]> git.saurik.com Git - bison.git/blame - doc/bison.texi
doc: introduce %empty and -Wempty-rule
[bison.git] / doc / bison.texi
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
7d6bad19 36Copyright @copyright{} 1988-1993, 1995, 1998-2013 Free Software
575619af 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 106* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
5e528941 112* Bibliography:: Publications cited in this manual.
f9b86351 113* Index of Terms:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 128* Locations:: Overview of location tracking.
f5f419de
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
8a4281b9 134Writing GLR Parsers
fa7e68c3 135
8a4281b9
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 140* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
24ec0837
AD
166* Rpcalc Input:: Explanation of the @code{input} nonterminal
167* Rpcalc Line:: Explanation of the @code{line} nonterminal
168* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
181* Mfcalc Lexer:: The lexical analyzer.
182* Mfcalc Main:: The controlling function.
bfa74976
RS
183
184Bison Grammar Files
185
303834cc
JD
186* Grammar Outline:: Overall layout of the grammar file.
187* Symbols:: Terminal and nonterminal symbols.
188* Rules:: How to write grammar rules.
303834cc
JD
189* Semantics:: Semantic values and actions.
190* Tracking Locations:: Locations and actions.
191* Named References:: Using named references in actions.
192* Declarations:: All kinds of Bison declarations are described here.
193* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
194
195Outline of a Bison Grammar
196
f5f419de 197* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 198* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
199* Bison Declarations:: Syntax and usage of the Bison declarations section.
200* Grammar Rules:: Syntax and usage of the grammar rules section.
201* Epilogue:: Syntax and usage of the epilogue.
bfa74976 202
09add9c2
AD
203Grammar Rules
204
205* Rules Syntax:: Syntax of the rules.
206* Empty Rules:: Symbols that can match the empty string.
207* Recursion:: Writing recursive rules.
208
209
bfa74976
RS
210Defining Language Semantics
211
212* Value Type:: Specifying one data type for all semantic values.
213* Multiple Types:: Specifying several alternative data types.
214* Actions:: An action is the semantic definition of a grammar rule.
215* Action Types:: Specifying data types for actions to operate on.
216* Mid-Rule Actions:: Most actions go at the end of a rule.
217 This says when, why and how to use the exceptional
218 action in the middle of a rule.
219
be22823e
AD
220Actions in Mid-Rule
221
222* Using Mid-Rule Actions:: Putting an action in the middle of a rule.
223* Mid-Rule Action Translation:: How mid-rule actions are actually processed.
224* Mid-Rule Conflicts:: Mid-rule actions can cause conflicts.
225
93dd49ab
PE
226Tracking Locations
227
228* Location Type:: Specifying a data type for locations.
229* Actions and Locations:: Using locations in actions.
230* Location Default Action:: Defining a general way to compute locations.
231
bfa74976
RS
232Bison Declarations
233
b50d2359 234* Require Decl:: Requiring a Bison version.
bfa74976
RS
235* Token Decl:: Declaring terminal symbols.
236* Precedence Decl:: Declaring terminals with precedence and associativity.
237* Union Decl:: Declaring the set of all semantic value types.
238* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 239* Initial Action Decl:: Code run before parsing starts.
72f889cc 240* Destructor Decl:: Declaring how symbols are freed.
93c150b6 241* Printer Decl:: Declaring how symbol values are displayed.
d6328241 242* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
243* Start Decl:: Specifying the start symbol.
244* Pure Decl:: Requesting a reentrant parser.
9987d1b3 245* Push Decl:: Requesting a push parser.
bfa74976 246* Decl Summary:: Table of all Bison declarations.
35c1e5f0 247* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 248* %code Summary:: Inserting code into the parser source.
bfa74976
RS
249
250Parser C-Language Interface
251
f5f419de
DJ
252* Parser Function:: How to call @code{yyparse} and what it returns.
253* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
254* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
255* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
256* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
257* Lexical:: You must supply a function @code{yylex}
258 which reads tokens.
259* Error Reporting:: You must supply a function @code{yyerror}.
260* Action Features:: Special features for use in actions.
261* Internationalization:: How to let the parser speak in the user's
262 native language.
bfa74976
RS
263
264The Lexical Analyzer Function @code{yylex}
265
266* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
267* Token Values:: How @code{yylex} must return the semantic value
268 of the token it has read.
269* Token Locations:: How @code{yylex} must return the text location
270 (line number, etc.) of the token, if the
271 actions want that.
272* Pure Calling:: How the calling convention differs in a pure parser
273 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 274
13863333 275The Bison Parser Algorithm
bfa74976 276
742e4900 277* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
278* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
279* Precedence:: Operator precedence works by resolving conflicts.
280* Contextual Precedence:: When an operator's precedence depends on context.
281* Parser States:: The parser is a finite-state-machine with stack.
282* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 283* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 284* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 285* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 286* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
287
288Operator Precedence
289
290* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
291* Using Precedence:: How to specify precedence and associativity.
292* Precedence Only:: How to specify precedence only.
bfa74976
RS
293* Precedence Examples:: How these features are used in the previous example.
294* How Precedence:: How they work.
c28cd5dc 295* Non Operators:: Using precedence for general conflicts.
bfa74976 296
7fceb615
JD
297Tuning LR
298
299* LR Table Construction:: Choose a different construction algorithm.
300* Default Reductions:: Disable default reductions.
301* LAC:: Correct lookahead sets in the parser states.
302* Unreachable States:: Keep unreachable parser states for debugging.
303
bfa74976
RS
304Handling Context Dependencies
305
306* Semantic Tokens:: Token parsing can depend on the semantic context.
307* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
308* Tie-in Recovery:: Lexical tie-ins have implications for how
309 error recovery rules must be written.
310
93dd49ab 311Debugging Your Parser
ec3bc396
AD
312
313* Understanding:: Understanding the structure of your parser.
fc4fdd62 314* Graphviz:: Getting a visual representation of the parser.
9c16d399 315* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
316* Tracing:: Tracing the execution of your parser.
317
93c150b6
AD
318Tracing Your Parser
319
320* Enabling Traces:: Activating run-time trace support
321* Mfcalc Traces:: Extending @code{mfcalc} to support traces
322* The YYPRINT Macro:: Obsolete interface for semantic value reports
323
bfa74976
RS
324Invoking Bison
325
13863333 326* Bison Options:: All the options described in detail,
c827f760 327 in alphabetical order by short options.
bfa74976 328* Option Cross Key:: Alphabetical list of long options.
93dd49ab 329* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 330
8405b70c 331Parsers Written In Other Languages
12545799
AD
332
333* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 334* Java Parsers:: The interface to generate Java parser classes
12545799
AD
335
336C++ Parsers
337
338* C++ Bison Interface:: Asking for C++ parser generation
339* C++ Semantic Values:: %union vs. C++
340* C++ Location Values:: The position and location classes
341* C++ Parser Interface:: Instantiating and running the parser
342* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 343* A Complete C++ Example:: Demonstrating their use
12545799 344
936c88d1
AD
345C++ Location Values
346
347* C++ position:: One point in the source file
348* C++ location:: Two points in the source file
db8ab2be 349* User Defined Location Type:: Required interface for locations
936c88d1 350
12545799
AD
351A Complete C++ Example
352
353* Calc++ --- C++ Calculator:: The specifications
354* Calc++ Parsing Driver:: An active parsing context
355* Calc++ Parser:: A parser class
356* Calc++ Scanner:: A pure C++ Flex scanner
357* Calc++ Top Level:: Conducting the band
358
8405b70c
PB
359Java Parsers
360
f5f419de
DJ
361* Java Bison Interface:: Asking for Java parser generation
362* Java Semantic Values:: %type and %token vs. Java
363* Java Location Values:: The position and location classes
364* Java Parser Interface:: Instantiating and running the parser
365* Java Scanner Interface:: Specifying the scanner for the parser
366* Java Action Features:: Special features for use in actions
367* Java Differences:: Differences between C/C++ and Java Grammars
368* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 369
d1a1114f
AD
370Frequently Asked Questions
371
f5f419de
DJ
372* Memory Exhausted:: Breaking the Stack Limits
373* How Can I Reset the Parser:: @code{yyparse} Keeps some State
374* Strings are Destroyed:: @code{yylval} Loses Track of Strings
375* Implementing Gotos/Loops:: Control Flow in the Calculator
376* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 377* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
378* I can't build Bison:: Troubleshooting
379* Where can I find help?:: Troubleshouting
380* Bug Reports:: Troublereporting
381* More Languages:: Parsers in C++, Java, and so on
382* Beta Testing:: Experimenting development versions
383* Mailing Lists:: Meeting other Bison users
d1a1114f 384
f2b5126e
PB
385Copying This Manual
386
f5f419de 387* Copying This Manual:: License for copying this manual.
f2b5126e 388
342b8b6e 389@end detailmenu
bfa74976
RS
390@end menu
391
342b8b6e 392@node Introduction
bfa74976
RS
393@unnumbered Introduction
394@cindex introduction
395
6077da58 396@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
397annotated context-free grammar into a deterministic LR or generalized
398LR (GLR) parser employing LALR(1) parser tables. As an experimental
399feature, Bison can also generate IELR(1) or canonical LR(1) parser
400tables. Once you are proficient with Bison, you can use it to develop
401a wide range of language parsers, from those used in simple desk
402calculators to complex programming languages.
403
404Bison is upward compatible with Yacc: all properly-written Yacc
405grammars ought to work with Bison with no change. Anyone familiar
406with Yacc should be able to use Bison with little trouble. You need
407to be fluent in C or C++ programming in order to use Bison or to
408understand this manual. Java is also supported as an experimental
409feature.
410
411We begin with tutorial chapters that explain the basic concepts of
412using Bison and show three explained examples, each building on the
413last. If you don't know Bison or Yacc, start by reading these
414chapters. Reference chapters follow, which describe specific aspects
415of Bison in detail.
bfa74976 416
679e9935
JD
417Bison was written originally by Robert Corbett. Richard Stallman made
418it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
419added multi-character string literals and other features. Since then,
420Bison has grown more robust and evolved many other new features thanks
421to the hard work of a long list of volunteers. For details, see the
422@file{THANKS} and @file{ChangeLog} files included in the Bison
423distribution.
931c7513 424
df1af54c 425This edition corresponds to version @value{VERSION} of Bison.
bfa74976 426
342b8b6e 427@node Conditions
bfa74976
RS
428@unnumbered Conditions for Using Bison
429
193d7c70
PE
430The distribution terms for Bison-generated parsers permit using the
431parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 432permissions applied only when Bison was generating LALR(1)
193d7c70 433parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 434parsers could be used only in programs that were free software.
a31239f1 435
8a4281b9 436The other GNU programming tools, such as the GNU C
c827f760 437compiler, have never
9ecbd125 438had such a requirement. They could always be used for nonfree
a31239f1
RS
439software. The reason Bison was different was not due to a special
440policy decision; it resulted from applying the usual General Public
441License to all of the Bison source code.
442
ff7571c0
JD
443The main output of the Bison utility---the Bison parser implementation
444file---contains a verbatim copy of a sizable piece of Bison, which is
445the code for the parser's implementation. (The actions from your
446grammar are inserted into this implementation at one point, but most
447of the rest of the implementation is not changed.) When we applied
448the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
449the effect was to restrict the use of Bison output to free software.
450
451We didn't change the terms because of sympathy for people who want to
452make software proprietary. @strong{Software should be free.} But we
453concluded that limiting Bison's use to free software was doing little to
454encourage people to make other software free. So we decided to make the
455practical conditions for using Bison match the practical conditions for
8a4281b9 456using the other GNU tools.
bfa74976 457
193d7c70
PE
458This exception applies when Bison is generating code for a parser.
459You can tell whether the exception applies to a Bison output file by
460inspecting the file for text beginning with ``As a special
461exception@dots{}''. The text spells out the exact terms of the
462exception.
262aa8dd 463
f16b0819
PE
464@node Copying
465@unnumbered GNU GENERAL PUBLIC LICENSE
466@include gpl-3.0.texi
bfa74976 467
342b8b6e 468@node Concepts
bfa74976
RS
469@chapter The Concepts of Bison
470
471This chapter introduces many of the basic concepts without which the
472details of Bison will not make sense. If you do not already know how to
473use Bison or Yacc, we suggest you start by reading this chapter carefully.
474
475@menu
f5f419de
DJ
476* Language and Grammar:: Languages and context-free grammars,
477 as mathematical ideas.
478* Grammar in Bison:: How we represent grammars for Bison's sake.
479* Semantic Values:: Each token or syntactic grouping can have
480 a semantic value (the value of an integer,
481 the name of an identifier, etc.).
482* Semantic Actions:: Each rule can have an action containing C code.
483* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 484* Locations:: Overview of location tracking.
f5f419de
DJ
485* Bison Parser:: What are Bison's input and output,
486 how is the output used?
487* Stages:: Stages in writing and running Bison grammars.
488* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
489@end menu
490
342b8b6e 491@node Language and Grammar
bfa74976
RS
492@section Languages and Context-Free Grammars
493
bfa74976
RS
494@cindex context-free grammar
495@cindex grammar, context-free
496In order for Bison to parse a language, it must be described by a
497@dfn{context-free grammar}. This means that you specify one or more
498@dfn{syntactic groupings} and give rules for constructing them from their
499parts. For example, in the C language, one kind of grouping is called an
500`expression'. One rule for making an expression might be, ``An expression
501can be made of a minus sign and another expression''. Another would be,
502``An expression can be an integer''. As you can see, rules are often
503recursive, but there must be at least one rule which leads out of the
504recursion.
505
8a4281b9 506@cindex BNF
bfa74976
RS
507@cindex Backus-Naur form
508The most common formal system for presenting such rules for humans to read
8a4281b9 509is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 510order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
511BNF is a context-free grammar. The input to Bison is
512essentially machine-readable BNF.
bfa74976 513
7fceb615
JD
514@cindex LALR grammars
515@cindex IELR grammars
516@cindex LR grammars
517There are various important subclasses of context-free grammars. Although
518it can handle almost all context-free grammars, Bison is optimized for what
519are called LR(1) grammars. In brief, in these grammars, it must be possible
520to tell how to parse any portion of an input string with just a single token
521of lookahead. For historical reasons, Bison by default is limited by the
522additional restrictions of LALR(1), which is hard to explain simply.
cc09e5be
JD
523@xref{Mysterious Conflicts}, for more information on this. As an
524experimental feature, you can escape these additional restrictions by
525requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
526Construction}, to learn how.
bfa74976 527
8a4281b9
JD
528@cindex GLR parsing
529@cindex generalized LR (GLR) parsing
676385e2 530@cindex ambiguous grammars
9d9b8b70 531@cindex nondeterministic parsing
9501dc6e 532
8a4281b9 533Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
534roughly that the next grammar rule to apply at any point in the input is
535uniquely determined by the preceding input and a fixed, finite portion
742e4900 536(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 537grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 538apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 539grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 540lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 541With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
542general context-free grammars, using a technique known as GLR
543parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
544are able to handle any context-free grammar for which the number of
545possible parses of any given string is finite.
676385e2 546
bfa74976
RS
547@cindex symbols (abstract)
548@cindex token
549@cindex syntactic grouping
550@cindex grouping, syntactic
9501dc6e
AD
551In the formal grammatical rules for a language, each kind of syntactic
552unit or grouping is named by a @dfn{symbol}. Those which are built by
553grouping smaller constructs according to grammatical rules are called
bfa74976
RS
554@dfn{nonterminal symbols}; those which can't be subdivided are called
555@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
556corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 557corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
558
559We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
560nonterminal, mean. The tokens of C are identifiers, constants (numeric
561and string), and the various keywords, arithmetic operators and
562punctuation marks. So the terminal symbols of a grammar for C include
563`identifier', `number', `string', plus one symbol for each keyword,
564operator or punctuation mark: `if', `return', `const', `static', `int',
565`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
566(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
567lexicography, not grammar.)
568
569Here is a simple C function subdivided into tokens:
570
9edcd895
AD
571@example
572int /* @r{keyword `int'} */
14d4662b 573square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
574 @r{identifier, close-paren} */
575@{ /* @r{open-brace} */
aa08666d
AD
576 return x * x; /* @r{keyword `return', identifier, asterisk,}
577 @r{identifier, semicolon} */
9edcd895
AD
578@} /* @r{close-brace} */
579@end example
bfa74976
RS
580
581The syntactic groupings of C include the expression, the statement, the
582declaration, and the function definition. These are represented in the
583grammar of C by nonterminal symbols `expression', `statement',
584`declaration' and `function definition'. The full grammar uses dozens of
585additional language constructs, each with its own nonterminal symbol, in
586order to express the meanings of these four. The example above is a
587function definition; it contains one declaration, and one statement. In
588the statement, each @samp{x} is an expression and so is @samp{x * x}.
589
590Each nonterminal symbol must have grammatical rules showing how it is made
591out of simpler constructs. For example, one kind of C statement is the
592@code{return} statement; this would be described with a grammar rule which
593reads informally as follows:
594
595@quotation
596A `statement' can be made of a `return' keyword, an `expression' and a
597`semicolon'.
598@end quotation
599
600@noindent
601There would be many other rules for `statement', one for each kind of
602statement in C.
603
604@cindex start symbol
605One nonterminal symbol must be distinguished as the special one which
606defines a complete utterance in the language. It is called the @dfn{start
607symbol}. In a compiler, this means a complete input program. In the C
608language, the nonterminal symbol `sequence of definitions and declarations'
609plays this role.
610
611For example, @samp{1 + 2} is a valid C expression---a valid part of a C
612program---but it is not valid as an @emph{entire} C program. In the
613context-free grammar of C, this follows from the fact that `expression' is
614not the start symbol.
615
616The Bison parser reads a sequence of tokens as its input, and groups the
617tokens using the grammar rules. If the input is valid, the end result is
618that the entire token sequence reduces to a single grouping whose symbol is
619the grammar's start symbol. If we use a grammar for C, the entire input
620must be a `sequence of definitions and declarations'. If not, the parser
621reports a syntax error.
622
342b8b6e 623@node Grammar in Bison
bfa74976
RS
624@section From Formal Rules to Bison Input
625@cindex Bison grammar
626@cindex grammar, Bison
627@cindex formal grammar
628
629A formal grammar is a mathematical construct. To define the language
630for Bison, you must write a file expressing the grammar in Bison syntax:
631a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
632
633A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 634as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
635in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
636
637The Bison representation for a terminal symbol is also called a @dfn{token
638type}. Token types as well can be represented as C-like identifiers. By
639convention, these identifiers should be upper case to distinguish them from
640nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
641@code{RETURN}. A terminal symbol that stands for a particular keyword in
642the language should be named after that keyword converted to upper case.
643The terminal symbol @code{error} is reserved for error recovery.
931c7513 644@xref{Symbols}.
bfa74976
RS
645
646A terminal symbol can also be represented as a character literal, just like
647a C character constant. You should do this whenever a token is just a
648single character (parenthesis, plus-sign, etc.): use that same character in
649a literal as the terminal symbol for that token.
650
931c7513
RS
651A third way to represent a terminal symbol is with a C string constant
652containing several characters. @xref{Symbols}, for more information.
653
bfa74976
RS
654The grammar rules also have an expression in Bison syntax. For example,
655here is the Bison rule for a C @code{return} statement. The semicolon in
656quotes is a literal character token, representing part of the C syntax for
657the statement; the naked semicolon, and the colon, are Bison punctuation
658used in every rule.
659
660@example
5e9b6624 661stmt: RETURN expr ';' ;
bfa74976
RS
662@end example
663
664@noindent
665@xref{Rules, ,Syntax of Grammar Rules}.
666
342b8b6e 667@node Semantic Values
bfa74976
RS
668@section Semantic Values
669@cindex semantic value
670@cindex value, semantic
671
672A formal grammar selects tokens only by their classifications: for example,
673if a rule mentions the terminal symbol `integer constant', it means that
674@emph{any} integer constant is grammatically valid in that position. The
675precise value of the constant is irrelevant to how to parse the input: if
676@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 677grammatical.
bfa74976
RS
678
679But the precise value is very important for what the input means once it is
680parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6813989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
682has both a token type and a @dfn{semantic value}. @xref{Semantics,
683,Defining Language Semantics},
bfa74976
RS
684for details.
685
686The token type is a terminal symbol defined in the grammar, such as
687@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
688you need to know to decide where the token may validly appear and how to
689group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 690except their types.
bfa74976
RS
691
692The semantic value has all the rest of the information about the
693meaning of the token, such as the value of an integer, or the name of an
694identifier. (A token such as @code{','} which is just punctuation doesn't
695need to have any semantic value.)
696
697For example, an input token might be classified as token type
698@code{INTEGER} and have the semantic value 4. Another input token might
699have the same token type @code{INTEGER} but value 3989. When a grammar
700rule says that @code{INTEGER} is allowed, either of these tokens is
701acceptable because each is an @code{INTEGER}. When the parser accepts the
702token, it keeps track of the token's semantic value.
703
704Each grouping can also have a semantic value as well as its nonterminal
705symbol. For example, in a calculator, an expression typically has a
706semantic value that is a number. In a compiler for a programming
707language, an expression typically has a semantic value that is a tree
708structure describing the meaning of the expression.
709
342b8b6e 710@node Semantic Actions
bfa74976
RS
711@section Semantic Actions
712@cindex semantic actions
713@cindex actions, semantic
714
715In order to be useful, a program must do more than parse input; it must
716also produce some output based on the input. In a Bison grammar, a grammar
717rule can have an @dfn{action} made up of C statements. Each time the
718parser recognizes a match for that rule, the action is executed.
719@xref{Actions}.
13863333 720
bfa74976
RS
721Most of the time, the purpose of an action is to compute the semantic value
722of the whole construct from the semantic values of its parts. For example,
723suppose we have a rule which says an expression can be the sum of two
724expressions. When the parser recognizes such a sum, each of the
725subexpressions has a semantic value which describes how it was built up.
726The action for this rule should create a similar sort of value for the
727newly recognized larger expression.
728
729For example, here is a rule that says an expression can be the sum of
730two subexpressions:
731
732@example
5e9b6624 733expr: expr '+' expr @{ $$ = $1 + $3; @} ;
bfa74976
RS
734@end example
735
736@noindent
737The action says how to produce the semantic value of the sum expression
738from the values of the two subexpressions.
739
676385e2 740@node GLR Parsers
8a4281b9
JD
741@section Writing GLR Parsers
742@cindex GLR parsing
743@cindex generalized LR (GLR) parsing
676385e2
PH
744@findex %glr-parser
745@cindex conflicts
746@cindex shift/reduce conflicts
fa7e68c3 747@cindex reduce/reduce conflicts
676385e2 748
eb45ef3b 749In some grammars, Bison's deterministic
8a4281b9 750LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
751certain grammar rule at a given point. That is, it may not be able to
752decide (on the basis of the input read so far) which of two possible
753reductions (applications of a grammar rule) applies, or whether to apply
754a reduction or read more of the input and apply a reduction later in the
755input. These are known respectively as @dfn{reduce/reduce} conflicts
756(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
757(@pxref{Shift/Reduce}).
758
8a4281b9 759To use a grammar that is not easily modified to be LR(1), a
9501dc6e 760more general parsing algorithm is sometimes necessary. If you include
676385e2 761@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
762(@pxref{Grammar Outline}), the result is a Generalized LR
763(GLR) parser. These parsers handle Bison grammars that
9501dc6e 764contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 765declarations) identically to deterministic parsers. However, when
9501dc6e 766faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 767GLR parsers use the simple expedient of doing both,
9501dc6e
AD
768effectively cloning the parser to follow both possibilities. Each of
769the resulting parsers can again split, so that at any given time, there
770can be any number of possible parses being explored. The parsers
676385e2
PH
771proceed in lockstep; that is, all of them consume (shift) a given input
772symbol before any of them proceed to the next. Each of the cloned
773parsers eventually meets one of two possible fates: either it runs into
774a parsing error, in which case it simply vanishes, or it merges with
775another parser, because the two of them have reduced the input to an
776identical set of symbols.
777
778During the time that there are multiple parsers, semantic actions are
779recorded, but not performed. When a parser disappears, its recorded
780semantic actions disappear as well, and are never performed. When a
781reduction makes two parsers identical, causing them to merge, Bison
782records both sets of semantic actions. Whenever the last two parsers
783merge, reverting to the single-parser case, Bison resolves all the
784outstanding actions either by precedences given to the grammar rules
785involved, or by performing both actions, and then calling a designated
786user-defined function on the resulting values to produce an arbitrary
787merged result.
788
fa7e68c3 789@menu
8a4281b9
JD
790* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
791* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 792* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 793* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 794* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
795@end menu
796
797@node Simple GLR Parsers
8a4281b9
JD
798@subsection Using GLR on Unambiguous Grammars
799@cindex GLR parsing, unambiguous grammars
800@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
801@findex %glr-parser
802@findex %expect-rr
803@cindex conflicts
804@cindex reduce/reduce conflicts
805@cindex shift/reduce conflicts
806
8a4281b9
JD
807In the simplest cases, you can use the GLR algorithm
808to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 809Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
810
811Consider a problem that
812arises in the declaration of enumerated and subrange types in the
813programming language Pascal. Here are some examples:
814
815@example
816type subrange = lo .. hi;
817type enum = (a, b, c);
818@end example
819
820@noindent
821The original language standard allows only numeric
822literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 823and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
82410206) and many other
825Pascal implementations allow arbitrary expressions there. This gives
826rise to the following situation, containing a superfluous pair of
827parentheses:
828
829@example
830type subrange = (a) .. b;
831@end example
832
833@noindent
834Compare this to the following declaration of an enumerated
835type with only one value:
836
837@example
838type enum = (a);
839@end example
840
841@noindent
842(These declarations are contrived, but they are syntactically
843valid, and more-complicated cases can come up in practical programs.)
844
845These two declarations look identical until the @samp{..} token.
8a4281b9 846With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
847possible to decide between the two forms when the identifier
848@samp{a} is parsed. It is, however, desirable
849for a parser to decide this, since in the latter case
850@samp{a} must become a new identifier to represent the enumeration
851value, while in the former case @samp{a} must be evaluated with its
852current meaning, which may be a constant or even a function call.
853
854You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
855to be resolved later, but this typically requires substantial
856contortions in both semantic actions and large parts of the
857grammar, where the parentheses are nested in the recursive rules for
858expressions.
859
860You might think of using the lexer to distinguish between the two
861forms by returning different tokens for currently defined and
862undefined identifiers. But if these declarations occur in a local
863scope, and @samp{a} is defined in an outer scope, then both forms
864are possible---either locally redefining @samp{a}, or using the
865value of @samp{a} from the outer scope. So this approach cannot
866work.
867
e757bb10 868A simple solution to this problem is to declare the parser to
8a4281b9
JD
869use the GLR algorithm.
870When the GLR parser reaches the critical state, it
fa7e68c3
PE
871merely splits into two branches and pursues both syntax rules
872simultaneously. Sooner or later, one of them runs into a parsing
873error. If there is a @samp{..} token before the next
874@samp{;}, the rule for enumerated types fails since it cannot
875accept @samp{..} anywhere; otherwise, the subrange type rule
876fails since it requires a @samp{..} token. So one of the branches
877fails silently, and the other one continues normally, performing
878all the intermediate actions that were postponed during the split.
879
880If the input is syntactically incorrect, both branches fail and the parser
881reports a syntax error as usual.
882
883The effect of all this is that the parser seems to ``guess'' the
884correct branch to take, or in other words, it seems to use more
8a4281b9
JD
885lookahead than the underlying LR(1) algorithm actually allows
886for. In this example, LR(2) would suffice, but also some cases
887that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 888
8a4281b9 889In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
890and the current Bison parser even takes exponential time and space
891for some grammars. In practice, this rarely happens, and for many
892grammars it is possible to prove that it cannot happen.
893The present example contains only one conflict between two
894rules, and the type-declaration context containing the conflict
895cannot be nested. So the number of
896branches that can exist at any time is limited by the constant 2,
897and the parsing time is still linear.
898
899Here is a Bison grammar corresponding to the example above. It
900parses a vastly simplified form of Pascal type declarations.
901
902@example
903%token TYPE DOTDOT ID
904
905@group
906%left '+' '-'
907%left '*' '/'
908@end group
909
910%%
5e9b6624 911type_decl: TYPE ID '=' type ';' ;
fa7e68c3
PE
912
913@group
5e9b6624
AD
914type:
915 '(' id_list ')'
916| expr DOTDOT expr
917;
fa7e68c3
PE
918@end group
919
920@group
5e9b6624
AD
921id_list:
922 ID
923| id_list ',' ID
924;
fa7e68c3
PE
925@end group
926
927@group
5e9b6624
AD
928expr:
929 '(' expr ')'
930| expr '+' expr
931| expr '-' expr
932| expr '*' expr
933| expr '/' expr
934| ID
935;
fa7e68c3
PE
936@end group
937@end example
938
8a4281b9 939When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
940about one reduce/reduce conflict. In the conflicting situation the
941parser chooses one of the alternatives, arbitrarily the one
942declared first. Therefore the following correct input is not
943recognized:
944
945@example
946type t = (a) .. b;
947@end example
948
8a4281b9 949The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
950to be silent about the one known reduce/reduce conflict, by adding
951these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
952@samp{%%}):
953
954@example
955%glr-parser
956%expect-rr 1
957@end example
958
959@noindent
960No change in the grammar itself is required. Now the
961parser recognizes all valid declarations, according to the
962limited syntax above, transparently. In fact, the user does not even
963notice when the parser splits.
964
8a4281b9 965So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
966almost without disadvantages. Even in simple cases like this, however,
967there are at least two potential problems to beware. First, always
8a4281b9
JD
968analyze the conflicts reported by Bison to make sure that GLR
969splitting is only done where it is intended. A GLR parser
f8e1c9e5 970splitting inadvertently may cause problems less obvious than an
8a4281b9 971LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
972conflict. Second, consider interactions with the lexer (@pxref{Semantic
973Tokens}) with great care. Since a split parser consumes tokens without
974performing any actions during the split, the lexer cannot obtain
975information via parser actions. Some cases of lexer interactions can be
8a4281b9 976eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
977lexer to the parser. You must check the remaining cases for
978correctness.
979
980In our example, it would be safe for the lexer to return tokens based on
981their current meanings in some symbol table, because no new symbols are
982defined in the middle of a type declaration. Though it is possible for
983a parser to define the enumeration constants as they are parsed, before
984the type declaration is completed, it actually makes no difference since
985they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
986
987@node Merging GLR Parses
8a4281b9
JD
988@subsection Using GLR to Resolve Ambiguities
989@cindex GLR parsing, ambiguous grammars
990@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
991@findex %dprec
992@findex %merge
993@cindex conflicts
994@cindex reduce/reduce conflicts
995
2a8d363a 996Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
997
998@example
999%@{
38a92d50
PE
1000 #include <stdio.h>
1001 #define YYSTYPE char const *
1002 int yylex (void);
1003 void yyerror (char const *);
676385e2
PH
1004%@}
1005
1006%token TYPENAME ID
1007
1008%right '='
1009%left '+'
1010
1011%glr-parser
1012
1013%%
1014
5e9b6624
AD
1015prog:
1016 /* Nothing. */
1017| prog stmt @{ printf ("\n"); @}
1018;
676385e2 1019
5e9b6624
AD
1020stmt:
1021 expr ';' %dprec 1
1022| decl %dprec 2
1023;
676385e2 1024
5e9b6624
AD
1025expr:
1026 ID @{ printf ("%s ", $$); @}
1027| TYPENAME '(' expr ')'
1028 @{ printf ("%s <cast> ", $1); @}
1029| expr '+' expr @{ printf ("+ "); @}
1030| expr '=' expr @{ printf ("= "); @}
1031;
676385e2 1032
5e9b6624
AD
1033decl:
1034 TYPENAME declarator ';'
1035 @{ printf ("%s <declare> ", $1); @}
1036| TYPENAME declarator '=' expr ';'
1037 @{ printf ("%s <init-declare> ", $1); @}
1038;
676385e2 1039
5e9b6624
AD
1040declarator:
1041 ID @{ printf ("\"%s\" ", $1); @}
1042| '(' declarator ')'
1043;
676385e2
PH
1044@end example
1045
1046@noindent
1047This models a problematic part of the C++ grammar---the ambiguity between
1048certain declarations and statements. For example,
1049
1050@example
1051T (x) = y+z;
1052@end example
1053
1054@noindent
1055parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1056(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1057@samp{x} as an @code{ID}).
676385e2 1058Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1059@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1060time it encounters @code{x} in the example above. Since this is a
8a4281b9 1061GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1062each choice of resolving the reduce/reduce conflict.
1063Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1064however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1065ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1066the other reduces @code{stmt : decl}, after which both parsers are in an
1067identical state: they've seen @samp{prog stmt} and have the same unprocessed
1068input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1069
8a4281b9 1070At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1071grammar of how to choose between the competing parses.
1072In the example above, the two @code{%dprec}
e757bb10 1073declarations specify that Bison is to give precedence
fa7e68c3 1074to the parse that interprets the example as a
676385e2
PH
1075@code{decl}, which implies that @code{x} is a declarator.
1076The parser therefore prints
1077
1078@example
fae437e8 1079"x" y z + T <init-declare>
676385e2
PH
1080@end example
1081
fa7e68c3
PE
1082The @code{%dprec} declarations only come into play when more than one
1083parse survives. Consider a different input string for this parser:
676385e2
PH
1084
1085@example
1086T (x) + y;
1087@end example
1088
1089@noindent
8a4281b9 1090This is another example of using GLR to parse an unambiguous
fa7e68c3 1091construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1092Here, there is no ambiguity (this cannot be parsed as a declaration).
1093However, at the time the Bison parser encounters @code{x}, it does not
1094have enough information to resolve the reduce/reduce conflict (again,
1095between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1096case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1097into two, one assuming that @code{x} is an @code{expr}, and the other
1098assuming @code{x} is a @code{declarator}. The second of these parsers
1099then vanishes when it sees @code{+}, and the parser prints
1100
1101@example
fae437e8 1102x T <cast> y +
676385e2
PH
1103@end example
1104
1105Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1106the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1107actions of the two possible parsers, rather than choosing one over the
1108other. To do so, you could change the declaration of @code{stmt} as
1109follows:
1110
1111@example
5e9b6624
AD
1112stmt:
1113 expr ';' %merge <stmtMerge>
1114| decl %merge <stmtMerge>
1115;
676385e2
PH
1116@end example
1117
1118@noindent
676385e2
PH
1119and define the @code{stmtMerge} function as:
1120
1121@example
38a92d50
PE
1122static YYSTYPE
1123stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1124@{
1125 printf ("<OR> ");
1126 return "";
1127@}
1128@end example
1129
1130@noindent
1131with an accompanying forward declaration
1132in the C declarations at the beginning of the file:
1133
1134@example
1135%@{
38a92d50 1136 #define YYSTYPE char const *
676385e2
PH
1137 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1138%@}
1139@end example
1140
1141@noindent
fa7e68c3
PE
1142With these declarations, the resulting parser parses the first example
1143as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1144
1145@example
fae437e8 1146"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1147@end example
1148
fa7e68c3 1149Bison requires that all of the
e757bb10 1150productions that participate in any particular merge have identical
fa7e68c3
PE
1151@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1152and the parser will report an error during any parse that results in
1153the offending merge.
9501dc6e 1154
32c29292
JD
1155@node GLR Semantic Actions
1156@subsection GLR Semantic Actions
1157
8a4281b9 1158The nature of GLR parsing and the structure of the generated
20be2f92
PH
1159parsers give rise to certain restrictions on semantic values and actions.
1160
1161@subsubsection Deferred semantic actions
32c29292
JD
1162@cindex deferred semantic actions
1163By definition, a deferred semantic action is not performed at the same time as
1164the associated reduction.
1165This raises caveats for several Bison features you might use in a semantic
8a4281b9 1166action in a GLR parser.
32c29292
JD
1167
1168@vindex yychar
8a4281b9 1169@cindex GLR parsers and @code{yychar}
32c29292 1170@vindex yylval
8a4281b9 1171@cindex GLR parsers and @code{yylval}
32c29292 1172@vindex yylloc
8a4281b9 1173@cindex GLR parsers and @code{yylloc}
32c29292 1174In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1175the lookahead token present at the time of the associated reduction.
32c29292
JD
1176After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1177you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1178lookahead token's semantic value and location, if any.
32c29292
JD
1179In a nondeferred semantic action, you can also modify any of these variables to
1180influence syntax analysis.
742e4900 1181@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1182
1183@findex yyclearin
8a4281b9 1184@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1185In a deferred semantic action, it's too late to influence syntax analysis.
1186In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1187shallow copies of the values they had at the time of the associated reduction.
1188For this reason alone, modifying them is dangerous.
1189Moreover, the result of modifying them is undefined and subject to change with
1190future versions of Bison.
1191For example, if a semantic action might be deferred, you should never write it
1192to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1193memory referenced by @code{yylval}.
1194
20be2f92 1195@subsubsection YYERROR
32c29292 1196@findex YYERROR
8a4281b9 1197@cindex GLR parsers and @code{YYERROR}
32c29292 1198Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1199(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1200initiate error recovery.
8a4281b9 1201During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1202the same as its effect in a deterministic parser.
411614fa
JM
1203The effect in a deferred action is similar, but the precise point of the
1204error is undefined; instead, the parser reverts to deterministic operation,
20be2f92
PH
1205selecting an unspecified stack on which to continue with a syntax error.
1206In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1207parsing, @code{YYERROR} silently prunes
1208the parse that invoked the test.
1209
1210@subsubsection Restrictions on semantic values and locations
8a4281b9 1211GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1212semantic values and location types when using the generated parsers as
1213C++ code.
8710fc41 1214
ca2a6d15
PH
1215@node Semantic Predicates
1216@subsection Controlling a Parse with Arbitrary Predicates
1217@findex %?
8a4281b9 1218@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1219
1220In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1221GLR parsers
ca2a6d15
PH
1222allow you to reject parses on the basis of arbitrary computations executed
1223in user code, without having Bison treat this rejection as an error
1224if there are alternative parses. (This feature is experimental and may
1225evolve. We welcome user feedback.) For example,
1226
c93f22fc
AD
1227@example
1228widget:
5e9b6624
AD
1229 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1230| %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1231;
c93f22fc 1232@end example
ca2a6d15
PH
1233
1234@noindent
411614fa 1235is one way to allow the same parser to handle two different syntaxes for
ca2a6d15
PH
1236widgets. The clause preceded by @code{%?} is treated like an ordinary
1237action, except that its text is treated as an expression and is always
411614fa 1238evaluated immediately (even when in nondeterministic mode). If the
ca2a6d15 1239expression yields 0 (false), the clause is treated as a syntax error,
411614fa 1240which, in a nondeterministic parser, causes the stack in which it is reduced
ca2a6d15
PH
1241to die. In a deterministic parser, it acts like YYERROR.
1242
1243As the example shows, predicates otherwise look like semantic actions, and
1244therefore you must be take them into account when determining the numbers
1245to use for denoting the semantic values of right-hand side symbols.
1246Predicate actions, however, have no defined value, and may not be given
1247labels.
1248
1249There is a subtle difference between semantic predicates and ordinary
1250actions in nondeterministic mode, since the latter are deferred.
411614fa 1251For example, we could try to rewrite the previous example as
ca2a6d15 1252
c93f22fc
AD
1253@example
1254widget:
5e9b6624
AD
1255 @{ if (!new_syntax) YYERROR; @}
1256 "widget" id new_args @{ $$ = f($3, $4); @}
1257| @{ if (new_syntax) YYERROR; @}
1258 "widget" id old_args @{ $$ = f($3, $4); @}
1259;
c93f22fc 1260@end example
ca2a6d15
PH
1261
1262@noindent
1263(reversing the sense of the predicate tests to cause an error when they are
1264false). However, this
1265does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1266have overlapping syntax.
411614fa 1267Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1268a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1269for cases where @code{new_args} and @code{old_args} recognize the same string
1270@emph{before} performing the tests of @code{new_syntax}. It therefore
1271reports an error.
1272
1273Finally, be careful in writing predicates: deferred actions have not been
1274evaluated, so that using them in a predicate will have undefined effects.
1275
fa7e68c3 1276@node Compiler Requirements
8a4281b9 1277@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1278@cindex @code{inline}
8a4281b9 1279@cindex GLR parsers and @code{inline}
fa7e68c3 1280
8a4281b9 1281The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1282later. In addition, they use the @code{inline} keyword, which is not
1283C89, but is C99 and is a common extension in pre-C99 compilers. It is
1284up to the user of these parsers to handle
9501dc6e
AD
1285portability issues. For instance, if using Autoconf and the Autoconf
1286macro @code{AC_C_INLINE}, a mere
1287
1288@example
1289%@{
38a92d50 1290 #include <config.h>
9501dc6e
AD
1291%@}
1292@end example
1293
1294@noindent
1295will suffice. Otherwise, we suggest
1296
1297@example
1298%@{
aaaa2aae
AD
1299 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1300 && ! defined inline)
1301 # define inline
38a92d50 1302 #endif
9501dc6e
AD
1303%@}
1304@end example
676385e2 1305
1769eb30 1306@node Locations
847bf1f5
AD
1307@section Locations
1308@cindex location
95923bd6
AD
1309@cindex textual location
1310@cindex location, textual
847bf1f5
AD
1311
1312Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1313and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1314the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1315Bison provides a mechanism for handling these locations.
1316
72d2299c 1317Each token has a semantic value. In a similar fashion, each token has an
303834cc
JD
1318associated location, but the type of locations is the same for all tokens
1319and groupings. Moreover, the output parser is equipped with a default data
1320structure for storing locations (@pxref{Tracking Locations}, for more
1321details).
847bf1f5
AD
1322
1323Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1324set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1325is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1326@code{@@3}.
1327
1328When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1329of its left hand side (@pxref{Actions}). In the same way, another default
1330action is used for locations. However, the action for locations is general
847bf1f5 1331enough for most cases, meaning there is usually no need to describe for each
72d2299c 1332rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1333grouping, the default behavior of the output parser is to take the beginning
1334of the first symbol, and the end of the last symbol.
1335
342b8b6e 1336@node Bison Parser
ff7571c0 1337@section Bison Output: the Parser Implementation File
bfa74976
RS
1338@cindex Bison parser
1339@cindex Bison utility
1340@cindex lexical analyzer, purpose
1341@cindex parser
1342
ff7571c0
JD
1343When you run Bison, you give it a Bison grammar file as input. The
1344most important output is a C source file that implements a parser for
1345the language described by the grammar. This parser is called a
1346@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1347implementation file}. Keep in mind that the Bison utility and the
1348Bison parser are two distinct programs: the Bison utility is a program
1349whose output is the Bison parser implementation file that becomes part
1350of your program.
bfa74976
RS
1351
1352The job of the Bison parser is to group tokens into groupings according to
1353the grammar rules---for example, to build identifiers and operators into
1354expressions. As it does this, it runs the actions for the grammar rules it
1355uses.
1356
704a47c4
AD
1357The tokens come from a function called the @dfn{lexical analyzer} that
1358you must supply in some fashion (such as by writing it in C). The Bison
1359parser calls the lexical analyzer each time it wants a new token. It
1360doesn't know what is ``inside'' the tokens (though their semantic values
1361may reflect this). Typically the lexical analyzer makes the tokens by
1362parsing characters of text, but Bison does not depend on this.
1363@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1364
ff7571c0
JD
1365The Bison parser implementation file is C code which defines a
1366function named @code{yyparse} which implements that grammar. This
1367function does not make a complete C program: you must supply some
1368additional functions. One is the lexical analyzer. Another is an
1369error-reporting function which the parser calls to report an error.
1370In addition, a complete C program must start with a function called
1371@code{main}; you have to provide this, and arrange for it to call
1372@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1373C-Language Interface}.
bfa74976 1374
f7ab6a50 1375Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1376write, all symbols defined in the Bison parser implementation file
1377itself begin with @samp{yy} or @samp{YY}. This includes interface
1378functions such as the lexical analyzer function @code{yylex}, the
1379error reporting function @code{yyerror} and the parser function
1380@code{yyparse} itself. This also includes numerous identifiers used
1381for internal purposes. Therefore, you should avoid using C
1382identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1383file except for the ones defined in this manual. Also, you should
1384avoid using the C identifiers @samp{malloc} and @samp{free} for
1385anything other than their usual meanings.
1386
1387In some cases the Bison parser implementation file includes system
1388headers, and in those cases your code should respect the identifiers
1389reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1390@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1391included as needed to declare memory allocators and related types.
1392@code{<libintl.h>} is included if message translation is in use
1393(@pxref{Internationalization}). Other system headers may be included
1394if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1395,Tracing Your Parser}).
7093d0f5 1396
342b8b6e 1397@node Stages
bfa74976
RS
1398@section Stages in Using Bison
1399@cindex stages in using Bison
1400@cindex using Bison
1401
1402The actual language-design process using Bison, from grammar specification
1403to a working compiler or interpreter, has these parts:
1404
1405@enumerate
1406@item
1407Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1408(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1409in the language, describe the action that is to be taken when an
1410instance of that rule is recognized. The action is described by a
1411sequence of C statements.
bfa74976
RS
1412
1413@item
704a47c4
AD
1414Write a lexical analyzer to process input and pass tokens to the parser.
1415The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1416Lexical Analyzer Function @code{yylex}}). It could also be produced
1417using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1418
1419@item
1420Write a controlling function that calls the Bison-produced parser.
1421
1422@item
1423Write error-reporting routines.
1424@end enumerate
1425
1426To turn this source code as written into a runnable program, you
1427must follow these steps:
1428
1429@enumerate
1430@item
1431Run Bison on the grammar to produce the parser.
1432
1433@item
1434Compile the code output by Bison, as well as any other source files.
1435
1436@item
1437Link the object files to produce the finished product.
1438@end enumerate
1439
342b8b6e 1440@node Grammar Layout
bfa74976
RS
1441@section The Overall Layout of a Bison Grammar
1442@cindex grammar file
1443@cindex file format
1444@cindex format of grammar file
1445@cindex layout of Bison grammar
1446
1447The input file for the Bison utility is a @dfn{Bison grammar file}. The
1448general form of a Bison grammar file is as follows:
1449
1450@example
1451%@{
08e49d20 1452@var{Prologue}
bfa74976
RS
1453%@}
1454
1455@var{Bison declarations}
1456
1457%%
1458@var{Grammar rules}
1459%%
08e49d20 1460@var{Epilogue}
bfa74976
RS
1461@end example
1462
1463@noindent
1464The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1465in every Bison grammar file to separate the sections.
1466
72d2299c 1467The prologue may define types and variables used in the actions. You can
342b8b6e 1468also use preprocessor commands to define macros used there, and use
bfa74976 1469@code{#include} to include header files that do any of these things.
38a92d50
PE
1470You need to declare the lexical analyzer @code{yylex} and the error
1471printer @code{yyerror} here, along with any other global identifiers
1472used by the actions in the grammar rules.
bfa74976
RS
1473
1474The Bison declarations declare the names of the terminal and nonterminal
1475symbols, and may also describe operator precedence and the data types of
1476semantic values of various symbols.
1477
1478The grammar rules define how to construct each nonterminal symbol from its
1479parts.
1480
38a92d50
PE
1481The epilogue can contain any code you want to use. Often the
1482definitions of functions declared in the prologue go here. In a
1483simple program, all the rest of the program can go here.
bfa74976 1484
342b8b6e 1485@node Examples
bfa74976
RS
1486@chapter Examples
1487@cindex simple examples
1488@cindex examples, simple
1489
aaaa2aae 1490Now we show and explain several sample programs written using Bison: a
bfa74976 1491reverse polish notation calculator, an algebraic (infix) notation
aaaa2aae
AD
1492calculator --- later extended to track ``locations'' ---
1493and a multi-function calculator. All
1494produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1495
1496These examples are simple, but Bison grammars for real programming
aa08666d
AD
1497languages are written the same way. You can copy these examples into a
1498source file to try them.
bfa74976
RS
1499
1500@menu
f5f419de
DJ
1501* RPN Calc:: Reverse polish notation calculator;
1502 a first example with no operator precedence.
1503* Infix Calc:: Infix (algebraic) notation calculator.
1504 Operator precedence is introduced.
bfa74976 1505* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1506* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1507* Multi-function Calc:: Calculator with memory and trig functions.
1508 It uses multiple data-types for semantic values.
1509* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1510@end menu
1511
342b8b6e 1512@node RPN Calc
bfa74976
RS
1513@section Reverse Polish Notation Calculator
1514@cindex reverse polish notation
1515@cindex polish notation calculator
1516@cindex @code{rpcalc}
1517@cindex calculator, simple
1518
1519The first example is that of a simple double-precision @dfn{reverse polish
1520notation} calculator (a calculator using postfix operators). This example
1521provides a good starting point, since operator precedence is not an issue.
1522The second example will illustrate how operator precedence is handled.
1523
1524The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1525@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1526
1527@menu
f5f419de
DJ
1528* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1529* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1530* Rpcalc Lexer:: The lexical analyzer.
1531* Rpcalc Main:: The controlling function.
1532* Rpcalc Error:: The error reporting function.
1533* Rpcalc Generate:: Running Bison on the grammar file.
1534* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1535@end menu
1536
f5f419de 1537@node Rpcalc Declarations
bfa74976
RS
1538@subsection Declarations for @code{rpcalc}
1539
1540Here are the C and Bison declarations for the reverse polish notation
1541calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1542
24ec0837 1543@comment file: rpcalc.y
bfa74976 1544@example
72d2299c 1545/* Reverse polish notation calculator. */
bfa74976 1546
efbc95a7 1547@group
bfa74976 1548%@{
38a92d50 1549 #define YYSTYPE double
24ec0837 1550 #include <stdio.h>
38a92d50
PE
1551 #include <math.h>
1552 int yylex (void);
1553 void yyerror (char const *);
bfa74976 1554%@}
efbc95a7 1555@end group
bfa74976
RS
1556
1557%token NUM
1558
72d2299c 1559%% /* Grammar rules and actions follow. */
bfa74976
RS
1560@end example
1561
75f5aaea 1562The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1563preprocessor directives and two forward declarations.
bfa74976
RS
1564
1565The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1566specifying the C data type for semantic values of both tokens and
1567groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1568Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1569don't define it, @code{int} is the default. Because we specify
1570@code{double}, each token and each expression has an associated value,
1571which is a floating point number.
bfa74976
RS
1572
1573The @code{#include} directive is used to declare the exponentiation
1574function @code{pow}.
1575
38a92d50
PE
1576The forward declarations for @code{yylex} and @code{yyerror} are
1577needed because the C language requires that functions be declared
1578before they are used. These functions will be defined in the
1579epilogue, but the parser calls them so they must be declared in the
1580prologue.
1581
704a47c4
AD
1582The second section, Bison declarations, provides information to Bison
1583about the token types (@pxref{Bison Declarations, ,The Bison
1584Declarations Section}). Each terminal symbol that is not a
1585single-character literal must be declared here. (Single-character
bfa74976
RS
1586literals normally don't need to be declared.) In this example, all the
1587arithmetic operators are designated by single-character literals, so the
1588only terminal symbol that needs to be declared is @code{NUM}, the token
1589type for numeric constants.
1590
342b8b6e 1591@node Rpcalc Rules
bfa74976
RS
1592@subsection Grammar Rules for @code{rpcalc}
1593
1594Here are the grammar rules for the reverse polish notation calculator.
1595
24ec0837 1596@comment file: rpcalc.y
bfa74976 1597@example
aaaa2aae 1598@group
5e9b6624
AD
1599input:
1600 /* empty */
1601| input line
bfa74976 1602;
aaaa2aae 1603@end group
bfa74976 1604
aaaa2aae 1605@group
5e9b6624
AD
1606line:
1607 '\n'
1608| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1609;
aaaa2aae 1610@end group
bfa74976 1611
aaaa2aae 1612@group
5e9b6624
AD
1613exp:
1614 NUM @{ $$ = $1; @}
1615| exp exp '+' @{ $$ = $1 + $2; @}
1616| exp exp '-' @{ $$ = $1 - $2; @}
1617| exp exp '*' @{ $$ = $1 * $2; @}
1618| exp exp '/' @{ $$ = $1 / $2; @}
1619| exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1620| exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1621;
aaaa2aae 1622@end group
bfa74976
RS
1623%%
1624@end example
1625
1626The groupings of the rpcalc ``language'' defined here are the expression
1627(given the name @code{exp}), the line of input (@code{line}), and the
1628complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1629symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1630which is read as ``or''. The following sections explain what these rules
1631mean.
1632
1633The semantics of the language is determined by the actions taken when a
1634grouping is recognized. The actions are the C code that appears inside
1635braces. @xref{Actions}.
1636
1637You must specify these actions in C, but Bison provides the means for
1638passing semantic values between the rules. In each action, the
1639pseudo-variable @code{$$} stands for the semantic value for the grouping
1640that the rule is going to construct. Assigning a value to @code{$$} is the
1641main job of most actions. The semantic values of the components of the
1642rule are referred to as @code{$1}, @code{$2}, and so on.
1643
1644@menu
24ec0837
AD
1645* Rpcalc Input:: Explanation of the @code{input} nonterminal
1646* Rpcalc Line:: Explanation of the @code{line} nonterminal
1647* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976
RS
1648@end menu
1649
342b8b6e 1650@node Rpcalc Input
bfa74976
RS
1651@subsubsection Explanation of @code{input}
1652
1653Consider the definition of @code{input}:
1654
1655@example
5e9b6624
AD
1656input:
1657 /* empty */
1658| input line
bfa74976
RS
1659;
1660@end example
1661
1662This definition reads as follows: ``A complete input is either an empty
1663string, or a complete input followed by an input line''. Notice that
1664``complete input'' is defined in terms of itself. This definition is said
1665to be @dfn{left recursive} since @code{input} appears always as the
1666leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1667
1668The first alternative is empty because there are no symbols between the
1669colon and the first @samp{|}; this means that @code{input} can match an
1670empty string of input (no tokens). We write the rules this way because it
1671is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1672It's conventional to put an empty alternative first and write the comment
1673@samp{/* empty */} in it.
1674
1675The second alternate rule (@code{input line}) handles all nontrivial input.
1676It means, ``After reading any number of lines, read one more line if
1677possible.'' The left recursion makes this rule into a loop. Since the
1678first alternative matches empty input, the loop can be executed zero or
1679more times.
1680
1681The parser function @code{yyparse} continues to process input until a
1682grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1683input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1684
342b8b6e 1685@node Rpcalc Line
bfa74976
RS
1686@subsubsection Explanation of @code{line}
1687
1688Now consider the definition of @code{line}:
1689
1690@example
5e9b6624
AD
1691line:
1692 '\n'
1693| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1694;
1695@end example
1696
1697The first alternative is a token which is a newline character; this means
1698that rpcalc accepts a blank line (and ignores it, since there is no
1699action). The second alternative is an expression followed by a newline.
1700This is the alternative that makes rpcalc useful. The semantic value of
1701the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1702question is the first symbol in the alternative. The action prints this
1703value, which is the result of the computation the user asked for.
1704
1705This action is unusual because it does not assign a value to @code{$$}. As
1706a consequence, the semantic value associated with the @code{line} is
1707uninitialized (its value will be unpredictable). This would be a bug if
1708that value were ever used, but we don't use it: once rpcalc has printed the
1709value of the user's input line, that value is no longer needed.
1710
342b8b6e 1711@node Rpcalc Expr
bfa74976
RS
1712@subsubsection Explanation of @code{expr}
1713
1714The @code{exp} grouping has several rules, one for each kind of expression.
1715The first rule handles the simplest expressions: those that are just numbers.
1716The second handles an addition-expression, which looks like two expressions
1717followed by a plus-sign. The third handles subtraction, and so on.
1718
1719@example
5e9b6624
AD
1720exp:
1721 NUM
1722| exp exp '+' @{ $$ = $1 + $2; @}
1723| exp exp '-' @{ $$ = $1 - $2; @}
1724@dots{}
1725;
bfa74976
RS
1726@end example
1727
1728We have used @samp{|} to join all the rules for @code{exp}, but we could
1729equally well have written them separately:
1730
1731@example
5e9b6624
AD
1732exp: NUM ;
1733exp: exp exp '+' @{ $$ = $1 + $2; @};
1734exp: exp exp '-' @{ $$ = $1 - $2; @};
1735@dots{}
bfa74976
RS
1736@end example
1737
1738Most of the rules have actions that compute the value of the expression in
1739terms of the value of its parts. For example, in the rule for addition,
1740@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1741the second one. The third component, @code{'+'}, has no meaningful
1742associated semantic value, but if it had one you could refer to it as
1743@code{$3}. When @code{yyparse} recognizes a sum expression using this
1744rule, the sum of the two subexpressions' values is produced as the value of
1745the entire expression. @xref{Actions}.
1746
1747You don't have to give an action for every rule. When a rule has no
1748action, Bison by default copies the value of @code{$1} into @code{$$}.
1749This is what happens in the first rule (the one that uses @code{NUM}).
1750
1751The formatting shown here is the recommended convention, but Bison does
72d2299c 1752not require it. You can add or change white space as much as you wish.
bfa74976
RS
1753For example, this:
1754
1755@example
5e9b6624 1756exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1757@end example
1758
1759@noindent
1760means the same thing as this:
1761
1762@example
5e9b6624
AD
1763exp:
1764 NUM
1765| exp exp '+' @{ $$ = $1 + $2; @}
1766| @dots{}
99a9344e 1767;
bfa74976
RS
1768@end example
1769
1770@noindent
1771The latter, however, is much more readable.
1772
342b8b6e 1773@node Rpcalc Lexer
bfa74976
RS
1774@subsection The @code{rpcalc} Lexical Analyzer
1775@cindex writing a lexical analyzer
1776@cindex lexical analyzer, writing
1777
704a47c4
AD
1778The lexical analyzer's job is low-level parsing: converting characters
1779or sequences of characters into tokens. The Bison parser gets its
1780tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1781Analyzer Function @code{yylex}}.
bfa74976 1782
8a4281b9 1783Only a simple lexical analyzer is needed for the RPN
c827f760 1784calculator. This
bfa74976
RS
1785lexical analyzer skips blanks and tabs, then reads in numbers as
1786@code{double} and returns them as @code{NUM} tokens. Any other character
1787that isn't part of a number is a separate token. Note that the token-code
1788for such a single-character token is the character itself.
1789
1790The return value of the lexical analyzer function is a numeric code which
1791represents a token type. The same text used in Bison rules to stand for
1792this token type is also a C expression for the numeric code for the type.
1793This works in two ways. If the token type is a character literal, then its
e966383b 1794numeric code is that of the character; you can use the same
bfa74976
RS
1795character literal in the lexical analyzer to express the number. If the
1796token type is an identifier, that identifier is defined by Bison as a C
1797macro whose definition is the appropriate number. In this example,
1798therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1799
1964ad8c
AD
1800The semantic value of the token (if it has one) is stored into the
1801global variable @code{yylval}, which is where the Bison parser will look
1802for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1803defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1804,Declarations for @code{rpcalc}}.)
bfa74976 1805
72d2299c
PE
1806A token type code of zero is returned if the end-of-input is encountered.
1807(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1808
1809Here is the code for the lexical analyzer:
1810
24ec0837 1811@comment file: rpcalc.y
bfa74976
RS
1812@example
1813@group
72d2299c 1814/* The lexical analyzer returns a double floating point
e966383b 1815 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1816 of the character read if not a number. It skips all blanks
1817 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1818
1819#include <ctype.h>
1820@end group
1821
1822@group
13863333
AD
1823int
1824yylex (void)
bfa74976
RS
1825@{
1826 int c;
1827
72d2299c 1828 /* Skip white space. */
13863333 1829 while ((c = getchar ()) == ' ' || c == '\t')
d4fca427 1830 continue;
bfa74976
RS
1831@end group
1832@group
72d2299c 1833 /* Process numbers. */
13863333 1834 if (c == '.' || isdigit (c))
bfa74976
RS
1835 @{
1836 ungetc (c, stdin);
1837 scanf ("%lf", &yylval);
1838 return NUM;
1839 @}
1840@end group
1841@group
72d2299c 1842 /* Return end-of-input. */
13863333 1843 if (c == EOF)
bfa74976 1844 return 0;
72d2299c 1845 /* Return a single char. */
13863333 1846 return c;
bfa74976
RS
1847@}
1848@end group
1849@end example
1850
342b8b6e 1851@node Rpcalc Main
bfa74976
RS
1852@subsection The Controlling Function
1853@cindex controlling function
1854@cindex main function in simple example
1855
1856In keeping with the spirit of this example, the controlling function is
1857kept to the bare minimum. The only requirement is that it call
1858@code{yyparse} to start the process of parsing.
1859
24ec0837 1860@comment file: rpcalc.y
bfa74976
RS
1861@example
1862@group
13863333
AD
1863int
1864main (void)
bfa74976 1865@{
13863333 1866 return yyparse ();
bfa74976
RS
1867@}
1868@end group
1869@end example
1870
342b8b6e 1871@node Rpcalc Error
bfa74976
RS
1872@subsection The Error Reporting Routine
1873@cindex error reporting routine
1874
1875When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1876function @code{yyerror} to print an error message (usually but not
6e649e65 1877always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1878@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1879here is the definition we will use:
bfa74976 1880
24ec0837 1881@comment file: rpcalc.y
bfa74976 1882@example
bfa74976
RS
1883#include <stdio.h>
1884
aaaa2aae 1885@group
38a92d50 1886/* Called by yyparse on error. */
13863333 1887void
38a92d50 1888yyerror (char const *s)
bfa74976 1889@{
4e03e201 1890 fprintf (stderr, "%s\n", s);
bfa74976
RS
1891@}
1892@end group
1893@end example
1894
1895After @code{yyerror} returns, the Bison parser may recover from the error
1896and continue parsing if the grammar contains a suitable error rule
1897(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1898have not written any error rules in this example, so any invalid input will
1899cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1900real calculator, but it is adequate for the first example.
bfa74976 1901
f5f419de 1902@node Rpcalc Generate
bfa74976
RS
1903@subsection Running Bison to Make the Parser
1904@cindex running Bison (introduction)
1905
ceed8467
AD
1906Before running Bison to produce a parser, we need to decide how to
1907arrange all the source code in one or more source files. For such a
ff7571c0
JD
1908simple example, the easiest thing is to put everything in one file,
1909the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1910@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1911(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1912
1913For a large project, you would probably have several source files, and use
1914@code{make} to arrange to recompile them.
1915
ff7571c0
JD
1916With all the source in the grammar file, you use the following command
1917to convert it into a parser implementation file:
bfa74976
RS
1918
1919@example
fa4d969f 1920bison @var{file}.y
bfa74976
RS
1921@end example
1922
1923@noindent
ff7571c0
JD
1924In this example, the grammar file is called @file{rpcalc.y} (for
1925``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1926implementation file named @file{@var{file}.tab.c}, removing the
1927@samp{.y} from the grammar file name. The parser implementation file
1928contains the source code for @code{yyparse}. The additional functions
1929in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1930copied verbatim to the parser implementation file.
bfa74976 1931
342b8b6e 1932@node Rpcalc Compile
ff7571c0 1933@subsection Compiling the Parser Implementation File
bfa74976
RS
1934@cindex compiling the parser
1935
ff7571c0 1936Here is how to compile and run the parser implementation file:
bfa74976
RS
1937
1938@example
1939@group
1940# @r{List files in current directory.}
9edcd895 1941$ @kbd{ls}
bfa74976
RS
1942rpcalc.tab.c rpcalc.y
1943@end group
1944
1945@group
1946# @r{Compile the Bison parser.}
1947# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1948$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1949@end group
1950
1951@group
1952# @r{List files again.}
9edcd895 1953$ @kbd{ls}
bfa74976
RS
1954rpcalc rpcalc.tab.c rpcalc.y
1955@end group
1956@end example
1957
1958The file @file{rpcalc} now contains the executable code. Here is an
1959example session using @code{rpcalc}.
1960
1961@example
9edcd895
AD
1962$ @kbd{rpcalc}
1963@kbd{4 9 +}
24ec0837 1964@result{} 13
9edcd895 1965@kbd{3 7 + 3 4 5 *+-}
24ec0837 1966@result{} -13
9edcd895 1967@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
24ec0837 1968@result{} 13
9edcd895 1969@kbd{5 6 / 4 n +}
24ec0837 1970@result{} -3.166666667
9edcd895 1971@kbd{3 4 ^} @r{Exponentiation}
24ec0837 1972@result{} 81
9edcd895
AD
1973@kbd{^D} @r{End-of-file indicator}
1974$
bfa74976
RS
1975@end example
1976
342b8b6e 1977@node Infix Calc
bfa74976
RS
1978@section Infix Notation Calculator: @code{calc}
1979@cindex infix notation calculator
1980@cindex @code{calc}
1981@cindex calculator, infix notation
1982
1983We now modify rpcalc to handle infix operators instead of postfix. Infix
1984notation involves the concept of operator precedence and the need for
1985parentheses nested to arbitrary depth. Here is the Bison code for
1986@file{calc.y}, an infix desk-top calculator.
1987
1988@example
38a92d50 1989/* Infix notation calculator. */
bfa74976 1990
aaaa2aae 1991@group
bfa74976 1992%@{
38a92d50
PE
1993 #define YYSTYPE double
1994 #include <math.h>
1995 #include <stdio.h>
1996 int yylex (void);
1997 void yyerror (char const *);
bfa74976 1998%@}
aaaa2aae 1999@end group
bfa74976 2000
aaaa2aae 2001@group
38a92d50 2002/* Bison declarations. */
bfa74976
RS
2003%token NUM
2004%left '-' '+'
2005%left '*' '/'
d78f0ac9
AD
2006%precedence NEG /* negation--unary minus */
2007%right '^' /* exponentiation */
aaaa2aae 2008@end group
bfa74976 2009
38a92d50 2010%% /* The grammar follows. */
aaaa2aae 2011@group
5e9b6624
AD
2012input:
2013 /* empty */
2014| input line
bfa74976 2015;
aaaa2aae 2016@end group
bfa74976 2017
aaaa2aae 2018@group
5e9b6624
AD
2019line:
2020 '\n'
2021| exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976 2022;
aaaa2aae 2023@end group
bfa74976 2024
aaaa2aae 2025@group
5e9b6624
AD
2026exp:
2027 NUM @{ $$ = $1; @}
2028| exp '+' exp @{ $$ = $1 + $3; @}
2029| exp '-' exp @{ $$ = $1 - $3; @}
2030| exp '*' exp @{ $$ = $1 * $3; @}
2031| exp '/' exp @{ $$ = $1 / $3; @}
2032| '-' exp %prec NEG @{ $$ = -$2; @}
2033| exp '^' exp @{ $$ = pow ($1, $3); @}
2034| '(' exp ')' @{ $$ = $2; @}
bfa74976 2035;
aaaa2aae 2036@end group
bfa74976
RS
2037%%
2038@end example
2039
2040@noindent
ceed8467
AD
2041The functions @code{yylex}, @code{yyerror} and @code{main} can be the
2042same as before.
bfa74976
RS
2043
2044There are two important new features shown in this code.
2045
2046In the second section (Bison declarations), @code{%left} declares token
2047types and says they are left-associative operators. The declarations
2048@code{%left} and @code{%right} (right associativity) take the place of
2049@code{%token} which is used to declare a token type name without
d78f0ac9 2050associativity/precedence. (These tokens are single-character literals, which
bfa74976 2051ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 2052the associativity/precedence.)
bfa74976
RS
2053
2054Operator precedence is determined by the line ordering of the
2055declarations; the higher the line number of the declaration (lower on
2056the page or screen), the higher the precedence. Hence, exponentiation
2057has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
2058by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
2059only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 2060Precedence}.
bfa74976 2061
704a47c4
AD
2062The other important new feature is the @code{%prec} in the grammar
2063section for the unary minus operator. The @code{%prec} simply instructs
2064Bison that the rule @samp{| '-' exp} has the same precedence as
2065@code{NEG}---in this case the next-to-highest. @xref{Contextual
2066Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2067
2068Here is a sample run of @file{calc.y}:
2069
2070@need 500
2071@example
9edcd895
AD
2072$ @kbd{calc}
2073@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20746.880952381
9edcd895 2075@kbd{-56 + 2}
bfa74976 2076-54
9edcd895 2077@kbd{3 ^ 2}
bfa74976
RS
20789
2079@end example
2080
342b8b6e 2081@node Simple Error Recovery
bfa74976
RS
2082@section Simple Error Recovery
2083@cindex error recovery, simple
2084
2085Up to this point, this manual has not addressed the issue of @dfn{error
2086recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2087error. All we have handled is error reporting with @code{yyerror}.
2088Recall that by default @code{yyparse} returns after calling
2089@code{yyerror}. This means that an erroneous input line causes the
2090calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2091
2092The Bison language itself includes the reserved word @code{error}, which
2093may be included in the grammar rules. In the example below it has
2094been added to one of the alternatives for @code{line}:
2095
2096@example
2097@group
5e9b6624
AD
2098line:
2099 '\n'
2100| exp '\n' @{ printf ("\t%.10g\n", $1); @}
2101| error '\n' @{ yyerrok; @}
bfa74976
RS
2102;
2103@end group
2104@end example
2105
ceed8467 2106This addition to the grammar allows for simple error recovery in the
6e649e65 2107event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2108read, the error will be recognized by the third rule for @code{line},
2109and parsing will continue. (The @code{yyerror} function is still called
2110upon to print its message as well.) The action executes the statement
2111@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2112that error recovery is complete (@pxref{Error Recovery}). Note the
2113difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2114misprint.
bfa74976
RS
2115
2116This form of error recovery deals with syntax errors. There are other
2117kinds of errors; for example, division by zero, which raises an exception
2118signal that is normally fatal. A real calculator program must handle this
2119signal and use @code{longjmp} to return to @code{main} and resume parsing
2120input lines; it would also have to discard the rest of the current line of
2121input. We won't discuss this issue further because it is not specific to
2122Bison programs.
2123
342b8b6e
AD
2124@node Location Tracking Calc
2125@section Location Tracking Calculator: @code{ltcalc}
2126@cindex location tracking calculator
2127@cindex @code{ltcalc}
2128@cindex calculator, location tracking
2129
9edcd895
AD
2130This example extends the infix notation calculator with location
2131tracking. This feature will be used to improve the error messages. For
2132the sake of clarity, this example is a simple integer calculator, since
2133most of the work needed to use locations will be done in the lexical
72d2299c 2134analyzer.
342b8b6e
AD
2135
2136@menu
f5f419de
DJ
2137* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2138* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2139* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2140@end menu
2141
f5f419de 2142@node Ltcalc Declarations
342b8b6e
AD
2143@subsection Declarations for @code{ltcalc}
2144
9edcd895
AD
2145The C and Bison declarations for the location tracking calculator are
2146the same as the declarations for the infix notation calculator.
342b8b6e
AD
2147
2148@example
2149/* Location tracking calculator. */
2150
2151%@{
38a92d50
PE
2152 #define YYSTYPE int
2153 #include <math.h>
2154 int yylex (void);
2155 void yyerror (char const *);
342b8b6e
AD
2156%@}
2157
2158/* Bison declarations. */
2159%token NUM
2160
2161%left '-' '+'
2162%left '*' '/'
d78f0ac9 2163%precedence NEG
342b8b6e
AD
2164%right '^'
2165
38a92d50 2166%% /* The grammar follows. */
342b8b6e
AD
2167@end example
2168
9edcd895
AD
2169@noindent
2170Note there are no declarations specific to locations. Defining a data
2171type for storing locations is not needed: we will use the type provided
2172by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2173four member structure with the following integer fields:
2174@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2175@code{last_column}. By conventions, and in accordance with the GNU
2176Coding Standards and common practice, the line and column count both
2177start at 1.
342b8b6e
AD
2178
2179@node Ltcalc Rules
2180@subsection Grammar Rules for @code{ltcalc}
2181
9edcd895
AD
2182Whether handling locations or not has no effect on the syntax of your
2183language. Therefore, grammar rules for this example will be very close
2184to those of the previous example: we will only modify them to benefit
2185from the new information.
342b8b6e 2186
9edcd895
AD
2187Here, we will use locations to report divisions by zero, and locate the
2188wrong expressions or subexpressions.
342b8b6e
AD
2189
2190@example
2191@group
5e9b6624
AD
2192input:
2193 /* empty */
2194| input line
342b8b6e
AD
2195;
2196@end group
2197
2198@group
5e9b6624
AD
2199line:
2200 '\n'
2201| exp '\n' @{ printf ("%d\n", $1); @}
342b8b6e
AD
2202;
2203@end group
2204
2205@group
5e9b6624
AD
2206exp:
2207 NUM @{ $$ = $1; @}
2208| exp '+' exp @{ $$ = $1 + $3; @}
2209| exp '-' exp @{ $$ = $1 - $3; @}
2210| exp '*' exp @{ $$ = $1 * $3; @}
342b8b6e 2211@end group
342b8b6e 2212@group
5e9b6624
AD
2213| exp '/' exp
2214 @{
2215 if ($3)
2216 $$ = $1 / $3;
2217 else
2218 @{
2219 $$ = 1;
2220 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2221 @@3.first_line, @@3.first_column,
2222 @@3.last_line, @@3.last_column);
2223 @}
2224 @}
342b8b6e
AD
2225@end group
2226@group
5e9b6624
AD
2227| '-' exp %prec NEG @{ $$ = -$2; @}
2228| exp '^' exp @{ $$ = pow ($1, $3); @}
2229| '(' exp ')' @{ $$ = $2; @}
342b8b6e
AD
2230@end group
2231@end example
2232
2233This code shows how to reach locations inside of semantic actions, by
2234using the pseudo-variables @code{@@@var{n}} for rule components, and the
2235pseudo-variable @code{@@$} for groupings.
2236
9edcd895
AD
2237We don't need to assign a value to @code{@@$}: the output parser does it
2238automatically. By default, before executing the C code of each action,
2239@code{@@$} is set to range from the beginning of @code{@@1} to the end
2240of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2241can be redefined (@pxref{Location Default Action, , Default Action for
2242Locations}), and for very specific rules, @code{@@$} can be computed by
2243hand.
342b8b6e
AD
2244
2245@node Ltcalc Lexer
2246@subsection The @code{ltcalc} Lexical Analyzer.
2247
9edcd895 2248Until now, we relied on Bison's defaults to enable location
72d2299c 2249tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2250able to feed the parser with the token locations, as it already does for
2251semantic values.
342b8b6e 2252
9edcd895
AD
2253To this end, we must take into account every single character of the
2254input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2255
2256@example
2257@group
2258int
2259yylex (void)
2260@{
2261 int c;
18b519c0 2262@end group
342b8b6e 2263
18b519c0 2264@group
72d2299c 2265 /* Skip white space. */
342b8b6e
AD
2266 while ((c = getchar ()) == ' ' || c == '\t')
2267 ++yylloc.last_column;
18b519c0 2268@end group
342b8b6e 2269
18b519c0 2270@group
72d2299c 2271 /* Step. */
342b8b6e
AD
2272 yylloc.first_line = yylloc.last_line;
2273 yylloc.first_column = yylloc.last_column;
2274@end group
2275
2276@group
72d2299c 2277 /* Process numbers. */
342b8b6e
AD
2278 if (isdigit (c))
2279 @{
2280 yylval = c - '0';
2281 ++yylloc.last_column;
2282 while (isdigit (c = getchar ()))
2283 @{
2284 ++yylloc.last_column;
2285 yylval = yylval * 10 + c - '0';
2286 @}
2287 ungetc (c, stdin);
2288 return NUM;
2289 @}
2290@end group
2291
72d2299c 2292 /* Return end-of-input. */
342b8b6e
AD
2293 if (c == EOF)
2294 return 0;
2295
d4fca427 2296@group
72d2299c 2297 /* Return a single char, and update location. */
342b8b6e
AD
2298 if (c == '\n')
2299 @{
2300 ++yylloc.last_line;
2301 yylloc.last_column = 0;
2302 @}
2303 else
2304 ++yylloc.last_column;
2305 return c;
2306@}
d4fca427 2307@end group
342b8b6e
AD
2308@end example
2309
9edcd895
AD
2310Basically, the lexical analyzer performs the same processing as before:
2311it skips blanks and tabs, and reads numbers or single-character tokens.
2312In addition, it updates @code{yylloc}, the global variable (of type
2313@code{YYLTYPE}) containing the token's location.
342b8b6e 2314
9edcd895 2315Now, each time this function returns a token, the parser has its number
72d2299c 2316as well as its semantic value, and its location in the text. The last
9edcd895
AD
2317needed change is to initialize @code{yylloc}, for example in the
2318controlling function:
342b8b6e
AD
2319
2320@example
9edcd895 2321@group
342b8b6e
AD
2322int
2323main (void)
2324@{
2325 yylloc.first_line = yylloc.last_line = 1;
2326 yylloc.first_column = yylloc.last_column = 0;
2327 return yyparse ();
2328@}
9edcd895 2329@end group
342b8b6e
AD
2330@end example
2331
9edcd895
AD
2332Remember that computing locations is not a matter of syntax. Every
2333character must be associated to a location update, whether it is in
2334valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2335
2336@node Multi-function Calc
bfa74976
RS
2337@section Multi-Function Calculator: @code{mfcalc}
2338@cindex multi-function calculator
2339@cindex @code{mfcalc}
2340@cindex calculator, multi-function
2341
2342Now that the basics of Bison have been discussed, it is time to move on to
2343a more advanced problem. The above calculators provided only five
2344functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2345be nice to have a calculator that provides other mathematical functions such
2346as @code{sin}, @code{cos}, etc.
2347
2348It is easy to add new operators to the infix calculator as long as they are
2349only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2350back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2351adding a new operator. But we want something more flexible: built-in
2352functions whose syntax has this form:
2353
2354@example
2355@var{function_name} (@var{argument})
2356@end example
2357
2358@noindent
2359At the same time, we will add memory to the calculator, by allowing you
2360to create named variables, store values in them, and use them later.
2361Here is a sample session with the multi-function calculator:
2362
2363@example
d4fca427 2364@group
9edcd895
AD
2365$ @kbd{mfcalc}
2366@kbd{pi = 3.141592653589}
f9c75dd0 2367@result{} 3.1415926536
d4fca427
AD
2368@end group
2369@group
9edcd895 2370@kbd{sin(pi)}
f9c75dd0 2371@result{} 0.0000000000
d4fca427 2372@end group
9edcd895 2373@kbd{alpha = beta1 = 2.3}
f9c75dd0 2374@result{} 2.3000000000
9edcd895 2375@kbd{alpha}
f9c75dd0 2376@result{} 2.3000000000
9edcd895 2377@kbd{ln(alpha)}
f9c75dd0 2378@result{} 0.8329091229
9edcd895 2379@kbd{exp(ln(beta1))}
f9c75dd0 2380@result{} 2.3000000000
9edcd895 2381$
bfa74976
RS
2382@end example
2383
2384Note that multiple assignment and nested function calls are permitted.
2385
2386@menu
f5f419de
DJ
2387* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2388* Mfcalc Rules:: Grammar rules for the calculator.
2389* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
2390* Mfcalc Lexer:: The lexical analyzer.
2391* Mfcalc Main:: The controlling function.
bfa74976
RS
2392@end menu
2393
f5f419de 2394@node Mfcalc Declarations
bfa74976
RS
2395@subsection Declarations for @code{mfcalc}
2396
2397Here are the C and Bison declarations for the multi-function calculator.
2398
93c150b6 2399@comment file: mfcalc.y: 1
c93f22fc 2400@example
18b519c0 2401@group
bfa74976 2402%@{
f9c75dd0 2403 #include <stdio.h> /* For printf, etc. */
578e3413 2404 #include <math.h> /* For pow, used in the grammar. */
f9c75dd0 2405 #include "calc.h" /* Contains definition of `symrec'. */
38a92d50
PE
2406 int yylex (void);
2407 void yyerror (char const *);
bfa74976 2408%@}
18b519c0 2409@end group
93c150b6 2410
18b519c0 2411@group
bfa74976 2412%union @{
38a92d50
PE
2413 double val; /* For returning numbers. */
2414 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2415@}
18b519c0 2416@end group
38a92d50 2417%token <val> NUM /* Simple double precision number. */
93c150b6 2418%token <tptr> VAR FNCT /* Variable and function. */
bfa74976
RS
2419%type <val> exp
2420
18b519c0 2421@group
e8f7155d 2422%precedence '='
bfa74976
RS
2423%left '-' '+'
2424%left '*' '/'
d78f0ac9
AD
2425%precedence NEG /* negation--unary minus */
2426%right '^' /* exponentiation */
18b519c0 2427@end group
c93f22fc 2428@end example
bfa74976
RS
2429
2430The above grammar introduces only two new features of the Bison language.
2431These features allow semantic values to have various data types
2432(@pxref{Multiple Types, ,More Than One Value Type}).
2433
2434The @code{%union} declaration specifies the entire list of possible types;
2435this is instead of defining @code{YYSTYPE}. The allowable types are now
2436double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2437the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2438
2439Since values can now have various types, it is necessary to associate a
2440type with each grammar symbol whose semantic value is used. These symbols
2441are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2442declarations are augmented with information about their data type (placed
2443between angle brackets).
2444
704a47c4
AD
2445The Bison construct @code{%type} is used for declaring nonterminal
2446symbols, just as @code{%token} is used for declaring token types. We
2447have not used @code{%type} before because nonterminal symbols are
2448normally declared implicitly by the rules that define them. But
2449@code{exp} must be declared explicitly so we can specify its value type.
2450@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2451
342b8b6e 2452@node Mfcalc Rules
bfa74976
RS
2453@subsection Grammar Rules for @code{mfcalc}
2454
2455Here are the grammar rules for the multi-function calculator.
2456Most of them are copied directly from @code{calc}; three rules,
2457those which mention @code{VAR} or @code{FNCT}, are new.
2458
93c150b6 2459@comment file: mfcalc.y: 3
c93f22fc 2460@example
93c150b6 2461%% /* The grammar follows. */
18b519c0 2462@group
5e9b6624
AD
2463input:
2464 /* empty */
2465| input line
bfa74976 2466;
18b519c0 2467@end group
bfa74976 2468
18b519c0 2469@group
bfa74976 2470line:
5e9b6624
AD
2471 '\n'
2472| exp '\n' @{ printf ("%.10g\n", $1); @}
2473| error '\n' @{ yyerrok; @}
bfa74976 2474;
18b519c0 2475@end group
bfa74976 2476
18b519c0 2477@group
5e9b6624
AD
2478exp:
2479 NUM @{ $$ = $1; @}
2480| VAR @{ $$ = $1->value.var; @}
2481| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2482| FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2483| exp '+' exp @{ $$ = $1 + $3; @}
2484| exp '-' exp @{ $$ = $1 - $3; @}
2485| exp '*' exp @{ $$ = $1 * $3; @}
2486| exp '/' exp @{ $$ = $1 / $3; @}
2487| '-' exp %prec NEG @{ $$ = -$2; @}
2488| exp '^' exp @{ $$ = pow ($1, $3); @}
2489| '(' exp ')' @{ $$ = $2; @}
bfa74976 2490;
18b519c0 2491@end group
38a92d50 2492/* End of grammar. */
bfa74976 2493%%
c93f22fc 2494@end example
bfa74976 2495
f5f419de 2496@node Mfcalc Symbol Table
bfa74976
RS
2497@subsection The @code{mfcalc} Symbol Table
2498@cindex symbol table example
2499
2500The multi-function calculator requires a symbol table to keep track of the
2501names and meanings of variables and functions. This doesn't affect the
2502grammar rules (except for the actions) or the Bison declarations, but it
2503requires some additional C functions for support.
2504
2505The symbol table itself consists of a linked list of records. Its
2506definition, which is kept in the header @file{calc.h}, is as follows. It
2507provides for either functions or variables to be placed in the table.
2508
f9c75dd0 2509@comment file: calc.h
c93f22fc 2510@example
bfa74976 2511@group
38a92d50 2512/* Function type. */
32dfccf8 2513typedef double (*func_t) (double);
72f889cc 2514@end group
32dfccf8 2515
72f889cc 2516@group
38a92d50 2517/* Data type for links in the chain of symbols. */
bfa74976
RS
2518struct symrec
2519@{
38a92d50 2520 char *name; /* name of symbol */
bfa74976 2521 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2522 union
2523 @{
38a92d50
PE
2524 double var; /* value of a VAR */
2525 func_t fnctptr; /* value of a FNCT */
bfa74976 2526 @} value;
38a92d50 2527 struct symrec *next; /* link field */
bfa74976
RS
2528@};
2529@end group
2530
2531@group
2532typedef struct symrec symrec;
2533
38a92d50 2534/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2535extern symrec *sym_table;
2536
a730d142 2537symrec *putsym (char const *, int);
38a92d50 2538symrec *getsym (char const *);
bfa74976 2539@end group
c93f22fc 2540@end example
bfa74976 2541
aeb57fb6
AD
2542The new version of @code{main} will call @code{init_table} to initialize
2543the symbol table:
bfa74976 2544
93c150b6 2545@comment file: mfcalc.y: 3
c93f22fc 2546@example
18b519c0 2547@group
bfa74976
RS
2548struct init
2549@{
38a92d50
PE
2550 char const *fname;
2551 double (*fnct) (double);
bfa74976
RS
2552@};
2553@end group
2554
2555@group
38a92d50 2556struct init const arith_fncts[] =
13863333 2557@{
f9c75dd0
AD
2558 @{ "atan", atan @},
2559 @{ "cos", cos @},
2560 @{ "exp", exp @},
2561 @{ "ln", log @},
2562 @{ "sin", sin @},
2563 @{ "sqrt", sqrt @},
2564 @{ 0, 0 @},
13863333 2565@};
18b519c0 2566@end group
bfa74976 2567
18b519c0 2568@group
bfa74976 2569/* The symbol table: a chain of `struct symrec'. */
38a92d50 2570symrec *sym_table;
bfa74976
RS
2571@end group
2572
2573@group
72d2299c 2574/* Put arithmetic functions in table. */
f9c75dd0 2575static
13863333
AD
2576void
2577init_table (void)
bfa74976
RS
2578@{
2579 int i;
bfa74976
RS
2580 for (i = 0; arith_fncts[i].fname != 0; i++)
2581 @{
aaaa2aae 2582 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2583 ptr->value.fnctptr = arith_fncts[i].fnct;
2584 @}
2585@}
2586@end group
c93f22fc 2587@end example
bfa74976
RS
2588
2589By simply editing the initialization list and adding the necessary include
2590files, you can add additional functions to the calculator.
2591
2592Two important functions allow look-up and installation of symbols in the
2593symbol table. The function @code{putsym} is passed a name and the type
2594(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2595linked to the front of the list, and a pointer to the object is returned.
2596The function @code{getsym} is passed the name of the symbol to look up. If
2597found, a pointer to that symbol is returned; otherwise zero is returned.
2598
93c150b6 2599@comment file: mfcalc.y: 3
c93f22fc 2600@example
f9c75dd0
AD
2601#include <stdlib.h> /* malloc. */
2602#include <string.h> /* strlen. */
2603
d4fca427 2604@group
bfa74976 2605symrec *
38a92d50 2606putsym (char const *sym_name, int sym_type)
bfa74976 2607@{
aaaa2aae 2608 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2609 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2610 strcpy (ptr->name,sym_name);
2611 ptr->type = sym_type;
72d2299c 2612 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2613 ptr->next = (struct symrec *)sym_table;
2614 sym_table = ptr;
2615 return ptr;
2616@}
d4fca427 2617@end group
bfa74976 2618
d4fca427 2619@group
bfa74976 2620symrec *
38a92d50 2621getsym (char const *sym_name)
bfa74976
RS
2622@{
2623 symrec *ptr;
2624 for (ptr = sym_table; ptr != (symrec *) 0;
2625 ptr = (symrec *)ptr->next)
f518dbaf 2626 if (strcmp (ptr->name, sym_name) == 0)
bfa74976
RS
2627 return ptr;
2628 return 0;
2629@}
d4fca427 2630@end group
c93f22fc 2631@end example
bfa74976 2632
aeb57fb6
AD
2633@node Mfcalc Lexer
2634@subsection The @code{mfcalc} Lexer
2635
bfa74976
RS
2636The function @code{yylex} must now recognize variables, numeric values, and
2637the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2638characters with a leading letter are recognized as either variables or
bfa74976
RS
2639functions depending on what the symbol table says about them.
2640
2641The string is passed to @code{getsym} for look up in the symbol table. If
2642the name appears in the table, a pointer to its location and its type
2643(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2644already in the table, then it is installed as a @code{VAR} using
2645@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2646returned to @code{yyparse}.
bfa74976
RS
2647
2648No change is needed in the handling of numeric values and arithmetic
2649operators in @code{yylex}.
2650
93c150b6 2651@comment file: mfcalc.y: 3
c93f22fc 2652@example
bfa74976 2653#include <ctype.h>
13863333 2654
18b519c0 2655@group
13863333
AD
2656int
2657yylex (void)
bfa74976
RS
2658@{
2659 int c;
2660
72d2299c 2661 /* Ignore white space, get first nonwhite character. */
d4fca427
AD
2662 while ((c = getchar ()) == ' ' || c == '\t')
2663 continue;
bfa74976
RS
2664
2665 if (c == EOF)
2666 return 0;
2667@end group
2668
2669@group
2670 /* Char starts a number => parse the number. */
2671 if (c == '.' || isdigit (c))
2672 @{
2673 ungetc (c, stdin);
2674 scanf ("%lf", &yylval.val);
2675 return NUM;
2676 @}
2677@end group
2678
2679@group
2680 /* Char starts an identifier => read the name. */
2681 if (isalpha (c))
2682 @{
aaaa2aae
AD
2683 /* Initially make the buffer long enough
2684 for a 40-character symbol name. */
2685 static size_t length = 40;
bfa74976 2686 static char *symbuf = 0;
aaaa2aae 2687 symrec *s;
bfa74976
RS
2688 int i;
2689@end group
aaaa2aae
AD
2690 if (!symbuf)
2691 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2692
2693 i = 0;
2694 do
bfa74976
RS
2695@group
2696 @{
2697 /* If buffer is full, make it bigger. */
2698 if (i == length)
2699 @{
2700 length *= 2;
18b519c0 2701 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2702 @}
2703 /* Add this character to the buffer. */
2704 symbuf[i++] = c;
2705 /* Get another character. */
2706 c = getchar ();
2707 @}
2708@end group
2709@group
72d2299c 2710 while (isalnum (c));
bfa74976
RS
2711
2712 ungetc (c, stdin);
2713 symbuf[i] = '\0';
2714@end group
2715
2716@group
2717 s = getsym (symbuf);
2718 if (s == 0)
2719 s = putsym (symbuf, VAR);
2720 yylval.tptr = s;
2721 return s->type;
2722 @}
2723
2724 /* Any other character is a token by itself. */
2725 return c;
2726@}
2727@end group
c93f22fc 2728@end example
bfa74976 2729
aeb57fb6
AD
2730@node Mfcalc Main
2731@subsection The @code{mfcalc} Main
2732
2733The error reporting function is unchanged, and the new version of
93c150b6
AD
2734@code{main} includes a call to @code{init_table} and sets the @code{yydebug}
2735on user demand (@xref{Tracing, , Tracing Your Parser}, for details):
aeb57fb6 2736
93c150b6 2737@comment file: mfcalc.y: 3
c93f22fc 2738@example
aeb57fb6
AD
2739@group
2740/* Called by yyparse on error. */
2741void
2742yyerror (char const *s)
2743@{
2744 fprintf (stderr, "%s\n", s);
2745@}
2746@end group
2747
aaaa2aae 2748@group
aeb57fb6
AD
2749int
2750main (int argc, char const* argv[])
2751@{
93c150b6
AD
2752 int i;
2753 /* Enable parse traces on option -p. */
2754 for (i = 1; i < argc; ++i)
2755 if (!strcmp(argv[i], "-p"))
2756 yydebug = 1;
aeb57fb6
AD
2757 init_table ();
2758 return yyparse ();
2759@}
2760@end group
c93f22fc 2761@end example
aeb57fb6 2762
72d2299c 2763This program is both powerful and flexible. You may easily add new
704a47c4
AD
2764functions, and it is a simple job to modify this code to install
2765predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2766
342b8b6e 2767@node Exercises
bfa74976
RS
2768@section Exercises
2769@cindex exercises
2770
2771@enumerate
2772@item
2773Add some new functions from @file{math.h} to the initialization list.
2774
2775@item
2776Add another array that contains constants and their values. Then
2777modify @code{init_table} to add these constants to the symbol table.
2778It will be easiest to give the constants type @code{VAR}.
2779
2780@item
2781Make the program report an error if the user refers to an
2782uninitialized variable in any way except to store a value in it.
2783@end enumerate
2784
342b8b6e 2785@node Grammar File
bfa74976
RS
2786@chapter Bison Grammar Files
2787
2788Bison takes as input a context-free grammar specification and produces a
2789C-language function that recognizes correct instances of the grammar.
2790
ff7571c0 2791The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2792@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2793
2794@menu
303834cc
JD
2795* Grammar Outline:: Overall layout of the grammar file.
2796* Symbols:: Terminal and nonterminal symbols.
2797* Rules:: How to write grammar rules.
303834cc
JD
2798* Semantics:: Semantic values and actions.
2799* Tracking Locations:: Locations and actions.
2800* Named References:: Using named references in actions.
2801* Declarations:: All kinds of Bison declarations are described here.
2802* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2803@end menu
2804
342b8b6e 2805@node Grammar Outline
bfa74976 2806@section Outline of a Bison Grammar
c949ada3
AD
2807@cindex comment
2808@findex // @dots{}
2809@findex /* @dots{} */
bfa74976
RS
2810
2811A Bison grammar file has four main sections, shown here with the
2812appropriate delimiters:
2813
2814@example
2815%@{
38a92d50 2816 @var{Prologue}
bfa74976
RS
2817%@}
2818
2819@var{Bison declarations}
2820
2821%%
2822@var{Grammar rules}
2823%%
2824
75f5aaea 2825@var{Epilogue}
bfa74976
RS
2826@end example
2827
2828Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
c949ada3
AD
2829As a GNU extension, @samp{//} introduces a comment that continues until end
2830of line.
bfa74976
RS
2831
2832@menu
f5f419de 2833* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2834* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2835* Bison Declarations:: Syntax and usage of the Bison declarations section.
2836* Grammar Rules:: Syntax and usage of the grammar rules section.
2837* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2838@end menu
2839
38a92d50 2840@node Prologue
75f5aaea
MA
2841@subsection The prologue
2842@cindex declarations section
2843@cindex Prologue
2844@cindex declarations
bfa74976 2845
f8e1c9e5
AD
2846The @var{Prologue} section contains macro definitions and declarations
2847of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2848rules. These are copied to the beginning of the parser implementation
2849file so that they precede the definition of @code{yyparse}. You can
2850use @samp{#include} to get the declarations from a header file. If
2851you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2852@samp{%@}} delimiters that bracket this section.
bfa74976 2853
9c437126 2854The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2855of @samp{%@}} that is outside a comment, a string literal, or a
2856character constant.
2857
c732d2c6
AD
2858You may have more than one @var{Prologue} section, intermixed with the
2859@var{Bison declarations}. This allows you to have C and Bison
2860declarations that refer to each other. For example, the @code{%union}
2861declaration may use types defined in a header file, and you may wish to
2862prototype functions that take arguments of type @code{YYSTYPE}. This
2863can be done with two @var{Prologue} blocks, one before and one after the
2864@code{%union} declaration.
2865
c93f22fc 2866@example
efbc95a7 2867@group
c732d2c6 2868%@{
aef3da86 2869 #define _GNU_SOURCE
38a92d50
PE
2870 #include <stdio.h>
2871 #include "ptypes.h"
c732d2c6 2872%@}
efbc95a7 2873@end group
c732d2c6 2874
efbc95a7 2875@group
c732d2c6 2876%union @{
779e7ceb 2877 long int n;
c732d2c6
AD
2878 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2879@}
efbc95a7 2880@end group
c732d2c6 2881
efbc95a7 2882@group
c732d2c6 2883%@{
38a92d50
PE
2884 static void print_token_value (FILE *, int, YYSTYPE);
2885 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6 2886%@}
efbc95a7 2887@end group
c732d2c6
AD
2888
2889@dots{}
c93f22fc 2890@end example
c732d2c6 2891
aef3da86
PE
2892When in doubt, it is usually safer to put prologue code before all
2893Bison declarations, rather than after. For example, any definitions
2894of feature test macros like @code{_GNU_SOURCE} or
2895@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2896feature test macros can affect the behavior of Bison-generated
2897@code{#include} directives.
2898
2cbe6b7f
JD
2899@node Prologue Alternatives
2900@subsection Prologue Alternatives
2901@cindex Prologue Alternatives
2902
136a0f76 2903@findex %code
16dc6a9e
JD
2904@findex %code requires
2905@findex %code provides
2906@findex %code top
85894313 2907
2cbe6b7f 2908The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2909inflexible. As an alternative, Bison provides a @code{%code}
2910directive with an explicit qualifier field, which identifies the
2911purpose of the code and thus the location(s) where Bison should
2912generate it. For C/C++, the qualifier can be omitted for the default
2913location, or it can be one of @code{requires}, @code{provides},
e0c07222 2914@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2915
2916Look again at the example of the previous section:
2917
c93f22fc 2918@example
efbc95a7 2919@group
2cbe6b7f
JD
2920%@{
2921 #define _GNU_SOURCE
2922 #include <stdio.h>
2923 #include "ptypes.h"
2924%@}
efbc95a7 2925@end group
2cbe6b7f 2926
efbc95a7 2927@group
2cbe6b7f
JD
2928%union @{
2929 long int n;
2930 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2931@}
efbc95a7 2932@end group
2cbe6b7f 2933
efbc95a7 2934@group
2cbe6b7f
JD
2935%@{
2936 static void print_token_value (FILE *, int, YYSTYPE);
2937 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2938%@}
efbc95a7 2939@end group
2cbe6b7f
JD
2940
2941@dots{}
c93f22fc 2942@end example
2cbe6b7f
JD
2943
2944@noindent
ff7571c0
JD
2945Notice that there are two @var{Prologue} sections here, but there's a
2946subtle distinction between their functionality. For example, if you
2947decide to override Bison's default definition for @code{YYLTYPE}, in
2948which @var{Prologue} section should you write your new definition?
2949You should write it in the first since Bison will insert that code
2950into the parser implementation file @emph{before} the default
2951@code{YYLTYPE} definition. In which @var{Prologue} section should you
2952prototype an internal function, @code{trace_token}, that accepts
2953@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2954prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2955@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2956
2957This distinction in functionality between the two @var{Prologue} sections is
2958established by the appearance of the @code{%union} between them.
a501eca9 2959This behavior raises a few questions.
2cbe6b7f
JD
2960First, why should the position of a @code{%union} affect definitions related to
2961@code{YYLTYPE} and @code{yytokentype}?
2962Second, what if there is no @code{%union}?
2963In that case, the second kind of @var{Prologue} section is not available.
2964This behavior is not intuitive.
2965
8e0a5e9e 2966To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2967@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2968Let's go ahead and add the new @code{YYLTYPE} definition and the
2969@code{trace_token} prototype at the same time:
2970
c93f22fc 2971@example
16dc6a9e 2972%code top @{
2cbe6b7f
JD
2973 #define _GNU_SOURCE
2974 #include <stdio.h>
8e0a5e9e
JD
2975
2976 /* WARNING: The following code really belongs
16dc6a9e 2977 * in a `%code requires'; see below. */
8e0a5e9e 2978
2cbe6b7f
JD
2979 #include "ptypes.h"
2980 #define YYLTYPE YYLTYPE
2981 typedef struct YYLTYPE
2982 @{
2983 int first_line;
2984 int first_column;
2985 int last_line;
2986 int last_column;
2987 char *filename;
2988 @} YYLTYPE;
2989@}
2990
efbc95a7 2991@group
2cbe6b7f
JD
2992%union @{
2993 long int n;
2994 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2995@}
efbc95a7 2996@end group
2cbe6b7f 2997
efbc95a7 2998@group
2cbe6b7f
JD
2999%code @{
3000 static void print_token_value (FILE *, int, YYSTYPE);
3001 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3002 static void trace_token (enum yytokentype token, YYLTYPE loc);
3003@}
efbc95a7 3004@end group
2cbe6b7f
JD
3005
3006@dots{}
c93f22fc 3007@end example
2cbe6b7f
JD
3008
3009@noindent
16dc6a9e
JD
3010In this way, @code{%code top} and the unqualified @code{%code} achieve the same
3011functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 3012explicit which kind you intend.
2cbe6b7f
JD
3013Moreover, both kinds are always available even in the absence of @code{%union}.
3014
ff7571c0
JD
3015The @code{%code top} block above logically contains two parts. The
3016first two lines before the warning need to appear near the top of the
3017parser implementation file. The first line after the warning is
3018required by @code{YYSTYPE} and thus also needs to appear in the parser
3019implementation file. However, if you've instructed Bison to generate
3020a parser header file (@pxref{Decl Summary, ,%defines}), you probably
3021want that line to appear before the @code{YYSTYPE} definition in that
3022header file as well. The @code{YYLTYPE} definition should also appear
3023in the parser header file to override the default @code{YYLTYPE}
3024definition there.
2cbe6b7f 3025
16dc6a9e 3026In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
3027lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
3028definitions.
16dc6a9e 3029Thus, they belong in one or more @code{%code requires}:
9bc0dd67 3030
c93f22fc 3031@example
d4fca427 3032@group
16dc6a9e 3033%code top @{
2cbe6b7f
JD
3034 #define _GNU_SOURCE
3035 #include <stdio.h>
3036@}
d4fca427 3037@end group
2cbe6b7f 3038
d4fca427 3039@group
16dc6a9e 3040%code requires @{
9bc0dd67
JD
3041 #include "ptypes.h"
3042@}
d4fca427
AD
3043@end group
3044@group
9bc0dd67
JD
3045%union @{
3046 long int n;
3047 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3048@}
d4fca427 3049@end group
9bc0dd67 3050
d4fca427 3051@group
16dc6a9e 3052%code requires @{
2cbe6b7f
JD
3053 #define YYLTYPE YYLTYPE
3054 typedef struct YYLTYPE
3055 @{
3056 int first_line;
3057 int first_column;
3058 int last_line;
3059 int last_column;
3060 char *filename;
3061 @} YYLTYPE;
3062@}
d4fca427 3063@end group
2cbe6b7f 3064
d4fca427 3065@group
136a0f76 3066%code @{
2cbe6b7f
JD
3067 static void print_token_value (FILE *, int, YYSTYPE);
3068 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3069 static void trace_token (enum yytokentype token, YYLTYPE loc);
3070@}
d4fca427 3071@end group
2cbe6b7f
JD
3072
3073@dots{}
c93f22fc 3074@end example
2cbe6b7f
JD
3075
3076@noindent
ff7571c0
JD
3077Now Bison will insert @code{#include "ptypes.h"} and the new
3078@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
3079and @code{YYLTYPE} definitions in both the parser implementation file
3080and the parser header file. (By the same reasoning, @code{%code
3081requires} would also be the appropriate place to write your own
3082definition for @code{YYSTYPE}.)
3083
3084When you are writing dependency code for @code{YYSTYPE} and
3085@code{YYLTYPE}, you should prefer @code{%code requires} over
3086@code{%code top} regardless of whether you instruct Bison to generate
3087a parser header file. When you are writing code that you need Bison
3088to insert only into the parser implementation file and that has no
3089special need to appear at the top of that file, you should prefer the
3090unqualified @code{%code} over @code{%code top}. These practices will
3091make the purpose of each block of your code explicit to Bison and to
3092other developers reading your grammar file. Following these
3093practices, we expect the unqualified @code{%code} and @code{%code
3094requires} to be the most important of the four @var{Prologue}
16dc6a9e 3095alternatives.
a501eca9 3096
ff7571c0
JD
3097At some point while developing your parser, you might decide to
3098provide @code{trace_token} to modules that are external to your
3099parser. Thus, you might wish for Bison to insert the prototype into
3100both the parser header file and the parser implementation file. Since
3101this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 3102@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
3103@code{%code requires}. More importantly, since it depends upon
3104@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3105sufficient. Instead, move its prototype from the unqualified
3106@code{%code} to a @code{%code provides}:
2cbe6b7f 3107
c93f22fc 3108@example
d4fca427 3109@group
16dc6a9e 3110%code top @{
2cbe6b7f 3111 #define _GNU_SOURCE
136a0f76 3112 #include <stdio.h>
2cbe6b7f 3113@}
d4fca427 3114@end group
136a0f76 3115
d4fca427 3116@group
16dc6a9e 3117%code requires @{
2cbe6b7f
JD
3118 #include "ptypes.h"
3119@}
d4fca427
AD
3120@end group
3121@group
2cbe6b7f
JD
3122%union @{
3123 long int n;
3124 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3125@}
d4fca427 3126@end group
2cbe6b7f 3127
d4fca427 3128@group
16dc6a9e 3129%code requires @{
2cbe6b7f
JD
3130 #define YYLTYPE YYLTYPE
3131 typedef struct YYLTYPE
3132 @{
3133 int first_line;
3134 int first_column;
3135 int last_line;
3136 int last_column;
3137 char *filename;
3138 @} YYLTYPE;
3139@}
d4fca427 3140@end group
2cbe6b7f 3141
d4fca427 3142@group
16dc6a9e 3143%code provides @{
2cbe6b7f
JD
3144 void trace_token (enum yytokentype token, YYLTYPE loc);
3145@}
d4fca427 3146@end group
2cbe6b7f 3147
d4fca427 3148@group
2cbe6b7f 3149%code @{
9bc0dd67
JD
3150 static void print_token_value (FILE *, int, YYSTYPE);
3151 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3152@}
d4fca427 3153@end group
9bc0dd67
JD
3154
3155@dots{}
c93f22fc 3156@end example
9bc0dd67 3157
2cbe6b7f 3158@noindent
ff7571c0
JD
3159Bison will insert the @code{trace_token} prototype into both the
3160parser header file and the parser implementation file after the
3161definitions for @code{yytokentype}, @code{YYLTYPE}, and
3162@code{YYSTYPE}.
2cbe6b7f 3163
ff7571c0
JD
3164The above examples are careful to write directives in an order that
3165reflects the layout of the generated parser implementation and header
3166files: @code{%code top}, @code{%code requires}, @code{%code provides},
3167and then @code{%code}. While your grammar files may generally be
3168easier to read if you also follow this order, Bison does not require
3169it. Instead, Bison lets you choose an organization that makes sense
3170to you.
2cbe6b7f 3171
a501eca9 3172You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3173In that case, Bison concatenates the contained code in declaration order.
3174This is the only way in which the position of one of these directives within
3175the grammar file affects its functionality.
3176
3177The result of the previous two properties is greater flexibility in how you may
3178organize your grammar file.
3179For example, you may organize semantic-type-related directives by semantic
3180type:
3181
c93f22fc 3182@example
d4fca427 3183@group
16dc6a9e 3184%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3185%union @{ type1 field1; @}
3186%destructor @{ type1_free ($$); @} <field1>
c5026327 3187%printer @{ type1_print (yyoutput, $$); @} <field1>
d4fca427 3188@end group
2cbe6b7f 3189
d4fca427 3190@group
16dc6a9e 3191%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3192%union @{ type2 field2; @}
3193%destructor @{ type2_free ($$); @} <field2>
c5026327 3194%printer @{ type2_print (yyoutput, $$); @} <field2>
d4fca427 3195@end group
c93f22fc 3196@end example
2cbe6b7f
JD
3197
3198@noindent
3199You could even place each of the above directive groups in the rules section of
3200the grammar file next to the set of rules that uses the associated semantic
3201type.
61fee93e
JD
3202(In the rules section, you must terminate each of those directives with a
3203semicolon.)
2cbe6b7f
JD
3204And you don't have to worry that some directive (like a @code{%union}) in the
3205definitions section is going to adversely affect their functionality in some
3206counter-intuitive manner just because it comes first.
3207Such an organization is not possible using @var{Prologue} sections.
3208
a501eca9 3209This section has been concerned with explaining the advantages of the four
8e0a5e9e 3210@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3211However, in most cases when using these directives, you shouldn't need to
3212think about all the low-level ordering issues discussed here.
3213Instead, you should simply use these directives to label each block of your
3214code according to its purpose and let Bison handle the ordering.
3215@code{%code} is the most generic label.
16dc6a9e
JD
3216Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3217as needed.
a501eca9 3218
342b8b6e 3219@node Bison Declarations
bfa74976
RS
3220@subsection The Bison Declarations Section
3221@cindex Bison declarations (introduction)
3222@cindex declarations, Bison (introduction)
3223
3224The @var{Bison declarations} section contains declarations that define
3225terminal and nonterminal symbols, specify precedence, and so on.
3226In some simple grammars you may not need any declarations.
3227@xref{Declarations, ,Bison Declarations}.
3228
342b8b6e 3229@node Grammar Rules
bfa74976
RS
3230@subsection The Grammar Rules Section
3231@cindex grammar rules section
3232@cindex rules section for grammar
3233
3234The @dfn{grammar rules} section contains one or more Bison grammar
3235rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3236
3237There must always be at least one grammar rule, and the first
3238@samp{%%} (which precedes the grammar rules) may never be omitted even
3239if it is the first thing in the file.
3240
38a92d50 3241@node Epilogue
75f5aaea 3242@subsection The epilogue
bfa74976 3243@cindex additional C code section
75f5aaea 3244@cindex epilogue
bfa74976
RS
3245@cindex C code, section for additional
3246
ff7571c0
JD
3247The @var{Epilogue} is copied verbatim to the end of the parser
3248implementation file, just as the @var{Prologue} is copied to the
3249beginning. This is the most convenient place to put anything that you
3250want to have in the parser implementation file but which need not come
3251before the definition of @code{yyparse}. For example, the definitions
3252of @code{yylex} and @code{yyerror} often go here. Because C requires
3253functions to be declared before being used, you often need to declare
3254functions like @code{yylex} and @code{yyerror} in the Prologue, even
3255if you define them in the Epilogue. @xref{Interface, ,Parser
3256C-Language Interface}.
bfa74976
RS
3257
3258If the last section is empty, you may omit the @samp{%%} that separates it
3259from the grammar rules.
3260
f8e1c9e5
AD
3261The Bison parser itself contains many macros and identifiers whose names
3262start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3263any such names (except those documented in this manual) in the epilogue
3264of the grammar file.
bfa74976 3265
342b8b6e 3266@node Symbols
bfa74976
RS
3267@section Symbols, Terminal and Nonterminal
3268@cindex nonterminal symbol
3269@cindex terminal symbol
3270@cindex token type
3271@cindex symbol
3272
3273@dfn{Symbols} in Bison grammars represent the grammatical classifications
3274of the language.
3275
3276A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3277class of syntactically equivalent tokens. You use the symbol in grammar
3278rules to mean that a token in that class is allowed. The symbol is
3279represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3280function returns a token type code to indicate what kind of token has
3281been read. You don't need to know what the code value is; you can use
3282the symbol to stand for it.
bfa74976 3283
f8e1c9e5
AD
3284A @dfn{nonterminal symbol} stands for a class of syntactically
3285equivalent groupings. The symbol name is used in writing grammar rules.
3286By convention, it should be all lower case.
bfa74976 3287
82f3355e
JD
3288Symbol names can contain letters, underscores, periods, and non-initial
3289digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3290with POSIX Yacc. Periods and dashes make symbol names less convenient to
3291use with named references, which require brackets around such names
3292(@pxref{Named References}). Terminal symbols that contain periods or dashes
3293make little sense: since they are not valid symbols (in most programming
3294languages) they are not exported as token names.
bfa74976 3295
931c7513 3296There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3297
3298@itemize @bullet
3299@item
3300A @dfn{named token type} is written with an identifier, like an
c827f760 3301identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3302such name must be defined with a Bison declaration such as
3303@code{%token}. @xref{Token Decl, ,Token Type Names}.
3304
3305@item
3306@cindex character token
3307@cindex literal token
3308@cindex single-character literal
931c7513
RS
3309A @dfn{character token type} (or @dfn{literal character token}) is
3310written in the grammar using the same syntax used in C for character
3311constants; for example, @code{'+'} is a character token type. A
3312character token type doesn't need to be declared unless you need to
3313specify its semantic value data type (@pxref{Value Type, ,Data Types of
3314Semantic Values}), associativity, or precedence (@pxref{Precedence,
3315,Operator Precedence}).
bfa74976
RS
3316
3317By convention, a character token type is used only to represent a
3318token that consists of that particular character. Thus, the token
3319type @code{'+'} is used to represent the character @samp{+} as a
3320token. Nothing enforces this convention, but if you depart from it,
3321your program will confuse other readers.
3322
3323All the usual escape sequences used in character literals in C can be
3324used in Bison as well, but you must not use the null character as a
72d2299c
PE
3325character literal because its numeric code, zero, signifies
3326end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3327for @code{yylex}}). Also, unlike standard C, trigraphs have no
3328special meaning in Bison character literals, nor is backslash-newline
3329allowed.
931c7513
RS
3330
3331@item
3332@cindex string token
3333@cindex literal string token
9ecbd125 3334@cindex multicharacter literal
931c7513
RS
3335A @dfn{literal string token} is written like a C string constant; for
3336example, @code{"<="} is a literal string token. A literal string token
3337doesn't need to be declared unless you need to specify its semantic
14ded682 3338value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3339(@pxref{Precedence}).
3340
3341You can associate the literal string token with a symbolic name as an
3342alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3343Declarations}). If you don't do that, the lexical analyzer has to
3344retrieve the token number for the literal string token from the
3345@code{yytname} table (@pxref{Calling Convention}).
3346
c827f760 3347@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3348
3349By convention, a literal string token is used only to represent a token
3350that consists of that particular string. Thus, you should use the token
3351type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3352does not enforce this convention, but if you depart from it, people who
931c7513
RS
3353read your program will be confused.
3354
3355All the escape sequences used in string literals in C can be used in
92ac3705
PE
3356Bison as well, except that you must not use a null character within a
3357string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3358meaning in Bison string literals, nor is backslash-newline allowed. A
3359literal string token must contain two or more characters; for a token
3360containing just one character, use a character token (see above).
bfa74976
RS
3361@end itemize
3362
3363How you choose to write a terminal symbol has no effect on its
3364grammatical meaning. That depends only on where it appears in rules and
3365on when the parser function returns that symbol.
3366
72d2299c
PE
3367The value returned by @code{yylex} is always one of the terminal
3368symbols, except that a zero or negative value signifies end-of-input.
3369Whichever way you write the token type in the grammar rules, you write
3370it the same way in the definition of @code{yylex}. The numeric code
3371for a character token type is simply the positive numeric code of the
3372character, so @code{yylex} can use the identical value to generate the
3373requisite code, though you may need to convert it to @code{unsigned
3374char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3375Each named token type becomes a C macro in the parser implementation
3376file, so @code{yylex} can use the name to stand for the code. (This
3377is why periods don't make sense in terminal symbols.) @xref{Calling
3378Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3379
3380If @code{yylex} is defined in a separate file, you need to arrange for the
3381token-type macro definitions to be available there. Use the @samp{-d}
3382option when you run Bison, so that it will write these macro definitions
3383into a separate header file @file{@var{name}.tab.h} which you can include
3384in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3385
72d2299c 3386If you want to write a grammar that is portable to any Standard C
9d9b8b70 3387host, you must use only nonnull character tokens taken from the basic
c827f760 3388execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3389digits, the 52 lower- and upper-case English letters, and the
3390characters in the following C-language string:
3391
3392@example
3393"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3394@end example
3395
f8e1c9e5
AD
3396The @code{yylex} function and Bison must use a consistent character set
3397and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3398ASCII environment, but then compile and run the resulting
f8e1c9e5 3399program in an environment that uses an incompatible character set like
8a4281b9
JD
3400EBCDIC, the resulting program may not work because the tables
3401generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3402character tokens. It is standard practice for software distributions to
3403contain C source files that were generated by Bison in an
8a4281b9
JD
3404ASCII environment, so installers on platforms that are
3405incompatible with ASCII must rebuild those files before
f8e1c9e5 3406compiling them.
e966383b 3407
bfa74976
RS
3408The symbol @code{error} is a terminal symbol reserved for error recovery
3409(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3410In particular, @code{yylex} should never return this value. The default
3411value of the error token is 256, unless you explicitly assigned 256 to
3412one of your tokens with a @code{%token} declaration.
bfa74976 3413
342b8b6e 3414@node Rules
09add9c2
AD
3415@section Grammar Rules
3416
3417A Bison grammar is a list of rules.
3418
3419@menu
3420* Rules Syntax:: Syntax of the rules.
3421* Empty Rules:: Symbols that can match the empty string.
3422* Recursion:: Writing recursive rules.
3423@end menu
3424
3425@node Rules Syntax
3426@subsection Syntax of Grammar Rules
bfa74976
RS
3427@cindex rule syntax
3428@cindex grammar rule syntax
3429@cindex syntax of grammar rules
3430
3431A Bison grammar rule has the following general form:
3432
3433@example
5e9b6624 3434@var{result}: @var{components}@dots{};
bfa74976
RS
3435@end example
3436
3437@noindent
9ecbd125 3438where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3439and @var{components} are various terminal and nonterminal symbols that
13863333 3440are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3441
3442For example,
3443
3444@example
5e9b6624 3445exp: exp '+' exp;
bfa74976
RS
3446@end example
3447
3448@noindent
3449says that two groupings of type @code{exp}, with a @samp{+} token in between,
3450can be combined into a larger grouping of type @code{exp}.
3451
72d2299c
PE
3452White space in rules is significant only to separate symbols. You can add
3453extra white space as you wish.
bfa74976
RS
3454
3455Scattered among the components can be @var{actions} that determine
3456the semantics of the rule. An action looks like this:
3457
3458@example
3459@{@var{C statements}@}
3460@end example
3461
3462@noindent
287c78f6
PE
3463@cindex braced code
3464This is an example of @dfn{braced code}, that is, C code surrounded by
3465braces, much like a compound statement in C@. Braced code can contain
3466any sequence of C tokens, so long as its braces are balanced. Bison
3467does not check the braced code for correctness directly; it merely
ff7571c0
JD
3468copies the code to the parser implementation file, where the C
3469compiler can check it.
287c78f6
PE
3470
3471Within braced code, the balanced-brace count is not affected by braces
3472within comments, string literals, or character constants, but it is
3473affected by the C digraphs @samp{<%} and @samp{%>} that represent
3474braces. At the top level braced code must be terminated by @samp{@}}
3475and not by a digraph. Bison does not look for trigraphs, so if braced
3476code uses trigraphs you should ensure that they do not affect the
3477nesting of braces or the boundaries of comments, string literals, or
3478character constants.
3479
bfa74976
RS
3480Usually there is only one action and it follows the components.
3481@xref{Actions}.
3482
3483@findex |
3484Multiple rules for the same @var{result} can be written separately or can
3485be joined with the vertical-bar character @samp{|} as follows:
3486
bfa74976
RS
3487@example
3488@group
5e9b6624
AD
3489@var{result}:
3490 @var{rule1-components}@dots{}
3491| @var{rule2-components}@dots{}
3492@dots{}
3493;
bfa74976
RS
3494@end group
3495@end example
bfa74976
RS
3496
3497@noindent
3498They are still considered distinct rules even when joined in this way.
3499
09add9c2
AD
3500@node Empty Rules
3501@subsection Empty Rules
3502@cindex empty rule
3503@cindex rule, empty
3504@findex %empty
3505
3506A rule is said to be @dfn{empty} if its right-hand side (@var{components})
3507is empty. It means that @var{result} can match the empty string. For
3508example, here is how to define an optional semicolon:
3509
3510@example
3511semicolon.opt: | ";";
3512@end example
3513
3514@noindent
3515It is easy not to see an empty rule, especially when @code{|} is used. The
3516@code{%empty} directive allows to make explicit that a rule is empty on
3517purpose:
bfa74976
RS
3518
3519@example
3520@group
09add9c2
AD
3521semicolon.opt:
3522 %empty
3523| ";"
5e9b6624 3524;
bfa74976 3525@end group
09add9c2 3526@end example
bfa74976 3527
09add9c2
AD
3528Flagging a non-empty rule with @code{%empty} is an error. If run with
3529@option{-Wempty-rule}, @command{bison} will report empty rules without
3530@code{%empty}. Using @code{%empty} enables this warning, unless
3531@option{-Wno-empty-rule} was specified.
3532
3533The @code{%empty} directive is a Bison extension, it does not work with
3534Yacc. To remain compatible with POSIX Yacc, it is customary to write a
3535comment @samp{/* empty */} in each rule with no components:
3536
3537@example
bfa74976 3538@group
09add9c2
AD
3539semicolon.opt:
3540 /* empty */
3541| ";"
5e9b6624 3542;
bfa74976
RS
3543@end group
3544@end example
3545
bfa74976 3546
342b8b6e 3547@node Recursion
09add9c2 3548@subsection Recursive Rules
bfa74976 3549@cindex recursive rule
09add9c2 3550@cindex rule, recursive
bfa74976 3551
f8e1c9e5
AD
3552A rule is called @dfn{recursive} when its @var{result} nonterminal
3553appears also on its right hand side. Nearly all Bison grammars need to
3554use recursion, because that is the only way to define a sequence of any
3555number of a particular thing. Consider this recursive definition of a
9ecbd125 3556comma-separated sequence of one or more expressions:
bfa74976
RS
3557
3558@example
3559@group
5e9b6624
AD
3560expseq1:
3561 exp
3562| expseq1 ',' exp
3563;
bfa74976
RS
3564@end group
3565@end example
3566
3567@cindex left recursion
3568@cindex right recursion
3569@noindent
3570Since the recursive use of @code{expseq1} is the leftmost symbol in the
3571right hand side, we call this @dfn{left recursion}. By contrast, here
3572the same construct is defined using @dfn{right recursion}:
3573
3574@example
3575@group
5e9b6624
AD
3576expseq1:
3577 exp
3578| exp ',' expseq1
3579;
bfa74976
RS
3580@end group
3581@end example
3582
3583@noindent
ec3bc396
AD
3584Any kind of sequence can be defined using either left recursion or right
3585recursion, but you should always use left recursion, because it can
3586parse a sequence of any number of elements with bounded stack space.
3587Right recursion uses up space on the Bison stack in proportion to the
3588number of elements in the sequence, because all the elements must be
3589shifted onto the stack before the rule can be applied even once.
3590@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3591of this.
bfa74976
RS
3592
3593@cindex mutual recursion
3594@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3595rule does not appear directly on its right hand side, but does appear
3596in rules for other nonterminals which do appear on its right hand
13863333 3597side.
bfa74976
RS
3598
3599For example:
3600
3601@example
3602@group
5e9b6624
AD
3603expr:
3604 primary
3605| primary '+' primary
3606;
bfa74976
RS
3607@end group
3608
3609@group
5e9b6624
AD
3610primary:
3611 constant
3612| '(' expr ')'
3613;
bfa74976
RS
3614@end group
3615@end example
3616
3617@noindent
3618defines two mutually-recursive nonterminals, since each refers to the
3619other.
3620
342b8b6e 3621@node Semantics
bfa74976
RS
3622@section Defining Language Semantics
3623@cindex defining language semantics
13863333 3624@cindex language semantics, defining
bfa74976
RS
3625
3626The grammar rules for a language determine only the syntax. The semantics
3627are determined by the semantic values associated with various tokens and
3628groupings, and by the actions taken when various groupings are recognized.
3629
3630For example, the calculator calculates properly because the value
3631associated with each expression is the proper number; it adds properly
3632because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3633the numbers associated with @var{x} and @var{y}.
3634
3635@menu
3636* Value Type:: Specifying one data type for all semantic values.
3637* Multiple Types:: Specifying several alternative data types.
3638* Actions:: An action is the semantic definition of a grammar rule.
3639* Action Types:: Specifying data types for actions to operate on.
3640* Mid-Rule Actions:: Most actions go at the end of a rule.
3641 This says when, why and how to use the exceptional
3642 action in the middle of a rule.
3643@end menu
3644
342b8b6e 3645@node Value Type
bfa74976
RS
3646@subsection Data Types of Semantic Values
3647@cindex semantic value type
3648@cindex value type, semantic
3649@cindex data types of semantic values
3650@cindex default data type
3651
3652In a simple program it may be sufficient to use the same data type for
3653the semantic values of all language constructs. This was true in the
8a4281b9 3654RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3655Notation Calculator}).
bfa74976 3656
ddc8ede1
PE
3657Bison normally uses the type @code{int} for semantic values if your
3658program uses the same data type for all language constructs. To
bfa74976
RS
3659specify some other type, define @code{YYSTYPE} as a macro, like this:
3660
3661@example
3662#define YYSTYPE double
3663@end example
3664
3665@noindent
50cce58e
PE
3666@code{YYSTYPE}'s replacement list should be a type name
3667that does not contain parentheses or square brackets.
342b8b6e 3668This macro definition must go in the prologue of the grammar file
75f5aaea 3669(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3670
342b8b6e 3671@node Multiple Types
bfa74976
RS
3672@subsection More Than One Value Type
3673
3674In most programs, you will need different data types for different kinds
3675of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3676@code{int} or @code{long int}, while a string constant needs type
3677@code{char *}, and an identifier might need a pointer to an entry in the
3678symbol table.
bfa74976
RS
3679
3680To use more than one data type for semantic values in one parser, Bison
3681requires you to do two things:
3682
3683@itemize @bullet
3684@item
ddc8ede1 3685Specify the entire collection of possible data types, either by using the
704a47c4 3686@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3687Value Types}), or by using a @code{typedef} or a @code{#define} to
3688define @code{YYSTYPE} to be a union type whose member names are
3689the type tags.
bfa74976
RS
3690
3691@item
14ded682
AD
3692Choose one of those types for each symbol (terminal or nonterminal) for
3693which semantic values are used. This is done for tokens with the
3694@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3695and for groupings with the @code{%type} Bison declaration (@pxref{Type
3696Decl, ,Nonterminal Symbols}).
bfa74976
RS
3697@end itemize
3698
342b8b6e 3699@node Actions
bfa74976
RS
3700@subsection Actions
3701@cindex action
3702@vindex $$
3703@vindex $@var{n}
d013372c
AR
3704@vindex $@var{name}
3705@vindex $[@var{name}]
bfa74976
RS
3706
3707An action accompanies a syntactic rule and contains C code to be executed
3708each time an instance of that rule is recognized. The task of most actions
3709is to compute a semantic value for the grouping built by the rule from the
3710semantic values associated with tokens or smaller groupings.
3711
287c78f6
PE
3712An action consists of braced code containing C statements, and can be
3713placed at any position in the rule;
704a47c4
AD
3714it is executed at that position. Most rules have just one action at the
3715end of the rule, following all the components. Actions in the middle of
3716a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3717Actions, ,Actions in Mid-Rule}).
bfa74976 3718
ff7571c0
JD
3719The C code in an action can refer to the semantic values of the
3720components matched by the rule with the construct @code{$@var{n}},
3721which stands for the value of the @var{n}th component. The semantic
3722value for the grouping being constructed is @code{$$}. In addition,
3723the semantic values of symbols can be accessed with the named
3724references construct @code{$@var{name}} or @code{$[@var{name}]}.
3725Bison translates both of these constructs into expressions of the
3726appropriate type when it copies the actions into the parser
3727implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3728for the current grouping) is translated to a modifiable lvalue, so it
3729can be assigned to.
bfa74976
RS
3730
3731Here is a typical example:
3732
3733@example
3734@group
5e9b6624
AD
3735exp:
3736@dots{}
3737| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3738@end group
3739@end example
3740
d013372c
AR
3741Or, in terms of named references:
3742
3743@example
3744@group
5e9b6624
AD
3745exp[result]:
3746@dots{}
3747| exp[left] '+' exp[right] @{ $result = $left + $right; @}
d013372c
AR
3748@end group
3749@end example
3750
bfa74976
RS
3751@noindent
3752This rule constructs an @code{exp} from two smaller @code{exp} groupings
3753connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3754(@code{$left} and @code{$right})
bfa74976
RS
3755refer to the semantic values of the two component @code{exp} groupings,
3756which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3757The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3758semantic value of
bfa74976
RS
3759the addition-expression just recognized by the rule. If there were a
3760useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3761referred to as @code{$2}.
bfa74976 3762
a7b15ab9
JD
3763@xref{Named References}, for more information about using the named
3764references construct.
d013372c 3765
3ded9a63
AD
3766Note that the vertical-bar character @samp{|} is really a rule
3767separator, and actions are attached to a single rule. This is a
3768difference with tools like Flex, for which @samp{|} stands for either
3769``or'', or ``the same action as that of the next rule''. In the
3770following example, the action is triggered only when @samp{b} is found:
3771
3772@example
3ded9a63 3773a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3ded9a63
AD
3774@end example
3775
bfa74976
RS
3776@cindex default action
3777If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3778@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3779becomes the value of the whole rule. Of course, the default action is
3780valid only if the two data types match. There is no meaningful default
3781action for an empty rule; every empty rule must have an explicit action
3782unless the rule's value does not matter.
bfa74976
RS
3783
3784@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3785to tokens and groupings on the stack @emph{before} those that match the
3786current rule. This is a very risky practice, and to use it reliably
3787you must be certain of the context in which the rule is applied. Here
3788is a case in which you can use this reliably:
3789
3790@example
3791@group
5e9b6624
AD
3792foo:
3793 expr bar '+' expr @{ @dots{} @}
3794| expr bar '-' expr @{ @dots{} @}
3795;
bfa74976
RS
3796@end group
3797
3798@group
5e9b6624
AD
3799bar:
3800 /* empty */ @{ previous_expr = $0; @}
3801;
bfa74976
RS
3802@end group
3803@end example
3804
3805As long as @code{bar} is used only in the fashion shown here, @code{$0}
3806always refers to the @code{expr} which precedes @code{bar} in the
3807definition of @code{foo}.
3808
32c29292 3809@vindex yylval
742e4900 3810It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3811any, from a semantic action.
3812This semantic value is stored in @code{yylval}.
3813@xref{Action Features, ,Special Features for Use in Actions}.
3814
342b8b6e 3815@node Action Types
bfa74976
RS
3816@subsection Data Types of Values in Actions
3817@cindex action data types
3818@cindex data types in actions
3819
3820If you have chosen a single data type for semantic values, the @code{$$}
3821and @code{$@var{n}} constructs always have that data type.
3822
3823If you have used @code{%union} to specify a variety of data types, then you
3824must declare a choice among these types for each terminal or nonterminal
3825symbol that can have a semantic value. Then each time you use @code{$$} or
3826@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3827in the rule. In this example,
bfa74976
RS
3828
3829@example
3830@group
5e9b6624
AD
3831exp:
3832 @dots{}
3833| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3834@end group
3835@end example
3836
3837@noindent
3838@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3839have the data type declared for the nonterminal symbol @code{exp}. If
3840@code{$2} were used, it would have the data type declared for the
e0c471a9 3841terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3842
3843Alternatively, you can specify the data type when you refer to the value,
3844by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3845reference. For example, if you have defined types as shown here:
3846
3847@example
3848@group
3849%union @{
3850 int itype;
3851 double dtype;
3852@}
3853@end group
3854@end example
3855
3856@noindent
3857then you can write @code{$<itype>1} to refer to the first subunit of the
3858rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3859
342b8b6e 3860@node Mid-Rule Actions
bfa74976
RS
3861@subsection Actions in Mid-Rule
3862@cindex actions in mid-rule
3863@cindex mid-rule actions
3864
3865Occasionally it is useful to put an action in the middle of a rule.
3866These actions are written just like usual end-of-rule actions, but they
3867are executed before the parser even recognizes the following components.
3868
be22823e
AD
3869@menu
3870* Using Mid-Rule Actions:: Putting an action in the middle of a rule.
3871* Mid-Rule Action Translation:: How mid-rule actions are actually processed.
3872* Mid-Rule Conflicts:: Mid-rule actions can cause conflicts.
3873@end menu
3874
3875@node Using Mid-Rule Actions
3876@subsubsection Using Mid-Rule Actions
3877
bfa74976
RS
3878A mid-rule action may refer to the components preceding it using
3879@code{$@var{n}}, but it may not refer to subsequent components because
3880it is run before they are parsed.
3881
3882The mid-rule action itself counts as one of the components of the rule.
3883This makes a difference when there is another action later in the same rule
3884(and usually there is another at the end): you have to count the actions
3885along with the symbols when working out which number @var{n} to use in
3886@code{$@var{n}}.
3887
3888The mid-rule action can also have a semantic value. The action can set
3889its value with an assignment to @code{$$}, and actions later in the rule
3890can refer to the value using @code{$@var{n}}. Since there is no symbol
3891to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3892in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3893specify a data type each time you refer to this value.
bfa74976
RS
3894
3895There is no way to set the value of the entire rule with a mid-rule
3896action, because assignments to @code{$$} do not have that effect. The
3897only way to set the value for the entire rule is with an ordinary action
3898at the end of the rule.
3899
3900Here is an example from a hypothetical compiler, handling a @code{let}
3901statement that looks like @samp{let (@var{variable}) @var{statement}} and
3902serves to create a variable named @var{variable} temporarily for the
3903duration of @var{statement}. To parse this construct, we must put
3904@var{variable} into the symbol table while @var{statement} is parsed, then
3905remove it afterward. Here is how it is done:
3906
3907@example
3908@group
5e9b6624 3909stmt:
c949ada3
AD
3910 "let" '(' var ')'
3911 @{
3912 $<context>$ = push_context ();
3913 declare_variable ($3);
3914 @}
5e9b6624 3915 stmt
c949ada3
AD
3916 @{
3917 $$ = $6;
3918 pop_context ($<context>5);
3919 @}
bfa74976
RS
3920@end group
3921@end example
3922
3923@noindent
3924As soon as @samp{let (@var{variable})} has been recognized, the first
3925action is run. It saves a copy of the current semantic context (the
3926list of accessible variables) as its semantic value, using alternative
3927@code{context} in the data-type union. Then it calls
3928@code{declare_variable} to add the new variable to that list. Once the
3929first action is finished, the embedded statement @code{stmt} can be
be22823e
AD
3930parsed.
3931
3932Note that the mid-rule action is component number 5, so the @samp{stmt} is
3933component number 6. Named references can be used to improve the readability
3934and maintainability (@pxref{Named References}):
3935
3936@example
3937@group
3938stmt:
3939 "let" '(' var ')'
3940 @{
3941 $<context>let = push_context ();
3942 declare_variable ($3);
3943 @}[let]
3944 stmt
3945 @{
3946 $$ = $6;
3947 pop_context ($<context>let);
3948 @}
3949@end group
3950@end example
bfa74976
RS
3951
3952After the embedded statement is parsed, its semantic value becomes the
3953value of the entire @code{let}-statement. Then the semantic value from the
3954earlier action is used to restore the prior list of variables. This
3955removes the temporary @code{let}-variable from the list so that it won't
3956appear to exist while the rest of the program is parsed.
3957
841a7737
JD
3958@findex %destructor
3959@cindex discarded symbols, mid-rule actions
3960@cindex error recovery, mid-rule actions
3961In the above example, if the parser initiates error recovery (@pxref{Error
3962Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3963it might discard the previous semantic context @code{$<context>5} without
3964restoring it.
3965Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3966Discarded Symbols}).
ec5479ce
JD
3967However, Bison currently provides no means to declare a destructor specific to
3968a particular mid-rule action's semantic value.
841a7737
JD
3969
3970One solution is to bury the mid-rule action inside a nonterminal symbol and to
3971declare a destructor for that symbol:
3972
3973@example
3974@group
3975%type <context> let
3976%destructor @{ pop_context ($$); @} let
09add9c2 3977@end group
841a7737
JD
3978
3979%%
3980
09add9c2 3981@group
5e9b6624
AD
3982stmt:
3983 let stmt
3984 @{
3985 $$ = $2;
be22823e 3986 pop_context ($let);
5e9b6624 3987 @};
09add9c2 3988@end group
841a7737 3989
09add9c2 3990@group
5e9b6624 3991let:
c949ada3 3992 "let" '(' var ')'
5e9b6624 3993 @{
be22823e 3994 $let = push_context ();
5e9b6624
AD
3995 declare_variable ($3);
3996 @};
841a7737
JD
3997
3998@end group
3999@end example
4000
4001@noindent
4002Note that the action is now at the end of its rule.
4003Any mid-rule action can be converted to an end-of-rule action in this way, and
4004this is what Bison actually does to implement mid-rule actions.
4005
be22823e
AD
4006@node Mid-Rule Action Translation
4007@subsubsection Mid-Rule Action Translation
4008@vindex $@@@var{n}
4009@vindex @@@var{n}
4010
4011As hinted earlier, mid-rule actions are actually transformed into regular
4012rules and actions. The various reports generated by Bison (textual,
4013graphical, etc., see @ref{Understanding, , Understanding Your Parser})
4014reveal this translation, best explained by means of an example. The
4015following rule:
4016
4017@example
4018exp: @{ a(); @} "b" @{ c(); @} @{ d(); @} "e" @{ f(); @};
4019@end example
4020
4021@noindent
4022is translated into:
4023
4024@example
4025$@@1: /* empty */ @{ a(); @};
4026$@@2: /* empty */ @{ c(); @};
4027$@@3: /* empty */ @{ d(); @};
4028exp: $@@1 "b" $@@2 $@@3 "e" @{ f(); @};
4029@end example
4030
4031@noindent
4032with new nonterminal symbols @code{$@@@var{n}}, where @var{n} is a number.
4033
4034A mid-rule action is expected to generate a value if it uses @code{$$}, or
4035the (final) action uses @code{$@var{n}} where @var{n} denote the mid-rule
4036action. In that case its nonterminal is rather named @code{@@@var{n}}:
4037
4038@example
4039exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4040@end example
4041
4042@noindent
4043is translated into
4044
4045@example
4046@@1: /* empty */ @{ a(); @};
4047@@2: /* empty */ @{ $$ = c(); @};
4048$@@3: /* empty */ @{ d(); @};
4049exp: @@1 "b" @@2 $@@3 "e" @{ f = $1; @}
4050@end example
4051
4052There are probably two errors in the above example: the first mid-rule
4053action does not generate a value (it does not use @code{$$} although the
4054final action uses it), and the value of the second one is not used (the
4055final action does not use @code{$3}). Bison reports these errors when the
4056@code{midrule-value} warnings are enabled (@pxref{Invocation, ,Invoking
4057Bison}):
4058
4059@example
4060$ bison -fcaret -Wmidrule-value mid.y
4061@group
4062mid.y:2.6-13: warning: unset value: $$
4063 exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4064 ^^^^^^^^
4065@end group
4066@group
4067mid.y:2.19-31: warning: unused value: $3
4068 exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4069 ^^^^^^^^^^^^^
4070@end group
4071@end example
4072
4073
4074@node Mid-Rule Conflicts
4075@subsubsection Conflicts due to Mid-Rule Actions
bfa74976
RS
4076Taking action before a rule is completely recognized often leads to
4077conflicts since the parser must commit to a parse in order to execute the
4078action. For example, the following two rules, without mid-rule actions,
4079can coexist in a working parser because the parser can shift the open-brace
4080token and look at what follows before deciding whether there is a
4081declaration or not:
4082
4083@example
4084@group
5e9b6624
AD
4085compound:
4086 '@{' declarations statements '@}'
4087| '@{' statements '@}'
4088;
bfa74976
RS
4089@end group
4090@end example
4091
4092@noindent
4093But when we add a mid-rule action as follows, the rules become nonfunctional:
4094
4095@example
4096@group
5e9b6624
AD
4097compound:
4098 @{ prepare_for_local_variables (); @}
4099 '@{' declarations statements '@}'
bfa74976
RS
4100@end group
4101@group
5e9b6624
AD
4102| '@{' statements '@}'
4103;
bfa74976
RS
4104@end group
4105@end example
4106
4107@noindent
4108Now the parser is forced to decide whether to run the mid-rule action
4109when it has read no farther than the open-brace. In other words, it
4110must commit to using one rule or the other, without sufficient
4111information to do it correctly. (The open-brace token is what is called
742e4900
JD
4112the @dfn{lookahead} token at this time, since the parser is still
4113deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
4114
4115You might think that you could correct the problem by putting identical
4116actions into the two rules, like this:
4117
4118@example
4119@group
5e9b6624
AD
4120compound:
4121 @{ prepare_for_local_variables (); @}
4122 '@{' declarations statements '@}'
4123| @{ prepare_for_local_variables (); @}
4124 '@{' statements '@}'
4125;
bfa74976
RS
4126@end group
4127@end example
4128
4129@noindent
4130But this does not help, because Bison does not realize that the two actions
4131are identical. (Bison never tries to understand the C code in an action.)
4132
4133If the grammar is such that a declaration can be distinguished from a
4134statement by the first token (which is true in C), then one solution which
4135does work is to put the action after the open-brace, like this:
4136
4137@example
4138@group
5e9b6624
AD
4139compound:
4140 '@{' @{ prepare_for_local_variables (); @}
4141 declarations statements '@}'
4142| '@{' statements '@}'
4143;
bfa74976
RS
4144@end group
4145@end example
4146
4147@noindent
4148Now the first token of the following declaration or statement,
4149which would in any case tell Bison which rule to use, can still do so.
4150
4151Another solution is to bury the action inside a nonterminal symbol which
4152serves as a subroutine:
4153
4154@example
4155@group
5e9b6624
AD
4156subroutine:
4157 /* empty */ @{ prepare_for_local_variables (); @}
4158;
bfa74976
RS
4159@end group
4160
4161@group
5e9b6624
AD
4162compound:
4163 subroutine '@{' declarations statements '@}'
4164| subroutine '@{' statements '@}'
4165;
bfa74976
RS
4166@end group
4167@end example
4168
4169@noindent
4170Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 4171deciding which rule for @code{compound} it will eventually use.
bfa74976 4172
be22823e 4173
303834cc 4174@node Tracking Locations
847bf1f5
AD
4175@section Tracking Locations
4176@cindex location
95923bd6
AD
4177@cindex textual location
4178@cindex location, textual
847bf1f5
AD
4179
4180Though grammar rules and semantic actions are enough to write a fully
72d2299c 4181functional parser, it can be useful to process some additional information,
3e259915
MA
4182especially symbol locations.
4183
704a47c4
AD
4184The way locations are handled is defined by providing a data type, and
4185actions to take when rules are matched.
847bf1f5
AD
4186
4187@menu
4188* Location Type:: Specifying a data type for locations.
4189* Actions and Locations:: Using locations in actions.
4190* Location Default Action:: Defining a general way to compute locations.
4191@end menu
4192
342b8b6e 4193@node Location Type
847bf1f5
AD
4194@subsection Data Type of Locations
4195@cindex data type of locations
4196@cindex default location type
4197
4198Defining a data type for locations is much simpler than for semantic values,
4199since all tokens and groupings always use the same type.
4200
50cce58e
PE
4201You can specify the type of locations by defining a macro called
4202@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 4203defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
4204When @code{YYLTYPE} is not defined, Bison uses a default structure type with
4205four members:
4206
4207@example
6273355b 4208typedef struct YYLTYPE
847bf1f5
AD
4209@{
4210 int first_line;
4211 int first_column;
4212 int last_line;
4213 int last_column;
6273355b 4214@} YYLTYPE;
847bf1f5
AD
4215@end example
4216
d59e456d
AD
4217When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
4218initializes all these fields to 1 for @code{yylloc}. To initialize
4219@code{yylloc} with a custom location type (or to chose a different
4220initialization), use the @code{%initial-action} directive. @xref{Initial
4221Action Decl, , Performing Actions before Parsing}.
cd48d21d 4222
342b8b6e 4223@node Actions and Locations
847bf1f5
AD
4224@subsection Actions and Locations
4225@cindex location actions
4226@cindex actions, location
4227@vindex @@$
4228@vindex @@@var{n}
d013372c
AR
4229@vindex @@@var{name}
4230@vindex @@[@var{name}]
847bf1f5
AD
4231
4232Actions are not only useful for defining language semantics, but also for
4233describing the behavior of the output parser with locations.
4234
4235The most obvious way for building locations of syntactic groupings is very
72d2299c 4236similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4237constructs can be used to access the locations of the elements being matched.
4238The location of the @var{n}th component of the right hand side is
4239@code{@@@var{n}}, while the location of the left hand side grouping is
4240@code{@@$}.
4241
d013372c
AR
4242In addition, the named references construct @code{@@@var{name}} and
4243@code{@@[@var{name}]} may also be used to address the symbol locations.
a7b15ab9
JD
4244@xref{Named References}, for more information about using the named
4245references construct.
d013372c 4246
3e259915 4247Here is a basic example using the default data type for locations:
847bf1f5
AD
4248
4249@example
4250@group
5e9b6624
AD
4251exp:
4252 @dots{}
4253| exp '/' exp
4254 @{
4255 @@$.first_column = @@1.first_column;
4256 @@$.first_line = @@1.first_line;
4257 @@$.last_column = @@3.last_column;
4258 @@$.last_line = @@3.last_line;
4259 if ($3)
4260 $$ = $1 / $3;
4261 else
4262 @{
4263 $$ = 1;
4264 fprintf (stderr,
4265 "Division by zero, l%d,c%d-l%d,c%d",
4266 @@3.first_line, @@3.first_column,
4267 @@3.last_line, @@3.last_column);
4268 @}
4269 @}
847bf1f5
AD
4270@end group
4271@end example
4272
3e259915 4273As for semantic values, there is a default action for locations that is
72d2299c 4274run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4275beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4276last symbol.
3e259915 4277
72d2299c 4278With this default action, the location tracking can be fully automatic. The
3e259915
MA
4279example above simply rewrites this way:
4280
4281@example
4282@group
5e9b6624
AD
4283exp:
4284 @dots{}
4285| exp '/' exp
4286 @{
4287 if ($3)
4288 $$ = $1 / $3;
4289 else
4290 @{
4291 $$ = 1;
4292 fprintf (stderr,
4293 "Division by zero, l%d,c%d-l%d,c%d",
4294 @@3.first_line, @@3.first_column,
4295 @@3.last_line, @@3.last_column);
4296 @}
4297 @}
3e259915
MA
4298@end group
4299@end example
847bf1f5 4300
32c29292 4301@vindex yylloc
742e4900 4302It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4303from a semantic action.
4304This location is stored in @code{yylloc}.
4305@xref{Action Features, ,Special Features for Use in Actions}.
4306
342b8b6e 4307@node Location Default Action
847bf1f5
AD
4308@subsection Default Action for Locations
4309@vindex YYLLOC_DEFAULT
8a4281b9 4310@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4311
72d2299c 4312Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4313locations are much more general than semantic values, there is room in
4314the output parser to redefine the default action to take for each
72d2299c 4315rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4316matched, before the associated action is run. It is also invoked
4317while processing a syntax error, to compute the error's location.
8a4281b9 4318Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4319parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4320of that ambiguity.
847bf1f5 4321
3e259915 4322Most of the time, this macro is general enough to suppress location
79282c6c 4323dedicated code from semantic actions.
847bf1f5 4324
72d2299c 4325The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4326the location of the grouping (the result of the computation). When a
766de5eb 4327rule is matched, the second parameter identifies locations of
96b93a3d 4328all right hand side elements of the rule being matched, and the third
8710fc41 4329parameter is the size of the rule's right hand side.
8a4281b9 4330When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4331right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4332When processing a syntax error, the second parameter identifies locations
4333of the symbols that were discarded during error processing, and the third
96b93a3d 4334parameter is the number of discarded symbols.
847bf1f5 4335
766de5eb 4336By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4337
c93f22fc
AD
4338@example
4339@group
4340# define YYLLOC_DEFAULT(Cur, Rhs, N) \
4341do \
4342 if (N) \
4343 @{ \
4344 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4345 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4346 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4347 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4348 @} \
4349 else \
4350 @{ \
4351 (Cur).first_line = (Cur).last_line = \
4352 YYRHSLOC(Rhs, 0).last_line; \
4353 (Cur).first_column = (Cur).last_column = \
4354 YYRHSLOC(Rhs, 0).last_column; \
4355 @} \
4356while (0)
4357@end group
4358@end example
676385e2 4359
aaaa2aae 4360@noindent
766de5eb
PE
4361where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4362in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4363just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4364
3e259915 4365When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4366
3e259915 4367@itemize @bullet
79282c6c 4368@item
72d2299c 4369All arguments are free of side-effects. However, only the first one (the
3e259915 4370result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4371
3e259915 4372@item
766de5eb
PE
4373For consistency with semantic actions, valid indexes within the
4374right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4375valid index, and it refers to the symbol just before the reduction.
4376During error processing @var{n} is always positive.
0ae99356
PE
4377
4378@item
4379Your macro should parenthesize its arguments, if need be, since the
4380actual arguments may not be surrounded by parentheses. Also, your
4381macro should expand to something that can be used as a single
4382statement when it is followed by a semicolon.
3e259915 4383@end itemize
847bf1f5 4384
378e917c 4385@node Named References
a7b15ab9 4386@section Named References
378e917c
JD
4387@cindex named references
4388
a40e77eb
JD
4389As described in the preceding sections, the traditional way to refer to any
4390semantic value or location is a @dfn{positional reference}, which takes the
4391form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4392such a reference is not very descriptive. Moreover, if you later decide to
4393insert or remove symbols in the right-hand side of a grammar rule, the need
4394to renumber such references can be tedious and error-prone.
4395
4396To avoid these issues, you can also refer to a semantic value or location
4397using a @dfn{named reference}. First of all, original symbol names may be
4398used as named references. For example:
378e917c
JD
4399
4400@example
4401@group
4402invocation: op '(' args ')'
4403 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4404@end group
4405@end example
4406
4407@noindent
a40e77eb 4408Positional and named references can be mixed arbitrarily. For example:
378e917c
JD
4409
4410@example
4411@group
4412invocation: op '(' args ')'
4413 @{ $$ = new_invocation ($op, $args, @@$); @}
4414@end group
4415@end example
4416
4417@noindent
4418However, sometimes regular symbol names are not sufficient due to
4419ambiguities:
4420
4421@example
4422@group
4423exp: exp '/' exp
4424 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4425
4426exp: exp '/' exp
4427 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4428
4429exp: exp '/' exp
4430 @{ $$ = $1 / $3; @} // No error.
4431@end group
4432@end example
4433
4434@noindent
4435When ambiguity occurs, explicitly declared names may be used for values and
4436locations. Explicit names are declared as a bracketed name after a symbol
4437appearance in rule definitions. For example:
4438@example
4439@group
4440exp[result]: exp[left] '/' exp[right]
4441 @{ $result = $left / $right; @}
4442@end group
4443@end example
4444
4445@noindent
a7b15ab9
JD
4446In order to access a semantic value generated by a mid-rule action, an
4447explicit name may also be declared by putting a bracketed name after the
4448closing brace of the mid-rule action code:
378e917c
JD
4449@example
4450@group
4451exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4452 @{ $res = $left + $right; @}
4453@end group
4454@end example
4455
4456@noindent
4457
4458In references, in order to specify names containing dots and dashes, an explicit
4459bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4460@example
4461@group
762caaf6 4462if-stmt: "if" '(' expr ')' "then" then.stmt ';'
378e917c
JD
4463 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4464@end group
4465@end example
4466
4467It often happens that named references are followed by a dot, dash or other
4468C punctuation marks and operators. By default, Bison will read
a7b15ab9
JD
4469@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4470@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4471value. In order to force Bison to recognize @samp{name.suffix} in its
4472entirety as the name of a semantic value, the bracketed syntax
4473@samp{$[name.suffix]} must be used.
4474
4475The named references feature is experimental. More user feedback will help
4476to stabilize it.
378e917c 4477
342b8b6e 4478@node Declarations
bfa74976
RS
4479@section Bison Declarations
4480@cindex declarations, Bison
4481@cindex Bison declarations
4482
4483The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4484used in formulating the grammar and the data types of semantic values.
4485@xref{Symbols}.
4486
4487All token type names (but not single-character literal tokens such as
4488@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4489declared if you need to specify which data type to use for the semantic
4490value (@pxref{Multiple Types, ,More Than One Value Type}).
4491
ff7571c0
JD
4492The first rule in the grammar file also specifies the start symbol, by
4493default. If you want some other symbol to be the start symbol, you
4494must declare it explicitly (@pxref{Language and Grammar, ,Languages
4495and Context-Free Grammars}).
bfa74976
RS
4496
4497@menu
b50d2359 4498* Require Decl:: Requiring a Bison version.
bfa74976
RS
4499* Token Decl:: Declaring terminal symbols.
4500* Precedence Decl:: Declaring terminals with precedence and associativity.
4501* Union Decl:: Declaring the set of all semantic value types.
4502* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4503* Initial Action Decl:: Code run before parsing starts.
72f889cc 4504* Destructor Decl:: Declaring how symbols are freed.
93c150b6 4505* Printer Decl:: Declaring how symbol values are displayed.
d6328241 4506* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4507* Start Decl:: Specifying the start symbol.
4508* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4509* Push Decl:: Requesting a push parser.
bfa74976 4510* Decl Summary:: Table of all Bison declarations.
35c1e5f0 4511* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 4512* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4513@end menu
4514
b50d2359
AD
4515@node Require Decl
4516@subsection Require a Version of Bison
4517@cindex version requirement
4518@cindex requiring a version of Bison
4519@findex %require
4520
4521You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4522the requirement is not met, @command{bison} exits with an error (exit
4523status 63).
b50d2359
AD
4524
4525@example
4526%require "@var{version}"
4527@end example
4528
342b8b6e 4529@node Token Decl
bfa74976
RS
4530@subsection Token Type Names
4531@cindex declaring token type names
4532@cindex token type names, declaring
931c7513 4533@cindex declaring literal string tokens
bfa74976
RS
4534@findex %token
4535
4536The basic way to declare a token type name (terminal symbol) is as follows:
4537
4538@example
4539%token @var{name}
4540@end example
4541
4542Bison will convert this into a @code{#define} directive in
4543the parser, so that the function @code{yylex} (if it is in this file)
4544can use the name @var{name} to stand for this token type's code.
4545
d78f0ac9
AD
4546Alternatively, you can use @code{%left}, @code{%right},
4547@code{%precedence}, or
14ded682
AD
4548@code{%nonassoc} instead of @code{%token}, if you wish to specify
4549associativity and precedence. @xref{Precedence Decl, ,Operator
4550Precedence}.
bfa74976
RS
4551
4552You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4553a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4554following the token name:
bfa74976
RS
4555
4556@example
4557%token NUM 300
1452af69 4558%token XNUM 0x12d // a GNU extension
bfa74976
RS
4559@end example
4560
4561@noindent
4562It is generally best, however, to let Bison choose the numeric codes for
4563all token types. Bison will automatically select codes that don't conflict
e966383b 4564with each other or with normal characters.
bfa74976
RS
4565
4566In the event that the stack type is a union, you must augment the
4567@code{%token} or other token declaration to include the data type
704a47c4
AD
4568alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4569Than One Value Type}).
bfa74976
RS
4570
4571For example:
4572
4573@example
4574@group
4575%union @{ /* define stack type */
4576 double val;
4577 symrec *tptr;
4578@}
4579%token <val> NUM /* define token NUM and its type */
4580@end group
4581@end example
4582
931c7513
RS
4583You can associate a literal string token with a token type name by
4584writing the literal string at the end of a @code{%token}
4585declaration which declares the name. For example:
4586
4587@example
4588%token arrow "=>"
4589@end example
4590
4591@noindent
4592For example, a grammar for the C language might specify these names with
4593equivalent literal string tokens:
4594
4595@example
4596%token <operator> OR "||"
4597%token <operator> LE 134 "<="
4598%left OR "<="
4599@end example
4600
4601@noindent
4602Once you equate the literal string and the token name, you can use them
4603interchangeably in further declarations or the grammar rules. The
4604@code{yylex} function can use the token name or the literal string to
4605obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4606Syntax error messages passed to @code{yyerror} from the parser will reference
4607the literal string instead of the token name.
4608
4609The token numbered as 0 corresponds to end of file; the following line
4610allows for nicer error messages referring to ``end of file'' instead
4611of ``$end'':
4612
4613@example
4614%token END 0 "end of file"
4615@end example
931c7513 4616
342b8b6e 4617@node Precedence Decl
bfa74976
RS
4618@subsection Operator Precedence
4619@cindex precedence declarations
4620@cindex declaring operator precedence
4621@cindex operator precedence, declaring
4622
d78f0ac9
AD
4623Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4624@code{%precedence} declaration to
bfa74976
RS
4625declare a token and specify its precedence and associativity, all at
4626once. These are called @dfn{precedence declarations}.
704a47c4
AD
4627@xref{Precedence, ,Operator Precedence}, for general information on
4628operator precedence.
bfa74976 4629
ab7f29f8 4630The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4631@code{%token}: either
4632
4633@example
4634%left @var{symbols}@dots{}
4635@end example
4636
4637@noindent
4638or
4639
4640@example
4641%left <@var{type}> @var{symbols}@dots{}
4642@end example
4643
4644And indeed any of these declarations serves the purposes of @code{%token}.
4645But in addition, they specify the associativity and relative precedence for
4646all the @var{symbols}:
4647
4648@itemize @bullet
4649@item
4650The associativity of an operator @var{op} determines how repeated uses
4651of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4652@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4653grouping @var{y} with @var{z} first. @code{%left} specifies
4654left-associativity (grouping @var{x} with @var{y} first) and
4655@code{%right} specifies right-associativity (grouping @var{y} with
4656@var{z} first). @code{%nonassoc} specifies no associativity, which
4657means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4658considered a syntax error.
4659
d78f0ac9
AD
4660@code{%precedence} gives only precedence to the @var{symbols}, and
4661defines no associativity at all. Use this to define precedence only,
4662and leave any potential conflict due to associativity enabled.
4663
bfa74976
RS
4664@item
4665The precedence of an operator determines how it nests with other operators.
4666All the tokens declared in a single precedence declaration have equal
4667precedence and nest together according to their associativity.
4668When two tokens declared in different precedence declarations associate,
4669the one declared later has the higher precedence and is grouped first.
4670@end itemize
4671
ab7f29f8
JD
4672For backward compatibility, there is a confusing difference between the
4673argument lists of @code{%token} and precedence declarations.
4674Only a @code{%token} can associate a literal string with a token type name.
4675A precedence declaration always interprets a literal string as a reference to a
4676separate token.
4677For example:
4678
4679@example
4680%left OR "<=" // Does not declare an alias.
4681%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4682@end example
4683
342b8b6e 4684@node Union Decl
bfa74976
RS
4685@subsection The Collection of Value Types
4686@cindex declaring value types
4687@cindex value types, declaring
4688@findex %union
4689
287c78f6
PE
4690The @code{%union} declaration specifies the entire collection of
4691possible data types for semantic values. The keyword @code{%union} is
4692followed by braced code containing the same thing that goes inside a
4693@code{union} in C@.
bfa74976
RS
4694
4695For example:
4696
4697@example
4698@group
4699%union @{
4700 double val;
4701 symrec *tptr;
4702@}
4703@end group
4704@end example
4705
4706@noindent
4707This says that the two alternative types are @code{double} and @code{symrec
4708*}. They are given names @code{val} and @code{tptr}; these names are used
4709in the @code{%token} and @code{%type} declarations to pick one of the types
4710for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4711
8a4281b9 4712As an extension to POSIX, a tag is allowed after the
6273355b
PE
4713@code{union}. For example:
4714
4715@example
4716@group
4717%union value @{
4718 double val;
4719 symrec *tptr;
4720@}
4721@end group
4722@end example
4723
d6ca7905 4724@noindent
6273355b
PE
4725specifies the union tag @code{value}, so the corresponding C type is
4726@code{union value}. If you do not specify a tag, it defaults to
4727@code{YYSTYPE}.
4728
8a4281b9 4729As another extension to POSIX, you may specify multiple
d6ca7905
PE
4730@code{%union} declarations; their contents are concatenated. However,
4731only the first @code{%union} declaration can specify a tag.
4732
6273355b 4733Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4734a semicolon after the closing brace.
4735
ddc8ede1
PE
4736Instead of @code{%union}, you can define and use your own union type
4737@code{YYSTYPE} if your grammar contains at least one
4738@samp{<@var{type}>} tag. For example, you can put the following into
4739a header file @file{parser.h}:
4740
4741@example
4742@group
4743union YYSTYPE @{
4744 double val;
4745 symrec *tptr;
4746@};
4747typedef union YYSTYPE YYSTYPE;
4748@end group
4749@end example
4750
4751@noindent
4752and then your grammar can use the following
4753instead of @code{%union}:
4754
4755@example
4756@group
4757%@{
4758#include "parser.h"
4759%@}
4760%type <val> expr
4761%token <tptr> ID
4762@end group
4763@end example
4764
342b8b6e 4765@node Type Decl
bfa74976
RS
4766@subsection Nonterminal Symbols
4767@cindex declaring value types, nonterminals
4768@cindex value types, nonterminals, declaring
4769@findex %type
4770
4771@noindent
4772When you use @code{%union} to specify multiple value types, you must
4773declare the value type of each nonterminal symbol for which values are
4774used. This is done with a @code{%type} declaration, like this:
4775
4776@example
4777%type <@var{type}> @var{nonterminal}@dots{}
4778@end example
4779
4780@noindent
704a47c4
AD
4781Here @var{nonterminal} is the name of a nonterminal symbol, and
4782@var{type} is the name given in the @code{%union} to the alternative
4783that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4784can give any number of nonterminal symbols in the same @code{%type}
4785declaration, if they have the same value type. Use spaces to separate
4786the symbol names.
bfa74976 4787
931c7513
RS
4788You can also declare the value type of a terminal symbol. To do this,
4789use the same @code{<@var{type}>} construction in a declaration for the
4790terminal symbol. All kinds of token declarations allow
4791@code{<@var{type}>}.
4792
18d192f0
AD
4793@node Initial Action Decl
4794@subsection Performing Actions before Parsing
4795@findex %initial-action
4796
4797Sometimes your parser needs to perform some initializations before
4798parsing. The @code{%initial-action} directive allows for such arbitrary
4799code.
4800
4801@deffn {Directive} %initial-action @{ @var{code} @}
4802@findex %initial-action
287c78f6 4803Declare that the braced @var{code} must be invoked before parsing each time
cd735a8c
AD
4804@code{yyparse} is called. The @var{code} may use @code{$$} (or
4805@code{$<@var{tag}>$}) and @code{@@$} --- initial value and location of the
4806lookahead --- and the @code{%parse-param}.
18d192f0
AD
4807@end deffn
4808
451364ed
AD
4809For instance, if your locations use a file name, you may use
4810
4811@example
48b16bbc 4812%parse-param @{ char const *file_name @};
451364ed
AD
4813%initial-action
4814@{
4626a15d 4815 @@$.initialize (file_name);
451364ed
AD
4816@};
4817@end example
4818
18d192f0 4819
72f889cc
AD
4820@node Destructor Decl
4821@subsection Freeing Discarded Symbols
4822@cindex freeing discarded symbols
4823@findex %destructor
12e35840 4824@findex <*>
3ebecc24 4825@findex <>
a85284cf
AD
4826During error recovery (@pxref{Error Recovery}), symbols already pushed
4827on the stack and tokens coming from the rest of the file are discarded
4828until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4829or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4830symbols on the stack must be discarded. Even if the parser succeeds, it
4831must discard the start symbol.
258b75ca
PE
4832
4833When discarded symbols convey heap based information, this memory is
4834lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4835in traditional compilers, it is unacceptable for programs like shells or
4836protocol implementations that may parse and execute indefinitely.
258b75ca 4837
a85284cf
AD
4838The @code{%destructor} directive defines code that is called when a
4839symbol is automatically discarded.
72f889cc
AD
4840
4841@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4842@findex %destructor
287c78f6 4843Invoke the braced @var{code} whenever the parser discards one of the
4982f078
AD
4844@var{symbols}. Within @var{code}, @code{$$} (or @code{$<@var{tag}>$})
4845designates the semantic value associated with the discarded symbol, and
4846@code{@@$} designates its location. The additional parser parameters are
4847also available (@pxref{Parser Function, , The Parser Function
4848@code{yyparse}}).
ec5479ce 4849
b2a0b7ca
JD
4850When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4851per-symbol @code{%destructor}.
4852You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4853tag among @var{symbols}.
b2a0b7ca 4854In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4855grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4856per-symbol @code{%destructor}.
4857
12e35840 4858Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4859(These default forms are experimental.
4860More user feedback will help to determine whether they should become permanent
4861features.)
3ebecc24 4862You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4863exactly one @code{%destructor} declaration in your grammar file.
4864The parser will invoke the @var{code} associated with one of these whenever it
4865discards any user-defined grammar symbol that has no per-symbol and no per-type
4866@code{%destructor}.
4867The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4868symbol for which you have formally declared a semantic type tag (@code{%type}
4869counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4870The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4871symbol that has no declared semantic type tag.
72f889cc
AD
4872@end deffn
4873
b2a0b7ca 4874@noindent
12e35840 4875For example:
72f889cc 4876
c93f22fc 4877@example
ec5479ce
JD
4878%union @{ char *string; @}
4879%token <string> STRING1
4880%token <string> STRING2
4881%type <string> string1
4882%type <string> string2
b2a0b7ca
JD
4883%union @{ char character; @}
4884%token <character> CHR
4885%type <character> chr
12e35840
JD
4886%token TAGLESS
4887
b2a0b7ca 4888%destructor @{ @} <character>
12e35840
JD
4889%destructor @{ free ($$); @} <*>
4890%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4891%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
c93f22fc 4892@end example
72f889cc
AD
4893
4894@noindent
b2a0b7ca
JD
4895guarantees that, when the parser discards any user-defined symbol that has a
4896semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4897to @code{free} by default.
ec5479ce
JD
4898However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4899prints its line number to @code{stdout}.
4900It performs only the second @code{%destructor} in this case, so it invokes
4901@code{free} only once.
12e35840
JD
4902Finally, the parser merely prints a message whenever it discards any symbol,
4903such as @code{TAGLESS}, that has no semantic type tag.
4904
4905A Bison-generated parser invokes the default @code{%destructor}s only for
4906user-defined as opposed to Bison-defined symbols.
4907For example, the parser will not invoke either kind of default
4908@code{%destructor} for the special Bison-defined symbols @code{$accept},
4909@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4910none of which you can reference in your grammar.
4911It also will not invoke either for the @code{error} token (@pxref{Table of
4912Symbols, ,error}), which is always defined by Bison regardless of whether you
4913reference it in your grammar.
4914However, it may invoke one of them for the end token (token 0) if you
4915redefine it from @code{$end} to, for example, @code{END}:
3508ce36 4916
c93f22fc 4917@example
3508ce36 4918%token END 0
c93f22fc 4919@end example
3508ce36 4920
12e35840
JD
4921@cindex actions in mid-rule
4922@cindex mid-rule actions
4923Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4924mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
a7b15ab9
JD
4925That is, Bison does not consider a mid-rule to have a semantic value if you
4926do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4927(where @var{n} is the right-hand side symbol position of the mid-rule) in
4928any later action in that rule. However, if you do reference either, the
4929Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4930it discards the mid-rule symbol.
12e35840 4931
3508ce36
JD
4932@ignore
4933@noindent
4934In the future, it may be possible to redefine the @code{error} token as a
4935nonterminal that captures the discarded symbols.
4936In that case, the parser will invoke the default destructor for it as well.
4937@end ignore
4938
e757bb10
AD
4939@sp 1
4940
4941@cindex discarded symbols
4942@dfn{Discarded symbols} are the following:
4943
4944@itemize
4945@item
4946stacked symbols popped during the first phase of error recovery,
4947@item
4948incoming terminals during the second phase of error recovery,
4949@item
742e4900 4950the current lookahead and the entire stack (except the current
9d9b8b70 4951right-hand side symbols) when the parser returns immediately, and
258b75ca 4952@item
d3e4409a
AD
4953the current lookahead and the entire stack (including the current right-hand
4954side symbols) when the C++ parser (@file{lalr1.cc}) catches an exception in
4955@code{parse},
4956@item
258b75ca 4957the start symbol, when the parser succeeds.
e757bb10
AD
4958@end itemize
4959
9d9b8b70
PE
4960The parser can @dfn{return immediately} because of an explicit call to
4961@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4962exhaustion.
4963
29553547 4964Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4965error via @code{YYERROR} are not discarded automatically. As a rule
4966of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4967the memory.
e757bb10 4968
93c150b6
AD
4969@node Printer Decl
4970@subsection Printing Semantic Values
4971@cindex printing semantic values
4972@findex %printer
4973@findex <*>
4974@findex <>
4975When run-time traces are enabled (@pxref{Tracing, ,Tracing Your Parser}),
4976the parser reports its actions, such as reductions. When a symbol involved
4977in an action is reported, only its kind is displayed, as the parser cannot
4978know how semantic values should be formatted.
4979
4980The @code{%printer} directive defines code that is called when a symbol is
4981reported. Its syntax is the same as @code{%destructor} (@pxref{Destructor
4982Decl, , Freeing Discarded Symbols}).
4983
4984@deffn {Directive} %printer @{ @var{code} @} @var{symbols}
4985@findex %printer
4986@vindex yyoutput
4987@c This is the same text as for %destructor.
4988Invoke the braced @var{code} whenever the parser displays one of the
4989@var{symbols}. Within @var{code}, @code{yyoutput} denotes the output stream
4982f078
AD
4990(a @code{FILE*} in C, and an @code{std::ostream&} in C++), @code{$$} (or
4991@code{$<@var{tag}>$}) designates the semantic value associated with the
4992symbol, and @code{@@$} its location. The additional parser parameters are
4993also available (@pxref{Parser Function, , The Parser Function
4994@code{yyparse}}).
93c150b6
AD
4995
4996The @var{symbols} are defined as for @code{%destructor} (@pxref{Destructor
4997Decl, , Freeing Discarded Symbols}.): they can be per-type (e.g.,
4998@samp{<ival>}), per-symbol (e.g., @samp{exp}, @samp{NUM}, @samp{"float"}),
4999typed per-default (i.e., @samp{<*>}, or untyped per-default (i.e.,
5000@samp{<>}).
5001@end deffn
5002
5003@noindent
5004For example:
5005
5006@example
5007%union @{ char *string; @}
5008%token <string> STRING1
5009%token <string> STRING2
5010%type <string> string1
5011%type <string> string2
5012%union @{ char character; @}
5013%token <character> CHR
5014%type <character> chr
5015%token TAGLESS
5016
5017%printer @{ fprintf (yyoutput, "'%c'", $$); @} <character>
5018%printer @{ fprintf (yyoutput, "&%p", $$); @} <*>
5019%printer @{ fprintf (yyoutput, "\"%s\"", $$); @} STRING1 string1
5020%printer @{ fprintf (yyoutput, "<>"); @} <>
5021@end example
5022
5023@noindent
5024guarantees that, when the parser print any symbol that has a semantic type
5025tag other than @code{<character>}, it display the address of the semantic
5026value by default. However, when the parser displays a @code{STRING1} or a
5027@code{string1}, it formats it as a string in double quotes. It performs
5028only the second @code{%printer} in this case, so it prints only once.
5029Finally, the parser print @samp{<>} for any symbol, such as @code{TAGLESS},
5030that has no semantic type tag. See also
5031
5032
342b8b6e 5033@node Expect Decl
bfa74976
RS
5034@subsection Suppressing Conflict Warnings
5035@cindex suppressing conflict warnings
5036@cindex preventing warnings about conflicts
5037@cindex warnings, preventing
5038@cindex conflicts, suppressing warnings of
5039@findex %expect
d6328241 5040@findex %expect-rr
bfa74976
RS
5041
5042Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
5043(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
5044have harmless shift/reduce conflicts which are resolved in a predictable
5045way and would be difficult to eliminate. It is desirable to suppress
5046the warning about these conflicts unless the number of conflicts
5047changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
5048
5049The declaration looks like this:
5050
5051@example
5052%expect @var{n}
5053@end example
5054
035aa4a0
PE
5055Here @var{n} is a decimal integer. The declaration says there should
5056be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
5057Bison reports an error if the number of shift/reduce conflicts differs
5058from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 5059
eb45ef3b 5060For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 5061serious, and should be eliminated entirely. Bison will always report
8a4281b9 5062reduce/reduce conflicts for these parsers. With GLR
035aa4a0 5063parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 5064there would be no need to use GLR parsing. Therefore, it is
035aa4a0 5065also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 5066in GLR parsers, using the declaration:
d6328241
PH
5067
5068@example
5069%expect-rr @var{n}
5070@end example
5071
bfa74976
RS
5072In general, using @code{%expect} involves these steps:
5073
5074@itemize @bullet
5075@item
5076Compile your grammar without @code{%expect}. Use the @samp{-v} option
5077to get a verbose list of where the conflicts occur. Bison will also
5078print the number of conflicts.
5079
5080@item
5081Check each of the conflicts to make sure that Bison's default
5082resolution is what you really want. If not, rewrite the grammar and
5083go back to the beginning.
5084
5085@item
5086Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 5087number which Bison printed. With GLR parsers, add an
035aa4a0 5088@code{%expect-rr} declaration as well.
bfa74976
RS
5089@end itemize
5090
93d7dde9
JD
5091Now Bison will report an error if you introduce an unexpected conflict,
5092but will keep silent otherwise.
bfa74976 5093
342b8b6e 5094@node Start Decl
bfa74976
RS
5095@subsection The Start-Symbol
5096@cindex declaring the start symbol
5097@cindex start symbol, declaring
5098@cindex default start symbol
5099@findex %start
5100
5101Bison assumes by default that the start symbol for the grammar is the first
5102nonterminal specified in the grammar specification section. The programmer
5103may override this restriction with the @code{%start} declaration as follows:
5104
5105@example
5106%start @var{symbol}
5107@end example
5108
342b8b6e 5109@node Pure Decl
bfa74976
RS
5110@subsection A Pure (Reentrant) Parser
5111@cindex reentrant parser
5112@cindex pure parser
d9df47b6 5113@findex %define api.pure
bfa74976
RS
5114
5115A @dfn{reentrant} program is one which does not alter in the course of
5116execution; in other words, it consists entirely of @dfn{pure} (read-only)
5117code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
5118for example, a nonreentrant program may not be safe to call from a signal
5119handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
5120program must be called only within interlocks.
5121
70811b85 5122Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
5123suitable for most uses, and it permits compatibility with Yacc. (The
5124standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
5125statically allocated variables for communication with @code{yylex},
5126including @code{yylval} and @code{yylloc}.)
bfa74976 5127
70811b85 5128Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 5129declaration @samp{%define api.pure} says that you want the parser to be
70811b85 5130reentrant. It looks like this:
bfa74976
RS
5131
5132@example
1f1bd572 5133%define api.pure full
bfa74976
RS
5134@end example
5135
70811b85
RS
5136The result is that the communication variables @code{yylval} and
5137@code{yylloc} become local variables in @code{yyparse}, and a different
5138calling convention is used for the lexical analyzer function
5139@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
5140Parsers}, for the details of this. The variable @code{yynerrs}
5141becomes local in @code{yyparse} in pull mode but it becomes a member
a73aa764 5142of @code{yypstate} in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
5143Reporting Function @code{yyerror}}). The convention for calling
5144@code{yyparse} itself is unchanged.
5145
5146Whether the parser is pure has nothing to do with the grammar rules.
5147You can generate either a pure parser or a nonreentrant parser from any
5148valid grammar.
bfa74976 5149
9987d1b3
JD
5150@node Push Decl
5151@subsection A Push Parser
5152@cindex push parser
5153@cindex push parser
67212941 5154@findex %define api.push-pull
9987d1b3 5155
59da312b
JD
5156(The current push parsing interface is experimental and may evolve.
5157More user feedback will help to stabilize it.)
5158
f4101aa6
AD
5159A pull parser is called once and it takes control until all its input
5160is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
5161each time a new token is made available.
5162
f4101aa6 5163A push parser is typically useful when the parser is part of a
9987d1b3 5164main event loop in the client's application. This is typically
f4101aa6
AD
5165a requirement of a GUI, when the main event loop needs to be triggered
5166within a certain time period.
9987d1b3 5167
d782395d
JD
5168Normally, Bison generates a pull parser.
5169The following Bison declaration says that you want the parser to be a push
35c1e5f0 5170parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
5171
5172@example
cf499cff 5173%define api.push-pull push
9987d1b3
JD
5174@end example
5175
5176In almost all cases, you want to ensure that your push parser is also
5177a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 5178time you should create an impure push parser is to have backwards
9987d1b3
JD
5179compatibility with the impure Yacc pull mode interface. Unless you know
5180what you are doing, your declarations should look like this:
5181
5182@example
1f1bd572 5183%define api.pure full
cf499cff 5184%define api.push-pull push
9987d1b3
JD
5185@end example
5186
f4101aa6
AD
5187There is a major notable functional difference between the pure push parser
5188and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
5189many parser instances, of the same type of parser, in memory at the same time.
5190An impure push parser should only use one parser at a time.
5191
5192When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
5193the generated parser. @code{yypstate} is a structure that the generated
5194parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
5195function that will create a new parser instance. @code{yypstate_delete}
5196will free the resources associated with the corresponding parser instance.
f4101aa6 5197Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
5198token is available to provide the parser. A trivial example
5199of using a pure push parser would look like this:
5200
5201@example
5202int status;
5203yypstate *ps = yypstate_new ();
5204do @{
5205 status = yypush_parse (ps, yylex (), NULL);
5206@} while (status == YYPUSH_MORE);
5207yypstate_delete (ps);
5208@end example
5209
5210If the user decided to use an impure push parser, a few things about
f4101aa6 5211the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
5212a global variable instead of a variable in the @code{yypush_parse} function.
5213For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 5214changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
5215example would thus look like this:
5216
5217@example
5218extern int yychar;
5219int status;
5220yypstate *ps = yypstate_new ();
5221do @{
5222 yychar = yylex ();
5223 status = yypush_parse (ps);
5224@} while (status == YYPUSH_MORE);
5225yypstate_delete (ps);
5226@end example
5227
f4101aa6 5228That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
5229for use by the next invocation of the @code{yypush_parse} function.
5230
f4101aa6 5231Bison also supports both the push parser interface along with the pull parser
9987d1b3 5232interface in the same generated parser. In order to get this functionality,
cf499cff
JD
5233you should replace the @samp{%define api.push-pull push} declaration with the
5234@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 5235the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
5236and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
5237would be used. However, the user should note that it is implemented in the
d782395d
JD
5238generated parser by calling @code{yypull_parse}.
5239This makes the @code{yyparse} function that is generated with the
cf499cff 5240@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
5241@code{yyparse} function. If the user
5242calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
5243stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
5244and then @code{yypull_parse} the rest of the input stream. If you would like
5245to switch back and forth between between parsing styles, you would have to
5246write your own @code{yypull_parse} function that knows when to quit looking
5247for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
5248like this:
5249
5250@example
5251yypstate *ps = yypstate_new ();
5252yypull_parse (ps); /* Will call the lexer */
5253yypstate_delete (ps);
5254@end example
5255
67501061 5256Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
5257the generated parser with @samp{%define api.push-pull both} as it did for
5258@samp{%define api.push-pull push}.
9987d1b3 5259
342b8b6e 5260@node Decl Summary
bfa74976
RS
5261@subsection Bison Declaration Summary
5262@cindex Bison declaration summary
5263@cindex declaration summary
5264@cindex summary, Bison declaration
5265
d8988b2f 5266Here is a summary of the declarations used to define a grammar:
bfa74976 5267
18b519c0 5268@deffn {Directive} %union
bfa74976
RS
5269Declare the collection of data types that semantic values may have
5270(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 5271@end deffn
bfa74976 5272
18b519c0 5273@deffn {Directive} %token
bfa74976
RS
5274Declare a terminal symbol (token type name) with no precedence
5275or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 5276@end deffn
bfa74976 5277
18b519c0 5278@deffn {Directive} %right
bfa74976
RS
5279Declare a terminal symbol (token type name) that is right-associative
5280(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5281@end deffn
bfa74976 5282
18b519c0 5283@deffn {Directive} %left
bfa74976
RS
5284Declare a terminal symbol (token type name) that is left-associative
5285(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5286@end deffn
bfa74976 5287
18b519c0 5288@deffn {Directive} %nonassoc
bfa74976 5289Declare a terminal symbol (token type name) that is nonassociative
bfa74976 5290(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
5291Using it in a way that would be associative is a syntax error.
5292@end deffn
5293
91d2c560 5294@ifset defaultprec
39a06c25 5295@deffn {Directive} %default-prec
22fccf95 5296Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
5297(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5298@end deffn
91d2c560 5299@end ifset
bfa74976 5300
18b519c0 5301@deffn {Directive} %type
bfa74976
RS
5302Declare the type of semantic values for a nonterminal symbol
5303(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 5304@end deffn
bfa74976 5305
18b519c0 5306@deffn {Directive} %start
89cab50d
AD
5307Specify the grammar's start symbol (@pxref{Start Decl, ,The
5308Start-Symbol}).
18b519c0 5309@end deffn
bfa74976 5310
18b519c0 5311@deffn {Directive} %expect
bfa74976
RS
5312Declare the expected number of shift-reduce conflicts
5313(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
5314@end deffn
5315
bfa74976 5316
d8988b2f
AD
5317@sp 1
5318@noindent
5319In order to change the behavior of @command{bison}, use the following
5320directives:
5321
148d66d8 5322@deffn {Directive} %code @{@var{code}@}
e0c07222 5323@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 5324@findex %code
e0c07222
JD
5325Insert @var{code} verbatim into the output parser source at the
5326default location or at the location specified by @var{qualifier}.
5327@xref{%code Summary}.
148d66d8
JD
5328@end deffn
5329
18b519c0 5330@deffn {Directive} %debug
60aa04a2 5331Instrument the parser for traces. Obsoleted by @samp{%define
fa819509 5332parse.trace}.
ec3bc396 5333@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5334@end deffn
d8988b2f 5335
35c1e5f0
JD
5336@deffn {Directive} %define @var{variable}
5337@deffnx {Directive} %define @var{variable} @var{value}
5338@deffnx {Directive} %define @var{variable} "@var{value}"
5339Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5340@end deffn
5341
5342@deffn {Directive} %defines
5343Write a parser header file containing macro definitions for the token
5344type names defined in the grammar as well as a few other declarations.
5345If the parser implementation file is named @file{@var{name}.c} then
5346the parser header file is named @file{@var{name}.h}.
5347
5348For C parsers, the parser header file declares @code{YYSTYPE} unless
5349@code{YYSTYPE} is already defined as a macro or you have used a
5350@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5351you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5352Value Type}) with components that require other definitions, or if you
5353have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5354Type, ,Data Types of Semantic Values}), you need to arrange for these
5355definitions to be propagated to all modules, e.g., by putting them in
5356a prerequisite header that is included both by your parser and by any
5357other module that needs @code{YYSTYPE}.
5358
5359Unless your parser is pure, the parser header file declares
5360@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5361(Reentrant) Parser}.
5362
5363If you have also used locations, the parser header file declares
303834cc
JD
5364@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5365@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
35c1e5f0
JD
5366
5367This parser header file is normally essential if you wish to put the
5368definition of @code{yylex} in a separate source file, because
5369@code{yylex} typically needs to be able to refer to the
5370above-mentioned declarations and to the token type codes. @xref{Token
5371Values, ,Semantic Values of Tokens}.
5372
5373@findex %code requires
5374@findex %code provides
5375If you have declared @code{%code requires} or @code{%code provides}, the output
5376header also contains their code.
5377@xref{%code Summary}.
c9d5bcc9
AD
5378
5379@cindex Header guard
5380The generated header is protected against multiple inclusions with a C
5381preprocessor guard: @samp{YY_@var{PREFIX}_@var{FILE}_INCLUDED}, where
5382@var{PREFIX} and @var{FILE} are the prefix (@pxref{Multiple Parsers,
5383,Multiple Parsers in the Same Program}) and generated file name turned
5384uppercase, with each series of non alphanumerical characters converted to a
5385single underscore.
5386
5387For instance with @samp{%define api.prefix "calc"} and @samp{%defines
5388"lib/parse.h"}, the header will be guarded as follows.
5389@example
5390#ifndef YY_CALC_LIB_PARSE_H_INCLUDED
5391# define YY_CALC_LIB_PARSE_H_INCLUDED
5392...
5393#endif /* ! YY_CALC_LIB_PARSE_H_INCLUDED */
5394@end example
35c1e5f0
JD
5395@end deffn
5396
5397@deffn {Directive} %defines @var{defines-file}
5398Same as above, but save in the file @var{defines-file}.
5399@end deffn
5400
5401@deffn {Directive} %destructor
5402Specify how the parser should reclaim the memory associated to
5403discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5404@end deffn
5405
5406@deffn {Directive} %file-prefix "@var{prefix}"
5407Specify a prefix to use for all Bison output file names. The names
5408are chosen as if the grammar file were named @file{@var{prefix}.y}.
5409@end deffn
5410
5411@deffn {Directive} %language "@var{language}"
5412Specify the programming language for the generated parser. Currently
5413supported languages include C, C++, and Java.
5414@var{language} is case-insensitive.
5415
35c1e5f0
JD
5416@end deffn
5417
5418@deffn {Directive} %locations
5419Generate the code processing the locations (@pxref{Action Features,
5420,Special Features for Use in Actions}). This mode is enabled as soon as
5421the grammar uses the special @samp{@@@var{n}} tokens, but if your
5422grammar does not use it, using @samp{%locations} allows for more
5423accurate syntax error messages.
5424@end deffn
5425
5426@deffn {Directive} %name-prefix "@var{prefix}"
5427Rename the external symbols used in the parser so that they start with
5428@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5429in C parsers
5430is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5431@code{yylval}, @code{yychar}, @code{yydebug}, and
5432(if locations are used) @code{yylloc}. If you use a push parser,
5433@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5434@code{yypstate_new} and @code{yypstate_delete} will
5435also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5436names become @code{c_parse}, @code{c_lex}, and so on.
5437For C++ parsers, see the @samp{%define api.namespace} documentation in this
5438section.
5439@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5440@end deffn
5441
5442@ifset defaultprec
5443@deffn {Directive} %no-default-prec
5444Do not assign a precedence to rules lacking an explicit @code{%prec}
5445modifier (@pxref{Contextual Precedence, ,Context-Dependent
5446Precedence}).
5447@end deffn
5448@end ifset
5449
5450@deffn {Directive} %no-lines
5451Don't generate any @code{#line} preprocessor commands in the parser
5452implementation file. Ordinarily Bison writes these commands in the
5453parser implementation file so that the C compiler and debuggers will
5454associate errors and object code with your source file (the grammar
5455file). This directive causes them to associate errors with the parser
5456implementation file, treating it as an independent source file in its
5457own right.
5458@end deffn
5459
5460@deffn {Directive} %output "@var{file}"
5461Specify @var{file} for the parser implementation file.
5462@end deffn
5463
5464@deffn {Directive} %pure-parser
5465Deprecated version of @samp{%define api.pure} (@pxref{%define
5466Summary,,api.pure}), for which Bison is more careful to warn about
5467unreasonable usage.
5468@end deffn
5469
5470@deffn {Directive} %require "@var{version}"
5471Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5472Require a Version of Bison}.
5473@end deffn
5474
5475@deffn {Directive} %skeleton "@var{file}"
5476Specify the skeleton to use.
5477
5478@c You probably don't need this option unless you are developing Bison.
5479@c You should use @code{%language} if you want to specify the skeleton for a
5480@c different language, because it is clearer and because it will always choose the
5481@c correct skeleton for non-deterministic or push parsers.
5482
5483If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5484file in the Bison installation directory.
5485If it does, @var{file} is an absolute file name or a file name relative to the
5486directory of the grammar file.
5487This is similar to how most shells resolve commands.
5488@end deffn
5489
5490@deffn {Directive} %token-table
5491Generate an array of token names in the parser implementation file.
5492The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5493the name of the token whose internal Bison token code number is
5494@var{i}. The first three elements of @code{yytname} correspond to the
5495predefined tokens @code{"$end"}, @code{"error"}, and
5496@code{"$undefined"}; after these come the symbols defined in the
5497grammar file.
5498
5499The name in the table includes all the characters needed to represent
5500the token in Bison. For single-character literals and literal
5501strings, this includes the surrounding quoting characters and any
5502escape sequences. For example, the Bison single-character literal
5503@code{'+'} corresponds to a three-character name, represented in C as
5504@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5505corresponds to a five-character name, represented in C as
5506@code{"\"\\\\/\""}.
5507
5508When you specify @code{%token-table}, Bison also generates macro
5509definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5510@code{YYNRULES}, and @code{YYNSTATES}:
5511
5512@table @code
5513@item YYNTOKENS
5514The highest token number, plus one.
5515@item YYNNTS
5516The number of nonterminal symbols.
5517@item YYNRULES
5518The number of grammar rules,
5519@item YYNSTATES
5520The number of parser states (@pxref{Parser States}).
5521@end table
5522@end deffn
5523
5524@deffn {Directive} %verbose
5525Write an extra output file containing verbose descriptions of the
5526parser states and what is done for each type of lookahead token in
5527that state. @xref{Understanding, , Understanding Your Parser}, for more
5528information.
5529@end deffn
5530
5531@deffn {Directive} %yacc
5532Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5533including its naming conventions. @xref{Bison Options}, for more.
5534@end deffn
5535
5536
5537@node %define Summary
5538@subsection %define Summary
51151d91
JD
5539
5540There are many features of Bison's behavior that can be controlled by
5541assigning the feature a single value. For historical reasons, some
5542such features are assigned values by dedicated directives, such as
5543@code{%start}, which assigns the start symbol. However, newer such
5544features are associated with variables, which are assigned by the
5545@code{%define} directive:
5546
c1d19e10 5547@deffn {Directive} %define @var{variable}
cf499cff 5548@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5549@deffnx {Directive} %define @var{variable} "@var{value}"
51151d91 5550Define @var{variable} to @var{value}.
9611cfa2 5551
51151d91
JD
5552@var{value} must be placed in quotation marks if it contains any
5553character other than a letter, underscore, period, or non-initial dash
5554or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5555to specifying @code{""}.
9611cfa2 5556
51151d91
JD
5557It is an error if a @var{variable} is defined by @code{%define}
5558multiple times, but see @ref{Bison Options,,-D
5559@var{name}[=@var{value}]}.
5560@end deffn
cf499cff 5561
51151d91
JD
5562The rest of this section summarizes variables and values that
5563@code{%define} accepts.
9611cfa2 5564
51151d91
JD
5565Some @var{variable}s take Boolean values. In this case, Bison will
5566complain if the variable definition does not meet one of the following
5567four conditions:
9611cfa2
JD
5568
5569@enumerate
cf499cff 5570@item @code{@var{value}} is @code{true}
9611cfa2 5571
cf499cff
JD
5572@item @code{@var{value}} is omitted (or @code{""} is specified).
5573This is equivalent to @code{true}.
9611cfa2 5574
cf499cff 5575@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5576
5577@item @var{variable} is never defined.
c6abeab1 5578In this case, Bison selects a default value.
9611cfa2 5579@end enumerate
148d66d8 5580
c6abeab1
JD
5581What @var{variable}s are accepted, as well as their meanings and default
5582values, depend on the selected target language and/or the parser
5583skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5584Summary,,%skeleton}).
5585Unaccepted @var{variable}s produce an error.
dbf3962c 5586Some of the accepted @var{variable}s are described below.
793fbca5 5587
dbf3962c 5588@deffn Directive {%define api.namespace} "@var{namespace}"
67501061
AD
5589@itemize
5590@item Languages(s): C++
5591
f1b238df 5592@item Purpose: Specify the namespace for the parser class.
67501061
AD
5593For example, if you specify:
5594
c93f22fc 5595@example
67501061 5596%define api.namespace "foo::bar"
c93f22fc 5597@end example
67501061
AD
5598
5599Bison uses @code{foo::bar} verbatim in references such as:
5600
c93f22fc 5601@example
67501061 5602foo::bar::parser::semantic_type
c93f22fc 5603@end example
67501061
AD
5604
5605However, to open a namespace, Bison removes any leading @code{::} and then
5606splits on any remaining occurrences:
5607
c93f22fc 5608@example
67501061
AD
5609namespace foo @{ namespace bar @{
5610 class position;
5611 class location;
5612@} @}
c93f22fc 5613@end example
67501061
AD
5614
5615@item Accepted Values:
5616Any absolute or relative C++ namespace reference without a trailing
5617@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5618
5619@item Default Value:
5620The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5621This usage of @code{%name-prefix} is for backward compatibility and can
5622be confusing since @code{%name-prefix} also specifies the textual prefix
5623for the lexical analyzer function. Thus, if you specify
5624@code{%name-prefix}, it is best to also specify @samp{%define
5625api.namespace} so that @code{%name-prefix} @emph{only} affects the
5626lexical analyzer function. For example, if you specify:
5627
c93f22fc 5628@example
67501061
AD
5629%define api.namespace "foo"
5630%name-prefix "bar::"
c93f22fc 5631@end example
67501061
AD
5632
5633The parser namespace is @code{foo} and @code{yylex} is referenced as
5634@code{bar::lex}.
5635@end itemize
dbf3962c
AD
5636@end deffn
5637@c api.namespace
67501061 5638
db8ab2be 5639@c ================================================== api.location.type
dbf3962c 5640@deffn {Directive} {%define api.location.type} @var{type}
db8ab2be
AD
5641
5642@itemize @bullet
7287be84 5643@item Language(s): C++, Java
db8ab2be
AD
5644
5645@item Purpose: Define the location type.
5646@xref{User Defined Location Type}.
5647
5648@item Accepted Values: String
5649
5650@item Default Value: none
5651
a256496a
AD
5652@item History:
5653Introduced in Bison 2.7 for C, C++ and Java. Introduced under the name
5654@code{location_type} for C++ in Bison 2.5 and for Java in Bison 2.4.
db8ab2be 5655@end itemize
dbf3962c 5656@end deffn
67501061 5657
4b3847c3 5658@c ================================================== api.prefix
dbf3962c 5659@deffn {Directive} {%define api.prefix} @var{prefix}
4b3847c3
AD
5660
5661@itemize @bullet
5662@item Language(s): All
5663
db8ab2be 5664@item Purpose: Rename exported symbols.
4b3847c3
AD
5665@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5666
5667@item Accepted Values: String
5668
5669@item Default Value: @code{yy}
e358222b
AD
5670
5671@item History: introduced in Bison 2.6
4b3847c3 5672@end itemize
dbf3962c 5673@end deffn
67501061
AD
5674
5675@c ================================================== api.pure
dbf3962c 5676@deffn Directive {%define api.pure}
d9df47b6
JD
5677
5678@itemize @bullet
5679@item Language(s): C
5680
5681@item Purpose: Request a pure (reentrant) parser program.
5682@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5683
1f1bd572
TR
5684@item Accepted Values: @code{true}, @code{false}, @code{full}
5685
5686The value may be omitted: this is equivalent to specifying @code{true}, as is
5687the case for Boolean values.
5688
5689When @code{%define api.pure full} is used, the parser is made reentrant. This
511dd971
AD
5690changes the signature for @code{yylex} (@pxref{Pure Calling}), and also that of
5691@code{yyerror} when the tracking of locations has been activated, as shown
5692below.
1f1bd572
TR
5693
5694The @code{true} value is very similar to the @code{full} value, the only
5695difference is in the signature of @code{yyerror} on Yacc parsers without
5696@code{%parse-param}, for historical reasons.
5697
5698I.e., if @samp{%locations %define api.pure} is passed then the prototypes for
5699@code{yyerror} are:
5700
5701@example
c949ada3
AD
5702void yyerror (char const *msg); // Yacc parsers.
5703void yyerror (YYLTYPE *locp, char const *msg); // GLR parsers.
1f1bd572
TR
5704@end example
5705
5706But if @samp{%locations %define api.pure %parse-param @{int *nastiness@}} is
5707used, then both parsers have the same signature:
5708
5709@example
5710void yyerror (YYLTYPE *llocp, int *nastiness, char const *msg);
5711@end example
5712
5713(@pxref{Error Reporting, ,The Error
5714Reporting Function @code{yyerror}})
d9df47b6 5715
cf499cff 5716@item Default Value: @code{false}
1f1bd572 5717
a256496a
AD
5718@item History:
5719the @code{full} value was introduced in Bison 2.7
d9df47b6 5720@end itemize
dbf3962c 5721@end deffn
71b00ed8 5722@c api.pure
d9df47b6 5723
67501061
AD
5724
5725
5726@c ================================================== api.push-pull
dbf3962c 5727@deffn Directive {%define api.push-pull} @var{kind}
793fbca5
JD
5728
5729@itemize @bullet
eb45ef3b 5730@item Language(s): C (deterministic parsers only)
793fbca5 5731
f1b238df 5732@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5733@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5734(The current push parsing interface is experimental and may evolve.
5735More user feedback will help to stabilize it.)
793fbca5 5736
cf499cff 5737@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5738
cf499cff 5739@item Default Value: @code{pull}
793fbca5 5740@end itemize
dbf3962c 5741@end deffn
67212941 5742@c api.push-pull
71b00ed8 5743
6b5a0de9
AD
5744
5745
e36ec1f4 5746@c ================================================== api.token.constructor
dbf3962c 5747@deffn Directive {%define api.token.constructor}
e36ec1f4
AD
5748
5749@itemize @bullet
5750@item Language(s):
5751C++
5752
5753@item Purpose:
5754When variant-based semantic values are enabled (@pxref{C++ Variants}),
5755request that symbols be handled as a whole (type, value, and possibly
5756location) in the scanner. @xref{Complete Symbols}, for details.
5757
5758@item Accepted Values:
5759Boolean.
5760
5761@item Default Value:
5762@code{false}
5763@item History:
5764introduced in Bison 2.8
5765@end itemize
dbf3962c 5766@end deffn
e36ec1f4
AD
5767@c api.token.constructor
5768
5769
2a6b66c5 5770@c ================================================== api.token.prefix
dbf3962c 5771@deffn Directive {%define api.token.prefix} @var{prefix}
4c6622c2
AD
5772
5773@itemize
5774@item Languages(s): all
5775
5776@item Purpose:
5777Add a prefix to the token names when generating their definition in the
5778target language. For instance
5779
5780@example
5781%token FILE for ERROR
2a6b66c5 5782%define api.token.prefix "TOK_"
4c6622c2
AD
5783%%
5784start: FILE for ERROR;
5785@end example
5786
5787@noindent
5788generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5789and @code{TOK_ERROR} in the generated source files. In particular, the
5790scanner must use these prefixed token names, while the grammar itself
5791may still use the short names (as in the sample rule given above). The
5792generated informational files (@file{*.output}, @file{*.xml},
5793@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5794and @ref{Calc++ Scanner}, for a complete example.
5795
5796@item Accepted Values:
5797Any string. Should be a valid identifier prefix in the target language,
5798in other words, it should typically be an identifier itself (sequence of
5799letters, underscores, and ---not at the beginning--- digits).
5800
5801@item Default Value:
5802empty
2a6b66c5
AD
5803@item History:
5804introduced in Bison 2.8
4c6622c2 5805@end itemize
dbf3962c 5806@end deffn
2a6b66c5 5807@c api.token.prefix
4c6622c2
AD
5808
5809
ae8880de 5810@c ================================================== api.value.type
dbf3962c 5811@deffn Directive {%define api.value.type} @var{type}
ae8880de
AD
5812@itemize @bullet
5813@item Language(s):
5814C++
5815
5816@item Purpose:
5817Request variant-based semantic values.
5818@xref{C++ Variants}.
5819
dbf3962c
AD
5820@item Default Value:
5821FIXME:
5822@item History:
5823introduced in Bison 2.8. Was introduced for Java only in 2.3b as
5824@code{stype}.
5825@end itemize
5826@end deffn
ae8880de
AD
5827@c api.value.type
5828
a256496a
AD
5829
5830@c ================================================== location_type
dbf3962c 5831@deffn Directive {%define location_type}
a256496a 5832Obsoleted by @code{api.location.type} since Bison 2.7.
dbf3962c 5833@end deffn
a256496a
AD
5834
5835
f3bc3386 5836@c ================================================== lr.default-reduction
6b5a0de9 5837
dbf3962c 5838@deffn Directive {%define lr.default-reduction} @var{when}
eb45ef3b
JD
5839
5840@itemize @bullet
5841@item Language(s): all
5842
fcf834f9 5843@item Purpose: Specify the kind of states that are permitted to
7fceb615
JD
5844contain default reductions. @xref{Default Reductions}. (The ability to
5845specify where default reductions should be used is experimental. More user
5846feedback will help to stabilize it.)
eb45ef3b 5847
f0ad1b2f 5848@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
eb45ef3b
JD
5849@item Default Value:
5850@itemize
cf499cff 5851@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
f0ad1b2f 5852@item @code{most} otherwise.
eb45ef3b 5853@end itemize
f3bc3386
AD
5854@item History:
5855introduced as @code{lr.default-reduction} in 2.5, renamed as
5856@code{lr.default-reduction} in 2.8.
eb45ef3b 5857@end itemize
dbf3962c 5858@end deffn
eb45ef3b 5859
f3bc3386 5860@c ============================================ lr.keep-unreachable-state
6b5a0de9 5861
dbf3962c 5862@deffn Directive {%define lr.keep-unreachable-state}
31984206
JD
5863
5864@itemize @bullet
5865@item Language(s): all
f1b238df 5866@item Purpose: Request that Bison allow unreachable parser states to
7fceb615 5867remain in the parser tables. @xref{Unreachable States}.
31984206 5868@item Accepted Values: Boolean
cf499cff 5869@item Default Value: @code{false}
a256496a 5870@item History:
f3bc3386 5871introduced as @code{lr.keep_unreachable_states} in 2.3b, renamed as
5807bb91 5872@code{lr.keep-unreachable-states} in 2.5, and as
f3bc3386 5873@code{lr.keep-unreachable-state} in 2.8.
dbf3962c
AD
5874@end itemize
5875@end deffn
f3bc3386 5876@c lr.keep-unreachable-state
31984206 5877
6b5a0de9
AD
5878@c ================================================== lr.type
5879
dbf3962c 5880@deffn Directive {%define lr.type} @var{type}
eb45ef3b
JD
5881
5882@itemize @bullet
5883@item Language(s): all
5884
f1b238df 5885@item Purpose: Specify the type of parser tables within the
7fceb615 5886LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
eb45ef3b
JD
5887More user feedback will help to stabilize it.)
5888
7fceb615 5889@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
eb45ef3b 5890
cf499cff 5891@item Default Value: @code{lalr}
eb45ef3b 5892@end itemize
dbf3962c 5893@end deffn
67501061
AD
5894
5895@c ================================================== namespace
dbf3962c 5896@deffn Directive %define namespace @var{namespace}
67501061 5897Obsoleted by @code{api.namespace}
fa819509 5898@c namespace
dbf3962c 5899@end deffn
31b850d2
AD
5900
5901@c ================================================== parse.assert
dbf3962c 5902@deffn Directive {%define parse.assert}
0c90a1f5
AD
5903
5904@itemize
5905@item Languages(s): C++
5906
5907@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5908In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5909constructed and
0c90a1f5
AD
5910destroyed properly. This option checks these constraints.
5911
5912@item Accepted Values: Boolean
5913
5914@item Default Value: @code{false}
5915@end itemize
dbf3962c 5916@end deffn
0c90a1f5
AD
5917@c parse.assert
5918
31b850d2
AD
5919
5920@c ================================================== parse.error
dbf3962c 5921@deffn Directive {%define parse.error}
31b850d2
AD
5922@itemize
5923@item Languages(s):
fcf834f9 5924all
31b850d2
AD
5925@item Purpose:
5926Control the kind of error messages passed to the error reporting
5927function. @xref{Error Reporting, ,The Error Reporting Function
5928@code{yyerror}}.
5929@item Accepted Values:
5930@itemize
cf499cff 5931@item @code{simple}
31b850d2
AD
5932Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5933error"}}.
cf499cff 5934@item @code{verbose}
7fceb615
JD
5935Error messages report the unexpected token, and possibly the expected ones.
5936However, this report can often be incorrect when LAC is not enabled
5937(@pxref{LAC}).
31b850d2
AD
5938@end itemize
5939
5940@item Default Value:
5941@code{simple}
5942@end itemize
dbf3962c 5943@end deffn
31b850d2
AD
5944@c parse.error
5945
5946
fcf834f9 5947@c ================================================== parse.lac
dbf3962c 5948@deffn Directive {%define parse.lac}
fcf834f9
JD
5949
5950@itemize
7fceb615 5951@item Languages(s): C (deterministic parsers only)
fcf834f9 5952
8a4281b9 5953@item Purpose: Enable LAC (lookahead correction) to improve
7fceb615 5954syntax error handling. @xref{LAC}.
fcf834f9 5955@item Accepted Values: @code{none}, @code{full}
fcf834f9
JD
5956@item Default Value: @code{none}
5957@end itemize
dbf3962c 5958@end deffn
fcf834f9
JD
5959@c parse.lac
5960
31b850d2 5961@c ================================================== parse.trace
dbf3962c 5962@deffn Directive {%define parse.trace}
fa819509
AD
5963
5964@itemize
60aa04a2 5965@item Languages(s): C, C++, Java
fa819509
AD
5966
5967@item Purpose: Require parser instrumentation for tracing.
60aa04a2
AD
5968@xref{Tracing, ,Tracing Your Parser}.
5969
5970In C/C++, define the macro @code{YYDEBUG} (or @code{@var{prefix}DEBUG} with
5971@samp{%define api.prefix @var{prefix}}), see @ref{Multiple Parsers,
5972,Multiple Parsers in the Same Program}) to 1 in the parser implementation
ff7571c0 5973file if it is not already defined, so that the debugging facilities are
60aa04a2 5974compiled.
793fbca5 5975
fa819509
AD
5976@item Accepted Values: Boolean
5977
5978@item Default Value: @code{false}
5979@end itemize
dbf3962c 5980@end deffn
fa819509 5981@c parse.trace
592d0b1e 5982
e0c07222
JD
5983@node %code Summary
5984@subsection %code Summary
e0c07222 5985@findex %code
e0c07222 5986@cindex Prologue
51151d91
JD
5987
5988The @code{%code} directive inserts code verbatim into the output
5989parser source at any of a predefined set of locations. It thus serves
5990as a flexible and user-friendly alternative to the traditional Yacc
5991prologue, @code{%@{@var{code}%@}}. This section summarizes the
5992functionality of @code{%code} for the various target languages
5993supported by Bison. For a detailed discussion of how to use
5994@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5995is advantageous to do so, @pxref{Prologue Alternatives}.
5996
5997@deffn {Directive} %code @{@var{code}@}
5998This is the unqualified form of the @code{%code} directive. It
5999inserts @var{code} verbatim at a language-dependent default location
6000in the parser implementation.
6001
e0c07222 6002For C/C++, the default location is the parser implementation file
51151d91
JD
6003after the usual contents of the parser header file. Thus, the
6004unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
e0c07222
JD
6005
6006For Java, the default location is inside the parser class.
6007@end deffn
6008
6009@deffn {Directive} %code @var{qualifier} @{@var{code}@}
6010This is the qualified form of the @code{%code} directive.
51151d91
JD
6011@var{qualifier} identifies the purpose of @var{code} and thus the
6012location(s) where Bison should insert it. That is, if you need to
6013specify location-sensitive @var{code} that does not belong at the
6014default location selected by the unqualified @code{%code} form, use
6015this form instead.
6016@end deffn
6017
6018For any particular qualifier or for the unqualified form, if there are
6019multiple occurrences of the @code{%code} directive, Bison concatenates
6020the specified code in the order in which it appears in the grammar
6021file.
e0c07222 6022
51151d91
JD
6023Not all qualifiers are accepted for all target languages. Unaccepted
6024qualifiers produce an error. Some of the accepted qualifiers are:
e0c07222 6025
84072495 6026@table @code
e0c07222
JD
6027@item requires
6028@findex %code requires
6029
6030@itemize @bullet
6031@item Language(s): C, C++
6032
6033@item Purpose: This is the best place to write dependency code required for
6034@code{YYSTYPE} and @code{YYLTYPE}.
6035In other words, it's the best place to define types referenced in @code{%union}
6036directives, and it's the best place to override Bison's default @code{YYSTYPE}
6037and @code{YYLTYPE} definitions.
6038
6039@item Location(s): The parser header file and the parser implementation file
6040before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
6041definitions.
6042@end itemize
6043
6044@item provides
6045@findex %code provides
6046
6047@itemize @bullet
6048@item Language(s): C, C++
6049
6050@item Purpose: This is the best place to write additional definitions and
6051declarations that should be provided to other modules.
6052
6053@item Location(s): The parser header file and the parser implementation
6054file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
6055token definitions.
6056@end itemize
6057
6058@item top
6059@findex %code top
6060
6061@itemize @bullet
6062@item Language(s): C, C++
6063
6064@item Purpose: The unqualified @code{%code} or @code{%code requires}
6065should usually be more appropriate than @code{%code top}. However,
6066occasionally it is necessary to insert code much nearer the top of the
6067parser implementation file. For example:
6068
c93f22fc 6069@example
e0c07222
JD
6070%code top @{
6071 #define _GNU_SOURCE
6072 #include <stdio.h>
6073@}
c93f22fc 6074@end example
e0c07222
JD
6075
6076@item Location(s): Near the top of the parser implementation file.
6077@end itemize
6078
6079@item imports
6080@findex %code imports
6081
6082@itemize @bullet
6083@item Language(s): Java
6084
6085@item Purpose: This is the best place to write Java import directives.
6086
6087@item Location(s): The parser Java file after any Java package directive and
6088before any class definitions.
6089@end itemize
84072495 6090@end table
e0c07222 6091
51151d91
JD
6092Though we say the insertion locations are language-dependent, they are
6093technically skeleton-dependent. Writers of non-standard skeletons
6094however should choose their locations consistently with the behavior
6095of the standard Bison skeletons.
e0c07222 6096
d8988b2f 6097
342b8b6e 6098@node Multiple Parsers
bfa74976
RS
6099@section Multiple Parsers in the Same Program
6100
6101Most programs that use Bison parse only one language and therefore contain
4b3847c3
AD
6102only one Bison parser. But what if you want to parse more than one language
6103with the same program? Then you need to avoid name conflicts between
6104different definitions of functions and variables such as @code{yyparse},
6105@code{yylval}. To use different parsers from the same compilation unit, you
6106also need to avoid conflicts on types and macros (e.g., @code{YYSTYPE})
6107exported in the generated header.
6108
6109The easy way to do this is to define the @code{%define} variable
e358222b
AD
6110@code{api.prefix}. With different @code{api.prefix}s it is guaranteed that
6111headers do not conflict when included together, and that compiled objects
6112can be linked together too. Specifying @samp{%define api.prefix
6113@var{prefix}} (or passing the option @samp{-Dapi.prefix=@var{prefix}}, see
6114@ref{Invocation, ,Invoking Bison}) renames the interface functions and
6115variables of the Bison parser to start with @var{prefix} instead of
6116@samp{yy}, and all the macros to start by @var{PREFIX} (i.e., @var{prefix}
6117upper-cased) instead of @samp{YY}.
4b3847c3
AD
6118
6119The renamed symbols include @code{yyparse}, @code{yylex}, @code{yyerror},
6120@code{yynerrs}, @code{yylval}, @code{yylloc}, @code{yychar} and
6121@code{yydebug}. If you use a push parser, @code{yypush_parse},
6122@code{yypull_parse}, @code{yypstate}, @code{yypstate_new} and
6123@code{yypstate_delete} will also be renamed. The renamed macros include
e358222b
AD
6124@code{YYSTYPE}, @code{YYLTYPE}, and @code{YYDEBUG}, which is treated
6125specifically --- more about this below.
4b3847c3
AD
6126
6127For example, if you use @samp{%define api.prefix c}, the names become
6128@code{cparse}, @code{clex}, @dots{}, @code{CSTYPE}, @code{CLTYPE}, and so
6129on.
6130
6131The @code{%define} variable @code{api.prefix} works in two different ways.
6132In the implementation file, it works by adding macro definitions to the
6133beginning of the parser implementation file, defining @code{yyparse} as
6134@code{@var{prefix}parse}, and so on:
6135
6136@example
6137#define YYSTYPE CTYPE
6138#define yyparse cparse
6139#define yylval clval
6140...
6141YYSTYPE yylval;
6142int yyparse (void);
6143@end example
6144
6145This effectively substitutes one name for the other in the entire parser
6146implementation file, thus the ``original'' names (@code{yylex},
6147@code{YYSTYPE}, @dots{}) are also usable in the parser implementation file.
6148
6149However, in the parser header file, the symbols are defined renamed, for
6150instance:
bfa74976 6151
4b3847c3
AD
6152@example
6153extern CSTYPE clval;
6154int cparse (void);
6155@end example
bfa74976 6156
e358222b
AD
6157The macro @code{YYDEBUG} is commonly used to enable the tracing support in
6158parsers. To comply with this tradition, when @code{api.prefix} is used,
6159@code{YYDEBUG} (not renamed) is used as a default value:
6160
6161@example
4d9bdbe3 6162/* Debug traces. */
e358222b
AD
6163#ifndef CDEBUG
6164# if defined YYDEBUG
6165# if YYDEBUG
6166# define CDEBUG 1
6167# else
6168# define CDEBUG 0
6169# endif
6170# else
6171# define CDEBUG 0
6172# endif
6173#endif
6174#if CDEBUG
6175extern int cdebug;
6176#endif
6177@end example
6178
6179@sp 2
6180
6181Prior to Bison 2.6, a feature similar to @code{api.prefix} was provided by
6182the obsolete directive @code{%name-prefix} (@pxref{Table of Symbols, ,Bison
6183Symbols}) and the option @code{--name-prefix} (@pxref{Bison Options}).
bfa74976 6184
342b8b6e 6185@node Interface
bfa74976
RS
6186@chapter Parser C-Language Interface
6187@cindex C-language interface
6188@cindex interface
6189
6190The Bison parser is actually a C function named @code{yyparse}. Here we
6191describe the interface conventions of @code{yyparse} and the other
6192functions that it needs to use.
6193
6194Keep in mind that the parser uses many C identifiers starting with
6195@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
6196identifier (aside from those in this manual) in an action or in epilogue
6197in the grammar file, you are likely to run into trouble.
bfa74976
RS
6198
6199@menu
f5f419de
DJ
6200* Parser Function:: How to call @code{yyparse} and what it returns.
6201* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
6202* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
6203* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
6204* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
6205* Lexical:: You must supply a function @code{yylex}
6206 which reads tokens.
6207* Error Reporting:: You must supply a function @code{yyerror}.
6208* Action Features:: Special features for use in actions.
6209* Internationalization:: How to let the parser speak in the user's
6210 native language.
bfa74976
RS
6211@end menu
6212
342b8b6e 6213@node Parser Function
bfa74976
RS
6214@section The Parser Function @code{yyparse}
6215@findex yyparse
6216
6217You call the function @code{yyparse} to cause parsing to occur. This
6218function reads tokens, executes actions, and ultimately returns when it
6219encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
6220write an action which directs @code{yyparse} to return immediately
6221without reading further.
bfa74976 6222
2a8d363a
AD
6223
6224@deftypefun int yyparse (void)
bfa74976
RS
6225The value returned by @code{yyparse} is 0 if parsing was successful (return
6226is due to end-of-input).
6227
b47dbebe
PE
6228The value is 1 if parsing failed because of invalid input, i.e., input
6229that contains a syntax error or that causes @code{YYABORT} to be
6230invoked.
6231
6232The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 6233@end deftypefun
bfa74976
RS
6234
6235In an action, you can cause immediate return from @code{yyparse} by using
6236these macros:
6237
2a8d363a 6238@defmac YYACCEPT
bfa74976
RS
6239@findex YYACCEPT
6240Return immediately with value 0 (to report success).
2a8d363a 6241@end defmac
bfa74976 6242
2a8d363a 6243@defmac YYABORT
bfa74976
RS
6244@findex YYABORT
6245Return immediately with value 1 (to report failure).
2a8d363a
AD
6246@end defmac
6247
6248If you use a reentrant parser, you can optionally pass additional
6249parameter information to it in a reentrant way. To do so, use the
6250declaration @code{%parse-param}:
6251
2055a44e 6252@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6253@findex %parse-param
2055a44e
AD
6254Declare that one or more
6255@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 6256The @var{argument-declaration} is used when declaring
feeb0eda
PE
6257functions or prototypes. The last identifier in
6258@var{argument-declaration} must be the argument name.
2a8d363a
AD
6259@end deffn
6260
6261Here's an example. Write this in the parser:
6262
6263@example
2055a44e 6264%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
6265@end example
6266
6267@noindent
6268Then call the parser like this:
6269
6270@example
6271@{
6272 int nastiness, randomness;
6273 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
6274 value = yyparse (&nastiness, &randomness);
6275 @dots{}
6276@}
6277@end example
6278
6279@noindent
6280In the grammar actions, use expressions like this to refer to the data:
6281
6282@example
6283exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
6284@end example
6285
1f1bd572
TR
6286@noindent
6287Using the following:
6288@example
6289%parse-param @{int *randomness@}
6290@end example
6291
6292Results in these signatures:
6293@example
6294void yyerror (int *randomness, const char *msg);
6295int yyparse (int *randomness);
6296@end example
6297
6298@noindent
6299Or, if both @code{%define api.pure full} (or just @code{%define api.pure})
6300and @code{%locations} are used:
6301
6302@example
6303void yyerror (YYLTYPE *llocp, int *randomness, const char *msg);
6304int yyparse (int *randomness);
6305@end example
6306
9987d1b3
JD
6307@node Push Parser Function
6308@section The Push Parser Function @code{yypush_parse}
6309@findex yypush_parse
6310
59da312b
JD
6311(The current push parsing interface is experimental and may evolve.
6312More user feedback will help to stabilize it.)
6313
f4101aa6 6314You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
6315function is available if either the @samp{%define api.push-pull push} or
6316@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6317@xref{Push Decl, ,A Push Parser}.
6318
a73aa764 6319@deftypefun int yypush_parse (yypstate *@var{yyps})
ad60e80f
AD
6320The value returned by @code{yypush_parse} is the same as for yyparse with
6321the following exception: it returns @code{YYPUSH_MORE} if more input is
6322required to finish parsing the grammar.
9987d1b3
JD
6323@end deftypefun
6324
6325@node Pull Parser Function
6326@section The Pull Parser Function @code{yypull_parse}
6327@findex yypull_parse
6328
59da312b
JD
6329(The current push parsing interface is experimental and may evolve.
6330More user feedback will help to stabilize it.)
6331
f4101aa6 6332You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 6333stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 6334declaration is used.
9987d1b3
JD
6335@xref{Push Decl, ,A Push Parser}.
6336
a73aa764 6337@deftypefun int yypull_parse (yypstate *@var{yyps})
9987d1b3
JD
6338The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
6339@end deftypefun
6340
6341@node Parser Create Function
6342@section The Parser Create Function @code{yystate_new}
6343@findex yypstate_new
6344
59da312b
JD
6345(The current push parsing interface is experimental and may evolve.
6346More user feedback will help to stabilize it.)
6347
f4101aa6 6348You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
6349This function is available if either the @samp{%define api.push-pull push} or
6350@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6351@xref{Push Decl, ,A Push Parser}.
6352
34a41a93 6353@deftypefun {yypstate*} yypstate_new (void)
f50bfcd6 6354The function will return a valid parser instance if there was memory available
333e670c
JD
6355or 0 if no memory was available.
6356In impure mode, it will also return 0 if a parser instance is currently
6357allocated.
9987d1b3
JD
6358@end deftypefun
6359
6360@node Parser Delete Function
6361@section The Parser Delete Function @code{yystate_delete}
6362@findex yypstate_delete
6363
59da312b
JD
6364(The current push parsing interface is experimental and may evolve.
6365More user feedback will help to stabilize it.)
6366
9987d1b3 6367You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
6368function is available if either the @samp{%define api.push-pull push} or
6369@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6370@xref{Push Decl, ,A Push Parser}.
6371
a73aa764 6372@deftypefun void yypstate_delete (yypstate *@var{yyps})
9987d1b3
JD
6373This function will reclaim the memory associated with a parser instance.
6374After this call, you should no longer attempt to use the parser instance.
6375@end deftypefun
bfa74976 6376
342b8b6e 6377@node Lexical
bfa74976
RS
6378@section The Lexical Analyzer Function @code{yylex}
6379@findex yylex
6380@cindex lexical analyzer
6381
6382The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
6383the input stream and returns them to the parser. Bison does not create
6384this function automatically; you must write it so that @code{yyparse} can
6385call it. The function is sometimes referred to as a lexical scanner.
6386
ff7571c0
JD
6387In simple programs, @code{yylex} is often defined at the end of the
6388Bison grammar file. If @code{yylex} is defined in a separate source
6389file, you need to arrange for the token-type macro definitions to be
6390available there. To do this, use the @samp{-d} option when you run
6391Bison, so that it will write these macro definitions into the separate
6392parser header file, @file{@var{name}.tab.h}, which you can include in
6393the other source files that need it. @xref{Invocation, ,Invoking
6394Bison}.
bfa74976
RS
6395
6396@menu
6397* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
6398* Token Values:: How @code{yylex} must return the semantic value
6399 of the token it has read.
6400* Token Locations:: How @code{yylex} must return the text location
6401 (line number, etc.) of the token, if the
6402 actions want that.
6403* Pure Calling:: How the calling convention differs in a pure parser
6404 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
6405@end menu
6406
342b8b6e 6407@node Calling Convention
bfa74976
RS
6408@subsection Calling Convention for @code{yylex}
6409
72d2299c
PE
6410The value that @code{yylex} returns must be the positive numeric code
6411for the type of token it has just found; a zero or negative value
6412signifies end-of-input.
bfa74976
RS
6413
6414When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
6415in the parser implementation file becomes a C macro whose definition
6416is the proper numeric code for that token type. So @code{yylex} can
6417use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
6418
6419When a token is referred to in the grammar rules by a character literal,
6420the numeric code for that character is also the code for the token type.
72d2299c
PE
6421So @code{yylex} can simply return that character code, possibly converted
6422to @code{unsigned char} to avoid sign-extension. The null character
6423must not be used this way, because its code is zero and that
bfa74976
RS
6424signifies end-of-input.
6425
6426Here is an example showing these things:
6427
6428@example
13863333
AD
6429int
6430yylex (void)
bfa74976
RS
6431@{
6432 @dots{}
72d2299c 6433 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
6434 return 0;
6435 @dots{}
6436 if (c == '+' || c == '-')
72d2299c 6437 return c; /* Assume token type for `+' is '+'. */
bfa74976 6438 @dots{}
72d2299c 6439 return INT; /* Return the type of the token. */
bfa74976
RS
6440 @dots{}
6441@}
6442@end example
6443
6444@noindent
6445This interface has been designed so that the output from the @code{lex}
6446utility can be used without change as the definition of @code{yylex}.
6447
931c7513
RS
6448If the grammar uses literal string tokens, there are two ways that
6449@code{yylex} can determine the token type codes for them:
6450
6451@itemize @bullet
6452@item
6453If the grammar defines symbolic token names as aliases for the
6454literal string tokens, @code{yylex} can use these symbolic names like
6455all others. In this case, the use of the literal string tokens in
6456the grammar file has no effect on @code{yylex}.
6457
6458@item
9ecbd125 6459@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6460table. The index of the token in the table is the token type's code.
9ecbd125 6461The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6462double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6463token's characters are escaped as necessary to be suitable as input
6464to Bison.
931c7513 6465
9e0876fb
PE
6466Here's code for looking up a multicharacter token in @code{yytname},
6467assuming that the characters of the token are stored in
6468@code{token_buffer}, and assuming that the token does not contain any
6469characters like @samp{"} that require escaping.
931c7513 6470
c93f22fc 6471@example
931c7513
RS
6472for (i = 0; i < YYNTOKENS; i++)
6473 @{
6474 if (yytname[i] != 0
6475 && yytname[i][0] == '"'
68449b3a
PE
6476 && ! strncmp (yytname[i] + 1, token_buffer,
6477 strlen (token_buffer))
931c7513
RS
6478 && yytname[i][strlen (token_buffer) + 1] == '"'
6479 && yytname[i][strlen (token_buffer) + 2] == 0)
6480 break;
6481 @}
c93f22fc 6482@end example
931c7513
RS
6483
6484The @code{yytname} table is generated only if you use the
8c9a50be 6485@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6486@end itemize
6487
342b8b6e 6488@node Token Values
bfa74976
RS
6489@subsection Semantic Values of Tokens
6490
6491@vindex yylval
9d9b8b70 6492In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6493be stored into the global variable @code{yylval}. When you are using
6494just one data type for semantic values, @code{yylval} has that type.
6495Thus, if the type is @code{int} (the default), you might write this in
6496@code{yylex}:
6497
6498@example
6499@group
6500 @dots{}
72d2299c
PE
6501 yylval = value; /* Put value onto Bison stack. */
6502 return INT; /* Return the type of the token. */
bfa74976
RS
6503 @dots{}
6504@end group
6505@end example
6506
6507When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6508made from the @code{%union} declaration (@pxref{Union Decl, ,The
6509Collection of Value Types}). So when you store a token's value, you
6510must use the proper member of the union. If the @code{%union}
6511declaration looks like this:
bfa74976
RS
6512
6513@example
6514@group
6515%union @{
6516 int intval;
6517 double val;
6518 symrec *tptr;
6519@}
6520@end group
6521@end example
6522
6523@noindent
6524then the code in @code{yylex} might look like this:
6525
6526@example
6527@group
6528 @dots{}
72d2299c
PE
6529 yylval.intval = value; /* Put value onto Bison stack. */
6530 return INT; /* Return the type of the token. */
bfa74976
RS
6531 @dots{}
6532@end group
6533@end example
6534
95923bd6
AD
6535@node Token Locations
6536@subsection Textual Locations of Tokens
bfa74976
RS
6537
6538@vindex yylloc
303834cc
JD
6539If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6540in actions to keep track of the textual locations of tokens and groupings,
6541then you must provide this information in @code{yylex}. The function
6542@code{yyparse} expects to find the textual location of a token just parsed
6543in the global variable @code{yylloc}. So @code{yylex} must store the proper
6544data in that variable.
847bf1f5
AD
6545
6546By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6547initialize the members that are going to be used by the actions. The
6548four members are called @code{first_line}, @code{first_column},
6549@code{last_line} and @code{last_column}. Note that the use of this
6550feature makes the parser noticeably slower.
bfa74976
RS
6551
6552@tindex YYLTYPE
6553The data type of @code{yylloc} has the name @code{YYLTYPE}.
6554
342b8b6e 6555@node Pure Calling
c656404a 6556@subsection Calling Conventions for Pure Parsers
bfa74976 6557
1f1bd572 6558When you use the Bison declaration @code{%define api.pure full} to request a
e425e872
RS
6559pure, reentrant parser, the global communication variables @code{yylval}
6560and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6561Parser}.) In such parsers the two global variables are replaced by
6562pointers passed as arguments to @code{yylex}. You must declare them as
6563shown here, and pass the information back by storing it through those
6564pointers.
bfa74976
RS
6565
6566@example
13863333
AD
6567int
6568yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6569@{
6570 @dots{}
6571 *lvalp = value; /* Put value onto Bison stack. */
6572 return INT; /* Return the type of the token. */
6573 @dots{}
6574@}
6575@end example
6576
6577If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6578textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6579this case, omit the second argument; @code{yylex} will be called with
6580only one argument.
6581
2055a44e 6582If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6583@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6584Function}). To pass additional arguments to both @code{yylex} and
6585@code{yyparse}, use @code{%param}.
e425e872 6586
2055a44e 6587@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6588@findex %lex-param
2055a44e
AD
6589Specify that @var{argument-declaration} are additional @code{yylex} argument
6590declarations. You may pass one or more such declarations, which is
6591equivalent to repeating @code{%lex-param}.
6592@end deffn
6593
6594@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6595@findex %param
6596Specify that @var{argument-declaration} are additional
6597@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6598@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6599@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6600declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6601@end deffn
e425e872 6602
1f1bd572 6603@noindent
2a8d363a 6604For instance:
e425e872
RS
6605
6606@example
2055a44e
AD
6607%lex-param @{scanner_mode *mode@}
6608%parse-param @{parser_mode *mode@}
6609%param @{environment_type *env@}
e425e872
RS
6610@end example
6611
6612@noindent
18ad57b3 6613results in the following signatures:
e425e872
RS
6614
6615@example
2055a44e
AD
6616int yylex (scanner_mode *mode, environment_type *env);
6617int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6618@end example
6619
5807bb91 6620If @samp{%define api.pure full} is added:
c656404a
RS
6621
6622@example
2055a44e
AD
6623int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6624int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6625@end example
6626
2a8d363a 6627@noindent
5807bb91
AD
6628and finally, if both @samp{%define api.pure full} and @code{%locations} are
6629used:
c656404a 6630
2a8d363a 6631@example
2055a44e
AD
6632int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6633 scanner_mode *mode, environment_type *env);
6634int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6635@end example
931c7513 6636
342b8b6e 6637@node Error Reporting
bfa74976
RS
6638@section The Error Reporting Function @code{yyerror}
6639@cindex error reporting function
6640@findex yyerror
6641@cindex parse error
6642@cindex syntax error
6643
31b850d2 6644The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6645whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6646action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6647macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6648in Actions}).
bfa74976
RS
6649
6650The Bison parser expects to report the error by calling an error
6651reporting function named @code{yyerror}, which you must supply. It is
6652called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6653receives one argument. For a syntax error, the string is normally
6654@w{@code{"syntax error"}}.
bfa74976 6655
31b850d2 6656@findex %define parse.error
7fceb615
JD
6657If you invoke @samp{%define parse.error verbose} in the Bison declarations
6658section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6659Bison provides a more verbose and specific error message string instead of
6660just plain @w{@code{"syntax error"}}. However, that message sometimes
6661contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6662
1a059451
PE
6663The parser can detect one other kind of error: memory exhaustion. This
6664can happen when the input contains constructions that are very deeply
bfa74976 6665nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6666parser normally extends its stack automatically up to a very large limit. But
6667if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6668fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6669
6670In some cases diagnostics like @w{@code{"syntax error"}} are
6671translated automatically from English to some other language before
6672they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6673
6674The following definition suffices in simple programs:
6675
6676@example
6677@group
13863333 6678void
38a92d50 6679yyerror (char const *s)
bfa74976
RS
6680@{
6681@end group
6682@group
6683 fprintf (stderr, "%s\n", s);
6684@}
6685@end group
6686@end example
6687
6688After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6689error recovery if you have written suitable error recovery grammar rules
6690(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6691immediately return 1.
6692
93724f13 6693Obviously, in location tracking pure parsers, @code{yyerror} should have
1f1bd572
TR
6694an access to the current location. With @code{%define api.pure}, this is
6695indeed the case for the GLR parsers, but not for the Yacc parser, for
6696historical reasons, and this is the why @code{%define api.pure full} should be
6697prefered over @code{%define api.pure}.
2a8d363a 6698
1f1bd572
TR
6699When @code{%locations %define api.pure full} is used, @code{yyerror} has the
6700following signature:
2a8d363a
AD
6701
6702@example
1f1bd572 6703void yyerror (YYLTYPE *locp, char const *msg);
2a8d363a
AD
6704@end example
6705
1c0c3e95 6706@noindent
38a92d50
PE
6707The prototypes are only indications of how the code produced by Bison
6708uses @code{yyerror}. Bison-generated code always ignores the returned
6709value, so @code{yyerror} can return any type, including @code{void}.
6710Also, @code{yyerror} can be a variadic function; that is why the
6711message is always passed last.
6712
6713Traditionally @code{yyerror} returns an @code{int} that is always
6714ignored, but this is purely for historical reasons, and @code{void} is
6715preferable since it more accurately describes the return type for
6716@code{yyerror}.
93724f13 6717
bfa74976
RS
6718@vindex yynerrs
6719The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6720reported so far. Normally this variable is global; but if you
704a47c4
AD
6721request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6722then it is a local variable which only the actions can access.
bfa74976 6723
342b8b6e 6724@node Action Features
bfa74976
RS
6725@section Special Features for Use in Actions
6726@cindex summary, action features
6727@cindex action features summary
6728
6729Here is a table of Bison constructs, variables and macros that
6730are useful in actions.
6731
18b519c0 6732@deffn {Variable} $$
bfa74976
RS
6733Acts like a variable that contains the semantic value for the
6734grouping made by the current rule. @xref{Actions}.
18b519c0 6735@end deffn
bfa74976 6736
18b519c0 6737@deffn {Variable} $@var{n}
bfa74976
RS
6738Acts like a variable that contains the semantic value for the
6739@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6740@end deffn
bfa74976 6741
18b519c0 6742@deffn {Variable} $<@var{typealt}>$
bfa74976 6743Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6744specified by the @code{%union} declaration. @xref{Action Types, ,Data
6745Types of Values in Actions}.
18b519c0 6746@end deffn
bfa74976 6747
18b519c0 6748@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6749Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6750union specified by the @code{%union} declaration.
e0c471a9 6751@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6752@end deffn
bfa74976 6753
34a41a93 6754@deffn {Macro} YYABORT @code{;}
bfa74976
RS
6755Return immediately from @code{yyparse}, indicating failure.
6756@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6757@end deffn
bfa74976 6758
34a41a93 6759@deffn {Macro} YYACCEPT @code{;}
bfa74976
RS
6760Return immediately from @code{yyparse}, indicating success.
6761@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6762@end deffn
bfa74976 6763
34a41a93 6764@deffn {Macro} YYBACKUP (@var{token}, @var{value})@code{;}
bfa74976
RS
6765@findex YYBACKUP
6766Unshift a token. This macro is allowed only for rules that reduce
742e4900 6767a single value, and only when there is no lookahead token.
8a4281b9 6768It is also disallowed in GLR parsers.
742e4900 6769It installs a lookahead token with token type @var{token} and
bfa74976
RS
6770semantic value @var{value}; then it discards the value that was
6771going to be reduced by this rule.
6772
6773If the macro is used when it is not valid, such as when there is
742e4900 6774a lookahead token already, then it reports a syntax error with
bfa74976
RS
6775a message @samp{cannot back up} and performs ordinary error
6776recovery.
6777
6778In either case, the rest of the action is not executed.
18b519c0 6779@end deffn
bfa74976 6780
18b519c0 6781@deffn {Macro} YYEMPTY
742e4900 6782Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6783@end deffn
bfa74976 6784
32c29292 6785@deffn {Macro} YYEOF
742e4900 6786Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6787stream.
6788@end deffn
6789
34a41a93 6790@deffn {Macro} YYERROR @code{;}
bfa74976
RS
6791Cause an immediate syntax error. This statement initiates error
6792recovery just as if the parser itself had detected an error; however, it
6793does not call @code{yyerror}, and does not print any message. If you
6794want to print an error message, call @code{yyerror} explicitly before
6795the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6796@end deffn
bfa74976 6797
18b519c0 6798@deffn {Macro} YYRECOVERING
02103984
PE
6799@findex YYRECOVERING
6800The expression @code{YYRECOVERING ()} yields 1 when the parser
6801is recovering from a syntax error, and 0 otherwise.
bfa74976 6802@xref{Error Recovery}.
18b519c0 6803@end deffn
bfa74976 6804
18b519c0 6805@deffn {Variable} yychar
742e4900
JD
6806Variable containing either the lookahead token, or @code{YYEOF} when the
6807lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6808has been performed so the next token is not yet known.
6809Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6810Actions}).
742e4900 6811@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6812@end deffn
bfa74976 6813
34a41a93 6814@deffn {Macro} yyclearin @code{;}
742e4900 6815Discard the current lookahead token. This is useful primarily in
32c29292
JD
6816error rules.
6817Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6818Semantic Actions}).
6819@xref{Error Recovery}.
18b519c0 6820@end deffn
bfa74976 6821
34a41a93 6822@deffn {Macro} yyerrok @code{;}
bfa74976 6823Resume generating error messages immediately for subsequent syntax
13863333 6824errors. This is useful primarily in error rules.
bfa74976 6825@xref{Error Recovery}.
18b519c0 6826@end deffn
bfa74976 6827
32c29292 6828@deffn {Variable} yylloc
742e4900 6829Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6830to @code{YYEMPTY} or @code{YYEOF}.
6831Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6832Actions}).
6833@xref{Actions and Locations, ,Actions and Locations}.
6834@end deffn
6835
6836@deffn {Variable} yylval
742e4900 6837Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6838not set to @code{YYEMPTY} or @code{YYEOF}.
6839Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6840Actions}).
6841@xref{Actions, ,Actions}.
6842@end deffn
6843
18b519c0 6844@deffn {Value} @@$
303834cc
JD
6845Acts like a structure variable containing information on the textual
6846location of the grouping made by the current rule. @xref{Tracking
6847Locations}.
bfa74976 6848
847bf1f5
AD
6849@c Check if those paragraphs are still useful or not.
6850
6851@c @example
6852@c struct @{
6853@c int first_line, last_line;
6854@c int first_column, last_column;
6855@c @};
6856@c @end example
6857
6858@c Thus, to get the starting line number of the third component, you would
6859@c use @samp{@@3.first_line}.
bfa74976 6860
847bf1f5
AD
6861@c In order for the members of this structure to contain valid information,
6862@c you must make @code{yylex} supply this information about each token.
6863@c If you need only certain members, then @code{yylex} need only fill in
6864@c those members.
bfa74976 6865
847bf1f5 6866@c The use of this feature makes the parser noticeably slower.
18b519c0 6867@end deffn
847bf1f5 6868
18b519c0 6869@deffn {Value} @@@var{n}
847bf1f5 6870@findex @@@var{n}
303834cc
JD
6871Acts like a structure variable containing information on the textual
6872location of the @var{n}th component of the current rule. @xref{Tracking
6873Locations}.
18b519c0 6874@end deffn
bfa74976 6875
f7ab6a50
PE
6876@node Internationalization
6877@section Parser Internationalization
6878@cindex internationalization
6879@cindex i18n
6880@cindex NLS
6881@cindex gettext
6882@cindex bison-po
6883
6884A Bison-generated parser can print diagnostics, including error and
6885tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6886also supports outputting diagnostics in the user's native language. To
6887make this work, the user should set the usual environment variables.
6888@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6889For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 6890set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6891encoding. The exact set of available locales depends on the user's
6892installation.
6893
6894The maintainer of a package that uses a Bison-generated parser enables
6895the internationalization of the parser's output through the following
8a4281b9
JD
6896steps. Here we assume a package that uses GNU Autoconf and
6897GNU Automake.
f7ab6a50
PE
6898
6899@enumerate
6900@item
30757c8c 6901@cindex bison-i18n.m4
8a4281b9 6902Into the directory containing the GNU Autoconf macros used
c949ada3 6903by the package ---often called @file{m4}--- copy the
f7ab6a50
PE
6904@file{bison-i18n.m4} file installed by Bison under
6905@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6906For example:
6907
6908@example
6909cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6910@end example
6911
6912@item
30757c8c
PE
6913@findex BISON_I18N
6914@vindex BISON_LOCALEDIR
6915@vindex YYENABLE_NLS
f7ab6a50
PE
6916In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6917invocation, add an invocation of @code{BISON_I18N}. This macro is
6918defined in the file @file{bison-i18n.m4} that you copied earlier. It
6919causes @samp{configure} to find the value of the
30757c8c
PE
6920@code{BISON_LOCALEDIR} variable, and it defines the source-language
6921symbol @code{YYENABLE_NLS} to enable translations in the
6922Bison-generated parser.
f7ab6a50
PE
6923
6924@item
6925In the @code{main} function of your program, designate the directory
6926containing Bison's runtime message catalog, through a call to
6927@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6928For example:
6929
6930@example
6931bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6932@end example
6933
6934Typically this appears after any other call @code{bindtextdomain
6935(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6936@samp{BISON_LOCALEDIR} to be defined as a string through the
6937@file{Makefile}.
6938
6939@item
6940In the @file{Makefile.am} that controls the compilation of the @code{main}
6941function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6942either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6943
6944@example
6945DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6946@end example
6947
6948or:
6949
6950@example
6951AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6952@end example
6953
6954@item
6955Finally, invoke the command @command{autoreconf} to generate the build
6956infrastructure.
6957@end enumerate
6958
bfa74976 6959
342b8b6e 6960@node Algorithm
13863333
AD
6961@chapter The Bison Parser Algorithm
6962@cindex Bison parser algorithm
bfa74976
RS
6963@cindex algorithm of parser
6964@cindex shifting
6965@cindex reduction
6966@cindex parser stack
6967@cindex stack, parser
6968
6969As Bison reads tokens, it pushes them onto a stack along with their
6970semantic values. The stack is called the @dfn{parser stack}. Pushing a
6971token is traditionally called @dfn{shifting}.
6972
6973For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6974@samp{3} to come. The stack will have four elements, one for each token
6975that was shifted.
6976
6977But the stack does not always have an element for each token read. When
6978the last @var{n} tokens and groupings shifted match the components of a
6979grammar rule, they can be combined according to that rule. This is called
6980@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6981single grouping whose symbol is the result (left hand side) of that rule.
6982Running the rule's action is part of the process of reduction, because this
6983is what computes the semantic value of the resulting grouping.
6984
6985For example, if the infix calculator's parser stack contains this:
6986
6987@example
69881 + 5 * 3
6989@end example
6990
6991@noindent
6992and the next input token is a newline character, then the last three
6993elements can be reduced to 15 via the rule:
6994
6995@example
6996expr: expr '*' expr;
6997@end example
6998
6999@noindent
7000Then the stack contains just these three elements:
7001
7002@example
70031 + 15
7004@end example
7005
7006@noindent
7007At this point, another reduction can be made, resulting in the single value
700816. Then the newline token can be shifted.
7009
7010The parser tries, by shifts and reductions, to reduce the entire input down
7011to a single grouping whose symbol is the grammar's start-symbol
7012(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
7013
7014This kind of parser is known in the literature as a bottom-up parser.
7015
7016@menu
742e4900 7017* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
7018* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
7019* Precedence:: Operator precedence works by resolving conflicts.
7020* Contextual Precedence:: When an operator's precedence depends on context.
7021* Parser States:: The parser is a finite-state-machine with stack.
7022* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 7023* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 7024* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 7025* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 7026* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
7027@end menu
7028
742e4900
JD
7029@node Lookahead
7030@section Lookahead Tokens
7031@cindex lookahead token
bfa74976
RS
7032
7033The Bison parser does @emph{not} always reduce immediately as soon as the
7034last @var{n} tokens and groupings match a rule. This is because such a
7035simple strategy is inadequate to handle most languages. Instead, when a
7036reduction is possible, the parser sometimes ``looks ahead'' at the next
7037token in order to decide what to do.
7038
7039When a token is read, it is not immediately shifted; first it becomes the
742e4900 7040@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 7041perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
7042the lookahead token remains off to the side. When no more reductions
7043should take place, the lookahead token is shifted onto the stack. This
bfa74976 7044does not mean that all possible reductions have been done; depending on the
742e4900 7045token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
7046application.
7047
742e4900 7048Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
7049expressions which contain binary addition operators and postfix unary
7050factorial operators (@samp{!}), and allow parentheses for grouping.
7051
7052@example
7053@group
5e9b6624
AD
7054expr:
7055 term '+' expr
7056| term
7057;
bfa74976
RS
7058@end group
7059
7060@group
5e9b6624
AD
7061term:
7062 '(' expr ')'
7063| term '!'
534cee7a 7064| "number"
5e9b6624 7065;
bfa74976
RS
7066@end group
7067@end example
7068
7069Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
7070should be done? If the following token is @samp{)}, then the first three
7071tokens must be reduced to form an @code{expr}. This is the only valid
7072course, because shifting the @samp{)} would produce a sequence of symbols
7073@w{@code{term ')'}}, and no rule allows this.
7074
7075If the following token is @samp{!}, then it must be shifted immediately so
7076that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
7077parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
7078@code{expr}. It would then be impossible to shift the @samp{!} because
7079doing so would produce on the stack the sequence of symbols @code{expr
7080'!'}. No rule allows that sequence.
7081
7082@vindex yychar
32c29292
JD
7083@vindex yylval
7084@vindex yylloc
742e4900 7085The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
7086Its semantic value and location, if any, are stored in the variables
7087@code{yylval} and @code{yylloc}.
bfa74976
RS
7088@xref{Action Features, ,Special Features for Use in Actions}.
7089
342b8b6e 7090@node Shift/Reduce
bfa74976
RS
7091@section Shift/Reduce Conflicts
7092@cindex conflicts
7093@cindex shift/reduce conflicts
7094@cindex dangling @code{else}
7095@cindex @code{else}, dangling
7096
7097Suppose we are parsing a language which has if-then and if-then-else
7098statements, with a pair of rules like this:
7099
7100@example
7101@group
7102if_stmt:
534cee7a
AD
7103 "if" expr "then" stmt
7104| "if" expr "then" stmt "else" stmt
5e9b6624 7105;
bfa74976
RS
7106@end group
7107@end example
7108
7109@noindent
534cee7a
AD
7110Here @code{"if"}, @code{"then"} and @code{"else"} are terminal symbols for
7111specific keyword tokens.
bfa74976 7112
534cee7a 7113When the @code{"else"} token is read and becomes the lookahead token, the
bfa74976
RS
7114contents of the stack (assuming the input is valid) are just right for
7115reduction by the first rule. But it is also legitimate to shift the
534cee7a 7116@code{"else"}, because that would lead to eventual reduction by the second
bfa74976
RS
7117rule.
7118
7119This situation, where either a shift or a reduction would be valid, is
7120called a @dfn{shift/reduce conflict}. Bison is designed to resolve
7121these conflicts by choosing to shift, unless otherwise directed by
7122operator precedence declarations. To see the reason for this, let's
7123contrast it with the other alternative.
7124
534cee7a 7125Since the parser prefers to shift the @code{"else"}, the result is to attach
bfa74976
RS
7126the else-clause to the innermost if-statement, making these two inputs
7127equivalent:
7128
7129@example
534cee7a 7130if x then if y then win; else lose;
bfa74976 7131
534cee7a 7132if x then do; if y then win; else lose; end;
bfa74976
RS
7133@end example
7134
7135But if the parser chose to reduce when possible rather than shift, the
7136result would be to attach the else-clause to the outermost if-statement,
7137making these two inputs equivalent:
7138
7139@example
534cee7a 7140if x then if y then win; else lose;
bfa74976 7141
534cee7a 7142if x then do; if y then win; end; else lose;
bfa74976
RS
7143@end example
7144
7145The conflict exists because the grammar as written is ambiguous: either
7146parsing of the simple nested if-statement is legitimate. The established
7147convention is that these ambiguities are resolved by attaching the
7148else-clause to the innermost if-statement; this is what Bison accomplishes
7149by choosing to shift rather than reduce. (It would ideally be cleaner to
7150write an unambiguous grammar, but that is very hard to do in this case.)
7151This particular ambiguity was first encountered in the specifications of
7152Algol 60 and is called the ``dangling @code{else}'' ambiguity.
7153
7154To avoid warnings from Bison about predictable, legitimate shift/reduce
c28cd5dc 7155conflicts, you can use the @code{%expect @var{n}} declaration.
93d7dde9
JD
7156There will be no warning as long as the number of shift/reduce conflicts
7157is exactly @var{n}, and Bison will report an error if there is a
7158different number.
c28cd5dc
AD
7159@xref{Expect Decl, ,Suppressing Conflict Warnings}. However, we don't
7160recommend the use of @code{%expect} (except @samp{%expect 0}!), as an equal
7161number of conflicts does not mean that they are the @emph{same}. When
7162possible, you should rather use precedence directives to @emph{fix} the
7163conflicts explicitly (@pxref{Non Operators,, Using Precedence For Non
7164Operators}).
bfa74976
RS
7165
7166The definition of @code{if_stmt} above is solely to blame for the
7167conflict, but the conflict does not actually appear without additional
ff7571c0
JD
7168rules. Here is a complete Bison grammar file that actually manifests
7169the conflict:
bfa74976
RS
7170
7171@example
bfa74976 7172%%
bfa74976 7173@group
5e9b6624
AD
7174stmt:
7175 expr
7176| if_stmt
7177;
bfa74976
RS
7178@end group
7179
7180@group
7181if_stmt:
534cee7a
AD
7182 "if" expr "then" stmt
7183| "if" expr "then" stmt "else" stmt
5e9b6624 7184;
bfa74976
RS
7185@end group
7186
5e9b6624 7187expr:
534cee7a 7188 "identifier"
5e9b6624 7189;
bfa74976
RS
7190@end example
7191
342b8b6e 7192@node Precedence
bfa74976
RS
7193@section Operator Precedence
7194@cindex operator precedence
7195@cindex precedence of operators
7196
7197Another situation where shift/reduce conflicts appear is in arithmetic
7198expressions. Here shifting is not always the preferred resolution; the
7199Bison declarations for operator precedence allow you to specify when to
7200shift and when to reduce.
7201
7202@menu
7203* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
7204* Using Precedence:: How to specify precedence and associativity.
7205* Precedence Only:: How to specify precedence only.
bfa74976
RS
7206* Precedence Examples:: How these features are used in the previous example.
7207* How Precedence:: How they work.
c28cd5dc 7208* Non Operators:: Using precedence for general conflicts.
bfa74976
RS
7209@end menu
7210
342b8b6e 7211@node Why Precedence
bfa74976
RS
7212@subsection When Precedence is Needed
7213
7214Consider the following ambiguous grammar fragment (ambiguous because the
7215input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
7216
7217@example
7218@group
5e9b6624
AD
7219expr:
7220 expr '-' expr
7221| expr '*' expr
7222| expr '<' expr
7223| '(' expr ')'
7224@dots{}
7225;
bfa74976
RS
7226@end group
7227@end example
7228
7229@noindent
7230Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
7231should it reduce them via the rule for the subtraction operator? It
7232depends on the next token. Of course, if the next token is @samp{)}, we
7233must reduce; shifting is invalid because no single rule can reduce the
7234token sequence @w{@samp{- 2 )}} or anything starting with that. But if
7235the next token is @samp{*} or @samp{<}, we have a choice: either
7236shifting or reduction would allow the parse to complete, but with
7237different results.
7238
7239To decide which one Bison should do, we must consider the results. If
7240the next operator token @var{op} is shifted, then it must be reduced
7241first in order to permit another opportunity to reduce the difference.
7242The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
7243hand, if the subtraction is reduced before shifting @var{op}, the result
7244is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
7245reduce should depend on the relative precedence of the operators
7246@samp{-} and @var{op}: @samp{*} should be shifted first, but not
7247@samp{<}.
bfa74976
RS
7248
7249@cindex associativity
7250What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
7251@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
7252operators we prefer the former, which is called @dfn{left association}.
7253The latter alternative, @dfn{right association}, is desirable for
7254assignment operators. The choice of left or right association is a
7255matter of whether the parser chooses to shift or reduce when the stack
742e4900 7256contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 7257makes right-associativity.
bfa74976 7258
342b8b6e 7259@node Using Precedence
bfa74976
RS
7260@subsection Specifying Operator Precedence
7261@findex %left
bfa74976 7262@findex %nonassoc
d78f0ac9
AD
7263@findex %precedence
7264@findex %right
bfa74976
RS
7265
7266Bison allows you to specify these choices with the operator precedence
7267declarations @code{%left} and @code{%right}. Each such declaration
7268contains a list of tokens, which are operators whose precedence and
7269associativity is being declared. The @code{%left} declaration makes all
7270those operators left-associative and the @code{%right} declaration makes
7271them right-associative. A third alternative is @code{%nonassoc}, which
7272declares that it is a syntax error to find the same operator twice ``in a
7273row''.
d78f0ac9
AD
7274The last alternative, @code{%precedence}, allows to define only
7275precedence and no associativity at all. As a result, any
7276associativity-related conflict that remains will be reported as an
7277compile-time error. The directive @code{%nonassoc} creates run-time
7278error: using the operator in a associative way is a syntax error. The
7279directive @code{%precedence} creates compile-time errors: an operator
7280@emph{can} be involved in an associativity-related conflict, contrary to
7281what expected the grammar author.
bfa74976
RS
7282
7283The relative precedence of different operators is controlled by the
d78f0ac9
AD
7284order in which they are declared. The first precedence/associativity
7285declaration in the file declares the operators whose
bfa74976
RS
7286precedence is lowest, the next such declaration declares the operators
7287whose precedence is a little higher, and so on.
7288
d78f0ac9
AD
7289@node Precedence Only
7290@subsection Specifying Precedence Only
7291@findex %precedence
7292
8a4281b9 7293Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
7294@code{%nonassoc}, which all defines precedence and associativity, little
7295attention is paid to the fact that precedence cannot be defined without
7296defining associativity. Yet, sometimes, when trying to solve a
7297conflict, precedence suffices. In such a case, using @code{%left},
7298@code{%right}, or @code{%nonassoc} might hide future (associativity
7299related) conflicts that would remain hidden.
7300
7301The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 7302Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
7303in the following situation, where the period denotes the current parsing
7304state:
7305
7306@example
7307if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
7308@end example
7309
7310The conflict involves the reduction of the rule @samp{IF expr THEN
7311stmt}, which precedence is by default that of its last token
7312(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
7313disambiguation (attach the @code{else} to the closest @code{if}),
7314shifting must be preferred, i.e., the precedence of @code{ELSE} must be
7315higher than that of @code{THEN}. But neither is expected to be involved
7316in an associativity related conflict, which can be specified as follows.
7317
7318@example
7319%precedence THEN
7320%precedence ELSE
7321@end example
7322
7323The unary-minus is another typical example where associativity is
7324usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 7325Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
7326used to declare the precedence of @code{NEG}, which is more than needed
7327since it also defines its associativity. While this is harmless in the
7328traditional example, who knows how @code{NEG} might be used in future
7329evolutions of the grammar@dots{}
7330
342b8b6e 7331@node Precedence Examples
bfa74976
RS
7332@subsection Precedence Examples
7333
7334In our example, we would want the following declarations:
7335
7336@example
7337%left '<'
7338%left '-'
7339%left '*'
7340@end example
7341
7342In a more complete example, which supports other operators as well, we
7343would declare them in groups of equal precedence. For example, @code{'+'} is
7344declared with @code{'-'}:
7345
7346@example
534cee7a 7347%left '<' '>' '=' "!=" "<=" ">="
bfa74976
RS
7348%left '+' '-'
7349%left '*' '/'
7350@end example
7351
342b8b6e 7352@node How Precedence
bfa74976
RS
7353@subsection How Precedence Works
7354
7355The first effect of the precedence declarations is to assign precedence
7356levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
7357precedence levels to certain rules: each rule gets its precedence from
7358the last terminal symbol mentioned in the components. (You can also
7359specify explicitly the precedence of a rule. @xref{Contextual
7360Precedence, ,Context-Dependent Precedence}.)
7361
7362Finally, the resolution of conflicts works by comparing the precedence
742e4900 7363of the rule being considered with that of the lookahead token. If the
704a47c4
AD
7364token's precedence is higher, the choice is to shift. If the rule's
7365precedence is higher, the choice is to reduce. If they have equal
7366precedence, the choice is made based on the associativity of that
7367precedence level. The verbose output file made by @samp{-v}
7368(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
7369resolved.
bfa74976
RS
7370
7371Not all rules and not all tokens have precedence. If either the rule or
742e4900 7372the lookahead token has no precedence, then the default is to shift.
bfa74976 7373
c28cd5dc
AD
7374@node Non Operators
7375@subsection Using Precedence For Non Operators
7376
7377Using properly precedence and associativity directives can help fixing
7378shift/reduce conflicts that do not involve arithmetics-like operators. For
7379instance, the ``dangling @code{else}'' problem (@pxref{Shift/Reduce, ,
7380Shift/Reduce Conflicts}) can be solved elegantly in two different ways.
7381
7382In the present case, the conflict is between the token @code{"else"} willing
7383to be shifted, and the rule @samp{if_stmt: "if" expr "then" stmt}, asking
7384for reduction. By default, the precedence of a rule is that of its last
7385token, here @code{"then"}, so the conflict will be solved appropriately
7386by giving @code{"else"} a precedence higher than that of @code{"then"}, for
7387instance as follows:
7388
7389@example
7390@group
589149dc
AD
7391%precedence "then"
7392%precedence "else"
c28cd5dc
AD
7393@end group
7394@end example
7395
7396Alternatively, you may give both tokens the same precedence, in which case
7397associativity is used to solve the conflict. To preserve the shift action,
7398use right associativity:
7399
7400@example
7401%right "then" "else"
7402@end example
7403
7404Neither solution is perfect however. Since Bison does not provide, so far,
589149dc 7405``scoped'' precedence, both force you to declare the precedence
c28cd5dc
AD
7406of these keywords with respect to the other operators your grammar.
7407Therefore, instead of being warned about new conflicts you would be unaware
7408of (e.g., a shift/reduce conflict due to @samp{if test then 1 else 2 + 3}
7409being ambiguous: @samp{if test then 1 else (2 + 3)} or @samp{(if test then 1
7410else 2) + 3}?), the conflict will be already ``fixed''.
7411
342b8b6e 7412@node Contextual Precedence
bfa74976
RS
7413@section Context-Dependent Precedence
7414@cindex context-dependent precedence
7415@cindex unary operator precedence
7416@cindex precedence, context-dependent
7417@cindex precedence, unary operator
7418@findex %prec
7419
7420Often the precedence of an operator depends on the context. This sounds
7421outlandish at first, but it is really very common. For example, a minus
7422sign typically has a very high precedence as a unary operator, and a
7423somewhat lower precedence (lower than multiplication) as a binary operator.
7424
d78f0ac9
AD
7425The Bison precedence declarations
7426can only be used once for a given token; so a token has
bfa74976
RS
7427only one precedence declared in this way. For context-dependent
7428precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 7429modifier for rules.
bfa74976
RS
7430
7431The @code{%prec} modifier declares the precedence of a particular rule by
7432specifying a terminal symbol whose precedence should be used for that rule.
7433It's not necessary for that symbol to appear otherwise in the rule. The
7434modifier's syntax is:
7435
7436@example
7437%prec @var{terminal-symbol}
7438@end example
7439
7440@noindent
7441and it is written after the components of the rule. Its effect is to
7442assign the rule the precedence of @var{terminal-symbol}, overriding
7443the precedence that would be deduced for it in the ordinary way. The
7444altered rule precedence then affects how conflicts involving that rule
7445are resolved (@pxref{Precedence, ,Operator Precedence}).
7446
7447Here is how @code{%prec} solves the problem of unary minus. First, declare
7448a precedence for a fictitious terminal symbol named @code{UMINUS}. There
7449are no tokens of this type, but the symbol serves to stand for its
7450precedence:
7451
7452@example
7453@dots{}
7454%left '+' '-'
7455%left '*'
7456%left UMINUS
7457@end example
7458
7459Now the precedence of @code{UMINUS} can be used in specific rules:
7460
7461@example
7462@group
5e9b6624
AD
7463exp:
7464 @dots{}
7465| exp '-' exp
7466 @dots{}
7467| '-' exp %prec UMINUS
bfa74976
RS
7468@end group
7469@end example
7470
91d2c560 7471@ifset defaultprec
39a06c25
PE
7472If you forget to append @code{%prec UMINUS} to the rule for unary
7473minus, Bison silently assumes that minus has its usual precedence.
7474This kind of problem can be tricky to debug, since one typically
7475discovers the mistake only by testing the code.
7476
22fccf95 7477The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
7478this kind of problem systematically. It causes rules that lack a
7479@code{%prec} modifier to have no precedence, even if the last terminal
7480symbol mentioned in their components has a declared precedence.
7481
22fccf95 7482If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
7483for all rules that participate in precedence conflict resolution.
7484Then you will see any shift/reduce conflict until you tell Bison how
7485to resolve it, either by changing your grammar or by adding an
7486explicit precedence. This will probably add declarations to the
7487grammar, but it helps to protect against incorrect rule precedences.
7488
22fccf95
PE
7489The effect of @code{%no-default-prec;} can be reversed by giving
7490@code{%default-prec;}, which is the default.
91d2c560 7491@end ifset
39a06c25 7492
342b8b6e 7493@node Parser States
bfa74976
RS
7494@section Parser States
7495@cindex finite-state machine
7496@cindex parser state
7497@cindex state (of parser)
7498
7499The function @code{yyparse} is implemented using a finite-state machine.
7500The values pushed on the parser stack are not simply token type codes; they
7501represent the entire sequence of terminal and nonterminal symbols at or
7502near the top of the stack. The current state collects all the information
7503about previous input which is relevant to deciding what to do next.
7504
742e4900
JD
7505Each time a lookahead token is read, the current parser state together
7506with the type of lookahead token are looked up in a table. This table
7507entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7508specifies the new parser state, which is pushed onto the top of the
7509parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7510This means that a certain number of tokens or groupings are taken off
7511the top of the stack, and replaced by one grouping. In other words,
7512that number of states are popped from the stack, and one new state is
7513pushed.
7514
742e4900 7515There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7516is erroneous in the current state. This causes error processing to begin
7517(@pxref{Error Recovery}).
7518
342b8b6e 7519@node Reduce/Reduce
bfa74976
RS
7520@section Reduce/Reduce Conflicts
7521@cindex reduce/reduce conflict
7522@cindex conflicts, reduce/reduce
7523
7524A reduce/reduce conflict occurs if there are two or more rules that apply
7525to the same sequence of input. This usually indicates a serious error
7526in the grammar.
7527
7528For example, here is an erroneous attempt to define a sequence
7529of zero or more @code{word} groupings.
7530
7531@example
d4fca427 7532@group
5e9b6624
AD
7533sequence:
7534 /* empty */ @{ printf ("empty sequence\n"); @}
7535| maybeword
7536| sequence word @{ printf ("added word %s\n", $2); @}
7537;
d4fca427 7538@end group
bfa74976 7539
d4fca427 7540@group
5e9b6624
AD
7541maybeword:
7542 /* empty */ @{ printf ("empty maybeword\n"); @}
7543| word @{ printf ("single word %s\n", $1); @}
7544;
d4fca427 7545@end group
bfa74976
RS
7546@end example
7547
7548@noindent
7549The error is an ambiguity: there is more than one way to parse a single
7550@code{word} into a @code{sequence}. It could be reduced to a
7551@code{maybeword} and then into a @code{sequence} via the second rule.
7552Alternatively, nothing-at-all could be reduced into a @code{sequence}
7553via the first rule, and this could be combined with the @code{word}
7554using the third rule for @code{sequence}.
7555
7556There is also more than one way to reduce nothing-at-all into a
7557@code{sequence}. This can be done directly via the first rule,
7558or indirectly via @code{maybeword} and then the second rule.
7559
7560You might think that this is a distinction without a difference, because it
7561does not change whether any particular input is valid or not. But it does
7562affect which actions are run. One parsing order runs the second rule's
7563action; the other runs the first rule's action and the third rule's action.
7564In this example, the output of the program changes.
7565
7566Bison resolves a reduce/reduce conflict by choosing to use the rule that
7567appears first in the grammar, but it is very risky to rely on this. Every
7568reduce/reduce conflict must be studied and usually eliminated. Here is the
7569proper way to define @code{sequence}:
7570
7571@example
51356dd2 7572@group
5e9b6624
AD
7573sequence:
7574 /* empty */ @{ printf ("empty sequence\n"); @}
7575| sequence word @{ printf ("added word %s\n", $2); @}
7576;
51356dd2 7577@end group
bfa74976
RS
7578@end example
7579
7580Here is another common error that yields a reduce/reduce conflict:
7581
7582@example
51356dd2 7583@group
589149dc 7584sequence:
5e9b6624
AD
7585 /* empty */
7586| sequence words
7587| sequence redirects
7588;
51356dd2 7589@end group
bfa74976 7590
51356dd2 7591@group
5e9b6624
AD
7592words:
7593 /* empty */
7594| words word
7595;
51356dd2 7596@end group
bfa74976 7597
51356dd2 7598@group
5e9b6624
AD
7599redirects:
7600 /* empty */
7601| redirects redirect
7602;
51356dd2 7603@end group
bfa74976
RS
7604@end example
7605
7606@noindent
7607The intention here is to define a sequence which can contain either
7608@code{word} or @code{redirect} groupings. The individual definitions of
7609@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7610three together make a subtle ambiguity: even an empty input can be parsed
7611in infinitely many ways!
7612
7613Consider: nothing-at-all could be a @code{words}. Or it could be two
7614@code{words} in a row, or three, or any number. It could equally well be a
7615@code{redirects}, or two, or any number. Or it could be a @code{words}
7616followed by three @code{redirects} and another @code{words}. And so on.
7617
7618Here are two ways to correct these rules. First, to make it a single level
7619of sequence:
7620
7621@example
5e9b6624
AD
7622sequence:
7623 /* empty */
7624| sequence word
7625| sequence redirect
7626;
bfa74976
RS
7627@end example
7628
7629Second, to prevent either a @code{words} or a @code{redirects}
7630from being empty:
7631
7632@example
d4fca427 7633@group
5e9b6624
AD
7634sequence:
7635 /* empty */
7636| sequence words
7637| sequence redirects
7638;
d4fca427 7639@end group
bfa74976 7640
d4fca427 7641@group
5e9b6624
AD
7642words:
7643 word
7644| words word
7645;
d4fca427 7646@end group
bfa74976 7647
d4fca427 7648@group
5e9b6624
AD
7649redirects:
7650 redirect
7651| redirects redirect
7652;
d4fca427 7653@end group
bfa74976
RS
7654@end example
7655
53e2cd1e
AD
7656Yet this proposal introduces another kind of ambiguity! The input
7657@samp{word word} can be parsed as a single @code{words} composed of two
7658@samp{word}s, or as two one-@code{word} @code{words} (and likewise for
7659@code{redirect}/@code{redirects}). However this ambiguity is now a
7660shift/reduce conflict, and therefore it can now be addressed with precedence
7661directives.
7662
7663To simplify the matter, we will proceed with @code{word} and @code{redirect}
7664being tokens: @code{"word"} and @code{"redirect"}.
7665
7666To prefer the longest @code{words}, the conflict between the token
7667@code{"word"} and the rule @samp{sequence: sequence words} must be resolved
7668as a shift. To this end, we use the same techniques as exposed above, see
7669@ref{Non Operators,, Using Precedence For Non Operators}. One solution
7670relies on precedences: use @code{%prec} to give a lower precedence to the
7671rule:
7672
7673@example
589149dc
AD
7674%precedence "word"
7675%precedence "sequence"
53e2cd1e
AD
7676%%
7677@group
7678sequence:
7679 /* empty */
7680| sequence word %prec "sequence"
7681| sequence redirect %prec "sequence"
7682;
7683@end group
7684
7685@group
7686words:
7687 word
7688| words "word"
7689;
7690@end group
7691@end example
7692
7693Another solution relies on associativity: provide both the token and the
7694rule with the same precedence, but make them right-associative:
7695
7696@example
7697%right "word" "redirect"
7698%%
7699@group
7700sequence:
7701 /* empty */
7702| sequence word %prec "word"
7703| sequence redirect %prec "redirect"
7704;
7705@end group
7706@end example
7707
cc09e5be
JD
7708@node Mysterious Conflicts
7709@section Mysterious Conflicts
7fceb615 7710@cindex Mysterious Conflicts
bfa74976
RS
7711
7712Sometimes reduce/reduce conflicts can occur that don't look warranted.
7713Here is an example:
7714
7715@example
7716@group
bfa74976 7717%%
5e9b6624 7718def: param_spec return_spec ',';
bfa74976 7719param_spec:
5e9b6624
AD
7720 type
7721| name_list ':' type
7722;
bfa74976 7723@end group
589149dc 7724
bfa74976
RS
7725@group
7726return_spec:
5e9b6624
AD
7727 type
7728| name ':' type
7729;
bfa74976 7730@end group
589149dc 7731
534cee7a 7732type: "id";
589149dc 7733
bfa74976 7734@group
534cee7a 7735name: "id";
bfa74976 7736name_list:
5e9b6624
AD
7737 name
7738| name ',' name_list
7739;
bfa74976
RS
7740@end group
7741@end example
7742
534cee7a
AD
7743It would seem that this grammar can be parsed with only a single token of
7744lookahead: when a @code{param_spec} is being read, an @code{"id"} is a
7745@code{name} if a comma or colon follows, or a @code{type} if another
7746@code{"id"} follows. In other words, this grammar is LR(1).
bfa74976 7747
7fceb615
JD
7748@cindex LR
7749@cindex LALR
eb45ef3b 7750However, for historical reasons, Bison cannot by default handle all
8a4281b9 7751LR(1) grammars.
534cee7a 7752In this grammar, two contexts, that after an @code{"id"} at the beginning
eb45ef3b
JD
7753of a @code{param_spec} and likewise at the beginning of a
7754@code{return_spec}, are similar enough that Bison assumes they are the
7755same.
7756They appear similar because the same set of rules would be
bfa74976
RS
7757active---the rule for reducing to a @code{name} and that for reducing to
7758a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7759that the rules would require different lookahead tokens in the two
bfa74976
RS
7760contexts, so it makes a single parser state for them both. Combining
7761the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7762occurrence means that the grammar is not LALR(1).
bfa74976 7763
7fceb615
JD
7764@cindex IELR
7765@cindex canonical LR
7766For many practical grammars (specifically those that fall into the non-LR(1)
7767class), the limitations of LALR(1) result in difficulties beyond just
7768mysterious reduce/reduce conflicts. The best way to fix all these problems
7769is to select a different parser table construction algorithm. Either
7770IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7771and easier to debug during development. @xref{LR Table Construction}, for
7772details. (Bison's IELR(1) and canonical LR(1) implementations are
7773experimental. More user feedback will help to stabilize them.)
eb45ef3b 7774
8a4281b9 7775If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7776can often fix a mysterious conflict by identifying the two parser states
7777that are being confused, and adding something to make them look
7778distinct. In the above example, adding one rule to
bfa74976
RS
7779@code{return_spec} as follows makes the problem go away:
7780
7781@example
7782@group
bfa74976
RS
7783@dots{}
7784return_spec:
5e9b6624
AD
7785 type
7786| name ':' type
534cee7a 7787| "id" "bogus" /* This rule is never used. */
5e9b6624 7788;
bfa74976
RS
7789@end group
7790@end example
7791
7792This corrects the problem because it introduces the possibility of an
534cee7a 7793additional active rule in the context after the @code{"id"} at the beginning of
bfa74976
RS
7794@code{return_spec}. This rule is not active in the corresponding context
7795in a @code{param_spec}, so the two contexts receive distinct parser states.
534cee7a 7796As long as the token @code{"bogus"} is never generated by @code{yylex},
bfa74976
RS
7797the added rule cannot alter the way actual input is parsed.
7798
7799In this particular example, there is another way to solve the problem:
534cee7a 7800rewrite the rule for @code{return_spec} to use @code{"id"} directly
bfa74976
RS
7801instead of via @code{name}. This also causes the two confusing
7802contexts to have different sets of active rules, because the one for
7803@code{return_spec} activates the altered rule for @code{return_spec}
7804rather than the one for @code{name}.
7805
7806@example
589149dc 7807@group
bfa74976 7808param_spec:
5e9b6624
AD
7809 type
7810| name_list ':' type
7811;
589149dc
AD
7812@end group
7813
7814@group
bfa74976 7815return_spec:
5e9b6624 7816 type
534cee7a 7817| "id" ':' type
5e9b6624 7818;
589149dc 7819@end group
bfa74976
RS
7820@end example
7821
8a4281b9 7822For a more detailed exposition of LALR(1) parsers and parser
5e528941 7823generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7824
7fceb615
JD
7825@node Tuning LR
7826@section Tuning LR
7827
7828The default behavior of Bison's LR-based parsers is chosen mostly for
7829historical reasons, but that behavior is often not robust. For example, in
7830the previous section, we discussed the mysterious conflicts that can be
7831produced by LALR(1), Bison's default parser table construction algorithm.
7832Another example is Bison's @code{%define parse.error verbose} directive,
7833which instructs the generated parser to produce verbose syntax error
7834messages, which can sometimes contain incorrect information.
7835
7836In this section, we explore several modern features of Bison that allow you
7837to tune fundamental aspects of the generated LR-based parsers. Some of
7838these features easily eliminate shortcomings like those mentioned above.
7839Others can be helpful purely for understanding your parser.
7840
7841Most of the features discussed in this section are still experimental. More
7842user feedback will help to stabilize them.
7843
7844@menu
7845* LR Table Construction:: Choose a different construction algorithm.
7846* Default Reductions:: Disable default reductions.
7847* LAC:: Correct lookahead sets in the parser states.
7848* Unreachable States:: Keep unreachable parser states for debugging.
7849@end menu
7850
7851@node LR Table Construction
7852@subsection LR Table Construction
7853@cindex Mysterious Conflict
7854@cindex LALR
7855@cindex IELR
7856@cindex canonical LR
7857@findex %define lr.type
7858
7859For historical reasons, Bison constructs LALR(1) parser tables by default.
7860However, LALR does not possess the full language-recognition power of LR.
7861As a result, the behavior of parsers employing LALR parser tables is often
cc09e5be 7862mysterious. We presented a simple example of this effect in @ref{Mysterious
7fceb615
JD
7863Conflicts}.
7864
7865As we also demonstrated in that example, the traditional approach to
7866eliminating such mysterious behavior is to restructure the grammar.
7867Unfortunately, doing so correctly is often difficult. Moreover, merely
7868discovering that LALR causes mysterious behavior in your parser can be
7869difficult as well.
7870
7871Fortunately, Bison provides an easy way to eliminate the possibility of such
7872mysterious behavior altogether. You simply need to activate a more powerful
7873parser table construction algorithm by using the @code{%define lr.type}
7874directive.
7875
511dd971 7876@deffn {Directive} {%define lr.type} @var{type}
7fceb615 7877Specify the type of parser tables within the LR(1) family. The accepted
511dd971 7878values for @var{type} are:
7fceb615
JD
7879
7880@itemize
7881@item @code{lalr} (default)
7882@item @code{ielr}
7883@item @code{canonical-lr}
7884@end itemize
7885
7886(This feature is experimental. More user feedback will help to stabilize
7887it.)
7888@end deffn
7889
7890For example, to activate IELR, you might add the following directive to you
7891grammar file:
7892
7893@example
7894%define lr.type ielr
7895@end example
7896
cc09e5be 7897@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7fceb615
JD
7898conflict is then eliminated, so there is no need to invest time in
7899comprehending the conflict or restructuring the grammar to fix it. If,
7900during future development, the grammar evolves such that all mysterious
7901behavior would have disappeared using just LALR, you need not fear that
7902continuing to use IELR will result in unnecessarily large parser tables.
7903That is, IELR generates LALR tables when LALR (using a deterministic parsing
7904algorithm) is sufficient to support the full language-recognition power of
7905LR. Thus, by enabling IELR at the start of grammar development, you can
7906safely and completely eliminate the need to consider LALR's shortcomings.
7907
7908While IELR is almost always preferable, there are circumstances where LALR
7909or the canonical LR parser tables described by Knuth
7910(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7911relative advantages of each parser table construction algorithm within
7912Bison:
7913
7914@itemize
7915@item LALR
7916
7917There are at least two scenarios where LALR can be worthwhile:
7918
7919@itemize
7920@item GLR without static conflict resolution.
7921
7922@cindex GLR with LALR
7923When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
589149dc
AD
7924conflicts statically (for example, with @code{%left} or @code{%precedence}),
7925then
7fceb615
JD
7926the parser explores all potential parses of any given input. In this case,
7927the choice of parser table construction algorithm is guaranteed not to alter
7928the language accepted by the parser. LALR parser tables are the smallest
7929parser tables Bison can currently construct, so they may then be preferable.
7930Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7931more like a deterministic parser in the syntactic contexts where those
7932conflicts appear, and so either IELR or canonical LR can then be helpful to
7933avoid LALR's mysterious behavior.
7934
7935@item Malformed grammars.
7936
7937Occasionally during development, an especially malformed grammar with a
7938major recurring flaw may severely impede the IELR or canonical LR parser
7939table construction algorithm. LALR can be a quick way to construct parser
7940tables in order to investigate such problems while ignoring the more subtle
7941differences from IELR and canonical LR.
7942@end itemize
7943
7944@item IELR
7945
7946IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7947any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7948always accept exactly the same set of sentences. However, like LALR, IELR
7949merges parser states during parser table construction so that the number of
7950parser states is often an order of magnitude less than for canonical LR.
7951More importantly, because canonical LR's extra parser states may contain
7952duplicate conflicts in the case of non-LR grammars, the number of conflicts
7953for IELR is often an order of magnitude less as well. This effect can
7954significantly reduce the complexity of developing a grammar.
7955
7956@item Canonical LR
7957
7958@cindex delayed syntax error detection
7959@cindex LAC
7960@findex %nonassoc
7961While inefficient, canonical LR parser tables can be an interesting means to
7962explore a grammar because they possess a property that IELR and LALR tables
7963do not. That is, if @code{%nonassoc} is not used and default reductions are
7964left disabled (@pxref{Default Reductions}), then, for every left context of
7965every canonical LR state, the set of tokens accepted by that state is
7966guaranteed to be the exact set of tokens that is syntactically acceptable in
7967that left context. It might then seem that an advantage of canonical LR
7968parsers in production is that, under the above constraints, they are
7969guaranteed to detect a syntax error as soon as possible without performing
7970any unnecessary reductions. However, IELR parsers that use LAC are also
7971able to achieve this behavior without sacrificing @code{%nonassoc} or
7972default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7973@end itemize
7974
7975For a more detailed exposition of the mysterious behavior in LALR parsers
7976and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7977@ref{Bibliography,,Denny 2010 November}.
7978
7979@node Default Reductions
7980@subsection Default Reductions
7981@cindex default reductions
f3bc3386 7982@findex %define lr.default-reduction
7fceb615
JD
7983@findex %nonassoc
7984
7985After parser table construction, Bison identifies the reduction with the
7986largest lookahead set in each parser state. To reduce the size of the
7987parser state, traditional Bison behavior is to remove that lookahead set and
7988to assign that reduction to be the default parser action. Such a reduction
7989is known as a @dfn{default reduction}.
7990
7991Default reductions affect more than the size of the parser tables. They
7992also affect the behavior of the parser:
7993
7994@itemize
7995@item Delayed @code{yylex} invocations.
7996
7997@cindex delayed yylex invocations
7998@cindex consistent states
7999@cindex defaulted states
8000A @dfn{consistent state} is a state that has only one possible parser
8001action. If that action is a reduction and is encoded as a default
8002reduction, then that consistent state is called a @dfn{defaulted state}.
8003Upon reaching a defaulted state, a Bison-generated parser does not bother to
8004invoke @code{yylex} to fetch the next token before performing the reduction.
8005In other words, whether default reductions are enabled in consistent states
8006determines how soon a Bison-generated parser invokes @code{yylex} for a
8007token: immediately when it @emph{reaches} that token in the input or when it
8008eventually @emph{needs} that token as a lookahead to determine the next
8009parser action. Traditionally, default reductions are enabled, and so the
8010parser exhibits the latter behavior.
8011
8012The presence of defaulted states is an important consideration when
8013designing @code{yylex} and the grammar file. That is, if the behavior of
8014@code{yylex} can influence or be influenced by the semantic actions
8015associated with the reductions in defaulted states, then the delay of the
8016next @code{yylex} invocation until after those reductions is significant.
8017For example, the semantic actions might pop a scope stack that @code{yylex}
8018uses to determine what token to return. Thus, the delay might be necessary
8019to ensure that @code{yylex} does not look up the next token in a scope that
8020should already be considered closed.
8021
8022@item Delayed syntax error detection.
8023
8024@cindex delayed syntax error detection
8025When the parser fetches a new token by invoking @code{yylex}, it checks
8026whether there is an action for that token in the current parser state. The
8027parser detects a syntax error if and only if either (1) there is no action
8028for that token or (2) the action for that token is the error action (due to
8029the use of @code{%nonassoc}). However, if there is a default reduction in
8030that state (which might or might not be a defaulted state), then it is
8031impossible for condition 1 to exist. That is, all tokens have an action.
8032Thus, the parser sometimes fails to detect the syntax error until it reaches
8033a later state.
8034
8035@cindex LAC
8036@c If there's an infinite loop, default reductions can prevent an incorrect
8037@c sentence from being rejected.
8038While default reductions never cause the parser to accept syntactically
8039incorrect sentences, the delay of syntax error detection can have unexpected
8040effects on the behavior of the parser. However, the delay can be caused
8041anyway by parser state merging and the use of @code{%nonassoc}, and it can
8042be fixed by another Bison feature, LAC. We discuss the effects of delayed
8043syntax error detection and LAC more in the next section (@pxref{LAC}).
8044@end itemize
8045
8046For canonical LR, the only default reduction that Bison enables by default
8047is the accept action, which appears only in the accepting state, which has
8048no other action and is thus a defaulted state. However, the default accept
8049action does not delay any @code{yylex} invocation or syntax error detection
8050because the accept action ends the parse.
8051
8052For LALR and IELR, Bison enables default reductions in nearly all states by
8053default. There are only two exceptions. First, states that have a shift
8054action on the @code{error} token do not have default reductions because
8055delayed syntax error detection could then prevent the @code{error} token
8056from ever being shifted in that state. However, parser state merging can
8057cause the same effect anyway, and LAC fixes it in both cases, so future
8058versions of Bison might drop this exception when LAC is activated. Second,
8059GLR parsers do not record the default reduction as the action on a lookahead
8060token for which there is a conflict. The correct action in this case is to
8061split the parse instead.
8062
8063To adjust which states have default reductions enabled, use the
f3bc3386 8064@code{%define lr.default-reduction} directive.
7fceb615 8065
5807bb91 8066@deffn {Directive} {%define lr.default-reduction} @var{where}
7fceb615 8067Specify the kind of states that are permitted to contain default reductions.
511dd971 8068The accepted values of @var{where} are:
7fceb615 8069@itemize
f0ad1b2f 8070@item @code{most} (default for LALR and IELR)
7fceb615
JD
8071@item @code{consistent}
8072@item @code{accepting} (default for canonical LR)
8073@end itemize
8074
8075(The ability to specify where default reductions are permitted is
8076experimental. More user feedback will help to stabilize it.)
8077@end deffn
8078
7fceb615
JD
8079@node LAC
8080@subsection LAC
8081@findex %define parse.lac
8082@cindex LAC
8083@cindex lookahead correction
8084
8085Canonical LR, IELR, and LALR can suffer from a couple of problems upon
8086encountering a syntax error. First, the parser might perform additional
8087parser stack reductions before discovering the syntax error. Such
8088reductions can perform user semantic actions that are unexpected because
8089they are based on an invalid token, and they cause error recovery to begin
8090in a different syntactic context than the one in which the invalid token was
8091encountered. Second, when verbose error messages are enabled (@pxref{Error
8092Reporting}), the expected token list in the syntax error message can both
8093contain invalid tokens and omit valid tokens.
8094
8095The culprits for the above problems are @code{%nonassoc}, default reductions
8096in inconsistent states (@pxref{Default Reductions}), and parser state
8097merging. Because IELR and LALR merge parser states, they suffer the most.
8098Canonical LR can suffer only if @code{%nonassoc} is used or if default
8099reductions are enabled for inconsistent states.
8100
8101LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
8102that solves these problems for canonical LR, IELR, and LALR without
8103sacrificing @code{%nonassoc}, default reductions, or state merging. You can
8104enable LAC with the @code{%define parse.lac} directive.
8105
511dd971 8106@deffn {Directive} {%define parse.lac} @var{value}
7fceb615
JD
8107Enable LAC to improve syntax error handling.
8108@itemize
8109@item @code{none} (default)
8110@item @code{full}
8111@end itemize
8112(This feature is experimental. More user feedback will help to stabilize
8113it. Moreover, it is currently only available for deterministic parsers in
8114C.)
8115@end deffn
8116
8117Conceptually, the LAC mechanism is straight-forward. Whenever the parser
8118fetches a new token from the scanner so that it can determine the next
8119parser action, it immediately suspends normal parsing and performs an
8120exploratory parse using a temporary copy of the normal parser state stack.
8121During this exploratory parse, the parser does not perform user semantic
8122actions. If the exploratory parse reaches a shift action, normal parsing
8123then resumes on the normal parser stacks. If the exploratory parse reaches
8124an error instead, the parser reports a syntax error. If verbose syntax
8125error messages are enabled, the parser must then discover the list of
8126expected tokens, so it performs a separate exploratory parse for each token
8127in the grammar.
8128
8129There is one subtlety about the use of LAC. That is, when in a consistent
8130parser state with a default reduction, the parser will not attempt to fetch
8131a token from the scanner because no lookahead is needed to determine the
8132next parser action. Thus, whether default reductions are enabled in
8133consistent states (@pxref{Default Reductions}) affects how soon the parser
8134detects a syntax error: immediately when it @emph{reaches} an erroneous
8135token or when it eventually @emph{needs} that token as a lookahead to
8136determine the next parser action. The latter behavior is probably more
8137intuitive, so Bison currently provides no way to achieve the former behavior
8138while default reductions are enabled in consistent states.
8139
8140Thus, when LAC is in use, for some fixed decision of whether to enable
8141default reductions in consistent states, canonical LR and IELR behave almost
8142exactly the same for both syntactically acceptable and syntactically
8143unacceptable input. While LALR still does not support the full
8144language-recognition power of canonical LR and IELR, LAC at least enables
8145LALR's syntax error handling to correctly reflect LALR's
8146language-recognition power.
8147
8148There are a few caveats to consider when using LAC:
8149
8150@itemize
8151@item Infinite parsing loops.
8152
8153IELR plus LAC does have one shortcoming relative to canonical LR. Some
8154parsers generated by Bison can loop infinitely. LAC does not fix infinite
8155parsing loops that occur between encountering a syntax error and detecting
8156it, but enabling canonical LR or disabling default reductions sometimes
8157does.
8158
8159@item Verbose error message limitations.
8160
8161Because of internationalization considerations, Bison-generated parsers
8162limit the size of the expected token list they are willing to report in a
8163verbose syntax error message. If the number of expected tokens exceeds that
8164limit, the list is simply dropped from the message. Enabling LAC can
8165increase the size of the list and thus cause the parser to drop it. Of
8166course, dropping the list is better than reporting an incorrect list.
8167
8168@item Performance.
8169
8170Because LAC requires many parse actions to be performed twice, it can have a
8171performance penalty. However, not all parse actions must be performed
8172twice. Specifically, during a series of default reductions in consistent
8173states and shift actions, the parser never has to initiate an exploratory
8174parse. Moreover, the most time-consuming tasks in a parse are often the
8175file I/O, the lexical analysis performed by the scanner, and the user's
8176semantic actions, but none of these are performed during the exploratory
8177parse. Finally, the base of the temporary stack used during an exploratory
8178parse is a pointer into the normal parser state stack so that the stack is
8179never physically copied. In our experience, the performance penalty of LAC
5a321748 8180has proved insignificant for practical grammars.
7fceb615
JD
8181@end itemize
8182
709c7d11
JD
8183While the LAC algorithm shares techniques that have been recognized in the
8184parser community for years, for the publication that introduces LAC,
8185@pxref{Bibliography,,Denny 2010 May}.
15e46f2d 8186
7fceb615
JD
8187@node Unreachable States
8188@subsection Unreachable States
f3bc3386 8189@findex %define lr.keep-unreachable-state
7fceb615
JD
8190@cindex unreachable states
8191
8192If there exists no sequence of transitions from the parser's start state to
8193some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
8194state}. A state can become unreachable during conflict resolution if Bison
8195disables a shift action leading to it from a predecessor state.
8196
8197By default, Bison removes unreachable states from the parser after conflict
8198resolution because they are useless in the generated parser. However,
8199keeping unreachable states is sometimes useful when trying to understand the
8200relationship between the parser and the grammar.
8201
5807bb91 8202@deffn {Directive} {%define lr.keep-unreachable-state} @var{value}
7fceb615 8203Request that Bison allow unreachable states to remain in the parser tables.
511dd971 8204@var{value} must be a Boolean. The default is @code{false}.
7fceb615
JD
8205@end deffn
8206
8207There are a few caveats to consider:
8208
8209@itemize @bullet
8210@item Missing or extraneous warnings.
8211
8212Unreachable states may contain conflicts and may use rules not used in any
8213other state. Thus, keeping unreachable states may induce warnings that are
8214irrelevant to your parser's behavior, and it may eliminate warnings that are
8215relevant. Of course, the change in warnings may actually be relevant to a
8216parser table analysis that wants to keep unreachable states, so this
8217behavior will likely remain in future Bison releases.
8218
8219@item Other useless states.
8220
8221While Bison is able to remove unreachable states, it is not guaranteed to
8222remove other kinds of useless states. Specifically, when Bison disables
8223reduce actions during conflict resolution, some goto actions may become
8224useless, and thus some additional states may become useless. If Bison were
8225to compute which goto actions were useless and then disable those actions,
8226it could identify such states as unreachable and then remove those states.
8227However, Bison does not compute which goto actions are useless.
8228@end itemize
8229
fae437e8 8230@node Generalized LR Parsing
8a4281b9
JD
8231@section Generalized LR (GLR) Parsing
8232@cindex GLR parsing
8233@cindex generalized LR (GLR) parsing
676385e2 8234@cindex ambiguous grammars
9d9b8b70 8235@cindex nondeterministic parsing
676385e2 8236
fae437e8
AD
8237Bison produces @emph{deterministic} parsers that choose uniquely
8238when to reduce and which reduction to apply
742e4900 8239based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
8240As a result, normal Bison handles a proper subset of the family of
8241context-free languages.
fae437e8 8242Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
8243sequence of reductions cannot have deterministic parsers in this sense.
8244The same is true of languages that require more than one symbol of
742e4900 8245lookahead, since the parser lacks the information necessary to make a
676385e2 8246decision at the point it must be made in a shift-reduce parser.
cc09e5be 8247Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
eb45ef3b 8248there are languages where Bison's default choice of how to
676385e2
PH
8249summarize the input seen so far loses necessary information.
8250
8251When you use the @samp{%glr-parser} declaration in your grammar file,
8252Bison generates a parser that uses a different algorithm, called
8a4281b9 8253Generalized LR (or GLR). A Bison GLR
c827f760 8254parser uses the same basic
676385e2
PH
8255algorithm for parsing as an ordinary Bison parser, but behaves
8256differently in cases where there is a shift-reduce conflict that has not
fae437e8 8257been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 8258reduce-reduce conflict. When a GLR parser encounters such a
c827f760 8259situation, it
fae437e8 8260effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
8261shift or reduction. These parsers then proceed as usual, consuming
8262tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 8263and split further, with the result that instead of a sequence of states,
8a4281b9 8264a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
8265
8266In effect, each stack represents a guess as to what the proper parse
8267is. Additional input may indicate that a guess was wrong, in which case
8268the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 8269actions generated in each stack are saved, rather than being executed
676385e2 8270immediately. When a stack disappears, its saved semantic actions never
fae437e8 8271get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
8272their sets of semantic actions are both saved with the state that
8273results from the reduction. We say that two stacks are equivalent
fae437e8 8274when they both represent the same sequence of states,
676385e2
PH
8275and each pair of corresponding states represents a
8276grammar symbol that produces the same segment of the input token
8277stream.
8278
8279Whenever the parser makes a transition from having multiple
eb45ef3b 8280states to having one, it reverts to the normal deterministic parsing
676385e2
PH
8281algorithm, after resolving and executing the saved-up actions.
8282At this transition, some of the states on the stack will have semantic
8283values that are sets (actually multisets) of possible actions. The
8284parser tries to pick one of the actions by first finding one whose rule
8285has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 8286declaration. Otherwise, if the alternative actions are not ordered by
676385e2 8287precedence, but there the same merging function is declared for both
fae437e8 8288rules by the @samp{%merge} declaration,
676385e2
PH
8289Bison resolves and evaluates both and then calls the merge function on
8290the result. Otherwise, it reports an ambiguity.
8291
8a4281b9
JD
8292It is possible to use a data structure for the GLR parsing tree that
8293permits the processing of any LR(1) grammar in linear time (in the
c827f760 8294size of the input), any unambiguous (not necessarily
8a4281b9 8295LR(1)) grammar in
fae437e8 8296quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
8297context-free grammar in cubic worst-case time. However, Bison currently
8298uses a simpler data structure that requires time proportional to the
8299length of the input times the maximum number of stacks required for any
9d9b8b70 8300prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
8301grammars can require exponential time and space to process. Such badly
8302behaving examples, however, are not generally of practical interest.
9d9b8b70 8303Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 8304doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 8305structure should generally be adequate. On LR(1) portions of a
eb45ef3b 8306grammar, in particular, it is only slightly slower than with the
8a4281b9 8307deterministic LR(1) Bison parser.
676385e2 8308
5e528941
JD
8309For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
83102000}.
f6481e2f 8311
1a059451
PE
8312@node Memory Management
8313@section Memory Management, and How to Avoid Memory Exhaustion
8314@cindex memory exhaustion
8315@cindex memory management
bfa74976
RS
8316@cindex stack overflow
8317@cindex parser stack overflow
8318@cindex overflow of parser stack
8319
1a059451 8320The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 8321not reduced. When this happens, the parser function @code{yyparse}
1a059451 8322calls @code{yyerror} and then returns 2.
bfa74976 8323
c827f760 8324Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f 8325usually results from using a right recursion instead of a left
188867ac 8326recursion, see @ref{Recursion, ,Recursive Rules}.
d1a1114f 8327
bfa74976
RS
8328@vindex YYMAXDEPTH
8329By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 8330parser stack can become before memory is exhausted. Define the
bfa74976
RS
8331macro with a value that is an integer. This value is the maximum number
8332of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
8333
8334The stack space allowed is not necessarily allocated. If you specify a
1a059451 8335large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
8336stack at first, and then makes it bigger by stages as needed. This
8337increasing allocation happens automatically and silently. Therefore,
8338you do not need to make @code{YYMAXDEPTH} painfully small merely to save
8339space for ordinary inputs that do not need much stack.
8340
d7e14fc0
PE
8341However, do not allow @code{YYMAXDEPTH} to be a value so large that
8342arithmetic overflow could occur when calculating the size of the stack
8343space. Also, do not allow @code{YYMAXDEPTH} to be less than
8344@code{YYINITDEPTH}.
8345
bfa74976
RS
8346@cindex default stack limit
8347The default value of @code{YYMAXDEPTH}, if you do not define it, is
834810000.
8349
8350@vindex YYINITDEPTH
8351You can control how much stack is allocated initially by defining the
eb45ef3b
JD
8352macro @code{YYINITDEPTH} to a positive integer. For the deterministic
8353parser in C, this value must be a compile-time constant
d7e14fc0
PE
8354unless you are assuming C99 or some other target language or compiler
8355that allows variable-length arrays. The default is 200.
8356
1a059451 8357Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 8358
20be2f92 8359You can generate a deterministic parser containing C++ user code from
411614fa 8360the default (C) skeleton, as well as from the C++ skeleton
20be2f92
PH
8361(@pxref{C++ Parsers}). However, if you do use the default skeleton
8362and want to allow the parsing stack to grow,
8363be careful not to use semantic types or location types that require
8364non-trivial copy constructors.
8365The C skeleton bypasses these constructors when copying data to
8366new, larger stacks.
d1a1114f 8367
342b8b6e 8368@node Error Recovery
bfa74976
RS
8369@chapter Error Recovery
8370@cindex error recovery
8371@cindex recovery from errors
8372
6e649e65 8373It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
8374error. For example, a compiler should recover sufficiently to parse the
8375rest of the input file and check it for errors; a calculator should accept
8376another expression.
8377
8378In a simple interactive command parser where each input is one line, it may
8379be sufficient to allow @code{yyparse} to return 1 on error and have the
8380caller ignore the rest of the input line when that happens (and then call
8381@code{yyparse} again). But this is inadequate for a compiler, because it
8382forgets all the syntactic context leading up to the error. A syntax error
8383deep within a function in the compiler input should not cause the compiler
8384to treat the following line like the beginning of a source file.
8385
8386@findex error
8387You can define how to recover from a syntax error by writing rules to
8388recognize the special token @code{error}. This is a terminal symbol that
8389is always defined (you need not declare it) and reserved for error
8390handling. The Bison parser generates an @code{error} token whenever a
8391syntax error happens; if you have provided a rule to recognize this token
13863333 8392in the current context, the parse can continue.
bfa74976
RS
8393
8394For example:
8395
8396@example
0860e383 8397stmts:
5e9b6624 8398 /* empty string */
0860e383
AD
8399| stmts '\n'
8400| stmts exp '\n'
8401| stmts error '\n'
bfa74976
RS
8402@end example
8403
8404The fourth rule in this example says that an error followed by a newline
0860e383 8405makes a valid addition to any @code{stmts}.
bfa74976
RS
8406
8407What happens if a syntax error occurs in the middle of an @code{exp}? The
8408error recovery rule, interpreted strictly, applies to the precise sequence
0860e383 8409of a @code{stmts}, an @code{error} and a newline. If an error occurs in
bfa74976 8410the middle of an @code{exp}, there will probably be some additional tokens
0860e383 8411and subexpressions on the stack after the last @code{stmts}, and there
bfa74976
RS
8412will be tokens to read before the next newline. So the rule is not
8413applicable in the ordinary way.
8414
8415But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
8416the semantic context and part of the input. First it discards states
8417and objects from the stack until it gets back to a state in which the
bfa74976 8418@code{error} token is acceptable. (This means that the subexpressions
0860e383 8419already parsed are discarded, back to the last complete @code{stmts}.)
72f889cc 8420At this point the @code{error} token can be shifted. Then, if the old
742e4900 8421lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 8422tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
8423this example, Bison reads and discards input until the next newline so
8424that the fourth rule can apply. Note that discarded symbols are
8425possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
8426Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
8427
8428The choice of error rules in the grammar is a choice of strategies for
8429error recovery. A simple and useful strategy is simply to skip the rest of
8430the current input line or current statement if an error is detected:
8431
8432@example
0860e383 8433stmt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
8434@end example
8435
8436It is also useful to recover to the matching close-delimiter of an
8437opening-delimiter that has already been parsed. Otherwise the
8438close-delimiter will probably appear to be unmatched, and generate another,
8439spurious error message:
8440
8441@example
5e9b6624
AD
8442primary:
8443 '(' expr ')'
8444| '(' error ')'
8445@dots{}
8446;
bfa74976
RS
8447@end example
8448
8449Error recovery strategies are necessarily guesses. When they guess wrong,
8450one syntax error often leads to another. In the above example, the error
8451recovery rule guesses that an error is due to bad input within one
0860e383
AD
8452@code{stmt}. Suppose that instead a spurious semicolon is inserted in the
8453middle of a valid @code{stmt}. After the error recovery rule recovers
bfa74976
RS
8454from the first error, another syntax error will be found straightaway,
8455since the text following the spurious semicolon is also an invalid
0860e383 8456@code{stmt}.
bfa74976
RS
8457
8458To prevent an outpouring of error messages, the parser will output no error
8459message for another syntax error that happens shortly after the first; only
8460after three consecutive input tokens have been successfully shifted will
8461error messages resume.
8462
8463Note that rules which accept the @code{error} token may have actions, just
8464as any other rules can.
8465
8466@findex yyerrok
8467You can make error messages resume immediately by using the macro
8468@code{yyerrok} in an action. If you do this in the error rule's action, no
8469error messages will be suppressed. This macro requires no arguments;
8470@samp{yyerrok;} is a valid C statement.
8471
8472@findex yyclearin
742e4900 8473The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
8474this is unacceptable, then the macro @code{yyclearin} may be used to clear
8475this token. Write the statement @samp{yyclearin;} in the error rule's
8476action.
32c29292 8477@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 8478
6e649e65 8479For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
8480called that advances the input stream to some point where parsing should
8481once again commence. The next symbol returned by the lexical scanner is
742e4900 8482probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
8483with @samp{yyclearin;}.
8484
8485@vindex YYRECOVERING
02103984
PE
8486The expression @code{YYRECOVERING ()} yields 1 when the parser
8487is recovering from a syntax error, and 0 otherwise.
8488Syntax error diagnostics are suppressed while recovering from a syntax
8489error.
bfa74976 8490
342b8b6e 8491@node Context Dependency
bfa74976
RS
8492@chapter Handling Context Dependencies
8493
8494The Bison paradigm is to parse tokens first, then group them into larger
8495syntactic units. In many languages, the meaning of a token is affected by
8496its context. Although this violates the Bison paradigm, certain techniques
8497(known as @dfn{kludges}) may enable you to write Bison parsers for such
8498languages.
8499
8500@menu
8501* Semantic Tokens:: Token parsing can depend on the semantic context.
8502* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
8503* Tie-in Recovery:: Lexical tie-ins have implications for how
8504 error recovery rules must be written.
8505@end menu
8506
8507(Actually, ``kludge'' means any technique that gets its job done but is
8508neither clean nor robust.)
8509
342b8b6e 8510@node Semantic Tokens
bfa74976
RS
8511@section Semantic Info in Token Types
8512
8513The C language has a context dependency: the way an identifier is used
8514depends on what its current meaning is. For example, consider this:
8515
8516@example
8517foo (x);
8518@end example
8519
8520This looks like a function call statement, but if @code{foo} is a typedef
8521name, then this is actually a declaration of @code{x}. How can a Bison
8522parser for C decide how to parse this input?
8523
8a4281b9 8524The method used in GNU C is to have two different token types,
bfa74976
RS
8525@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
8526identifier, it looks up the current declaration of the identifier in order
8527to decide which token type to return: @code{TYPENAME} if the identifier is
8528declared as a typedef, @code{IDENTIFIER} otherwise.
8529
8530The grammar rules can then express the context dependency by the choice of
8531token type to recognize. @code{IDENTIFIER} is accepted as an expression,
8532but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
8533@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
8534is @emph{not} significant, such as in declarations that can shadow a
8535typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
8536accepted---there is one rule for each of the two token types.
8537
8538This technique is simple to use if the decision of which kinds of
8539identifiers to allow is made at a place close to where the identifier is
8540parsed. But in C this is not always so: C allows a declaration to
8541redeclare a typedef name provided an explicit type has been specified
8542earlier:
8543
8544@example
3a4f411f
PE
8545typedef int foo, bar;
8546int baz (void)
d4fca427 8547@group
3a4f411f
PE
8548@{
8549 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
8550 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
8551 return foo (bar);
8552@}
d4fca427 8553@end group
bfa74976
RS
8554@end example
8555
8556Unfortunately, the name being declared is separated from the declaration
8557construct itself by a complicated syntactic structure---the ``declarator''.
8558
9ecbd125 8559As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
8560all the nonterminal names changed: once for parsing a declaration in
8561which a typedef name can be redefined, and once for parsing a
8562declaration in which that can't be done. Here is a part of the
8563duplication, with actions omitted for brevity:
bfa74976
RS
8564
8565@example
d4fca427 8566@group
bfa74976 8567initdcl:
5e9b6624
AD
8568 declarator maybeasm '=' init
8569| declarator maybeasm
8570;
d4fca427 8571@end group
bfa74976 8572
d4fca427 8573@group
bfa74976 8574notype_initdcl:
5e9b6624
AD
8575 notype_declarator maybeasm '=' init
8576| notype_declarator maybeasm
8577;
d4fca427 8578@end group
bfa74976
RS
8579@end example
8580
8581@noindent
8582Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
8583cannot. The distinction between @code{declarator} and
8584@code{notype_declarator} is the same sort of thing.
8585
8586There is some similarity between this technique and a lexical tie-in
8587(described next), in that information which alters the lexical analysis is
8588changed during parsing by other parts of the program. The difference is
8589here the information is global, and is used for other purposes in the
8590program. A true lexical tie-in has a special-purpose flag controlled by
8591the syntactic context.
8592
342b8b6e 8593@node Lexical Tie-ins
bfa74976
RS
8594@section Lexical Tie-ins
8595@cindex lexical tie-in
8596
8597One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
8598which is set by Bison actions, whose purpose is to alter the way tokens are
8599parsed.
8600
8601For example, suppose we have a language vaguely like C, but with a special
8602construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
8603an expression in parentheses in which all integers are hexadecimal. In
8604particular, the token @samp{a1b} must be treated as an integer rather than
8605as an identifier if it appears in that context. Here is how you can do it:
8606
8607@example
8608@group
8609%@{
38a92d50
PE
8610 int hexflag;
8611 int yylex (void);
8612 void yyerror (char const *);
bfa74976
RS
8613%@}
8614%%
8615@dots{}
8616@end group
8617@group
5e9b6624
AD
8618expr:
8619 IDENTIFIER
8620| constant
8621| HEX '(' @{ hexflag = 1; @}
8622 expr ')' @{ hexflag = 0; $$ = $4; @}
8623| expr '+' expr @{ $$ = make_sum ($1, $3); @}
8624@dots{}
8625;
bfa74976
RS
8626@end group
8627
8628@group
8629constant:
5e9b6624
AD
8630 INTEGER
8631| STRING
8632;
bfa74976
RS
8633@end group
8634@end example
8635
8636@noindent
8637Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8638it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8639with letters are parsed as integers if possible.
8640
ff7571c0
JD
8641The declaration of @code{hexflag} shown in the prologue of the grammar
8642file is needed to make it accessible to the actions (@pxref{Prologue,
8643,The Prologue}). You must also write the code in @code{yylex} to obey
8644the flag.
bfa74976 8645
342b8b6e 8646@node Tie-in Recovery
bfa74976
RS
8647@section Lexical Tie-ins and Error Recovery
8648
8649Lexical tie-ins make strict demands on any error recovery rules you have.
8650@xref{Error Recovery}.
8651
8652The reason for this is that the purpose of an error recovery rule is to
8653abort the parsing of one construct and resume in some larger construct.
8654For example, in C-like languages, a typical error recovery rule is to skip
8655tokens until the next semicolon, and then start a new statement, like this:
8656
8657@example
5e9b6624
AD
8658stmt:
8659 expr ';'
8660| IF '(' expr ')' stmt @{ @dots{} @}
8661@dots{}
8662| error ';' @{ hexflag = 0; @}
8663;
bfa74976
RS
8664@end example
8665
8666If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8667construct, this error rule will apply, and then the action for the
8668completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8669remain set for the entire rest of the input, or until the next @code{hex}
8670keyword, causing identifiers to be misinterpreted as integers.
8671
8672To avoid this problem the error recovery rule itself clears @code{hexflag}.
8673
8674There may also be an error recovery rule that works within expressions.
8675For example, there could be a rule which applies within parentheses
8676and skips to the close-parenthesis:
8677
8678@example
8679@group
5e9b6624
AD
8680expr:
8681 @dots{}
8682| '(' expr ')' @{ $$ = $2; @}
8683| '(' error ')'
8684@dots{}
bfa74976
RS
8685@end group
8686@end example
8687
8688If this rule acts within the @code{hex} construct, it is not going to abort
8689that construct (since it applies to an inner level of parentheses within
8690the construct). Therefore, it should not clear the flag: the rest of
8691the @code{hex} construct should be parsed with the flag still in effect.
8692
8693What if there is an error recovery rule which might abort out of the
8694@code{hex} construct or might not, depending on circumstances? There is no
8695way you can write the action to determine whether a @code{hex} construct is
8696being aborted or not. So if you are using a lexical tie-in, you had better
8697make sure your error recovery rules are not of this kind. Each rule must
8698be such that you can be sure that it always will, or always won't, have to
8699clear the flag.
8700
ec3bc396
AD
8701@c ================================================== Debugging Your Parser
8702
342b8b6e 8703@node Debugging
bfa74976 8704@chapter Debugging Your Parser
ec3bc396 8705
93c150b6
AD
8706Developing a parser can be a challenge, especially if you don't understand
8707the algorithm (@pxref{Algorithm, ,The Bison Parser Algorithm}). This
c949ada3
AD
8708chapter explains how understand and debug a parser.
8709
8710The first sections focus on the static part of the parser: its structure.
8711They explain how to generate and read the detailed description of the
8712automaton. There are several formats available:
8713@itemize @minus
8714@item
8715as text, see @ref{Understanding, , Understanding Your Parser};
8716
8717@item
8718as a graph, see @ref{Graphviz,, Visualizing Your Parser};
8719
8720@item
8721or as a markup report that can be turned, for instance, into HTML, see
8722@ref{Xml,, Visualizing your parser in multiple formats}.
8723@end itemize
8724
8725The last section focuses on the dynamic part of the parser: how to enable
8726and understand the parser run-time traces (@pxref{Tracing, ,Tracing Your
8727Parser}).
ec3bc396
AD
8728
8729@menu
8730* Understanding:: Understanding the structure of your parser.
fc4fdd62 8731* Graphviz:: Getting a visual representation of the parser.
9c16d399 8732* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
8733* Tracing:: Tracing the execution of your parser.
8734@end menu
8735
8736@node Understanding
8737@section Understanding Your Parser
8738
8739As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8740Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8741frequent than one would hope), looking at this automaton is required to
c949ada3 8742tune or simply fix a parser.
ec3bc396
AD
8743
8744The textual file is generated when the options @option{--report} or
e3fd1dcb 8745@option{--verbose} are specified, see @ref{Invocation, , Invoking
ec3bc396 8746Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
8747the parser implementation file name, and adding @samp{.output}
8748instead. Therefore, if the grammar file is @file{foo.y}, then the
8749parser implementation file is called @file{foo.tab.c} by default. As
8750a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8751
8752The following grammar file, @file{calc.y}, will be used in the sequel:
8753
8754@example
8755%token NUM STR
c949ada3 8756@group
ec3bc396
AD
8757%left '+' '-'
8758%left '*'
c949ada3 8759@end group
ec3bc396 8760%%
c949ada3 8761@group
5e9b6624
AD
8762exp:
8763 exp '+' exp
8764| exp '-' exp
8765| exp '*' exp
8766| exp '/' exp
8767| NUM
8768;
c949ada3 8769@end group
ec3bc396
AD
8770useless: STR;
8771%%
8772@end example
8773
88bce5a2
AD
8774@command{bison} reports:
8775
8776@example
8f0d265e
JD
8777calc.y: warning: 1 nonterminal useless in grammar
8778calc.y: warning: 1 rule useless in grammar
c949ada3
AD
8779calc.y:12.1-7: warning: nonterminal useless in grammar: useless
8780calc.y:12.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8781calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8782@end example
8783
8784When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8785creates a file @file{calc.output} with contents detailed below. The
8786order of the output and the exact presentation might vary, but the
8787interpretation is the same.
ec3bc396 8788
ec3bc396
AD
8789@noindent
8790@cindex token, useless
8791@cindex useless token
8792@cindex nonterminal, useless
8793@cindex useless nonterminal
8794@cindex rule, useless
8795@cindex useless rule
62243aa5 8796The first section reports useless tokens, nonterminals and rules. Useless
29e20e22
AD
8797nonterminals and rules are removed in order to produce a smaller parser, but
8798useless tokens are preserved, since they might be used by the scanner (note
8799the difference between ``useless'' and ``unused'' below):
ec3bc396
AD
8800
8801@example
29e20e22 8802Nonterminals useless in grammar
ec3bc396
AD
8803 useless
8804
29e20e22 8805Terminals unused in grammar
ec3bc396
AD
8806 STR
8807
29e20e22
AD
8808Rules useless in grammar
8809 6 useless: STR
ec3bc396
AD
8810@end example
8811
8812@noindent
29e20e22
AD
8813The next section lists states that still have conflicts.
8814
8815@example
8816State 8 conflicts: 1 shift/reduce
8817State 9 conflicts: 1 shift/reduce
8818State 10 conflicts: 1 shift/reduce
8819State 11 conflicts: 4 shift/reduce
8820@end example
8821
8822@noindent
8823Then Bison reproduces the exact grammar it used:
ec3bc396
AD
8824
8825@example
8826Grammar
8827
29e20e22
AD
8828 0 $accept: exp $end
8829
8830 1 exp: exp '+' exp
8831 2 | exp '-' exp
8832 3 | exp '*' exp
8833 4 | exp '/' exp
8834 5 | NUM
ec3bc396
AD
8835@end example
8836
8837@noindent
8838and reports the uses of the symbols:
8839
8840@example
d4fca427 8841@group
ec3bc396
AD
8842Terminals, with rules where they appear
8843
88bce5a2 8844$end (0) 0
ec3bc396
AD
8845'*' (42) 3
8846'+' (43) 1
8847'-' (45) 2
8848'/' (47) 4
8849error (256)
8850NUM (258) 5
29e20e22 8851STR (259)
d4fca427 8852@end group
ec3bc396 8853
d4fca427 8854@group
ec3bc396
AD
8855Nonterminals, with rules where they appear
8856
29e20e22 8857$accept (9)
ec3bc396 8858 on left: 0
29e20e22 8859exp (10)
ec3bc396 8860 on left: 1 2 3 4 5, on right: 0 1 2 3 4
d4fca427 8861@end group
ec3bc396
AD
8862@end example
8863
8864@noindent
8865@cindex item
8866@cindex pointed rule
8867@cindex rule, pointed
8868Bison then proceeds onto the automaton itself, describing each state
35880c82
PE
8869with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
8870item is a production rule together with a point (@samp{.}) marking
8871the location of the input cursor.
ec3bc396
AD
8872
8873@example
c949ada3 8874State 0
ec3bc396 8875
29e20e22 8876 0 $accept: . exp $end
ec3bc396 8877
29e20e22 8878 NUM shift, and go to state 1
ec3bc396 8879
29e20e22 8880 exp go to state 2
ec3bc396
AD
8881@end example
8882
8883This reads as follows: ``state 0 corresponds to being at the very
8884beginning of the parsing, in the initial rule, right before the start
8885symbol (here, @code{exp}). When the parser returns to this state right
8886after having reduced a rule that produced an @code{exp}, the control
8887flow jumps to state 2. If there is no such transition on a nonterminal
35880c82 8888symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 8889the parse stack, and the control flow jumps to state 1. Any other
742e4900 8890lookahead triggers a syntax error.''
ec3bc396
AD
8891
8892@cindex core, item set
8893@cindex item set core
8894@cindex kernel, item set
8895@cindex item set core
8896Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8897report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8898at the beginning of any rule deriving an @code{exp}. By default Bison
8899reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8900you want to see more detail you can invoke @command{bison} with
35880c82 8901@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
8902
8903@example
c949ada3 8904State 0
ec3bc396 8905
29e20e22
AD
8906 0 $accept: . exp $end
8907 1 exp: . exp '+' exp
8908 2 | . exp '-' exp
8909 3 | . exp '*' exp
8910 4 | . exp '/' exp
8911 5 | . NUM
ec3bc396 8912
29e20e22 8913 NUM shift, and go to state 1
ec3bc396 8914
29e20e22 8915 exp go to state 2
ec3bc396
AD
8916@end example
8917
8918@noindent
29e20e22 8919In the state 1@dots{}
ec3bc396
AD
8920
8921@example
c949ada3 8922State 1
ec3bc396 8923
29e20e22 8924 5 exp: NUM .
ec3bc396 8925
29e20e22 8926 $default reduce using rule 5 (exp)
ec3bc396
AD
8927@end example
8928
8929@noindent
742e4900 8930the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396 8931(@samp{$default}), the parser will reduce it. If it was coming from
c949ada3 8932State 0, then, after this reduction it will return to state 0, and will
ec3bc396
AD
8933jump to state 2 (@samp{exp: go to state 2}).
8934
8935@example
c949ada3 8936State 2
ec3bc396 8937
29e20e22
AD
8938 0 $accept: exp . $end
8939 1 exp: exp . '+' exp
8940 2 | exp . '-' exp
8941 3 | exp . '*' exp
8942 4 | exp . '/' exp
ec3bc396 8943
29e20e22
AD
8944 $end shift, and go to state 3
8945 '+' shift, and go to state 4
8946 '-' shift, and go to state 5
8947 '*' shift, and go to state 6
8948 '/' shift, and go to state 7
ec3bc396
AD
8949@end example
8950
8951@noindent
8952In state 2, the automaton can only shift a symbol. For instance,
29e20e22 8953because of the item @samp{exp: exp . '+' exp}, if the lookahead is
35880c82 8954@samp{+} it is shifted onto the parse stack, and the automaton
29e20e22 8955jumps to state 4, corresponding to the item @samp{exp: exp '+' . exp}.
35880c82
PE
8956Since there is no default action, any lookahead not listed triggers a syntax
8957error.
ec3bc396 8958
eb45ef3b 8959@cindex accepting state
ec3bc396
AD
8960The state 3 is named the @dfn{final state}, or the @dfn{accepting
8961state}:
8962
8963@example
c949ada3 8964State 3
ec3bc396 8965
29e20e22 8966 0 $accept: exp $end .
ec3bc396 8967
29e20e22 8968 $default accept
ec3bc396
AD
8969@end example
8970
8971@noindent
29e20e22
AD
8972the initial rule is completed (the start symbol and the end-of-input were
8973read), the parsing exits successfully.
ec3bc396
AD
8974
8975The interpretation of states 4 to 7 is straightforward, and is left to
8976the reader.
8977
8978@example
c949ada3 8979State 4
ec3bc396 8980
29e20e22 8981 1 exp: exp '+' . exp
ec3bc396 8982
29e20e22
AD
8983 NUM shift, and go to state 1
8984
8985 exp go to state 8
ec3bc396 8986
ec3bc396 8987
c949ada3 8988State 5
ec3bc396 8989
29e20e22
AD
8990 2 exp: exp '-' . exp
8991
8992 NUM shift, and go to state 1
ec3bc396 8993
29e20e22 8994 exp go to state 9
ec3bc396 8995
ec3bc396 8996
c949ada3 8997State 6
ec3bc396 8998
29e20e22 8999 3 exp: exp '*' . exp
ec3bc396 9000
29e20e22
AD
9001 NUM shift, and go to state 1
9002
9003 exp go to state 10
ec3bc396 9004
ec3bc396 9005
c949ada3 9006State 7
ec3bc396 9007
29e20e22 9008 4 exp: exp '/' . exp
ec3bc396 9009
29e20e22 9010 NUM shift, and go to state 1
ec3bc396 9011
29e20e22 9012 exp go to state 11
ec3bc396
AD
9013@end example
9014
5a99098d
PE
9015As was announced in beginning of the report, @samp{State 8 conflicts:
90161 shift/reduce}:
ec3bc396
AD
9017
9018@example
c949ada3 9019State 8
ec3bc396 9020
29e20e22
AD
9021 1 exp: exp . '+' exp
9022 1 | exp '+' exp .
9023 2 | exp . '-' exp
9024 3 | exp . '*' exp
9025 4 | exp . '/' exp
ec3bc396 9026
29e20e22
AD
9027 '*' shift, and go to state 6
9028 '/' shift, and go to state 7
ec3bc396 9029
29e20e22
AD
9030 '/' [reduce using rule 1 (exp)]
9031 $default reduce using rule 1 (exp)
ec3bc396
AD
9032@end example
9033
742e4900 9034Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
9035either shifting (and going to state 7), or reducing rule 1. The
9036conflict means that either the grammar is ambiguous, or the parser lacks
9037information to make the right decision. Indeed the grammar is
9038ambiguous, as, since we did not specify the precedence of @samp{/}, the
9039sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
9040NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
9041NUM}, which corresponds to reducing rule 1.
9042
eb45ef3b 9043Because in deterministic parsing a single decision can be made, Bison
ec3bc396 9044arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
29e20e22 9045Shift/Reduce Conflicts}. Discarded actions are reported between
ec3bc396
AD
9046square brackets.
9047
9048Note that all the previous states had a single possible action: either
9049shifting the next token and going to the corresponding state, or
9050reducing a single rule. In the other cases, i.e., when shifting
9051@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
9052possible, the lookahead is required to select the action. State 8 is
9053one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
9054is shifting, otherwise the action is reducing rule 1. In other words,
9055the first two items, corresponding to rule 1, are not eligible when the
742e4900 9056lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 9057precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
9058with some set of possible lookahead tokens. When run with
9059@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
9060
9061@example
c949ada3 9062State 8
ec3bc396 9063
29e20e22
AD
9064 1 exp: exp . '+' exp
9065 1 | exp '+' exp . [$end, '+', '-', '/']
9066 2 | exp . '-' exp
9067 3 | exp . '*' exp
9068 4 | exp . '/' exp
9069
9070 '*' shift, and go to state 6
9071 '/' shift, and go to state 7
ec3bc396 9072
29e20e22
AD
9073 '/' [reduce using rule 1 (exp)]
9074 $default reduce using rule 1 (exp)
9075@end example
9076
9077Note however that while @samp{NUM + NUM / NUM} is ambiguous (which results in
9078the conflicts on @samp{/}), @samp{NUM + NUM * NUM} is not: the conflict was
9079solved thanks to associativity and precedence directives. If invoked with
9080@option{--report=solved}, Bison includes information about the solved
9081conflicts in the report:
ec3bc396 9082
29e20e22
AD
9083@example
9084Conflict between rule 1 and token '+' resolved as reduce (%left '+').
9085Conflict between rule 1 and token '-' resolved as reduce (%left '-').
9086Conflict between rule 1 and token '*' resolved as shift ('+' < '*').
ec3bc396
AD
9087@end example
9088
29e20e22 9089
ec3bc396
AD
9090The remaining states are similar:
9091
9092@example
d4fca427 9093@group
c949ada3 9094State 9
ec3bc396 9095
29e20e22
AD
9096 1 exp: exp . '+' exp
9097 2 | exp . '-' exp
9098 2 | exp '-' exp .
9099 3 | exp . '*' exp
9100 4 | exp . '/' exp
ec3bc396 9101
29e20e22
AD
9102 '*' shift, and go to state 6
9103 '/' shift, and go to state 7
ec3bc396 9104
29e20e22
AD
9105 '/' [reduce using rule 2 (exp)]
9106 $default reduce using rule 2 (exp)
d4fca427 9107@end group
ec3bc396 9108
d4fca427 9109@group
c949ada3 9110State 10
ec3bc396 9111
29e20e22
AD
9112 1 exp: exp . '+' exp
9113 2 | exp . '-' exp
9114 3 | exp . '*' exp
9115 3 | exp '*' exp .
9116 4 | exp . '/' exp
ec3bc396 9117
29e20e22 9118 '/' shift, and go to state 7
ec3bc396 9119
29e20e22
AD
9120 '/' [reduce using rule 3 (exp)]
9121 $default reduce using rule 3 (exp)
d4fca427 9122@end group
ec3bc396 9123
d4fca427 9124@group
c949ada3 9125State 11
ec3bc396 9126
29e20e22
AD
9127 1 exp: exp . '+' exp
9128 2 | exp . '-' exp
9129 3 | exp . '*' exp
9130 4 | exp . '/' exp
9131 4 | exp '/' exp .
9132
9133 '+' shift, and go to state 4
9134 '-' shift, and go to state 5
9135 '*' shift, and go to state 6
9136 '/' shift, and go to state 7
9137
9138 '+' [reduce using rule 4 (exp)]
9139 '-' [reduce using rule 4 (exp)]
9140 '*' [reduce using rule 4 (exp)]
9141 '/' [reduce using rule 4 (exp)]
9142 $default reduce using rule 4 (exp)
d4fca427 9143@end group
ec3bc396
AD
9144@end example
9145
9146@noindent
fa7e68c3 9147Observe that state 11 contains conflicts not only due to the lack of
c949ada3
AD
9148precedence of @samp{/} with respect to @samp{+}, @samp{-}, and @samp{*}, but
9149also because the associativity of @samp{/} is not specified.
ec3bc396 9150
c949ada3
AD
9151Bison may also produce an HTML version of this output, via an XML file and
9152XSLT processing (@pxref{Xml,,Visualizing your parser in multiple formats}).
9c16d399 9153
fc4fdd62
TR
9154@c ================================================= Graphical Representation
9155
9156@node Graphviz
9157@section Visualizing Your Parser
9158@cindex dot
9159
9160As another means to gain better understanding of the shift/reduce
9161automaton corresponding to the Bison parser, a DOT file can be generated. Note
9162that debugging a real grammar with this is tedious at best, and impractical
9163most of the times, because the generated files are huge (the generation of
9164a PDF or PNG file from it will take very long, and more often than not it will
9165fail due to memory exhaustion). This option was rather designed for beginners,
9166to help them understand LR parsers.
9167
bfdcc3a0
AD
9168This file is generated when the @option{--graph} option is specified
9169(@pxref{Invocation, , Invoking Bison}). Its name is made by removing
fc4fdd62
TR
9170@samp{.tab.c} or @samp{.c} from the parser implementation file name, and
9171adding @samp{.dot} instead. If the grammar file is @file{foo.y}, the
c949ada3
AD
9172Graphviz output file is called @file{foo.dot}. A DOT file may also be
9173produced via an XML file and XSLT processing (@pxref{Xml,,Visualizing your
9174parser in multiple formats}).
9175
fc4fdd62
TR
9176
9177The following grammar file, @file{rr.y}, will be used in the sequel:
9178
9179@example
9180%%
9181@group
9182exp: a ";" | b ".";
9183a: "0";
9184b: "0";
9185@end group
9186@end example
9187
c949ada3
AD
9188The graphical output
9189@ifnotinfo
9190(see @ref{fig:graph})
9191@end ifnotinfo
9192is very similar to the textual one, and as such it is easier understood by
9193making direct comparisons between them. @xref{Debugging, , Debugging Your
9194Parser}, for a detailled analysis of the textual report.
9195
9196@ifnotinfo
9197@float Figure,fig:graph
9198@image{figs/example, 430pt}
9199@caption{A graphical rendering of the parser.}
9200@end float
9201@end ifnotinfo
fc4fdd62
TR
9202
9203@subheading Graphical Representation of States
9204
9205The items (pointed rules) for each state are grouped together in graph nodes.
9206Their numbering is the same as in the verbose file. See the following points,
9207about transitions, for examples
9208
9209When invoked with @option{--report=lookaheads}, the lookahead tokens, when
9210needed, are shown next to the relevant rule between square brackets as a
9211comma separated list. This is the case in the figure for the representation of
9212reductions, below.
9213
9214@sp 1
9215
9216The transitions are represented as directed edges between the current and
9217the target states.
9218
9219@subheading Graphical Representation of Shifts
9220
9221Shifts are shown as solid arrows, labelled with the lookahead token for that
9222shift. The following describes a reduction in the @file{rr.output} file:
9223
9224@example
9225@group
c949ada3 9226State 3
fc4fdd62
TR
9227
9228 1 exp: a . ";"
9229
9230 ";" shift, and go to state 6
9231@end group
9232@end example
9233
9234A Graphviz rendering of this portion of the graph could be:
9235
9236@center @image{figs/example-shift, 100pt}
9237
9238@subheading Graphical Representation of Reductions
9239
9240Reductions are shown as solid arrows, leading to a diamond-shaped node
9241bearing the number of the reduction rule. The arrow is labelled with the
9242appropriate comma separated lookahead tokens. If the reduction is the default
9243action for the given state, there is no such label.
9244
9245This is how reductions are represented in the verbose file @file{rr.output}:
9246@example
c949ada3 9247State 1
fc4fdd62
TR
9248
9249 3 a: "0" . [";"]
9250 4 b: "0" . ["."]
9251
9252 "." reduce using rule 4 (b)
9253 $default reduce using rule 3 (a)
9254@end example
9255
9256A Graphviz rendering of this portion of the graph could be:
9257
9258@center @image{figs/example-reduce, 120pt}
9259
9260When unresolved conflicts are present, because in deterministic parsing
9261a single decision can be made, Bison can arbitrarily choose to disable a
9262reduction, see @ref{Shift/Reduce, , Shift/Reduce Conflicts}. Discarded actions
9263are distinguished by a red filling color on these nodes, just like how they are
9264reported between square brackets in the verbose file.
9265
c949ada3
AD
9266The reduction corresponding to the rule number 0 is the acceptation
9267state. It is shown as a blue diamond, labelled ``Acc''.
fc4fdd62
TR
9268
9269@subheading Graphical representation of go tos
9270
9271The @samp{go to} jump transitions are represented as dotted lines bearing
9272the name of the rule being jumped to.
9273
9c16d399
TR
9274@c ================================================= XML
9275
9276@node Xml
9277@section Visualizing your parser in multiple formats
9278@cindex xml
9279
9280Bison supports two major report formats: textual output
c949ada3
AD
9281(@pxref{Understanding, ,Understanding Your Parser}) when invoked
9282with option @option{--verbose}, and DOT
9283(@pxref{Graphviz,, Visualizing Your Parser}) when invoked with
9284option @option{--graph}. However,
9c16d399
TR
9285another alternative is to output an XML file that may then be, with
9286@command{xsltproc}, rendered as either a raw text format equivalent to the
9287verbose file, or as an HTML version of the same file, with clickable
9288transitions, or even as a DOT. The @file{.output} and DOT files obtained via
be3517b0
TR
9289XSLT have no difference whatsoever with those obtained by invoking
9290@command{bison} with options @option{--verbose} or @option{--graph}.
9c16d399 9291
c949ada3 9292The XML file is generated when the options @option{-x} or
9c16d399
TR
9293@option{--xml[=FILE]} are specified, see @ref{Invocation,,Invoking Bison}.
9294If not specified, its name is made by removing @samp{.tab.c} or @samp{.c}
9295from the parser implementation file name, and adding @samp{.xml} instead.
9296For instance, if the grammar file is @file{foo.y}, the default XML output
9297file is @file{foo.xml}.
9298
9299Bison ships with a @file{data/xslt} directory, containing XSL Transformation
9300files to apply to the XML file. Their names are non-ambiguous:
9301
9302@table @file
9303@item xml2dot.xsl
be3517b0 9304Used to output a copy of the DOT visualization of the automaton.
9c16d399 9305@item xml2text.xsl
c949ada3 9306Used to output a copy of the @samp{.output} file.
9c16d399 9307@item xml2xhtml.xsl
c949ada3 9308Used to output an xhtml enhancement of the @samp{.output} file.
9c16d399
TR
9309@end table
9310
c949ada3 9311Sample usage (requires @command{xsltproc}):
9c16d399 9312@example
c949ada3 9313$ bison -x gr.y
9c16d399
TR
9314@group
9315$ bison --print-datadir
9316/usr/local/share/bison
9317@end group
c949ada3 9318$ xsltproc /usr/local/share/bison/xslt/xml2xhtml.xsl gr.xml >gr.html
9c16d399
TR
9319@end example
9320
fc4fdd62 9321@c ================================================= Tracing
ec3bc396
AD
9322
9323@node Tracing
9324@section Tracing Your Parser
bfa74976
RS
9325@findex yydebug
9326@cindex debugging
9327@cindex tracing the parser
9328
93c150b6
AD
9329When a Bison grammar compiles properly but parses ``incorrectly'', the
9330@code{yydebug} parser-trace feature helps figuring out why.
9331
9332@menu
9333* Enabling Traces:: Activating run-time trace support
9334* Mfcalc Traces:: Extending @code{mfcalc} to support traces
9335* The YYPRINT Macro:: Obsolete interface for semantic value reports
9336@end menu
bfa74976 9337
93c150b6
AD
9338@node Enabling Traces
9339@subsection Enabling Traces
3ded9a63
AD
9340There are several means to enable compilation of trace facilities:
9341
9342@table @asis
9343@item the macro @code{YYDEBUG}
9344@findex YYDEBUG
9345Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 9346parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
9347@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
9348YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
9349Prologue}).
9350
e6ae99fe 9351If the @code{%define} variable @code{api.prefix} is used (@pxref{Multiple
e358222b
AD
9352Parsers, ,Multiple Parsers in the Same Program}), for instance @samp{%define
9353api.prefix x}, then if @code{CDEBUG} is defined, its value controls the
5a05f42e
AD
9354tracing feature (enabled if and only if nonzero); otherwise tracing is
9355enabled if and only if @code{YYDEBUG} is nonzero.
e358222b
AD
9356
9357@item the option @option{-t} (POSIX Yacc compliant)
9358@itemx the option @option{--debug} (Bison extension)
9359Use the @samp{-t} option when you run Bison (@pxref{Invocation, ,Invoking
9360Bison}). With @samp{%define api.prefix c}, it defines @code{CDEBUG} to 1,
9361otherwise it defines @code{YYDEBUG} to 1.
3ded9a63
AD
9362
9363@item the directive @samp{%debug}
9364@findex %debug
fa819509
AD
9365Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
9366Summary}). This Bison extension is maintained for backward
9367compatibility with previous versions of Bison.
9368
9369@item the variable @samp{parse.trace}
9370@findex %define parse.trace
35c1e5f0
JD
9371Add the @samp{%define parse.trace} directive (@pxref{%define
9372Summary,,parse.trace}), or pass the @option{-Dparse.trace} option
fa819509 9373(@pxref{Bison Options}). This is a Bison extension, which is especially
35c1e5f0
JD
9374useful for languages that don't use a preprocessor. Unless POSIX and Yacc
9375portability matter to you, this is the preferred solution.
3ded9a63
AD
9376@end table
9377
fa819509 9378We suggest that you always enable the trace option so that debugging is
3ded9a63 9379always possible.
bfa74976 9380
93c150b6 9381@findex YYFPRINTF
02a81e05 9382The trace facility outputs messages with macro calls of the form
e2742e46 9383@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 9384@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
9385arguments. If you define @code{YYDEBUG} to a nonzero value but do not
9386define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 9387and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
9388
9389Once you have compiled the program with trace facilities, the way to
9390request a trace is to store a nonzero value in the variable @code{yydebug}.
9391You can do this by making the C code do it (in @code{main}, perhaps), or
9392you can alter the value with a C debugger.
9393
9394Each step taken by the parser when @code{yydebug} is nonzero produces a
9395line or two of trace information, written on @code{stderr}. The trace
9396messages tell you these things:
9397
9398@itemize @bullet
9399@item
9400Each time the parser calls @code{yylex}, what kind of token was read.
9401
9402@item
9403Each time a token is shifted, the depth and complete contents of the
9404state stack (@pxref{Parser States}).
9405
9406@item
9407Each time a rule is reduced, which rule it is, and the complete contents
9408of the state stack afterward.
9409@end itemize
9410
93c150b6
AD
9411To make sense of this information, it helps to refer to the automaton
9412description file (@pxref{Understanding, ,Understanding Your Parser}).
9413This file shows the meaning of each state in terms of
704a47c4
AD
9414positions in various rules, and also what each state will do with each
9415possible input token. As you read the successive trace messages, you
9416can see that the parser is functioning according to its specification in
9417the listing file. Eventually you will arrive at the place where
9418something undesirable happens, and you will see which parts of the
9419grammar are to blame.
bfa74976 9420
93c150b6 9421The parser implementation file is a C/C++/Java program and you can use
ff7571c0
JD
9422debuggers on it, but it's not easy to interpret what it is doing. The
9423parser function is a finite-state machine interpreter, and aside from
9424the actions it executes the same code over and over. Only the values
9425of variables show where in the grammar it is working.
bfa74976 9426
93c150b6
AD
9427@node Mfcalc Traces
9428@subsection Enabling Debug Traces for @code{mfcalc}
9429
9430The debugging information normally gives the token type of each token read,
9431but not its semantic value. The @code{%printer} directive allows specify
9432how semantic values are reported, see @ref{Printer Decl, , Printing
9433Semantic Values}. For backward compatibility, Yacc like C parsers may also
9434use the @code{YYPRINT} (@pxref{The YYPRINT Macro, , The @code{YYPRINT}
9435Macro}), but its use is discouraged.
9436
9437As a demonstration of @code{%printer}, consider the multi-function
9438calculator, @code{mfcalc} (@pxref{Multi-function Calc}). To enable run-time
9439traces, and semantic value reports, insert the following directives in its
9440prologue:
9441
9442@comment file: mfcalc.y: 2
9443@example
9444/* Generate the parser description file. */
9445%verbose
9446/* Enable run-time traces (yydebug). */
9447%define parse.trace
9448
9449/* Formatting semantic values. */
9450%printer @{ fprintf (yyoutput, "%s", $$->name); @} VAR;
9451%printer @{ fprintf (yyoutput, "%s()", $$->name); @} FNCT;
9452%printer @{ fprintf (yyoutput, "%g", $$); @} <val>;
9453@end example
9454
9455The @code{%define} directive instructs Bison to generate run-time trace
9456support. Then, activation of these traces is controlled at run-time by the
9457@code{yydebug} variable, which is disabled by default. Because these traces
9458will refer to the ``states'' of the parser, it is helpful to ask for the
9459creation of a description of that parser; this is the purpose of (admittedly
9460ill-named) @code{%verbose} directive.
9461
9462The set of @code{%printer} directives demonstrates how to format the
9463semantic value in the traces. Note that the specification can be done
9464either on the symbol type (e.g., @code{VAR} or @code{FNCT}), or on the type
9465tag: since @code{<val>} is the type for both @code{NUM} and @code{exp}, this
9466printer will be used for them.
9467
9468Here is a sample of the information provided by run-time traces. The traces
9469are sent onto standard error.
9470
9471@example
9472$ @kbd{echo 'sin(1-1)' | ./mfcalc -p}
9473Starting parse
9474Entering state 0
9475Reducing stack by rule 1 (line 34):
9476-> $$ = nterm input ()
9477Stack now 0
9478Entering state 1
9479@end example
9480
9481@noindent
9482This first batch shows a specific feature of this grammar: the first rule
9483(which is in line 34 of @file{mfcalc.y} can be reduced without even having
9484to look for the first token. The resulting left-hand symbol (@code{$$}) is
9485a valueless (@samp{()}) @code{input} non terminal (@code{nterm}).
9486
9487Then the parser calls the scanner.
9488@example
9489Reading a token: Next token is token FNCT (sin())
9490Shifting token FNCT (sin())
9491Entering state 6
9492@end example
9493
9494@noindent
9495That token (@code{token}) is a function (@code{FNCT}) whose value is
9496@samp{sin} as formatted per our @code{%printer} specification: @samp{sin()}.
9497The parser stores (@code{Shifting}) that token, and others, until it can do
9498something about it.
9499
9500@example
9501Reading a token: Next token is token '(' ()
9502Shifting token '(' ()
9503Entering state 14
9504Reading a token: Next token is token NUM (1.000000)
9505Shifting token NUM (1.000000)
9506Entering state 4
9507Reducing stack by rule 6 (line 44):
9508 $1 = token NUM (1.000000)
9509-> $$ = nterm exp (1.000000)
9510Stack now 0 1 6 14
9511Entering state 24
9512@end example
9513
9514@noindent
9515The previous reduction demonstrates the @code{%printer} directive for
c949ada3 9516@code{<val>}: both the token @code{NUM} and the resulting nonterminal
93c150b6
AD
9517@code{exp} have @samp{1} as value.
9518
9519@example
9520Reading a token: Next token is token '-' ()
9521Shifting token '-' ()
9522Entering state 17
9523Reading a token: Next token is token NUM (1.000000)
9524Shifting token NUM (1.000000)
9525Entering state 4
9526Reducing stack by rule 6 (line 44):
9527 $1 = token NUM (1.000000)
9528-> $$ = nterm exp (1.000000)
9529Stack now 0 1 6 14 24 17
9530Entering state 26
9531Reading a token: Next token is token ')' ()
9532Reducing stack by rule 11 (line 49):
9533 $1 = nterm exp (1.000000)
9534 $2 = token '-' ()
9535 $3 = nterm exp (1.000000)
9536-> $$ = nterm exp (0.000000)
9537Stack now 0 1 6 14
9538Entering state 24
9539@end example
9540
9541@noindent
9542The rule for the subtraction was just reduced. The parser is about to
9543discover the end of the call to @code{sin}.
9544
9545@example
9546Next token is token ')' ()
9547Shifting token ')' ()
9548Entering state 31
9549Reducing stack by rule 9 (line 47):
9550 $1 = token FNCT (sin())
9551 $2 = token '(' ()
9552 $3 = nterm exp (0.000000)
9553 $4 = token ')' ()
9554-> $$ = nterm exp (0.000000)
9555Stack now 0 1
9556Entering state 11
9557@end example
9558
9559@noindent
9560Finally, the end-of-line allow the parser to complete the computation, and
9561display its result.
9562
9563@example
9564Reading a token: Next token is token '\n' ()
9565Shifting token '\n' ()
9566Entering state 22
9567Reducing stack by rule 4 (line 40):
9568 $1 = nterm exp (0.000000)
9569 $2 = token '\n' ()
9570@result{} 0
9571-> $$ = nterm line ()
9572Stack now 0 1
9573Entering state 10
9574Reducing stack by rule 2 (line 35):
9575 $1 = nterm input ()
9576 $2 = nterm line ()
9577-> $$ = nterm input ()
9578Stack now 0
9579Entering state 1
9580@end example
9581
9582The parser has returned into state 1, in which it is waiting for the next
9583expression to evaluate, or for the end-of-file token, which causes the
9584completion of the parsing.
9585
9586@example
9587Reading a token: Now at end of input.
9588Shifting token $end ()
9589Entering state 2
9590Stack now 0 1 2
9591Cleanup: popping token $end ()
9592Cleanup: popping nterm input ()
9593@end example
9594
9595
9596@node The YYPRINT Macro
9597@subsection The @code{YYPRINT} Macro
9598
bfa74976 9599@findex YYPRINT
93c150b6
AD
9600Before @code{%printer} support, semantic values could be displayed using the
9601@code{YYPRINT} macro, which works only for terminal symbols and only with
9602the @file{yacc.c} skeleton.
9603
9604@deffn {Macro} YYPRINT (@var{stream}, @var{token}, @var{value});
9605@findex YYPRINT
9606If you define @code{YYPRINT}, it should take three arguments. The parser
9607will pass a standard I/O stream, the numeric code for the token type, and
9608the token value (from @code{yylval}).
9609
9610For @file{yacc.c} only. Obsoleted by @code{%printer}.
9611@end deffn
bfa74976
RS
9612
9613Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 9614calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976 9615
c93f22fc 9616@example
38a92d50
PE
9617%@{
9618 static void print_token_value (FILE *, int, YYSTYPE);
93c150b6
AD
9619 #define YYPRINT(File, Type, Value) \
9620 print_token_value (File, Type, Value)
38a92d50
PE
9621%@}
9622
9623@dots{} %% @dots{} %% @dots{}
bfa74976
RS
9624
9625static void
831d3c99 9626print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
9627@{
9628 if (type == VAR)
d3c4e709 9629 fprintf (file, "%s", value.tptr->name);
bfa74976 9630 else if (type == NUM)
d3c4e709 9631 fprintf (file, "%d", value.val);
bfa74976 9632@}
c93f22fc 9633@end example
bfa74976 9634
ec3bc396
AD
9635@c ================================================= Invoking Bison
9636
342b8b6e 9637@node Invocation
bfa74976
RS
9638@chapter Invoking Bison
9639@cindex invoking Bison
9640@cindex Bison invocation
9641@cindex options for invoking Bison
9642
9643The usual way to invoke Bison is as follows:
9644
9645@example
9646bison @var{infile}
9647@end example
9648
9649Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
9650@samp{.y}. The parser implementation file's name is made by replacing
9651the @samp{.y} with @samp{.tab.c} and removing any leading directory.
9652Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
9653the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
9654also possible, in case you are writing C++ code instead of C in your
9655grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
9656output files will take an extension like the given one as input
9657(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
9658feature takes effect with all options that manipulate file names like
234a3be3
AD
9659@samp{-o} or @samp{-d}.
9660
9661For example :
9662
9663@example
9664bison -d @var{infile.yxx}
9665@end example
84163231 9666@noindent
72d2299c 9667will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
9668
9669@example
b56471a6 9670bison -d -o @var{output.c++} @var{infile.y}
234a3be3 9671@end example
84163231 9672@noindent
234a3be3
AD
9673will produce @file{output.c++} and @file{outfile.h++}.
9674
8a4281b9 9675For compatibility with POSIX, the standard Bison
397ec073
PE
9676distribution also contains a shell script called @command{yacc} that
9677invokes Bison with the @option{-y} option.
9678
bfa74976 9679@menu
13863333 9680* Bison Options:: All the options described in detail,
c827f760 9681 in alphabetical order by short options.
bfa74976 9682* Option Cross Key:: Alphabetical list of long options.
93dd49ab 9683* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
9684@end menu
9685
342b8b6e 9686@node Bison Options
bfa74976
RS
9687@section Bison Options
9688
9689Bison supports both traditional single-letter options and mnemonic long
9690option names. Long option names are indicated with @samp{--} instead of
9691@samp{-}. Abbreviations for option names are allowed as long as they
9692are unique. When a long option takes an argument, like
9693@samp{--file-prefix}, connect the option name and the argument with
9694@samp{=}.
9695
9696Here is a list of options that can be used with Bison, alphabetized by
9697short option. It is followed by a cross key alphabetized by long
9698option.
9699
89cab50d
AD
9700@c Please, keep this ordered as in `bison --help'.
9701@noindent
9702Operations modes:
9703@table @option
9704@item -h
9705@itemx --help
9706Print a summary of the command-line options to Bison and exit.
bfa74976 9707
89cab50d
AD
9708@item -V
9709@itemx --version
9710Print the version number of Bison and exit.
bfa74976 9711
f7ab6a50
PE
9712@item --print-localedir
9713Print the name of the directory containing locale-dependent data.
9714
a0de5091
JD
9715@item --print-datadir
9716Print the name of the directory containing skeletons and XSLT.
9717
89cab50d
AD
9718@item -y
9719@itemx --yacc
ff7571c0
JD
9720Act more like the traditional Yacc command. This can cause different
9721diagnostics to be generated, and may change behavior in other minor
9722ways. Most importantly, imitate Yacc's output file name conventions,
9723so that the parser implementation file is called @file{y.tab.c}, and
9724the other outputs are called @file{y.output} and @file{y.tab.h}.
9725Also, if generating a deterministic parser in C, generate
9726@code{#define} statements in addition to an @code{enum} to associate
9727token numbers with token names. Thus, the following shell script can
9728substitute for Yacc, and the Bison distribution contains such a script
9729for compatibility with POSIX:
bfa74976 9730
89cab50d 9731@example
397ec073 9732#! /bin/sh
26e06a21 9733bison -y "$@@"
89cab50d 9734@end example
54662697
PE
9735
9736The @option{-y}/@option{--yacc} option is intended for use with
9737traditional Yacc grammars. If your grammar uses a Bison extension
9738like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
9739this option is specified.
9740
1d5b3c08
JD
9741@item -W [@var{category}]
9742@itemx --warnings[=@var{category}]
118d4978
AD
9743Output warnings falling in @var{category}. @var{category} can be one
9744of:
9745@table @code
9746@item midrule-values
8e55b3aa
JD
9747Warn about mid-rule values that are set but not used within any of the actions
9748of the parent rule.
9749For example, warn about unused @code{$2} in:
118d4978
AD
9750
9751@example
9752exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
9753@end example
9754
8e55b3aa
JD
9755Also warn about mid-rule values that are used but not set.
9756For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
9757
9758@example
5e9b6624 9759exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
118d4978
AD
9760@end example
9761
9762These warnings are not enabled by default since they sometimes prove to
9763be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 9764@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 9765
118d4978 9766@item yacc
8a4281b9 9767Incompatibilities with POSIX Yacc.
118d4978 9768
786743d5
JD
9769@item conflicts-sr
9770@itemx conflicts-rr
9771S/R and R/R conflicts. These warnings are enabled by default. However, if
9772the @code{%expect} or @code{%expect-rr} directive is specified, an
9773unexpected number of conflicts is an error, and an expected number of
9774conflicts is not reported, so @option{-W} and @option{--warning} then have
9775no effect on the conflict report.
9776
518e8830
AD
9777@item deprecated
9778Deprecated constructs whose support will be removed in future versions of
9779Bison.
9780
09add9c2
AD
9781@item empty-rule
9782Empty rules without @code{%empty}. @xref{Empty Rules}. Disabled by
9783default, but enabled by uses of @code{%empty}, unless
9784@option{-Wno-empty-rule} was specified.
9785
cc2235ac
VT
9786@item precedence
9787Useless precedence and associativity directives. Disabled by default.
9788
9789Consider for instance the following grammar:
9790
9791@example
9792@group
9793%nonassoc "="
9794%left "+"
9795%left "*"
9796%precedence "("
9797@end group
9798%%
9799@group
9800stmt:
9801 exp
9802| "var" "=" exp
9803;
9804@end group
9805
9806@group
9807exp:
9808 exp "+" exp
9809| exp "*" "num"
9810| "(" exp ")"
9811| "num"
9812;
9813@end group
9814@end example
9815
9816Bison reports:
9817
9818@c cannot leave the location and the [-Wprecedence] for lack of
9819@c width in PDF.
9820@example
9821@group
9822warning: useless precedence and associativity for "="
9823 %nonassoc "="
9824 ^^^
9825@end group
9826@group
9827warning: useless associativity for "*", use %precedence
9828 %left "*"
9829 ^^^
9830@end group
9831@group
9832warning: useless precedence for "("
9833 %precedence "("
9834 ^^^
9835@end group
9836@end example
9837
9838One would get the exact same parser with the following directives instead:
9839
9840@example
9841@group
9842%left "+"
9843%precedence "*"
9844@end group
9845@end example
9846
c39014ae
JD
9847@item other
9848All warnings not categorized above. These warnings are enabled by default.
9849
9850This category is provided merely for the sake of completeness. Future
9851releases of Bison may move warnings from this category to new, more specific
9852categories.
9853
118d4978 9854@item all
8e55b3aa 9855All the warnings.
118d4978 9856@item none
8e55b3aa 9857Turn off all the warnings.
118d4978 9858@item error
1048a1c9 9859See @option{-Werror}, below.
118d4978
AD
9860@end table
9861
9862A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 9863instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 9864POSIX Yacc incompatibilities.
1048a1c9
AD
9865
9866@item -Werror[=@var{category}]
9867@itemx -Wno-error[=@var{category}]
9868Enable warnings falling in @var{category}, and treat them as errors. If no
9869@var{category} is given, it defaults to making all enabled warnings into errors.
9870
9871@var{category} is the same as for @option{--warnings}, with the exception that
9872it may not be prefixed with @samp{no-} (see above).
9873
9874Prefixed with @samp{no}, it deactivates the error treatment for this
9875@var{category}. However, the warning itself won't be disabled, or enabled, by
9876this option.
9877
9878Note that the precedence of the @samp{=} and @samp{,} operators is such that
9879the following commands are @emph{not} equivalent, as the first will not treat
9880S/R conflicts as errors.
9881
9882@example
9883$ bison -Werror=yacc,conflicts-sr input.y
9884$ bison -Werror=yacc,error=conflicts-sr input.y
9885@end example
f3ead217 9886
7bada535
TR
9887@item -f [@var{feature}]
9888@itemx --feature[=@var{feature}]
9889Activate miscellaneous @var{feature}. @var{feature} can be one of:
9890@table @code
9891@item caret
9892@itemx diagnostics-show-caret
9893Show caret errors, in a manner similar to GCC's
9894@option{-fdiagnostics-show-caret}, or Clang's @option{-fcaret-diagnotics}. The
9895location provided with the message is used to quote the corresponding line of
9896the source file, underlining the important part of it with carets (^). Here is
c949ada3 9897an example, using the following file @file{in.y}:
7bada535
TR
9898
9899@example
9900%type <ival> exp
9901%%
9902exp: exp '+' exp @{ $exp = $1 + $2; @};
9903@end example
9904
016426c1 9905When invoked with @option{-fcaret} (or nothing), Bison will report:
7bada535
TR
9906
9907@example
9908@group
c949ada3 9909in.y:3.20-23: error: ambiguous reference: '$exp'
7bada535
TR
9910 exp: exp '+' exp @{ $exp = $1 + $2; @};
9911 ^^^^
9912@end group
9913@group
c949ada3 9914in.y:3.1-3: refers to: $exp at $$
7bada535
TR
9915 exp: exp '+' exp @{ $exp = $1 + $2; @};
9916 ^^^
9917@end group
9918@group
c949ada3 9919in.y:3.6-8: refers to: $exp at $1
7bada535
TR
9920 exp: exp '+' exp @{ $exp = $1 + $2; @};
9921 ^^^
9922@end group
9923@group
c949ada3 9924in.y:3.14-16: refers to: $exp at $3
7bada535
TR
9925 exp: exp '+' exp @{ $exp = $1 + $2; @};
9926 ^^^
9927@end group
9928@group
c949ada3 9929in.y:3.32-33: error: $2 of 'exp' has no declared type
7bada535
TR
9930 exp: exp '+' exp @{ $exp = $1 + $2; @};
9931 ^^
9932@end group
9933@end example
9934
016426c1
TR
9935Whereas, when invoked with @option{-fno-caret}, Bison will only report:
9936
9937@example
9938@group
9939in.y:3.20-23: error: ambiguous reference: ‘$exp’
9940in.y:3.1-3: refers to: $exp at $$
9941in.y:3.6-8: refers to: $exp at $1
9942in.y:3.14-16: refers to: $exp at $3
9943in.y:3.32-33: error: $2 of ‘exp’ has no declared type
9944@end group
9945@end example
9946
9947This option is activated by default.
9948
7bada535 9949@end table
89cab50d
AD
9950@end table
9951
9952@noindent
9953Tuning the parser:
9954
9955@table @option
9956@item -t
9957@itemx --debug
ff7571c0
JD
9958In the parser implementation file, define the macro @code{YYDEBUG} to
99591 if it is not already defined, so that the debugging facilities are
9960compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 9961
58697c6d
AD
9962@item -D @var{name}[=@var{value}]
9963@itemx --define=@var{name}[=@var{value}]
17aed602 9964@itemx -F @var{name}[=@var{value}]
de5ab940
JD
9965@itemx --force-define=@var{name}[=@var{value}]
9966Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
35c1e5f0 9967(@pxref{%define Summary}) except that Bison processes multiple
de5ab940
JD
9968definitions for the same @var{name} as follows:
9969
9970@itemize
9971@item
0b6d43c5
JD
9972Bison quietly ignores all command-line definitions for @var{name} except
9973the last.
de5ab940 9974@item
0b6d43c5
JD
9975If that command-line definition is specified by a @code{-D} or
9976@code{--define}, Bison reports an error for any @code{%define}
9977definition for @var{name}.
de5ab940 9978@item
0b6d43c5
JD
9979If that command-line definition is specified by a @code{-F} or
9980@code{--force-define} instead, Bison quietly ignores all @code{%define}
9981definitions for @var{name}.
9982@item
9983Otherwise, Bison reports an error if there are multiple @code{%define}
9984definitions for @var{name}.
de5ab940
JD
9985@end itemize
9986
9987You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
9988make files unless you are confident that it is safe to quietly ignore
9989any conflicting @code{%define} that may be added to the grammar file.
58697c6d 9990
0e021770
PE
9991@item -L @var{language}
9992@itemx --language=@var{language}
9993Specify the programming language for the generated parser, as if
9994@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 9995Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 9996@var{language} is case-insensitive.
0e021770 9997
89cab50d 9998@item --locations
d8988b2f 9999Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
10000
10001@item -p @var{prefix}
10002@itemx --name-prefix=@var{prefix}
4b3847c3
AD
10003Pretend that @code{%name-prefix "@var{prefix}"} was specified (@pxref{Decl
10004Summary}). Obsoleted by @code{-Dapi.prefix=@var{prefix}}. @xref{Multiple
10005Parsers, ,Multiple Parsers in the Same Program}.
bfa74976
RS
10006
10007@item -l
10008@itemx --no-lines
ff7571c0
JD
10009Don't put any @code{#line} preprocessor commands in the parser
10010implementation file. Ordinarily Bison puts them in the parser
10011implementation file so that the C compiler and debuggers will
10012associate errors with your source file, the grammar file. This option
10013causes them to associate errors with the parser implementation file,
10014treating it as an independent source file in its own right.
bfa74976 10015
e6e704dc
JD
10016@item -S @var{file}
10017@itemx --skeleton=@var{file}
a7867f53 10018Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
10019(@pxref{Decl Summary, , Bison Declaration Summary}).
10020
ed4d67dc
JD
10021@c You probably don't need this option unless you are developing Bison.
10022@c You should use @option{--language} if you want to specify the skeleton for a
10023@c different language, because it is clearer and because it will always
10024@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 10025
a7867f53
JD
10026If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
10027file in the Bison installation directory.
10028If it does, @var{file} is an absolute file name or a file name relative to the
10029current working directory.
10030This is similar to how most shells resolve commands.
10031
89cab50d
AD
10032@item -k
10033@itemx --token-table
d8988b2f 10034Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 10035@end table
bfa74976 10036
89cab50d
AD
10037@noindent
10038Adjust the output:
bfa74976 10039
89cab50d 10040@table @option
8e55b3aa 10041@item --defines[=@var{file}]
d8988b2f 10042Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 10043file containing macro definitions for the token type names defined in
4bfd5e4e 10044the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 10045
8e55b3aa
JD
10046@item -d
10047This is the same as @code{--defines} except @code{-d} does not accept a
10048@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
10049with other short options.
342b8b6e 10050
89cab50d
AD
10051@item -b @var{file-prefix}
10052@itemx --file-prefix=@var{prefix}
9c437126 10053Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 10054for all Bison output file names. @xref{Decl Summary}.
bfa74976 10055
ec3bc396
AD
10056@item -r @var{things}
10057@itemx --report=@var{things}
10058Write an extra output file containing verbose description of the comma
10059separated list of @var{things} among:
10060
10061@table @code
10062@item state
10063Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 10064parser's automaton.
ec3bc396 10065
57f8bd8d
AD
10066@item itemset
10067Implies @code{state} and augments the description of the automaton with
10068the full set of items for each state, instead of its core only.
10069
742e4900 10070@item lookahead
ec3bc396 10071Implies @code{state} and augments the description of the automaton with
742e4900 10072each rule's lookahead set.
ec3bc396 10073
57f8bd8d
AD
10074@item solved
10075Implies @code{state}. Explain how conflicts were solved thanks to
10076precedence and associativity directives.
10077
10078@item all
10079Enable all the items.
10080
10081@item none
10082Do not generate the report.
ec3bc396
AD
10083@end table
10084
1bb2bd75
JD
10085@item --report-file=@var{file}
10086Specify the @var{file} for the verbose description.
10087
bfa74976
RS
10088@item -v
10089@itemx --verbose
9c437126 10090Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 10091file containing verbose descriptions of the grammar and
72d2299c 10092parser. @xref{Decl Summary}.
bfa74976 10093
fa4d969f
PE
10094@item -o @var{file}
10095@itemx --output=@var{file}
ff7571c0 10096Specify the @var{file} for the parser implementation file.
bfa74976 10097
fa4d969f 10098The other output files' names are constructed from @var{file} as
d8988b2f 10099described under the @samp{-v} and @samp{-d} options.
342b8b6e 10100
a7c09cba 10101@item -g [@var{file}]
8e55b3aa 10102@itemx --graph[=@var{file}]
eb45ef3b 10103Output a graphical representation of the parser's
35fe0834 10104automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 10105@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
10106@code{@var{file}} is optional.
10107If omitted and the grammar file is @file{foo.y}, the output file will be
10108@file{foo.dot}.
59da312b 10109
a7c09cba 10110@item -x [@var{file}]
8e55b3aa 10111@itemx --xml[=@var{file}]
eb45ef3b 10112Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 10113@code{@var{file}} is optional.
59da312b
JD
10114If omitted and the grammar file is @file{foo.y}, the output file will be
10115@file{foo.xml}.
10116(The current XML schema is experimental and may evolve.
10117More user feedback will help to stabilize it.)
bfa74976
RS
10118@end table
10119
342b8b6e 10120@node Option Cross Key
bfa74976
RS
10121@section Option Cross Key
10122
10123Here is a list of options, alphabetized by long option, to help you find
de5ab940 10124the corresponding short option and directive.
bfa74976 10125
de5ab940 10126@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 10127@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 10128@include cross-options.texi
aa08666d 10129@end multitable
bfa74976 10130
93dd49ab
PE
10131@node Yacc Library
10132@section Yacc Library
10133
10134The Yacc library contains default implementations of the
10135@code{yyerror} and @code{main} functions. These default
8a4281b9 10136implementations are normally not useful, but POSIX requires
93dd49ab
PE
10137them. To use the Yacc library, link your program with the
10138@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 10139library is distributed under the terms of the GNU General
93dd49ab
PE
10140Public License (@pxref{Copying}).
10141
10142If you use the Yacc library's @code{yyerror} function, you should
10143declare @code{yyerror} as follows:
10144
10145@example
10146int yyerror (char const *);
10147@end example
10148
10149Bison ignores the @code{int} value returned by this @code{yyerror}.
10150If you use the Yacc library's @code{main} function, your
10151@code{yyparse} function should have the following type signature:
10152
10153@example
10154int yyparse (void);
10155@end example
10156
12545799
AD
10157@c ================================================= C++ Bison
10158
8405b70c
PB
10159@node Other Languages
10160@chapter Parsers Written In Other Languages
12545799
AD
10161
10162@menu
10163* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 10164* Java Parsers:: The interface to generate Java parser classes
12545799
AD
10165@end menu
10166
10167@node C++ Parsers
10168@section C++ Parsers
10169
10170@menu
10171* C++ Bison Interface:: Asking for C++ parser generation
10172* C++ Semantic Values:: %union vs. C++
10173* C++ Location Values:: The position and location classes
10174* C++ Parser Interface:: Instantiating and running the parser
10175* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 10176* A Complete C++ Example:: Demonstrating their use
12545799
AD
10177@end menu
10178
10179@node C++ Bison Interface
10180@subsection C++ Bison Interface
ed4d67dc 10181@c - %skeleton "lalr1.cc"
12545799
AD
10182@c - Always pure
10183@c - initial action
10184
eb45ef3b 10185The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
10186@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
10187@option{--skeleton=lalr1.cc}.
e6e704dc 10188@xref{Decl Summary}.
0e021770 10189
793fbca5
JD
10190When run, @command{bison} will create several entities in the @samp{yy}
10191namespace.
67501061 10192@findex %define api.namespace
35c1e5f0
JD
10193Use the @samp{%define api.namespace} directive to change the namespace name,
10194see @ref{%define Summary,,api.namespace}. The various classes are generated
10195in the following files:
aa08666d 10196
12545799
AD
10197@table @file
10198@item position.hh
10199@itemx location.hh
db8ab2be 10200The definition of the classes @code{position} and @code{location}, used for
f6b561d9
AD
10201location tracking when enabled. These files are not generated if the
10202@code{%define} variable @code{api.location.type} is defined. @xref{C++
10203Location Values}.
12545799
AD
10204
10205@item stack.hh
10206An auxiliary class @code{stack} used by the parser.
10207
fa4d969f
PE
10208@item @var{file}.hh
10209@itemx @var{file}.cc
ff7571c0 10210(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
10211declaration and implementation of the C++ parser class. The basename
10212and extension of these two files follow the same rules as with regular C
10213parsers (@pxref{Invocation}).
12545799 10214
cd8b5791
AD
10215The header is @emph{mandatory}; you must either pass
10216@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
10217@samp{%defines} directive.
10218@end table
10219
10220All these files are documented using Doxygen; run @command{doxygen}
10221for a complete and accurate documentation.
10222
10223@node C++ Semantic Values
10224@subsection C++ Semantic Values
10225@c - No objects in unions
178e123e 10226@c - YYSTYPE
12545799
AD
10227@c - Printer and destructor
10228
3cdc21cf
AD
10229Bison supports two different means to handle semantic values in C++. One is
10230alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
10231practitioners know, unions are inconvenient in C++, therefore another
10232approach is provided, based on variants (@pxref{C++ Variants}).
10233
10234@menu
10235* C++ Unions:: Semantic values cannot be objects
10236* C++ Variants:: Using objects as semantic values
10237@end menu
10238
10239@node C++ Unions
10240@subsubsection C++ Unions
10241
12545799
AD
10242The @code{%union} directive works as for C, see @ref{Union Decl, ,The
10243Collection of Value Types}. In particular it produces a genuine
3cdc21cf 10244@code{union}, which have a few specific features in C++.
12545799
AD
10245@itemize @minus
10246@item
fb9712a9
AD
10247The type @code{YYSTYPE} is defined but its use is discouraged: rather
10248you should refer to the parser's encapsulated type
10249@code{yy::parser::semantic_type}.
12545799
AD
10250@item
10251Non POD (Plain Old Data) types cannot be used. C++ forbids any
10252instance of classes with constructors in unions: only @emph{pointers}
10253to such objects are allowed.
10254@end itemize
10255
10256Because objects have to be stored via pointers, memory is not
10257reclaimed automatically: using the @code{%destructor} directive is the
10258only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
10259Symbols}.
10260
3cdc21cf
AD
10261@node C++ Variants
10262@subsubsection C++ Variants
10263
ae8880de
AD
10264Bison provides a @emph{variant} based implementation of semantic values for
10265C++. This alleviates all the limitations reported in the previous section,
10266and in particular, object types can be used without pointers.
3cdc21cf
AD
10267
10268To enable variant-based semantic values, set @code{%define} variable
35c1e5f0 10269@code{variant} (@pxref{%define Summary,, variant}). Once this defined,
3cdc21cf
AD
10270@code{%union} is ignored, and instead of using the name of the fields of the
10271@code{%union} to ``type'' the symbols, use genuine types.
10272
10273For instance, instead of
10274
10275@example
10276%union
10277@{
10278 int ival;
10279 std::string* sval;
10280@}
10281%token <ival> NUMBER;
10282%token <sval> STRING;
10283@end example
10284
10285@noindent
10286write
10287
10288@example
10289%token <int> NUMBER;
10290%token <std::string> STRING;
10291@end example
10292
10293@code{STRING} is no longer a pointer, which should fairly simplify the user
10294actions in the grammar and in the scanner (in particular the memory
10295management).
10296
10297Since C++ features destructors, and since it is customary to specialize
10298@code{operator<<} to support uniform printing of values, variants also
10299typically simplify Bison printers and destructors.
10300
10301Variants are stricter than unions. When based on unions, you may play any
10302dirty game with @code{yylval}, say storing an @code{int}, reading a
10303@code{char*}, and then storing a @code{double} in it. This is no longer
10304possible with variants: they must be initialized, then assigned to, and
10305eventually, destroyed.
10306
10307@deftypemethod {semantic_type} {T&} build<T> ()
10308Initialize, but leave empty. Returns the address where the actual value may
10309be stored. Requires that the variant was not initialized yet.
10310@end deftypemethod
10311
10312@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
10313Initialize, and copy-construct from @var{t}.
10314@end deftypemethod
10315
10316
10317@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
10318appeared unacceptable to require Boost on the user's machine (i.e., the
10319machine on which the generated parser will be compiled, not the machine on
10320which @command{bison} was run). Second, for each possible semantic value,
10321Boost.Variant not only stores the value, but also a tag specifying its
10322type. But the parser already ``knows'' the type of the semantic value, so
10323that would be duplicating the information.
10324
10325Therefore we developed light-weight variants whose type tag is external (so
10326they are really like @code{unions} for C++ actually). But our code is much
10327less mature that Boost.Variant. So there is a number of limitations in
10328(the current implementation of) variants:
10329@itemize
10330@item
10331Alignment must be enforced: values should be aligned in memory according to
10332the most demanding type. Computing the smallest alignment possible requires
10333meta-programming techniques that are not currently implemented in Bison, and
10334therefore, since, as far as we know, @code{double} is the most demanding
10335type on all platforms, alignments are enforced for @code{double} whatever
10336types are actually used. This may waste space in some cases.
10337
3cdc21cf
AD
10338@item
10339There might be portability issues we are not aware of.
10340@end itemize
10341
a6ca4ce2 10342As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 10343is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
10344
10345@node C++ Location Values
10346@subsection C++ Location Values
10347@c - %locations
10348@c - class Position
10349@c - class Location
16dc6a9e 10350@c - %define filename_type "const symbol::Symbol"
12545799
AD
10351
10352When the directive @code{%locations} is used, the C++ parser supports
db8ab2be
AD
10353location tracking, see @ref{Tracking Locations}.
10354
10355By default, two auxiliary classes define a @code{position}, a single point
10356in a file, and a @code{location}, a range composed of a pair of
10357@code{position}s (possibly spanning several files). But if the
10358@code{%define} variable @code{api.location.type} is defined, then these
10359classes will not be generated, and the user defined type will be used.
12545799 10360
936c88d1
AD
10361@tindex uint
10362In this section @code{uint} is an abbreviation for @code{unsigned int}: in
10363genuine code only the latter is used.
10364
10365@menu
10366* C++ position:: One point in the source file
10367* C++ location:: Two points in the source file
db8ab2be 10368* User Defined Location Type:: Required interface for locations
936c88d1
AD
10369@end menu
10370
10371@node C++ position
10372@subsubsection C++ @code{position}
10373
10374@deftypeop {Constructor} {position} {} position (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10375Create a @code{position} denoting a given point. Note that @code{file} is
10376not reclaimed when the @code{position} is destroyed: memory managed must be
10377handled elsewhere.
10378@end deftypeop
10379
10380@deftypemethod {position} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10381Reset the position to the given values.
10382@end deftypemethod
10383
10384@deftypeivar {position} {std::string*} file
12545799
AD
10385The name of the file. It will always be handled as a pointer, the
10386parser will never duplicate nor deallocate it. As an experimental
10387feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 10388filename_type "@var{type}"}.
936c88d1 10389@end deftypeivar
12545799 10390
936c88d1 10391@deftypeivar {position} {uint} line
12545799 10392The line, starting at 1.
936c88d1 10393@end deftypeivar
12545799 10394
936c88d1 10395@deftypemethod {position} {uint} lines (int @var{height} = 1)
12545799
AD
10396Advance by @var{height} lines, resetting the column number.
10397@end deftypemethod
10398
936c88d1
AD
10399@deftypeivar {position} {uint} column
10400The column, starting at 1.
10401@end deftypeivar
12545799 10402
936c88d1 10403@deftypemethod {position} {uint} columns (int @var{width} = 1)
12545799
AD
10404Advance by @var{width} columns, without changing the line number.
10405@end deftypemethod
10406
936c88d1
AD
10407@deftypemethod {position} {position&} operator+= (int @var{width})
10408@deftypemethodx {position} {position} operator+ (int @var{width})
10409@deftypemethodx {position} {position&} operator-= (int @var{width})
10410@deftypemethodx {position} {position} operator- (int @var{width})
12545799
AD
10411Various forms of syntactic sugar for @code{columns}.
10412@end deftypemethod
10413
936c88d1
AD
10414@deftypemethod {position} {bool} operator== (const position& @var{that})
10415@deftypemethodx {position} {bool} operator!= (const position& @var{that})
10416Whether @code{*this} and @code{that} denote equal/different positions.
10417@end deftypemethod
10418
10419@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const position& @var{p})
12545799 10420Report @var{p} on @var{o} like this:
fa4d969f
PE
10421@samp{@var{file}:@var{line}.@var{column}}, or
10422@samp{@var{line}.@var{column}} if @var{file} is null.
936c88d1
AD
10423@end deftypefun
10424
10425@node C++ location
10426@subsubsection C++ @code{location}
10427
10428@deftypeop {Constructor} {location} {} location (const position& @var{begin}, const position& @var{end})
10429Create a @code{Location} from the endpoints of the range.
10430@end deftypeop
10431
10432@deftypeop {Constructor} {location} {} location (const position& @var{pos} = position())
10433@deftypeopx {Constructor} {location} {} location (std::string* @var{file}, uint @var{line}, uint @var{col})
10434Create a @code{Location} denoting an empty range located at a given point.
10435@end deftypeop
10436
10437@deftypemethod {location} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10438Reset the location to an empty range at the given values.
12545799
AD
10439@end deftypemethod
10440
936c88d1
AD
10441@deftypeivar {location} {position} begin
10442@deftypeivarx {location} {position} end
12545799 10443The first, inclusive, position of the range, and the first beyond.
936c88d1 10444@end deftypeivar
12545799 10445
936c88d1
AD
10446@deftypemethod {location} {uint} columns (int @var{width} = 1)
10447@deftypemethodx {location} {uint} lines (int @var{height} = 1)
12545799
AD
10448Advance the @code{end} position.
10449@end deftypemethod
10450
936c88d1
AD
10451@deftypemethod {location} {location} operator+ (const location& @var{end})
10452@deftypemethodx {location} {location} operator+ (int @var{width})
10453@deftypemethodx {location} {location} operator+= (int @var{width})
12545799
AD
10454Various forms of syntactic sugar.
10455@end deftypemethod
10456
10457@deftypemethod {location} {void} step ()
10458Move @code{begin} onto @code{end}.
10459@end deftypemethod
10460
936c88d1
AD
10461@deftypemethod {location} {bool} operator== (const location& @var{that})
10462@deftypemethodx {location} {bool} operator!= (const location& @var{that})
10463Whether @code{*this} and @code{that} denote equal/different ranges of
10464positions.
10465@end deftypemethod
10466
10467@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const location& @var{p})
10468Report @var{p} on @var{o}, taking care of special cases such as: no
10469@code{filename} defined, or equal filename/line or column.
10470@end deftypefun
12545799 10471
db8ab2be
AD
10472@node User Defined Location Type
10473@subsubsection User Defined Location Type
10474@findex %define api.location.type
10475
10476Instead of using the built-in types you may use the @code{%define} variable
10477@code{api.location.type} to specify your own type:
10478
10479@example
10480%define api.location.type @var{LocationType}
10481@end example
10482
10483The requirements over your @var{LocationType} are:
10484@itemize
10485@item
10486it must be copyable;
10487
10488@item
10489in order to compute the (default) value of @code{@@$} in a reduction, the
10490parser basically runs
10491@example
10492@@$.begin = @@$1.begin;
10493@@$.end = @@$@var{N}.end; // The location of last right-hand side symbol.
10494@end example
10495@noindent
10496so there must be copyable @code{begin} and @code{end} members;
10497
10498@item
10499alternatively you may redefine the computation of the default location, in
10500which case these members are not required (@pxref{Location Default Action});
10501
10502@item
10503if traces are enabled, then there must exist an @samp{std::ostream&
10504 operator<< (std::ostream& o, const @var{LocationType}& s)} function.
10505@end itemize
10506
10507@sp 1
10508
10509In programs with several C++ parsers, you may also use the @code{%define}
10510variable @code{api.location.type} to share a common set of built-in
10511definitions for @code{position} and @code{location}. For instance, one
10512parser @file{master/parser.yy} might use:
10513
10514@example
10515%defines
10516%locations
10517%define namespace "master::"
10518@end example
10519
10520@noindent
10521to generate the @file{master/position.hh} and @file{master/location.hh}
10522files, reused by other parsers as follows:
10523
10524@example
7287be84 10525%define api.location.type "master::location"
db8ab2be
AD
10526%code requires @{ #include <master/location.hh> @}
10527@end example
10528
12545799
AD
10529@node C++ Parser Interface
10530@subsection C++ Parser Interface
10531@c - define parser_class_name
10532@c - Ctor
10533@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10534@c debug_stream.
10535@c - Reporting errors
10536
10537The output files @file{@var{output}.hh} and @file{@var{output}.cc}
10538declare and define the parser class in the namespace @code{yy}. The
10539class name defaults to @code{parser}, but may be changed using
16dc6a9e 10540@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 10541this class is detailed below. It can be extended using the
12545799
AD
10542@code{%parse-param} feature: its semantics is slightly changed since
10543it describes an additional member of the parser class, and an
10544additional argument for its constructor.
10545
3cdc21cf
AD
10546@defcv {Type} {parser} {semantic_type}
10547@defcvx {Type} {parser} {location_type}
10548The types for semantic values and locations (if enabled).
10549@end defcv
10550
86e5b440 10551@defcv {Type} {parser} {token}
aaaa2aae
AD
10552A structure that contains (only) the @code{yytokentype} enumeration, which
10553defines the tokens. To refer to the token @code{FOO},
10554use @code{yy::parser::token::FOO}. The scanner can use
86e5b440
AD
10555@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
10556(@pxref{Calc++ Scanner}).
10557@end defcv
10558
3cdc21cf
AD
10559@defcv {Type} {parser} {syntax_error}
10560This class derives from @code{std::runtime_error}. Throw instances of it
a6552c5d
AD
10561from the scanner or from the user actions to raise parse errors. This is
10562equivalent with first
3cdc21cf
AD
10563invoking @code{error} to report the location and message of the syntax
10564error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
10565But contrary to @code{YYERROR} which can only be invoked from user actions
10566(i.e., written in the action itself), the exception can be thrown from
10567function invoked from the user action.
8a0adb01 10568@end defcv
12545799
AD
10569
10570@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
10571Build a new parser object. There are no arguments by default, unless
10572@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
10573@end deftypemethod
10574
3cdc21cf
AD
10575@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
10576@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
10577Instantiate a syntax-error exception.
10578@end deftypemethod
10579
12545799
AD
10580@deftypemethod {parser} {int} parse ()
10581Run the syntactic analysis, and return 0 on success, 1 otherwise.
d3e4409a
AD
10582
10583@cindex exceptions
10584The whole function is wrapped in a @code{try}/@code{catch} block, so that
10585when an exception is thrown, the @code{%destructor}s are called to release
10586the lookahead symbol, and the symbols pushed on the stack.
12545799
AD
10587@end deftypemethod
10588
10589@deftypemethod {parser} {std::ostream&} debug_stream ()
10590@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
10591Get or set the stream used for tracing the parsing. It defaults to
10592@code{std::cerr}.
10593@end deftypemethod
10594
10595@deftypemethod {parser} {debug_level_type} debug_level ()
10596@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
10597Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 10598or nonzero, full tracing.
12545799
AD
10599@end deftypemethod
10600
10601@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 10602@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
10603The definition for this member function must be supplied by the user:
10604the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
10605described by @var{m}. If location tracking is not enabled, the second
10606signature is used.
12545799
AD
10607@end deftypemethod
10608
10609
10610@node C++ Scanner Interface
10611@subsection C++ Scanner Interface
10612@c - prefix for yylex.
10613@c - Pure interface to yylex
10614@c - %lex-param
10615
10616The parser invokes the scanner by calling @code{yylex}. Contrary to C
10617parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
10618@samp{%define api.pure} directive. The actual interface with @code{yylex}
10619depends whether you use unions, or variants.
12545799 10620
3cdc21cf
AD
10621@menu
10622* Split Symbols:: Passing symbols as two/three components
10623* Complete Symbols:: Making symbols a whole
10624@end menu
10625
10626@node Split Symbols
10627@subsubsection Split Symbols
10628
5807bb91 10629The interface is as follows.
3cdc21cf 10630
86e5b440
AD
10631@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
10632@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
10633Return the next token. Its type is the return value, its semantic value and
10634location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
10635@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
10636@end deftypemethod
10637
3cdc21cf
AD
10638Note that when using variants, the interface for @code{yylex} is the same,
10639but @code{yylval} is handled differently.
10640
10641Regular union-based code in Lex scanner typically look like:
10642
10643@example
10644[0-9]+ @{
10645 yylval.ival = text_to_int (yytext);
10646 return yy::parser::INTEGER;
10647 @}
10648[a-z]+ @{
10649 yylval.sval = new std::string (yytext);
10650 return yy::parser::IDENTIFIER;
10651 @}
10652@end example
10653
10654Using variants, @code{yylval} is already constructed, but it is not
10655initialized. So the code would look like:
10656
10657@example
10658[0-9]+ @{
10659 yylval.build<int>() = text_to_int (yytext);
10660 return yy::parser::INTEGER;
10661 @}
10662[a-z]+ @{
10663 yylval.build<std::string> = yytext;
10664 return yy::parser::IDENTIFIER;
10665 @}
10666@end example
10667
10668@noindent
10669or
10670
10671@example
10672[0-9]+ @{
10673 yylval.build(text_to_int (yytext));
10674 return yy::parser::INTEGER;
10675 @}
10676[a-z]+ @{
10677 yylval.build(yytext);
10678 return yy::parser::IDENTIFIER;
10679 @}
10680@end example
10681
10682
10683@node Complete Symbols
10684@subsubsection Complete Symbols
10685
ae8880de 10686If you specified both @code{%define api.value.type variant} and
e36ec1f4 10687@code{%define api.token.constructor},
3cdc21cf
AD
10688the @code{parser} class also defines the class @code{parser::symbol_type}
10689which defines a @emph{complete} symbol, aggregating its type (i.e., the
10690traditional value returned by @code{yylex}), its semantic value (i.e., the
10691value passed in @code{yylval}, and possibly its location (@code{yylloc}).
10692
10693@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
10694Build a complete terminal symbol which token type is @var{type}, and which
10695semantic value is @var{value}. If location tracking is enabled, also pass
10696the @var{location}.
10697@end deftypemethod
10698
10699This interface is low-level and should not be used for two reasons. First,
10700it is inconvenient, as you still have to build the semantic value, which is
10701a variant, and second, because consistency is not enforced: as with unions,
10702it is still possible to give an integer as semantic value for a string.
10703
10704So for each token type, Bison generates named constructors as follows.
10705
10706@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
10707@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
10708Build a complete terminal symbol for the token type @var{token} (not
2a6b66c5 10709including the @code{api.token.prefix}) whose possible semantic value is
3cdc21cf
AD
10710@var{value} of adequate @var{value_type}. If location tracking is enabled,
10711also pass the @var{location}.
10712@end deftypemethod
10713
10714For instance, given the following declarations:
10715
10716@example
2a6b66c5 10717%define api.token.prefix "TOK_"
3cdc21cf
AD
10718%token <std::string> IDENTIFIER;
10719%token <int> INTEGER;
10720%token COLON;
10721@end example
10722
10723@noindent
10724Bison generates the following functions:
10725
10726@example
10727symbol_type make_IDENTIFIER(const std::string& v,
10728 const location_type& l);
10729symbol_type make_INTEGER(const int& v,
10730 const location_type& loc);
10731symbol_type make_COLON(const location_type& loc);
10732@end example
10733
10734@noindent
10735which should be used in a Lex-scanner as follows.
10736
10737@example
10738[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
10739[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
10740":" return yy::parser::make_COLON(loc);
10741@end example
10742
10743Tokens that do not have an identifier are not accessible: you cannot simply
10744use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
10745
10746@node A Complete C++ Example
8405b70c 10747@subsection A Complete C++ Example
12545799
AD
10748
10749This section demonstrates the use of a C++ parser with a simple but
10750complete example. This example should be available on your system,
3cdc21cf 10751ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
10752focuses on the use of Bison, therefore the design of the various C++
10753classes is very naive: no accessors, no encapsulation of members etc.
10754We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 10755demonstrate the various interactions. A hand-written scanner is
12545799
AD
10756actually easier to interface with.
10757
10758@menu
10759* Calc++ --- C++ Calculator:: The specifications
10760* Calc++ Parsing Driver:: An active parsing context
10761* Calc++ Parser:: A parser class
10762* Calc++ Scanner:: A pure C++ Flex scanner
10763* Calc++ Top Level:: Conducting the band
10764@end menu
10765
10766@node Calc++ --- C++ Calculator
8405b70c 10767@subsubsection Calc++ --- C++ Calculator
12545799
AD
10768
10769Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 10770expression, possibly preceded by variable assignments. An
12545799
AD
10771environment containing possibly predefined variables such as
10772@code{one} and @code{two}, is exchanged with the parser. An example
10773of valid input follows.
10774
10775@example
10776three := 3
10777seven := one + two * three
10778seven * seven
10779@end example
10780
10781@node Calc++ Parsing Driver
8405b70c 10782@subsubsection Calc++ Parsing Driver
12545799
AD
10783@c - An env
10784@c - A place to store error messages
10785@c - A place for the result
10786
10787To support a pure interface with the parser (and the scanner) the
10788technique of the ``parsing context'' is convenient: a structure
10789containing all the data to exchange. Since, in addition to simply
10790launch the parsing, there are several auxiliary tasks to execute (open
10791the file for parsing, instantiate the parser etc.), we recommend
10792transforming the simple parsing context structure into a fully blown
10793@dfn{parsing driver} class.
10794
10795The declaration of this driver class, @file{calc++-driver.hh}, is as
10796follows. The first part includes the CPP guard and imports the
fb9712a9
AD
10797required standard library components, and the declaration of the parser
10798class.
12545799 10799
1c59e0a1 10800@comment file: calc++-driver.hh
12545799
AD
10801@example
10802#ifndef CALCXX_DRIVER_HH
10803# define CALCXX_DRIVER_HH
10804# include <string>
10805# include <map>
fb9712a9 10806# include "calc++-parser.hh"
12545799
AD
10807@end example
10808
12545799
AD
10809
10810@noindent
10811Then comes the declaration of the scanning function. Flex expects
10812the signature of @code{yylex} to be defined in the macro
10813@code{YY_DECL}, and the C++ parser expects it to be declared. We can
10814factor both as follows.
1c59e0a1
AD
10815
10816@comment file: calc++-driver.hh
12545799 10817@example
3dc5e96b 10818// Tell Flex the lexer's prototype ...
3cdc21cf
AD
10819# define YY_DECL \
10820 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
10821// ... and declare it for the parser's sake.
10822YY_DECL;
10823@end example
10824
10825@noindent
10826The @code{calcxx_driver} class is then declared with its most obvious
10827members.
10828
1c59e0a1 10829@comment file: calc++-driver.hh
12545799
AD
10830@example
10831// Conducting the whole scanning and parsing of Calc++.
10832class calcxx_driver
10833@{
10834public:
10835 calcxx_driver ();
10836 virtual ~calcxx_driver ();
10837
10838 std::map<std::string, int> variables;
10839
10840 int result;
10841@end example
10842
10843@noindent
3cdc21cf
AD
10844To encapsulate the coordination with the Flex scanner, it is useful to have
10845member functions to open and close the scanning phase.
12545799 10846
1c59e0a1 10847@comment file: calc++-driver.hh
12545799
AD
10848@example
10849 // Handling the scanner.
10850 void scan_begin ();
10851 void scan_end ();
10852 bool trace_scanning;
10853@end example
10854
10855@noindent
10856Similarly for the parser itself.
10857
1c59e0a1 10858@comment file: calc++-driver.hh
12545799 10859@example
3cdc21cf
AD
10860 // Run the parser on file F.
10861 // Return 0 on success.
bb32f4f2 10862 int parse (const std::string& f);
3cdc21cf
AD
10863 // The name of the file being parsed.
10864 // Used later to pass the file name to the location tracker.
12545799 10865 std::string file;
3cdc21cf 10866 // Whether parser traces should be generated.
12545799
AD
10867 bool trace_parsing;
10868@end example
10869
10870@noindent
10871To demonstrate pure handling of parse errors, instead of simply
10872dumping them on the standard error output, we will pass them to the
10873compiler driver using the following two member functions. Finally, we
10874close the class declaration and CPP guard.
10875
1c59e0a1 10876@comment file: calc++-driver.hh
12545799
AD
10877@example
10878 // Error handling.
10879 void error (const yy::location& l, const std::string& m);
10880 void error (const std::string& m);
10881@};
10882#endif // ! CALCXX_DRIVER_HH
10883@end example
10884
10885The implementation of the driver is straightforward. The @code{parse}
10886member function deserves some attention. The @code{error} functions
10887are simple stubs, they should actually register the located error
10888messages and set error state.
10889
1c59e0a1 10890@comment file: calc++-driver.cc
12545799
AD
10891@example
10892#include "calc++-driver.hh"
10893#include "calc++-parser.hh"
10894
10895calcxx_driver::calcxx_driver ()
10896 : trace_scanning (false), trace_parsing (false)
10897@{
10898 variables["one"] = 1;
10899 variables["two"] = 2;
10900@}
10901
10902calcxx_driver::~calcxx_driver ()
10903@{
10904@}
10905
bb32f4f2 10906int
12545799
AD
10907calcxx_driver::parse (const std::string &f)
10908@{
10909 file = f;
10910 scan_begin ();
10911 yy::calcxx_parser parser (*this);
10912 parser.set_debug_level (trace_parsing);
bb32f4f2 10913 int res = parser.parse ();
12545799 10914 scan_end ();
bb32f4f2 10915 return res;
12545799
AD
10916@}
10917
10918void
10919calcxx_driver::error (const yy::location& l, const std::string& m)
10920@{
10921 std::cerr << l << ": " << m << std::endl;
10922@}
10923
10924void
10925calcxx_driver::error (const std::string& m)
10926@{
10927 std::cerr << m << std::endl;
10928@}
10929@end example
10930
10931@node Calc++ Parser
8405b70c 10932@subsubsection Calc++ Parser
12545799 10933
ff7571c0
JD
10934The grammar file @file{calc++-parser.yy} starts by asking for the C++
10935deterministic parser skeleton, the creation of the parser header file,
10936and specifies the name of the parser class. Because the C++ skeleton
10937changed several times, it is safer to require the version you designed
10938the grammar for.
1c59e0a1
AD
10939
10940@comment file: calc++-parser.yy
12545799 10941@example
c93f22fc 10942%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 10943%require "@value{VERSION}"
12545799 10944%defines
16dc6a9e 10945%define parser_class_name "calcxx_parser"
fb9712a9
AD
10946@end example
10947
3cdc21cf 10948@noindent
e36ec1f4 10949@findex %define api.token.constructor
ae8880de 10950@findex %define api.value.type variant
3cdc21cf
AD
10951This example will use genuine C++ objects as semantic values, therefore, we
10952require the variant-based interface. To make sure we properly use it, we
10953enable assertions. To fully benefit from type-safety and more natural
e36ec1f4 10954definition of ``symbol'', we enable @code{api.token.constructor}.
3cdc21cf
AD
10955
10956@comment file: calc++-parser.yy
10957@example
e36ec1f4 10958%define api.token.constructor
ae8880de 10959%define api.value.type variant
3cdc21cf 10960%define parse.assert
3cdc21cf
AD
10961@end example
10962
fb9712a9 10963@noindent
16dc6a9e 10964@findex %code requires
3cdc21cf
AD
10965Then come the declarations/inclusions needed by the semantic values.
10966Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 10967to include the header of the other, which is, of course, insane. This
3cdc21cf 10968mutual dependency will be broken using forward declarations. Because the
fb9712a9 10969driver's header needs detailed knowledge about the parser class (in
3cdc21cf 10970particular its inner types), it is the parser's header which will use a
e0c07222 10971forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
10972
10973@comment file: calc++-parser.yy
10974@example
3cdc21cf
AD
10975%code requires
10976@{
12545799 10977# include <string>
fb9712a9 10978class calcxx_driver;
9bc0dd67 10979@}
12545799
AD
10980@end example
10981
10982@noindent
10983The driver is passed by reference to the parser and to the scanner.
10984This provides a simple but effective pure interface, not relying on
10985global variables.
10986
1c59e0a1 10987@comment file: calc++-parser.yy
12545799
AD
10988@example
10989// The parsing context.
2055a44e 10990%param @{ calcxx_driver& driver @}
12545799
AD
10991@end example
10992
10993@noindent
2055a44e 10994Then we request location tracking, and initialize the
f50bfcd6 10995first location's file name. Afterward new locations are computed
12545799 10996relatively to the previous locations: the file name will be
2055a44e 10997propagated.
12545799 10998
1c59e0a1 10999@comment file: calc++-parser.yy
12545799
AD
11000@example
11001%locations
11002%initial-action
11003@{
11004 // Initialize the initial location.
b47dbebe 11005 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
11006@};
11007@end example
11008
11009@noindent
7fceb615
JD
11010Use the following two directives to enable parser tracing and verbose error
11011messages. However, verbose error messages can contain incorrect information
11012(@pxref{LAC}).
12545799 11013
1c59e0a1 11014@comment file: calc++-parser.yy
12545799 11015@example
fa819509 11016%define parse.trace
cf499cff 11017%define parse.error verbose
12545799
AD
11018@end example
11019
fb9712a9 11020@noindent
136a0f76
PB
11021@findex %code
11022The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 11023@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
11024
11025@comment file: calc++-parser.yy
11026@example
3cdc21cf
AD
11027%code
11028@{
fb9712a9 11029# include "calc++-driver.hh"
34f98f46 11030@}
fb9712a9
AD
11031@end example
11032
11033
12545799
AD
11034@noindent
11035The token numbered as 0 corresponds to end of file; the following line
99c08fb6 11036allows for nicer error messages referring to ``end of file'' instead of
35c1e5f0
JD
11037``$end''. Similarly user friendly names are provided for each symbol. To
11038avoid name clashes in the generated files (@pxref{Calc++ Scanner}), prefix
2a6b66c5 11039tokens with @code{TOK_} (@pxref{%define Summary,,api.token.prefix}).
12545799 11040
1c59e0a1 11041@comment file: calc++-parser.yy
12545799 11042@example
2a6b66c5 11043%define api.token.prefix "TOK_"
3cdc21cf
AD
11044%token
11045 END 0 "end of file"
11046 ASSIGN ":="
11047 MINUS "-"
11048 PLUS "+"
11049 STAR "*"
11050 SLASH "/"
11051 LPAREN "("
11052 RPAREN ")"
11053;
12545799
AD
11054@end example
11055
11056@noindent
3cdc21cf
AD
11057Since we use variant-based semantic values, @code{%union} is not used, and
11058both @code{%type} and @code{%token} expect genuine types, as opposed to type
11059tags.
12545799 11060
1c59e0a1 11061@comment file: calc++-parser.yy
12545799 11062@example
3cdc21cf
AD
11063%token <std::string> IDENTIFIER "identifier"
11064%token <int> NUMBER "number"
11065%type <int> exp
11066@end example
11067
11068@noindent
11069No @code{%destructor} is needed to enable memory deallocation during error
11070recovery; the memory, for strings for instance, will be reclaimed by the
11071regular destructors. All the values are printed using their
a76c741d 11072@code{operator<<} (@pxref{Printer Decl, , Printing Semantic Values}).
12545799 11073
3cdc21cf
AD
11074@comment file: calc++-parser.yy
11075@example
c5026327 11076%printer @{ yyoutput << $$; @} <*>;
12545799
AD
11077@end example
11078
11079@noindent
3cdc21cf
AD
11080The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
11081Location Tracking Calculator: @code{ltcalc}}).
12545799 11082
1c59e0a1 11083@comment file: calc++-parser.yy
12545799
AD
11084@example
11085%%
11086%start unit;
11087unit: assignments exp @{ driver.result = $2; @};
11088
99c08fb6 11089assignments:
5e9b6624
AD
11090 /* Nothing. */ @{@}
11091| assignments assignment @{@};
12545799 11092
3dc5e96b 11093assignment:
3cdc21cf 11094 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 11095
3cdc21cf
AD
11096%left "+" "-";
11097%left "*" "/";
99c08fb6 11098exp:
3cdc21cf
AD
11099 exp "+" exp @{ $$ = $1 + $3; @}
11100| exp "-" exp @{ $$ = $1 - $3; @}
11101| exp "*" exp @{ $$ = $1 * $3; @}
11102| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 11103| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 11104| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 11105| "number" @{ std::swap ($$, $1); @};
12545799
AD
11106%%
11107@end example
11108
11109@noindent
11110Finally the @code{error} member function registers the errors to the
11111driver.
11112
1c59e0a1 11113@comment file: calc++-parser.yy
12545799
AD
11114@example
11115void
3cdc21cf 11116yy::calcxx_parser::error (const location_type& l,
1c59e0a1 11117 const std::string& m)
12545799
AD
11118@{
11119 driver.error (l, m);
11120@}
11121@end example
11122
11123@node Calc++ Scanner
8405b70c 11124@subsubsection Calc++ Scanner
12545799
AD
11125
11126The Flex scanner first includes the driver declaration, then the
11127parser's to get the set of defined tokens.
11128
1c59e0a1 11129@comment file: calc++-scanner.ll
12545799 11130@example
c93f22fc 11131%@{ /* -*- C++ -*- */
3c248d70
AD
11132# include <cerrno>
11133# include <climits>
3cdc21cf 11134# include <cstdlib>
12545799
AD
11135# include <string>
11136# include "calc++-driver.hh"
11137# include "calc++-parser.hh"
eaea13f5 11138
3cdc21cf
AD
11139// Work around an incompatibility in flex (at least versions
11140// 2.5.31 through 2.5.33): it generates code that does
11141// not conform to C89. See Debian bug 333231
11142// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
11143# undef yywrap
11144# define yywrap() 1
eaea13f5 11145
3cdc21cf
AD
11146// The location of the current token.
11147static yy::location loc;
12545799
AD
11148%@}
11149@end example
11150
11151@noindent
11152Because there is no @code{#include}-like feature we don't need
11153@code{yywrap}, we don't need @code{unput} either, and we parse an
11154actual file, this is not an interactive session with the user.
3cdc21cf 11155Finally, we enable scanner tracing.
12545799 11156
1c59e0a1 11157@comment file: calc++-scanner.ll
12545799 11158@example
6908c2e1 11159%option noyywrap nounput batch debug noinput
12545799
AD
11160@end example
11161
11162@noindent
11163Abbreviations allow for more readable rules.
11164
1c59e0a1 11165@comment file: calc++-scanner.ll
12545799
AD
11166@example
11167id [a-zA-Z][a-zA-Z_0-9]*
11168int [0-9]+
11169blank [ \t]
11170@end example
11171
11172@noindent
9d9b8b70 11173The following paragraph suffices to track locations accurately. Each
12545799 11174time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
11175position. Then when a pattern is matched, its width is added to the end
11176column. When matching ends of lines, the end
12545799
AD
11177cursor is adjusted, and each time blanks are matched, the begin cursor
11178is moved onto the end cursor to effectively ignore the blanks
11179preceding tokens. Comments would be treated equally.
11180
1c59e0a1 11181@comment file: calc++-scanner.ll
12545799 11182@example
d4fca427 11183@group
828c373b 11184%@{
3cdc21cf
AD
11185 // Code run each time a pattern is matched.
11186 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 11187%@}
d4fca427 11188@end group
12545799 11189%%
d4fca427 11190@group
12545799 11191%@{
3cdc21cf
AD
11192 // Code run each time yylex is called.
11193 loc.step ();
12545799 11194%@}
d4fca427 11195@end group
3cdc21cf
AD
11196@{blank@}+ loc.step ();
11197[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
11198@end example
11199
11200@noindent
3cdc21cf 11201The rules are simple. The driver is used to report errors.
12545799 11202
1c59e0a1 11203@comment file: calc++-scanner.ll
12545799 11204@example
3cdc21cf
AD
11205"-" return yy::calcxx_parser::make_MINUS(loc);
11206"+" return yy::calcxx_parser::make_PLUS(loc);
11207"*" return yy::calcxx_parser::make_STAR(loc);
11208"/" return yy::calcxx_parser::make_SLASH(loc);
11209"(" return yy::calcxx_parser::make_LPAREN(loc);
11210")" return yy::calcxx_parser::make_RPAREN(loc);
11211":=" return yy::calcxx_parser::make_ASSIGN(loc);
11212
d4fca427 11213@group
04098407
PE
11214@{int@} @{
11215 errno = 0;
11216 long n = strtol (yytext, NULL, 10);
11217 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
11218 driver.error (loc, "integer is out of range");
11219 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 11220@}
d4fca427 11221@end group
3cdc21cf
AD
11222@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
11223. driver.error (loc, "invalid character");
11224<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
11225%%
11226@end example
11227
11228@noindent
3cdc21cf 11229Finally, because the scanner-related driver's member-functions depend
12545799
AD
11230on the scanner's data, it is simpler to implement them in this file.
11231
1c59e0a1 11232@comment file: calc++-scanner.ll
12545799 11233@example
d4fca427 11234@group
12545799
AD
11235void
11236calcxx_driver::scan_begin ()
11237@{
11238 yy_flex_debug = trace_scanning;
93c150b6 11239 if (file.empty () || file == "-")
bb32f4f2
AD
11240 yyin = stdin;
11241 else if (!(yyin = fopen (file.c_str (), "r")))
11242 @{
aaaa2aae 11243 error ("cannot open " + file + ": " + strerror(errno));
d0f2b7f8 11244 exit (EXIT_FAILURE);
bb32f4f2 11245 @}
12545799 11246@}
d4fca427 11247@end group
12545799 11248
d4fca427 11249@group
12545799
AD
11250void
11251calcxx_driver::scan_end ()
11252@{
11253 fclose (yyin);
11254@}
d4fca427 11255@end group
12545799
AD
11256@end example
11257
11258@node Calc++ Top Level
8405b70c 11259@subsubsection Calc++ Top Level
12545799
AD
11260
11261The top level file, @file{calc++.cc}, poses no problem.
11262
1c59e0a1 11263@comment file: calc++.cc
12545799
AD
11264@example
11265#include <iostream>
11266#include "calc++-driver.hh"
11267
d4fca427 11268@group
12545799 11269int
fa4d969f 11270main (int argc, char *argv[])
12545799 11271@{
414c76a4 11272 int res = 0;
12545799 11273 calcxx_driver driver;
93c150b6
AD
11274 for (int i = 1; i < argc; ++i)
11275 if (argv[i] == std::string ("-p"))
12545799 11276 driver.trace_parsing = true;
93c150b6 11277 else if (argv[i] == std::string ("-s"))
12545799 11278 driver.trace_scanning = true;
93c150b6 11279 else if (!driver.parse (argv[i]))
bb32f4f2 11280 std::cout << driver.result << std::endl;
414c76a4
AD
11281 else
11282 res = 1;
11283 return res;
12545799 11284@}
d4fca427 11285@end group
12545799
AD
11286@end example
11287
8405b70c
PB
11288@node Java Parsers
11289@section Java Parsers
11290
11291@menu
f5f419de
DJ
11292* Java Bison Interface:: Asking for Java parser generation
11293* Java Semantic Values:: %type and %token vs. Java
11294* Java Location Values:: The position and location classes
11295* Java Parser Interface:: Instantiating and running the parser
11296* Java Scanner Interface:: Specifying the scanner for the parser
11297* Java Action Features:: Special features for use in actions
11298* Java Differences:: Differences between C/C++ and Java Grammars
11299* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
11300@end menu
11301
11302@node Java Bison Interface
11303@subsection Java Bison Interface
11304@c - %language "Java"
8405b70c 11305
59da312b
JD
11306(The current Java interface is experimental and may evolve.
11307More user feedback will help to stabilize it.)
11308
e254a580
DJ
11309The Java parser skeletons are selected using the @code{%language "Java"}
11310directive or the @option{-L java}/@option{--language=java} option.
8405b70c 11311
e254a580 11312@c FIXME: Documented bug.
ff7571c0
JD
11313When generating a Java parser, @code{bison @var{basename}.y} will
11314create a single Java source file named @file{@var{basename}.java}
11315containing the parser implementation. Using a grammar file without a
11316@file{.y} suffix is currently broken. The basename of the parser
11317implementation file can be changed by the @code{%file-prefix}
11318directive or the @option{-p}/@option{--name-prefix} option. The
11319entire parser implementation file name can be changed by the
11320@code{%output} directive or the @option{-o}/@option{--output} option.
11321The parser implementation file contains a single class for the parser.
8405b70c 11322
e254a580 11323You can create documentation for generated parsers using Javadoc.
8405b70c 11324
e254a580
DJ
11325Contrary to C parsers, Java parsers do not use global variables; the
11326state of the parser is always local to an instance of the parser class.
11327Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
5807bb91 11328and @code{%define api.pure} directives do nothing when used in Java.
8405b70c 11329
e254a580 11330Push parsers are currently unsupported in Java and @code{%define
67212941 11331api.push-pull} have no effect.
01b477c6 11332
8a4281b9 11333GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
11334@code{glr-parser} directive.
11335
11336No header file can be generated for Java parsers. Do not use the
11337@code{%defines} directive or the @option{-d}/@option{--defines} options.
11338
11339@c FIXME: Possible code change.
fa819509
AD
11340Currently, support for tracing is always compiled
11341in. Thus the @samp{%define parse.trace} and @samp{%token-table}
11342directives and the
e254a580
DJ
11343@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
11344options have no effect. This may change in the future to eliminate
fa819509
AD
11345unused code in the generated parser, so use @samp{%define parse.trace}
11346explicitly
1979121c 11347if needed. Also, in the future the
e254a580
DJ
11348@code{%token-table} directive might enable a public interface to
11349access the token names and codes.
8405b70c 11350
09ccae9b 11351Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 11352hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
11353Try reducing the amount of code in actions and static initializers;
11354otherwise, report a bug so that the parser skeleton will be improved.
11355
11356
8405b70c
PB
11357@node Java Semantic Values
11358@subsection Java Semantic Values
11359@c - No %union, specify type in %type/%token.
11360@c - YYSTYPE
11361@c - Printer and destructor
11362
11363There is no @code{%union} directive in Java parsers. Instead, the
11364semantic values' types (class names) should be specified in the
11365@code{%type} or @code{%token} directive:
11366
11367@example
11368%type <Expression> expr assignment_expr term factor
11369%type <Integer> number
11370@end example
11371
11372By default, the semantic stack is declared to have @code{Object} members,
11373which means that the class types you specify can be of any class.
11374To improve the type safety of the parser, you can declare the common
4119d1ea 11375superclass of all the semantic values using the @samp{%define api.value.type}
e254a580 11376directive. For example, after the following declaration:
8405b70c
PB
11377
11378@example
4119d1ea 11379%define api.value.type "ASTNode"
8405b70c
PB
11380@end example
11381
11382@noindent
11383any @code{%type} or @code{%token} specifying a semantic type which
11384is not a subclass of ASTNode, will cause a compile-time error.
11385
e254a580 11386@c FIXME: Documented bug.
8405b70c
PB
11387Types used in the directives may be qualified with a package name.
11388Primitive data types are accepted for Java version 1.5 or later. Note
11389that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
11390Generic types may not be used; this is due to a limitation in the
11391implementation of Bison, and may change in future releases.
8405b70c
PB
11392
11393Java parsers do not support @code{%destructor}, since the language
11394adopts garbage collection. The parser will try to hold references
11395to semantic values for as little time as needed.
11396
11397Java parsers do not support @code{%printer}, as @code{toString()}
11398can be used to print the semantic values. This however may change
11399(in a backwards-compatible way) in future versions of Bison.
11400
11401
11402@node Java Location Values
11403@subsection Java Location Values
11404@c - %locations
11405@c - class Position
11406@c - class Location
11407
303834cc
JD
11408When the directive @code{%locations} is used, the Java parser supports
11409location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
11410class defines a @dfn{position}, a single point in a file; Bison itself
11411defines a class representing a @dfn{location}, a range composed of a pair of
11412positions (possibly spanning several files). The location class is an inner
11413class of the parser; the name is @code{Location} by default, and may also be
7287be84 11414renamed using @code{%define api.location.type "@var{class-name}"}.
8405b70c
PB
11415
11416The location class treats the position as a completely opaque value.
11417By default, the class name is @code{Position}, but this can be changed
7287be84 11418with @code{%define api.position.type "@var{class-name}"}. This class must
e254a580 11419be supplied by the user.
8405b70c
PB
11420
11421
e254a580
DJ
11422@deftypeivar {Location} {Position} begin
11423@deftypeivarx {Location} {Position} end
8405b70c 11424The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
11425@end deftypeivar
11426
11427@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 11428Create a @code{Location} denoting an empty range located at a given point.
e254a580 11429@end deftypeop
8405b70c 11430
e254a580
DJ
11431@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
11432Create a @code{Location} from the endpoints of the range.
11433@end deftypeop
11434
11435@deftypemethod {Location} {String} toString ()
8405b70c
PB
11436Prints the range represented by the location. For this to work
11437properly, the position class should override the @code{equals} and
11438@code{toString} methods appropriately.
11439@end deftypemethod
11440
11441
11442@node Java Parser Interface
11443@subsection Java Parser Interface
11444@c - define parser_class_name
11445@c - Ctor
11446@c - parse, error, set_debug_level, debug_level, set_debug_stream,
11447@c debug_stream.
11448@c - Reporting errors
11449
e254a580
DJ
11450The name of the generated parser class defaults to @code{YYParser}. The
11451@code{YY} prefix may be changed using the @code{%name-prefix} directive
11452or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 11453@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 11454the class. The interface of this class is detailed below.
8405b70c 11455
e254a580 11456By default, the parser class has package visibility. A declaration
67501061 11457@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
11458according to the Java language specification, the name of the @file{.java}
11459file should match the name of the class in this case. Similarly, you can
11460use @code{abstract}, @code{final} and @code{strictfp} with the
11461@code{%define} declaration to add other modifiers to the parser class.
67501061 11462A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 11463be used to add any number of annotations to the parser class.
e254a580
DJ
11464
11465The Java package name of the parser class can be specified using the
67501061 11466@samp{%define package} directive. The superclass and the implemented
e254a580 11467interfaces of the parser class can be specified with the @code{%define
67501061 11468extends} and @samp{%define implements} directives.
e254a580
DJ
11469
11470The parser class defines an inner class, @code{Location}, that is used
11471for location tracking (see @ref{Java Location Values}), and a inner
11472interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
11473these inner class/interface, and the members described in the interface
11474below, all the other members and fields are preceded with a @code{yy} or
11475@code{YY} prefix to avoid clashes with user code.
11476
e254a580
DJ
11477The parser class can be extended using the @code{%parse-param}
11478directive. Each occurrence of the directive will add a @code{protected
11479final} field to the parser class, and an argument to its constructor,
11480which initialize them automatically.
11481
e254a580
DJ
11482@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
11483Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
11484no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
11485@code{%lex-param}s are used.
1979121c
DJ
11486
11487Use @code{%code init} for code added to the start of the constructor
11488body. This is especially useful to initialize superclasses. Use
f50bfcd6 11489@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
11490@end deftypeop
11491
11492@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
11493Build a new parser object using the specified scanner. There are no
2055a44e
AD
11494additional parameters unless @code{%param}s and/or @code{%parse-param}s are
11495used.
e254a580
DJ
11496
11497If the scanner is defined by @code{%code lexer}, this constructor is
11498declared @code{protected} and is called automatically with a scanner
2055a44e 11499created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
11500
11501Use @code{%code init} for code added to the start of the constructor
11502body. This is especially useful to initialize superclasses. Use
5a321748 11503@samp{%define init_throws} to specify any uncaught exceptions.
e254a580 11504@end deftypeop
8405b70c
PB
11505
11506@deftypemethod {YYParser} {boolean} parse ()
11507Run the syntactic analysis, and return @code{true} on success,
11508@code{false} otherwise.
11509@end deftypemethod
11510
1979121c
DJ
11511@deftypemethod {YYParser} {boolean} getErrorVerbose ()
11512@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
11513Get or set the option to produce verbose error messages. These are only
cf499cff 11514available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
11515verbose error messages.
11516@end deftypemethod
11517
11518@deftypemethod {YYParser} {void} yyerror (String @var{msg})
11519@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
11520@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
11521Print an error message using the @code{yyerror} method of the scanner
11522instance in use. The @code{Location} and @code{Position} parameters are
11523available only if location tracking is active.
11524@end deftypemethod
11525
01b477c6 11526@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 11527During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
11528from a syntax error.
11529@xref{Error Recovery}.
8405b70c
PB
11530@end deftypemethod
11531
11532@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
11533@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
11534Get or set the stream used for tracing the parsing. It defaults to
11535@code{System.err}.
11536@end deftypemethod
11537
11538@deftypemethod {YYParser} {int} getDebugLevel ()
11539@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
11540Get or set the tracing level. Currently its value is either 0, no trace,
11541or nonzero, full tracing.
11542@end deftypemethod
11543
1979121c
DJ
11544@deftypecv {Constant} {YYParser} {String} {bisonVersion}
11545@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
11546Identify the Bison version and skeleton used to generate this parser.
11547@end deftypecv
11548
8405b70c
PB
11549
11550@node Java Scanner Interface
11551@subsection Java Scanner Interface
01b477c6 11552@c - %code lexer
8405b70c 11553@c - %lex-param
01b477c6 11554@c - Lexer interface
8405b70c 11555
e254a580
DJ
11556There are two possible ways to interface a Bison-generated Java parser
11557with a scanner: the scanner may be defined by @code{%code lexer}, or
11558defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
11559@code{Lexer} inner interface of the parser class. This interface also
11560contain constants for all user-defined token names and the predefined
11561@code{EOF} token.
e254a580
DJ
11562
11563In the first case, the body of the scanner class is placed in
11564@code{%code lexer} blocks. If you want to pass parameters from the
11565parser constructor to the scanner constructor, specify them with
11566@code{%lex-param}; they are passed before @code{%parse-param}s to the
11567constructor.
01b477c6 11568
59c5ac72 11569In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
11570which is defined within the parser class (e.g., @code{YYParser.Lexer}).
11571The constructor of the parser object will then accept an object
11572implementing the interface; @code{%lex-param} is not used in this
11573case.
11574
11575In both cases, the scanner has to implement the following methods.
11576
e254a580
DJ
11577@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
11578This method is defined by the user to emit an error message. The first
11579parameter is omitted if location tracking is not active. Its type can be
7287be84 11580changed using @code{%define api.location.type "@var{class-name}".}
8405b70c
PB
11581@end deftypemethod
11582
e254a580 11583@deftypemethod {Lexer} {int} yylex ()
8405b70c 11584Return the next token. Its type is the return value, its semantic
f50bfcd6 11585value and location are saved and returned by the their methods in the
e254a580
DJ
11586interface.
11587
67501061 11588Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 11589Default is @code{java.io.IOException}.
8405b70c
PB
11590@end deftypemethod
11591
11592@deftypemethod {Lexer} {Position} getStartPos ()
11593@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
11594Return respectively the first position of the last token that
11595@code{yylex} returned, and the first position beyond it. These
11596methods are not needed unless location tracking is active.
8405b70c 11597
7287be84 11598The return type can be changed using @code{%define api.position.type
8405b70c
PB
11599"@var{class-name}".}
11600@end deftypemethod
11601
11602@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 11603Return the semantic value of the last token that yylex returned.
8405b70c 11604
4119d1ea 11605The return type can be changed using @samp{%define api.value.type
8405b70c
PB
11606"@var{class-name}".}
11607@end deftypemethod
11608
11609
e254a580
DJ
11610@node Java Action Features
11611@subsection Special Features for Use in Java Actions
11612
11613The following special constructs can be uses in Java actions.
11614Other analogous C action features are currently unavailable for Java.
11615
67501061 11616Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
11617actions, and initial actions specified by @code{%initial-action}.
11618
11619@defvar $@var{n}
11620The semantic value for the @var{n}th component of the current rule.
11621This may not be assigned to.
11622@xref{Java Semantic Values}.
11623@end defvar
11624
11625@defvar $<@var{typealt}>@var{n}
11626Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
11627@xref{Java Semantic Values}.
11628@end defvar
11629
11630@defvar $$
11631The semantic value for the grouping made by the current rule. As a
11632value, this is in the base type (@code{Object} or as specified by
4119d1ea 11633@samp{%define api.value.type}) as in not cast to the declared subtype because
e254a580
DJ
11634casts are not allowed on the left-hand side of Java assignments.
11635Use an explicit Java cast if the correct subtype is needed.
11636@xref{Java Semantic Values}.
11637@end defvar
11638
11639@defvar $<@var{typealt}>$
11640Same as @code{$$} since Java always allow assigning to the base type.
11641Perhaps we should use this and @code{$<>$} for the value and @code{$$}
11642for setting the value but there is currently no easy way to distinguish
11643these constructs.
11644@xref{Java Semantic Values}.
11645@end defvar
11646
11647@defvar @@@var{n}
11648The location information of the @var{n}th component of the current rule.
11649This may not be assigned to.
11650@xref{Java Location Values}.
11651@end defvar
11652
11653@defvar @@$
11654The location information of the grouping made by the current rule.
11655@xref{Java Location Values}.
11656@end defvar
11657
34a41a93 11658@deftypefn {Statement} return YYABORT @code{;}
e254a580
DJ
11659Return immediately from the parser, indicating failure.
11660@xref{Java Parser Interface}.
34a41a93 11661@end deftypefn
8405b70c 11662
34a41a93 11663@deftypefn {Statement} return YYACCEPT @code{;}
e254a580
DJ
11664Return immediately from the parser, indicating success.
11665@xref{Java Parser Interface}.
34a41a93 11666@end deftypefn
8405b70c 11667
34a41a93 11668@deftypefn {Statement} {return} YYERROR @code{;}
4a11b852 11669Start error recovery (without printing an error message).
e254a580 11670@xref{Error Recovery}.
34a41a93 11671@end deftypefn
8405b70c 11672
e254a580
DJ
11673@deftypefn {Function} {boolean} recovering ()
11674Return whether error recovery is being done. In this state, the parser
11675reads token until it reaches a known state, and then restarts normal
11676operation.
11677@xref{Error Recovery}.
11678@end deftypefn
8405b70c 11679
1979121c
DJ
11680@deftypefn {Function} {void} yyerror (String @var{msg})
11681@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
11682@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 11683Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
11684instance in use. The @code{Location} and @code{Position} parameters are
11685available only if location tracking is active.
e254a580 11686@end deftypefn
8405b70c 11687
8405b70c 11688
8405b70c
PB
11689@node Java Differences
11690@subsection Differences between C/C++ and Java Grammars
11691
11692The different structure of the Java language forces several differences
11693between C/C++ grammars, and grammars designed for Java parsers. This
29553547 11694section summarizes these differences.
8405b70c
PB
11695
11696@itemize
11697@item
01b477c6 11698Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 11699@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
11700macros. Instead, they should be preceded by @code{return} when they
11701appear in an action. The actual definition of these symbols is
8405b70c
PB
11702opaque to the Bison grammar, and it might change in the future. The
11703only meaningful operation that you can do, is to return them.
e3fd1dcb 11704@xref{Java Action Features}.
8405b70c
PB
11705
11706Note that of these three symbols, only @code{YYACCEPT} and
11707@code{YYABORT} will cause a return from the @code{yyparse}
11708method@footnote{Java parsers include the actions in a separate
11709method than @code{yyparse} in order to have an intuitive syntax that
11710corresponds to these C macros.}.
11711
e254a580
DJ
11712@item
11713Java lacks unions, so @code{%union} has no effect. Instead, semantic
11714values have a common base type: @code{Object} or as specified by
4119d1ea 11715@samp{%define api.value.type}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
11716@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
11717an union. The type of @code{$$}, even with angle brackets, is the base
11718type since Java casts are not allow on the left-hand side of assignments.
11719Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
15cd62c2 11720left-hand side of assignments. @xref{Java Semantic Values}, and
e3fd1dcb 11721@ref{Java Action Features}.
e254a580 11722
8405b70c 11723@item
f50bfcd6 11724The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
11725@table @asis
11726@item @code{%code imports}
11727blocks are placed at the beginning of the Java source code. They may
11728include copyright notices. For a @code{package} declarations, it is
67501061 11729suggested to use @samp{%define package} instead.
8405b70c 11730
01b477c6
PB
11731@item unqualified @code{%code}
11732blocks are placed inside the parser class.
11733
11734@item @code{%code lexer}
11735blocks, if specified, should include the implementation of the
11736scanner. If there is no such block, the scanner can be any class
e3fd1dcb 11737that implements the appropriate interface (@pxref{Java Scanner
01b477c6 11738Interface}).
29553547 11739@end table
8405b70c
PB
11740
11741Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
11742In particular, @code{%@{ @dots{} %@}} blocks should not be used
11743and may give an error in future versions of Bison.
11744
01b477c6 11745The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
11746be used to define other classes used by the parser @emph{outside}
11747the parser class.
8405b70c
PB
11748@end itemize
11749
e254a580
DJ
11750
11751@node Java Declarations Summary
11752@subsection Java Declarations Summary
11753
11754This summary only include declarations specific to Java or have special
11755meaning when used in a Java parser.
11756
11757@deffn {Directive} {%language "Java"}
11758Generate a Java class for the parser.
11759@end deffn
11760
11761@deffn {Directive} %lex-param @{@var{type} @var{name}@}
11762A parameter for the lexer class defined by @code{%code lexer}
11763@emph{only}, added as parameters to the lexer constructor and the parser
11764constructor that @emph{creates} a lexer. Default is none.
11765@xref{Java Scanner Interface}.
11766@end deffn
11767
11768@deffn {Directive} %name-prefix "@var{prefix}"
11769The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 11770@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
11771@xref{Java Bison Interface}.
11772@end deffn
11773
11774@deffn {Directive} %parse-param @{@var{type} @var{name}@}
11775A parameter for the parser class added as parameters to constructor(s)
11776and as fields initialized by the constructor(s). Default is none.
11777@xref{Java Parser Interface}.
11778@end deffn
11779
11780@deffn {Directive} %token <@var{type}> @var{token} @dots{}
11781Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
11782@xref{Java Semantic Values}.
11783@end deffn
11784
11785@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
11786Declare the type of nonterminals. Note that the angle brackets enclose
11787a Java @emph{type}.
11788@xref{Java Semantic Values}.
11789@end deffn
11790
11791@deffn {Directive} %code @{ @var{code} @dots{} @}
11792Code appended to the inside of the parser class.
11793@xref{Java Differences}.
11794@end deffn
11795
11796@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
11797Code inserted just after the @code{package} declaration.
11798@xref{Java Differences}.
11799@end deffn
11800
1979121c
DJ
11801@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
11802Code inserted at the beginning of the parser constructor body.
11803@xref{Java Parser Interface}.
11804@end deffn
11805
e254a580
DJ
11806@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
11807Code added to the body of a inner lexer class within the parser class.
11808@xref{Java Scanner Interface}.
11809@end deffn
11810
11811@deffn {Directive} %% @var{code} @dots{}
11812Code (after the second @code{%%}) appended to the end of the file,
11813@emph{outside} the parser class.
11814@xref{Java Differences}.
11815@end deffn
11816
11817@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 11818Not supported. Use @code{%code imports} instead.
e254a580
DJ
11819@xref{Java Differences}.
11820@end deffn
11821
11822@deffn {Directive} {%define abstract}
11823Whether the parser class is declared @code{abstract}. Default is false.
11824@xref{Java Bison Interface}.
11825@end deffn
11826
1979121c
DJ
11827@deffn {Directive} {%define annotations} "@var{annotations}"
11828The Java annotations for the parser class. Default is none.
11829@xref{Java Bison Interface}.
11830@end deffn
11831
e254a580
DJ
11832@deffn {Directive} {%define extends} "@var{superclass}"
11833The superclass of the parser class. Default is none.
11834@xref{Java Bison Interface}.
11835@end deffn
11836
11837@deffn {Directive} {%define final}
11838Whether the parser class is declared @code{final}. Default is false.
11839@xref{Java Bison Interface}.
11840@end deffn
11841
11842@deffn {Directive} {%define implements} "@var{interfaces}"
11843The implemented interfaces of the parser class, a comma-separated list.
11844Default is none.
11845@xref{Java Bison Interface}.
11846@end deffn
11847
1979121c
DJ
11848@deffn {Directive} {%define init_throws} "@var{exceptions}"
11849The exceptions thrown by @code{%code init} from the parser class
11850constructor. Default is none.
11851@xref{Java Parser Interface}.
11852@end deffn
11853
e254a580
DJ
11854@deffn {Directive} {%define lex_throws} "@var{exceptions}"
11855The exceptions thrown by the @code{yylex} method of the lexer, a
11856comma-separated list. Default is @code{java.io.IOException}.
11857@xref{Java Scanner Interface}.
11858@end deffn
11859
7287be84 11860@deffn {Directive} {%define api.location.type} "@var{class}"
e254a580
DJ
11861The name of the class used for locations (a range between two
11862positions). This class is generated as an inner class of the parser
11863class by @command{bison}. Default is @code{Location}.
7287be84 11864Formerly named @code{location_type}.
e254a580
DJ
11865@xref{Java Location Values}.
11866@end deffn
11867
11868@deffn {Directive} {%define package} "@var{package}"
11869The package to put the parser class in. Default is none.
11870@xref{Java Bison Interface}.
11871@end deffn
11872
11873@deffn {Directive} {%define parser_class_name} "@var{name}"
11874The name of the parser class. Default is @code{YYParser} or
11875@code{@var{name-prefix}Parser}.
11876@xref{Java Bison Interface}.
11877@end deffn
11878
7287be84 11879@deffn {Directive} {%define api.position.type} "@var{class}"
e254a580
DJ
11880The name of the class used for positions. This class must be supplied by
11881the user. Default is @code{Position}.
7287be84 11882Formerly named @code{position_type}.
e254a580
DJ
11883@xref{Java Location Values}.
11884@end deffn
11885
11886@deffn {Directive} {%define public}
11887Whether the parser class is declared @code{public}. Default is false.
11888@xref{Java Bison Interface}.
11889@end deffn
11890
4119d1ea 11891@deffn {Directive} {%define api.value.type} "@var{class}"
e254a580
DJ
11892The base type of semantic values. Default is @code{Object}.
11893@xref{Java Semantic Values}.
11894@end deffn
11895
11896@deffn {Directive} {%define strictfp}
11897Whether the parser class is declared @code{strictfp}. Default is false.
11898@xref{Java Bison Interface}.
11899@end deffn
11900
11901@deffn {Directive} {%define throws} "@var{exceptions}"
11902The exceptions thrown by user-supplied parser actions and
11903@code{%initial-action}, a comma-separated list. Default is none.
11904@xref{Java Parser Interface}.
11905@end deffn
11906
11907
12545799 11908@c ================================================= FAQ
d1a1114f
AD
11909
11910@node FAQ
11911@chapter Frequently Asked Questions
11912@cindex frequently asked questions
11913@cindex questions
11914
11915Several questions about Bison come up occasionally. Here some of them
11916are addressed.
11917
11918@menu
55ba27be
AD
11919* Memory Exhausted:: Breaking the Stack Limits
11920* How Can I Reset the Parser:: @code{yyparse} Keeps some State
11921* Strings are Destroyed:: @code{yylval} Loses Track of Strings
11922* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 11923* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 11924* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
11925* I can't build Bison:: Troubleshooting
11926* Where can I find help?:: Troubleshouting
11927* Bug Reports:: Troublereporting
8405b70c 11928* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
11929* Beta Testing:: Experimenting development versions
11930* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
11931@end menu
11932
1a059451
PE
11933@node Memory Exhausted
11934@section Memory Exhausted
d1a1114f 11935
71b52b13 11936@quotation
1a059451 11937My parser returns with error with a @samp{memory exhausted}
d1a1114f 11938message. What can I do?
71b52b13 11939@end quotation
d1a1114f 11940
188867ac
AD
11941This question is already addressed elsewhere, see @ref{Recursion, ,Recursive
11942Rules}.
d1a1114f 11943
e64fec0a
PE
11944@node How Can I Reset the Parser
11945@section How Can I Reset the Parser
5b066063 11946
0e14ad77
PE
11947The following phenomenon has several symptoms, resulting in the
11948following typical questions:
5b066063 11949
71b52b13 11950@quotation
5b066063
AD
11951I invoke @code{yyparse} several times, and on correct input it works
11952properly; but when a parse error is found, all the other calls fail
0e14ad77 11953too. How can I reset the error flag of @code{yyparse}?
71b52b13 11954@end quotation
5b066063
AD
11955
11956@noindent
11957or
11958
71b52b13 11959@quotation
0e14ad77 11960My parser includes support for an @samp{#include}-like feature, in
5b066063 11961which case I run @code{yyparse} from @code{yyparse}. This fails
1f1bd572 11962although I did specify @samp{%define api.pure full}.
71b52b13 11963@end quotation
5b066063 11964
0e14ad77
PE
11965These problems typically come not from Bison itself, but from
11966Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
11967speed, they might not notice a change of input file. As a
11968demonstration, consider the following source file,
11969@file{first-line.l}:
11970
d4fca427
AD
11971@example
11972@group
11973%@{
5b066063
AD
11974#include <stdio.h>
11975#include <stdlib.h>
d4fca427
AD
11976%@}
11977@end group
5b066063
AD
11978%%
11979.*\n ECHO; return 1;
11980%%
d4fca427 11981@group
5b066063 11982int
0e14ad77 11983yyparse (char const *file)
d4fca427 11984@{
5b066063
AD
11985 yyin = fopen (file, "r");
11986 if (!yyin)
d4fca427
AD
11987 @{
11988 perror ("fopen");
11989 exit (EXIT_FAILURE);
11990 @}
11991@end group
11992@group
fa7e68c3 11993 /* One token only. */
5b066063 11994 yylex ();
0e14ad77 11995 if (fclose (yyin) != 0)
d4fca427
AD
11996 @{
11997 perror ("fclose");
11998 exit (EXIT_FAILURE);
11999 @}
5b066063 12000 return 0;
d4fca427
AD
12001@}
12002@end group
5b066063 12003
d4fca427 12004@group
5b066063 12005int
0e14ad77 12006main (void)
d4fca427 12007@{
5b066063
AD
12008 yyparse ("input");
12009 yyparse ("input");
12010 return 0;
d4fca427
AD
12011@}
12012@end group
12013@end example
5b066063
AD
12014
12015@noindent
12016If the file @file{input} contains
12017
71b52b13 12018@example
5b066063
AD
12019input:1: Hello,
12020input:2: World!
71b52b13 12021@end example
5b066063
AD
12022
12023@noindent
0e14ad77 12024then instead of getting the first line twice, you get:
5b066063
AD
12025
12026@example
12027$ @kbd{flex -ofirst-line.c first-line.l}
12028$ @kbd{gcc -ofirst-line first-line.c -ll}
12029$ @kbd{./first-line}
12030input:1: Hello,
12031input:2: World!
12032@end example
12033
0e14ad77
PE
12034Therefore, whenever you change @code{yyin}, you must tell the
12035Lex-generated scanner to discard its current buffer and switch to the
12036new one. This depends upon your implementation of Lex; see its
12037documentation for more. For Flex, it suffices to call
12038@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
12039Flex-generated scanner needs to read from several input streams to
12040handle features like include files, you might consider using Flex
12041functions like @samp{yy_switch_to_buffer} that manipulate multiple
12042input buffers.
5b066063 12043
b165c324
AD
12044If your Flex-generated scanner uses start conditions (@pxref{Start
12045conditions, , Start conditions, flex, The Flex Manual}), you might
12046also want to reset the scanner's state, i.e., go back to the initial
12047start condition, through a call to @samp{BEGIN (0)}.
12048
fef4cb51
AD
12049@node Strings are Destroyed
12050@section Strings are Destroyed
12051
71b52b13 12052@quotation
c7e441b4 12053My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
12054them. Instead of reporting @samp{"foo", "bar"}, it reports
12055@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
71b52b13 12056@end quotation
fef4cb51
AD
12057
12058This error is probably the single most frequent ``bug report'' sent to
12059Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 12060of the scanner. Consider the following Lex code:
fef4cb51 12061
71b52b13 12062@example
d4fca427 12063@group
71b52b13 12064%@{
fef4cb51
AD
12065#include <stdio.h>
12066char *yylval = NULL;
71b52b13 12067%@}
d4fca427
AD
12068@end group
12069@group
fef4cb51
AD
12070%%
12071.* yylval = yytext; return 1;
12072\n /* IGNORE */
12073%%
d4fca427
AD
12074@end group
12075@group
fef4cb51
AD
12076int
12077main ()
71b52b13 12078@{
fa7e68c3 12079 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
12080 char *fst = (yylex (), yylval);
12081 char *snd = (yylex (), yylval);
12082 printf ("\"%s\", \"%s\"\n", fst, snd);
12083 return 0;
71b52b13 12084@}
d4fca427 12085@end group
71b52b13 12086@end example
fef4cb51
AD
12087
12088If you compile and run this code, you get:
12089
12090@example
12091$ @kbd{flex -osplit-lines.c split-lines.l}
12092$ @kbd{gcc -osplit-lines split-lines.c -ll}
12093$ @kbd{printf 'one\ntwo\n' | ./split-lines}
12094"one
12095two", "two"
12096@end example
12097
12098@noindent
12099this is because @code{yytext} is a buffer provided for @emph{reading}
12100in the action, but if you want to keep it, you have to duplicate it
12101(e.g., using @code{strdup}). Note that the output may depend on how
12102your implementation of Lex handles @code{yytext}. For instance, when
12103given the Lex compatibility option @option{-l} (which triggers the
12104option @samp{%array}) Flex generates a different behavior:
12105
12106@example
12107$ @kbd{flex -l -osplit-lines.c split-lines.l}
12108$ @kbd{gcc -osplit-lines split-lines.c -ll}
12109$ @kbd{printf 'one\ntwo\n' | ./split-lines}
12110"two", "two"
12111@end example
12112
12113
2fa09258
AD
12114@node Implementing Gotos/Loops
12115@section Implementing Gotos/Loops
a06ea4aa 12116
71b52b13 12117@quotation
a06ea4aa 12118My simple calculator supports variables, assignments, and functions,
2fa09258 12119but how can I implement gotos, or loops?
71b52b13 12120@end quotation
a06ea4aa
AD
12121
12122Although very pedagogical, the examples included in the document blur
a1c84f45 12123the distinction to make between the parser---whose job is to recover
a06ea4aa 12124the structure of a text and to transmit it to subsequent modules of
a1c84f45 12125the program---and the processing (such as the execution) of this
a06ea4aa
AD
12126structure. This works well with so called straight line programs,
12127i.e., precisely those that have a straightforward execution model:
12128execute simple instructions one after the others.
12129
12130@cindex abstract syntax tree
8a4281b9 12131@cindex AST
a06ea4aa
AD
12132If you want a richer model, you will probably need to use the parser
12133to construct a tree that does represent the structure it has
12134recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 12135or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
12136traversing it in various ways, will enable treatments such as its
12137execution or its translation, which will result in an interpreter or a
12138compiler.
12139
12140This topic is way beyond the scope of this manual, and the reader is
12141invited to consult the dedicated literature.
12142
12143
ed2e6384
AD
12144@node Multiple start-symbols
12145@section Multiple start-symbols
12146
71b52b13 12147@quotation
ed2e6384
AD
12148I have several closely related grammars, and I would like to share their
12149implementations. In fact, I could use a single grammar but with
12150multiple entry points.
71b52b13 12151@end quotation
ed2e6384
AD
12152
12153Bison does not support multiple start-symbols, but there is a very
12154simple means to simulate them. If @code{foo} and @code{bar} are the two
12155pseudo start-symbols, then introduce two new tokens, say
12156@code{START_FOO} and @code{START_BAR}, and use them as switches from the
12157real start-symbol:
12158
12159@example
12160%token START_FOO START_BAR;
12161%start start;
5e9b6624
AD
12162start:
12163 START_FOO foo
12164| START_BAR bar;
ed2e6384
AD
12165@end example
12166
12167These tokens prevents the introduction of new conflicts. As far as the
12168parser goes, that is all that is needed.
12169
12170Now the difficult part is ensuring that the scanner will send these
12171tokens first. If your scanner is hand-written, that should be
12172straightforward. If your scanner is generated by Lex, them there is
12173simple means to do it: recall that anything between @samp{%@{ ... %@}}
12174after the first @code{%%} is copied verbatim in the top of the generated
12175@code{yylex} function. Make sure a variable @code{start_token} is
12176available in the scanner (e.g., a global variable or using
12177@code{%lex-param} etc.), and use the following:
12178
12179@example
12180 /* @r{Prologue.} */
12181%%
12182%@{
12183 if (start_token)
12184 @{
12185 int t = start_token;
12186 start_token = 0;
12187 return t;
12188 @}
12189%@}
12190 /* @r{The rules.} */
12191@end example
12192
12193
55ba27be
AD
12194@node Secure? Conform?
12195@section Secure? Conform?
12196
71b52b13 12197@quotation
55ba27be 12198Is Bison secure? Does it conform to POSIX?
71b52b13 12199@end quotation
55ba27be
AD
12200
12201If you're looking for a guarantee or certification, we don't provide it.
12202However, Bison is intended to be a reliable program that conforms to the
8a4281b9 12203POSIX specification for Yacc. If you run into problems,
55ba27be
AD
12204please send us a bug report.
12205
12206@node I can't build Bison
12207@section I can't build Bison
12208
71b52b13 12209@quotation
8c5b881d
PE
12210I can't build Bison because @command{make} complains that
12211@code{msgfmt} is not found.
55ba27be 12212What should I do?
71b52b13 12213@end quotation
55ba27be
AD
12214
12215Like most GNU packages with internationalization support, that feature
12216is turned on by default. If you have problems building in the @file{po}
12217subdirectory, it indicates that your system's internationalization
12218support is lacking. You can re-configure Bison with
12219@option{--disable-nls} to turn off this support, or you can install GNU
12220gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
12221Bison. See the file @file{ABOUT-NLS} for more information.
12222
12223
12224@node Where can I find help?
12225@section Where can I find help?
12226
71b52b13 12227@quotation
55ba27be 12228I'm having trouble using Bison. Where can I find help?
71b52b13 12229@end quotation
55ba27be
AD
12230
12231First, read this fine manual. Beyond that, you can send mail to
12232@email{help-bison@@gnu.org}. This mailing list is intended to be
12233populated with people who are willing to answer questions about using
12234and installing Bison. Please keep in mind that (most of) the people on
12235the list have aspects of their lives which are not related to Bison (!),
12236so you may not receive an answer to your question right away. This can
12237be frustrating, but please try not to honk them off; remember that any
12238help they provide is purely voluntary and out of the kindness of their
12239hearts.
12240
12241@node Bug Reports
12242@section Bug Reports
12243
71b52b13 12244@quotation
55ba27be 12245I found a bug. What should I include in the bug report?
71b52b13 12246@end quotation
55ba27be
AD
12247
12248Before you send a bug report, make sure you are using the latest
12249version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
12250mirrors. Be sure to include the version number in your bug report. If
12251the bug is present in the latest version but not in a previous version,
12252try to determine the most recent version which did not contain the bug.
12253
12254If the bug is parser-related, you should include the smallest grammar
12255you can which demonstrates the bug. The grammar file should also be
12256complete (i.e., I should be able to run it through Bison without having
12257to edit or add anything). The smaller and simpler the grammar, the
12258easier it will be to fix the bug.
12259
12260Include information about your compilation environment, including your
12261operating system's name and version and your compiler's name and
12262version. If you have trouble compiling, you should also include a
12263transcript of the build session, starting with the invocation of
12264`configure'. Depending on the nature of the bug, you may be asked to
12265send additional files as well (such as `config.h' or `config.cache').
12266
12267Patches are most welcome, but not required. That is, do not hesitate to
411614fa 12268send a bug report just because you cannot provide a fix.
55ba27be
AD
12269
12270Send bug reports to @email{bug-bison@@gnu.org}.
12271
8405b70c
PB
12272@node More Languages
12273@section More Languages
55ba27be 12274
71b52b13 12275@quotation
8405b70c 12276Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 12277favorite language here}?
71b52b13 12278@end quotation
55ba27be 12279
8405b70c 12280C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
12281languages; contributions are welcome.
12282
12283@node Beta Testing
12284@section Beta Testing
12285
71b52b13 12286@quotation
55ba27be 12287What is involved in being a beta tester?
71b52b13 12288@end quotation
55ba27be
AD
12289
12290It's not terribly involved. Basically, you would download a test
12291release, compile it, and use it to build and run a parser or two. After
12292that, you would submit either a bug report or a message saying that
12293everything is okay. It is important to report successes as well as
12294failures because test releases eventually become mainstream releases,
12295but only if they are adequately tested. If no one tests, development is
12296essentially halted.
12297
12298Beta testers are particularly needed for operating systems to which the
12299developers do not have easy access. They currently have easy access to
12300recent GNU/Linux and Solaris versions. Reports about other operating
12301systems are especially welcome.
12302
12303@node Mailing Lists
12304@section Mailing Lists
12305
71b52b13 12306@quotation
55ba27be 12307How do I join the help-bison and bug-bison mailing lists?
71b52b13 12308@end quotation
55ba27be
AD
12309
12310See @url{http://lists.gnu.org/}.
a06ea4aa 12311
d1a1114f
AD
12312@c ================================================= Table of Symbols
12313
342b8b6e 12314@node Table of Symbols
bfa74976
RS
12315@appendix Bison Symbols
12316@cindex Bison symbols, table of
12317@cindex symbols in Bison, table of
12318
18b519c0 12319@deffn {Variable} @@$
3ded9a63 12320In an action, the location of the left-hand side of the rule.
303834cc 12321@xref{Tracking Locations}.
18b519c0 12322@end deffn
3ded9a63 12323
18b519c0 12324@deffn {Variable} @@@var{n}
be22823e 12325@deffnx {Symbol} @@@var{n}
303834cc
JD
12326In an action, the location of the @var{n}-th symbol of the right-hand side
12327of the rule. @xref{Tracking Locations}.
be22823e
AD
12328
12329In a grammar, the Bison-generated nonterminal symbol for a mid-rule action
12330with a semantical value. @xref{Mid-Rule Action Translation}.
18b519c0 12331@end deffn
3ded9a63 12332
d013372c 12333@deffn {Variable} @@@var{name}
c949ada3
AD
12334@deffnx {Variable} @@[@var{name}]
12335In an action, the location of a symbol addressed by @var{name}.
12336@xref{Tracking Locations}.
d013372c
AR
12337@end deffn
12338
be22823e
AD
12339@deffn {Symbol} $@@@var{n}
12340In a grammar, the Bison-generated nonterminal symbol for a mid-rule action
12341with no semantical value. @xref{Mid-Rule Action Translation}.
d013372c
AR
12342@end deffn
12343
18b519c0 12344@deffn {Variable} $$
3ded9a63
AD
12345In an action, the semantic value of the left-hand side of the rule.
12346@xref{Actions}.
18b519c0 12347@end deffn
3ded9a63 12348
18b519c0 12349@deffn {Variable} $@var{n}
3ded9a63
AD
12350In an action, the semantic value of the @var{n}-th symbol of the
12351right-hand side of the rule. @xref{Actions}.
18b519c0 12352@end deffn
3ded9a63 12353
d013372c 12354@deffn {Variable} $@var{name}
c949ada3
AD
12355@deffnx {Variable} $[@var{name}]
12356In an action, the semantic value of a symbol addressed by @var{name}.
d013372c
AR
12357@xref{Actions}.
12358@end deffn
12359
dd8d9022
AD
12360@deffn {Delimiter} %%
12361Delimiter used to separate the grammar rule section from the
12362Bison declarations section or the epilogue.
12363@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 12364@end deffn
bfa74976 12365
dd8d9022
AD
12366@c Don't insert spaces, or check the DVI output.
12367@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
12368All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
12369to the parser implementation file. Such code forms the prologue of
12370the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 12371Grammar}.
18b519c0 12372@end deffn
bfa74976 12373
ca2a6d15
PH
12374@deffn {Directive} %?@{@var{expression}@}
12375Predicate actions. This is a type of action clause that may appear in
12376rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 12377GLR parsers during nondeterministic operation,
ca2a6d15
PH
12378this silently causes an alternative parse to die. During deterministic
12379operation, it is the same as the effect of YYERROR.
12380@xref{Semantic Predicates}.
12381
12382This feature is experimental.
12383More user feedback will help to determine whether it should become a permanent
12384feature.
12385@end deffn
12386
c949ada3
AD
12387@deffn {Construct} /* @dots{} */
12388@deffnx {Construct} // @dots{}
12389Comments, as in C/C++.
18b519c0 12390@end deffn
bfa74976 12391
dd8d9022
AD
12392@deffn {Delimiter} :
12393Separates a rule's result from its components. @xref{Rules, ,Syntax of
12394Grammar Rules}.
18b519c0 12395@end deffn
bfa74976 12396
dd8d9022
AD
12397@deffn {Delimiter} ;
12398Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 12399@end deffn
bfa74976 12400
dd8d9022
AD
12401@deffn {Delimiter} |
12402Separates alternate rules for the same result nonterminal.
12403@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 12404@end deffn
bfa74976 12405
12e35840
JD
12406@deffn {Directive} <*>
12407Used to define a default tagged @code{%destructor} or default tagged
12408@code{%printer}.
85894313
JD
12409
12410This feature is experimental.
12411More user feedback will help to determine whether it should become a permanent
12412feature.
12413
12e35840
JD
12414@xref{Destructor Decl, , Freeing Discarded Symbols}.
12415@end deffn
12416
3ebecc24 12417@deffn {Directive} <>
12e35840
JD
12418Used to define a default tagless @code{%destructor} or default tagless
12419@code{%printer}.
85894313
JD
12420
12421This feature is experimental.
12422More user feedback will help to determine whether it should become a permanent
12423feature.
12424
12e35840
JD
12425@xref{Destructor Decl, , Freeing Discarded Symbols}.
12426@end deffn
12427
dd8d9022
AD
12428@deffn {Symbol} $accept
12429The predefined nonterminal whose only rule is @samp{$accept: @var{start}
12430$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
12431Start-Symbol}. It cannot be used in the grammar.
18b519c0 12432@end deffn
bfa74976 12433
136a0f76 12434@deffn {Directive} %code @{@var{code}@}
148d66d8 12435@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
51151d91
JD
12436Insert @var{code} verbatim into the output parser source at the
12437default location or at the location specified by @var{qualifier}.
e0c07222 12438@xref{%code Summary}.
9bc0dd67
JD
12439@end deffn
12440
12441@deffn {Directive} %debug
12442Equip the parser for debugging. @xref{Decl Summary}.
12443@end deffn
12444
91d2c560 12445@ifset defaultprec
22fccf95
PE
12446@deffn {Directive} %default-prec
12447Assign a precedence to rules that lack an explicit @samp{%prec}
12448modifier. @xref{Contextual Precedence, ,Context-Dependent
12449Precedence}.
39a06c25 12450@end deffn
91d2c560 12451@end ifset
39a06c25 12452
7fceb615
JD
12453@deffn {Directive} %define @var{variable}
12454@deffnx {Directive} %define @var{variable} @var{value}
12455@deffnx {Directive} %define @var{variable} "@var{value}"
35c1e5f0 12456Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
12457@end deffn
12458
18b519c0 12459@deffn {Directive} %defines
ff7571c0
JD
12460Bison declaration to create a parser header file, which is usually
12461meant for the scanner. @xref{Decl Summary}.
18b519c0 12462@end deffn
6deb4447 12463
02975b9a
JD
12464@deffn {Directive} %defines @var{defines-file}
12465Same as above, but save in the file @var{defines-file}.
12466@xref{Decl Summary}.
12467@end deffn
12468
18b519c0 12469@deffn {Directive} %destructor
258b75ca 12470Specify how the parser should reclaim the memory associated to
fa7e68c3 12471discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 12472@end deffn
72f889cc 12473
18b519c0 12474@deffn {Directive} %dprec
676385e2 12475Bison declaration to assign a precedence to a rule that is used at parse
c827f760 12476time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 12477GLR Parsers}.
18b519c0 12478@end deffn
676385e2 12479
09add9c2
AD
12480@deffn {Directive} %empty
12481Bison declaration to declare make explicit that a rule has an empty
12482right-hand side. @xref{Empty Rules}.
12483@end deffn
12484
dd8d9022
AD
12485@deffn {Symbol} $end
12486The predefined token marking the end of the token stream. It cannot be
12487used in the grammar.
12488@end deffn
12489
12490@deffn {Symbol} error
12491A token name reserved for error recovery. This token may be used in
12492grammar rules so as to allow the Bison parser to recognize an error in
12493the grammar without halting the process. In effect, a sentence
12494containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
12495token @code{error} becomes the current lookahead token. Actions
12496corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
12497token is reset to the token that originally caused the violation.
12498@xref{Error Recovery}.
18d192f0
AD
12499@end deffn
12500
18b519c0 12501@deffn {Directive} %error-verbose
7fceb615
JD
12502An obsolete directive standing for @samp{%define parse.error verbose}
12503(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
18b519c0 12504@end deffn
2a8d363a 12505
02975b9a 12506@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 12507Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 12508Summary}.
18b519c0 12509@end deffn
d8988b2f 12510
18b519c0 12511@deffn {Directive} %glr-parser
8a4281b9
JD
12512Bison declaration to produce a GLR parser. @xref{GLR
12513Parsers, ,Writing GLR Parsers}.
18b519c0 12514@end deffn
676385e2 12515
dd8d9022
AD
12516@deffn {Directive} %initial-action
12517Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
12518@end deffn
12519
e6e704dc
JD
12520@deffn {Directive} %language
12521Specify the programming language for the generated parser.
12522@xref{Decl Summary}.
12523@end deffn
12524
18b519c0 12525@deffn {Directive} %left
d78f0ac9 12526Bison declaration to assign precedence and left associativity to token(s).
bfa74976 12527@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12528@end deffn
bfa74976 12529
2055a44e
AD
12530@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
12531Bison declaration to specifying additional arguments that
2a8d363a
AD
12532@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
12533for Pure Parsers}.
18b519c0 12534@end deffn
2a8d363a 12535
18b519c0 12536@deffn {Directive} %merge
676385e2 12537Bison declaration to assign a merging function to a rule. If there is a
fae437e8 12538reduce/reduce conflict with a rule having the same merging function, the
676385e2 12539function is applied to the two semantic values to get a single result.
8a4281b9 12540@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 12541@end deffn
676385e2 12542
02975b9a 12543@deffn {Directive} %name-prefix "@var{prefix}"
4b3847c3
AD
12544Obsoleted by the @code{%define} variable @code{api.prefix} (@pxref{Multiple
12545Parsers, ,Multiple Parsers in the Same Program}).
12546
12547Rename the external symbols (variables and functions) used in the parser so
12548that they start with @var{prefix} instead of @samp{yy}. Contrary to
12549@code{api.prefix}, do no rename types and macros.
12550
12551The precise list of symbols renamed in C parsers is @code{yyparse},
12552@code{yylex}, @code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yychar},
12553@code{yydebug}, and (if locations are used) @code{yylloc}. If you use a
12554push parser, @code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
12555@code{yypstate_new} and @code{yypstate_delete} will also be renamed. For
12556example, if you use @samp{%name-prefix "c_"}, the names become
12557@code{c_parse}, @code{c_lex}, and so on. For C++ parsers, see the
12558@code{%define namespace} documentation in this section.
18b519c0 12559@end deffn
d8988b2f 12560
4b3847c3 12561
91d2c560 12562@ifset defaultprec
22fccf95
PE
12563@deffn {Directive} %no-default-prec
12564Do not assign a precedence to rules that lack an explicit @samp{%prec}
12565modifier. @xref{Contextual Precedence, ,Context-Dependent
12566Precedence}.
12567@end deffn
91d2c560 12568@end ifset
22fccf95 12569
18b519c0 12570@deffn {Directive} %no-lines
931c7513 12571Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 12572parser implementation file. @xref{Decl Summary}.
18b519c0 12573@end deffn
931c7513 12574
18b519c0 12575@deffn {Directive} %nonassoc
d78f0ac9 12576Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 12577@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12578@end deffn
bfa74976 12579
02975b9a 12580@deffn {Directive} %output "@var{file}"
ff7571c0
JD
12581Bison declaration to set the name of the parser implementation file.
12582@xref{Decl Summary}.
18b519c0 12583@end deffn
d8988b2f 12584
2055a44e
AD
12585@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
12586Bison declaration to specify additional arguments that both
12587@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
12588Parser Function @code{yyparse}}.
12589@end deffn
12590
12591@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
12592Bison declaration to specify additional arguments that @code{yyparse}
12593should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 12594@end deffn
2a8d363a 12595
18b519c0 12596@deffn {Directive} %prec
bfa74976
RS
12597Bison declaration to assign a precedence to a specific rule.
12598@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 12599@end deffn
bfa74976 12600
d78f0ac9
AD
12601@deffn {Directive} %precedence
12602Bison declaration to assign precedence to token(s), but no associativity
12603@xref{Precedence Decl, ,Operator Precedence}.
12604@end deffn
12605
18b519c0 12606@deffn {Directive} %pure-parser
35c1e5f0
JD
12607Deprecated version of @samp{%define api.pure} (@pxref{%define
12608Summary,,api.pure}), for which Bison is more careful to warn about
12609unreasonable usage.
18b519c0 12610@end deffn
bfa74976 12611
b50d2359 12612@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
12613Require version @var{version} or higher of Bison. @xref{Require Decl, ,
12614Require a Version of Bison}.
b50d2359
AD
12615@end deffn
12616
18b519c0 12617@deffn {Directive} %right
d78f0ac9 12618Bison declaration to assign precedence and right associativity to token(s).
bfa74976 12619@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12620@end deffn
bfa74976 12621
e6e704dc
JD
12622@deffn {Directive} %skeleton
12623Specify the skeleton to use; usually for development.
12624@xref{Decl Summary}.
12625@end deffn
12626
18b519c0 12627@deffn {Directive} %start
704a47c4
AD
12628Bison declaration to specify the start symbol. @xref{Start Decl, ,The
12629Start-Symbol}.
18b519c0 12630@end deffn
bfa74976 12631
18b519c0 12632@deffn {Directive} %token
bfa74976
RS
12633Bison declaration to declare token(s) without specifying precedence.
12634@xref{Token Decl, ,Token Type Names}.
18b519c0 12635@end deffn
bfa74976 12636
18b519c0 12637@deffn {Directive} %token-table
ff7571c0
JD
12638Bison declaration to include a token name table in the parser
12639implementation file. @xref{Decl Summary}.
18b519c0 12640@end deffn
931c7513 12641
18b519c0 12642@deffn {Directive} %type
704a47c4
AD
12643Bison declaration to declare nonterminals. @xref{Type Decl,
12644,Nonterminal Symbols}.
18b519c0 12645@end deffn
bfa74976 12646
dd8d9022
AD
12647@deffn {Symbol} $undefined
12648The predefined token onto which all undefined values returned by
12649@code{yylex} are mapped. It cannot be used in the grammar, rather, use
12650@code{error}.
12651@end deffn
12652
18b519c0 12653@deffn {Directive} %union
bfa74976
RS
12654Bison declaration to specify several possible data types for semantic
12655values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 12656@end deffn
bfa74976 12657
dd8d9022
AD
12658@deffn {Macro} YYABORT
12659Macro to pretend that an unrecoverable syntax error has occurred, by
12660making @code{yyparse} return 1 immediately. The error reporting
12661function @code{yyerror} is not called. @xref{Parser Function, ,The
12662Parser Function @code{yyparse}}.
8405b70c
PB
12663
12664For Java parsers, this functionality is invoked using @code{return YYABORT;}
12665instead.
dd8d9022 12666@end deffn
3ded9a63 12667
dd8d9022
AD
12668@deffn {Macro} YYACCEPT
12669Macro to pretend that a complete utterance of the language has been
12670read, by making @code{yyparse} return 0 immediately.
12671@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
12672
12673For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
12674instead.
dd8d9022 12675@end deffn
bfa74976 12676
dd8d9022 12677@deffn {Macro} YYBACKUP
742e4900 12678Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 12679token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 12680@end deffn
bfa74976 12681
dd8d9022 12682@deffn {Variable} yychar
32c29292 12683External integer variable that contains the integer value of the
742e4900 12684lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
12685@code{yyparse}.) Error-recovery rule actions may examine this variable.
12686@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 12687@end deffn
bfa74976 12688
dd8d9022
AD
12689@deffn {Variable} yyclearin
12690Macro used in error-recovery rule actions. It clears the previous
742e4900 12691lookahead token. @xref{Error Recovery}.
18b519c0 12692@end deffn
bfa74976 12693
dd8d9022
AD
12694@deffn {Macro} YYDEBUG
12695Macro to define to equip the parser with tracing code. @xref{Tracing,
12696,Tracing Your Parser}.
18b519c0 12697@end deffn
bfa74976 12698
dd8d9022
AD
12699@deffn {Variable} yydebug
12700External integer variable set to zero by default. If @code{yydebug}
12701is given a nonzero value, the parser will output information on input
12702symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 12703@end deffn
bfa74976 12704
dd8d9022
AD
12705@deffn {Macro} yyerrok
12706Macro to cause parser to recover immediately to its normal mode
12707after a syntax error. @xref{Error Recovery}.
12708@end deffn
12709
12710@deffn {Macro} YYERROR
4a11b852
AD
12711Cause an immediate syntax error. This statement initiates error
12712recovery just as if the parser itself had detected an error; however, it
12713does not call @code{yyerror}, and does not print any message. If you
12714want to print an error message, call @code{yyerror} explicitly before
12715the @samp{YYERROR;} statement. @xref{Error Recovery}.
8405b70c
PB
12716
12717For Java parsers, this functionality is invoked using @code{return YYERROR;}
12718instead.
dd8d9022
AD
12719@end deffn
12720
12721@deffn {Function} yyerror
12722User-supplied function to be called by @code{yyparse} on error.
71b00ed8 12723@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
12724@end deffn
12725
12726@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
12727An obsolete macro used in the @file{yacc.c} skeleton, that you define
12728with @code{#define} in the prologue to request verbose, specific error
12729message strings when @code{yyerror} is called. It doesn't matter what
12730definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 12731it. Using @samp{%define parse.error verbose} is preferred
31b850d2 12732(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
12733@end deffn
12734
93c150b6
AD
12735@deffn {Macro} YYFPRINTF
12736Macro used to output run-time traces.
12737@xref{Enabling Traces}.
12738@end deffn
12739
dd8d9022
AD
12740@deffn {Macro} YYINITDEPTH
12741Macro for specifying the initial size of the parser stack.
1a059451 12742@xref{Memory Management}.
dd8d9022
AD
12743@end deffn
12744
12745@deffn {Function} yylex
12746User-supplied lexical analyzer function, called with no arguments to get
12747the next token. @xref{Lexical, ,The Lexical Analyzer Function
12748@code{yylex}}.
12749@end deffn
12750
dd8d9022
AD
12751@deffn {Variable} yylloc
12752External variable in which @code{yylex} should place the line and column
12753numbers associated with a token. (In a pure parser, it is a local
12754variable within @code{yyparse}, and its address is passed to
32c29292
JD
12755@code{yylex}.)
12756You can ignore this variable if you don't use the @samp{@@} feature in the
12757grammar actions.
12758@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 12759In semantic actions, it stores the location of the lookahead token.
32c29292 12760@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
12761@end deffn
12762
12763@deffn {Type} YYLTYPE
12764Data type of @code{yylloc}; by default, a structure with four
12765members. @xref{Location Type, , Data Types of Locations}.
12766@end deffn
12767
12768@deffn {Variable} yylval
12769External variable in which @code{yylex} should place the semantic
12770value associated with a token. (In a pure parser, it is a local
12771variable within @code{yyparse}, and its address is passed to
32c29292
JD
12772@code{yylex}.)
12773@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 12774In semantic actions, it stores the semantic value of the lookahead token.
32c29292 12775@xref{Actions, ,Actions}.
dd8d9022
AD
12776@end deffn
12777
12778@deffn {Macro} YYMAXDEPTH
1a059451
PE
12779Macro for specifying the maximum size of the parser stack. @xref{Memory
12780Management}.
dd8d9022
AD
12781@end deffn
12782
12783@deffn {Variable} yynerrs
8a2800e7 12784Global variable which Bison increments each time it reports a syntax error.
f4101aa6 12785(In a pure parser, it is a local variable within @code{yyparse}. In a
a73aa764 12786pure push parser, it is a member of @code{yypstate}.)
dd8d9022
AD
12787@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
12788@end deffn
12789
12790@deffn {Function} yyparse
12791The parser function produced by Bison; call this function to start
12792parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
12793@end deffn
12794
93c150b6
AD
12795@deffn {Macro} YYPRINT
12796Macro used to output token semantic values. For @file{yacc.c} only.
12797Obsoleted by @code{%printer}.
12798@xref{The YYPRINT Macro, , The @code{YYPRINT} Macro}.
12799@end deffn
12800
9987d1b3 12801@deffn {Function} yypstate_delete
f4101aa6 12802The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 12803call this function to delete the memory associated with a parser.
f4101aa6 12804@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 12805@code{yypstate_delete}}.
59da312b
JD
12806(The current push parsing interface is experimental and may evolve.
12807More user feedback will help to stabilize it.)
9987d1b3
JD
12808@end deffn
12809
12810@deffn {Function} yypstate_new
f4101aa6 12811The function to create a parser instance, produced by Bison in push mode;
9987d1b3 12812call this function to create a new parser.
f4101aa6 12813@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 12814@code{yypstate_new}}.
59da312b
JD
12815(The current push parsing interface is experimental and may evolve.
12816More user feedback will help to stabilize it.)
9987d1b3
JD
12817@end deffn
12818
12819@deffn {Function} yypull_parse
f4101aa6
AD
12820The parser function produced by Bison in push mode; call this function to
12821parse the rest of the input stream.
12822@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 12823@code{yypull_parse}}.
59da312b
JD
12824(The current push parsing interface is experimental and may evolve.
12825More user feedback will help to stabilize it.)
9987d1b3
JD
12826@end deffn
12827
12828@deffn {Function} yypush_parse
f4101aa6
AD
12829The parser function produced by Bison in push mode; call this function to
12830parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 12831@code{yypush_parse}}.
59da312b
JD
12832(The current push parsing interface is experimental and may evolve.
12833More user feedback will help to stabilize it.)
9987d1b3
JD
12834@end deffn
12835
dd8d9022 12836@deffn {Macro} YYRECOVERING
02103984
PE
12837The expression @code{YYRECOVERING ()} yields 1 when the parser
12838is recovering from a syntax error, and 0 otherwise.
12839@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
12840@end deffn
12841
12842@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
12843Macro used to control the use of @code{alloca} when the
12844deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
12845the parser will use @code{malloc} to extend its stacks. If defined to
128461, the parser will use @code{alloca}. Values other than 0 and 1 are
12847reserved for future Bison extensions. If not defined,
12848@code{YYSTACK_USE_ALLOCA} defaults to 0.
12849
55289366 12850In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
12851limited stack and with unreliable stack-overflow checking, you should
12852set @code{YYMAXDEPTH} to a value that cannot possibly result in
12853unchecked stack overflow on any of your target hosts when
12854@code{alloca} is called. You can inspect the code that Bison
12855generates in order to determine the proper numeric values. This will
12856require some expertise in low-level implementation details.
dd8d9022
AD
12857@end deffn
12858
12859@deffn {Type} YYSTYPE
12860Data type of semantic values; @code{int} by default.
12861@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 12862@end deffn
bfa74976 12863
342b8b6e 12864@node Glossary
bfa74976
RS
12865@appendix Glossary
12866@cindex glossary
12867
12868@table @asis
7fceb615 12869@item Accepting state
eb45ef3b
JD
12870A state whose only action is the accept action.
12871The accepting state is thus a consistent state.
c949ada3 12872@xref{Understanding, ,Understanding Your Parser}.
eb45ef3b 12873
8a4281b9 12874@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
12875Formal method of specifying context-free grammars originally proposed
12876by John Backus, and slightly improved by Peter Naur in his 1960-01-02
12877committee document contributing to what became the Algol 60 report.
12878@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 12879
7fceb615
JD
12880@item Consistent state
12881A state containing only one possible action. @xref{Default Reductions}.
eb45ef3b 12882
bfa74976
RS
12883@item Context-free grammars
12884Grammars specified as rules that can be applied regardless of context.
12885Thus, if there is a rule which says that an integer can be used as an
12886expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
12887permitted. @xref{Language and Grammar, ,Languages and Context-Free
12888Grammars}.
bfa74976 12889
7fceb615 12890@item Default reduction
110ef36a 12891The reduction that a parser should perform if the current parser state
35c1e5f0 12892contains no other action for the lookahead token. In permitted parser
7fceb615
JD
12893states, Bison declares the reduction with the largest lookahead set to be
12894the default reduction and removes that lookahead set. @xref{Default
12895Reductions}.
12896
12897@item Defaulted state
12898A consistent state with a default reduction. @xref{Default Reductions}.
eb45ef3b 12899
bfa74976
RS
12900@item Dynamic allocation
12901Allocation of memory that occurs during execution, rather than at
12902compile time or on entry to a function.
12903
12904@item Empty string
12905Analogous to the empty set in set theory, the empty string is a
12906character string of length zero.
12907
12908@item Finite-state stack machine
12909A ``machine'' that has discrete states in which it is said to exist at
12910each instant in time. As input to the machine is processed, the
12911machine moves from state to state as specified by the logic of the
12912machine. In the case of the parser, the input is the language being
12913parsed, and the states correspond to various stages in the grammar
c827f760 12914rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 12915
8a4281b9 12916@item Generalized LR (GLR)
676385e2 12917A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 12918that are not LR(1). It resolves situations that Bison's
eb45ef3b 12919deterministic parsing
676385e2
PH
12920algorithm cannot by effectively splitting off multiple parsers, trying all
12921possible parsers, and discarding those that fail in the light of additional
c827f760 12922right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 12923LR Parsing}.
676385e2 12924
bfa74976
RS
12925@item Grouping
12926A language construct that is (in general) grammatically divisible;
c827f760 12927for example, `expression' or `declaration' in C@.
bfa74976
RS
12928@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
12929
7fceb615
JD
12930@item IELR(1) (Inadequacy Elimination LR(1))
12931A minimal LR(1) parser table construction algorithm. That is, given any
35c1e5f0 12932context-free grammar, IELR(1) generates parser tables with the full
7fceb615
JD
12933language-recognition power of canonical LR(1) but with nearly the same
12934number of parser states as LALR(1). This reduction in parser states is
12935often an order of magnitude. More importantly, because canonical LR(1)'s
12936extra parser states may contain duplicate conflicts in the case of non-LR(1)
12937grammars, the number of conflicts for IELR(1) is often an order of magnitude
12938less as well. This can significantly reduce the complexity of developing a
12939grammar. @xref{LR Table Construction}.
eb45ef3b 12940
bfa74976
RS
12941@item Infix operator
12942An arithmetic operator that is placed between the operands on which it
12943performs some operation.
12944
12945@item Input stream
12946A continuous flow of data between devices or programs.
12947
8a4281b9 12948@item LAC (Lookahead Correction)
fcf834f9 12949A parsing mechanism that fixes the problem of delayed syntax error
7fceb615
JD
12950detection, which is caused by LR state merging, default reductions, and the
12951use of @code{%nonassoc}. Delayed syntax error detection results in
12952unexpected semantic actions, initiation of error recovery in the wrong
12953syntactic context, and an incorrect list of expected tokens in a verbose
12954syntax error message. @xref{LAC}.
fcf834f9 12955
bfa74976
RS
12956@item Language construct
12957One of the typical usage schemas of the language. For example, one of
12958the constructs of the C language is the @code{if} statement.
12959@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
12960
12961@item Left associativity
12962Operators having left associativity are analyzed from left to right:
12963@samp{a+b+c} first computes @samp{a+b} and then combines with
12964@samp{c}. @xref{Precedence, ,Operator Precedence}.
12965
12966@item Left recursion
89cab50d
AD
12967A rule whose result symbol is also its first component symbol; for
12968example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
12969Rules}.
bfa74976
RS
12970
12971@item Left-to-right parsing
12972Parsing a sentence of a language by analyzing it token by token from
c827f760 12973left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
12974
12975@item Lexical analyzer (scanner)
12976A function that reads an input stream and returns tokens one by one.
12977@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
12978
12979@item Lexical tie-in
12980A flag, set by actions in the grammar rules, which alters the way
12981tokens are parsed. @xref{Lexical Tie-ins}.
12982
931c7513 12983@item Literal string token
14ded682 12984A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 12985
742e4900
JD
12986@item Lookahead token
12987A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 12988Tokens}.
bfa74976 12989
8a4281b9 12990@item LALR(1)
bfa74976 12991The class of context-free grammars that Bison (like most other parser
8a4281b9 12992generators) can handle by default; a subset of LR(1).
cc09e5be 12993@xref{Mysterious Conflicts}.
bfa74976 12994
8a4281b9 12995@item LR(1)
bfa74976 12996The class of context-free grammars in which at most one token of
742e4900 12997lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
12998
12999@item Nonterminal symbol
13000A grammar symbol standing for a grammatical construct that can
13001be expressed through rules in terms of smaller constructs; in other
13002words, a construct that is not a token. @xref{Symbols}.
13003
bfa74976
RS
13004@item Parser
13005A function that recognizes valid sentences of a language by analyzing
13006the syntax structure of a set of tokens passed to it from a lexical
13007analyzer.
13008
13009@item Postfix operator
13010An arithmetic operator that is placed after the operands upon which it
13011performs some operation.
13012
13013@item Reduction
13014Replacing a string of nonterminals and/or terminals with a single
89cab50d 13015nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 13016Parser Algorithm}.
bfa74976
RS
13017
13018@item Reentrant
13019A reentrant subprogram is a subprogram which can be in invoked any
13020number of times in parallel, without interference between the various
13021invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
13022
13023@item Reverse polish notation
13024A language in which all operators are postfix operators.
13025
13026@item Right recursion
89cab50d
AD
13027A rule whose result symbol is also its last component symbol; for
13028example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
13029Rules}.
bfa74976
RS
13030
13031@item Semantics
13032In computer languages, the semantics are specified by the actions
13033taken for each instance of the language, i.e., the meaning of
13034each statement. @xref{Semantics, ,Defining Language Semantics}.
13035
13036@item Shift
13037A parser is said to shift when it makes the choice of analyzing
13038further input from the stream rather than reducing immediately some
c827f760 13039already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
13040
13041@item Single-character literal
13042A single character that is recognized and interpreted as is.
13043@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
13044
13045@item Start symbol
13046The nonterminal symbol that stands for a complete valid utterance in
13047the language being parsed. The start symbol is usually listed as the
13863333 13048first nonterminal symbol in a language specification.
bfa74976
RS
13049@xref{Start Decl, ,The Start-Symbol}.
13050
13051@item Symbol table
13052A data structure where symbol names and associated data are stored
13053during parsing to allow for recognition and use of existing
13054information in repeated uses of a symbol. @xref{Multi-function Calc}.
13055
6e649e65
PE
13056@item Syntax error
13057An error encountered during parsing of an input stream due to invalid
13058syntax. @xref{Error Recovery}.
13059
bfa74976
RS
13060@item Token
13061A basic, grammatically indivisible unit of a language. The symbol
13062that describes a token in the grammar is a terminal symbol.
13063The input of the Bison parser is a stream of tokens which comes from
13064the lexical analyzer. @xref{Symbols}.
13065
13066@item Terminal symbol
89cab50d
AD
13067A grammar symbol that has no rules in the grammar and therefore is
13068grammatically indivisible. The piece of text it represents is a token.
13069@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7fceb615
JD
13070
13071@item Unreachable state
13072A parser state to which there does not exist a sequence of transitions from
13073the parser's start state. A state can become unreachable during conflict
13074resolution. @xref{Unreachable States}.
bfa74976
RS
13075@end table
13076
342b8b6e 13077@node Copying This Manual
f2b5126e 13078@appendix Copying This Manual
f2b5126e
PB
13079@include fdl.texi
13080
5e528941
JD
13081@node Bibliography
13082@unnumbered Bibliography
13083
13084@table @asis
13085@item [Denny 2008]
13086Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
13087for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
130882008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
13089pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
13090
13091@item [Denny 2010 May]
13092Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
13093Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
13094University, Clemson, SC, USA (May 2010).
13095@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
13096
13097@item [Denny 2010 November]
13098Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
13099Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
13100in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
131012010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
13102
13103@item [DeRemer 1982]
13104Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
13105Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
13106Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
13107615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
13108
13109@item [Knuth 1965]
13110Donald E. Knuth, On the Translation of Languages from Left to Right, in
13111@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
13112607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
13113
13114@item [Scott 2000]
13115Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
13116@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
13117London, Department of Computer Science, TR-00-12 (December 2000).
13118@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
13119@end table
13120
f9b86351
AD
13121@node Index of Terms
13122@unnumbered Index of Terms
bfa74976
RS
13123
13124@printindex cp
13125
bfa74976 13126@bye
a06ea4aa 13127
6b5a0de9
AD
13128@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
13129@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
13130@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
13131@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
13132@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
13133@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
13134@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
13135@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
13136@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
13137@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
13138@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
13139@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
13140@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
5a321748 13141@c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum IEC syntaxes
6b5a0de9
AD
13142@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
13143@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
13144@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
13145@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
13146@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
13147@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
13148@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
13149@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
13150@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
5a321748 13151@c LocalWords: YYINITDEPTH stmts ref initdcl maybeasm notype Lookahead yyoutput
6b5a0de9
AD
13152@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
13153@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
13154@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
13155@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
13156@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 13157@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
5a321748
AD
13158@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs sr
13159@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC nterm LR's
6b5a0de9 13160@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
5a321748 13161@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative Ph
6b5a0de9
AD
13162@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
13163@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
13164@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
5a321748 13165@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz ACM
6b5a0de9 13166@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
5a321748 13167@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno filename
6b5a0de9
AD
13168@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
13169@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
13170@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
13171@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
5a321748 13172@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc PSLR
6b5a0de9
AD
13173@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
13174@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
13175@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
13176@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
5a05f42e 13177@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos uint
5a321748 13178@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett LALR's
5a05f42e
AD
13179@c LocalWords: subdirectory Solaris nonassociativity perror schemas Malloy ints
13180@c LocalWords: Scannerless ispell american ChangeLog smallexample CSTYPE CLTYPE
7287be84 13181@c LocalWords: clval CDEBUG cdebug deftypeopx yyterminate LocationType
53e2cd1e
AD
13182@c LocalWords: parsers parser's
13183@c LocalWords: associativity subclasses precedences unresolvable runnable
13184@c LocalWords: allocators subunit initializations unreferenced untyped
13185@c LocalWords: errorVerbose subtype subtypes
e944aaff
AD
13186
13187@c Local Variables:
13188@c ispell-dictionary: "american"
13189@c fill-column: 76
13190@c End: