a Bison Grammar
2798
2799A Bison grammar file has four main sections, shown here with the
2800appropriate delimiters:
2801
2802@example
2803%@{
38a92d50 2804 @var{Prologue}
bfa74976
RS
2805%@}
2806
2807@var{Bison declarations}
2808
2809%%
2810@var{Grammar rules}
2811%%
2812
75f5aaea 2813@var{Epilogue}
bfa74976
RS
2814@end example
2815
2816Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
8a4281b9 2817As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2818continues until end of line.
bfa74976
RS
2819
2820@menu
f5f419de 2821* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2822* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2823* Bison Declarations:: Syntax and usage of the Bison declarations section.
2824* Grammar Rules:: Syntax and usage of the grammar rules section.
2825* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2826@end menu
2827
38a92d50 2828@node Prologue
75f5aaea
MA
2829@subsection The prologue
2830@cindex declarations section
2831@cindex Prologue
2832@cindex declarations
bfa74976 2833
f8e1c9e5
AD
2834The @var{Prologue} section contains macro definitions and declarations
2835of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2836rules. These are copied to the beginning of the parser implementation
2837file so that they precede the definition of @code{yyparse}. You can
2838use @samp{#include} to get the declarations from a header file. If
2839you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2840@samp{%@}} delimiters that bracket this section.
bfa74976 2841
9c437126 2842The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2843of @samp{%@}} that is outside a comment, a string literal, or a
2844character constant.
2845
c732d2c6
AD
2846You may have more than one @var{Prologue} section, intermixed with the
2847@var{Bison declarations}. This allows you to have C and Bison
2848declarations that refer to each other. For example, the @code{%union}
2849declaration may use types defined in a header file, and you may wish to
2850prototype functions that take arguments of type @code{YYSTYPE}. This
2851can be done with two @var{Prologue} blocks, one before and one after the
2852@code{%union} declaration.
2853
c93f22fc 2854@example
c732d2c6 2855%@{
aef3da86 2856 #define _GNU_SOURCE
38a92d50
PE
2857 #include <stdio.h>
2858 #include "ptypes.h"
c732d2c6
AD
2859%@}
2860
2861%union @{
779e7ceb 2862 long int n;
c732d2c6
AD
2863 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2864@}
2865
2866%@{
38a92d50
PE
2867 static void print_token_value (FILE *, int, YYSTYPE);
2868 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2869%@}
2870
2871@dots{}
c93f22fc 2872@end example
c732d2c6 2873
aef3da86
PE
2874When in doubt, it is usually safer to put prologue code before all
2875Bison declarations, rather than after. For example, any definitions
2876of feature test macros like @code{_GNU_SOURCE} or
2877@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2878feature test macros can affect the behavior of Bison-generated
2879@code{#include} directives.
2880
2cbe6b7f
JD
2881@node Prologue Alternatives
2882@subsection Prologue Alternatives
2883@cindex Prologue Alternatives
2884
136a0f76 2885@findex %code
16dc6a9e
JD
2886@findex %code requires
2887@findex %code provides
2888@findex %code top
85894313 2889
2cbe6b7f 2890The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2891inflexible. As an alternative, Bison provides a @code{%code}
2892directive with an explicit qualifier field, which identifies the
2893purpose of the code and thus the location(s) where Bison should
2894generate it. For C/C++, the qualifier can be omitted for the default
2895location, or it can be one of @code{requires}, @code{provides},
e0c07222 2896@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2897
2898Look again at the example of the previous section:
2899
c93f22fc 2900@example
2cbe6b7f
JD
2901%@{
2902 #define _GNU_SOURCE
2903 #include <stdio.h>
2904 #include "ptypes.h"
2905%@}
2906
2907%union @{
2908 long int n;
2909 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2910@}
2911
2912%@{
2913 static void print_token_value (FILE *, int, YYSTYPE);
2914 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2915%@}
2916
2917@dots{}
c93f22fc 2918@end example
2cbe6b7f
JD
2919
2920@noindent
ff7571c0
JD
2921Notice that there are two @var{Prologue} sections here, but there's a
2922subtle distinction between their functionality. For example, if you
2923decide to override Bison's default definition for @code{YYLTYPE}, in
2924which @var{Prologue} section should you write your new definition?
2925You should write it in the first since Bison will insert that code
2926into the parser implementation file @emph{before} the default
2927@code{YYLTYPE} definition. In which @var{Prologue} section should you
2928prototype an internal function, @code{trace_token}, that accepts
2929@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2930prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2931@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2932
2933This distinction in functionality between the two @var{Prologue} sections is
2934established by the appearance of the @code{%union} between them.
a501eca9 2935This behavior raises a few questions.
2cbe6b7f
JD
2936First, why should the position of a @code{%union} affect definitions related to
2937@code{YYLTYPE} and @code{yytokentype}?
2938Second, what if there is no @code{%union}?
2939In that case, the second kind of @var{Prologue} section is not available.
2940This behavior is not intuitive.
2941
8e0a5e9e 2942To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2943@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2944Let's go ahead and add the new @code{YYLTYPE} definition and the
2945@code{trace_token} prototype at the same time:
2946
c93f22fc 2947@example
16dc6a9e 2948%code top @{
2cbe6b7f
JD
2949 #define _GNU_SOURCE
2950 #include <stdio.h>
8e0a5e9e
JD
2951
2952 /* WARNING: The following code really belongs
16dc6a9e 2953 * in a `%code requires'; see below. */
8e0a5e9e 2954
2cbe6b7f
JD
2955 #include "ptypes.h"
2956 #define YYLTYPE YYLTYPE
2957 typedef struct YYLTYPE
2958 @{
2959 int first_line;
2960 int first_column;
2961 int last_line;
2962 int last_column;
2963 char *filename;
2964 @} YYLTYPE;
2965@}
2966
2967%union @{
2968 long int n;
2969 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2970@}
2971
2972%code @{
2973 static void print_token_value (FILE *, int, YYSTYPE);
2974 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2975 static void trace_token (enum yytokentype token, YYLTYPE loc);
2976@}
2977
2978@dots{}
c93f22fc 2979@end example
2cbe6b7f
JD
2980
2981@noindent
16dc6a9e
JD
2982In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2983functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2984explicit which kind you intend.
2cbe6b7f
JD
2985Moreover, both kinds are always available even in the absence of @code{%union}.
2986
ff7571c0
JD
2987The @code{%code top} block above logically contains two parts. The
2988first two lines before the warning need to appear near the top of the
2989parser implementation file. The first line after the warning is
2990required by @code{YYSTYPE} and thus also needs to appear in the parser
2991implementation file. However, if you've instructed Bison to generate
2992a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2993want that line to appear before the @code{YYSTYPE} definition in that
2994header file as well. The @code{YYLTYPE} definition should also appear
2995in the parser header file to override the default @code{YYLTYPE}
2996definition there.
2cbe6b7f 2997
16dc6a9e 2998In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2999lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
3000definitions.
16dc6a9e 3001Thus, they belong in one or more @code{%code requires}:
9bc0dd67 3002
c93f22fc 3003@example
d4fca427 3004@group
16dc6a9e 3005%code top @{
2cbe6b7f
JD
3006 #define _GNU_SOURCE
3007 #include <stdio.h>
3008@}
d4fca427 3009@end group
2cbe6b7f 3010
d4fca427 3011@group
16dc6a9e 3012%code requires @{
9bc0dd67
JD
3013 #include "ptypes.h"
3014@}
d4fca427
AD
3015@end group
3016@group
9bc0dd67
JD
3017%union @{
3018 long int n;
3019 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3020@}
d4fca427 3021@end group
9bc0dd67 3022
d4fca427 3023@group
16dc6a9e 3024%code requires @{
2cbe6b7f
JD
3025 #define YYLTYPE YYLTYPE
3026 typedef struct YYLTYPE
3027 @{
3028 int first_line;
3029 int first_column;
3030 int last_line;
3031 int last_column;
3032 char *filename;
3033 @} YYLTYPE;
3034@}
d4fca427 3035@end group
2cbe6b7f 3036
d4fca427 3037@group
136a0f76 3038%code @{
2cbe6b7f
JD
3039 static void print_token_value (FILE *, int, YYSTYPE);
3040 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3041 static void trace_token (enum yytokentype token, YYLTYPE loc);
3042@}
d4fca427 3043@end group
2cbe6b7f
JD
3044
3045@dots{}
c93f22fc 3046@end example
2cbe6b7f
JD
3047
3048@noindent
ff7571c0
JD
3049Now Bison will insert @code{#include "ptypes.h"} and the new
3050@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
3051and @code{YYLTYPE} definitions in both the parser implementation file
3052and the parser header file. (By the same reasoning, @code{%code
3053requires} would also be the appropriate place to write your own
3054definition for @code{YYSTYPE}.)
3055
3056When you are writing dependency code for @code{YYSTYPE} and
3057@code{YYLTYPE}, you should prefer @code{%code requires} over
3058@code{%code top} regardless of whether you instruct Bison to generate
3059a parser header file. When you are writing code that you need Bison
3060to insert only into the parser implementation file and that has no
3061special need to appear at the top of that file, you should prefer the
3062unqualified @code{%code} over @code{%code top}. These practices will
3063make the purpose of each block of your code explicit to Bison and to
3064other developers reading your grammar file. Following these
3065practices, we expect the unqualified @code{%code} and @code{%code
3066requires} to be the most important of the four @var{Prologue}
16dc6a9e 3067alternatives.
a501eca9 3068
ff7571c0
JD
3069At some point while developing your parser, you might decide to
3070provide @code{trace_token} to modules that are external to your
3071parser. Thus, you might wish for Bison to insert the prototype into
3072both the parser header file and the parser implementation file. Since
3073this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 3074@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
3075@code{%code requires}. More importantly, since it depends upon
3076@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3077sufficient. Instead, move its prototype from the unqualified
3078@code{%code} to a @code{%code provides}:
2cbe6b7f 3079
c93f22fc 3080@example
d4fca427 3081@group
16dc6a9e 3082%code top @{
2cbe6b7f 3083 #define _GNU_SOURCE
136a0f76 3084 #include <stdio.h>
2cbe6b7f 3085@}
d4fca427 3086@end group
136a0f76 3087
d4fca427 3088@group
16dc6a9e 3089%code requires @{
2cbe6b7f
JD
3090 #include "ptypes.h"
3091@}
d4fca427
AD
3092@end group
3093@group
2cbe6b7f
JD
3094%union @{
3095 long int n;
3096 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3097@}
d4fca427 3098@end group
2cbe6b7f 3099
d4fca427 3100@group
16dc6a9e 3101%code requires @{
2cbe6b7f
JD
3102 #define YYLTYPE YYLTYPE
3103 typedef struct YYLTYPE
3104 @{
3105 int first_line;
3106 int first_column;
3107 int last_line;
3108 int last_column;
3109 char *filename;
3110 @} YYLTYPE;
3111@}
d4fca427 3112@end group
2cbe6b7f 3113
d4fca427 3114@group
16dc6a9e 3115%code provides @{
2cbe6b7f
JD
3116 void trace_token (enum yytokentype token, YYLTYPE loc);
3117@}
d4fca427 3118@end group
2cbe6b7f 3119
d4fca427 3120@group
2cbe6b7f 3121%code @{
9bc0dd67
JD
3122 static void print_token_value (FILE *, int, YYSTYPE);
3123 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3124@}
d4fca427 3125@end group
9bc0dd67
JD
3126
3127@dots{}
c93f22fc 3128@end example
9bc0dd67 3129
2cbe6b7f 3130@noindent
ff7571c0
JD
3131Bison will insert the @code{trace_token} prototype into both the
3132parser header file and the parser implementation file after the
3133definitions for @code{yytokentype}, @code{YYLTYPE}, and
3134@code{YYSTYPE}.
2cbe6b7f 3135
ff7571c0
JD
3136The above examples are careful to write directives in an order that
3137reflects the layout of the generated parser implementation and header
3138files: @code{%code top}, @code{%code requires}, @code{%code provides},
3139and then @code{%code}. While your grammar files may generally be
3140easier to read if you also follow this order, Bison does not require
3141it. Instead, Bison lets you choose an organization that makes sense
3142to you.
2cbe6b7f 3143
a501eca9 3144You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3145In that case, Bison concatenates the contained code in declaration order.
3146This is the only way in which the position of one of these directives within
3147the grammar file affects its functionality.
3148
3149The result of the previous two properties is greater flexibility in how you may
3150organize your grammar file.
3151For example, you may organize semantic-type-related directives by semantic
3152type:
3153
c93f22fc 3154@example
d4fca427 3155@group
16dc6a9e 3156%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3157%union @{ type1 field1; @}
3158%destructor @{ type1_free ($$); @} <field1>
c5026327 3159%printer @{ type1_print (yyoutput, $$); @} <field1>
d4fca427 3160@end group
2cbe6b7f 3161
d4fca427 3162@group
16dc6a9e 3163%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3164%union @{ type2 field2; @}
3165%destructor @{ type2_free ($$); @} <field2>
c5026327 3166%printer @{ type2_print (yyoutput, $$); @} <field2>
d4fca427 3167@end group
c93f22fc 3168@end example
2cbe6b7f
JD
3169
3170@noindent
3171You could even place each of the above directive groups in the rules section of
3172the grammar file next to the set of rules that uses the associated semantic
3173type.
61fee93e
JD
3174(In the rules section, you must terminate each of those directives with a
3175semicolon.)
2cbe6b7f
JD
3176And you don't have to worry that some directive (like a @code{%union}) in the
3177definitions section is going to adversely affect their functionality in some
3178counter-intuitive manner just because it comes first.
3179Such an organization is not possible using @var{Prologue} sections.
3180
a501eca9 3181This section has been concerned with explaining the advantages of the four
8e0a5e9e 3182@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3183However, in most cases when using these directives, you shouldn't need to
3184think about all the low-level ordering issues discussed here.
3185Instead, you should simply use these directives to label each block of your
3186code according to its purpose and let Bison handle the ordering.
3187@code{%code} is the most generic label.
16dc6a9e
JD
3188Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3189as needed.
a501eca9 3190
342b8b6e 3191@node Bison Declarations
bfa74976
RS
3192@subsection The Bison Declarations Section
3193@cindex Bison declarations (introduction)
3194@cindex declarations, Bison (introduction)
3195
3196The @var{Bison declarations} section contains declarations that define
3197terminal and nonterminal symbols, specify precedence, and so on.
3198In some simple grammars you may not need any declarations.
3199@xref{Declarations, ,Bison Declarations}.
3200
342b8b6e 3201@node Grammar Rules
bfa74976
RS
3202@subsection The Grammar Rules Section
3203@cindex grammar rules section
3204@cindex rules section for grammar
3205
3206The @dfn{grammar rules} section contains one or more Bison grammar
3207rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3208
3209There must always be at least one grammar rule, and the first
3210@samp{%%} (which precedes the grammar rules) may never be omitted even
3211if it is the first thing in the file.
3212
38a92d50 3213@node Epilogue
75f5aaea 3214@subsection The epilogue
bfa74976 3215@cindex additional C code section
75f5aaea 3216@cindex epilogue
bfa74976
RS
3217@cindex C code, section for additional
3218
ff7571c0
JD
3219The @var{Epilogue} is copied verbatim to the end of the parser
3220implementation file, just as the @var{Prologue} is copied to the
3221beginning. This is the most convenient place to put anything that you
3222want to have in the parser implementation file but which need not come
3223before the definition of @code{yyparse}. For example, the definitions
3224of @code{yylex} and @code{yyerror} often go here. Because C requires
3225functions to be declared before being used, you often need to declare
3226functions like @code{yylex} and @code{yyerror} in the Prologue, even
3227if you define them in the Epilogue. @xref{Interface, ,Parser
3228C-Language Interface}.
bfa74976
RS
3229
3230If the last section is empty, you may omit the @samp{%%} that separates it
3231from the grammar rules.
3232
f8e1c9e5
AD
3233The Bison parser itself contains many macros and identifiers whose names
3234start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3235any such names (except those documented in this manual) in the epilogue
3236of the grammar file.
bfa74976 3237
342b8b6e 3238@node Symbols
bfa74976
RS
3239@section Symbols, Terminal and Nonterminal
3240@cindex nonterminal symbol
3241@cindex terminal symbol
3242@cindex token type
3243@cindex symbol
3244
3245@dfn{Symbols} in Bison grammars represent the grammatical classifications
3246of the language.
3247
3248A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3249class of syntactically equivalent tokens. You use the symbol in grammar
3250rules to mean that a token in that class is allowed. The symbol is
3251represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3252function returns a token type code to indicate what kind of token has
3253been read. You don't need to know what the code value is; you can use
3254the symbol to stand for it.
bfa74976 3255
f8e1c9e5
AD
3256A @dfn{nonterminal symbol} stands for a class of syntactically
3257equivalent groupings. The symbol name is used in writing grammar rules.
3258By convention, it should be all lower case.
bfa74976 3259
82f3355e
JD
3260Symbol names can contain letters, underscores, periods, and non-initial
3261digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3262with POSIX Yacc. Periods and dashes make symbol names less convenient to
3263use with named references, which require brackets around such names
3264(@pxref{Named References}). Terminal symbols that contain periods or dashes
3265make little sense: since they are not valid symbols (in most programming
3266languages) they are not exported as token names.
bfa74976 3267
931c7513 3268There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3269
3270@itemize @bullet
3271@item
3272A @dfn{named token type} is written with an identifier, like an
c827f760 3273identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3274such name must be defined with a Bison declaration such as
3275@code{%token}. @xref{Token Decl, ,Token Type Names}.
3276
3277@item
3278@cindex character token
3279@cindex literal token
3280@cindex single-character literal
931c7513
RS
3281A @dfn{character token type} (or @dfn{literal character token}) is
3282written in the grammar using the same syntax used in C for character
3283constants; for example, @code{'+'} is a character token type. A
3284character token type doesn't need to be declared unless you need to
3285specify its semantic value data type (@pxref{Value Type, ,Data Types of
3286Semantic Values}), associativity, or precedence (@pxref{Precedence,
3287,Operator Precedence}).
bfa74976
RS
3288
3289By convention, a character token type is used only to represent a
3290token that consists of that particular character. Thus, the token
3291type @code{'+'} is used to represent the character @samp{+} as a
3292token. Nothing enforces this convention, but if you depart from it,
3293your program will confuse other readers.
3294
3295All the usual escape sequences used in character literals in C can be
3296used in Bison as well, but you must not use the null character as a
72d2299c
PE
3297character literal because its numeric code, zero, signifies
3298end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3299for @code{yylex}}). Also, unlike standard C, trigraphs have no
3300special meaning in Bison character literals, nor is backslash-newline
3301allowed.
931c7513
RS
3302
3303@item
3304@cindex string token
3305@cindex literal string token
9ecbd125 3306@cindex multicharacter literal
931c7513
RS
3307A @dfn{literal string token} is written like a C string constant; for
3308example, @code{"<="} is a literal string token. A literal string token
3309doesn't need to be declared unless you need to specify its semantic
14ded682 3310value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3311(@pxref{Precedence}).
3312
3313You can associate the literal string token with a symbolic name as an
3314alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3315Declarations}). If you don't do that, the lexical analyzer has to
3316retrieve the token number for the literal string token from the
3317@code{yytname} table (@pxref{Calling Convention}).
3318
c827f760 3319@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3320
3321By convention, a literal string token is used only to represent a token
3322that consists of that particular string. Thus, you should use the token
3323type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3324does not enforce this convention, but if you depart from it, people who
931c7513
RS
3325read your program will be confused.
3326
3327All the escape sequences used in string literals in C can be used in
92ac3705
PE
3328Bison as well, except that you must not use a null character within a
3329string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3330meaning in Bison string literals, nor is backslash-newline allowed. A
3331literal string token must contain two or more characters; for a token
3332containing just one character, use a character token (see above).
bfa74976
RS
3333@end itemize
3334
3335How you choose to write a terminal symbol has no effect on its
3336grammatical meaning. That depends only on where it appears in rules and
3337on when the parser function returns that symbol.
3338
72d2299c
PE
3339The value returned by @code{yylex} is always one of the terminal
3340symbols, except that a zero or negative value signifies end-of-input.
3341Whichever way you write the token type in the grammar rules, you write
3342it the same way in the definition of @code{yylex}. The numeric code
3343for a character token type is simply the positive numeric code of the
3344character, so @code{yylex} can use the identical value to generate the
3345requisite code, though you may need to convert it to @code{unsigned
3346char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3347Each named token type becomes a C macro in the parser implementation
3348file, so @code{yylex} can use the name to stand for the code. (This
3349is why periods don't make sense in terminal symbols.) @xref{Calling
3350Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3351
3352If @code{yylex} is defined in a separate file, you need to arrange for the
3353token-type macro definitions to be available there. Use the @samp{-d}
3354option when you run Bison, so that it will write these macro definitions
3355into a separate header file @file{@var{name}.tab.h} which you can include
3356in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3357
72d2299c 3358If you want to write a grammar that is portable to any Standard C
9d9b8b70 3359host, you must use only nonnull character tokens taken from the basic
c827f760 3360execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3361digits, the 52 lower- and upper-case English letters, and the
3362characters in the following C-language string:
3363
3364@example
3365"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3366@end example
3367
f8e1c9e5
AD
3368The @code{yylex} function and Bison must use a consistent character set
3369and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3370ASCII environment, but then compile and run the resulting
f8e1c9e5 3371program in an environment that uses an incompatible character set like
8a4281b9
JD
3372EBCDIC, the resulting program may not work because the tables
3373generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3374character tokens. It is standard practice for software distributions to
3375contain C source files that were generated by Bison in an
8a4281b9
JD
3376ASCII environment, so installers on platforms that are
3377incompatible with ASCII must rebuild those files before
f8e1c9e5 3378compiling them.
e966383b 3379
bfa74976
RS
3380The symbol @code{error} is a terminal symbol reserved for error recovery
3381(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3382In particular, @code{yylex} should never return this value. The default
3383value of the error token is 256, unless you explicitly assigned 256 to
3384one of your tokens with a @code{%token} declaration.
bfa74976 3385
342b8b6e 3386@node Rules
bfa74976
RS
3387@section Syntax of Grammar Rules
3388@cindex rule syntax
3389@cindex grammar rule syntax
3390@cindex syntax of grammar rules
3391
3392A Bison grammar rule has the following general form:
3393
3394@example
e425e872 3395@group
5e9b6624 3396@var{result}: @var{components}@dots{};
e425e872 3397@end group
bfa74976
RS
3398@end example
3399
3400@noindent
9ecbd125 3401where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3402and @var{components} are various terminal and nonterminal symbols that
13863333 3403are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3404
3405For example,
3406
3407@example
3408@group
5e9b6624 3409exp: exp '+' exp;
bfa74976
RS
3410@end group
3411@end example
3412
3413@noindent
3414says that two groupings of type @code{exp}, with a @samp{+} token in between,
3415can be combined into a larger grouping of type @code{exp}.
3416
72d2299c
PE
3417White space in rules is significant only to separate symbols. You can add
3418extra white space as you wish.
bfa74976
RS
3419
3420Scattered among the components can be @var{actions} that determine
3421the semantics of the rule. An action looks like this:
3422
3423@example
3424@{@var{C statements}@}
3425@end example
3426
3427@noindent
287c78f6
PE
3428@cindex braced code
3429This is an example of @dfn{braced code}, that is, C code surrounded by
3430braces, much like a compound statement in C@. Braced code can contain
3431any sequence of C tokens, so long as its braces are balanced. Bison
3432does not check the braced code for correctness directly; it merely
ff7571c0
JD
3433copies the code to the parser implementation file, where the C
3434compiler can check it.
287c78f6
PE
3435
3436Within braced code, the balanced-brace count is not affected by braces
3437within comments, string literals, or character constants, but it is
3438affected by the C digraphs @samp{<%} and @samp{%>} that represent
3439braces. At the top level braced code must be terminated by @samp{@}}
3440and not by a digraph. Bison does not look for trigraphs, so if braced
3441code uses trigraphs you should ensure that they do not affect the
3442nesting of braces or the boundaries of comments, string literals, or
3443character constants.
3444
bfa74976
RS
3445Usually there is only one action and it follows the components.
3446@xref{Actions}.
3447
3448@findex |
3449Multiple rules for the same @var{result} can be written separately or can
3450be joined with the vertical-bar character @samp{|} as follows:
3451
bfa74976
RS
3452@example
3453@group
5e9b6624
AD
3454@var{result}:
3455 @var{rule1-components}@dots{}
3456| @var{rule2-components}@dots{}
3457@dots{}
3458;
bfa74976
RS
3459@end group
3460@end example
bfa74976
RS
3461
3462@noindent
3463They are still considered distinct rules even when joined in this way.
3464
3465If @var{components} in a rule is empty, it means that @var{result} can
3466match the empty string. For example, here is how to define a
3467comma-separated sequence of zero or more @code{exp} groupings:
3468
3469@example
3470@group
5e9b6624
AD
3471expseq:
3472 /* empty */
3473| expseq1
3474;
bfa74976
RS
3475@end group
3476
3477@group
5e9b6624
AD
3478expseq1:
3479 exp
3480| expseq1 ',' exp
3481;
bfa74976
RS
3482@end group
3483@end example
3484
3485@noindent
3486It is customary to write a comment @samp{/* empty */} in each rule
3487with no components.
3488
342b8b6e 3489@node Recursion
bfa74976
RS
3490@section Recursive Rules
3491@cindex recursive rule
3492
f8e1c9e5
AD
3493A rule is called @dfn{recursive} when its @var{result} nonterminal
3494appears also on its right hand side. Nearly all Bison grammars need to
3495use recursion, because that is the only way to define a sequence of any
3496number of a particular thing. Consider this recursive definition of a
9ecbd125 3497comma-separated sequence of one or more expressions:
bfa74976
RS
3498
3499@example
3500@group
5e9b6624
AD
3501expseq1:
3502 exp
3503| expseq1 ',' exp
3504;
bfa74976
RS
3505@end group
3506@end example
3507
3508@cindex left recursion
3509@cindex right recursion
3510@noindent
3511Since the recursive use of @code{expseq1} is the leftmost symbol in the
3512right hand side, we call this @dfn{left recursion}. By contrast, here
3513the same construct is defined using @dfn{right recursion}:
3514
3515@example
3516@group
5e9b6624
AD
3517expseq1:
3518 exp
3519| exp ',' expseq1
3520;
bfa74976
RS
3521@end group
3522@end example
3523
3524@noindent
ec3bc396
AD
3525Any kind of sequence can be defined using either left recursion or right
3526recursion, but you should always use left recursion, because it can
3527parse a sequence of any number of elements with bounded stack space.
3528Right recursion uses up space on the Bison stack in proportion to the
3529number of elements in the sequence, because all the elements must be
3530shifted onto the stack before the rule can be applied even once.
3531@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3532of this.
bfa74976
RS
3533
3534@cindex mutual recursion
3535@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3536rule does not appear directly on its right hand side, but does appear
3537in rules for other nonterminals which do appear on its right hand
13863333 3538side.
bfa74976
RS
3539
3540For example:
3541
3542@example
3543@group
5e9b6624
AD
3544expr:
3545 primary
3546| primary '+' primary
3547;
bfa74976
RS
3548@end group
3549
3550@group
5e9b6624
AD
3551primary:
3552 constant
3553| '(' expr ')'
3554;
bfa74976
RS
3555@end group
3556@end example
3557
3558@noindent
3559defines two mutually-recursive nonterminals, since each refers to the
3560other.
3561
342b8b6e 3562@node Semantics
bfa74976
RS
3563@section Defining Language Semantics
3564@cindex defining language semantics
13863333 3565@cindex language semantics, defining
bfa74976
RS
3566
3567The grammar rules for a language determine only the syntax. The semantics
3568are determined by the semantic values associated with various tokens and
3569groupings, and by the actions taken when various groupings are recognized.
3570
3571For example, the calculator calculates properly because the value
3572associated with each expression is the proper number; it adds properly
3573because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3574the numbers associated with @var{x} and @var{y}.
3575
3576@menu
3577* Value Type:: Specifying one data type for all semantic values.
3578* Multiple Types:: Specifying several alternative data types.
3579* Actions:: An action is the semantic definition of a grammar rule.
3580* Action Types:: Specifying data types for actions to operate on.
3581* Mid-Rule Actions:: Most actions go at the end of a rule.
3582 This says when, why and how to use the exceptional
3583 action in the middle of a rule.
3584@end menu
3585
342b8b6e 3586@node Value Type
bfa74976
RS
3587@subsection Data Types of Semantic Values
3588@cindex semantic value type
3589@cindex value type, semantic
3590@cindex data types of semantic values
3591@cindex default data type
3592
3593In a simple program it may be sufficient to use the same data type for
3594the semantic values of all language constructs. This was true in the
8a4281b9 3595RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3596Notation Calculator}).
bfa74976 3597
ddc8ede1
PE
3598Bison normally uses the type @code{int} for semantic values if your
3599program uses the same data type for all language constructs. To
bfa74976
RS
3600specify some other type, define @code{YYSTYPE} as a macro, like this:
3601
3602@example
3603#define YYSTYPE double
3604@end example
3605
3606@noindent
50cce58e
PE
3607@code{YYSTYPE}'s replacement list should be a type name
3608that does not contain parentheses or square brackets.
342b8b6e 3609This macro definition must go in the prologue of the grammar file
75f5aaea 3610(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3611
342b8b6e 3612@node Multiple Types
bfa74976
RS
3613@subsection More Than One Value Type
3614
3615In most programs, you will need different data types for different kinds
3616of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3617@code{int} or @code{long int}, while a string constant needs type
3618@code{char *}, and an identifier might need a pointer to an entry in the
3619symbol table.
bfa74976
RS
3620
3621To use more than one data type for semantic values in one parser, Bison
3622requires you to do two things:
3623
3624@itemize @bullet
3625@item
ddc8ede1 3626Specify the entire collection of possible data types, either by using the
704a47c4 3627@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3628Value Types}), or by using a @code{typedef} or a @code{#define} to
3629define @code{YYSTYPE} to be a union type whose member names are
3630the type tags.
bfa74976
RS
3631
3632@item
14ded682
AD
3633Choose one of those types for each symbol (terminal or nonterminal) for
3634which semantic values are used. This is done for tokens with the
3635@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3636and for groupings with the @code{%type} Bison declaration (@pxref{Type
3637Decl, ,Nonterminal Symbols}).
bfa74976
RS
3638@end itemize
3639
342b8b6e 3640@node Actions
bfa74976
RS
3641@subsection Actions
3642@cindex action
3643@vindex $$
3644@vindex $@var{n}
d013372c
AR
3645@vindex $@var{name}
3646@vindex $[@var{name}]
bfa74976
RS
3647
3648An action accompanies a syntactic rule and contains C code to be executed
3649each time an instance of that rule is recognized. The task of most actions
3650is to compute a semantic value for the grouping built by the rule from the
3651semantic values associated with tokens or smaller groupings.
3652
287c78f6
PE
3653An action consists of braced code containing C statements, and can be
3654placed at any position in the rule;
704a47c4
AD
3655it is executed at that position. Most rules have just one action at the
3656end of the rule, following all the components. Actions in the middle of
3657a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3658Actions, ,Actions in Mid-Rule}).
bfa74976 3659
ff7571c0
JD
3660The C code in an action can refer to the semantic values of the
3661components matched by the rule with the construct @code{$@var{n}},
3662which stands for the value of the @var{n}th component. The semantic
3663value for the grouping being constructed is @code{$$}. In addition,
3664the semantic values of symbols can be accessed with the named
3665references construct @code{$@var{name}} or @code{$[@var{name}]}.
3666Bison translates both of these constructs into expressions of the
3667appropriate type when it copies the actions into the parser
3668implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3669for the current grouping) is translated to a modifiable lvalue, so it
3670can be assigned to.
bfa74976
RS
3671
3672Here is a typical example:
3673
3674@example
3675@group
5e9b6624
AD
3676exp:
3677@dots{}
3678| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3679@end group
3680@end example
3681
d013372c
AR
3682Or, in terms of named references:
3683
3684@example
3685@group
5e9b6624
AD
3686exp[result]:
3687@dots{}
3688| exp[left] '+' exp[right] @{ $result = $left + $right; @}
d013372c
AR
3689@end group
3690@end example
3691
bfa74976
RS
3692@noindent
3693This rule constructs an @code{exp} from two smaller @code{exp} groupings
3694connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3695(@code{$left} and @code{$right})
bfa74976
RS
3696refer to the semantic values of the two component @code{exp} groupings,
3697which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3698The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3699semantic value of
bfa74976
RS
3700the addition-expression just recognized by the rule. If there were a
3701useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3702referred to as @code{$2}.
bfa74976 3703
a7b15ab9
JD
3704@xref{Named References}, for more information about using the named
3705references construct.
d013372c 3706
3ded9a63
AD
3707Note that the vertical-bar character @samp{|} is really a rule
3708separator, and actions are attached to a single rule. This is a
3709difference with tools like Flex, for which @samp{|} stands for either
3710``or'', or ``the same action as that of the next rule''. In the
3711following example, the action is triggered only when @samp{b} is found:
3712
3713@example
3714@group
3715a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3716@end group
3717@end example
3718
bfa74976
RS
3719@cindex default action
3720If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3721@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3722becomes the value of the whole rule. Of course, the default action is
3723valid only if the two data types match. There is no meaningful default
3724action for an empty rule; every empty rule must have an explicit action
3725unless the rule's value does not matter.
bfa74976
RS
3726
3727@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3728to tokens and groupings on the stack @emph{before} those that match the
3729current rule. This is a very risky practice, and to use it reliably
3730you must be certain of the context in which the rule is applied. Here
3731is a case in which you can use this reliably:
3732
3733@example
3734@group
5e9b6624
AD
3735foo:
3736 expr bar '+' expr @{ @dots{} @}
3737| expr bar '-' expr @{ @dots{} @}
3738;
bfa74976
RS
3739@end group
3740
3741@group
5e9b6624
AD
3742bar:
3743 /* empty */ @{ previous_expr = $0; @}
3744;
bfa74976
RS
3745@end group
3746@end example
3747
3748As long as @code{bar} is used only in the fashion shown here, @code{$0}
3749always refers to the @code{expr} which precedes @code{bar} in the
3750definition of @code{foo}.
3751
32c29292 3752@vindex yylval
742e4900 3753It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3754any, from a semantic action.
3755This semantic value is stored in @code{yylval}.
3756@xref{Action Features, ,Special Features for Use in Actions}.
3757
342b8b6e 3758@node Action Types
bfa74976
RS
3759@subsection Data Types of Values in Actions
3760@cindex action data types
3761@cindex data types in actions
3762
3763If you have chosen a single data type for semantic values, the @code{$$}
3764and @code{$@var{n}} constructs always have that data type.
3765
3766If you have used @code{%union} to specify a variety of data types, then you
3767must declare a choice among these types for each terminal or nonterminal
3768symbol that can have a semantic value. Then each time you use @code{$$} or
3769@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3770in the rule. In this example,
bfa74976
RS
3771
3772@example
3773@group
5e9b6624
AD
3774exp:
3775 @dots{}
3776| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3777@end group
3778@end example
3779
3780@noindent
3781@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3782have the data type declared for the nonterminal symbol @code{exp}. If
3783@code{$2} were used, it would have the data type declared for the
e0c471a9 3784terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3785
3786Alternatively, you can specify the data type when you refer to the value,
3787by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3788reference. For example, if you have defined types as shown here:
3789
3790@example
3791@group
3792%union @{
3793 int itype;
3794 double dtype;
3795@}
3796@end group
3797@end example
3798
3799@noindent
3800then you can write @code{$<itype>1} to refer to the first subunit of the
3801rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3802
342b8b6e 3803@node Mid-Rule Actions
bfa74976
RS
3804@subsection Actions in Mid-Rule
3805@cindex actions in mid-rule
3806@cindex mid-rule actions
3807
3808Occasionally it is useful to put an action in the middle of a rule.
3809These actions are written just like usual end-of-rule actions, but they
3810are executed before the parser even recognizes the following components.
3811
3812A mid-rule action may refer to the components preceding it using
3813@code{$@var{n}}, but it may not refer to subsequent components because
3814it is run before they are parsed.
3815
3816The mid-rule action itself counts as one of the components of the rule.
3817This makes a difference when there is another action later in the same rule
3818(and usually there is another at the end): you have to count the actions
3819along with the symbols when working out which number @var{n} to use in
3820@code{$@var{n}}.
3821
3822The mid-rule action can also have a semantic value. The action can set
3823its value with an assignment to @code{$$}, and actions later in the rule
3824can refer to the value using @code{$@var{n}}. Since there is no symbol
3825to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3826in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3827specify a data type each time you refer to this value.
bfa74976
RS
3828
3829There is no way to set the value of the entire rule with a mid-rule
3830action, because assignments to @code{$$} do not have that effect. The
3831only way to set the value for the entire rule is with an ordinary action
3832at the end of the rule.
3833
3834Here is an example from a hypothetical compiler, handling a @code{let}
3835statement that looks like @samp{let (@var{variable}) @var{statement}} and
3836serves to create a variable named @var{variable} temporarily for the
3837duration of @var{statement}. To parse this construct, we must put
3838@var{variable} into the symbol table while @var{statement} is parsed, then
3839remove it afterward. Here is how it is done:
3840
3841@example
3842@group
5e9b6624
AD
3843stmt:
3844 LET '(' var ')'
3845 @{ $<context>$ = push_context (); declare_variable ($3); @}
3846 stmt
3847 @{ $$ = $6; pop_context ($<context>5); @}
bfa74976
RS
3848@end group
3849@end example
3850
3851@noindent
3852As soon as @samp{let (@var{variable})} has been recognized, the first
3853action is run. It saves a copy of the current semantic context (the
3854list of accessible variables) as its semantic value, using alternative
3855@code{context} in the data-type union. Then it calls
3856@code{declare_variable} to add the new variable to that list. Once the
3857first action is finished, the embedded statement @code{stmt} can be
3858parsed. Note that the mid-rule action is component number 5, so the
3859@samp{stmt} is component number 6.
3860
3861After the embedded statement is parsed, its semantic value becomes the
3862value of the entire @code{let}-statement. Then the semantic value from the
3863earlier action is used to restore the prior list of variables. This
3864removes the temporary @code{let}-variable from the list so that it won't
3865appear to exist while the rest of the program is parsed.
3866
841a7737
JD
3867@findex %destructor
3868@cindex discarded symbols, mid-rule actions
3869@cindex error recovery, mid-rule actions
3870In the above example, if the parser initiates error recovery (@pxref{Error
3871Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3872it might discard the previous semantic context @code{$<context>5} without
3873restoring it.
3874Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3875Discarded Symbols}).
ec5479ce
JD
3876However, Bison currently provides no means to declare a destructor specific to
3877a particular mid-rule action's semantic value.
841a7737
JD
3878
3879One solution is to bury the mid-rule action inside a nonterminal symbol and to
3880declare a destructor for that symbol:
3881
3882@example
3883@group
3884%type <context> let
3885%destructor @{ pop_context ($$); @} let
3886
3887%%
3888
5e9b6624
AD
3889stmt:
3890 let stmt
3891 @{
3892 $$ = $2;
3893 pop_context ($1);
3894 @};
841a7737 3895
5e9b6624
AD
3896let:
3897 LET '(' var ')'
3898 @{
3899 $$ = push_context ();
3900 declare_variable ($3);
3901 @};
841a7737
JD
3902
3903@end group
3904@end example
3905
3906@noindent
3907Note that the action is now at the end of its rule.
3908Any mid-rule action can be converted to an end-of-rule action in this way, and
3909this is what Bison actually does to implement mid-rule actions.
3910
bfa74976
RS
3911Taking action before a rule is completely recognized often leads to
3912conflicts since the parser must commit to a parse in order to execute the
3913action. For example, the following two rules, without mid-rule actions,
3914can coexist in a working parser because the parser can shift the open-brace
3915token and look at what follows before deciding whether there is a
3916declaration or not:
3917
3918@example
3919@group
5e9b6624
AD
3920compound:
3921 '@{' declarations statements '@}'
3922| '@{' statements '@}'
3923;
bfa74976
RS
3924@end group
3925@end example
3926
3927@noindent
3928But when we add a mid-rule action as follows, the rules become nonfunctional:
3929
3930@example
3931@group
5e9b6624
AD
3932compound:
3933 @{ prepare_for_local_variables (); @}
3934 '@{' declarations statements '@}'
bfa74976
RS
3935@end group
3936@group
5e9b6624
AD
3937| '@{' statements '@}'
3938;
bfa74976
RS
3939@end group
3940@end example
3941
3942@noindent
3943Now the parser is forced to decide whether to run the mid-rule action
3944when it has read no farther than the open-brace. In other words, it
3945must commit to using one rule or the other, without sufficient
3946information to do it correctly. (The open-brace token is what is called
742e4900
JD
3947the @dfn{lookahead} token at this time, since the parser is still
3948deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3949
3950You might think that you could correct the problem by putting identical
3951actions into the two rules, like this:
3952
3953@example
3954@group
5e9b6624
AD
3955compound:
3956 @{ prepare_for_local_variables (); @}
3957 '@{' declarations statements '@}'
3958| @{ prepare_for_local_variables (); @}
3959 '@{' statements '@}'
3960;
bfa74976
RS
3961@end group
3962@end example
3963
3964@noindent
3965But this does not help, because Bison does not realize that the two actions
3966are identical. (Bison never tries to understand the C code in an action.)
3967
3968If the grammar is such that a declaration can be distinguished from a
3969statement by the first token (which is true in C), then one solution which
3970does work is to put the action after the open-brace, like this:
3971
3972@example
3973@group
5e9b6624
AD
3974compound:
3975 '@{' @{ prepare_for_local_variables (); @}
3976 declarations statements '@}'
3977| '@{' statements '@}'
3978;
bfa74976
RS
3979@end group
3980@end example
3981
3982@noindent
3983Now the first token of the following declaration or statement,
3984which would in any case tell Bison which rule to use, can still do so.
3985
3986Another solution is to bury the action inside a nonterminal symbol which
3987serves as a subroutine:
3988
3989@example
3990@group
5e9b6624
AD
3991subroutine:
3992 /* empty */ @{ prepare_for_local_variables (); @}
3993;
bfa74976
RS
3994@end group
3995
3996@group
5e9b6624
AD
3997compound:
3998 subroutine '@{' declarations statements '@}'
3999| subroutine '@{' statements '@}'
4000;
bfa74976
RS
4001@end group
4002@end example
4003
4004@noindent
4005Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 4006deciding which rule for @code{compound} it will eventually use.
bfa74976 4007
303834cc 4008@node Tracking Locations
847bf1f5
AD
4009@section Tracking Locations
4010@cindex location
95923bd6
AD
4011@cindex textual location
4012@cindex location, textual
847bf1f5
AD
4013
4014Though grammar rules and semantic actions are enough to write a fully
72d2299c 4015functional parser, it can be useful to process some additional information,
3e259915
MA
4016especially symbol locations.
4017
704a47c4
AD
4018The way locations are handled is defined by providing a data type, and
4019actions to take when rules are matched.
847bf1f5
AD
4020
4021@menu
4022* Location Type:: Specifying a data type for locations.
4023* Actions and Locations:: Using locations in actions.
4024* Location Default Action:: Defining a general way to compute locations.
4025@end menu
4026
342b8b6e 4027@node Location Type
847bf1f5
AD
4028@subsection Data Type of Locations
4029@cindex data type of locations
4030@cindex default location type
4031
4032Defining a data type for locations is much simpler than for semantic values,
4033since all tokens and groupings always use the same type.
4034
50cce58e
PE
4035You can specify the type of locations by defining a macro called
4036@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 4037defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
4038When @code{YYLTYPE} is not defined, Bison uses a default structure type with
4039four members:
4040
4041@example
6273355b 4042typedef struct YYLTYPE
847bf1f5
AD
4043@{
4044 int first_line;
4045 int first_column;
4046 int last_line;
4047 int last_column;
6273355b 4048@} YYLTYPE;
847bf1f5
AD
4049@end example
4050
d59e456d
AD
4051When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
4052initializes all these fields to 1 for @code{yylloc}. To initialize
4053@code{yylloc} with a custom location type (or to chose a different
4054initialization), use the @code{%initial-action} directive. @xref{Initial
4055Action Decl, , Performing Actions before Parsing}.
cd48d21d 4056
342b8b6e 4057@node Actions and Locations
847bf1f5
AD
4058@subsection Actions and Locations
4059@cindex location actions
4060@cindex actions, location
4061@vindex @@$
4062@vindex @@@var{n}
d013372c
AR
4063@vindex @@@var{name}
4064@vindex @@[@var{name}]
847bf1f5
AD
4065
4066Actions are not only useful for defining language semantics, but also for
4067describing the behavior of the output parser with locations.
4068
4069The most obvious way for building locations of syntactic groupings is very
72d2299c 4070similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4071constructs can be used to access the locations of the elements being matched.
4072The location of the @var{n}th component of the right hand side is
4073@code{@@@var{n}}, while the location of the left hand side grouping is
4074@code{@@$}.
4075
d013372c
AR
4076In addition, the named references construct @code{@@@var{name}} and
4077@code{@@[@var{name}]} may also be used to address the symbol locations.
a7b15ab9
JD
4078@xref{Named References}, for more information about using the named
4079references construct.
d013372c 4080
3e259915 4081Here is a basic example using the default data type for locations:
847bf1f5
AD
4082
4083@example
4084@group
5e9b6624
AD
4085exp:
4086 @dots{}
4087| exp '/' exp
4088 @{
4089 @@$.first_column = @@1.first_column;
4090 @@$.first_line = @@1.first_line;
4091 @@$.last_column = @@3.last_column;
4092 @@$.last_line = @@3.last_line;
4093 if ($3)
4094 $$ = $1 / $3;
4095 else
4096 @{
4097 $$ = 1;
4098 fprintf (stderr,
4099 "Division by zero, l%d,c%d-l%d,c%d",
4100 @@3.first_line, @@3.first_column,
4101 @@3.last_line, @@3.last_column);
4102 @}
4103 @}
847bf1f5
AD
4104@end group
4105@end example
4106
3e259915 4107As for semantic values, there is a default action for locations that is
72d2299c 4108run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4109beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4110last symbol.
3e259915 4111
72d2299c 4112With this default action, the location tracking can be fully automatic. The
3e259915
MA
4113example above simply rewrites this way:
4114
4115@example
4116@group
5e9b6624
AD
4117exp:
4118 @dots{}
4119| exp '/' exp
4120 @{
4121 if ($3)
4122 $$ = $1 / $3;
4123 else
4124 @{
4125 $$ = 1;
4126 fprintf (stderr,
4127 "Division by zero, l%d,c%d-l%d,c%d",
4128 @@3.first_line, @@3.first_column,
4129 @@3.last_line, @@3.last_column);
4130 @}
4131 @}
3e259915
MA
4132@end group
4133@end example
847bf1f5 4134
32c29292 4135@vindex yylloc
742e4900 4136It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4137from a semantic action.
4138This location is stored in @code{yylloc}.
4139@xref{Action Features, ,Special Features for Use in Actions}.
4140
342b8b6e 4141@node Location Default Action
847bf1f5
AD
4142@subsection Default Action for Locations
4143@vindex YYLLOC_DEFAULT
8a4281b9 4144@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4145
72d2299c 4146Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4147locations are much more general than semantic values, there is room in
4148the output parser to redefine the default action to take for each
72d2299c 4149rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4150matched, before the associated action is run. It is also invoked
4151while processing a syntax error, to compute the error's location.
8a4281b9 4152Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4153parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4154of that ambiguity.
847bf1f5 4155
3e259915 4156Most of the time, this macro is general enough to suppress location
79282c6c 4157dedicated code from semantic actions.
847bf1f5 4158
72d2299c 4159The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4160the location of the grouping (the result of the computation). When a
766de5eb 4161rule is matched, the second parameter identifies locations of
96b93a3d 4162all right hand side elements of the rule being matched, and the third
8710fc41 4163parameter is the size of the rule's right hand side.
8a4281b9 4164When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4165right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4166When processing a syntax error, the second parameter identifies locations
4167of the symbols that were discarded during error processing, and the third
96b93a3d 4168parameter is the number of discarded symbols.
847bf1f5 4169
766de5eb 4170By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4171
c93f22fc
AD
4172@example
4173@group
4174# define YYLLOC_DEFAULT(Cur, Rhs, N) \
4175do \
4176 if (N) \
4177 @{ \
4178 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4179 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4180 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4181 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4182 @} \
4183 else \
4184 @{ \
4185 (Cur).first_line = (Cur).last_line = \
4186 YYRHSLOC(Rhs, 0).last_line; \
4187 (Cur).first_column = (Cur).last_column = \
4188 YYRHSLOC(Rhs, 0).last_column; \
4189 @} \
4190while (0)
4191@end group
4192@end example
676385e2 4193
aaaa2aae 4194@noindent
766de5eb
PE
4195where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4196in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4197just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4198
3e259915 4199When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4200
3e259915 4201@itemize @bullet
79282c6c 4202@item
72d2299c 4203All arguments are free of side-effects. However, only the first one (the
3e259915 4204result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4205
3e259915 4206@item
766de5eb
PE
4207For consistency with semantic actions, valid indexes within the
4208right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4209valid index, and it refers to the symbol just before the reduction.
4210During error processing @var{n} is always positive.
0ae99356
PE
4211
4212@item
4213Your macro should parenthesize its arguments, if need be, since the
4214actual arguments may not be surrounded by parentheses. Also, your
4215macro should expand to something that can be used as a single
4216statement when it is followed by a semicolon.
3e259915 4217@end itemize
847bf1f5 4218
378e917c 4219@node Named References
a7b15ab9 4220@section Named References
378e917c
JD
4221@cindex named references
4222
a40e77eb
JD
4223As described in the preceding sections, the traditional way to refer to any
4224semantic value or location is a @dfn{positional reference}, which takes the
4225form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4226such a reference is not very descriptive. Moreover, if you later decide to
4227insert or remove symbols in the right-hand side of a grammar rule, the need
4228to renumber such references can be tedious and error-prone.
4229
4230To avoid these issues, you can also refer to a semantic value or location
4231using a @dfn{named reference}. First of all, original symbol names may be
4232used as named references. For example:
378e917c
JD
4233
4234@example
4235@group
4236invocation: op '(' args ')'
4237 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4238@end group
4239@end example
4240
4241@noindent
a40e77eb 4242Positional and named references can be mixed arbitrarily. For example:
378e917c
JD
4243
4244@example
4245@group
4246invocation: op '(' args ')'
4247 @{ $$ = new_invocation ($op, $args, @@$); @}
4248@end group
4249@end example
4250
4251@noindent
4252However, sometimes regular symbol names are not sufficient due to
4253ambiguities:
4254
4255@example
4256@group
4257exp: exp '/' exp
4258 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4259
4260exp: exp '/' exp
4261 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4262
4263exp: exp '/' exp
4264 @{ $$ = $1 / $3; @} // No error.
4265@end group
4266@end example
4267
4268@noindent
4269When ambiguity occurs, explicitly declared names may be used for values and
4270locations. Explicit names are declared as a bracketed name after a symbol
4271appearance in rule definitions. For example:
4272@example
4273@group
4274exp[result]: exp[left] '/' exp[right]
4275 @{ $result = $left / $right; @}
4276@end group
4277@end example
4278
4279@noindent
a7b15ab9
JD
4280In order to access a semantic value generated by a mid-rule action, an
4281explicit name may also be declared by putting a bracketed name after the
4282closing brace of the mid-rule action code:
378e917c
JD
4283@example
4284@group
4285exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4286 @{ $res = $left + $right; @}
4287@end group
4288@end example
4289
4290@noindent
4291
4292In references, in order to specify names containing dots and dashes, an explicit
4293bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4294@example
4295@group
762caaf6 4296if-stmt: "if" '(' expr ')' "then" then.stmt ';'
378e917c
JD
4297 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4298@end group
4299@end example
4300
4301It often happens that named references are followed by a dot, dash or other
4302C punctuation marks and operators. By default, Bison will read
a7b15ab9
JD
4303@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4304@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4305value. In order to force Bison to recognize @samp{name.suffix} in its
4306entirety as the name of a semantic value, the bracketed syntax
4307@samp{$[name.suffix]} must be used.
4308
4309The named references feature is experimental. More user feedback will help
4310to stabilize it.
378e917c 4311
342b8b6e 4312@node Declarations
bfa74976
RS
4313@section Bison Declarations
4314@cindex declarations, Bison
4315@cindex Bison declarations
4316
4317The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4318used in formulating the grammar and the data types of semantic values.
4319@xref{Symbols}.
4320
4321All token type names (but not single-character literal tokens such as
4322@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4323declared if you need to specify which data type to use for the semantic
4324value (@pxref{Multiple Types, ,More Than One Value Type}).
4325
ff7571c0
JD
4326The first rule in the grammar file also specifies the start symbol, by
4327default. If you want some other symbol to be the start symbol, you
4328must declare it explicitly (@pxref{Language and Grammar, ,Languages
4329and Context-Free Grammars}).
bfa74976
RS
4330
4331@menu
b50d2359 4332* Require Decl:: Requiring a Bison version.
bfa74976
RS
4333* Token Decl:: Declaring terminal symbols.
4334* Precedence Decl:: Declaring terminals with precedence and associativity.
4335* Union Decl:: Declaring the set of all semantic value types.
4336* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4337* Initial Action Decl:: Code run before parsing starts.
72f889cc 4338* Destructor Decl:: Declaring how symbols are freed.
93c150b6 4339* Printer Decl:: Declaring how symbol values are displayed.
d6328241 4340* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4341* Start Decl:: Specifying the start symbol.
4342* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4343* Push Decl:: Requesting a push parser.
bfa74976 4344* Decl Summary:: Table of all Bison declarations.
35c1e5f0 4345* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 4346* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4347@end menu
4348
b50d2359
AD
4349@node Require Decl
4350@subsection Require a Version of Bison
4351@cindex version requirement
4352@cindex requiring a version of Bison
4353@findex %require
4354
4355You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4356the requirement is not met, @command{bison} exits with an error (exit
4357status 63).
b50d2359
AD
4358
4359@example
4360%require "@var{version}"
4361@end example
4362
342b8b6e 4363@node Token Decl
bfa74976
RS
4364@subsection Token Type Names
4365@cindex declaring token type names
4366@cindex token type names, declaring
931c7513 4367@cindex declaring literal string tokens
bfa74976
RS
4368@findex %token
4369
4370The basic way to declare a token type name (terminal symbol) is as follows:
4371
4372@example
4373%token @var{name}
4374@end example
4375
4376Bison will convert this into a @code{#define} directive in
4377the parser, so that the function @code{yylex} (if it is in this file)
4378can use the name @var{name} to stand for this token type's code.
4379
d78f0ac9
AD
4380Alternatively, you can use @code{%left}, @code{%right},
4381@code{%precedence}, or
14ded682
AD
4382@code{%nonassoc} instead of @code{%token}, if you wish to specify
4383associativity and precedence. @xref{Precedence Decl, ,Operator
4384Precedence}.
bfa74976
RS
4385
4386You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4387a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4388following the token name:
bfa74976
RS
4389
4390@example
4391%token NUM 300
1452af69 4392%token XNUM 0x12d // a GNU extension
bfa74976
RS
4393@end example
4394
4395@noindent
4396It is generally best, however, to let Bison choose the numeric codes for
4397all token types. Bison will automatically select codes that don't conflict
e966383b 4398with each other or with normal characters.
bfa74976
RS
4399
4400In the event that the stack type is a union, you must augment the
4401@code{%token} or other token declaration to include the data type
704a47c4
AD
4402alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4403Than One Value Type}).
bfa74976
RS
4404
4405For example:
4406
4407@example
4408@group
4409%union @{ /* define stack type */
4410 double val;
4411 symrec *tptr;
4412@}
4413%token <val> NUM /* define token NUM and its type */
4414@end group
4415@end example
4416
931c7513
RS
4417You can associate a literal string token with a token type name by
4418writing the literal string at the end of a @code{%token}
4419declaration which declares the name. For example:
4420
4421@example
4422%token arrow "=>"
4423@end example
4424
4425@noindent
4426For example, a grammar for the C language might specify these names with
4427equivalent literal string tokens:
4428
4429@example
4430%token <operator> OR "||"
4431%token <operator> LE 134 "<="
4432%left OR "<="
4433@end example
4434
4435@noindent
4436Once you equate the literal string and the token name, you can use them
4437interchangeably in further declarations or the grammar rules. The
4438@code{yylex} function can use the token name or the literal string to
4439obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4440Syntax error messages passed to @code{yyerror} from the parser will reference
4441the literal string instead of the token name.
4442
4443The token numbered as 0 corresponds to end of file; the following line
4444allows for nicer error messages referring to ``end of file'' instead
4445of ``$end'':
4446
4447@example
4448%token END 0 "end of file"
4449@end example
931c7513 4450
342b8b6e 4451@node Precedence Decl
bfa74976
RS
4452@subsection Operator Precedence
4453@cindex precedence declarations
4454@cindex declaring operator precedence
4455@cindex operator precedence, declaring
4456
d78f0ac9
AD
4457Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4458@code{%precedence} declaration to
bfa74976
RS
4459declare a token and specify its precedence and associativity, all at
4460once. These are called @dfn{precedence declarations}.
704a47c4
AD
4461@xref{Precedence, ,Operator Precedence}, for general information on
4462operator precedence.
bfa74976 4463
ab7f29f8 4464The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4465@code{%token}: either
4466
4467@example
4468%left @var{symbols}@dots{}
4469@end example
4470
4471@noindent
4472or
4473
4474@example
4475%left <@var{type}> @var{symbols}@dots{}
4476@end example
4477
4478And indeed any of these declarations serves the purposes of @code{%token}.
4479But in addition, they specify the associativity and relative precedence for
4480all the @var{symbols}:
4481
4482@itemize @bullet
4483@item
4484The associativity of an operator @var{op} determines how repeated uses
4485of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4486@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4487grouping @var{y} with @var{z} first. @code{%left} specifies
4488left-associativity (grouping @var{x} with @var{y} first) and
4489@code{%right} specifies right-associativity (grouping @var{y} with
4490@var{z} first). @code{%nonassoc} specifies no associativity, which
4491means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4492considered a syntax error.
4493
d78f0ac9
AD
4494@code{%precedence} gives only precedence to the @var{symbols}, and
4495defines no associativity at all. Use this to define precedence only,
4496and leave any potential conflict due to associativity enabled.
4497
bfa74976
RS
4498@item
4499The precedence of an operator determines how it nests with other operators.
4500All the tokens declared in a single precedence declaration have equal
4501precedence and nest together according to their associativity.
4502When two tokens declared in different precedence declarations associate,
4503the one declared later has the higher precedence and is grouped first.
4504@end itemize
4505
ab7f29f8
JD
4506For backward compatibility, there is a confusing difference between the
4507argument lists of @code{%token} and precedence declarations.
4508Only a @code{%token} can associate a literal string with a token type name.
4509A precedence declaration always interprets a literal string as a reference to a
4510separate token.
4511For example:
4512
4513@example
4514%left OR "<=" // Does not declare an alias.
4515%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4516@end example
4517
342b8b6e 4518@node Union Decl
bfa74976
RS
4519@subsection The Collection of Value Types
4520@cindex declaring value types
4521@cindex value types, declaring
4522@findex %union
4523
287c78f6
PE
4524The @code{%union} declaration specifies the entire collection of
4525possible data types for semantic values. The keyword @code{%union} is
4526followed by braced code containing the same thing that goes inside a
4527@code{union} in C@.
bfa74976
RS
4528
4529For example:
4530
4531@example
4532@group
4533%union @{
4534 double val;
4535 symrec *tptr;
4536@}
4537@end group
4538@end example
4539
4540@noindent
4541This says that the two alternative types are @code{double} and @code{symrec
4542*}. They are given names @code{val} and @code{tptr}; these names are used
4543in the @code{%token} and @code{%type} declarations to pick one of the types
4544for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4545
8a4281b9 4546As an extension to POSIX, a tag is allowed after the
6273355b
PE
4547@code{union}. For example:
4548
4549@example
4550@group
4551%union value @{
4552 double val;
4553 symrec *tptr;
4554@}
4555@end group
4556@end example
4557
d6ca7905 4558@noindent
6273355b
PE
4559specifies the union tag @code{value}, so the corresponding C type is
4560@code{union value}. If you do not specify a tag, it defaults to
4561@code{YYSTYPE}.
4562
8a4281b9 4563As another extension to POSIX, you may specify multiple
d6ca7905
PE
4564@code{%union} declarations; their contents are concatenated. However,
4565only the first @code{%union} declaration can specify a tag.
4566
6273355b 4567Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4568a semicolon after the closing brace.
4569
ddc8ede1
PE
4570Instead of @code{%union}, you can define and use your own union type
4571@code{YYSTYPE} if your grammar contains at least one
4572@samp{<@var{type}>} tag. For example, you can put the following into
4573a header file @file{parser.h}:
4574
4575@example
4576@group
4577union YYSTYPE @{
4578 double val;
4579 symrec *tptr;
4580@};
4581typedef union YYSTYPE YYSTYPE;
4582@end group
4583@end example
4584
4585@noindent
4586and then your grammar can use the following
4587instead of @code{%union}:
4588
4589@example
4590@group
4591%@{
4592#include "parser.h"
4593%@}
4594%type <val> expr
4595%token <tptr> ID
4596@end group
4597@end example
4598
342b8b6e 4599@node Type Decl
bfa74976
RS
4600@subsection Nonterminal Symbols
4601@cindex declaring value types, nonterminals
4602@cindex value types, nonterminals, declaring
4603@findex %type
4604
4605@noindent
4606When you use @code{%union} to specify multiple value types, you must
4607declare the value type of each nonterminal symbol for which values are
4608used. This is done with a @code{%type} declaration, like this:
4609
4610@example
4611%type <@var{type}> @var{nonterminal}@dots{}
4612@end example
4613
4614@noindent
704a47c4
AD
4615Here @var{nonterminal} is the name of a nonterminal symbol, and
4616@var{type} is the name given in the @code{%union} to the alternative
4617that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4618can give any number of nonterminal symbols in the same @code{%type}
4619declaration, if they have the same value type. Use spaces to separate
4620the symbol names.
bfa74976 4621
931c7513
RS
4622You can also declare the value type of a terminal symbol. To do this,
4623use the same @code{<@var{type}>} construction in a declaration for the
4624terminal symbol. All kinds of token declarations allow
4625@code{<@var{type}>}.
4626
18d192f0
AD
4627@node Initial Action Decl
4628@subsection Performing Actions before Parsing
4629@findex %initial-action
4630
4631Sometimes your parser needs to perform some initializations before
4632parsing. The @code{%initial-action} directive allows for such arbitrary
4633code.
4634
4635@deffn {Directive} %initial-action @{ @var{code} @}
4636@findex %initial-action
287c78f6 4637Declare that the braced @var{code} must be invoked before parsing each time
cd735a8c
AD
4638@code{yyparse} is called. The @var{code} may use @code{$$} (or
4639@code{$<@var{tag}>$}) and @code{@@$} --- initial value and location of the
4640lookahead --- and the @code{%parse-param}.
18d192f0
AD
4641@end deffn
4642
451364ed
AD
4643For instance, if your locations use a file name, you may use
4644
4645@example
48b16bbc 4646%parse-param @{ char const *file_name @};
451364ed
AD
4647%initial-action
4648@{
4626a15d 4649 @@$.initialize (file_name);
451364ed
AD
4650@};
4651@end example
4652
18d192f0 4653
72f889cc
AD
4654@node Destructor Decl
4655@subsection Freeing Discarded Symbols
4656@cindex freeing discarded symbols
4657@findex %destructor
12e35840 4658@findex <*>
3ebecc24 4659@findex <>
a85284cf
AD
4660During error recovery (@pxref{Error Recovery}), symbols already pushed
4661on the stack and tokens coming from the rest of the file are discarded
4662until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4663or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4664symbols on the stack must be discarded. Even if the parser succeeds, it
4665must discard the start symbol.
258b75ca
PE
4666
4667When discarded symbols convey heap based information, this memory is
4668lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4669in traditional compilers, it is unacceptable for programs like shells or
4670protocol implementations that may parse and execute indefinitely.
258b75ca 4671
a85284cf
AD
4672The @code{%destructor} directive defines code that is called when a
4673symbol is automatically discarded.
72f889cc
AD
4674
4675@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4676@findex %destructor
287c78f6 4677Invoke the braced @var{code} whenever the parser discards one of the
4982f078
AD
4678@var{symbols}. Within @var{code}, @code{$$} (or @code{$<@var{tag}>$})
4679designates the semantic value associated with the discarded symbol, and
4680@code{@@$} designates its location. The additional parser parameters are
4681also available (@pxref{Parser Function, , The Parser Function
4682@code{yyparse}}).
ec5479ce 4683
b2a0b7ca
JD
4684When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4685per-symbol @code{%destructor}.
4686You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4687tag among @var{symbols}.
b2a0b7ca 4688In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4689grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4690per-symbol @code{%destructor}.
4691
12e35840 4692Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4693(These default forms are experimental.
4694More user feedback will help to determine whether they should become permanent
4695features.)
3ebecc24 4696You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4697exactly one @code{%destructor} declaration in your grammar file.
4698The parser will invoke the @var{code} associated with one of these whenever it
4699discards any user-defined grammar symbol that has no per-symbol and no per-type
4700@code{%destructor}.
4701The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4702symbol for which you have formally declared a semantic type tag (@code{%type}
4703counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4704The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4705symbol that has no declared semantic type tag.
72f889cc
AD
4706@end deffn
4707
b2a0b7ca 4708@noindent
12e35840 4709For example:
72f889cc 4710
c93f22fc 4711@example
ec5479ce
JD
4712%union @{ char *string; @}
4713%token <string> STRING1
4714%token <string> STRING2
4715%type <string> string1
4716%type <string> string2
b2a0b7ca
JD
4717%union @{ char character; @}
4718%token <character> CHR
4719%type <character> chr
12e35840
JD
4720%token TAGLESS
4721
b2a0b7ca 4722%destructor @{ @} <character>
12e35840
JD
4723%destructor @{ free ($$); @} <*>
4724%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4725%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
c93f22fc 4726@end example
72f889cc
AD
4727
4728@noindent
b2a0b7ca
JD
4729guarantees that, when the parser discards any user-defined symbol that has a
4730semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4731to @code{free} by default.
ec5479ce
JD
4732However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4733prints its line number to @code{stdout}.
4734It performs only the second @code{%destructor} in this case, so it invokes
4735@code{free} only once.
12e35840
JD
4736Finally, the parser merely prints a message whenever it discards any symbol,
4737such as @code{TAGLESS}, that has no semantic type tag.
4738
4739A Bison-generated parser invokes the default @code{%destructor}s only for
4740user-defined as opposed to Bison-defined symbols.
4741For example, the parser will not invoke either kind of default
4742@code{%destructor} for the special Bison-defined symbols @code{$accept},
4743@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4744none of which you can reference in your grammar.
4745It also will not invoke either for the @code{error} token (@pxref{Table of
4746Symbols, ,error}), which is always defined by Bison regardless of whether you
4747reference it in your grammar.
4748However, it may invoke one of them for the end token (token 0) if you
4749redefine it from @code{$end} to, for example, @code{END}:
3508ce36 4750
c93f22fc 4751@example
3508ce36 4752%token END 0
c93f22fc 4753@end example
3508ce36 4754
12e35840
JD
4755@cindex actions in mid-rule
4756@cindex mid-rule actions
4757Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4758mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
a7b15ab9
JD
4759That is, Bison does not consider a mid-rule to have a semantic value if you
4760do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4761(where @var{n} is the right-hand side symbol position of the mid-rule) in
4762any later action in that rule. However, if you do reference either, the
4763Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4764it discards the mid-rule symbol.
12e35840 4765
3508ce36
JD
4766@ignore
4767@noindent
4768In the future, it may be possible to redefine the @code{error} token as a
4769nonterminal that captures the discarded symbols.
4770In that case, the parser will invoke the default destructor for it as well.
4771@end ignore
4772
e757bb10
AD
4773@sp 1
4774
4775@cindex discarded symbols
4776@dfn{Discarded symbols} are the following:
4777
4778@itemize
4779@item
4780stacked symbols popped during the first phase of error recovery,
4781@item
4782incoming terminals during the second phase of error recovery,
4783@item
742e4900 4784the current lookahead and the entire stack (except the current
9d9b8b70 4785right-hand side symbols) when the parser returns immediately, and
258b75ca 4786@item
d3e4409a
AD
4787the current lookahead and the entire stack (including the current right-hand
4788side symbols) when the C++ parser (@file{lalr1.cc}) catches an exception in
4789@code{parse},
4790@item
258b75ca 4791the start symbol, when the parser succeeds.
e757bb10
AD
4792@end itemize
4793
9d9b8b70
PE
4794The parser can @dfn{return immediately} because of an explicit call to
4795@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4796exhaustion.
4797
29553547 4798Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4799error via @code{YYERROR} are not discarded automatically. As a rule
4800of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4801the memory.
e757bb10 4802
93c150b6
AD
4803@node Printer Decl
4804@subsection Printing Semantic Values
4805@cindex printing semantic values
4806@findex %printer
4807@findex <*>
4808@findex <>
4809When run-time traces are enabled (@pxref{Tracing, ,Tracing Your Parser}),
4810the parser reports its actions, such as reductions. When a symbol involved
4811in an action is reported, only its kind is displayed, as the parser cannot
4812know how semantic values should be formatted.
4813
4814The @code{%printer} directive defines code that is called when a symbol is
4815reported. Its syntax is the same as @code{%destructor} (@pxref{Destructor
4816Decl, , Freeing Discarded Symbols}).
4817
4818@deffn {Directive} %printer @{ @var{code} @} @var{symbols}
4819@findex %printer
4820@vindex yyoutput
4821@c This is the same text as for %destructor.
4822Invoke the braced @var{code} whenever the parser displays one of the
4823@var{symbols}. Within @var{code}, @code{yyoutput} denotes the output stream
4982f078
AD
4824(a @code{FILE*} in C, and an @code{std::ostream&} in C++), @code{$$} (or
4825@code{$<@var{tag}>$}) designates the semantic value associated with the
4826symbol, and @code{@@$} its location. The additional parser parameters are
4827also available (@pxref{Parser Function, , The Parser Function
4828@code{yyparse}}).
93c150b6
AD
4829
4830The @var{symbols} are defined as for @code{%destructor} (@pxref{Destructor
4831Decl, , Freeing Discarded Symbols}.): they can be per-type (e.g.,
4832@samp{<ival>}), per-symbol (e.g., @samp{exp}, @samp{NUM}, @samp{"float"}),
4833typed per-default (i.e., @samp{<*>}, or untyped per-default (i.e.,
4834@samp{<>}).
4835@end deffn
4836
4837@noindent
4838For example:
4839
4840@example
4841%union @{ char *string; @}
4842%token <string> STRING1
4843%token <string> STRING2
4844%type <string> string1
4845%type <string> string2
4846%union @{ char character; @}
4847%token <character> CHR
4848%type <character> chr
4849%token TAGLESS
4850
4851%printer @{ fprintf (yyoutput, "'%c'", $$); @} <character>
4852%printer @{ fprintf (yyoutput, "&%p", $$); @} <*>
4853%printer @{ fprintf (yyoutput, "\"%s\"", $$); @} STRING1 string1
4854%printer @{ fprintf (yyoutput, "<>"); @} <>
4855@end example
4856
4857@noindent
4858guarantees that, when the parser print any symbol that has a semantic type
4859tag other than @code{<character>}, it display the address of the semantic
4860value by default. However, when the parser displays a @code{STRING1} or a
4861@code{string1}, it formats it as a string in double quotes. It performs
4862only the second @code{%printer} in this case, so it prints only once.
4863Finally, the parser print @samp{<>} for any symbol, such as @code{TAGLESS},
4864that has no semantic type tag. See also
4865
4866
342b8b6e 4867@node Expect Decl
bfa74976
RS
4868@subsection Suppressing Conflict Warnings
4869@cindex suppressing conflict warnings
4870@cindex preventing warnings about conflicts
4871@cindex warnings, preventing
4872@cindex conflicts, suppressing warnings of
4873@findex %expect
d6328241 4874@findex %expect-rr
bfa74976
RS
4875
4876Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4877(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4878have harmless shift/reduce conflicts which are resolved in a predictable
4879way and would be difficult to eliminate. It is desirable to suppress
4880the warning about these conflicts unless the number of conflicts
4881changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4882
4883The declaration looks like this:
4884
4885@example
4886%expect @var{n}
4887@end example
4888
035aa4a0
PE
4889Here @var{n} is a decimal integer. The declaration says there should
4890be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4891Bison reports an error if the number of shift/reduce conflicts differs
4892from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4893
eb45ef3b 4894For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4895serious, and should be eliminated entirely. Bison will always report
8a4281b9 4896reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4897parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 4898there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4899also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 4900in GLR parsers, using the declaration:
d6328241
PH
4901
4902@example
4903%expect-rr @var{n}
4904@end example
4905
bfa74976
RS
4906In general, using @code{%expect} involves these steps:
4907
4908@itemize @bullet
4909@item
4910Compile your grammar without @code{%expect}. Use the @samp{-v} option
4911to get a verbose list of where the conflicts occur. Bison will also
4912print the number of conflicts.
4913
4914@item
4915Check each of the conflicts to make sure that Bison's default
4916resolution is what you really want. If not, rewrite the grammar and
4917go back to the beginning.
4918
4919@item
4920Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 4921number which Bison printed. With GLR parsers, add an
035aa4a0 4922@code{%expect-rr} declaration as well.
bfa74976
RS
4923@end itemize
4924
93d7dde9
JD
4925Now Bison will report an error if you introduce an unexpected conflict,
4926but will keep silent otherwise.
bfa74976 4927
342b8b6e 4928@node Start Decl
bfa74976
RS
4929@subsection The Start-Symbol
4930@cindex declaring the start symbol
4931@cindex start symbol, declaring
4932@cindex default start symbol
4933@findex %start
4934
4935Bison assumes by default that the start symbol for the grammar is the first
4936nonterminal specified in the grammar specification section. The programmer
4937may override this restriction with the @code{%start} declaration as follows:
4938
4939@example
4940%start @var{symbol}
4941@end example
4942
342b8b6e 4943@node Pure Decl
bfa74976
RS
4944@subsection A Pure (Reentrant) Parser
4945@cindex reentrant parser
4946@cindex pure parser
d9df47b6 4947@findex %define api.pure
bfa74976
RS
4948
4949A @dfn{reentrant} program is one which does not alter in the course of
4950execution; in other words, it consists entirely of @dfn{pure} (read-only)
4951code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4952for example, a nonreentrant program may not be safe to call from a signal
4953handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4954program must be called only within interlocks.
4955
70811b85 4956Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4957suitable for most uses, and it permits compatibility with Yacc. (The
4958standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4959statically allocated variables for communication with @code{yylex},
4960including @code{yylval} and @code{yylloc}.)
bfa74976 4961
70811b85 4962Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 4963declaration @samp{%define api.pure} says that you want the parser to be
70811b85 4964reentrant. It looks like this:
bfa74976
RS
4965
4966@example
d9df47b6 4967%define api.pure
bfa74976
RS
4968@end example
4969
70811b85
RS
4970The result is that the communication variables @code{yylval} and
4971@code{yylloc} become local variables in @code{yyparse}, and a different
4972calling convention is used for the lexical analyzer function
4973@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4974Parsers}, for the details of this. The variable @code{yynerrs}
4975becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4976of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4977Reporting Function @code{yyerror}}). The convention for calling
4978@code{yyparse} itself is unchanged.
4979
4980Whether the parser is pure has nothing to do with the grammar rules.
4981You can generate either a pure parser or a nonreentrant parser from any
4982valid grammar.
bfa74976 4983
9987d1b3
JD
4984@node Push Decl
4985@subsection A Push Parser
4986@cindex push parser
4987@cindex push parser
67212941 4988@findex %define api.push-pull
9987d1b3 4989
59da312b
JD
4990(The current push parsing interface is experimental and may evolve.
4991More user feedback will help to stabilize it.)
4992
f4101aa6
AD
4993A pull parser is called once and it takes control until all its input
4994is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4995each time a new token is made available.
4996
f4101aa6 4997A push parser is typically useful when the parser is part of a
9987d1b3 4998main event loop in the client's application. This is typically
f4101aa6
AD
4999a requirement of a GUI, when the main event loop needs to be triggered
5000within a certain time period.
9987d1b3 5001
d782395d
JD
5002Normally, Bison generates a pull parser.
5003The following Bison declaration says that you want the parser to be a push
35c1e5f0 5004parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
5005
5006@example
cf499cff 5007%define api.push-pull push
9987d1b3
JD
5008@end example
5009
5010In almost all cases, you want to ensure that your push parser is also
5011a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 5012time you should create an impure push parser is to have backwards
9987d1b3
JD
5013compatibility with the impure Yacc pull mode interface. Unless you know
5014what you are doing, your declarations should look like this:
5015
5016@example
d9df47b6 5017%define api.pure
cf499cff 5018%define api.push-pull push
9987d1b3
JD
5019@end example
5020
f4101aa6
AD
5021There is a major notable functional difference between the pure push parser
5022and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
5023many parser instances, of the same type of parser, in memory at the same time.
5024An impure push parser should only use one parser at a time.
5025
5026When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
5027the generated parser. @code{yypstate} is a structure that the generated
5028parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
5029function that will create a new parser instance. @code{yypstate_delete}
5030will free the resources associated with the corresponding parser instance.
f4101aa6 5031Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
5032token is available to provide the parser. A trivial example
5033of using a pure push parser would look like this:
5034
5035@example
5036int status;
5037yypstate *ps = yypstate_new ();
5038do @{
5039 status = yypush_parse (ps, yylex (), NULL);
5040@} while (status == YYPUSH_MORE);
5041yypstate_delete (ps);
5042@end example
5043
5044If the user decided to use an impure push parser, a few things about
f4101aa6 5045the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
5046a global variable instead of a variable in the @code{yypush_parse} function.
5047For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 5048changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
5049example would thus look like this:
5050
5051@example
5052extern int yychar;
5053int status;
5054yypstate *ps = yypstate_new ();
5055do @{
5056 yychar = yylex ();
5057 status = yypush_parse (ps);
5058@} while (status == YYPUSH_MORE);
5059yypstate_delete (ps);
5060@end example
5061
f4101aa6 5062That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
5063for use by the next invocation of the @code{yypush_parse} function.
5064
f4101aa6 5065Bison also supports both the push parser interface along with the pull parser
9987d1b3 5066interface in the same generated parser. In order to get this functionality,
cf499cff
JD
5067you should replace the @samp{%define api.push-pull push} declaration with the
5068@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 5069the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
5070and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
5071would be used. However, the user should note that it is implemented in the
d782395d
JD
5072generated parser by calling @code{yypull_parse}.
5073This makes the @code{yyparse} function that is generated with the
cf499cff 5074@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
5075@code{yyparse} function. If the user
5076calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
5077stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
5078and then @code{yypull_parse} the rest of the input stream. If you would like
5079to switch back and forth between between parsing styles, you would have to
5080write your own @code{yypull_parse} function that knows when to quit looking
5081for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
5082like this:
5083
5084@example
5085yypstate *ps = yypstate_new ();
5086yypull_parse (ps); /* Will call the lexer */
5087yypstate_delete (ps);
5088@end example
5089
67501061 5090Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
5091the generated parser with @samp{%define api.push-pull both} as it did for
5092@samp{%define api.push-pull push}.
9987d1b3 5093
342b8b6e 5094@node Decl Summary
bfa74976
RS
5095@subsection Bison Declaration Summary
5096@cindex Bison declaration summary
5097@cindex declaration summary
5098@cindex summary, Bison declaration
5099
d8988b2f 5100Here is a summary of the declarations used to define a grammar:
bfa74976 5101
18b519c0 5102@deffn {Directive} %union
bfa74976
RS
5103Declare the collection of data types that semantic values may have
5104(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 5105@end deffn
bfa74976 5106
18b519c0 5107@deffn {Directive} %token
bfa74976
RS
5108Declare a terminal symbol (token type name) with no precedence
5109or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 5110@end deffn
bfa74976 5111
18b519c0 5112@deffn {Directive} %right
bfa74976
RS
5113Declare a terminal symbol (token type name) that is right-associative
5114(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5115@end deffn
bfa74976 5116
18b519c0 5117@deffn {Directive} %left
bfa74976
RS
5118Declare a terminal symbol (token type name) that is left-associative
5119(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5120@end deffn
bfa74976 5121
18b519c0 5122@deffn {Directive} %nonassoc
bfa74976 5123Declare a terminal symbol (token type name) that is nonassociative
bfa74976 5124(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
5125Using it in a way that would be associative is a syntax error.
5126@end deffn
5127
91d2c560 5128@ifset defaultprec
39a06c25 5129@deffn {Directive} %default-prec
22fccf95 5130Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
5131(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5132@end deffn
91d2c560 5133@end ifset
bfa74976 5134
18b519c0 5135@deffn {Directive} %type
bfa74976
RS
5136Declare the type of semantic values for a nonterminal symbol
5137(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 5138@end deffn
bfa74976 5139
18b519c0 5140@deffn {Directive} %start
89cab50d
AD
5141Specify the grammar's start symbol (@pxref{Start Decl, ,The
5142Start-Symbol}).
18b519c0 5143@end deffn
bfa74976 5144
18b519c0 5145@deffn {Directive} %expect
bfa74976
RS
5146Declare the expected number of shift-reduce conflicts
5147(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
5148@end deffn
5149
bfa74976 5150
d8988b2f
AD
5151@sp 1
5152@noindent
5153In order to change the behavior of @command{bison}, use the following
5154directives:
5155
148d66d8 5156@deffn {Directive} %code @{@var{code}@}
e0c07222 5157@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 5158@findex %code
e0c07222
JD
5159Insert @var{code} verbatim into the output parser source at the
5160default location or at the location specified by @var{qualifier}.
5161@xref{%code Summary}.
148d66d8
JD
5162@end deffn
5163
18b519c0 5164@deffn {Directive} %debug
60aa04a2 5165Instrument the parser for traces. Obsoleted by @samp{%define
fa819509 5166parse.trace}.
ec3bc396 5167@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5168@end deffn
d8988b2f 5169
35c1e5f0
JD
5170@deffn {Directive} %define @var{variable}
5171@deffnx {Directive} %define @var{variable} @var{value}
5172@deffnx {Directive} %define @var{variable} "@var{value}"
5173Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5174@end deffn
5175
5176@deffn {Directive} %defines
5177Write a parser header file containing macro definitions for the token
5178type names defined in the grammar as well as a few other declarations.
5179If the parser implementation file is named @file{@var{name}.c} then
5180the parser header file is named @file{@var{name}.h}.
5181
5182For C parsers, the parser header file declares @code{YYSTYPE} unless
5183@code{YYSTYPE} is already defined as a macro or you have used a
5184@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5185you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5186Value Type}) with components that require other definitions, or if you
5187have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5188Type, ,Data Types of Semantic Values}), you need to arrange for these
5189definitions to be propagated to all modules, e.g., by putting them in
5190a prerequisite header that is included both by your parser and by any
5191other module that needs @code{YYSTYPE}.
5192
5193Unless your parser is pure, the parser header file declares
5194@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5195(Reentrant) Parser}.
5196
5197If you have also used locations, the parser header file declares
303834cc
JD
5198@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5199@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
35c1e5f0
JD
5200
5201This parser header file is normally essential if you wish to put the
5202definition of @code{yylex} in a separate source file, because
5203@code{yylex} typically needs to be able to refer to the
5204above-mentioned declarations and to the token type codes. @xref{Token
5205Values, ,Semantic Values of Tokens}.
5206
5207@findex %code requires
5208@findex %code provides
5209If you have declared @code{%code requires} or @code{%code provides}, the output
5210header also contains their code.
5211@xref{%code Summary}.
c9d5bcc9
AD
5212
5213@cindex Header guard
5214The generated header is protected against multiple inclusions with a C
5215preprocessor guard: @samp{YY_@var{PREFIX}_@var{FILE}_INCLUDED}, where
5216@var{PREFIX} and @var{FILE} are the prefix (@pxref{Multiple Parsers,
5217,Multiple Parsers in the Same Program}) and generated file name turned
5218uppercase, with each series of non alphanumerical characters converted to a
5219single underscore.
5220
5221For instance with @samp{%define api.prefix "calc"} and @samp{%defines
5222"lib/parse.h"}, the header will be guarded as follows.
5223@example
5224#ifndef YY_CALC_LIB_PARSE_H_INCLUDED
5225# define YY_CALC_LIB_PARSE_H_INCLUDED
5226...
5227#endif /* ! YY_CALC_LIB_PARSE_H_INCLUDED */
5228@end example
35c1e5f0
JD
5229@end deffn
5230
5231@deffn {Directive} %defines @var{defines-file}
5232Same as above, but save in the file @var{defines-file}.
5233@end deffn
5234
5235@deffn {Directive} %destructor
5236Specify how the parser should reclaim the memory associated to
5237discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5238@end deffn
5239
5240@deffn {Directive} %file-prefix "@var{prefix}"
5241Specify a prefix to use for all Bison output file names. The names
5242are chosen as if the grammar file were named @file{@var{prefix}.y}.
5243@end deffn
5244
5245@deffn {Directive} %language "@var{language}"
5246Specify the programming language for the generated parser. Currently
5247supported languages include C, C++, and Java.
5248@var{language} is case-insensitive.
5249
5250This directive is experimental and its effect may be modified in future
5251releases.
5252@end deffn
5253
5254@deffn {Directive} %locations
5255Generate the code processing the locations (@pxref{Action Features,
5256,Special Features for Use in Actions}). This mode is enabled as soon as
5257the grammar uses the special @samp{@@@var{n}} tokens, but if your
5258grammar does not use it, using @samp{%locations} allows for more
5259accurate syntax error messages.
5260@end deffn
5261
5262@deffn {Directive} %name-prefix "@var{prefix}"
5263Rename the external symbols used in the parser so that they start with
5264@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5265in C parsers
5266is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5267@code{yylval}, @code{yychar}, @code{yydebug}, and
5268(if locations are used) @code{yylloc}. If you use a push parser,
5269@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5270@code{yypstate_new} and @code{yypstate_delete} will
5271also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5272names become @code{c_parse}, @code{c_lex}, and so on.
5273For C++ parsers, see the @samp{%define api.namespace} documentation in this
5274section.
5275@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5276@end deffn
5277
5278@ifset defaultprec
5279@deffn {Directive} %no-default-prec
5280Do not assign a precedence to rules lacking an explicit @code{%prec}
5281modifier (@pxref{Contextual Precedence, ,Context-Dependent
5282Precedence}).
5283@end deffn
5284@end ifset
5285
5286@deffn {Directive} %no-lines
5287Don't generate any @code{#line} preprocessor commands in the parser
5288implementation file. Ordinarily Bison writes these commands in the
5289parser implementation file so that the C compiler and debuggers will
5290associate errors and object code with your source file (the grammar
5291file). This directive causes them to associate errors with the parser
5292implementation file, treating it as an independent source file in its
5293own right.
5294@end deffn
5295
5296@deffn {Directive} %output "@var{file}"
5297Specify @var{file} for the parser implementation file.
5298@end deffn
5299
5300@deffn {Directive} %pure-parser
5301Deprecated version of @samp{%define api.pure} (@pxref{%define
5302Summary,,api.pure}), for which Bison is more careful to warn about
5303unreasonable usage.
5304@end deffn
5305
5306@deffn {Directive} %require "@var{version}"
5307Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5308Require a Version of Bison}.
5309@end deffn
5310
5311@deffn {Directive} %skeleton "@var{file}"
5312Specify the skeleton to use.
5313
5314@c You probably don't need this option unless you are developing Bison.
5315@c You should use @code{%language} if you want to specify the skeleton for a
5316@c different language, because it is clearer and because it will always choose the
5317@c correct skeleton for non-deterministic or push parsers.
5318
5319If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5320file in the Bison installation directory.
5321If it does, @var{file} is an absolute file name or a file name relative to the
5322directory of the grammar file.
5323This is similar to how most shells resolve commands.
5324@end deffn
5325
5326@deffn {Directive} %token-table
5327Generate an array of token names in the parser implementation file.
5328The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5329the name of the token whose internal Bison token code number is
5330@var{i}. The first three elements of @code{yytname} correspond to the
5331predefined tokens @code{"$end"}, @code{"error"}, and
5332@code{"$undefined"}; after these come the symbols defined in the
5333grammar file.
5334
5335The name in the table includes all the characters needed to represent
5336the token in Bison. For single-character literals and literal
5337strings, this includes the surrounding quoting characters and any
5338escape sequences. For example, the Bison single-character literal
5339@code{'+'} corresponds to a three-character name, represented in C as
5340@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5341corresponds to a five-character name, represented in C as
5342@code{"\"\\\\/\""}.
5343
5344When you specify @code{%token-table}, Bison also generates macro
5345definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5346@code{YYNRULES}, and @code{YYNSTATES}:
5347
5348@table @code
5349@item YYNTOKENS
5350The highest token number, plus one.
5351@item YYNNTS
5352The number of nonterminal symbols.
5353@item YYNRULES
5354The number of grammar rules,
5355@item YYNSTATES
5356The number of parser states (@pxref{Parser States}).
5357@end table
5358@end deffn
5359
5360@deffn {Directive} %verbose
5361Write an extra output file containing verbose descriptions of the
5362parser states and what is done for each type of lookahead token in
5363that state. @xref{Understanding, , Understanding Your Parser}, for more
5364information.
5365@end deffn
5366
5367@deffn {Directive} %yacc
5368Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5369including its naming conventions. @xref{Bison Options}, for more.
5370@end deffn
5371
5372
5373@node %define Summary
5374@subsection %define Summary
51151d91
JD
5375
5376There are many features of Bison's behavior that can be controlled by
5377assigning the feature a single value. For historical reasons, some
5378such features are assigned values by dedicated directives, such as
5379@code{%start}, which assigns the start symbol. However, newer such
5380features are associated with variables, which are assigned by the
5381@code{%define} directive:
5382
c1d19e10 5383@deffn {Directive} %define @var{variable}
cf499cff 5384@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5385@deffnx {Directive} %define @var{variable} "@var{value}"
51151d91 5386Define @var{variable} to @var{value}.
9611cfa2 5387
51151d91
JD
5388@var{value} must be placed in quotation marks if it contains any
5389character other than a letter, underscore, period, or non-initial dash
5390or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5391to specifying @code{""}.
9611cfa2 5392
51151d91
JD
5393It is an error if a @var{variable} is defined by @code{%define}
5394multiple times, but see @ref{Bison Options,,-D
5395@var{name}[=@var{value}]}.
5396@end deffn
cf499cff 5397
51151d91
JD
5398The rest of this section summarizes variables and values that
5399@code{%define} accepts.
9611cfa2 5400
51151d91
JD
5401Some @var{variable}s take Boolean values. In this case, Bison will
5402complain if the variable definition does not meet one of the following
5403four conditions:
9611cfa2
JD
5404
5405@enumerate
cf499cff 5406@item @code{@var{value}} is @code{true}
9611cfa2 5407
cf499cff
JD
5408@item @code{@var{value}} is omitted (or @code{""} is specified).
5409This is equivalent to @code{true}.
9611cfa2 5410
cf499cff 5411@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5412
5413@item @var{variable} is never defined.
c6abeab1 5414In this case, Bison selects a default value.
9611cfa2 5415@end enumerate
148d66d8 5416
c6abeab1
JD
5417What @var{variable}s are accepted, as well as their meanings and default
5418values, depend on the selected target language and/or the parser
5419skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5420Summary,,%skeleton}).
5421Unaccepted @var{variable}s produce an error.
793fbca5
JD
5422Some of the accepted @var{variable}s are:
5423
fa819509 5424@table @code
6b5a0de9 5425@c ================================================== api.namespace
67501061
AD
5426@item api.namespace
5427@findex %define api.namespace
5428@itemize
5429@item Languages(s): C++
5430
f1b238df 5431@item Purpose: Specify the namespace for the parser class.
67501061
AD
5432For example, if you specify:
5433
c93f22fc 5434@example
67501061 5435%define api.namespace "foo::bar"
c93f22fc 5436@end example
67501061
AD
5437
5438Bison uses @code{foo::bar} verbatim in references such as:
5439
c93f22fc 5440@example
67501061 5441foo::bar::parser::semantic_type
c93f22fc 5442@end example
67501061
AD
5443
5444However, to open a namespace, Bison removes any leading @code{::} and then
5445splits on any remaining occurrences:
5446
c93f22fc 5447@example
67501061
AD
5448namespace foo @{ namespace bar @{
5449 class position;
5450 class location;
5451@} @}
c93f22fc 5452@end example
67501061
AD
5453
5454@item Accepted Values:
5455Any absolute or relative C++ namespace reference without a trailing
5456@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5457
5458@item Default Value:
5459The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5460This usage of @code{%name-prefix} is for backward compatibility and can
5461be confusing since @code{%name-prefix} also specifies the textual prefix
5462for the lexical analyzer function. Thus, if you specify
5463@code{%name-prefix}, it is best to also specify @samp{%define
5464api.namespace} so that @code{%name-prefix} @emph{only} affects the
5465lexical analyzer function. For example, if you specify:
5466
c93f22fc 5467@example
67501061
AD
5468%define api.namespace "foo"
5469%name-prefix "bar::"
c93f22fc 5470@end example
67501061
AD
5471
5472The parser namespace is @code{foo} and @code{yylex} is referenced as
5473@code{bar::lex}.
5474@end itemize
5475@c namespace
5476
db8ab2be
AD
5477@c ================================================== api.location.type
5478@item @code{api.location.type}
5479@findex %define api.location.type
5480
5481@itemize @bullet
5482@item Language(s): C++
5483
5484@item Purpose: Define the location type.
5485@xref{User Defined Location Type}.
5486
5487@item Accepted Values: String
5488
5489@item Default Value: none
5490
5491@item History: introduced in Bison 2.7
5492@end itemize
67501061 5493
4b3847c3 5494@c ================================================== api.prefix
5458913a 5495@item api.prefix
4b3847c3
AD
5496@findex %define api.prefix
5497
5498@itemize @bullet
5499@item Language(s): All
5500
db8ab2be 5501@item Purpose: Rename exported symbols.
4b3847c3
AD
5502@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5503
5504@item Accepted Values: String
5505
5506@item Default Value: @code{yy}
e358222b
AD
5507
5508@item History: introduced in Bison 2.6
4b3847c3 5509@end itemize
67501061
AD
5510
5511@c ================================================== api.pure
d9df47b6
JD
5512@item api.pure
5513@findex %define api.pure
5514
5515@itemize @bullet
5516@item Language(s): C
5517
5518@item Purpose: Request a pure (reentrant) parser program.
5519@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5520
5521@item Accepted Values: Boolean
5522
cf499cff 5523@item Default Value: @code{false}
d9df47b6 5524@end itemize
71b00ed8 5525@c api.pure
d9df47b6 5526
67501061
AD
5527
5528
5529@c ================================================== api.push-pull
67212941
JD
5530@item api.push-pull
5531@findex %define api.push-pull
793fbca5
JD
5532
5533@itemize @bullet
eb45ef3b 5534@item Language(s): C (deterministic parsers only)
793fbca5 5535
f1b238df 5536@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5537@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5538(The current push parsing interface is experimental and may evolve.
5539More user feedback will help to stabilize it.)
793fbca5 5540
cf499cff 5541@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5542
cf499cff 5543@item Default Value: @code{pull}
793fbca5 5544@end itemize
67212941 5545@c api.push-pull
71b00ed8 5546
6b5a0de9
AD
5547
5548
2a6b66c5
AD
5549@c ================================================== api.token.prefix
5550@item api.token.prefix
5551@findex %define api.token.prefix
4c6622c2
AD
5552
5553@itemize
5554@item Languages(s): all
5555
5556@item Purpose:
5557Add a prefix to the token names when generating their definition in the
5558target language. For instance
5559
5560@example
5561%token FILE for ERROR
2a6b66c5 5562%define api.token.prefix "TOK_"
4c6622c2
AD
5563%%
5564start: FILE for ERROR;
5565@end example
5566
5567@noindent
5568generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5569and @code{TOK_ERROR} in the generated source files. In particular, the
5570scanner must use these prefixed token names, while the grammar itself
5571may still use the short names (as in the sample rule given above). The
5572generated informational files (@file{*.output}, @file{*.xml},
5573@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5574and @ref{Calc++ Scanner}, for a complete example.
5575
5576@item Accepted Values:
5577Any string. Should be a valid identifier prefix in the target language,
5578in other words, it should typically be an identifier itself (sequence of
5579letters, underscores, and ---not at the beginning--- digits).
5580
5581@item Default Value:
5582empty
2a6b66c5
AD
5583@item History:
5584introduced in Bison 2.8
4c6622c2 5585@end itemize
2a6b66c5 5586@c api.token.prefix
4c6622c2
AD
5587
5588
3cdc21cf 5589@c ================================================== lex_symbol
84072495 5590@item lex_symbol
3cdc21cf
AD
5591@findex %define lex_symbol
5592
5593@itemize @bullet
5594@item Language(s):
5595C++
5596
5597@item Purpose:
5598When variant-based semantic values are enabled (@pxref{C++ Variants}),
5599request that symbols be handled as a whole (type, value, and possibly
5600location) in the scanner. @xref{Complete Symbols}, for details.
5601
5602@item Accepted Values:
5603Boolean.
5604
5605@item Default Value:
5606@code{false}
5607@end itemize
5608@c lex_symbol
5609
5610
6b5a0de9
AD
5611@c ================================================== lr.default-reductions
5612
5bab9d08 5613@item lr.default-reductions
5bab9d08 5614@findex %define lr.default-reductions
eb45ef3b
JD
5615
5616@itemize @bullet
5617@item Language(s): all
5618
fcf834f9 5619@item Purpose: Specify the kind of states that are permitted to
7fceb615
JD
5620contain default reductions. @xref{Default Reductions}. (The ability to
5621specify where default reductions should be used is experimental. More user
5622feedback will help to stabilize it.)
eb45ef3b 5623
f0ad1b2f 5624@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
eb45ef3b
JD
5625@item Default Value:
5626@itemize
cf499cff 5627@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
f0ad1b2f 5628@item @code{most} otherwise.
eb45ef3b
JD
5629@end itemize
5630@end itemize
5631
6b5a0de9
AD
5632@c ============================================ lr.keep-unreachable-states
5633
67212941
JD
5634@item lr.keep-unreachable-states
5635@findex %define lr.keep-unreachable-states
31984206
JD
5636
5637@itemize @bullet
5638@item Language(s): all
f1b238df 5639@item Purpose: Request that Bison allow unreachable parser states to
7fceb615 5640remain in the parser tables. @xref{Unreachable States}.
31984206 5641@item Accepted Values: Boolean
cf499cff 5642@item Default Value: @code{false}
31984206 5643@end itemize
67212941 5644@c lr.keep-unreachable-states
31984206 5645
6b5a0de9
AD
5646@c ================================================== lr.type
5647
eb45ef3b
JD
5648@item lr.type
5649@findex %define lr.type
eb45ef3b
JD
5650
5651@itemize @bullet
5652@item Language(s): all
5653
f1b238df 5654@item Purpose: Specify the type of parser tables within the
7fceb615 5655LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
eb45ef3b
JD
5656More user feedback will help to stabilize it.)
5657
7fceb615 5658@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
eb45ef3b 5659
cf499cff 5660@item Default Value: @code{lalr}
eb45ef3b
JD
5661@end itemize
5662
67501061
AD
5663
5664@c ================================================== namespace
793fbca5
JD
5665@item namespace
5666@findex %define namespace
67501061 5667Obsoleted by @code{api.namespace}
fa819509
AD
5668@c namespace
5669
31b850d2
AD
5670
5671@c ================================================== parse.assert
0c90a1f5
AD
5672@item parse.assert
5673@findex %define parse.assert
5674
5675@itemize
5676@item Languages(s): C++
5677
5678@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5679In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5680constructed and
0c90a1f5
AD
5681destroyed properly. This option checks these constraints.
5682
5683@item Accepted Values: Boolean
5684
5685@item Default Value: @code{false}
5686@end itemize
5687@c parse.assert
5688
31b850d2
AD
5689
5690@c ================================================== parse.error
5691@item parse.error
5692@findex %define parse.error
5693@itemize
5694@item Languages(s):
fcf834f9 5695all
31b850d2
AD
5696@item Purpose:
5697Control the kind of error messages passed to the error reporting
5698function. @xref{Error Reporting, ,The Error Reporting Function
5699@code{yyerror}}.
5700@item Accepted Values:
5701@itemize
cf499cff 5702@item @code{simple}
31b850d2
AD
5703Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5704error"}}.
cf499cff 5705@item @code{verbose}
7fceb615
JD
5706Error messages report the unexpected token, and possibly the expected ones.
5707However, this report can often be incorrect when LAC is not enabled
5708(@pxref{LAC}).
31b850d2
AD
5709@end itemize
5710
5711@item Default Value:
5712@code{simple}
5713@end itemize
5714@c parse.error
5715
5716
fcf834f9
JD
5717@c ================================================== parse.lac
5718@item parse.lac
5719@findex %define parse.lac
fcf834f9
JD
5720
5721@itemize
7fceb615 5722@item Languages(s): C (deterministic parsers only)
fcf834f9 5723
8a4281b9 5724@item Purpose: Enable LAC (lookahead correction) to improve
7fceb615 5725syntax error handling. @xref{LAC}.
fcf834f9 5726@item Accepted Values: @code{none}, @code{full}
fcf834f9
JD
5727@item Default Value: @code{none}
5728@end itemize
5729@c parse.lac
5730
31b850d2 5731@c ================================================== parse.trace
fa819509
AD
5732@item parse.trace
5733@findex %define parse.trace
5734
5735@itemize
60aa04a2 5736@item Languages(s): C, C++, Java
fa819509
AD
5737
5738@item Purpose: Require parser instrumentation for tracing.
60aa04a2
AD
5739@xref{Tracing, ,Tracing Your Parser}.
5740
5741In C/C++, define the macro @code{YYDEBUG} (or @code{@var{prefix}DEBUG} with
5742@samp{%define api.prefix @var{prefix}}), see @ref{Multiple Parsers,
5743,Multiple Parsers in the Same Program}) to 1 in the parser implementation
ff7571c0 5744file if it is not already defined, so that the debugging facilities are
60aa04a2 5745compiled.
793fbca5 5746
fa819509
AD
5747@item Accepted Values: Boolean
5748
5749@item Default Value: @code{false}
5750@end itemize
fa819509 5751@c parse.trace
99c08fb6 5752
3cdc21cf
AD
5753@c ================================================== variant
5754@item variant
5755@findex %define variant
5756
5757@itemize @bullet
5758@item Language(s):
5759C++
5760
5761@item Purpose:
f1b238df 5762Request variant-based semantic values.
3cdc21cf
AD
5763@xref{C++ Variants}.
5764
5765@item Accepted Values:
5766Boolean.
5767
5768@item Default Value:
5769@code{false}
5770@end itemize
5771@c variant
99c08fb6 5772@end table
592d0b1e 5773
d8988b2f 5774
e0c07222
JD
5775@node %code Summary
5776@subsection %code Summary
e0c07222 5777@findex %code
e0c07222 5778@cindex Prologue
51151d91
JD
5779
5780The @code{%code} directive inserts code verbatim into the output
5781parser source at any of a predefined set of locations. It thus serves
5782as a flexible and user-friendly alternative to the traditional Yacc
5783prologue, @code{%@{@var{code}%@}}. This section summarizes the
5784functionality of @code{%code} for the various target languages
5785supported by Bison. For a detailed discussion of how to use
5786@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5787is advantageous to do so, @pxref{Prologue Alternatives}.
5788
5789@deffn {Directive} %code @{@var{code}@}
5790This is the unqualified form of the @code{%code} directive. It
5791inserts @var{code} verbatim at a language-dependent default location
5792in the parser implementation.
5793
e0c07222 5794For C/C++, the default location is the parser implementation file
51151d91
JD
5795after the usual contents of the parser header file. Thus, the
5796unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
e0c07222
JD
5797
5798For Java, the default location is inside the parser class.
5799@end deffn
5800
5801@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5802This is the qualified form of the @code{%code} directive.
51151d91
JD
5803@var{qualifier} identifies the purpose of @var{code} and thus the
5804location(s) where Bison should insert it. That is, if you need to
5805specify location-sensitive @var{code} that does not belong at the
5806default location selected by the unqualified @code{%code} form, use
5807this form instead.
5808@end deffn
5809
5810For any particular qualifier or for the unqualified form, if there are
5811multiple occurrences of the @code{%code} directive, Bison concatenates
5812the specified code in the order in which it appears in the grammar
5813file.
e0c07222 5814
51151d91
JD
5815Not all qualifiers are accepted for all target languages. Unaccepted
5816qualifiers produce an error. Some of the accepted qualifiers are:
e0c07222 5817
84072495 5818@table @code
e0c07222
JD
5819@item requires
5820@findex %code requires
5821
5822@itemize @bullet
5823@item Language(s): C, C++
5824
5825@item Purpose: This is the best place to write dependency code required for
5826@code{YYSTYPE} and @code{YYLTYPE}.
5827In other words, it's the best place to define types referenced in @code{%union}
5828directives, and it's the best place to override Bison's default @code{YYSTYPE}
5829and @code{YYLTYPE} definitions.
5830
5831@item Location(s): The parser header file and the parser implementation file
5832before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5833definitions.
5834@end itemize
5835
5836@item provides
5837@findex %code provides
5838
5839@itemize @bullet
5840@item Language(s): C, C++
5841
5842@item Purpose: This is the best place to write additional definitions and
5843declarations that should be provided to other modules.
5844
5845@item Location(s): The parser header file and the parser implementation
5846file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5847token definitions.
5848@end itemize
5849
5850@item top
5851@findex %code top
5852
5853@itemize @bullet
5854@item Language(s): C, C++
5855
5856@item Purpose: The unqualified @code{%code} or @code{%code requires}
5857should usually be more appropriate than @code{%code top}. However,
5858occasionally it is necessary to insert code much nearer the top of the
5859parser implementation file. For example:
5860
c93f22fc 5861@example
e0c07222
JD
5862%code top @{
5863 #define _GNU_SOURCE
5864 #include <stdio.h>
5865@}
c93f22fc 5866@end example
e0c07222
JD
5867
5868@item Location(s): Near the top of the parser implementation file.
5869@end itemize
5870
5871@item imports
5872@findex %code imports
5873
5874@itemize @bullet
5875@item Language(s): Java
5876
5877@item Purpose: This is the best place to write Java import directives.
5878
5879@item Location(s): The parser Java file after any Java package directive and
5880before any class definitions.
5881@end itemize
84072495 5882@end table
e0c07222 5883
51151d91
JD
5884Though we say the insertion locations are language-dependent, they are
5885technically skeleton-dependent. Writers of non-standard skeletons
5886however should choose their locations consistently with the behavior
5887of the standard Bison skeletons.
e0c07222 5888
d8988b2f 5889
342b8b6e 5890@node Multiple Parsers
bfa74976
RS
5891@section Multiple Parsers in the Same Program
5892
5893Most programs that use Bison parse only one language and therefore contain
4b3847c3
AD
5894only one Bison parser. But what if you want to parse more than one language
5895with the same program? Then you need to avoid name conflicts between
5896different definitions of functions and variables such as @code{yyparse},
5897@code{yylval}. To use different parsers from the same compilation unit, you
5898also need to avoid conflicts on types and macros (e.g., @code{YYSTYPE})
5899exported in the generated header.
5900
5901The easy way to do this is to define the @code{%define} variable
e358222b
AD
5902@code{api.prefix}. With different @code{api.prefix}s it is guaranteed that
5903headers do not conflict when included together, and that compiled objects
5904can be linked together too. Specifying @samp{%define api.prefix
5905@var{prefix}} (or passing the option @samp{-Dapi.prefix=@var{prefix}}, see
5906@ref{Invocation, ,Invoking Bison}) renames the interface functions and
5907variables of the Bison parser to start with @var{prefix} instead of
5908@samp{yy}, and all the macros to start by @var{PREFIX} (i.e., @var{prefix}
5909upper-cased) instead of @samp{YY}.
4b3847c3
AD
5910
5911The renamed symbols include @code{yyparse}, @code{yylex}, @code{yyerror},
5912@code{yynerrs}, @code{yylval}, @code{yylloc}, @code{yychar} and
5913@code{yydebug}. If you use a push parser, @code{yypush_parse},
5914@code{yypull_parse}, @code{yypstate}, @code{yypstate_new} and
5915@code{yypstate_delete} will also be renamed. The renamed macros include
e358222b
AD
5916@code{YYSTYPE}, @code{YYLTYPE}, and @code{YYDEBUG}, which is treated
5917specifically --- more about this below.
4b3847c3
AD
5918
5919For example, if you use @samp{%define api.prefix c}, the names become
5920@code{cparse}, @code{clex}, @dots{}, @code{CSTYPE}, @code{CLTYPE}, and so
5921on.
5922
5923The @code{%define} variable @code{api.prefix} works in two different ways.
5924In the implementation file, it works by adding macro definitions to the
5925beginning of the parser implementation file, defining @code{yyparse} as
5926@code{@var{prefix}parse}, and so on:
5927
5928@example
5929#define YYSTYPE CTYPE
5930#define yyparse cparse
5931#define yylval clval
5932...
5933YYSTYPE yylval;
5934int yyparse (void);
5935@end example
5936
5937This effectively substitutes one name for the other in the entire parser
5938implementation file, thus the ``original'' names (@code{yylex},
5939@code{YYSTYPE}, @dots{}) are also usable in the parser implementation file.
5940
5941However, in the parser header file, the symbols are defined renamed, for
5942instance:
bfa74976 5943
4b3847c3
AD
5944@example
5945extern CSTYPE clval;
5946int cparse (void);
5947@end example
bfa74976 5948
e358222b
AD
5949The macro @code{YYDEBUG} is commonly used to enable the tracing support in
5950parsers. To comply with this tradition, when @code{api.prefix} is used,
5951@code{YYDEBUG} (not renamed) is used as a default value:
5952
5953@example
5954/* Enabling traces. */
5955#ifndef CDEBUG
5956# if defined YYDEBUG
5957# if YYDEBUG
5958# define CDEBUG 1
5959# else
5960# define CDEBUG 0
5961# endif
5962# else
5963# define CDEBUG 0
5964# endif
5965#endif
5966#if CDEBUG
5967extern int cdebug;
5968#endif
5969@end example
5970
5971@sp 2
5972
5973Prior to Bison 2.6, a feature similar to @code{api.prefix} was provided by
5974the obsolete directive @code{%name-prefix} (@pxref{Table of Symbols, ,Bison
5975Symbols}) and the option @code{--name-prefix} (@pxref{Bison Options}).
bfa74976 5976
342b8b6e 5977@node Interface
bfa74976
RS
5978@chapter Parser C-Language Interface
5979@cindex C-language interface
5980@cindex interface
5981
5982The Bison parser is actually a C function named @code{yyparse}. Here we
5983describe the interface conventions of @code{yyparse} and the other
5984functions that it needs to use.
5985
5986Keep in mind that the parser uses many C identifiers starting with
5987@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5988identifier (aside from those in this manual) in an action or in epilogue
5989in the grammar file, you are likely to run into trouble.
bfa74976
RS
5990
5991@menu
f5f419de
DJ
5992* Parser Function:: How to call @code{yyparse} and what it returns.
5993* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5994* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5995* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5996* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5997* Lexical:: You must supply a function @code{yylex}
5998 which reads tokens.
5999* Error Reporting:: You must supply a function @code{yyerror}.
6000* Action Features:: Special features for use in actions.
6001* Internationalization:: How to let the parser speak in the user's
6002 native language.
bfa74976
RS
6003@end menu
6004
342b8b6e 6005@node Parser Function
bfa74976
RS
6006@section The Parser Function @code{yyparse}
6007@findex yyparse
6008
6009You call the function @code{yyparse} to cause parsing to occur. This
6010function reads tokens, executes actions, and ultimately returns when it
6011encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
6012write an action which directs @code{yyparse} to return immediately
6013without reading further.
bfa74976 6014
2a8d363a
AD
6015
6016@deftypefun int yyparse (void)
bfa74976
RS
6017The value returned by @code{yyparse} is 0 if parsing was successful (return
6018is due to end-of-input).
6019
b47dbebe
PE
6020The value is 1 if parsing failed because of invalid input, i.e., input
6021that contains a syntax error or that causes @code{YYABORT} to be
6022invoked.
6023
6024The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 6025@end deftypefun
bfa74976
RS
6026
6027In an action, you can cause immediate return from @code{yyparse} by using
6028these macros:
6029
2a8d363a 6030@defmac YYACCEPT
bfa74976
RS
6031@findex YYACCEPT
6032Return immediately with value 0 (to report success).
2a8d363a 6033@end defmac
bfa74976 6034
2a8d363a 6035@defmac YYABORT
bfa74976
RS
6036@findex YYABORT
6037Return immediately with value 1 (to report failure).
2a8d363a
AD
6038@end defmac
6039
6040If you use a reentrant parser, you can optionally pass additional
6041parameter information to it in a reentrant way. To do so, use the
6042declaration @code{%parse-param}:
6043
2055a44e 6044@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6045@findex %parse-param
2055a44e
AD
6046Declare that one or more
6047@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 6048The @var{argument-declaration} is used when declaring
feeb0eda
PE
6049functions or prototypes. The last identifier in
6050@var{argument-declaration} must be the argument name.
2a8d363a
AD
6051@end deffn
6052
6053Here's an example. Write this in the parser:
6054
6055@example
2055a44e 6056%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
6057@end example
6058
6059@noindent
6060Then call the parser like this:
6061
6062@example
6063@{
6064 int nastiness, randomness;
6065 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
6066 value = yyparse (&nastiness, &randomness);
6067 @dots{}
6068@}
6069@end example
6070
6071@noindent
6072In the grammar actions, use expressions like this to refer to the data:
6073
6074@example
6075exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
6076@end example
6077
9987d1b3
JD
6078@node Push Parser Function
6079@section The Push Parser Function @code{yypush_parse}
6080@findex yypush_parse
6081
59da312b
JD
6082(The current push parsing interface is experimental and may evolve.
6083More user feedback will help to stabilize it.)
6084
f4101aa6 6085You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
6086function is available if either the @samp{%define api.push-pull push} or
6087@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6088@xref{Push Decl, ,A Push Parser}.
6089
6090@deftypefun int yypush_parse (yypstate *yyps)
ad60e80f
AD
6091The value returned by @code{yypush_parse} is the same as for yyparse with
6092the following exception: it returns @code{YYPUSH_MORE} if more input is
6093required to finish parsing the grammar.
9987d1b3
JD
6094@end deftypefun
6095
6096@node Pull Parser Function
6097@section The Pull Parser Function @code{yypull_parse}
6098@findex yypull_parse
6099
59da312b
JD
6100(The current push parsing interface is experimental and may evolve.
6101More user feedback will help to stabilize it.)
6102
f4101aa6 6103You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 6104stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 6105declaration is used.
9987d1b3
JD
6106@xref{Push Decl, ,A Push Parser}.
6107
6108@deftypefun int yypull_parse (yypstate *yyps)
6109The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
6110@end deftypefun
6111
6112@node Parser Create Function
6113@section The Parser Create Function @code{yystate_new}
6114@findex yypstate_new
6115
59da312b
JD
6116(The current push parsing interface is experimental and may evolve.
6117More user feedback will help to stabilize it.)
6118
f4101aa6 6119You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
6120This function is available if either the @samp{%define api.push-pull push} or
6121@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6122@xref{Push Decl, ,A Push Parser}.
6123
34a41a93 6124@deftypefun {yypstate*} yypstate_new (void)
f50bfcd6 6125The function will return a valid parser instance if there was memory available
333e670c
JD
6126or 0 if no memory was available.
6127In impure mode, it will also return 0 if a parser instance is currently
6128allocated.
9987d1b3
JD
6129@end deftypefun
6130
6131@node Parser Delete Function
6132@section The Parser Delete Function @code{yystate_delete}
6133@findex yypstate_delete
6134
59da312b
JD
6135(The current push parsing interface is experimental and may evolve.
6136More user feedback will help to stabilize it.)
6137
9987d1b3 6138You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
6139function is available if either the @samp{%define api.push-pull push} or
6140@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6141@xref{Push Decl, ,A Push Parser}.
6142
6143@deftypefun void yypstate_delete (yypstate *yyps)
6144This function will reclaim the memory associated with a parser instance.
6145After this call, you should no longer attempt to use the parser instance.
6146@end deftypefun
bfa74976 6147
342b8b6e 6148@node Lexical
bfa74976
RS
6149@section The Lexical Analyzer Function @code{yylex}
6150@findex yylex
6151@cindex lexical analyzer
6152
6153The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
6154the input stream and returns them to the parser. Bison does not create
6155this function automatically; you must write it so that @code{yyparse} can
6156call it. The function is sometimes referred to as a lexical scanner.
6157
ff7571c0
JD
6158In simple programs, @code{yylex} is often defined at the end of the
6159Bison grammar file. If @code{yylex} is defined in a separate source
6160file, you need to arrange for the token-type macro definitions to be
6161available there. To do this, use the @samp{-d} option when you run
6162Bison, so that it will write these macro definitions into the separate
6163parser header file, @file{@var{name}.tab.h}, which you can include in
6164the other source files that need it. @xref{Invocation, ,Invoking
6165Bison}.
bfa74976
RS
6166
6167@menu
6168* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
6169* Token Values:: How @code{yylex} must return the semantic value
6170 of the token it has read.
6171* Token Locations:: How @code{yylex} must return the text location
6172 (line number, etc.) of the token, if the
6173 actions want that.
6174* Pure Calling:: How the calling convention differs in a pure parser
6175 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
6176@end menu
6177
342b8b6e 6178@node Calling Convention
bfa74976
RS
6179@subsection Calling Convention for @code{yylex}
6180
72d2299c
PE
6181The value that @code{yylex} returns must be the positive numeric code
6182for the type of token it has just found; a zero or negative value
6183signifies end-of-input.
bfa74976
RS
6184
6185When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
6186in the parser implementation file becomes a C macro whose definition
6187is the proper numeric code for that token type. So @code{yylex} can
6188use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
6189
6190When a token is referred to in the grammar rules by a character literal,
6191the numeric code for that character is also the code for the token type.
72d2299c
PE
6192So @code{yylex} can simply return that character code, possibly converted
6193to @code{unsigned char} to avoid sign-extension. The null character
6194must not be used this way, because its code is zero and that
bfa74976
RS
6195signifies end-of-input.
6196
6197Here is an example showing these things:
6198
6199@example
13863333
AD
6200int
6201yylex (void)
bfa74976
RS
6202@{
6203 @dots{}
72d2299c 6204 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
6205 return 0;
6206 @dots{}
6207 if (c == '+' || c == '-')
72d2299c 6208 return c; /* Assume token type for `+' is '+'. */
bfa74976 6209 @dots{}
72d2299c 6210 return INT; /* Return the type of the token. */
bfa74976
RS
6211 @dots{}
6212@}
6213@end example
6214
6215@noindent
6216This interface has been designed so that the output from the @code{lex}
6217utility can be used without change as the definition of @code{yylex}.
6218
931c7513
RS
6219If the grammar uses literal string tokens, there are two ways that
6220@code{yylex} can determine the token type codes for them:
6221
6222@itemize @bullet
6223@item
6224If the grammar defines symbolic token names as aliases for the
6225literal string tokens, @code{yylex} can use these symbolic names like
6226all others. In this case, the use of the literal string tokens in
6227the grammar file has no effect on @code{yylex}.
6228
6229@item
9ecbd125 6230@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6231table. The index of the token in the table is the token type's code.
9ecbd125 6232The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6233double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6234token's characters are escaped as necessary to be suitable as input
6235to Bison.
931c7513 6236
9e0876fb
PE
6237Here's code for looking up a multicharacter token in @code{yytname},
6238assuming that the characters of the token are stored in
6239@code{token_buffer}, and assuming that the token does not contain any
6240characters like @samp{"} that require escaping.
931c7513 6241
c93f22fc 6242@example
931c7513
RS
6243for (i = 0; i < YYNTOKENS; i++)
6244 @{
6245 if (yytname[i] != 0
6246 && yytname[i][0] == '"'
68449b3a
PE
6247 && ! strncmp (yytname[i] + 1, token_buffer,
6248 strlen (token_buffer))
931c7513
RS
6249 && yytname[i][strlen (token_buffer) + 1] == '"'
6250 && yytname[i][strlen (token_buffer) + 2] == 0)
6251 break;
6252 @}
c93f22fc 6253@end example
931c7513
RS
6254
6255The @code{yytname} table is generated only if you use the
8c9a50be 6256@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6257@end itemize
6258
342b8b6e 6259@node Token Values
bfa74976
RS
6260@subsection Semantic Values of Tokens
6261
6262@vindex yylval
9d9b8b70 6263In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6264be stored into the global variable @code{yylval}. When you are using
6265just one data type for semantic values, @code{yylval} has that type.
6266Thus, if the type is @code{int} (the default), you might write this in
6267@code{yylex}:
6268
6269@example
6270@group
6271 @dots{}
72d2299c
PE
6272 yylval = value; /* Put value onto Bison stack. */
6273 return INT; /* Return the type of the token. */
bfa74976
RS
6274 @dots{}
6275@end group
6276@end example
6277
6278When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6279made from the @code{%union} declaration (@pxref{Union Decl, ,The
6280Collection of Value Types}). So when you store a token's value, you
6281must use the proper member of the union. If the @code{%union}
6282declaration looks like this:
bfa74976
RS
6283
6284@example
6285@group
6286%union @{
6287 int intval;
6288 double val;
6289 symrec *tptr;
6290@}
6291@end group
6292@end example
6293
6294@noindent
6295then the code in @code{yylex} might look like this:
6296
6297@example
6298@group
6299 @dots{}
72d2299c
PE
6300 yylval.intval = value; /* Put value onto Bison stack. */
6301 return INT; /* Return the type of the token. */
bfa74976
RS
6302 @dots{}
6303@end group
6304@end example
6305
95923bd6
AD
6306@node Token Locations
6307@subsection Textual Locations of Tokens
bfa74976
RS
6308
6309@vindex yylloc
303834cc
JD
6310If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6311in actions to keep track of the textual locations of tokens and groupings,
6312then you must provide this information in @code{yylex}. The function
6313@code{yyparse} expects to find the textual location of a token just parsed
6314in the global variable @code{yylloc}. So @code{yylex} must store the proper
6315data in that variable.
847bf1f5
AD
6316
6317By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6318initialize the members that are going to be used by the actions. The
6319four members are called @code{first_line}, @code{first_column},
6320@code{last_line} and @code{last_column}. Note that the use of this
6321feature makes the parser noticeably slower.
bfa74976
RS
6322
6323@tindex YYLTYPE
6324The data type of @code{yylloc} has the name @code{YYLTYPE}.
6325
342b8b6e 6326@node Pure Calling
c656404a 6327@subsection Calling Conventions for Pure Parsers
bfa74976 6328
67501061 6329When you use the Bison declaration @samp{%define api.pure} to request a
e425e872
RS
6330pure, reentrant parser, the global communication variables @code{yylval}
6331and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6332Parser}.) In such parsers the two global variables are replaced by
6333pointers passed as arguments to @code{yylex}. You must declare them as
6334shown here, and pass the information back by storing it through those
6335pointers.
bfa74976
RS
6336
6337@example
13863333
AD
6338int
6339yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6340@{
6341 @dots{}
6342 *lvalp = value; /* Put value onto Bison stack. */
6343 return INT; /* Return the type of the token. */
6344 @dots{}
6345@}
6346@end example
6347
6348If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6349textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6350this case, omit the second argument; @code{yylex} will be called with
6351only one argument.
6352
2055a44e 6353If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6354@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6355Function}). To pass additional arguments to both @code{yylex} and
6356@code{yyparse}, use @code{%param}.
e425e872 6357
2055a44e 6358@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6359@findex %lex-param
2055a44e
AD
6360Specify that @var{argument-declaration} are additional @code{yylex} argument
6361declarations. You may pass one or more such declarations, which is
6362equivalent to repeating @code{%lex-param}.
6363@end deffn
6364
6365@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6366@findex %param
6367Specify that @var{argument-declaration} are additional
6368@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6369@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6370@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6371declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6372@end deffn
e425e872 6373
2a8d363a 6374For instance:
e425e872
RS
6375
6376@example
2055a44e
AD
6377%lex-param @{scanner_mode *mode@}
6378%parse-param @{parser_mode *mode@}
6379%param @{environment_type *env@}
e425e872
RS
6380@end example
6381
6382@noindent
18ad57b3 6383results in the following signatures:
e425e872
RS
6384
6385@example
2055a44e
AD
6386int yylex (scanner_mode *mode, environment_type *env);
6387int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6388@end example
6389
67501061 6390If @samp{%define api.pure} is added:
c656404a
RS
6391
6392@example
2055a44e
AD
6393int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6394int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6395@end example
6396
2a8d363a 6397@noindent
67501061 6398and finally, if both @samp{%define api.pure} and @code{%locations} are used:
c656404a 6399
2a8d363a 6400@example
2055a44e
AD
6401int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6402 scanner_mode *mode, environment_type *env);
6403int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6404@end example
931c7513 6405
342b8b6e 6406@node Error Reporting
bfa74976
RS
6407@section The Error Reporting Function @code{yyerror}
6408@cindex error reporting function
6409@findex yyerror
6410@cindex parse error
6411@cindex syntax error
6412
31b850d2 6413The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6414whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6415action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6416macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6417in Actions}).
bfa74976
RS
6418
6419The Bison parser expects to report the error by calling an error
6420reporting function named @code{yyerror}, which you must supply. It is
6421called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6422receives one argument. For a syntax error, the string is normally
6423@w{@code{"syntax error"}}.
bfa74976 6424
31b850d2 6425@findex %define parse.error
7fceb615
JD
6426If you invoke @samp{%define parse.error verbose} in the Bison declarations
6427section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6428Bison provides a more verbose and specific error message string instead of
6429just plain @w{@code{"syntax error"}}. However, that message sometimes
6430contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6431
1a059451
PE
6432The parser can detect one other kind of error: memory exhaustion. This
6433can happen when the input contains constructions that are very deeply
bfa74976 6434nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6435parser normally extends its stack automatically up to a very large limit. But
6436if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6437fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6438
6439In some cases diagnostics like @w{@code{"syntax error"}} are
6440translated automatically from English to some other language before
6441they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6442
6443The following definition suffices in simple programs:
6444
6445@example
6446@group
13863333 6447void
38a92d50 6448yyerror (char const *s)
bfa74976
RS
6449@{
6450@end group
6451@group
6452 fprintf (stderr, "%s\n", s);
6453@}
6454@end group
6455@end example
6456
6457After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6458error recovery if you have written suitable error recovery grammar rules
6459(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6460immediately return 1.
6461
93724f13 6462Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 6463an access to the current location.
8a4281b9 6464This is indeed the case for the GLR
2a8d363a 6465parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6466@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6467@code{yyerror} are:
6468
6469@example
38a92d50
PE
6470void yyerror (char const *msg); /* Yacc parsers. */
6471void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6472@end example
6473
feeb0eda 6474If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6475
6476@example
b317297e
PE
6477void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6478void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6479@end example
6480
8a4281b9 6481Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6482convention for absolutely pure parsers, i.e., when the calling
6483convention of @code{yylex} @emph{and} the calling convention of
67501061 6484@samp{%define api.pure} are pure.
d9df47b6 6485I.e.:
2a8d363a
AD
6486
6487@example
6488/* Location tracking. */
6489%locations
6490/* Pure yylex. */
d9df47b6 6491%define api.pure
feeb0eda 6492%lex-param @{int *nastiness@}
2a8d363a 6493/* Pure yyparse. */
feeb0eda
PE
6494%parse-param @{int *nastiness@}
6495%parse-param @{int *randomness@}
2a8d363a
AD
6496@end example
6497
6498@noindent
6499results in the following signatures for all the parser kinds:
6500
6501@example
6502int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6503int yyparse (int *nastiness, int *randomness);
93724f13
AD
6504void yyerror (YYLTYPE *locp,
6505 int *nastiness, int *randomness,
38a92d50 6506 char const *msg);
2a8d363a
AD
6507@end example
6508
1c0c3e95 6509@noindent
38a92d50
PE
6510The prototypes are only indications of how the code produced by Bison
6511uses @code{yyerror}. Bison-generated code always ignores the returned
6512value, so @code{yyerror} can return any type, including @code{void}.
6513Also, @code{yyerror} can be a variadic function; that is why the
6514message is always passed last.
6515
6516Traditionally @code{yyerror} returns an @code{int} that is always
6517ignored, but this is purely for historical reasons, and @code{void} is
6518preferable since it more accurately describes the return type for
6519@code{yyerror}.
93724f13 6520
bfa74976
RS
6521@vindex yynerrs
6522The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6523reported so far. Normally this variable is global; but if you
704a47c4
AD
6524request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6525then it is a local variable which only the actions can access.
bfa74976 6526
342b8b6e 6527@node Action Features
bfa74976
RS
6528@section Special Features for Use in Actions
6529@cindex summary, action features
6530@cindex action features summary
6531
6532Here is a table of Bison constructs, variables and macros that
6533are useful in actions.
6534
18b519c0 6535@deffn {Variable} $$
bfa74976
RS
6536Acts like a variable that contains the semantic value for the
6537grouping made by the current rule. @xref{Actions}.
18b519c0 6538@end deffn
bfa74976 6539
18b519c0 6540@deffn {Variable} $@var{n}
bfa74976
RS
6541Acts like a variable that contains the semantic value for the
6542@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6543@end deffn
bfa74976 6544
18b519c0 6545@deffn {Variable} $<@var{typealt}>$
bfa74976 6546Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6547specified by the @code{%union} declaration. @xref{Action Types, ,Data
6548Types of Values in Actions}.
18b519c0 6549@end deffn
bfa74976 6550
18b519c0 6551@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6552Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6553union specified by the @code{%union} declaration.
e0c471a9 6554@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6555@end deffn
bfa74976 6556
34a41a93 6557@deffn {Macro} YYABORT @code{;}
bfa74976
RS
6558Return immediately from @code{yyparse}, indicating failure.
6559@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6560@end deffn
bfa74976 6561
34a41a93 6562@deffn {Macro} YYACCEPT @code{;}
bfa74976
RS
6563Return immediately from @code{yyparse}, indicating success.
6564@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6565@end deffn
bfa74976 6566
34a41a93 6567@deffn {Macro} YYBACKUP (@var{token}, @var{value})@code{;}
bfa74976
RS
6568@findex YYBACKUP
6569Unshift a token. This macro is allowed only for rules that reduce
742e4900 6570a single value, and only when there is no lookahead token.
8a4281b9 6571It is also disallowed in GLR parsers.
742e4900 6572It installs a lookahead token with token type @var{token} and
bfa74976
RS
6573semantic value @var{value}; then it discards the value that was
6574going to be reduced by this rule.
6575
6576If the macro is used when it is not valid, such as when there is
742e4900 6577a lookahead token already, then it reports a syntax error with
bfa74976
RS
6578a message @samp{cannot back up} and performs ordinary error
6579recovery.
6580
6581In either case, the rest of the action is not executed.
18b519c0 6582@end deffn
bfa74976 6583
18b519c0 6584@deffn {Macro} YYEMPTY
742e4900 6585Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6586@end deffn
bfa74976 6587
32c29292 6588@deffn {Macro} YYEOF
742e4900 6589Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6590stream.
6591@end deffn
6592
34a41a93 6593@deffn {Macro} YYERROR @code{;}
bfa74976
RS
6594Cause an immediate syntax error. This statement initiates error
6595recovery just as if the parser itself had detected an error; however, it
6596does not call @code{yyerror}, and does not print any message. If you
6597want to print an error message, call @code{yyerror} explicitly before
6598the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6599@end deffn
bfa74976 6600
18b519c0 6601@deffn {Macro} YYRECOVERING
02103984
PE
6602@findex YYRECOVERING
6603The expression @code{YYRECOVERING ()} yields 1 when the parser
6604is recovering from a syntax error, and 0 otherwise.
bfa74976 6605@xref{Error Recovery}.
18b519c0 6606@end deffn
bfa74976 6607
18b519c0 6608@deffn {Variable} yychar
742e4900
JD
6609Variable containing either the lookahead token, or @code{YYEOF} when the
6610lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6611has been performed so the next token is not yet known.
6612Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6613Actions}).
742e4900 6614@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6615@end deffn
bfa74976 6616
34a41a93 6617@deffn {Macro} yyclearin @code{;}
742e4900 6618Discard the current lookahead token. This is useful primarily in
32c29292
JD
6619error rules.
6620Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6621Semantic Actions}).
6622@xref{Error Recovery}.
18b519c0 6623@end deffn
bfa74976 6624
34a41a93 6625@deffn {Macro} yyerrok @code{;}
bfa74976 6626Resume generating error messages immediately for subsequent syntax
13863333 6627errors. This is useful primarily in error rules.
bfa74976 6628@xref{Error Recovery}.
18b519c0 6629@end deffn
bfa74976 6630
32c29292 6631@deffn {Variable} yylloc
742e4900 6632Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6633to @code{YYEMPTY} or @code{YYEOF}.
6634Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6635Actions}).
6636@xref{Actions and Locations, ,Actions and Locations}.
6637@end deffn
6638
6639@deffn {Variable} yylval
742e4900 6640Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6641not set to @code{YYEMPTY} or @code{YYEOF}.
6642Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6643Actions}).
6644@xref{Actions, ,Actions}.
6645@end deffn
6646
18b519c0 6647@deffn {Value} @@$
847bf1f5 6648@findex @@$
303834cc
JD
6649Acts like a structure variable containing information on the textual
6650location of the grouping made by the current rule. @xref{Tracking
6651Locations}.
bfa74976 6652
847bf1f5
AD
6653@c Check if those paragraphs are still useful or not.
6654
6655@c @example
6656@c struct @{
6657@c int first_line, last_line;
6658@c int first_column, last_column;
6659@c @};
6660@c @end example
6661
6662@c Thus, to get the starting line number of the third component, you would
6663@c use @samp{@@3.first_line}.
bfa74976 6664
847bf1f5
AD
6665@c In order for the members of this structure to contain valid information,
6666@c you must make @code{yylex} supply this information about each token.
6667@c If you need only certain members, then @code{yylex} need only fill in
6668@c those members.
bfa74976 6669
847bf1f5 6670@c The use of this feature makes the parser noticeably slower.
18b519c0 6671@end deffn
847bf1f5 6672
18b519c0 6673@deffn {Value} @@@var{n}
847bf1f5 6674@findex @@@var{n}
303834cc
JD
6675Acts like a structure variable containing information on the textual
6676location of the @var{n}th component of the current rule. @xref{Tracking
6677Locations}.
18b519c0 6678@end deffn
bfa74976 6679
f7ab6a50
PE
6680@node Internationalization
6681@section Parser Internationalization
6682@cindex internationalization
6683@cindex i18n
6684@cindex NLS
6685@cindex gettext
6686@cindex bison-po
6687
6688A Bison-generated parser can print diagnostics, including error and
6689tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6690also supports outputting diagnostics in the user's native language. To
6691make this work, the user should set the usual environment variables.
6692@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6693For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 6694set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6695encoding. The exact set of available locales depends on the user's
6696installation.
6697
6698The maintainer of a package that uses a Bison-generated parser enables
6699the internationalization of the parser's output through the following
8a4281b9
JD
6700steps. Here we assume a package that uses GNU Autoconf and
6701GNU Automake.
f7ab6a50
PE
6702
6703@enumerate
6704@item
30757c8c 6705@cindex bison-i18n.m4
8a4281b9 6706Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6707by the package---often called @file{m4}---copy the
6708@file{bison-i18n.m4} file installed by Bison under
6709@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6710For example:
6711
6712@example
6713cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6714@end example
6715
6716@item
30757c8c
PE
6717@findex BISON_I18N
6718@vindex BISON_LOCALEDIR
6719@vindex YYENABLE_NLS
f7ab6a50
PE
6720In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6721invocation, add an invocation of @code{BISON_I18N}. This macro is
6722defined in the file @file{bison-i18n.m4} that you copied earlier. It
6723causes @samp{configure} to find the value of the
30757c8c
PE
6724@code{BISON_LOCALEDIR} variable, and it defines the source-language
6725symbol @code{YYENABLE_NLS} to enable translations in the
6726Bison-generated parser.
f7ab6a50
PE
6727
6728@item
6729In the @code{main} function of your program, designate the directory
6730containing Bison's runtime message catalog, through a call to
6731@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6732For example:
6733
6734@example
6735bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6736@end example
6737
6738Typically this appears after any other call @code{bindtextdomain
6739(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6740@samp{BISON_LOCALEDIR} to be defined as a string through the
6741@file{Makefile}.
6742
6743@item
6744In the @file{Makefile.am} that controls the compilation of the @code{main}
6745function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6746either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6747
6748@example
6749DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6750@end example
6751
6752or:
6753
6754@example
6755AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6756@end example
6757
6758@item
6759Finally, invoke the command @command{autoreconf} to generate the build
6760infrastructure.
6761@end enumerate
6762
bfa74976 6763
342b8b6e 6764@node Algorithm
13863333
AD
6765@chapter The Bison Parser Algorithm
6766@cindex Bison parser algorithm
bfa74976
RS
6767@cindex algorithm of parser
6768@cindex shifting
6769@cindex reduction
6770@cindex parser stack
6771@cindex stack, parser
6772
6773As Bison reads tokens, it pushes them onto a stack along with their
6774semantic values. The stack is called the @dfn{parser stack}. Pushing a
6775token is traditionally called @dfn{shifting}.
6776
6777For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6778@samp{3} to come. The stack will have four elements, one for each token
6779that was shifted.
6780
6781But the stack does not always have an element for each token read. When
6782the last @var{n} tokens and groupings shifted match the components of a
6783grammar rule, they can be combined according to that rule. This is called
6784@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6785single grouping whose symbol is the result (left hand side) of that rule.
6786Running the rule's action is part of the process of reduction, because this
6787is what computes the semantic value of the resulting grouping.
6788
6789For example, if the infix calculator's parser stack contains this:
6790
6791@example
67921 + 5 * 3
6793@end example
6794
6795@noindent
6796and the next input token is a newline character, then the last three
6797elements can be reduced to 15 via the rule:
6798
6799@example
6800expr: expr '*' expr;
6801@end example
6802
6803@noindent
6804Then the stack contains just these three elements:
6805
6806@example
68071 + 15
6808@end example
6809
6810@noindent
6811At this point, another reduction can be made, resulting in the single value
681216. Then the newline token can be shifted.
6813
6814The parser tries, by shifts and reductions, to reduce the entire input down
6815to a single grouping whose symbol is the grammar's start-symbol
6816(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6817
6818This kind of parser is known in the literature as a bottom-up parser.
6819
6820@menu
742e4900 6821* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6822* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6823* Precedence:: Operator precedence works by resolving conflicts.
6824* Contextual Precedence:: When an operator's precedence depends on context.
6825* Parser States:: The parser is a finite-state-machine with stack.
6826* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 6827* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 6828* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 6829* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6830* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6831@end menu
6832
742e4900
JD
6833@node Lookahead
6834@section Lookahead Tokens
6835@cindex lookahead token
bfa74976
RS
6836
6837The Bison parser does @emph{not} always reduce immediately as soon as the
6838last @var{n} tokens and groupings match a rule. This is because such a
6839simple strategy is inadequate to handle most languages. Instead, when a
6840reduction is possible, the parser sometimes ``looks ahead'' at the next
6841token in order to decide what to do.
6842
6843When a token is read, it is not immediately shifted; first it becomes the
742e4900 6844@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6845perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6846the lookahead token remains off to the side. When no more reductions
6847should take place, the lookahead token is shifted onto the stack. This
bfa74976 6848does not mean that all possible reductions have been done; depending on the
742e4900 6849token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6850application.
6851
742e4900 6852Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6853expressions which contain binary addition operators and postfix unary
6854factorial operators (@samp{!}), and allow parentheses for grouping.
6855
6856@example
6857@group
5e9b6624
AD
6858expr:
6859 term '+' expr
6860| term
6861;
bfa74976
RS
6862@end group
6863
6864@group
5e9b6624
AD
6865term:
6866 '(' expr ')'
6867| term '!'
6868| NUMBER
6869;
bfa74976
RS
6870@end group
6871@end example
6872
6873Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6874should be done? If the following token is @samp{)}, then the first three
6875tokens must be reduced to form an @code{expr}. This is the only valid
6876course, because shifting the @samp{)} would produce a sequence of symbols
6877@w{@code{term ')'}}, and no rule allows this.
6878
6879If the following token is @samp{!}, then it must be shifted immediately so
6880that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6881parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6882@code{expr}. It would then be impossible to shift the @samp{!} because
6883doing so would produce on the stack the sequence of symbols @code{expr
6884'!'}. No rule allows that sequence.
6885
6886@vindex yychar
32c29292
JD
6887@vindex yylval
6888@vindex yylloc
742e4900 6889The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6890Its semantic value and location, if any, are stored in the variables
6891@code{yylval} and @code{yylloc}.
bfa74976
RS
6892@xref{Action Features, ,Special Features for Use in Actions}.
6893
342b8b6e 6894@node Shift/Reduce
bfa74976
RS
6895@section Shift/Reduce Conflicts
6896@cindex conflicts
6897@cindex shift/reduce conflicts
6898@cindex dangling @code{else}
6899@cindex @code{else}, dangling
6900
6901Suppose we are parsing a language which has if-then and if-then-else
6902statements, with a pair of rules like this:
6903
6904@example
6905@group
6906if_stmt:
5e9b6624
AD
6907 IF expr THEN stmt
6908| IF expr THEN stmt ELSE stmt
6909;
bfa74976
RS
6910@end group
6911@end example
6912
6913@noindent
6914Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6915terminal symbols for specific keyword tokens.
6916
742e4900 6917When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6918contents of the stack (assuming the input is valid) are just right for
6919reduction by the first rule. But it is also legitimate to shift the
6920@code{ELSE}, because that would lead to eventual reduction by the second
6921rule.
6922
6923This situation, where either a shift or a reduction would be valid, is
6924called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6925these conflicts by choosing to shift, unless otherwise directed by
6926operator precedence declarations. To see the reason for this, let's
6927contrast it with the other alternative.
6928
6929Since the parser prefers to shift the @code{ELSE}, the result is to attach
6930the else-clause to the innermost if-statement, making these two inputs
6931equivalent:
6932
6933@example
6934if x then if y then win (); else lose;
6935
6936if x then do; if y then win (); else lose; end;
6937@end example
6938
6939But if the parser chose to reduce when possible rather than shift, the
6940result would be to attach the else-clause to the outermost if-statement,
6941making these two inputs equivalent:
6942
6943@example
6944if x then if y then win (); else lose;
6945
6946if x then do; if y then win (); end; else lose;
6947@end example
6948
6949The conflict exists because the grammar as written is ambiguous: either
6950parsing of the simple nested if-statement is legitimate. The established
6951convention is that these ambiguities are resolved by attaching the
6952else-clause to the innermost if-statement; this is what Bison accomplishes
6953by choosing to shift rather than reduce. (It would ideally be cleaner to
6954write an unambiguous grammar, but that is very hard to do in this case.)
6955This particular ambiguity was first encountered in the specifications of
6956Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6957
6958To avoid warnings from Bison about predictable, legitimate shift/reduce
93d7dde9
JD
6959conflicts, use the @code{%expect @var{n}} declaration.
6960There will be no warning as long as the number of shift/reduce conflicts
6961is exactly @var{n}, and Bison will report an error if there is a
6962different number.
bfa74976
RS
6963@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6964
6965The definition of @code{if_stmt} above is solely to blame for the
6966conflict, but the conflict does not actually appear without additional
ff7571c0
JD
6967rules. Here is a complete Bison grammar file that actually manifests
6968the conflict:
bfa74976
RS
6969
6970@example
6971@group
6972%token IF THEN ELSE variable
6973%%
6974@end group
6975@group
5e9b6624
AD
6976stmt:
6977 expr
6978| if_stmt
6979;
bfa74976
RS
6980@end group
6981
6982@group
6983if_stmt:
5e9b6624
AD
6984 IF expr THEN stmt
6985| IF expr THEN stmt ELSE stmt
6986;
bfa74976
RS
6987@end group
6988
5e9b6624
AD
6989expr:
6990 variable
6991;
bfa74976
RS
6992@end example
6993
342b8b6e 6994@node Precedence
bfa74976
RS
6995@section Operator Precedence
6996@cindex operator precedence
6997@cindex precedence of operators
6998
6999Another situation where shift/reduce conflicts appear is in arithmetic
7000expressions. Here shifting is not always the preferred resolution; the
7001Bison declarations for operator precedence allow you to specify when to
7002shift and when to reduce.
7003
7004@menu
7005* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
7006* Using Precedence:: How to specify precedence and associativity.
7007* Precedence Only:: How to specify precedence only.
bfa74976
RS
7008* Precedence Examples:: How these features are used in the previous example.
7009* How Precedence:: How they work.
7010@end menu
7011
342b8b6e 7012@node Why Precedence
bfa74976
RS
7013@subsection When Precedence is Needed
7014
7015Consider the following ambiguous grammar fragment (ambiguous because the
7016input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
7017
7018@example
7019@group
5e9b6624
AD
7020expr:
7021 expr '-' expr
7022| expr '*' expr
7023| expr '<' expr
7024| '(' expr ')'
7025@dots{}
7026;
bfa74976
RS
7027@end group
7028@end example
7029
7030@noindent
7031Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
7032should it reduce them via the rule for the subtraction operator? It
7033depends on the next token. Of course, if the next token is @samp{)}, we
7034must reduce; shifting is invalid because no single rule can reduce the
7035token sequence @w{@samp{- 2 )}} or anything starting with that. But if
7036the next token is @samp{*} or @samp{<}, we have a choice: either
7037shifting or reduction would allow the parse to complete, but with
7038different results.
7039
7040To decide which one Bison should do, we must consider the results. If
7041the next operator token @var{op} is shifted, then it must be reduced
7042first in order to permit another opportunity to reduce the difference.
7043The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
7044hand, if the subtraction is reduced before shifting @var{op}, the result
7045is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
7046reduce should depend on the relative precedence of the operators
7047@samp{-} and @var{op}: @samp{*} should be shifted first, but not
7048@samp{<}.
bfa74976
RS
7049
7050@cindex associativity
7051What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
7052@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
7053operators we prefer the former, which is called @dfn{left association}.
7054The latter alternative, @dfn{right association}, is desirable for
7055assignment operators. The choice of left or right association is a
7056matter of whether the parser chooses to shift or reduce when the stack
742e4900 7057contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 7058makes right-associativity.
bfa74976 7059
342b8b6e 7060@node Using Precedence
bfa74976
RS
7061@subsection Specifying Operator Precedence
7062@findex %left
bfa74976 7063@findex %nonassoc
d78f0ac9
AD
7064@findex %precedence
7065@findex %right
bfa74976
RS
7066
7067Bison allows you to specify these choices with the operator precedence
7068declarations @code{%left} and @code{%right}. Each such declaration
7069contains a list of tokens, which are operators whose precedence and
7070associativity is being declared. The @code{%left} declaration makes all
7071those operators left-associative and the @code{%right} declaration makes
7072them right-associative. A third alternative is @code{%nonassoc}, which
7073declares that it is a syntax error to find the same operator twice ``in a
7074row''.
d78f0ac9
AD
7075The last alternative, @code{%precedence}, allows to define only
7076precedence and no associativity at all. As a result, any
7077associativity-related conflict that remains will be reported as an
7078compile-time error. The directive @code{%nonassoc} creates run-time
7079error: using the operator in a associative way is a syntax error. The
7080directive @code{%precedence} creates compile-time errors: an operator
7081@emph{can} be involved in an associativity-related conflict, contrary to
7082what expected the grammar author.
bfa74976
RS
7083
7084The relative precedence of different operators is controlled by the
d78f0ac9
AD
7085order in which they are declared. The first precedence/associativity
7086declaration in the file declares the operators whose
bfa74976
RS
7087precedence is lowest, the next such declaration declares the operators
7088whose precedence is a little higher, and so on.
7089
d78f0ac9
AD
7090@node Precedence Only
7091@subsection Specifying Precedence Only
7092@findex %precedence
7093
8a4281b9 7094Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
7095@code{%nonassoc}, which all defines precedence and associativity, little
7096attention is paid to the fact that precedence cannot be defined without
7097defining associativity. Yet, sometimes, when trying to solve a
7098conflict, precedence suffices. In such a case, using @code{%left},
7099@code{%right}, or @code{%nonassoc} might hide future (associativity
7100related) conflicts that would remain hidden.
7101
7102The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 7103Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
7104in the following situation, where the period denotes the current parsing
7105state:
7106
7107@example
7108if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
7109@end example
7110
7111The conflict involves the reduction of the rule @samp{IF expr THEN
7112stmt}, which precedence is by default that of its last token
7113(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
7114disambiguation (attach the @code{else} to the closest @code{if}),
7115shifting must be preferred, i.e., the precedence of @code{ELSE} must be
7116higher than that of @code{THEN}. But neither is expected to be involved
7117in an associativity related conflict, which can be specified as follows.
7118
7119@example
7120%precedence THEN
7121%precedence ELSE
7122@end example
7123
7124The unary-minus is another typical example where associativity is
7125usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 7126Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
7127used to declare the precedence of @code{NEG}, which is more than needed
7128since it also defines its associativity. While this is harmless in the
7129traditional example, who knows how @code{NEG} might be used in future
7130evolutions of the grammar@dots{}
7131
342b8b6e 7132@node Precedence Examples
bfa74976
RS
7133@subsection Precedence Examples
7134
7135In our example, we would want the following declarations:
7136
7137@example
7138%left '<'
7139%left '-'
7140%left '*'
7141@end example
7142
7143In a more complete example, which supports other operators as well, we
7144would declare them in groups of equal precedence. For example, @code{'+'} is
7145declared with @code{'-'}:
7146
7147@example
7148%left '<' '>' '=' NE LE GE
7149%left '+' '-'
7150%left '*' '/'
7151@end example
7152
7153@noindent
7154(Here @code{NE} and so on stand for the operators for ``not equal''
7155and so on. We assume that these tokens are more than one character long
7156and therefore are represented by names, not character literals.)
7157
342b8b6e 7158@node How Precedence
bfa74976
RS
7159@subsection How Precedence Works
7160
7161The first effect of the precedence declarations is to assign precedence
7162levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
7163precedence levels to certain rules: each rule gets its precedence from
7164the last terminal symbol mentioned in the components. (You can also
7165specify explicitly the precedence of a rule. @xref{Contextual
7166Precedence, ,Context-Dependent Precedence}.)
7167
7168Finally, the resolution of conflicts works by comparing the precedence
742e4900 7169of the rule being considered with that of the lookahead token. If the
704a47c4
AD
7170token's precedence is higher, the choice is to shift. If the rule's
7171precedence is higher, the choice is to reduce. If they have equal
7172precedence, the choice is made based on the associativity of that
7173precedence level. The verbose output file made by @samp{-v}
7174(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
7175resolved.
bfa74976
RS
7176
7177Not all rules and not all tokens have precedence. If either the rule or
742e4900 7178the lookahead token has no precedence, then the default is to shift.
bfa74976 7179
342b8b6e 7180@node Contextual Precedence
bfa74976
RS
7181@section Context-Dependent Precedence
7182@cindex context-dependent precedence
7183@cindex unary operator precedence
7184@cindex precedence, context-dependent
7185@cindex precedence, unary operator
7186@findex %prec
7187
7188Often the precedence of an operator depends on the context. This sounds
7189outlandish at first, but it is really very common. For example, a minus
7190sign typically has a very high precedence as a unary operator, and a
7191somewhat lower precedence (lower than multiplication) as a binary operator.
7192
d78f0ac9
AD
7193The Bison precedence declarations
7194can only be used once for a given token; so a token has
bfa74976
RS
7195only one precedence declared in this way. For context-dependent
7196precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 7197modifier for rules.
bfa74976
RS
7198
7199The @code{%prec} modifier declares the precedence of a particular rule by
7200specifying a terminal symbol whose precedence should be used for that rule.
7201It's not necessary for that symbol to appear otherwise in the rule. The
7202modifier's syntax is:
7203
7204@example
7205%prec @var{terminal-symbol}
7206@end example
7207
7208@noindent
7209and it is written after the components of the rule. Its effect is to
7210assign the rule the precedence of @var{terminal-symbol}, overriding
7211the precedence that would be deduced for it in the ordinary way. The
7212altered rule precedence then affects how conflicts involving that rule
7213are resolved (@pxref{Precedence, ,Operator Precedence}).
7214
7215Here is how @code{%prec} solves the problem of unary minus. First, declare
7216a precedence for a fictitious terminal symbol named @code{UMINUS}. There
7217are no tokens of this type, but the symbol serves to stand for its
7218precedence:
7219
7220@example
7221@dots{}
7222%left '+' '-'
7223%left '*'
7224%left UMINUS
7225@end example
7226
7227Now the precedence of @code{UMINUS} can be used in specific rules:
7228
7229@example
7230@group
5e9b6624
AD
7231exp:
7232 @dots{}
7233| exp '-' exp
7234 @dots{}
7235| '-' exp %prec UMINUS
bfa74976
RS
7236@end group
7237@end example
7238
91d2c560 7239@ifset defaultprec
39a06c25
PE
7240If you forget to append @code{%prec UMINUS} to the rule for unary
7241minus, Bison silently assumes that minus has its usual precedence.
7242This kind of problem can be tricky to debug, since one typically
7243discovers the mistake only by testing the code.
7244
22fccf95 7245The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
7246this kind of problem systematically. It causes rules that lack a
7247@code{%prec} modifier to have no precedence, even if the last terminal
7248symbol mentioned in their components has a declared precedence.
7249
22fccf95 7250If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
7251for all rules that participate in precedence conflict resolution.
7252Then you will see any shift/reduce conflict until you tell Bison how
7253to resolve it, either by changing your grammar or by adding an
7254explicit precedence. This will probably add declarations to the
7255grammar, but it helps to protect against incorrect rule precedences.
7256
22fccf95
PE
7257The effect of @code{%no-default-prec;} can be reversed by giving
7258@code{%default-prec;}, which is the default.
91d2c560 7259@end ifset
39a06c25 7260
342b8b6e 7261@node Parser States
bfa74976
RS
7262@section Parser States
7263@cindex finite-state machine
7264@cindex parser state
7265@cindex state (of parser)
7266
7267The function @code{yyparse} is implemented using a finite-state machine.
7268The values pushed on the parser stack are not simply token type codes; they
7269represent the entire sequence of terminal and nonterminal symbols at or
7270near the top of the stack. The current state collects all the information
7271about previous input which is relevant to deciding what to do next.
7272
742e4900
JD
7273Each time a lookahead token is read, the current parser state together
7274with the type of lookahead token are looked up in a table. This table
7275entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7276specifies the new parser state, which is pushed onto the top of the
7277parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7278This means that a certain number of tokens or groupings are taken off
7279the top of the stack, and replaced by one grouping. In other words,
7280that number of states are popped from the stack, and one new state is
7281pushed.
7282
742e4900 7283There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7284is erroneous in the current state. This causes error processing to begin
7285(@pxref{Error Recovery}).
7286
342b8b6e 7287@node Reduce/Reduce
bfa74976
RS
7288@section Reduce/Reduce Conflicts
7289@cindex reduce/reduce conflict
7290@cindex conflicts, reduce/reduce
7291
7292A reduce/reduce conflict occurs if there are two or more rules that apply
7293to the same sequence of input. This usually indicates a serious error
7294in the grammar.
7295
7296For example, here is an erroneous attempt to define a sequence
7297of zero or more @code{word} groupings.
7298
7299@example
d4fca427 7300@group
5e9b6624
AD
7301sequence:
7302 /* empty */ @{ printf ("empty sequence\n"); @}
7303| maybeword
7304| sequence word @{ printf ("added word %s\n", $2); @}
7305;
d4fca427 7306@end group
bfa74976 7307
d4fca427 7308@group
5e9b6624
AD
7309maybeword:
7310 /* empty */ @{ printf ("empty maybeword\n"); @}
7311| word @{ printf ("single word %s\n", $1); @}
7312;
d4fca427 7313@end group
bfa74976
RS
7314@end example
7315
7316@noindent
7317The error is an ambiguity: there is more than one way to parse a single
7318@code{word} into a @code{sequence}. It could be reduced to a
7319@code{maybeword} and then into a @code{sequence} via the second rule.
7320Alternatively, nothing-at-all could be reduced into a @code{sequence}
7321via the first rule, and this could be combined with the @code{word}
7322using the third rule for @code{sequence}.
7323
7324There is also more than one way to reduce nothing-at-all into a
7325@code{sequence}. This can be done directly via the first rule,
7326or indirectly via @code{maybeword} and then the second rule.
7327
7328You might think that this is a distinction without a difference, because it
7329does not change whether any particular input is valid or not. But it does
7330affect which actions are run. One parsing order runs the second rule's
7331action; the other runs the first rule's action and the third rule's action.
7332In this example, the output of the program changes.
7333
7334Bison resolves a reduce/reduce conflict by choosing to use the rule that
7335appears first in the grammar, but it is very risky to rely on this. Every
7336reduce/reduce conflict must be studied and usually eliminated. Here is the
7337proper way to define @code{sequence}:
7338
7339@example
5e9b6624
AD
7340sequence:
7341 /* empty */ @{ printf ("empty sequence\n"); @}
7342| sequence word @{ printf ("added word %s\n", $2); @}
7343;
bfa74976
RS
7344@end example
7345
7346Here is another common error that yields a reduce/reduce conflict:
7347
7348@example
5e9b6624
AD
7349sequence:
7350 /* empty */
7351| sequence words
7352| sequence redirects
7353;
bfa74976 7354
5e9b6624
AD
7355words:
7356 /* empty */
7357| words word
7358;
bfa74976 7359
5e9b6624
AD
7360redirects:
7361 /* empty */
7362| redirects redirect
7363;
bfa74976
RS
7364@end example
7365
7366@noindent
7367The intention here is to define a sequence which can contain either
7368@code{word} or @code{redirect} groupings. The individual definitions of
7369@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7370three together make a subtle ambiguity: even an empty input can be parsed
7371in infinitely many ways!
7372
7373Consider: nothing-at-all could be a @code{words}. Or it could be two
7374@code{words} in a row, or three, or any number. It could equally well be a
7375@code{redirects}, or two, or any number. Or it could be a @code{words}
7376followed by three @code{redirects} and another @code{words}. And so on.
7377
7378Here are two ways to correct these rules. First, to make it a single level
7379of sequence:
7380
7381@example
5e9b6624
AD
7382sequence:
7383 /* empty */
7384| sequence word
7385| sequence redirect
7386;
bfa74976
RS
7387@end example
7388
7389Second, to prevent either a @code{words} or a @code{redirects}
7390from being empty:
7391
7392@example
d4fca427 7393@group
5e9b6624
AD
7394sequence:
7395 /* empty */
7396| sequence words
7397| sequence redirects
7398;
d4fca427 7399@end group
bfa74976 7400
d4fca427 7401@group
5e9b6624
AD
7402words:
7403 word
7404| words word
7405;
d4fca427 7406@end group
bfa74976 7407
d4fca427 7408@group
5e9b6624
AD
7409redirects:
7410 redirect
7411| redirects redirect
7412;
d4fca427 7413@end group
bfa74976
RS
7414@end example
7415
cc09e5be
JD
7416@node Mysterious Conflicts
7417@section Mysterious Conflicts
7fceb615 7418@cindex Mysterious Conflicts
bfa74976
RS
7419
7420Sometimes reduce/reduce conflicts can occur that don't look warranted.
7421Here is an example:
7422
7423@example
7424@group
7425%token ID
7426
7427%%
5e9b6624 7428def: param_spec return_spec ',';
bfa74976 7429param_spec:
5e9b6624
AD
7430 type
7431| name_list ':' type
7432;
bfa74976
RS
7433@end group
7434@group
7435return_spec:
5e9b6624
AD
7436 type
7437| name ':' type
7438;
bfa74976
RS
7439@end group
7440@group
5e9b6624 7441type: ID;
bfa74976
RS
7442@end group
7443@group
5e9b6624 7444name: ID;
bfa74976 7445name_list:
5e9b6624
AD
7446 name
7447| name ',' name_list
7448;
bfa74976
RS
7449@end group
7450@end example
7451
7452It would seem that this grammar can be parsed with only a single token
742e4900 7453of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 7454a @code{name} if a comma or colon follows, or a @code{type} if another
8a4281b9 7455@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 7456
7fceb615
JD
7457@cindex LR
7458@cindex LALR
eb45ef3b 7459However, for historical reasons, Bison cannot by default handle all
8a4281b9 7460LR(1) grammars.
eb45ef3b
JD
7461In this grammar, two contexts, that after an @code{ID} at the beginning
7462of a @code{param_spec} and likewise at the beginning of a
7463@code{return_spec}, are similar enough that Bison assumes they are the
7464same.
7465They appear similar because the same set of rules would be
bfa74976
RS
7466active---the rule for reducing to a @code{name} and that for reducing to
7467a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7468that the rules would require different lookahead tokens in the two
bfa74976
RS
7469contexts, so it makes a single parser state for them both. Combining
7470the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7471occurrence means that the grammar is not LALR(1).
bfa74976 7472
7fceb615
JD
7473@cindex IELR
7474@cindex canonical LR
7475For many practical grammars (specifically those that fall into the non-LR(1)
7476class), the limitations of LALR(1) result in difficulties beyond just
7477mysterious reduce/reduce conflicts. The best way to fix all these problems
7478is to select a different parser table construction algorithm. Either
7479IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7480and easier to debug during development. @xref{LR Table Construction}, for
7481details. (Bison's IELR(1) and canonical LR(1) implementations are
7482experimental. More user feedback will help to stabilize them.)
eb45ef3b 7483
8a4281b9 7484If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7485can often fix a mysterious conflict by identifying the two parser states
7486that are being confused, and adding something to make them look
7487distinct. In the above example, adding one rule to
bfa74976
RS
7488@code{return_spec} as follows makes the problem go away:
7489
7490@example
7491@group
7492%token BOGUS
7493@dots{}
7494%%
7495@dots{}
7496return_spec:
5e9b6624
AD
7497 type
7498| name ':' type
7499| ID BOGUS /* This rule is never used. */
7500;
bfa74976
RS
7501@end group
7502@end example
7503
7504This corrects the problem because it introduces the possibility of an
7505additional active rule in the context after the @code{ID} at the beginning of
7506@code{return_spec}. This rule is not active in the corresponding context
7507in a @code{param_spec}, so the two contexts receive distinct parser states.
7508As long as the token @code{BOGUS} is never generated by @code{yylex},
7509the added rule cannot alter the way actual input is parsed.
7510
7511In this particular example, there is another way to solve the problem:
7512rewrite the rule for @code{return_spec} to use @code{ID} directly
7513instead of via @code{name}. This also causes the two confusing
7514contexts to have different sets of active rules, because the one for
7515@code{return_spec} activates the altered rule for @code{return_spec}
7516rather than the one for @code{name}.
7517
7518@example
7519param_spec:
5e9b6624
AD
7520 type
7521| name_list ':' type
7522;
bfa74976 7523return_spec:
5e9b6624
AD
7524 type
7525| ID ':' type
7526;
bfa74976
RS
7527@end example
7528
8a4281b9 7529For a more detailed exposition of LALR(1) parsers and parser
5e528941 7530generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7531
7fceb615
JD
7532@node Tuning LR
7533@section Tuning LR
7534
7535The default behavior of Bison's LR-based parsers is chosen mostly for
7536historical reasons, but that behavior is often not robust. For example, in
7537the previous section, we discussed the mysterious conflicts that can be
7538produced by LALR(1), Bison's default parser table construction algorithm.
7539Another example is Bison's @code{%define parse.error verbose} directive,
7540which instructs the generated parser to produce verbose syntax error
7541messages, which can sometimes contain incorrect information.
7542
7543In this section, we explore several modern features of Bison that allow you
7544to tune fundamental aspects of the generated LR-based parsers. Some of
7545these features easily eliminate shortcomings like those mentioned above.
7546Others can be helpful purely for understanding your parser.
7547
7548Most of the features discussed in this section are still experimental. More
7549user feedback will help to stabilize them.
7550
7551@menu
7552* LR Table Construction:: Choose a different construction algorithm.
7553* Default Reductions:: Disable default reductions.
7554* LAC:: Correct lookahead sets in the parser states.
7555* Unreachable States:: Keep unreachable parser states for debugging.
7556@end menu
7557
7558@node LR Table Construction
7559@subsection LR Table Construction
7560@cindex Mysterious Conflict
7561@cindex LALR
7562@cindex IELR
7563@cindex canonical LR
7564@findex %define lr.type
7565
7566For historical reasons, Bison constructs LALR(1) parser tables by default.
7567However, LALR does not possess the full language-recognition power of LR.
7568As a result, the behavior of parsers employing LALR parser tables is often
cc09e5be 7569mysterious. We presented a simple example of this effect in @ref{Mysterious
7fceb615
JD
7570Conflicts}.
7571
7572As we also demonstrated in that example, the traditional approach to
7573eliminating such mysterious behavior is to restructure the grammar.
7574Unfortunately, doing so correctly is often difficult. Moreover, merely
7575discovering that LALR causes mysterious behavior in your parser can be
7576difficult as well.
7577
7578Fortunately, Bison provides an easy way to eliminate the possibility of such
7579mysterious behavior altogether. You simply need to activate a more powerful
7580parser table construction algorithm by using the @code{%define lr.type}
7581directive.
7582
7583@deffn {Directive} {%define lr.type @var{TYPE}}
7584Specify the type of parser tables within the LR(1) family. The accepted
7585values for @var{TYPE} are:
7586
7587@itemize
7588@item @code{lalr} (default)
7589@item @code{ielr}
7590@item @code{canonical-lr}
7591@end itemize
7592
7593(This feature is experimental. More user feedback will help to stabilize
7594it.)
7595@end deffn
7596
7597For example, to activate IELR, you might add the following directive to you
7598grammar file:
7599
7600@example
7601%define lr.type ielr
7602@end example
7603
cc09e5be 7604@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7fceb615
JD
7605conflict is then eliminated, so there is no need to invest time in
7606comprehending the conflict or restructuring the grammar to fix it. If,
7607during future development, the grammar evolves such that all mysterious
7608behavior would have disappeared using just LALR, you need not fear that
7609continuing to use IELR will result in unnecessarily large parser tables.
7610That is, IELR generates LALR tables when LALR (using a deterministic parsing
7611algorithm) is sufficient to support the full language-recognition power of
7612LR. Thus, by enabling IELR at the start of grammar development, you can
7613safely and completely eliminate the need to consider LALR's shortcomings.
7614
7615While IELR is almost always preferable, there are circumstances where LALR
7616or the canonical LR parser tables described by Knuth
7617(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7618relative advantages of each parser table construction algorithm within
7619Bison:
7620
7621@itemize
7622@item LALR
7623
7624There are at least two scenarios where LALR can be worthwhile:
7625
7626@itemize
7627@item GLR without static conflict resolution.
7628
7629@cindex GLR with LALR
7630When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
7631conflicts statically (for example, with @code{%left} or @code{%prec}), then
7632the parser explores all potential parses of any given input. In this case,
7633the choice of parser table construction algorithm is guaranteed not to alter
7634the language accepted by the parser. LALR parser tables are the smallest
7635parser tables Bison can currently construct, so they may then be preferable.
7636Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7637more like a deterministic parser in the syntactic contexts where those
7638conflicts appear, and so either IELR or canonical LR can then be helpful to
7639avoid LALR's mysterious behavior.
7640
7641@item Malformed grammars.
7642
7643Occasionally during development, an especially malformed grammar with a
7644major recurring flaw may severely impede the IELR or canonical LR parser
7645table construction algorithm. LALR can be a quick way to construct parser
7646tables in order to investigate such problems while ignoring the more subtle
7647differences from IELR and canonical LR.
7648@end itemize
7649
7650@item IELR
7651
7652IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7653any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7654always accept exactly the same set of sentences. However, like LALR, IELR
7655merges parser states during parser table construction so that the number of
7656parser states is often an order of magnitude less than for canonical LR.
7657More importantly, because canonical LR's extra parser states may contain
7658duplicate conflicts in the case of non-LR grammars, the number of conflicts
7659for IELR is often an order of magnitude less as well. This effect can
7660significantly reduce the complexity of developing a grammar.
7661
7662@item Canonical LR
7663
7664@cindex delayed syntax error detection
7665@cindex LAC
7666@findex %nonassoc
7667While inefficient, canonical LR parser tables can be an interesting means to
7668explore a grammar because they possess a property that IELR and LALR tables
7669do not. That is, if @code{%nonassoc} is not used and default reductions are
7670left disabled (@pxref{Default Reductions}), then, for every left context of
7671every canonical LR state, the set of tokens accepted by that state is
7672guaranteed to be the exact set of tokens that is syntactically acceptable in
7673that left context. It might then seem that an advantage of canonical LR
7674parsers in production is that, under the above constraints, they are
7675guaranteed to detect a syntax error as soon as possible without performing
7676any unnecessary reductions. However, IELR parsers that use LAC are also
7677able to achieve this behavior without sacrificing @code{%nonassoc} or
7678default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7679@end itemize
7680
7681For a more detailed exposition of the mysterious behavior in LALR parsers
7682and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7683@ref{Bibliography,,Denny 2010 November}.
7684
7685@node Default Reductions
7686@subsection Default Reductions
7687@cindex default reductions
7688@findex %define lr.default-reductions
7689@findex %nonassoc
7690
7691After parser table construction, Bison identifies the reduction with the
7692largest lookahead set in each parser state. To reduce the size of the
7693parser state, traditional Bison behavior is to remove that lookahead set and
7694to assign that reduction to be the default parser action. Such a reduction
7695is known as a @dfn{default reduction}.
7696
7697Default reductions affect more than the size of the parser tables. They
7698also affect the behavior of the parser:
7699
7700@itemize
7701@item Delayed @code{yylex} invocations.
7702
7703@cindex delayed yylex invocations
7704@cindex consistent states
7705@cindex defaulted states
7706A @dfn{consistent state} is a state that has only one possible parser
7707action. If that action is a reduction and is encoded as a default
7708reduction, then that consistent state is called a @dfn{defaulted state}.
7709Upon reaching a defaulted state, a Bison-generated parser does not bother to
7710invoke @code{yylex} to fetch the next token before performing the reduction.
7711In other words, whether default reductions are enabled in consistent states
7712determines how soon a Bison-generated parser invokes @code{yylex} for a
7713token: immediately when it @emph{reaches} that token in the input or when it
7714eventually @emph{needs} that token as a lookahead to determine the next
7715parser action. Traditionally, default reductions are enabled, and so the
7716parser exhibits the latter behavior.
7717
7718The presence of defaulted states is an important consideration when
7719designing @code{yylex} and the grammar file. That is, if the behavior of
7720@code{yylex} can influence or be influenced by the semantic actions
7721associated with the reductions in defaulted states, then the delay of the
7722next @code{yylex} invocation until after those reductions is significant.
7723For example, the semantic actions might pop a scope stack that @code{yylex}
7724uses to determine what token to return. Thus, the delay might be necessary
7725to ensure that @code{yylex} does not look up the next token in a scope that
7726should already be considered closed.
7727
7728@item Delayed syntax error detection.
7729
7730@cindex delayed syntax error detection
7731When the parser fetches a new token by invoking @code{yylex}, it checks
7732whether there is an action for that token in the current parser state. The
7733parser detects a syntax error if and only if either (1) there is no action
7734for that token or (2) the action for that token is the error action (due to
7735the use of @code{%nonassoc}). However, if there is a default reduction in
7736that state (which might or might not be a defaulted state), then it is
7737impossible for condition 1 to exist. That is, all tokens have an action.
7738Thus, the parser sometimes fails to detect the syntax error until it reaches
7739a later state.
7740
7741@cindex LAC
7742@c If there's an infinite loop, default reductions can prevent an incorrect
7743@c sentence from being rejected.
7744While default reductions never cause the parser to accept syntactically
7745incorrect sentences, the delay of syntax error detection can have unexpected
7746effects on the behavior of the parser. However, the delay can be caused
7747anyway by parser state merging and the use of @code{%nonassoc}, and it can
7748be fixed by another Bison feature, LAC. We discuss the effects of delayed
7749syntax error detection and LAC more in the next section (@pxref{LAC}).
7750@end itemize
7751
7752For canonical LR, the only default reduction that Bison enables by default
7753is the accept action, which appears only in the accepting state, which has
7754no other action and is thus a defaulted state. However, the default accept
7755action does not delay any @code{yylex} invocation or syntax error detection
7756because the accept action ends the parse.
7757
7758For LALR and IELR, Bison enables default reductions in nearly all states by
7759default. There are only two exceptions. First, states that have a shift
7760action on the @code{error} token do not have default reductions because
7761delayed syntax error detection could then prevent the @code{error} token
7762from ever being shifted in that state. However, parser state merging can
7763cause the same effect anyway, and LAC fixes it in both cases, so future
7764versions of Bison might drop this exception when LAC is activated. Second,
7765GLR parsers do not record the default reduction as the action on a lookahead
7766token for which there is a conflict. The correct action in this case is to
7767split the parse instead.
7768
7769To adjust which states have default reductions enabled, use the
7770@code{%define lr.default-reductions} directive.
7771
7772@deffn {Directive} {%define lr.default-reductions @var{WHERE}}
7773Specify the kind of states that are permitted to contain default reductions.
7774The accepted values of @var{WHERE} are:
7775@itemize
f0ad1b2f 7776@item @code{most} (default for LALR and IELR)
7fceb615
JD
7777@item @code{consistent}
7778@item @code{accepting} (default for canonical LR)
7779@end itemize
7780
7781(The ability to specify where default reductions are permitted is
7782experimental. More user feedback will help to stabilize it.)
7783@end deffn
7784
7fceb615
JD
7785@node LAC
7786@subsection LAC
7787@findex %define parse.lac
7788@cindex LAC
7789@cindex lookahead correction
7790
7791Canonical LR, IELR, and LALR can suffer from a couple of problems upon
7792encountering a syntax error. First, the parser might perform additional
7793parser stack reductions before discovering the syntax error. Such
7794reductions can perform user semantic actions that are unexpected because
7795they are based on an invalid token, and they cause error recovery to begin
7796in a different syntactic context than the one in which the invalid token was
7797encountered. Second, when verbose error messages are enabled (@pxref{Error
7798Reporting}), the expected token list in the syntax error message can both
7799contain invalid tokens and omit valid tokens.
7800
7801The culprits for the above problems are @code{%nonassoc}, default reductions
7802in inconsistent states (@pxref{Default Reductions}), and parser state
7803merging. Because IELR and LALR merge parser states, they suffer the most.
7804Canonical LR can suffer only if @code{%nonassoc} is used or if default
7805reductions are enabled for inconsistent states.
7806
7807LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
7808that solves these problems for canonical LR, IELR, and LALR without
7809sacrificing @code{%nonassoc}, default reductions, or state merging. You can
7810enable LAC with the @code{%define parse.lac} directive.
7811
7812@deffn {Directive} {%define parse.lac @var{VALUE}}
7813Enable LAC to improve syntax error handling.
7814@itemize
7815@item @code{none} (default)
7816@item @code{full}
7817@end itemize
7818(This feature is experimental. More user feedback will help to stabilize
7819it. Moreover, it is currently only available for deterministic parsers in
7820C.)
7821@end deffn
7822
7823Conceptually, the LAC mechanism is straight-forward. Whenever the parser
7824fetches a new token from the scanner so that it can determine the next
7825parser action, it immediately suspends normal parsing and performs an
7826exploratory parse using a temporary copy of the normal parser state stack.
7827During this exploratory parse, the parser does not perform user semantic
7828actions. If the exploratory parse reaches a shift action, normal parsing
7829then resumes on the normal parser stacks. If the exploratory parse reaches
7830an error instead, the parser reports a syntax error. If verbose syntax
7831error messages are enabled, the parser must then discover the list of
7832expected tokens, so it performs a separate exploratory parse for each token
7833in the grammar.
7834
7835There is one subtlety about the use of LAC. That is, when in a consistent
7836parser state with a default reduction, the parser will not attempt to fetch
7837a token from the scanner because no lookahead is needed to determine the
7838next parser action. Thus, whether default reductions are enabled in
7839consistent states (@pxref{Default Reductions}) affects how soon the parser
7840detects a syntax error: immediately when it @emph{reaches} an erroneous
7841token or when it eventually @emph{needs} that token as a lookahead to
7842determine the next parser action. The latter behavior is probably more
7843intuitive, so Bison currently provides no way to achieve the former behavior
7844while default reductions are enabled in consistent states.
7845
7846Thus, when LAC is in use, for some fixed decision of whether to enable
7847default reductions in consistent states, canonical LR and IELR behave almost
7848exactly the same for both syntactically acceptable and syntactically
7849unacceptable input. While LALR still does not support the full
7850language-recognition power of canonical LR and IELR, LAC at least enables
7851LALR's syntax error handling to correctly reflect LALR's
7852language-recognition power.
7853
7854There are a few caveats to consider when using LAC:
7855
7856@itemize
7857@item Infinite parsing loops.
7858
7859IELR plus LAC does have one shortcoming relative to canonical LR. Some
7860parsers generated by Bison can loop infinitely. LAC does not fix infinite
7861parsing loops that occur between encountering a syntax error and detecting
7862it, but enabling canonical LR or disabling default reductions sometimes
7863does.
7864
7865@item Verbose error message limitations.
7866
7867Because of internationalization considerations, Bison-generated parsers
7868limit the size of the expected token list they are willing to report in a
7869verbose syntax error message. If the number of expected tokens exceeds that
7870limit, the list is simply dropped from the message. Enabling LAC can
7871increase the size of the list and thus cause the parser to drop it. Of
7872course, dropping the list is better than reporting an incorrect list.
7873
7874@item Performance.
7875
7876Because LAC requires many parse actions to be performed twice, it can have a
7877performance penalty. However, not all parse actions must be performed
7878twice. Specifically, during a series of default reductions in consistent
7879states and shift actions, the parser never has to initiate an exploratory
7880parse. Moreover, the most time-consuming tasks in a parse are often the
7881file I/O, the lexical analysis performed by the scanner, and the user's
7882semantic actions, but none of these are performed during the exploratory
7883parse. Finally, the base of the temporary stack used during an exploratory
7884parse is a pointer into the normal parser state stack so that the stack is
7885never physically copied. In our experience, the performance penalty of LAC
5a321748 7886has proved insignificant for practical grammars.
7fceb615
JD
7887@end itemize
7888
709c7d11
JD
7889While the LAC algorithm shares techniques that have been recognized in the
7890parser community for years, for the publication that introduces LAC,
7891@pxref{Bibliography,,Denny 2010 May}.
15e46f2d 7892
7fceb615
JD
7893@node Unreachable States
7894@subsection Unreachable States
7895@findex %define lr.keep-unreachable-states
7896@cindex unreachable states
7897
7898If there exists no sequence of transitions from the parser's start state to
7899some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
7900state}. A state can become unreachable during conflict resolution if Bison
7901disables a shift action leading to it from a predecessor state.
7902
7903By default, Bison removes unreachable states from the parser after conflict
7904resolution because they are useless in the generated parser. However,
7905keeping unreachable states is sometimes useful when trying to understand the
7906relationship between the parser and the grammar.
7907
7908@deffn {Directive} {%define lr.keep-unreachable-states @var{VALUE}}
7909Request that Bison allow unreachable states to remain in the parser tables.
7910@var{VALUE} must be a Boolean. The default is @code{false}.
7911@end deffn
7912
7913There are a few caveats to consider:
7914
7915@itemize @bullet
7916@item Missing or extraneous warnings.
7917
7918Unreachable states may contain conflicts and may use rules not used in any
7919other state. Thus, keeping unreachable states may induce warnings that are
7920irrelevant to your parser's behavior, and it may eliminate warnings that are
7921relevant. Of course, the change in warnings may actually be relevant to a
7922parser table analysis that wants to keep unreachable states, so this
7923behavior will likely remain in future Bison releases.
7924
7925@item Other useless states.
7926
7927While Bison is able to remove unreachable states, it is not guaranteed to
7928remove other kinds of useless states. Specifically, when Bison disables
7929reduce actions during conflict resolution, some goto actions may become
7930useless, and thus some additional states may become useless. If Bison were
7931to compute which goto actions were useless and then disable those actions,
7932it could identify such states as unreachable and then remove those states.
7933However, Bison does not compute which goto actions are useless.
7934@end itemize
7935
fae437e8 7936@node Generalized LR Parsing
8a4281b9
JD
7937@section Generalized LR (GLR) Parsing
7938@cindex GLR parsing
7939@cindex generalized LR (GLR) parsing
676385e2 7940@cindex ambiguous grammars
9d9b8b70 7941@cindex nondeterministic parsing
676385e2 7942
fae437e8
AD
7943Bison produces @emph{deterministic} parsers that choose uniquely
7944when to reduce and which reduction to apply
742e4900 7945based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7946As a result, normal Bison handles a proper subset of the family of
7947context-free languages.
fae437e8 7948Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7949sequence of reductions cannot have deterministic parsers in this sense.
7950The same is true of languages that require more than one symbol of
742e4900 7951lookahead, since the parser lacks the information necessary to make a
676385e2 7952decision at the point it must be made in a shift-reduce parser.
cc09e5be 7953Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
eb45ef3b 7954there are languages where Bison's default choice of how to
676385e2
PH
7955summarize the input seen so far loses necessary information.
7956
7957When you use the @samp{%glr-parser} declaration in your grammar file,
7958Bison generates a parser that uses a different algorithm, called
8a4281b9 7959Generalized LR (or GLR). A Bison GLR
c827f760 7960parser uses the same basic
676385e2
PH
7961algorithm for parsing as an ordinary Bison parser, but behaves
7962differently in cases where there is a shift-reduce conflict that has not
fae437e8 7963been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 7964reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7965situation, it
fae437e8 7966effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7967shift or reduction. These parsers then proceed as usual, consuming
7968tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7969and split further, with the result that instead of a sequence of states,
8a4281b9 7970a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7971
7972In effect, each stack represents a guess as to what the proper parse
7973is. Additional input may indicate that a guess was wrong, in which case
7974the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7975actions generated in each stack are saved, rather than being executed
676385e2 7976immediately. When a stack disappears, its saved semantic actions never
fae437e8 7977get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7978their sets of semantic actions are both saved with the state that
7979results from the reduction. We say that two stacks are equivalent
fae437e8 7980when they both represent the same sequence of states,
676385e2
PH
7981and each pair of corresponding states represents a
7982grammar symbol that produces the same segment of the input token
7983stream.
7984
7985Whenever the parser makes a transition from having multiple
eb45ef3b 7986states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7987algorithm, after resolving and executing the saved-up actions.
7988At this transition, some of the states on the stack will have semantic
7989values that are sets (actually multisets) of possible actions. The
7990parser tries to pick one of the actions by first finding one whose rule
7991has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7992declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7993precedence, but there the same merging function is declared for both
fae437e8 7994rules by the @samp{%merge} declaration,
676385e2
PH
7995Bison resolves and evaluates both and then calls the merge function on
7996the result. Otherwise, it reports an ambiguity.
7997
8a4281b9
JD
7998It is possible to use a data structure for the GLR parsing tree that
7999permits the processing of any LR(1) grammar in linear time (in the
c827f760 8000size of the input), any unambiguous (not necessarily
8a4281b9 8001LR(1)) grammar in
fae437e8 8002quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
8003context-free grammar in cubic worst-case time. However, Bison currently
8004uses a simpler data structure that requires time proportional to the
8005length of the input times the maximum number of stacks required for any
9d9b8b70 8006prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
8007grammars can require exponential time and space to process. Such badly
8008behaving examples, however, are not generally of practical interest.
9d9b8b70 8009Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 8010doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 8011structure should generally be adequate. On LR(1) portions of a
eb45ef3b 8012grammar, in particular, it is only slightly slower than with the
8a4281b9 8013deterministic LR(1) Bison parser.
676385e2 8014
5e528941
JD
8015For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
80162000}.
f6481e2f 8017
1a059451
PE
8018@node Memory Management
8019@section Memory Management, and How to Avoid Memory Exhaustion
8020@cindex memory exhaustion
8021@cindex memory management
bfa74976
RS
8022@cindex stack overflow
8023@cindex parser stack overflow
8024@cindex overflow of parser stack
8025
1a059451 8026The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 8027not reduced. When this happens, the parser function @code{yyparse}
1a059451 8028calls @code{yyerror} and then returns 2.
bfa74976 8029
c827f760 8030Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f 8031usually results from using a right recursion instead of a left
188867ac 8032recursion, see @ref{Recursion, ,Recursive Rules}.
d1a1114f 8033
bfa74976
RS
8034@vindex YYMAXDEPTH
8035By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 8036parser stack can become before memory is exhausted. Define the
bfa74976
RS
8037macro with a value that is an integer. This value is the maximum number
8038of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
8039
8040The stack space allowed is not necessarily allocated. If you specify a
1a059451 8041large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
8042stack at first, and then makes it bigger by stages as needed. This
8043increasing allocation happens automatically and silently. Therefore,
8044you do not need to make @code{YYMAXDEPTH} painfully small merely to save
8045space for ordinary inputs that do not need much stack.
8046
d7e14fc0
PE
8047However, do not allow @code{YYMAXDEPTH} to be a value so large that
8048arithmetic overflow could occur when calculating the size of the stack
8049space. Also, do not allow @code{YYMAXDEPTH} to be less than
8050@code{YYINITDEPTH}.
8051
bfa74976
RS
8052@cindex default stack limit
8053The default value of @code{YYMAXDEPTH}, if you do not define it, is
805410000.
8055
8056@vindex YYINITDEPTH
8057You can control how much stack is allocated initially by defining the
eb45ef3b
JD
8058macro @code{YYINITDEPTH} to a positive integer. For the deterministic
8059parser in C, this value must be a compile-time constant
d7e14fc0
PE
8060unless you are assuming C99 or some other target language or compiler
8061that allows variable-length arrays. The default is 200.
8062
1a059451 8063Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 8064
20be2f92 8065You can generate a deterministic parser containing C++ user code from
411614fa 8066the default (C) skeleton, as well as from the C++ skeleton
20be2f92
PH
8067(@pxref{C++ Parsers}). However, if you do use the default skeleton
8068and want to allow the parsing stack to grow,
8069be careful not to use semantic types or location types that require
8070non-trivial copy constructors.
8071The C skeleton bypasses these constructors when copying data to
8072new, larger stacks.
d1a1114f 8073
342b8b6e 8074@node Error Recovery
bfa74976
RS
8075@chapter Error Recovery
8076@cindex error recovery
8077@cindex recovery from errors
8078
6e649e65 8079It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
8080error. For example, a compiler should recover sufficiently to parse the
8081rest of the input file and check it for errors; a calculator should accept
8082another expression.
8083
8084In a simple interactive command parser where each input is one line, it may
8085be sufficient to allow @code{yyparse} to return 1 on error and have the
8086caller ignore the rest of the input line when that happens (and then call
8087@code{yyparse} again). But this is inadequate for a compiler, because it
8088forgets all the syntactic context leading up to the error. A syntax error
8089deep within a function in the compiler input should not cause the compiler
8090to treat the following line like the beginning of a source file.
8091
8092@findex error
8093You can define how to recover from a syntax error by writing rules to
8094recognize the special token @code{error}. This is a terminal symbol that
8095is always defined (you need not declare it) and reserved for error
8096handling. The Bison parser generates an @code{error} token whenever a
8097syntax error happens; if you have provided a rule to recognize this token
13863333 8098in the current context, the parse can continue.
bfa74976
RS
8099
8100For example:
8101
8102@example
0860e383 8103stmts:
5e9b6624 8104 /* empty string */
0860e383
AD
8105| stmts '\n'
8106| stmts exp '\n'
8107| stmts error '\n'
bfa74976
RS
8108@end example
8109
8110The fourth rule in this example says that an error followed by a newline
0860e383 8111makes a valid addition to any @code{stmts}.
bfa74976
RS
8112
8113What happens if a syntax error occurs in the middle of an @code{exp}? The
8114error recovery rule, interpreted strictly, applies to the precise sequence
0860e383 8115of a @code{stmts}, an @code{error} and a newline. If an error occurs in
bfa74976 8116the middle of an @code{exp}, there will probably be some additional tokens
0860e383 8117and subexpressions on the stack after the last @code{stmts}, and there
bfa74976
RS
8118will be tokens to read before the next newline. So the rule is not
8119applicable in the ordinary way.
8120
8121But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
8122the semantic context and part of the input. First it discards states
8123and objects from the stack until it gets back to a state in which the
bfa74976 8124@code{error} token is acceptable. (This means that the subexpressions
0860e383 8125already parsed are discarded, back to the last complete @code{stmts}.)
72f889cc 8126At this point the @code{error} token can be shifted. Then, if the old
742e4900 8127lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 8128tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
8129this example, Bison reads and discards input until the next newline so
8130that the fourth rule can apply. Note that discarded symbols are
8131possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
8132Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
8133
8134The choice of error rules in the grammar is a choice of strategies for
8135error recovery. A simple and useful strategy is simply to skip the rest of
8136the current input line or current statement if an error is detected:
8137
8138@example
0860e383 8139stmt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
8140@end example
8141
8142It is also useful to recover to the matching close-delimiter of an
8143opening-delimiter that has already been parsed. Otherwise the
8144close-delimiter will probably appear to be unmatched, and generate another,
8145spurious error message:
8146
8147@example
5e9b6624
AD
8148primary:
8149 '(' expr ')'
8150| '(' error ')'
8151@dots{}
8152;
bfa74976
RS
8153@end example
8154
8155Error recovery strategies are necessarily guesses. When they guess wrong,
8156one syntax error often leads to another. In the above example, the error
8157recovery rule guesses that an error is due to bad input within one
0860e383
AD
8158@code{stmt}. Suppose that instead a spurious semicolon is inserted in the
8159middle of a valid @code{stmt}. After the error recovery rule recovers
bfa74976
RS
8160from the first error, another syntax error will be found straightaway,
8161since the text following the spurious semicolon is also an invalid
0860e383 8162@code{stmt}.
bfa74976
RS
8163
8164To prevent an outpouring of error messages, the parser will output no error
8165message for another syntax error that happens shortly after the first; only
8166after three consecutive input tokens have been successfully shifted will
8167error messages resume.
8168
8169Note that rules which accept the @code{error} token may have actions, just
8170as any other rules can.
8171
8172@findex yyerrok
8173You can make error messages resume immediately by using the macro
8174@code{yyerrok} in an action. If you do this in the error rule's action, no
8175error messages will be suppressed. This macro requires no arguments;
8176@samp{yyerrok;} is a valid C statement.
8177
8178@findex yyclearin
742e4900 8179The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
8180this is unacceptable, then the macro @code{yyclearin} may be used to clear
8181this token. Write the statement @samp{yyclearin;} in the error rule's
8182action.
32c29292 8183@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 8184
6e649e65 8185For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
8186called that advances the input stream to some point where parsing should
8187once again commence. The next symbol returned by the lexical scanner is
742e4900 8188probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
8189with @samp{yyclearin;}.
8190
8191@vindex YYRECOVERING
02103984
PE
8192The expression @code{YYRECOVERING ()} yields 1 when the parser
8193is recovering from a syntax error, and 0 otherwise.
8194Syntax error diagnostics are suppressed while recovering from a syntax
8195error.
bfa74976 8196
342b8b6e 8197@node Context Dependency
bfa74976
RS
8198@chapter Handling Context Dependencies
8199
8200The Bison paradigm is to parse tokens first, then group them into larger
8201syntactic units. In many languages, the meaning of a token is affected by
8202its context. Although this violates the Bison paradigm, certain techniques
8203(known as @dfn{kludges}) may enable you to write Bison parsers for such
8204languages.
8205
8206@menu
8207* Semantic Tokens:: Token parsing can depend on the semantic context.
8208* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
8209* Tie-in Recovery:: Lexical tie-ins have implications for how
8210 error recovery rules must be written.
8211@end menu
8212
8213(Actually, ``kludge'' means any technique that gets its job done but is
8214neither clean nor robust.)
8215
342b8b6e 8216@node Semantic Tokens
bfa74976
RS
8217@section Semantic Info in Token Types
8218
8219The C language has a context dependency: the way an identifier is used
8220depends on what its current meaning is. For example, consider this:
8221
8222@example
8223foo (x);
8224@end example
8225
8226This looks like a function call statement, but if @code{foo} is a typedef
8227name, then this is actually a declaration of @code{x}. How can a Bison
8228parser for C decide how to parse this input?
8229
8a4281b9 8230The method used in GNU C is to have two different token types,
bfa74976
RS
8231@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
8232identifier, it looks up the current declaration of the identifier in order
8233to decide which token type to return: @code{TYPENAME} if the identifier is
8234declared as a typedef, @code{IDENTIFIER} otherwise.
8235
8236The grammar rules can then express the context dependency by the choice of
8237token type to recognize. @code{IDENTIFIER} is accepted as an expression,
8238but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
8239@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
8240is @emph{not} significant, such as in declarations that can shadow a
8241typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
8242accepted---there is one rule for each of the two token types.
8243
8244This technique is simple to use if the decision of which kinds of
8245identifiers to allow is made at a place close to where the identifier is
8246parsed. But in C this is not always so: C allows a declaration to
8247redeclare a typedef name provided an explicit type has been specified
8248earlier:
8249
8250@example
3a4f411f
PE
8251typedef int foo, bar;
8252int baz (void)
d4fca427 8253@group
3a4f411f
PE
8254@{
8255 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
8256 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
8257 return foo (bar);
8258@}
d4fca427 8259@end group
bfa74976
RS
8260@end example
8261
8262Unfortunately, the name being declared is separated from the declaration
8263construct itself by a complicated syntactic structure---the ``declarator''.
8264
9ecbd125 8265As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
8266all the nonterminal names changed: once for parsing a declaration in
8267which a typedef name can be redefined, and once for parsing a
8268declaration in which that can't be done. Here is a part of the
8269duplication, with actions omitted for brevity:
bfa74976
RS
8270
8271@example
d4fca427 8272@group
bfa74976 8273initdcl:
5e9b6624
AD
8274 declarator maybeasm '=' init
8275| declarator maybeasm
8276;
d4fca427 8277@end group
bfa74976 8278
d4fca427 8279@group
bfa74976 8280notype_initdcl:
5e9b6624
AD
8281 notype_declarator maybeasm '=' init
8282| notype_declarator maybeasm
8283;
d4fca427 8284@end group
bfa74976
RS
8285@end example
8286
8287@noindent
8288Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
8289cannot. The distinction between @code{declarator} and
8290@code{notype_declarator} is the same sort of thing.
8291
8292There is some similarity between this technique and a lexical tie-in
8293(described next), in that information which alters the lexical analysis is
8294changed during parsing by other parts of the program. The difference is
8295here the information is global, and is used for other purposes in the
8296program. A true lexical tie-in has a special-purpose flag controlled by
8297the syntactic context.
8298
342b8b6e 8299@node Lexical Tie-ins
bfa74976
RS
8300@section Lexical Tie-ins
8301@cindex lexical tie-in
8302
8303One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
8304which is set by Bison actions, whose purpose is to alter the way tokens are
8305parsed.
8306
8307For example, suppose we have a language vaguely like C, but with a special
8308construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
8309an expression in parentheses in which all integers are hexadecimal. In
8310particular, the token @samp{a1b} must be treated as an integer rather than
8311as an identifier if it appears in that context. Here is how you can do it:
8312
8313@example
8314@group
8315%@{
38a92d50
PE
8316 int hexflag;
8317 int yylex (void);
8318 void yyerror (char const *);
bfa74976
RS
8319%@}
8320%%
8321@dots{}
8322@end group
8323@group
5e9b6624
AD
8324expr:
8325 IDENTIFIER
8326| constant
8327| HEX '(' @{ hexflag = 1; @}
8328 expr ')' @{ hexflag = 0; $$ = $4; @}
8329| expr '+' expr @{ $$ = make_sum ($1, $3); @}
8330@dots{}
8331;
bfa74976
RS
8332@end group
8333
8334@group
8335constant:
5e9b6624
AD
8336 INTEGER
8337| STRING
8338;
bfa74976
RS
8339@end group
8340@end example
8341
8342@noindent
8343Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8344it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8345with letters are parsed as integers if possible.
8346
ff7571c0
JD
8347The declaration of @code{hexflag} shown in the prologue of the grammar
8348file is needed to make it accessible to the actions (@pxref{Prologue,
8349,The Prologue}). You must also write the code in @code{yylex} to obey
8350the flag.
bfa74976 8351
342b8b6e 8352@node Tie-in Recovery
bfa74976
RS
8353@section Lexical Tie-ins and Error Recovery
8354
8355Lexical tie-ins make strict demands on any error recovery rules you have.
8356@xref{Error Recovery}.
8357
8358The reason for this is that the purpose of an error recovery rule is to
8359abort the parsing of one construct and resume in some larger construct.
8360For example, in C-like languages, a typical error recovery rule is to skip
8361tokens until the next semicolon, and then start a new statement, like this:
8362
8363@example
5e9b6624
AD
8364stmt:
8365 expr ';'
8366| IF '(' expr ')' stmt @{ @dots{} @}
8367@dots{}
8368| error ';' @{ hexflag = 0; @}
8369;
bfa74976
RS
8370@end example
8371
8372If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8373construct, this error rule will apply, and then the action for the
8374completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8375remain set for the entire rest of the input, or until the next @code{hex}
8376keyword, causing identifiers to be misinterpreted as integers.
8377
8378To avoid this problem the error recovery rule itself clears @code{hexflag}.
8379
8380There may also be an error recovery rule that works within expressions.
8381For example, there could be a rule which applies within parentheses
8382and skips to the close-parenthesis:
8383
8384@example
8385@group
5e9b6624
AD
8386expr:
8387 @dots{}
8388| '(' expr ')' @{ $$ = $2; @}
8389| '(' error ')'
8390@dots{}
bfa74976
RS
8391@end group
8392@end example
8393
8394If this rule acts within the @code{hex} construct, it is not going to abort
8395that construct (since it applies to an inner level of parentheses within
8396the construct). Therefore, it should not clear the flag: the rest of
8397the @code{hex} construct should be parsed with the flag still in effect.
8398
8399What if there is an error recovery rule which might abort out of the
8400@code{hex} construct or might not, depending on circumstances? There is no
8401way you can write the action to determine whether a @code{hex} construct is
8402being aborted or not. So if you are using a lexical tie-in, you had better
8403make sure your error recovery rules are not of this kind. Each rule must
8404be such that you can be sure that it always will, or always won't, have to
8405clear the flag.
8406
ec3bc396
AD
8407@c ================================================== Debugging Your Parser
8408
342b8b6e 8409@node Debugging
bfa74976 8410@chapter Debugging Your Parser
ec3bc396 8411
93c150b6
AD
8412Developing a parser can be a challenge, especially if you don't understand
8413the algorithm (@pxref{Algorithm, ,The Bison Parser Algorithm}). This
8414chapter explains how to generate and read the detailed description of the
8415automaton, and how to enable and understand the parser run-time traces.
ec3bc396
AD
8416
8417@menu
8418* Understanding:: Understanding the structure of your parser.
8419* Tracing:: Tracing the execution of your parser.
8420@end menu
8421
8422@node Understanding
8423@section Understanding Your Parser
8424
8425As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8426Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8427frequent than one would hope), looking at this automaton is required to
8428tune or simply fix a parser. Bison provides two different
35fe0834 8429representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
8430
8431The textual file is generated when the options @option{--report} or
e3fd1dcb 8432@option{--verbose} are specified, see @ref{Invocation, , Invoking
ec3bc396 8433Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
8434the parser implementation file name, and adding @samp{.output}
8435instead. Therefore, if the grammar file is @file{foo.y}, then the
8436parser implementation file is called @file{foo.tab.c} by default. As
8437a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8438
8439The following grammar file, @file{calc.y}, will be used in the sequel:
8440
8441@example
8442%token NUM STR
8443%left '+' '-'
8444%left '*'
8445%%
5e9b6624
AD
8446exp:
8447 exp '+' exp
8448| exp '-' exp
8449| exp '*' exp
8450| exp '/' exp
8451| NUM
8452;
ec3bc396
AD
8453useless: STR;
8454%%
8455@end example
8456
88bce5a2
AD
8457@command{bison} reports:
8458
8459@example
8f0d265e
JD
8460calc.y: warning: 1 nonterminal useless in grammar
8461calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
8462calc.y:11.1-7: warning: nonterminal useless in grammar: useless
8463calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8464calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8465@end example
8466
8467When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8468creates a file @file{calc.output} with contents detailed below. The
8469order of the output and the exact presentation might vary, but the
8470interpretation is the same.
ec3bc396 8471
ec3bc396
AD
8472@noindent
8473@cindex token, useless
8474@cindex useless token
8475@cindex nonterminal, useless
8476@cindex useless nonterminal
8477@cindex rule, useless
8478@cindex useless rule
62243aa5 8479The first section reports useless tokens, nonterminals and rules. Useless
29e20e22
AD
8480nonterminals and rules are removed in order to produce a smaller parser, but
8481useless tokens are preserved, since they might be used by the scanner (note
8482the difference between ``useless'' and ``unused'' below):
ec3bc396
AD
8483
8484@example
29e20e22 8485Nonterminals useless in grammar
ec3bc396
AD
8486 useless
8487
29e20e22 8488Terminals unused in grammar
ec3bc396
AD
8489 STR
8490
29e20e22
AD
8491Rules useless in grammar
8492 6 useless: STR
ec3bc396
AD
8493@end example
8494
8495@noindent
29e20e22
AD
8496The next section lists states that still have conflicts.
8497
8498@example
8499State 8 conflicts: 1 shift/reduce
8500State 9 conflicts: 1 shift/reduce
8501State 10 conflicts: 1 shift/reduce
8502State 11 conflicts: 4 shift/reduce
8503@end example
8504
8505@noindent
8506Then Bison reproduces the exact grammar it used:
ec3bc396
AD
8507
8508@example
8509Grammar
8510
29e20e22
AD
8511 0 $accept: exp $end
8512
8513 1 exp: exp '+' exp
8514 2 | exp '-' exp
8515 3 | exp '*' exp
8516 4 | exp '/' exp
8517 5 | NUM
ec3bc396
AD
8518@end example
8519
8520@noindent
8521and reports the uses of the symbols:
8522
8523@example
d4fca427 8524@group
ec3bc396
AD
8525Terminals, with rules where they appear
8526
88bce5a2 8527$end (0) 0
ec3bc396
AD
8528'*' (42) 3
8529'+' (43) 1
8530'-' (45) 2
8531'/' (47) 4
8532error (256)
8533NUM (258) 5
29e20e22 8534STR (259)
d4fca427 8535@end group
ec3bc396 8536
d4fca427 8537@group
ec3bc396
AD
8538Nonterminals, with rules where they appear
8539
29e20e22 8540$accept (9)
ec3bc396 8541 on left: 0
29e20e22 8542exp (10)
ec3bc396 8543 on left: 1 2 3 4 5, on right: 0 1 2 3 4
d4fca427 8544@end group
ec3bc396
AD
8545@end example
8546
8547@noindent
8548@cindex item
8549@cindex pointed rule
8550@cindex rule, pointed
8551Bison then proceeds onto the automaton itself, describing each state
35880c82
PE
8552with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
8553item is a production rule together with a point (@samp{.}) marking
8554the location of the input cursor.
ec3bc396
AD
8555
8556@example
8557state 0
8558
29e20e22 8559 0 $accept: . exp $end
ec3bc396 8560
29e20e22 8561 NUM shift, and go to state 1
ec3bc396 8562
29e20e22 8563 exp go to state 2
ec3bc396
AD
8564@end example
8565
8566This reads as follows: ``state 0 corresponds to being at the very
8567beginning of the parsing, in the initial rule, right before the start
8568symbol (here, @code{exp}). When the parser returns to this state right
8569after having reduced a rule that produced an @code{exp}, the control
8570flow jumps to state 2. If there is no such transition on a nonterminal
35880c82 8571symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 8572the parse stack, and the control flow jumps to state 1. Any other
742e4900 8573lookahead triggers a syntax error.''
ec3bc396
AD
8574
8575@cindex core, item set
8576@cindex item set core
8577@cindex kernel, item set
8578@cindex item set core
8579Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8580report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8581at the beginning of any rule deriving an @code{exp}. By default Bison
8582reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8583you want to see more detail you can invoke @command{bison} with
35880c82 8584@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
8585
8586@example
8587state 0
8588
29e20e22
AD
8589 0 $accept: . exp $end
8590 1 exp: . exp '+' exp
8591 2 | . exp '-' exp
8592 3 | . exp '*' exp
8593 4 | . exp '/' exp
8594 5 | . NUM
ec3bc396 8595
29e20e22 8596 NUM shift, and go to state 1
ec3bc396 8597
29e20e22 8598 exp go to state 2
ec3bc396
AD
8599@end example
8600
8601@noindent
29e20e22 8602In the state 1@dots{}
ec3bc396
AD
8603
8604@example
8605state 1
8606
29e20e22 8607 5 exp: NUM .
ec3bc396 8608
29e20e22 8609 $default reduce using rule 5 (exp)
ec3bc396
AD
8610@end example
8611
8612@noindent
742e4900 8613the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
8614(@samp{$default}), the parser will reduce it. If it was coming from
8615state 0, then, after this reduction it will return to state 0, and will
8616jump to state 2 (@samp{exp: go to state 2}).
8617
8618@example
8619state 2
8620
29e20e22
AD
8621 0 $accept: exp . $end
8622 1 exp: exp . '+' exp
8623 2 | exp . '-' exp
8624 3 | exp . '*' exp
8625 4 | exp . '/' exp
ec3bc396 8626
29e20e22
AD
8627 $end shift, and go to state 3
8628 '+' shift, and go to state 4
8629 '-' shift, and go to state 5
8630 '*' shift, and go to state 6
8631 '/' shift, and go to state 7
ec3bc396
AD
8632@end example
8633
8634@noindent
8635In state 2, the automaton can only shift a symbol. For instance,
29e20e22 8636because of the item @samp{exp: exp . '+' exp}, if the lookahead is
35880c82 8637@samp{+} it is shifted onto the parse stack, and the automaton
29e20e22 8638jumps to state 4, corresponding to the item @samp{exp: exp '+' . exp}.
35880c82
PE
8639Since there is no default action, any lookahead not listed triggers a syntax
8640error.
ec3bc396 8641
eb45ef3b 8642@cindex accepting state
ec3bc396
AD
8643The state 3 is named the @dfn{final state}, or the @dfn{accepting
8644state}:
8645
8646@example
8647state 3
8648
29e20e22 8649 0 $accept: exp $end .
ec3bc396 8650
29e20e22 8651 $default accept
ec3bc396
AD
8652@end example
8653
8654@noindent
29e20e22
AD
8655the initial rule is completed (the start symbol and the end-of-input were
8656read), the parsing exits successfully.
ec3bc396
AD
8657
8658The interpretation of states 4 to 7 is straightforward, and is left to
8659the reader.
8660
8661@example
8662state 4
8663
29e20e22 8664 1 exp: exp '+' . exp
ec3bc396 8665
29e20e22
AD
8666 NUM shift, and go to state 1
8667
8668 exp go to state 8
ec3bc396 8669
ec3bc396
AD
8670
8671state 5
8672
29e20e22
AD
8673 2 exp: exp '-' . exp
8674
8675 NUM shift, and go to state 1
ec3bc396 8676
29e20e22 8677 exp go to state 9
ec3bc396 8678
ec3bc396
AD
8679
8680state 6
8681
29e20e22 8682 3 exp: exp '*' . exp
ec3bc396 8683
29e20e22
AD
8684 NUM shift, and go to state 1
8685
8686 exp go to state 10
ec3bc396 8687
ec3bc396
AD
8688
8689state 7
8690
29e20e22 8691 4 exp: exp '/' . exp
ec3bc396 8692
29e20e22 8693 NUM shift, and go to state 1
ec3bc396 8694
29e20e22 8695 exp go to state 11
ec3bc396
AD
8696@end example
8697
5a99098d
PE
8698As was announced in beginning of the report, @samp{State 8 conflicts:
86991 shift/reduce}:
ec3bc396
AD
8700
8701@example
8702state 8
8703
29e20e22
AD
8704 1 exp: exp . '+' exp
8705 1 | exp '+' exp .
8706 2 | exp . '-' exp
8707 3 | exp . '*' exp
8708 4 | exp . '/' exp
ec3bc396 8709
29e20e22
AD
8710 '*' shift, and go to state 6
8711 '/' shift, and go to state 7
ec3bc396 8712
29e20e22
AD
8713 '/' [reduce using rule 1 (exp)]
8714 $default reduce using rule 1 (exp)
ec3bc396
AD
8715@end example
8716
742e4900 8717Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8718either shifting (and going to state 7), or reducing rule 1. The
8719conflict means that either the grammar is ambiguous, or the parser lacks
8720information to make the right decision. Indeed the grammar is
8721ambiguous, as, since we did not specify the precedence of @samp{/}, the
8722sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8723NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8724NUM}, which corresponds to reducing rule 1.
8725
eb45ef3b 8726Because in deterministic parsing a single decision can be made, Bison
ec3bc396 8727arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
29e20e22 8728Shift/Reduce Conflicts}. Discarded actions are reported between
ec3bc396
AD
8729square brackets.
8730
8731Note that all the previous states had a single possible action: either
8732shifting the next token and going to the corresponding state, or
8733reducing a single rule. In the other cases, i.e., when shifting
8734@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8735possible, the lookahead is required to select the action. State 8 is
8736one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8737is shifting, otherwise the action is reducing rule 1. In other words,
8738the first two items, corresponding to rule 1, are not eligible when the
742e4900 8739lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8740precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8741with some set of possible lookahead tokens. When run with
8742@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8743
8744@example
8745state 8
8746
29e20e22
AD
8747 1 exp: exp . '+' exp
8748 1 | exp '+' exp . [$end, '+', '-', '/']
8749 2 | exp . '-' exp
8750 3 | exp . '*' exp
8751 4 | exp . '/' exp
8752
8753 '*' shift, and go to state 6
8754 '/' shift, and go to state 7
ec3bc396 8755
29e20e22
AD
8756 '/' [reduce using rule 1 (exp)]
8757 $default reduce using rule 1 (exp)
8758@end example
8759
8760Note however that while @samp{NUM + NUM / NUM} is ambiguous (which results in
8761the conflicts on @samp{/}), @samp{NUM + NUM * NUM} is not: the conflict was
8762solved thanks to associativity and precedence directives. If invoked with
8763@option{--report=solved}, Bison includes information about the solved
8764conflicts in the report:
ec3bc396 8765
29e20e22
AD
8766@example
8767Conflict between rule 1 and token '+' resolved as reduce (%left '+').
8768Conflict between rule 1 and token '-' resolved as reduce (%left '-').
8769Conflict between rule 1 and token '*' resolved as shift ('+' < '*').
ec3bc396
AD
8770@end example
8771
29e20e22 8772
ec3bc396
AD
8773The remaining states are similar:
8774
8775@example
d4fca427 8776@group
ec3bc396
AD
8777state 9
8778
29e20e22
AD
8779 1 exp: exp . '+' exp
8780 2 | exp . '-' exp
8781 2 | exp '-' exp .
8782 3 | exp . '*' exp
8783 4 | exp . '/' exp
ec3bc396 8784
29e20e22
AD
8785 '*' shift, and go to state 6
8786 '/' shift, and go to state 7
ec3bc396 8787
29e20e22
AD
8788 '/' [reduce using rule 2 (exp)]
8789 $default reduce using rule 2 (exp)
d4fca427 8790@end group
ec3bc396 8791
d4fca427 8792@group
ec3bc396
AD
8793state 10
8794
29e20e22
AD
8795 1 exp: exp . '+' exp
8796 2 | exp . '-' exp
8797 3 | exp . '*' exp
8798 3 | exp '*' exp .
8799 4 | exp . '/' exp
ec3bc396 8800
29e20e22 8801 '/' shift, and go to state 7
ec3bc396 8802
29e20e22
AD
8803 '/' [reduce using rule 3 (exp)]
8804 $default reduce using rule 3 (exp)
d4fca427 8805@end group
ec3bc396 8806
d4fca427 8807@group
ec3bc396
AD
8808state 11
8809
29e20e22
AD
8810 1 exp: exp . '+' exp
8811 2 | exp . '-' exp
8812 3 | exp . '*' exp
8813 4 | exp . '/' exp
8814 4 | exp '/' exp .
8815
8816 '+' shift, and go to state 4
8817 '-' shift, and go to state 5
8818 '*' shift, and go to state 6
8819 '/' shift, and go to state 7
8820
8821 '+' [reduce using rule 4 (exp)]
8822 '-' [reduce using rule 4 (exp)]
8823 '*' [reduce using rule 4 (exp)]
8824 '/' [reduce using rule 4 (exp)]
8825 $default reduce using rule 4 (exp)
d4fca427 8826@end group
ec3bc396
AD
8827@end example
8828
8829@noindent
fa7e68c3
PE
8830Observe that state 11 contains conflicts not only due to the lack of
8831precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8832@samp{*}, but also because the
ec3bc396
AD
8833associativity of @samp{/} is not specified.
8834
8835
8836@node Tracing
8837@section Tracing Your Parser
bfa74976
RS
8838@findex yydebug
8839@cindex debugging
8840@cindex tracing the parser
8841
93c150b6
AD
8842When a Bison grammar compiles properly but parses ``incorrectly'', the
8843@code{yydebug} parser-trace feature helps figuring out why.
8844
8845@menu
8846* Enabling Traces:: Activating run-time trace support
8847* Mfcalc Traces:: Extending @code{mfcalc} to support traces
8848* The YYPRINT Macro:: Obsolete interface for semantic value reports
8849@end menu
bfa74976 8850
93c150b6
AD
8851@node Enabling Traces
8852@subsection Enabling Traces
3ded9a63
AD
8853There are several means to enable compilation of trace facilities:
8854
8855@table @asis
8856@item the macro @code{YYDEBUG}
8857@findex YYDEBUG
8858Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 8859parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8860@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8861YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8862Prologue}).
8863
e6ae99fe 8864If the @code{%define} variable @code{api.prefix} is used (@pxref{Multiple
e358222b
AD
8865Parsers, ,Multiple Parsers in the Same Program}), for instance @samp{%define
8866api.prefix x}, then if @code{CDEBUG} is defined, its value controls the
5a05f42e
AD
8867tracing feature (enabled if and only if nonzero); otherwise tracing is
8868enabled if and only if @code{YYDEBUG} is nonzero.
e358222b
AD
8869
8870@item the option @option{-t} (POSIX Yacc compliant)
8871@itemx the option @option{--debug} (Bison extension)
8872Use the @samp{-t} option when you run Bison (@pxref{Invocation, ,Invoking
8873Bison}). With @samp{%define api.prefix c}, it defines @code{CDEBUG} to 1,
8874otherwise it defines @code{YYDEBUG} to 1.
3ded9a63
AD
8875
8876@item the directive @samp{%debug}
8877@findex %debug
fa819509
AD
8878Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
8879Summary}). This Bison extension is maintained for backward
8880compatibility with previous versions of Bison.
8881
8882@item the variable @samp{parse.trace}
8883@findex %define parse.trace
35c1e5f0
JD
8884Add the @samp{%define parse.trace} directive (@pxref{%define
8885Summary,,parse.trace}), or pass the @option{-Dparse.trace} option
fa819509 8886(@pxref{Bison Options}). This is a Bison extension, which is especially
35c1e5f0
JD
8887useful for languages that don't use a preprocessor. Unless POSIX and Yacc
8888portability matter to you, this is the preferred solution.
3ded9a63
AD
8889@end table
8890
fa819509 8891We suggest that you always enable the trace option so that debugging is
3ded9a63 8892always possible.
bfa74976 8893
93c150b6 8894@findex YYFPRINTF
02a81e05 8895The trace facility outputs messages with macro calls of the form
e2742e46 8896@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8897@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8898arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8899define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8900and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8901
8902Once you have compiled the program with trace facilities, the way to
8903request a trace is to store a nonzero value in the variable @code{yydebug}.
8904You can do this by making the C code do it (in @code{main}, perhaps), or
8905you can alter the value with a C debugger.
8906
8907Each step taken by the parser when @code{yydebug} is nonzero produces a
8908line or two of trace information, written on @code{stderr}. The trace
8909messages tell you these things:
8910
8911@itemize @bullet
8912@item
8913Each time the parser calls @code{yylex}, what kind of token was read.
8914
8915@item
8916Each time a token is shifted, the depth and complete contents of the
8917state stack (@pxref{Parser States}).
8918
8919@item
8920Each time a rule is reduced, which rule it is, and the complete contents
8921of the state stack afterward.
8922@end itemize
8923
93c150b6
AD
8924To make sense of this information, it helps to refer to the automaton
8925description file (@pxref{Understanding, ,Understanding Your Parser}).
8926This file shows the meaning of each state in terms of
704a47c4
AD
8927positions in various rules, and also what each state will do with each
8928possible input token. As you read the successive trace messages, you
8929can see that the parser is functioning according to its specification in
8930the listing file. Eventually you will arrive at the place where
8931something undesirable happens, and you will see which parts of the
8932grammar are to blame.
bfa74976 8933
93c150b6 8934The parser implementation file is a C/C++/Java program and you can use
ff7571c0
JD
8935debuggers on it, but it's not easy to interpret what it is doing. The
8936parser function is a finite-state machine interpreter, and aside from
8937the actions it executes the same code over and over. Only the values
8938of variables show where in the grammar it is working.
bfa74976 8939
93c150b6
AD
8940@node Mfcalc Traces
8941@subsection Enabling Debug Traces for @code{mfcalc}
8942
8943The debugging information normally gives the token type of each token read,
8944but not its semantic value. The @code{%printer} directive allows specify
8945how semantic values are reported, see @ref{Printer Decl, , Printing
8946Semantic Values}. For backward compatibility, Yacc like C parsers may also
8947use the @code{YYPRINT} (@pxref{The YYPRINT Macro, , The @code{YYPRINT}
8948Macro}), but its use is discouraged.
8949
8950As a demonstration of @code{%printer}, consider the multi-function
8951calculator, @code{mfcalc} (@pxref{Multi-function Calc}). To enable run-time
8952traces, and semantic value reports, insert the following directives in its
8953prologue:
8954
8955@comment file: mfcalc.y: 2
8956@example
8957/* Generate the parser description file. */
8958%verbose
8959/* Enable run-time traces (yydebug). */
8960%define parse.trace
8961
8962/* Formatting semantic values. */
8963%printer @{ fprintf (yyoutput, "%s", $$->name); @} VAR;
8964%printer @{ fprintf (yyoutput, "%s()", $$->name); @} FNCT;
8965%printer @{ fprintf (yyoutput, "%g", $$); @} <val>;
8966@end example
8967
8968The @code{%define} directive instructs Bison to generate run-time trace
8969support. Then, activation of these traces is controlled at run-time by the
8970@code{yydebug} variable, which is disabled by default. Because these traces
8971will refer to the ``states'' of the parser, it is helpful to ask for the
8972creation of a description of that parser; this is the purpose of (admittedly
8973ill-named) @code{%verbose} directive.
8974
8975The set of @code{%printer} directives demonstrates how to format the
8976semantic value in the traces. Note that the specification can be done
8977either on the symbol type (e.g., @code{VAR} or @code{FNCT}), or on the type
8978tag: since @code{<val>} is the type for both @code{NUM} and @code{exp}, this
8979printer will be used for them.
8980
8981Here is a sample of the information provided by run-time traces. The traces
8982are sent onto standard error.
8983
8984@example
8985$ @kbd{echo 'sin(1-1)' | ./mfcalc -p}
8986Starting parse
8987Entering state 0
8988Reducing stack by rule 1 (line 34):
8989-> $$ = nterm input ()
8990Stack now 0
8991Entering state 1
8992@end example
8993
8994@noindent
8995This first batch shows a specific feature of this grammar: the first rule
8996(which is in line 34 of @file{mfcalc.y} can be reduced without even having
8997to look for the first token. The resulting left-hand symbol (@code{$$}) is
8998a valueless (@samp{()}) @code{input} non terminal (@code{nterm}).
8999
9000Then the parser calls the scanner.
9001@example
9002Reading a token: Next token is token FNCT (sin())
9003Shifting token FNCT (sin())
9004Entering state 6
9005@end example
9006
9007@noindent
9008That token (@code{token}) is a function (@code{FNCT}) whose value is
9009@samp{sin} as formatted per our @code{%printer} specification: @samp{sin()}.
9010The parser stores (@code{Shifting}) that token, and others, until it can do
9011something about it.
9012
9013@example
9014Reading a token: Next token is token '(' ()
9015Shifting token '(' ()
9016Entering state 14
9017Reading a token: Next token is token NUM (1.000000)
9018Shifting token NUM (1.000000)
9019Entering state 4
9020Reducing stack by rule 6 (line 44):
9021 $1 = token NUM (1.000000)
9022-> $$ = nterm exp (1.000000)
9023Stack now 0 1 6 14
9024Entering state 24
9025@end example
9026
9027@noindent
9028The previous reduction demonstrates the @code{%printer} directive for
9029@code{<val>}: both the token @code{NUM} and the resulting non-terminal
9030@code{exp} have @samp{1} as value.
9031
9032@example
9033Reading a token: Next token is token '-' ()
9034Shifting token '-' ()
9035Entering state 17
9036Reading a token: Next token is token NUM (1.000000)
9037Shifting token NUM (1.000000)
9038Entering state 4
9039Reducing stack by rule 6 (line 44):
9040 $1 = token NUM (1.000000)
9041-> $$ = nterm exp (1.000000)
9042Stack now 0 1 6 14 24 17
9043Entering state 26
9044Reading a token: Next token is token ')' ()
9045Reducing stack by rule 11 (line 49):
9046 $1 = nterm exp (1.000000)
9047 $2 = token '-' ()
9048 $3 = nterm exp (1.000000)
9049-> $$ = nterm exp (0.000000)
9050Stack now 0 1 6 14
9051Entering state 24
9052@end example
9053
9054@noindent
9055The rule for the subtraction was just reduced. The parser is about to
9056discover the end of the call to @code{sin}.
9057
9058@example
9059Next token is token ')' ()
9060Shifting token ')' ()
9061Entering state 31
9062Reducing stack by rule 9 (line 47):
9063 $1 = token FNCT (sin())
9064 $2 = token '(' ()
9065 $3 = nterm exp (0.000000)
9066 $4 = token ')' ()
9067-> $$ = nterm exp (0.000000)
9068Stack now 0 1
9069Entering state 11
9070@end example
9071
9072@noindent
9073Finally, the end-of-line allow the parser to complete the computation, and
9074display its result.
9075
9076@example
9077Reading a token: Next token is token '\n' ()
9078Shifting token '\n' ()
9079Entering state 22
9080Reducing stack by rule 4 (line 40):
9081 $1 = nterm exp (0.000000)
9082 $2 = token '\n' ()
9083@result{} 0
9084-> $$ = nterm line ()
9085Stack now 0 1
9086Entering state 10
9087Reducing stack by rule 2 (line 35):
9088 $1 = nterm input ()
9089 $2 = nterm line ()
9090-> $$ = nterm input ()
9091Stack now 0
9092Entering state 1
9093@end example
9094
9095The parser has returned into state 1, in which it is waiting for the next
9096expression to evaluate, or for the end-of-file token, which causes the
9097completion of the parsing.
9098
9099@example
9100Reading a token: Now at end of input.
9101Shifting token $end ()
9102Entering state 2
9103Stack now 0 1 2
9104Cleanup: popping token $end ()
9105Cleanup: popping nterm input ()
9106@end example
9107
9108
9109@node The YYPRINT Macro
9110@subsection The @code{YYPRINT} Macro
9111
bfa74976 9112@findex YYPRINT
93c150b6
AD
9113Before @code{%printer} support, semantic values could be displayed using the
9114@code{YYPRINT} macro, which works only for terminal symbols and only with
9115the @file{yacc.c} skeleton.
9116
9117@deffn {Macro} YYPRINT (@var{stream}, @var{token}, @var{value});
9118@findex YYPRINT
9119If you define @code{YYPRINT}, it should take three arguments. The parser
9120will pass a standard I/O stream, the numeric code for the token type, and
9121the token value (from @code{yylval}).
9122
9123For @file{yacc.c} only. Obsoleted by @code{%printer}.
9124@end deffn
bfa74976
RS
9125
9126Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 9127calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976 9128
c93f22fc 9129@example
38a92d50
PE
9130%@{
9131 static void print_token_value (FILE *, int, YYSTYPE);
93c150b6
AD
9132 #define YYPRINT(File, Type, Value) \
9133 print_token_value (File, Type, Value)
38a92d50
PE
9134%@}
9135
9136@dots{} %% @dots{} %% @dots{}
bfa74976
RS
9137
9138static void
831d3c99 9139print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
9140@{
9141 if (type == VAR)
d3c4e709 9142 fprintf (file, "%s", value.tptr->name);
bfa74976 9143 else if (type == NUM)
d3c4e709 9144 fprintf (file, "%d", value.val);
bfa74976 9145@}
c93f22fc 9146@end example
bfa74976 9147
ec3bc396
AD
9148@c ================================================= Invoking Bison
9149
342b8b6e 9150@node Invocation
bfa74976
RS
9151@chapter Invoking Bison
9152@cindex invoking Bison
9153@cindex Bison invocation
9154@cindex options for invoking Bison
9155
9156The usual way to invoke Bison is as follows:
9157
9158@example
9159bison @var{infile}
9160@end example
9161
9162Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
9163@samp{.y}. The parser implementation file's name is made by replacing
9164the @samp{.y} with @samp{.tab.c} and removing any leading directory.
9165Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
9166the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
9167also possible, in case you are writing C++ code instead of C in your
9168grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
9169output files will take an extension like the given one as input
9170(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
9171feature takes effect with all options that manipulate file names like
234a3be3
AD
9172@samp{-o} or @samp{-d}.
9173
9174For example :
9175
9176@example
9177bison -d @var{infile.yxx}
9178@end example
84163231 9179@noindent
72d2299c 9180will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
9181
9182@example
b56471a6 9183bison -d -o @var{output.c++} @var{infile.y}
234a3be3 9184@end example
84163231 9185@noindent
234a3be3
AD
9186will produce @file{output.c++} and @file{outfile.h++}.
9187
8a4281b9 9188For compatibility with POSIX, the standard Bison
397ec073
PE
9189distribution also contains a shell script called @command{yacc} that
9190invokes Bison with the @option{-y} option.
9191
bfa74976 9192@menu
13863333 9193* Bison Options:: All the options described in detail,
c827f760 9194 in alphabetical order by short options.
bfa74976 9195* Option Cross Key:: Alphabetical list of long options.
93dd49ab 9196* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
9197@end menu
9198
342b8b6e 9199@node Bison Options
bfa74976
RS
9200@section Bison Options
9201
9202Bison supports both traditional single-letter options and mnemonic long
9203option names. Long option names are indicated with @samp{--} instead of
9204@samp{-}. Abbreviations for option names are allowed as long as they
9205are unique. When a long option takes an argument, like
9206@samp{--file-prefix}, connect the option name and the argument with
9207@samp{=}.
9208
9209Here is a list of options that can be used with Bison, alphabetized by
9210short option. It is followed by a cross key alphabetized by long
9211option.
9212
89cab50d
AD
9213@c Please, keep this ordered as in `bison --help'.
9214@noindent
9215Operations modes:
9216@table @option
9217@item -h
9218@itemx --help
9219Print a summary of the command-line options to Bison and exit.
bfa74976 9220
89cab50d
AD
9221@item -V
9222@itemx --version
9223Print the version number of Bison and exit.
bfa74976 9224
f7ab6a50
PE
9225@item --print-localedir
9226Print the name of the directory containing locale-dependent data.
9227
a0de5091
JD
9228@item --print-datadir
9229Print the name of the directory containing skeletons and XSLT.
9230
89cab50d
AD
9231@item -y
9232@itemx --yacc
ff7571c0
JD
9233Act more like the traditional Yacc command. This can cause different
9234diagnostics to be generated, and may change behavior in other minor
9235ways. Most importantly, imitate Yacc's output file name conventions,
9236so that the parser implementation file is called @file{y.tab.c}, and
9237the other outputs are called @file{y.output} and @file{y.tab.h}.
9238Also, if generating a deterministic parser in C, generate
9239@code{#define} statements in addition to an @code{enum} to associate
9240token numbers with token names. Thus, the following shell script can
9241substitute for Yacc, and the Bison distribution contains such a script
9242for compatibility with POSIX:
bfa74976 9243
89cab50d 9244@example
397ec073 9245#! /bin/sh
26e06a21 9246bison -y "$@@"
89cab50d 9247@end example
54662697
PE
9248
9249The @option{-y}/@option{--yacc} option is intended for use with
9250traditional Yacc grammars. If your grammar uses a Bison extension
9251like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
9252this option is specified.
9253
1d5b3c08
JD
9254@item -W [@var{category}]
9255@itemx --warnings[=@var{category}]
118d4978
AD
9256Output warnings falling in @var{category}. @var{category} can be one
9257of:
9258@table @code
9259@item midrule-values
8e55b3aa
JD
9260Warn about mid-rule values that are set but not used within any of the actions
9261of the parent rule.
9262For example, warn about unused @code{$2} in:
118d4978
AD
9263
9264@example
9265exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
9266@end example
9267
8e55b3aa
JD
9268Also warn about mid-rule values that are used but not set.
9269For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
9270
9271@example
5e9b6624 9272exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
118d4978
AD
9273@end example
9274
9275These warnings are not enabled by default since they sometimes prove to
9276be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 9277@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 9278
118d4978 9279@item yacc
8a4281b9 9280Incompatibilities with POSIX Yacc.
118d4978 9281
786743d5
JD
9282@item conflicts-sr
9283@itemx conflicts-rr
9284S/R and R/R conflicts. These warnings are enabled by default. However, if
9285the @code{%expect} or @code{%expect-rr} directive is specified, an
9286unexpected number of conflicts is an error, and an expected number of
9287conflicts is not reported, so @option{-W} and @option{--warning} then have
9288no effect on the conflict report.
9289
518e8830
AD
9290@item deprecated
9291Deprecated constructs whose support will be removed in future versions of
9292Bison.
9293
c39014ae
JD
9294@item other
9295All warnings not categorized above. These warnings are enabled by default.
9296
9297This category is provided merely for the sake of completeness. Future
9298releases of Bison may move warnings from this category to new, more specific
9299categories.
9300
118d4978 9301@item all
8e55b3aa 9302All the warnings.
118d4978 9303@item none
8e55b3aa 9304Turn off all the warnings.
118d4978 9305@item error
1048a1c9 9306See @option{-Werror}, below.
118d4978
AD
9307@end table
9308
9309A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 9310instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 9311POSIX Yacc incompatibilities.
1048a1c9
AD
9312
9313@item -Werror[=@var{category}]
9314@itemx -Wno-error[=@var{category}]
9315Enable warnings falling in @var{category}, and treat them as errors. If no
9316@var{category} is given, it defaults to making all enabled warnings into errors.
9317
9318@var{category} is the same as for @option{--warnings}, with the exception that
9319it may not be prefixed with @samp{no-} (see above).
9320
9321Prefixed with @samp{no}, it deactivates the error treatment for this
9322@var{category}. However, the warning itself won't be disabled, or enabled, by
9323this option.
9324
9325Note that the precedence of the @samp{=} and @samp{,} operators is such that
9326the following commands are @emph{not} equivalent, as the first will not treat
9327S/R conflicts as errors.
9328
9329@example
9330$ bison -Werror=yacc,conflicts-sr input.y
9331$ bison -Werror=yacc,error=conflicts-sr input.y
9332@end example
89cab50d
AD
9333@end table
9334
9335@noindent
9336Tuning the parser:
9337
9338@table @option
9339@item -t
9340@itemx --debug
ff7571c0
JD
9341In the parser implementation file, define the macro @code{YYDEBUG} to
93421 if it is not already defined, so that the debugging facilities are
9343compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 9344
58697c6d
AD
9345@item -D @var{name}[=@var{value}]
9346@itemx --define=@var{name}[=@var{value}]
17aed602 9347@itemx -F @var{name}[=@var{value}]
de5ab940
JD
9348@itemx --force-define=@var{name}[=@var{value}]
9349Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
35c1e5f0 9350(@pxref{%define Summary}) except that Bison processes multiple
de5ab940
JD
9351definitions for the same @var{name} as follows:
9352
9353@itemize
9354@item
0b6d43c5
JD
9355Bison quietly ignores all command-line definitions for @var{name} except
9356the last.
de5ab940 9357@item
0b6d43c5
JD
9358If that command-line definition is specified by a @code{-D} or
9359@code{--define}, Bison reports an error for any @code{%define}
9360definition for @var{name}.
de5ab940 9361@item
0b6d43c5
JD
9362If that command-line definition is specified by a @code{-F} or
9363@code{--force-define} instead, Bison quietly ignores all @code{%define}
9364definitions for @var{name}.
9365@item
9366Otherwise, Bison reports an error if there are multiple @code{%define}
9367definitions for @var{name}.
de5ab940
JD
9368@end itemize
9369
9370You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
9371make files unless you are confident that it is safe to quietly ignore
9372any conflicting @code{%define} that may be added to the grammar file.
58697c6d 9373
0e021770
PE
9374@item -L @var{language}
9375@itemx --language=@var{language}
9376Specify the programming language for the generated parser, as if
9377@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 9378Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 9379@var{language} is case-insensitive.
0e021770 9380
ed4d67dc
JD
9381This option is experimental and its effect may be modified in future
9382releases.
9383
89cab50d 9384@item --locations
d8988b2f 9385Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
9386
9387@item -p @var{prefix}
9388@itemx --name-prefix=@var{prefix}
4b3847c3
AD
9389Pretend that @code{%name-prefix "@var{prefix}"} was specified (@pxref{Decl
9390Summary}). Obsoleted by @code{-Dapi.prefix=@var{prefix}}. @xref{Multiple
9391Parsers, ,Multiple Parsers in the Same Program}.
bfa74976
RS
9392
9393@item -l
9394@itemx --no-lines
ff7571c0
JD
9395Don't put any @code{#line} preprocessor commands in the parser
9396implementation file. Ordinarily Bison puts them in the parser
9397implementation file so that the C compiler and debuggers will
9398associate errors with your source file, the grammar file. This option
9399causes them to associate errors with the parser implementation file,
9400treating it as an independent source file in its own right.
bfa74976 9401
e6e704dc
JD
9402@item -S @var{file}
9403@itemx --skeleton=@var{file}
a7867f53 9404Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
9405(@pxref{Decl Summary, , Bison Declaration Summary}).
9406
ed4d67dc
JD
9407@c You probably don't need this option unless you are developing Bison.
9408@c You should use @option{--language} if you want to specify the skeleton for a
9409@c different language, because it is clearer and because it will always
9410@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 9411
a7867f53
JD
9412If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
9413file in the Bison installation directory.
9414If it does, @var{file} is an absolute file name or a file name relative to the
9415current working directory.
9416This is similar to how most shells resolve commands.
9417
89cab50d
AD
9418@item -k
9419@itemx --token-table
d8988b2f 9420Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 9421@end table
bfa74976 9422
89cab50d
AD
9423@noindent
9424Adjust the output:
bfa74976 9425
89cab50d 9426@table @option
8e55b3aa 9427@item --defines[=@var{file}]
d8988b2f 9428Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 9429file containing macro definitions for the token type names defined in
4bfd5e4e 9430the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 9431
8e55b3aa
JD
9432@item -d
9433This is the same as @code{--defines} except @code{-d} does not accept a
9434@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
9435with other short options.
342b8b6e 9436
89cab50d
AD
9437@item -b @var{file-prefix}
9438@itemx --file-prefix=@var{prefix}
9c437126 9439Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 9440for all Bison output file names. @xref{Decl Summary}.
bfa74976 9441
ec3bc396
AD
9442@item -r @var{things}
9443@itemx --report=@var{things}
9444Write an extra output file containing verbose description of the comma
9445separated list of @var{things} among:
9446
9447@table @code
9448@item state
9449Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 9450parser's automaton.
ec3bc396 9451
57f8bd8d
AD
9452@item itemset
9453Implies @code{state} and augments the description of the automaton with
9454the full set of items for each state, instead of its core only.
9455
742e4900 9456@item lookahead
ec3bc396 9457Implies @code{state} and augments the description of the automaton with
742e4900 9458each rule's lookahead set.
ec3bc396 9459
57f8bd8d
AD
9460@item solved
9461Implies @code{state}. Explain how conflicts were solved thanks to
9462precedence and associativity directives.
9463
9464@item all
9465Enable all the items.
9466
9467@item none
9468Do not generate the report.
ec3bc396
AD
9469@end table
9470
1bb2bd75
JD
9471@item --report-file=@var{file}
9472Specify the @var{file} for the verbose description.
9473
bfa74976
RS
9474@item -v
9475@itemx --verbose
9c437126 9476Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 9477file containing verbose descriptions of the grammar and
72d2299c 9478parser. @xref{Decl Summary}.
bfa74976 9479
fa4d969f
PE
9480@item -o @var{file}
9481@itemx --output=@var{file}
ff7571c0 9482Specify the @var{file} for the parser implementation file.
bfa74976 9483
fa4d969f 9484The other output files' names are constructed from @var{file} as
d8988b2f 9485described under the @samp{-v} and @samp{-d} options.
342b8b6e 9486
a7c09cba 9487@item -g [@var{file}]
8e55b3aa 9488@itemx --graph[=@var{file}]
eb45ef3b 9489Output a graphical representation of the parser's
35fe0834 9490automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 9491@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
9492@code{@var{file}} is optional.
9493If omitted and the grammar file is @file{foo.y}, the output file will be
9494@file{foo.dot}.
59da312b 9495
a7c09cba 9496@item -x [@var{file}]
8e55b3aa 9497@itemx --xml[=@var{file}]
eb45ef3b 9498Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 9499@code{@var{file}} is optional.
59da312b
JD
9500If omitted and the grammar file is @file{foo.y}, the output file will be
9501@file{foo.xml}.
9502(The current XML schema is experimental and may evolve.
9503More user feedback will help to stabilize it.)
bfa74976
RS
9504@end table
9505
342b8b6e 9506@node Option Cross Key
bfa74976
RS
9507@section Option Cross Key
9508
9509Here is a list of options, alphabetized by long option, to help you find
de5ab940 9510the corresponding short option and directive.
bfa74976 9511
de5ab940 9512@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 9513@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 9514@include cross-options.texi
aa08666d 9515@end multitable
bfa74976 9516
93dd49ab
PE
9517@node Yacc Library
9518@section Yacc Library
9519
9520The Yacc library contains default implementations of the
9521@code{yyerror} and @code{main} functions. These default
8a4281b9 9522implementations are normally not useful, but POSIX requires
93dd49ab
PE
9523them. To use the Yacc library, link your program with the
9524@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 9525library is distributed under the terms of the GNU General
93dd49ab
PE
9526Public License (@pxref{Copying}).
9527
9528If you use the Yacc library's @code{yyerror} function, you should
9529declare @code{yyerror} as follows:
9530
9531@example
9532int yyerror (char const *);
9533@end example
9534
9535Bison ignores the @code{int} value returned by this @code{yyerror}.
9536If you use the Yacc library's @code{main} function, your
9537@code{yyparse} function should have the following type signature:
9538
9539@example
9540int yyparse (void);
9541@end example
9542
12545799
AD
9543@c ================================================= C++ Bison
9544
8405b70c
PB
9545@node Other Languages
9546@chapter Parsers Written In Other Languages
12545799
AD
9547
9548@menu
9549* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 9550* Java Parsers:: The interface to generate Java parser classes
12545799
AD
9551@end menu
9552
9553@node C++ Parsers
9554@section C++ Parsers
9555
9556@menu
9557* C++ Bison Interface:: Asking for C++ parser generation
9558* C++ Semantic Values:: %union vs. C++
9559* C++ Location Values:: The position and location classes
9560* C++ Parser Interface:: Instantiating and running the parser
9561* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 9562* A Complete C++ Example:: Demonstrating their use
12545799
AD
9563@end menu
9564
9565@node C++ Bison Interface
9566@subsection C++ Bison Interface
ed4d67dc 9567@c - %skeleton "lalr1.cc"
12545799
AD
9568@c - Always pure
9569@c - initial action
9570
eb45ef3b 9571The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
9572@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
9573@option{--skeleton=lalr1.cc}.
e6e704dc 9574@xref{Decl Summary}.
0e021770 9575
793fbca5
JD
9576When run, @command{bison} will create several entities in the @samp{yy}
9577namespace.
67501061 9578@findex %define api.namespace
35c1e5f0
JD
9579Use the @samp{%define api.namespace} directive to change the namespace name,
9580see @ref{%define Summary,,api.namespace}. The various classes are generated
9581in the following files:
aa08666d 9582
12545799
AD
9583@table @file
9584@item position.hh
9585@itemx location.hh
db8ab2be 9586The definition of the classes @code{position} and @code{location}, used for
f6b561d9
AD
9587location tracking when enabled. These files are not generated if the
9588@code{%define} variable @code{api.location.type} is defined. @xref{C++
9589Location Values}.
12545799
AD
9590
9591@item stack.hh
9592An auxiliary class @code{stack} used by the parser.
9593
fa4d969f
PE
9594@item @var{file}.hh
9595@itemx @var{file}.cc
ff7571c0 9596(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
9597declaration and implementation of the C++ parser class. The basename
9598and extension of these two files follow the same rules as with regular C
9599parsers (@pxref{Invocation}).
12545799 9600
cd8b5791
AD
9601The header is @emph{mandatory}; you must either pass
9602@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
9603@samp{%defines} directive.
9604@end table
9605
9606All these files are documented using Doxygen; run @command{doxygen}
9607for a complete and accurate documentation.
9608
9609@node C++ Semantic Values
9610@subsection C++ Semantic Values
9611@c - No objects in unions
178e123e 9612@c - YYSTYPE
12545799
AD
9613@c - Printer and destructor
9614
3cdc21cf
AD
9615Bison supports two different means to handle semantic values in C++. One is
9616alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
9617practitioners know, unions are inconvenient in C++, therefore another
9618approach is provided, based on variants (@pxref{C++ Variants}).
9619
9620@menu
9621* C++ Unions:: Semantic values cannot be objects
9622* C++ Variants:: Using objects as semantic values
9623@end menu
9624
9625@node C++ Unions
9626@subsubsection C++ Unions
9627
12545799
AD
9628The @code{%union} directive works as for C, see @ref{Union Decl, ,The
9629Collection of Value Types}. In particular it produces a genuine
3cdc21cf 9630@code{union}, which have a few specific features in C++.
12545799
AD
9631@itemize @minus
9632@item
fb9712a9
AD
9633The type @code{YYSTYPE} is defined but its use is discouraged: rather
9634you should refer to the parser's encapsulated type
9635@code{yy::parser::semantic_type}.
12545799
AD
9636@item
9637Non POD (Plain Old Data) types cannot be used. C++ forbids any
9638instance of classes with constructors in unions: only @emph{pointers}
9639to such objects are allowed.
9640@end itemize
9641
9642Because objects have to be stored via pointers, memory is not
9643reclaimed automatically: using the @code{%destructor} directive is the
9644only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
9645Symbols}.
9646
3cdc21cf
AD
9647@node C++ Variants
9648@subsubsection C++ Variants
9649
9650Starting with version 2.6, Bison provides a @emph{variant} based
9651implementation of semantic values for C++. This alleviates all the
9652limitations reported in the previous section, and in particular, object
9653types can be used without pointers.
9654
9655To enable variant-based semantic values, set @code{%define} variable
35c1e5f0 9656@code{variant} (@pxref{%define Summary,, variant}). Once this defined,
3cdc21cf
AD
9657@code{%union} is ignored, and instead of using the name of the fields of the
9658@code{%union} to ``type'' the symbols, use genuine types.
9659
9660For instance, instead of
9661
9662@example
9663%union
9664@{
9665 int ival;
9666 std::string* sval;
9667@}
9668%token <ival> NUMBER;
9669%token <sval> STRING;
9670@end example
9671
9672@noindent
9673write
9674
9675@example
9676%token <int> NUMBER;
9677%token <std::string> STRING;
9678@end example
9679
9680@code{STRING} is no longer a pointer, which should fairly simplify the user
9681actions in the grammar and in the scanner (in particular the memory
9682management).
9683
9684Since C++ features destructors, and since it is customary to specialize
9685@code{operator<<} to support uniform printing of values, variants also
9686typically simplify Bison printers and destructors.
9687
9688Variants are stricter than unions. When based on unions, you may play any
9689dirty game with @code{yylval}, say storing an @code{int}, reading a
9690@code{char*}, and then storing a @code{double} in it. This is no longer
9691possible with variants: they must be initialized, then assigned to, and
9692eventually, destroyed.
9693
9694@deftypemethod {semantic_type} {T&} build<T> ()
9695Initialize, but leave empty. Returns the address where the actual value may
9696be stored. Requires that the variant was not initialized yet.
9697@end deftypemethod
9698
9699@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
9700Initialize, and copy-construct from @var{t}.
9701@end deftypemethod
9702
9703
9704@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
9705appeared unacceptable to require Boost on the user's machine (i.e., the
9706machine on which the generated parser will be compiled, not the machine on
9707which @command{bison} was run). Second, for each possible semantic value,
9708Boost.Variant not only stores the value, but also a tag specifying its
9709type. But the parser already ``knows'' the type of the semantic value, so
9710that would be duplicating the information.
9711
9712Therefore we developed light-weight variants whose type tag is external (so
9713they are really like @code{unions} for C++ actually). But our code is much
9714less mature that Boost.Variant. So there is a number of limitations in
9715(the current implementation of) variants:
9716@itemize
9717@item
9718Alignment must be enforced: values should be aligned in memory according to
9719the most demanding type. Computing the smallest alignment possible requires
9720meta-programming techniques that are not currently implemented in Bison, and
9721therefore, since, as far as we know, @code{double} is the most demanding
9722type on all platforms, alignments are enforced for @code{double} whatever
9723types are actually used. This may waste space in some cases.
9724
9725@item
9726Our implementation is not conforming with strict aliasing rules. Alias
9727analysis is a technique used in optimizing compilers to detect when two
9728pointers are disjoint (they cannot ``meet''). Our implementation breaks
9729some of the rules that G++ 4.4 uses in its alias analysis, so @emph{strict
9730alias analysis must be disabled}. Use the option
9731@option{-fno-strict-aliasing} to compile the generated parser.
9732
9733@item
9734There might be portability issues we are not aware of.
9735@end itemize
9736
a6ca4ce2 9737As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 9738is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
9739
9740@node C++ Location Values
9741@subsection C++ Location Values
9742@c - %locations
9743@c - class Position
9744@c - class Location
16dc6a9e 9745@c - %define filename_type "const symbol::Symbol"
12545799
AD
9746
9747When the directive @code{%locations} is used, the C++ parser supports
db8ab2be
AD
9748location tracking, see @ref{Tracking Locations}.
9749
9750By default, two auxiliary classes define a @code{position}, a single point
9751in a file, and a @code{location}, a range composed of a pair of
9752@code{position}s (possibly spanning several files). But if the
9753@code{%define} variable @code{api.location.type} is defined, then these
9754classes will not be generated, and the user defined type will be used.
12545799 9755
936c88d1
AD
9756@tindex uint
9757In this section @code{uint} is an abbreviation for @code{unsigned int}: in
9758genuine code only the latter is used.
9759
9760@menu
9761* C++ position:: One point in the source file
9762* C++ location:: Two points in the source file
db8ab2be 9763* User Defined Location Type:: Required interface for locations
936c88d1
AD
9764@end menu
9765
9766@node C++ position
9767@subsubsection C++ @code{position}
9768
9769@deftypeop {Constructor} {position} {} position (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9770Create a @code{position} denoting a given point. Note that @code{file} is
9771not reclaimed when the @code{position} is destroyed: memory managed must be
9772handled elsewhere.
9773@end deftypeop
9774
9775@deftypemethod {position} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9776Reset the position to the given values.
9777@end deftypemethod
9778
9779@deftypeivar {position} {std::string*} file
12545799
AD
9780The name of the file. It will always be handled as a pointer, the
9781parser will never duplicate nor deallocate it. As an experimental
9782feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 9783filename_type "@var{type}"}.
936c88d1 9784@end deftypeivar
12545799 9785
936c88d1 9786@deftypeivar {position} {uint} line
12545799 9787The line, starting at 1.
936c88d1 9788@end deftypeivar
12545799 9789
936c88d1 9790@deftypemethod {position} {uint} lines (int @var{height} = 1)
12545799
AD
9791Advance by @var{height} lines, resetting the column number.
9792@end deftypemethod
9793
936c88d1
AD
9794@deftypeivar {position} {uint} column
9795The column, starting at 1.
9796@end deftypeivar
12545799 9797
936c88d1 9798@deftypemethod {position} {uint} columns (int @var{width} = 1)
12545799
AD
9799Advance by @var{width} columns, without changing the line number.
9800@end deftypemethod
9801
936c88d1
AD
9802@deftypemethod {position} {position&} operator+= (int @var{width})
9803@deftypemethodx {position} {position} operator+ (int @var{width})
9804@deftypemethodx {position} {position&} operator-= (int @var{width})
9805@deftypemethodx {position} {position} operator- (int @var{width})
12545799
AD
9806Various forms of syntactic sugar for @code{columns}.
9807@end deftypemethod
9808
936c88d1
AD
9809@deftypemethod {position} {bool} operator== (const position& @var{that})
9810@deftypemethodx {position} {bool} operator!= (const position& @var{that})
9811Whether @code{*this} and @code{that} denote equal/different positions.
9812@end deftypemethod
9813
9814@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const position& @var{p})
12545799 9815Report @var{p} on @var{o} like this:
fa4d969f
PE
9816@samp{@var{file}:@var{line}.@var{column}}, or
9817@samp{@var{line}.@var{column}} if @var{file} is null.
936c88d1
AD
9818@end deftypefun
9819
9820@node C++ location
9821@subsubsection C++ @code{location}
9822
9823@deftypeop {Constructor} {location} {} location (const position& @var{begin}, const position& @var{end})
9824Create a @code{Location} from the endpoints of the range.
9825@end deftypeop
9826
9827@deftypeop {Constructor} {location} {} location (const position& @var{pos} = position())
9828@deftypeopx {Constructor} {location} {} location (std::string* @var{file}, uint @var{line}, uint @var{col})
9829Create a @code{Location} denoting an empty range located at a given point.
9830@end deftypeop
9831
9832@deftypemethod {location} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9833Reset the location to an empty range at the given values.
12545799
AD
9834@end deftypemethod
9835
936c88d1
AD
9836@deftypeivar {location} {position} begin
9837@deftypeivarx {location} {position} end
12545799 9838The first, inclusive, position of the range, and the first beyond.
936c88d1 9839@end deftypeivar
12545799 9840
936c88d1
AD
9841@deftypemethod {location} {uint} columns (int @var{width} = 1)
9842@deftypemethodx {location} {uint} lines (int @var{height} = 1)
12545799
AD
9843Advance the @code{end} position.
9844@end deftypemethod
9845
936c88d1
AD
9846@deftypemethod {location} {location} operator+ (const location& @var{end})
9847@deftypemethodx {location} {location} operator+ (int @var{width})
9848@deftypemethodx {location} {location} operator+= (int @var{width})
12545799
AD
9849Various forms of syntactic sugar.
9850@end deftypemethod
9851
9852@deftypemethod {location} {void} step ()
9853Move @code{begin} onto @code{end}.
9854@end deftypemethod
9855
936c88d1
AD
9856@deftypemethod {location} {bool} operator== (const location& @var{that})
9857@deftypemethodx {location} {bool} operator!= (const location& @var{that})
9858Whether @code{*this} and @code{that} denote equal/different ranges of
9859positions.
9860@end deftypemethod
9861
9862@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const location& @var{p})
9863Report @var{p} on @var{o}, taking care of special cases such as: no
9864@code{filename} defined, or equal filename/line or column.
9865@end deftypefun
12545799 9866
db8ab2be
AD
9867@node User Defined Location Type
9868@subsubsection User Defined Location Type
9869@findex %define api.location.type
9870
9871Instead of using the built-in types you may use the @code{%define} variable
9872@code{api.location.type} to specify your own type:
9873
9874@example
9875%define api.location.type @var{LocationType}
9876@end example
9877
9878The requirements over your @var{LocationType} are:
9879@itemize
9880@item
9881it must be copyable;
9882
9883@item
9884in order to compute the (default) value of @code{@@$} in a reduction, the
9885parser basically runs
9886@example
9887@@$.begin = @@$1.begin;
9888@@$.end = @@$@var{N}.end; // The location of last right-hand side symbol.
9889@end example
9890@noindent
9891so there must be copyable @code{begin} and @code{end} members;
9892
9893@item
9894alternatively you may redefine the computation of the default location, in
9895which case these members are not required (@pxref{Location Default Action});
9896
9897@item
9898if traces are enabled, then there must exist an @samp{std::ostream&
9899 operator<< (std::ostream& o, const @var{LocationType}& s)} function.
9900@end itemize
9901
9902@sp 1
9903
9904In programs with several C++ parsers, you may also use the @code{%define}
9905variable @code{api.location.type} to share a common set of built-in
9906definitions for @code{position} and @code{location}. For instance, one
9907parser @file{master/parser.yy} might use:
9908
9909@example
9910%defines
9911%locations
9912%define namespace "master::"
9913@end example
9914
9915@noindent
9916to generate the @file{master/position.hh} and @file{master/location.hh}
9917files, reused by other parsers as follows:
9918
9919@example
9920%define location_type "master::location"
9921%code requires @{ #include <master/location.hh> @}
9922@end example
9923
12545799
AD
9924@node C++ Parser Interface
9925@subsection C++ Parser Interface
9926@c - define parser_class_name
9927@c - Ctor
9928@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9929@c debug_stream.
9930@c - Reporting errors
9931
9932The output files @file{@var{output}.hh} and @file{@var{output}.cc}
9933declare and define the parser class in the namespace @code{yy}. The
9934class name defaults to @code{parser}, but may be changed using
16dc6a9e 9935@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 9936this class is detailed below. It can be extended using the
12545799
AD
9937@code{%parse-param} feature: its semantics is slightly changed since
9938it describes an additional member of the parser class, and an
9939additional argument for its constructor.
9940
3cdc21cf
AD
9941@defcv {Type} {parser} {semantic_type}
9942@defcvx {Type} {parser} {location_type}
9943The types for semantic values and locations (if enabled).
9944@end defcv
9945
86e5b440 9946@defcv {Type} {parser} {token}
aaaa2aae
AD
9947A structure that contains (only) the @code{yytokentype} enumeration, which
9948defines the tokens. To refer to the token @code{FOO},
9949use @code{yy::parser::token::FOO}. The scanner can use
86e5b440
AD
9950@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
9951(@pxref{Calc++ Scanner}).
9952@end defcv
9953
3cdc21cf
AD
9954@defcv {Type} {parser} {syntax_error}
9955This class derives from @code{std::runtime_error}. Throw instances of it
a6552c5d
AD
9956from the scanner or from the user actions to raise parse errors. This is
9957equivalent with first
3cdc21cf
AD
9958invoking @code{error} to report the location and message of the syntax
9959error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
9960But contrary to @code{YYERROR} which can only be invoked from user actions
9961(i.e., written in the action itself), the exception can be thrown from
9962function invoked from the user action.
8a0adb01 9963@end defcv
12545799
AD
9964
9965@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
9966Build a new parser object. There are no arguments by default, unless
9967@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
9968@end deftypemethod
9969
3cdc21cf
AD
9970@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
9971@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
9972Instantiate a syntax-error exception.
9973@end deftypemethod
9974
12545799
AD
9975@deftypemethod {parser} {int} parse ()
9976Run the syntactic analysis, and return 0 on success, 1 otherwise.
d3e4409a
AD
9977
9978@cindex exceptions
9979The whole function is wrapped in a @code{try}/@code{catch} block, so that
9980when an exception is thrown, the @code{%destructor}s are called to release
9981the lookahead symbol, and the symbols pushed on the stack.
12545799
AD
9982@end deftypemethod
9983
9984@deftypemethod {parser} {std::ostream&} debug_stream ()
9985@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
9986Get or set the stream used for tracing the parsing. It defaults to
9987@code{std::cerr}.
9988@end deftypemethod
9989
9990@deftypemethod {parser} {debug_level_type} debug_level ()
9991@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
9992Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 9993or nonzero, full tracing.
12545799
AD
9994@end deftypemethod
9995
9996@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 9997@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
9998The definition for this member function must be supplied by the user:
9999the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
10000described by @var{m}. If location tracking is not enabled, the second
10001signature is used.
12545799
AD
10002@end deftypemethod
10003
10004
10005@node C++ Scanner Interface
10006@subsection C++ Scanner Interface
10007@c - prefix for yylex.
10008@c - Pure interface to yylex
10009@c - %lex-param
10010
10011The parser invokes the scanner by calling @code{yylex}. Contrary to C
10012parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
10013@samp{%define api.pure} directive. The actual interface with @code{yylex}
10014depends whether you use unions, or variants.
12545799 10015
3cdc21cf
AD
10016@menu
10017* Split Symbols:: Passing symbols as two/three components
10018* Complete Symbols:: Making symbols a whole
10019@end menu
10020
10021@node Split Symbols
10022@subsubsection Split Symbols
10023
10024Therefore the interface is as follows.
10025
86e5b440
AD
10026@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
10027@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
10028Return the next token. Its type is the return value, its semantic value and
10029location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
10030@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
10031@end deftypemethod
10032
3cdc21cf
AD
10033Note that when using variants, the interface for @code{yylex} is the same,
10034but @code{yylval} is handled differently.
10035
10036Regular union-based code in Lex scanner typically look like:
10037
10038@example
10039[0-9]+ @{
10040 yylval.ival = text_to_int (yytext);
10041 return yy::parser::INTEGER;
10042 @}
10043[a-z]+ @{
10044 yylval.sval = new std::string (yytext);
10045 return yy::parser::IDENTIFIER;
10046 @}
10047@end example
10048
10049Using variants, @code{yylval} is already constructed, but it is not
10050initialized. So the code would look like:
10051
10052@example
10053[0-9]+ @{
10054 yylval.build<int>() = text_to_int (yytext);
10055 return yy::parser::INTEGER;
10056 @}
10057[a-z]+ @{
10058 yylval.build<std::string> = yytext;
10059 return yy::parser::IDENTIFIER;
10060 @}
10061@end example
10062
10063@noindent
10064or
10065
10066@example
10067[0-9]+ @{
10068 yylval.build(text_to_int (yytext));
10069 return yy::parser::INTEGER;
10070 @}
10071[a-z]+ @{
10072 yylval.build(yytext);
10073 return yy::parser::IDENTIFIER;
10074 @}
10075@end example
10076
10077
10078@node Complete Symbols
10079@subsubsection Complete Symbols
10080
10081If you specified both @code{%define variant} and @code{%define lex_symbol},
10082the @code{parser} class also defines the class @code{parser::symbol_type}
10083which defines a @emph{complete} symbol, aggregating its type (i.e., the
10084traditional value returned by @code{yylex}), its semantic value (i.e., the
10085value passed in @code{yylval}, and possibly its location (@code{yylloc}).
10086
10087@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
10088Build a complete terminal symbol which token type is @var{type}, and which
10089semantic value is @var{value}. If location tracking is enabled, also pass
10090the @var{location}.
10091@end deftypemethod
10092
10093This interface is low-level and should not be used for two reasons. First,
10094it is inconvenient, as you still have to build the semantic value, which is
10095a variant, and second, because consistency is not enforced: as with unions,
10096it is still possible to give an integer as semantic value for a string.
10097
10098So for each token type, Bison generates named constructors as follows.
10099
10100@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
10101@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
10102Build a complete terminal symbol for the token type @var{token} (not
2a6b66c5 10103including the @code{api.token.prefix}) whose possible semantic value is
3cdc21cf
AD
10104@var{value} of adequate @var{value_type}. If location tracking is enabled,
10105also pass the @var{location}.
10106@end deftypemethod
10107
10108For instance, given the following declarations:
10109
10110@example
2a6b66c5 10111%define api.token.prefix "TOK_"
3cdc21cf
AD
10112%token <std::string> IDENTIFIER;
10113%token <int> INTEGER;
10114%token COLON;
10115@end example
10116
10117@noindent
10118Bison generates the following functions:
10119
10120@example
10121symbol_type make_IDENTIFIER(const std::string& v,
10122 const location_type& l);
10123symbol_type make_INTEGER(const int& v,
10124 const location_type& loc);
10125symbol_type make_COLON(const location_type& loc);
10126@end example
10127
10128@noindent
10129which should be used in a Lex-scanner as follows.
10130
10131@example
10132[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
10133[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
10134":" return yy::parser::make_COLON(loc);
10135@end example
10136
10137Tokens that do not have an identifier are not accessible: you cannot simply
10138use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
10139
10140@node A Complete C++ Example
8405b70c 10141@subsection A Complete C++ Example
12545799
AD
10142
10143This section demonstrates the use of a C++ parser with a simple but
10144complete example. This example should be available on your system,
3cdc21cf 10145ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
10146focuses on the use of Bison, therefore the design of the various C++
10147classes is very naive: no accessors, no encapsulation of members etc.
10148We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 10149demonstrate the various interactions. A hand-written scanner is
12545799
AD
10150actually easier to interface with.
10151
10152@menu
10153* Calc++ --- C++ Calculator:: The specifications
10154* Calc++ Parsing Driver:: An active parsing context
10155* Calc++ Parser:: A parser class
10156* Calc++ Scanner:: A pure C++ Flex scanner
10157* Calc++ Top Level:: Conducting the band
10158@end menu
10159
10160@node Calc++ --- C++ Calculator
8405b70c 10161@subsubsection Calc++ --- C++ Calculator
12545799
AD
10162
10163Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 10164expression, possibly preceded by variable assignments. An
12545799
AD
10165environment containing possibly predefined variables such as
10166@code{one} and @code{two}, is exchanged with the parser. An example
10167of valid input follows.
10168
10169@example
10170three := 3
10171seven := one + two * three
10172seven * seven
10173@end example
10174
10175@node Calc++ Parsing Driver
8405b70c 10176@subsubsection Calc++ Parsing Driver
12545799
AD
10177@c - An env
10178@c - A place to store error messages
10179@c - A place for the result
10180
10181To support a pure interface with the parser (and the scanner) the
10182technique of the ``parsing context'' is convenient: a structure
10183containing all the data to exchange. Since, in addition to simply
10184launch the parsing, there are several auxiliary tasks to execute (open
10185the file for parsing, instantiate the parser etc.), we recommend
10186transforming the simple parsing context structure into a fully blown
10187@dfn{parsing driver} class.
10188
10189The declaration of this driver class, @file{calc++-driver.hh}, is as
10190follows. The first part includes the CPP guard and imports the
fb9712a9
AD
10191required standard library components, and the declaration of the parser
10192class.
12545799 10193
1c59e0a1 10194@comment file: calc++-driver.hh
12545799
AD
10195@example
10196#ifndef CALCXX_DRIVER_HH
10197# define CALCXX_DRIVER_HH
10198# include <string>
10199# include <map>
fb9712a9 10200# include "calc++-parser.hh"
12545799
AD
10201@end example
10202
12545799
AD
10203
10204@noindent
10205Then comes the declaration of the scanning function. Flex expects
10206the signature of @code{yylex} to be defined in the macro
10207@code{YY_DECL}, and the C++ parser expects it to be declared. We can
10208factor both as follows.
1c59e0a1
AD
10209
10210@comment file: calc++-driver.hh
12545799 10211@example
3dc5e96b 10212// Tell Flex the lexer's prototype ...
3cdc21cf
AD
10213# define YY_DECL \
10214 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
10215// ... and declare it for the parser's sake.
10216YY_DECL;
10217@end example
10218
10219@noindent
10220The @code{calcxx_driver} class is then declared with its most obvious
10221members.
10222
1c59e0a1 10223@comment file: calc++-driver.hh
12545799
AD
10224@example
10225// Conducting the whole scanning and parsing of Calc++.
10226class calcxx_driver
10227@{
10228public:
10229 calcxx_driver ();
10230 virtual ~calcxx_driver ();
10231
10232 std::map<std::string, int> variables;
10233
10234 int result;
10235@end example
10236
10237@noindent
3cdc21cf
AD
10238To encapsulate the coordination with the Flex scanner, it is useful to have
10239member functions to open and close the scanning phase.
12545799 10240
1c59e0a1 10241@comment file: calc++-driver.hh
12545799
AD
10242@example
10243 // Handling the scanner.
10244 void scan_begin ();
10245 void scan_end ();
10246 bool trace_scanning;
10247@end example
10248
10249@noindent
10250Similarly for the parser itself.
10251
1c59e0a1 10252@comment file: calc++-driver.hh
12545799 10253@example
3cdc21cf
AD
10254 // Run the parser on file F.
10255 // Return 0 on success.
bb32f4f2 10256 int parse (const std::string& f);
3cdc21cf
AD
10257 // The name of the file being parsed.
10258 // Used later to pass the file name to the location tracker.
12545799 10259 std::string file;
3cdc21cf 10260 // Whether parser traces should be generated.
12545799
AD
10261 bool trace_parsing;
10262@end example
10263
10264@noindent
10265To demonstrate pure handling of parse errors, instead of simply
10266dumping them on the standard error output, we will pass them to the
10267compiler driver using the following two member functions. Finally, we
10268close the class declaration and CPP guard.
10269
1c59e0a1 10270@comment file: calc++-driver.hh
12545799
AD
10271@example
10272 // Error handling.
10273 void error (const yy::location& l, const std::string& m);
10274 void error (const std::string& m);
10275@};
10276#endif // ! CALCXX_DRIVER_HH
10277@end example
10278
10279The implementation of the driver is straightforward. The @code{parse}
10280member function deserves some attention. The @code{error} functions
10281are simple stubs, they should actually register the located error
10282messages and set error state.
10283
1c59e0a1 10284@comment file: calc++-driver.cc
12545799
AD
10285@example
10286#include "calc++-driver.hh"
10287#include "calc++-parser.hh"
10288
10289calcxx_driver::calcxx_driver ()
10290 : trace_scanning (false), trace_parsing (false)
10291@{
10292 variables["one"] = 1;
10293 variables["two"] = 2;
10294@}
10295
10296calcxx_driver::~calcxx_driver ()
10297@{
10298@}
10299
bb32f4f2 10300int
12545799
AD
10301calcxx_driver::parse (const std::string &f)
10302@{
10303 file = f;
10304 scan_begin ();
10305 yy::calcxx_parser parser (*this);
10306 parser.set_debug_level (trace_parsing);
bb32f4f2 10307 int res = parser.parse ();
12545799 10308 scan_end ();
bb32f4f2 10309 return res;
12545799
AD
10310@}
10311
10312void
10313calcxx_driver::error (const yy::location& l, const std::string& m)
10314@{
10315 std::cerr << l << ": " << m << std::endl;
10316@}
10317
10318void
10319calcxx_driver::error (const std::string& m)
10320@{
10321 std::cerr << m << std::endl;
10322@}
10323@end example
10324
10325@node Calc++ Parser
8405b70c 10326@subsubsection Calc++ Parser
12545799 10327
ff7571c0
JD
10328The grammar file @file{calc++-parser.yy} starts by asking for the C++
10329deterministic parser skeleton, the creation of the parser header file,
10330and specifies the name of the parser class. Because the C++ skeleton
10331changed several times, it is safer to require the version you designed
10332the grammar for.
1c59e0a1
AD
10333
10334@comment file: calc++-parser.yy
12545799 10335@example
c93f22fc 10336%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 10337%require "@value{VERSION}"
12545799 10338%defines
16dc6a9e 10339%define parser_class_name "calcxx_parser"
fb9712a9
AD
10340@end example
10341
3cdc21cf
AD
10342@noindent
10343@findex %define variant
10344@findex %define lex_symbol
10345This example will use genuine C++ objects as semantic values, therefore, we
10346require the variant-based interface. To make sure we properly use it, we
10347enable assertions. To fully benefit from type-safety and more natural
10348definition of ``symbol'', we enable @code{lex_symbol}.
10349
10350@comment file: calc++-parser.yy
10351@example
10352%define variant
10353%define parse.assert
10354%define lex_symbol
10355@end example
10356
fb9712a9 10357@noindent
16dc6a9e 10358@findex %code requires
3cdc21cf
AD
10359Then come the declarations/inclusions needed by the semantic values.
10360Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 10361to include the header of the other, which is, of course, insane. This
3cdc21cf 10362mutual dependency will be broken using forward declarations. Because the
fb9712a9 10363driver's header needs detailed knowledge about the parser class (in
3cdc21cf 10364particular its inner types), it is the parser's header which will use a
e0c07222 10365forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
10366
10367@comment file: calc++-parser.yy
10368@example
3cdc21cf
AD
10369%code requires
10370@{
12545799 10371# include <string>
fb9712a9 10372class calcxx_driver;
9bc0dd67 10373@}
12545799
AD
10374@end example
10375
10376@noindent
10377The driver is passed by reference to the parser and to the scanner.
10378This provides a simple but effective pure interface, not relying on
10379global variables.
10380
1c59e0a1 10381@comment file: calc++-parser.yy
12545799
AD
10382@example
10383// The parsing context.
2055a44e 10384%param @{ calcxx_driver& driver @}
12545799
AD
10385@end example
10386
10387@noindent
2055a44e 10388Then we request location tracking, and initialize the
f50bfcd6 10389first location's file name. Afterward new locations are computed
12545799 10390relatively to the previous locations: the file name will be
2055a44e 10391propagated.
12545799 10392
1c59e0a1 10393@comment file: calc++-parser.yy
12545799
AD
10394@example
10395%locations
10396%initial-action
10397@{
10398 // Initialize the initial location.
b47dbebe 10399 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
10400@};
10401@end example
10402
10403@noindent
7fceb615
JD
10404Use the following two directives to enable parser tracing and verbose error
10405messages. However, verbose error messages can contain incorrect information
10406(@pxref{LAC}).
12545799 10407
1c59e0a1 10408@comment file: calc++-parser.yy
12545799 10409@example
fa819509 10410%define parse.trace
cf499cff 10411%define parse.error verbose
12545799
AD
10412@end example
10413
fb9712a9 10414@noindent
136a0f76
PB
10415@findex %code
10416The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 10417@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
10418
10419@comment file: calc++-parser.yy
10420@example
3cdc21cf
AD
10421%code
10422@{
fb9712a9 10423# include "calc++-driver.hh"
34f98f46 10424@}
fb9712a9
AD
10425@end example
10426
10427
12545799
AD
10428@noindent
10429The token numbered as 0 corresponds to end of file; the following line
99c08fb6 10430allows for nicer error messages referring to ``end of file'' instead of
35c1e5f0
JD
10431``$end''. Similarly user friendly names are provided for each symbol. To
10432avoid name clashes in the generated files (@pxref{Calc++ Scanner}), prefix
2a6b66c5 10433tokens with @code{TOK_} (@pxref{%define Summary,,api.token.prefix}).
12545799 10434
1c59e0a1 10435@comment file: calc++-parser.yy
12545799 10436@example
2a6b66c5 10437%define api.token.prefix "TOK_"
3cdc21cf
AD
10438%token
10439 END 0 "end of file"
10440 ASSIGN ":="
10441 MINUS "-"
10442 PLUS "+"
10443 STAR "*"
10444 SLASH "/"
10445 LPAREN "("
10446 RPAREN ")"
10447;
12545799
AD
10448@end example
10449
10450@noindent
3cdc21cf
AD
10451Since we use variant-based semantic values, @code{%union} is not used, and
10452both @code{%type} and @code{%token} expect genuine types, as opposed to type
10453tags.
12545799 10454
1c59e0a1 10455@comment file: calc++-parser.yy
12545799 10456@example
3cdc21cf
AD
10457%token <std::string> IDENTIFIER "identifier"
10458%token <int> NUMBER "number"
10459%type <int> exp
10460@end example
10461
10462@noindent
10463No @code{%destructor} is needed to enable memory deallocation during error
10464recovery; the memory, for strings for instance, will be reclaimed by the
10465regular destructors. All the values are printed using their
a76c741d 10466@code{operator<<} (@pxref{Printer Decl, , Printing Semantic Values}).
12545799 10467
3cdc21cf
AD
10468@comment file: calc++-parser.yy
10469@example
c5026327 10470%printer @{ yyoutput << $$; @} <*>;
12545799
AD
10471@end example
10472
10473@noindent
3cdc21cf
AD
10474The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
10475Location Tracking Calculator: @code{ltcalc}}).
12545799 10476
1c59e0a1 10477@comment file: calc++-parser.yy
12545799
AD
10478@example
10479%%
10480%start unit;
10481unit: assignments exp @{ driver.result = $2; @};
10482
99c08fb6 10483assignments:
5e9b6624
AD
10484 /* Nothing. */ @{@}
10485| assignments assignment @{@};
12545799 10486
3dc5e96b 10487assignment:
3cdc21cf 10488 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 10489
3cdc21cf
AD
10490%left "+" "-";
10491%left "*" "/";
99c08fb6 10492exp:
3cdc21cf
AD
10493 exp "+" exp @{ $$ = $1 + $3; @}
10494| exp "-" exp @{ $$ = $1 - $3; @}
10495| exp "*" exp @{ $$ = $1 * $3; @}
10496| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 10497| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 10498| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 10499| "number" @{ std::swap ($$, $1); @};
12545799
AD
10500%%
10501@end example
10502
10503@noindent
10504Finally the @code{error} member function registers the errors to the
10505driver.
10506
1c59e0a1 10507@comment file: calc++-parser.yy
12545799
AD
10508@example
10509void
3cdc21cf 10510yy::calcxx_parser::error (const location_type& l,
1c59e0a1 10511 const std::string& m)
12545799
AD
10512@{
10513 driver.error (l, m);
10514@}
10515@end example
10516
10517@node Calc++ Scanner
8405b70c 10518@subsubsection Calc++ Scanner
12545799
AD
10519
10520The Flex scanner first includes the driver declaration, then the
10521parser's to get the set of defined tokens.
10522
1c59e0a1 10523@comment file: calc++-scanner.ll
12545799 10524@example
c93f22fc 10525%@{ /* -*- C++ -*- */
3c248d70
AD
10526# include <cerrno>
10527# include <climits>
3cdc21cf 10528# include <cstdlib>
12545799
AD
10529# include <string>
10530# include "calc++-driver.hh"
10531# include "calc++-parser.hh"
eaea13f5 10532
3cdc21cf
AD
10533// Work around an incompatibility in flex (at least versions
10534// 2.5.31 through 2.5.33): it generates code that does
10535// not conform to C89. See Debian bug 333231
10536// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
10537# undef yywrap
10538# define yywrap() 1
eaea13f5 10539
3cdc21cf
AD
10540// The location of the current token.
10541static yy::location loc;
12545799
AD
10542%@}
10543@end example
10544
10545@noindent
10546Because there is no @code{#include}-like feature we don't need
10547@code{yywrap}, we don't need @code{unput} either, and we parse an
10548actual file, this is not an interactive session with the user.
3cdc21cf 10549Finally, we enable scanner tracing.
12545799 10550
1c59e0a1 10551@comment file: calc++-scanner.ll
12545799
AD
10552@example
10553%option noyywrap nounput batch debug
10554@end example
10555
10556@noindent
10557Abbreviations allow for more readable rules.
10558
1c59e0a1 10559@comment file: calc++-scanner.ll
12545799
AD
10560@example
10561id [a-zA-Z][a-zA-Z_0-9]*
10562int [0-9]+
10563blank [ \t]
10564@end example
10565
10566@noindent
9d9b8b70 10567The following paragraph suffices to track locations accurately. Each
12545799 10568time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
10569position. Then when a pattern is matched, its width is added to the end
10570column. When matching ends of lines, the end
12545799
AD
10571cursor is adjusted, and each time blanks are matched, the begin cursor
10572is moved onto the end cursor to effectively ignore the blanks
10573preceding tokens. Comments would be treated equally.
10574
1c59e0a1 10575@comment file: calc++-scanner.ll
12545799 10576@example
d4fca427 10577@group
828c373b 10578%@{
3cdc21cf
AD
10579 // Code run each time a pattern is matched.
10580 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 10581%@}
d4fca427 10582@end group
12545799 10583%%
d4fca427 10584@group
12545799 10585%@{
3cdc21cf
AD
10586 // Code run each time yylex is called.
10587 loc.step ();
12545799 10588%@}
d4fca427 10589@end group
3cdc21cf
AD
10590@{blank@}+ loc.step ();
10591[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
10592@end example
10593
10594@noindent
3cdc21cf 10595The rules are simple. The driver is used to report errors.
12545799 10596
1c59e0a1 10597@comment file: calc++-scanner.ll
12545799 10598@example
3cdc21cf
AD
10599"-" return yy::calcxx_parser::make_MINUS(loc);
10600"+" return yy::calcxx_parser::make_PLUS(loc);
10601"*" return yy::calcxx_parser::make_STAR(loc);
10602"/" return yy::calcxx_parser::make_SLASH(loc);
10603"(" return yy::calcxx_parser::make_LPAREN(loc);
10604")" return yy::calcxx_parser::make_RPAREN(loc);
10605":=" return yy::calcxx_parser::make_ASSIGN(loc);
10606
d4fca427 10607@group
04098407
PE
10608@{int@} @{
10609 errno = 0;
10610 long n = strtol (yytext, NULL, 10);
10611 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
10612 driver.error (loc, "integer is out of range");
10613 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 10614@}
d4fca427 10615@end group
3cdc21cf
AD
10616@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
10617. driver.error (loc, "invalid character");
10618<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
10619%%
10620@end example
10621
10622@noindent
3cdc21cf 10623Finally, because the scanner-related driver's member-functions depend
12545799
AD
10624on the scanner's data, it is simpler to implement them in this file.
10625
1c59e0a1 10626@comment file: calc++-scanner.ll
12545799 10627@example
d4fca427 10628@group
12545799
AD
10629void
10630calcxx_driver::scan_begin ()
10631@{
10632 yy_flex_debug = trace_scanning;
93c150b6 10633 if (file.empty () || file == "-")
bb32f4f2
AD
10634 yyin = stdin;
10635 else if (!(yyin = fopen (file.c_str (), "r")))
10636 @{
aaaa2aae 10637 error ("cannot open " + file + ": " + strerror(errno));
d0f2b7f8 10638 exit (EXIT_FAILURE);
bb32f4f2 10639 @}
12545799 10640@}
d4fca427 10641@end group
12545799 10642
d4fca427 10643@group
12545799
AD
10644void
10645calcxx_driver::scan_end ()
10646@{
10647 fclose (yyin);
10648@}
d4fca427 10649@end group
12545799
AD
10650@end example
10651
10652@node Calc++ Top Level
8405b70c 10653@subsubsection Calc++ Top Level
12545799
AD
10654
10655The top level file, @file{calc++.cc}, poses no problem.
10656
1c59e0a1 10657@comment file: calc++.cc
12545799
AD
10658@example
10659#include <iostream>
10660#include "calc++-driver.hh"
10661
d4fca427 10662@group
12545799 10663int
fa4d969f 10664main (int argc, char *argv[])
12545799 10665@{
414c76a4 10666 int res = 0;
12545799 10667 calcxx_driver driver;
93c150b6
AD
10668 for (int i = 1; i < argc; ++i)
10669 if (argv[i] == std::string ("-p"))
12545799 10670 driver.trace_parsing = true;
93c150b6 10671 else if (argv[i] == std::string ("-s"))
12545799 10672 driver.trace_scanning = true;
93c150b6 10673 else if (!driver.parse (argv[i]))
bb32f4f2 10674 std::cout << driver.result << std::endl;
414c76a4
AD
10675 else
10676 res = 1;
10677 return res;
12545799 10678@}
d4fca427 10679@end group
12545799
AD
10680@end example
10681
8405b70c
PB
10682@node Java Parsers
10683@section Java Parsers
10684
10685@menu
f5f419de
DJ
10686* Java Bison Interface:: Asking for Java parser generation
10687* Java Semantic Values:: %type and %token vs. Java
10688* Java Location Values:: The position and location classes
10689* Java Parser Interface:: Instantiating and running the parser
10690* Java Scanner Interface:: Specifying the scanner for the parser
10691* Java Action Features:: Special features for use in actions
10692* Java Differences:: Differences between C/C++ and Java Grammars
10693* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
10694@end menu
10695
10696@node Java Bison Interface
10697@subsection Java Bison Interface
10698@c - %language "Java"
8405b70c 10699
59da312b
JD
10700(The current Java interface is experimental and may evolve.
10701More user feedback will help to stabilize it.)
10702
e254a580
DJ
10703The Java parser skeletons are selected using the @code{%language "Java"}
10704directive or the @option{-L java}/@option{--language=java} option.
8405b70c 10705
e254a580 10706@c FIXME: Documented bug.
ff7571c0
JD
10707When generating a Java parser, @code{bison @var{basename}.y} will
10708create a single Java source file named @file{@var{basename}.java}
10709containing the parser implementation. Using a grammar file without a
10710@file{.y} suffix is currently broken. The basename of the parser
10711implementation file can be changed by the @code{%file-prefix}
10712directive or the @option{-p}/@option{--name-prefix} option. The
10713entire parser implementation file name can be changed by the
10714@code{%output} directive or the @option{-o}/@option{--output} option.
10715The parser implementation file contains a single class for the parser.
8405b70c 10716
e254a580 10717You can create documentation for generated parsers using Javadoc.
8405b70c 10718
e254a580
DJ
10719Contrary to C parsers, Java parsers do not use global variables; the
10720state of the parser is always local to an instance of the parser class.
10721Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
67501061 10722and @samp{%define api.pure} directives does not do anything when used in
e254a580 10723Java.
8405b70c 10724
e254a580 10725Push parsers are currently unsupported in Java and @code{%define
67212941 10726api.push-pull} have no effect.
01b477c6 10727
8a4281b9 10728GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
10729@code{glr-parser} directive.
10730
10731No header file can be generated for Java parsers. Do not use the
10732@code{%defines} directive or the @option{-d}/@option{--defines} options.
10733
10734@c FIXME: Possible code change.
fa819509
AD
10735Currently, support for tracing is always compiled
10736in. Thus the @samp{%define parse.trace} and @samp{%token-table}
10737directives and the
e254a580
DJ
10738@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
10739options have no effect. This may change in the future to eliminate
fa819509
AD
10740unused code in the generated parser, so use @samp{%define parse.trace}
10741explicitly
1979121c 10742if needed. Also, in the future the
e254a580
DJ
10743@code{%token-table} directive might enable a public interface to
10744access the token names and codes.
8405b70c 10745
09ccae9b 10746Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 10747hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
10748Try reducing the amount of code in actions and static initializers;
10749otherwise, report a bug so that the parser skeleton will be improved.
10750
10751
8405b70c
PB
10752@node Java Semantic Values
10753@subsection Java Semantic Values
10754@c - No %union, specify type in %type/%token.
10755@c - YYSTYPE
10756@c - Printer and destructor
10757
10758There is no @code{%union} directive in Java parsers. Instead, the
10759semantic values' types (class names) should be specified in the
10760@code{%type} or @code{%token} directive:
10761
10762@example
10763%type <Expression> expr assignment_expr term factor
10764%type <Integer> number
10765@end example
10766
10767By default, the semantic stack is declared to have @code{Object} members,
10768which means that the class types you specify can be of any class.
10769To improve the type safety of the parser, you can declare the common
67501061 10770superclass of all the semantic values using the @samp{%define stype}
e254a580 10771directive. For example, after the following declaration:
8405b70c
PB
10772
10773@example
e254a580 10774%define stype "ASTNode"
8405b70c
PB
10775@end example
10776
10777@noindent
10778any @code{%type} or @code{%token} specifying a semantic type which
10779is not a subclass of ASTNode, will cause a compile-time error.
10780
e254a580 10781@c FIXME: Documented bug.
8405b70c
PB
10782Types used in the directives may be qualified with a package name.
10783Primitive data types are accepted for Java version 1.5 or later. Note
10784that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
10785Generic types may not be used; this is due to a limitation in the
10786implementation of Bison, and may change in future releases.
8405b70c
PB
10787
10788Java parsers do not support @code{%destructor}, since the language
10789adopts garbage collection. The parser will try to hold references
10790to semantic values for as little time as needed.
10791
10792Java parsers do not support @code{%printer}, as @code{toString()}
10793can be used to print the semantic values. This however may change
10794(in a backwards-compatible way) in future versions of Bison.
10795
10796
10797@node Java Location Values
10798@subsection Java Location Values
10799@c - %locations
10800@c - class Position
10801@c - class Location
10802
303834cc
JD
10803When the directive @code{%locations} is used, the Java parser supports
10804location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
10805class defines a @dfn{position}, a single point in a file; Bison itself
10806defines a class representing a @dfn{location}, a range composed of a pair of
10807positions (possibly spanning several files). The location class is an inner
10808class of the parser; the name is @code{Location} by default, and may also be
10809renamed using @samp{%define location_type "@var{class-name}"}.
8405b70c
PB
10810
10811The location class treats the position as a completely opaque value.
10812By default, the class name is @code{Position}, but this can be changed
67501061 10813with @samp{%define position_type "@var{class-name}"}. This class must
e254a580 10814be supplied by the user.
8405b70c
PB
10815
10816
e254a580
DJ
10817@deftypeivar {Location} {Position} begin
10818@deftypeivarx {Location} {Position} end
8405b70c 10819The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
10820@end deftypeivar
10821
10822@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 10823Create a @code{Location} denoting an empty range located at a given point.
e254a580 10824@end deftypeop
8405b70c 10825
e254a580
DJ
10826@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
10827Create a @code{Location} from the endpoints of the range.
10828@end deftypeop
10829
10830@deftypemethod {Location} {String} toString ()
8405b70c
PB
10831Prints the range represented by the location. For this to work
10832properly, the position class should override the @code{equals} and
10833@code{toString} methods appropriately.
10834@end deftypemethod
10835
10836
10837@node Java Parser Interface
10838@subsection Java Parser Interface
10839@c - define parser_class_name
10840@c - Ctor
10841@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10842@c debug_stream.
10843@c - Reporting errors
10844
e254a580
DJ
10845The name of the generated parser class defaults to @code{YYParser}. The
10846@code{YY} prefix may be changed using the @code{%name-prefix} directive
10847or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 10848@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 10849the class. The interface of this class is detailed below.
8405b70c 10850
e254a580 10851By default, the parser class has package visibility. A declaration
67501061 10852@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
10853according to the Java language specification, the name of the @file{.java}
10854file should match the name of the class in this case. Similarly, you can
10855use @code{abstract}, @code{final} and @code{strictfp} with the
10856@code{%define} declaration to add other modifiers to the parser class.
67501061 10857A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 10858be used to add any number of annotations to the parser class.
e254a580
DJ
10859
10860The Java package name of the parser class can be specified using the
67501061 10861@samp{%define package} directive. The superclass and the implemented
e254a580 10862interfaces of the parser class can be specified with the @code{%define
67501061 10863extends} and @samp{%define implements} directives.
e254a580
DJ
10864
10865The parser class defines an inner class, @code{Location}, that is used
10866for location tracking (see @ref{Java Location Values}), and a inner
10867interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
10868these inner class/interface, and the members described in the interface
10869below, all the other members and fields are preceded with a @code{yy} or
10870@code{YY} prefix to avoid clashes with user code.
10871
e254a580
DJ
10872The parser class can be extended using the @code{%parse-param}
10873directive. Each occurrence of the directive will add a @code{protected
10874final} field to the parser class, and an argument to its constructor,
10875which initialize them automatically.
10876
e254a580
DJ
10877@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
10878Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
10879no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
10880@code{%lex-param}s are used.
1979121c
DJ
10881
10882Use @code{%code init} for code added to the start of the constructor
10883body. This is especially useful to initialize superclasses. Use
f50bfcd6 10884@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
10885@end deftypeop
10886
10887@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
10888Build a new parser object using the specified scanner. There are no
2055a44e
AD
10889additional parameters unless @code{%param}s and/or @code{%parse-param}s are
10890used.
e254a580
DJ
10891
10892If the scanner is defined by @code{%code lexer}, this constructor is
10893declared @code{protected} and is called automatically with a scanner
2055a44e 10894created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
10895
10896Use @code{%code init} for code added to the start of the constructor
10897body. This is especially useful to initialize superclasses. Use
5a321748 10898@samp{%define init_throws} to specify any uncaught exceptions.
e254a580 10899@end deftypeop
8405b70c
PB
10900
10901@deftypemethod {YYParser} {boolean} parse ()
10902Run the syntactic analysis, and return @code{true} on success,
10903@code{false} otherwise.
10904@end deftypemethod
10905
1979121c
DJ
10906@deftypemethod {YYParser} {boolean} getErrorVerbose ()
10907@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
10908Get or set the option to produce verbose error messages. These are only
cf499cff 10909available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
10910verbose error messages.
10911@end deftypemethod
10912
10913@deftypemethod {YYParser} {void} yyerror (String @var{msg})
10914@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
10915@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
10916Print an error message using the @code{yyerror} method of the scanner
10917instance in use. The @code{Location} and @code{Position} parameters are
10918available only if location tracking is active.
10919@end deftypemethod
10920
01b477c6 10921@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 10922During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
10923from a syntax error.
10924@xref{Error Recovery}.
8405b70c
PB
10925@end deftypemethod
10926
10927@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
10928@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
10929Get or set the stream used for tracing the parsing. It defaults to
10930@code{System.err}.
10931@end deftypemethod
10932
10933@deftypemethod {YYParser} {int} getDebugLevel ()
10934@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
10935Get or set the tracing level. Currently its value is either 0, no trace,
10936or nonzero, full tracing.
10937@end deftypemethod
10938
1979121c
DJ
10939@deftypecv {Constant} {YYParser} {String} {bisonVersion}
10940@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
10941Identify the Bison version and skeleton used to generate this parser.
10942@end deftypecv
10943
8405b70c
PB
10944
10945@node Java Scanner Interface
10946@subsection Java Scanner Interface
01b477c6 10947@c - %code lexer
8405b70c 10948@c - %lex-param
01b477c6 10949@c - Lexer interface
8405b70c 10950
e254a580
DJ
10951There are two possible ways to interface a Bison-generated Java parser
10952with a scanner: the scanner may be defined by @code{%code lexer}, or
10953defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
10954@code{Lexer} inner interface of the parser class. This interface also
10955contain constants for all user-defined token names and the predefined
10956@code{EOF} token.
e254a580
DJ
10957
10958In the first case, the body of the scanner class is placed in
10959@code{%code lexer} blocks. If you want to pass parameters from the
10960parser constructor to the scanner constructor, specify them with
10961@code{%lex-param}; they are passed before @code{%parse-param}s to the
10962constructor.
01b477c6 10963
59c5ac72 10964In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
10965which is defined within the parser class (e.g., @code{YYParser.Lexer}).
10966The constructor of the parser object will then accept an object
10967implementing the interface; @code{%lex-param} is not used in this
10968case.
10969
10970In both cases, the scanner has to implement the following methods.
10971
e254a580
DJ
10972@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
10973This method is defined by the user to emit an error message. The first
10974parameter is omitted if location tracking is not active. Its type can be
67501061 10975changed using @samp{%define location_type "@var{class-name}".}
8405b70c
PB
10976@end deftypemethod
10977
e254a580 10978@deftypemethod {Lexer} {int} yylex ()
8405b70c 10979Return the next token. Its type is the return value, its semantic
f50bfcd6 10980value and location are saved and returned by the their methods in the
e254a580
DJ
10981interface.
10982
67501061 10983Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 10984Default is @code{java.io.IOException}.
8405b70c
PB
10985@end deftypemethod
10986
10987@deftypemethod {Lexer} {Position} getStartPos ()
10988@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
10989Return respectively the first position of the last token that
10990@code{yylex} returned, and the first position beyond it. These
10991methods are not needed unless location tracking is active.
8405b70c 10992
67501061 10993The return type can be changed using @samp{%define position_type
8405b70c
PB
10994"@var{class-name}".}
10995@end deftypemethod
10996
10997@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 10998Return the semantic value of the last token that yylex returned.
8405b70c 10999
67501061 11000The return type can be changed using @samp{%define stype
8405b70c
PB
11001"@var{class-name}".}
11002@end deftypemethod
11003
11004
e254a580
DJ
11005@node Java Action Features
11006@subsection Special Features for Use in Java Actions
11007
11008The following special constructs can be uses in Java actions.
11009Other analogous C action features are currently unavailable for Java.
11010
67501061 11011Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
11012actions, and initial actions specified by @code{%initial-action}.
11013
11014@defvar $@var{n}
11015The semantic value for the @var{n}th component of the current rule.
11016This may not be assigned to.
11017@xref{Java Semantic Values}.
11018@end defvar
11019
11020@defvar $<@var{typealt}>@var{n}
11021Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
11022@xref{Java Semantic Values}.
11023@end defvar
11024
11025@defvar $$
11026The semantic value for the grouping made by the current rule. As a
11027value, this is in the base type (@code{Object} or as specified by
67501061 11028@samp{%define stype}) as in not cast to the declared subtype because
e254a580
DJ
11029casts are not allowed on the left-hand side of Java assignments.
11030Use an explicit Java cast if the correct subtype is needed.
11031@xref{Java Semantic Values}.
11032@end defvar
11033
11034@defvar $<@var{typealt}>$
11035Same as @code{$$} since Java always allow assigning to the base type.
11036Perhaps we should use this and @code{$<>$} for the value and @code{$$}
11037for setting the value but there is currently no easy way to distinguish
11038these constructs.
11039@xref{Java Semantic Values}.
11040@end defvar
11041
11042@defvar @@@var{n}
11043The location information of the @var{n}th component of the current rule.
11044This may not be assigned to.
11045@xref{Java Location Values}.
11046@end defvar
11047
11048@defvar @@$
11049The location information of the grouping made by the current rule.
11050@xref{Java Location Values}.
11051@end defvar
11052
34a41a93 11053@deftypefn {Statement} return YYABORT @code{;}
e254a580
DJ
11054Return immediately from the parser, indicating failure.
11055@xref{Java Parser Interface}.
34a41a93 11056@end deftypefn
8405b70c 11057
34a41a93 11058@deftypefn {Statement} return YYACCEPT @code{;}
e254a580
DJ
11059Return immediately from the parser, indicating success.
11060@xref{Java Parser Interface}.
34a41a93 11061@end deftypefn
8405b70c 11062
34a41a93 11063@deftypefn {Statement} {return} YYERROR @code{;}
4a11b852 11064Start error recovery (without printing an error message).
e254a580 11065@xref{Error Recovery}.
34a41a93 11066@end deftypefn
8405b70c 11067
e254a580
DJ
11068@deftypefn {Function} {boolean} recovering ()
11069Return whether error recovery is being done. In this state, the parser
11070reads token until it reaches a known state, and then restarts normal
11071operation.
11072@xref{Error Recovery}.
11073@end deftypefn
8405b70c 11074
1979121c
DJ
11075@deftypefn {Function} {void} yyerror (String @var{msg})
11076@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
11077@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 11078Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
11079instance in use. The @code{Location} and @code{Position} parameters are
11080available only if location tracking is active.
e254a580 11081@end deftypefn
8405b70c 11082
8405b70c 11083
8405b70c
PB
11084@node Java Differences
11085@subsection Differences between C/C++ and Java Grammars
11086
11087The different structure of the Java language forces several differences
11088between C/C++ grammars, and grammars designed for Java parsers. This
29553547 11089section summarizes these differences.
8405b70c
PB
11090
11091@itemize
11092@item
01b477c6 11093Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 11094@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
11095macros. Instead, they should be preceded by @code{return} when they
11096appear in an action. The actual definition of these symbols is
8405b70c
PB
11097opaque to the Bison grammar, and it might change in the future. The
11098only meaningful operation that you can do, is to return them.
e3fd1dcb 11099@xref{Java Action Features}.
8405b70c
PB
11100
11101Note that of these three symbols, only @code{YYACCEPT} and
11102@code{YYABORT} will cause a return from the @code{yyparse}
11103method@footnote{Java parsers include the actions in a separate
11104method than @code{yyparse} in order to have an intuitive syntax that
11105corresponds to these C macros.}.
11106
e254a580
DJ
11107@item
11108Java lacks unions, so @code{%union} has no effect. Instead, semantic
11109values have a common base type: @code{Object} or as specified by
f50bfcd6 11110@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
11111@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
11112an union. The type of @code{$$}, even with angle brackets, is the base
11113type since Java casts are not allow on the left-hand side of assignments.
11114Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
15cd62c2 11115left-hand side of assignments. @xref{Java Semantic Values}, and
e3fd1dcb 11116@ref{Java Action Features}.
e254a580 11117
8405b70c 11118@item
f50bfcd6 11119The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
11120@table @asis
11121@item @code{%code imports}
11122blocks are placed at the beginning of the Java source code. They may
11123include copyright notices. For a @code{package} declarations, it is
67501061 11124suggested to use @samp{%define package} instead.
8405b70c 11125
01b477c6
PB
11126@item unqualified @code{%code}
11127blocks are placed inside the parser class.
11128
11129@item @code{%code lexer}
11130blocks, if specified, should include the implementation of the
11131scanner. If there is no such block, the scanner can be any class
e3fd1dcb 11132that implements the appropriate interface (@pxref{Java Scanner
01b477c6 11133Interface}).
29553547 11134@end table
8405b70c
PB
11135
11136Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
11137In particular, @code{%@{ @dots{} %@}} blocks should not be used
11138and may give an error in future versions of Bison.
11139
01b477c6 11140The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
11141be used to define other classes used by the parser @emph{outside}
11142the parser class.
8405b70c
PB
11143@end itemize
11144
e254a580
DJ
11145
11146@node Java Declarations Summary
11147@subsection Java Declarations Summary
11148
11149This summary only include declarations specific to Java or have special
11150meaning when used in a Java parser.
11151
11152@deffn {Directive} {%language "Java"}
11153Generate a Java class for the parser.
11154@end deffn
11155
11156@deffn {Directive} %lex-param @{@var{type} @var{name}@}
11157A parameter for the lexer class defined by @code{%code lexer}
11158@emph{only}, added as parameters to the lexer constructor and the parser
11159constructor that @emph{creates} a lexer. Default is none.
11160@xref{Java Scanner Interface}.
11161@end deffn
11162
11163@deffn {Directive} %name-prefix "@var{prefix}"
11164The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 11165@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
11166@xref{Java Bison Interface}.
11167@end deffn
11168
11169@deffn {Directive} %parse-param @{@var{type} @var{name}@}
11170A parameter for the parser class added as parameters to constructor(s)
11171and as fields initialized by the constructor(s). Default is none.
11172@xref{Java Parser Interface}.
11173@end deffn
11174
11175@deffn {Directive} %token <@var{type}> @var{token} @dots{}
11176Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
11177@xref{Java Semantic Values}.
11178@end deffn
11179
11180@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
11181Declare the type of nonterminals. Note that the angle brackets enclose
11182a Java @emph{type}.
11183@xref{Java Semantic Values}.
11184@end deffn
11185
11186@deffn {Directive} %code @{ @var{code} @dots{} @}
11187Code appended to the inside of the parser class.
11188@xref{Java Differences}.
11189@end deffn
11190
11191@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
11192Code inserted just after the @code{package} declaration.
11193@xref{Java Differences}.
11194@end deffn
11195
1979121c
DJ
11196@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
11197Code inserted at the beginning of the parser constructor body.
11198@xref{Java Parser Interface}.
11199@end deffn
11200
e254a580
DJ
11201@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
11202Code added to the body of a inner lexer class within the parser class.
11203@xref{Java Scanner Interface}.
11204@end deffn
11205
11206@deffn {Directive} %% @var{code} @dots{}
11207Code (after the second @code{%%}) appended to the end of the file,
11208@emph{outside} the parser class.
11209@xref{Java Differences}.
11210@end deffn
11211
11212@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 11213Not supported. Use @code{%code imports} instead.
e254a580
DJ
11214@xref{Java Differences}.
11215@end deffn
11216
11217@deffn {Directive} {%define abstract}
11218Whether the parser class is declared @code{abstract}. Default is false.
11219@xref{Java Bison Interface}.
11220@end deffn
11221
1979121c
DJ
11222@deffn {Directive} {%define annotations} "@var{annotations}"
11223The Java annotations for the parser class. Default is none.
11224@xref{Java Bison Interface}.
11225@end deffn
11226
e254a580
DJ
11227@deffn {Directive} {%define extends} "@var{superclass}"
11228The superclass of the parser class. Default is none.
11229@xref{Java Bison Interface}.
11230@end deffn
11231
11232@deffn {Directive} {%define final}
11233Whether the parser class is declared @code{final}. Default is false.
11234@xref{Java Bison Interface}.
11235@end deffn
11236
11237@deffn {Directive} {%define implements} "@var{interfaces}"
11238The implemented interfaces of the parser class, a comma-separated list.
11239Default is none.
11240@xref{Java Bison Interface}.
11241@end deffn
11242
1979121c
DJ
11243@deffn {Directive} {%define init_throws} "@var{exceptions}"
11244The exceptions thrown by @code{%code init} from the parser class
11245constructor. Default is none.
11246@xref{Java Parser Interface}.
11247@end deffn
11248
e254a580
DJ
11249@deffn {Directive} {%define lex_throws} "@var{exceptions}"
11250The exceptions thrown by the @code{yylex} method of the lexer, a
11251comma-separated list. Default is @code{java.io.IOException}.
11252@xref{Java Scanner Interface}.
11253@end deffn
11254
11255@deffn {Directive} {%define location_type} "@var{class}"
11256The name of the class used for locations (a range between two
11257positions). This class is generated as an inner class of the parser
11258class by @command{bison}. Default is @code{Location}.
11259@xref{Java Location Values}.
11260@end deffn
11261
11262@deffn {Directive} {%define package} "@var{package}"
11263The package to put the parser class in. Default is none.
11264@xref{Java Bison Interface}.
11265@end deffn
11266
11267@deffn {Directive} {%define parser_class_name} "@var{name}"
11268The name of the parser class. Default is @code{YYParser} or
11269@code{@var{name-prefix}Parser}.
11270@xref{Java Bison Interface}.
11271@end deffn
11272
11273@deffn {Directive} {%define position_type} "@var{class}"
11274The name of the class used for positions. This class must be supplied by
11275the user. Default is @code{Position}.
11276@xref{Java Location Values}.
11277@end deffn
11278
11279@deffn {Directive} {%define public}
11280Whether the parser class is declared @code{public}. Default is false.
11281@xref{Java Bison Interface}.
11282@end deffn
11283
11284@deffn {Directive} {%define stype} "@var{class}"
11285The base type of semantic values. Default is @code{Object}.
11286@xref{Java Semantic Values}.
11287@end deffn
11288
11289@deffn {Directive} {%define strictfp}
11290Whether the parser class is declared @code{strictfp}. Default is false.
11291@xref{Java Bison Interface}.
11292@end deffn
11293
11294@deffn {Directive} {%define throws} "@var{exceptions}"
11295The exceptions thrown by user-supplied parser actions and
11296@code{%initial-action}, a comma-separated list. Default is none.
11297@xref{Java Parser Interface}.
11298@end deffn
11299
11300
12545799 11301@c ================================================= FAQ
d1a1114f
AD
11302
11303@node FAQ
11304@chapter Frequently Asked Questions
11305@cindex frequently asked questions
11306@cindex questions
11307
11308Several questions about Bison come up occasionally. Here some of them
11309are addressed.
11310
11311@menu
55ba27be
AD
11312* Memory Exhausted:: Breaking the Stack Limits
11313* How Can I Reset the Parser:: @code{yyparse} Keeps some State
11314* Strings are Destroyed:: @code{yylval} Loses Track of Strings
11315* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 11316* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 11317* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
11318* I can't build Bison:: Troubleshooting
11319* Where can I find help?:: Troubleshouting
11320* Bug Reports:: Troublereporting
8405b70c 11321* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
11322* Beta Testing:: Experimenting development versions
11323* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
11324@end menu
11325
1a059451
PE
11326@node Memory Exhausted
11327@section Memory Exhausted
d1a1114f 11328
71b52b13 11329@quotation
1a059451 11330My parser returns with error with a @samp{memory exhausted}
d1a1114f 11331message. What can I do?
71b52b13 11332@end quotation
d1a1114f 11333
188867ac
AD
11334This question is already addressed elsewhere, see @ref{Recursion, ,Recursive
11335Rules}.
d1a1114f 11336
e64fec0a
PE
11337@node How Can I Reset the Parser
11338@section How Can I Reset the Parser
5b066063 11339
0e14ad77
PE
11340The following phenomenon has several symptoms, resulting in the
11341following typical questions:
5b066063 11342
71b52b13 11343@quotation
5b066063
AD
11344I invoke @code{yyparse} several times, and on correct input it works
11345properly; but when a parse error is found, all the other calls fail
0e14ad77 11346too. How can I reset the error flag of @code{yyparse}?
71b52b13 11347@end quotation
5b066063
AD
11348
11349@noindent
11350or
11351
71b52b13 11352@quotation
0e14ad77 11353My parser includes support for an @samp{#include}-like feature, in
5b066063 11354which case I run @code{yyparse} from @code{yyparse}. This fails
67501061 11355although I did specify @samp{%define api.pure}.
71b52b13 11356@end quotation
5b066063 11357
0e14ad77
PE
11358These problems typically come not from Bison itself, but from
11359Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
11360speed, they might not notice a change of input file. As a
11361demonstration, consider the following source file,
11362@file{first-line.l}:
11363
d4fca427
AD
11364@example
11365@group
11366%@{
5b066063
AD
11367#include <stdio.h>
11368#include <stdlib.h>
d4fca427
AD
11369%@}
11370@end group
5b066063
AD
11371%%
11372.*\n ECHO; return 1;
11373%%
d4fca427 11374@group
5b066063 11375int
0e14ad77 11376yyparse (char const *file)
d4fca427 11377@{
5b066063
AD
11378 yyin = fopen (file, "r");
11379 if (!yyin)
d4fca427
AD
11380 @{
11381 perror ("fopen");
11382 exit (EXIT_FAILURE);
11383 @}
11384@end group
11385@group
fa7e68c3 11386 /* One token only. */
5b066063 11387 yylex ();
0e14ad77 11388 if (fclose (yyin) != 0)
d4fca427
AD
11389 @{
11390 perror ("fclose");
11391 exit (EXIT_FAILURE);
11392 @}
5b066063 11393 return 0;
d4fca427
AD
11394@}
11395@end group
5b066063 11396
d4fca427 11397@group
5b066063 11398int
0e14ad77 11399main (void)
d4fca427 11400@{
5b066063
AD
11401 yyparse ("input");
11402 yyparse ("input");
11403 return 0;
d4fca427
AD
11404@}
11405@end group
11406@end example
5b066063
AD
11407
11408@noindent
11409If the file @file{input} contains
11410
71b52b13 11411@example
5b066063
AD
11412input:1: Hello,
11413input:2: World!
71b52b13 11414@end example
5b066063
AD
11415
11416@noindent
0e14ad77 11417then instead of getting the first line twice, you get:
5b066063
AD
11418
11419@example
11420$ @kbd{flex -ofirst-line.c first-line.l}
11421$ @kbd{gcc -ofirst-line first-line.c -ll}
11422$ @kbd{./first-line}
11423input:1: Hello,
11424input:2: World!
11425@end example
11426
0e14ad77
PE
11427Therefore, whenever you change @code{yyin}, you must tell the
11428Lex-generated scanner to discard its current buffer and switch to the
11429new one. This depends upon your implementation of Lex; see its
11430documentation for more. For Flex, it suffices to call
11431@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
11432Flex-generated scanner needs to read from several input streams to
11433handle features like include files, you might consider using Flex
11434functions like @samp{yy_switch_to_buffer} that manipulate multiple
11435input buffers.
5b066063 11436
b165c324
AD
11437If your Flex-generated scanner uses start conditions (@pxref{Start
11438conditions, , Start conditions, flex, The Flex Manual}), you might
11439also want to reset the scanner's state, i.e., go back to the initial
11440start condition, through a call to @samp{BEGIN (0)}.
11441
fef4cb51
AD
11442@node Strings are Destroyed
11443@section Strings are Destroyed
11444
71b52b13 11445@quotation
c7e441b4 11446My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
11447them. Instead of reporting @samp{"foo", "bar"}, it reports
11448@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
71b52b13 11449@end quotation
fef4cb51
AD
11450
11451This error is probably the single most frequent ``bug report'' sent to
11452Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 11453of the scanner. Consider the following Lex code:
fef4cb51 11454
71b52b13 11455@example
d4fca427 11456@group
71b52b13 11457%@{
fef4cb51
AD
11458#include <stdio.h>
11459char *yylval = NULL;
71b52b13 11460%@}
d4fca427
AD
11461@end group
11462@group
fef4cb51
AD
11463%%
11464.* yylval = yytext; return 1;
11465\n /* IGNORE */
11466%%
d4fca427
AD
11467@end group
11468@group
fef4cb51
AD
11469int
11470main ()
71b52b13 11471@{
fa7e68c3 11472 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
11473 char *fst = (yylex (), yylval);
11474 char *snd = (yylex (), yylval);
11475 printf ("\"%s\", \"%s\"\n", fst, snd);
11476 return 0;
71b52b13 11477@}
d4fca427 11478@end group
71b52b13 11479@end example
fef4cb51
AD
11480
11481If you compile and run this code, you get:
11482
11483@example
11484$ @kbd{flex -osplit-lines.c split-lines.l}
11485$ @kbd{gcc -osplit-lines split-lines.c -ll}
11486$ @kbd{printf 'one\ntwo\n' | ./split-lines}
11487"one
11488two", "two"
11489@end example
11490
11491@noindent
11492this is because @code{yytext} is a buffer provided for @emph{reading}
11493in the action, but if you want to keep it, you have to duplicate it
11494(e.g., using @code{strdup}). Note that the output may depend on how
11495your implementation of Lex handles @code{yytext}. For instance, when
11496given the Lex compatibility option @option{-l} (which triggers the
11497option @samp{%array}) Flex generates a different behavior:
11498
11499@example
11500$ @kbd{flex -l -osplit-lines.c split-lines.l}
11501$ @kbd{gcc -osplit-lines split-lines.c -ll}
11502$ @kbd{printf 'one\ntwo\n' | ./split-lines}
11503"two", "two"
11504@end example
11505
11506
2fa09258
AD
11507@node Implementing Gotos/Loops
11508@section Implementing Gotos/Loops
a06ea4aa 11509
71b52b13 11510@quotation
a06ea4aa 11511My simple calculator supports variables, assignments, and functions,
2fa09258 11512but how can I implement gotos, or loops?
71b52b13 11513@end quotation
a06ea4aa
AD
11514
11515Although very pedagogical, the examples included in the document blur
a1c84f45 11516the distinction to make between the parser---whose job is to recover
a06ea4aa 11517the structure of a text and to transmit it to subsequent modules of
a1c84f45 11518the program---and the processing (such as the execution) of this
a06ea4aa
AD
11519structure. This works well with so called straight line programs,
11520i.e., precisely those that have a straightforward execution model:
11521execute simple instructions one after the others.
11522
11523@cindex abstract syntax tree
8a4281b9 11524@cindex AST
a06ea4aa
AD
11525If you want a richer model, you will probably need to use the parser
11526to construct a tree that does represent the structure it has
11527recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 11528or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
11529traversing it in various ways, will enable treatments such as its
11530execution or its translation, which will result in an interpreter or a
11531compiler.
11532
11533This topic is way beyond the scope of this manual, and the reader is
11534invited to consult the dedicated literature.
11535
11536
ed2e6384
AD
11537@node Multiple start-symbols
11538@section Multiple start-symbols
11539
71b52b13 11540@quotation
ed2e6384
AD
11541I have several closely related grammars, and I would like to share their
11542implementations. In fact, I could use a single grammar but with
11543multiple entry points.
71b52b13 11544@end quotation
ed2e6384
AD
11545
11546Bison does not support multiple start-symbols, but there is a very
11547simple means to simulate them. If @code{foo} and @code{bar} are the two
11548pseudo start-symbols, then introduce two new tokens, say
11549@code{START_FOO} and @code{START_BAR}, and use them as switches from the
11550real start-symbol:
11551
11552@example
11553%token START_FOO START_BAR;
11554%start start;
5e9b6624
AD
11555start:
11556 START_FOO foo
11557| START_BAR bar;
ed2e6384
AD
11558@end example
11559
11560These tokens prevents the introduction of new conflicts. As far as the
11561parser goes, that is all that is needed.
11562
11563Now the difficult part is ensuring that the scanner will send these
11564tokens first. If your scanner is hand-written, that should be
11565straightforward. If your scanner is generated by Lex, them there is
11566simple means to do it: recall that anything between @samp{%@{ ... %@}}
11567after the first @code{%%} is copied verbatim in the top of the generated
11568@code{yylex} function. Make sure a variable @code{start_token} is
11569available in the scanner (e.g., a global variable or using
11570@code{%lex-param} etc.), and use the following:
11571
11572@example
11573 /* @r{Prologue.} */
11574%%
11575%@{
11576 if (start_token)
11577 @{
11578 int t = start_token;
11579 start_token = 0;
11580 return t;
11581 @}
11582%@}
11583 /* @r{The rules.} */
11584@end example
11585
11586
55ba27be
AD
11587@node Secure? Conform?
11588@section Secure? Conform?
11589
71b52b13 11590@quotation
55ba27be 11591Is Bison secure? Does it conform to POSIX?
71b52b13 11592@end quotation
55ba27be
AD
11593
11594If you're looking for a guarantee or certification, we don't provide it.
11595However, Bison is intended to be a reliable program that conforms to the
8a4281b9 11596POSIX specification for Yacc. If you run into problems,
55ba27be
AD
11597please send us a bug report.
11598
11599@node I can't build Bison
11600@section I can't build Bison
11601
71b52b13 11602@quotation
8c5b881d
PE
11603I can't build Bison because @command{make} complains that
11604@code{msgfmt} is not found.
55ba27be 11605What should I do?
71b52b13 11606@end quotation
55ba27be
AD
11607
11608Like most GNU packages with internationalization support, that feature
11609is turned on by default. If you have problems building in the @file{po}
11610subdirectory, it indicates that your system's internationalization
11611support is lacking. You can re-configure Bison with
11612@option{--disable-nls} to turn off this support, or you can install GNU
11613gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
11614Bison. See the file @file{ABOUT-NLS} for more information.
11615
11616
11617@node Where can I find help?
11618@section Where can I find help?
11619
71b52b13 11620@quotation
55ba27be 11621I'm having trouble using Bison. Where can I find help?
71b52b13 11622@end quotation
55ba27be
AD
11623
11624First, read this fine manual. Beyond that, you can send mail to
11625@email{help-bison@@gnu.org}. This mailing list is intended to be
11626populated with people who are willing to answer questions about using
11627and installing Bison. Please keep in mind that (most of) the people on
11628the list have aspects of their lives which are not related to Bison (!),
11629so you may not receive an answer to your question right away. This can
11630be frustrating, but please try not to honk them off; remember that any
11631help they provide is purely voluntary and out of the kindness of their
11632hearts.
11633
11634@node Bug Reports
11635@section Bug Reports
11636
71b52b13 11637@quotation
55ba27be 11638I found a bug. What should I include in the bug report?
71b52b13 11639@end quotation
55ba27be
AD
11640
11641Before you send a bug report, make sure you are using the latest
11642version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
11643mirrors. Be sure to include the version number in your bug report. If
11644the bug is present in the latest version but not in a previous version,
11645try to determine the most recent version which did not contain the bug.
11646
11647If the bug is parser-related, you should include the smallest grammar
11648you can which demonstrates the bug. The grammar file should also be
11649complete (i.e., I should be able to run it through Bison without having
11650to edit or add anything). The smaller and simpler the grammar, the
11651easier it will be to fix the bug.
11652
11653Include information about your compilation environment, including your
11654operating system's name and version and your compiler's name and
11655version. If you have trouble compiling, you should also include a
11656transcript of the build session, starting with the invocation of
11657`configure'. Depending on the nature of the bug, you may be asked to
11658send additional files as well (such as `config.h' or `config.cache').
11659
11660Patches are most welcome, but not required. That is, do not hesitate to
411614fa 11661send a bug report just because you cannot provide a fix.
55ba27be
AD
11662
11663Send bug reports to @email{bug-bison@@gnu.org}.
11664
8405b70c
PB
11665@node More Languages
11666@section More Languages
55ba27be 11667
71b52b13 11668@quotation
8405b70c 11669Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 11670favorite language here}?
71b52b13 11671@end quotation
55ba27be 11672
8405b70c 11673C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
11674languages; contributions are welcome.
11675
11676@node Beta Testing
11677@section Beta Testing
11678
71b52b13 11679@quotation
55ba27be 11680What is involved in being a beta tester?
71b52b13 11681@end quotation
55ba27be
AD
11682
11683It's not terribly involved. Basically, you would download a test
11684release, compile it, and use it to build and run a parser or two. After
11685that, you would submit either a bug report or a message saying that
11686everything is okay. It is important to report successes as well as
11687failures because test releases eventually become mainstream releases,
11688but only if they are adequately tested. If no one tests, development is
11689essentially halted.
11690
11691Beta testers are particularly needed for operating systems to which the
11692developers do not have easy access. They currently have easy access to
11693recent GNU/Linux and Solaris versions. Reports about other operating
11694systems are especially welcome.
11695
11696@node Mailing Lists
11697@section Mailing Lists
11698
71b52b13 11699@quotation
55ba27be 11700How do I join the help-bison and bug-bison mailing lists?
71b52b13 11701@end quotation
55ba27be
AD
11702
11703See @url{http://lists.gnu.org/}.
a06ea4aa 11704
d1a1114f
AD
11705@c ================================================= Table of Symbols
11706
342b8b6e 11707@node Table of Symbols
bfa74976
RS
11708@appendix Bison Symbols
11709@cindex Bison symbols, table of
11710@cindex symbols in Bison, table of
11711
18b519c0 11712@deffn {Variable} @@$
3ded9a63 11713In an action, the location of the left-hand side of the rule.
303834cc 11714@xref{Tracking Locations}.
18b519c0 11715@end deffn
3ded9a63 11716
18b519c0 11717@deffn {Variable} @@@var{n}
303834cc
JD
11718In an action, the location of the @var{n}-th symbol of the right-hand side
11719of the rule. @xref{Tracking Locations}.
18b519c0 11720@end deffn
3ded9a63 11721
d013372c 11722@deffn {Variable} @@@var{name}
303834cc
JD
11723In an action, the location of a symbol addressed by name. @xref{Tracking
11724Locations}.
d013372c
AR
11725@end deffn
11726
11727@deffn {Variable} @@[@var{name}]
303834cc
JD
11728In an action, the location of a symbol addressed by name. @xref{Tracking
11729Locations}.
d013372c
AR
11730@end deffn
11731
18b519c0 11732@deffn {Variable} $$
3ded9a63
AD
11733In an action, the semantic value of the left-hand side of the rule.
11734@xref{Actions}.
18b519c0 11735@end deffn
3ded9a63 11736
18b519c0 11737@deffn {Variable} $@var{n}
3ded9a63
AD
11738In an action, the semantic value of the @var{n}-th symbol of the
11739right-hand side of the rule. @xref{Actions}.
18b519c0 11740@end deffn
3ded9a63 11741
d013372c
AR
11742@deffn {Variable} $@var{name}
11743In an action, the semantic value of a symbol addressed by name.
11744@xref{Actions}.
11745@end deffn
11746
11747@deffn {Variable} $[@var{name}]
11748In an action, the semantic value of a symbol addressed by name.
11749@xref{Actions}.
11750@end deffn
11751
dd8d9022
AD
11752@deffn {Delimiter} %%
11753Delimiter used to separate the grammar rule section from the
11754Bison declarations section or the epilogue.
11755@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 11756@end deffn
bfa74976 11757
dd8d9022
AD
11758@c Don't insert spaces, or check the DVI output.
11759@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
11760All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
11761to the parser implementation file. Such code forms the prologue of
11762the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 11763Grammar}.
18b519c0 11764@end deffn
bfa74976 11765
ca2a6d15
PH
11766@deffn {Directive} %?@{@var{expression}@}
11767Predicate actions. This is a type of action clause that may appear in
11768rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 11769GLR parsers during nondeterministic operation,
ca2a6d15
PH
11770this silently causes an alternative parse to die. During deterministic
11771operation, it is the same as the effect of YYERROR.
11772@xref{Semantic Predicates}.
11773
11774This feature is experimental.
11775More user feedback will help to determine whether it should become a permanent
11776feature.
11777@end deffn
11778
dd8d9022
AD
11779@deffn {Construct} /*@dots{}*/
11780Comment delimiters, as in C.
18b519c0 11781@end deffn
bfa74976 11782
dd8d9022
AD
11783@deffn {Delimiter} :
11784Separates a rule's result from its components. @xref{Rules, ,Syntax of
11785Grammar Rules}.
18b519c0 11786@end deffn
bfa74976 11787
dd8d9022
AD
11788@deffn {Delimiter} ;
11789Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11790@end deffn
bfa74976 11791
dd8d9022
AD
11792@deffn {Delimiter} |
11793Separates alternate rules for the same result nonterminal.
11794@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11795@end deffn
bfa74976 11796
12e35840
JD
11797@deffn {Directive} <*>
11798Used to define a default tagged @code{%destructor} or default tagged
11799@code{%printer}.
85894313
JD
11800
11801This feature is experimental.
11802More user feedback will help to determine whether it should become a permanent
11803feature.
11804
12e35840
JD
11805@xref{Destructor Decl, , Freeing Discarded Symbols}.
11806@end deffn
11807
3ebecc24 11808@deffn {Directive} <>
12e35840
JD
11809Used to define a default tagless @code{%destructor} or default tagless
11810@code{%printer}.
85894313
JD
11811
11812This feature is experimental.
11813More user feedback will help to determine whether it should become a permanent
11814feature.
11815
12e35840
JD
11816@xref{Destructor Decl, , Freeing Discarded Symbols}.
11817@end deffn
11818
dd8d9022
AD
11819@deffn {Symbol} $accept
11820The predefined nonterminal whose only rule is @samp{$accept: @var{start}
11821$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
11822Start-Symbol}. It cannot be used in the grammar.
18b519c0 11823@end deffn
bfa74976 11824
136a0f76 11825@deffn {Directive} %code @{@var{code}@}
148d66d8 11826@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
51151d91
JD
11827Insert @var{code} verbatim into the output parser source at the
11828default location or at the location specified by @var{qualifier}.
e0c07222 11829@xref{%code Summary}.
9bc0dd67
JD
11830@end deffn
11831
11832@deffn {Directive} %debug
11833Equip the parser for debugging. @xref{Decl Summary}.
11834@end deffn
11835
91d2c560 11836@ifset defaultprec
22fccf95
PE
11837@deffn {Directive} %default-prec
11838Assign a precedence to rules that lack an explicit @samp{%prec}
11839modifier. @xref{Contextual Precedence, ,Context-Dependent
11840Precedence}.
39a06c25 11841@end deffn
91d2c560 11842@end ifset
39a06c25 11843
7fceb615
JD
11844@deffn {Directive} %define @var{variable}
11845@deffnx {Directive} %define @var{variable} @var{value}
11846@deffnx {Directive} %define @var{variable} "@var{value}"
35c1e5f0 11847Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
11848@end deffn
11849
18b519c0 11850@deffn {Directive} %defines
ff7571c0
JD
11851Bison declaration to create a parser header file, which is usually
11852meant for the scanner. @xref{Decl Summary}.
18b519c0 11853@end deffn
6deb4447 11854
02975b9a
JD
11855@deffn {Directive} %defines @var{defines-file}
11856Same as above, but save in the file @var{defines-file}.
11857@xref{Decl Summary}.
11858@end deffn
11859
18b519c0 11860@deffn {Directive} %destructor
258b75ca 11861Specify how the parser should reclaim the memory associated to
fa7e68c3 11862discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 11863@end deffn
72f889cc 11864
18b519c0 11865@deffn {Directive} %dprec
676385e2 11866Bison declaration to assign a precedence to a rule that is used at parse
c827f760 11867time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 11868GLR Parsers}.
18b519c0 11869@end deffn
676385e2 11870
dd8d9022
AD
11871@deffn {Symbol} $end
11872The predefined token marking the end of the token stream. It cannot be
11873used in the grammar.
11874@end deffn
11875
11876@deffn {Symbol} error
11877A token name reserved for error recovery. This token may be used in
11878grammar rules so as to allow the Bison parser to recognize an error in
11879the grammar without halting the process. In effect, a sentence
11880containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
11881token @code{error} becomes the current lookahead token. Actions
11882corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
11883token is reset to the token that originally caused the violation.
11884@xref{Error Recovery}.
18d192f0
AD
11885@end deffn
11886
18b519c0 11887@deffn {Directive} %error-verbose
7fceb615
JD
11888An obsolete directive standing for @samp{%define parse.error verbose}
11889(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
18b519c0 11890@end deffn
2a8d363a 11891
02975b9a 11892@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 11893Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 11894Summary}.
18b519c0 11895@end deffn
d8988b2f 11896
18b519c0 11897@deffn {Directive} %glr-parser
8a4281b9
JD
11898Bison declaration to produce a GLR parser. @xref{GLR
11899Parsers, ,Writing GLR Parsers}.
18b519c0 11900@end deffn
676385e2 11901
dd8d9022
AD
11902@deffn {Directive} %initial-action
11903Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
11904@end deffn
11905
e6e704dc
JD
11906@deffn {Directive} %language
11907Specify the programming language for the generated parser.
11908@xref{Decl Summary}.
11909@end deffn
11910
18b519c0 11911@deffn {Directive} %left
d78f0ac9 11912Bison declaration to assign precedence and left associativity to token(s).
bfa74976 11913@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11914@end deffn
bfa74976 11915
2055a44e
AD
11916@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
11917Bison declaration to specifying additional arguments that
2a8d363a
AD
11918@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
11919for Pure Parsers}.
18b519c0 11920@end deffn
2a8d363a 11921
18b519c0 11922@deffn {Directive} %merge
676385e2 11923Bison declaration to assign a merging function to a rule. If there is a
fae437e8 11924reduce/reduce conflict with a rule having the same merging function, the
676385e2 11925function is applied to the two semantic values to get a single result.
8a4281b9 11926@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 11927@end deffn
676385e2 11928
02975b9a 11929@deffn {Directive} %name-prefix "@var{prefix}"
4b3847c3
AD
11930Obsoleted by the @code{%define} variable @code{api.prefix} (@pxref{Multiple
11931Parsers, ,Multiple Parsers in the Same Program}).
11932
11933Rename the external symbols (variables and functions) used in the parser so
11934that they start with @var{prefix} instead of @samp{yy}. Contrary to
11935@code{api.prefix}, do no rename types and macros.
11936
11937The precise list of symbols renamed in C parsers is @code{yyparse},
11938@code{yylex}, @code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yychar},
11939@code{yydebug}, and (if locations are used) @code{yylloc}. If you use a
11940push parser, @code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
11941@code{yypstate_new} and @code{yypstate_delete} will also be renamed. For
11942example, if you use @samp{%name-prefix "c_"}, the names become
11943@code{c_parse}, @code{c_lex}, and so on. For C++ parsers, see the
11944@code{%define namespace} documentation in this section.
18b519c0 11945@end deffn
d8988b2f 11946
4b3847c3 11947
91d2c560 11948@ifset defaultprec
22fccf95
PE
11949@deffn {Directive} %no-default-prec
11950Do not assign a precedence to rules that lack an explicit @samp{%prec}
11951modifier. @xref{Contextual Precedence, ,Context-Dependent
11952Precedence}.
11953@end deffn
91d2c560 11954@end ifset
22fccf95 11955
18b519c0 11956@deffn {Directive} %no-lines
931c7513 11957Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 11958parser implementation file. @xref{Decl Summary}.
18b519c0 11959@end deffn
931c7513 11960
18b519c0 11961@deffn {Directive} %nonassoc
d78f0ac9 11962Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 11963@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11964@end deffn
bfa74976 11965
02975b9a 11966@deffn {Directive} %output "@var{file}"
ff7571c0
JD
11967Bison declaration to set the name of the parser implementation file.
11968@xref{Decl Summary}.
18b519c0 11969@end deffn
d8988b2f 11970
2055a44e
AD
11971@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
11972Bison declaration to specify additional arguments that both
11973@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
11974Parser Function @code{yyparse}}.
11975@end deffn
11976
11977@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
11978Bison declaration to specify additional arguments that @code{yyparse}
11979should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 11980@end deffn
2a8d363a 11981
18b519c0 11982@deffn {Directive} %prec
bfa74976
RS
11983Bison declaration to assign a precedence to a specific rule.
11984@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 11985@end deffn
bfa74976 11986
d78f0ac9
AD
11987@deffn {Directive} %precedence
11988Bison declaration to assign precedence to token(s), but no associativity
11989@xref{Precedence Decl, ,Operator Precedence}.
11990@end deffn
11991
18b519c0 11992@deffn {Directive} %pure-parser
35c1e5f0
JD
11993Deprecated version of @samp{%define api.pure} (@pxref{%define
11994Summary,,api.pure}), for which Bison is more careful to warn about
11995unreasonable usage.
18b519c0 11996@end deffn
bfa74976 11997
b50d2359 11998@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
11999Require version @var{version} or higher of Bison. @xref{Require Decl, ,
12000Require a Version of Bison}.
b50d2359
AD
12001@end deffn
12002
18b519c0 12003@deffn {Directive} %right
d78f0ac9 12004Bison declaration to assign precedence and right associativity to token(s).
bfa74976 12005@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12006@end deffn
bfa74976 12007
e6e704dc
JD
12008@deffn {Directive} %skeleton
12009Specify the skeleton to use; usually for development.
12010@xref{Decl Summary}.
12011@end deffn
12012
18b519c0 12013@deffn {Directive} %start
704a47c4
AD
12014Bison declaration to specify the start symbol. @xref{Start Decl, ,The
12015Start-Symbol}.
18b519c0 12016@end deffn
bfa74976 12017
18b519c0 12018@deffn {Directive} %token
bfa74976
RS
12019Bison declaration to declare token(s) without specifying precedence.
12020@xref{Token Decl, ,Token Type Names}.
18b519c0 12021@end deffn
bfa74976 12022
18b519c0 12023@deffn {Directive} %token-table
ff7571c0
JD
12024Bison declaration to include a token name table in the parser
12025implementation file. @xref{Decl Summary}.
18b519c0 12026@end deffn
931c7513 12027
18b519c0 12028@deffn {Directive} %type
704a47c4
AD
12029Bison declaration to declare nonterminals. @xref{Type Decl,
12030,Nonterminal Symbols}.
18b519c0 12031@end deffn
bfa74976 12032
dd8d9022
AD
12033@deffn {Symbol} $undefined
12034The predefined token onto which all undefined values returned by
12035@code{yylex} are mapped. It cannot be used in the grammar, rather, use
12036@code{error}.
12037@end deffn
12038
18b519c0 12039@deffn {Directive} %union
bfa74976
RS
12040Bison declaration to specify several possible data types for semantic
12041values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 12042@end deffn
bfa74976 12043
dd8d9022
AD
12044@deffn {Macro} YYABORT
12045Macro to pretend that an unrecoverable syntax error has occurred, by
12046making @code{yyparse} return 1 immediately. The error reporting
12047function @code{yyerror} is not called. @xref{Parser Function, ,The
12048Parser Function @code{yyparse}}.
8405b70c
PB
12049
12050For Java parsers, this functionality is invoked using @code{return YYABORT;}
12051instead.
dd8d9022 12052@end deffn
3ded9a63 12053
dd8d9022
AD
12054@deffn {Macro} YYACCEPT
12055Macro to pretend that a complete utterance of the language has been
12056read, by making @code{yyparse} return 0 immediately.
12057@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
12058
12059For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
12060instead.
dd8d9022 12061@end deffn
bfa74976 12062
dd8d9022 12063@deffn {Macro} YYBACKUP
742e4900 12064Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 12065token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 12066@end deffn
bfa74976 12067
dd8d9022 12068@deffn {Variable} yychar
32c29292 12069External integer variable that contains the integer value of the
742e4900 12070lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
12071@code{yyparse}.) Error-recovery rule actions may examine this variable.
12072@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 12073@end deffn
bfa74976 12074
dd8d9022
AD
12075@deffn {Variable} yyclearin
12076Macro used in error-recovery rule actions. It clears the previous
742e4900 12077lookahead token. @xref{Error Recovery}.
18b519c0 12078@end deffn
bfa74976 12079
dd8d9022
AD
12080@deffn {Macro} YYDEBUG
12081Macro to define to equip the parser with tracing code. @xref{Tracing,
12082,Tracing Your Parser}.
18b519c0 12083@end deffn
bfa74976 12084
dd8d9022
AD
12085@deffn {Variable} yydebug
12086External integer variable set to zero by default. If @code{yydebug}
12087is given a nonzero value, the parser will output information on input
12088symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 12089@end deffn
bfa74976 12090
dd8d9022
AD
12091@deffn {Macro} yyerrok
12092Macro to cause parser to recover immediately to its normal mode
12093after a syntax error. @xref{Error Recovery}.
12094@end deffn
12095
12096@deffn {Macro} YYERROR
4a11b852
AD
12097Cause an immediate syntax error. This statement initiates error
12098recovery just as if the parser itself had detected an error; however, it
12099does not call @code{yyerror}, and does not print any message. If you
12100want to print an error message, call @code{yyerror} explicitly before
12101the @samp{YYERROR;} statement. @xref{Error Recovery}.
8405b70c
PB
12102
12103For Java parsers, this functionality is invoked using @code{return YYERROR;}
12104instead.
dd8d9022
AD
12105@end deffn
12106
12107@deffn {Function} yyerror
12108User-supplied function to be called by @code{yyparse} on error.
71b00ed8 12109@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
12110@end deffn
12111
12112@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
12113An obsolete macro used in the @file{yacc.c} skeleton, that you define
12114with @code{#define} in the prologue to request verbose, specific error
12115message strings when @code{yyerror} is called. It doesn't matter what
12116definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 12117it. Using @samp{%define parse.error verbose} is preferred
31b850d2 12118(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
12119@end deffn
12120
93c150b6
AD
12121@deffn {Macro} YYFPRINTF
12122Macro used to output run-time traces.
12123@xref{Enabling Traces}.
12124@end deffn
12125
dd8d9022
AD
12126@deffn {Macro} YYINITDEPTH
12127Macro for specifying the initial size of the parser stack.
1a059451 12128@xref{Memory Management}.
dd8d9022
AD
12129@end deffn
12130
12131@deffn {Function} yylex
12132User-supplied lexical analyzer function, called with no arguments to get
12133the next token. @xref{Lexical, ,The Lexical Analyzer Function
12134@code{yylex}}.
12135@end deffn
12136
12137@deffn {Macro} YYLEX_PARAM
12138An obsolete macro for specifying an extra argument (or list of extra
32c29292 12139arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
12140macro is deprecated, and is supported only for Yacc like parsers.
12141@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
12142@end deffn
12143
12144@deffn {Variable} yylloc
12145External variable in which @code{yylex} should place the line and column
12146numbers associated with a token. (In a pure parser, it is a local
12147variable within @code{yyparse}, and its address is passed to
32c29292
JD
12148@code{yylex}.)
12149You can ignore this variable if you don't use the @samp{@@} feature in the
12150grammar actions.
12151@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 12152In semantic actions, it stores the location of the lookahead token.
32c29292 12153@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
12154@end deffn
12155
12156@deffn {Type} YYLTYPE
12157Data type of @code{yylloc}; by default, a structure with four
12158members. @xref{Location Type, , Data Types of Locations}.
12159@end deffn
12160
12161@deffn {Variable} yylval
12162External variable in which @code{yylex} should place the semantic
12163value associated with a token. (In a pure parser, it is a local
12164variable within @code{yyparse}, and its address is passed to
32c29292
JD
12165@code{yylex}.)
12166@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 12167In semantic actions, it stores the semantic value of the lookahead token.
32c29292 12168@xref{Actions, ,Actions}.
dd8d9022
AD
12169@end deffn
12170
12171@deffn {Macro} YYMAXDEPTH
1a059451
PE
12172Macro for specifying the maximum size of the parser stack. @xref{Memory
12173Management}.
dd8d9022
AD
12174@end deffn
12175
12176@deffn {Variable} yynerrs
8a2800e7 12177Global variable which Bison increments each time it reports a syntax error.
f4101aa6 12178(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 12179pure push parser, it is a member of yypstate.)
dd8d9022
AD
12180@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
12181@end deffn
12182
12183@deffn {Function} yyparse
12184The parser function produced by Bison; call this function to start
12185parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
12186@end deffn
12187
93c150b6
AD
12188@deffn {Macro} YYPRINT
12189Macro used to output token semantic values. For @file{yacc.c} only.
12190Obsoleted by @code{%printer}.
12191@xref{The YYPRINT Macro, , The @code{YYPRINT} Macro}.
12192@end deffn
12193
9987d1b3 12194@deffn {Function} yypstate_delete
f4101aa6 12195The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 12196call this function to delete the memory associated with a parser.
f4101aa6 12197@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 12198@code{yypstate_delete}}.
59da312b
JD
12199(The current push parsing interface is experimental and may evolve.
12200More user feedback will help to stabilize it.)
9987d1b3
JD
12201@end deffn
12202
12203@deffn {Function} yypstate_new
f4101aa6 12204The function to create a parser instance, produced by Bison in push mode;
9987d1b3 12205call this function to create a new parser.
f4101aa6 12206@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 12207@code{yypstate_new}}.
59da312b
JD
12208(The current push parsing interface is experimental and may evolve.
12209More user feedback will help to stabilize it.)
9987d1b3
JD
12210@end deffn
12211
12212@deffn {Function} yypull_parse
f4101aa6
AD
12213The parser function produced by Bison in push mode; call this function to
12214parse the rest of the input stream.
12215@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 12216@code{yypull_parse}}.
59da312b
JD
12217(The current push parsing interface is experimental and may evolve.
12218More user feedback will help to stabilize it.)
9987d1b3
JD
12219@end deffn
12220
12221@deffn {Function} yypush_parse
f4101aa6
AD
12222The parser function produced by Bison in push mode; call this function to
12223parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 12224@code{yypush_parse}}.
59da312b
JD
12225(The current push parsing interface is experimental and may evolve.
12226More user feedback will help to stabilize it.)
9987d1b3
JD
12227@end deffn
12228
dd8d9022 12229@deffn {Macro} YYRECOVERING
02103984
PE
12230The expression @code{YYRECOVERING ()} yields 1 when the parser
12231is recovering from a syntax error, and 0 otherwise.
12232@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
12233@end deffn
12234
12235@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
12236Macro used to control the use of @code{alloca} when the
12237deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
12238the parser will use @code{malloc} to extend its stacks. If defined to
122391, the parser will use @code{alloca}. Values other than 0 and 1 are
12240reserved for future Bison extensions. If not defined,
12241@code{YYSTACK_USE_ALLOCA} defaults to 0.
12242
55289366 12243In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
12244limited stack and with unreliable stack-overflow checking, you should
12245set @code{YYMAXDEPTH} to a value that cannot possibly result in
12246unchecked stack overflow on any of your target hosts when
12247@code{alloca} is called. You can inspect the code that Bison
12248generates in order to determine the proper numeric values. This will
12249require some expertise in low-level implementation details.
dd8d9022
AD
12250@end deffn
12251
12252@deffn {Type} YYSTYPE
12253Data type of semantic values; @code{int} by default.
12254@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 12255@end deffn
bfa74976 12256
342b8b6e 12257@node Glossary
bfa74976
RS
12258@appendix Glossary
12259@cindex glossary
12260
12261@table @asis
7fceb615 12262@item Accepting state
eb45ef3b
JD
12263A state whose only action is the accept action.
12264The accepting state is thus a consistent state.
12265@xref{Understanding,,}.
12266
8a4281b9 12267@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
12268Formal method of specifying context-free grammars originally proposed
12269by John Backus, and slightly improved by Peter Naur in his 1960-01-02
12270committee document contributing to what became the Algol 60 report.
12271@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 12272
7fceb615
JD
12273@item Consistent state
12274A state containing only one possible action. @xref{Default Reductions}.
eb45ef3b 12275
bfa74976
RS
12276@item Context-free grammars
12277Grammars specified as rules that can be applied regardless of context.
12278Thus, if there is a rule which says that an integer can be used as an
12279expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
12280permitted. @xref{Language and Grammar, ,Languages and Context-Free
12281Grammars}.
bfa74976 12282
7fceb615 12283@item Default reduction
110ef36a 12284The reduction that a parser should perform if the current parser state
35c1e5f0 12285contains no other action for the lookahead token. In permitted parser
7fceb615
JD
12286states, Bison declares the reduction with the largest lookahead set to be
12287the default reduction and removes that lookahead set. @xref{Default
12288Reductions}.
12289
12290@item Defaulted state
12291A consistent state with a default reduction. @xref{Default Reductions}.
eb45ef3b 12292
bfa74976
RS
12293@item Dynamic allocation
12294Allocation of memory that occurs during execution, rather than at
12295compile time or on entry to a function.
12296
12297@item Empty string
12298Analogous to the empty set in set theory, the empty string is a
12299character string of length zero.
12300
12301@item Finite-state stack machine
12302A ``machine'' that has discrete states in which it is said to exist at
12303each instant in time. As input to the machine is processed, the
12304machine moves from state to state as specified by the logic of the
12305machine. In the case of the parser, the input is the language being
12306parsed, and the states correspond to various stages in the grammar
c827f760 12307rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 12308
8a4281b9 12309@item Generalized LR (GLR)
676385e2 12310A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 12311that are not LR(1). It resolves situations that Bison's
eb45ef3b 12312deterministic parsing
676385e2
PH
12313algorithm cannot by effectively splitting off multiple parsers, trying all
12314possible parsers, and discarding those that fail in the light of additional
c827f760 12315right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 12316LR Parsing}.
676385e2 12317
bfa74976
RS
12318@item Grouping
12319A language construct that is (in general) grammatically divisible;
c827f760 12320for example, `expression' or `declaration' in C@.
bfa74976
RS
12321@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
12322
7fceb615
JD
12323@item IELR(1) (Inadequacy Elimination LR(1))
12324A minimal LR(1) parser table construction algorithm. That is, given any
35c1e5f0 12325context-free grammar, IELR(1) generates parser tables with the full
7fceb615
JD
12326language-recognition power of canonical LR(1) but with nearly the same
12327number of parser states as LALR(1). This reduction in parser states is
12328often an order of magnitude. More importantly, because canonical LR(1)'s
12329extra parser states may contain duplicate conflicts in the case of non-LR(1)
12330grammars, the number of conflicts for IELR(1) is often an order of magnitude
12331less as well. This can significantly reduce the complexity of developing a
12332grammar. @xref{LR Table Construction}.
eb45ef3b 12333
bfa74976
RS
12334@item Infix operator
12335An arithmetic operator that is placed between the operands on which it
12336performs some operation.
12337
12338@item Input stream
12339A continuous flow of data between devices or programs.
12340
8a4281b9 12341@item LAC (Lookahead Correction)
fcf834f9 12342A parsing mechanism that fixes the problem of delayed syntax error
7fceb615
JD
12343detection, which is caused by LR state merging, default reductions, and the
12344use of @code{%nonassoc}. Delayed syntax error detection results in
12345unexpected semantic actions, initiation of error recovery in the wrong
12346syntactic context, and an incorrect list of expected tokens in a verbose
12347syntax error message. @xref{LAC}.
fcf834f9 12348
bfa74976
RS
12349@item Language construct
12350One of the typical usage schemas of the language. For example, one of
12351the constructs of the C language is the @code{if} statement.
12352@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
12353
12354@item Left associativity
12355Operators having left associativity are analyzed from left to right:
12356@samp{a+b+c} first computes @samp{a+b} and then combines with
12357@samp{c}. @xref{Precedence, ,Operator Precedence}.
12358
12359@item Left recursion
89cab50d
AD
12360A rule whose result symbol is also its first component symbol; for
12361example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
12362Rules}.
bfa74976
RS
12363
12364@item Left-to-right parsing
12365Parsing a sentence of a language by analyzing it token by token from
c827f760 12366left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
12367
12368@item Lexical analyzer (scanner)
12369A function that reads an input stream and returns tokens one by one.
12370@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
12371
12372@item Lexical tie-in
12373A flag, set by actions in the grammar rules, which alters the way
12374tokens are parsed. @xref{Lexical Tie-ins}.
12375
931c7513 12376@item Literal string token
14ded682 12377A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 12378
742e4900
JD
12379@item Lookahead token
12380A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 12381Tokens}.
bfa74976 12382
8a4281b9 12383@item LALR(1)
bfa74976 12384The class of context-free grammars that Bison (like most other parser
8a4281b9 12385generators) can handle by default; a subset of LR(1).
cc09e5be 12386@xref{Mysterious Conflicts}.
bfa74976 12387
8a4281b9 12388@item LR(1)
bfa74976 12389The class of context-free grammars in which at most one token of
742e4900 12390lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
12391
12392@item Nonterminal symbol
12393A grammar symbol standing for a grammatical construct that can
12394be expressed through rules in terms of smaller constructs; in other
12395words, a construct that is not a token. @xref{Symbols}.
12396
bfa74976
RS
12397@item Parser
12398A function that recognizes valid sentences of a language by analyzing
12399the syntax structure of a set of tokens passed to it from a lexical
12400analyzer.
12401
12402@item Postfix operator
12403An arithmetic operator that is placed after the operands upon which it
12404performs some operation.
12405
12406@item Reduction
12407Replacing a string of nonterminals and/or terminals with a single
89cab50d 12408nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 12409Parser Algorithm}.
bfa74976
RS
12410
12411@item Reentrant
12412A reentrant subprogram is a subprogram which can be in invoked any
12413number of times in parallel, without interference between the various
12414invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
12415
12416@item Reverse polish notation
12417A language in which all operators are postfix operators.
12418
12419@item Right recursion
89cab50d
AD
12420A rule whose result symbol is also its last component symbol; for
12421example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
12422Rules}.
bfa74976
RS
12423
12424@item Semantics
12425In computer languages, the semantics are specified by the actions
12426taken for each instance of the language, i.e., the meaning of
12427each statement. @xref{Semantics, ,Defining Language Semantics}.
12428
12429@item Shift
12430A parser is said to shift when it makes the choice of analyzing
12431further input from the stream rather than reducing immediately some
c827f760 12432already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
12433
12434@item Single-character literal
12435A single character that is recognized and interpreted as is.
12436@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
12437
12438@item Start symbol
12439The nonterminal symbol that stands for a complete valid utterance in
12440the language being parsed. The start symbol is usually listed as the
13863333 12441first nonterminal symbol in a language specification.
bfa74976
RS
12442@xref{Start Decl, ,The Start-Symbol}.
12443
12444@item Symbol table
12445A data structure where symbol names and associated data are stored
12446during parsing to allow for recognition and use of existing
12447information in repeated uses of a symbol. @xref{Multi-function Calc}.
12448
6e649e65
PE
12449@item Syntax error
12450An error encountered during parsing of an input stream due to invalid
12451syntax. @xref{Error Recovery}.
12452
bfa74976
RS
12453@item Token
12454A basic, grammatically indivisible unit of a language. The symbol
12455that describes a token in the grammar is a terminal symbol.
12456The input of the Bison parser is a stream of tokens which comes from
12457the lexical analyzer. @xref{Symbols}.
12458
12459@item Terminal symbol
89cab50d
AD
12460A grammar symbol that has no rules in the grammar and therefore is
12461grammatically indivisible. The piece of text it represents is a token.
12462@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7fceb615
JD
12463
12464@item Unreachable state
12465A parser state to which there does not exist a sequence of transitions from
12466the parser's start state. A state can become unreachable during conflict
12467resolution. @xref{Unreachable States}.
bfa74976
RS
12468@end table
12469
342b8b6e 12470@node Copying This Manual
f2b5126e 12471@appendix Copying This Manual
f2b5126e
PB
12472@include fdl.texi
12473
5e528941
JD
12474@node Bibliography
12475@unnumbered Bibliography
12476
12477@table @asis
12478@item [Denny 2008]
12479Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
12480for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
124812008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
12482pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
12483
12484@item [Denny 2010 May]
12485Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
12486Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
12487University, Clemson, SC, USA (May 2010).
12488@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
12489
12490@item [Denny 2010 November]
12491Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
12492Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
12493in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
124942010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
12495
12496@item [DeRemer 1982]
12497Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
12498Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
12499Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
12500615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
12501
12502@item [Knuth 1965]
12503Donald E. Knuth, On the Translation of Languages from Left to Right, in
12504@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
12505607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
12506
12507@item [Scott 2000]
12508Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
12509@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
12510London, Department of Computer Science, TR-00-12 (December 2000).
12511@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
12512@end table
12513
f9b86351
AD
12514@node Index of Terms
12515@unnumbered Index of Terms
bfa74976
RS
12516
12517@printindex cp
12518
bfa74976 12519@bye
a06ea4aa 12520
6b5a0de9
AD
12521@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
12522@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
12523@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
12524@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
12525@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
12526@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
12527@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
12528@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
12529@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
12530@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
12531@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
12532@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
12533@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
5a321748 12534@c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum IEC syntaxes
6b5a0de9
AD
12535@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
12536@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
12537@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
12538@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
12539@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
12540@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
12541@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
12542@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
12543@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
5a321748 12544@c LocalWords: YYINITDEPTH stmts ref initdcl maybeasm notype Lookahead yyoutput
6b5a0de9
AD
12545@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
12546@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
12547@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
12548@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
12549@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 12550@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
5a321748
AD
12551@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs sr
12552@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC nterm LR's
6b5a0de9 12553@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
5a321748 12554@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative Ph
6b5a0de9
AD
12555@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
12556@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
12557@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
5a321748 12558@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz ACM
6b5a0de9 12559@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
5a321748 12560@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno filename
6b5a0de9
AD
12561@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
12562@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
12563@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
12564@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
5a321748 12565@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc PSLR
6b5a0de9
AD
12566@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
12567@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
12568@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
12569@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
5a05f42e 12570@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos uint
5a321748 12571@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett LALR's
5a05f42e
AD
12572@c LocalWords: subdirectory Solaris nonassociativity perror schemas Malloy ints
12573@c LocalWords: Scannerless ispell american ChangeLog smallexample CSTYPE CLTYPE
12574@c LocalWords: clval CDEBUG cdebug deftypeopx yyterminate
e944aaff
AD
12575
12576@c Local Variables:
12577@c ispell-dictionary: "american"
12578@c fill-column: 76
12579@c End: