]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
Fix some porting glitches found by Nelson H. F. Beebe.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
bfa74976
RS
15@c Set following if you have the new `shorttitlepage' command
16@c @clear shorttitlepage-enabled
17@c @set shorttitlepage-enabled
18
91d2c560
PE
19@c Set following if you want to document %default-prec and %no-default-prec.
20@c This feature is experimental and may change in future Bison versions.
21@c @set defaultprec
22
bfa74976
RS
23@c ISPELL CHECK: done, 14 Jan 1993 --bob
24
25@c Check COPYRIGHT dates. should be updated in the titlepage, ifinfo
26@c titlepage; should NOT be changed in the GPL. --mew
27
ec3bc396 28@c FIXME: I don't understand this `iftex'. Obsolete? --akim.
bfa74976
RS
29@iftex
30@syncodeindex fn cp
31@syncodeindex vr cp
32@syncodeindex tp cp
33@end iftex
34@ifinfo
35@synindex fn cp
36@synindex vr cp
37@synindex tp cp
38@end ifinfo
39@comment %**end of header
40
fae437e8 41@copying
bd773d73 42
c827f760
PE
43This manual is for @acronym{GNU} Bison (version @value{VERSION},
44@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 45
a06ea4aa 46Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
32c29292 471999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
fae437e8
AD
48
49@quotation
50Permission is granted to copy, distribute and/or modify this document
c827f760 51under the terms of the @acronym{GNU} Free Documentation License,
592fde95 52Version 1.2 or any later version published by the Free Software
c827f760
PE
53Foundation; with no Invariant Sections, with the Front-Cover texts
54being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
55(a) below. A copy of the license is included in the section entitled
56``@acronym{GNU} Free Documentation License.''
57
58(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
59and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
60Copies published by the Free Software Foundation raise funds for
61@acronym{GNU} development.''
fae437e8
AD
62@end quotation
63@end copying
64
e62f1a89 65@dircategory Software development
fae437e8 66@direntry
c827f760 67* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 68@end direntry
bfa74976
RS
69
70@ifset shorttitlepage-enabled
71@shorttitlepage Bison
72@end ifset
73@titlepage
74@title Bison
c827f760 75@subtitle The Yacc-compatible Parser Generator
df1af54c 76@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
77
78@author by Charles Donnelly and Richard Stallman
79
80@page
81@vskip 0pt plus 1filll
fae437e8 82@insertcopying
bfa74976
RS
83@sp 2
84Published by the Free Software Foundation @*
0fb669f9
PE
8551 Franklin Street, Fifth Floor @*
86Boston, MA 02110-1301 USA @*
9ecbd125 87Printed copies are available from the Free Software Foundation.@*
c827f760 88@acronym{ISBN} 1-882114-44-2
bfa74976
RS
89@sp 2
90Cover art by Etienne Suvasa.
91@end titlepage
d5796688
JT
92
93@contents
bfa74976 94
342b8b6e
AD
95@ifnottex
96@node Top
97@top Bison
fae437e8 98@insertcopying
342b8b6e 99@end ifnottex
bfa74976
RS
100
101@menu
13863333
AD
102* Introduction::
103* Conditions::
c827f760 104* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
105 how you can copy and share Bison
106
107Tutorial sections:
108* Concepts:: Basic concepts for understanding Bison.
109* Examples:: Three simple explained examples of using Bison.
110
111Reference sections:
112* Grammar File:: Writing Bison declarations and rules.
113* Interface:: C-language interface to the parser function @code{yyparse}.
114* Algorithm:: How the Bison parser works at run-time.
115* Error Recovery:: Writing rules for error recovery.
116* Context Dependency:: What to do if your language syntax is too
117 messy for Bison to handle straightforwardly.
ec3bc396 118* Debugging:: Understanding or debugging Bison parsers.
bfa74976 119* Invocation:: How to run Bison (to produce the parser source file).
12545799
AD
120* C++ Language Interface:: Creating C++ parser objects.
121* FAQ:: Frequently Asked Questions
bfa74976
RS
122* Table of Symbols:: All the keywords of the Bison language are explained.
123* Glossary:: Basic concepts are explained.
f2b5126e 124* Copying This Manual:: License for copying this manual.
bfa74976
RS
125* Index:: Cross-references to the text.
126
93dd49ab
PE
127@detailmenu
128 --- The Detailed Node Listing ---
bfa74976
RS
129
130The Concepts of Bison
131
132* Language and Grammar:: Languages and context-free grammars,
133 as mathematical ideas.
134* Grammar in Bison:: How we represent grammars for Bison's sake.
135* Semantic Values:: Each token or syntactic grouping can have
136 a semantic value (the value of an integer,
137 the name of an identifier, etc.).
138* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 139* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 140* Locations Overview:: Tracking Locations.
bfa74976
RS
141* Bison Parser:: What are Bison's input and output,
142 how is the output used?
143* Stages:: Stages in writing and running Bison grammars.
144* Grammar Layout:: Overall structure of a Bison grammar file.
145
fa7e68c3
PE
146Writing @acronym{GLR} Parsers
147
32c29292
JD
148* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
149* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
150* GLR Semantic Actions:: Deferred semantic actions have special concerns.
151* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 152
bfa74976
RS
153Examples
154
155* RPN Calc:: Reverse polish notation calculator;
156 a first example with no operator precedence.
157* Infix Calc:: Infix (algebraic) notation calculator.
158 Operator precedence is introduced.
159* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 160* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
161* Multi-function Calc:: Calculator with memory and trig functions.
162 It uses multiple data-types for semantic values.
bfa74976
RS
163* Exercises:: Ideas for improving the multi-function calculator.
164
165Reverse Polish Notation Calculator
166
75f5aaea 167* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
168* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
169* Lexer: Rpcalc Lexer. The lexical analyzer.
170* Main: Rpcalc Main. The controlling function.
171* Error: Rpcalc Error. The error reporting function.
172* Gen: Rpcalc Gen. Running Bison on the grammar file.
173* Comp: Rpcalc Compile. Run the C compiler on the output code.
174
175Grammar Rules for @code{rpcalc}
176
13863333
AD
177* Rpcalc Input::
178* Rpcalc Line::
179* Rpcalc Expr::
bfa74976 180
342b8b6e
AD
181Location Tracking Calculator: @code{ltcalc}
182
183* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
184* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
185* Lexer: Ltcalc Lexer. The lexical analyzer.
186
bfa74976
RS
187Multi-Function Calculator: @code{mfcalc}
188
189* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
190* Rules: Mfcalc Rules. Grammar rules for the calculator.
191* Symtab: Mfcalc Symtab. Symbol table management subroutines.
192
193Bison Grammar Files
194
195* Grammar Outline:: Overall layout of the grammar file.
196* Symbols:: Terminal and nonterminal symbols.
197* Rules:: How to write grammar rules.
198* Recursion:: Writing recursive rules.
199* Semantics:: Semantic values and actions.
93dd49ab 200* Locations:: Locations and actions.
bfa74976
RS
201* Declarations:: All kinds of Bison declarations are described here.
202* Multiple Parsers:: Putting more than one Bison parser in one program.
203
204Outline of a Bison Grammar
205
93dd49ab 206* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
207* Bison Declarations:: Syntax and usage of the Bison declarations section.
208* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 209* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
210
211Defining Language Semantics
212
213* Value Type:: Specifying one data type for all semantic values.
214* Multiple Types:: Specifying several alternative data types.
215* Actions:: An action is the semantic definition of a grammar rule.
216* Action Types:: Specifying data types for actions to operate on.
217* Mid-Rule Actions:: Most actions go at the end of a rule.
218 This says when, why and how to use the exceptional
219 action in the middle of a rule.
220
93dd49ab
PE
221Tracking Locations
222
223* Location Type:: Specifying a data type for locations.
224* Actions and Locations:: Using locations in actions.
225* Location Default Action:: Defining a general way to compute locations.
226
bfa74976
RS
227Bison Declarations
228
b50d2359 229* Require Decl:: Requiring a Bison version.
bfa74976
RS
230* Token Decl:: Declaring terminal symbols.
231* Precedence Decl:: Declaring terminals with precedence and associativity.
232* Union Decl:: Declaring the set of all semantic value types.
233* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 234* Initial Action Decl:: Code run before parsing starts.
72f889cc 235* Destructor Decl:: Declaring how symbols are freed.
d6328241 236* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
237* Start Decl:: Specifying the start symbol.
238* Pure Decl:: Requesting a reentrant parser.
239* Decl Summary:: Table of all Bison declarations.
240
241Parser C-Language Interface
242
243* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 244* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
245 which reads tokens.
246* Error Reporting:: You must supply a function @code{yyerror}.
247* Action Features:: Special features for use in actions.
f7ab6a50
PE
248* Internationalization:: How to let the parser speak in the user's
249 native language.
bfa74976
RS
250
251The Lexical Analyzer Function @code{yylex}
252
253* Calling Convention:: How @code{yyparse} calls @code{yylex}.
254* Token Values:: How @code{yylex} must return the semantic value
255 of the token it has read.
95923bd6 256* Token Locations:: How @code{yylex} must return the text location
bfa74976 257 (line number, etc.) of the token, if the
93dd49ab 258 actions want that.
bfa74976
RS
259* Pure Calling:: How the calling convention differs
260 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
261
13863333 262The Bison Parser Algorithm
bfa74976
RS
263
264* Look-Ahead:: Parser looks one token ahead when deciding what to do.
265* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
266* Precedence:: Operator precedence works by resolving conflicts.
267* Contextual Precedence:: When an operator's precedence depends on context.
268* Parser States:: The parser is a finite-state-machine with stack.
269* Reduce/Reduce:: When two rules are applicable in the same situation.
270* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 271* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 272* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
273
274Operator Precedence
275
276* Why Precedence:: An example showing why precedence is needed.
277* Using Precedence:: How to specify precedence in Bison grammars.
278* Precedence Examples:: How these features are used in the previous example.
279* How Precedence:: How they work.
280
281Handling Context Dependencies
282
283* Semantic Tokens:: Token parsing can depend on the semantic context.
284* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
285* Tie-in Recovery:: Lexical tie-ins have implications for how
286 error recovery rules must be written.
287
93dd49ab 288Debugging Your Parser
ec3bc396
AD
289
290* Understanding:: Understanding the structure of your parser.
291* Tracing:: Tracing the execution of your parser.
292
bfa74976
RS
293Invoking Bison
294
13863333 295* Bison Options:: All the options described in detail,
c827f760 296 in alphabetical order by short options.
bfa74976 297* Option Cross Key:: Alphabetical list of long options.
93dd49ab 298* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 299
12545799
AD
300C++ Language Interface
301
302* C++ Parsers:: The interface to generate C++ parser classes
303* A Complete C++ Example:: Demonstrating their use
304
305C++ Parsers
306
307* C++ Bison Interface:: Asking for C++ parser generation
308* C++ Semantic Values:: %union vs. C++
309* C++ Location Values:: The position and location classes
310* C++ Parser Interface:: Instantiating and running the parser
311* C++ Scanner Interface:: Exchanges between yylex and parse
312
313A Complete C++ Example
314
315* Calc++ --- C++ Calculator:: The specifications
316* Calc++ Parsing Driver:: An active parsing context
317* Calc++ Parser:: A parser class
318* Calc++ Scanner:: A pure C++ Flex scanner
319* Calc++ Top Level:: Conducting the band
320
d1a1114f
AD
321Frequently Asked Questions
322
1a059451 323* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 324* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 325* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 326* Implementing Gotos/Loops:: Control Flow in the Calculator
d1a1114f 327
f2b5126e
PB
328Copying This Manual
329
330* GNU Free Documentation License:: License for copying this manual.
331
342b8b6e 332@end detailmenu
bfa74976
RS
333@end menu
334
342b8b6e 335@node Introduction
bfa74976
RS
336@unnumbered Introduction
337@cindex introduction
338
339@dfn{Bison} is a general-purpose parser generator that converts a
c827f760 340grammar description for an @acronym{LALR}(1) context-free grammar into a C
bfa74976
RS
341program to parse that grammar. Once you are proficient with Bison,
342you may use it to develop a wide range of language parsers, from those
343used in simple desk calculators to complex programming languages.
344
345Bison is upward compatible with Yacc: all properly-written Yacc grammars
346ought to work with Bison with no change. Anyone familiar with Yacc
347should be able to use Bison with little trouble. You need to be fluent in
348C programming in order to use Bison or to understand this manual.
349
350We begin with tutorial chapters that explain the basic concepts of using
351Bison and show three explained examples, each building on the last. If you
352don't know Bison or Yacc, start by reading these chapters. Reference
353chapters follow which describe specific aspects of Bison in detail.
354
931c7513
RS
355Bison was written primarily by Robert Corbett; Richard Stallman made it
356Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 357multi-character string literals and other features.
931c7513 358
df1af54c 359This edition corresponds to version @value{VERSION} of Bison.
bfa74976 360
342b8b6e 361@node Conditions
bfa74976
RS
362@unnumbered Conditions for Using Bison
363
a31239f1 364As of Bison version 1.24, we have changed the distribution terms for
262aa8dd 365@code{yyparse} to permit using Bison's output in nonfree programs when
c827f760 366Bison is generating C code for @acronym{LALR}(1) parsers. Formerly, these
262aa8dd 367parsers could be used only in programs that were free software.
a31239f1 368
c827f760
PE
369The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
370compiler, have never
9ecbd125 371had such a requirement. They could always be used for nonfree
a31239f1
RS
372software. The reason Bison was different was not due to a special
373policy decision; it resulted from applying the usual General Public
374License to all of the Bison source code.
375
376The output of the Bison utility---the Bison parser file---contains a
377verbatim copy of a sizable piece of Bison, which is the code for the
378@code{yyparse} function. (The actions from your grammar are inserted
379into this function at one point, but the rest of the function is not
c827f760
PE
380changed.) When we applied the @acronym{GPL} terms to the code for
381@code{yyparse},
a31239f1
RS
382the effect was to restrict the use of Bison output to free software.
383
384We didn't change the terms because of sympathy for people who want to
385make software proprietary. @strong{Software should be free.} But we
386concluded that limiting Bison's use to free software was doing little to
387encourage people to make other software free. So we decided to make the
388practical conditions for using Bison match the practical conditions for
c827f760 389using the other @acronym{GNU} tools.
bfa74976 390
eda42934 391This exception applies only when Bison is generating C code for an
c827f760
PE
392@acronym{LALR}(1) parser; otherwise, the @acronym{GPL} terms operate
393as usual. You can
262aa8dd
PE
394tell whether the exception applies to your @samp{.c} output file by
395inspecting it to see whether it says ``As a special exception, when
396this file is copied by Bison into a Bison output file, you may use
397that output file without restriction.''
398
c67a198d 399@include gpl.texi
bfa74976 400
342b8b6e 401@node Concepts
bfa74976
RS
402@chapter The Concepts of Bison
403
404This chapter introduces many of the basic concepts without which the
405details of Bison will not make sense. If you do not already know how to
406use Bison or Yacc, we suggest you start by reading this chapter carefully.
407
408@menu
409* Language and Grammar:: Languages and context-free grammars,
410 as mathematical ideas.
411* Grammar in Bison:: How we represent grammars for Bison's sake.
412* Semantic Values:: Each token or syntactic grouping can have
413 a semantic value (the value of an integer,
414 the name of an identifier, etc.).
415* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 416* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 417* Locations Overview:: Tracking Locations.
bfa74976
RS
418* Bison Parser:: What are Bison's input and output,
419 how is the output used?
420* Stages:: Stages in writing and running Bison grammars.
421* Grammar Layout:: Overall structure of a Bison grammar file.
422@end menu
423
342b8b6e 424@node Language and Grammar
bfa74976
RS
425@section Languages and Context-Free Grammars
426
bfa74976
RS
427@cindex context-free grammar
428@cindex grammar, context-free
429In order for Bison to parse a language, it must be described by a
430@dfn{context-free grammar}. This means that you specify one or more
431@dfn{syntactic groupings} and give rules for constructing them from their
432parts. For example, in the C language, one kind of grouping is called an
433`expression'. One rule for making an expression might be, ``An expression
434can be made of a minus sign and another expression''. Another would be,
435``An expression can be an integer''. As you can see, rules are often
436recursive, but there must be at least one rule which leads out of the
437recursion.
438
c827f760 439@cindex @acronym{BNF}
bfa74976
RS
440@cindex Backus-Naur form
441The most common formal system for presenting such rules for humans to read
c827f760
PE
442is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
443order to specify the language Algol 60. Any grammar expressed in
444@acronym{BNF} is a context-free grammar. The input to Bison is
445essentially machine-readable @acronym{BNF}.
bfa74976 446
c827f760
PE
447@cindex @acronym{LALR}(1) grammars
448@cindex @acronym{LR}(1) grammars
676385e2
PH
449There are various important subclasses of context-free grammar. Although it
450can handle almost all context-free grammars, Bison is optimized for what
c827f760 451are called @acronym{LALR}(1) grammars.
676385e2 452In brief, in these grammars, it must be possible to
bfa74976
RS
453tell how to parse any portion of an input string with just a single
454token of look-ahead. Strictly speaking, that is a description of an
c827f760
PE
455@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
456restrictions that are
bfa74976 457hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
458@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
459@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
460more information on this.
bfa74976 461
c827f760
PE
462@cindex @acronym{GLR} parsing
463@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 464@cindex ambiguous grammars
9d9b8b70 465@cindex nondeterministic parsing
9501dc6e
AD
466
467Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
468roughly that the next grammar rule to apply at any point in the input is
469uniquely determined by the preceding input and a fixed, finite portion
470(called a @dfn{look-ahead}) of the remaining input. A context-free
471grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 472apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 473grammars can be @dfn{nondeterministic}, meaning that no fixed
9501dc6e
AD
474look-ahead always suffices to determine the next grammar rule to apply.
475With the proper declarations, Bison is also able to parse these more
476general context-free grammars, using a technique known as @acronym{GLR}
477parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
478are able to handle any context-free grammar for which the number of
479possible parses of any given string is finite.
676385e2 480
bfa74976
RS
481@cindex symbols (abstract)
482@cindex token
483@cindex syntactic grouping
484@cindex grouping, syntactic
9501dc6e
AD
485In the formal grammatical rules for a language, each kind of syntactic
486unit or grouping is named by a @dfn{symbol}. Those which are built by
487grouping smaller constructs according to grammatical rules are called
bfa74976
RS
488@dfn{nonterminal symbols}; those which can't be subdivided are called
489@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
490corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 491corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
492
493We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
494nonterminal, mean. The tokens of C are identifiers, constants (numeric
495and string), and the various keywords, arithmetic operators and
496punctuation marks. So the terminal symbols of a grammar for C include
497`identifier', `number', `string', plus one symbol for each keyword,
498operator or punctuation mark: `if', `return', `const', `static', `int',
499`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
500(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
501lexicography, not grammar.)
502
503Here is a simple C function subdivided into tokens:
504
9edcd895
AD
505@ifinfo
506@example
507int /* @r{keyword `int'} */
14d4662b 508square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
509 @r{identifier, close-paren} */
510@{ /* @r{open-brace} */
511 return x * x; /* @r{keyword `return', identifier, asterisk,
512 identifier, semicolon} */
513@} /* @r{close-brace} */
514@end example
515@end ifinfo
516@ifnotinfo
bfa74976
RS
517@example
518int /* @r{keyword `int'} */
14d4662b 519square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 520@{ /* @r{open-brace} */
9edcd895 521 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
522@} /* @r{close-brace} */
523@end example
9edcd895 524@end ifnotinfo
bfa74976
RS
525
526The syntactic groupings of C include the expression, the statement, the
527declaration, and the function definition. These are represented in the
528grammar of C by nonterminal symbols `expression', `statement',
529`declaration' and `function definition'. The full grammar uses dozens of
530additional language constructs, each with its own nonterminal symbol, in
531order to express the meanings of these four. The example above is a
532function definition; it contains one declaration, and one statement. In
533the statement, each @samp{x} is an expression and so is @samp{x * x}.
534
535Each nonterminal symbol must have grammatical rules showing how it is made
536out of simpler constructs. For example, one kind of C statement is the
537@code{return} statement; this would be described with a grammar rule which
538reads informally as follows:
539
540@quotation
541A `statement' can be made of a `return' keyword, an `expression' and a
542`semicolon'.
543@end quotation
544
545@noindent
546There would be many other rules for `statement', one for each kind of
547statement in C.
548
549@cindex start symbol
550One nonterminal symbol must be distinguished as the special one which
551defines a complete utterance in the language. It is called the @dfn{start
552symbol}. In a compiler, this means a complete input program. In the C
553language, the nonterminal symbol `sequence of definitions and declarations'
554plays this role.
555
556For example, @samp{1 + 2} is a valid C expression---a valid part of a C
557program---but it is not valid as an @emph{entire} C program. In the
558context-free grammar of C, this follows from the fact that `expression' is
559not the start symbol.
560
561The Bison parser reads a sequence of tokens as its input, and groups the
562tokens using the grammar rules. If the input is valid, the end result is
563that the entire token sequence reduces to a single grouping whose symbol is
564the grammar's start symbol. If we use a grammar for C, the entire input
565must be a `sequence of definitions and declarations'. If not, the parser
566reports a syntax error.
567
342b8b6e 568@node Grammar in Bison
bfa74976
RS
569@section From Formal Rules to Bison Input
570@cindex Bison grammar
571@cindex grammar, Bison
572@cindex formal grammar
573
574A formal grammar is a mathematical construct. To define the language
575for Bison, you must write a file expressing the grammar in Bison syntax:
576a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
577
578A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 579as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
580in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
581
582The Bison representation for a terminal symbol is also called a @dfn{token
583type}. Token types as well can be represented as C-like identifiers. By
584convention, these identifiers should be upper case to distinguish them from
585nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
586@code{RETURN}. A terminal symbol that stands for a particular keyword in
587the language should be named after that keyword converted to upper case.
588The terminal symbol @code{error} is reserved for error recovery.
931c7513 589@xref{Symbols}.
bfa74976
RS
590
591A terminal symbol can also be represented as a character literal, just like
592a C character constant. You should do this whenever a token is just a
593single character (parenthesis, plus-sign, etc.): use that same character in
594a literal as the terminal symbol for that token.
595
931c7513
RS
596A third way to represent a terminal symbol is with a C string constant
597containing several characters. @xref{Symbols}, for more information.
598
bfa74976
RS
599The grammar rules also have an expression in Bison syntax. For example,
600here is the Bison rule for a C @code{return} statement. The semicolon in
601quotes is a literal character token, representing part of the C syntax for
602the statement; the naked semicolon, and the colon, are Bison punctuation
603used in every rule.
604
605@example
606stmt: RETURN expr ';'
607 ;
608@end example
609
610@noindent
611@xref{Rules, ,Syntax of Grammar Rules}.
612
342b8b6e 613@node Semantic Values
bfa74976
RS
614@section Semantic Values
615@cindex semantic value
616@cindex value, semantic
617
618A formal grammar selects tokens only by their classifications: for example,
619if a rule mentions the terminal symbol `integer constant', it means that
620@emph{any} integer constant is grammatically valid in that position. The
621precise value of the constant is irrelevant to how to parse the input: if
622@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 623grammatical.
bfa74976
RS
624
625But the precise value is very important for what the input means once it is
626parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6273989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
628has both a token type and a @dfn{semantic value}. @xref{Semantics,
629,Defining Language Semantics},
bfa74976
RS
630for details.
631
632The token type is a terminal symbol defined in the grammar, such as
633@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
634you need to know to decide where the token may validly appear and how to
635group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 636except their types.
bfa74976
RS
637
638The semantic value has all the rest of the information about the
639meaning of the token, such as the value of an integer, or the name of an
640identifier. (A token such as @code{','} which is just punctuation doesn't
641need to have any semantic value.)
642
643For example, an input token might be classified as token type
644@code{INTEGER} and have the semantic value 4. Another input token might
645have the same token type @code{INTEGER} but value 3989. When a grammar
646rule says that @code{INTEGER} is allowed, either of these tokens is
647acceptable because each is an @code{INTEGER}. When the parser accepts the
648token, it keeps track of the token's semantic value.
649
650Each grouping can also have a semantic value as well as its nonterminal
651symbol. For example, in a calculator, an expression typically has a
652semantic value that is a number. In a compiler for a programming
653language, an expression typically has a semantic value that is a tree
654structure describing the meaning of the expression.
655
342b8b6e 656@node Semantic Actions
bfa74976
RS
657@section Semantic Actions
658@cindex semantic actions
659@cindex actions, semantic
660
661In order to be useful, a program must do more than parse input; it must
662also produce some output based on the input. In a Bison grammar, a grammar
663rule can have an @dfn{action} made up of C statements. Each time the
664parser recognizes a match for that rule, the action is executed.
665@xref{Actions}.
13863333 666
bfa74976
RS
667Most of the time, the purpose of an action is to compute the semantic value
668of the whole construct from the semantic values of its parts. For example,
669suppose we have a rule which says an expression can be the sum of two
670expressions. When the parser recognizes such a sum, each of the
671subexpressions has a semantic value which describes how it was built up.
672The action for this rule should create a similar sort of value for the
673newly recognized larger expression.
674
675For example, here is a rule that says an expression can be the sum of
676two subexpressions:
677
678@example
679expr: expr '+' expr @{ $$ = $1 + $3; @}
680 ;
681@end example
682
683@noindent
684The action says how to produce the semantic value of the sum expression
685from the values of the two subexpressions.
686
676385e2 687@node GLR Parsers
c827f760
PE
688@section Writing @acronym{GLR} Parsers
689@cindex @acronym{GLR} parsing
690@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
691@findex %glr-parser
692@cindex conflicts
693@cindex shift/reduce conflicts
fa7e68c3 694@cindex reduce/reduce conflicts
676385e2 695
fa7e68c3 696In some grammars, Bison's standard
9501dc6e
AD
697@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
698certain grammar rule at a given point. That is, it may not be able to
699decide (on the basis of the input read so far) which of two possible
700reductions (applications of a grammar rule) applies, or whether to apply
701a reduction or read more of the input and apply a reduction later in the
702input. These are known respectively as @dfn{reduce/reduce} conflicts
703(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
704(@pxref{Shift/Reduce}).
705
706To use a grammar that is not easily modified to be @acronym{LALR}(1), a
707more general parsing algorithm is sometimes necessary. If you include
676385e2 708@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 709(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
710(@acronym{GLR}) parser. These parsers handle Bison grammars that
711contain no unresolved conflicts (i.e., after applying precedence
712declarations) identically to @acronym{LALR}(1) parsers. However, when
713faced with unresolved shift/reduce and reduce/reduce conflicts,
714@acronym{GLR} parsers use the simple expedient of doing both,
715effectively cloning the parser to follow both possibilities. Each of
716the resulting parsers can again split, so that at any given time, there
717can be any number of possible parses being explored. The parsers
676385e2
PH
718proceed in lockstep; that is, all of them consume (shift) a given input
719symbol before any of them proceed to the next. Each of the cloned
720parsers eventually meets one of two possible fates: either it runs into
721a parsing error, in which case it simply vanishes, or it merges with
722another parser, because the two of them have reduced the input to an
723identical set of symbols.
724
725During the time that there are multiple parsers, semantic actions are
726recorded, but not performed. When a parser disappears, its recorded
727semantic actions disappear as well, and are never performed. When a
728reduction makes two parsers identical, causing them to merge, Bison
729records both sets of semantic actions. Whenever the last two parsers
730merge, reverting to the single-parser case, Bison resolves all the
731outstanding actions either by precedences given to the grammar rules
732involved, or by performing both actions, and then calling a designated
733user-defined function on the resulting values to produce an arbitrary
734merged result.
735
fa7e68c3 736@menu
32c29292
JD
737* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
738* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
739* GLR Semantic Actions:: Deferred semantic actions have special concerns.
740* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
741@end menu
742
743@node Simple GLR Parsers
744@subsection Using @acronym{GLR} on Unambiguous Grammars
745@cindex @acronym{GLR} parsing, unambiguous grammars
746@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
747@findex %glr-parser
748@findex %expect-rr
749@cindex conflicts
750@cindex reduce/reduce conflicts
751@cindex shift/reduce conflicts
752
753In the simplest cases, you can use the @acronym{GLR} algorithm
754to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
755Such grammars typically require more than one symbol of look-ahead,
756or (in rare cases) fall into the category of grammars in which the
757@acronym{LALR}(1) algorithm throws away too much information (they are in
758@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
759
760Consider a problem that
761arises in the declaration of enumerated and subrange types in the
762programming language Pascal. Here are some examples:
763
764@example
765type subrange = lo .. hi;
766type enum = (a, b, c);
767@end example
768
769@noindent
770The original language standard allows only numeric
771literals and constant identifiers for the subrange bounds (@samp{lo}
772and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
77310206) and many other
774Pascal implementations allow arbitrary expressions there. This gives
775rise to the following situation, containing a superfluous pair of
776parentheses:
777
778@example
779type subrange = (a) .. b;
780@end example
781
782@noindent
783Compare this to the following declaration of an enumerated
784type with only one value:
785
786@example
787type enum = (a);
788@end example
789
790@noindent
791(These declarations are contrived, but they are syntactically
792valid, and more-complicated cases can come up in practical programs.)
793
794These two declarations look identical until the @samp{..} token.
795With normal @acronym{LALR}(1) one-token look-ahead it is not
796possible to decide between the two forms when the identifier
797@samp{a} is parsed. It is, however, desirable
798for a parser to decide this, since in the latter case
799@samp{a} must become a new identifier to represent the enumeration
800value, while in the former case @samp{a} must be evaluated with its
801current meaning, which may be a constant or even a function call.
802
803You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
804to be resolved later, but this typically requires substantial
805contortions in both semantic actions and large parts of the
806grammar, where the parentheses are nested in the recursive rules for
807expressions.
808
809You might think of using the lexer to distinguish between the two
810forms by returning different tokens for currently defined and
811undefined identifiers. But if these declarations occur in a local
812scope, and @samp{a} is defined in an outer scope, then both forms
813are possible---either locally redefining @samp{a}, or using the
814value of @samp{a} from the outer scope. So this approach cannot
815work.
816
e757bb10 817A simple solution to this problem is to declare the parser to
fa7e68c3
PE
818use the @acronym{GLR} algorithm.
819When the @acronym{GLR} parser reaches the critical state, it
820merely splits into two branches and pursues both syntax rules
821simultaneously. Sooner or later, one of them runs into a parsing
822error. If there is a @samp{..} token before the next
823@samp{;}, the rule for enumerated types fails since it cannot
824accept @samp{..} anywhere; otherwise, the subrange type rule
825fails since it requires a @samp{..} token. So one of the branches
826fails silently, and the other one continues normally, performing
827all the intermediate actions that were postponed during the split.
828
829If the input is syntactically incorrect, both branches fail and the parser
830reports a syntax error as usual.
831
832The effect of all this is that the parser seems to ``guess'' the
833correct branch to take, or in other words, it seems to use more
834look-ahead than the underlying @acronym{LALR}(1) algorithm actually allows
835for. In this example, @acronym{LALR}(2) would suffice, but also some cases
836that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
837
838In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
839and the current Bison parser even takes exponential time and space
840for some grammars. In practice, this rarely happens, and for many
841grammars it is possible to prove that it cannot happen.
842The present example contains only one conflict between two
843rules, and the type-declaration context containing the conflict
844cannot be nested. So the number of
845branches that can exist at any time is limited by the constant 2,
846and the parsing time is still linear.
847
848Here is a Bison grammar corresponding to the example above. It
849parses a vastly simplified form of Pascal type declarations.
850
851@example
852%token TYPE DOTDOT ID
853
854@group
855%left '+' '-'
856%left '*' '/'
857@end group
858
859%%
860
861@group
862type_decl : TYPE ID '=' type ';'
863 ;
864@end group
865
866@group
867type : '(' id_list ')'
868 | expr DOTDOT expr
869 ;
870@end group
871
872@group
873id_list : ID
874 | id_list ',' ID
875 ;
876@end group
877
878@group
879expr : '(' expr ')'
880 | expr '+' expr
881 | expr '-' expr
882 | expr '*' expr
883 | expr '/' expr
884 | ID
885 ;
886@end group
887@end example
888
889When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
890about one reduce/reduce conflict. In the conflicting situation the
891parser chooses one of the alternatives, arbitrarily the one
892declared first. Therefore the following correct input is not
893recognized:
894
895@example
896type t = (a) .. b;
897@end example
898
899The parser can be turned into a @acronym{GLR} parser, while also telling Bison
900to be silent about the one known reduce/reduce conflict, by
e757bb10 901adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
902@samp{%%}):
903
904@example
905%glr-parser
906%expect-rr 1
907@end example
908
909@noindent
910No change in the grammar itself is required. Now the
911parser recognizes all valid declarations, according to the
912limited syntax above, transparently. In fact, the user does not even
913notice when the parser splits.
914
f8e1c9e5
AD
915So here we have a case where we can use the benefits of @acronym{GLR},
916almost without disadvantages. Even in simple cases like this, however,
917there are at least two potential problems to beware. First, always
918analyze the conflicts reported by Bison to make sure that @acronym{GLR}
919splitting is only done where it is intended. A @acronym{GLR} parser
920splitting inadvertently may cause problems less obvious than an
921@acronym{LALR} parser statically choosing the wrong alternative in a
922conflict. Second, consider interactions with the lexer (@pxref{Semantic
923Tokens}) with great care. Since a split parser consumes tokens without
924performing any actions during the split, the lexer cannot obtain
925information via parser actions. Some cases of lexer interactions can be
926eliminated by using @acronym{GLR} to shift the complications from the
927lexer to the parser. You must check the remaining cases for
928correctness.
929
930In our example, it would be safe for the lexer to return tokens based on
931their current meanings in some symbol table, because no new symbols are
932defined in the middle of a type declaration. Though it is possible for
933a parser to define the enumeration constants as they are parsed, before
934the type declaration is completed, it actually makes no difference since
935they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
936
937@node Merging GLR Parses
938@subsection Using @acronym{GLR} to Resolve Ambiguities
939@cindex @acronym{GLR} parsing, ambiguous grammars
940@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
941@findex %dprec
942@findex %merge
943@cindex conflicts
944@cindex reduce/reduce conflicts
945
2a8d363a 946Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
947
948@example
949%@{
38a92d50
PE
950 #include <stdio.h>
951 #define YYSTYPE char const *
952 int yylex (void);
953 void yyerror (char const *);
676385e2
PH
954%@}
955
956%token TYPENAME ID
957
958%right '='
959%left '+'
960
961%glr-parser
962
963%%
964
fae437e8 965prog :
676385e2
PH
966 | prog stmt @{ printf ("\n"); @}
967 ;
968
969stmt : expr ';' %dprec 1
970 | decl %dprec 2
971 ;
972
2a8d363a 973expr : ID @{ printf ("%s ", $$); @}
fae437e8 974 | TYPENAME '(' expr ')'
2a8d363a
AD
975 @{ printf ("%s <cast> ", $1); @}
976 | expr '+' expr @{ printf ("+ "); @}
977 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
978 ;
979
fae437e8 980decl : TYPENAME declarator ';'
2a8d363a 981 @{ printf ("%s <declare> ", $1); @}
676385e2 982 | TYPENAME declarator '=' expr ';'
2a8d363a 983 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
984 ;
985
2a8d363a 986declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
987 | '(' declarator ')'
988 ;
989@end example
990
991@noindent
992This models a problematic part of the C++ grammar---the ambiguity between
993certain declarations and statements. For example,
994
995@example
996T (x) = y+z;
997@end example
998
999@noindent
1000parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1001(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1002@samp{x} as an @code{ID}).
676385e2 1003Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1004@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1005time it encounters @code{x} in the example above. Since this is a
1006@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1007each choice of resolving the reduce/reduce conflict.
1008Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1009however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1010ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1011the other reduces @code{stmt : decl}, after which both parsers are in an
1012identical state: they've seen @samp{prog stmt} and have the same unprocessed
1013input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1014
1015At this point, the @acronym{GLR} parser requires a specification in the
1016grammar of how to choose between the competing parses.
1017In the example above, the two @code{%dprec}
e757bb10 1018declarations specify that Bison is to give precedence
fa7e68c3 1019to the parse that interprets the example as a
676385e2
PH
1020@code{decl}, which implies that @code{x} is a declarator.
1021The parser therefore prints
1022
1023@example
fae437e8 1024"x" y z + T <init-declare>
676385e2
PH
1025@end example
1026
fa7e68c3
PE
1027The @code{%dprec} declarations only come into play when more than one
1028parse survives. Consider a different input string for this parser:
676385e2
PH
1029
1030@example
1031T (x) + y;
1032@end example
1033
1034@noindent
e757bb10 1035This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1036construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1037Here, there is no ambiguity (this cannot be parsed as a declaration).
1038However, at the time the Bison parser encounters @code{x}, it does not
1039have enough information to resolve the reduce/reduce conflict (again,
1040between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1041case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1042into two, one assuming that @code{x} is an @code{expr}, and the other
1043assuming @code{x} is a @code{declarator}. The second of these parsers
1044then vanishes when it sees @code{+}, and the parser prints
1045
1046@example
fae437e8 1047x T <cast> y +
676385e2
PH
1048@end example
1049
1050Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1051the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1052actions of the two possible parsers, rather than choosing one over the
1053other. To do so, you could change the declaration of @code{stmt} as
1054follows:
1055
1056@example
1057stmt : expr ';' %merge <stmtMerge>
1058 | decl %merge <stmtMerge>
1059 ;
1060@end example
1061
1062@noindent
676385e2
PH
1063and define the @code{stmtMerge} function as:
1064
1065@example
38a92d50
PE
1066static YYSTYPE
1067stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1068@{
1069 printf ("<OR> ");
1070 return "";
1071@}
1072@end example
1073
1074@noindent
1075with an accompanying forward declaration
1076in the C declarations at the beginning of the file:
1077
1078@example
1079%@{
38a92d50 1080 #define YYSTYPE char const *
676385e2
PH
1081 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1082%@}
1083@end example
1084
1085@noindent
fa7e68c3
PE
1086With these declarations, the resulting parser parses the first example
1087as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1088
1089@example
fae437e8 1090"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1091@end example
1092
fa7e68c3 1093Bison requires that all of the
e757bb10 1094productions that participate in any particular merge have identical
fa7e68c3
PE
1095@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1096and the parser will report an error during any parse that results in
1097the offending merge.
9501dc6e 1098
32c29292
JD
1099@node GLR Semantic Actions
1100@subsection GLR Semantic Actions
1101
1102@cindex deferred semantic actions
1103By definition, a deferred semantic action is not performed at the same time as
1104the associated reduction.
1105This raises caveats for several Bison features you might use in a semantic
1106action in a @acronym{GLR} parser.
1107
1108@vindex yychar
1109@cindex @acronym{GLR} parsers and @code{yychar}
1110@vindex yylval
1111@cindex @acronym{GLR} parsers and @code{yylval}
1112@vindex yylloc
1113@cindex @acronym{GLR} parsers and @code{yylloc}
1114In any semantic action, you can examine @code{yychar} to determine the type of
1115the look-ahead token present at the time of the associated reduction.
1116After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1117you can then examine @code{yylval} and @code{yylloc} to determine the
1118look-ahead token's semantic value and location, if any.
1119In a nondeferred semantic action, you can also modify any of these variables to
1120influence syntax analysis.
1121@xref{Look-Ahead, ,Look-Ahead Tokens}.
1122
1123@findex yyclearin
1124@cindex @acronym{GLR} parsers and @code{yyclearin}
1125In a deferred semantic action, it's too late to influence syntax analysis.
1126In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1127shallow copies of the values they had at the time of the associated reduction.
1128For this reason alone, modifying them is dangerous.
1129Moreover, the result of modifying them is undefined and subject to change with
1130future versions of Bison.
1131For example, if a semantic action might be deferred, you should never write it
1132to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1133memory referenced by @code{yylval}.
1134
1135@findex YYERROR
1136@cindex @acronym{GLR} parsers and @code{YYERROR}
1137Another Bison feature requiring special consideration is @code{YYERROR}
1138(@pxref{Action Features}), which you can invoke in any semantic action to
1139initiate error recovery.
1140During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
1141the same as its effect in an @acronym{LALR}(1) parser.
1142In a deferred semantic action, its effect is undefined.
1143@c The effect is probably a syntax error at the split point.
1144
fa7e68c3
PE
1145@node Compiler Requirements
1146@subsection Considerations when Compiling @acronym{GLR} Parsers
1147@cindex @code{inline}
9501dc6e 1148@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1149
38a92d50
PE
1150The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1151later. In addition, they use the @code{inline} keyword, which is not
1152C89, but is C99 and is a common extension in pre-C99 compilers. It is
1153up to the user of these parsers to handle
9501dc6e
AD
1154portability issues. For instance, if using Autoconf and the Autoconf
1155macro @code{AC_C_INLINE}, a mere
1156
1157@example
1158%@{
38a92d50 1159 #include <config.h>
9501dc6e
AD
1160%@}
1161@end example
1162
1163@noindent
1164will suffice. Otherwise, we suggest
1165
1166@example
1167%@{
38a92d50
PE
1168 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1169 #define inline
1170 #endif
9501dc6e
AD
1171%@}
1172@end example
676385e2 1173
342b8b6e 1174@node Locations Overview
847bf1f5
AD
1175@section Locations
1176@cindex location
95923bd6
AD
1177@cindex textual location
1178@cindex location, textual
847bf1f5
AD
1179
1180Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1181and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1182the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1183Bison provides a mechanism for handling these locations.
1184
72d2299c 1185Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1186associated location, but the type of locations is the same for all tokens and
72d2299c 1187groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1188structure for storing locations (@pxref{Locations}, for more details).
1189
1190Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1191set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1192is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1193@code{@@3}.
1194
1195When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1196of its left hand side (@pxref{Actions}). In the same way, another default
1197action is used for locations. However, the action for locations is general
847bf1f5 1198enough for most cases, meaning there is usually no need to describe for each
72d2299c 1199rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1200grouping, the default behavior of the output parser is to take the beginning
1201of the first symbol, and the end of the last symbol.
1202
342b8b6e 1203@node Bison Parser
bfa74976
RS
1204@section Bison Output: the Parser File
1205@cindex Bison parser
1206@cindex Bison utility
1207@cindex lexical analyzer, purpose
1208@cindex parser
1209
1210When you run Bison, you give it a Bison grammar file as input. The output
1211is a C source file that parses the language described by the grammar.
1212This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1213utility and the Bison parser are two distinct programs: the Bison utility
1214is a program whose output is the Bison parser that becomes part of your
1215program.
1216
1217The job of the Bison parser is to group tokens into groupings according to
1218the grammar rules---for example, to build identifiers and operators into
1219expressions. As it does this, it runs the actions for the grammar rules it
1220uses.
1221
704a47c4
AD
1222The tokens come from a function called the @dfn{lexical analyzer} that
1223you must supply in some fashion (such as by writing it in C). The Bison
1224parser calls the lexical analyzer each time it wants a new token. It
1225doesn't know what is ``inside'' the tokens (though their semantic values
1226may reflect this). Typically the lexical analyzer makes the tokens by
1227parsing characters of text, but Bison does not depend on this.
1228@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1229
1230The Bison parser file is C code which defines a function named
1231@code{yyparse} which implements that grammar. This function does not make
1232a complete C program: you must supply some additional functions. One is
1233the lexical analyzer. Another is an error-reporting function which the
1234parser calls to report an error. In addition, a complete C program must
1235start with a function called @code{main}; you have to provide this, and
1236arrange for it to call @code{yyparse} or the parser will never run.
1237@xref{Interface, ,Parser C-Language Interface}.
1238
f7ab6a50 1239Aside from the token type names and the symbols in the actions you
7093d0f5 1240write, all symbols defined in the Bison parser file itself
bfa74976
RS
1241begin with @samp{yy} or @samp{YY}. This includes interface functions
1242such as the lexical analyzer function @code{yylex}, the error reporting
1243function @code{yyerror} and the parser function @code{yyparse} itself.
1244This also includes numerous identifiers used for internal purposes.
1245Therefore, you should avoid using C identifiers starting with @samp{yy}
1246or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1247this manual. Also, you should avoid using the C identifiers
1248@samp{malloc} and @samp{free} for anything other than their usual
1249meanings.
bfa74976 1250
7093d0f5
AD
1251In some cases the Bison parser file includes system headers, and in
1252those cases your code should respect the identifiers reserved by those
55289366 1253headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1254@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1255declare memory allocators and related types. @code{<libintl.h>} is
1256included if message translation is in use
1257(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1258be included if you define @code{YYDEBUG} to a nonzero value
1259(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1260
342b8b6e 1261@node Stages
bfa74976
RS
1262@section Stages in Using Bison
1263@cindex stages in using Bison
1264@cindex using Bison
1265
1266The actual language-design process using Bison, from grammar specification
1267to a working compiler or interpreter, has these parts:
1268
1269@enumerate
1270@item
1271Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1272(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1273in the language, describe the action that is to be taken when an
1274instance of that rule is recognized. The action is described by a
1275sequence of C statements.
bfa74976
RS
1276
1277@item
704a47c4
AD
1278Write a lexical analyzer to process input and pass tokens to the parser.
1279The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1280Lexical Analyzer Function @code{yylex}}). It could also be produced
1281using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1282
1283@item
1284Write a controlling function that calls the Bison-produced parser.
1285
1286@item
1287Write error-reporting routines.
1288@end enumerate
1289
1290To turn this source code as written into a runnable program, you
1291must follow these steps:
1292
1293@enumerate
1294@item
1295Run Bison on the grammar to produce the parser.
1296
1297@item
1298Compile the code output by Bison, as well as any other source files.
1299
1300@item
1301Link the object files to produce the finished product.
1302@end enumerate
1303
342b8b6e 1304@node Grammar Layout
bfa74976
RS
1305@section The Overall Layout of a Bison Grammar
1306@cindex grammar file
1307@cindex file format
1308@cindex format of grammar file
1309@cindex layout of Bison grammar
1310
1311The input file for the Bison utility is a @dfn{Bison grammar file}. The
1312general form of a Bison grammar file is as follows:
1313
1314@example
1315%@{
08e49d20 1316@var{Prologue}
bfa74976
RS
1317%@}
1318
1319@var{Bison declarations}
1320
1321%%
1322@var{Grammar rules}
1323%%
08e49d20 1324@var{Epilogue}
bfa74976
RS
1325@end example
1326
1327@noindent
1328The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1329in every Bison grammar file to separate the sections.
1330
72d2299c 1331The prologue may define types and variables used in the actions. You can
342b8b6e 1332also use preprocessor commands to define macros used there, and use
bfa74976 1333@code{#include} to include header files that do any of these things.
38a92d50
PE
1334You need to declare the lexical analyzer @code{yylex} and the error
1335printer @code{yyerror} here, along with any other global identifiers
1336used by the actions in the grammar rules.
bfa74976
RS
1337
1338The Bison declarations declare the names of the terminal and nonterminal
1339symbols, and may also describe operator precedence and the data types of
1340semantic values of various symbols.
1341
1342The grammar rules define how to construct each nonterminal symbol from its
1343parts.
1344
38a92d50
PE
1345The epilogue can contain any code you want to use. Often the
1346definitions of functions declared in the prologue go here. In a
1347simple program, all the rest of the program can go here.
bfa74976 1348
342b8b6e 1349@node Examples
bfa74976
RS
1350@chapter Examples
1351@cindex simple examples
1352@cindex examples, simple
1353
1354Now we show and explain three sample programs written using Bison: a
1355reverse polish notation calculator, an algebraic (infix) notation
1356calculator, and a multi-function calculator. All three have been tested
1357under BSD Unix 4.3; each produces a usable, though limited, interactive
1358desk-top calculator.
1359
1360These examples are simple, but Bison grammars for real programming
1361languages are written the same way.
1362@ifinfo
1363You can copy these examples out of the Info file and into a source file
1364to try them.
1365@end ifinfo
1366
1367@menu
1368* RPN Calc:: Reverse polish notation calculator;
1369 a first example with no operator precedence.
1370* Infix Calc:: Infix (algebraic) notation calculator.
1371 Operator precedence is introduced.
1372* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1373* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1374* Multi-function Calc:: Calculator with memory and trig functions.
1375 It uses multiple data-types for semantic values.
1376* Exercises:: Ideas for improving the multi-function calculator.
1377@end menu
1378
342b8b6e 1379@node RPN Calc
bfa74976
RS
1380@section Reverse Polish Notation Calculator
1381@cindex reverse polish notation
1382@cindex polish notation calculator
1383@cindex @code{rpcalc}
1384@cindex calculator, simple
1385
1386The first example is that of a simple double-precision @dfn{reverse polish
1387notation} calculator (a calculator using postfix operators). This example
1388provides a good starting point, since operator precedence is not an issue.
1389The second example will illustrate how operator precedence is handled.
1390
1391The source code for this calculator is named @file{rpcalc.y}. The
1392@samp{.y} extension is a convention used for Bison input files.
1393
1394@menu
75f5aaea 1395* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1396* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1397* Lexer: Rpcalc Lexer. The lexical analyzer.
1398* Main: Rpcalc Main. The controlling function.
1399* Error: Rpcalc Error. The error reporting function.
1400* Gen: Rpcalc Gen. Running Bison on the grammar file.
1401* Comp: Rpcalc Compile. Run the C compiler on the output code.
1402@end menu
1403
342b8b6e 1404@node Rpcalc Decls
bfa74976
RS
1405@subsection Declarations for @code{rpcalc}
1406
1407Here are the C and Bison declarations for the reverse polish notation
1408calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1409
1410@example
72d2299c 1411/* Reverse polish notation calculator. */
bfa74976
RS
1412
1413%@{
38a92d50
PE
1414 #define YYSTYPE double
1415 #include <math.h>
1416 int yylex (void);
1417 void yyerror (char const *);
bfa74976
RS
1418%@}
1419
1420%token NUM
1421
72d2299c 1422%% /* Grammar rules and actions follow. */
bfa74976
RS
1423@end example
1424
75f5aaea 1425The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1426preprocessor directives and two forward declarations.
bfa74976
RS
1427
1428The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1429specifying the C data type for semantic values of both tokens and
1430groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1431Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1432don't define it, @code{int} is the default. Because we specify
1433@code{double}, each token and each expression has an associated value,
1434which is a floating point number.
bfa74976
RS
1435
1436The @code{#include} directive is used to declare the exponentiation
1437function @code{pow}.
1438
38a92d50
PE
1439The forward declarations for @code{yylex} and @code{yyerror} are
1440needed because the C language requires that functions be declared
1441before they are used. These functions will be defined in the
1442epilogue, but the parser calls them so they must be declared in the
1443prologue.
1444
704a47c4
AD
1445The second section, Bison declarations, provides information to Bison
1446about the token types (@pxref{Bison Declarations, ,The Bison
1447Declarations Section}). Each terminal symbol that is not a
1448single-character literal must be declared here. (Single-character
bfa74976
RS
1449literals normally don't need to be declared.) In this example, all the
1450arithmetic operators are designated by single-character literals, so the
1451only terminal symbol that needs to be declared is @code{NUM}, the token
1452type for numeric constants.
1453
342b8b6e 1454@node Rpcalc Rules
bfa74976
RS
1455@subsection Grammar Rules for @code{rpcalc}
1456
1457Here are the grammar rules for the reverse polish notation calculator.
1458
1459@example
1460input: /* empty */
1461 | input line
1462;
1463
1464line: '\n'
18b519c0 1465 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1466;
1467
18b519c0
AD
1468exp: NUM @{ $$ = $1; @}
1469 | exp exp '+' @{ $$ = $1 + $2; @}
1470 | exp exp '-' @{ $$ = $1 - $2; @}
1471 | exp exp '*' @{ $$ = $1 * $2; @}
1472 | exp exp '/' @{ $$ = $1 / $2; @}
1473 /* Exponentiation */
1474 | exp exp '^' @{ $$ = pow ($1, $2); @}
1475 /* Unary minus */
1476 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1477;
1478%%
1479@end example
1480
1481The groupings of the rpcalc ``language'' defined here are the expression
1482(given the name @code{exp}), the line of input (@code{line}), and the
1483complete input transcript (@code{input}). Each of these nonterminal
1484symbols has several alternate rules, joined by the @samp{|} punctuator
1485which is read as ``or''. The following sections explain what these rules
1486mean.
1487
1488The semantics of the language is determined by the actions taken when a
1489grouping is recognized. The actions are the C code that appears inside
1490braces. @xref{Actions}.
1491
1492You must specify these actions in C, but Bison provides the means for
1493passing semantic values between the rules. In each action, the
1494pseudo-variable @code{$$} stands for the semantic value for the grouping
1495that the rule is going to construct. Assigning a value to @code{$$} is the
1496main job of most actions. The semantic values of the components of the
1497rule are referred to as @code{$1}, @code{$2}, and so on.
1498
1499@menu
13863333
AD
1500* Rpcalc Input::
1501* Rpcalc Line::
1502* Rpcalc Expr::
bfa74976
RS
1503@end menu
1504
342b8b6e 1505@node Rpcalc Input
bfa74976
RS
1506@subsubsection Explanation of @code{input}
1507
1508Consider the definition of @code{input}:
1509
1510@example
1511input: /* empty */
1512 | input line
1513;
1514@end example
1515
1516This definition reads as follows: ``A complete input is either an empty
1517string, or a complete input followed by an input line''. Notice that
1518``complete input'' is defined in terms of itself. This definition is said
1519to be @dfn{left recursive} since @code{input} appears always as the
1520leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1521
1522The first alternative is empty because there are no symbols between the
1523colon and the first @samp{|}; this means that @code{input} can match an
1524empty string of input (no tokens). We write the rules this way because it
1525is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1526It's conventional to put an empty alternative first and write the comment
1527@samp{/* empty */} in it.
1528
1529The second alternate rule (@code{input line}) handles all nontrivial input.
1530It means, ``After reading any number of lines, read one more line if
1531possible.'' The left recursion makes this rule into a loop. Since the
1532first alternative matches empty input, the loop can be executed zero or
1533more times.
1534
1535The parser function @code{yyparse} continues to process input until a
1536grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1537input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1538
342b8b6e 1539@node Rpcalc Line
bfa74976
RS
1540@subsubsection Explanation of @code{line}
1541
1542Now consider the definition of @code{line}:
1543
1544@example
1545line: '\n'
1546 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1547;
1548@end example
1549
1550The first alternative is a token which is a newline character; this means
1551that rpcalc accepts a blank line (and ignores it, since there is no
1552action). The second alternative is an expression followed by a newline.
1553This is the alternative that makes rpcalc useful. The semantic value of
1554the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1555question is the first symbol in the alternative. The action prints this
1556value, which is the result of the computation the user asked for.
1557
1558This action is unusual because it does not assign a value to @code{$$}. As
1559a consequence, the semantic value associated with the @code{line} is
1560uninitialized (its value will be unpredictable). This would be a bug if
1561that value were ever used, but we don't use it: once rpcalc has printed the
1562value of the user's input line, that value is no longer needed.
1563
342b8b6e 1564@node Rpcalc Expr
bfa74976
RS
1565@subsubsection Explanation of @code{expr}
1566
1567The @code{exp} grouping has several rules, one for each kind of expression.
1568The first rule handles the simplest expressions: those that are just numbers.
1569The second handles an addition-expression, which looks like two expressions
1570followed by a plus-sign. The third handles subtraction, and so on.
1571
1572@example
1573exp: NUM
1574 | exp exp '+' @{ $$ = $1 + $2; @}
1575 | exp exp '-' @{ $$ = $1 - $2; @}
1576 @dots{}
1577 ;
1578@end example
1579
1580We have used @samp{|} to join all the rules for @code{exp}, but we could
1581equally well have written them separately:
1582
1583@example
1584exp: NUM ;
1585exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1586exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1587 @dots{}
1588@end example
1589
1590Most of the rules have actions that compute the value of the expression in
1591terms of the value of its parts. For example, in the rule for addition,
1592@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1593the second one. The third component, @code{'+'}, has no meaningful
1594associated semantic value, but if it had one you could refer to it as
1595@code{$3}. When @code{yyparse} recognizes a sum expression using this
1596rule, the sum of the two subexpressions' values is produced as the value of
1597the entire expression. @xref{Actions}.
1598
1599You don't have to give an action for every rule. When a rule has no
1600action, Bison by default copies the value of @code{$1} into @code{$$}.
1601This is what happens in the first rule (the one that uses @code{NUM}).
1602
1603The formatting shown here is the recommended convention, but Bison does
72d2299c 1604not require it. You can add or change white space as much as you wish.
bfa74976
RS
1605For example, this:
1606
1607@example
99a9344e 1608exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1609@end example
1610
1611@noindent
1612means the same thing as this:
1613
1614@example
1615exp: NUM
1616 | exp exp '+' @{ $$ = $1 + $2; @}
1617 | @dots{}
99a9344e 1618;
bfa74976
RS
1619@end example
1620
1621@noindent
1622The latter, however, is much more readable.
1623
342b8b6e 1624@node Rpcalc Lexer
bfa74976
RS
1625@subsection The @code{rpcalc} Lexical Analyzer
1626@cindex writing a lexical analyzer
1627@cindex lexical analyzer, writing
1628
704a47c4
AD
1629The lexical analyzer's job is low-level parsing: converting characters
1630or sequences of characters into tokens. The Bison parser gets its
1631tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1632Analyzer Function @code{yylex}}.
bfa74976 1633
c827f760
PE
1634Only a simple lexical analyzer is needed for the @acronym{RPN}
1635calculator. This
bfa74976
RS
1636lexical analyzer skips blanks and tabs, then reads in numbers as
1637@code{double} and returns them as @code{NUM} tokens. Any other character
1638that isn't part of a number is a separate token. Note that the token-code
1639for such a single-character token is the character itself.
1640
1641The return value of the lexical analyzer function is a numeric code which
1642represents a token type. The same text used in Bison rules to stand for
1643this token type is also a C expression for the numeric code for the type.
1644This works in two ways. If the token type is a character literal, then its
e966383b 1645numeric code is that of the character; you can use the same
bfa74976
RS
1646character literal in the lexical analyzer to express the number. If the
1647token type is an identifier, that identifier is defined by Bison as a C
1648macro whose definition is the appropriate number. In this example,
1649therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1650
1964ad8c
AD
1651The semantic value of the token (if it has one) is stored into the
1652global variable @code{yylval}, which is where the Bison parser will look
1653for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1654defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1655,Declarations for @code{rpcalc}}.)
bfa74976 1656
72d2299c
PE
1657A token type code of zero is returned if the end-of-input is encountered.
1658(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1659
1660Here is the code for the lexical analyzer:
1661
1662@example
1663@group
72d2299c 1664/* The lexical analyzer returns a double floating point
e966383b 1665 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1666 of the character read if not a number. It skips all blanks
1667 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1668
1669#include <ctype.h>
1670@end group
1671
1672@group
13863333
AD
1673int
1674yylex (void)
bfa74976
RS
1675@{
1676 int c;
1677
72d2299c 1678 /* Skip white space. */
13863333 1679 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1680 ;
1681@end group
1682@group
72d2299c 1683 /* Process numbers. */
13863333 1684 if (c == '.' || isdigit (c))
bfa74976
RS
1685 @{
1686 ungetc (c, stdin);
1687 scanf ("%lf", &yylval);
1688 return NUM;
1689 @}
1690@end group
1691@group
72d2299c 1692 /* Return end-of-input. */
13863333 1693 if (c == EOF)
bfa74976 1694 return 0;
72d2299c 1695 /* Return a single char. */
13863333 1696 return c;
bfa74976
RS
1697@}
1698@end group
1699@end example
1700
342b8b6e 1701@node Rpcalc Main
bfa74976
RS
1702@subsection The Controlling Function
1703@cindex controlling function
1704@cindex main function in simple example
1705
1706In keeping with the spirit of this example, the controlling function is
1707kept to the bare minimum. The only requirement is that it call
1708@code{yyparse} to start the process of parsing.
1709
1710@example
1711@group
13863333
AD
1712int
1713main (void)
bfa74976 1714@{
13863333 1715 return yyparse ();
bfa74976
RS
1716@}
1717@end group
1718@end example
1719
342b8b6e 1720@node Rpcalc Error
bfa74976
RS
1721@subsection The Error Reporting Routine
1722@cindex error reporting routine
1723
1724When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1725function @code{yyerror} to print an error message (usually but not
6e649e65 1726always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1727@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1728here is the definition we will use:
bfa74976
RS
1729
1730@example
1731@group
1732#include <stdio.h>
1733
38a92d50 1734/* Called by yyparse on error. */
13863333 1735void
38a92d50 1736yyerror (char const *s)
bfa74976 1737@{
4e03e201 1738 fprintf (stderr, "%s\n", s);
bfa74976
RS
1739@}
1740@end group
1741@end example
1742
1743After @code{yyerror} returns, the Bison parser may recover from the error
1744and continue parsing if the grammar contains a suitable error rule
1745(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1746have not written any error rules in this example, so any invalid input will
1747cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1748real calculator, but it is adequate for the first example.
bfa74976 1749
342b8b6e 1750@node Rpcalc Gen
bfa74976
RS
1751@subsection Running Bison to Make the Parser
1752@cindex running Bison (introduction)
1753
ceed8467
AD
1754Before running Bison to produce a parser, we need to decide how to
1755arrange all the source code in one or more source files. For such a
1756simple example, the easiest thing is to put everything in one file. The
1757definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1758end, in the epilogue of the file
75f5aaea 1759(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1760
1761For a large project, you would probably have several source files, and use
1762@code{make} to arrange to recompile them.
1763
1764With all the source in a single file, you use the following command to
1765convert it into a parser file:
1766
1767@example
fa4d969f 1768bison @var{file}.y
bfa74976
RS
1769@end example
1770
1771@noindent
1772In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1773@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1774removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1775Bison contains the source code for @code{yyparse}. The additional
1776functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1777are copied verbatim to the output.
1778
342b8b6e 1779@node Rpcalc Compile
bfa74976
RS
1780@subsection Compiling the Parser File
1781@cindex compiling the parser
1782
1783Here is how to compile and run the parser file:
1784
1785@example
1786@group
1787# @r{List files in current directory.}
9edcd895 1788$ @kbd{ls}
bfa74976
RS
1789rpcalc.tab.c rpcalc.y
1790@end group
1791
1792@group
1793# @r{Compile the Bison parser.}
1794# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1795$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1796@end group
1797
1798@group
1799# @r{List files again.}
9edcd895 1800$ @kbd{ls}
bfa74976
RS
1801rpcalc rpcalc.tab.c rpcalc.y
1802@end group
1803@end example
1804
1805The file @file{rpcalc} now contains the executable code. Here is an
1806example session using @code{rpcalc}.
1807
1808@example
9edcd895
AD
1809$ @kbd{rpcalc}
1810@kbd{4 9 +}
bfa74976 181113
9edcd895 1812@kbd{3 7 + 3 4 5 *+-}
bfa74976 1813-13
9edcd895 1814@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 181513
9edcd895 1816@kbd{5 6 / 4 n +}
bfa74976 1817-3.166666667
9edcd895 1818@kbd{3 4 ^} @r{Exponentiation}
bfa74976 181981
9edcd895
AD
1820@kbd{^D} @r{End-of-file indicator}
1821$
bfa74976
RS
1822@end example
1823
342b8b6e 1824@node Infix Calc
bfa74976
RS
1825@section Infix Notation Calculator: @code{calc}
1826@cindex infix notation calculator
1827@cindex @code{calc}
1828@cindex calculator, infix notation
1829
1830We now modify rpcalc to handle infix operators instead of postfix. Infix
1831notation involves the concept of operator precedence and the need for
1832parentheses nested to arbitrary depth. Here is the Bison code for
1833@file{calc.y}, an infix desk-top calculator.
1834
1835@example
38a92d50 1836/* Infix notation calculator. */
bfa74976
RS
1837
1838%@{
38a92d50
PE
1839 #define YYSTYPE double
1840 #include <math.h>
1841 #include <stdio.h>
1842 int yylex (void);
1843 void yyerror (char const *);
bfa74976
RS
1844%@}
1845
38a92d50 1846/* Bison declarations. */
bfa74976
RS
1847%token NUM
1848%left '-' '+'
1849%left '*' '/'
1850%left NEG /* negation--unary minus */
38a92d50 1851%right '^' /* exponentiation */
bfa74976 1852
38a92d50
PE
1853%% /* The grammar follows. */
1854input: /* empty */
bfa74976
RS
1855 | input line
1856;
1857
1858line: '\n'
1859 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1860;
1861
1862exp: NUM @{ $$ = $1; @}
1863 | exp '+' exp @{ $$ = $1 + $3; @}
1864 | exp '-' exp @{ $$ = $1 - $3; @}
1865 | exp '*' exp @{ $$ = $1 * $3; @}
1866 | exp '/' exp @{ $$ = $1 / $3; @}
1867 | '-' exp %prec NEG @{ $$ = -$2; @}
1868 | exp '^' exp @{ $$ = pow ($1, $3); @}
1869 | '(' exp ')' @{ $$ = $2; @}
1870;
1871%%
1872@end example
1873
1874@noindent
ceed8467
AD
1875The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1876same as before.
bfa74976
RS
1877
1878There are two important new features shown in this code.
1879
1880In the second section (Bison declarations), @code{%left} declares token
1881types and says they are left-associative operators. The declarations
1882@code{%left} and @code{%right} (right associativity) take the place of
1883@code{%token} which is used to declare a token type name without
1884associativity. (These tokens are single-character literals, which
1885ordinarily don't need to be declared. We declare them here to specify
1886the associativity.)
1887
1888Operator precedence is determined by the line ordering of the
1889declarations; the higher the line number of the declaration (lower on
1890the page or screen), the higher the precedence. Hence, exponentiation
1891has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1892by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1893Precedence}.
bfa74976 1894
704a47c4
AD
1895The other important new feature is the @code{%prec} in the grammar
1896section for the unary minus operator. The @code{%prec} simply instructs
1897Bison that the rule @samp{| '-' exp} has the same precedence as
1898@code{NEG}---in this case the next-to-highest. @xref{Contextual
1899Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1900
1901Here is a sample run of @file{calc.y}:
1902
1903@need 500
1904@example
9edcd895
AD
1905$ @kbd{calc}
1906@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19076.880952381
9edcd895 1908@kbd{-56 + 2}
bfa74976 1909-54
9edcd895 1910@kbd{3 ^ 2}
bfa74976
RS
19119
1912@end example
1913
342b8b6e 1914@node Simple Error Recovery
bfa74976
RS
1915@section Simple Error Recovery
1916@cindex error recovery, simple
1917
1918Up to this point, this manual has not addressed the issue of @dfn{error
1919recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1920error. All we have handled is error reporting with @code{yyerror}.
1921Recall that by default @code{yyparse} returns after calling
1922@code{yyerror}. This means that an erroneous input line causes the
1923calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1924
1925The Bison language itself includes the reserved word @code{error}, which
1926may be included in the grammar rules. In the example below it has
1927been added to one of the alternatives for @code{line}:
1928
1929@example
1930@group
1931line: '\n'
1932 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1933 | error '\n' @{ yyerrok; @}
1934;
1935@end group
1936@end example
1937
ceed8467 1938This addition to the grammar allows for simple error recovery in the
6e649e65 1939event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1940read, the error will be recognized by the third rule for @code{line},
1941and parsing will continue. (The @code{yyerror} function is still called
1942upon to print its message as well.) The action executes the statement
1943@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1944that error recovery is complete (@pxref{Error Recovery}). Note the
1945difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1946misprint.
bfa74976
RS
1947
1948This form of error recovery deals with syntax errors. There are other
1949kinds of errors; for example, division by zero, which raises an exception
1950signal that is normally fatal. A real calculator program must handle this
1951signal and use @code{longjmp} to return to @code{main} and resume parsing
1952input lines; it would also have to discard the rest of the current line of
1953input. We won't discuss this issue further because it is not specific to
1954Bison programs.
1955
342b8b6e
AD
1956@node Location Tracking Calc
1957@section Location Tracking Calculator: @code{ltcalc}
1958@cindex location tracking calculator
1959@cindex @code{ltcalc}
1960@cindex calculator, location tracking
1961
9edcd895
AD
1962This example extends the infix notation calculator with location
1963tracking. This feature will be used to improve the error messages. For
1964the sake of clarity, this example is a simple integer calculator, since
1965most of the work needed to use locations will be done in the lexical
72d2299c 1966analyzer.
342b8b6e
AD
1967
1968@menu
1969* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1970* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1971* Lexer: Ltcalc Lexer. The lexical analyzer.
1972@end menu
1973
1974@node Ltcalc Decls
1975@subsection Declarations for @code{ltcalc}
1976
9edcd895
AD
1977The C and Bison declarations for the location tracking calculator are
1978the same as the declarations for the infix notation calculator.
342b8b6e
AD
1979
1980@example
1981/* Location tracking calculator. */
1982
1983%@{
38a92d50
PE
1984 #define YYSTYPE int
1985 #include <math.h>
1986 int yylex (void);
1987 void yyerror (char const *);
342b8b6e
AD
1988%@}
1989
1990/* Bison declarations. */
1991%token NUM
1992
1993%left '-' '+'
1994%left '*' '/'
1995%left NEG
1996%right '^'
1997
38a92d50 1998%% /* The grammar follows. */
342b8b6e
AD
1999@end example
2000
9edcd895
AD
2001@noindent
2002Note there are no declarations specific to locations. Defining a data
2003type for storing locations is not needed: we will use the type provided
2004by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2005four member structure with the following integer fields:
2006@code{first_line}, @code{first_column}, @code{last_line} and
2007@code{last_column}.
342b8b6e
AD
2008
2009@node Ltcalc Rules
2010@subsection Grammar Rules for @code{ltcalc}
2011
9edcd895
AD
2012Whether handling locations or not has no effect on the syntax of your
2013language. Therefore, grammar rules for this example will be very close
2014to those of the previous example: we will only modify them to benefit
2015from the new information.
342b8b6e 2016
9edcd895
AD
2017Here, we will use locations to report divisions by zero, and locate the
2018wrong expressions or subexpressions.
342b8b6e
AD
2019
2020@example
2021@group
2022input : /* empty */
2023 | input line
2024;
2025@end group
2026
2027@group
2028line : '\n'
2029 | exp '\n' @{ printf ("%d\n", $1); @}
2030;
2031@end group
2032
2033@group
2034exp : NUM @{ $$ = $1; @}
2035 | exp '+' exp @{ $$ = $1 + $3; @}
2036 | exp '-' exp @{ $$ = $1 - $3; @}
2037 | exp '*' exp @{ $$ = $1 * $3; @}
2038@end group
342b8b6e 2039@group
9edcd895 2040 | exp '/' exp
342b8b6e
AD
2041 @{
2042 if ($3)
2043 $$ = $1 / $3;
2044 else
2045 @{
2046 $$ = 1;
9edcd895
AD
2047 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2048 @@3.first_line, @@3.first_column,
2049 @@3.last_line, @@3.last_column);
342b8b6e
AD
2050 @}
2051 @}
2052@end group
2053@group
2054 | '-' exp %preg NEG @{ $$ = -$2; @}
2055 | exp '^' exp @{ $$ = pow ($1, $3); @}
2056 | '(' exp ')' @{ $$ = $2; @}
2057@end group
2058@end example
2059
2060This code shows how to reach locations inside of semantic actions, by
2061using the pseudo-variables @code{@@@var{n}} for rule components, and the
2062pseudo-variable @code{@@$} for groupings.
2063
9edcd895
AD
2064We don't need to assign a value to @code{@@$}: the output parser does it
2065automatically. By default, before executing the C code of each action,
2066@code{@@$} is set to range from the beginning of @code{@@1} to the end
2067of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2068can be redefined (@pxref{Location Default Action, , Default Action for
2069Locations}), and for very specific rules, @code{@@$} can be computed by
2070hand.
342b8b6e
AD
2071
2072@node Ltcalc Lexer
2073@subsection The @code{ltcalc} Lexical Analyzer.
2074
9edcd895 2075Until now, we relied on Bison's defaults to enable location
72d2299c 2076tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2077able to feed the parser with the token locations, as it already does for
2078semantic values.
342b8b6e 2079
9edcd895
AD
2080To this end, we must take into account every single character of the
2081input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2082
2083@example
2084@group
2085int
2086yylex (void)
2087@{
2088 int c;
18b519c0 2089@end group
342b8b6e 2090
18b519c0 2091@group
72d2299c 2092 /* Skip white space. */
342b8b6e
AD
2093 while ((c = getchar ()) == ' ' || c == '\t')
2094 ++yylloc.last_column;
18b519c0 2095@end group
342b8b6e 2096
18b519c0 2097@group
72d2299c 2098 /* Step. */
342b8b6e
AD
2099 yylloc.first_line = yylloc.last_line;
2100 yylloc.first_column = yylloc.last_column;
2101@end group
2102
2103@group
72d2299c 2104 /* Process numbers. */
342b8b6e
AD
2105 if (isdigit (c))
2106 @{
2107 yylval = c - '0';
2108 ++yylloc.last_column;
2109 while (isdigit (c = getchar ()))
2110 @{
2111 ++yylloc.last_column;
2112 yylval = yylval * 10 + c - '0';
2113 @}
2114 ungetc (c, stdin);
2115 return NUM;
2116 @}
2117@end group
2118
72d2299c 2119 /* Return end-of-input. */
342b8b6e
AD
2120 if (c == EOF)
2121 return 0;
2122
72d2299c 2123 /* Return a single char, and update location. */
342b8b6e
AD
2124 if (c == '\n')
2125 @{
2126 ++yylloc.last_line;
2127 yylloc.last_column = 0;
2128 @}
2129 else
2130 ++yylloc.last_column;
2131 return c;
2132@}
2133@end example
2134
9edcd895
AD
2135Basically, the lexical analyzer performs the same processing as before:
2136it skips blanks and tabs, and reads numbers or single-character tokens.
2137In addition, it updates @code{yylloc}, the global variable (of type
2138@code{YYLTYPE}) containing the token's location.
342b8b6e 2139
9edcd895 2140Now, each time this function returns a token, the parser has its number
72d2299c 2141as well as its semantic value, and its location in the text. The last
9edcd895
AD
2142needed change is to initialize @code{yylloc}, for example in the
2143controlling function:
342b8b6e
AD
2144
2145@example
9edcd895 2146@group
342b8b6e
AD
2147int
2148main (void)
2149@{
2150 yylloc.first_line = yylloc.last_line = 1;
2151 yylloc.first_column = yylloc.last_column = 0;
2152 return yyparse ();
2153@}
9edcd895 2154@end group
342b8b6e
AD
2155@end example
2156
9edcd895
AD
2157Remember that computing locations is not a matter of syntax. Every
2158character must be associated to a location update, whether it is in
2159valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2160
2161@node Multi-function Calc
bfa74976
RS
2162@section Multi-Function Calculator: @code{mfcalc}
2163@cindex multi-function calculator
2164@cindex @code{mfcalc}
2165@cindex calculator, multi-function
2166
2167Now that the basics of Bison have been discussed, it is time to move on to
2168a more advanced problem. The above calculators provided only five
2169functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2170be nice to have a calculator that provides other mathematical functions such
2171as @code{sin}, @code{cos}, etc.
2172
2173It is easy to add new operators to the infix calculator as long as they are
2174only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2175back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2176adding a new operator. But we want something more flexible: built-in
2177functions whose syntax has this form:
2178
2179@example
2180@var{function_name} (@var{argument})
2181@end example
2182
2183@noindent
2184At the same time, we will add memory to the calculator, by allowing you
2185to create named variables, store values in them, and use them later.
2186Here is a sample session with the multi-function calculator:
2187
2188@example
9edcd895
AD
2189$ @kbd{mfcalc}
2190@kbd{pi = 3.141592653589}
bfa74976 21913.1415926536
9edcd895 2192@kbd{sin(pi)}
bfa74976 21930.0000000000
9edcd895 2194@kbd{alpha = beta1 = 2.3}
bfa74976 21952.3000000000
9edcd895 2196@kbd{alpha}
bfa74976 21972.3000000000
9edcd895 2198@kbd{ln(alpha)}
bfa74976 21990.8329091229
9edcd895 2200@kbd{exp(ln(beta1))}
bfa74976 22012.3000000000
9edcd895 2202$
bfa74976
RS
2203@end example
2204
2205Note that multiple assignment and nested function calls are permitted.
2206
2207@menu
2208* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2209* Rules: Mfcalc Rules. Grammar rules for the calculator.
2210* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2211@end menu
2212
342b8b6e 2213@node Mfcalc Decl
bfa74976
RS
2214@subsection Declarations for @code{mfcalc}
2215
2216Here are the C and Bison declarations for the multi-function calculator.
2217
2218@smallexample
18b519c0 2219@group
bfa74976 2220%@{
38a92d50
PE
2221 #include <math.h> /* For math functions, cos(), sin(), etc. */
2222 #include "calc.h" /* Contains definition of `symrec'. */
2223 int yylex (void);
2224 void yyerror (char const *);
bfa74976 2225%@}
18b519c0
AD
2226@end group
2227@group
bfa74976 2228%union @{
38a92d50
PE
2229 double val; /* For returning numbers. */
2230 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2231@}
18b519c0 2232@end group
38a92d50
PE
2233%token <val> NUM /* Simple double precision number. */
2234%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2235%type <val> exp
2236
18b519c0 2237@group
bfa74976
RS
2238%right '='
2239%left '-' '+'
2240%left '*' '/'
38a92d50
PE
2241%left NEG /* negation--unary minus */
2242%right '^' /* exponentiation */
18b519c0 2243@end group
38a92d50 2244%% /* The grammar follows. */
bfa74976
RS
2245@end smallexample
2246
2247The above grammar introduces only two new features of the Bison language.
2248These features allow semantic values to have various data types
2249(@pxref{Multiple Types, ,More Than One Value Type}).
2250
2251The @code{%union} declaration specifies the entire list of possible types;
2252this is instead of defining @code{YYSTYPE}. The allowable types are now
2253double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2254the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2255
2256Since values can now have various types, it is necessary to associate a
2257type with each grammar symbol whose semantic value is used. These symbols
2258are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2259declarations are augmented with information about their data type (placed
2260between angle brackets).
2261
704a47c4
AD
2262The Bison construct @code{%type} is used for declaring nonterminal
2263symbols, just as @code{%token} is used for declaring token types. We
2264have not used @code{%type} before because nonterminal symbols are
2265normally declared implicitly by the rules that define them. But
2266@code{exp} must be declared explicitly so we can specify its value type.
2267@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2268
342b8b6e 2269@node Mfcalc Rules
bfa74976
RS
2270@subsection Grammar Rules for @code{mfcalc}
2271
2272Here are the grammar rules for the multi-function calculator.
2273Most of them are copied directly from @code{calc}; three rules,
2274those which mention @code{VAR} or @code{FNCT}, are new.
2275
2276@smallexample
18b519c0 2277@group
bfa74976
RS
2278input: /* empty */
2279 | input line
2280;
18b519c0 2281@end group
bfa74976 2282
18b519c0 2283@group
bfa74976
RS
2284line:
2285 '\n'
2286 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2287 | error '\n' @{ yyerrok; @}
2288;
18b519c0 2289@end group
bfa74976 2290
18b519c0 2291@group
bfa74976
RS
2292exp: NUM @{ $$ = $1; @}
2293 | VAR @{ $$ = $1->value.var; @}
2294 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2295 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2296 | exp '+' exp @{ $$ = $1 + $3; @}
2297 | exp '-' exp @{ $$ = $1 - $3; @}
2298 | exp '*' exp @{ $$ = $1 * $3; @}
2299 | exp '/' exp @{ $$ = $1 / $3; @}
2300 | '-' exp %prec NEG @{ $$ = -$2; @}
2301 | exp '^' exp @{ $$ = pow ($1, $3); @}
2302 | '(' exp ')' @{ $$ = $2; @}
2303;
18b519c0 2304@end group
38a92d50 2305/* End of grammar. */
bfa74976
RS
2306%%
2307@end smallexample
2308
342b8b6e 2309@node Mfcalc Symtab
bfa74976
RS
2310@subsection The @code{mfcalc} Symbol Table
2311@cindex symbol table example
2312
2313The multi-function calculator requires a symbol table to keep track of the
2314names and meanings of variables and functions. This doesn't affect the
2315grammar rules (except for the actions) or the Bison declarations, but it
2316requires some additional C functions for support.
2317
2318The symbol table itself consists of a linked list of records. Its
2319definition, which is kept in the header @file{calc.h}, is as follows. It
2320provides for either functions or variables to be placed in the table.
2321
2322@smallexample
2323@group
38a92d50 2324/* Function type. */
32dfccf8 2325typedef double (*func_t) (double);
72f889cc 2326@end group
32dfccf8 2327
72f889cc 2328@group
38a92d50 2329/* Data type for links in the chain of symbols. */
bfa74976
RS
2330struct symrec
2331@{
38a92d50 2332 char *name; /* name of symbol */
bfa74976 2333 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2334 union
2335 @{
38a92d50
PE
2336 double var; /* value of a VAR */
2337 func_t fnctptr; /* value of a FNCT */
bfa74976 2338 @} value;
38a92d50 2339 struct symrec *next; /* link field */
bfa74976
RS
2340@};
2341@end group
2342
2343@group
2344typedef struct symrec symrec;
2345
38a92d50 2346/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2347extern symrec *sym_table;
2348
a730d142 2349symrec *putsym (char const *, int);
38a92d50 2350symrec *getsym (char const *);
bfa74976
RS
2351@end group
2352@end smallexample
2353
2354The new version of @code{main} includes a call to @code{init_table}, a
2355function that initializes the symbol table. Here it is, and
2356@code{init_table} as well:
2357
2358@smallexample
bfa74976
RS
2359#include <stdio.h>
2360
18b519c0 2361@group
38a92d50 2362/* Called by yyparse on error. */
13863333 2363void
38a92d50 2364yyerror (char const *s)
bfa74976
RS
2365@{
2366 printf ("%s\n", s);
2367@}
18b519c0 2368@end group
bfa74976 2369
18b519c0 2370@group
bfa74976
RS
2371struct init
2372@{
38a92d50
PE
2373 char const *fname;
2374 double (*fnct) (double);
bfa74976
RS
2375@};
2376@end group
2377
2378@group
38a92d50 2379struct init const arith_fncts[] =
13863333 2380@{
32dfccf8
AD
2381 "sin", sin,
2382 "cos", cos,
13863333 2383 "atan", atan,
32dfccf8
AD
2384 "ln", log,
2385 "exp", exp,
13863333
AD
2386 "sqrt", sqrt,
2387 0, 0
2388@};
18b519c0 2389@end group
bfa74976 2390
18b519c0 2391@group
bfa74976 2392/* The symbol table: a chain of `struct symrec'. */
38a92d50 2393symrec *sym_table;
bfa74976
RS
2394@end group
2395
2396@group
72d2299c 2397/* Put arithmetic functions in table. */
13863333
AD
2398void
2399init_table (void)
bfa74976
RS
2400@{
2401 int i;
2402 symrec *ptr;
2403 for (i = 0; arith_fncts[i].fname != 0; i++)
2404 @{
2405 ptr = putsym (arith_fncts[i].fname, FNCT);
2406 ptr->value.fnctptr = arith_fncts[i].fnct;
2407 @}
2408@}
2409@end group
38a92d50
PE
2410
2411@group
2412int
2413main (void)
2414@{
2415 init_table ();
2416 return yyparse ();
2417@}
2418@end group
bfa74976
RS
2419@end smallexample
2420
2421By simply editing the initialization list and adding the necessary include
2422files, you can add additional functions to the calculator.
2423
2424Two important functions allow look-up and installation of symbols in the
2425symbol table. The function @code{putsym} is passed a name and the type
2426(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2427linked to the front of the list, and a pointer to the object is returned.
2428The function @code{getsym} is passed the name of the symbol to look up. If
2429found, a pointer to that symbol is returned; otherwise zero is returned.
2430
2431@smallexample
2432symrec *
38a92d50 2433putsym (char const *sym_name, int sym_type)
bfa74976
RS
2434@{
2435 symrec *ptr;
2436 ptr = (symrec *) malloc (sizeof (symrec));
2437 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2438 strcpy (ptr->name,sym_name);
2439 ptr->type = sym_type;
72d2299c 2440 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2441 ptr->next = (struct symrec *)sym_table;
2442 sym_table = ptr;
2443 return ptr;
2444@}
2445
2446symrec *
38a92d50 2447getsym (char const *sym_name)
bfa74976
RS
2448@{
2449 symrec *ptr;
2450 for (ptr = sym_table; ptr != (symrec *) 0;
2451 ptr = (symrec *)ptr->next)
2452 if (strcmp (ptr->name,sym_name) == 0)
2453 return ptr;
2454 return 0;
2455@}
2456@end smallexample
2457
2458The function @code{yylex} must now recognize variables, numeric values, and
2459the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2460characters with a leading letter are recognized as either variables or
bfa74976
RS
2461functions depending on what the symbol table says about them.
2462
2463The string is passed to @code{getsym} for look up in the symbol table. If
2464the name appears in the table, a pointer to its location and its type
2465(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2466already in the table, then it is installed as a @code{VAR} using
2467@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2468returned to @code{yyparse}.
bfa74976
RS
2469
2470No change is needed in the handling of numeric values and arithmetic
2471operators in @code{yylex}.
2472
2473@smallexample
2474@group
2475#include <ctype.h>
18b519c0 2476@end group
13863333 2477
18b519c0 2478@group
13863333
AD
2479int
2480yylex (void)
bfa74976
RS
2481@{
2482 int c;
2483
72d2299c 2484 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2485 while ((c = getchar ()) == ' ' || c == '\t');
2486
2487 if (c == EOF)
2488 return 0;
2489@end group
2490
2491@group
2492 /* Char starts a number => parse the number. */
2493 if (c == '.' || isdigit (c))
2494 @{
2495 ungetc (c, stdin);
2496 scanf ("%lf", &yylval.val);
2497 return NUM;
2498 @}
2499@end group
2500
2501@group
2502 /* Char starts an identifier => read the name. */
2503 if (isalpha (c))
2504 @{
2505 symrec *s;
2506 static char *symbuf = 0;
2507 static int length = 0;
2508 int i;
2509@end group
2510
2511@group
2512 /* Initially make the buffer long enough
2513 for a 40-character symbol name. */
2514 if (length == 0)
2515 length = 40, symbuf = (char *)malloc (length + 1);
2516
2517 i = 0;
2518 do
2519@end group
2520@group
2521 @{
2522 /* If buffer is full, make it bigger. */
2523 if (i == length)
2524 @{
2525 length *= 2;
18b519c0 2526 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2527 @}
2528 /* Add this character to the buffer. */
2529 symbuf[i++] = c;
2530 /* Get another character. */
2531 c = getchar ();
2532 @}
2533@end group
2534@group
72d2299c 2535 while (isalnum (c));
bfa74976
RS
2536
2537 ungetc (c, stdin);
2538 symbuf[i] = '\0';
2539@end group
2540
2541@group
2542 s = getsym (symbuf);
2543 if (s == 0)
2544 s = putsym (symbuf, VAR);
2545 yylval.tptr = s;
2546 return s->type;
2547 @}
2548
2549 /* Any other character is a token by itself. */
2550 return c;
2551@}
2552@end group
2553@end smallexample
2554
72d2299c 2555This program is both powerful and flexible. You may easily add new
704a47c4
AD
2556functions, and it is a simple job to modify this code to install
2557predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2558
342b8b6e 2559@node Exercises
bfa74976
RS
2560@section Exercises
2561@cindex exercises
2562
2563@enumerate
2564@item
2565Add some new functions from @file{math.h} to the initialization list.
2566
2567@item
2568Add another array that contains constants and their values. Then
2569modify @code{init_table} to add these constants to the symbol table.
2570It will be easiest to give the constants type @code{VAR}.
2571
2572@item
2573Make the program report an error if the user refers to an
2574uninitialized variable in any way except to store a value in it.
2575@end enumerate
2576
342b8b6e 2577@node Grammar File
bfa74976
RS
2578@chapter Bison Grammar Files
2579
2580Bison takes as input a context-free grammar specification and produces a
2581C-language function that recognizes correct instances of the grammar.
2582
2583The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2584@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2585
2586@menu
2587* Grammar Outline:: Overall layout of the grammar file.
2588* Symbols:: Terminal and nonterminal symbols.
2589* Rules:: How to write grammar rules.
2590* Recursion:: Writing recursive rules.
2591* Semantics:: Semantic values and actions.
847bf1f5 2592* Locations:: Locations and actions.
bfa74976
RS
2593* Declarations:: All kinds of Bison declarations are described here.
2594* Multiple Parsers:: Putting more than one Bison parser in one program.
2595@end menu
2596
342b8b6e 2597@node Grammar Outline
bfa74976
RS
2598@section Outline of a Bison Grammar
2599
2600A Bison grammar file has four main sections, shown here with the
2601appropriate delimiters:
2602
2603@example
2604%@{
38a92d50 2605 @var{Prologue}
bfa74976
RS
2606%@}
2607
2608@var{Bison declarations}
2609
2610%%
2611@var{Grammar rules}
2612%%
2613
75f5aaea 2614@var{Epilogue}
bfa74976
RS
2615@end example
2616
2617Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2618As a @acronym{GNU} extension, @samp{//} introduces a comment that
2619continues until end of line.
bfa74976
RS
2620
2621@menu
75f5aaea 2622* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
2623* Bison Declarations:: Syntax and usage of the Bison declarations section.
2624* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2625* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2626@end menu
2627
38a92d50 2628@node Prologue
75f5aaea
MA
2629@subsection The prologue
2630@cindex declarations section
2631@cindex Prologue
2632@cindex declarations
bfa74976 2633
f8e1c9e5
AD
2634The @var{Prologue} section contains macro definitions and declarations
2635of functions and variables that are used in the actions in the grammar
2636rules. These are copied to the beginning of the parser file so that
2637they precede the definition of @code{yyparse}. You can use
2638@samp{#include} to get the declarations from a header file. If you
2639don't need any C declarations, you may omit the @samp{%@{} and
2640@samp{%@}} delimiters that bracket this section.
bfa74976 2641
c732d2c6
AD
2642You may have more than one @var{Prologue} section, intermixed with the
2643@var{Bison declarations}. This allows you to have C and Bison
2644declarations that refer to each other. For example, the @code{%union}
2645declaration may use types defined in a header file, and you may wish to
2646prototype functions that take arguments of type @code{YYSTYPE}. This
2647can be done with two @var{Prologue} blocks, one before and one after the
2648@code{%union} declaration.
2649
2650@smallexample
2651%@{
38a92d50
PE
2652 #include <stdio.h>
2653 #include "ptypes.h"
c732d2c6
AD
2654%@}
2655
2656%union @{
779e7ceb 2657 long int n;
c732d2c6
AD
2658 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2659@}
2660
2661%@{
38a92d50
PE
2662 static void print_token_value (FILE *, int, YYSTYPE);
2663 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2664%@}
2665
2666@dots{}
2667@end smallexample
2668
342b8b6e 2669@node Bison Declarations
bfa74976
RS
2670@subsection The Bison Declarations Section
2671@cindex Bison declarations (introduction)
2672@cindex declarations, Bison (introduction)
2673
2674The @var{Bison declarations} section contains declarations that define
2675terminal and nonterminal symbols, specify precedence, and so on.
2676In some simple grammars you may not need any declarations.
2677@xref{Declarations, ,Bison Declarations}.
2678
342b8b6e 2679@node Grammar Rules
bfa74976
RS
2680@subsection The Grammar Rules Section
2681@cindex grammar rules section
2682@cindex rules section for grammar
2683
2684The @dfn{grammar rules} section contains one or more Bison grammar
2685rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2686
2687There must always be at least one grammar rule, and the first
2688@samp{%%} (which precedes the grammar rules) may never be omitted even
2689if it is the first thing in the file.
2690
38a92d50 2691@node Epilogue
75f5aaea 2692@subsection The epilogue
bfa74976 2693@cindex additional C code section
75f5aaea 2694@cindex epilogue
bfa74976
RS
2695@cindex C code, section for additional
2696
08e49d20
PE
2697The @var{Epilogue} is copied verbatim to the end of the parser file, just as
2698the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
2699place to put anything that you want to have in the parser file but which need
2700not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
2701definitions of @code{yylex} and @code{yyerror} often go here. Because
2702C requires functions to be declared before being used, you often need
2703to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 2704even if you define them in the Epilogue.
75f5aaea 2705@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
2706
2707If the last section is empty, you may omit the @samp{%%} that separates it
2708from the grammar rules.
2709
f8e1c9e5
AD
2710The Bison parser itself contains many macros and identifiers whose names
2711start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
2712any such names (except those documented in this manual) in the epilogue
2713of the grammar file.
bfa74976 2714
342b8b6e 2715@node Symbols
bfa74976
RS
2716@section Symbols, Terminal and Nonterminal
2717@cindex nonterminal symbol
2718@cindex terminal symbol
2719@cindex token type
2720@cindex symbol
2721
2722@dfn{Symbols} in Bison grammars represent the grammatical classifications
2723of the language.
2724
2725A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
2726class of syntactically equivalent tokens. You use the symbol in grammar
2727rules to mean that a token in that class is allowed. The symbol is
2728represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
2729function returns a token type code to indicate what kind of token has
2730been read. You don't need to know what the code value is; you can use
2731the symbol to stand for it.
bfa74976 2732
f8e1c9e5
AD
2733A @dfn{nonterminal symbol} stands for a class of syntactically
2734equivalent groupings. The symbol name is used in writing grammar rules.
2735By convention, it should be all lower case.
bfa74976
RS
2736
2737Symbol names can contain letters, digits (not at the beginning),
2738underscores and periods. Periods make sense only in nonterminals.
2739
931c7513 2740There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
2741
2742@itemize @bullet
2743@item
2744A @dfn{named token type} is written with an identifier, like an
c827f760 2745identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
2746such name must be defined with a Bison declaration such as
2747@code{%token}. @xref{Token Decl, ,Token Type Names}.
2748
2749@item
2750@cindex character token
2751@cindex literal token
2752@cindex single-character literal
931c7513
RS
2753A @dfn{character token type} (or @dfn{literal character token}) is
2754written in the grammar using the same syntax used in C for character
2755constants; for example, @code{'+'} is a character token type. A
2756character token type doesn't need to be declared unless you need to
2757specify its semantic value data type (@pxref{Value Type, ,Data Types of
2758Semantic Values}), associativity, or precedence (@pxref{Precedence,
2759,Operator Precedence}).
bfa74976
RS
2760
2761By convention, a character token type is used only to represent a
2762token that consists of that particular character. Thus, the token
2763type @code{'+'} is used to represent the character @samp{+} as a
2764token. Nothing enforces this convention, but if you depart from it,
2765your program will confuse other readers.
2766
2767All the usual escape sequences used in character literals in C can be
2768used in Bison as well, but you must not use the null character as a
72d2299c
PE
2769character literal because its numeric code, zero, signifies
2770end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
2771for @code{yylex}}). Also, unlike standard C, trigraphs have no
2772special meaning in Bison character literals, nor is backslash-newline
2773allowed.
931c7513
RS
2774
2775@item
2776@cindex string token
2777@cindex literal string token
9ecbd125 2778@cindex multicharacter literal
931c7513
RS
2779A @dfn{literal string token} is written like a C string constant; for
2780example, @code{"<="} is a literal string token. A literal string token
2781doesn't need to be declared unless you need to specify its semantic
14ded682 2782value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
2783(@pxref{Precedence}).
2784
2785You can associate the literal string token with a symbolic name as an
2786alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
2787Declarations}). If you don't do that, the lexical analyzer has to
2788retrieve the token number for the literal string token from the
2789@code{yytname} table (@pxref{Calling Convention}).
2790
c827f760 2791@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
2792
2793By convention, a literal string token is used only to represent a token
2794that consists of that particular string. Thus, you should use the token
2795type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 2796does not enforce this convention, but if you depart from it, people who
931c7513
RS
2797read your program will be confused.
2798
2799All the escape sequences used in string literals in C can be used in
92ac3705
PE
2800Bison as well, except that you must not use a null character within a
2801string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
2802meaning in Bison string literals, nor is backslash-newline allowed. A
2803literal string token must contain two or more characters; for a token
2804containing just one character, use a character token (see above).
bfa74976
RS
2805@end itemize
2806
2807How you choose to write a terminal symbol has no effect on its
2808grammatical meaning. That depends only on where it appears in rules and
2809on when the parser function returns that symbol.
2810
72d2299c
PE
2811The value returned by @code{yylex} is always one of the terminal
2812symbols, except that a zero or negative value signifies end-of-input.
2813Whichever way you write the token type in the grammar rules, you write
2814it the same way in the definition of @code{yylex}. The numeric code
2815for a character token type is simply the positive numeric code of the
2816character, so @code{yylex} can use the identical value to generate the
2817requisite code, though you may need to convert it to @code{unsigned
2818char} to avoid sign-extension on hosts where @code{char} is signed.
2819Each named token type becomes a C macro in
bfa74976 2820the parser file, so @code{yylex} can use the name to stand for the code.
13863333 2821(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
2822@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
2823
2824If @code{yylex} is defined in a separate file, you need to arrange for the
2825token-type macro definitions to be available there. Use the @samp{-d}
2826option when you run Bison, so that it will write these macro definitions
2827into a separate header file @file{@var{name}.tab.h} which you can include
2828in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
2829
72d2299c 2830If you want to write a grammar that is portable to any Standard C
9d9b8b70 2831host, you must use only nonnull character tokens taken from the basic
c827f760 2832execution character set of Standard C@. This set consists of the ten
72d2299c
PE
2833digits, the 52 lower- and upper-case English letters, and the
2834characters in the following C-language string:
2835
2836@example
2837"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
2838@end example
2839
f8e1c9e5
AD
2840The @code{yylex} function and Bison must use a consistent character set
2841and encoding for character tokens. For example, if you run Bison in an
2842@acronym{ASCII} environment, but then compile and run the resulting
2843program in an environment that uses an incompatible character set like
2844@acronym{EBCDIC}, the resulting program may not work because the tables
2845generated by Bison will assume @acronym{ASCII} numeric values for
2846character tokens. It is standard practice for software distributions to
2847contain C source files that were generated by Bison in an
2848@acronym{ASCII} environment, so installers on platforms that are
2849incompatible with @acronym{ASCII} must rebuild those files before
2850compiling them.
e966383b 2851
bfa74976
RS
2852The symbol @code{error} is a terminal symbol reserved for error recovery
2853(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
2854In particular, @code{yylex} should never return this value. The default
2855value of the error token is 256, unless you explicitly assigned 256 to
2856one of your tokens with a @code{%token} declaration.
bfa74976 2857
342b8b6e 2858@node Rules
bfa74976
RS
2859@section Syntax of Grammar Rules
2860@cindex rule syntax
2861@cindex grammar rule syntax
2862@cindex syntax of grammar rules
2863
2864A Bison grammar rule has the following general form:
2865
2866@example
e425e872 2867@group
bfa74976
RS
2868@var{result}: @var{components}@dots{}
2869 ;
e425e872 2870@end group
bfa74976
RS
2871@end example
2872
2873@noindent
9ecbd125 2874where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 2875and @var{components} are various terminal and nonterminal symbols that
13863333 2876are put together by this rule (@pxref{Symbols}).
bfa74976
RS
2877
2878For example,
2879
2880@example
2881@group
2882exp: exp '+' exp
2883 ;
2884@end group
2885@end example
2886
2887@noindent
2888says that two groupings of type @code{exp}, with a @samp{+} token in between,
2889can be combined into a larger grouping of type @code{exp}.
2890
72d2299c
PE
2891White space in rules is significant only to separate symbols. You can add
2892extra white space as you wish.
bfa74976
RS
2893
2894Scattered among the components can be @var{actions} that determine
2895the semantics of the rule. An action looks like this:
2896
2897@example
2898@{@var{C statements}@}
2899@end example
2900
2901@noindent
2902Usually there is only one action and it follows the components.
2903@xref{Actions}.
2904
2905@findex |
2906Multiple rules for the same @var{result} can be written separately or can
2907be joined with the vertical-bar character @samp{|} as follows:
2908
2909@ifinfo
2910@example
2911@var{result}: @var{rule1-components}@dots{}
2912 | @var{rule2-components}@dots{}
2913 @dots{}
2914 ;
2915@end example
2916@end ifinfo
2917@iftex
2918@example
2919@group
2920@var{result}: @var{rule1-components}@dots{}
2921 | @var{rule2-components}@dots{}
2922 @dots{}
2923 ;
2924@end group
2925@end example
2926@end iftex
2927
2928@noindent
2929They are still considered distinct rules even when joined in this way.
2930
2931If @var{components} in a rule is empty, it means that @var{result} can
2932match the empty string. For example, here is how to define a
2933comma-separated sequence of zero or more @code{exp} groupings:
2934
2935@example
2936@group
2937expseq: /* empty */
2938 | expseq1
2939 ;
2940@end group
2941
2942@group
2943expseq1: exp
2944 | expseq1 ',' exp
2945 ;
2946@end group
2947@end example
2948
2949@noindent
2950It is customary to write a comment @samp{/* empty */} in each rule
2951with no components.
2952
342b8b6e 2953@node Recursion
bfa74976
RS
2954@section Recursive Rules
2955@cindex recursive rule
2956
f8e1c9e5
AD
2957A rule is called @dfn{recursive} when its @var{result} nonterminal
2958appears also on its right hand side. Nearly all Bison grammars need to
2959use recursion, because that is the only way to define a sequence of any
2960number of a particular thing. Consider this recursive definition of a
9ecbd125 2961comma-separated sequence of one or more expressions:
bfa74976
RS
2962
2963@example
2964@group
2965expseq1: exp
2966 | expseq1 ',' exp
2967 ;
2968@end group
2969@end example
2970
2971@cindex left recursion
2972@cindex right recursion
2973@noindent
2974Since the recursive use of @code{expseq1} is the leftmost symbol in the
2975right hand side, we call this @dfn{left recursion}. By contrast, here
2976the same construct is defined using @dfn{right recursion}:
2977
2978@example
2979@group
2980expseq1: exp
2981 | exp ',' expseq1
2982 ;
2983@end group
2984@end example
2985
2986@noindent
ec3bc396
AD
2987Any kind of sequence can be defined using either left recursion or right
2988recursion, but you should always use left recursion, because it can
2989parse a sequence of any number of elements with bounded stack space.
2990Right recursion uses up space on the Bison stack in proportion to the
2991number of elements in the sequence, because all the elements must be
2992shifted onto the stack before the rule can be applied even once.
2993@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
2994of this.
bfa74976
RS
2995
2996@cindex mutual recursion
2997@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
2998rule does not appear directly on its right hand side, but does appear
2999in rules for other nonterminals which do appear on its right hand
13863333 3000side.
bfa74976
RS
3001
3002For example:
3003
3004@example
3005@group
3006expr: primary
3007 | primary '+' primary
3008 ;
3009@end group
3010
3011@group
3012primary: constant
3013 | '(' expr ')'
3014 ;
3015@end group
3016@end example
3017
3018@noindent
3019defines two mutually-recursive nonterminals, since each refers to the
3020other.
3021
342b8b6e 3022@node Semantics
bfa74976
RS
3023@section Defining Language Semantics
3024@cindex defining language semantics
13863333 3025@cindex language semantics, defining
bfa74976
RS
3026
3027The grammar rules for a language determine only the syntax. The semantics
3028are determined by the semantic values associated with various tokens and
3029groupings, and by the actions taken when various groupings are recognized.
3030
3031For example, the calculator calculates properly because the value
3032associated with each expression is the proper number; it adds properly
3033because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3034the numbers associated with @var{x} and @var{y}.
3035
3036@menu
3037* Value Type:: Specifying one data type for all semantic values.
3038* Multiple Types:: Specifying several alternative data types.
3039* Actions:: An action is the semantic definition of a grammar rule.
3040* Action Types:: Specifying data types for actions to operate on.
3041* Mid-Rule Actions:: Most actions go at the end of a rule.
3042 This says when, why and how to use the exceptional
3043 action in the middle of a rule.
3044@end menu
3045
342b8b6e 3046@node Value Type
bfa74976
RS
3047@subsection Data Types of Semantic Values
3048@cindex semantic value type
3049@cindex value type, semantic
3050@cindex data types of semantic values
3051@cindex default data type
3052
3053In a simple program it may be sufficient to use the same data type for
3054the semantic values of all language constructs. This was true in the
c827f760 3055@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3056Notation Calculator}).
bfa74976
RS
3057
3058Bison's default is to use type @code{int} for all semantic values. To
3059specify some other type, define @code{YYSTYPE} as a macro, like this:
3060
3061@example
3062#define YYSTYPE double
3063@end example
3064
3065@noindent
342b8b6e 3066This macro definition must go in the prologue of the grammar file
75f5aaea 3067(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3068
342b8b6e 3069@node Multiple Types
bfa74976
RS
3070@subsection More Than One Value Type
3071
3072In most programs, you will need different data types for different kinds
3073of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3074@code{int} or @code{long int}, while a string constant needs type
3075@code{char *}, and an identifier might need a pointer to an entry in the
3076symbol table.
bfa74976
RS
3077
3078To use more than one data type for semantic values in one parser, Bison
3079requires you to do two things:
3080
3081@itemize @bullet
3082@item
3083Specify the entire collection of possible data types, with the
704a47c4
AD
3084@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
3085Value Types}).
bfa74976
RS
3086
3087@item
14ded682
AD
3088Choose one of those types for each symbol (terminal or nonterminal) for
3089which semantic values are used. This is done for tokens with the
3090@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3091and for groupings with the @code{%type} Bison declaration (@pxref{Type
3092Decl, ,Nonterminal Symbols}).
bfa74976
RS
3093@end itemize
3094
342b8b6e 3095@node Actions
bfa74976
RS
3096@subsection Actions
3097@cindex action
3098@vindex $$
3099@vindex $@var{n}
3100
3101An action accompanies a syntactic rule and contains C code to be executed
3102each time an instance of that rule is recognized. The task of most actions
3103is to compute a semantic value for the grouping built by the rule from the
3104semantic values associated with tokens or smaller groupings.
3105
3106An action consists of C statements surrounded by braces, much like a
2bfc2e2a
PE
3107compound statement in C@. An action can contain any sequence of C
3108statements. Bison does not look for trigraphs, though, so if your C
3109code uses trigraphs you should ensure that they do not affect the
3110nesting of braces or the boundaries of comments, strings, or character
3111literals.
3112
3113An action can be placed at any position in the rule;
704a47c4
AD
3114it is executed at that position. Most rules have just one action at the
3115end of the rule, following all the components. Actions in the middle of
3116a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3117Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3118
3119The C code in an action can refer to the semantic values of the components
3120matched by the rule with the construct @code{$@var{n}}, which stands for
3121the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3122being constructed is @code{$$}. Bison translates both of these
3123constructs into expressions of the appropriate type when it copies the
3124actions into the parser file. @code{$$} is translated to a modifiable
3125lvalue, so it can be assigned to.
bfa74976
RS
3126
3127Here is a typical example:
3128
3129@example
3130@group
3131exp: @dots{}
3132 | exp '+' exp
3133 @{ $$ = $1 + $3; @}
3134@end group
3135@end example
3136
3137@noindent
3138This rule constructs an @code{exp} from two smaller @code{exp} groupings
3139connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3140refer to the semantic values of the two component @code{exp} groupings,
3141which are the first and third symbols on the right hand side of the rule.
3142The sum is stored into @code{$$} so that it becomes the semantic value of
3143the addition-expression just recognized by the rule. If there were a
3144useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3145referred to as @code{$2}.
bfa74976 3146
3ded9a63
AD
3147Note that the vertical-bar character @samp{|} is really a rule
3148separator, and actions are attached to a single rule. This is a
3149difference with tools like Flex, for which @samp{|} stands for either
3150``or'', or ``the same action as that of the next rule''. In the
3151following example, the action is triggered only when @samp{b} is found:
3152
3153@example
3154@group
3155a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3156@end group
3157@end example
3158
bfa74976
RS
3159@cindex default action
3160If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3161@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3162becomes the value of the whole rule. Of course, the default action is
3163valid only if the two data types match. There is no meaningful default
3164action for an empty rule; every empty rule must have an explicit action
3165unless the rule's value does not matter.
bfa74976
RS
3166
3167@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3168to tokens and groupings on the stack @emph{before} those that match the
3169current rule. This is a very risky practice, and to use it reliably
3170you must be certain of the context in which the rule is applied. Here
3171is a case in which you can use this reliably:
3172
3173@example
3174@group
3175foo: expr bar '+' expr @{ @dots{} @}
3176 | expr bar '-' expr @{ @dots{} @}
3177 ;
3178@end group
3179
3180@group
3181bar: /* empty */
3182 @{ previous_expr = $0; @}
3183 ;
3184@end group
3185@end example
3186
3187As long as @code{bar} is used only in the fashion shown here, @code{$0}
3188always refers to the @code{expr} which precedes @code{bar} in the
3189definition of @code{foo}.
3190
32c29292
JD
3191@vindex yylval
3192It is also possible to access the semantic value of the look-ahead token, if
3193any, from a semantic action.
3194This semantic value is stored in @code{yylval}.
3195@xref{Action Features, ,Special Features for Use in Actions}.
3196
342b8b6e 3197@node Action Types
bfa74976
RS
3198@subsection Data Types of Values in Actions
3199@cindex action data types
3200@cindex data types in actions
3201
3202If you have chosen a single data type for semantic values, the @code{$$}
3203and @code{$@var{n}} constructs always have that data type.
3204
3205If you have used @code{%union} to specify a variety of data types, then you
3206must declare a choice among these types for each terminal or nonterminal
3207symbol that can have a semantic value. Then each time you use @code{$$} or
3208@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3209in the rule. In this example,
bfa74976
RS
3210
3211@example
3212@group
3213exp: @dots{}
3214 | exp '+' exp
3215 @{ $$ = $1 + $3; @}
3216@end group
3217@end example
3218
3219@noindent
3220@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3221have the data type declared for the nonterminal symbol @code{exp}. If
3222@code{$2} were used, it would have the data type declared for the
e0c471a9 3223terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3224
3225Alternatively, you can specify the data type when you refer to the value,
3226by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3227reference. For example, if you have defined types as shown here:
3228
3229@example
3230@group
3231%union @{
3232 int itype;
3233 double dtype;
3234@}
3235@end group
3236@end example
3237
3238@noindent
3239then you can write @code{$<itype>1} to refer to the first subunit of the
3240rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3241
342b8b6e 3242@node Mid-Rule Actions
bfa74976
RS
3243@subsection Actions in Mid-Rule
3244@cindex actions in mid-rule
3245@cindex mid-rule actions
3246
3247Occasionally it is useful to put an action in the middle of a rule.
3248These actions are written just like usual end-of-rule actions, but they
3249are executed before the parser even recognizes the following components.
3250
3251A mid-rule action may refer to the components preceding it using
3252@code{$@var{n}}, but it may not refer to subsequent components because
3253it is run before they are parsed.
3254
3255The mid-rule action itself counts as one of the components of the rule.
3256This makes a difference when there is another action later in the same rule
3257(and usually there is another at the end): you have to count the actions
3258along with the symbols when working out which number @var{n} to use in
3259@code{$@var{n}}.
3260
3261The mid-rule action can also have a semantic value. The action can set
3262its value with an assignment to @code{$$}, and actions later in the rule
3263can refer to the value using @code{$@var{n}}. Since there is no symbol
3264to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3265in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3266specify a data type each time you refer to this value.
bfa74976
RS
3267
3268There is no way to set the value of the entire rule with a mid-rule
3269action, because assignments to @code{$$} do not have that effect. The
3270only way to set the value for the entire rule is with an ordinary action
3271at the end of the rule.
3272
3273Here is an example from a hypothetical compiler, handling a @code{let}
3274statement that looks like @samp{let (@var{variable}) @var{statement}} and
3275serves to create a variable named @var{variable} temporarily for the
3276duration of @var{statement}. To parse this construct, we must put
3277@var{variable} into the symbol table while @var{statement} is parsed, then
3278remove it afterward. Here is how it is done:
3279
3280@example
3281@group
3282stmt: LET '(' var ')'
3283 @{ $<context>$ = push_context ();
3284 declare_variable ($3); @}
3285 stmt @{ $$ = $6;
3286 pop_context ($<context>5); @}
3287@end group
3288@end example
3289
3290@noindent
3291As soon as @samp{let (@var{variable})} has been recognized, the first
3292action is run. It saves a copy of the current semantic context (the
3293list of accessible variables) as its semantic value, using alternative
3294@code{context} in the data-type union. Then it calls
3295@code{declare_variable} to add the new variable to that list. Once the
3296first action is finished, the embedded statement @code{stmt} can be
3297parsed. Note that the mid-rule action is component number 5, so the
3298@samp{stmt} is component number 6.
3299
3300After the embedded statement is parsed, its semantic value becomes the
3301value of the entire @code{let}-statement. Then the semantic value from the
3302earlier action is used to restore the prior list of variables. This
3303removes the temporary @code{let}-variable from the list so that it won't
3304appear to exist while the rest of the program is parsed.
3305
3306Taking action before a rule is completely recognized often leads to
3307conflicts since the parser must commit to a parse in order to execute the
3308action. For example, the following two rules, without mid-rule actions,
3309can coexist in a working parser because the parser can shift the open-brace
3310token and look at what follows before deciding whether there is a
3311declaration or not:
3312
3313@example
3314@group
3315compound: '@{' declarations statements '@}'
3316 | '@{' statements '@}'
3317 ;
3318@end group
3319@end example
3320
3321@noindent
3322But when we add a mid-rule action as follows, the rules become nonfunctional:
3323
3324@example
3325@group
3326compound: @{ prepare_for_local_variables (); @}
3327 '@{' declarations statements '@}'
3328@end group
3329@group
3330 | '@{' statements '@}'
3331 ;
3332@end group
3333@end example
3334
3335@noindent
3336Now the parser is forced to decide whether to run the mid-rule action
3337when it has read no farther than the open-brace. In other words, it
3338must commit to using one rule or the other, without sufficient
3339information to do it correctly. (The open-brace token is what is called
3340the @dfn{look-ahead} token at this time, since the parser is still
3341deciding what to do about it. @xref{Look-Ahead, ,Look-Ahead Tokens}.)
3342
3343You might think that you could correct the problem by putting identical
3344actions into the two rules, like this:
3345
3346@example
3347@group
3348compound: @{ prepare_for_local_variables (); @}
3349 '@{' declarations statements '@}'
3350 | @{ prepare_for_local_variables (); @}
3351 '@{' statements '@}'
3352 ;
3353@end group
3354@end example
3355
3356@noindent
3357But this does not help, because Bison does not realize that the two actions
3358are identical. (Bison never tries to understand the C code in an action.)
3359
3360If the grammar is such that a declaration can be distinguished from a
3361statement by the first token (which is true in C), then one solution which
3362does work is to put the action after the open-brace, like this:
3363
3364@example
3365@group
3366compound: '@{' @{ prepare_for_local_variables (); @}
3367 declarations statements '@}'
3368 | '@{' statements '@}'
3369 ;
3370@end group
3371@end example
3372
3373@noindent
3374Now the first token of the following declaration or statement,
3375which would in any case tell Bison which rule to use, can still do so.
3376
3377Another solution is to bury the action inside a nonterminal symbol which
3378serves as a subroutine:
3379
3380@example
3381@group
3382subroutine: /* empty */
3383 @{ prepare_for_local_variables (); @}
3384 ;
3385
3386@end group
3387
3388@group
3389compound: subroutine
3390 '@{' declarations statements '@}'
3391 | subroutine
3392 '@{' statements '@}'
3393 ;
3394@end group
3395@end example
3396
3397@noindent
3398Now Bison can execute the action in the rule for @code{subroutine} without
3399deciding which rule for @code{compound} it will eventually use. Note that
3400the action is now at the end of its rule. Any mid-rule action can be
3401converted to an end-of-rule action in this way, and this is what Bison
3402actually does to implement mid-rule actions.
3403
342b8b6e 3404@node Locations
847bf1f5
AD
3405@section Tracking Locations
3406@cindex location
95923bd6
AD
3407@cindex textual location
3408@cindex location, textual
847bf1f5
AD
3409
3410Though grammar rules and semantic actions are enough to write a fully
72d2299c 3411functional parser, it can be useful to process some additional information,
3e259915
MA
3412especially symbol locations.
3413
704a47c4
AD
3414The way locations are handled is defined by providing a data type, and
3415actions to take when rules are matched.
847bf1f5
AD
3416
3417@menu
3418* Location Type:: Specifying a data type for locations.
3419* Actions and Locations:: Using locations in actions.
3420* Location Default Action:: Defining a general way to compute locations.
3421@end menu
3422
342b8b6e 3423@node Location Type
847bf1f5
AD
3424@subsection Data Type of Locations
3425@cindex data type of locations
3426@cindex default location type
3427
3428Defining a data type for locations is much simpler than for semantic values,
3429since all tokens and groupings always use the same type.
3430
3431The type of locations is specified by defining a macro called @code{YYLTYPE}.
3432When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3433four members:
3434
3435@example
6273355b 3436typedef struct YYLTYPE
847bf1f5
AD
3437@{
3438 int first_line;
3439 int first_column;
3440 int last_line;
3441 int last_column;
6273355b 3442@} YYLTYPE;
847bf1f5
AD
3443@end example
3444
342b8b6e 3445@node Actions and Locations
847bf1f5
AD
3446@subsection Actions and Locations
3447@cindex location actions
3448@cindex actions, location
3449@vindex @@$
3450@vindex @@@var{n}
3451
3452Actions are not only useful for defining language semantics, but also for
3453describing the behavior of the output parser with locations.
3454
3455The most obvious way for building locations of syntactic groupings is very
72d2299c 3456similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3457constructs can be used to access the locations of the elements being matched.
3458The location of the @var{n}th component of the right hand side is
3459@code{@@@var{n}}, while the location of the left hand side grouping is
3460@code{@@$}.
3461
3e259915 3462Here is a basic example using the default data type for locations:
847bf1f5
AD
3463
3464@example
3465@group
3466exp: @dots{}
3e259915 3467 | exp '/' exp
847bf1f5 3468 @{
3e259915
MA
3469 @@$.first_column = @@1.first_column;
3470 @@$.first_line = @@1.first_line;
847bf1f5
AD
3471 @@$.last_column = @@3.last_column;
3472 @@$.last_line = @@3.last_line;
3e259915
MA
3473 if ($3)
3474 $$ = $1 / $3;
3475 else
3476 @{
3477 $$ = 1;
4e03e201
AD
3478 fprintf (stderr,
3479 "Division by zero, l%d,c%d-l%d,c%d",
3480 @@3.first_line, @@3.first_column,
3481 @@3.last_line, @@3.last_column);
3e259915 3482 @}
847bf1f5
AD
3483 @}
3484@end group
3485@end example
3486
3e259915 3487As for semantic values, there is a default action for locations that is
72d2299c 3488run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3489beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3490last symbol.
3e259915 3491
72d2299c 3492With this default action, the location tracking can be fully automatic. The
3e259915
MA
3493example above simply rewrites this way:
3494
3495@example
3496@group
3497exp: @dots{}
3498 | exp '/' exp
3499 @{
3500 if ($3)
3501 $$ = $1 / $3;
3502 else
3503 @{
3504 $$ = 1;
4e03e201
AD
3505 fprintf (stderr,
3506 "Division by zero, l%d,c%d-l%d,c%d",
3507 @@3.first_line, @@3.first_column,
3508 @@3.last_line, @@3.last_column);
3e259915
MA
3509 @}
3510 @}
3511@end group
3512@end example
847bf1f5 3513
32c29292
JD
3514@vindex yylloc
3515It is also possible to access the location of the look-ahead token, if any,
3516from a semantic action.
3517This location is stored in @code{yylloc}.
3518@xref{Action Features, ,Special Features for Use in Actions}.
3519
342b8b6e 3520@node Location Default Action
847bf1f5
AD
3521@subsection Default Action for Locations
3522@vindex YYLLOC_DEFAULT
3523
72d2299c 3524Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3525locations are much more general than semantic values, there is room in
3526the output parser to redefine the default action to take for each
72d2299c 3527rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3528matched, before the associated action is run. It is also invoked
3529while processing a syntax error, to compute the error's location.
847bf1f5 3530
3e259915 3531Most of the time, this macro is general enough to suppress location
79282c6c 3532dedicated code from semantic actions.
847bf1f5 3533
72d2299c 3534The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3535the location of the grouping (the result of the computation). When a
766de5eb 3536rule is matched, the second parameter identifies locations of
96b93a3d
PE
3537all right hand side elements of the rule being matched, and the third
3538parameter is the size of the rule's right hand side. When processing
766de5eb 3539a syntax error, the second parameter identifies locations of
96b93a3d
PE
3540the symbols that were discarded during error processing, and the third
3541parameter is the number of discarded symbols.
847bf1f5 3542
766de5eb 3543By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3544
766de5eb 3545@smallexample
847bf1f5 3546@group
766de5eb
PE
3547# define YYLLOC_DEFAULT(Current, Rhs, N) \
3548 do \
3549 if (N) \
3550 @{ \
3551 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3552 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3553 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3554 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3555 @} \
3556 else \
3557 @{ \
3558 (Current).first_line = (Current).last_line = \
3559 YYRHSLOC(Rhs, 0).last_line; \
3560 (Current).first_column = (Current).last_column = \
3561 YYRHSLOC(Rhs, 0).last_column; \
3562 @} \
3563 while (0)
847bf1f5 3564@end group
766de5eb 3565@end smallexample
676385e2 3566
766de5eb
PE
3567where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3568in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3569just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3570
3e259915 3571When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3572
3e259915 3573@itemize @bullet
79282c6c 3574@item
72d2299c 3575All arguments are free of side-effects. However, only the first one (the
3e259915 3576result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3577
3e259915 3578@item
766de5eb
PE
3579For consistency with semantic actions, valid indexes within the
3580right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3581valid index, and it refers to the symbol just before the reduction.
3582During error processing @var{n} is always positive.
0ae99356
PE
3583
3584@item
3585Your macro should parenthesize its arguments, if need be, since the
3586actual arguments may not be surrounded by parentheses. Also, your
3587macro should expand to something that can be used as a single
3588statement when it is followed by a semicolon.
3e259915 3589@end itemize
847bf1f5 3590
342b8b6e 3591@node Declarations
bfa74976
RS
3592@section Bison Declarations
3593@cindex declarations, Bison
3594@cindex Bison declarations
3595
3596The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3597used in formulating the grammar and the data types of semantic values.
3598@xref{Symbols}.
3599
3600All token type names (but not single-character literal tokens such as
3601@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3602declared if you need to specify which data type to use for the semantic
3603value (@pxref{Multiple Types, ,More Than One Value Type}).
3604
3605The first rule in the file also specifies the start symbol, by default.
3606If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3607it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3608Grammars}).
bfa74976
RS
3609
3610@menu
b50d2359 3611* Require Decl:: Requiring a Bison version.
bfa74976
RS
3612* Token Decl:: Declaring terminal symbols.
3613* Precedence Decl:: Declaring terminals with precedence and associativity.
3614* Union Decl:: Declaring the set of all semantic value types.
3615* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3616* Initial Action Decl:: Code run before parsing starts.
72f889cc 3617* Destructor Decl:: Declaring how symbols are freed.
d6328241 3618* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3619* Start Decl:: Specifying the start symbol.
3620* Pure Decl:: Requesting a reentrant parser.
3621* Decl Summary:: Table of all Bison declarations.
3622@end menu
3623
b50d2359
AD
3624@node Require Decl
3625@subsection Require a Version of Bison
3626@cindex version requirement
3627@cindex requiring a version of Bison
3628@findex %require
3629
3630You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
3631the requirement is not met, @command{bison} exits with an error (exit
3632status 63).
b50d2359
AD
3633
3634@example
3635%require "@var{version}"
3636@end example
3637
342b8b6e 3638@node Token Decl
bfa74976
RS
3639@subsection Token Type Names
3640@cindex declaring token type names
3641@cindex token type names, declaring
931c7513 3642@cindex declaring literal string tokens
bfa74976
RS
3643@findex %token
3644
3645The basic way to declare a token type name (terminal symbol) is as follows:
3646
3647@example
3648%token @var{name}
3649@end example
3650
3651Bison will convert this into a @code{#define} directive in
3652the parser, so that the function @code{yylex} (if it is in this file)
3653can use the name @var{name} to stand for this token type's code.
3654
14ded682
AD
3655Alternatively, you can use @code{%left}, @code{%right}, or
3656@code{%nonassoc} instead of @code{%token}, if you wish to specify
3657associativity and precedence. @xref{Precedence Decl, ,Operator
3658Precedence}.
bfa74976
RS
3659
3660You can explicitly specify the numeric code for a token type by appending
1452af69
PE
3661a decimal or hexadecimal integer value in the field immediately
3662following the token name:
bfa74976
RS
3663
3664@example
3665%token NUM 300
1452af69 3666%token XNUM 0x12d // a GNU extension
bfa74976
RS
3667@end example
3668
3669@noindent
3670It is generally best, however, to let Bison choose the numeric codes for
3671all token types. Bison will automatically select codes that don't conflict
e966383b 3672with each other or with normal characters.
bfa74976
RS
3673
3674In the event that the stack type is a union, you must augment the
3675@code{%token} or other token declaration to include the data type
704a47c4
AD
3676alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
3677Than One Value Type}).
bfa74976
RS
3678
3679For example:
3680
3681@example
3682@group
3683%union @{ /* define stack type */
3684 double val;
3685 symrec *tptr;
3686@}
3687%token <val> NUM /* define token NUM and its type */
3688@end group
3689@end example
3690
931c7513
RS
3691You can associate a literal string token with a token type name by
3692writing the literal string at the end of a @code{%token}
3693declaration which declares the name. For example:
3694
3695@example
3696%token arrow "=>"
3697@end example
3698
3699@noindent
3700For example, a grammar for the C language might specify these names with
3701equivalent literal string tokens:
3702
3703@example
3704%token <operator> OR "||"
3705%token <operator> LE 134 "<="
3706%left OR "<="
3707@end example
3708
3709@noindent
3710Once you equate the literal string and the token name, you can use them
3711interchangeably in further declarations or the grammar rules. The
3712@code{yylex} function can use the token name or the literal string to
3713obtain the token type code number (@pxref{Calling Convention}).
3714
342b8b6e 3715@node Precedence Decl
bfa74976
RS
3716@subsection Operator Precedence
3717@cindex precedence declarations
3718@cindex declaring operator precedence
3719@cindex operator precedence, declaring
3720
3721Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
3722declare a token and specify its precedence and associativity, all at
3723once. These are called @dfn{precedence declarations}.
704a47c4
AD
3724@xref{Precedence, ,Operator Precedence}, for general information on
3725operator precedence.
bfa74976
RS
3726
3727The syntax of a precedence declaration is the same as that of
3728@code{%token}: either
3729
3730@example
3731%left @var{symbols}@dots{}
3732@end example
3733
3734@noindent
3735or
3736
3737@example
3738%left <@var{type}> @var{symbols}@dots{}
3739@end example
3740
3741And indeed any of these declarations serves the purposes of @code{%token}.
3742But in addition, they specify the associativity and relative precedence for
3743all the @var{symbols}:
3744
3745@itemize @bullet
3746@item
3747The associativity of an operator @var{op} determines how repeated uses
3748of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
3749@var{z}} is parsed by grouping @var{x} with @var{y} first or by
3750grouping @var{y} with @var{z} first. @code{%left} specifies
3751left-associativity (grouping @var{x} with @var{y} first) and
3752@code{%right} specifies right-associativity (grouping @var{y} with
3753@var{z} first). @code{%nonassoc} specifies no associativity, which
3754means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
3755considered a syntax error.
3756
3757@item
3758The precedence of an operator determines how it nests with other operators.
3759All the tokens declared in a single precedence declaration have equal
3760precedence and nest together according to their associativity.
3761When two tokens declared in different precedence declarations associate,
3762the one declared later has the higher precedence and is grouped first.
3763@end itemize
3764
342b8b6e 3765@node Union Decl
bfa74976
RS
3766@subsection The Collection of Value Types
3767@cindex declaring value types
3768@cindex value types, declaring
3769@findex %union
3770
3771The @code{%union} declaration specifies the entire collection of possible
3772data types for semantic values. The keyword @code{%union} is followed by a
3773pair of braces containing the same thing that goes inside a @code{union} in
13863333 3774C.
bfa74976
RS
3775
3776For example:
3777
3778@example
3779@group
3780%union @{
3781 double val;
3782 symrec *tptr;
3783@}
3784@end group
3785@end example
3786
3787@noindent
3788This says that the two alternative types are @code{double} and @code{symrec
3789*}. They are given names @code{val} and @code{tptr}; these names are used
3790in the @code{%token} and @code{%type} declarations to pick one of the types
3791for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
3792
6273355b
PE
3793As an extension to @acronym{POSIX}, a tag is allowed after the
3794@code{union}. For example:
3795
3796@example
3797@group
3798%union value @{
3799 double val;
3800 symrec *tptr;
3801@}
3802@end group
3803@end example
3804
d6ca7905 3805@noindent
6273355b
PE
3806specifies the union tag @code{value}, so the corresponding C type is
3807@code{union value}. If you do not specify a tag, it defaults to
3808@code{YYSTYPE}.
3809
d6ca7905
PE
3810As another extension to @acronym{POSIX}, you may specify multiple
3811@code{%union} declarations; their contents are concatenated. However,
3812only the first @code{%union} declaration can specify a tag.
3813
6273355b 3814Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
3815a semicolon after the closing brace.
3816
342b8b6e 3817@node Type Decl
bfa74976
RS
3818@subsection Nonterminal Symbols
3819@cindex declaring value types, nonterminals
3820@cindex value types, nonterminals, declaring
3821@findex %type
3822
3823@noindent
3824When you use @code{%union} to specify multiple value types, you must
3825declare the value type of each nonterminal symbol for which values are
3826used. This is done with a @code{%type} declaration, like this:
3827
3828@example
3829%type <@var{type}> @var{nonterminal}@dots{}
3830@end example
3831
3832@noindent
704a47c4
AD
3833Here @var{nonterminal} is the name of a nonterminal symbol, and
3834@var{type} is the name given in the @code{%union} to the alternative
3835that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
3836can give any number of nonterminal symbols in the same @code{%type}
3837declaration, if they have the same value type. Use spaces to separate
3838the symbol names.
bfa74976 3839
931c7513
RS
3840You can also declare the value type of a terminal symbol. To do this,
3841use the same @code{<@var{type}>} construction in a declaration for the
3842terminal symbol. All kinds of token declarations allow
3843@code{<@var{type}>}.
3844
18d192f0
AD
3845@node Initial Action Decl
3846@subsection Performing Actions before Parsing
3847@findex %initial-action
3848
3849Sometimes your parser needs to perform some initializations before
3850parsing. The @code{%initial-action} directive allows for such arbitrary
3851code.
3852
3853@deffn {Directive} %initial-action @{ @var{code} @}
3854@findex %initial-action
3855Declare that the @var{code} must be invoked before parsing each time
451364ed
AD
3856@code{yyparse} is called. The @var{code} may use @code{$$} and
3857@code{@@$} --- initial value and location of the look-ahead --- and the
3858@code{%parse-param}.
18d192f0
AD
3859@end deffn
3860
451364ed
AD
3861For instance, if your locations use a file name, you may use
3862
3863@example
48b16bbc 3864%parse-param @{ char const *file_name @};
451364ed
AD
3865%initial-action
3866@{
4626a15d 3867 @@$.initialize (file_name);
451364ed
AD
3868@};
3869@end example
3870
18d192f0 3871
72f889cc
AD
3872@node Destructor Decl
3873@subsection Freeing Discarded Symbols
3874@cindex freeing discarded symbols
3875@findex %destructor
3876
a85284cf
AD
3877During error recovery (@pxref{Error Recovery}), symbols already pushed
3878on the stack and tokens coming from the rest of the file are discarded
3879until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 3880or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
3881symbols on the stack must be discarded. Even if the parser succeeds, it
3882must discard the start symbol.
258b75ca
PE
3883
3884When discarded symbols convey heap based information, this memory is
3885lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
3886in traditional compilers, it is unacceptable for programs like shells or
3887protocol implementations that may parse and execute indefinitely.
258b75ca 3888
a85284cf
AD
3889The @code{%destructor} directive defines code that is called when a
3890symbol is automatically discarded.
72f889cc
AD
3891
3892@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
3893@findex %destructor
4b367315
AD
3894Invoke @var{code} whenever the parser discards one of the @var{symbols}.
3895Within @var{code}, @code{$$} designates the semantic value associated
3896with the discarded symbol. The additional parser parameters are also
3897available (@pxref{Parser Function, , The Parser Function
3898@code{yyparse}}).
72f889cc
AD
3899@end deffn
3900
3901For instance:
3902
3903@smallexample
3904%union
3905@{
3906 char *string;
3907@}
3908%token <string> STRING
3909%type <string> string
3910%destructor @{ free ($$); @} STRING string
3911@end smallexample
3912
3913@noindent
258b75ca 3914guarantees that when a @code{STRING} or a @code{string} is discarded,
72f889cc
AD
3915its associated memory will be freed.
3916
e757bb10
AD
3917@sp 1
3918
3919@cindex discarded symbols
3920@dfn{Discarded symbols} are the following:
3921
3922@itemize
3923@item
3924stacked symbols popped during the first phase of error recovery,
3925@item
3926incoming terminals during the second phase of error recovery,
3927@item
a85284cf 3928the current look-ahead and the entire stack (except the current
9d9b8b70 3929right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
3930@item
3931the start symbol, when the parser succeeds.
e757bb10
AD
3932@end itemize
3933
9d9b8b70
PE
3934The parser can @dfn{return immediately} because of an explicit call to
3935@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
3936exhaustion.
3937
3938Right-hand size symbols of a rule that explicitly triggers a syntax
3939error via @code{YYERROR} are not discarded automatically. As a rule
3940of thumb, destructors are invoked only when user actions cannot manage
a85284cf 3941the memory.
e757bb10 3942
342b8b6e 3943@node Expect Decl
bfa74976
RS
3944@subsection Suppressing Conflict Warnings
3945@cindex suppressing conflict warnings
3946@cindex preventing warnings about conflicts
3947@cindex warnings, preventing
3948@cindex conflicts, suppressing warnings of
3949@findex %expect
d6328241 3950@findex %expect-rr
bfa74976
RS
3951
3952Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
3953(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
3954have harmless shift/reduce conflicts which are resolved in a predictable
3955way and would be difficult to eliminate. It is desirable to suppress
3956the warning about these conflicts unless the number of conflicts
3957changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
3958
3959The declaration looks like this:
3960
3961@example
3962%expect @var{n}
3963@end example
3964
035aa4a0
PE
3965Here @var{n} is a decimal integer. The declaration says there should
3966be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
3967Bison reports an error if the number of shift/reduce conflicts differs
3968from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 3969
035aa4a0
PE
3970For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more
3971serious, and should be eliminated entirely. Bison will always report
3972reduce/reduce conflicts for these parsers. With @acronym{GLR}
3973parsers, however, both kinds of conflicts are routine; otherwise,
3974there would be no need to use @acronym{GLR} parsing. Therefore, it is
3975also possible to specify an expected number of reduce/reduce conflicts
3976in @acronym{GLR} parsers, using the declaration:
d6328241
PH
3977
3978@example
3979%expect-rr @var{n}
3980@end example
3981
bfa74976
RS
3982In general, using @code{%expect} involves these steps:
3983
3984@itemize @bullet
3985@item
3986Compile your grammar without @code{%expect}. Use the @samp{-v} option
3987to get a verbose list of where the conflicts occur. Bison will also
3988print the number of conflicts.
3989
3990@item
3991Check each of the conflicts to make sure that Bison's default
3992resolution is what you really want. If not, rewrite the grammar and
3993go back to the beginning.
3994
3995@item
3996Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
3997number which Bison printed. With @acronym{GLR} parsers, add an
3998@code{%expect-rr} declaration as well.
bfa74976
RS
3999@end itemize
4000
035aa4a0
PE
4001Now Bison will warn you if you introduce an unexpected conflict, but
4002will keep silent otherwise.
bfa74976 4003
342b8b6e 4004@node Start Decl
bfa74976
RS
4005@subsection The Start-Symbol
4006@cindex declaring the start symbol
4007@cindex start symbol, declaring
4008@cindex default start symbol
4009@findex %start
4010
4011Bison assumes by default that the start symbol for the grammar is the first
4012nonterminal specified in the grammar specification section. The programmer
4013may override this restriction with the @code{%start} declaration as follows:
4014
4015@example
4016%start @var{symbol}
4017@end example
4018
342b8b6e 4019@node Pure Decl
bfa74976
RS
4020@subsection A Pure (Reentrant) Parser
4021@cindex reentrant parser
4022@cindex pure parser
8c9a50be 4023@findex %pure-parser
bfa74976
RS
4024
4025A @dfn{reentrant} program is one which does not alter in the course of
4026execution; in other words, it consists entirely of @dfn{pure} (read-only)
4027code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4028for example, a nonreentrant program may not be safe to call from a signal
4029handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4030program must be called only within interlocks.
4031
70811b85 4032Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4033suitable for most uses, and it permits compatibility with Yacc. (The
4034standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4035statically allocated variables for communication with @code{yylex},
4036including @code{yylval} and @code{yylloc}.)
bfa74976 4037
70811b85 4038Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 4039declaration @code{%pure-parser} says that you want the parser to be
70811b85 4040reentrant. It looks like this:
bfa74976
RS
4041
4042@example
8c9a50be 4043%pure-parser
bfa74976
RS
4044@end example
4045
70811b85
RS
4046The result is that the communication variables @code{yylval} and
4047@code{yylloc} become local variables in @code{yyparse}, and a different
4048calling convention is used for the lexical analyzer function
4049@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
4050Parsers}, for the details of this. The variable @code{yynerrs} also
4051becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
4052Reporting Function @code{yyerror}}). The convention for calling
4053@code{yyparse} itself is unchanged.
4054
4055Whether the parser is pure has nothing to do with the grammar rules.
4056You can generate either a pure parser or a nonreentrant parser from any
4057valid grammar.
bfa74976 4058
342b8b6e 4059@node Decl Summary
bfa74976
RS
4060@subsection Bison Declaration Summary
4061@cindex Bison declaration summary
4062@cindex declaration summary
4063@cindex summary, Bison declaration
4064
d8988b2f 4065Here is a summary of the declarations used to define a grammar:
bfa74976 4066
18b519c0 4067@deffn {Directive} %union
bfa74976
RS
4068Declare the collection of data types that semantic values may have
4069(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4070@end deffn
bfa74976 4071
18b519c0 4072@deffn {Directive} %token
bfa74976
RS
4073Declare a terminal symbol (token type name) with no precedence
4074or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4075@end deffn
bfa74976 4076
18b519c0 4077@deffn {Directive} %right
bfa74976
RS
4078Declare a terminal symbol (token type name) that is right-associative
4079(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4080@end deffn
bfa74976 4081
18b519c0 4082@deffn {Directive} %left
bfa74976
RS
4083Declare a terminal symbol (token type name) that is left-associative
4084(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4085@end deffn
bfa74976 4086
18b519c0 4087@deffn {Directive} %nonassoc
bfa74976 4088Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4089(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4090Using it in a way that would be associative is a syntax error.
4091@end deffn
4092
91d2c560 4093@ifset defaultprec
39a06c25 4094@deffn {Directive} %default-prec
22fccf95 4095Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4096(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4097@end deffn
91d2c560 4098@end ifset
bfa74976 4099
18b519c0 4100@deffn {Directive} %type
bfa74976
RS
4101Declare the type of semantic values for a nonterminal symbol
4102(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4103@end deffn
bfa74976 4104
18b519c0 4105@deffn {Directive} %start
89cab50d
AD
4106Specify the grammar's start symbol (@pxref{Start Decl, ,The
4107Start-Symbol}).
18b519c0 4108@end deffn
bfa74976 4109
18b519c0 4110@deffn {Directive} %expect
bfa74976
RS
4111Declare the expected number of shift-reduce conflicts
4112(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4113@end deffn
4114
bfa74976 4115
d8988b2f
AD
4116@sp 1
4117@noindent
4118In order to change the behavior of @command{bison}, use the following
4119directives:
4120
18b519c0 4121@deffn {Directive} %debug
4947ebdb
PE
4122In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4123already defined, so that the debugging facilities are compiled.
18b519c0 4124@end deffn
ec3bc396 4125@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 4126
18b519c0 4127@deffn {Directive} %defines
4bfd5e4e
PE
4128Write a header file containing macro definitions for the token type
4129names defined in the grammar as well as a few other declarations.
d8988b2f 4130If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 4131is named @file{@var{name}.h}.
d8988b2f 4132
4bfd5e4e 4133Unless @code{YYSTYPE} is already defined as a macro, the output header
5c9be03d 4134declares @code{YYSTYPE}. Therefore, if you are using a @code{%union}
f8e1c9e5
AD
4135(@pxref{Multiple Types, ,More Than One Value Type}) with components that
4136require other definitions, or if you have defined a @code{YYSTYPE} macro
4137(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
4138arrange for these definitions to be propagated to all modules, e.g., by
4139putting them in a prerequisite header that is included both by your
4140parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
4141
4142Unless your parser is pure, the output header declares @code{yylval}
4143as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
4144Parser}.
4145
4146If you have also used locations, the output header declares
4147@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
4148@code{YYSTYPE} and @code{yylval}. @xref{Locations, ,Tracking
4149Locations}.
4150
f8e1c9e5
AD
4151This output file is normally essential if you wish to put the definition
4152of @code{yylex} in a separate source file, because @code{yylex}
4153typically needs to be able to refer to the above-mentioned declarations
4154and to the token type codes. @xref{Token Values, ,Semantic Values of
4155Tokens}.
18b519c0 4156@end deffn
d8988b2f 4157
18b519c0 4158@deffn {Directive} %destructor
258b75ca 4159Specify how the parser should reclaim the memory associated to
fa7e68c3 4160discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 4161@end deffn
72f889cc 4162
18b519c0 4163@deffn {Directive} %file-prefix="@var{prefix}"
d8988b2f
AD
4164Specify a prefix to use for all Bison output file names. The names are
4165chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 4166@end deffn
d8988b2f 4167
18b519c0 4168@deffn {Directive} %locations
89cab50d
AD
4169Generate the code processing the locations (@pxref{Action Features,
4170,Special Features for Use in Actions}). This mode is enabled as soon as
4171the grammar uses the special @samp{@@@var{n}} tokens, but if your
4172grammar does not use it, using @samp{%locations} allows for more
6e649e65 4173accurate syntax error messages.
18b519c0 4174@end deffn
89cab50d 4175
18b519c0 4176@deffn {Directive} %name-prefix="@var{prefix}"
d8988b2f
AD
4177Rename the external symbols used in the parser so that they start with
4178@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
4179is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
2a8d363a
AD
4180@code{yylval}, @code{yylloc}, @code{yychar}, @code{yydebug}, and
4181possible @code{yylloc}. For example, if you use
4182@samp{%name-prefix="c_"}, the names become @code{c_parse}, @code{c_lex},
4183and so on. @xref{Multiple Parsers, ,Multiple Parsers in the Same
4184Program}.
18b519c0 4185@end deffn
931c7513 4186
91d2c560 4187@ifset defaultprec
22fccf95
PE
4188@deffn {Directive} %no-default-prec
4189Do not assign a precedence to rules lacking an explicit @code{%prec}
4190modifier (@pxref{Contextual Precedence, ,Context-Dependent
4191Precedence}).
4192@end deffn
91d2c560 4193@end ifset
22fccf95 4194
18b519c0 4195@deffn {Directive} %no-parser
6deb4447
AD
4196Do not include any C code in the parser file; generate tables only. The
4197parser file contains just @code{#define} directives and static variable
4198declarations.
4199
4200This option also tells Bison to write the C code for the grammar actions
fa4d969f 4201into a file named @file{@var{file}.act}, in the form of a
6deb4447 4202brace-surrounded body fit for a @code{switch} statement.
18b519c0 4203@end deffn
6deb4447 4204
18b519c0 4205@deffn {Directive} %no-lines
931c7513
RS
4206Don't generate any @code{#line} preprocessor commands in the parser
4207file. Ordinarily Bison writes these commands in the parser file so that
4208the C compiler and debuggers will associate errors and object code with
4209your source file (the grammar file). This directive causes them to
4210associate errors with the parser file, treating it an independent source
4211file in its own right.
18b519c0 4212@end deffn
931c7513 4213
fa4d969f
PE
4214@deffn {Directive} %output="@var{file}"
4215Specify @var{file} for the parser file.
18b519c0 4216@end deffn
6deb4447 4217
18b519c0 4218@deffn {Directive} %pure-parser
d8988b2f
AD
4219Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
4220(Reentrant) Parser}).
18b519c0 4221@end deffn
6deb4447 4222
b50d2359 4223@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
4224Require version @var{version} or higher of Bison. @xref{Require Decl, ,
4225Require a Version of Bison}.
b50d2359
AD
4226@end deffn
4227
18b519c0 4228@deffn {Directive} %token-table
931c7513
RS
4229Generate an array of token names in the parser file. The name of the
4230array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 4231token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
4232three elements of @code{yytname} correspond to the predefined tokens
4233@code{"$end"},
88bce5a2
AD
4234@code{"error"}, and @code{"$undefined"}; after these come the symbols
4235defined in the grammar file.
931c7513 4236
9e0876fb
PE
4237The name in the table includes all the characters needed to represent
4238the token in Bison. For single-character literals and literal
4239strings, this includes the surrounding quoting characters and any
4240escape sequences. For example, the Bison single-character literal
4241@code{'+'} corresponds to a three-character name, represented in C as
4242@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
4243corresponds to a five-character name, represented in C as
4244@code{"\"\\\\/\""}.
931c7513 4245
8c9a50be 4246When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
4247definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
4248@code{YYNRULES}, and @code{YYNSTATES}:
4249
4250@table @code
4251@item YYNTOKENS
4252The highest token number, plus one.
4253@item YYNNTS
9ecbd125 4254The number of nonterminal symbols.
931c7513
RS
4255@item YYNRULES
4256The number of grammar rules,
4257@item YYNSTATES
4258The number of parser states (@pxref{Parser States}).
4259@end table
18b519c0 4260@end deffn
d8988b2f 4261
18b519c0 4262@deffn {Directive} %verbose
d8988b2f
AD
4263Write an extra output file containing verbose descriptions of the
4264parser states and what is done for each type of look-ahead token in
72d2299c 4265that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 4266information.
18b519c0 4267@end deffn
d8988b2f 4268
18b519c0 4269@deffn {Directive} %yacc
d8988b2f
AD
4270Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
4271including its naming conventions. @xref{Bison Options}, for more.
18b519c0 4272@end deffn
d8988b2f
AD
4273
4274
342b8b6e 4275@node Multiple Parsers
bfa74976
RS
4276@section Multiple Parsers in the Same Program
4277
4278Most programs that use Bison parse only one language and therefore contain
4279only one Bison parser. But what if you want to parse more than one
4280language with the same program? Then you need to avoid a name conflict
4281between different definitions of @code{yyparse}, @code{yylval}, and so on.
4282
4283The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
4284(@pxref{Invocation, ,Invoking Bison}). This renames the interface
4285functions and variables of the Bison parser to start with @var{prefix}
4286instead of @samp{yy}. You can use this to give each parser distinct
4287names that do not conflict.
bfa74976
RS
4288
4289The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a
AD
4290@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
4291@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
4292the names become @code{cparse}, @code{clex}, and so on.
bfa74976
RS
4293
4294@strong{All the other variables and macros associated with Bison are not
4295renamed.} These others are not global; there is no conflict if the same
4296name is used in different parsers. For example, @code{YYSTYPE} is not
4297renamed, but defining this in different ways in different parsers causes
4298no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
4299
4300The @samp{-p} option works by adding macro definitions to the beginning
4301of the parser source file, defining @code{yyparse} as
4302@code{@var{prefix}parse}, and so on. This effectively substitutes one
4303name for the other in the entire parser file.
4304
342b8b6e 4305@node Interface
bfa74976
RS
4306@chapter Parser C-Language Interface
4307@cindex C-language interface
4308@cindex interface
4309
4310The Bison parser is actually a C function named @code{yyparse}. Here we
4311describe the interface conventions of @code{yyparse} and the other
4312functions that it needs to use.
4313
4314Keep in mind that the parser uses many C identifiers starting with
4315@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
4316identifier (aside from those in this manual) in an action or in epilogue
4317in the grammar file, you are likely to run into trouble.
bfa74976
RS
4318
4319@menu
4320* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 4321* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
4322 which reads tokens.
4323* Error Reporting:: You must supply a function @code{yyerror}.
4324* Action Features:: Special features for use in actions.
f7ab6a50
PE
4325* Internationalization:: How to let the parser speak in the user's
4326 native language.
bfa74976
RS
4327@end menu
4328
342b8b6e 4329@node Parser Function
bfa74976
RS
4330@section The Parser Function @code{yyparse}
4331@findex yyparse
4332
4333You call the function @code{yyparse} to cause parsing to occur. This
4334function reads tokens, executes actions, and ultimately returns when it
4335encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
4336write an action which directs @code{yyparse} to return immediately
4337without reading further.
bfa74976 4338
2a8d363a
AD
4339
4340@deftypefun int yyparse (void)
bfa74976
RS
4341The value returned by @code{yyparse} is 0 if parsing was successful (return
4342is due to end-of-input).
4343
b47dbebe
PE
4344The value is 1 if parsing failed because of invalid input, i.e., input
4345that contains a syntax error or that causes @code{YYABORT} to be
4346invoked.
4347
4348The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 4349@end deftypefun
bfa74976
RS
4350
4351In an action, you can cause immediate return from @code{yyparse} by using
4352these macros:
4353
2a8d363a 4354@defmac YYACCEPT
bfa74976
RS
4355@findex YYACCEPT
4356Return immediately with value 0 (to report success).
2a8d363a 4357@end defmac
bfa74976 4358
2a8d363a 4359@defmac YYABORT
bfa74976
RS
4360@findex YYABORT
4361Return immediately with value 1 (to report failure).
2a8d363a
AD
4362@end defmac
4363
4364If you use a reentrant parser, you can optionally pass additional
4365parameter information to it in a reentrant way. To do so, use the
4366declaration @code{%parse-param}:
4367
feeb0eda 4368@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 4369@findex %parse-param
feeb0eda 4370Declare that an argument declared by @code{argument-declaration} is an
94175978
PE
4371additional @code{yyparse} argument.
4372The @var{argument-declaration} is used when declaring
feeb0eda
PE
4373functions or prototypes. The last identifier in
4374@var{argument-declaration} must be the argument name.
2a8d363a
AD
4375@end deffn
4376
4377Here's an example. Write this in the parser:
4378
4379@example
feeb0eda
PE
4380%parse-param @{int *nastiness@}
4381%parse-param @{int *randomness@}
2a8d363a
AD
4382@end example
4383
4384@noindent
4385Then call the parser like this:
4386
4387@example
4388@{
4389 int nastiness, randomness;
4390 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
4391 value = yyparse (&nastiness, &randomness);
4392 @dots{}
4393@}
4394@end example
4395
4396@noindent
4397In the grammar actions, use expressions like this to refer to the data:
4398
4399@example
4400exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
4401@end example
4402
bfa74976 4403
342b8b6e 4404@node Lexical
bfa74976
RS
4405@section The Lexical Analyzer Function @code{yylex}
4406@findex yylex
4407@cindex lexical analyzer
4408
4409The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
4410the input stream and returns them to the parser. Bison does not create
4411this function automatically; you must write it so that @code{yyparse} can
4412call it. The function is sometimes referred to as a lexical scanner.
4413
4414In simple programs, @code{yylex} is often defined at the end of the Bison
4415grammar file. If @code{yylex} is defined in a separate source file, you
4416need to arrange for the token-type macro definitions to be available there.
4417To do this, use the @samp{-d} option when you run Bison, so that it will
4418write these macro definitions into a separate header file
4419@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 4420that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
4421
4422@menu
4423* Calling Convention:: How @code{yyparse} calls @code{yylex}.
4424* Token Values:: How @code{yylex} must return the semantic value
4425 of the token it has read.
95923bd6 4426* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
4427 (line number, etc.) of the token, if the
4428 actions want that.
4429* Pure Calling:: How the calling convention differs
4430 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
4431@end menu
4432
342b8b6e 4433@node Calling Convention
bfa74976
RS
4434@subsection Calling Convention for @code{yylex}
4435
72d2299c
PE
4436The value that @code{yylex} returns must be the positive numeric code
4437for the type of token it has just found; a zero or negative value
4438signifies end-of-input.
bfa74976
RS
4439
4440When a token is referred to in the grammar rules by a name, that name
4441in the parser file becomes a C macro whose definition is the proper
4442numeric code for that token type. So @code{yylex} can use the name
4443to indicate that type. @xref{Symbols}.
4444
4445When a token is referred to in the grammar rules by a character literal,
4446the numeric code for that character is also the code for the token type.
72d2299c
PE
4447So @code{yylex} can simply return that character code, possibly converted
4448to @code{unsigned char} to avoid sign-extension. The null character
4449must not be used this way, because its code is zero and that
bfa74976
RS
4450signifies end-of-input.
4451
4452Here is an example showing these things:
4453
4454@example
13863333
AD
4455int
4456yylex (void)
bfa74976
RS
4457@{
4458 @dots{}
72d2299c 4459 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
4460 return 0;
4461 @dots{}
4462 if (c == '+' || c == '-')
72d2299c 4463 return c; /* Assume token type for `+' is '+'. */
bfa74976 4464 @dots{}
72d2299c 4465 return INT; /* Return the type of the token. */
bfa74976
RS
4466 @dots{}
4467@}
4468@end example
4469
4470@noindent
4471This interface has been designed so that the output from the @code{lex}
4472utility can be used without change as the definition of @code{yylex}.
4473
931c7513
RS
4474If the grammar uses literal string tokens, there are two ways that
4475@code{yylex} can determine the token type codes for them:
4476
4477@itemize @bullet
4478@item
4479If the grammar defines symbolic token names as aliases for the
4480literal string tokens, @code{yylex} can use these symbolic names like
4481all others. In this case, the use of the literal string tokens in
4482the grammar file has no effect on @code{yylex}.
4483
4484@item
9ecbd125 4485@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 4486table. The index of the token in the table is the token type's code.
9ecbd125 4487The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 4488double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
4489token's characters are escaped as necessary to be suitable as input
4490to Bison.
931c7513 4491
9e0876fb
PE
4492Here's code for looking up a multicharacter token in @code{yytname},
4493assuming that the characters of the token are stored in
4494@code{token_buffer}, and assuming that the token does not contain any
4495characters like @samp{"} that require escaping.
931c7513
RS
4496
4497@smallexample
4498for (i = 0; i < YYNTOKENS; i++)
4499 @{
4500 if (yytname[i] != 0
4501 && yytname[i][0] == '"'
68449b3a
PE
4502 && ! strncmp (yytname[i] + 1, token_buffer,
4503 strlen (token_buffer))
931c7513
RS
4504 && yytname[i][strlen (token_buffer) + 1] == '"'
4505 && yytname[i][strlen (token_buffer) + 2] == 0)
4506 break;
4507 @}
4508@end smallexample
4509
4510The @code{yytname} table is generated only if you use the
8c9a50be 4511@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
4512@end itemize
4513
342b8b6e 4514@node Token Values
bfa74976
RS
4515@subsection Semantic Values of Tokens
4516
4517@vindex yylval
9d9b8b70 4518In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
4519be stored into the global variable @code{yylval}. When you are using
4520just one data type for semantic values, @code{yylval} has that type.
4521Thus, if the type is @code{int} (the default), you might write this in
4522@code{yylex}:
4523
4524@example
4525@group
4526 @dots{}
72d2299c
PE
4527 yylval = value; /* Put value onto Bison stack. */
4528 return INT; /* Return the type of the token. */
bfa74976
RS
4529 @dots{}
4530@end group
4531@end example
4532
4533When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
4534made from the @code{%union} declaration (@pxref{Union Decl, ,The
4535Collection of Value Types}). So when you store a token's value, you
4536must use the proper member of the union. If the @code{%union}
4537declaration looks like this:
bfa74976
RS
4538
4539@example
4540@group
4541%union @{
4542 int intval;
4543 double val;
4544 symrec *tptr;
4545@}
4546@end group
4547@end example
4548
4549@noindent
4550then the code in @code{yylex} might look like this:
4551
4552@example
4553@group
4554 @dots{}
72d2299c
PE
4555 yylval.intval = value; /* Put value onto Bison stack. */
4556 return INT; /* Return the type of the token. */
bfa74976
RS
4557 @dots{}
4558@end group
4559@end example
4560
95923bd6
AD
4561@node Token Locations
4562@subsection Textual Locations of Tokens
bfa74976
RS
4563
4564@vindex yylloc
847bf1f5 4565If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
4566Tracking Locations}) in actions to keep track of the textual locations
4567of tokens and groupings, then you must provide this information in
4568@code{yylex}. The function @code{yyparse} expects to find the textual
4569location of a token just parsed in the global variable @code{yylloc}.
4570So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
4571
4572By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
4573initialize the members that are going to be used by the actions. The
4574four members are called @code{first_line}, @code{first_column},
4575@code{last_line} and @code{last_column}. Note that the use of this
4576feature makes the parser noticeably slower.
bfa74976
RS
4577
4578@tindex YYLTYPE
4579The data type of @code{yylloc} has the name @code{YYLTYPE}.
4580
342b8b6e 4581@node Pure Calling
c656404a 4582@subsection Calling Conventions for Pure Parsers
bfa74976 4583
8c9a50be 4584When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
4585pure, reentrant parser, the global communication variables @code{yylval}
4586and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
4587Parser}.) In such parsers the two global variables are replaced by
4588pointers passed as arguments to @code{yylex}. You must declare them as
4589shown here, and pass the information back by storing it through those
4590pointers.
bfa74976
RS
4591
4592@example
13863333
AD
4593int
4594yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
4595@{
4596 @dots{}
4597 *lvalp = value; /* Put value onto Bison stack. */
4598 return INT; /* Return the type of the token. */
4599 @dots{}
4600@}
4601@end example
4602
4603If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 4604textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
4605this case, omit the second argument; @code{yylex} will be called with
4606only one argument.
4607
e425e872 4608
2a8d363a
AD
4609If you wish to pass the additional parameter data to @code{yylex}, use
4610@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
4611Function}).
e425e872 4612
feeb0eda 4613@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 4614@findex %lex-param
feeb0eda
PE
4615Declare that @code{argument-declaration} is an additional @code{yylex}
4616argument declaration.
2a8d363a 4617@end deffn
e425e872 4618
2a8d363a 4619For instance:
e425e872
RS
4620
4621@example
feeb0eda
PE
4622%parse-param @{int *nastiness@}
4623%lex-param @{int *nastiness@}
4624%parse-param @{int *randomness@}
e425e872
RS
4625@end example
4626
4627@noindent
2a8d363a 4628results in the following signature:
e425e872
RS
4629
4630@example
2a8d363a
AD
4631int yylex (int *nastiness);
4632int yyparse (int *nastiness, int *randomness);
e425e872
RS
4633@end example
4634
2a8d363a 4635If @code{%pure-parser} is added:
c656404a
RS
4636
4637@example
2a8d363a
AD
4638int yylex (YYSTYPE *lvalp, int *nastiness);
4639int yyparse (int *nastiness, int *randomness);
c656404a
RS
4640@end example
4641
2a8d363a
AD
4642@noindent
4643and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 4644
2a8d363a
AD
4645@example
4646int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4647int yyparse (int *nastiness, int *randomness);
4648@end example
931c7513 4649
342b8b6e 4650@node Error Reporting
bfa74976
RS
4651@section The Error Reporting Function @code{yyerror}
4652@cindex error reporting function
4653@findex yyerror
4654@cindex parse error
4655@cindex syntax error
4656
6e649e65 4657The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 4658whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 4659action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
4660macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
4661in Actions}).
bfa74976
RS
4662
4663The Bison parser expects to report the error by calling an error
4664reporting function named @code{yyerror}, which you must supply. It is
4665called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
4666receives one argument. For a syntax error, the string is normally
4667@w{@code{"syntax error"}}.
bfa74976 4668
2a8d363a
AD
4669@findex %error-verbose
4670If you invoke the directive @code{%error-verbose} in the Bison
4671declarations section (@pxref{Bison Declarations, ,The Bison Declarations
4672Section}), then Bison provides a more verbose and specific error message
6e649e65 4673string instead of just plain @w{@code{"syntax error"}}.
bfa74976 4674
1a059451
PE
4675The parser can detect one other kind of error: memory exhaustion. This
4676can happen when the input contains constructions that are very deeply
bfa74976 4677nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
4678parser normally extends its stack automatically up to a very large limit. But
4679if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
4680fashion, except that the argument string is @w{@code{"memory exhausted"}}.
4681
4682In some cases diagnostics like @w{@code{"syntax error"}} are
4683translated automatically from English to some other language before
4684they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
4685
4686The following definition suffices in simple programs:
4687
4688@example
4689@group
13863333 4690void
38a92d50 4691yyerror (char const *s)
bfa74976
RS
4692@{
4693@end group
4694@group
4695 fprintf (stderr, "%s\n", s);
4696@}
4697@end group
4698@end example
4699
4700After @code{yyerror} returns to @code{yyparse}, the latter will attempt
4701error recovery if you have written suitable error recovery grammar rules
4702(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
4703immediately return 1.
4704
93724f13 4705Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
4706an access to the current location.
4707This is indeed the case for the @acronym{GLR}
2a8d363a
AD
4708parsers, but not for the Yacc parser, for historical reasons. I.e., if
4709@samp{%locations %pure-parser} is passed then the prototypes for
4710@code{yyerror} are:
4711
4712@example
38a92d50
PE
4713void yyerror (char const *msg); /* Yacc parsers. */
4714void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
4715@end example
4716
feeb0eda 4717If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
4718
4719@example
b317297e
PE
4720void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
4721void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
4722@end example
4723
fa7e68c3 4724Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
4725convention for absolutely pure parsers, i.e., when the calling
4726convention of @code{yylex} @emph{and} the calling convention of
4727@code{%pure-parser} are pure. I.e.:
4728
4729@example
4730/* Location tracking. */
4731%locations
4732/* Pure yylex. */
4733%pure-parser
feeb0eda 4734%lex-param @{int *nastiness@}
2a8d363a 4735/* Pure yyparse. */
feeb0eda
PE
4736%parse-param @{int *nastiness@}
4737%parse-param @{int *randomness@}
2a8d363a
AD
4738@end example
4739
4740@noindent
4741results in the following signatures for all the parser kinds:
4742
4743@example
4744int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4745int yyparse (int *nastiness, int *randomness);
93724f13
AD
4746void yyerror (YYLTYPE *locp,
4747 int *nastiness, int *randomness,
38a92d50 4748 char const *msg);
2a8d363a
AD
4749@end example
4750
1c0c3e95 4751@noindent
38a92d50
PE
4752The prototypes are only indications of how the code produced by Bison
4753uses @code{yyerror}. Bison-generated code always ignores the returned
4754value, so @code{yyerror} can return any type, including @code{void}.
4755Also, @code{yyerror} can be a variadic function; that is why the
4756message is always passed last.
4757
4758Traditionally @code{yyerror} returns an @code{int} that is always
4759ignored, but this is purely for historical reasons, and @code{void} is
4760preferable since it more accurately describes the return type for
4761@code{yyerror}.
93724f13 4762
bfa74976
RS
4763@vindex yynerrs
4764The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 4765reported so far. Normally this variable is global; but if you
704a47c4
AD
4766request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
4767then it is a local variable which only the actions can access.
bfa74976 4768
342b8b6e 4769@node Action Features
bfa74976
RS
4770@section Special Features for Use in Actions
4771@cindex summary, action features
4772@cindex action features summary
4773
4774Here is a table of Bison constructs, variables and macros that
4775are useful in actions.
4776
18b519c0 4777@deffn {Variable} $$
bfa74976
RS
4778Acts like a variable that contains the semantic value for the
4779grouping made by the current rule. @xref{Actions}.
18b519c0 4780@end deffn
bfa74976 4781
18b519c0 4782@deffn {Variable} $@var{n}
bfa74976
RS
4783Acts like a variable that contains the semantic value for the
4784@var{n}th component of the current rule. @xref{Actions}.
18b519c0 4785@end deffn
bfa74976 4786
18b519c0 4787@deffn {Variable} $<@var{typealt}>$
bfa74976 4788Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
4789specified by the @code{%union} declaration. @xref{Action Types, ,Data
4790Types of Values in Actions}.
18b519c0 4791@end deffn
bfa74976 4792
18b519c0 4793@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 4794Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 4795union specified by the @code{%union} declaration.
e0c471a9 4796@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 4797@end deffn
bfa74976 4798
18b519c0 4799@deffn {Macro} YYABORT;
bfa74976
RS
4800Return immediately from @code{yyparse}, indicating failure.
4801@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4802@end deffn
bfa74976 4803
18b519c0 4804@deffn {Macro} YYACCEPT;
bfa74976
RS
4805Return immediately from @code{yyparse}, indicating success.
4806@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4807@end deffn
bfa74976 4808
18b519c0 4809@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
4810@findex YYBACKUP
4811Unshift a token. This macro is allowed only for rules that reduce
4812a single value, and only when there is no look-ahead token.
c827f760 4813It is also disallowed in @acronym{GLR} parsers.
bfa74976
RS
4814It installs a look-ahead token with token type @var{token} and
4815semantic value @var{value}; then it discards the value that was
4816going to be reduced by this rule.
4817
4818If the macro is used when it is not valid, such as when there is
4819a look-ahead token already, then it reports a syntax error with
4820a message @samp{cannot back up} and performs ordinary error
4821recovery.
4822
4823In either case, the rest of the action is not executed.
18b519c0 4824@end deffn
bfa74976 4825
18b519c0 4826@deffn {Macro} YYEMPTY
bfa74976
RS
4827@vindex YYEMPTY
4828Value stored in @code{yychar} when there is no look-ahead token.
18b519c0 4829@end deffn
bfa74976 4830
32c29292
JD
4831@deffn {Macro} YYEOF
4832@vindex YYEOF
4833Value stored in @code{yychar} when the look-ahead is the end of the input
4834stream.
4835@end deffn
4836
18b519c0 4837@deffn {Macro} YYERROR;
bfa74976
RS
4838@findex YYERROR
4839Cause an immediate syntax error. This statement initiates error
4840recovery just as if the parser itself had detected an error; however, it
4841does not call @code{yyerror}, and does not print any message. If you
4842want to print an error message, call @code{yyerror} explicitly before
4843the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 4844@end deffn
bfa74976 4845
18b519c0 4846@deffn {Macro} YYRECOVERING
bfa74976
RS
4847This macro stands for an expression that has the value 1 when the parser
4848is recovering from a syntax error, and 0 the rest of the time.
4849@xref{Error Recovery}.
18b519c0 4850@end deffn
bfa74976 4851
18b519c0 4852@deffn {Variable} yychar
32c29292
JD
4853Variable containing either the look-ahead token, or @code{YYEOF} when the
4854look-ahead is the end of the input stream, or @code{YYEMPTY} when no look-ahead
4855has been performed so the next token is not yet known.
4856Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
4857Actions}).
bfa74976 4858@xref{Look-Ahead, ,Look-Ahead Tokens}.
18b519c0 4859@end deffn
bfa74976 4860
18b519c0 4861@deffn {Macro} yyclearin;
bfa74976 4862Discard the current look-ahead token. This is useful primarily in
32c29292
JD
4863error rules.
4864Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
4865Semantic Actions}).
4866@xref{Error Recovery}.
18b519c0 4867@end deffn
bfa74976 4868
18b519c0 4869@deffn {Macro} yyerrok;
bfa74976 4870Resume generating error messages immediately for subsequent syntax
13863333 4871errors. This is useful primarily in error rules.
bfa74976 4872@xref{Error Recovery}.
18b519c0 4873@end deffn
bfa74976 4874
32c29292
JD
4875@deffn {Variable} yylloc
4876Variable containing the look-ahead token location when @code{yychar} is not set
4877to @code{YYEMPTY} or @code{YYEOF}.
4878Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
4879Actions}).
4880@xref{Actions and Locations, ,Actions and Locations}.
4881@end deffn
4882
4883@deffn {Variable} yylval
4884Variable containing the look-ahead token semantic value when @code{yychar} is
4885not set to @code{YYEMPTY} or @code{YYEOF}.
4886Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
4887Actions}).
4888@xref{Actions, ,Actions}.
4889@end deffn
4890
18b519c0 4891@deffn {Value} @@$
847bf1f5 4892@findex @@$
95923bd6 4893Acts like a structure variable containing information on the textual location
847bf1f5
AD
4894of the grouping made by the current rule. @xref{Locations, ,
4895Tracking Locations}.
bfa74976 4896
847bf1f5
AD
4897@c Check if those paragraphs are still useful or not.
4898
4899@c @example
4900@c struct @{
4901@c int first_line, last_line;
4902@c int first_column, last_column;
4903@c @};
4904@c @end example
4905
4906@c Thus, to get the starting line number of the third component, you would
4907@c use @samp{@@3.first_line}.
bfa74976 4908
847bf1f5
AD
4909@c In order for the members of this structure to contain valid information,
4910@c you must make @code{yylex} supply this information about each token.
4911@c If you need only certain members, then @code{yylex} need only fill in
4912@c those members.
bfa74976 4913
847bf1f5 4914@c The use of this feature makes the parser noticeably slower.
18b519c0 4915@end deffn
847bf1f5 4916
18b519c0 4917@deffn {Value} @@@var{n}
847bf1f5 4918@findex @@@var{n}
95923bd6 4919Acts like a structure variable containing information on the textual location
847bf1f5
AD
4920of the @var{n}th component of the current rule. @xref{Locations, ,
4921Tracking Locations}.
18b519c0 4922@end deffn
bfa74976 4923
f7ab6a50
PE
4924@node Internationalization
4925@section Parser Internationalization
4926@cindex internationalization
4927@cindex i18n
4928@cindex NLS
4929@cindex gettext
4930@cindex bison-po
4931
4932A Bison-generated parser can print diagnostics, including error and
4933tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
4934also supports outputting diagnostics in the user's native language. To
4935make this work, the user should set the usual environment variables.
4936@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
4937For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
4938set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
4939encoding. The exact set of available locales depends on the user's
4940installation.
4941
4942The maintainer of a package that uses a Bison-generated parser enables
4943the internationalization of the parser's output through the following
4944steps. Here we assume a package that uses @acronym{GNU} Autoconf and
4945@acronym{GNU} Automake.
4946
4947@enumerate
4948@item
30757c8c 4949@cindex bison-i18n.m4
f7ab6a50
PE
4950Into the directory containing the @acronym{GNU} Autoconf macros used
4951by the package---often called @file{m4}---copy the
4952@file{bison-i18n.m4} file installed by Bison under
4953@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
4954For example:
4955
4956@example
4957cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
4958@end example
4959
4960@item
30757c8c
PE
4961@findex BISON_I18N
4962@vindex BISON_LOCALEDIR
4963@vindex YYENABLE_NLS
f7ab6a50
PE
4964In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
4965invocation, add an invocation of @code{BISON_I18N}. This macro is
4966defined in the file @file{bison-i18n.m4} that you copied earlier. It
4967causes @samp{configure} to find the value of the
30757c8c
PE
4968@code{BISON_LOCALEDIR} variable, and it defines the source-language
4969symbol @code{YYENABLE_NLS} to enable translations in the
4970Bison-generated parser.
f7ab6a50
PE
4971
4972@item
4973In the @code{main} function of your program, designate the directory
4974containing Bison's runtime message catalog, through a call to
4975@samp{bindtextdomain} with domain name @samp{bison-runtime}.
4976For example:
4977
4978@example
4979bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
4980@end example
4981
4982Typically this appears after any other call @code{bindtextdomain
4983(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
4984@samp{BISON_LOCALEDIR} to be defined as a string through the
4985@file{Makefile}.
4986
4987@item
4988In the @file{Makefile.am} that controls the compilation of the @code{main}
4989function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
4990either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
4991
4992@example
4993DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
4994@end example
4995
4996or:
4997
4998@example
4999AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5000@end example
5001
5002@item
5003Finally, invoke the command @command{autoreconf} to generate the build
5004infrastructure.
5005@end enumerate
5006
bfa74976 5007
342b8b6e 5008@node Algorithm
13863333
AD
5009@chapter The Bison Parser Algorithm
5010@cindex Bison parser algorithm
bfa74976
RS
5011@cindex algorithm of parser
5012@cindex shifting
5013@cindex reduction
5014@cindex parser stack
5015@cindex stack, parser
5016
5017As Bison reads tokens, it pushes them onto a stack along with their
5018semantic values. The stack is called the @dfn{parser stack}. Pushing a
5019token is traditionally called @dfn{shifting}.
5020
5021For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
5022@samp{3} to come. The stack will have four elements, one for each token
5023that was shifted.
5024
5025But the stack does not always have an element for each token read. When
5026the last @var{n} tokens and groupings shifted match the components of a
5027grammar rule, they can be combined according to that rule. This is called
5028@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
5029single grouping whose symbol is the result (left hand side) of that rule.
5030Running the rule's action is part of the process of reduction, because this
5031is what computes the semantic value of the resulting grouping.
5032
5033For example, if the infix calculator's parser stack contains this:
5034
5035@example
50361 + 5 * 3
5037@end example
5038
5039@noindent
5040and the next input token is a newline character, then the last three
5041elements can be reduced to 15 via the rule:
5042
5043@example
5044expr: expr '*' expr;
5045@end example
5046
5047@noindent
5048Then the stack contains just these three elements:
5049
5050@example
50511 + 15
5052@end example
5053
5054@noindent
5055At this point, another reduction can be made, resulting in the single value
505616. Then the newline token can be shifted.
5057
5058The parser tries, by shifts and reductions, to reduce the entire input down
5059to a single grouping whose symbol is the grammar's start-symbol
5060(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
5061
5062This kind of parser is known in the literature as a bottom-up parser.
5063
5064@menu
5065* Look-Ahead:: Parser looks one token ahead when deciding what to do.
5066* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
5067* Precedence:: Operator precedence works by resolving conflicts.
5068* Contextual Precedence:: When an operator's precedence depends on context.
5069* Parser States:: The parser is a finite-state-machine with stack.
5070* Reduce/Reduce:: When two rules are applicable in the same situation.
5071* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 5072* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 5073* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
5074@end menu
5075
342b8b6e 5076@node Look-Ahead
bfa74976
RS
5077@section Look-Ahead Tokens
5078@cindex look-ahead token
5079
5080The Bison parser does @emph{not} always reduce immediately as soon as the
5081last @var{n} tokens and groupings match a rule. This is because such a
5082simple strategy is inadequate to handle most languages. Instead, when a
5083reduction is possible, the parser sometimes ``looks ahead'' at the next
5084token in order to decide what to do.
5085
5086When a token is read, it is not immediately shifted; first it becomes the
5087@dfn{look-ahead token}, which is not on the stack. Now the parser can
5088perform one or more reductions of tokens and groupings on the stack, while
5089the look-ahead token remains off to the side. When no more reductions
5090should take place, the look-ahead token is shifted onto the stack. This
5091does not mean that all possible reductions have been done; depending on the
5092token type of the look-ahead token, some rules may choose to delay their
5093application.
5094
5095Here is a simple case where look-ahead is needed. These three rules define
5096expressions which contain binary addition operators and postfix unary
5097factorial operators (@samp{!}), and allow parentheses for grouping.
5098
5099@example
5100@group
5101expr: term '+' expr
5102 | term
5103 ;
5104@end group
5105
5106@group
5107term: '(' expr ')'
5108 | term '!'
5109 | NUMBER
5110 ;
5111@end group
5112@end example
5113
5114Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
5115should be done? If the following token is @samp{)}, then the first three
5116tokens must be reduced to form an @code{expr}. This is the only valid
5117course, because shifting the @samp{)} would produce a sequence of symbols
5118@w{@code{term ')'}}, and no rule allows this.
5119
5120If the following token is @samp{!}, then it must be shifted immediately so
5121that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
5122parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
5123@code{expr}. It would then be impossible to shift the @samp{!} because
5124doing so would produce on the stack the sequence of symbols @code{expr
5125'!'}. No rule allows that sequence.
5126
5127@vindex yychar
32c29292
JD
5128@vindex yylval
5129@vindex yylloc
5130The look-ahead token is stored in the variable @code{yychar}.
5131Its semantic value and location, if any, are stored in the variables
5132@code{yylval} and @code{yylloc}.
bfa74976
RS
5133@xref{Action Features, ,Special Features for Use in Actions}.
5134
342b8b6e 5135@node Shift/Reduce
bfa74976
RS
5136@section Shift/Reduce Conflicts
5137@cindex conflicts
5138@cindex shift/reduce conflicts
5139@cindex dangling @code{else}
5140@cindex @code{else}, dangling
5141
5142Suppose we are parsing a language which has if-then and if-then-else
5143statements, with a pair of rules like this:
5144
5145@example
5146@group
5147if_stmt:
5148 IF expr THEN stmt
5149 | IF expr THEN stmt ELSE stmt
5150 ;
5151@end group
5152@end example
5153
5154@noindent
5155Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
5156terminal symbols for specific keyword tokens.
5157
5158When the @code{ELSE} token is read and becomes the look-ahead token, the
5159contents of the stack (assuming the input is valid) are just right for
5160reduction by the first rule. But it is also legitimate to shift the
5161@code{ELSE}, because that would lead to eventual reduction by the second
5162rule.
5163
5164This situation, where either a shift or a reduction would be valid, is
5165called a @dfn{shift/reduce conflict}. Bison is designed to resolve
5166these conflicts by choosing to shift, unless otherwise directed by
5167operator precedence declarations. To see the reason for this, let's
5168contrast it with the other alternative.
5169
5170Since the parser prefers to shift the @code{ELSE}, the result is to attach
5171the else-clause to the innermost if-statement, making these two inputs
5172equivalent:
5173
5174@example
5175if x then if y then win (); else lose;
5176
5177if x then do; if y then win (); else lose; end;
5178@end example
5179
5180But if the parser chose to reduce when possible rather than shift, the
5181result would be to attach the else-clause to the outermost if-statement,
5182making these two inputs equivalent:
5183
5184@example
5185if x then if y then win (); else lose;
5186
5187if x then do; if y then win (); end; else lose;
5188@end example
5189
5190The conflict exists because the grammar as written is ambiguous: either
5191parsing of the simple nested if-statement is legitimate. The established
5192convention is that these ambiguities are resolved by attaching the
5193else-clause to the innermost if-statement; this is what Bison accomplishes
5194by choosing to shift rather than reduce. (It would ideally be cleaner to
5195write an unambiguous grammar, but that is very hard to do in this case.)
5196This particular ambiguity was first encountered in the specifications of
5197Algol 60 and is called the ``dangling @code{else}'' ambiguity.
5198
5199To avoid warnings from Bison about predictable, legitimate shift/reduce
5200conflicts, use the @code{%expect @var{n}} declaration. There will be no
5201warning as long as the number of shift/reduce conflicts is exactly @var{n}.
5202@xref{Expect Decl, ,Suppressing Conflict Warnings}.
5203
5204The definition of @code{if_stmt} above is solely to blame for the
5205conflict, but the conflict does not actually appear without additional
5206rules. Here is a complete Bison input file that actually manifests the
5207conflict:
5208
5209@example
5210@group
5211%token IF THEN ELSE variable
5212%%
5213@end group
5214@group
5215stmt: expr
5216 | if_stmt
5217 ;
5218@end group
5219
5220@group
5221if_stmt:
5222 IF expr THEN stmt
5223 | IF expr THEN stmt ELSE stmt
5224 ;
5225@end group
5226
5227expr: variable
5228 ;
5229@end example
5230
342b8b6e 5231@node Precedence
bfa74976
RS
5232@section Operator Precedence
5233@cindex operator precedence
5234@cindex precedence of operators
5235
5236Another situation where shift/reduce conflicts appear is in arithmetic
5237expressions. Here shifting is not always the preferred resolution; the
5238Bison declarations for operator precedence allow you to specify when to
5239shift and when to reduce.
5240
5241@menu
5242* Why Precedence:: An example showing why precedence is needed.
5243* Using Precedence:: How to specify precedence in Bison grammars.
5244* Precedence Examples:: How these features are used in the previous example.
5245* How Precedence:: How they work.
5246@end menu
5247
342b8b6e 5248@node Why Precedence
bfa74976
RS
5249@subsection When Precedence is Needed
5250
5251Consider the following ambiguous grammar fragment (ambiguous because the
5252input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
5253
5254@example
5255@group
5256expr: expr '-' expr
5257 | expr '*' expr
5258 | expr '<' expr
5259 | '(' expr ')'
5260 @dots{}
5261 ;
5262@end group
5263@end example
5264
5265@noindent
5266Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
5267should it reduce them via the rule for the subtraction operator? It
5268depends on the next token. Of course, if the next token is @samp{)}, we
5269must reduce; shifting is invalid because no single rule can reduce the
5270token sequence @w{@samp{- 2 )}} or anything starting with that. But if
5271the next token is @samp{*} or @samp{<}, we have a choice: either
5272shifting or reduction would allow the parse to complete, but with
5273different results.
5274
5275To decide which one Bison should do, we must consider the results. If
5276the next operator token @var{op} is shifted, then it must be reduced
5277first in order to permit another opportunity to reduce the difference.
5278The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
5279hand, if the subtraction is reduced before shifting @var{op}, the result
5280is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
5281reduce should depend on the relative precedence of the operators
5282@samp{-} and @var{op}: @samp{*} should be shifted first, but not
5283@samp{<}.
bfa74976
RS
5284
5285@cindex associativity
5286What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
5287@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
5288operators we prefer the former, which is called @dfn{left association}.
5289The latter alternative, @dfn{right association}, is desirable for
5290assignment operators. The choice of left or right association is a
5291matter of whether the parser chooses to shift or reduce when the stack
5292contains @w{@samp{1 - 2}} and the look-ahead token is @samp{-}: shifting
5293makes right-associativity.
bfa74976 5294
342b8b6e 5295@node Using Precedence
bfa74976
RS
5296@subsection Specifying Operator Precedence
5297@findex %left
5298@findex %right
5299@findex %nonassoc
5300
5301Bison allows you to specify these choices with the operator precedence
5302declarations @code{%left} and @code{%right}. Each such declaration
5303contains a list of tokens, which are operators whose precedence and
5304associativity is being declared. The @code{%left} declaration makes all
5305those operators left-associative and the @code{%right} declaration makes
5306them right-associative. A third alternative is @code{%nonassoc}, which
5307declares that it is a syntax error to find the same operator twice ``in a
5308row''.
5309
5310The relative precedence of different operators is controlled by the
5311order in which they are declared. The first @code{%left} or
5312@code{%right} declaration in the file declares the operators whose
5313precedence is lowest, the next such declaration declares the operators
5314whose precedence is a little higher, and so on.
5315
342b8b6e 5316@node Precedence Examples
bfa74976
RS
5317@subsection Precedence Examples
5318
5319In our example, we would want the following declarations:
5320
5321@example
5322%left '<'
5323%left '-'
5324%left '*'
5325@end example
5326
5327In a more complete example, which supports other operators as well, we
5328would declare them in groups of equal precedence. For example, @code{'+'} is
5329declared with @code{'-'}:
5330
5331@example
5332%left '<' '>' '=' NE LE GE
5333%left '+' '-'
5334%left '*' '/'
5335@end example
5336
5337@noindent
5338(Here @code{NE} and so on stand for the operators for ``not equal''
5339and so on. We assume that these tokens are more than one character long
5340and therefore are represented by names, not character literals.)
5341
342b8b6e 5342@node How Precedence
bfa74976
RS
5343@subsection How Precedence Works
5344
5345The first effect of the precedence declarations is to assign precedence
5346levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
5347precedence levels to certain rules: each rule gets its precedence from
5348the last terminal symbol mentioned in the components. (You can also
5349specify explicitly the precedence of a rule. @xref{Contextual
5350Precedence, ,Context-Dependent Precedence}.)
5351
5352Finally, the resolution of conflicts works by comparing the precedence
5353of the rule being considered with that of the look-ahead token. If the
5354token's precedence is higher, the choice is to shift. If the rule's
5355precedence is higher, the choice is to reduce. If they have equal
5356precedence, the choice is made based on the associativity of that
5357precedence level. The verbose output file made by @samp{-v}
5358(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
5359resolved.
bfa74976
RS
5360
5361Not all rules and not all tokens have precedence. If either the rule or
5362the look-ahead token has no precedence, then the default is to shift.
5363
342b8b6e 5364@node Contextual Precedence
bfa74976
RS
5365@section Context-Dependent Precedence
5366@cindex context-dependent precedence
5367@cindex unary operator precedence
5368@cindex precedence, context-dependent
5369@cindex precedence, unary operator
5370@findex %prec
5371
5372Often the precedence of an operator depends on the context. This sounds
5373outlandish at first, but it is really very common. For example, a minus
5374sign typically has a very high precedence as a unary operator, and a
5375somewhat lower precedence (lower than multiplication) as a binary operator.
5376
5377The Bison precedence declarations, @code{%left}, @code{%right} and
5378@code{%nonassoc}, can only be used once for a given token; so a token has
5379only one precedence declared in this way. For context-dependent
5380precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 5381modifier for rules.
bfa74976
RS
5382
5383The @code{%prec} modifier declares the precedence of a particular rule by
5384specifying a terminal symbol whose precedence should be used for that rule.
5385It's not necessary for that symbol to appear otherwise in the rule. The
5386modifier's syntax is:
5387
5388@example
5389%prec @var{terminal-symbol}
5390@end example
5391
5392@noindent
5393and it is written after the components of the rule. Its effect is to
5394assign the rule the precedence of @var{terminal-symbol}, overriding
5395the precedence that would be deduced for it in the ordinary way. The
5396altered rule precedence then affects how conflicts involving that rule
5397are resolved (@pxref{Precedence, ,Operator Precedence}).
5398
5399Here is how @code{%prec} solves the problem of unary minus. First, declare
5400a precedence for a fictitious terminal symbol named @code{UMINUS}. There
5401are no tokens of this type, but the symbol serves to stand for its
5402precedence:
5403
5404@example
5405@dots{}
5406%left '+' '-'
5407%left '*'
5408%left UMINUS
5409@end example
5410
5411Now the precedence of @code{UMINUS} can be used in specific rules:
5412
5413@example
5414@group
5415exp: @dots{}
5416 | exp '-' exp
5417 @dots{}
5418 | '-' exp %prec UMINUS
5419@end group
5420@end example
5421
91d2c560 5422@ifset defaultprec
39a06c25
PE
5423If you forget to append @code{%prec UMINUS} to the rule for unary
5424minus, Bison silently assumes that minus has its usual precedence.
5425This kind of problem can be tricky to debug, since one typically
5426discovers the mistake only by testing the code.
5427
22fccf95 5428The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
5429this kind of problem systematically. It causes rules that lack a
5430@code{%prec} modifier to have no precedence, even if the last terminal
5431symbol mentioned in their components has a declared precedence.
5432
22fccf95 5433If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
5434for all rules that participate in precedence conflict resolution.
5435Then you will see any shift/reduce conflict until you tell Bison how
5436to resolve it, either by changing your grammar or by adding an
5437explicit precedence. This will probably add declarations to the
5438grammar, but it helps to protect against incorrect rule precedences.
5439
22fccf95
PE
5440The effect of @code{%no-default-prec;} can be reversed by giving
5441@code{%default-prec;}, which is the default.
91d2c560 5442@end ifset
39a06c25 5443
342b8b6e 5444@node Parser States
bfa74976
RS
5445@section Parser States
5446@cindex finite-state machine
5447@cindex parser state
5448@cindex state (of parser)
5449
5450The function @code{yyparse} is implemented using a finite-state machine.
5451The values pushed on the parser stack are not simply token type codes; they
5452represent the entire sequence of terminal and nonterminal symbols at or
5453near the top of the stack. The current state collects all the information
5454about previous input which is relevant to deciding what to do next.
5455
5456Each time a look-ahead token is read, the current parser state together
5457with the type of look-ahead token are looked up in a table. This table
5458entry can say, ``Shift the look-ahead token.'' In this case, it also
5459specifies the new parser state, which is pushed onto the top of the
5460parser stack. Or it can say, ``Reduce using rule number @var{n}.''
5461This means that a certain number of tokens or groupings are taken off
5462the top of the stack, and replaced by one grouping. In other words,
5463that number of states are popped from the stack, and one new state is
5464pushed.
5465
5466There is one other alternative: the table can say that the look-ahead token
5467is erroneous in the current state. This causes error processing to begin
5468(@pxref{Error Recovery}).
5469
342b8b6e 5470@node Reduce/Reduce
bfa74976
RS
5471@section Reduce/Reduce Conflicts
5472@cindex reduce/reduce conflict
5473@cindex conflicts, reduce/reduce
5474
5475A reduce/reduce conflict occurs if there are two or more rules that apply
5476to the same sequence of input. This usually indicates a serious error
5477in the grammar.
5478
5479For example, here is an erroneous attempt to define a sequence
5480of zero or more @code{word} groupings.
5481
5482@example
5483sequence: /* empty */
5484 @{ printf ("empty sequence\n"); @}
5485 | maybeword
5486 | sequence word
5487 @{ printf ("added word %s\n", $2); @}
5488 ;
5489
5490maybeword: /* empty */
5491 @{ printf ("empty maybeword\n"); @}
5492 | word
5493 @{ printf ("single word %s\n", $1); @}
5494 ;
5495@end example
5496
5497@noindent
5498The error is an ambiguity: there is more than one way to parse a single
5499@code{word} into a @code{sequence}. It could be reduced to a
5500@code{maybeword} and then into a @code{sequence} via the second rule.
5501Alternatively, nothing-at-all could be reduced into a @code{sequence}
5502via the first rule, and this could be combined with the @code{word}
5503using the third rule for @code{sequence}.
5504
5505There is also more than one way to reduce nothing-at-all into a
5506@code{sequence}. This can be done directly via the first rule,
5507or indirectly via @code{maybeword} and then the second rule.
5508
5509You might think that this is a distinction without a difference, because it
5510does not change whether any particular input is valid or not. But it does
5511affect which actions are run. One parsing order runs the second rule's
5512action; the other runs the first rule's action and the third rule's action.
5513In this example, the output of the program changes.
5514
5515Bison resolves a reduce/reduce conflict by choosing to use the rule that
5516appears first in the grammar, but it is very risky to rely on this. Every
5517reduce/reduce conflict must be studied and usually eliminated. Here is the
5518proper way to define @code{sequence}:
5519
5520@example
5521sequence: /* empty */
5522 @{ printf ("empty sequence\n"); @}
5523 | sequence word
5524 @{ printf ("added word %s\n", $2); @}
5525 ;
5526@end example
5527
5528Here is another common error that yields a reduce/reduce conflict:
5529
5530@example
5531sequence: /* empty */
5532 | sequence words
5533 | sequence redirects
5534 ;
5535
5536words: /* empty */
5537 | words word
5538 ;
5539
5540redirects:/* empty */
5541 | redirects redirect
5542 ;
5543@end example
5544
5545@noindent
5546The intention here is to define a sequence which can contain either
5547@code{word} or @code{redirect} groupings. The individual definitions of
5548@code{sequence}, @code{words} and @code{redirects} are error-free, but the
5549three together make a subtle ambiguity: even an empty input can be parsed
5550in infinitely many ways!
5551
5552Consider: nothing-at-all could be a @code{words}. Or it could be two
5553@code{words} in a row, or three, or any number. It could equally well be a
5554@code{redirects}, or two, or any number. Or it could be a @code{words}
5555followed by three @code{redirects} and another @code{words}. And so on.
5556
5557Here are two ways to correct these rules. First, to make it a single level
5558of sequence:
5559
5560@example
5561sequence: /* empty */
5562 | sequence word
5563 | sequence redirect
5564 ;
5565@end example
5566
5567Second, to prevent either a @code{words} or a @code{redirects}
5568from being empty:
5569
5570@example
5571sequence: /* empty */
5572 | sequence words
5573 | sequence redirects
5574 ;
5575
5576words: word
5577 | words word
5578 ;
5579
5580redirects:redirect
5581 | redirects redirect
5582 ;
5583@end example
5584
342b8b6e 5585@node Mystery Conflicts
bfa74976
RS
5586@section Mysterious Reduce/Reduce Conflicts
5587
5588Sometimes reduce/reduce conflicts can occur that don't look warranted.
5589Here is an example:
5590
5591@example
5592@group
5593%token ID
5594
5595%%
5596def: param_spec return_spec ','
5597 ;
5598param_spec:
5599 type
5600 | name_list ':' type
5601 ;
5602@end group
5603@group
5604return_spec:
5605 type
5606 | name ':' type
5607 ;
5608@end group
5609@group
5610type: ID
5611 ;
5612@end group
5613@group
5614name: ID
5615 ;
5616name_list:
5617 name
5618 | name ',' name_list
5619 ;
5620@end group
5621@end example
5622
5623It would seem that this grammar can be parsed with only a single token
13863333 5624of look-ahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 5625a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 5626@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 5627
c827f760
PE
5628@cindex @acronym{LR}(1)
5629@cindex @acronym{LALR}(1)
bfa74976 5630However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
5631@acronym{LR}(1) grammars. In this grammar, two contexts, that after
5632an @code{ID}
bfa74976
RS
5633at the beginning of a @code{param_spec} and likewise at the beginning of
5634a @code{return_spec}, are similar enough that Bison assumes they are the
5635same. They appear similar because the same set of rules would be
5636active---the rule for reducing to a @code{name} and that for reducing to
5637a @code{type}. Bison is unable to determine at that stage of processing
5638that the rules would require different look-ahead tokens in the two
5639contexts, so it makes a single parser state for them both. Combining
5640the two contexts causes a conflict later. In parser terminology, this
c827f760 5641occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
5642
5643In general, it is better to fix deficiencies than to document them. But
5644this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
5645generators that can handle @acronym{LR}(1) grammars are hard to write
5646and tend to
bfa74976
RS
5647produce parsers that are very large. In practice, Bison is more useful
5648as it is now.
5649
5650When the problem arises, you can often fix it by identifying the two
a220f555
MA
5651parser states that are being confused, and adding something to make them
5652look distinct. In the above example, adding one rule to
bfa74976
RS
5653@code{return_spec} as follows makes the problem go away:
5654
5655@example
5656@group
5657%token BOGUS
5658@dots{}
5659%%
5660@dots{}
5661return_spec:
5662 type
5663 | name ':' type
5664 /* This rule is never used. */
5665 | ID BOGUS
5666 ;
5667@end group
5668@end example
5669
5670This corrects the problem because it introduces the possibility of an
5671additional active rule in the context after the @code{ID} at the beginning of
5672@code{return_spec}. This rule is not active in the corresponding context
5673in a @code{param_spec}, so the two contexts receive distinct parser states.
5674As long as the token @code{BOGUS} is never generated by @code{yylex},
5675the added rule cannot alter the way actual input is parsed.
5676
5677In this particular example, there is another way to solve the problem:
5678rewrite the rule for @code{return_spec} to use @code{ID} directly
5679instead of via @code{name}. This also causes the two confusing
5680contexts to have different sets of active rules, because the one for
5681@code{return_spec} activates the altered rule for @code{return_spec}
5682rather than the one for @code{name}.
5683
5684@example
5685param_spec:
5686 type
5687 | name_list ':' type
5688 ;
5689return_spec:
5690 type
5691 | ID ':' type
5692 ;
5693@end example
5694
e054b190
PE
5695For a more detailed exposition of @acronym{LALR}(1) parsers and parser
5696generators, please see:
5697Frank DeRemer and Thomas Pennello, Efficient Computation of
5698@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
5699Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
5700pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
5701
fae437e8 5702@node Generalized LR Parsing
c827f760
PE
5703@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
5704@cindex @acronym{GLR} parsing
5705@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 5706@cindex ambiguous grammars
9d9b8b70 5707@cindex nondeterministic parsing
676385e2 5708
fae437e8
AD
5709Bison produces @emph{deterministic} parsers that choose uniquely
5710when to reduce and which reduction to apply
8dd162d3 5711based on a summary of the preceding input and on one extra token of look-ahead.
676385e2
PH
5712As a result, normal Bison handles a proper subset of the family of
5713context-free languages.
fae437e8 5714Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
5715sequence of reductions cannot have deterministic parsers in this sense.
5716The same is true of languages that require more than one symbol of
8dd162d3 5717look-ahead, since the parser lacks the information necessary to make a
676385e2 5718decision at the point it must be made in a shift-reduce parser.
fae437e8 5719Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
5720there are languages where Bison's particular choice of how to
5721summarize the input seen so far loses necessary information.
5722
5723When you use the @samp{%glr-parser} declaration in your grammar file,
5724Bison generates a parser that uses a different algorithm, called
c827f760
PE
5725Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
5726parser uses the same basic
676385e2
PH
5727algorithm for parsing as an ordinary Bison parser, but behaves
5728differently in cases where there is a shift-reduce conflict that has not
fae437e8 5729been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
5730reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
5731situation, it
fae437e8 5732effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
5733shift or reduction. These parsers then proceed as usual, consuming
5734tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 5735and split further, with the result that instead of a sequence of states,
c827f760 5736a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
5737
5738In effect, each stack represents a guess as to what the proper parse
5739is. Additional input may indicate that a guess was wrong, in which case
5740the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 5741actions generated in each stack are saved, rather than being executed
676385e2 5742immediately. When a stack disappears, its saved semantic actions never
fae437e8 5743get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
5744their sets of semantic actions are both saved with the state that
5745results from the reduction. We say that two stacks are equivalent
fae437e8 5746when they both represent the same sequence of states,
676385e2
PH
5747and each pair of corresponding states represents a
5748grammar symbol that produces the same segment of the input token
5749stream.
5750
5751Whenever the parser makes a transition from having multiple
c827f760 5752states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
5753algorithm, after resolving and executing the saved-up actions.
5754At this transition, some of the states on the stack will have semantic
5755values that are sets (actually multisets) of possible actions. The
5756parser tries to pick one of the actions by first finding one whose rule
5757has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 5758declaration. Otherwise, if the alternative actions are not ordered by
676385e2 5759precedence, but there the same merging function is declared for both
fae437e8 5760rules by the @samp{%merge} declaration,
676385e2
PH
5761Bison resolves and evaluates both and then calls the merge function on
5762the result. Otherwise, it reports an ambiguity.
5763
c827f760
PE
5764It is possible to use a data structure for the @acronym{GLR} parsing tree that
5765permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
5766size of the input), any unambiguous (not necessarily
5767@acronym{LALR}(1)) grammar in
fae437e8 5768quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
5769context-free grammar in cubic worst-case time. However, Bison currently
5770uses a simpler data structure that requires time proportional to the
5771length of the input times the maximum number of stacks required for any
9d9b8b70 5772prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
5773grammars can require exponential time and space to process. Such badly
5774behaving examples, however, are not generally of practical interest.
9d9b8b70 5775Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 5776doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 5777structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
5778grammar, in particular, it is only slightly slower than with the default
5779Bison parser.
5780
fa7e68c3 5781For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
5782Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
5783Generalised @acronym{LR} Parsers, Royal Holloway, University of
5784London, Department of Computer Science, TR-00-12,
5785@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
5786(2000-12-24).
5787
1a059451
PE
5788@node Memory Management
5789@section Memory Management, and How to Avoid Memory Exhaustion
5790@cindex memory exhaustion
5791@cindex memory management
bfa74976
RS
5792@cindex stack overflow
5793@cindex parser stack overflow
5794@cindex overflow of parser stack
5795
1a059451 5796The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 5797not reduced. When this happens, the parser function @code{yyparse}
1a059451 5798calls @code{yyerror} and then returns 2.
bfa74976 5799
c827f760 5800Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
5801usually results from using a right recursion instead of a left
5802recursion, @xref{Recursion, ,Recursive Rules}.
5803
bfa74976
RS
5804@vindex YYMAXDEPTH
5805By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 5806parser stack can become before memory is exhausted. Define the
bfa74976
RS
5807macro with a value that is an integer. This value is the maximum number
5808of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
5809
5810The stack space allowed is not necessarily allocated. If you specify a
1a059451 5811large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
5812stack at first, and then makes it bigger by stages as needed. This
5813increasing allocation happens automatically and silently. Therefore,
5814you do not need to make @code{YYMAXDEPTH} painfully small merely to save
5815space for ordinary inputs that do not need much stack.
5816
d7e14fc0
PE
5817However, do not allow @code{YYMAXDEPTH} to be a value so large that
5818arithmetic overflow could occur when calculating the size of the stack
5819space. Also, do not allow @code{YYMAXDEPTH} to be less than
5820@code{YYINITDEPTH}.
5821
bfa74976
RS
5822@cindex default stack limit
5823The default value of @code{YYMAXDEPTH}, if you do not define it, is
582410000.
5825
5826@vindex YYINITDEPTH
5827You can control how much stack is allocated initially by defining the
d7e14fc0
PE
5828macro @code{YYINITDEPTH} to a positive integer. For the C
5829@acronym{LALR}(1) parser, this value must be a compile-time constant
5830unless you are assuming C99 or some other target language or compiler
5831that allows variable-length arrays. The default is 200.
5832
1a059451 5833Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 5834
d1a1114f 5835@c FIXME: C++ output.
c827f760 5836Because of semantical differences between C and C++, the
1a059451
PE
5837@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
5838by C++ compilers. In this precise case (compiling a C parser as C++) you are
5839suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
5840this deficiency in a future release.
d1a1114f 5841
342b8b6e 5842@node Error Recovery
bfa74976
RS
5843@chapter Error Recovery
5844@cindex error recovery
5845@cindex recovery from errors
5846
6e649e65 5847It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
5848error. For example, a compiler should recover sufficiently to parse the
5849rest of the input file and check it for errors; a calculator should accept
5850another expression.
5851
5852In a simple interactive command parser where each input is one line, it may
5853be sufficient to allow @code{yyparse} to return 1 on error and have the
5854caller ignore the rest of the input line when that happens (and then call
5855@code{yyparse} again). But this is inadequate for a compiler, because it
5856forgets all the syntactic context leading up to the error. A syntax error
5857deep within a function in the compiler input should not cause the compiler
5858to treat the following line like the beginning of a source file.
5859
5860@findex error
5861You can define how to recover from a syntax error by writing rules to
5862recognize the special token @code{error}. This is a terminal symbol that
5863is always defined (you need not declare it) and reserved for error
5864handling. The Bison parser generates an @code{error} token whenever a
5865syntax error happens; if you have provided a rule to recognize this token
13863333 5866in the current context, the parse can continue.
bfa74976
RS
5867
5868For example:
5869
5870@example
5871stmnts: /* empty string */
5872 | stmnts '\n'
5873 | stmnts exp '\n'
5874 | stmnts error '\n'
5875@end example
5876
5877The fourth rule in this example says that an error followed by a newline
5878makes a valid addition to any @code{stmnts}.
5879
5880What happens if a syntax error occurs in the middle of an @code{exp}? The
5881error recovery rule, interpreted strictly, applies to the precise sequence
5882of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
5883the middle of an @code{exp}, there will probably be some additional tokens
5884and subexpressions on the stack after the last @code{stmnts}, and there
5885will be tokens to read before the next newline. So the rule is not
5886applicable in the ordinary way.
5887
5888But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
5889the semantic context and part of the input. First it discards states
5890and objects from the stack until it gets back to a state in which the
bfa74976 5891@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
5892already parsed are discarded, back to the last complete @code{stmnts}.)
5893At this point the @code{error} token can be shifted. Then, if the old
bfa74976
RS
5894look-ahead token is not acceptable to be shifted next, the parser reads
5895tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
5896this example, Bison reads and discards input until the next newline so
5897that the fourth rule can apply. Note that discarded symbols are
5898possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
5899Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
5900
5901The choice of error rules in the grammar is a choice of strategies for
5902error recovery. A simple and useful strategy is simply to skip the rest of
5903the current input line or current statement if an error is detected:
5904
5905@example
72d2299c 5906stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
5907@end example
5908
5909It is also useful to recover to the matching close-delimiter of an
5910opening-delimiter that has already been parsed. Otherwise the
5911close-delimiter will probably appear to be unmatched, and generate another,
5912spurious error message:
5913
5914@example
5915primary: '(' expr ')'
5916 | '(' error ')'
5917 @dots{}
5918 ;
5919@end example
5920
5921Error recovery strategies are necessarily guesses. When they guess wrong,
5922one syntax error often leads to another. In the above example, the error
5923recovery rule guesses that an error is due to bad input within one
5924@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
5925middle of a valid @code{stmnt}. After the error recovery rule recovers
5926from the first error, another syntax error will be found straightaway,
5927since the text following the spurious semicolon is also an invalid
5928@code{stmnt}.
5929
5930To prevent an outpouring of error messages, the parser will output no error
5931message for another syntax error that happens shortly after the first; only
5932after three consecutive input tokens have been successfully shifted will
5933error messages resume.
5934
5935Note that rules which accept the @code{error} token may have actions, just
5936as any other rules can.
5937
5938@findex yyerrok
5939You can make error messages resume immediately by using the macro
5940@code{yyerrok} in an action. If you do this in the error rule's action, no
5941error messages will be suppressed. This macro requires no arguments;
5942@samp{yyerrok;} is a valid C statement.
5943
5944@findex yyclearin
5945The previous look-ahead token is reanalyzed immediately after an error. If
5946this is unacceptable, then the macro @code{yyclearin} may be used to clear
5947this token. Write the statement @samp{yyclearin;} in the error rule's
5948action.
32c29292 5949@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 5950
6e649e65 5951For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
5952called that advances the input stream to some point where parsing should
5953once again commence. The next symbol returned by the lexical scanner is
5954probably correct. The previous look-ahead token ought to be discarded
5955with @samp{yyclearin;}.
5956
5957@vindex YYRECOVERING
5958The macro @code{YYRECOVERING} stands for an expression that has the
5959value 1 when the parser is recovering from a syntax error, and 0 the
5960rest of the time. A value of 1 indicates that error messages are
5961currently suppressed for new syntax errors.
5962
342b8b6e 5963@node Context Dependency
bfa74976
RS
5964@chapter Handling Context Dependencies
5965
5966The Bison paradigm is to parse tokens first, then group them into larger
5967syntactic units. In many languages, the meaning of a token is affected by
5968its context. Although this violates the Bison paradigm, certain techniques
5969(known as @dfn{kludges}) may enable you to write Bison parsers for such
5970languages.
5971
5972@menu
5973* Semantic Tokens:: Token parsing can depend on the semantic context.
5974* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
5975* Tie-in Recovery:: Lexical tie-ins have implications for how
5976 error recovery rules must be written.
5977@end menu
5978
5979(Actually, ``kludge'' means any technique that gets its job done but is
5980neither clean nor robust.)
5981
342b8b6e 5982@node Semantic Tokens
bfa74976
RS
5983@section Semantic Info in Token Types
5984
5985The C language has a context dependency: the way an identifier is used
5986depends on what its current meaning is. For example, consider this:
5987
5988@example
5989foo (x);
5990@end example
5991
5992This looks like a function call statement, but if @code{foo} is a typedef
5993name, then this is actually a declaration of @code{x}. How can a Bison
5994parser for C decide how to parse this input?
5995
c827f760 5996The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
5997@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
5998identifier, it looks up the current declaration of the identifier in order
5999to decide which token type to return: @code{TYPENAME} if the identifier is
6000declared as a typedef, @code{IDENTIFIER} otherwise.
6001
6002The grammar rules can then express the context dependency by the choice of
6003token type to recognize. @code{IDENTIFIER} is accepted as an expression,
6004but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
6005@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
6006is @emph{not} significant, such as in declarations that can shadow a
6007typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
6008accepted---there is one rule for each of the two token types.
6009
6010This technique is simple to use if the decision of which kinds of
6011identifiers to allow is made at a place close to where the identifier is
6012parsed. But in C this is not always so: C allows a declaration to
6013redeclare a typedef name provided an explicit type has been specified
6014earlier:
6015
6016@example
3a4f411f
PE
6017typedef int foo, bar;
6018int baz (void)
6019@{
6020 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
6021 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
6022 return foo (bar);
6023@}
bfa74976
RS
6024@end example
6025
6026Unfortunately, the name being declared is separated from the declaration
6027construct itself by a complicated syntactic structure---the ``declarator''.
6028
9ecbd125 6029As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
6030all the nonterminal names changed: once for parsing a declaration in
6031which a typedef name can be redefined, and once for parsing a
6032declaration in which that can't be done. Here is a part of the
6033duplication, with actions omitted for brevity:
bfa74976
RS
6034
6035@example
6036initdcl:
6037 declarator maybeasm '='
6038 init
6039 | declarator maybeasm
6040 ;
6041
6042notype_initdcl:
6043 notype_declarator maybeasm '='
6044 init
6045 | notype_declarator maybeasm
6046 ;
6047@end example
6048
6049@noindent
6050Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
6051cannot. The distinction between @code{declarator} and
6052@code{notype_declarator} is the same sort of thing.
6053
6054There is some similarity between this technique and a lexical tie-in
6055(described next), in that information which alters the lexical analysis is
6056changed during parsing by other parts of the program. The difference is
6057here the information is global, and is used for other purposes in the
6058program. A true lexical tie-in has a special-purpose flag controlled by
6059the syntactic context.
6060
342b8b6e 6061@node Lexical Tie-ins
bfa74976
RS
6062@section Lexical Tie-ins
6063@cindex lexical tie-in
6064
6065One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
6066which is set by Bison actions, whose purpose is to alter the way tokens are
6067parsed.
6068
6069For example, suppose we have a language vaguely like C, but with a special
6070construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
6071an expression in parentheses in which all integers are hexadecimal. In
6072particular, the token @samp{a1b} must be treated as an integer rather than
6073as an identifier if it appears in that context. Here is how you can do it:
6074
6075@example
6076@group
6077%@{
38a92d50
PE
6078 int hexflag;
6079 int yylex (void);
6080 void yyerror (char const *);
bfa74976
RS
6081%@}
6082%%
6083@dots{}
6084@end group
6085@group
6086expr: IDENTIFIER
6087 | constant
6088 | HEX '('
6089 @{ hexflag = 1; @}
6090 expr ')'
6091 @{ hexflag = 0;
6092 $$ = $4; @}
6093 | expr '+' expr
6094 @{ $$ = make_sum ($1, $3); @}
6095 @dots{}
6096 ;
6097@end group
6098
6099@group
6100constant:
6101 INTEGER
6102 | STRING
6103 ;
6104@end group
6105@end example
6106
6107@noindent
6108Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
6109it is nonzero, all integers are parsed in hexadecimal, and tokens starting
6110with letters are parsed as integers if possible.
6111
342b8b6e
AD
6112The declaration of @code{hexflag} shown in the prologue of the parser file
6113is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 6114You must also write the code in @code{yylex} to obey the flag.
bfa74976 6115
342b8b6e 6116@node Tie-in Recovery
bfa74976
RS
6117@section Lexical Tie-ins and Error Recovery
6118
6119Lexical tie-ins make strict demands on any error recovery rules you have.
6120@xref{Error Recovery}.
6121
6122The reason for this is that the purpose of an error recovery rule is to
6123abort the parsing of one construct and resume in some larger construct.
6124For example, in C-like languages, a typical error recovery rule is to skip
6125tokens until the next semicolon, and then start a new statement, like this:
6126
6127@example
6128stmt: expr ';'
6129 | IF '(' expr ')' stmt @{ @dots{} @}
6130 @dots{}
6131 error ';'
6132 @{ hexflag = 0; @}
6133 ;
6134@end example
6135
6136If there is a syntax error in the middle of a @samp{hex (@var{expr})}
6137construct, this error rule will apply, and then the action for the
6138completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
6139remain set for the entire rest of the input, or until the next @code{hex}
6140keyword, causing identifiers to be misinterpreted as integers.
6141
6142To avoid this problem the error recovery rule itself clears @code{hexflag}.
6143
6144There may also be an error recovery rule that works within expressions.
6145For example, there could be a rule which applies within parentheses
6146and skips to the close-parenthesis:
6147
6148@example
6149@group
6150expr: @dots{}
6151 | '(' expr ')'
6152 @{ $$ = $2; @}
6153 | '(' error ')'
6154 @dots{}
6155@end group
6156@end example
6157
6158If this rule acts within the @code{hex} construct, it is not going to abort
6159that construct (since it applies to an inner level of parentheses within
6160the construct). Therefore, it should not clear the flag: the rest of
6161the @code{hex} construct should be parsed with the flag still in effect.
6162
6163What if there is an error recovery rule which might abort out of the
6164@code{hex} construct or might not, depending on circumstances? There is no
6165way you can write the action to determine whether a @code{hex} construct is
6166being aborted or not. So if you are using a lexical tie-in, you had better
6167make sure your error recovery rules are not of this kind. Each rule must
6168be such that you can be sure that it always will, or always won't, have to
6169clear the flag.
6170
ec3bc396
AD
6171@c ================================================== Debugging Your Parser
6172
342b8b6e 6173@node Debugging
bfa74976 6174@chapter Debugging Your Parser
ec3bc396
AD
6175
6176Developing a parser can be a challenge, especially if you don't
6177understand the algorithm (@pxref{Algorithm, ,The Bison Parser
6178Algorithm}). Even so, sometimes a detailed description of the automaton
6179can help (@pxref{Understanding, , Understanding Your Parser}), or
6180tracing the execution of the parser can give some insight on why it
6181behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
6182
6183@menu
6184* Understanding:: Understanding the structure of your parser.
6185* Tracing:: Tracing the execution of your parser.
6186@end menu
6187
6188@node Understanding
6189@section Understanding Your Parser
6190
6191As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
6192Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
6193frequent than one would hope), looking at this automaton is required to
6194tune or simply fix a parser. Bison provides two different
c827f760 6195representation of it, either textually or graphically (as a @acronym{VCG}
ec3bc396
AD
6196file).
6197
6198The textual file is generated when the options @option{--report} or
6199@option{--verbose} are specified, see @xref{Invocation, , Invoking
6200Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
6201the parser output file name, and adding @samp{.output} instead.
6202Therefore, if the input file is @file{foo.y}, then the parser file is
6203called @file{foo.tab.c} by default. As a consequence, the verbose
6204output file is called @file{foo.output}.
6205
6206The following grammar file, @file{calc.y}, will be used in the sequel:
6207
6208@example
6209%token NUM STR
6210%left '+' '-'
6211%left '*'
6212%%
6213exp: exp '+' exp
6214 | exp '-' exp
6215 | exp '*' exp
6216 | exp '/' exp
6217 | NUM
6218 ;
6219useless: STR;
6220%%
6221@end example
6222
88bce5a2
AD
6223@command{bison} reports:
6224
6225@example
6226calc.y: warning: 1 useless nonterminal and 1 useless rule
6227calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
6228calc.y:11.10-12: warning: useless rule: useless: STR
6229calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
6230@end example
6231
6232When given @option{--report=state}, in addition to @file{calc.tab.c}, it
6233creates a file @file{calc.output} with contents detailed below. The
6234order of the output and the exact presentation might vary, but the
6235interpretation is the same.
ec3bc396
AD
6236
6237The first section includes details on conflicts that were solved thanks
6238to precedence and/or associativity:
6239
6240@example
6241Conflict in state 8 between rule 2 and token '+' resolved as reduce.
6242Conflict in state 8 between rule 2 and token '-' resolved as reduce.
6243Conflict in state 8 between rule 2 and token '*' resolved as shift.
6244@exdent @dots{}
6245@end example
6246
6247@noindent
6248The next section lists states that still have conflicts.
6249
6250@example
5a99098d
PE
6251State 8 conflicts: 1 shift/reduce
6252State 9 conflicts: 1 shift/reduce
6253State 10 conflicts: 1 shift/reduce
6254State 11 conflicts: 4 shift/reduce
ec3bc396
AD
6255@end example
6256
6257@noindent
6258@cindex token, useless
6259@cindex useless token
6260@cindex nonterminal, useless
6261@cindex useless nonterminal
6262@cindex rule, useless
6263@cindex useless rule
6264The next section reports useless tokens, nonterminal and rules. Useless
6265nonterminals and rules are removed in order to produce a smaller parser,
6266but useless tokens are preserved, since they might be used by the
6267scanner (note the difference between ``useless'' and ``not used''
6268below):
6269
6270@example
6271Useless nonterminals:
6272 useless
6273
6274Terminals which are not used:
6275 STR
6276
6277Useless rules:
6278#6 useless: STR;
6279@end example
6280
6281@noindent
6282The next section reproduces the exact grammar that Bison used:
6283
6284@example
6285Grammar
6286
6287 Number, Line, Rule
88bce5a2 6288 0 5 $accept -> exp $end
ec3bc396
AD
6289 1 5 exp -> exp '+' exp
6290 2 6 exp -> exp '-' exp
6291 3 7 exp -> exp '*' exp
6292 4 8 exp -> exp '/' exp
6293 5 9 exp -> NUM
6294@end example
6295
6296@noindent
6297and reports the uses of the symbols:
6298
6299@example
6300Terminals, with rules where they appear
6301
88bce5a2 6302$end (0) 0
ec3bc396
AD
6303'*' (42) 3
6304'+' (43) 1
6305'-' (45) 2
6306'/' (47) 4
6307error (256)
6308NUM (258) 5
6309
6310Nonterminals, with rules where they appear
6311
88bce5a2 6312$accept (8)
ec3bc396
AD
6313 on left: 0
6314exp (9)
6315 on left: 1 2 3 4 5, on right: 0 1 2 3 4
6316@end example
6317
6318@noindent
6319@cindex item
6320@cindex pointed rule
6321@cindex rule, pointed
6322Bison then proceeds onto the automaton itself, describing each state
6323with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
6324item is a production rule together with a point (marked by @samp{.})
6325that the input cursor.
6326
6327@example
6328state 0
6329
88bce5a2 6330 $accept -> . exp $ (rule 0)
ec3bc396 6331
2a8d363a 6332 NUM shift, and go to state 1
ec3bc396 6333
2a8d363a 6334 exp go to state 2
ec3bc396
AD
6335@end example
6336
6337This reads as follows: ``state 0 corresponds to being at the very
6338beginning of the parsing, in the initial rule, right before the start
6339symbol (here, @code{exp}). When the parser returns to this state right
6340after having reduced a rule that produced an @code{exp}, the control
6341flow jumps to state 2. If there is no such transition on a nonterminal
8dd162d3 6342symbol, and the look-ahead is a @code{NUM}, then this token is shifted on
ec3bc396 6343the parse stack, and the control flow jumps to state 1. Any other
8dd162d3 6344look-ahead triggers a syntax error.''
ec3bc396
AD
6345
6346@cindex core, item set
6347@cindex item set core
6348@cindex kernel, item set
6349@cindex item set core
6350Even though the only active rule in state 0 seems to be rule 0, the
8dd162d3 6351report lists @code{NUM} as a look-ahead token because @code{NUM} can be
ec3bc396
AD
6352at the beginning of any rule deriving an @code{exp}. By default Bison
6353reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
6354you want to see more detail you can invoke @command{bison} with
6355@option{--report=itemset} to list all the items, include those that can
6356be derived:
6357
6358@example
6359state 0
6360
88bce5a2 6361 $accept -> . exp $ (rule 0)
ec3bc396
AD
6362 exp -> . exp '+' exp (rule 1)
6363 exp -> . exp '-' exp (rule 2)
6364 exp -> . exp '*' exp (rule 3)
6365 exp -> . exp '/' exp (rule 4)
6366 exp -> . NUM (rule 5)
6367
6368 NUM shift, and go to state 1
6369
6370 exp go to state 2
6371@end example
6372
6373@noindent
6374In the state 1...
6375
6376@example
6377state 1
6378
6379 exp -> NUM . (rule 5)
6380
2a8d363a 6381 $default reduce using rule 5 (exp)
ec3bc396
AD
6382@end example
6383
6384@noindent
8dd162d3 6385the rule 5, @samp{exp: NUM;}, is completed. Whatever the look-ahead token
ec3bc396
AD
6386(@samp{$default}), the parser will reduce it. If it was coming from
6387state 0, then, after this reduction it will return to state 0, and will
6388jump to state 2 (@samp{exp: go to state 2}).
6389
6390@example
6391state 2
6392
88bce5a2 6393 $accept -> exp . $ (rule 0)
ec3bc396
AD
6394 exp -> exp . '+' exp (rule 1)
6395 exp -> exp . '-' exp (rule 2)
6396 exp -> exp . '*' exp (rule 3)
6397 exp -> exp . '/' exp (rule 4)
6398
2a8d363a
AD
6399 $ shift, and go to state 3
6400 '+' shift, and go to state 4
6401 '-' shift, and go to state 5
6402 '*' shift, and go to state 6
6403 '/' shift, and go to state 7
ec3bc396
AD
6404@end example
6405
6406@noindent
6407In state 2, the automaton can only shift a symbol. For instance,
8dd162d3 6408because of the item @samp{exp -> exp . '+' exp}, if the look-ahead if
ec3bc396
AD
6409@samp{+}, it will be shifted on the parse stack, and the automaton
6410control will jump to state 4, corresponding to the item @samp{exp -> exp
6411'+' . exp}. Since there is no default action, any other token than
6e649e65 6412those listed above will trigger a syntax error.
ec3bc396
AD
6413
6414The state 3 is named the @dfn{final state}, or the @dfn{accepting
6415state}:
6416
6417@example
6418state 3
6419
88bce5a2 6420 $accept -> exp $ . (rule 0)
ec3bc396 6421
2a8d363a 6422 $default accept
ec3bc396
AD
6423@end example
6424
6425@noindent
6426the initial rule is completed (the start symbol and the end
6427of input were read), the parsing exits successfully.
6428
6429The interpretation of states 4 to 7 is straightforward, and is left to
6430the reader.
6431
6432@example
6433state 4
6434
6435 exp -> exp '+' . exp (rule 1)
6436
2a8d363a 6437 NUM shift, and go to state 1
ec3bc396 6438
2a8d363a 6439 exp go to state 8
ec3bc396
AD
6440
6441state 5
6442
6443 exp -> exp '-' . exp (rule 2)
6444
2a8d363a 6445 NUM shift, and go to state 1
ec3bc396 6446
2a8d363a 6447 exp go to state 9
ec3bc396
AD
6448
6449state 6
6450
6451 exp -> exp '*' . exp (rule 3)
6452
2a8d363a 6453 NUM shift, and go to state 1
ec3bc396 6454
2a8d363a 6455 exp go to state 10
ec3bc396
AD
6456
6457state 7
6458
6459 exp -> exp '/' . exp (rule 4)
6460
2a8d363a 6461 NUM shift, and go to state 1
ec3bc396 6462
2a8d363a 6463 exp go to state 11
ec3bc396
AD
6464@end example
6465
5a99098d
PE
6466As was announced in beginning of the report, @samp{State 8 conflicts:
64671 shift/reduce}:
ec3bc396
AD
6468
6469@example
6470state 8
6471
6472 exp -> exp . '+' exp (rule 1)
6473 exp -> exp '+' exp . (rule 1)
6474 exp -> exp . '-' exp (rule 2)
6475 exp -> exp . '*' exp (rule 3)
6476 exp -> exp . '/' exp (rule 4)
6477
2a8d363a
AD
6478 '*' shift, and go to state 6
6479 '/' shift, and go to state 7
ec3bc396 6480
2a8d363a
AD
6481 '/' [reduce using rule 1 (exp)]
6482 $default reduce using rule 1 (exp)
ec3bc396
AD
6483@end example
6484
8dd162d3 6485Indeed, there are two actions associated to the look-ahead @samp{/}:
ec3bc396
AD
6486either shifting (and going to state 7), or reducing rule 1. The
6487conflict means that either the grammar is ambiguous, or the parser lacks
6488information to make the right decision. Indeed the grammar is
6489ambiguous, as, since we did not specify the precedence of @samp{/}, the
6490sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
6491NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
6492NUM}, which corresponds to reducing rule 1.
6493
c827f760 6494Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
6495arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
6496Shift/Reduce Conflicts}. Discarded actions are reported in between
6497square brackets.
6498
6499Note that all the previous states had a single possible action: either
6500shifting the next token and going to the corresponding state, or
6501reducing a single rule. In the other cases, i.e., when shifting
6502@emph{and} reducing is possible or when @emph{several} reductions are
8dd162d3
PE
6503possible, the look-ahead is required to select the action. State 8 is
6504one such state: if the look-ahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
6505is shifting, otherwise the action is reducing rule 1. In other words,
6506the first two items, corresponding to rule 1, are not eligible when the
8dd162d3
PE
6507look-ahead token is @samp{*}, since we specified that @samp{*} has higher
6508precedence than @samp{+}. More generally, some items are eligible only
6509with some set of possible look-ahead tokens. When run with
6510@option{--report=look-ahead}, Bison specifies these look-ahead tokens:
ec3bc396
AD
6511
6512@example
6513state 8
6514
6515 exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
6516 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
6517 exp -> exp . '-' exp (rule 2)
6518 exp -> exp . '*' exp (rule 3)
6519 exp -> exp . '/' exp (rule 4)
6520
6521 '*' shift, and go to state 6
6522 '/' shift, and go to state 7
6523
6524 '/' [reduce using rule 1 (exp)]
6525 $default reduce using rule 1 (exp)
6526@end example
6527
6528The remaining states are similar:
6529
6530@example
6531state 9
6532
6533 exp -> exp . '+' exp (rule 1)
6534 exp -> exp . '-' exp (rule 2)
6535 exp -> exp '-' exp . (rule 2)
6536 exp -> exp . '*' exp (rule 3)
6537 exp -> exp . '/' exp (rule 4)
6538
2a8d363a
AD
6539 '*' shift, and go to state 6
6540 '/' shift, and go to state 7
ec3bc396 6541
2a8d363a
AD
6542 '/' [reduce using rule 2 (exp)]
6543 $default reduce using rule 2 (exp)
ec3bc396
AD
6544
6545state 10
6546
6547 exp -> exp . '+' exp (rule 1)
6548 exp -> exp . '-' exp (rule 2)
6549 exp -> exp . '*' exp (rule 3)
6550 exp -> exp '*' exp . (rule 3)
6551 exp -> exp . '/' exp (rule 4)
6552
2a8d363a 6553 '/' shift, and go to state 7
ec3bc396 6554
2a8d363a
AD
6555 '/' [reduce using rule 3 (exp)]
6556 $default reduce using rule 3 (exp)
ec3bc396
AD
6557
6558state 11
6559
6560 exp -> exp . '+' exp (rule 1)
6561 exp -> exp . '-' exp (rule 2)
6562 exp -> exp . '*' exp (rule 3)
6563 exp -> exp . '/' exp (rule 4)
6564 exp -> exp '/' exp . (rule 4)
6565
2a8d363a
AD
6566 '+' shift, and go to state 4
6567 '-' shift, and go to state 5
6568 '*' shift, and go to state 6
6569 '/' shift, and go to state 7
ec3bc396 6570
2a8d363a
AD
6571 '+' [reduce using rule 4 (exp)]
6572 '-' [reduce using rule 4 (exp)]
6573 '*' [reduce using rule 4 (exp)]
6574 '/' [reduce using rule 4 (exp)]
6575 $default reduce using rule 4 (exp)
ec3bc396
AD
6576@end example
6577
6578@noindent
fa7e68c3
PE
6579Observe that state 11 contains conflicts not only due to the lack of
6580precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
6581@samp{*}, but also because the
ec3bc396
AD
6582associativity of @samp{/} is not specified.
6583
6584
6585@node Tracing
6586@section Tracing Your Parser
bfa74976
RS
6587@findex yydebug
6588@cindex debugging
6589@cindex tracing the parser
6590
6591If a Bison grammar compiles properly but doesn't do what you want when it
6592runs, the @code{yydebug} parser-trace feature can help you figure out why.
6593
3ded9a63
AD
6594There are several means to enable compilation of trace facilities:
6595
6596@table @asis
6597@item the macro @code{YYDEBUG}
6598@findex YYDEBUG
6599Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 6600parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
6601@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
6602YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
6603Prologue}).
6604
6605@item the option @option{-t}, @option{--debug}
6606Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 6607,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
6608
6609@item the directive @samp{%debug}
6610@findex %debug
6611Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
6612Declaration Summary}). This is a Bison extension, which will prove
6613useful when Bison will output parsers for languages that don't use a
c827f760
PE
6614preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
6615you, this is
3ded9a63
AD
6616the preferred solution.
6617@end table
6618
6619We suggest that you always enable the debug option so that debugging is
6620always possible.
bfa74976 6621
02a81e05 6622The trace facility outputs messages with macro calls of the form
e2742e46 6623@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
02a81e05 6624@var{format} and @var{args} are the usual @code{printf} format and
4947ebdb
PE
6625arguments. If you define @code{YYDEBUG} to a nonzero value but do not
6626define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
e4e1a4dc 6627and @code{YYPRINTF} is defined to @code{fprintf}.
bfa74976
RS
6628
6629Once you have compiled the program with trace facilities, the way to
6630request a trace is to store a nonzero value in the variable @code{yydebug}.
6631You can do this by making the C code do it (in @code{main}, perhaps), or
6632you can alter the value with a C debugger.
6633
6634Each step taken by the parser when @code{yydebug} is nonzero produces a
6635line or two of trace information, written on @code{stderr}. The trace
6636messages tell you these things:
6637
6638@itemize @bullet
6639@item
6640Each time the parser calls @code{yylex}, what kind of token was read.
6641
6642@item
6643Each time a token is shifted, the depth and complete contents of the
6644state stack (@pxref{Parser States}).
6645
6646@item
6647Each time a rule is reduced, which rule it is, and the complete contents
6648of the state stack afterward.
6649@end itemize
6650
6651To make sense of this information, it helps to refer to the listing file
704a47c4
AD
6652produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
6653Bison}). This file shows the meaning of each state in terms of
6654positions in various rules, and also what each state will do with each
6655possible input token. As you read the successive trace messages, you
6656can see that the parser is functioning according to its specification in
6657the listing file. Eventually you will arrive at the place where
6658something undesirable happens, and you will see which parts of the
6659grammar are to blame.
bfa74976
RS
6660
6661The parser file is a C program and you can use C debuggers on it, but it's
6662not easy to interpret what it is doing. The parser function is a
6663finite-state machine interpreter, and aside from the actions it executes
6664the same code over and over. Only the values of variables show where in
6665the grammar it is working.
6666
6667@findex YYPRINT
6668The debugging information normally gives the token type of each token
6669read, but not its semantic value. You can optionally define a macro
6670named @code{YYPRINT} to provide a way to print the value. If you define
6671@code{YYPRINT}, it should take three arguments. The parser will pass a
6672standard I/O stream, the numeric code for the token type, and the token
6673value (from @code{yylval}).
6674
6675Here is an example of @code{YYPRINT} suitable for the multi-function
6676calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
6677
6678@smallexample
38a92d50
PE
6679%@{
6680 static void print_token_value (FILE *, int, YYSTYPE);
6681 #define YYPRINT(file, type, value) print_token_value (file, type, value)
6682%@}
6683
6684@dots{} %% @dots{} %% @dots{}
bfa74976
RS
6685
6686static void
831d3c99 6687print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
6688@{
6689 if (type == VAR)
d3c4e709 6690 fprintf (file, "%s", value.tptr->name);
bfa74976 6691 else if (type == NUM)
d3c4e709 6692 fprintf (file, "%d", value.val);
bfa74976
RS
6693@}
6694@end smallexample
6695
ec3bc396
AD
6696@c ================================================= Invoking Bison
6697
342b8b6e 6698@node Invocation
bfa74976
RS
6699@chapter Invoking Bison
6700@cindex invoking Bison
6701@cindex Bison invocation
6702@cindex options for invoking Bison
6703
6704The usual way to invoke Bison is as follows:
6705
6706@example
6707bison @var{infile}
6708@end example
6709
6710Here @var{infile} is the grammar file name, which usually ends in
6711@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
6712with @samp{.tab.c} and removing any leading directory. Thus, the
6713@samp{bison foo.y} file name yields
6714@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
6715@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 6716C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
6717or @file{foo.y++}. Then, the output files will take an extension like
6718the given one as input (respectively @file{foo.tab.cpp} and
6719@file{foo.tab.c++}).
fa4d969f 6720This feature takes effect with all options that manipulate file names like
234a3be3
AD
6721@samp{-o} or @samp{-d}.
6722
6723For example :
6724
6725@example
6726bison -d @var{infile.yxx}
6727@end example
84163231 6728@noindent
72d2299c 6729will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
6730
6731@example
b56471a6 6732bison -d -o @var{output.c++} @var{infile.y}
234a3be3 6733@end example
84163231 6734@noindent
234a3be3
AD
6735will produce @file{output.c++} and @file{outfile.h++}.
6736
397ec073
PE
6737For compatibility with @acronym{POSIX}, the standard Bison
6738distribution also contains a shell script called @command{yacc} that
6739invokes Bison with the @option{-y} option.
6740
bfa74976 6741@menu
13863333 6742* Bison Options:: All the options described in detail,
c827f760 6743 in alphabetical order by short options.
bfa74976 6744* Option Cross Key:: Alphabetical list of long options.
93dd49ab 6745* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
6746@end menu
6747
342b8b6e 6748@node Bison Options
bfa74976
RS
6749@section Bison Options
6750
6751Bison supports both traditional single-letter options and mnemonic long
6752option names. Long option names are indicated with @samp{--} instead of
6753@samp{-}. Abbreviations for option names are allowed as long as they
6754are unique. When a long option takes an argument, like
6755@samp{--file-prefix}, connect the option name and the argument with
6756@samp{=}.
6757
6758Here is a list of options that can be used with Bison, alphabetized by
6759short option. It is followed by a cross key alphabetized by long
6760option.
6761
89cab50d
AD
6762@c Please, keep this ordered as in `bison --help'.
6763@noindent
6764Operations modes:
6765@table @option
6766@item -h
6767@itemx --help
6768Print a summary of the command-line options to Bison and exit.
bfa74976 6769
89cab50d
AD
6770@item -V
6771@itemx --version
6772Print the version number of Bison and exit.
bfa74976 6773
f7ab6a50
PE
6774@item --print-localedir
6775Print the name of the directory containing locale-dependent data.
6776
89cab50d
AD
6777@item -y
6778@itemx --yacc
54662697
PE
6779Act more like the traditional Yacc command. This can cause
6780different diagnostics to be generated, and may change behavior in
6781other minor ways. Most importantly, imitate Yacc's output
6782file name conventions, so that the parser output file is called
89cab50d 6783@file{y.tab.c}, and the other outputs are called @file{y.output} and
54662697 6784@file{y.tab.h}. Thus, the following shell script can substitute
397ec073
PE
6785for Yacc, and the Bison distribution contains such a script for
6786compatibility with @acronym{POSIX}:
bfa74976 6787
89cab50d 6788@example
397ec073 6789#! /bin/sh
26e06a21 6790bison -y "$@@"
89cab50d 6791@end example
54662697
PE
6792
6793The @option{-y}/@option{--yacc} option is intended for use with
6794traditional Yacc grammars. If your grammar uses a Bison extension
6795like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
6796this option is specified.
6797
89cab50d
AD
6798@end table
6799
6800@noindent
6801Tuning the parser:
6802
6803@table @option
cd5bd6ac
AD
6804@item -S @var{file}
6805@itemx --skeleton=@var{file}
6806Specify the skeleton to use. You probably don't need this option unless
6807you are developing Bison.
6808
89cab50d
AD
6809@item -t
6810@itemx --debug
4947ebdb
PE
6811In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
6812already defined, so that the debugging facilities are compiled.
ec3bc396 6813@xref{Tracing, ,Tracing Your Parser}.
89cab50d
AD
6814
6815@item --locations
d8988b2f 6816Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
6817
6818@item -p @var{prefix}
6819@itemx --name-prefix=@var{prefix}
d8988b2f
AD
6820Pretend that @code{%name-prefix="@var{prefix}"} was specified.
6821@xref{Decl Summary}.
bfa74976
RS
6822
6823@item -l
6824@itemx --no-lines
6825Don't put any @code{#line} preprocessor commands in the parser file.
6826Ordinarily Bison puts them in the parser file so that the C compiler
6827and debuggers will associate errors with your source file, the
6828grammar file. This option causes them to associate errors with the
95e742f7 6829parser file, treating it as an independent source file in its own right.
bfa74976 6830
931c7513
RS
6831@item -n
6832@itemx --no-parser
d8988b2f 6833Pretend that @code{%no-parser} was specified. @xref{Decl Summary}.
931c7513 6834
89cab50d
AD
6835@item -k
6836@itemx --token-table
d8988b2f 6837Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 6838@end table
bfa74976 6839
89cab50d
AD
6840@noindent
6841Adjust the output:
bfa74976 6842
89cab50d
AD
6843@table @option
6844@item -d
d8988b2f
AD
6845@itemx --defines
6846Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 6847file containing macro definitions for the token type names defined in
4bfd5e4e 6848the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 6849
342b8b6e 6850@item --defines=@var{defines-file}
d8988b2f 6851Same as above, but save in the file @var{defines-file}.
342b8b6e 6852
89cab50d
AD
6853@item -b @var{file-prefix}
6854@itemx --file-prefix=@var{prefix}
d8988b2f 6855Pretend that @code{%verbose} was specified, i.e, specify prefix to use
72d2299c 6856for all Bison output file names. @xref{Decl Summary}.
bfa74976 6857
ec3bc396
AD
6858@item -r @var{things}
6859@itemx --report=@var{things}
6860Write an extra output file containing verbose description of the comma
6861separated list of @var{things} among:
6862
6863@table @code
6864@item state
6865Description of the grammar, conflicts (resolved and unresolved), and
c827f760 6866@acronym{LALR} automaton.
ec3bc396 6867
8dd162d3 6868@item look-ahead
ec3bc396 6869Implies @code{state} and augments the description of the automaton with
8dd162d3 6870each rule's look-ahead set.
ec3bc396
AD
6871
6872@item itemset
6873Implies @code{state} and augments the description of the automaton with
6874the full set of items for each state, instead of its core only.
6875@end table
6876
6877For instance, on the following grammar
6878
bfa74976
RS
6879@item -v
6880@itemx --verbose
6deb4447
AD
6881Pretend that @code{%verbose} was specified, i.e, write an extra output
6882file containing verbose descriptions of the grammar and
72d2299c 6883parser. @xref{Decl Summary}.
bfa74976 6884
fa4d969f
PE
6885@item -o @var{file}
6886@itemx --output=@var{file}
6887Specify the @var{file} for the parser file.
bfa74976 6888
fa4d969f 6889The other output files' names are constructed from @var{file} as
d8988b2f 6890described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
6891
6892@item -g
c827f760
PE
6893Output a @acronym{VCG} definition of the @acronym{LALR}(1) grammar
6894automaton computed by Bison. If the grammar file is @file{foo.y}, the
6895@acronym{VCG} output file will
342b8b6e
AD
6896be @file{foo.vcg}.
6897
6898@item --graph=@var{graph-file}
72d2299c
PE
6899The behavior of @var{--graph} is the same than @samp{-g}. The only
6900difference is that it has an optional argument which is the name of
fa4d969f 6901the output graph file.
bfa74976
RS
6902@end table
6903
342b8b6e 6904@node Option Cross Key
bfa74976
RS
6905@section Option Cross Key
6906
6907Here is a list of options, alphabetized by long option, to help you find
6908the corresponding short option.
6909
6910@tex
6911\def\leaderfill{\leaders\hbox to 1em{\hss.\hss}\hfill}
6912
6913{\tt
6914\line{ --debug \leaderfill -t}
6915\line{ --defines \leaderfill -d}
6916\line{ --file-prefix \leaderfill -b}
342b8b6e 6917\line{ --graph \leaderfill -g}
ff51d159 6918\line{ --help \leaderfill -h}
bfa74976
RS
6919\line{ --name-prefix \leaderfill -p}
6920\line{ --no-lines \leaderfill -l}
931c7513 6921\line{ --no-parser \leaderfill -n}
d8988b2f 6922\line{ --output \leaderfill -o}
f7ab6a50 6923\line{ --print-localedir}
931c7513 6924\line{ --token-table \leaderfill -k}
bfa74976
RS
6925\line{ --verbose \leaderfill -v}
6926\line{ --version \leaderfill -V}
6927\line{ --yacc \leaderfill -y}
6928}
6929@end tex
6930
6931@ifinfo
6932@example
6933--debug -t
342b8b6e 6934--defines=@var{defines-file} -d
bfa74976 6935--file-prefix=@var{prefix} -b @var{file-prefix}
342b8b6e 6936--graph=@var{graph-file} -d
ff51d159 6937--help -h
931c7513 6938--name-prefix=@var{prefix} -p @var{name-prefix}
bfa74976 6939--no-lines -l
931c7513 6940--no-parser -n
d8988b2f 6941--output=@var{outfile} -o @var{outfile}
f7ab6a50 6942--print-localedir
931c7513 6943--token-table -k
bfa74976
RS
6944--verbose -v
6945--version -V
8c9a50be 6946--yacc -y
bfa74976
RS
6947@end example
6948@end ifinfo
6949
93dd49ab
PE
6950@node Yacc Library
6951@section Yacc Library
6952
6953The Yacc library contains default implementations of the
6954@code{yyerror} and @code{main} functions. These default
6955implementations are normally not useful, but @acronym{POSIX} requires
6956them. To use the Yacc library, link your program with the
6957@option{-ly} option. Note that Bison's implementation of the Yacc
6958library is distributed under the terms of the @acronym{GNU} General
6959Public License (@pxref{Copying}).
6960
6961If you use the Yacc library's @code{yyerror} function, you should
6962declare @code{yyerror} as follows:
6963
6964@example
6965int yyerror (char const *);
6966@end example
6967
6968Bison ignores the @code{int} value returned by this @code{yyerror}.
6969If you use the Yacc library's @code{main} function, your
6970@code{yyparse} function should have the following type signature:
6971
6972@example
6973int yyparse (void);
6974@end example
6975
12545799
AD
6976@c ================================================= C++ Bison
6977
6978@node C++ Language Interface
6979@chapter C++ Language Interface
6980
6981@menu
6982* C++ Parsers:: The interface to generate C++ parser classes
6983* A Complete C++ Example:: Demonstrating their use
6984@end menu
6985
6986@node C++ Parsers
6987@section C++ Parsers
6988
6989@menu
6990* C++ Bison Interface:: Asking for C++ parser generation
6991* C++ Semantic Values:: %union vs. C++
6992* C++ Location Values:: The position and location classes
6993* C++ Parser Interface:: Instantiating and running the parser
6994* C++ Scanner Interface:: Exchanges between yylex and parse
6995@end menu
6996
6997@node C++ Bison Interface
6998@subsection C++ Bison Interface
6999@c - %skeleton "lalr1.cc"
7000@c - Always pure
7001@c - initial action
7002
e054b190 7003The C++ parser @acronym{LALR}(1) skeleton is named @file{lalr1.cc}. To select
12545799
AD
7004it, you may either pass the option @option{--skeleton=lalr1.cc} to
7005Bison, or include the directive @samp{%skeleton "lalr1.cc"} in the
7006grammar preamble. When run, @command{bison} will create several
7007files:
7008@table @file
7009@item position.hh
7010@itemx location.hh
7011The definition of the classes @code{position} and @code{location},
7012used for location tracking. @xref{C++ Location Values}.
7013
7014@item stack.hh
7015An auxiliary class @code{stack} used by the parser.
7016
fa4d969f
PE
7017@item @var{file}.hh
7018@itemx @var{file}.cc
12545799 7019The declaration and implementation of the C++ parser class.
fa4d969f 7020@var{file} is the name of the output file. It follows the same
12545799
AD
7021rules as with regular C parsers.
7022
fa4d969f 7023Note that @file{@var{file}.hh} is @emph{mandatory}, the C++ cannot
12545799
AD
7024work without the parser class declaration. Therefore, you must either
7025pass @option{-d}/@option{--defines} to @command{bison}, or use the
7026@samp{%defines} directive.
7027@end table
7028
7029All these files are documented using Doxygen; run @command{doxygen}
7030for a complete and accurate documentation.
7031
7032@node C++ Semantic Values
7033@subsection C++ Semantic Values
7034@c - No objects in unions
7035@c - YSTYPE
7036@c - Printer and destructor
7037
7038The @code{%union} directive works as for C, see @ref{Union Decl, ,The
7039Collection of Value Types}. In particular it produces a genuine
7040@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
7041within pseudo-unions (similar to Boost variants) might be implemented to
7042alleviate these issues.}, which have a few specific features in C++.
12545799
AD
7043@itemize @minus
7044@item
fb9712a9
AD
7045The type @code{YYSTYPE} is defined but its use is discouraged: rather
7046you should refer to the parser's encapsulated type
7047@code{yy::parser::semantic_type}.
12545799
AD
7048@item
7049Non POD (Plain Old Data) types cannot be used. C++ forbids any
7050instance of classes with constructors in unions: only @emph{pointers}
7051to such objects are allowed.
7052@end itemize
7053
7054Because objects have to be stored via pointers, memory is not
7055reclaimed automatically: using the @code{%destructor} directive is the
7056only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
7057Symbols}.
7058
7059
7060@node C++ Location Values
7061@subsection C++ Location Values
7062@c - %locations
7063@c - class Position
7064@c - class Location
b47dbebe 7065@c - %define "filename_type" "const symbol::Symbol"
12545799
AD
7066
7067When the directive @code{%locations} is used, the C++ parser supports
7068location tracking, see @ref{Locations, , Locations Overview}. Two
7069auxiliary classes define a @code{position}, a single point in a file,
7070and a @code{location}, a range composed of a pair of
7071@code{position}s (possibly spanning several files).
7072
fa4d969f 7073@deftypemethod {position} {std::string*} file
12545799
AD
7074The name of the file. It will always be handled as a pointer, the
7075parser will never duplicate nor deallocate it. As an experimental
7076feature you may change it to @samp{@var{type}*} using @samp{%define
b47dbebe 7077"filename_type" "@var{type}"}.
12545799
AD
7078@end deftypemethod
7079
7080@deftypemethod {position} {unsigned int} line
7081The line, starting at 1.
7082@end deftypemethod
7083
7084@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
7085Advance by @var{height} lines, resetting the column number.
7086@end deftypemethod
7087
7088@deftypemethod {position} {unsigned int} column
7089The column, starting at 0.
7090@end deftypemethod
7091
7092@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
7093Advance by @var{width} columns, without changing the line number.
7094@end deftypemethod
7095
7096@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
7097@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
7098@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
7099@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
7100Various forms of syntactic sugar for @code{columns}.
7101@end deftypemethod
7102
7103@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
7104Report @var{p} on @var{o} like this:
fa4d969f
PE
7105@samp{@var{file}:@var{line}.@var{column}}, or
7106@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
7107@end deftypemethod
7108
7109@deftypemethod {location} {position} begin
7110@deftypemethodx {location} {position} end
7111The first, inclusive, position of the range, and the first beyond.
7112@end deftypemethod
7113
7114@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
7115@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
7116Advance the @code{end} position.
7117@end deftypemethod
7118
7119@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
7120@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
7121@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
7122Various forms of syntactic sugar.
7123@end deftypemethod
7124
7125@deftypemethod {location} {void} step ()
7126Move @code{begin} onto @code{end}.
7127@end deftypemethod
7128
7129
7130@node C++ Parser Interface
7131@subsection C++ Parser Interface
7132@c - define parser_class_name
7133@c - Ctor
7134@c - parse, error, set_debug_level, debug_level, set_debug_stream,
7135@c debug_stream.
7136@c - Reporting errors
7137
7138The output files @file{@var{output}.hh} and @file{@var{output}.cc}
7139declare and define the parser class in the namespace @code{yy}. The
7140class name defaults to @code{parser}, but may be changed using
7141@samp{%define "parser_class_name" "@var{name}"}. The interface of
9d9b8b70 7142this class is detailed below. It can be extended using the
12545799
AD
7143@code{%parse-param} feature: its semantics is slightly changed since
7144it describes an additional member of the parser class, and an
7145additional argument for its constructor.
7146
8a0adb01
AD
7147@defcv {Type} {parser} {semantic_value_type}
7148@defcvx {Type} {parser} {location_value_type}
12545799 7149The types for semantics value and locations.
8a0adb01 7150@end defcv
12545799
AD
7151
7152@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
7153Build a new parser object. There are no arguments by default, unless
7154@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
7155@end deftypemethod
7156
7157@deftypemethod {parser} {int} parse ()
7158Run the syntactic analysis, and return 0 on success, 1 otherwise.
7159@end deftypemethod
7160
7161@deftypemethod {parser} {std::ostream&} debug_stream ()
7162@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
7163Get or set the stream used for tracing the parsing. It defaults to
7164@code{std::cerr}.
7165@end deftypemethod
7166
7167@deftypemethod {parser} {debug_level_type} debug_level ()
7168@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
7169Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 7170or nonzero, full tracing.
12545799
AD
7171@end deftypemethod
7172
7173@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
7174The definition for this member function must be supplied by the user:
7175the parser uses it to report a parser error occurring at @var{l},
7176described by @var{m}.
7177@end deftypemethod
7178
7179
7180@node C++ Scanner Interface
7181@subsection C++ Scanner Interface
7182@c - prefix for yylex.
7183@c - Pure interface to yylex
7184@c - %lex-param
7185
7186The parser invokes the scanner by calling @code{yylex}. Contrary to C
7187parsers, C++ parsers are always pure: there is no point in using the
7188@code{%pure-parser} directive. Therefore the interface is as follows.
7189
7190@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
7191Return the next token. Its type is the return value, its semantic
7192value and location being @var{yylval} and @var{yylloc}. Invocations of
7193@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
7194@end deftypemethod
7195
7196
7197@node A Complete C++ Example
7198@section A Complete C++ Example
7199
7200This section demonstrates the use of a C++ parser with a simple but
7201complete example. This example should be available on your system,
7202ready to compile, in the directory @dfn{../bison/examples/calc++}. It
7203focuses on the use of Bison, therefore the design of the various C++
7204classes is very naive: no accessors, no encapsulation of members etc.
7205We will use a Lex scanner, and more precisely, a Flex scanner, to
7206demonstrate the various interaction. A hand written scanner is
7207actually easier to interface with.
7208
7209@menu
7210* Calc++ --- C++ Calculator:: The specifications
7211* Calc++ Parsing Driver:: An active parsing context
7212* Calc++ Parser:: A parser class
7213* Calc++ Scanner:: A pure C++ Flex scanner
7214* Calc++ Top Level:: Conducting the band
7215@end menu
7216
7217@node Calc++ --- C++ Calculator
7218@subsection Calc++ --- C++ Calculator
7219
7220Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 7221expression, possibly preceded by variable assignments. An
12545799
AD
7222environment containing possibly predefined variables such as
7223@code{one} and @code{two}, is exchanged with the parser. An example
7224of valid input follows.
7225
7226@example
7227three := 3
7228seven := one + two * three
7229seven * seven
7230@end example
7231
7232@node Calc++ Parsing Driver
7233@subsection Calc++ Parsing Driver
7234@c - An env
7235@c - A place to store error messages
7236@c - A place for the result
7237
7238To support a pure interface with the parser (and the scanner) the
7239technique of the ``parsing context'' is convenient: a structure
7240containing all the data to exchange. Since, in addition to simply
7241launch the parsing, there are several auxiliary tasks to execute (open
7242the file for parsing, instantiate the parser etc.), we recommend
7243transforming the simple parsing context structure into a fully blown
7244@dfn{parsing driver} class.
7245
7246The declaration of this driver class, @file{calc++-driver.hh}, is as
7247follows. The first part includes the CPP guard and imports the
fb9712a9
AD
7248required standard library components, and the declaration of the parser
7249class.
12545799 7250
1c59e0a1 7251@comment file: calc++-driver.hh
12545799
AD
7252@example
7253#ifndef CALCXX_DRIVER_HH
7254# define CALCXX_DRIVER_HH
7255# include <string>
7256# include <map>
fb9712a9 7257# include "calc++-parser.hh"
12545799
AD
7258@end example
7259
12545799
AD
7260
7261@noindent
7262Then comes the declaration of the scanning function. Flex expects
7263the signature of @code{yylex} to be defined in the macro
7264@code{YY_DECL}, and the C++ parser expects it to be declared. We can
7265factor both as follows.
1c59e0a1
AD
7266
7267@comment file: calc++-driver.hh
12545799
AD
7268@example
7269// Announce to Flex the prototype we want for lexing function, ...
1c59e0a1 7270# define YY_DECL \
fb9712a9
AD
7271 int yylex (yy::calcxx_parser::semantic_type* yylval, \
7272 yy::calcxx_parser::location_type* yylloc, \
7273 calcxx_driver& driver)
12545799
AD
7274// ... and declare it for the parser's sake.
7275YY_DECL;
7276@end example
7277
7278@noindent
7279The @code{calcxx_driver} class is then declared with its most obvious
7280members.
7281
1c59e0a1 7282@comment file: calc++-driver.hh
12545799
AD
7283@example
7284// Conducting the whole scanning and parsing of Calc++.
7285class calcxx_driver
7286@{
7287public:
7288 calcxx_driver ();
7289 virtual ~calcxx_driver ();
7290
7291 std::map<std::string, int> variables;
7292
7293 int result;
7294@end example
7295
7296@noindent
7297To encapsulate the coordination with the Flex scanner, it is useful to
7298have two members function to open and close the scanning phase.
7299members.
7300
1c59e0a1 7301@comment file: calc++-driver.hh
12545799
AD
7302@example
7303 // Handling the scanner.
7304 void scan_begin ();
7305 void scan_end ();
7306 bool trace_scanning;
7307@end example
7308
7309@noindent
7310Similarly for the parser itself.
7311
1c59e0a1 7312@comment file: calc++-driver.hh
12545799
AD
7313@example
7314 // Handling the parser.
7315 void parse (const std::string& f);
7316 std::string file;
7317 bool trace_parsing;
7318@end example
7319
7320@noindent
7321To demonstrate pure handling of parse errors, instead of simply
7322dumping them on the standard error output, we will pass them to the
7323compiler driver using the following two member functions. Finally, we
7324close the class declaration and CPP guard.
7325
1c59e0a1 7326@comment file: calc++-driver.hh
12545799
AD
7327@example
7328 // Error handling.
7329 void error (const yy::location& l, const std::string& m);
7330 void error (const std::string& m);
7331@};
7332#endif // ! CALCXX_DRIVER_HH
7333@end example
7334
7335The implementation of the driver is straightforward. The @code{parse}
7336member function deserves some attention. The @code{error} functions
7337are simple stubs, they should actually register the located error
7338messages and set error state.
7339
1c59e0a1 7340@comment file: calc++-driver.cc
12545799
AD
7341@example
7342#include "calc++-driver.hh"
7343#include "calc++-parser.hh"
7344
7345calcxx_driver::calcxx_driver ()
7346 : trace_scanning (false), trace_parsing (false)
7347@{
7348 variables["one"] = 1;
7349 variables["two"] = 2;
7350@}
7351
7352calcxx_driver::~calcxx_driver ()
7353@{
7354@}
7355
7356void
7357calcxx_driver::parse (const std::string &f)
7358@{
7359 file = f;
7360 scan_begin ();
7361 yy::calcxx_parser parser (*this);
7362 parser.set_debug_level (trace_parsing);
7363 parser.parse ();
7364 scan_end ();
7365@}
7366
7367void
7368calcxx_driver::error (const yy::location& l, const std::string& m)
7369@{
7370 std::cerr << l << ": " << m << std::endl;
7371@}
7372
7373void
7374calcxx_driver::error (const std::string& m)
7375@{
7376 std::cerr << m << std::endl;
7377@}
7378@end example
7379
7380@node Calc++ Parser
7381@subsection Calc++ Parser
7382
b50d2359
AD
7383The parser definition file @file{calc++-parser.yy} starts by asking for
7384the C++ LALR(1) skeleton, the creation of the parser header file, and
7385specifies the name of the parser class. Because the C++ skeleton
7386changed several times, it is safer to require the version you designed
7387the grammar for.
1c59e0a1
AD
7388
7389@comment file: calc++-parser.yy
12545799
AD
7390@example
7391%skeleton "lalr1.cc" /* -*- C++ -*- */
b50d2359 7392%require "2.1a"
12545799 7393%defines
fb9712a9
AD
7394%define "parser_class_name" "calcxx_parser"
7395@end example
7396
7397@noindent
7398Then come the declarations/inclusions needed to define the
7399@code{%union}. Because the parser uses the parsing driver and
7400reciprocally, both cannot include the header of the other. Because the
7401driver's header needs detailed knowledge about the parser class (in
7402particular its inner types), it is the parser's header which will simply
7403use a forward declaration of the driver.
7404
7405@comment file: calc++-parser.yy
7406@example
12545799
AD
7407%@{
7408# include <string>
fb9712a9 7409class calcxx_driver;
12545799
AD
7410%@}
7411@end example
7412
7413@noindent
7414The driver is passed by reference to the parser and to the scanner.
7415This provides a simple but effective pure interface, not relying on
7416global variables.
7417
1c59e0a1 7418@comment file: calc++-parser.yy
12545799
AD
7419@example
7420// The parsing context.
7421%parse-param @{ calcxx_driver& driver @}
7422%lex-param @{ calcxx_driver& driver @}
7423@end example
7424
7425@noindent
7426Then we request the location tracking feature, and initialize the
7427first location's file name. Afterwards new locations are computed
7428relatively to the previous locations: the file name will be
7429automatically propagated.
7430
1c59e0a1 7431@comment file: calc++-parser.yy
12545799
AD
7432@example
7433%locations
7434%initial-action
7435@{
7436 // Initialize the initial location.
b47dbebe 7437 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
7438@};
7439@end example
7440
7441@noindent
7442Use the two following directives to enable parser tracing and verbose
7443error messages.
7444
1c59e0a1 7445@comment file: calc++-parser.yy
12545799
AD
7446@example
7447%debug
7448%error-verbose
7449@end example
7450
7451@noindent
7452Semantic values cannot use ``real'' objects, but only pointers to
7453them.
7454
1c59e0a1 7455@comment file: calc++-parser.yy
12545799
AD
7456@example
7457// Symbols.
7458%union
7459@{
7460 int ival;
7461 std::string *sval;
7462@};
7463@end example
7464
fb9712a9
AD
7465@noindent
7466The code between @samp{%@{} and @samp{%@}} after the introduction of the
7467@samp{%union} is output in the @file{*.cc} file; it needs detailed
7468knowledge about the driver.
7469
7470@comment file: calc++-parser.yy
7471@example
7472%@{
7473# include "calc++-driver.hh"
7474%@}
7475@end example
7476
7477
12545799
AD
7478@noindent
7479The token numbered as 0 corresponds to end of file; the following line
7480allows for nicer error messages referring to ``end of file'' instead
7481of ``$end''. Similarly user friendly named are provided for each
7482symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
7483avoid name clashes.
7484
1c59e0a1 7485@comment file: calc++-parser.yy
12545799 7486@example
fb9712a9
AD
7487%token END 0 "end of file"
7488%token ASSIGN ":="
7489%token <sval> IDENTIFIER "identifier"
7490%token <ival> NUMBER "number"
7491%type <ival> exp "expression"
12545799
AD
7492@end example
7493
7494@noindent
7495To enable memory deallocation during error recovery, use
7496@code{%destructor}.
7497
1c59e0a1 7498@comment file: calc++-parser.yy
12545799
AD
7499@example
7500%printer @{ debug_stream () << *$$; @} "identifier"
7501%destructor @{ delete $$; @} "identifier"
7502
7503%printer @{ debug_stream () << $$; @} "number" "expression"
7504@end example
7505
7506@noindent
7507The grammar itself is straightforward.
7508
1c59e0a1 7509@comment file: calc++-parser.yy
12545799
AD
7510@example
7511%%
7512%start unit;
7513unit: assignments exp @{ driver.result = $2; @};
7514
7515assignments: assignments assignment @{@}
9d9b8b70 7516 | /* Nothing. */ @{@};
12545799 7517
fb9712a9 7518assignment: "identifier" ":=" exp @{ driver.variables[*$1] = $3; @};
12545799
AD
7519
7520%left '+' '-';
7521%left '*' '/';
7522exp: exp '+' exp @{ $$ = $1 + $3; @}
7523 | exp '-' exp @{ $$ = $1 - $3; @}
7524 | exp '*' exp @{ $$ = $1 * $3; @}
7525 | exp '/' exp @{ $$ = $1 / $3; @}
fb9712a9
AD
7526 | "identifier" @{ $$ = driver.variables[*$1]; @}
7527 | "number" @{ $$ = $1; @};
12545799
AD
7528%%
7529@end example
7530
7531@noindent
7532Finally the @code{error} member function registers the errors to the
7533driver.
7534
1c59e0a1 7535@comment file: calc++-parser.yy
12545799
AD
7536@example
7537void
1c59e0a1
AD
7538yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
7539 const std::string& m)
12545799
AD
7540@{
7541 driver.error (l, m);
7542@}
7543@end example
7544
7545@node Calc++ Scanner
7546@subsection Calc++ Scanner
7547
7548The Flex scanner first includes the driver declaration, then the
7549parser's to get the set of defined tokens.
7550
1c59e0a1 7551@comment file: calc++-scanner.ll
12545799
AD
7552@example
7553%@{ /* -*- C++ -*- */
04098407
PE
7554# include <cstdlib>
7555# include <errno.h>
7556# include <limits.h>
12545799
AD
7557# include <string>
7558# include "calc++-driver.hh"
7559# include "calc++-parser.hh"
7560%@}
7561@end example
7562
7563@noindent
7564Because there is no @code{#include}-like feature we don't need
7565@code{yywrap}, we don't need @code{unput} either, and we parse an
7566actual file, this is not an interactive session with the user.
7567Finally we enable the scanner tracing features.
7568
1c59e0a1 7569@comment file: calc++-scanner.ll
12545799
AD
7570@example
7571%option noyywrap nounput batch debug
7572@end example
7573
7574@noindent
7575Abbreviations allow for more readable rules.
7576
1c59e0a1 7577@comment file: calc++-scanner.ll
12545799
AD
7578@example
7579id [a-zA-Z][a-zA-Z_0-9]*
7580int [0-9]+
7581blank [ \t]
7582@end example
7583
7584@noindent
9d9b8b70 7585The following paragraph suffices to track locations accurately. Each
12545799
AD
7586time @code{yylex} is invoked, the begin position is moved onto the end
7587position. Then when a pattern is matched, the end position is
7588advanced of its width. In case it matched ends of lines, the end
7589cursor is adjusted, and each time blanks are matched, the begin cursor
7590is moved onto the end cursor to effectively ignore the blanks
7591preceding tokens. Comments would be treated equally.
7592
1c59e0a1 7593@comment file: calc++-scanner.ll
12545799 7594@example
828c373b
AD
7595%@{
7596# define YY_USER_ACTION yylloc->columns (yyleng);
7597%@}
12545799
AD
7598%%
7599%@{
7600 yylloc->step ();
12545799
AD
7601%@}
7602@{blank@}+ yylloc->step ();
7603[\n]+ yylloc->lines (yyleng); yylloc->step ();
7604@end example
7605
7606@noindent
fb9712a9
AD
7607The rules are simple, just note the use of the driver to report errors.
7608It is convenient to use a typedef to shorten
7609@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 7610@code{token::identifier} for instance.
12545799 7611
1c59e0a1 7612@comment file: calc++-scanner.ll
12545799 7613@example
fb9712a9
AD
7614%@{
7615 typedef yy::calcxx_parser::token token;
7616%@}
7617
12545799 7618[-+*/] return yytext[0];
fb9712a9 7619":=" return token::ASSIGN;
04098407
PE
7620@{int@} @{
7621 errno = 0;
7622 long n = strtol (yytext, NULL, 10);
7623 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
7624 driver.error (*yylloc, "integer is out of range");
7625 yylval->ival = n;
fb9712a9 7626 return token::NUMBER;
04098407 7627@}
fb9712a9 7628@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
7629. driver.error (*yylloc, "invalid character");
7630%%
7631@end example
7632
7633@noindent
7634Finally, because the scanner related driver's member function depend
7635on the scanner's data, it is simpler to implement them in this file.
7636
1c59e0a1 7637@comment file: calc++-scanner.ll
12545799
AD
7638@example
7639void
7640calcxx_driver::scan_begin ()
7641@{
7642 yy_flex_debug = trace_scanning;
7643 if (!(yyin = fopen (file.c_str (), "r")))
7644 error (std::string ("cannot open ") + file);
7645@}
7646
7647void
7648calcxx_driver::scan_end ()
7649@{
7650 fclose (yyin);
7651@}
7652@end example
7653
7654@node Calc++ Top Level
7655@subsection Calc++ Top Level
7656
7657The top level file, @file{calc++.cc}, poses no problem.
7658
1c59e0a1 7659@comment file: calc++.cc
12545799
AD
7660@example
7661#include <iostream>
7662#include "calc++-driver.hh"
7663
7664int
fa4d969f 7665main (int argc, char *argv[])
12545799
AD
7666@{
7667 calcxx_driver driver;
7668 for (++argv; argv[0]; ++argv)
7669 if (*argv == std::string ("-p"))
7670 driver.trace_parsing = true;
7671 else if (*argv == std::string ("-s"))
7672 driver.trace_scanning = true;
7673 else
7674 @{
7675 driver.parse (*argv);
7676 std::cout << driver.result << std::endl;
7677 @}
7678@}
7679@end example
7680
7681@c ================================================= FAQ
d1a1114f
AD
7682
7683@node FAQ
7684@chapter Frequently Asked Questions
7685@cindex frequently asked questions
7686@cindex questions
7687
7688Several questions about Bison come up occasionally. Here some of them
7689are addressed.
7690
7691@menu
1a059451 7692* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 7693* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 7694* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 7695* Implementing Gotos/Loops:: Control Flow in the Calculator
d1a1114f
AD
7696@end menu
7697
1a059451
PE
7698@node Memory Exhausted
7699@section Memory Exhausted
d1a1114f
AD
7700
7701@display
1a059451 7702My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
7703message. What can I do?
7704@end display
7705
7706This question is already addressed elsewhere, @xref{Recursion,
7707,Recursive Rules}.
7708
e64fec0a
PE
7709@node How Can I Reset the Parser
7710@section How Can I Reset the Parser
5b066063 7711
0e14ad77
PE
7712The following phenomenon has several symptoms, resulting in the
7713following typical questions:
5b066063
AD
7714
7715@display
7716I invoke @code{yyparse} several times, and on correct input it works
7717properly; but when a parse error is found, all the other calls fail
0e14ad77 7718too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
7719@end display
7720
7721@noindent
7722or
7723
7724@display
0e14ad77 7725My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
7726which case I run @code{yyparse} from @code{yyparse}. This fails
7727although I did specify I needed a @code{%pure-parser}.
7728@end display
7729
0e14ad77
PE
7730These problems typically come not from Bison itself, but from
7731Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
7732speed, they might not notice a change of input file. As a
7733demonstration, consider the following source file,
7734@file{first-line.l}:
7735
7736@verbatim
7737%{
7738#include <stdio.h>
7739#include <stdlib.h>
7740%}
7741%%
7742.*\n ECHO; return 1;
7743%%
7744int
0e14ad77 7745yyparse (char const *file)
5b066063
AD
7746{
7747 yyin = fopen (file, "r");
7748 if (!yyin)
7749 exit (2);
fa7e68c3 7750 /* One token only. */
5b066063 7751 yylex ();
0e14ad77 7752 if (fclose (yyin) != 0)
5b066063
AD
7753 exit (3);
7754 return 0;
7755}
7756
7757int
0e14ad77 7758main (void)
5b066063
AD
7759{
7760 yyparse ("input");
7761 yyparse ("input");
7762 return 0;
7763}
7764@end verbatim
7765
7766@noindent
7767If the file @file{input} contains
7768
7769@verbatim
7770input:1: Hello,
7771input:2: World!
7772@end verbatim
7773
7774@noindent
0e14ad77 7775then instead of getting the first line twice, you get:
5b066063
AD
7776
7777@example
7778$ @kbd{flex -ofirst-line.c first-line.l}
7779$ @kbd{gcc -ofirst-line first-line.c -ll}
7780$ @kbd{./first-line}
7781input:1: Hello,
7782input:2: World!
7783@end example
7784
0e14ad77
PE
7785Therefore, whenever you change @code{yyin}, you must tell the
7786Lex-generated scanner to discard its current buffer and switch to the
7787new one. This depends upon your implementation of Lex; see its
7788documentation for more. For Flex, it suffices to call
7789@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
7790Flex-generated scanner needs to read from several input streams to
7791handle features like include files, you might consider using Flex
7792functions like @samp{yy_switch_to_buffer} that manipulate multiple
7793input buffers.
5b066063 7794
b165c324
AD
7795If your Flex-generated scanner uses start conditions (@pxref{Start
7796conditions, , Start conditions, flex, The Flex Manual}), you might
7797also want to reset the scanner's state, i.e., go back to the initial
7798start condition, through a call to @samp{BEGIN (0)}.
7799
fef4cb51
AD
7800@node Strings are Destroyed
7801@section Strings are Destroyed
7802
7803@display
c7e441b4 7804My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
7805them. Instead of reporting @samp{"foo", "bar"}, it reports
7806@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
7807@end display
7808
7809This error is probably the single most frequent ``bug report'' sent to
7810Bison lists, but is only concerned with a misunderstanding of the role
7811of scanner. Consider the following Lex code:
7812
7813@verbatim
7814%{
7815#include <stdio.h>
7816char *yylval = NULL;
7817%}
7818%%
7819.* yylval = yytext; return 1;
7820\n /* IGNORE */
7821%%
7822int
7823main ()
7824{
fa7e68c3 7825 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
7826 char *fst = (yylex (), yylval);
7827 char *snd = (yylex (), yylval);
7828 printf ("\"%s\", \"%s\"\n", fst, snd);
7829 return 0;
7830}
7831@end verbatim
7832
7833If you compile and run this code, you get:
7834
7835@example
7836$ @kbd{flex -osplit-lines.c split-lines.l}
7837$ @kbd{gcc -osplit-lines split-lines.c -ll}
7838$ @kbd{printf 'one\ntwo\n' | ./split-lines}
7839"one
7840two", "two"
7841@end example
7842
7843@noindent
7844this is because @code{yytext} is a buffer provided for @emph{reading}
7845in the action, but if you want to keep it, you have to duplicate it
7846(e.g., using @code{strdup}). Note that the output may depend on how
7847your implementation of Lex handles @code{yytext}. For instance, when
7848given the Lex compatibility option @option{-l} (which triggers the
7849option @samp{%array}) Flex generates a different behavior:
7850
7851@example
7852$ @kbd{flex -l -osplit-lines.c split-lines.l}
7853$ @kbd{gcc -osplit-lines split-lines.c -ll}
7854$ @kbd{printf 'one\ntwo\n' | ./split-lines}
7855"two", "two"
7856@end example
7857
7858
2fa09258
AD
7859@node Implementing Gotos/Loops
7860@section Implementing Gotos/Loops
a06ea4aa
AD
7861
7862@display
7863My simple calculator supports variables, assignments, and functions,
2fa09258 7864but how can I implement gotos, or loops?
a06ea4aa
AD
7865@end display
7866
7867Although very pedagogical, the examples included in the document blur
a1c84f45 7868the distinction to make between the parser---whose job is to recover
a06ea4aa 7869the structure of a text and to transmit it to subsequent modules of
a1c84f45 7870the program---and the processing (such as the execution) of this
a06ea4aa
AD
7871structure. This works well with so called straight line programs,
7872i.e., precisely those that have a straightforward execution model:
7873execute simple instructions one after the others.
7874
7875@cindex abstract syntax tree
7876@cindex @acronym{AST}
7877If you want a richer model, you will probably need to use the parser
7878to construct a tree that does represent the structure it has
7879recovered; this tree is usually called the @dfn{abstract syntax tree},
7880or @dfn{@acronym{AST}} for short. Then, walking through this tree,
7881traversing it in various ways, will enable treatments such as its
7882execution or its translation, which will result in an interpreter or a
7883compiler.
7884
7885This topic is way beyond the scope of this manual, and the reader is
7886invited to consult the dedicated literature.
7887
7888
7889
d1a1114f
AD
7890@c ================================================= Table of Symbols
7891
342b8b6e 7892@node Table of Symbols
bfa74976
RS
7893@appendix Bison Symbols
7894@cindex Bison symbols, table of
7895@cindex symbols in Bison, table of
7896
18b519c0 7897@deffn {Variable} @@$
3ded9a63 7898In an action, the location of the left-hand side of the rule.
88bce5a2 7899@xref{Locations, , Locations Overview}.
18b519c0 7900@end deffn
3ded9a63 7901
18b519c0 7902@deffn {Variable} @@@var{n}
3ded9a63
AD
7903In an action, the location of the @var{n}-th symbol of the right-hand
7904side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 7905@end deffn
3ded9a63 7906
18b519c0 7907@deffn {Variable} $$
3ded9a63
AD
7908In an action, the semantic value of the left-hand side of the rule.
7909@xref{Actions}.
18b519c0 7910@end deffn
3ded9a63 7911
18b519c0 7912@deffn {Variable} $@var{n}
3ded9a63
AD
7913In an action, the semantic value of the @var{n}-th symbol of the
7914right-hand side of the rule. @xref{Actions}.
18b519c0 7915@end deffn
3ded9a63 7916
dd8d9022
AD
7917@deffn {Delimiter} %%
7918Delimiter used to separate the grammar rule section from the
7919Bison declarations section or the epilogue.
7920@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 7921@end deffn
bfa74976 7922
dd8d9022
AD
7923@c Don't insert spaces, or check the DVI output.
7924@deffn {Delimiter} %@{@var{code}%@}
7925All code listed between @samp{%@{} and @samp{%@}} is copied directly to
7926the output file uninterpreted. Such code forms the prologue of the input
7927file. @xref{Grammar Outline, ,Outline of a Bison
7928Grammar}.
18b519c0 7929@end deffn
bfa74976 7930
dd8d9022
AD
7931@deffn {Construct} /*@dots{}*/
7932Comment delimiters, as in C.
18b519c0 7933@end deffn
bfa74976 7934
dd8d9022
AD
7935@deffn {Delimiter} :
7936Separates a rule's result from its components. @xref{Rules, ,Syntax of
7937Grammar Rules}.
18b519c0 7938@end deffn
bfa74976 7939
dd8d9022
AD
7940@deffn {Delimiter} ;
7941Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 7942@end deffn
bfa74976 7943
dd8d9022
AD
7944@deffn {Delimiter} |
7945Separates alternate rules for the same result nonterminal.
7946@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 7947@end deffn
bfa74976 7948
dd8d9022
AD
7949@deffn {Symbol} $accept
7950The predefined nonterminal whose only rule is @samp{$accept: @var{start}
7951$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
7952Start-Symbol}. It cannot be used in the grammar.
18b519c0 7953@end deffn
bfa74976 7954
18b519c0 7955@deffn {Directive} %debug
6deb4447 7956Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 7957@end deffn
6deb4447 7958
91d2c560 7959@ifset defaultprec
22fccf95
PE
7960@deffn {Directive} %default-prec
7961Assign a precedence to rules that lack an explicit @samp{%prec}
7962modifier. @xref{Contextual Precedence, ,Context-Dependent
7963Precedence}.
39a06c25 7964@end deffn
91d2c560 7965@end ifset
39a06c25 7966
18b519c0 7967@deffn {Directive} %defines
6deb4447
AD
7968Bison declaration to create a header file meant for the scanner.
7969@xref{Decl Summary}.
18b519c0 7970@end deffn
6deb4447 7971
18b519c0 7972@deffn {Directive} %destructor
258b75ca 7973Specify how the parser should reclaim the memory associated to
fa7e68c3 7974discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 7975@end deffn
72f889cc 7976
18b519c0 7977@deffn {Directive} %dprec
676385e2 7978Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
7979time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
7980@acronym{GLR} Parsers}.
18b519c0 7981@end deffn
676385e2 7982
dd8d9022
AD
7983@deffn {Symbol} $end
7984The predefined token marking the end of the token stream. It cannot be
7985used in the grammar.
7986@end deffn
7987
7988@deffn {Symbol} error
7989A token name reserved for error recovery. This token may be used in
7990grammar rules so as to allow the Bison parser to recognize an error in
7991the grammar without halting the process. In effect, a sentence
7992containing an error may be recognized as valid. On a syntax error, the
7993token @code{error} becomes the current look-ahead token. Actions
7994corresponding to @code{error} are then executed, and the look-ahead
7995token is reset to the token that originally caused the violation.
7996@xref{Error Recovery}.
18d192f0
AD
7997@end deffn
7998
18b519c0 7999@deffn {Directive} %error-verbose
2a8d363a
AD
8000Bison declaration to request verbose, specific error message strings
8001when @code{yyerror} is called.
18b519c0 8002@end deffn
2a8d363a 8003
18b519c0 8004@deffn {Directive} %file-prefix="@var{prefix}"
72d2299c 8005Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 8006Summary}.
18b519c0 8007@end deffn
d8988b2f 8008
18b519c0 8009@deffn {Directive} %glr-parser
c827f760
PE
8010Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
8011Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8012@end deffn
676385e2 8013
dd8d9022
AD
8014@deffn {Directive} %initial-action
8015Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
8016@end deffn
8017
18b519c0 8018@deffn {Directive} %left
bfa74976
RS
8019Bison declaration to assign left associativity to token(s).
8020@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8021@end deffn
bfa74976 8022
feeb0eda 8023@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
8024Bison declaration to specifying an additional parameter that
8025@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
8026for Pure Parsers}.
18b519c0 8027@end deffn
2a8d363a 8028
18b519c0 8029@deffn {Directive} %merge
676385e2 8030Bison declaration to assign a merging function to a rule. If there is a
fae437e8 8031reduce/reduce conflict with a rule having the same merging function, the
676385e2 8032function is applied to the two semantic values to get a single result.
c827f760 8033@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8034@end deffn
676385e2 8035
18b519c0 8036@deffn {Directive} %name-prefix="@var{prefix}"
72d2299c 8037Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 8038@end deffn
d8988b2f 8039
91d2c560 8040@ifset defaultprec
22fccf95
PE
8041@deffn {Directive} %no-default-prec
8042Do not assign a precedence to rules that lack an explicit @samp{%prec}
8043modifier. @xref{Contextual Precedence, ,Context-Dependent
8044Precedence}.
8045@end deffn
91d2c560 8046@end ifset
22fccf95 8047
18b519c0 8048@deffn {Directive} %no-lines
931c7513
RS
8049Bison declaration to avoid generating @code{#line} directives in the
8050parser file. @xref{Decl Summary}.
18b519c0 8051@end deffn
931c7513 8052
18b519c0 8053@deffn {Directive} %nonassoc
9d9b8b70 8054Bison declaration to assign nonassociativity to token(s).
bfa74976 8055@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8056@end deffn
bfa74976 8057
fa4d969f 8058@deffn {Directive} %output="@var{file}"
72d2299c 8059Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 8060Summary}.
18b519c0 8061@end deffn
d8988b2f 8062
feeb0eda 8063@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
8064Bison declaration to specifying an additional parameter that
8065@code{yyparse} should accept. @xref{Parser Function,, The Parser
8066Function @code{yyparse}}.
18b519c0 8067@end deffn
2a8d363a 8068
18b519c0 8069@deffn {Directive} %prec
bfa74976
RS
8070Bison declaration to assign a precedence to a specific rule.
8071@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 8072@end deffn
bfa74976 8073
18b519c0 8074@deffn {Directive} %pure-parser
bfa74976
RS
8075Bison declaration to request a pure (reentrant) parser.
8076@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 8077@end deffn
bfa74976 8078
b50d2359 8079@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
8080Require version @var{version} or higher of Bison. @xref{Require Decl, ,
8081Require a Version of Bison}.
b50d2359
AD
8082@end deffn
8083
18b519c0 8084@deffn {Directive} %right
bfa74976
RS
8085Bison declaration to assign right associativity to token(s).
8086@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8087@end deffn
bfa74976 8088
18b519c0 8089@deffn {Directive} %start
704a47c4
AD
8090Bison declaration to specify the start symbol. @xref{Start Decl, ,The
8091Start-Symbol}.
18b519c0 8092@end deffn
bfa74976 8093
18b519c0 8094@deffn {Directive} %token
bfa74976
RS
8095Bison declaration to declare token(s) without specifying precedence.
8096@xref{Token Decl, ,Token Type Names}.
18b519c0 8097@end deffn
bfa74976 8098
18b519c0 8099@deffn {Directive} %token-table
931c7513
RS
8100Bison declaration to include a token name table in the parser file.
8101@xref{Decl Summary}.
18b519c0 8102@end deffn
931c7513 8103
18b519c0 8104@deffn {Directive} %type
704a47c4
AD
8105Bison declaration to declare nonterminals. @xref{Type Decl,
8106,Nonterminal Symbols}.
18b519c0 8107@end deffn
bfa74976 8108
dd8d9022
AD
8109@deffn {Symbol} $undefined
8110The predefined token onto which all undefined values returned by
8111@code{yylex} are mapped. It cannot be used in the grammar, rather, use
8112@code{error}.
8113@end deffn
8114
18b519c0 8115@deffn {Directive} %union
bfa74976
RS
8116Bison declaration to specify several possible data types for semantic
8117values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 8118@end deffn
bfa74976 8119
dd8d9022
AD
8120@deffn {Macro} YYABORT
8121Macro to pretend that an unrecoverable syntax error has occurred, by
8122making @code{yyparse} return 1 immediately. The error reporting
8123function @code{yyerror} is not called. @xref{Parser Function, ,The
8124Parser Function @code{yyparse}}.
8125@end deffn
3ded9a63 8126
dd8d9022
AD
8127@deffn {Macro} YYACCEPT
8128Macro to pretend that a complete utterance of the language has been
8129read, by making @code{yyparse} return 0 immediately.
8130@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8131@end deffn
bfa74976 8132
dd8d9022
AD
8133@deffn {Macro} YYBACKUP
8134Macro to discard a value from the parser stack and fake a look-ahead
8135token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8136@end deffn
bfa74976 8137
dd8d9022 8138@deffn {Variable} yychar
32c29292 8139External integer variable that contains the integer value of the
dd8d9022
AD
8140look-ahead token. (In a pure parser, it is a local variable within
8141@code{yyparse}.) Error-recovery rule actions may examine this variable.
8142@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8143@end deffn
bfa74976 8144
dd8d9022
AD
8145@deffn {Variable} yyclearin
8146Macro used in error-recovery rule actions. It clears the previous
8147look-ahead token. @xref{Error Recovery}.
18b519c0 8148@end deffn
bfa74976 8149
dd8d9022
AD
8150@deffn {Macro} YYDEBUG
8151Macro to define to equip the parser with tracing code. @xref{Tracing,
8152,Tracing Your Parser}.
18b519c0 8153@end deffn
bfa74976 8154
dd8d9022
AD
8155@deffn {Variable} yydebug
8156External integer variable set to zero by default. If @code{yydebug}
8157is given a nonzero value, the parser will output information on input
8158symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 8159@end deffn
bfa74976 8160
dd8d9022
AD
8161@deffn {Macro} yyerrok
8162Macro to cause parser to recover immediately to its normal mode
8163after a syntax error. @xref{Error Recovery}.
8164@end deffn
8165
8166@deffn {Macro} YYERROR
8167Macro to pretend that a syntax error has just been detected: call
8168@code{yyerror} and then perform normal error recovery if possible
8169(@pxref{Error Recovery}), or (if recovery is impossible) make
8170@code{yyparse} return 1. @xref{Error Recovery}.
8171@end deffn
8172
8173@deffn {Function} yyerror
8174User-supplied function to be called by @code{yyparse} on error.
8175@xref{Error Reporting, ,The Error
8176Reporting Function @code{yyerror}}.
8177@end deffn
8178
8179@deffn {Macro} YYERROR_VERBOSE
8180An obsolete macro that you define with @code{#define} in the prologue
8181to request verbose, specific error message strings
8182when @code{yyerror} is called. It doesn't matter what definition you
8183use for @code{YYERROR_VERBOSE}, just whether you define it. Using
8184@code{%error-verbose} is preferred.
8185@end deffn
8186
8187@deffn {Macro} YYINITDEPTH
8188Macro for specifying the initial size of the parser stack.
1a059451 8189@xref{Memory Management}.
dd8d9022
AD
8190@end deffn
8191
8192@deffn {Function} yylex
8193User-supplied lexical analyzer function, called with no arguments to get
8194the next token. @xref{Lexical, ,The Lexical Analyzer Function
8195@code{yylex}}.
8196@end deffn
8197
8198@deffn {Macro} YYLEX_PARAM
8199An obsolete macro for specifying an extra argument (or list of extra
32c29292 8200arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
8201macro is deprecated, and is supported only for Yacc like parsers.
8202@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
8203@end deffn
8204
8205@deffn {Variable} yylloc
8206External variable in which @code{yylex} should place the line and column
8207numbers associated with a token. (In a pure parser, it is a local
8208variable within @code{yyparse}, and its address is passed to
32c29292
JD
8209@code{yylex}.)
8210You can ignore this variable if you don't use the @samp{@@} feature in the
8211grammar actions.
8212@xref{Token Locations, ,Textual Locations of Tokens}.
8213In semantic actions, it stores the location of the look-ahead token.
8214@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
8215@end deffn
8216
8217@deffn {Type} YYLTYPE
8218Data type of @code{yylloc}; by default, a structure with four
8219members. @xref{Location Type, , Data Types of Locations}.
8220@end deffn
8221
8222@deffn {Variable} yylval
8223External variable in which @code{yylex} should place the semantic
8224value associated with a token. (In a pure parser, it is a local
8225variable within @code{yyparse}, and its address is passed to
32c29292
JD
8226@code{yylex}.)
8227@xref{Token Values, ,Semantic Values of Tokens}.
8228In semantic actions, it stores the semantic value of the look-ahead token.
8229@xref{Actions, ,Actions}.
dd8d9022
AD
8230@end deffn
8231
8232@deffn {Macro} YYMAXDEPTH
1a059451
PE
8233Macro for specifying the maximum size of the parser stack. @xref{Memory
8234Management}.
dd8d9022
AD
8235@end deffn
8236
8237@deffn {Variable} yynerrs
8a2800e7 8238Global variable which Bison increments each time it reports a syntax error.
dd8d9022
AD
8239(In a pure parser, it is a local variable within @code{yyparse}.)
8240@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
8241@end deffn
8242
8243@deffn {Function} yyparse
8244The parser function produced by Bison; call this function to start
8245parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
8246@end deffn
8247
8248@deffn {Macro} YYPARSE_PARAM
8249An obsolete macro for specifying the name of a parameter that
8250@code{yyparse} should accept. The use of this macro is deprecated, and
8251is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
8252Conventions for Pure Parsers}.
8253@end deffn
8254
8255@deffn {Macro} YYRECOVERING
8256Macro whose value indicates whether the parser is recovering from a
8257syntax error. @xref{Action Features, ,Special Features for Use in Actions}.
8258@end deffn
8259
8260@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
8261Macro used to control the use of @code{alloca} when the C
8262@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
8263the parser will use @code{malloc} to extend its stacks. If defined to
82641, the parser will use @code{alloca}. Values other than 0 and 1 are
8265reserved for future Bison extensions. If not defined,
8266@code{YYSTACK_USE_ALLOCA} defaults to 0.
8267
55289366 8268In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
8269limited stack and with unreliable stack-overflow checking, you should
8270set @code{YYMAXDEPTH} to a value that cannot possibly result in
8271unchecked stack overflow on any of your target hosts when
8272@code{alloca} is called. You can inspect the code that Bison
8273generates in order to determine the proper numeric values. This will
8274require some expertise in low-level implementation details.
dd8d9022
AD
8275@end deffn
8276
8277@deffn {Type} YYSTYPE
8278Data type of semantic values; @code{int} by default.
8279@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 8280@end deffn
bfa74976 8281
342b8b6e 8282@node Glossary
bfa74976
RS
8283@appendix Glossary
8284@cindex glossary
8285
8286@table @asis
c827f760
PE
8287@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
8288Formal method of specifying context-free grammars originally proposed
8289by John Backus, and slightly improved by Peter Naur in his 1960-01-02
8290committee document contributing to what became the Algol 60 report.
8291@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8292
8293@item Context-free grammars
8294Grammars specified as rules that can be applied regardless of context.
8295Thus, if there is a rule which says that an integer can be used as an
8296expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
8297permitted. @xref{Language and Grammar, ,Languages and Context-Free
8298Grammars}.
bfa74976
RS
8299
8300@item Dynamic allocation
8301Allocation of memory that occurs during execution, rather than at
8302compile time or on entry to a function.
8303
8304@item Empty string
8305Analogous to the empty set in set theory, the empty string is a
8306character string of length zero.
8307
8308@item Finite-state stack machine
8309A ``machine'' that has discrete states in which it is said to exist at
8310each instant in time. As input to the machine is processed, the
8311machine moves from state to state as specified by the logic of the
8312machine. In the case of the parser, the input is the language being
8313parsed, and the states correspond to various stages in the grammar
c827f760 8314rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 8315
c827f760 8316@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 8317A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
8318that are not @acronym{LALR}(1). It resolves situations that Bison's
8319usual @acronym{LALR}(1)
676385e2
PH
8320algorithm cannot by effectively splitting off multiple parsers, trying all
8321possible parsers, and discarding those that fail in the light of additional
c827f760
PE
8322right context. @xref{Generalized LR Parsing, ,Generalized
8323@acronym{LR} Parsing}.
676385e2 8324
bfa74976
RS
8325@item Grouping
8326A language construct that is (in general) grammatically divisible;
c827f760 8327for example, `expression' or `declaration' in C@.
bfa74976
RS
8328@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8329
8330@item Infix operator
8331An arithmetic operator that is placed between the operands on which it
8332performs some operation.
8333
8334@item Input stream
8335A continuous flow of data between devices or programs.
8336
8337@item Language construct
8338One of the typical usage schemas of the language. For example, one of
8339the constructs of the C language is the @code{if} statement.
8340@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8341
8342@item Left associativity
8343Operators having left associativity are analyzed from left to right:
8344@samp{a+b+c} first computes @samp{a+b} and then combines with
8345@samp{c}. @xref{Precedence, ,Operator Precedence}.
8346
8347@item Left recursion
89cab50d
AD
8348A rule whose result symbol is also its first component symbol; for
8349example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
8350Rules}.
bfa74976
RS
8351
8352@item Left-to-right parsing
8353Parsing a sentence of a language by analyzing it token by token from
c827f760 8354left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8355
8356@item Lexical analyzer (scanner)
8357A function that reads an input stream and returns tokens one by one.
8358@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
8359
8360@item Lexical tie-in
8361A flag, set by actions in the grammar rules, which alters the way
8362tokens are parsed. @xref{Lexical Tie-ins}.
8363
931c7513 8364@item Literal string token
14ded682 8365A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 8366
bfa74976 8367@item Look-ahead token
89cab50d
AD
8368A token already read but not yet shifted. @xref{Look-Ahead, ,Look-Ahead
8369Tokens}.
bfa74976 8370
c827f760 8371@item @acronym{LALR}(1)
bfa74976 8372The class of context-free grammars that Bison (like most other parser
c827f760
PE
8373generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
8374Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 8375
c827f760 8376@item @acronym{LR}(1)
bfa74976
RS
8377The class of context-free grammars in which at most one token of
8378look-ahead is needed to disambiguate the parsing of any piece of input.
8379
8380@item Nonterminal symbol
8381A grammar symbol standing for a grammatical construct that can
8382be expressed through rules in terms of smaller constructs; in other
8383words, a construct that is not a token. @xref{Symbols}.
8384
bfa74976
RS
8385@item Parser
8386A function that recognizes valid sentences of a language by analyzing
8387the syntax structure of a set of tokens passed to it from a lexical
8388analyzer.
8389
8390@item Postfix operator
8391An arithmetic operator that is placed after the operands upon which it
8392performs some operation.
8393
8394@item Reduction
8395Replacing a string of nonterminals and/or terminals with a single
89cab50d 8396nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 8397Parser Algorithm}.
bfa74976
RS
8398
8399@item Reentrant
8400A reentrant subprogram is a subprogram which can be in invoked any
8401number of times in parallel, without interference between the various
8402invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
8403
8404@item Reverse polish notation
8405A language in which all operators are postfix operators.
8406
8407@item Right recursion
89cab50d
AD
8408A rule whose result symbol is also its last component symbol; for
8409example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
8410Rules}.
bfa74976
RS
8411
8412@item Semantics
8413In computer languages, the semantics are specified by the actions
8414taken for each instance of the language, i.e., the meaning of
8415each statement. @xref{Semantics, ,Defining Language Semantics}.
8416
8417@item Shift
8418A parser is said to shift when it makes the choice of analyzing
8419further input from the stream rather than reducing immediately some
c827f760 8420already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8421
8422@item Single-character literal
8423A single character that is recognized and interpreted as is.
8424@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
8425
8426@item Start symbol
8427The nonterminal symbol that stands for a complete valid utterance in
8428the language being parsed. The start symbol is usually listed as the
13863333 8429first nonterminal symbol in a language specification.
bfa74976
RS
8430@xref{Start Decl, ,The Start-Symbol}.
8431
8432@item Symbol table
8433A data structure where symbol names and associated data are stored
8434during parsing to allow for recognition and use of existing
8435information in repeated uses of a symbol. @xref{Multi-function Calc}.
8436
6e649e65
PE
8437@item Syntax error
8438An error encountered during parsing of an input stream due to invalid
8439syntax. @xref{Error Recovery}.
8440
bfa74976
RS
8441@item Token
8442A basic, grammatically indivisible unit of a language. The symbol
8443that describes a token in the grammar is a terminal symbol.
8444The input of the Bison parser is a stream of tokens which comes from
8445the lexical analyzer. @xref{Symbols}.
8446
8447@item Terminal symbol
89cab50d
AD
8448A grammar symbol that has no rules in the grammar and therefore is
8449grammatically indivisible. The piece of text it represents is a token.
8450@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8451@end table
8452
342b8b6e 8453@node Copying This Manual
f2b5126e 8454@appendix Copying This Manual
f9a8293a 8455
f2b5126e
PB
8456@menu
8457* GNU Free Documentation License:: License for copying this manual.
8458@end menu
f9a8293a 8459
f2b5126e
PB
8460@include fdl.texi
8461
342b8b6e 8462@node Index
bfa74976
RS
8463@unnumbered Index
8464
8465@printindex cp
8466
bfa74976 8467@bye
a06ea4aa
AD
8468
8469@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
8470@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
8471@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
8472@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
8473@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
8474@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
8475@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
8476@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
8477@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
8478@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
8479@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
8480@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
8481@c LocalWords: longjmp fprintf stderr preg yylloc YYLTYPE cos ln
8482@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
8483@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
8484@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
8485@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
8486@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless typefull yynerrs
8487@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
8488@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
8489@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 8490@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa
AD
8491@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
8492@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm VCG notype
8493@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
8494@c LocalWords: YYPRINTF infile ypp yxx outfile itemx vcg tex leaderfill
8495@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
8496@c LocalWords: yyrestart nbar yytext fst snd osplit ntwo strdup AST
8497@c LocalWords: YYSTACK DVI fdl printindex