]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
maint: prepare to use date ranges in copyright notices.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
e1145ad8
AD
33This manual (@value{UPDATED}) is for @acronym{GNU} Bison (version
34@value{VERSION}), the @acronym{GNU} parser generator.
fae437e8 35
7d424de1
PE
36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998, 1999,
372000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free
38Software Foundation, Inc.
fae437e8
AD
39
40@quotation
41Permission is granted to copy, distribute and/or modify this document
c827f760 42under the terms of the @acronym{GNU} Free Documentation License,
804e83b2 43Version 1.3 or any later version published by the Free Software
c827f760
PE
44Foundation; with no Invariant Sections, with the Front-Cover texts
45being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
46(a) below. A copy of the license is included in the section entitled
47``@acronym{GNU} Free Documentation License.''
48
389c8cfd
PE
49(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
50modify this @acronym{GNU} manual. Buying copies from the @acronym{FSF}
51supports it in developing @acronym{GNU} and promoting software
52freedom.''
fae437e8
AD
53@end quotation
54@end copying
55
e62f1a89 56@dircategory Software development
fae437e8 57@direntry
c827f760 58* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 59@end direntry
bfa74976 60
bfa74976
RS
61@titlepage
62@title Bison
c827f760 63@subtitle The Yacc-compatible Parser Generator
df1af54c 64@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
65
66@author by Charles Donnelly and Richard Stallman
67
68@page
69@vskip 0pt plus 1filll
fae437e8 70@insertcopying
bfa74976
RS
71@sp 2
72Published by the Free Software Foundation @*
0fb669f9
PE
7351 Franklin Street, Fifth Floor @*
74Boston, MA 02110-1301 USA @*
9ecbd125 75Printed copies are available from the Free Software Foundation.@*
c827f760 76@acronym{ISBN} 1-882114-44-2
bfa74976
RS
77@sp 2
78Cover art by Etienne Suvasa.
79@end titlepage
d5796688
JT
80
81@contents
bfa74976 82
342b8b6e
AD
83@ifnottex
84@node Top
85@top Bison
fae437e8 86@insertcopying
342b8b6e 87@end ifnottex
bfa74976
RS
88
89@menu
13863333
AD
90* Introduction::
91* Conditions::
f5f419de
DJ
92* Copying:: The @acronym{GNU} General Public License says
93 how you can copy and share Bison.
bfa74976
RS
94
95Tutorial sections:
f5f419de
DJ
96* Concepts:: Basic concepts for understanding Bison.
97* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
98
99Reference sections:
f5f419de
DJ
100* Grammar File:: Writing Bison declarations and rules.
101* Interface:: C-language interface to the parser function @code{yyparse}.
102* Algorithm:: How the Bison parser works at run-time.
103* Error Recovery:: Writing rules for error recovery.
bfa74976 104* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
105 messy for Bison to handle straightforwardly.
106* Debugging:: Understanding or debugging Bison parsers.
107* Invocation:: How to run Bison (to produce the parser source file).
108* Other Languages:: Creating C++ and Java parsers.
109* FAQ:: Frequently Asked Questions
110* Table of Symbols:: All the keywords of the Bison language are explained.
111* Glossary:: Basic concepts are explained.
112* Copying This Manual:: License for copying this manual.
113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
128* Locations Overview:: Tracking Locations.
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
fa7e68c3
PE
134Writing @acronym{GLR} Parsers
135
f5f419de
DJ
136* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
137* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
f5f419de 140* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
13863333
AD
166* Rpcalc Input::
167* Rpcalc Line::
168* Rpcalc Expr::
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
181
182Bison Grammar Files
183
184* Grammar Outline:: Overall layout of the grammar file.
185* Symbols:: Terminal and nonterminal symbols.
186* Rules:: How to write grammar rules.
187* Recursion:: Writing recursive rules.
188* Semantics:: Semantic values and actions.
93dd49ab 189* Locations:: Locations and actions.
bfa74976
RS
190* Declarations:: All kinds of Bison declarations are described here.
191* Multiple Parsers:: Putting more than one Bison parser in one program.
192
193Outline of a Bison Grammar
194
f5f419de 195* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 196* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
197* Bison Declarations:: Syntax and usage of the Bison declarations section.
198* Grammar Rules:: Syntax and usage of the grammar rules section.
199* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
200
201Defining Language Semantics
202
203* Value Type:: Specifying one data type for all semantic values.
204* Multiple Types:: Specifying several alternative data types.
205* Actions:: An action is the semantic definition of a grammar rule.
206* Action Types:: Specifying data types for actions to operate on.
207* Mid-Rule Actions:: Most actions go at the end of a rule.
208 This says when, why and how to use the exceptional
209 action in the middle of a rule.
d013372c 210* Named References:: Using named references in actions.
bfa74976 211
93dd49ab
PE
212Tracking Locations
213
214* Location Type:: Specifying a data type for locations.
215* Actions and Locations:: Using locations in actions.
216* Location Default Action:: Defining a general way to compute locations.
217
bfa74976
RS
218Bison Declarations
219
b50d2359 220* Require Decl:: Requiring a Bison version.
bfa74976
RS
221* Token Decl:: Declaring terminal symbols.
222* Precedence Decl:: Declaring terminals with precedence and associativity.
223* Union Decl:: Declaring the set of all semantic value types.
224* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 225* Initial Action Decl:: Code run before parsing starts.
72f889cc 226* Destructor Decl:: Declaring how symbols are freed.
d6328241 227* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
228* Start Decl:: Specifying the start symbol.
229* Pure Decl:: Requesting a reentrant parser.
9987d1b3 230* Push Decl:: Requesting a push parser.
bfa74976
RS
231* Decl Summary:: Table of all Bison declarations.
232
233Parser C-Language Interface
234
f5f419de
DJ
235* Parser Function:: How to call @code{yyparse} and what it returns.
236* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
237* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
238* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
239* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
240* Lexical:: You must supply a function @code{yylex}
241 which reads tokens.
242* Error Reporting:: You must supply a function @code{yyerror}.
243* Action Features:: Special features for use in actions.
244* Internationalization:: How to let the parser speak in the user's
245 native language.
bfa74976
RS
246
247The Lexical Analyzer Function @code{yylex}
248
249* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
250* Token Values:: How @code{yylex} must return the semantic value
251 of the token it has read.
252* Token Locations:: How @code{yylex} must return the text location
253 (line number, etc.) of the token, if the
254 actions want that.
255* Pure Calling:: How the calling convention differs in a pure parser
256 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 257
13863333 258The Bison Parser Algorithm
bfa74976 259
742e4900 260* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
261* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
262* Precedence:: Operator precedence works by resolving conflicts.
263* Contextual Precedence:: When an operator's precedence depends on context.
264* Parser States:: The parser is a finite-state-machine with stack.
265* Reduce/Reduce:: When two rules are applicable in the same situation.
f5f419de 266* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 267* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 268* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
269
270Operator Precedence
271
272* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
273* Using Precedence:: How to specify precedence and associativity.
274* Precedence Only:: How to specify precedence only.
bfa74976
RS
275* Precedence Examples:: How these features are used in the previous example.
276* How Precedence:: How they work.
277
278Handling Context Dependencies
279
280* Semantic Tokens:: Token parsing can depend on the semantic context.
281* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
282* Tie-in Recovery:: Lexical tie-ins have implications for how
283 error recovery rules must be written.
284
93dd49ab 285Debugging Your Parser
ec3bc396
AD
286
287* Understanding:: Understanding the structure of your parser.
288* Tracing:: Tracing the execution of your parser.
289
bfa74976
RS
290Invoking Bison
291
13863333 292* Bison Options:: All the options described in detail,
c827f760 293 in alphabetical order by short options.
bfa74976 294* Option Cross Key:: Alphabetical list of long options.
93dd49ab 295* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 296
8405b70c 297Parsers Written In Other Languages
12545799
AD
298
299* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 300* Java Parsers:: The interface to generate Java parser classes
12545799
AD
301
302C++ Parsers
303
304* C++ Bison Interface:: Asking for C++ parser generation
305* C++ Semantic Values:: %union vs. C++
306* C++ Location Values:: The position and location classes
307* C++ Parser Interface:: Instantiating and running the parser
308* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 309* A Complete C++ Example:: Demonstrating their use
12545799
AD
310
311A Complete C++ Example
312
313* Calc++ --- C++ Calculator:: The specifications
314* Calc++ Parsing Driver:: An active parsing context
315* Calc++ Parser:: A parser class
316* Calc++ Scanner:: A pure C++ Flex scanner
317* Calc++ Top Level:: Conducting the band
318
8405b70c
PB
319Java Parsers
320
f5f419de
DJ
321* Java Bison Interface:: Asking for Java parser generation
322* Java Semantic Values:: %type and %token vs. Java
323* Java Location Values:: The position and location classes
324* Java Parser Interface:: Instantiating and running the parser
325* Java Scanner Interface:: Specifying the scanner for the parser
326* Java Action Features:: Special features for use in actions
327* Java Differences:: Differences between C/C++ and Java Grammars
328* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 329
d1a1114f
AD
330Frequently Asked Questions
331
f5f419de
DJ
332* Memory Exhausted:: Breaking the Stack Limits
333* How Can I Reset the Parser:: @code{yyparse} Keeps some State
334* Strings are Destroyed:: @code{yylval} Loses Track of Strings
335* Implementing Gotos/Loops:: Control Flow in the Calculator
336* Multiple start-symbols:: Factoring closely related grammars
337* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
338* I can't build Bison:: Troubleshooting
339* Where can I find help?:: Troubleshouting
340* Bug Reports:: Troublereporting
341* More Languages:: Parsers in C++, Java, and so on
342* Beta Testing:: Experimenting development versions
343* Mailing Lists:: Meeting other Bison users
d1a1114f 344
f2b5126e
PB
345Copying This Manual
346
f5f419de 347* Copying This Manual:: License for copying this manual.
f2b5126e 348
342b8b6e 349@end detailmenu
bfa74976
RS
350@end menu
351
342b8b6e 352@node Introduction
bfa74976
RS
353@unnumbered Introduction
354@cindex introduction
355
6077da58 356@dfn{Bison} is a general-purpose parser generator that converts an
9dc3ee6d
JD
357annotated context-free grammar into a deterministic @acronym{LR} or
358generalized @acronym{LR} (@acronym{GLR}) parser employing
359@acronym{LALR}(1), @acronym{IELR}(1), or canonical @acronym{LR}(1)
360parser tables.
eb45ef3b
JD
361Once you are proficient with Bison, you can use it to develop a wide
362range of language parsers, from those used in simple desk calculators to
363complex programming languages.
bfa74976
RS
364
365Bison is upward compatible with Yacc: all properly-written Yacc grammars
366ought to work with Bison with no change. Anyone familiar with Yacc
367should be able to use Bison with little trouble. You need to be fluent in
1e137b71 368C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
369
370We begin with tutorial chapters that explain the basic concepts of using
371Bison and show three explained examples, each building on the last. If you
372don't know Bison or Yacc, start by reading these chapters. Reference
373chapters follow which describe specific aspects of Bison in detail.
374
931c7513
RS
375Bison was written primarily by Robert Corbett; Richard Stallman made it
376Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 377multi-character string literals and other features.
931c7513 378
df1af54c 379This edition corresponds to version @value{VERSION} of Bison.
bfa74976 380
342b8b6e 381@node Conditions
bfa74976
RS
382@unnumbered Conditions for Using Bison
383
193d7c70
PE
384The distribution terms for Bison-generated parsers permit using the
385parsers in nonfree programs. Before Bison version 2.2, these extra
386permissions applied only when Bison was generating @acronym{LALR}(1)
387parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 388parsers could be used only in programs that were free software.
a31239f1 389
c827f760
PE
390The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
391compiler, have never
9ecbd125 392had such a requirement. They could always be used for nonfree
a31239f1
RS
393software. The reason Bison was different was not due to a special
394policy decision; it resulted from applying the usual General Public
395License to all of the Bison source code.
396
397The output of the Bison utility---the Bison parser file---contains a
398verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
399parser's implementation. (The actions from your grammar are inserted
400into this implementation at one point, but most of the rest of the
401implementation is not changed.) When we applied the @acronym{GPL}
402terms to the skeleton code for the parser's implementation,
a31239f1
RS
403the effect was to restrict the use of Bison output to free software.
404
405We didn't change the terms because of sympathy for people who want to
406make software proprietary. @strong{Software should be free.} But we
407concluded that limiting Bison's use to free software was doing little to
408encourage people to make other software free. So we decided to make the
409practical conditions for using Bison match the practical conditions for
c827f760 410using the other @acronym{GNU} tools.
bfa74976 411
193d7c70
PE
412This exception applies when Bison is generating code for a parser.
413You can tell whether the exception applies to a Bison output file by
414inspecting the file for text beginning with ``As a special
415exception@dots{}''. The text spells out the exact terms of the
416exception.
262aa8dd 417
f16b0819
PE
418@node Copying
419@unnumbered GNU GENERAL PUBLIC LICENSE
420@include gpl-3.0.texi
bfa74976 421
342b8b6e 422@node Concepts
bfa74976
RS
423@chapter The Concepts of Bison
424
425This chapter introduces many of the basic concepts without which the
426details of Bison will not make sense. If you do not already know how to
427use Bison or Yacc, we suggest you start by reading this chapter carefully.
428
429@menu
f5f419de
DJ
430* Language and Grammar:: Languages and context-free grammars,
431 as mathematical ideas.
432* Grammar in Bison:: How we represent grammars for Bison's sake.
433* Semantic Values:: Each token or syntactic grouping can have
434 a semantic value (the value of an integer,
435 the name of an identifier, etc.).
436* Semantic Actions:: Each rule can have an action containing C code.
437* GLR Parsers:: Writing parsers for general context-free languages.
438* Locations Overview:: Tracking Locations.
439* Bison Parser:: What are Bison's input and output,
440 how is the output used?
441* Stages:: Stages in writing and running Bison grammars.
442* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
443@end menu
444
342b8b6e 445@node Language and Grammar
bfa74976
RS
446@section Languages and Context-Free Grammars
447
bfa74976
RS
448@cindex context-free grammar
449@cindex grammar, context-free
450In order for Bison to parse a language, it must be described by a
451@dfn{context-free grammar}. This means that you specify one or more
452@dfn{syntactic groupings} and give rules for constructing them from their
453parts. For example, in the C language, one kind of grouping is called an
454`expression'. One rule for making an expression might be, ``An expression
455can be made of a minus sign and another expression''. Another would be,
456``An expression can be an integer''. As you can see, rules are often
457recursive, but there must be at least one rule which leads out of the
458recursion.
459
c827f760 460@cindex @acronym{BNF}
bfa74976
RS
461@cindex Backus-Naur form
462The most common formal system for presenting such rules for humans to read
c827f760
PE
463is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
464order to specify the language Algol 60. Any grammar expressed in
465@acronym{BNF} is a context-free grammar. The input to Bison is
466essentially machine-readable @acronym{BNF}.
bfa74976 467
c827f760 468@cindex @acronym{LALR}(1) grammars
eb45ef3b 469@cindex @acronym{IELR}(1) grammars
c827f760 470@cindex @acronym{LR}(1) grammars
eb45ef3b
JD
471There are various important subclasses of context-free grammars.
472Although it can handle almost all context-free grammars, Bison is
473optimized for what are called @acronym{LR}(1) grammars.
474In brief, in these grammars, it must be possible to tell how to parse
475any portion of an input string with just a single token of lookahead.
476For historical reasons, Bison by default is limited by the additional
477restrictions of @acronym{LALR}(1), which is hard to explain simply.
c827f760
PE
478@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
479more information on this.
f1b238df
JD
480As an experimental feature, you can escape these additional restrictions by
481requesting @acronym{IELR}(1) or canonical @acronym{LR}(1) parser tables.
eb45ef3b 482@xref{Decl Summary,,lr.type}, to learn how.
bfa74976 483
c827f760
PE
484@cindex @acronym{GLR} parsing
485@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 486@cindex ambiguous grammars
9d9b8b70 487@cindex nondeterministic parsing
9501dc6e 488
eb45ef3b 489Parsers for @acronym{LR}(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
490roughly that the next grammar rule to apply at any point in the input is
491uniquely determined by the preceding input and a fixed, finite portion
742e4900 492(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 493grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 494apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 495grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 496lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
497With the proper declarations, Bison is also able to parse these more
498general context-free grammars, using a technique known as @acronym{GLR}
499parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
500are able to handle any context-free grammar for which the number of
501possible parses of any given string is finite.
676385e2 502
bfa74976
RS
503@cindex symbols (abstract)
504@cindex token
505@cindex syntactic grouping
506@cindex grouping, syntactic
9501dc6e
AD
507In the formal grammatical rules for a language, each kind of syntactic
508unit or grouping is named by a @dfn{symbol}. Those which are built by
509grouping smaller constructs according to grammatical rules are called
bfa74976
RS
510@dfn{nonterminal symbols}; those which can't be subdivided are called
511@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
512corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 513corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
514
515We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
516nonterminal, mean. The tokens of C are identifiers, constants (numeric
517and string), and the various keywords, arithmetic operators and
518punctuation marks. So the terminal symbols of a grammar for C include
519`identifier', `number', `string', plus one symbol for each keyword,
520operator or punctuation mark: `if', `return', `const', `static', `int',
521`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
522(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
523lexicography, not grammar.)
524
525Here is a simple C function subdivided into tokens:
526
9edcd895
AD
527@ifinfo
528@example
529int /* @r{keyword `int'} */
14d4662b 530square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
531 @r{identifier, close-paren} */
532@{ /* @r{open-brace} */
aa08666d
AD
533 return x * x; /* @r{keyword `return', identifier, asterisk,}
534 @r{identifier, semicolon} */
9edcd895
AD
535@} /* @r{close-brace} */
536@end example
537@end ifinfo
538@ifnotinfo
bfa74976
RS
539@example
540int /* @r{keyword `int'} */
14d4662b 541square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 542@{ /* @r{open-brace} */
9edcd895 543 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
544@} /* @r{close-brace} */
545@end example
9edcd895 546@end ifnotinfo
bfa74976
RS
547
548The syntactic groupings of C include the expression, the statement, the
549declaration, and the function definition. These are represented in the
550grammar of C by nonterminal symbols `expression', `statement',
551`declaration' and `function definition'. The full grammar uses dozens of
552additional language constructs, each with its own nonterminal symbol, in
553order to express the meanings of these four. The example above is a
554function definition; it contains one declaration, and one statement. In
555the statement, each @samp{x} is an expression and so is @samp{x * x}.
556
557Each nonterminal symbol must have grammatical rules showing how it is made
558out of simpler constructs. For example, one kind of C statement is the
559@code{return} statement; this would be described with a grammar rule which
560reads informally as follows:
561
562@quotation
563A `statement' can be made of a `return' keyword, an `expression' and a
564`semicolon'.
565@end quotation
566
567@noindent
568There would be many other rules for `statement', one for each kind of
569statement in C.
570
571@cindex start symbol
572One nonterminal symbol must be distinguished as the special one which
573defines a complete utterance in the language. It is called the @dfn{start
574symbol}. In a compiler, this means a complete input program. In the C
575language, the nonterminal symbol `sequence of definitions and declarations'
576plays this role.
577
578For example, @samp{1 + 2} is a valid C expression---a valid part of a C
579program---but it is not valid as an @emph{entire} C program. In the
580context-free grammar of C, this follows from the fact that `expression' is
581not the start symbol.
582
583The Bison parser reads a sequence of tokens as its input, and groups the
584tokens using the grammar rules. If the input is valid, the end result is
585that the entire token sequence reduces to a single grouping whose symbol is
586the grammar's start symbol. If we use a grammar for C, the entire input
587must be a `sequence of definitions and declarations'. If not, the parser
588reports a syntax error.
589
342b8b6e 590@node Grammar in Bison
bfa74976
RS
591@section From Formal Rules to Bison Input
592@cindex Bison grammar
593@cindex grammar, Bison
594@cindex formal grammar
595
596A formal grammar is a mathematical construct. To define the language
597for Bison, you must write a file expressing the grammar in Bison syntax:
598a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
599
600A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 601as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
602in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
603
604The Bison representation for a terminal symbol is also called a @dfn{token
605type}. Token types as well can be represented as C-like identifiers. By
606convention, these identifiers should be upper case to distinguish them from
607nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
608@code{RETURN}. A terminal symbol that stands for a particular keyword in
609the language should be named after that keyword converted to upper case.
610The terminal symbol @code{error} is reserved for error recovery.
931c7513 611@xref{Symbols}.
bfa74976
RS
612
613A terminal symbol can also be represented as a character literal, just like
614a C character constant. You should do this whenever a token is just a
615single character (parenthesis, plus-sign, etc.): use that same character in
616a literal as the terminal symbol for that token.
617
931c7513
RS
618A third way to represent a terminal symbol is with a C string constant
619containing several characters. @xref{Symbols}, for more information.
620
bfa74976
RS
621The grammar rules also have an expression in Bison syntax. For example,
622here is the Bison rule for a C @code{return} statement. The semicolon in
623quotes is a literal character token, representing part of the C syntax for
624the statement; the naked semicolon, and the colon, are Bison punctuation
625used in every rule.
626
627@example
628stmt: RETURN expr ';'
629 ;
630@end example
631
632@noindent
633@xref{Rules, ,Syntax of Grammar Rules}.
634
342b8b6e 635@node Semantic Values
bfa74976
RS
636@section Semantic Values
637@cindex semantic value
638@cindex value, semantic
639
640A formal grammar selects tokens only by their classifications: for example,
641if a rule mentions the terminal symbol `integer constant', it means that
642@emph{any} integer constant is grammatically valid in that position. The
643precise value of the constant is irrelevant to how to parse the input: if
644@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 645grammatical.
bfa74976
RS
646
647But the precise value is very important for what the input means once it is
648parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6493989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
650has both a token type and a @dfn{semantic value}. @xref{Semantics,
651,Defining Language Semantics},
bfa74976
RS
652for details.
653
654The token type is a terminal symbol defined in the grammar, such as
655@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
656you need to know to decide where the token may validly appear and how to
657group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 658except their types.
bfa74976
RS
659
660The semantic value has all the rest of the information about the
661meaning of the token, such as the value of an integer, or the name of an
662identifier. (A token such as @code{','} which is just punctuation doesn't
663need to have any semantic value.)
664
665For example, an input token might be classified as token type
666@code{INTEGER} and have the semantic value 4. Another input token might
667have the same token type @code{INTEGER} but value 3989. When a grammar
668rule says that @code{INTEGER} is allowed, either of these tokens is
669acceptable because each is an @code{INTEGER}. When the parser accepts the
670token, it keeps track of the token's semantic value.
671
672Each grouping can also have a semantic value as well as its nonterminal
673symbol. For example, in a calculator, an expression typically has a
674semantic value that is a number. In a compiler for a programming
675language, an expression typically has a semantic value that is a tree
676structure describing the meaning of the expression.
677
342b8b6e 678@node Semantic Actions
bfa74976
RS
679@section Semantic Actions
680@cindex semantic actions
681@cindex actions, semantic
682
683In order to be useful, a program must do more than parse input; it must
684also produce some output based on the input. In a Bison grammar, a grammar
685rule can have an @dfn{action} made up of C statements. Each time the
686parser recognizes a match for that rule, the action is executed.
687@xref{Actions}.
13863333 688
bfa74976
RS
689Most of the time, the purpose of an action is to compute the semantic value
690of the whole construct from the semantic values of its parts. For example,
691suppose we have a rule which says an expression can be the sum of two
692expressions. When the parser recognizes such a sum, each of the
693subexpressions has a semantic value which describes how it was built up.
694The action for this rule should create a similar sort of value for the
695newly recognized larger expression.
696
697For example, here is a rule that says an expression can be the sum of
698two subexpressions:
699
700@example
701expr: expr '+' expr @{ $$ = $1 + $3; @}
702 ;
703@end example
704
705@noindent
706The action says how to produce the semantic value of the sum expression
707from the values of the two subexpressions.
708
676385e2 709@node GLR Parsers
c827f760
PE
710@section Writing @acronym{GLR} Parsers
711@cindex @acronym{GLR} parsing
712@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
713@findex %glr-parser
714@cindex conflicts
715@cindex shift/reduce conflicts
fa7e68c3 716@cindex reduce/reduce conflicts
676385e2 717
eb45ef3b
JD
718In some grammars, Bison's deterministic
719@acronym{LR}(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
720certain grammar rule at a given point. That is, it may not be able to
721decide (on the basis of the input read so far) which of two possible
722reductions (applications of a grammar rule) applies, or whether to apply
723a reduction or read more of the input and apply a reduction later in the
724input. These are known respectively as @dfn{reduce/reduce} conflicts
725(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
726(@pxref{Shift/Reduce}).
727
eb45ef3b 728To use a grammar that is not easily modified to be @acronym{LR}(1), a
9501dc6e 729more general parsing algorithm is sometimes necessary. If you include
676385e2 730@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 731(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
732(@acronym{GLR}) parser. These parsers handle Bison grammars that
733contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 734declarations) identically to deterministic parsers. However, when
9501dc6e
AD
735faced with unresolved shift/reduce and reduce/reduce conflicts,
736@acronym{GLR} parsers use the simple expedient of doing both,
737effectively cloning the parser to follow both possibilities. Each of
738the resulting parsers can again split, so that at any given time, there
739can be any number of possible parses being explored. The parsers
676385e2
PH
740proceed in lockstep; that is, all of them consume (shift) a given input
741symbol before any of them proceed to the next. Each of the cloned
742parsers eventually meets one of two possible fates: either it runs into
743a parsing error, in which case it simply vanishes, or it merges with
744another parser, because the two of them have reduced the input to an
745identical set of symbols.
746
747During the time that there are multiple parsers, semantic actions are
748recorded, but not performed. When a parser disappears, its recorded
749semantic actions disappear as well, and are never performed. When a
750reduction makes two parsers identical, causing them to merge, Bison
751records both sets of semantic actions. Whenever the last two parsers
752merge, reverting to the single-parser case, Bison resolves all the
753outstanding actions either by precedences given to the grammar rules
754involved, or by performing both actions, and then calling a designated
755user-defined function on the resulting values to produce an arbitrary
756merged result.
757
fa7e68c3 758@menu
f5f419de
DJ
759* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
760* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
20be2f92 761* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 762* Semantic Predicates:: Controlling a parse with arbitrary computations.
f5f419de 763* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
764@end menu
765
766@node Simple GLR Parsers
767@subsection Using @acronym{GLR} on Unambiguous Grammars
768@cindex @acronym{GLR} parsing, unambiguous grammars
769@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
770@findex %glr-parser
771@findex %expect-rr
772@cindex conflicts
773@cindex reduce/reduce conflicts
774@cindex shift/reduce conflicts
775
776In the simplest cases, you can use the @acronym{GLR} algorithm
eb45ef3b
JD
777to parse grammars that are unambiguous but fail to be @acronym{LR}(1).
778Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
779
780Consider a problem that
781arises in the declaration of enumerated and subrange types in the
782programming language Pascal. Here are some examples:
783
784@example
785type subrange = lo .. hi;
786type enum = (a, b, c);
787@end example
788
789@noindent
790The original language standard allows only numeric
791literals and constant identifiers for the subrange bounds (@samp{lo}
792and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
79310206) and many other
794Pascal implementations allow arbitrary expressions there. This gives
795rise to the following situation, containing a superfluous pair of
796parentheses:
797
798@example
799type subrange = (a) .. b;
800@end example
801
802@noindent
803Compare this to the following declaration of an enumerated
804type with only one value:
805
806@example
807type enum = (a);
808@end example
809
810@noindent
811(These declarations are contrived, but they are syntactically
812valid, and more-complicated cases can come up in practical programs.)
813
814These two declarations look identical until the @samp{..} token.
eb45ef3b 815With normal @acronym{LR}(1) one-token lookahead it is not
fa7e68c3
PE
816possible to decide between the two forms when the identifier
817@samp{a} is parsed. It is, however, desirable
818for a parser to decide this, since in the latter case
819@samp{a} must become a new identifier to represent the enumeration
820value, while in the former case @samp{a} must be evaluated with its
821current meaning, which may be a constant or even a function call.
822
823You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
824to be resolved later, but this typically requires substantial
825contortions in both semantic actions and large parts of the
826grammar, where the parentheses are nested in the recursive rules for
827expressions.
828
829You might think of using the lexer to distinguish between the two
830forms by returning different tokens for currently defined and
831undefined identifiers. But if these declarations occur in a local
832scope, and @samp{a} is defined in an outer scope, then both forms
833are possible---either locally redefining @samp{a}, or using the
834value of @samp{a} from the outer scope. So this approach cannot
835work.
836
e757bb10 837A simple solution to this problem is to declare the parser to
fa7e68c3
PE
838use the @acronym{GLR} algorithm.
839When the @acronym{GLR} parser reaches the critical state, it
840merely splits into two branches and pursues both syntax rules
841simultaneously. Sooner or later, one of them runs into a parsing
842error. If there is a @samp{..} token before the next
843@samp{;}, the rule for enumerated types fails since it cannot
844accept @samp{..} anywhere; otherwise, the subrange type rule
845fails since it requires a @samp{..} token. So one of the branches
846fails silently, and the other one continues normally, performing
847all the intermediate actions that were postponed during the split.
848
849If the input is syntactically incorrect, both branches fail and the parser
850reports a syntax error as usual.
851
852The effect of all this is that the parser seems to ``guess'' the
853correct branch to take, or in other words, it seems to use more
eb45ef3b
JD
854lookahead than the underlying @acronym{LR}(1) algorithm actually allows
855for. In this example, @acronym{LR}(2) would suffice, but also some cases
856that are not @acronym{LR}(@math{k}) for any @math{k} can be handled this way.
fa7e68c3
PE
857
858In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
859and the current Bison parser even takes exponential time and space
860for some grammars. In practice, this rarely happens, and for many
861grammars it is possible to prove that it cannot happen.
862The present example contains only one conflict between two
863rules, and the type-declaration context containing the conflict
864cannot be nested. So the number of
865branches that can exist at any time is limited by the constant 2,
866and the parsing time is still linear.
867
868Here is a Bison grammar corresponding to the example above. It
869parses a vastly simplified form of Pascal type declarations.
870
871@example
872%token TYPE DOTDOT ID
873
874@group
875%left '+' '-'
876%left '*' '/'
877@end group
878
879%%
880
881@group
882type_decl : TYPE ID '=' type ';'
883 ;
884@end group
885
886@group
887type : '(' id_list ')'
888 | expr DOTDOT expr
889 ;
890@end group
891
892@group
893id_list : ID
894 | id_list ',' ID
895 ;
896@end group
897
898@group
899expr : '(' expr ')'
900 | expr '+' expr
901 | expr '-' expr
902 | expr '*' expr
903 | expr '/' expr
904 | ID
905 ;
906@end group
907@end example
908
eb45ef3b 909When used as a normal @acronym{LR}(1) grammar, Bison correctly complains
fa7e68c3
PE
910about one reduce/reduce conflict. In the conflicting situation the
911parser chooses one of the alternatives, arbitrarily the one
912declared first. Therefore the following correct input is not
913recognized:
914
915@example
916type t = (a) .. b;
917@end example
918
919The parser can be turned into a @acronym{GLR} parser, while also telling Bison
920to be silent about the one known reduce/reduce conflict, by
e757bb10 921adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
922@samp{%%}):
923
924@example
925%glr-parser
926%expect-rr 1
927@end example
928
929@noindent
930No change in the grammar itself is required. Now the
931parser recognizes all valid declarations, according to the
932limited syntax above, transparently. In fact, the user does not even
933notice when the parser splits.
934
f8e1c9e5
AD
935So here we have a case where we can use the benefits of @acronym{GLR},
936almost without disadvantages. Even in simple cases like this, however,
937there are at least two potential problems to beware. First, always
938analyze the conflicts reported by Bison to make sure that @acronym{GLR}
939splitting is only done where it is intended. A @acronym{GLR} parser
940splitting inadvertently may cause problems less obvious than an
eb45ef3b 941@acronym{LR} parser statically choosing the wrong alternative in a
f8e1c9e5
AD
942conflict. Second, consider interactions with the lexer (@pxref{Semantic
943Tokens}) with great care. Since a split parser consumes tokens without
944performing any actions during the split, the lexer cannot obtain
945information via parser actions. Some cases of lexer interactions can be
946eliminated by using @acronym{GLR} to shift the complications from the
947lexer to the parser. You must check the remaining cases for
948correctness.
949
950In our example, it would be safe for the lexer to return tokens based on
951their current meanings in some symbol table, because no new symbols are
952defined in the middle of a type declaration. Though it is possible for
953a parser to define the enumeration constants as they are parsed, before
954the type declaration is completed, it actually makes no difference since
955they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
956
957@node Merging GLR Parses
958@subsection Using @acronym{GLR} to Resolve Ambiguities
959@cindex @acronym{GLR} parsing, ambiguous grammars
960@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
961@findex %dprec
962@findex %merge
963@cindex conflicts
964@cindex reduce/reduce conflicts
965
2a8d363a 966Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
967
968@example
969%@{
38a92d50
PE
970 #include <stdio.h>
971 #define YYSTYPE char const *
972 int yylex (void);
973 void yyerror (char const *);
676385e2
PH
974%@}
975
976%token TYPENAME ID
977
978%right '='
979%left '+'
980
981%glr-parser
982
983%%
984
fae437e8 985prog :
676385e2
PH
986 | prog stmt @{ printf ("\n"); @}
987 ;
988
989stmt : expr ';' %dprec 1
990 | decl %dprec 2
991 ;
992
2a8d363a 993expr : ID @{ printf ("%s ", $$); @}
fae437e8 994 | TYPENAME '(' expr ')'
2a8d363a
AD
995 @{ printf ("%s <cast> ", $1); @}
996 | expr '+' expr @{ printf ("+ "); @}
997 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
998 ;
999
fae437e8 1000decl : TYPENAME declarator ';'
2a8d363a 1001 @{ printf ("%s <declare> ", $1); @}
676385e2 1002 | TYPENAME declarator '=' expr ';'
2a8d363a 1003 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1004 ;
1005
2a8d363a 1006declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1007 | '(' declarator ')'
1008 ;
1009@end example
1010
1011@noindent
1012This models a problematic part of the C++ grammar---the ambiguity between
1013certain declarations and statements. For example,
1014
1015@example
1016T (x) = y+z;
1017@end example
1018
1019@noindent
1020parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1021(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1022@samp{x} as an @code{ID}).
676385e2 1023Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1024@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1025time it encounters @code{x} in the example above. Since this is a
1026@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1027each choice of resolving the reduce/reduce conflict.
1028Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1029however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1030ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1031the other reduces @code{stmt : decl}, after which both parsers are in an
1032identical state: they've seen @samp{prog stmt} and have the same unprocessed
1033input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1034
1035At this point, the @acronym{GLR} parser requires a specification in the
1036grammar of how to choose between the competing parses.
1037In the example above, the two @code{%dprec}
e757bb10 1038declarations specify that Bison is to give precedence
fa7e68c3 1039to the parse that interprets the example as a
676385e2
PH
1040@code{decl}, which implies that @code{x} is a declarator.
1041The parser therefore prints
1042
1043@example
fae437e8 1044"x" y z + T <init-declare>
676385e2
PH
1045@end example
1046
fa7e68c3
PE
1047The @code{%dprec} declarations only come into play when more than one
1048parse survives. Consider a different input string for this parser:
676385e2
PH
1049
1050@example
1051T (x) + y;
1052@end example
1053
1054@noindent
e757bb10 1055This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1056construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1057Here, there is no ambiguity (this cannot be parsed as a declaration).
1058However, at the time the Bison parser encounters @code{x}, it does not
1059have enough information to resolve the reduce/reduce conflict (again,
1060between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1061case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1062into two, one assuming that @code{x} is an @code{expr}, and the other
1063assuming @code{x} is a @code{declarator}. The second of these parsers
1064then vanishes when it sees @code{+}, and the parser prints
1065
1066@example
fae437e8 1067x T <cast> y +
676385e2
PH
1068@end example
1069
1070Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1071the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1072actions of the two possible parsers, rather than choosing one over the
1073other. To do so, you could change the declaration of @code{stmt} as
1074follows:
1075
1076@example
1077stmt : expr ';' %merge <stmtMerge>
1078 | decl %merge <stmtMerge>
1079 ;
1080@end example
1081
1082@noindent
676385e2
PH
1083and define the @code{stmtMerge} function as:
1084
1085@example
38a92d50
PE
1086static YYSTYPE
1087stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1088@{
1089 printf ("<OR> ");
1090 return "";
1091@}
1092@end example
1093
1094@noindent
1095with an accompanying forward declaration
1096in the C declarations at the beginning of the file:
1097
1098@example
1099%@{
38a92d50 1100 #define YYSTYPE char const *
676385e2
PH
1101 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1102%@}
1103@end example
1104
1105@noindent
fa7e68c3
PE
1106With these declarations, the resulting parser parses the first example
1107as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1108
1109@example
fae437e8 1110"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1111@end example
1112
fa7e68c3 1113Bison requires that all of the
e757bb10 1114productions that participate in any particular merge have identical
fa7e68c3
PE
1115@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1116and the parser will report an error during any parse that results in
1117the offending merge.
9501dc6e 1118
32c29292
JD
1119@node GLR Semantic Actions
1120@subsection GLR Semantic Actions
1121
20be2f92
PH
1122The nature of @acronym{GLR} parsing and the structure of the generated
1123parsers give rise to certain restrictions on semantic values and actions.
1124
1125@subsubsection Deferred semantic actions
32c29292
JD
1126@cindex deferred semantic actions
1127By definition, a deferred semantic action is not performed at the same time as
1128the associated reduction.
1129This raises caveats for several Bison features you might use in a semantic
1130action in a @acronym{GLR} parser.
1131
1132@vindex yychar
1133@cindex @acronym{GLR} parsers and @code{yychar}
1134@vindex yylval
1135@cindex @acronym{GLR} parsers and @code{yylval}
1136@vindex yylloc
1137@cindex @acronym{GLR} parsers and @code{yylloc}
1138In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1139the lookahead token present at the time of the associated reduction.
32c29292
JD
1140After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1141you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1142lookahead token's semantic value and location, if any.
32c29292
JD
1143In a nondeferred semantic action, you can also modify any of these variables to
1144influence syntax analysis.
742e4900 1145@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1146
1147@findex yyclearin
1148@cindex @acronym{GLR} parsers and @code{yyclearin}
1149In a deferred semantic action, it's too late to influence syntax analysis.
1150In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1151shallow copies of the values they had at the time of the associated reduction.
1152For this reason alone, modifying them is dangerous.
1153Moreover, the result of modifying them is undefined and subject to change with
1154future versions of Bison.
1155For example, if a semantic action might be deferred, you should never write it
1156to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1157memory referenced by @code{yylval}.
1158
20be2f92 1159@subsubsection YYERROR
32c29292
JD
1160@findex YYERROR
1161@cindex @acronym{GLR} parsers and @code{YYERROR}
1162Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1163(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1164initiate error recovery.
1165During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
eb45ef3b 1166the same as its effect in a deterministic parser.
20be2f92
PH
1167The effect in a deferred action is similar, but the precise point of the
1168error is undefined; instead, the parser reverts to deterministic operation,
1169selecting an unspecified stack on which to continue with a syntax error.
1170In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1171parsing, @code{YYERROR} silently prunes
1172the parse that invoked the test.
1173
1174@subsubsection Restrictions on semantic values and locations
1175@acronym{GLR} parsers require that you use POD (Plain Old Data) types for
1176semantic values and location types when using the generated parsers as
1177C++ code.
8710fc41 1178
ca2a6d15
PH
1179@node Semantic Predicates
1180@subsection Controlling a Parse with Arbitrary Predicates
1181@findex %?
1182@cindex Semantic predicates in @acronym{GLR} parsers
1183
1184In addition to the @code{%dprec} and @code{%merge} directives,
1185@acronym{GLR} parsers
1186allow you to reject parses on the basis of arbitrary computations executed
1187in user code, without having Bison treat this rejection as an error
1188if there are alternative parses. (This feature is experimental and may
1189evolve. We welcome user feedback.) For example,
1190
1191@smallexample
1192widget :
1193 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1194 | %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1195 ;
1196@end smallexample
1197
1198@noindent
1199is one way to allow the same parser to handle two different syntaxes for
1200widgets. The clause preceded by @code{%?} is treated like an ordinary
1201action, except that its text is treated as an expression and is always
1202evaluated immediately (even when in nondeterministic mode). If the
1203expression yields 0 (false), the clause is treated as a syntax error,
1204which, in a nondeterministic parser, causes the stack in which it is reduced
1205to die. In a deterministic parser, it acts like YYERROR.
1206
1207As the example shows, predicates otherwise look like semantic actions, and
1208therefore you must be take them into account when determining the numbers
1209to use for denoting the semantic values of right-hand side symbols.
1210Predicate actions, however, have no defined value, and may not be given
1211labels.
1212
1213There is a subtle difference between semantic predicates and ordinary
1214actions in nondeterministic mode, since the latter are deferred.
1215For example, we could try to rewrite the previous example as
1216
1217@smallexample
1218widget :
1219 @{ if (!new_syntax) YYERROR; @} "widget" id new_args @{ $$ = f($3, $4); @}
1220 | @{ if (new_syntax) YYERROR; @} "widget" id old_args @{ $$ = f($3, $4); @}
1221 ;
1222@end smallexample
1223
1224@noindent
1225(reversing the sense of the predicate tests to cause an error when they are
1226false). However, this
1227does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1228have overlapping syntax.
1229Since the mid-rule actions testing @code{new_syntax} are deferred,
1230a @acronym{GLR} parser first encounters the unresolved ambiguous reduction
1231for cases where @code{new_args} and @code{old_args} recognize the same string
1232@emph{before} performing the tests of @code{new_syntax}. It therefore
1233reports an error.
1234
1235Finally, be careful in writing predicates: deferred actions have not been
1236evaluated, so that using them in a predicate will have undefined effects.
1237
fa7e68c3
PE
1238@node Compiler Requirements
1239@subsection Considerations when Compiling @acronym{GLR} Parsers
1240@cindex @code{inline}
9501dc6e 1241@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1242
38a92d50
PE
1243The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1244later. In addition, they use the @code{inline} keyword, which is not
1245C89, but is C99 and is a common extension in pre-C99 compilers. It is
1246up to the user of these parsers to handle
9501dc6e
AD
1247portability issues. For instance, if using Autoconf and the Autoconf
1248macro @code{AC_C_INLINE}, a mere
1249
1250@example
1251%@{
38a92d50 1252 #include <config.h>
9501dc6e
AD
1253%@}
1254@end example
1255
1256@noindent
1257will suffice. Otherwise, we suggest
1258
1259@example
1260%@{
38a92d50
PE
1261 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1262 #define inline
1263 #endif
9501dc6e
AD
1264%@}
1265@end example
676385e2 1266
342b8b6e 1267@node Locations Overview
847bf1f5
AD
1268@section Locations
1269@cindex location
95923bd6
AD
1270@cindex textual location
1271@cindex location, textual
847bf1f5
AD
1272
1273Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1274and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1275the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1276Bison provides a mechanism for handling these locations.
1277
72d2299c 1278Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1279associated location, but the type of locations is the same for all tokens and
72d2299c 1280groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1281structure for storing locations (@pxref{Locations}, for more details).
1282
1283Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1284set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1285is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1286@code{@@3}.
1287
1288When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1289of its left hand side (@pxref{Actions}). In the same way, another default
1290action is used for locations. However, the action for locations is general
847bf1f5 1291enough for most cases, meaning there is usually no need to describe for each
72d2299c 1292rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1293grouping, the default behavior of the output parser is to take the beginning
1294of the first symbol, and the end of the last symbol.
1295
342b8b6e 1296@node Bison Parser
bfa74976
RS
1297@section Bison Output: the Parser File
1298@cindex Bison parser
1299@cindex Bison utility
1300@cindex lexical analyzer, purpose
1301@cindex parser
1302
1303When you run Bison, you give it a Bison grammar file as input. The output
1304is a C source file that parses the language described by the grammar.
1305This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1306utility and the Bison parser are two distinct programs: the Bison utility
1307is a program whose output is the Bison parser that becomes part of your
1308program.
1309
1310The job of the Bison parser is to group tokens into groupings according to
1311the grammar rules---for example, to build identifiers and operators into
1312expressions. As it does this, it runs the actions for the grammar rules it
1313uses.
1314
704a47c4
AD
1315The tokens come from a function called the @dfn{lexical analyzer} that
1316you must supply in some fashion (such as by writing it in C). The Bison
1317parser calls the lexical analyzer each time it wants a new token. It
1318doesn't know what is ``inside'' the tokens (though their semantic values
1319may reflect this). Typically the lexical analyzer makes the tokens by
1320parsing characters of text, but Bison does not depend on this.
1321@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1322
1323The Bison parser file is C code which defines a function named
1324@code{yyparse} which implements that grammar. This function does not make
1325a complete C program: you must supply some additional functions. One is
1326the lexical analyzer. Another is an error-reporting function which the
1327parser calls to report an error. In addition, a complete C program must
1328start with a function called @code{main}; you have to provide this, and
1329arrange for it to call @code{yyparse} or the parser will never run.
1330@xref{Interface, ,Parser C-Language Interface}.
1331
f7ab6a50 1332Aside from the token type names and the symbols in the actions you
7093d0f5 1333write, all symbols defined in the Bison parser file itself
bfa74976
RS
1334begin with @samp{yy} or @samp{YY}. This includes interface functions
1335such as the lexical analyzer function @code{yylex}, the error reporting
1336function @code{yyerror} and the parser function @code{yyparse} itself.
1337This also includes numerous identifiers used for internal purposes.
1338Therefore, you should avoid using C identifiers starting with @samp{yy}
1339or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1340this manual. Also, you should avoid using the C identifiers
1341@samp{malloc} and @samp{free} for anything other than their usual
1342meanings.
bfa74976 1343
7093d0f5
AD
1344In some cases the Bison parser file includes system headers, and in
1345those cases your code should respect the identifiers reserved by those
55289366 1346headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1347@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1348declare memory allocators and related types. @code{<libintl.h>} is
1349included if message translation is in use
1350(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1351be included if you define @code{YYDEBUG} to a nonzero value
1352(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1353
342b8b6e 1354@node Stages
bfa74976
RS
1355@section Stages in Using Bison
1356@cindex stages in using Bison
1357@cindex using Bison
1358
1359The actual language-design process using Bison, from grammar specification
1360to a working compiler or interpreter, has these parts:
1361
1362@enumerate
1363@item
1364Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1365(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1366in the language, describe the action that is to be taken when an
1367instance of that rule is recognized. The action is described by a
1368sequence of C statements.
bfa74976
RS
1369
1370@item
704a47c4
AD
1371Write a lexical analyzer to process input and pass tokens to the parser.
1372The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1373Lexical Analyzer Function @code{yylex}}). It could also be produced
1374using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1375
1376@item
1377Write a controlling function that calls the Bison-produced parser.
1378
1379@item
1380Write error-reporting routines.
1381@end enumerate
1382
1383To turn this source code as written into a runnable program, you
1384must follow these steps:
1385
1386@enumerate
1387@item
1388Run Bison on the grammar to produce the parser.
1389
1390@item
1391Compile the code output by Bison, as well as any other source files.
1392
1393@item
1394Link the object files to produce the finished product.
1395@end enumerate
1396
342b8b6e 1397@node Grammar Layout
bfa74976
RS
1398@section The Overall Layout of a Bison Grammar
1399@cindex grammar file
1400@cindex file format
1401@cindex format of grammar file
1402@cindex layout of Bison grammar
1403
1404The input file for the Bison utility is a @dfn{Bison grammar file}. The
1405general form of a Bison grammar file is as follows:
1406
1407@example
1408%@{
08e49d20 1409@var{Prologue}
bfa74976
RS
1410%@}
1411
1412@var{Bison declarations}
1413
1414%%
1415@var{Grammar rules}
1416%%
08e49d20 1417@var{Epilogue}
bfa74976
RS
1418@end example
1419
1420@noindent
1421The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1422in every Bison grammar file to separate the sections.
1423
72d2299c 1424The prologue may define types and variables used in the actions. You can
342b8b6e 1425also use preprocessor commands to define macros used there, and use
bfa74976 1426@code{#include} to include header files that do any of these things.
38a92d50
PE
1427You need to declare the lexical analyzer @code{yylex} and the error
1428printer @code{yyerror} here, along with any other global identifiers
1429used by the actions in the grammar rules.
bfa74976
RS
1430
1431The Bison declarations declare the names of the terminal and nonterminal
1432symbols, and may also describe operator precedence and the data types of
1433semantic values of various symbols.
1434
1435The grammar rules define how to construct each nonterminal symbol from its
1436parts.
1437
38a92d50
PE
1438The epilogue can contain any code you want to use. Often the
1439definitions of functions declared in the prologue go here. In a
1440simple program, all the rest of the program can go here.
bfa74976 1441
342b8b6e 1442@node Examples
bfa74976
RS
1443@chapter Examples
1444@cindex simple examples
1445@cindex examples, simple
1446
1447Now we show and explain three sample programs written using Bison: a
1448reverse polish notation calculator, an algebraic (infix) notation
1449calculator, and a multi-function calculator. All three have been tested
1450under BSD Unix 4.3; each produces a usable, though limited, interactive
1451desk-top calculator.
1452
1453These examples are simple, but Bison grammars for real programming
aa08666d
AD
1454languages are written the same way. You can copy these examples into a
1455source file to try them.
bfa74976
RS
1456
1457@menu
f5f419de
DJ
1458* RPN Calc:: Reverse polish notation calculator;
1459 a first example with no operator precedence.
1460* Infix Calc:: Infix (algebraic) notation calculator.
1461 Operator precedence is introduced.
bfa74976 1462* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1463* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1464* Multi-function Calc:: Calculator with memory and trig functions.
1465 It uses multiple data-types for semantic values.
1466* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1467@end menu
1468
342b8b6e 1469@node RPN Calc
bfa74976
RS
1470@section Reverse Polish Notation Calculator
1471@cindex reverse polish notation
1472@cindex polish notation calculator
1473@cindex @code{rpcalc}
1474@cindex calculator, simple
1475
1476The first example is that of a simple double-precision @dfn{reverse polish
1477notation} calculator (a calculator using postfix operators). This example
1478provides a good starting point, since operator precedence is not an issue.
1479The second example will illustrate how operator precedence is handled.
1480
1481The source code for this calculator is named @file{rpcalc.y}. The
1482@samp{.y} extension is a convention used for Bison input files.
1483
1484@menu
f5f419de
DJ
1485* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1486* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1487* Rpcalc Lexer:: The lexical analyzer.
1488* Rpcalc Main:: The controlling function.
1489* Rpcalc Error:: The error reporting function.
1490* Rpcalc Generate:: Running Bison on the grammar file.
1491* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1492@end menu
1493
f5f419de 1494@node Rpcalc Declarations
bfa74976
RS
1495@subsection Declarations for @code{rpcalc}
1496
1497Here are the C and Bison declarations for the reverse polish notation
1498calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1499
1500@example
72d2299c 1501/* Reverse polish notation calculator. */
bfa74976
RS
1502
1503%@{
38a92d50
PE
1504 #define YYSTYPE double
1505 #include <math.h>
1506 int yylex (void);
1507 void yyerror (char const *);
bfa74976
RS
1508%@}
1509
1510%token NUM
1511
72d2299c 1512%% /* Grammar rules and actions follow. */
bfa74976
RS
1513@end example
1514
75f5aaea 1515The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1516preprocessor directives and two forward declarations.
bfa74976
RS
1517
1518The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1519specifying the C data type for semantic values of both tokens and
1520groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1521Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1522don't define it, @code{int} is the default. Because we specify
1523@code{double}, each token and each expression has an associated value,
1524which is a floating point number.
bfa74976
RS
1525
1526The @code{#include} directive is used to declare the exponentiation
1527function @code{pow}.
1528
38a92d50
PE
1529The forward declarations for @code{yylex} and @code{yyerror} are
1530needed because the C language requires that functions be declared
1531before they are used. These functions will be defined in the
1532epilogue, but the parser calls them so they must be declared in the
1533prologue.
1534
704a47c4
AD
1535The second section, Bison declarations, provides information to Bison
1536about the token types (@pxref{Bison Declarations, ,The Bison
1537Declarations Section}). Each terminal symbol that is not a
1538single-character literal must be declared here. (Single-character
bfa74976
RS
1539literals normally don't need to be declared.) In this example, all the
1540arithmetic operators are designated by single-character literals, so the
1541only terminal symbol that needs to be declared is @code{NUM}, the token
1542type for numeric constants.
1543
342b8b6e 1544@node Rpcalc Rules
bfa74976
RS
1545@subsection Grammar Rules for @code{rpcalc}
1546
1547Here are the grammar rules for the reverse polish notation calculator.
1548
1549@example
1550input: /* empty */
1551 | input line
1552;
1553
1554line: '\n'
18b519c0 1555 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1556;
1557
18b519c0
AD
1558exp: NUM @{ $$ = $1; @}
1559 | exp exp '+' @{ $$ = $1 + $2; @}
1560 | exp exp '-' @{ $$ = $1 - $2; @}
1561 | exp exp '*' @{ $$ = $1 * $2; @}
1562 | exp exp '/' @{ $$ = $1 / $2; @}
1563 /* Exponentiation */
1564 | exp exp '^' @{ $$ = pow ($1, $2); @}
1565 /* Unary minus */
1566 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1567;
1568%%
1569@end example
1570
1571The groupings of the rpcalc ``language'' defined here are the expression
1572(given the name @code{exp}), the line of input (@code{line}), and the
1573complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1574symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1575which is read as ``or''. The following sections explain what these rules
1576mean.
1577
1578The semantics of the language is determined by the actions taken when a
1579grouping is recognized. The actions are the C code that appears inside
1580braces. @xref{Actions}.
1581
1582You must specify these actions in C, but Bison provides the means for
1583passing semantic values between the rules. In each action, the
1584pseudo-variable @code{$$} stands for the semantic value for the grouping
1585that the rule is going to construct. Assigning a value to @code{$$} is the
1586main job of most actions. The semantic values of the components of the
1587rule are referred to as @code{$1}, @code{$2}, and so on.
1588
1589@menu
13863333
AD
1590* Rpcalc Input::
1591* Rpcalc Line::
1592* Rpcalc Expr::
bfa74976
RS
1593@end menu
1594
342b8b6e 1595@node Rpcalc Input
bfa74976
RS
1596@subsubsection Explanation of @code{input}
1597
1598Consider the definition of @code{input}:
1599
1600@example
1601input: /* empty */
1602 | input line
1603;
1604@end example
1605
1606This definition reads as follows: ``A complete input is either an empty
1607string, or a complete input followed by an input line''. Notice that
1608``complete input'' is defined in terms of itself. This definition is said
1609to be @dfn{left recursive} since @code{input} appears always as the
1610leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1611
1612The first alternative is empty because there are no symbols between the
1613colon and the first @samp{|}; this means that @code{input} can match an
1614empty string of input (no tokens). We write the rules this way because it
1615is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1616It's conventional to put an empty alternative first and write the comment
1617@samp{/* empty */} in it.
1618
1619The second alternate rule (@code{input line}) handles all nontrivial input.
1620It means, ``After reading any number of lines, read one more line if
1621possible.'' The left recursion makes this rule into a loop. Since the
1622first alternative matches empty input, the loop can be executed zero or
1623more times.
1624
1625The parser function @code{yyparse} continues to process input until a
1626grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1627input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1628
342b8b6e 1629@node Rpcalc Line
bfa74976
RS
1630@subsubsection Explanation of @code{line}
1631
1632Now consider the definition of @code{line}:
1633
1634@example
1635line: '\n'
1636 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1637;
1638@end example
1639
1640The first alternative is a token which is a newline character; this means
1641that rpcalc accepts a blank line (and ignores it, since there is no
1642action). The second alternative is an expression followed by a newline.
1643This is the alternative that makes rpcalc useful. The semantic value of
1644the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1645question is the first symbol in the alternative. The action prints this
1646value, which is the result of the computation the user asked for.
1647
1648This action is unusual because it does not assign a value to @code{$$}. As
1649a consequence, the semantic value associated with the @code{line} is
1650uninitialized (its value will be unpredictable). This would be a bug if
1651that value were ever used, but we don't use it: once rpcalc has printed the
1652value of the user's input line, that value is no longer needed.
1653
342b8b6e 1654@node Rpcalc Expr
bfa74976
RS
1655@subsubsection Explanation of @code{expr}
1656
1657The @code{exp} grouping has several rules, one for each kind of expression.
1658The first rule handles the simplest expressions: those that are just numbers.
1659The second handles an addition-expression, which looks like two expressions
1660followed by a plus-sign. The third handles subtraction, and so on.
1661
1662@example
1663exp: NUM
1664 | exp exp '+' @{ $$ = $1 + $2; @}
1665 | exp exp '-' @{ $$ = $1 - $2; @}
1666 @dots{}
1667 ;
1668@end example
1669
1670We have used @samp{|} to join all the rules for @code{exp}, but we could
1671equally well have written them separately:
1672
1673@example
1674exp: NUM ;
1675exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1676exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1677 @dots{}
1678@end example
1679
1680Most of the rules have actions that compute the value of the expression in
1681terms of the value of its parts. For example, in the rule for addition,
1682@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1683the second one. The third component, @code{'+'}, has no meaningful
1684associated semantic value, but if it had one you could refer to it as
1685@code{$3}. When @code{yyparse} recognizes a sum expression using this
1686rule, the sum of the two subexpressions' values is produced as the value of
1687the entire expression. @xref{Actions}.
1688
1689You don't have to give an action for every rule. When a rule has no
1690action, Bison by default copies the value of @code{$1} into @code{$$}.
1691This is what happens in the first rule (the one that uses @code{NUM}).
1692
1693The formatting shown here is the recommended convention, but Bison does
72d2299c 1694not require it. You can add or change white space as much as you wish.
bfa74976
RS
1695For example, this:
1696
1697@example
99a9344e 1698exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1699@end example
1700
1701@noindent
1702means the same thing as this:
1703
1704@example
1705exp: NUM
1706 | exp exp '+' @{ $$ = $1 + $2; @}
1707 | @dots{}
99a9344e 1708;
bfa74976
RS
1709@end example
1710
1711@noindent
1712The latter, however, is much more readable.
1713
342b8b6e 1714@node Rpcalc Lexer
bfa74976
RS
1715@subsection The @code{rpcalc} Lexical Analyzer
1716@cindex writing a lexical analyzer
1717@cindex lexical analyzer, writing
1718
704a47c4
AD
1719The lexical analyzer's job is low-level parsing: converting characters
1720or sequences of characters into tokens. The Bison parser gets its
1721tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1722Analyzer Function @code{yylex}}.
bfa74976 1723
c827f760
PE
1724Only a simple lexical analyzer is needed for the @acronym{RPN}
1725calculator. This
bfa74976
RS
1726lexical analyzer skips blanks and tabs, then reads in numbers as
1727@code{double} and returns them as @code{NUM} tokens. Any other character
1728that isn't part of a number is a separate token. Note that the token-code
1729for such a single-character token is the character itself.
1730
1731The return value of the lexical analyzer function is a numeric code which
1732represents a token type. The same text used in Bison rules to stand for
1733this token type is also a C expression for the numeric code for the type.
1734This works in two ways. If the token type is a character literal, then its
e966383b 1735numeric code is that of the character; you can use the same
bfa74976
RS
1736character literal in the lexical analyzer to express the number. If the
1737token type is an identifier, that identifier is defined by Bison as a C
1738macro whose definition is the appropriate number. In this example,
1739therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1740
1964ad8c
AD
1741The semantic value of the token (if it has one) is stored into the
1742global variable @code{yylval}, which is where the Bison parser will look
1743for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1744defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1745,Declarations for @code{rpcalc}}.)
bfa74976 1746
72d2299c
PE
1747A token type code of zero is returned if the end-of-input is encountered.
1748(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1749
1750Here is the code for the lexical analyzer:
1751
1752@example
1753@group
72d2299c 1754/* The lexical analyzer returns a double floating point
e966383b 1755 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1756 of the character read if not a number. It skips all blanks
1757 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1758
1759#include <ctype.h>
1760@end group
1761
1762@group
13863333
AD
1763int
1764yylex (void)
bfa74976
RS
1765@{
1766 int c;
1767
72d2299c 1768 /* Skip white space. */
13863333 1769 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1770 ;
1771@end group
1772@group
72d2299c 1773 /* Process numbers. */
13863333 1774 if (c == '.' || isdigit (c))
bfa74976
RS
1775 @{
1776 ungetc (c, stdin);
1777 scanf ("%lf", &yylval);
1778 return NUM;
1779 @}
1780@end group
1781@group
72d2299c 1782 /* Return end-of-input. */
13863333 1783 if (c == EOF)
bfa74976 1784 return 0;
72d2299c 1785 /* Return a single char. */
13863333 1786 return c;
bfa74976
RS
1787@}
1788@end group
1789@end example
1790
342b8b6e 1791@node Rpcalc Main
bfa74976
RS
1792@subsection The Controlling Function
1793@cindex controlling function
1794@cindex main function in simple example
1795
1796In keeping with the spirit of this example, the controlling function is
1797kept to the bare minimum. The only requirement is that it call
1798@code{yyparse} to start the process of parsing.
1799
1800@example
1801@group
13863333
AD
1802int
1803main (void)
bfa74976 1804@{
13863333 1805 return yyparse ();
bfa74976
RS
1806@}
1807@end group
1808@end example
1809
342b8b6e 1810@node Rpcalc Error
bfa74976
RS
1811@subsection The Error Reporting Routine
1812@cindex error reporting routine
1813
1814When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1815function @code{yyerror} to print an error message (usually but not
6e649e65 1816always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1817@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1818here is the definition we will use:
bfa74976
RS
1819
1820@example
1821@group
1822#include <stdio.h>
1823
38a92d50 1824/* Called by yyparse on error. */
13863333 1825void
38a92d50 1826yyerror (char const *s)
bfa74976 1827@{
4e03e201 1828 fprintf (stderr, "%s\n", s);
bfa74976
RS
1829@}
1830@end group
1831@end example
1832
1833After @code{yyerror} returns, the Bison parser may recover from the error
1834and continue parsing if the grammar contains a suitable error rule
1835(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1836have not written any error rules in this example, so any invalid input will
1837cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1838real calculator, but it is adequate for the first example.
bfa74976 1839
f5f419de 1840@node Rpcalc Generate
bfa74976
RS
1841@subsection Running Bison to Make the Parser
1842@cindex running Bison (introduction)
1843
ceed8467
AD
1844Before running Bison to produce a parser, we need to decide how to
1845arrange all the source code in one or more source files. For such a
1846simple example, the easiest thing is to put everything in one file. The
1847definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1848end, in the epilogue of the file
75f5aaea 1849(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1850
1851For a large project, you would probably have several source files, and use
1852@code{make} to arrange to recompile them.
1853
1854With all the source in a single file, you use the following command to
1855convert it into a parser file:
1856
1857@example
fa4d969f 1858bison @var{file}.y
bfa74976
RS
1859@end example
1860
1861@noindent
1862In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1863@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1864removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1865Bison contains the source code for @code{yyparse}. The additional
1866functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1867are copied verbatim to the output.
1868
342b8b6e 1869@node Rpcalc Compile
bfa74976
RS
1870@subsection Compiling the Parser File
1871@cindex compiling the parser
1872
1873Here is how to compile and run the parser file:
1874
1875@example
1876@group
1877# @r{List files in current directory.}
9edcd895 1878$ @kbd{ls}
bfa74976
RS
1879rpcalc.tab.c rpcalc.y
1880@end group
1881
1882@group
1883# @r{Compile the Bison parser.}
1884# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1885$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1886@end group
1887
1888@group
1889# @r{List files again.}
9edcd895 1890$ @kbd{ls}
bfa74976
RS
1891rpcalc rpcalc.tab.c rpcalc.y
1892@end group
1893@end example
1894
1895The file @file{rpcalc} now contains the executable code. Here is an
1896example session using @code{rpcalc}.
1897
1898@example
9edcd895
AD
1899$ @kbd{rpcalc}
1900@kbd{4 9 +}
bfa74976 190113
9edcd895 1902@kbd{3 7 + 3 4 5 *+-}
bfa74976 1903-13
9edcd895 1904@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 190513
9edcd895 1906@kbd{5 6 / 4 n +}
bfa74976 1907-3.166666667
9edcd895 1908@kbd{3 4 ^} @r{Exponentiation}
bfa74976 190981
9edcd895
AD
1910@kbd{^D} @r{End-of-file indicator}
1911$
bfa74976
RS
1912@end example
1913
342b8b6e 1914@node Infix Calc
bfa74976
RS
1915@section Infix Notation Calculator: @code{calc}
1916@cindex infix notation calculator
1917@cindex @code{calc}
1918@cindex calculator, infix notation
1919
1920We now modify rpcalc to handle infix operators instead of postfix. Infix
1921notation involves the concept of operator precedence and the need for
1922parentheses nested to arbitrary depth. Here is the Bison code for
1923@file{calc.y}, an infix desk-top calculator.
1924
1925@example
38a92d50 1926/* Infix notation calculator. */
bfa74976
RS
1927
1928%@{
38a92d50
PE
1929 #define YYSTYPE double
1930 #include <math.h>
1931 #include <stdio.h>
1932 int yylex (void);
1933 void yyerror (char const *);
bfa74976
RS
1934%@}
1935
38a92d50 1936/* Bison declarations. */
bfa74976
RS
1937%token NUM
1938%left '-' '+'
1939%left '*' '/'
d78f0ac9
AD
1940%precedence NEG /* negation--unary minus */
1941%right '^' /* exponentiation */
bfa74976 1942
38a92d50
PE
1943%% /* The grammar follows. */
1944input: /* empty */
bfa74976
RS
1945 | input line
1946;
1947
1948line: '\n'
1949 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1950;
1951
1952exp: NUM @{ $$ = $1; @}
1953 | exp '+' exp @{ $$ = $1 + $3; @}
1954 | exp '-' exp @{ $$ = $1 - $3; @}
1955 | exp '*' exp @{ $$ = $1 * $3; @}
1956 | exp '/' exp @{ $$ = $1 / $3; @}
1957 | '-' exp %prec NEG @{ $$ = -$2; @}
1958 | exp '^' exp @{ $$ = pow ($1, $3); @}
1959 | '(' exp ')' @{ $$ = $2; @}
1960;
1961%%
1962@end example
1963
1964@noindent
ceed8467
AD
1965The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1966same as before.
bfa74976
RS
1967
1968There are two important new features shown in this code.
1969
1970In the second section (Bison declarations), @code{%left} declares token
1971types and says they are left-associative operators. The declarations
1972@code{%left} and @code{%right} (right associativity) take the place of
1973@code{%token} which is used to declare a token type name without
d78f0ac9 1974associativity/precedence. (These tokens are single-character literals, which
bfa74976 1975ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 1976the associativity/precedence.)
bfa74976
RS
1977
1978Operator precedence is determined by the line ordering of the
1979declarations; the higher the line number of the declaration (lower on
1980the page or screen), the higher the precedence. Hence, exponentiation
1981has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
1982by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
1983only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 1984Precedence}.
bfa74976 1985
704a47c4
AD
1986The other important new feature is the @code{%prec} in the grammar
1987section for the unary minus operator. The @code{%prec} simply instructs
1988Bison that the rule @samp{| '-' exp} has the same precedence as
1989@code{NEG}---in this case the next-to-highest. @xref{Contextual
1990Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1991
1992Here is a sample run of @file{calc.y}:
1993
1994@need 500
1995@example
9edcd895
AD
1996$ @kbd{calc}
1997@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19986.880952381
9edcd895 1999@kbd{-56 + 2}
bfa74976 2000-54
9edcd895 2001@kbd{3 ^ 2}
bfa74976
RS
20029
2003@end example
2004
342b8b6e 2005@node Simple Error Recovery
bfa74976
RS
2006@section Simple Error Recovery
2007@cindex error recovery, simple
2008
2009Up to this point, this manual has not addressed the issue of @dfn{error
2010recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2011error. All we have handled is error reporting with @code{yyerror}.
2012Recall that by default @code{yyparse} returns after calling
2013@code{yyerror}. This means that an erroneous input line causes the
2014calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2015
2016The Bison language itself includes the reserved word @code{error}, which
2017may be included in the grammar rules. In the example below it has
2018been added to one of the alternatives for @code{line}:
2019
2020@example
2021@group
2022line: '\n'
2023 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2024 | error '\n' @{ yyerrok; @}
2025;
2026@end group
2027@end example
2028
ceed8467 2029This addition to the grammar allows for simple error recovery in the
6e649e65 2030event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2031read, the error will be recognized by the third rule for @code{line},
2032and parsing will continue. (The @code{yyerror} function is still called
2033upon to print its message as well.) The action executes the statement
2034@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2035that error recovery is complete (@pxref{Error Recovery}). Note the
2036difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2037misprint.
bfa74976
RS
2038
2039This form of error recovery deals with syntax errors. There are other
2040kinds of errors; for example, division by zero, which raises an exception
2041signal that is normally fatal. A real calculator program must handle this
2042signal and use @code{longjmp} to return to @code{main} and resume parsing
2043input lines; it would also have to discard the rest of the current line of
2044input. We won't discuss this issue further because it is not specific to
2045Bison programs.
2046
342b8b6e
AD
2047@node Location Tracking Calc
2048@section Location Tracking Calculator: @code{ltcalc}
2049@cindex location tracking calculator
2050@cindex @code{ltcalc}
2051@cindex calculator, location tracking
2052
9edcd895
AD
2053This example extends the infix notation calculator with location
2054tracking. This feature will be used to improve the error messages. For
2055the sake of clarity, this example is a simple integer calculator, since
2056most of the work needed to use locations will be done in the lexical
72d2299c 2057analyzer.
342b8b6e
AD
2058
2059@menu
f5f419de
DJ
2060* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2061* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2062* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2063@end menu
2064
f5f419de 2065@node Ltcalc Declarations
342b8b6e
AD
2066@subsection Declarations for @code{ltcalc}
2067
9edcd895
AD
2068The C and Bison declarations for the location tracking calculator are
2069the same as the declarations for the infix notation calculator.
342b8b6e
AD
2070
2071@example
2072/* Location tracking calculator. */
2073
2074%@{
38a92d50
PE
2075 #define YYSTYPE int
2076 #include <math.h>
2077 int yylex (void);
2078 void yyerror (char const *);
342b8b6e
AD
2079%@}
2080
2081/* Bison declarations. */
2082%token NUM
2083
2084%left '-' '+'
2085%left '*' '/'
d78f0ac9 2086%precedence NEG
342b8b6e
AD
2087%right '^'
2088
38a92d50 2089%% /* The grammar follows. */
342b8b6e
AD
2090@end example
2091
9edcd895
AD
2092@noindent
2093Note there are no declarations specific to locations. Defining a data
2094type for storing locations is not needed: we will use the type provided
2095by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2096four member structure with the following integer fields:
2097@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2098@code{last_column}. By conventions, and in accordance with the GNU
2099Coding Standards and common practice, the line and column count both
2100start at 1.
342b8b6e
AD
2101
2102@node Ltcalc Rules
2103@subsection Grammar Rules for @code{ltcalc}
2104
9edcd895
AD
2105Whether handling locations or not has no effect on the syntax of your
2106language. Therefore, grammar rules for this example will be very close
2107to those of the previous example: we will only modify them to benefit
2108from the new information.
342b8b6e 2109
9edcd895
AD
2110Here, we will use locations to report divisions by zero, and locate the
2111wrong expressions or subexpressions.
342b8b6e
AD
2112
2113@example
2114@group
2115input : /* empty */
2116 | input line
2117;
2118@end group
2119
2120@group
2121line : '\n'
2122 | exp '\n' @{ printf ("%d\n", $1); @}
2123;
2124@end group
2125
2126@group
2127exp : NUM @{ $$ = $1; @}
2128 | exp '+' exp @{ $$ = $1 + $3; @}
2129 | exp '-' exp @{ $$ = $1 - $3; @}
2130 | exp '*' exp @{ $$ = $1 * $3; @}
2131@end group
342b8b6e 2132@group
9edcd895 2133 | exp '/' exp
342b8b6e
AD
2134 @{
2135 if ($3)
2136 $$ = $1 / $3;
2137 else
2138 @{
2139 $$ = 1;
9edcd895
AD
2140 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2141 @@3.first_line, @@3.first_column,
2142 @@3.last_line, @@3.last_column);
342b8b6e
AD
2143 @}
2144 @}
2145@end group
2146@group
178e123e 2147 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2148 | exp '^' exp @{ $$ = pow ($1, $3); @}
2149 | '(' exp ')' @{ $$ = $2; @}
2150@end group
2151@end example
2152
2153This code shows how to reach locations inside of semantic actions, by
2154using the pseudo-variables @code{@@@var{n}} for rule components, and the
2155pseudo-variable @code{@@$} for groupings.
2156
9edcd895
AD
2157We don't need to assign a value to @code{@@$}: the output parser does it
2158automatically. By default, before executing the C code of each action,
2159@code{@@$} is set to range from the beginning of @code{@@1} to the end
2160of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2161can be redefined (@pxref{Location Default Action, , Default Action for
2162Locations}), and for very specific rules, @code{@@$} can be computed by
2163hand.
342b8b6e
AD
2164
2165@node Ltcalc Lexer
2166@subsection The @code{ltcalc} Lexical Analyzer.
2167
9edcd895 2168Until now, we relied on Bison's defaults to enable location
72d2299c 2169tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2170able to feed the parser with the token locations, as it already does for
2171semantic values.
342b8b6e 2172
9edcd895
AD
2173To this end, we must take into account every single character of the
2174input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2175
2176@example
2177@group
2178int
2179yylex (void)
2180@{
2181 int c;
18b519c0 2182@end group
342b8b6e 2183
18b519c0 2184@group
72d2299c 2185 /* Skip white space. */
342b8b6e
AD
2186 while ((c = getchar ()) == ' ' || c == '\t')
2187 ++yylloc.last_column;
18b519c0 2188@end group
342b8b6e 2189
18b519c0 2190@group
72d2299c 2191 /* Step. */
342b8b6e
AD
2192 yylloc.first_line = yylloc.last_line;
2193 yylloc.first_column = yylloc.last_column;
2194@end group
2195
2196@group
72d2299c 2197 /* Process numbers. */
342b8b6e
AD
2198 if (isdigit (c))
2199 @{
2200 yylval = c - '0';
2201 ++yylloc.last_column;
2202 while (isdigit (c = getchar ()))
2203 @{
2204 ++yylloc.last_column;
2205 yylval = yylval * 10 + c - '0';
2206 @}
2207 ungetc (c, stdin);
2208 return NUM;
2209 @}
2210@end group
2211
72d2299c 2212 /* Return end-of-input. */
342b8b6e
AD
2213 if (c == EOF)
2214 return 0;
2215
72d2299c 2216 /* Return a single char, and update location. */
342b8b6e
AD
2217 if (c == '\n')
2218 @{
2219 ++yylloc.last_line;
2220 yylloc.last_column = 0;
2221 @}
2222 else
2223 ++yylloc.last_column;
2224 return c;
2225@}
2226@end example
2227
9edcd895
AD
2228Basically, the lexical analyzer performs the same processing as before:
2229it skips blanks and tabs, and reads numbers or single-character tokens.
2230In addition, it updates @code{yylloc}, the global variable (of type
2231@code{YYLTYPE}) containing the token's location.
342b8b6e 2232
9edcd895 2233Now, each time this function returns a token, the parser has its number
72d2299c 2234as well as its semantic value, and its location in the text. The last
9edcd895
AD
2235needed change is to initialize @code{yylloc}, for example in the
2236controlling function:
342b8b6e
AD
2237
2238@example
9edcd895 2239@group
342b8b6e
AD
2240int
2241main (void)
2242@{
2243 yylloc.first_line = yylloc.last_line = 1;
2244 yylloc.first_column = yylloc.last_column = 0;
2245 return yyparse ();
2246@}
9edcd895 2247@end group
342b8b6e
AD
2248@end example
2249
9edcd895
AD
2250Remember that computing locations is not a matter of syntax. Every
2251character must be associated to a location update, whether it is in
2252valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2253
2254@node Multi-function Calc
bfa74976
RS
2255@section Multi-Function Calculator: @code{mfcalc}
2256@cindex multi-function calculator
2257@cindex @code{mfcalc}
2258@cindex calculator, multi-function
2259
2260Now that the basics of Bison have been discussed, it is time to move on to
2261a more advanced problem. The above calculators provided only five
2262functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2263be nice to have a calculator that provides other mathematical functions such
2264as @code{sin}, @code{cos}, etc.
2265
2266It is easy to add new operators to the infix calculator as long as they are
2267only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2268back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2269adding a new operator. But we want something more flexible: built-in
2270functions whose syntax has this form:
2271
2272@example
2273@var{function_name} (@var{argument})
2274@end example
2275
2276@noindent
2277At the same time, we will add memory to the calculator, by allowing you
2278to create named variables, store values in them, and use them later.
2279Here is a sample session with the multi-function calculator:
2280
2281@example
9edcd895
AD
2282$ @kbd{mfcalc}
2283@kbd{pi = 3.141592653589}
bfa74976 22843.1415926536
9edcd895 2285@kbd{sin(pi)}
bfa74976 22860.0000000000
9edcd895 2287@kbd{alpha = beta1 = 2.3}
bfa74976 22882.3000000000
9edcd895 2289@kbd{alpha}
bfa74976 22902.3000000000
9edcd895 2291@kbd{ln(alpha)}
bfa74976 22920.8329091229
9edcd895 2293@kbd{exp(ln(beta1))}
bfa74976 22942.3000000000
9edcd895 2295$
bfa74976
RS
2296@end example
2297
2298Note that multiple assignment and nested function calls are permitted.
2299
2300@menu
f5f419de
DJ
2301* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2302* Mfcalc Rules:: Grammar rules for the calculator.
2303* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2304@end menu
2305
f5f419de 2306@node Mfcalc Declarations
bfa74976
RS
2307@subsection Declarations for @code{mfcalc}
2308
2309Here are the C and Bison declarations for the multi-function calculator.
2310
2311@smallexample
18b519c0 2312@group
bfa74976 2313%@{
38a92d50
PE
2314 #include <math.h> /* For math functions, cos(), sin(), etc. */
2315 #include "calc.h" /* Contains definition of `symrec'. */
2316 int yylex (void);
2317 void yyerror (char const *);
bfa74976 2318%@}
18b519c0
AD
2319@end group
2320@group
bfa74976 2321%union @{
38a92d50
PE
2322 double val; /* For returning numbers. */
2323 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2324@}
18b519c0 2325@end group
38a92d50
PE
2326%token <val> NUM /* Simple double precision number. */
2327%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2328%type <val> exp
2329
18b519c0 2330@group
bfa74976
RS
2331%right '='
2332%left '-' '+'
2333%left '*' '/'
d78f0ac9
AD
2334%precedence NEG /* negation--unary minus */
2335%right '^' /* exponentiation */
18b519c0 2336@end group
38a92d50 2337%% /* The grammar follows. */
bfa74976
RS
2338@end smallexample
2339
2340The above grammar introduces only two new features of the Bison language.
2341These features allow semantic values to have various data types
2342(@pxref{Multiple Types, ,More Than One Value Type}).
2343
2344The @code{%union} declaration specifies the entire list of possible types;
2345this is instead of defining @code{YYSTYPE}. The allowable types are now
2346double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2347the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2348
2349Since values can now have various types, it is necessary to associate a
2350type with each grammar symbol whose semantic value is used. These symbols
2351are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2352declarations are augmented with information about their data type (placed
2353between angle brackets).
2354
704a47c4
AD
2355The Bison construct @code{%type} is used for declaring nonterminal
2356symbols, just as @code{%token} is used for declaring token types. We
2357have not used @code{%type} before because nonterminal symbols are
2358normally declared implicitly by the rules that define them. But
2359@code{exp} must be declared explicitly so we can specify its value type.
2360@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2361
342b8b6e 2362@node Mfcalc Rules
bfa74976
RS
2363@subsection Grammar Rules for @code{mfcalc}
2364
2365Here are the grammar rules for the multi-function calculator.
2366Most of them are copied directly from @code{calc}; three rules,
2367those which mention @code{VAR} or @code{FNCT}, are new.
2368
2369@smallexample
18b519c0 2370@group
bfa74976
RS
2371input: /* empty */
2372 | input line
2373;
18b519c0 2374@end group
bfa74976 2375
18b519c0 2376@group
bfa74976
RS
2377line:
2378 '\n'
2379 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2380 | error '\n' @{ yyerrok; @}
2381;
18b519c0 2382@end group
bfa74976 2383
18b519c0 2384@group
bfa74976
RS
2385exp: NUM @{ $$ = $1; @}
2386 | VAR @{ $$ = $1->value.var; @}
2387 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2388 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2389 | exp '+' exp @{ $$ = $1 + $3; @}
2390 | exp '-' exp @{ $$ = $1 - $3; @}
2391 | exp '*' exp @{ $$ = $1 * $3; @}
2392 | exp '/' exp @{ $$ = $1 / $3; @}
2393 | '-' exp %prec NEG @{ $$ = -$2; @}
2394 | exp '^' exp @{ $$ = pow ($1, $3); @}
2395 | '(' exp ')' @{ $$ = $2; @}
2396;
18b519c0 2397@end group
38a92d50 2398/* End of grammar. */
bfa74976
RS
2399%%
2400@end smallexample
2401
f5f419de 2402@node Mfcalc Symbol Table
bfa74976
RS
2403@subsection The @code{mfcalc} Symbol Table
2404@cindex symbol table example
2405
2406The multi-function calculator requires a symbol table to keep track of the
2407names and meanings of variables and functions. This doesn't affect the
2408grammar rules (except for the actions) or the Bison declarations, but it
2409requires some additional C functions for support.
2410
2411The symbol table itself consists of a linked list of records. Its
2412definition, which is kept in the header @file{calc.h}, is as follows. It
2413provides for either functions or variables to be placed in the table.
2414
2415@smallexample
2416@group
38a92d50 2417/* Function type. */
32dfccf8 2418typedef double (*func_t) (double);
72f889cc 2419@end group
32dfccf8 2420
72f889cc 2421@group
38a92d50 2422/* Data type for links in the chain of symbols. */
bfa74976
RS
2423struct symrec
2424@{
38a92d50 2425 char *name; /* name of symbol */
bfa74976 2426 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2427 union
2428 @{
38a92d50
PE
2429 double var; /* value of a VAR */
2430 func_t fnctptr; /* value of a FNCT */
bfa74976 2431 @} value;
38a92d50 2432 struct symrec *next; /* link field */
bfa74976
RS
2433@};
2434@end group
2435
2436@group
2437typedef struct symrec symrec;
2438
38a92d50 2439/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2440extern symrec *sym_table;
2441
a730d142 2442symrec *putsym (char const *, int);
38a92d50 2443symrec *getsym (char const *);
bfa74976
RS
2444@end group
2445@end smallexample
2446
2447The new version of @code{main} includes a call to @code{init_table}, a
2448function that initializes the symbol table. Here it is, and
2449@code{init_table} as well:
2450
2451@smallexample
bfa74976
RS
2452#include <stdio.h>
2453
18b519c0 2454@group
38a92d50 2455/* Called by yyparse on error. */
13863333 2456void
38a92d50 2457yyerror (char const *s)
bfa74976
RS
2458@{
2459 printf ("%s\n", s);
2460@}
18b519c0 2461@end group
bfa74976 2462
18b519c0 2463@group
bfa74976
RS
2464struct init
2465@{
38a92d50
PE
2466 char const *fname;
2467 double (*fnct) (double);
bfa74976
RS
2468@};
2469@end group
2470
2471@group
38a92d50 2472struct init const arith_fncts[] =
13863333 2473@{
32dfccf8
AD
2474 "sin", sin,
2475 "cos", cos,
13863333 2476 "atan", atan,
32dfccf8
AD
2477 "ln", log,
2478 "exp", exp,
13863333
AD
2479 "sqrt", sqrt,
2480 0, 0
2481@};
18b519c0 2482@end group
bfa74976 2483
18b519c0 2484@group
bfa74976 2485/* The symbol table: a chain of `struct symrec'. */
38a92d50 2486symrec *sym_table;
bfa74976
RS
2487@end group
2488
2489@group
72d2299c 2490/* Put arithmetic functions in table. */
13863333
AD
2491void
2492init_table (void)
bfa74976
RS
2493@{
2494 int i;
2495 symrec *ptr;
2496 for (i = 0; arith_fncts[i].fname != 0; i++)
2497 @{
2498 ptr = putsym (arith_fncts[i].fname, FNCT);
2499 ptr->value.fnctptr = arith_fncts[i].fnct;
2500 @}
2501@}
2502@end group
38a92d50
PE
2503
2504@group
2505int
2506main (void)
2507@{
2508 init_table ();
2509 return yyparse ();
2510@}
2511@end group
bfa74976
RS
2512@end smallexample
2513
2514By simply editing the initialization list and adding the necessary include
2515files, you can add additional functions to the calculator.
2516
2517Two important functions allow look-up and installation of symbols in the
2518symbol table. The function @code{putsym} is passed a name and the type
2519(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2520linked to the front of the list, and a pointer to the object is returned.
2521The function @code{getsym} is passed the name of the symbol to look up. If
2522found, a pointer to that symbol is returned; otherwise zero is returned.
2523
2524@smallexample
2525symrec *
38a92d50 2526putsym (char const *sym_name, int sym_type)
bfa74976
RS
2527@{
2528 symrec *ptr;
2529 ptr = (symrec *) malloc (sizeof (symrec));
2530 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2531 strcpy (ptr->name,sym_name);
2532 ptr->type = sym_type;
72d2299c 2533 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2534 ptr->next = (struct symrec *)sym_table;
2535 sym_table = ptr;
2536 return ptr;
2537@}
2538
2539symrec *
38a92d50 2540getsym (char const *sym_name)
bfa74976
RS
2541@{
2542 symrec *ptr;
2543 for (ptr = sym_table; ptr != (symrec *) 0;
2544 ptr = (symrec *)ptr->next)
2545 if (strcmp (ptr->name,sym_name) == 0)
2546 return ptr;
2547 return 0;
2548@}
2549@end smallexample
2550
2551The function @code{yylex} must now recognize variables, numeric values, and
2552the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2553characters with a leading letter are recognized as either variables or
bfa74976
RS
2554functions depending on what the symbol table says about them.
2555
2556The string is passed to @code{getsym} for look up in the symbol table. If
2557the name appears in the table, a pointer to its location and its type
2558(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2559already in the table, then it is installed as a @code{VAR} using
2560@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2561returned to @code{yyparse}.
bfa74976
RS
2562
2563No change is needed in the handling of numeric values and arithmetic
2564operators in @code{yylex}.
2565
2566@smallexample
2567@group
2568#include <ctype.h>
18b519c0 2569@end group
13863333 2570
18b519c0 2571@group
13863333
AD
2572int
2573yylex (void)
bfa74976
RS
2574@{
2575 int c;
2576
72d2299c 2577 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2578 while ((c = getchar ()) == ' ' || c == '\t');
2579
2580 if (c == EOF)
2581 return 0;
2582@end group
2583
2584@group
2585 /* Char starts a number => parse the number. */
2586 if (c == '.' || isdigit (c))
2587 @{
2588 ungetc (c, stdin);
2589 scanf ("%lf", &yylval.val);
2590 return NUM;
2591 @}
2592@end group
2593
2594@group
2595 /* Char starts an identifier => read the name. */
2596 if (isalpha (c))
2597 @{
2598 symrec *s;
2599 static char *symbuf = 0;
2600 static int length = 0;
2601 int i;
2602@end group
2603
2604@group
2605 /* Initially make the buffer long enough
2606 for a 40-character symbol name. */
2607 if (length == 0)
2608 length = 40, symbuf = (char *)malloc (length + 1);
2609
2610 i = 0;
2611 do
2612@end group
2613@group
2614 @{
2615 /* If buffer is full, make it bigger. */
2616 if (i == length)
2617 @{
2618 length *= 2;
18b519c0 2619 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2620 @}
2621 /* Add this character to the buffer. */
2622 symbuf[i++] = c;
2623 /* Get another character. */
2624 c = getchar ();
2625 @}
2626@end group
2627@group
72d2299c 2628 while (isalnum (c));
bfa74976
RS
2629
2630 ungetc (c, stdin);
2631 symbuf[i] = '\0';
2632@end group
2633
2634@group
2635 s = getsym (symbuf);
2636 if (s == 0)
2637 s = putsym (symbuf, VAR);
2638 yylval.tptr = s;
2639 return s->type;
2640 @}
2641
2642 /* Any other character is a token by itself. */
2643 return c;
2644@}
2645@end group
2646@end smallexample
2647
72d2299c 2648This program is both powerful and flexible. You may easily add new
704a47c4
AD
2649functions, and it is a simple job to modify this code to install
2650predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2651
342b8b6e 2652@node Exercises
bfa74976
RS
2653@section Exercises
2654@cindex exercises
2655
2656@enumerate
2657@item
2658Add some new functions from @file{math.h} to the initialization list.
2659
2660@item
2661Add another array that contains constants and their values. Then
2662modify @code{init_table} to add these constants to the symbol table.
2663It will be easiest to give the constants type @code{VAR}.
2664
2665@item
2666Make the program report an error if the user refers to an
2667uninitialized variable in any way except to store a value in it.
2668@end enumerate
2669
342b8b6e 2670@node Grammar File
bfa74976
RS
2671@chapter Bison Grammar Files
2672
2673Bison takes as input a context-free grammar specification and produces a
2674C-language function that recognizes correct instances of the grammar.
2675
2676The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2677@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2678
2679@menu
2680* Grammar Outline:: Overall layout of the grammar file.
2681* Symbols:: Terminal and nonterminal symbols.
2682* Rules:: How to write grammar rules.
2683* Recursion:: Writing recursive rules.
2684* Semantics:: Semantic values and actions.
847bf1f5 2685* Locations:: Locations and actions.
bfa74976
RS
2686* Declarations:: All kinds of Bison declarations are described here.
2687* Multiple Parsers:: Putting more than one Bison parser in one program.
2688@end menu
2689
342b8b6e 2690@node Grammar Outline
bfa74976
RS
2691@section Outline of a Bison Grammar
2692
2693A Bison grammar file has four main sections, shown here with the
2694appropriate delimiters:
2695
2696@example
2697%@{
38a92d50 2698 @var{Prologue}
bfa74976
RS
2699%@}
2700
2701@var{Bison declarations}
2702
2703%%
2704@var{Grammar rules}
2705%%
2706
75f5aaea 2707@var{Epilogue}
bfa74976
RS
2708@end example
2709
2710Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2711As a @acronym{GNU} extension, @samp{//} introduces a comment that
2712continues until end of line.
bfa74976
RS
2713
2714@menu
f5f419de 2715* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2716* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2717* Bison Declarations:: Syntax and usage of the Bison declarations section.
2718* Grammar Rules:: Syntax and usage of the grammar rules section.
2719* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2720@end menu
2721
38a92d50 2722@node Prologue
75f5aaea
MA
2723@subsection The prologue
2724@cindex declarations section
2725@cindex Prologue
2726@cindex declarations
bfa74976 2727
f8e1c9e5
AD
2728The @var{Prologue} section contains macro definitions and declarations
2729of functions and variables that are used in the actions in the grammar
2730rules. These are copied to the beginning of the parser file so that
2731they precede the definition of @code{yyparse}. You can use
2732@samp{#include} to get the declarations from a header file. If you
2733don't need any C declarations, you may omit the @samp{%@{} and
2734@samp{%@}} delimiters that bracket this section.
bfa74976 2735
9c437126 2736The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2737of @samp{%@}} that is outside a comment, a string literal, or a
2738character constant.
2739
c732d2c6
AD
2740You may have more than one @var{Prologue} section, intermixed with the
2741@var{Bison declarations}. This allows you to have C and Bison
2742declarations that refer to each other. For example, the @code{%union}
2743declaration may use types defined in a header file, and you may wish to
2744prototype functions that take arguments of type @code{YYSTYPE}. This
2745can be done with two @var{Prologue} blocks, one before and one after the
2746@code{%union} declaration.
2747
2748@smallexample
2749%@{
aef3da86 2750 #define _GNU_SOURCE
38a92d50
PE
2751 #include <stdio.h>
2752 #include "ptypes.h"
c732d2c6
AD
2753%@}
2754
2755%union @{
779e7ceb 2756 long int n;
c732d2c6
AD
2757 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2758@}
2759
2760%@{
38a92d50
PE
2761 static void print_token_value (FILE *, int, YYSTYPE);
2762 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2763%@}
2764
2765@dots{}
2766@end smallexample
2767
aef3da86
PE
2768When in doubt, it is usually safer to put prologue code before all
2769Bison declarations, rather than after. For example, any definitions
2770of feature test macros like @code{_GNU_SOURCE} or
2771@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2772feature test macros can affect the behavior of Bison-generated
2773@code{#include} directives.
2774
2cbe6b7f
JD
2775@node Prologue Alternatives
2776@subsection Prologue Alternatives
2777@cindex Prologue Alternatives
2778
136a0f76 2779@findex %code
16dc6a9e
JD
2780@findex %code requires
2781@findex %code provides
2782@findex %code top
85894313 2783
2cbe6b7f
JD
2784The functionality of @var{Prologue} sections can often be subtle and
2785inflexible.
8e0a5e9e
JD
2786As an alternative, Bison provides a %code directive with an explicit qualifier
2787field, which identifies the purpose of the code and thus the location(s) where
2788Bison should generate it.
2789For C/C++, the qualifier can be omitted for the default location, or it can be
8405b70c 2790one of @code{requires}, @code{provides}, @code{top}.
148d66d8 2791@xref{Decl Summary,,%code}.
2cbe6b7f
JD
2792
2793Look again at the example of the previous section:
2794
2795@smallexample
2796%@{
2797 #define _GNU_SOURCE
2798 #include <stdio.h>
2799 #include "ptypes.h"
2800%@}
2801
2802%union @{
2803 long int n;
2804 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2805@}
2806
2807%@{
2808 static void print_token_value (FILE *, int, YYSTYPE);
2809 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2810%@}
2811
2812@dots{}
2813@end smallexample
2814
2815@noindent
2816Notice that there are two @var{Prologue} sections here, but there's a subtle
2817distinction between their functionality.
2818For example, if you decide to override Bison's default definition for
2819@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2820definition?
2821You should write it in the first since Bison will insert that code into the
8e0a5e9e 2822parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2823In which @var{Prologue} section should you prototype an internal function,
2824@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2825arguments?
2826You should prototype it in the second since Bison will insert that code
2827@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2828
2829This distinction in functionality between the two @var{Prologue} sections is
2830established by the appearance of the @code{%union} between them.
a501eca9 2831This behavior raises a few questions.
2cbe6b7f
JD
2832First, why should the position of a @code{%union} affect definitions related to
2833@code{YYLTYPE} and @code{yytokentype}?
2834Second, what if there is no @code{%union}?
2835In that case, the second kind of @var{Prologue} section is not available.
2836This behavior is not intuitive.
2837
8e0a5e9e 2838To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2839@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2840Let's go ahead and add the new @code{YYLTYPE} definition and the
2841@code{trace_token} prototype at the same time:
2842
2843@smallexample
16dc6a9e 2844%code top @{
2cbe6b7f
JD
2845 #define _GNU_SOURCE
2846 #include <stdio.h>
8e0a5e9e
JD
2847
2848 /* WARNING: The following code really belongs
16dc6a9e 2849 * in a `%code requires'; see below. */
8e0a5e9e 2850
2cbe6b7f
JD
2851 #include "ptypes.h"
2852 #define YYLTYPE YYLTYPE
2853 typedef struct YYLTYPE
2854 @{
2855 int first_line;
2856 int first_column;
2857 int last_line;
2858 int last_column;
2859 char *filename;
2860 @} YYLTYPE;
2861@}
2862
2863%union @{
2864 long int n;
2865 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2866@}
2867
2868%code @{
2869 static void print_token_value (FILE *, int, YYSTYPE);
2870 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2871 static void trace_token (enum yytokentype token, YYLTYPE loc);
2872@}
2873
2874@dots{}
2875@end smallexample
2876
2877@noindent
16dc6a9e
JD
2878In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2879functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2880explicit which kind you intend.
2cbe6b7f
JD
2881Moreover, both kinds are always available even in the absence of @code{%union}.
2882
16dc6a9e 2883The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2884The first two lines before the warning need to appear near the top of the
2885parser source code file.
2886The first line after the warning is required by @code{YYSTYPE} and thus also
2887needs to appear in the parser source code file.
2cbe6b7f 2888However, if you've instructed Bison to generate a parser header file
148d66d8
JD
2889(@pxref{Decl Summary, ,%defines}), you probably want that line to appear before
2890the @code{YYSTYPE} definition in that header file as well.
8e0a5e9e 2891The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2892override the default @code{YYLTYPE} definition there.
2893
16dc6a9e 2894In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2895lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2896definitions.
16dc6a9e 2897Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2898
2899@smallexample
16dc6a9e 2900%code top @{
2cbe6b7f
JD
2901 #define _GNU_SOURCE
2902 #include <stdio.h>
2903@}
2904
16dc6a9e 2905%code requires @{
9bc0dd67
JD
2906 #include "ptypes.h"
2907@}
2908%union @{
2909 long int n;
2910 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2911@}
2912
16dc6a9e 2913%code requires @{
2cbe6b7f
JD
2914 #define YYLTYPE YYLTYPE
2915 typedef struct YYLTYPE
2916 @{
2917 int first_line;
2918 int first_column;
2919 int last_line;
2920 int last_column;
2921 char *filename;
2922 @} YYLTYPE;
2923@}
2924
136a0f76 2925%code @{
2cbe6b7f
JD
2926 static void print_token_value (FILE *, int, YYSTYPE);
2927 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2928 static void trace_token (enum yytokentype token, YYLTYPE loc);
2929@}
2930
2931@dots{}
2932@end smallexample
2933
2934@noindent
2935Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2936definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2937definitions in both the parser source code file and the parser header file.
16dc6a9e 2938(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2939place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2940
a501eca9 2941When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2942should prefer @code{%code requires} over @code{%code top} regardless of whether
2943you instruct Bison to generate a parser header file.
a501eca9 2944When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2945source code file and that has no special need to appear at the top of that
16dc6a9e 2946file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2947These practices will make the purpose of each block of your code explicit to
2948Bison and to other developers reading your grammar file.
8e0a5e9e 2949Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2950@code{%code requires} to be the most important of the four @var{Prologue}
2951alternatives.
a501eca9 2952
2cbe6b7f
JD
2953At some point while developing your parser, you might decide to provide
2954@code{trace_token} to modules that are external to your parser.
2955Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2956header file and the parser source code file.
2957Since this function is not a dependency required by @code{YYSTYPE} or
2958@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2959@code{%code requires}.
2cbe6b7f 2960More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2961@code{%code requires} is not sufficient.
8e0a5e9e 2962Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2963@code{%code provides}:
2cbe6b7f
JD
2964
2965@smallexample
16dc6a9e 2966%code top @{
2cbe6b7f 2967 #define _GNU_SOURCE
136a0f76 2968 #include <stdio.h>
2cbe6b7f 2969@}
136a0f76 2970
16dc6a9e 2971%code requires @{
2cbe6b7f
JD
2972 #include "ptypes.h"
2973@}
2974%union @{
2975 long int n;
2976 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2977@}
2978
16dc6a9e 2979%code requires @{
2cbe6b7f
JD
2980 #define YYLTYPE YYLTYPE
2981 typedef struct YYLTYPE
2982 @{
2983 int first_line;
2984 int first_column;
2985 int last_line;
2986 int last_column;
2987 char *filename;
2988 @} YYLTYPE;
2989@}
2990
16dc6a9e 2991%code provides @{
2cbe6b7f
JD
2992 void trace_token (enum yytokentype token, YYLTYPE loc);
2993@}
2994
2995%code @{
9bc0dd67
JD
2996 static void print_token_value (FILE *, int, YYSTYPE);
2997 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2998@}
9bc0dd67
JD
2999
3000@dots{}
3001@end smallexample
3002
2cbe6b7f
JD
3003@noindent
3004Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
3005file and the parser source code file after the definitions for
3006@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
3007
3008The above examples are careful to write directives in an order that reflects
8e0a5e9e 3009the layout of the generated parser source code and header files:
16dc6a9e 3010@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 3011@code{%code}.
a501eca9 3012While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
3013this order, Bison does not require it.
3014Instead, Bison lets you choose an organization that makes sense to you.
3015
a501eca9 3016You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3017In that case, Bison concatenates the contained code in declaration order.
3018This is the only way in which the position of one of these directives within
3019the grammar file affects its functionality.
3020
3021The result of the previous two properties is greater flexibility in how you may
3022organize your grammar file.
3023For example, you may organize semantic-type-related directives by semantic
3024type:
3025
3026@smallexample
16dc6a9e 3027%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3028%union @{ type1 field1; @}
3029%destructor @{ type1_free ($$); @} <field1>
3030%printer @{ type1_print ($$); @} <field1>
3031
16dc6a9e 3032%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3033%union @{ type2 field2; @}
3034%destructor @{ type2_free ($$); @} <field2>
3035%printer @{ type2_print ($$); @} <field2>
3036@end smallexample
3037
3038@noindent
3039You could even place each of the above directive groups in the rules section of
3040the grammar file next to the set of rules that uses the associated semantic
3041type.
61fee93e
JD
3042(In the rules section, you must terminate each of those directives with a
3043semicolon.)
2cbe6b7f
JD
3044And you don't have to worry that some directive (like a @code{%union}) in the
3045definitions section is going to adversely affect their functionality in some
3046counter-intuitive manner just because it comes first.
3047Such an organization is not possible using @var{Prologue} sections.
3048
a501eca9 3049This section has been concerned with explaining the advantages of the four
8e0a5e9e 3050@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3051However, in most cases when using these directives, you shouldn't need to
3052think about all the low-level ordering issues discussed here.
3053Instead, you should simply use these directives to label each block of your
3054code according to its purpose and let Bison handle the ordering.
3055@code{%code} is the most generic label.
16dc6a9e
JD
3056Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3057as needed.
a501eca9 3058
342b8b6e 3059@node Bison Declarations
bfa74976
RS
3060@subsection The Bison Declarations Section
3061@cindex Bison declarations (introduction)
3062@cindex declarations, Bison (introduction)
3063
3064The @var{Bison declarations} section contains declarations that define
3065terminal and nonterminal symbols, specify precedence, and so on.
3066In some simple grammars you may not need any declarations.
3067@xref{Declarations, ,Bison Declarations}.
3068
342b8b6e 3069@node Grammar Rules
bfa74976
RS
3070@subsection The Grammar Rules Section
3071@cindex grammar rules section
3072@cindex rules section for grammar
3073
3074The @dfn{grammar rules} section contains one or more Bison grammar
3075rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3076
3077There must always be at least one grammar rule, and the first
3078@samp{%%} (which precedes the grammar rules) may never be omitted even
3079if it is the first thing in the file.
3080
38a92d50 3081@node Epilogue
75f5aaea 3082@subsection The epilogue
bfa74976 3083@cindex additional C code section
75f5aaea 3084@cindex epilogue
bfa74976
RS
3085@cindex C code, section for additional
3086
08e49d20
PE
3087The @var{Epilogue} is copied verbatim to the end of the parser file, just as
3088the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
3089place to put anything that you want to have in the parser file but which need
3090not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
3091definitions of @code{yylex} and @code{yyerror} often go here. Because
3092C requires functions to be declared before being used, you often need
3093to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 3094even if you define them in the Epilogue.
75f5aaea 3095@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3096
3097If the last section is empty, you may omit the @samp{%%} that separates it
3098from the grammar rules.
3099
f8e1c9e5
AD
3100The Bison parser itself contains many macros and identifiers whose names
3101start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3102any such names (except those documented in this manual) in the epilogue
3103of the grammar file.
bfa74976 3104
342b8b6e 3105@node Symbols
bfa74976
RS
3106@section Symbols, Terminal and Nonterminal
3107@cindex nonterminal symbol
3108@cindex terminal symbol
3109@cindex token type
3110@cindex symbol
3111
3112@dfn{Symbols} in Bison grammars represent the grammatical classifications
3113of the language.
3114
3115A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3116class of syntactically equivalent tokens. You use the symbol in grammar
3117rules to mean that a token in that class is allowed. The symbol is
3118represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3119function returns a token type code to indicate what kind of token has
3120been read. You don't need to know what the code value is; you can use
3121the symbol to stand for it.
bfa74976 3122
f8e1c9e5
AD
3123A @dfn{nonterminal symbol} stands for a class of syntactically
3124equivalent groupings. The symbol name is used in writing grammar rules.
3125By convention, it should be all lower case.
bfa74976 3126
cdf3f113
AD
3127Symbol names can contain letters, underscores, periods, dashes, and (not
3128at the beginning) digits. Dashes in symbol names are a GNU
4f646c37
AD
3129extension, incompatible with @acronym{POSIX} Yacc. Terminal symbols
3130that contain periods or dashes make little sense: since they are not
3131valid symbols (in most programming languages) they are not exported as
3132token names.
bfa74976 3133
931c7513 3134There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3135
3136@itemize @bullet
3137@item
3138A @dfn{named token type} is written with an identifier, like an
c827f760 3139identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3140such name must be defined with a Bison declaration such as
3141@code{%token}. @xref{Token Decl, ,Token Type Names}.
3142
3143@item
3144@cindex character token
3145@cindex literal token
3146@cindex single-character literal
931c7513
RS
3147A @dfn{character token type} (or @dfn{literal character token}) is
3148written in the grammar using the same syntax used in C for character
3149constants; for example, @code{'+'} is a character token type. A
3150character token type doesn't need to be declared unless you need to
3151specify its semantic value data type (@pxref{Value Type, ,Data Types of
3152Semantic Values}), associativity, or precedence (@pxref{Precedence,
3153,Operator Precedence}).
bfa74976
RS
3154
3155By convention, a character token type is used only to represent a
3156token that consists of that particular character. Thus, the token
3157type @code{'+'} is used to represent the character @samp{+} as a
3158token. Nothing enforces this convention, but if you depart from it,
3159your program will confuse other readers.
3160
3161All the usual escape sequences used in character literals in C can be
3162used in Bison as well, but you must not use the null character as a
72d2299c
PE
3163character literal because its numeric code, zero, signifies
3164end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3165for @code{yylex}}). Also, unlike standard C, trigraphs have no
3166special meaning in Bison character literals, nor is backslash-newline
3167allowed.
931c7513
RS
3168
3169@item
3170@cindex string token
3171@cindex literal string token
9ecbd125 3172@cindex multicharacter literal
931c7513
RS
3173A @dfn{literal string token} is written like a C string constant; for
3174example, @code{"<="} is a literal string token. A literal string token
3175doesn't need to be declared unless you need to specify its semantic
14ded682 3176value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3177(@pxref{Precedence}).
3178
3179You can associate the literal string token with a symbolic name as an
3180alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3181Declarations}). If you don't do that, the lexical analyzer has to
3182retrieve the token number for the literal string token from the
3183@code{yytname} table (@pxref{Calling Convention}).
3184
c827f760 3185@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3186
3187By convention, a literal string token is used only to represent a token
3188that consists of that particular string. Thus, you should use the token
3189type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3190does not enforce this convention, but if you depart from it, people who
931c7513
RS
3191read your program will be confused.
3192
3193All the escape sequences used in string literals in C can be used in
92ac3705
PE
3194Bison as well, except that you must not use a null character within a
3195string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3196meaning in Bison string literals, nor is backslash-newline allowed. A
3197literal string token must contain two or more characters; for a token
3198containing just one character, use a character token (see above).
bfa74976
RS
3199@end itemize
3200
3201How you choose to write a terminal symbol has no effect on its
3202grammatical meaning. That depends only on where it appears in rules and
3203on when the parser function returns that symbol.
3204
72d2299c
PE
3205The value returned by @code{yylex} is always one of the terminal
3206symbols, except that a zero or negative value signifies end-of-input.
3207Whichever way you write the token type in the grammar rules, you write
3208it the same way in the definition of @code{yylex}. The numeric code
3209for a character token type is simply the positive numeric code of the
3210character, so @code{yylex} can use the identical value to generate the
3211requisite code, though you may need to convert it to @code{unsigned
3212char} to avoid sign-extension on hosts where @code{char} is signed.
3213Each named token type becomes a C macro in
bfa74976 3214the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3215(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3216@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3217
3218If @code{yylex} is defined in a separate file, you need to arrange for the
3219token-type macro definitions to be available there. Use the @samp{-d}
3220option when you run Bison, so that it will write these macro definitions
3221into a separate header file @file{@var{name}.tab.h} which you can include
3222in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3223
72d2299c 3224If you want to write a grammar that is portable to any Standard C
9d9b8b70 3225host, you must use only nonnull character tokens taken from the basic
c827f760 3226execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3227digits, the 52 lower- and upper-case English letters, and the
3228characters in the following C-language string:
3229
3230@example
3231"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3232@end example
3233
f8e1c9e5
AD
3234The @code{yylex} function and Bison must use a consistent character set
3235and encoding for character tokens. For example, if you run Bison in an
3236@acronym{ASCII} environment, but then compile and run the resulting
3237program in an environment that uses an incompatible character set like
3238@acronym{EBCDIC}, the resulting program may not work because the tables
3239generated by Bison will assume @acronym{ASCII} numeric values for
3240character tokens. It is standard practice for software distributions to
3241contain C source files that were generated by Bison in an
3242@acronym{ASCII} environment, so installers on platforms that are
3243incompatible with @acronym{ASCII} must rebuild those files before
3244compiling them.
e966383b 3245
bfa74976
RS
3246The symbol @code{error} is a terminal symbol reserved for error recovery
3247(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3248In particular, @code{yylex} should never return this value. The default
3249value of the error token is 256, unless you explicitly assigned 256 to
3250one of your tokens with a @code{%token} declaration.
bfa74976 3251
342b8b6e 3252@node Rules
bfa74976
RS
3253@section Syntax of Grammar Rules
3254@cindex rule syntax
3255@cindex grammar rule syntax
3256@cindex syntax of grammar rules
3257
3258A Bison grammar rule has the following general form:
3259
3260@example
e425e872 3261@group
bfa74976
RS
3262@var{result}: @var{components}@dots{}
3263 ;
e425e872 3264@end group
bfa74976
RS
3265@end example
3266
3267@noindent
9ecbd125 3268where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3269and @var{components} are various terminal and nonterminal symbols that
13863333 3270are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3271
3272For example,
3273
3274@example
3275@group
3276exp: exp '+' exp
3277 ;
3278@end group
3279@end example
3280
3281@noindent
3282says that two groupings of type @code{exp}, with a @samp{+} token in between,
3283can be combined into a larger grouping of type @code{exp}.
3284
72d2299c
PE
3285White space in rules is significant only to separate symbols. You can add
3286extra white space as you wish.
bfa74976
RS
3287
3288Scattered among the components can be @var{actions} that determine
3289the semantics of the rule. An action looks like this:
3290
3291@example
3292@{@var{C statements}@}
3293@end example
3294
3295@noindent
287c78f6
PE
3296@cindex braced code
3297This is an example of @dfn{braced code}, that is, C code surrounded by
3298braces, much like a compound statement in C@. Braced code can contain
3299any sequence of C tokens, so long as its braces are balanced. Bison
3300does not check the braced code for correctness directly; it merely
3301copies the code to the output file, where the C compiler can check it.
3302
3303Within braced code, the balanced-brace count is not affected by braces
3304within comments, string literals, or character constants, but it is
3305affected by the C digraphs @samp{<%} and @samp{%>} that represent
3306braces. At the top level braced code must be terminated by @samp{@}}
3307and not by a digraph. Bison does not look for trigraphs, so if braced
3308code uses trigraphs you should ensure that they do not affect the
3309nesting of braces or the boundaries of comments, string literals, or
3310character constants.
3311
bfa74976
RS
3312Usually there is only one action and it follows the components.
3313@xref{Actions}.
3314
3315@findex |
3316Multiple rules for the same @var{result} can be written separately or can
3317be joined with the vertical-bar character @samp{|} as follows:
3318
bfa74976
RS
3319@example
3320@group
3321@var{result}: @var{rule1-components}@dots{}
3322 | @var{rule2-components}@dots{}
3323 @dots{}
3324 ;
3325@end group
3326@end example
bfa74976
RS
3327
3328@noindent
3329They are still considered distinct rules even when joined in this way.
3330
3331If @var{components} in a rule is empty, it means that @var{result} can
3332match the empty string. For example, here is how to define a
3333comma-separated sequence of zero or more @code{exp} groupings:
3334
3335@example
3336@group
3337expseq: /* empty */
3338 | expseq1
3339 ;
3340@end group
3341
3342@group
3343expseq1: exp
3344 | expseq1 ',' exp
3345 ;
3346@end group
3347@end example
3348
3349@noindent
3350It is customary to write a comment @samp{/* empty */} in each rule
3351with no components.
3352
342b8b6e 3353@node Recursion
bfa74976
RS
3354@section Recursive Rules
3355@cindex recursive rule
3356
f8e1c9e5
AD
3357A rule is called @dfn{recursive} when its @var{result} nonterminal
3358appears also on its right hand side. Nearly all Bison grammars need to
3359use recursion, because that is the only way to define a sequence of any
3360number of a particular thing. Consider this recursive definition of a
9ecbd125 3361comma-separated sequence of one or more expressions:
bfa74976
RS
3362
3363@example
3364@group
3365expseq1: exp
3366 | expseq1 ',' exp
3367 ;
3368@end group
3369@end example
3370
3371@cindex left recursion
3372@cindex right recursion
3373@noindent
3374Since the recursive use of @code{expseq1} is the leftmost symbol in the
3375right hand side, we call this @dfn{left recursion}. By contrast, here
3376the same construct is defined using @dfn{right recursion}:
3377
3378@example
3379@group
3380expseq1: exp
3381 | exp ',' expseq1
3382 ;
3383@end group
3384@end example
3385
3386@noindent
ec3bc396
AD
3387Any kind of sequence can be defined using either left recursion or right
3388recursion, but you should always use left recursion, because it can
3389parse a sequence of any number of elements with bounded stack space.
3390Right recursion uses up space on the Bison stack in proportion to the
3391number of elements in the sequence, because all the elements must be
3392shifted onto the stack before the rule can be applied even once.
3393@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3394of this.
bfa74976
RS
3395
3396@cindex mutual recursion
3397@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3398rule does not appear directly on its right hand side, but does appear
3399in rules for other nonterminals which do appear on its right hand
13863333 3400side.
bfa74976
RS
3401
3402For example:
3403
3404@example
3405@group
3406expr: primary
3407 | primary '+' primary
3408 ;
3409@end group
3410
3411@group
3412primary: constant
3413 | '(' expr ')'
3414 ;
3415@end group
3416@end example
3417
3418@noindent
3419defines two mutually-recursive nonterminals, since each refers to the
3420other.
3421
342b8b6e 3422@node Semantics
bfa74976
RS
3423@section Defining Language Semantics
3424@cindex defining language semantics
13863333 3425@cindex language semantics, defining
bfa74976
RS
3426
3427The grammar rules for a language determine only the syntax. The semantics
3428are determined by the semantic values associated with various tokens and
3429groupings, and by the actions taken when various groupings are recognized.
3430
3431For example, the calculator calculates properly because the value
3432associated with each expression is the proper number; it adds properly
3433because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3434the numbers associated with @var{x} and @var{y}.
3435
3436@menu
3437* Value Type:: Specifying one data type for all semantic values.
3438* Multiple Types:: Specifying several alternative data types.
3439* Actions:: An action is the semantic definition of a grammar rule.
3440* Action Types:: Specifying data types for actions to operate on.
3441* Mid-Rule Actions:: Most actions go at the end of a rule.
3442 This says when, why and how to use the exceptional
3443 action in the middle of a rule.
d013372c 3444* Named References:: Using named references in actions.
bfa74976
RS
3445@end menu
3446
342b8b6e 3447@node Value Type
bfa74976
RS
3448@subsection Data Types of Semantic Values
3449@cindex semantic value type
3450@cindex value type, semantic
3451@cindex data types of semantic values
3452@cindex default data type
3453
3454In a simple program it may be sufficient to use the same data type for
3455the semantic values of all language constructs. This was true in the
c827f760 3456@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3457Notation Calculator}).
bfa74976 3458
ddc8ede1
PE
3459Bison normally uses the type @code{int} for semantic values if your
3460program uses the same data type for all language constructs. To
bfa74976
RS
3461specify some other type, define @code{YYSTYPE} as a macro, like this:
3462
3463@example
3464#define YYSTYPE double
3465@end example
3466
3467@noindent
50cce58e
PE
3468@code{YYSTYPE}'s replacement list should be a type name
3469that does not contain parentheses or square brackets.
342b8b6e 3470This macro definition must go in the prologue of the grammar file
75f5aaea 3471(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3472
342b8b6e 3473@node Multiple Types
bfa74976
RS
3474@subsection More Than One Value Type
3475
3476In most programs, you will need different data types for different kinds
3477of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3478@code{int} or @code{long int}, while a string constant needs type
3479@code{char *}, and an identifier might need a pointer to an entry in the
3480symbol table.
bfa74976
RS
3481
3482To use more than one data type for semantic values in one parser, Bison
3483requires you to do two things:
3484
3485@itemize @bullet
3486@item
ddc8ede1 3487Specify the entire collection of possible data types, either by using the
704a47c4 3488@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3489Value Types}), or by using a @code{typedef} or a @code{#define} to
3490define @code{YYSTYPE} to be a union type whose member names are
3491the type tags.
bfa74976
RS
3492
3493@item
14ded682
AD
3494Choose one of those types for each symbol (terminal or nonterminal) for
3495which semantic values are used. This is done for tokens with the
3496@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3497and for groupings with the @code{%type} Bison declaration (@pxref{Type
3498Decl, ,Nonterminal Symbols}).
bfa74976
RS
3499@end itemize
3500
342b8b6e 3501@node Actions
bfa74976
RS
3502@subsection Actions
3503@cindex action
3504@vindex $$
3505@vindex $@var{n}
d013372c
AR
3506@vindex $@var{name}
3507@vindex $[@var{name}]
bfa74976
RS
3508
3509An action accompanies a syntactic rule and contains C code to be executed
3510each time an instance of that rule is recognized. The task of most actions
3511is to compute a semantic value for the grouping built by the rule from the
3512semantic values associated with tokens or smaller groupings.
3513
287c78f6
PE
3514An action consists of braced code containing C statements, and can be
3515placed at any position in the rule;
704a47c4
AD
3516it is executed at that position. Most rules have just one action at the
3517end of the rule, following all the components. Actions in the middle of
3518a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3519Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3520
3521The C code in an action can refer to the semantic values of the components
3522matched by the rule with the construct @code{$@var{n}}, which stands for
3523the value of the @var{n}th component. The semantic value for the grouping
d013372c
AR
3524being constructed is @code{$$}. In addition, the semantic values of
3525symbols can be accessed with the named references construct
3526@code{$@var{name}} or @code{$[@var{name}]}. Bison translates both of these
0cc3da3a 3527constructs into expressions of the appropriate type when it copies the
d013372c
AR
3528actions into the parser file. @code{$$} (or @code{$@var{name}}, when it
3529stands for the current grouping) is translated to a modifiable
0cc3da3a 3530lvalue, so it can be assigned to.
bfa74976
RS
3531
3532Here is a typical example:
3533
3534@example
3535@group
3536exp: @dots{}
3537 | exp '+' exp
3538 @{ $$ = $1 + $3; @}
3539@end group
3540@end example
3541
d013372c
AR
3542Or, in terms of named references:
3543
3544@example
3545@group
3546exp[result]: @dots{}
3547 | exp[left] '+' exp[right]
3548 @{ $result = $left + $right; @}
3549@end group
3550@end example
3551
bfa74976
RS
3552@noindent
3553This rule constructs an @code{exp} from two smaller @code{exp} groupings
3554connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3555(@code{$left} and @code{$right})
bfa74976
RS
3556refer to the semantic values of the two component @code{exp} groupings,
3557which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3558The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3559semantic value of
bfa74976
RS
3560the addition-expression just recognized by the rule. If there were a
3561useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3562referred to as @code{$2}.
bfa74976 3563
d013372c
AR
3564@xref{Named References,,Using Named References}, for more information
3565about using the named references construct.
3566
3ded9a63
AD
3567Note that the vertical-bar character @samp{|} is really a rule
3568separator, and actions are attached to a single rule. This is a
3569difference with tools like Flex, for which @samp{|} stands for either
3570``or'', or ``the same action as that of the next rule''. In the
3571following example, the action is triggered only when @samp{b} is found:
3572
3573@example
3574@group
3575a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3576@end group
3577@end example
3578
bfa74976
RS
3579@cindex default action
3580If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3581@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3582becomes the value of the whole rule. Of course, the default action is
3583valid only if the two data types match. There is no meaningful default
3584action for an empty rule; every empty rule must have an explicit action
3585unless the rule's value does not matter.
bfa74976
RS
3586
3587@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3588to tokens and groupings on the stack @emph{before} those that match the
3589current rule. This is a very risky practice, and to use it reliably
3590you must be certain of the context in which the rule is applied. Here
3591is a case in which you can use this reliably:
3592
3593@example
3594@group
3595foo: expr bar '+' expr @{ @dots{} @}
3596 | expr bar '-' expr @{ @dots{} @}
3597 ;
3598@end group
3599
3600@group
3601bar: /* empty */
3602 @{ previous_expr = $0; @}
3603 ;
3604@end group
3605@end example
3606
3607As long as @code{bar} is used only in the fashion shown here, @code{$0}
3608always refers to the @code{expr} which precedes @code{bar} in the
3609definition of @code{foo}.
3610
32c29292 3611@vindex yylval
742e4900 3612It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3613any, from a semantic action.
3614This semantic value is stored in @code{yylval}.
3615@xref{Action Features, ,Special Features for Use in Actions}.
3616
342b8b6e 3617@node Action Types
bfa74976
RS
3618@subsection Data Types of Values in Actions
3619@cindex action data types
3620@cindex data types in actions
3621
3622If you have chosen a single data type for semantic values, the @code{$$}
3623and @code{$@var{n}} constructs always have that data type.
3624
3625If you have used @code{%union} to specify a variety of data types, then you
3626must declare a choice among these types for each terminal or nonterminal
3627symbol that can have a semantic value. Then each time you use @code{$$} or
3628@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3629in the rule. In this example,
bfa74976
RS
3630
3631@example
3632@group
3633exp: @dots{}
3634 | exp '+' exp
3635 @{ $$ = $1 + $3; @}
3636@end group
3637@end example
3638
3639@noindent
3640@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3641have the data type declared for the nonterminal symbol @code{exp}. If
3642@code{$2} were used, it would have the data type declared for the
e0c471a9 3643terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3644
3645Alternatively, you can specify the data type when you refer to the value,
3646by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3647reference. For example, if you have defined types as shown here:
3648
3649@example
3650@group
3651%union @{
3652 int itype;
3653 double dtype;
3654@}
3655@end group
3656@end example
3657
3658@noindent
3659then you can write @code{$<itype>1} to refer to the first subunit of the
3660rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3661
342b8b6e 3662@node Mid-Rule Actions
bfa74976
RS
3663@subsection Actions in Mid-Rule
3664@cindex actions in mid-rule
3665@cindex mid-rule actions
3666
3667Occasionally it is useful to put an action in the middle of a rule.
3668These actions are written just like usual end-of-rule actions, but they
3669are executed before the parser even recognizes the following components.
3670
3671A mid-rule action may refer to the components preceding it using
3672@code{$@var{n}}, but it may not refer to subsequent components because
3673it is run before they are parsed.
3674
3675The mid-rule action itself counts as one of the components of the rule.
3676This makes a difference when there is another action later in the same rule
3677(and usually there is another at the end): you have to count the actions
3678along with the symbols when working out which number @var{n} to use in
3679@code{$@var{n}}.
3680
3681The mid-rule action can also have a semantic value. The action can set
3682its value with an assignment to @code{$$}, and actions later in the rule
3683can refer to the value using @code{$@var{n}}. Since there is no symbol
3684to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3685in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3686specify a data type each time you refer to this value.
bfa74976
RS
3687
3688There is no way to set the value of the entire rule with a mid-rule
3689action, because assignments to @code{$$} do not have that effect. The
3690only way to set the value for the entire rule is with an ordinary action
3691at the end of the rule.
3692
3693Here is an example from a hypothetical compiler, handling a @code{let}
3694statement that looks like @samp{let (@var{variable}) @var{statement}} and
3695serves to create a variable named @var{variable} temporarily for the
3696duration of @var{statement}. To parse this construct, we must put
3697@var{variable} into the symbol table while @var{statement} is parsed, then
3698remove it afterward. Here is how it is done:
3699
3700@example
3701@group
3702stmt: LET '(' var ')'
3703 @{ $<context>$ = push_context ();
3704 declare_variable ($3); @}
3705 stmt @{ $$ = $6;
3706 pop_context ($<context>5); @}
3707@end group
3708@end example
3709
3710@noindent
3711As soon as @samp{let (@var{variable})} has been recognized, the first
3712action is run. It saves a copy of the current semantic context (the
3713list of accessible variables) as its semantic value, using alternative
3714@code{context} in the data-type union. Then it calls
3715@code{declare_variable} to add the new variable to that list. Once the
3716first action is finished, the embedded statement @code{stmt} can be
3717parsed. Note that the mid-rule action is component number 5, so the
3718@samp{stmt} is component number 6.
3719
3720After the embedded statement is parsed, its semantic value becomes the
3721value of the entire @code{let}-statement. Then the semantic value from the
3722earlier action is used to restore the prior list of variables. This
3723removes the temporary @code{let}-variable from the list so that it won't
3724appear to exist while the rest of the program is parsed.
3725
841a7737
JD
3726@findex %destructor
3727@cindex discarded symbols, mid-rule actions
3728@cindex error recovery, mid-rule actions
3729In the above example, if the parser initiates error recovery (@pxref{Error
3730Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3731it might discard the previous semantic context @code{$<context>5} without
3732restoring it.
3733Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3734Discarded Symbols}).
ec5479ce
JD
3735However, Bison currently provides no means to declare a destructor specific to
3736a particular mid-rule action's semantic value.
841a7737
JD
3737
3738One solution is to bury the mid-rule action inside a nonterminal symbol and to
3739declare a destructor for that symbol:
3740
3741@example
3742@group
3743%type <context> let
3744%destructor @{ pop_context ($$); @} let
3745
3746%%
3747
3748stmt: let stmt
3749 @{ $$ = $2;
3750 pop_context ($1); @}
3751 ;
3752
3753let: LET '(' var ')'
3754 @{ $$ = push_context ();
3755 declare_variable ($3); @}
3756 ;
3757
3758@end group
3759@end example
3760
3761@noindent
3762Note that the action is now at the end of its rule.
3763Any mid-rule action can be converted to an end-of-rule action in this way, and
3764this is what Bison actually does to implement mid-rule actions.
3765
bfa74976
RS
3766Taking action before a rule is completely recognized often leads to
3767conflicts since the parser must commit to a parse in order to execute the
3768action. For example, the following two rules, without mid-rule actions,
3769can coexist in a working parser because the parser can shift the open-brace
3770token and look at what follows before deciding whether there is a
3771declaration or not:
3772
3773@example
3774@group
3775compound: '@{' declarations statements '@}'
3776 | '@{' statements '@}'
3777 ;
3778@end group
3779@end example
3780
3781@noindent
3782But when we add a mid-rule action as follows, the rules become nonfunctional:
3783
3784@example
3785@group
3786compound: @{ prepare_for_local_variables (); @}
3787 '@{' declarations statements '@}'
3788@end group
3789@group
3790 | '@{' statements '@}'
3791 ;
3792@end group
3793@end example
3794
3795@noindent
3796Now the parser is forced to decide whether to run the mid-rule action
3797when it has read no farther than the open-brace. In other words, it
3798must commit to using one rule or the other, without sufficient
3799information to do it correctly. (The open-brace token is what is called
742e4900
JD
3800the @dfn{lookahead} token at this time, since the parser is still
3801deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3802
3803You might think that you could correct the problem by putting identical
3804actions into the two rules, like this:
3805
3806@example
3807@group
3808compound: @{ prepare_for_local_variables (); @}
3809 '@{' declarations statements '@}'
3810 | @{ prepare_for_local_variables (); @}
3811 '@{' statements '@}'
3812 ;
3813@end group
3814@end example
3815
3816@noindent
3817But this does not help, because Bison does not realize that the two actions
3818are identical. (Bison never tries to understand the C code in an action.)
3819
3820If the grammar is such that a declaration can be distinguished from a
3821statement by the first token (which is true in C), then one solution which
3822does work is to put the action after the open-brace, like this:
3823
3824@example
3825@group
3826compound: '@{' @{ prepare_for_local_variables (); @}
3827 declarations statements '@}'
3828 | '@{' statements '@}'
3829 ;
3830@end group
3831@end example
3832
3833@noindent
3834Now the first token of the following declaration or statement,
3835which would in any case tell Bison which rule to use, can still do so.
3836
3837Another solution is to bury the action inside a nonterminal symbol which
3838serves as a subroutine:
3839
3840@example
3841@group
3842subroutine: /* empty */
3843 @{ prepare_for_local_variables (); @}
3844 ;
3845
3846@end group
3847
3848@group
3849compound: subroutine
3850 '@{' declarations statements '@}'
3851 | subroutine
3852 '@{' statements '@}'
3853 ;
3854@end group
3855@end example
3856
3857@noindent
3858Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3859deciding which rule for @code{compound} it will eventually use.
bfa74976 3860
d013372c
AR
3861@node Named References
3862@subsection Using Named References
3863@cindex named references
3864
3865While every semantic value can be accessed with positional references
3866@code{$@var{n}} and @code{$$}, it's often much more convenient to refer to
3867them by name. First of all, original symbol names may be used as named
3868references. For example:
3869
3870@example
3871@group
3872invocation: op '(' args ')'
3873 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
3874@end group
3875@end example
3876
3877@noindent
3878The positional @code{$$}, @code{@@$}, @code{$n}, and @code{@@n} can be
3879mixed with @code{$name} and @code{@@name} arbitrarily. For example:
3880
3881@example
3882@group
3883invocation: op '(' args ')'
3884 @{ $$ = new_invocation ($op, $args, @@$); @}
3885@end group
3886@end example
3887
3888@noindent
3889However, sometimes regular symbol names are not sufficient due to
3890ambiguities:
3891
3892@example
3893@group
3894exp: exp '/' exp
3895 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
3896
3897exp: exp '/' exp
3898 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
3899
3900exp: exp '/' exp
3901 @{ $$ = $1 / $3; @} // No error.
3902@end group
3903@end example
3904
3905@noindent
3906When ambiguity occurs, explicitly declared names may be used for values and
3907locations. Explicit names are declared as a bracketed name after a symbol
3908appearance in rule definitions. For example:
3909@example
3910@group
3911exp[result]: exp[left] '/' exp[right]
3912 @{ $result = $left / $right; @}
3913@end group
3914@end example
3915
3916@noindent
3917Explicit names may be declared for RHS and for LHS symbols as well. In order
3918to access a semantic value generated by a mid-rule action, an explicit name
3919may also be declared by putting a bracketed name after the closing brace of
3920the mid-rule action code:
3921@example
3922@group
3923exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
3924 @{ $res = $left + $right; @}
3925@end group
3926@end example
3927
3928@noindent
3929
3930In references, in order to specify names containing dots and dashes, an explicit
3931bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
3932@example
3933@group
3934if-stmt: IF '(' expr ')' THEN then.stmt ';'
3935 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
3936@end group
3937@end example
3938
3939It often happens that named references are followed by a dot, dash or other
3940C punctuation marks and operators. By default, Bison will read
3941@code{$name.suffix} as a reference to symbol value @code{$name} followed by
3942@samp{.suffix}, i.e., an access to the @samp{suffix} field of the semantic
3943value. In order to force Bison to recognize @code{name.suffix} in its entirety
3944as the name of a semantic value, bracketed syntax @code{$[name.suffix]}
3945must be used.
3946
3947
342b8b6e 3948@node Locations
847bf1f5
AD
3949@section Tracking Locations
3950@cindex location
95923bd6
AD
3951@cindex textual location
3952@cindex location, textual
847bf1f5
AD
3953
3954Though grammar rules and semantic actions are enough to write a fully
72d2299c 3955functional parser, it can be useful to process some additional information,
3e259915
MA
3956especially symbol locations.
3957
704a47c4
AD
3958The way locations are handled is defined by providing a data type, and
3959actions to take when rules are matched.
847bf1f5
AD
3960
3961@menu
3962* Location Type:: Specifying a data type for locations.
3963* Actions and Locations:: Using locations in actions.
3964* Location Default Action:: Defining a general way to compute locations.
3965@end menu
3966
342b8b6e 3967@node Location Type
847bf1f5
AD
3968@subsection Data Type of Locations
3969@cindex data type of locations
3970@cindex default location type
3971
3972Defining a data type for locations is much simpler than for semantic values,
3973since all tokens and groupings always use the same type.
3974
50cce58e
PE
3975You can specify the type of locations by defining a macro called
3976@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3977defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3978When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3979four members:
3980
3981@example
6273355b 3982typedef struct YYLTYPE
847bf1f5
AD
3983@{
3984 int first_line;
3985 int first_column;
3986 int last_line;
3987 int last_column;
6273355b 3988@} YYLTYPE;
847bf1f5
AD
3989@end example
3990
d59e456d
AD
3991When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3992initializes all these fields to 1 for @code{yylloc}. To initialize
3993@code{yylloc} with a custom location type (or to chose a different
3994initialization), use the @code{%initial-action} directive. @xref{Initial
3995Action Decl, , Performing Actions before Parsing}.
cd48d21d 3996
342b8b6e 3997@node Actions and Locations
847bf1f5
AD
3998@subsection Actions and Locations
3999@cindex location actions
4000@cindex actions, location
4001@vindex @@$
4002@vindex @@@var{n}
d013372c
AR
4003@vindex @@@var{name}
4004@vindex @@[@var{name}]
847bf1f5
AD
4005
4006Actions are not only useful for defining language semantics, but also for
4007describing the behavior of the output parser with locations.
4008
4009The most obvious way for building locations of syntactic groupings is very
72d2299c 4010similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4011constructs can be used to access the locations of the elements being matched.
4012The location of the @var{n}th component of the right hand side is
4013@code{@@@var{n}}, while the location of the left hand side grouping is
4014@code{@@$}.
4015
d013372c
AR
4016In addition, the named references construct @code{@@@var{name}} and
4017@code{@@[@var{name}]} may also be used to address the symbol locations.
4018@xref{Named References,,Using Named References}, for more information
4019about using the named references construct.
4020
3e259915 4021Here is a basic example using the default data type for locations:
847bf1f5
AD
4022
4023@example
4024@group
4025exp: @dots{}
3e259915 4026 | exp '/' exp
847bf1f5 4027 @{
3e259915
MA
4028 @@$.first_column = @@1.first_column;
4029 @@$.first_line = @@1.first_line;
847bf1f5
AD
4030 @@$.last_column = @@3.last_column;
4031 @@$.last_line = @@3.last_line;
3e259915
MA
4032 if ($3)
4033 $$ = $1 / $3;
4034 else
4035 @{
4036 $$ = 1;
4e03e201
AD
4037 fprintf (stderr,
4038 "Division by zero, l%d,c%d-l%d,c%d",
4039 @@3.first_line, @@3.first_column,
4040 @@3.last_line, @@3.last_column);
3e259915 4041 @}
847bf1f5
AD
4042 @}
4043@end group
4044@end example
4045
3e259915 4046As for semantic values, there is a default action for locations that is
72d2299c 4047run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4048beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4049last symbol.
3e259915 4050
72d2299c 4051With this default action, the location tracking can be fully automatic. The
3e259915
MA
4052example above simply rewrites this way:
4053
4054@example
4055@group
4056exp: @dots{}
4057 | exp '/' exp
4058 @{
4059 if ($3)
4060 $$ = $1 / $3;
4061 else
4062 @{
4063 $$ = 1;
4e03e201
AD
4064 fprintf (stderr,
4065 "Division by zero, l%d,c%d-l%d,c%d",
4066 @@3.first_line, @@3.first_column,
4067 @@3.last_line, @@3.last_column);
3e259915
MA
4068 @}
4069 @}
4070@end group
4071@end example
847bf1f5 4072
32c29292 4073@vindex yylloc
742e4900 4074It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4075from a semantic action.
4076This location is stored in @code{yylloc}.
4077@xref{Action Features, ,Special Features for Use in Actions}.
4078
342b8b6e 4079@node Location Default Action
847bf1f5
AD
4080@subsection Default Action for Locations
4081@vindex YYLLOC_DEFAULT
8710fc41 4082@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4083
72d2299c 4084Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4085locations are much more general than semantic values, there is room in
4086the output parser to redefine the default action to take for each
72d2299c 4087rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4088matched, before the associated action is run. It is also invoked
4089while processing a syntax error, to compute the error's location.
8710fc41
JD
4090Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
4091parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4092of that ambiguity.
847bf1f5 4093
3e259915 4094Most of the time, this macro is general enough to suppress location
79282c6c 4095dedicated code from semantic actions.
847bf1f5 4096
72d2299c 4097The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4098the location of the grouping (the result of the computation). When a
766de5eb 4099rule is matched, the second parameter identifies locations of
96b93a3d 4100all right hand side elements of the rule being matched, and the third
8710fc41
JD
4101parameter is the size of the rule's right hand side.
4102When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
4103right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4104When processing a syntax error, the second parameter identifies locations
4105of the symbols that were discarded during error processing, and the third
96b93a3d 4106parameter is the number of discarded symbols.
847bf1f5 4107
766de5eb 4108By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4109
766de5eb 4110@smallexample
847bf1f5 4111@group
766de5eb
PE
4112# define YYLLOC_DEFAULT(Current, Rhs, N) \
4113 do \
4114 if (N) \
4115 @{ \
4116 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
4117 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
4118 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
4119 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
4120 @} \
4121 else \
4122 @{ \
4123 (Current).first_line = (Current).last_line = \
4124 YYRHSLOC(Rhs, 0).last_line; \
4125 (Current).first_column = (Current).last_column = \
4126 YYRHSLOC(Rhs, 0).last_column; \
4127 @} \
4128 while (0)
847bf1f5 4129@end group
766de5eb 4130@end smallexample
676385e2 4131
766de5eb
PE
4132where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4133in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4134just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4135
3e259915 4136When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4137
3e259915 4138@itemize @bullet
79282c6c 4139@item
72d2299c 4140All arguments are free of side-effects. However, only the first one (the
3e259915 4141result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4142
3e259915 4143@item
766de5eb
PE
4144For consistency with semantic actions, valid indexes within the
4145right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4146valid index, and it refers to the symbol just before the reduction.
4147During error processing @var{n} is always positive.
0ae99356
PE
4148
4149@item
4150Your macro should parenthesize its arguments, if need be, since the
4151actual arguments may not be surrounded by parentheses. Also, your
4152macro should expand to something that can be used as a single
4153statement when it is followed by a semicolon.
3e259915 4154@end itemize
847bf1f5 4155
342b8b6e 4156@node Declarations
bfa74976
RS
4157@section Bison Declarations
4158@cindex declarations, Bison
4159@cindex Bison declarations
4160
4161The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4162used in formulating the grammar and the data types of semantic values.
4163@xref{Symbols}.
4164
4165All token type names (but not single-character literal tokens such as
4166@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4167declared if you need to specify which data type to use for the semantic
4168value (@pxref{Multiple Types, ,More Than One Value Type}).
4169
4170The first rule in the file also specifies the start symbol, by default.
4171If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
4172it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
4173Grammars}).
bfa74976
RS
4174
4175@menu
b50d2359 4176* Require Decl:: Requiring a Bison version.
bfa74976
RS
4177* Token Decl:: Declaring terminal symbols.
4178* Precedence Decl:: Declaring terminals with precedence and associativity.
4179* Union Decl:: Declaring the set of all semantic value types.
4180* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4181* Initial Action Decl:: Code run before parsing starts.
72f889cc 4182* Destructor Decl:: Declaring how symbols are freed.
d6328241 4183* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4184* Start Decl:: Specifying the start symbol.
4185* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4186* Push Decl:: Requesting a push parser.
bfa74976
RS
4187* Decl Summary:: Table of all Bison declarations.
4188@end menu
4189
b50d2359
AD
4190@node Require Decl
4191@subsection Require a Version of Bison
4192@cindex version requirement
4193@cindex requiring a version of Bison
4194@findex %require
4195
4196You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4197the requirement is not met, @command{bison} exits with an error (exit
4198status 63).
b50d2359
AD
4199
4200@example
4201%require "@var{version}"
4202@end example
4203
342b8b6e 4204@node Token Decl
bfa74976
RS
4205@subsection Token Type Names
4206@cindex declaring token type names
4207@cindex token type names, declaring
931c7513 4208@cindex declaring literal string tokens
bfa74976
RS
4209@findex %token
4210
4211The basic way to declare a token type name (terminal symbol) is as follows:
4212
4213@example
4214%token @var{name}
4215@end example
4216
4217Bison will convert this into a @code{#define} directive in
4218the parser, so that the function @code{yylex} (if it is in this file)
4219can use the name @var{name} to stand for this token type's code.
4220
d78f0ac9
AD
4221Alternatively, you can use @code{%left}, @code{%right},
4222@code{%precedence}, or
14ded682
AD
4223@code{%nonassoc} instead of @code{%token}, if you wish to specify
4224associativity and precedence. @xref{Precedence Decl, ,Operator
4225Precedence}.
bfa74976
RS
4226
4227You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4228a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4229following the token name:
bfa74976
RS
4230
4231@example
4232%token NUM 300
1452af69 4233%token XNUM 0x12d // a GNU extension
bfa74976
RS
4234@end example
4235
4236@noindent
4237It is generally best, however, to let Bison choose the numeric codes for
4238all token types. Bison will automatically select codes that don't conflict
e966383b 4239with each other or with normal characters.
bfa74976
RS
4240
4241In the event that the stack type is a union, you must augment the
4242@code{%token} or other token declaration to include the data type
704a47c4
AD
4243alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4244Than One Value Type}).
bfa74976
RS
4245
4246For example:
4247
4248@example
4249@group
4250%union @{ /* define stack type */
4251 double val;
4252 symrec *tptr;
4253@}
4254%token <val> NUM /* define token NUM and its type */
4255@end group
4256@end example
4257
931c7513
RS
4258You can associate a literal string token with a token type name by
4259writing the literal string at the end of a @code{%token}
4260declaration which declares the name. For example:
4261
4262@example
4263%token arrow "=>"
4264@end example
4265
4266@noindent
4267For example, a grammar for the C language might specify these names with
4268equivalent literal string tokens:
4269
4270@example
4271%token <operator> OR "||"
4272%token <operator> LE 134 "<="
4273%left OR "<="
4274@end example
4275
4276@noindent
4277Once you equate the literal string and the token name, you can use them
4278interchangeably in further declarations or the grammar rules. The
4279@code{yylex} function can use the token name or the literal string to
4280obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4281Syntax error messages passed to @code{yyerror} from the parser will reference
4282the literal string instead of the token name.
4283
4284The token numbered as 0 corresponds to end of file; the following line
4285allows for nicer error messages referring to ``end of file'' instead
4286of ``$end'':
4287
4288@example
4289%token END 0 "end of file"
4290@end example
931c7513 4291
342b8b6e 4292@node Precedence Decl
bfa74976
RS
4293@subsection Operator Precedence
4294@cindex precedence declarations
4295@cindex declaring operator precedence
4296@cindex operator precedence, declaring
4297
d78f0ac9
AD
4298Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4299@code{%precedence} declaration to
bfa74976
RS
4300declare a token and specify its precedence and associativity, all at
4301once. These are called @dfn{precedence declarations}.
704a47c4
AD
4302@xref{Precedence, ,Operator Precedence}, for general information on
4303operator precedence.
bfa74976 4304
ab7f29f8 4305The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4306@code{%token}: either
4307
4308@example
4309%left @var{symbols}@dots{}
4310@end example
4311
4312@noindent
4313or
4314
4315@example
4316%left <@var{type}> @var{symbols}@dots{}
4317@end example
4318
4319And indeed any of these declarations serves the purposes of @code{%token}.
4320But in addition, they specify the associativity and relative precedence for
4321all the @var{symbols}:
4322
4323@itemize @bullet
4324@item
4325The associativity of an operator @var{op} determines how repeated uses
4326of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4327@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4328grouping @var{y} with @var{z} first. @code{%left} specifies
4329left-associativity (grouping @var{x} with @var{y} first) and
4330@code{%right} specifies right-associativity (grouping @var{y} with
4331@var{z} first). @code{%nonassoc} specifies no associativity, which
4332means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4333considered a syntax error.
4334
d78f0ac9
AD
4335@code{%precedence} gives only precedence to the @var{symbols}, and
4336defines no associativity at all. Use this to define precedence only,
4337and leave any potential conflict due to associativity enabled.
4338
bfa74976
RS
4339@item
4340The precedence of an operator determines how it nests with other operators.
4341All the tokens declared in a single precedence declaration have equal
4342precedence and nest together according to their associativity.
4343When two tokens declared in different precedence declarations associate,
4344the one declared later has the higher precedence and is grouped first.
4345@end itemize
4346
ab7f29f8
JD
4347For backward compatibility, there is a confusing difference between the
4348argument lists of @code{%token} and precedence declarations.
4349Only a @code{%token} can associate a literal string with a token type name.
4350A precedence declaration always interprets a literal string as a reference to a
4351separate token.
4352For example:
4353
4354@example
4355%left OR "<=" // Does not declare an alias.
4356%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4357@end example
4358
342b8b6e 4359@node Union Decl
bfa74976
RS
4360@subsection The Collection of Value Types
4361@cindex declaring value types
4362@cindex value types, declaring
4363@findex %union
4364
287c78f6
PE
4365The @code{%union} declaration specifies the entire collection of
4366possible data types for semantic values. The keyword @code{%union} is
4367followed by braced code containing the same thing that goes inside a
4368@code{union} in C@.
bfa74976
RS
4369
4370For example:
4371
4372@example
4373@group
4374%union @{
4375 double val;
4376 symrec *tptr;
4377@}
4378@end group
4379@end example
4380
4381@noindent
4382This says that the two alternative types are @code{double} and @code{symrec
4383*}. They are given names @code{val} and @code{tptr}; these names are used
4384in the @code{%token} and @code{%type} declarations to pick one of the types
4385for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4386
6273355b
PE
4387As an extension to @acronym{POSIX}, a tag is allowed after the
4388@code{union}. For example:
4389
4390@example
4391@group
4392%union value @{
4393 double val;
4394 symrec *tptr;
4395@}
4396@end group
4397@end example
4398
d6ca7905 4399@noindent
6273355b
PE
4400specifies the union tag @code{value}, so the corresponding C type is
4401@code{union value}. If you do not specify a tag, it defaults to
4402@code{YYSTYPE}.
4403
d6ca7905
PE
4404As another extension to @acronym{POSIX}, you may specify multiple
4405@code{%union} declarations; their contents are concatenated. However,
4406only the first @code{%union} declaration can specify a tag.
4407
6273355b 4408Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4409a semicolon after the closing brace.
4410
ddc8ede1
PE
4411Instead of @code{%union}, you can define and use your own union type
4412@code{YYSTYPE} if your grammar contains at least one
4413@samp{<@var{type}>} tag. For example, you can put the following into
4414a header file @file{parser.h}:
4415
4416@example
4417@group
4418union YYSTYPE @{
4419 double val;
4420 symrec *tptr;
4421@};
4422typedef union YYSTYPE YYSTYPE;
4423@end group
4424@end example
4425
4426@noindent
4427and then your grammar can use the following
4428instead of @code{%union}:
4429
4430@example
4431@group
4432%@{
4433#include "parser.h"
4434%@}
4435%type <val> expr
4436%token <tptr> ID
4437@end group
4438@end example
4439
342b8b6e 4440@node Type Decl
bfa74976
RS
4441@subsection Nonterminal Symbols
4442@cindex declaring value types, nonterminals
4443@cindex value types, nonterminals, declaring
4444@findex %type
4445
4446@noindent
4447When you use @code{%union} to specify multiple value types, you must
4448declare the value type of each nonterminal symbol for which values are
4449used. This is done with a @code{%type} declaration, like this:
4450
4451@example
4452%type <@var{type}> @var{nonterminal}@dots{}
4453@end example
4454
4455@noindent
704a47c4
AD
4456Here @var{nonterminal} is the name of a nonterminal symbol, and
4457@var{type} is the name given in the @code{%union} to the alternative
4458that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4459can give any number of nonterminal symbols in the same @code{%type}
4460declaration, if they have the same value type. Use spaces to separate
4461the symbol names.
bfa74976 4462
931c7513
RS
4463You can also declare the value type of a terminal symbol. To do this,
4464use the same @code{<@var{type}>} construction in a declaration for the
4465terminal symbol. All kinds of token declarations allow
4466@code{<@var{type}>}.
4467
18d192f0
AD
4468@node Initial Action Decl
4469@subsection Performing Actions before Parsing
4470@findex %initial-action
4471
4472Sometimes your parser needs to perform some initializations before
4473parsing. The @code{%initial-action} directive allows for such arbitrary
4474code.
4475
4476@deffn {Directive} %initial-action @{ @var{code} @}
4477@findex %initial-action
287c78f6 4478Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4479@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4480@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4481@code{%parse-param}.
18d192f0
AD
4482@end deffn
4483
451364ed
AD
4484For instance, if your locations use a file name, you may use
4485
4486@example
48b16bbc 4487%parse-param @{ char const *file_name @};
451364ed
AD
4488%initial-action
4489@{
4626a15d 4490 @@$.initialize (file_name);
451364ed
AD
4491@};
4492@end example
4493
18d192f0 4494
72f889cc
AD
4495@node Destructor Decl
4496@subsection Freeing Discarded Symbols
4497@cindex freeing discarded symbols
4498@findex %destructor
12e35840 4499@findex <*>
3ebecc24 4500@findex <>
a85284cf
AD
4501During error recovery (@pxref{Error Recovery}), symbols already pushed
4502on the stack and tokens coming from the rest of the file are discarded
4503until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4504or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4505symbols on the stack must be discarded. Even if the parser succeeds, it
4506must discard the start symbol.
258b75ca
PE
4507
4508When discarded symbols convey heap based information, this memory is
4509lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4510in traditional compilers, it is unacceptable for programs like shells or
4511protocol implementations that may parse and execute indefinitely.
258b75ca 4512
a85284cf
AD
4513The @code{%destructor} directive defines code that is called when a
4514symbol is automatically discarded.
72f889cc
AD
4515
4516@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4517@findex %destructor
287c78f6
PE
4518Invoke the braced @var{code} whenever the parser discards one of the
4519@var{symbols}.
4b367315 4520Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4521with the discarded symbol, and @code{@@$} designates its location.
4522The additional parser parameters are also available (@pxref{Parser Function, ,
4523The Parser Function @code{yyparse}}).
ec5479ce 4524
b2a0b7ca
JD
4525When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4526per-symbol @code{%destructor}.
4527You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4528tag among @var{symbols}.
b2a0b7ca 4529In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4530grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4531per-symbol @code{%destructor}.
4532
12e35840 4533Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4534(These default forms are experimental.
4535More user feedback will help to determine whether they should become permanent
4536features.)
3ebecc24 4537You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4538exactly one @code{%destructor} declaration in your grammar file.
4539The parser will invoke the @var{code} associated with one of these whenever it
4540discards any user-defined grammar symbol that has no per-symbol and no per-type
4541@code{%destructor}.
4542The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4543symbol for which you have formally declared a semantic type tag (@code{%type}
4544counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4545The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4546symbol that has no declared semantic type tag.
72f889cc
AD
4547@end deffn
4548
b2a0b7ca 4549@noindent
12e35840 4550For example:
72f889cc
AD
4551
4552@smallexample
ec5479ce
JD
4553%union @{ char *string; @}
4554%token <string> STRING1
4555%token <string> STRING2
4556%type <string> string1
4557%type <string> string2
b2a0b7ca
JD
4558%union @{ char character; @}
4559%token <character> CHR
4560%type <character> chr
12e35840
JD
4561%token TAGLESS
4562
b2a0b7ca 4563%destructor @{ @} <character>
12e35840
JD
4564%destructor @{ free ($$); @} <*>
4565%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4566%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4567@end smallexample
4568
4569@noindent
b2a0b7ca
JD
4570guarantees that, when the parser discards any user-defined symbol that has a
4571semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4572to @code{free} by default.
ec5479ce
JD
4573However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4574prints its line number to @code{stdout}.
4575It performs only the second @code{%destructor} in this case, so it invokes
4576@code{free} only once.
12e35840
JD
4577Finally, the parser merely prints a message whenever it discards any symbol,
4578such as @code{TAGLESS}, that has no semantic type tag.
4579
4580A Bison-generated parser invokes the default @code{%destructor}s only for
4581user-defined as opposed to Bison-defined symbols.
4582For example, the parser will not invoke either kind of default
4583@code{%destructor} for the special Bison-defined symbols @code{$accept},
4584@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4585none of which you can reference in your grammar.
4586It also will not invoke either for the @code{error} token (@pxref{Table of
4587Symbols, ,error}), which is always defined by Bison regardless of whether you
4588reference it in your grammar.
4589However, it may invoke one of them for the end token (token 0) if you
4590redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4591
4592@smallexample
4593%token END 0
4594@end smallexample
4595
12e35840
JD
4596@cindex actions in mid-rule
4597@cindex mid-rule actions
4598Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4599mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4600That is, Bison does not consider a mid-rule to have a semantic value if you do
4601not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4602@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4603rule.
4604However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4605@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4606
3508ce36
JD
4607@ignore
4608@noindent
4609In the future, it may be possible to redefine the @code{error} token as a
4610nonterminal that captures the discarded symbols.
4611In that case, the parser will invoke the default destructor for it as well.
4612@end ignore
4613
e757bb10
AD
4614@sp 1
4615
4616@cindex discarded symbols
4617@dfn{Discarded symbols} are the following:
4618
4619@itemize
4620@item
4621stacked symbols popped during the first phase of error recovery,
4622@item
4623incoming terminals during the second phase of error recovery,
4624@item
742e4900 4625the current lookahead and the entire stack (except the current
9d9b8b70 4626right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4627@item
4628the start symbol, when the parser succeeds.
e757bb10
AD
4629@end itemize
4630
9d9b8b70
PE
4631The parser can @dfn{return immediately} because of an explicit call to
4632@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4633exhaustion.
4634
29553547 4635Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4636error via @code{YYERROR} are not discarded automatically. As a rule
4637of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4638the memory.
e757bb10 4639
342b8b6e 4640@node Expect Decl
bfa74976
RS
4641@subsection Suppressing Conflict Warnings
4642@cindex suppressing conflict warnings
4643@cindex preventing warnings about conflicts
4644@cindex warnings, preventing
4645@cindex conflicts, suppressing warnings of
4646@findex %expect
d6328241 4647@findex %expect-rr
bfa74976
RS
4648
4649Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4650(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4651have harmless shift/reduce conflicts which are resolved in a predictable
4652way and would be difficult to eliminate. It is desirable to suppress
4653the warning about these conflicts unless the number of conflicts
4654changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4655
4656The declaration looks like this:
4657
4658@example
4659%expect @var{n}
4660@end example
4661
035aa4a0
PE
4662Here @var{n} is a decimal integer. The declaration says there should
4663be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4664Bison reports an error if the number of shift/reduce conflicts differs
4665from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4666
eb45ef3b 4667For deterministic parsers, reduce/reduce conflicts are more
035aa4a0
PE
4668serious, and should be eliminated entirely. Bison will always report
4669reduce/reduce conflicts for these parsers. With @acronym{GLR}
4670parsers, however, both kinds of conflicts are routine; otherwise,
4671there would be no need to use @acronym{GLR} parsing. Therefore, it is
4672also possible to specify an expected number of reduce/reduce conflicts
4673in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4674
4675@example
4676%expect-rr @var{n}
4677@end example
4678
bfa74976
RS
4679In general, using @code{%expect} involves these steps:
4680
4681@itemize @bullet
4682@item
4683Compile your grammar without @code{%expect}. Use the @samp{-v} option
4684to get a verbose list of where the conflicts occur. Bison will also
4685print the number of conflicts.
4686
4687@item
4688Check each of the conflicts to make sure that Bison's default
4689resolution is what you really want. If not, rewrite the grammar and
4690go back to the beginning.
4691
4692@item
4693Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4694number which Bison printed. With @acronym{GLR} parsers, add an
4695@code{%expect-rr} declaration as well.
bfa74976
RS
4696@end itemize
4697
93d7dde9
JD
4698Now Bison will report an error if you introduce an unexpected conflict,
4699but will keep silent otherwise.
bfa74976 4700
342b8b6e 4701@node Start Decl
bfa74976
RS
4702@subsection The Start-Symbol
4703@cindex declaring the start symbol
4704@cindex start symbol, declaring
4705@cindex default start symbol
4706@findex %start
4707
4708Bison assumes by default that the start symbol for the grammar is the first
4709nonterminal specified in the grammar specification section. The programmer
4710may override this restriction with the @code{%start} declaration as follows:
4711
4712@example
4713%start @var{symbol}
4714@end example
4715
342b8b6e 4716@node Pure Decl
bfa74976
RS
4717@subsection A Pure (Reentrant) Parser
4718@cindex reentrant parser
4719@cindex pure parser
d9df47b6 4720@findex %define api.pure
bfa74976
RS
4721
4722A @dfn{reentrant} program is one which does not alter in the course of
4723execution; in other words, it consists entirely of @dfn{pure} (read-only)
4724code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4725for example, a nonreentrant program may not be safe to call from a signal
4726handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4727program must be called only within interlocks.
4728
70811b85 4729Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4730suitable for most uses, and it permits compatibility with Yacc. (The
4731standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4732statically allocated variables for communication with @code{yylex},
4733including @code{yylval} and @code{yylloc}.)
bfa74976 4734
70811b85 4735Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 4736declaration @samp{%define api.pure} says that you want the parser to be
70811b85 4737reentrant. It looks like this:
bfa74976
RS
4738
4739@example
d9df47b6 4740%define api.pure
bfa74976
RS
4741@end example
4742
70811b85
RS
4743The result is that the communication variables @code{yylval} and
4744@code{yylloc} become local variables in @code{yyparse}, and a different
4745calling convention is used for the lexical analyzer function
4746@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4747Parsers}, for the details of this. The variable @code{yynerrs}
4748becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4749of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4750Reporting Function @code{yyerror}}). The convention for calling
4751@code{yyparse} itself is unchanged.
4752
4753Whether the parser is pure has nothing to do with the grammar rules.
4754You can generate either a pure parser or a nonreentrant parser from any
4755valid grammar.
bfa74976 4756
9987d1b3
JD
4757@node Push Decl
4758@subsection A Push Parser
4759@cindex push parser
4760@cindex push parser
67212941 4761@findex %define api.push-pull
9987d1b3 4762
59da312b
JD
4763(The current push parsing interface is experimental and may evolve.
4764More user feedback will help to stabilize it.)
4765
f4101aa6
AD
4766A pull parser is called once and it takes control until all its input
4767is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4768each time a new token is made available.
4769
f4101aa6 4770A push parser is typically useful when the parser is part of a
9987d1b3 4771main event loop in the client's application. This is typically
f4101aa6
AD
4772a requirement of a GUI, when the main event loop needs to be triggered
4773within a certain time period.
9987d1b3 4774
d782395d
JD
4775Normally, Bison generates a pull parser.
4776The following Bison declaration says that you want the parser to be a push
67212941 4777parser (@pxref{Decl Summary,,%define api.push-pull}):
9987d1b3
JD
4778
4779@example
cf499cff 4780%define api.push-pull push
9987d1b3
JD
4781@end example
4782
4783In almost all cases, you want to ensure that your push parser is also
4784a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4785time you should create an impure push parser is to have backwards
9987d1b3
JD
4786compatibility with the impure Yacc pull mode interface. Unless you know
4787what you are doing, your declarations should look like this:
4788
4789@example
d9df47b6 4790%define api.pure
cf499cff 4791%define api.push-pull push
9987d1b3
JD
4792@end example
4793
f4101aa6
AD
4794There is a major notable functional difference between the pure push parser
4795and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4796many parser instances, of the same type of parser, in memory at the same time.
4797An impure push parser should only use one parser at a time.
4798
4799When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4800the generated parser. @code{yypstate} is a structure that the generated
4801parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4802function that will create a new parser instance. @code{yypstate_delete}
4803will free the resources associated with the corresponding parser instance.
f4101aa6 4804Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4805token is available to provide the parser. A trivial example
4806of using a pure push parser would look like this:
4807
4808@example
4809int status;
4810yypstate *ps = yypstate_new ();
4811do @{
4812 status = yypush_parse (ps, yylex (), NULL);
4813@} while (status == YYPUSH_MORE);
4814yypstate_delete (ps);
4815@end example
4816
4817If the user decided to use an impure push parser, a few things about
f4101aa6 4818the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4819a global variable instead of a variable in the @code{yypush_parse} function.
4820For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4821changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4822example would thus look like this:
4823
4824@example
4825extern int yychar;
4826int status;
4827yypstate *ps = yypstate_new ();
4828do @{
4829 yychar = yylex ();
4830 status = yypush_parse (ps);
4831@} while (status == YYPUSH_MORE);
4832yypstate_delete (ps);
4833@end example
4834
f4101aa6 4835That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4836for use by the next invocation of the @code{yypush_parse} function.
4837
f4101aa6 4838Bison also supports both the push parser interface along with the pull parser
9987d1b3 4839interface in the same generated parser. In order to get this functionality,
cf499cff
JD
4840you should replace the @samp{%define api.push-pull push} declaration with the
4841@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4842the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4843and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4844would be used. However, the user should note that it is implemented in the
d782395d
JD
4845generated parser by calling @code{yypull_parse}.
4846This makes the @code{yyparse} function that is generated with the
cf499cff 4847@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4848@code{yyparse} function. If the user
4849calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4850stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4851and then @code{yypull_parse} the rest of the input stream. If you would like
4852to switch back and forth between between parsing styles, you would have to
4853write your own @code{yypull_parse} function that knows when to quit looking
4854for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4855like this:
4856
4857@example
4858yypstate *ps = yypstate_new ();
4859yypull_parse (ps); /* Will call the lexer */
4860yypstate_delete (ps);
4861@end example
4862
67501061 4863Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
4864the generated parser with @samp{%define api.push-pull both} as it did for
4865@samp{%define api.push-pull push}.
9987d1b3 4866
342b8b6e 4867@node Decl Summary
bfa74976
RS
4868@subsection Bison Declaration Summary
4869@cindex Bison declaration summary
4870@cindex declaration summary
4871@cindex summary, Bison declaration
4872
d8988b2f 4873Here is a summary of the declarations used to define a grammar:
bfa74976 4874
18b519c0 4875@deffn {Directive} %union
bfa74976
RS
4876Declare the collection of data types that semantic values may have
4877(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4878@end deffn
bfa74976 4879
18b519c0 4880@deffn {Directive} %token
bfa74976
RS
4881Declare a terminal symbol (token type name) with no precedence
4882or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4883@end deffn
bfa74976 4884
18b519c0 4885@deffn {Directive} %right
bfa74976
RS
4886Declare a terminal symbol (token type name) that is right-associative
4887(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4888@end deffn
bfa74976 4889
18b519c0 4890@deffn {Directive} %left
bfa74976
RS
4891Declare a terminal symbol (token type name) that is left-associative
4892(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4893@end deffn
bfa74976 4894
18b519c0 4895@deffn {Directive} %nonassoc
bfa74976 4896Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4897(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4898Using it in a way that would be associative is a syntax error.
4899@end deffn
4900
91d2c560 4901@ifset defaultprec
39a06c25 4902@deffn {Directive} %default-prec
22fccf95 4903Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4904(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4905@end deffn
91d2c560 4906@end ifset
bfa74976 4907
18b519c0 4908@deffn {Directive} %type
bfa74976
RS
4909Declare the type of semantic values for a nonterminal symbol
4910(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4911@end deffn
bfa74976 4912
18b519c0 4913@deffn {Directive} %start
89cab50d
AD
4914Specify the grammar's start symbol (@pxref{Start Decl, ,The
4915Start-Symbol}).
18b519c0 4916@end deffn
bfa74976 4917
18b519c0 4918@deffn {Directive} %expect
bfa74976
RS
4919Declare the expected number of shift-reduce conflicts
4920(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4921@end deffn
4922
bfa74976 4923
d8988b2f
AD
4924@sp 1
4925@noindent
4926In order to change the behavior of @command{bison}, use the following
4927directives:
4928
148d66d8
JD
4929@deffn {Directive} %code @{@var{code}@}
4930@findex %code
4931This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4932It inserts @var{code} verbatim at a language-dependent default location in the
4933output@footnote{The default location is actually skeleton-dependent;
4934 writers of non-standard skeletons however should choose the default location
4935 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4936
4937@cindex Prologue
8405b70c 4938For C/C++, the default location is the parser source code
148d66d8
JD
4939file after the usual contents of the parser header file.
4940Thus, @code{%code} replaces the traditional Yacc prologue,
4941@code{%@{@var{code}%@}}, for most purposes.
4942For a detailed discussion, see @ref{Prologue Alternatives}.
4943
8405b70c 4944For Java, the default location is inside the parser class.
148d66d8
JD
4945@end deffn
4946
4947@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4948This is the qualified form of the @code{%code} directive.
4949If you need to specify location-sensitive verbatim @var{code} that does not
4950belong at the default location selected by the unqualified @code{%code} form,
4951use this form instead.
4952
4953@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4954where Bison should generate it.
c6abeab1
JD
4955Not all @var{qualifier}s are accepted for all target languages.
4956Unaccepted @var{qualifier}s produce an error.
4957Some of the accepted @var{qualifier}s are:
148d66d8
JD
4958
4959@itemize @bullet
148d66d8 4960@item requires
793fbca5 4961@findex %code requires
148d66d8
JD
4962
4963@itemize @bullet
4964@item Language(s): C, C++
4965
4966@item Purpose: This is the best place to write dependency code required for
4967@code{YYSTYPE} and @code{YYLTYPE}.
4968In other words, it's the best place to define types referenced in @code{%union}
4969directives, and it's the best place to override Bison's default @code{YYSTYPE}
4970and @code{YYLTYPE} definitions.
4971
4972@item Location(s): The parser header file and the parser source code file
4973before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
4974@end itemize
4975
4976@item provides
4977@findex %code provides
4978
4979@itemize @bullet
4980@item Language(s): C, C++
4981
4982@item Purpose: This is the best place to write additional definitions and
4983declarations that should be provided to other modules.
4984
4985@item Location(s): The parser header file and the parser source code file after
4986the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
4987@end itemize
4988
4989@item top
4990@findex %code top
4991
4992@itemize @bullet
4993@item Language(s): C, C++
4994
4995@item Purpose: The unqualified @code{%code} or @code{%code requires} should
4996usually be more appropriate than @code{%code top}.
4997However, occasionally it is necessary to insert code much nearer the top of the
4998parser source code file.
4999For example:
5000
5001@smallexample
5002%code top @{
5003 #define _GNU_SOURCE
5004 #include <stdio.h>
5005@}
5006@end smallexample
5007
5008@item Location(s): Near the top of the parser source code file.
5009@end itemize
8405b70c 5010
148d66d8
JD
5011@item imports
5012@findex %code imports
5013
5014@itemize @bullet
5015@item Language(s): Java
5016
5017@item Purpose: This is the best place to write Java import directives.
5018
5019@item Location(s): The parser Java file after any Java package directive and
5020before any class definitions.
5021@end itemize
148d66d8
JD
5022@end itemize
5023
148d66d8
JD
5024@cindex Prologue
5025For a detailed discussion of how to use @code{%code} in place of the
5026traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
5027@end deffn
5028
18b519c0 5029@deffn {Directive} %debug
fa819509
AD
5030Instrument the output parser for traces. Obsoleted by @samp{%define
5031parse.trace}.
ec3bc396 5032@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5033@end deffn
d8988b2f 5034
c1d19e10 5035@deffn {Directive} %define @var{variable}
cf499cff 5036@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5037@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2 5038Define a variable to adjust Bison's behavior.
9611cfa2 5039
0b6d43c5 5040It is an error if a @var{variable} is defined by @code{%define} multiple
17aed602 5041times, but see @ref{Bison Options,,-D @var{name}[=@var{value}]}.
9611cfa2 5042
cf499cff
JD
5043@var{value} must be placed in quotation marks if it contains any
5044character other than a letter, underscore, period, dash, or non-initial
5045digit.
5046
5047Omitting @code{"@var{value}"} entirely is always equivalent to specifying
9611cfa2
JD
5048@code{""}.
5049
c6abeab1 5050Some @var{variable}s take Boolean values.
9611cfa2
JD
5051In this case, Bison will complain if the variable definition does not meet one
5052of the following four conditions:
5053
5054@enumerate
cf499cff 5055@item @code{@var{value}} is @code{true}
9611cfa2 5056
cf499cff
JD
5057@item @code{@var{value}} is omitted (or @code{""} is specified).
5058This is equivalent to @code{true}.
9611cfa2 5059
cf499cff 5060@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5061
5062@item @var{variable} is never defined.
c6abeab1 5063In this case, Bison selects a default value.
9611cfa2 5064@end enumerate
148d66d8 5065
c6abeab1
JD
5066What @var{variable}s are accepted, as well as their meanings and default
5067values, depend on the selected target language and/or the parser
5068skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5069Summary,,%skeleton}).
5070Unaccepted @var{variable}s produce an error.
793fbca5
JD
5071Some of the accepted @var{variable}s are:
5072
fa819509 5073@table @code
6b5a0de9 5074@c ================================================== api.namespace
67501061
AD
5075@item api.namespace
5076@findex %define api.namespace
5077@itemize
5078@item Languages(s): C++
5079
f1b238df 5080@item Purpose: Specify the namespace for the parser class.
67501061
AD
5081For example, if you specify:
5082
5083@smallexample
5084%define api.namespace "foo::bar"
5085@end smallexample
5086
5087Bison uses @code{foo::bar} verbatim in references such as:
5088
5089@smallexample
5090foo::bar::parser::semantic_type
5091@end smallexample
5092
5093However, to open a namespace, Bison removes any leading @code{::} and then
5094splits on any remaining occurrences:
5095
5096@smallexample
5097namespace foo @{ namespace bar @{
5098 class position;
5099 class location;
5100@} @}
5101@end smallexample
5102
5103@item Accepted Values:
5104Any absolute or relative C++ namespace reference without a trailing
5105@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5106
5107@item Default Value:
5108The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5109This usage of @code{%name-prefix} is for backward compatibility and can
5110be confusing since @code{%name-prefix} also specifies the textual prefix
5111for the lexical analyzer function. Thus, if you specify
5112@code{%name-prefix}, it is best to also specify @samp{%define
5113api.namespace} so that @code{%name-prefix} @emph{only} affects the
5114lexical analyzer function. For example, if you specify:
5115
5116@smallexample
5117%define api.namespace "foo"
5118%name-prefix "bar::"
5119@end smallexample
5120
5121The parser namespace is @code{foo} and @code{yylex} is referenced as
5122@code{bar::lex}.
5123@end itemize
5124@c namespace
5125
5126
5127
5128@c ================================================== api.pure
d9df47b6
JD
5129@item api.pure
5130@findex %define api.pure
5131
5132@itemize @bullet
5133@item Language(s): C
5134
5135@item Purpose: Request a pure (reentrant) parser program.
5136@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5137
5138@item Accepted Values: Boolean
5139
cf499cff 5140@item Default Value: @code{false}
d9df47b6 5141@end itemize
71b00ed8 5142@c api.pure
d9df47b6 5143
67501061
AD
5144
5145
5146@c ================================================== api.push-pull
67212941
JD
5147@item api.push-pull
5148@findex %define api.push-pull
793fbca5
JD
5149
5150@itemize @bullet
eb45ef3b 5151@item Language(s): C (deterministic parsers only)
793fbca5 5152
f1b238df 5153@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5154@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5155(The current push parsing interface is experimental and may evolve.
5156More user feedback will help to stabilize it.)
793fbca5 5157
cf499cff 5158@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5159
cf499cff 5160@item Default Value: @code{pull}
793fbca5 5161@end itemize
67212941 5162@c api.push-pull
71b00ed8 5163
6b5a0de9
AD
5164
5165
5166@c ================================================== api.tokens.prefix
4c6622c2
AD
5167@item api.tokens.prefix
5168@findex %define api.tokens.prefix
5169
5170@itemize
5171@item Languages(s): all
5172
5173@item Purpose:
5174Add a prefix to the token names when generating their definition in the
5175target language. For instance
5176
5177@example
5178%token FILE for ERROR
5179%define api.tokens.prefix "TOK_"
5180%%
5181start: FILE for ERROR;
5182@end example
5183
5184@noindent
5185generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5186and @code{TOK_ERROR} in the generated source files. In particular, the
5187scanner must use these prefixed token names, while the grammar itself
5188may still use the short names (as in the sample rule given above). The
5189generated informational files (@file{*.output}, @file{*.xml},
5190@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5191and @ref{Calc++ Scanner}, for a complete example.
5192
5193@item Accepted Values:
5194Any string. Should be a valid identifier prefix in the target language,
5195in other words, it should typically be an identifier itself (sequence of
5196letters, underscores, and ---not at the beginning--- digits).
5197
5198@item Default Value:
5199empty
5200@end itemize
5201@c api.tokens.prefix
5202
5203
3cdc21cf
AD
5204@c ================================================== lex_symbol
5205@item variant
5206@findex %define lex_symbol
5207
5208@itemize @bullet
5209@item Language(s):
5210C++
5211
5212@item Purpose:
5213When variant-based semantic values are enabled (@pxref{C++ Variants}),
5214request that symbols be handled as a whole (type, value, and possibly
5215location) in the scanner. @xref{Complete Symbols}, for details.
5216
5217@item Accepted Values:
5218Boolean.
5219
5220@item Default Value:
5221@code{false}
5222@end itemize
5223@c lex_symbol
5224
5225
6b5a0de9
AD
5226@c ================================================== lr.default-reductions
5227
5bab9d08 5228@item lr.default-reductions
110ef36a 5229@cindex default reductions
5bab9d08 5230@findex %define lr.default-reductions
eb45ef3b
JD
5231@cindex delayed syntax errors
5232@cindex syntax errors delayed
fcf834f9
JD
5233@cindex @acronym{LAC}
5234@findex %nonassoc
eb45ef3b
JD
5235
5236@itemize @bullet
5237@item Language(s): all
5238
fcf834f9 5239@item Purpose: Specify the kind of states that are permitted to
110ef36a 5240contain default reductions.
fcf834f9
JD
5241That is, in such a state, Bison selects the reduction with the largest
5242lookahead set to be the default parser action and then removes that
110ef36a 5243lookahead set.
fcf834f9
JD
5244(The ability to specify where default reductions should be used is
5245experimental.
eb45ef3b
JD
5246More user feedback will help to stabilize it.)
5247
5248@item Accepted Values:
5249@itemize
cf499cff 5250@item @code{all}.
fcf834f9
JD
5251This is the traditional Bison behavior.
5252The main advantage is a significant decrease in the size of the parser
5253tables.
5254The disadvantage is that, when the generated parser encounters a
5255syntactically unacceptable token, the parser might then perform
5256unnecessary default reductions before it can detect the syntax error.
5257Such delayed syntax error detection is usually inherent in
5258@acronym{LALR} and @acronym{IELR} parser tables anyway due to
5259@acronym{LR} state merging (@pxref{Decl Summary,,lr.type}).
5260Furthermore, the use of @code{%nonassoc} can contribute to delayed
5261syntax error detection even in the case of canonical @acronym{LR}.
5262As an experimental feature, delayed syntax error detection can be
5263overcome in all cases by enabling @acronym{LAC} (@pxref{Decl
5264Summary,,parse.lac}, for details, including a discussion of the effects
5265of delayed syntax error detection).
eb45ef3b 5266
cf499cff 5267@item @code{consistent}.
eb45ef3b
JD
5268@cindex consistent states
5269A consistent state is a state that has only one possible action.
5270If that action is a reduction, then the parser does not need to request
5271a lookahead token from the scanner before performing that action.
fcf834f9
JD
5272However, the parser recognizes the ability to ignore the lookahead token
5273in this way only when such a reduction is encoded as a default
5274reduction.
5275Thus, if default reductions are permitted only in consistent states,
5276then a canonical @acronym{LR} parser that does not employ
5277@code{%nonassoc} detects a syntax error as soon as it @emph{needs} the
5278syntactically unacceptable token from the scanner.
eb45ef3b 5279
cf499cff 5280@item @code{accepting}.
eb45ef3b 5281@cindex accepting state
fcf834f9
JD
5282In the accepting state, the default reduction is actually the accept
5283action.
5284In this case, a canonical @acronym{LR} parser that does not employ
5285@code{%nonassoc} detects a syntax error as soon as it @emph{reaches} the
5286syntactically unacceptable token in the input.
5287That is, it does not perform any extra reductions.
eb45ef3b
JD
5288@end itemize
5289
5290@item Default Value:
5291@itemize
cf499cff
JD
5292@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
5293@item @code{all} otherwise.
eb45ef3b
JD
5294@end itemize
5295@end itemize
5296
6b5a0de9
AD
5297@c ============================================ lr.keep-unreachable-states
5298
67212941
JD
5299@item lr.keep-unreachable-states
5300@findex %define lr.keep-unreachable-states
31984206
JD
5301
5302@itemize @bullet
5303@item Language(s): all
5304
f1b238df
JD
5305@item Purpose: Request that Bison allow unreachable parser states to
5306remain in the parser tables.
31984206
JD
5307Bison considers a state to be unreachable if there exists no sequence of
5308transitions from the start state to that state.
5309A state can become unreachable during conflict resolution if Bison disables a
5310shift action leading to it from a predecessor state.
5311Keeping unreachable states is sometimes useful for analysis purposes, but they
5312are useless in the generated parser.
5313
5314@item Accepted Values: Boolean
5315
cf499cff 5316@item Default Value: @code{false}
31984206
JD
5317
5318@item Caveats:
5319
5320@itemize @bullet
cff03fb2
JD
5321
5322@item Unreachable states may contain conflicts and may use rules not used in
5323any other state.
31984206
JD
5324Thus, keeping unreachable states may induce warnings that are irrelevant to
5325your parser's behavior, and it may eliminate warnings that are relevant.
5326Of course, the change in warnings may actually be relevant to a parser table
5327analysis that wants to keep unreachable states, so this behavior will likely
5328remain in future Bison releases.
5329
5330@item While Bison is able to remove unreachable states, it is not guaranteed to
5331remove other kinds of useless states.
5332Specifically, when Bison disables reduce actions during conflict resolution,
5333some goto actions may become useless, and thus some additional states may
5334become useless.
5335If Bison were to compute which goto actions were useless and then disable those
5336actions, it could identify such states as unreachable and then remove those
5337states.
5338However, Bison does not compute which goto actions are useless.
5339@end itemize
5340@end itemize
67212941 5341@c lr.keep-unreachable-states
31984206 5342
6b5a0de9
AD
5343@c ================================================== lr.type
5344
eb45ef3b
JD
5345@item lr.type
5346@findex %define lr.type
5347@cindex @acronym{LALR}
5348@cindex @acronym{IELR}
5349@cindex @acronym{LR}
5350
5351@itemize @bullet
5352@item Language(s): all
5353
f1b238df 5354@item Purpose: Specify the type of parser tables within the
eb45ef3b
JD
5355@acronym{LR}(1) family.
5356(This feature is experimental.
5357More user feedback will help to stabilize it.)
5358
5359@item Accepted Values:
5360@itemize
cf499cff 5361@item @code{lalr}.
eb45ef3b
JD
5362While Bison generates @acronym{LALR} parser tables by default for
5363historical reasons, @acronym{IELR} or canonical @acronym{LR} is almost
5364always preferable for deterministic parsers.
5365The trouble is that @acronym{LALR} parser tables can suffer from
110ef36a
JD
5366mysterious conflicts and thus may not accept the full set of sentences
5367that @acronym{IELR} and canonical @acronym{LR} accept.
eb45ef3b
JD
5368@xref{Mystery Conflicts}, for details.
5369However, there are at least two scenarios where @acronym{LALR} may be
5370worthwhile:
5371@itemize
5372@cindex @acronym{GLR} with @acronym{LALR}
5373@item When employing @acronym{GLR} parsers (@pxref{GLR Parsers}), if you
5374do not resolve any conflicts statically (for example, with @code{%left}
5375or @code{%prec}), then the parser explores all potential parses of any
5376given input.
110ef36a
JD
5377In this case, the use of @acronym{LALR} parser tables is guaranteed not
5378to alter the language accepted by the parser.
eb45ef3b
JD
5379@acronym{LALR} parser tables are the smallest parser tables Bison can
5380currently generate, so they may be preferable.
f1b238df
JD
5381Nevertheless, once you begin to resolve conflicts statically,
5382@acronym{GLR} begins to behave more like a deterministic parser, and so
5383@acronym{IELR} and canonical @acronym{LR} can be helpful to avoid
5384@acronym{LALR}'s mysterious behavior.
eb45ef3b
JD
5385
5386@item Occasionally during development, an especially malformed grammar
5387with a major recurring flaw may severely impede the @acronym{IELR} or
5388canonical @acronym{LR} parser table generation algorithm.
5389@acronym{LALR} can be a quick way to generate parser tables in order to
5390investigate such problems while ignoring the more subtle differences
5391from @acronym{IELR} and canonical @acronym{LR}.
5392@end itemize
5393
cf499cff 5394@item @code{ielr}.
eb45ef3b
JD
5395@acronym{IELR} is a minimal @acronym{LR} algorithm.
5396That is, given any grammar (@acronym{LR} or non-@acronym{LR}),
5397@acronym{IELR} and canonical @acronym{LR} always accept exactly the same
5398set of sentences.
5399However, as for @acronym{LALR}, the number of parser states is often an
5400order of magnitude less for @acronym{IELR} than for canonical
5401@acronym{LR}.
5402More importantly, because canonical @acronym{LR}'s extra parser states
5403may contain duplicate conflicts in the case of non-@acronym{LR}
5404grammars, the number of conflicts for @acronym{IELR} is often an order
5405of magnitude less as well.
5406This can significantly reduce the complexity of developing of a grammar.
5407
cf499cff 5408@item @code{canonical-lr}.
eb45ef3b
JD
5409@cindex delayed syntax errors
5410@cindex syntax errors delayed
fcf834f9
JD
5411@cindex @acronym{LAC}
5412@findex %nonassoc
5413While inefficient, canonical @acronym{LR} parser tables can be an
5414interesting means to explore a grammar because they have a property that
5415@acronym{IELR} and @acronym{LALR} tables do not.
5416That is, if @code{%nonassoc} is not used and default reductions are left
5417disabled (@pxref{Decl Summary,,lr.default-reductions}), then, for every
5418left context of every canonical @acronym{LR} state, the set of tokens
5419accepted by that state is guaranteed to be the exact set of tokens that
5420is syntactically acceptable in that left context.
5421It might then seem that an advantage of canonical @acronym{LR} parsers
5422in production is that, under the above constraints, they are guaranteed
5423to detect a syntax error as soon as possible without performing any
5424unnecessary reductions.
5425However, @acronym{IELR} parsers using @acronym{LAC} (@pxref{Decl
5426Summary,,parse.lac}) are also able to achieve this behavior without
5427sacrificing @code{%nonassoc} or default reductions.
eb45ef3b
JD
5428@end itemize
5429
cf499cff 5430@item Default Value: @code{lalr}
eb45ef3b
JD
5431@end itemize
5432
67501061
AD
5433
5434@c ================================================== namespace
793fbca5
JD
5435@item namespace
5436@findex %define namespace
67501061 5437Obsoleted by @code{api.namespace}
fa819509
AD
5438@c namespace
5439
31b850d2
AD
5440
5441@c ================================================== parse.assert
0c90a1f5
AD
5442@item parse.assert
5443@findex %define parse.assert
5444
5445@itemize
5446@item Languages(s): C++
5447
5448@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5449In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5450constructed and
0c90a1f5
AD
5451destroyed properly. This option checks these constraints.
5452
5453@item Accepted Values: Boolean
5454
5455@item Default Value: @code{false}
5456@end itemize
5457@c parse.assert
5458
31b850d2
AD
5459
5460@c ================================================== parse.error
5461@item parse.error
5462@findex %define parse.error
5463@itemize
5464@item Languages(s):
fcf834f9 5465all
31b850d2
AD
5466@item Purpose:
5467Control the kind of error messages passed to the error reporting
5468function. @xref{Error Reporting, ,The Error Reporting Function
5469@code{yyerror}}.
5470@item Accepted Values:
5471@itemize
cf499cff 5472@item @code{simple}
31b850d2
AD
5473Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5474error"}}.
cf499cff 5475@item @code{verbose}
31b850d2
AD
5476Error messages report the unexpected token, and possibly the expected
5477ones.
5478@end itemize
5479
5480@item Default Value:
5481@code{simple}
5482@end itemize
5483@c parse.error
5484
5485
fcf834f9
JD
5486@c ================================================== parse.lac
5487@item parse.lac
5488@findex %define parse.lac
5489@cindex @acronym{LAC}
5490@cindex lookahead correction
5491
5492@itemize
5493@item Languages(s): C
5494
5495@item Purpose: Enable @acronym{LAC} (lookahead correction) to improve
5496syntax error handling.
5497
5498Canonical @acronym{LR}, @acronym{IELR}, and @acronym{LALR} can suffer
5499from a couple of problems upon encountering a syntax error. First, the
5500parser might perform additional parser stack reductions before
5501discovering the syntax error. Such reductions perform user semantic
5502actions that are unexpected because they are based on an invalid token,
5503and they cause error recovery to begin in a different syntactic context
5504than the one in which the invalid token was encountered. Second, when
5505verbose error messages are enabled (with @code{%error-verbose} or
5506@code{#define YYERROR_VERBOSE}), the expected token list in the syntax
5507error message can both contain invalid tokens and omit valid tokens.
5508
5509The culprits for the above problems are @code{%nonassoc}, default
5510reductions in inconsistent states, and parser state merging. Thus,
5511@acronym{IELR} and @acronym{LALR} suffer the most. Canonical
5512@acronym{LR} can suffer only if @code{%nonassoc} is used or if default
5513reductions are enabled for inconsistent states.
5514
5515@acronym{LAC} is a new mechanism within the parsing algorithm that
5516completely solves these problems for canonical @acronym{LR},
5517@acronym{IELR}, and @acronym{LALR} without sacrificing @code{%nonassoc},
5518default reductions, or state mering. Conceptually, the mechanism is
5519straight-forward. Whenever the parser fetches a new token from the
5520scanner so that it can determine the next parser action, it immediately
5521suspends normal parsing and performs an exploratory parse using a
5522temporary copy of the normal parser state stack. During this
5523exploratory parse, the parser does not perform user semantic actions.
5524If the exploratory parse reaches a shift action, normal parsing then
5525resumes on the normal parser stacks. If the exploratory parse reaches
5526an error instead, the parser reports a syntax error. If verbose syntax
5527error messages are enabled, the parser must then discover the list of
5528expected tokens, so it performs a separate exploratory parse for each
5529token in the grammar.
5530
5531There is one subtlety about the use of @acronym{LAC}. That is, when in
5532a consistent parser state with a default reduction, the parser will not
5533attempt to fetch a token from the scanner because no lookahead is needed
5534to determine the next parser action. Thus, whether default reductions
5535are enabled in consistent states (@pxref{Decl
5536Summary,,lr.default-reductions}) affects how soon the parser detects a
5537syntax error: when it @emph{reaches} an erroneous token or when it
5538eventually @emph{needs} that token as a lookahead. The latter behavior
5539is probably more intuitive, so Bison currently provides no way to
5540achieve the former behavior while default reductions are fully enabled.
5541
5542Thus, when @acronym{LAC} is in use, for some fixed decision of whether
5543to enable default reductions in consistent states, canonical
5544@acronym{LR} and @acronym{IELR} behave exactly the same for both
5545syntactically acceptable and syntactically unacceptable input. While
5546@acronym{LALR} still does not support the full language-recognition
5547power of canonical @acronym{LR} and @acronym{IELR}, @acronym{LAC} at
5548least enables @acronym{LALR}'s syntax error handling to correctly
5549reflect @acronym{LALR}'s language-recognition power.
5550
5551Because @acronym{LAC} requires many parse actions to be performed twice,
5552it can have a performance penalty. However, not all parse actions must
5553be performed twice. Specifically, during a series of default reductions
5554in consistent states and shift actions, the parser never has to initiate
5555an exploratory parse. Moreover, the most time-consuming tasks in a
5556parse are often the file I/O, the lexical analysis performed by the
5557scanner, and the user's semantic actions, but none of these are
5558performed during the exploratory parse. Finally, the base of the
5559temporary stack used during an exploratory parse is a pointer into the
5560normal parser state stack so that the stack is never physically copied.
5561In our experience, the performance penalty of @acronym{LAC} has proven
5562insignificant for practical grammars.
5563
5564@item Accepted Values: @code{none}, @code{full}
5565
5566@item Default Value: @code{none}
5567@end itemize
5568@c parse.lac
5569
31b850d2 5570@c ================================================== parse.trace
fa819509
AD
5571@item parse.trace
5572@findex %define parse.trace
5573
5574@itemize
5575@item Languages(s): C, C++
5576
5577@item Purpose: Require parser instrumentation for tracing.
5578In C/C++, define the macro @code{YYDEBUG} to 1 in the parser file if it
5579is not already defined, so that the debugging facilities are compiled.
5580@xref{Tracing, ,Tracing Your Parser}.
793fbca5 5581
fa819509
AD
5582@item Accepted Values: Boolean
5583
5584@item Default Value: @code{false}
5585@end itemize
fa819509 5586@c parse.trace
99c08fb6 5587
3cdc21cf
AD
5588@c ================================================== variant
5589@item variant
5590@findex %define variant
5591
5592@itemize @bullet
5593@item Language(s):
5594C++
5595
5596@item Purpose:
f1b238df 5597Request variant-based semantic values.
3cdc21cf
AD
5598@xref{C++ Variants}.
5599
5600@item Accepted Values:
5601Boolean.
5602
5603@item Default Value:
5604@code{false}
5605@end itemize
5606@c variant
5607
5608
99c08fb6 5609@end table
d782395d 5610@end deffn
99c08fb6 5611@c ---------------------------------------------------------- %define
d782395d 5612
18b519c0 5613@deffn {Directive} %defines
4bfd5e4e
PE
5614Write a header file containing macro definitions for the token type
5615names defined in the grammar as well as a few other declarations.
d8988b2f 5616If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 5617is named @file{@var{name}.h}.
d8988b2f 5618
b321737f 5619For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
5620@code{YYSTYPE} is already defined as a macro or you have used a
5621@code{<@var{type}>} tag without using @code{%union}.
5622Therefore, if you are using a @code{%union}
f8e1c9e5
AD
5623(@pxref{Multiple Types, ,More Than One Value Type}) with components that
5624require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 5625or type definition
f8e1c9e5
AD
5626(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
5627arrange for these definitions to be propagated to all modules, e.g., by
5628putting them in a prerequisite header that is included both by your
5629parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
5630
5631Unless your parser is pure, the output header declares @code{yylval}
5632as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
5633Parser}.
5634
5635If you have also used locations, the output header declares
5636@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 5637the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
5638Locations}.
5639
f8e1c9e5
AD
5640This output file is normally essential if you wish to put the definition
5641of @code{yylex} in a separate source file, because @code{yylex}
5642typically needs to be able to refer to the above-mentioned declarations
5643and to the token type codes. @xref{Token Values, ,Semantic Values of
5644Tokens}.
9bc0dd67 5645
16dc6a9e
JD
5646@findex %code requires
5647@findex %code provides
5648If you have declared @code{%code requires} or @code{%code provides}, the output
5649header also contains their code.
148d66d8 5650@xref{Decl Summary, ,%code}.
592d0b1e
PB
5651@end deffn
5652
02975b9a
JD
5653@deffn {Directive} %defines @var{defines-file}
5654Same as above, but save in the file @var{defines-file}.
5655@end deffn
5656
18b519c0 5657@deffn {Directive} %destructor
258b75ca 5658Specify how the parser should reclaim the memory associated to
fa7e68c3 5659discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 5660@end deffn
72f889cc 5661
02975b9a 5662@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
5663Specify a prefix to use for all Bison output file names. The names are
5664chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 5665@end deffn
d8988b2f 5666
e6e704dc 5667@deffn {Directive} %language "@var{language}"
0e021770 5668Specify the programming language for the generated parser. Currently
59da312b 5669supported languages include C, C++, and Java.
e6e704dc 5670@var{language} is case-insensitive.
ed4d67dc
JD
5671
5672This directive is experimental and its effect may be modified in future
5673releases.
0e021770
PE
5674@end deffn
5675
18b519c0 5676@deffn {Directive} %locations
89cab50d
AD
5677Generate the code processing the locations (@pxref{Action Features,
5678,Special Features for Use in Actions}). This mode is enabled as soon as
5679the grammar uses the special @samp{@@@var{n}} tokens, but if your
5680grammar does not use it, using @samp{%locations} allows for more
6e649e65 5681accurate syntax error messages.
18b519c0 5682@end deffn
89cab50d 5683
02975b9a 5684@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5685Rename the external symbols used in the parser so that they start with
5686@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5687in C parsers
d8988b2f 5688is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5689@code{yylval}, @code{yychar}, @code{yydebug}, and
f4101aa6
AD
5690(if locations are used) @code{yylloc}. If you use a push parser,
5691@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5692@code{yypstate_new} and @code{yypstate_delete} will
5693also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5 5694names become @code{c_parse}, @code{c_lex}, and so on.
67501061 5695For C++ parsers, see the @samp{%define api.namespace} documentation in this
793fbca5 5696section.
aa08666d 5697@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5698@end deffn
931c7513 5699
91d2c560 5700@ifset defaultprec
22fccf95
PE
5701@deffn {Directive} %no-default-prec
5702Do not assign a precedence to rules lacking an explicit @code{%prec}
5703modifier (@pxref{Contextual Precedence, ,Context-Dependent
5704Precedence}).
5705@end deffn
91d2c560 5706@end ifset
22fccf95 5707
18b519c0 5708@deffn {Directive} %no-lines
931c7513
RS
5709Don't generate any @code{#line} preprocessor commands in the parser
5710file. Ordinarily Bison writes these commands in the parser file so that
5711the C compiler and debuggers will associate errors and object code with
5712your source file (the grammar file). This directive causes them to
5713associate errors with the parser file, treating it an independent source
5714file in its own right.
18b519c0 5715@end deffn
931c7513 5716
02975b9a 5717@deffn {Directive} %output "@var{file}"
fa4d969f 5718Specify @var{file} for the parser file.
18b519c0 5719@end deffn
6deb4447 5720
18b519c0 5721@deffn {Directive} %pure-parser
67501061 5722Deprecated version of @samp{%define api.pure} (@pxref{Decl Summary, ,%define}),
d9df47b6 5723for which Bison is more careful to warn about unreasonable usage.
18b519c0 5724@end deffn
6deb4447 5725
b50d2359 5726@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5727Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5728Require a Version of Bison}.
b50d2359
AD
5729@end deffn
5730
0e021770 5731@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5732Specify the skeleton to use.
5733
ed4d67dc
JD
5734@c You probably don't need this option unless you are developing Bison.
5735@c You should use @code{%language} if you want to specify the skeleton for a
5736@c different language, because it is clearer and because it will always choose the
5737@c correct skeleton for non-deterministic or push parsers.
a7867f53
JD
5738
5739If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5740file in the Bison installation directory.
5741If it does, @var{file} is an absolute file name or a file name relative to the
5742directory of the grammar file.
5743This is similar to how most shells resolve commands.
0e021770
PE
5744@end deffn
5745
18b519c0 5746@deffn {Directive} %token-table
931c7513
RS
5747Generate an array of token names in the parser file. The name of the
5748array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 5749token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
5750three elements of @code{yytname} correspond to the predefined tokens
5751@code{"$end"},
88bce5a2
AD
5752@code{"error"}, and @code{"$undefined"}; after these come the symbols
5753defined in the grammar file.
931c7513 5754
9e0876fb
PE
5755The name in the table includes all the characters needed to represent
5756the token in Bison. For single-character literals and literal
5757strings, this includes the surrounding quoting characters and any
5758escape sequences. For example, the Bison single-character literal
5759@code{'+'} corresponds to a three-character name, represented in C as
5760@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5761corresponds to a five-character name, represented in C as
5762@code{"\"\\\\/\""}.
931c7513 5763
8c9a50be 5764When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5765definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5766@code{YYNRULES}, and @code{YYNSTATES}:
5767
5768@table @code
5769@item YYNTOKENS
5770The highest token number, plus one.
5771@item YYNNTS
9ecbd125 5772The number of nonterminal symbols.
931c7513
RS
5773@item YYNRULES
5774The number of grammar rules,
5775@item YYNSTATES
5776The number of parser states (@pxref{Parser States}).
5777@end table
18b519c0 5778@end deffn
d8988b2f 5779
18b519c0 5780@deffn {Directive} %verbose
d8988b2f 5781Write an extra output file containing verbose descriptions of the
742e4900 5782parser states and what is done for each type of lookahead token in
72d2299c 5783that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5784information.
18b519c0 5785@end deffn
d8988b2f 5786
18b519c0 5787@deffn {Directive} %yacc
d8988b2f
AD
5788Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5789including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5790@end deffn
d8988b2f
AD
5791
5792
342b8b6e 5793@node Multiple Parsers
bfa74976
RS
5794@section Multiple Parsers in the Same Program
5795
5796Most programs that use Bison parse only one language and therefore contain
5797only one Bison parser. But what if you want to parse more than one
5798language with the same program? Then you need to avoid a name conflict
5799between different definitions of @code{yyparse}, @code{yylval}, and so on.
5800
5801The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5802(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5803functions and variables of the Bison parser to start with @var{prefix}
5804instead of @samp{yy}. You can use this to give each parser distinct
5805names that do not conflict.
bfa74976
RS
5806
5807The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5808@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5809@code{yychar} and @code{yydebug}. If you use a push parser,
5810@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5811@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5812For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5813@code{clex}, and so on.
bfa74976
RS
5814
5815@strong{All the other variables and macros associated with Bison are not
5816renamed.} These others are not global; there is no conflict if the same
5817name is used in different parsers. For example, @code{YYSTYPE} is not
5818renamed, but defining this in different ways in different parsers causes
5819no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5820
5821The @samp{-p} option works by adding macro definitions to the beginning
5822of the parser source file, defining @code{yyparse} as
5823@code{@var{prefix}parse}, and so on. This effectively substitutes one
5824name for the other in the entire parser file.
5825
342b8b6e 5826@node Interface
bfa74976
RS
5827@chapter Parser C-Language Interface
5828@cindex C-language interface
5829@cindex interface
5830
5831The Bison parser is actually a C function named @code{yyparse}. Here we
5832describe the interface conventions of @code{yyparse} and the other
5833functions that it needs to use.
5834
5835Keep in mind that the parser uses many C identifiers starting with
5836@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5837identifier (aside from those in this manual) in an action or in epilogue
5838in the grammar file, you are likely to run into trouble.
bfa74976
RS
5839
5840@menu
f5f419de
DJ
5841* Parser Function:: How to call @code{yyparse} and what it returns.
5842* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5843* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5844* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5845* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5846* Lexical:: You must supply a function @code{yylex}
5847 which reads tokens.
5848* Error Reporting:: You must supply a function @code{yyerror}.
5849* Action Features:: Special features for use in actions.
5850* Internationalization:: How to let the parser speak in the user's
5851 native language.
bfa74976
RS
5852@end menu
5853
342b8b6e 5854@node Parser Function
bfa74976
RS
5855@section The Parser Function @code{yyparse}
5856@findex yyparse
5857
5858You call the function @code{yyparse} to cause parsing to occur. This
5859function reads tokens, executes actions, and ultimately returns when it
5860encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5861write an action which directs @code{yyparse} to return immediately
5862without reading further.
bfa74976 5863
2a8d363a
AD
5864
5865@deftypefun int yyparse (void)
bfa74976
RS
5866The value returned by @code{yyparse} is 0 if parsing was successful (return
5867is due to end-of-input).
5868
b47dbebe
PE
5869The value is 1 if parsing failed because of invalid input, i.e., input
5870that contains a syntax error or that causes @code{YYABORT} to be
5871invoked.
5872
5873The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5874@end deftypefun
bfa74976
RS
5875
5876In an action, you can cause immediate return from @code{yyparse} by using
5877these macros:
5878
2a8d363a 5879@defmac YYACCEPT
bfa74976
RS
5880@findex YYACCEPT
5881Return immediately with value 0 (to report success).
2a8d363a 5882@end defmac
bfa74976 5883
2a8d363a 5884@defmac YYABORT
bfa74976
RS
5885@findex YYABORT
5886Return immediately with value 1 (to report failure).
2a8d363a
AD
5887@end defmac
5888
5889If you use a reentrant parser, you can optionally pass additional
5890parameter information to it in a reentrant way. To do so, use the
5891declaration @code{%parse-param}:
5892
2055a44e 5893@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 5894@findex %parse-param
2055a44e
AD
5895Declare that one or more
5896@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 5897The @var{argument-declaration} is used when declaring
feeb0eda
PE
5898functions or prototypes. The last identifier in
5899@var{argument-declaration} must be the argument name.
2a8d363a
AD
5900@end deffn
5901
5902Here's an example. Write this in the parser:
5903
5904@example
2055a44e 5905%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
5906@end example
5907
5908@noindent
5909Then call the parser like this:
5910
5911@example
5912@{
5913 int nastiness, randomness;
5914 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5915 value = yyparse (&nastiness, &randomness);
5916 @dots{}
5917@}
5918@end example
5919
5920@noindent
5921In the grammar actions, use expressions like this to refer to the data:
5922
5923@example
5924exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5925@end example
5926
9987d1b3
JD
5927@node Push Parser Function
5928@section The Push Parser Function @code{yypush_parse}
5929@findex yypush_parse
5930
59da312b
JD
5931(The current push parsing interface is experimental and may evolve.
5932More user feedback will help to stabilize it.)
5933
f4101aa6 5934You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
5935function is available if either the @samp{%define api.push-pull push} or
5936@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5937@xref{Push Decl, ,A Push Parser}.
5938
5939@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5940The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5941following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5942is required to finish parsing the grammar.
5943@end deftypefun
5944
5945@node Pull Parser Function
5946@section The Pull Parser Function @code{yypull_parse}
5947@findex yypull_parse
5948
59da312b
JD
5949(The current push parsing interface is experimental and may evolve.
5950More user feedback will help to stabilize it.)
5951
f4101aa6 5952You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 5953stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 5954declaration is used.
9987d1b3
JD
5955@xref{Push Decl, ,A Push Parser}.
5956
5957@deftypefun int yypull_parse (yypstate *yyps)
5958The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5959@end deftypefun
5960
5961@node Parser Create Function
5962@section The Parser Create Function @code{yystate_new}
5963@findex yypstate_new
5964
59da312b
JD
5965(The current push parsing interface is experimental and may evolve.
5966More user feedback will help to stabilize it.)
5967
f4101aa6 5968You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
5969This function is available if either the @samp{%define api.push-pull push} or
5970@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5971@xref{Push Decl, ,A Push Parser}.
5972
5973@deftypefun yypstate *yypstate_new (void)
f50bfcd6 5974The function will return a valid parser instance if there was memory available
333e670c
JD
5975or 0 if no memory was available.
5976In impure mode, it will also return 0 if a parser instance is currently
5977allocated.
9987d1b3
JD
5978@end deftypefun
5979
5980@node Parser Delete Function
5981@section The Parser Delete Function @code{yystate_delete}
5982@findex yypstate_delete
5983
59da312b
JD
5984(The current push parsing interface is experimental and may evolve.
5985More user feedback will help to stabilize it.)
5986
9987d1b3 5987You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
5988function is available if either the @samp{%define api.push-pull push} or
5989@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5990@xref{Push Decl, ,A Push Parser}.
5991
5992@deftypefun void yypstate_delete (yypstate *yyps)
5993This function will reclaim the memory associated with a parser instance.
5994After this call, you should no longer attempt to use the parser instance.
5995@end deftypefun
bfa74976 5996
342b8b6e 5997@node Lexical
bfa74976
RS
5998@section The Lexical Analyzer Function @code{yylex}
5999@findex yylex
6000@cindex lexical analyzer
6001
6002The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
6003the input stream and returns them to the parser. Bison does not create
6004this function automatically; you must write it so that @code{yyparse} can
6005call it. The function is sometimes referred to as a lexical scanner.
6006
6007In simple programs, @code{yylex} is often defined at the end of the Bison
6008grammar file. If @code{yylex} is defined in a separate source file, you
6009need to arrange for the token-type macro definitions to be available there.
6010To do this, use the @samp{-d} option when you run Bison, so that it will
6011write these macro definitions into a separate header file
6012@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 6013that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
6014
6015@menu
6016* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
6017* Token Values:: How @code{yylex} must return the semantic value
6018 of the token it has read.
6019* Token Locations:: How @code{yylex} must return the text location
6020 (line number, etc.) of the token, if the
6021 actions want that.
6022* Pure Calling:: How the calling convention differs in a pure parser
6023 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
6024@end menu
6025
342b8b6e 6026@node Calling Convention
bfa74976
RS
6027@subsection Calling Convention for @code{yylex}
6028
72d2299c
PE
6029The value that @code{yylex} returns must be the positive numeric code
6030for the type of token it has just found; a zero or negative value
6031signifies end-of-input.
bfa74976
RS
6032
6033When a token is referred to in the grammar rules by a name, that name
6034in the parser file becomes a C macro whose definition is the proper
6035numeric code for that token type. So @code{yylex} can use the name
6036to indicate that type. @xref{Symbols}.
6037
6038When a token is referred to in the grammar rules by a character literal,
6039the numeric code for that character is also the code for the token type.
72d2299c
PE
6040So @code{yylex} can simply return that character code, possibly converted
6041to @code{unsigned char} to avoid sign-extension. The null character
6042must not be used this way, because its code is zero and that
bfa74976
RS
6043signifies end-of-input.
6044
6045Here is an example showing these things:
6046
6047@example
13863333
AD
6048int
6049yylex (void)
bfa74976
RS
6050@{
6051 @dots{}
72d2299c 6052 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
6053 return 0;
6054 @dots{}
6055 if (c == '+' || c == '-')
72d2299c 6056 return c; /* Assume token type for `+' is '+'. */
bfa74976 6057 @dots{}
72d2299c 6058 return INT; /* Return the type of the token. */
bfa74976
RS
6059 @dots{}
6060@}
6061@end example
6062
6063@noindent
6064This interface has been designed so that the output from the @code{lex}
6065utility can be used without change as the definition of @code{yylex}.
6066
931c7513
RS
6067If the grammar uses literal string tokens, there are two ways that
6068@code{yylex} can determine the token type codes for them:
6069
6070@itemize @bullet
6071@item
6072If the grammar defines symbolic token names as aliases for the
6073literal string tokens, @code{yylex} can use these symbolic names like
6074all others. In this case, the use of the literal string tokens in
6075the grammar file has no effect on @code{yylex}.
6076
6077@item
9ecbd125 6078@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6079table. The index of the token in the table is the token type's code.
9ecbd125 6080The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6081double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6082token's characters are escaped as necessary to be suitable as input
6083to Bison.
931c7513 6084
9e0876fb
PE
6085Here's code for looking up a multicharacter token in @code{yytname},
6086assuming that the characters of the token are stored in
6087@code{token_buffer}, and assuming that the token does not contain any
6088characters like @samp{"} that require escaping.
931c7513
RS
6089
6090@smallexample
6091for (i = 0; i < YYNTOKENS; i++)
6092 @{
6093 if (yytname[i] != 0
6094 && yytname[i][0] == '"'
68449b3a
PE
6095 && ! strncmp (yytname[i] + 1, token_buffer,
6096 strlen (token_buffer))
931c7513
RS
6097 && yytname[i][strlen (token_buffer) + 1] == '"'
6098 && yytname[i][strlen (token_buffer) + 2] == 0)
6099 break;
6100 @}
6101@end smallexample
6102
6103The @code{yytname} table is generated only if you use the
8c9a50be 6104@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6105@end itemize
6106
342b8b6e 6107@node Token Values
bfa74976
RS
6108@subsection Semantic Values of Tokens
6109
6110@vindex yylval
9d9b8b70 6111In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6112be stored into the global variable @code{yylval}. When you are using
6113just one data type for semantic values, @code{yylval} has that type.
6114Thus, if the type is @code{int} (the default), you might write this in
6115@code{yylex}:
6116
6117@example
6118@group
6119 @dots{}
72d2299c
PE
6120 yylval = value; /* Put value onto Bison stack. */
6121 return INT; /* Return the type of the token. */
bfa74976
RS
6122 @dots{}
6123@end group
6124@end example
6125
6126When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6127made from the @code{%union} declaration (@pxref{Union Decl, ,The
6128Collection of Value Types}). So when you store a token's value, you
6129must use the proper member of the union. If the @code{%union}
6130declaration looks like this:
bfa74976
RS
6131
6132@example
6133@group
6134%union @{
6135 int intval;
6136 double val;
6137 symrec *tptr;
6138@}
6139@end group
6140@end example
6141
6142@noindent
6143then the code in @code{yylex} might look like this:
6144
6145@example
6146@group
6147 @dots{}
72d2299c
PE
6148 yylval.intval = value; /* Put value onto Bison stack. */
6149 return INT; /* Return the type of the token. */
bfa74976
RS
6150 @dots{}
6151@end group
6152@end example
6153
95923bd6
AD
6154@node Token Locations
6155@subsection Textual Locations of Tokens
bfa74976
RS
6156
6157@vindex yylloc
847bf1f5 6158If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
6159Tracking Locations}) in actions to keep track of the textual locations
6160of tokens and groupings, then you must provide this information in
6161@code{yylex}. The function @code{yyparse} expects to find the textual
6162location of a token just parsed in the global variable @code{yylloc}.
6163So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
6164
6165By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6166initialize the members that are going to be used by the actions. The
6167four members are called @code{first_line}, @code{first_column},
6168@code{last_line} and @code{last_column}. Note that the use of this
6169feature makes the parser noticeably slower.
bfa74976
RS
6170
6171@tindex YYLTYPE
6172The data type of @code{yylloc} has the name @code{YYLTYPE}.
6173
342b8b6e 6174@node Pure Calling
c656404a 6175@subsection Calling Conventions for Pure Parsers
bfa74976 6176
67501061 6177When you use the Bison declaration @samp{%define api.pure} to request a
e425e872
RS
6178pure, reentrant parser, the global communication variables @code{yylval}
6179and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6180Parser}.) In such parsers the two global variables are replaced by
6181pointers passed as arguments to @code{yylex}. You must declare them as
6182shown here, and pass the information back by storing it through those
6183pointers.
bfa74976
RS
6184
6185@example
13863333
AD
6186int
6187yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6188@{
6189 @dots{}
6190 *lvalp = value; /* Put value onto Bison stack. */
6191 return INT; /* Return the type of the token. */
6192 @dots{}
6193@}
6194@end example
6195
6196If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6197textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6198this case, omit the second argument; @code{yylex} will be called with
6199only one argument.
6200
2055a44e 6201If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6202@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6203Function}). To pass additional arguments to both @code{yylex} and
6204@code{yyparse}, use @code{%param}.
e425e872 6205
2055a44e 6206@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6207@findex %lex-param
2055a44e
AD
6208Specify that @var{argument-declaration} are additional @code{yylex} argument
6209declarations. You may pass one or more such declarations, which is
6210equivalent to repeating @code{%lex-param}.
6211@end deffn
6212
6213@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6214@findex %param
6215Specify that @var{argument-declaration} are additional
6216@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6217@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6218@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6219declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6220@end deffn
e425e872 6221
2a8d363a 6222For instance:
e425e872
RS
6223
6224@example
2055a44e
AD
6225%lex-param @{scanner_mode *mode@}
6226%parse-param @{parser_mode *mode@}
6227%param @{environment_type *env@}
e425e872
RS
6228@end example
6229
6230@noindent
2a8d363a 6231results in the following signature:
e425e872
RS
6232
6233@example
2055a44e
AD
6234int yylex (scanner_mode *mode, environment_type *env);
6235int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6236@end example
6237
67501061 6238If @samp{%define api.pure} is added:
c656404a
RS
6239
6240@example
2055a44e
AD
6241int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6242int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6243@end example
6244
2a8d363a 6245@noindent
67501061 6246and finally, if both @samp{%define api.pure} and @code{%locations} are used:
c656404a 6247
2a8d363a 6248@example
2055a44e
AD
6249int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6250 scanner_mode *mode, environment_type *env);
6251int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6252@end example
931c7513 6253
342b8b6e 6254@node Error Reporting
bfa74976
RS
6255@section The Error Reporting Function @code{yyerror}
6256@cindex error reporting function
6257@findex yyerror
6258@cindex parse error
6259@cindex syntax error
6260
31b850d2 6261The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6262whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6263action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6264macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6265in Actions}).
bfa74976
RS
6266
6267The Bison parser expects to report the error by calling an error
6268reporting function named @code{yyerror}, which you must supply. It is
6269called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6270receives one argument. For a syntax error, the string is normally
6271@w{@code{"syntax error"}}.
bfa74976 6272
31b850d2 6273@findex %define parse.error
cf499cff 6274If you invoke @samp{%define parse.error verbose} in the Bison
2a8d363a
AD
6275declarations section (@pxref{Bison Declarations, ,The Bison Declarations
6276Section}), then Bison provides a more verbose and specific error message
6e649e65 6277string instead of just plain @w{@code{"syntax error"}}.
bfa74976 6278
1a059451
PE
6279The parser can detect one other kind of error: memory exhaustion. This
6280can happen when the input contains constructions that are very deeply
bfa74976 6281nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6282parser normally extends its stack automatically up to a very large limit. But
6283if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6284fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6285
6286In some cases diagnostics like @w{@code{"syntax error"}} are
6287translated automatically from English to some other language before
6288they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6289
6290The following definition suffices in simple programs:
6291
6292@example
6293@group
13863333 6294void
38a92d50 6295yyerror (char const *s)
bfa74976
RS
6296@{
6297@end group
6298@group
6299 fprintf (stderr, "%s\n", s);
6300@}
6301@end group
6302@end example
6303
6304After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6305error recovery if you have written suitable error recovery grammar rules
6306(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6307immediately return 1.
6308
93724f13 6309Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
6310an access to the current location.
6311This is indeed the case for the @acronym{GLR}
2a8d363a 6312parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6313@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6314@code{yyerror} are:
6315
6316@example
38a92d50
PE
6317void yyerror (char const *msg); /* Yacc parsers. */
6318void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6319@end example
6320
feeb0eda 6321If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6322
6323@example
b317297e
PE
6324void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6325void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6326@end example
6327
fa7e68c3 6328Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6329convention for absolutely pure parsers, i.e., when the calling
6330convention of @code{yylex} @emph{and} the calling convention of
67501061 6331@samp{%define api.pure} are pure.
d9df47b6 6332I.e.:
2a8d363a
AD
6333
6334@example
6335/* Location tracking. */
6336%locations
6337/* Pure yylex. */
d9df47b6 6338%define api.pure
feeb0eda 6339%lex-param @{int *nastiness@}
2a8d363a 6340/* Pure yyparse. */
feeb0eda
PE
6341%parse-param @{int *nastiness@}
6342%parse-param @{int *randomness@}
2a8d363a
AD
6343@end example
6344
6345@noindent
6346results in the following signatures for all the parser kinds:
6347
6348@example
6349int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6350int yyparse (int *nastiness, int *randomness);
93724f13
AD
6351void yyerror (YYLTYPE *locp,
6352 int *nastiness, int *randomness,
38a92d50 6353 char const *msg);
2a8d363a
AD
6354@end example
6355
1c0c3e95 6356@noindent
38a92d50
PE
6357The prototypes are only indications of how the code produced by Bison
6358uses @code{yyerror}. Bison-generated code always ignores the returned
6359value, so @code{yyerror} can return any type, including @code{void}.
6360Also, @code{yyerror} can be a variadic function; that is why the
6361message is always passed last.
6362
6363Traditionally @code{yyerror} returns an @code{int} that is always
6364ignored, but this is purely for historical reasons, and @code{void} is
6365preferable since it more accurately describes the return type for
6366@code{yyerror}.
93724f13 6367
bfa74976
RS
6368@vindex yynerrs
6369The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6370reported so far. Normally this variable is global; but if you
704a47c4
AD
6371request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6372then it is a local variable which only the actions can access.
bfa74976 6373
342b8b6e 6374@node Action Features
bfa74976
RS
6375@section Special Features for Use in Actions
6376@cindex summary, action features
6377@cindex action features summary
6378
6379Here is a table of Bison constructs, variables and macros that
6380are useful in actions.
6381
18b519c0 6382@deffn {Variable} $$
bfa74976
RS
6383Acts like a variable that contains the semantic value for the
6384grouping made by the current rule. @xref{Actions}.
18b519c0 6385@end deffn
bfa74976 6386
18b519c0 6387@deffn {Variable} $@var{n}
bfa74976
RS
6388Acts like a variable that contains the semantic value for the
6389@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6390@end deffn
bfa74976 6391
18b519c0 6392@deffn {Variable} $<@var{typealt}>$
bfa74976 6393Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6394specified by the @code{%union} declaration. @xref{Action Types, ,Data
6395Types of Values in Actions}.
18b519c0 6396@end deffn
bfa74976 6397
18b519c0 6398@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6399Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6400union specified by the @code{%union} declaration.
e0c471a9 6401@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6402@end deffn
bfa74976 6403
18b519c0 6404@deffn {Macro} YYABORT;
bfa74976
RS
6405Return immediately from @code{yyparse}, indicating failure.
6406@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6407@end deffn
bfa74976 6408
18b519c0 6409@deffn {Macro} YYACCEPT;
bfa74976
RS
6410Return immediately from @code{yyparse}, indicating success.
6411@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6412@end deffn
bfa74976 6413
18b519c0 6414@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6415@findex YYBACKUP
6416Unshift a token. This macro is allowed only for rules that reduce
742e4900 6417a single value, and only when there is no lookahead token.
c827f760 6418It is also disallowed in @acronym{GLR} parsers.
742e4900 6419It installs a lookahead token with token type @var{token} and
bfa74976
RS
6420semantic value @var{value}; then it discards the value that was
6421going to be reduced by this rule.
6422
6423If the macro is used when it is not valid, such as when there is
742e4900 6424a lookahead token already, then it reports a syntax error with
bfa74976
RS
6425a message @samp{cannot back up} and performs ordinary error
6426recovery.
6427
6428In either case, the rest of the action is not executed.
18b519c0 6429@end deffn
bfa74976 6430
18b519c0 6431@deffn {Macro} YYEMPTY
bfa74976 6432@vindex YYEMPTY
742e4900 6433Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6434@end deffn
bfa74976 6435
32c29292
JD
6436@deffn {Macro} YYEOF
6437@vindex YYEOF
742e4900 6438Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6439stream.
6440@end deffn
6441
18b519c0 6442@deffn {Macro} YYERROR;
bfa74976
RS
6443@findex YYERROR
6444Cause an immediate syntax error. This statement initiates error
6445recovery just as if the parser itself had detected an error; however, it
6446does not call @code{yyerror}, and does not print any message. If you
6447want to print an error message, call @code{yyerror} explicitly before
6448the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6449@end deffn
bfa74976 6450
18b519c0 6451@deffn {Macro} YYRECOVERING
02103984
PE
6452@findex YYRECOVERING
6453The expression @code{YYRECOVERING ()} yields 1 when the parser
6454is recovering from a syntax error, and 0 otherwise.
bfa74976 6455@xref{Error Recovery}.
18b519c0 6456@end deffn
bfa74976 6457
18b519c0 6458@deffn {Variable} yychar
742e4900
JD
6459Variable containing either the lookahead token, or @code{YYEOF} when the
6460lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6461has been performed so the next token is not yet known.
6462Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6463Actions}).
742e4900 6464@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6465@end deffn
bfa74976 6466
18b519c0 6467@deffn {Macro} yyclearin;
742e4900 6468Discard the current lookahead token. This is useful primarily in
32c29292
JD
6469error rules.
6470Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6471Semantic Actions}).
6472@xref{Error Recovery}.
18b519c0 6473@end deffn
bfa74976 6474
18b519c0 6475@deffn {Macro} yyerrok;
bfa74976 6476Resume generating error messages immediately for subsequent syntax
13863333 6477errors. This is useful primarily in error rules.
bfa74976 6478@xref{Error Recovery}.
18b519c0 6479@end deffn
bfa74976 6480
32c29292 6481@deffn {Variable} yylloc
742e4900 6482Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6483to @code{YYEMPTY} or @code{YYEOF}.
6484Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6485Actions}).
6486@xref{Actions and Locations, ,Actions and Locations}.
6487@end deffn
6488
6489@deffn {Variable} yylval
742e4900 6490Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6491not set to @code{YYEMPTY} or @code{YYEOF}.
6492Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6493Actions}).
6494@xref{Actions, ,Actions}.
6495@end deffn
6496
18b519c0 6497@deffn {Value} @@$
847bf1f5 6498@findex @@$
95923bd6 6499Acts like a structure variable containing information on the textual location
847bf1f5
AD
6500of the grouping made by the current rule. @xref{Locations, ,
6501Tracking Locations}.
bfa74976 6502
847bf1f5
AD
6503@c Check if those paragraphs are still useful or not.
6504
6505@c @example
6506@c struct @{
6507@c int first_line, last_line;
6508@c int first_column, last_column;
6509@c @};
6510@c @end example
6511
6512@c Thus, to get the starting line number of the third component, you would
6513@c use @samp{@@3.first_line}.
bfa74976 6514
847bf1f5
AD
6515@c In order for the members of this structure to contain valid information,
6516@c you must make @code{yylex} supply this information about each token.
6517@c If you need only certain members, then @code{yylex} need only fill in
6518@c those members.
bfa74976 6519
847bf1f5 6520@c The use of this feature makes the parser noticeably slower.
18b519c0 6521@end deffn
847bf1f5 6522
18b519c0 6523@deffn {Value} @@@var{n}
847bf1f5 6524@findex @@@var{n}
95923bd6 6525Acts like a structure variable containing information on the textual location
847bf1f5
AD
6526of the @var{n}th component of the current rule. @xref{Locations, ,
6527Tracking Locations}.
18b519c0 6528@end deffn
bfa74976 6529
f7ab6a50
PE
6530@node Internationalization
6531@section Parser Internationalization
6532@cindex internationalization
6533@cindex i18n
6534@cindex NLS
6535@cindex gettext
6536@cindex bison-po
6537
6538A Bison-generated parser can print diagnostics, including error and
6539tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6540also supports outputting diagnostics in the user's native language. To
6541make this work, the user should set the usual environment variables.
6542@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6543For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
6544set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
6545encoding. The exact set of available locales depends on the user's
6546installation.
6547
6548The maintainer of a package that uses a Bison-generated parser enables
6549the internationalization of the parser's output through the following
6550steps. Here we assume a package that uses @acronym{GNU} Autoconf and
6551@acronym{GNU} Automake.
6552
6553@enumerate
6554@item
30757c8c 6555@cindex bison-i18n.m4
f7ab6a50
PE
6556Into the directory containing the @acronym{GNU} Autoconf macros used
6557by the package---often called @file{m4}---copy the
6558@file{bison-i18n.m4} file installed by Bison under
6559@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6560For example:
6561
6562@example
6563cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6564@end example
6565
6566@item
30757c8c
PE
6567@findex BISON_I18N
6568@vindex BISON_LOCALEDIR
6569@vindex YYENABLE_NLS
f7ab6a50
PE
6570In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6571invocation, add an invocation of @code{BISON_I18N}. This macro is
6572defined in the file @file{bison-i18n.m4} that you copied earlier. It
6573causes @samp{configure} to find the value of the
30757c8c
PE
6574@code{BISON_LOCALEDIR} variable, and it defines the source-language
6575symbol @code{YYENABLE_NLS} to enable translations in the
6576Bison-generated parser.
f7ab6a50
PE
6577
6578@item
6579In the @code{main} function of your program, designate the directory
6580containing Bison's runtime message catalog, through a call to
6581@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6582For example:
6583
6584@example
6585bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6586@end example
6587
6588Typically this appears after any other call @code{bindtextdomain
6589(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6590@samp{BISON_LOCALEDIR} to be defined as a string through the
6591@file{Makefile}.
6592
6593@item
6594In the @file{Makefile.am} that controls the compilation of the @code{main}
6595function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6596either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6597
6598@example
6599DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6600@end example
6601
6602or:
6603
6604@example
6605AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6606@end example
6607
6608@item
6609Finally, invoke the command @command{autoreconf} to generate the build
6610infrastructure.
6611@end enumerate
6612
bfa74976 6613
342b8b6e 6614@node Algorithm
13863333
AD
6615@chapter The Bison Parser Algorithm
6616@cindex Bison parser algorithm
bfa74976
RS
6617@cindex algorithm of parser
6618@cindex shifting
6619@cindex reduction
6620@cindex parser stack
6621@cindex stack, parser
6622
6623As Bison reads tokens, it pushes them onto a stack along with their
6624semantic values. The stack is called the @dfn{parser stack}. Pushing a
6625token is traditionally called @dfn{shifting}.
6626
6627For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6628@samp{3} to come. The stack will have four elements, one for each token
6629that was shifted.
6630
6631But the stack does not always have an element for each token read. When
6632the last @var{n} tokens and groupings shifted match the components of a
6633grammar rule, they can be combined according to that rule. This is called
6634@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6635single grouping whose symbol is the result (left hand side) of that rule.
6636Running the rule's action is part of the process of reduction, because this
6637is what computes the semantic value of the resulting grouping.
6638
6639For example, if the infix calculator's parser stack contains this:
6640
6641@example
66421 + 5 * 3
6643@end example
6644
6645@noindent
6646and the next input token is a newline character, then the last three
6647elements can be reduced to 15 via the rule:
6648
6649@example
6650expr: expr '*' expr;
6651@end example
6652
6653@noindent
6654Then the stack contains just these three elements:
6655
6656@example
66571 + 15
6658@end example
6659
6660@noindent
6661At this point, another reduction can be made, resulting in the single value
666216. Then the newline token can be shifted.
6663
6664The parser tries, by shifts and reductions, to reduce the entire input down
6665to a single grouping whose symbol is the grammar's start-symbol
6666(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6667
6668This kind of parser is known in the literature as a bottom-up parser.
6669
6670@menu
742e4900 6671* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6672* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6673* Precedence:: Operator precedence works by resolving conflicts.
6674* Contextual Precedence:: When an operator's precedence depends on context.
6675* Parser States:: The parser is a finite-state-machine with stack.
6676* Reduce/Reduce:: When two rules are applicable in the same situation.
f5f419de 6677* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6678* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6679* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6680@end menu
6681
742e4900
JD
6682@node Lookahead
6683@section Lookahead Tokens
6684@cindex lookahead token
bfa74976
RS
6685
6686The Bison parser does @emph{not} always reduce immediately as soon as the
6687last @var{n} tokens and groupings match a rule. This is because such a
6688simple strategy is inadequate to handle most languages. Instead, when a
6689reduction is possible, the parser sometimes ``looks ahead'' at the next
6690token in order to decide what to do.
6691
6692When a token is read, it is not immediately shifted; first it becomes the
742e4900 6693@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6694perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6695the lookahead token remains off to the side. When no more reductions
6696should take place, the lookahead token is shifted onto the stack. This
bfa74976 6697does not mean that all possible reductions have been done; depending on the
742e4900 6698token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6699application.
6700
742e4900 6701Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6702expressions which contain binary addition operators and postfix unary
6703factorial operators (@samp{!}), and allow parentheses for grouping.
6704
6705@example
6706@group
6707expr: term '+' expr
6708 | term
6709 ;
6710@end group
6711
6712@group
6713term: '(' expr ')'
6714 | term '!'
6715 | NUMBER
6716 ;
6717@end group
6718@end example
6719
6720Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6721should be done? If the following token is @samp{)}, then the first three
6722tokens must be reduced to form an @code{expr}. This is the only valid
6723course, because shifting the @samp{)} would produce a sequence of symbols
6724@w{@code{term ')'}}, and no rule allows this.
6725
6726If the following token is @samp{!}, then it must be shifted immediately so
6727that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6728parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6729@code{expr}. It would then be impossible to shift the @samp{!} because
6730doing so would produce on the stack the sequence of symbols @code{expr
6731'!'}. No rule allows that sequence.
6732
6733@vindex yychar
32c29292
JD
6734@vindex yylval
6735@vindex yylloc
742e4900 6736The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6737Its semantic value and location, if any, are stored in the variables
6738@code{yylval} and @code{yylloc}.
bfa74976
RS
6739@xref{Action Features, ,Special Features for Use in Actions}.
6740
342b8b6e 6741@node Shift/Reduce
bfa74976
RS
6742@section Shift/Reduce Conflicts
6743@cindex conflicts
6744@cindex shift/reduce conflicts
6745@cindex dangling @code{else}
6746@cindex @code{else}, dangling
6747
6748Suppose we are parsing a language which has if-then and if-then-else
6749statements, with a pair of rules like this:
6750
6751@example
6752@group
6753if_stmt:
6754 IF expr THEN stmt
6755 | IF expr THEN stmt ELSE stmt
6756 ;
6757@end group
6758@end example
6759
6760@noindent
6761Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6762terminal symbols for specific keyword tokens.
6763
742e4900 6764When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6765contents of the stack (assuming the input is valid) are just right for
6766reduction by the first rule. But it is also legitimate to shift the
6767@code{ELSE}, because that would lead to eventual reduction by the second
6768rule.
6769
6770This situation, where either a shift or a reduction would be valid, is
6771called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6772these conflicts by choosing to shift, unless otherwise directed by
6773operator precedence declarations. To see the reason for this, let's
6774contrast it with the other alternative.
6775
6776Since the parser prefers to shift the @code{ELSE}, the result is to attach
6777the else-clause to the innermost if-statement, making these two inputs
6778equivalent:
6779
6780@example
6781if x then if y then win (); else lose;
6782
6783if x then do; if y then win (); else lose; end;
6784@end example
6785
6786But if the parser chose to reduce when possible rather than shift, the
6787result would be to attach the else-clause to the outermost if-statement,
6788making these two inputs equivalent:
6789
6790@example
6791if x then if y then win (); else lose;
6792
6793if x then do; if y then win (); end; else lose;
6794@end example
6795
6796The conflict exists because the grammar as written is ambiguous: either
6797parsing of the simple nested if-statement is legitimate. The established
6798convention is that these ambiguities are resolved by attaching the
6799else-clause to the innermost if-statement; this is what Bison accomplishes
6800by choosing to shift rather than reduce. (It would ideally be cleaner to
6801write an unambiguous grammar, but that is very hard to do in this case.)
6802This particular ambiguity was first encountered in the specifications of
6803Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6804
6805To avoid warnings from Bison about predictable, legitimate shift/reduce
93d7dde9
JD
6806conflicts, use the @code{%expect @var{n}} declaration.
6807There will be no warning as long as the number of shift/reduce conflicts
6808is exactly @var{n}, and Bison will report an error if there is a
6809different number.
bfa74976
RS
6810@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6811
6812The definition of @code{if_stmt} above is solely to blame for the
6813conflict, but the conflict does not actually appear without additional
6814rules. Here is a complete Bison input file that actually manifests the
6815conflict:
6816
6817@example
6818@group
6819%token IF THEN ELSE variable
6820%%
6821@end group
6822@group
6823stmt: expr
6824 | if_stmt
6825 ;
6826@end group
6827
6828@group
6829if_stmt:
6830 IF expr THEN stmt
6831 | IF expr THEN stmt ELSE stmt
6832 ;
6833@end group
6834
6835expr: variable
6836 ;
6837@end example
6838
342b8b6e 6839@node Precedence
bfa74976
RS
6840@section Operator Precedence
6841@cindex operator precedence
6842@cindex precedence of operators
6843
6844Another situation where shift/reduce conflicts appear is in arithmetic
6845expressions. Here shifting is not always the preferred resolution; the
6846Bison declarations for operator precedence allow you to specify when to
6847shift and when to reduce.
6848
6849@menu
6850* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
6851* Using Precedence:: How to specify precedence and associativity.
6852* Precedence Only:: How to specify precedence only.
bfa74976
RS
6853* Precedence Examples:: How these features are used in the previous example.
6854* How Precedence:: How they work.
6855@end menu
6856
342b8b6e 6857@node Why Precedence
bfa74976
RS
6858@subsection When Precedence is Needed
6859
6860Consider the following ambiguous grammar fragment (ambiguous because the
6861input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6862
6863@example
6864@group
6865expr: expr '-' expr
6866 | expr '*' expr
6867 | expr '<' expr
6868 | '(' expr ')'
6869 @dots{}
6870 ;
6871@end group
6872@end example
6873
6874@noindent
6875Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6876should it reduce them via the rule for the subtraction operator? It
6877depends on the next token. Of course, if the next token is @samp{)}, we
6878must reduce; shifting is invalid because no single rule can reduce the
6879token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6880the next token is @samp{*} or @samp{<}, we have a choice: either
6881shifting or reduction would allow the parse to complete, but with
6882different results.
6883
6884To decide which one Bison should do, we must consider the results. If
6885the next operator token @var{op} is shifted, then it must be reduced
6886first in order to permit another opportunity to reduce the difference.
6887The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6888hand, if the subtraction is reduced before shifting @var{op}, the result
6889is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6890reduce should depend on the relative precedence of the operators
6891@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6892@samp{<}.
bfa74976
RS
6893
6894@cindex associativity
6895What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6896@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6897operators we prefer the former, which is called @dfn{left association}.
6898The latter alternative, @dfn{right association}, is desirable for
6899assignment operators. The choice of left or right association is a
6900matter of whether the parser chooses to shift or reduce when the stack
742e4900 6901contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6902makes right-associativity.
bfa74976 6903
342b8b6e 6904@node Using Precedence
bfa74976
RS
6905@subsection Specifying Operator Precedence
6906@findex %left
bfa74976 6907@findex %nonassoc
d78f0ac9
AD
6908@findex %precedence
6909@findex %right
bfa74976
RS
6910
6911Bison allows you to specify these choices with the operator precedence
6912declarations @code{%left} and @code{%right}. Each such declaration
6913contains a list of tokens, which are operators whose precedence and
6914associativity is being declared. The @code{%left} declaration makes all
6915those operators left-associative and the @code{%right} declaration makes
6916them right-associative. A third alternative is @code{%nonassoc}, which
6917declares that it is a syntax error to find the same operator twice ``in a
6918row''.
d78f0ac9
AD
6919The last alternative, @code{%precedence}, allows to define only
6920precedence and no associativity at all. As a result, any
6921associativity-related conflict that remains will be reported as an
6922compile-time error. The directive @code{%nonassoc} creates run-time
6923error: using the operator in a associative way is a syntax error. The
6924directive @code{%precedence} creates compile-time errors: an operator
6925@emph{can} be involved in an associativity-related conflict, contrary to
6926what expected the grammar author.
bfa74976
RS
6927
6928The relative precedence of different operators is controlled by the
d78f0ac9
AD
6929order in which they are declared. The first precedence/associativity
6930declaration in the file declares the operators whose
bfa74976
RS
6931precedence is lowest, the next such declaration declares the operators
6932whose precedence is a little higher, and so on.
6933
d78f0ac9
AD
6934@node Precedence Only
6935@subsection Specifying Precedence Only
6936@findex %precedence
6937
6938Since @acronym{POSIX} Yacc defines only @code{%left}, @code{%right}, and
6939@code{%nonassoc}, which all defines precedence and associativity, little
6940attention is paid to the fact that precedence cannot be defined without
6941defining associativity. Yet, sometimes, when trying to solve a
6942conflict, precedence suffices. In such a case, using @code{%left},
6943@code{%right}, or @code{%nonassoc} might hide future (associativity
6944related) conflicts that would remain hidden.
6945
6946The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 6947Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
6948in the following situation, where the period denotes the current parsing
6949state:
6950
6951@example
6952if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
6953@end example
6954
6955The conflict involves the reduction of the rule @samp{IF expr THEN
6956stmt}, which precedence is by default that of its last token
6957(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
6958disambiguation (attach the @code{else} to the closest @code{if}),
6959shifting must be preferred, i.e., the precedence of @code{ELSE} must be
6960higher than that of @code{THEN}. But neither is expected to be involved
6961in an associativity related conflict, which can be specified as follows.
6962
6963@example
6964%precedence THEN
6965%precedence ELSE
6966@end example
6967
6968The unary-minus is another typical example where associativity is
6969usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 6970Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
6971used to declare the precedence of @code{NEG}, which is more than needed
6972since it also defines its associativity. While this is harmless in the
6973traditional example, who knows how @code{NEG} might be used in future
6974evolutions of the grammar@dots{}
6975
342b8b6e 6976@node Precedence Examples
bfa74976
RS
6977@subsection Precedence Examples
6978
6979In our example, we would want the following declarations:
6980
6981@example
6982%left '<'
6983%left '-'
6984%left '*'
6985@end example
6986
6987In a more complete example, which supports other operators as well, we
6988would declare them in groups of equal precedence. For example, @code{'+'} is
6989declared with @code{'-'}:
6990
6991@example
6992%left '<' '>' '=' NE LE GE
6993%left '+' '-'
6994%left '*' '/'
6995@end example
6996
6997@noindent
6998(Here @code{NE} and so on stand for the operators for ``not equal''
6999and so on. We assume that these tokens are more than one character long
7000and therefore are represented by names, not character literals.)
7001
342b8b6e 7002@node How Precedence
bfa74976
RS
7003@subsection How Precedence Works
7004
7005The first effect of the precedence declarations is to assign precedence
7006levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
7007precedence levels to certain rules: each rule gets its precedence from
7008the last terminal symbol mentioned in the components. (You can also
7009specify explicitly the precedence of a rule. @xref{Contextual
7010Precedence, ,Context-Dependent Precedence}.)
7011
7012Finally, the resolution of conflicts works by comparing the precedence
742e4900 7013of the rule being considered with that of the lookahead token. If the
704a47c4
AD
7014token's precedence is higher, the choice is to shift. If the rule's
7015precedence is higher, the choice is to reduce. If they have equal
7016precedence, the choice is made based on the associativity of that
7017precedence level. The verbose output file made by @samp{-v}
7018(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
7019resolved.
bfa74976
RS
7020
7021Not all rules and not all tokens have precedence. If either the rule or
742e4900 7022the lookahead token has no precedence, then the default is to shift.
bfa74976 7023
342b8b6e 7024@node Contextual Precedence
bfa74976
RS
7025@section Context-Dependent Precedence
7026@cindex context-dependent precedence
7027@cindex unary operator precedence
7028@cindex precedence, context-dependent
7029@cindex precedence, unary operator
7030@findex %prec
7031
7032Often the precedence of an operator depends on the context. This sounds
7033outlandish at first, but it is really very common. For example, a minus
7034sign typically has a very high precedence as a unary operator, and a
7035somewhat lower precedence (lower than multiplication) as a binary operator.
7036
d78f0ac9
AD
7037The Bison precedence declarations
7038can only be used once for a given token; so a token has
bfa74976
RS
7039only one precedence declared in this way. For context-dependent
7040precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 7041modifier for rules.
bfa74976
RS
7042
7043The @code{%prec} modifier declares the precedence of a particular rule by
7044specifying a terminal symbol whose precedence should be used for that rule.
7045It's not necessary for that symbol to appear otherwise in the rule. The
7046modifier's syntax is:
7047
7048@example
7049%prec @var{terminal-symbol}
7050@end example
7051
7052@noindent
7053and it is written after the components of the rule. Its effect is to
7054assign the rule the precedence of @var{terminal-symbol}, overriding
7055the precedence that would be deduced for it in the ordinary way. The
7056altered rule precedence then affects how conflicts involving that rule
7057are resolved (@pxref{Precedence, ,Operator Precedence}).
7058
7059Here is how @code{%prec} solves the problem of unary minus. First, declare
7060a precedence for a fictitious terminal symbol named @code{UMINUS}. There
7061are no tokens of this type, but the symbol serves to stand for its
7062precedence:
7063
7064@example
7065@dots{}
7066%left '+' '-'
7067%left '*'
7068%left UMINUS
7069@end example
7070
7071Now the precedence of @code{UMINUS} can be used in specific rules:
7072
7073@example
7074@group
7075exp: @dots{}
7076 | exp '-' exp
7077 @dots{}
7078 | '-' exp %prec UMINUS
7079@end group
7080@end example
7081
91d2c560 7082@ifset defaultprec
39a06c25
PE
7083If you forget to append @code{%prec UMINUS} to the rule for unary
7084minus, Bison silently assumes that minus has its usual precedence.
7085This kind of problem can be tricky to debug, since one typically
7086discovers the mistake only by testing the code.
7087
22fccf95 7088The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
7089this kind of problem systematically. It causes rules that lack a
7090@code{%prec} modifier to have no precedence, even if the last terminal
7091symbol mentioned in their components has a declared precedence.
7092
22fccf95 7093If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
7094for all rules that participate in precedence conflict resolution.
7095Then you will see any shift/reduce conflict until you tell Bison how
7096to resolve it, either by changing your grammar or by adding an
7097explicit precedence. This will probably add declarations to the
7098grammar, but it helps to protect against incorrect rule precedences.
7099
22fccf95
PE
7100The effect of @code{%no-default-prec;} can be reversed by giving
7101@code{%default-prec;}, which is the default.
91d2c560 7102@end ifset
39a06c25 7103
342b8b6e 7104@node Parser States
bfa74976
RS
7105@section Parser States
7106@cindex finite-state machine
7107@cindex parser state
7108@cindex state (of parser)
7109
7110The function @code{yyparse} is implemented using a finite-state machine.
7111The values pushed on the parser stack are not simply token type codes; they
7112represent the entire sequence of terminal and nonterminal symbols at or
7113near the top of the stack. The current state collects all the information
7114about previous input which is relevant to deciding what to do next.
7115
742e4900
JD
7116Each time a lookahead token is read, the current parser state together
7117with the type of lookahead token are looked up in a table. This table
7118entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7119specifies the new parser state, which is pushed onto the top of the
7120parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7121This means that a certain number of tokens or groupings are taken off
7122the top of the stack, and replaced by one grouping. In other words,
7123that number of states are popped from the stack, and one new state is
7124pushed.
7125
742e4900 7126There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7127is erroneous in the current state. This causes error processing to begin
7128(@pxref{Error Recovery}).
7129
342b8b6e 7130@node Reduce/Reduce
bfa74976
RS
7131@section Reduce/Reduce Conflicts
7132@cindex reduce/reduce conflict
7133@cindex conflicts, reduce/reduce
7134
7135A reduce/reduce conflict occurs if there are two or more rules that apply
7136to the same sequence of input. This usually indicates a serious error
7137in the grammar.
7138
7139For example, here is an erroneous attempt to define a sequence
7140of zero or more @code{word} groupings.
7141
7142@example
7143sequence: /* empty */
7144 @{ printf ("empty sequence\n"); @}
7145 | maybeword
7146 | sequence word
7147 @{ printf ("added word %s\n", $2); @}
7148 ;
7149
7150maybeword: /* empty */
7151 @{ printf ("empty maybeword\n"); @}
7152 | word
7153 @{ printf ("single word %s\n", $1); @}
7154 ;
7155@end example
7156
7157@noindent
7158The error is an ambiguity: there is more than one way to parse a single
7159@code{word} into a @code{sequence}. It could be reduced to a
7160@code{maybeword} and then into a @code{sequence} via the second rule.
7161Alternatively, nothing-at-all could be reduced into a @code{sequence}
7162via the first rule, and this could be combined with the @code{word}
7163using the third rule for @code{sequence}.
7164
7165There is also more than one way to reduce nothing-at-all into a
7166@code{sequence}. This can be done directly via the first rule,
7167or indirectly via @code{maybeword} and then the second rule.
7168
7169You might think that this is a distinction without a difference, because it
7170does not change whether any particular input is valid or not. But it does
7171affect which actions are run. One parsing order runs the second rule's
7172action; the other runs the first rule's action and the third rule's action.
7173In this example, the output of the program changes.
7174
7175Bison resolves a reduce/reduce conflict by choosing to use the rule that
7176appears first in the grammar, but it is very risky to rely on this. Every
7177reduce/reduce conflict must be studied and usually eliminated. Here is the
7178proper way to define @code{sequence}:
7179
7180@example
7181sequence: /* empty */
7182 @{ printf ("empty sequence\n"); @}
7183 | sequence word
7184 @{ printf ("added word %s\n", $2); @}
7185 ;
7186@end example
7187
7188Here is another common error that yields a reduce/reduce conflict:
7189
7190@example
7191sequence: /* empty */
7192 | sequence words
7193 | sequence redirects
7194 ;
7195
7196words: /* empty */
7197 | words word
7198 ;
7199
7200redirects:/* empty */
7201 | redirects redirect
7202 ;
7203@end example
7204
7205@noindent
7206The intention here is to define a sequence which can contain either
7207@code{word} or @code{redirect} groupings. The individual definitions of
7208@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7209three together make a subtle ambiguity: even an empty input can be parsed
7210in infinitely many ways!
7211
7212Consider: nothing-at-all could be a @code{words}. Or it could be two
7213@code{words} in a row, or three, or any number. It could equally well be a
7214@code{redirects}, or two, or any number. Or it could be a @code{words}
7215followed by three @code{redirects} and another @code{words}. And so on.
7216
7217Here are two ways to correct these rules. First, to make it a single level
7218of sequence:
7219
7220@example
7221sequence: /* empty */
7222 | sequence word
7223 | sequence redirect
7224 ;
7225@end example
7226
7227Second, to prevent either a @code{words} or a @code{redirects}
7228from being empty:
7229
7230@example
7231sequence: /* empty */
7232 | sequence words
7233 | sequence redirects
7234 ;
7235
7236words: word
7237 | words word
7238 ;
7239
7240redirects:redirect
7241 | redirects redirect
7242 ;
7243@end example
7244
342b8b6e 7245@node Mystery Conflicts
bfa74976
RS
7246@section Mysterious Reduce/Reduce Conflicts
7247
7248Sometimes reduce/reduce conflicts can occur that don't look warranted.
7249Here is an example:
7250
7251@example
7252@group
7253%token ID
7254
7255%%
7256def: param_spec return_spec ','
7257 ;
7258param_spec:
7259 type
7260 | name_list ':' type
7261 ;
7262@end group
7263@group
7264return_spec:
7265 type
7266 | name ':' type
7267 ;
7268@end group
7269@group
7270type: ID
7271 ;
7272@end group
7273@group
7274name: ID
7275 ;
7276name_list:
7277 name
7278 | name ',' name_list
7279 ;
7280@end group
7281@end example
7282
7283It would seem that this grammar can be parsed with only a single token
742e4900 7284of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 7285a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 7286@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 7287
c827f760
PE
7288@cindex @acronym{LR}(1)
7289@cindex @acronym{LALR}(1)
eb45ef3b
JD
7290However, for historical reasons, Bison cannot by default handle all
7291@acronym{LR}(1) grammars.
7292In this grammar, two contexts, that after an @code{ID} at the beginning
7293of a @code{param_spec} and likewise at the beginning of a
7294@code{return_spec}, are similar enough that Bison assumes they are the
7295same.
7296They appear similar because the same set of rules would be
bfa74976
RS
7297active---the rule for reducing to a @code{name} and that for reducing to
7298a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7299that the rules would require different lookahead tokens in the two
bfa74976
RS
7300contexts, so it makes a single parser state for them both. Combining
7301the two contexts causes a conflict later. In parser terminology, this
c827f760 7302occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976 7303
eb45ef3b
JD
7304For many practical grammars (specifically those that fall into the
7305non-@acronym{LR}(1) class), the limitations of @acronym{LALR}(1) result in
7306difficulties beyond just mysterious reduce/reduce conflicts.
7307The best way to fix all these problems is to select a different parser
7308table generation algorithm.
7309Either @acronym{IELR}(1) or canonical @acronym{LR}(1) would suffice, but
7310the former is more efficient and easier to debug during development.
7311@xref{Decl Summary,,lr.type}, for details.
7312(Bison's @acronym{IELR}(1) and canonical @acronym{LR}(1) implementations
7313are experimental.
7314More user feedback will help to stabilize them.)
7315
7316If you instead wish to work around @acronym{LALR}(1)'s limitations, you
7317can often fix a mysterious conflict by identifying the two parser states
7318that are being confused, and adding something to make them look
7319distinct. In the above example, adding one rule to
bfa74976
RS
7320@code{return_spec} as follows makes the problem go away:
7321
7322@example
7323@group
7324%token BOGUS
7325@dots{}
7326%%
7327@dots{}
7328return_spec:
7329 type
7330 | name ':' type
7331 /* This rule is never used. */
7332 | ID BOGUS
7333 ;
7334@end group
7335@end example
7336
7337This corrects the problem because it introduces the possibility of an
7338additional active rule in the context after the @code{ID} at the beginning of
7339@code{return_spec}. This rule is not active in the corresponding context
7340in a @code{param_spec}, so the two contexts receive distinct parser states.
7341As long as the token @code{BOGUS} is never generated by @code{yylex},
7342the added rule cannot alter the way actual input is parsed.
7343
7344In this particular example, there is another way to solve the problem:
7345rewrite the rule for @code{return_spec} to use @code{ID} directly
7346instead of via @code{name}. This also causes the two confusing
7347contexts to have different sets of active rules, because the one for
7348@code{return_spec} activates the altered rule for @code{return_spec}
7349rather than the one for @code{name}.
7350
7351@example
7352param_spec:
7353 type
7354 | name_list ':' type
7355 ;
7356return_spec:
7357 type
7358 | ID ':' type
7359 ;
7360@end example
7361
e054b190
PE
7362For a more detailed exposition of @acronym{LALR}(1) parsers and parser
7363generators, please see:
7364Frank DeRemer and Thomas Pennello, Efficient Computation of
7365@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
7366Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
7367pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
7368
fae437e8 7369@node Generalized LR Parsing
c827f760
PE
7370@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
7371@cindex @acronym{GLR} parsing
7372@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 7373@cindex ambiguous grammars
9d9b8b70 7374@cindex nondeterministic parsing
676385e2 7375
fae437e8
AD
7376Bison produces @emph{deterministic} parsers that choose uniquely
7377when to reduce and which reduction to apply
742e4900 7378based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7379As a result, normal Bison handles a proper subset of the family of
7380context-free languages.
fae437e8 7381Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7382sequence of reductions cannot have deterministic parsers in this sense.
7383The same is true of languages that require more than one symbol of
742e4900 7384lookahead, since the parser lacks the information necessary to make a
676385e2 7385decision at the point it must be made in a shift-reduce parser.
fae437e8 7386Finally, as previously mentioned (@pxref{Mystery Conflicts}),
eb45ef3b 7387there are languages where Bison's default choice of how to
676385e2
PH
7388summarize the input seen so far loses necessary information.
7389
7390When you use the @samp{%glr-parser} declaration in your grammar file,
7391Bison generates a parser that uses a different algorithm, called
c827f760
PE
7392Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
7393parser uses the same basic
676385e2
PH
7394algorithm for parsing as an ordinary Bison parser, but behaves
7395differently in cases where there is a shift-reduce conflict that has not
fae437e8 7396been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
7397reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
7398situation, it
fae437e8 7399effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7400shift or reduction. These parsers then proceed as usual, consuming
7401tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7402and split further, with the result that instead of a sequence of states,
c827f760 7403a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
7404
7405In effect, each stack represents a guess as to what the proper parse
7406is. Additional input may indicate that a guess was wrong, in which case
7407the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7408actions generated in each stack are saved, rather than being executed
676385e2 7409immediately. When a stack disappears, its saved semantic actions never
fae437e8 7410get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7411their sets of semantic actions are both saved with the state that
7412results from the reduction. We say that two stacks are equivalent
fae437e8 7413when they both represent the same sequence of states,
676385e2
PH
7414and each pair of corresponding states represents a
7415grammar symbol that produces the same segment of the input token
7416stream.
7417
7418Whenever the parser makes a transition from having multiple
eb45ef3b 7419states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7420algorithm, after resolving and executing the saved-up actions.
7421At this transition, some of the states on the stack will have semantic
7422values that are sets (actually multisets) of possible actions. The
7423parser tries to pick one of the actions by first finding one whose rule
7424has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7425declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7426precedence, but there the same merging function is declared for both
fae437e8 7427rules by the @samp{%merge} declaration,
676385e2
PH
7428Bison resolves and evaluates both and then calls the merge function on
7429the result. Otherwise, it reports an ambiguity.
7430
c827f760 7431It is possible to use a data structure for the @acronym{GLR} parsing tree that
eb45ef3b 7432permits the processing of any @acronym{LR}(1) grammar in linear time (in the
c827f760 7433size of the input), any unambiguous (not necessarily
eb45ef3b 7434@acronym{LR}(1)) grammar in
fae437e8 7435quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7436context-free grammar in cubic worst-case time. However, Bison currently
7437uses a simpler data structure that requires time proportional to the
7438length of the input times the maximum number of stacks required for any
9d9b8b70 7439prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7440grammars can require exponential time and space to process. Such badly
7441behaving examples, however, are not generally of practical interest.
9d9b8b70 7442Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7443doubt'' only for a few tokens at a time. Therefore, the current data
eb45ef3b
JD
7444structure should generally be adequate. On @acronym{LR}(1) portions of a
7445grammar, in particular, it is only slightly slower than with the
7446deterministic @acronym{LR}(1) Bison parser.
676385e2 7447
fa7e68c3 7448For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
7449Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
7450Generalised @acronym{LR} Parsers, Royal Holloway, University of
7451London, Department of Computer Science, TR-00-12,
7452@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
7453(2000-12-24).
7454
1a059451
PE
7455@node Memory Management
7456@section Memory Management, and How to Avoid Memory Exhaustion
7457@cindex memory exhaustion
7458@cindex memory management
bfa74976
RS
7459@cindex stack overflow
7460@cindex parser stack overflow
7461@cindex overflow of parser stack
7462
1a059451 7463The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7464not reduced. When this happens, the parser function @code{yyparse}
1a059451 7465calls @code{yyerror} and then returns 2.
bfa74976 7466
c827f760 7467Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7468usually results from using a right recursion instead of a left
7469recursion, @xref{Recursion, ,Recursive Rules}.
7470
bfa74976
RS
7471@vindex YYMAXDEPTH
7472By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7473parser stack can become before memory is exhausted. Define the
bfa74976
RS
7474macro with a value that is an integer. This value is the maximum number
7475of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7476
7477The stack space allowed is not necessarily allocated. If you specify a
1a059451 7478large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7479stack at first, and then makes it bigger by stages as needed. This
7480increasing allocation happens automatically and silently. Therefore,
7481you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7482space for ordinary inputs that do not need much stack.
7483
d7e14fc0
PE
7484However, do not allow @code{YYMAXDEPTH} to be a value so large that
7485arithmetic overflow could occur when calculating the size of the stack
7486space. Also, do not allow @code{YYMAXDEPTH} to be less than
7487@code{YYINITDEPTH}.
7488
bfa74976
RS
7489@cindex default stack limit
7490The default value of @code{YYMAXDEPTH}, if you do not define it, is
749110000.
7492
7493@vindex YYINITDEPTH
7494You can control how much stack is allocated initially by defining the
eb45ef3b
JD
7495macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7496parser in C, this value must be a compile-time constant
d7e14fc0
PE
7497unless you are assuming C99 or some other target language or compiler
7498that allows variable-length arrays. The default is 200.
7499
1a059451 7500Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7501
20be2f92
PH
7502You can generate a deterministic parser containing C++ user code from
7503the default (C) skeleton, as well as from the C++ skeleton
7504(@pxref{C++ Parsers}). However, if you do use the default skeleton
7505and want to allow the parsing stack to grow,
7506be careful not to use semantic types or location types that require
7507non-trivial copy constructors.
7508The C skeleton bypasses these constructors when copying data to
7509new, larger stacks.
d1a1114f 7510
342b8b6e 7511@node Error Recovery
bfa74976
RS
7512@chapter Error Recovery
7513@cindex error recovery
7514@cindex recovery from errors
7515
6e649e65 7516It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7517error. For example, a compiler should recover sufficiently to parse the
7518rest of the input file and check it for errors; a calculator should accept
7519another expression.
7520
7521In a simple interactive command parser where each input is one line, it may
7522be sufficient to allow @code{yyparse} to return 1 on error and have the
7523caller ignore the rest of the input line when that happens (and then call
7524@code{yyparse} again). But this is inadequate for a compiler, because it
7525forgets all the syntactic context leading up to the error. A syntax error
7526deep within a function in the compiler input should not cause the compiler
7527to treat the following line like the beginning of a source file.
7528
7529@findex error
7530You can define how to recover from a syntax error by writing rules to
7531recognize the special token @code{error}. This is a terminal symbol that
7532is always defined (you need not declare it) and reserved for error
7533handling. The Bison parser generates an @code{error} token whenever a
7534syntax error happens; if you have provided a rule to recognize this token
13863333 7535in the current context, the parse can continue.
bfa74976
RS
7536
7537For example:
7538
7539@example
7540stmnts: /* empty string */
7541 | stmnts '\n'
7542 | stmnts exp '\n'
7543 | stmnts error '\n'
7544@end example
7545
7546The fourth rule in this example says that an error followed by a newline
7547makes a valid addition to any @code{stmnts}.
7548
7549What happens if a syntax error occurs in the middle of an @code{exp}? The
7550error recovery rule, interpreted strictly, applies to the precise sequence
7551of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7552the middle of an @code{exp}, there will probably be some additional tokens
7553and subexpressions on the stack after the last @code{stmnts}, and there
7554will be tokens to read before the next newline. So the rule is not
7555applicable in the ordinary way.
7556
7557But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7558the semantic context and part of the input. First it discards states
7559and objects from the stack until it gets back to a state in which the
bfa74976 7560@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7561already parsed are discarded, back to the last complete @code{stmnts}.)
7562At this point the @code{error} token can be shifted. Then, if the old
742e4900 7563lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7564tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7565this example, Bison reads and discards input until the next newline so
7566that the fourth rule can apply. Note that discarded symbols are
7567possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7568Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7569
7570The choice of error rules in the grammar is a choice of strategies for
7571error recovery. A simple and useful strategy is simply to skip the rest of
7572the current input line or current statement if an error is detected:
7573
7574@example
72d2299c 7575stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7576@end example
7577
7578It is also useful to recover to the matching close-delimiter of an
7579opening-delimiter that has already been parsed. Otherwise the
7580close-delimiter will probably appear to be unmatched, and generate another,
7581spurious error message:
7582
7583@example
7584primary: '(' expr ')'
7585 | '(' error ')'
7586 @dots{}
7587 ;
7588@end example
7589
7590Error recovery strategies are necessarily guesses. When they guess wrong,
7591one syntax error often leads to another. In the above example, the error
7592recovery rule guesses that an error is due to bad input within one
7593@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7594middle of a valid @code{stmnt}. After the error recovery rule recovers
7595from the first error, another syntax error will be found straightaway,
7596since the text following the spurious semicolon is also an invalid
7597@code{stmnt}.
7598
7599To prevent an outpouring of error messages, the parser will output no error
7600message for another syntax error that happens shortly after the first; only
7601after three consecutive input tokens have been successfully shifted will
7602error messages resume.
7603
7604Note that rules which accept the @code{error} token may have actions, just
7605as any other rules can.
7606
7607@findex yyerrok
7608You can make error messages resume immediately by using the macro
7609@code{yyerrok} in an action. If you do this in the error rule's action, no
7610error messages will be suppressed. This macro requires no arguments;
7611@samp{yyerrok;} is a valid C statement.
7612
7613@findex yyclearin
742e4900 7614The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7615this is unacceptable, then the macro @code{yyclearin} may be used to clear
7616this token. Write the statement @samp{yyclearin;} in the error rule's
7617action.
32c29292 7618@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7619
6e649e65 7620For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7621called that advances the input stream to some point where parsing should
7622once again commence. The next symbol returned by the lexical scanner is
742e4900 7623probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7624with @samp{yyclearin;}.
7625
7626@vindex YYRECOVERING
02103984
PE
7627The expression @code{YYRECOVERING ()} yields 1 when the parser
7628is recovering from a syntax error, and 0 otherwise.
7629Syntax error diagnostics are suppressed while recovering from a syntax
7630error.
bfa74976 7631
342b8b6e 7632@node Context Dependency
bfa74976
RS
7633@chapter Handling Context Dependencies
7634
7635The Bison paradigm is to parse tokens first, then group them into larger
7636syntactic units. In many languages, the meaning of a token is affected by
7637its context. Although this violates the Bison paradigm, certain techniques
7638(known as @dfn{kludges}) may enable you to write Bison parsers for such
7639languages.
7640
7641@menu
7642* Semantic Tokens:: Token parsing can depend on the semantic context.
7643* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7644* Tie-in Recovery:: Lexical tie-ins have implications for how
7645 error recovery rules must be written.
7646@end menu
7647
7648(Actually, ``kludge'' means any technique that gets its job done but is
7649neither clean nor robust.)
7650
342b8b6e 7651@node Semantic Tokens
bfa74976
RS
7652@section Semantic Info in Token Types
7653
7654The C language has a context dependency: the way an identifier is used
7655depends on what its current meaning is. For example, consider this:
7656
7657@example
7658foo (x);
7659@end example
7660
7661This looks like a function call statement, but if @code{foo} is a typedef
7662name, then this is actually a declaration of @code{x}. How can a Bison
7663parser for C decide how to parse this input?
7664
c827f760 7665The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
7666@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7667identifier, it looks up the current declaration of the identifier in order
7668to decide which token type to return: @code{TYPENAME} if the identifier is
7669declared as a typedef, @code{IDENTIFIER} otherwise.
7670
7671The grammar rules can then express the context dependency by the choice of
7672token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7673but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7674@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7675is @emph{not} significant, such as in declarations that can shadow a
7676typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7677accepted---there is one rule for each of the two token types.
7678
7679This technique is simple to use if the decision of which kinds of
7680identifiers to allow is made at a place close to where the identifier is
7681parsed. But in C this is not always so: C allows a declaration to
7682redeclare a typedef name provided an explicit type has been specified
7683earlier:
7684
7685@example
3a4f411f
PE
7686typedef int foo, bar;
7687int baz (void)
7688@{
7689 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7690 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7691 return foo (bar);
7692@}
bfa74976
RS
7693@end example
7694
7695Unfortunately, the name being declared is separated from the declaration
7696construct itself by a complicated syntactic structure---the ``declarator''.
7697
9ecbd125 7698As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7699all the nonterminal names changed: once for parsing a declaration in
7700which a typedef name can be redefined, and once for parsing a
7701declaration in which that can't be done. Here is a part of the
7702duplication, with actions omitted for brevity:
bfa74976
RS
7703
7704@example
7705initdcl:
7706 declarator maybeasm '='
7707 init
7708 | declarator maybeasm
7709 ;
7710
7711notype_initdcl:
7712 notype_declarator maybeasm '='
7713 init
7714 | notype_declarator maybeasm
7715 ;
7716@end example
7717
7718@noindent
7719Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7720cannot. The distinction between @code{declarator} and
7721@code{notype_declarator} is the same sort of thing.
7722
7723There is some similarity between this technique and a lexical tie-in
7724(described next), in that information which alters the lexical analysis is
7725changed during parsing by other parts of the program. The difference is
7726here the information is global, and is used for other purposes in the
7727program. A true lexical tie-in has a special-purpose flag controlled by
7728the syntactic context.
7729
342b8b6e 7730@node Lexical Tie-ins
bfa74976
RS
7731@section Lexical Tie-ins
7732@cindex lexical tie-in
7733
7734One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7735which is set by Bison actions, whose purpose is to alter the way tokens are
7736parsed.
7737
7738For example, suppose we have a language vaguely like C, but with a special
7739construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7740an expression in parentheses in which all integers are hexadecimal. In
7741particular, the token @samp{a1b} must be treated as an integer rather than
7742as an identifier if it appears in that context. Here is how you can do it:
7743
7744@example
7745@group
7746%@{
38a92d50
PE
7747 int hexflag;
7748 int yylex (void);
7749 void yyerror (char const *);
bfa74976
RS
7750%@}
7751%%
7752@dots{}
7753@end group
7754@group
7755expr: IDENTIFIER
7756 | constant
7757 | HEX '('
7758 @{ hexflag = 1; @}
7759 expr ')'
7760 @{ hexflag = 0;
7761 $$ = $4; @}
7762 | expr '+' expr
7763 @{ $$ = make_sum ($1, $3); @}
7764 @dots{}
7765 ;
7766@end group
7767
7768@group
7769constant:
7770 INTEGER
7771 | STRING
7772 ;
7773@end group
7774@end example
7775
7776@noindent
7777Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7778it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7779with letters are parsed as integers if possible.
7780
342b8b6e
AD
7781The declaration of @code{hexflag} shown in the prologue of the parser file
7782is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 7783You must also write the code in @code{yylex} to obey the flag.
bfa74976 7784
342b8b6e 7785@node Tie-in Recovery
bfa74976
RS
7786@section Lexical Tie-ins and Error Recovery
7787
7788Lexical tie-ins make strict demands on any error recovery rules you have.
7789@xref{Error Recovery}.
7790
7791The reason for this is that the purpose of an error recovery rule is to
7792abort the parsing of one construct and resume in some larger construct.
7793For example, in C-like languages, a typical error recovery rule is to skip
7794tokens until the next semicolon, and then start a new statement, like this:
7795
7796@example
7797stmt: expr ';'
7798 | IF '(' expr ')' stmt @{ @dots{} @}
7799 @dots{}
7800 error ';'
7801 @{ hexflag = 0; @}
7802 ;
7803@end example
7804
7805If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7806construct, this error rule will apply, and then the action for the
7807completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7808remain set for the entire rest of the input, or until the next @code{hex}
7809keyword, causing identifiers to be misinterpreted as integers.
7810
7811To avoid this problem the error recovery rule itself clears @code{hexflag}.
7812
7813There may also be an error recovery rule that works within expressions.
7814For example, there could be a rule which applies within parentheses
7815and skips to the close-parenthesis:
7816
7817@example
7818@group
7819expr: @dots{}
7820 | '(' expr ')'
7821 @{ $$ = $2; @}
7822 | '(' error ')'
7823 @dots{}
7824@end group
7825@end example
7826
7827If this rule acts within the @code{hex} construct, it is not going to abort
7828that construct (since it applies to an inner level of parentheses within
7829the construct). Therefore, it should not clear the flag: the rest of
7830the @code{hex} construct should be parsed with the flag still in effect.
7831
7832What if there is an error recovery rule which might abort out of the
7833@code{hex} construct or might not, depending on circumstances? There is no
7834way you can write the action to determine whether a @code{hex} construct is
7835being aborted or not. So if you are using a lexical tie-in, you had better
7836make sure your error recovery rules are not of this kind. Each rule must
7837be such that you can be sure that it always will, or always won't, have to
7838clear the flag.
7839
ec3bc396
AD
7840@c ================================================== Debugging Your Parser
7841
342b8b6e 7842@node Debugging
bfa74976 7843@chapter Debugging Your Parser
ec3bc396
AD
7844
7845Developing a parser can be a challenge, especially if you don't
7846understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7847Algorithm}). Even so, sometimes a detailed description of the automaton
7848can help (@pxref{Understanding, , Understanding Your Parser}), or
7849tracing the execution of the parser can give some insight on why it
7850behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7851
7852@menu
7853* Understanding:: Understanding the structure of your parser.
7854* Tracing:: Tracing the execution of your parser.
7855@end menu
7856
7857@node Understanding
7858@section Understanding Your Parser
7859
7860As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7861Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7862frequent than one would hope), looking at this automaton is required to
7863tune or simply fix a parser. Bison provides two different
35fe0834 7864representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7865
7866The textual file is generated when the options @option{--report} or
7867@option{--verbose} are specified, see @xref{Invocation, , Invoking
7868Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
7869the parser output file name, and adding @samp{.output} instead.
7870Therefore, if the input file is @file{foo.y}, then the parser file is
7871called @file{foo.tab.c} by default. As a consequence, the verbose
7872output file is called @file{foo.output}.
7873
7874The following grammar file, @file{calc.y}, will be used in the sequel:
7875
7876@example
7877%token NUM STR
7878%left '+' '-'
7879%left '*'
7880%%
7881exp: exp '+' exp
7882 | exp '-' exp
7883 | exp '*' exp
7884 | exp '/' exp
7885 | NUM
7886 ;
7887useless: STR;
7888%%
7889@end example
7890
88bce5a2
AD
7891@command{bison} reports:
7892
7893@example
8f0d265e
JD
7894calc.y: warning: 1 nonterminal useless in grammar
7895calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
7896calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7897calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7898calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7899@end example
7900
7901When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7902creates a file @file{calc.output} with contents detailed below. The
7903order of the output and the exact presentation might vary, but the
7904interpretation is the same.
ec3bc396
AD
7905
7906The first section includes details on conflicts that were solved thanks
7907to precedence and/or associativity:
7908
7909@example
7910Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7911Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7912Conflict in state 8 between rule 2 and token '*' resolved as shift.
7913@exdent @dots{}
7914@end example
7915
7916@noindent
7917The next section lists states that still have conflicts.
7918
7919@example
5a99098d
PE
7920State 8 conflicts: 1 shift/reduce
7921State 9 conflicts: 1 shift/reduce
7922State 10 conflicts: 1 shift/reduce
7923State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7924@end example
7925
7926@noindent
7927@cindex token, useless
7928@cindex useless token
7929@cindex nonterminal, useless
7930@cindex useless nonterminal
7931@cindex rule, useless
7932@cindex useless rule
7933The next section reports useless tokens, nonterminal and rules. Useless
7934nonterminals and rules are removed in order to produce a smaller parser,
7935but useless tokens are preserved, since they might be used by the
d80fb37a 7936scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7937below):
7938
7939@example
d80fb37a 7940Nonterminals useless in grammar:
ec3bc396
AD
7941 useless
7942
d80fb37a 7943Terminals unused in grammar:
ec3bc396
AD
7944 STR
7945
cff03fb2 7946Rules useless in grammar:
ec3bc396
AD
7947#6 useless: STR;
7948@end example
7949
7950@noindent
7951The next section reproduces the exact grammar that Bison used:
7952
7953@example
7954Grammar
7955
7956 Number, Line, Rule
88bce5a2 7957 0 5 $accept -> exp $end
ec3bc396
AD
7958 1 5 exp -> exp '+' exp
7959 2 6 exp -> exp '-' exp
7960 3 7 exp -> exp '*' exp
7961 4 8 exp -> exp '/' exp
7962 5 9 exp -> NUM
7963@end example
7964
7965@noindent
7966and reports the uses of the symbols:
7967
7968@example
7969Terminals, with rules where they appear
7970
88bce5a2 7971$end (0) 0
ec3bc396
AD
7972'*' (42) 3
7973'+' (43) 1
7974'-' (45) 2
7975'/' (47) 4
7976error (256)
7977NUM (258) 5
7978
7979Nonterminals, with rules where they appear
7980
88bce5a2 7981$accept (8)
ec3bc396
AD
7982 on left: 0
7983exp (9)
7984 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7985@end example
7986
7987@noindent
7988@cindex item
7989@cindex pointed rule
7990@cindex rule, pointed
7991Bison then proceeds onto the automaton itself, describing each state
7992with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7993item is a production rule together with a point (marked by @samp{.})
7994that the input cursor.
7995
7996@example
7997state 0
7998
88bce5a2 7999 $accept -> . exp $ (rule 0)
ec3bc396 8000
2a8d363a 8001 NUM shift, and go to state 1
ec3bc396 8002
2a8d363a 8003 exp go to state 2
ec3bc396
AD
8004@end example
8005
8006This reads as follows: ``state 0 corresponds to being at the very
8007beginning of the parsing, in the initial rule, right before the start
8008symbol (here, @code{exp}). When the parser returns to this state right
8009after having reduced a rule that produced an @code{exp}, the control
8010flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 8011symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 8012the parse stack, and the control flow jumps to state 1. Any other
742e4900 8013lookahead triggers a syntax error.''
ec3bc396
AD
8014
8015@cindex core, item set
8016@cindex item set core
8017@cindex kernel, item set
8018@cindex item set core
8019Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8020report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8021at the beginning of any rule deriving an @code{exp}. By default Bison
8022reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8023you want to see more detail you can invoke @command{bison} with
8024@option{--report=itemset} to list all the items, include those that can
8025be derived:
8026
8027@example
8028state 0
8029
88bce5a2 8030 $accept -> . exp $ (rule 0)
ec3bc396
AD
8031 exp -> . exp '+' exp (rule 1)
8032 exp -> . exp '-' exp (rule 2)
8033 exp -> . exp '*' exp (rule 3)
8034 exp -> . exp '/' exp (rule 4)
8035 exp -> . NUM (rule 5)
8036
8037 NUM shift, and go to state 1
8038
8039 exp go to state 2
8040@end example
8041
8042@noindent
8043In the state 1...
8044
8045@example
8046state 1
8047
8048 exp -> NUM . (rule 5)
8049
2a8d363a 8050 $default reduce using rule 5 (exp)
ec3bc396
AD
8051@end example
8052
8053@noindent
742e4900 8054the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
8055(@samp{$default}), the parser will reduce it. If it was coming from
8056state 0, then, after this reduction it will return to state 0, and will
8057jump to state 2 (@samp{exp: go to state 2}).
8058
8059@example
8060state 2
8061
88bce5a2 8062 $accept -> exp . $ (rule 0)
ec3bc396
AD
8063 exp -> exp . '+' exp (rule 1)
8064 exp -> exp . '-' exp (rule 2)
8065 exp -> exp . '*' exp (rule 3)
8066 exp -> exp . '/' exp (rule 4)
8067
2a8d363a
AD
8068 $ shift, and go to state 3
8069 '+' shift, and go to state 4
8070 '-' shift, and go to state 5
8071 '*' shift, and go to state 6
8072 '/' shift, and go to state 7
ec3bc396
AD
8073@end example
8074
8075@noindent
8076In state 2, the automaton can only shift a symbol. For instance,
742e4900 8077because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
8078@samp{+}, it will be shifted on the parse stack, and the automaton
8079control will jump to state 4, corresponding to the item @samp{exp -> exp
8080'+' . exp}. Since there is no default action, any other token than
6e649e65 8081those listed above will trigger a syntax error.
ec3bc396 8082
eb45ef3b 8083@cindex accepting state
ec3bc396
AD
8084The state 3 is named the @dfn{final state}, or the @dfn{accepting
8085state}:
8086
8087@example
8088state 3
8089
88bce5a2 8090 $accept -> exp $ . (rule 0)
ec3bc396 8091
2a8d363a 8092 $default accept
ec3bc396
AD
8093@end example
8094
8095@noindent
8096the initial rule is completed (the start symbol and the end
8097of input were read), the parsing exits successfully.
8098
8099The interpretation of states 4 to 7 is straightforward, and is left to
8100the reader.
8101
8102@example
8103state 4
8104
8105 exp -> exp '+' . exp (rule 1)
8106
2a8d363a 8107 NUM shift, and go to state 1
ec3bc396 8108
2a8d363a 8109 exp go to state 8
ec3bc396
AD
8110
8111state 5
8112
8113 exp -> exp '-' . exp (rule 2)
8114
2a8d363a 8115 NUM shift, and go to state 1
ec3bc396 8116
2a8d363a 8117 exp go to state 9
ec3bc396
AD
8118
8119state 6
8120
8121 exp -> exp '*' . exp (rule 3)
8122
2a8d363a 8123 NUM shift, and go to state 1
ec3bc396 8124
2a8d363a 8125 exp go to state 10
ec3bc396
AD
8126
8127state 7
8128
8129 exp -> exp '/' . exp (rule 4)
8130
2a8d363a 8131 NUM shift, and go to state 1
ec3bc396 8132
2a8d363a 8133 exp go to state 11
ec3bc396
AD
8134@end example
8135
5a99098d
PE
8136As was announced in beginning of the report, @samp{State 8 conflicts:
81371 shift/reduce}:
ec3bc396
AD
8138
8139@example
8140state 8
8141
8142 exp -> exp . '+' exp (rule 1)
8143 exp -> exp '+' exp . (rule 1)
8144 exp -> exp . '-' exp (rule 2)
8145 exp -> exp . '*' exp (rule 3)
8146 exp -> exp . '/' exp (rule 4)
8147
2a8d363a
AD
8148 '*' shift, and go to state 6
8149 '/' shift, and go to state 7
ec3bc396 8150
2a8d363a
AD
8151 '/' [reduce using rule 1 (exp)]
8152 $default reduce using rule 1 (exp)
ec3bc396
AD
8153@end example
8154
742e4900 8155Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8156either shifting (and going to state 7), or reducing rule 1. The
8157conflict means that either the grammar is ambiguous, or the parser lacks
8158information to make the right decision. Indeed the grammar is
8159ambiguous, as, since we did not specify the precedence of @samp{/}, the
8160sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8161NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8162NUM}, which corresponds to reducing rule 1.
8163
eb45ef3b 8164Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
8165arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
8166Shift/Reduce Conflicts}. Discarded actions are reported in between
8167square brackets.
8168
8169Note that all the previous states had a single possible action: either
8170shifting the next token and going to the corresponding state, or
8171reducing a single rule. In the other cases, i.e., when shifting
8172@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8173possible, the lookahead is required to select the action. State 8 is
8174one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8175is shifting, otherwise the action is reducing rule 1. In other words,
8176the first two items, corresponding to rule 1, are not eligible when the
742e4900 8177lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8178precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8179with some set of possible lookahead tokens. When run with
8180@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8181
8182@example
8183state 8
8184
88c78747 8185 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
8186 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
8187 exp -> exp . '-' exp (rule 2)
8188 exp -> exp . '*' exp (rule 3)
8189 exp -> exp . '/' exp (rule 4)
8190
8191 '*' shift, and go to state 6
8192 '/' shift, and go to state 7
8193
8194 '/' [reduce using rule 1 (exp)]
8195 $default reduce using rule 1 (exp)
8196@end example
8197
8198The remaining states are similar:
8199
8200@example
8201state 9
8202
8203 exp -> exp . '+' exp (rule 1)
8204 exp -> exp . '-' exp (rule 2)
8205 exp -> exp '-' exp . (rule 2)
8206 exp -> exp . '*' exp (rule 3)
8207 exp -> exp . '/' exp (rule 4)
8208
2a8d363a
AD
8209 '*' shift, and go to state 6
8210 '/' shift, and go to state 7
ec3bc396 8211
2a8d363a
AD
8212 '/' [reduce using rule 2 (exp)]
8213 $default reduce using rule 2 (exp)
ec3bc396
AD
8214
8215state 10
8216
8217 exp -> exp . '+' exp (rule 1)
8218 exp -> exp . '-' exp (rule 2)
8219 exp -> exp . '*' exp (rule 3)
8220 exp -> exp '*' exp . (rule 3)
8221 exp -> exp . '/' exp (rule 4)
8222
2a8d363a 8223 '/' shift, and go to state 7
ec3bc396 8224
2a8d363a
AD
8225 '/' [reduce using rule 3 (exp)]
8226 $default reduce using rule 3 (exp)
ec3bc396
AD
8227
8228state 11
8229
8230 exp -> exp . '+' exp (rule 1)
8231 exp -> exp . '-' exp (rule 2)
8232 exp -> exp . '*' exp (rule 3)
8233 exp -> exp . '/' exp (rule 4)
8234 exp -> exp '/' exp . (rule 4)
8235
2a8d363a
AD
8236 '+' shift, and go to state 4
8237 '-' shift, and go to state 5
8238 '*' shift, and go to state 6
8239 '/' shift, and go to state 7
ec3bc396 8240
2a8d363a
AD
8241 '+' [reduce using rule 4 (exp)]
8242 '-' [reduce using rule 4 (exp)]
8243 '*' [reduce using rule 4 (exp)]
8244 '/' [reduce using rule 4 (exp)]
8245 $default reduce using rule 4 (exp)
ec3bc396
AD
8246@end example
8247
8248@noindent
fa7e68c3
PE
8249Observe that state 11 contains conflicts not only due to the lack of
8250precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8251@samp{*}, but also because the
ec3bc396
AD
8252associativity of @samp{/} is not specified.
8253
8254
8255@node Tracing
8256@section Tracing Your Parser
bfa74976
RS
8257@findex yydebug
8258@cindex debugging
8259@cindex tracing the parser
8260
8261If a Bison grammar compiles properly but doesn't do what you want when it
8262runs, the @code{yydebug} parser-trace feature can help you figure out why.
8263
3ded9a63
AD
8264There are several means to enable compilation of trace facilities:
8265
8266@table @asis
8267@item the macro @code{YYDEBUG}
8268@findex YYDEBUG
8269Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 8270parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
8271@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8272YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8273Prologue}).
8274
8275@item the option @option{-t}, @option{--debug}
8276Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 8277,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
8278
8279@item the directive @samp{%debug}
8280@findex %debug
fa819509
AD
8281Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
8282Summary}). This Bison extension is maintained for backward
8283compatibility with previous versions of Bison.
8284
8285@item the variable @samp{parse.trace}
8286@findex %define parse.trace
8287Add the @samp{%define parse.trace} directive (@pxref{Decl Summary,
8288,Bison Declaration Summary}), or pass the @option{-Dparse.trace} option
8289(@pxref{Bison Options}). This is a Bison extension, which is especially
8290useful for languages that don't use a preprocessor. Unless
8291@acronym{POSIX} and Yacc portability matter to you, this is the
8292preferred solution.
3ded9a63
AD
8293@end table
8294
fa819509 8295We suggest that you always enable the trace option so that debugging is
3ded9a63 8296always possible.
bfa74976 8297
02a81e05 8298The trace facility outputs messages with macro calls of the form
e2742e46 8299@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8300@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8301arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8302define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8303and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8304
8305Once you have compiled the program with trace facilities, the way to
8306request a trace is to store a nonzero value in the variable @code{yydebug}.
8307You can do this by making the C code do it (in @code{main}, perhaps), or
8308you can alter the value with a C debugger.
8309
8310Each step taken by the parser when @code{yydebug} is nonzero produces a
8311line or two of trace information, written on @code{stderr}. The trace
8312messages tell you these things:
8313
8314@itemize @bullet
8315@item
8316Each time the parser calls @code{yylex}, what kind of token was read.
8317
8318@item
8319Each time a token is shifted, the depth and complete contents of the
8320state stack (@pxref{Parser States}).
8321
8322@item
8323Each time a rule is reduced, which rule it is, and the complete contents
8324of the state stack afterward.
8325@end itemize
8326
8327To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8328produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8329Bison}). This file shows the meaning of each state in terms of
8330positions in various rules, and also what each state will do with each
8331possible input token. As you read the successive trace messages, you
8332can see that the parser is functioning according to its specification in
8333the listing file. Eventually you will arrive at the place where
8334something undesirable happens, and you will see which parts of the
8335grammar are to blame.
bfa74976
RS
8336
8337The parser file is a C program and you can use C debuggers on it, but it's
8338not easy to interpret what it is doing. The parser function is a
8339finite-state machine interpreter, and aside from the actions it executes
8340the same code over and over. Only the values of variables show where in
8341the grammar it is working.
8342
8343@findex YYPRINT
8344The debugging information normally gives the token type of each token
8345read, but not its semantic value. You can optionally define a macro
8346named @code{YYPRINT} to provide a way to print the value. If you define
8347@code{YYPRINT}, it should take three arguments. The parser will pass a
8348standard I/O stream, the numeric code for the token type, and the token
8349value (from @code{yylval}).
8350
8351Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 8352calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
8353
8354@smallexample
38a92d50
PE
8355%@{
8356 static void print_token_value (FILE *, int, YYSTYPE);
8357 #define YYPRINT(file, type, value) print_token_value (file, type, value)
8358%@}
8359
8360@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8361
8362static void
831d3c99 8363print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8364@{
8365 if (type == VAR)
d3c4e709 8366 fprintf (file, "%s", value.tptr->name);
bfa74976 8367 else if (type == NUM)
d3c4e709 8368 fprintf (file, "%d", value.val);
bfa74976
RS
8369@}
8370@end smallexample
8371
ec3bc396
AD
8372@c ================================================= Invoking Bison
8373
342b8b6e 8374@node Invocation
bfa74976
RS
8375@chapter Invoking Bison
8376@cindex invoking Bison
8377@cindex Bison invocation
8378@cindex options for invoking Bison
8379
8380The usual way to invoke Bison is as follows:
8381
8382@example
8383bison @var{infile}
8384@end example
8385
8386Here @var{infile} is the grammar file name, which usually ends in
8387@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
8388with @samp{.tab.c} and removing any leading directory. Thus, the
8389@samp{bison foo.y} file name yields
8390@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
8391@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 8392C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
8393or @file{foo.y++}. Then, the output files will take an extension like
8394the given one as input (respectively @file{foo.tab.cpp} and
8395@file{foo.tab.c++}).
fa4d969f 8396This feature takes effect with all options that manipulate file names like
234a3be3
AD
8397@samp{-o} or @samp{-d}.
8398
8399For example :
8400
8401@example
8402bison -d @var{infile.yxx}
8403@end example
84163231 8404@noindent
72d2299c 8405will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8406
8407@example
b56471a6 8408bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8409@end example
84163231 8410@noindent
234a3be3
AD
8411will produce @file{output.c++} and @file{outfile.h++}.
8412
397ec073
PE
8413For compatibility with @acronym{POSIX}, the standard Bison
8414distribution also contains a shell script called @command{yacc} that
8415invokes Bison with the @option{-y} option.
8416
bfa74976 8417@menu
13863333 8418* Bison Options:: All the options described in detail,
c827f760 8419 in alphabetical order by short options.
bfa74976 8420* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8421* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8422@end menu
8423
342b8b6e 8424@node Bison Options
bfa74976
RS
8425@section Bison Options
8426
8427Bison supports both traditional single-letter options and mnemonic long
8428option names. Long option names are indicated with @samp{--} instead of
8429@samp{-}. Abbreviations for option names are allowed as long as they
8430are unique. When a long option takes an argument, like
8431@samp{--file-prefix}, connect the option name and the argument with
8432@samp{=}.
8433
8434Here is a list of options that can be used with Bison, alphabetized by
8435short option. It is followed by a cross key alphabetized by long
8436option.
8437
89cab50d
AD
8438@c Please, keep this ordered as in `bison --help'.
8439@noindent
8440Operations modes:
8441@table @option
8442@item -h
8443@itemx --help
8444Print a summary of the command-line options to Bison and exit.
bfa74976 8445
89cab50d
AD
8446@item -V
8447@itemx --version
8448Print the version number of Bison and exit.
bfa74976 8449
f7ab6a50
PE
8450@item --print-localedir
8451Print the name of the directory containing locale-dependent data.
8452
a0de5091
JD
8453@item --print-datadir
8454Print the name of the directory containing skeletons and XSLT.
8455
89cab50d
AD
8456@item -y
8457@itemx --yacc
54662697
PE
8458Act more like the traditional Yacc command. This can cause
8459different diagnostics to be generated, and may change behavior in
8460other minor ways. Most importantly, imitate Yacc's output
8461file name conventions, so that the parser output file is called
89cab50d 8462@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e 8463@file{y.tab.h}.
eb45ef3b 8464Also, if generating a deterministic parser in C, generate @code{#define}
b931235e
JD
8465statements in addition to an @code{enum} to associate token numbers with token
8466names.
8467Thus, the following shell script can substitute for Yacc, and the Bison
8468distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 8469
89cab50d 8470@example
397ec073 8471#! /bin/sh
26e06a21 8472bison -y "$@@"
89cab50d 8473@end example
54662697
PE
8474
8475The @option{-y}/@option{--yacc} option is intended for use with
8476traditional Yacc grammars. If your grammar uses a Bison extension
8477like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8478this option is specified.
8479
1d5b3c08
JD
8480@item -W [@var{category}]
8481@itemx --warnings[=@var{category}]
118d4978
AD
8482Output warnings falling in @var{category}. @var{category} can be one
8483of:
8484@table @code
8485@item midrule-values
8e55b3aa
JD
8486Warn about mid-rule values that are set but not used within any of the actions
8487of the parent rule.
8488For example, warn about unused @code{$2} in:
118d4978
AD
8489
8490@example
8491exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8492@end example
8493
8e55b3aa
JD
8494Also warn about mid-rule values that are used but not set.
8495For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8496
8497@example
8498 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
8499@end example
8500
8501These warnings are not enabled by default since they sometimes prove to
8502be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8503@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
8504
8505
8506@item yacc
8507Incompatibilities with @acronym{POSIX} Yacc.
8508
8509@item all
8e55b3aa 8510All the warnings.
118d4978 8511@item none
8e55b3aa 8512Turn off all the warnings.
118d4978 8513@item error
8e55b3aa 8514Treat warnings as errors.
118d4978
AD
8515@end table
8516
8517A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9
JD
8518instance, @option{-Wno-yacc} will hide the warnings about
8519@acronym{POSIX} Yacc incompatibilities.
89cab50d
AD
8520@end table
8521
8522@noindent
8523Tuning the parser:
8524
8525@table @option
8526@item -t
8527@itemx --debug
4947ebdb
PE
8528In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
8529already defined, so that the debugging facilities are compiled.
ec3bc396 8530@xref{Tracing, ,Tracing Your Parser}.
89cab50d 8531
58697c6d
AD
8532@item -D @var{name}[=@var{value}]
8533@itemx --define=@var{name}[=@var{value}]
17aed602 8534@itemx -F @var{name}[=@var{value}]
de5ab940
JD
8535@itemx --force-define=@var{name}[=@var{value}]
8536Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
8537(@pxref{Decl Summary, ,%define}) except that Bison processes multiple
8538definitions for the same @var{name} as follows:
8539
8540@itemize
8541@item
0b6d43c5
JD
8542Bison quietly ignores all command-line definitions for @var{name} except
8543the last.
de5ab940 8544@item
0b6d43c5
JD
8545If that command-line definition is specified by a @code{-D} or
8546@code{--define}, Bison reports an error for any @code{%define}
8547definition for @var{name}.
de5ab940 8548@item
0b6d43c5
JD
8549If that command-line definition is specified by a @code{-F} or
8550@code{--force-define} instead, Bison quietly ignores all @code{%define}
8551definitions for @var{name}.
8552@item
8553Otherwise, Bison reports an error if there are multiple @code{%define}
8554definitions for @var{name}.
de5ab940
JD
8555@end itemize
8556
8557You should avoid using @code{-F} and @code{--force-define} in your
8558makefiles unless you are confident that it is safe to quietly ignore any
8559conflicting @code{%define} that may be added to the grammar file.
58697c6d 8560
0e021770
PE
8561@item -L @var{language}
8562@itemx --language=@var{language}
8563Specify the programming language for the generated parser, as if
8564@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8565Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8566@var{language} is case-insensitive.
0e021770 8567
ed4d67dc
JD
8568This option is experimental and its effect may be modified in future
8569releases.
8570
89cab50d 8571@item --locations
d8988b2f 8572Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8573
8574@item -p @var{prefix}
8575@itemx --name-prefix=@var{prefix}
02975b9a 8576Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8577@xref{Decl Summary}.
bfa74976
RS
8578
8579@item -l
8580@itemx --no-lines
8581Don't put any @code{#line} preprocessor commands in the parser file.
8582Ordinarily Bison puts them in the parser file so that the C compiler
8583and debuggers will associate errors with your source file, the
8584grammar file. This option causes them to associate errors with the
95e742f7 8585parser file, treating it as an independent source file in its own right.
bfa74976 8586
e6e704dc
JD
8587@item -S @var{file}
8588@itemx --skeleton=@var{file}
a7867f53 8589Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8590(@pxref{Decl Summary, , Bison Declaration Summary}).
8591
ed4d67dc
JD
8592@c You probably don't need this option unless you are developing Bison.
8593@c You should use @option{--language} if you want to specify the skeleton for a
8594@c different language, because it is clearer and because it will always
8595@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8596
a7867f53
JD
8597If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8598file in the Bison installation directory.
8599If it does, @var{file} is an absolute file name or a file name relative to the
8600current working directory.
8601This is similar to how most shells resolve commands.
8602
89cab50d
AD
8603@item -k
8604@itemx --token-table
d8988b2f 8605Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8606@end table
bfa74976 8607
89cab50d
AD
8608@noindent
8609Adjust the output:
bfa74976 8610
89cab50d 8611@table @option
8e55b3aa 8612@item --defines[=@var{file}]
d8988b2f 8613Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8614file containing macro definitions for the token type names defined in
4bfd5e4e 8615the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8616
8e55b3aa
JD
8617@item -d
8618This is the same as @code{--defines} except @code{-d} does not accept a
8619@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8620with other short options.
342b8b6e 8621
89cab50d
AD
8622@item -b @var{file-prefix}
8623@itemx --file-prefix=@var{prefix}
9c437126 8624Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8625for all Bison output file names. @xref{Decl Summary}.
bfa74976 8626
ec3bc396
AD
8627@item -r @var{things}
8628@itemx --report=@var{things}
8629Write an extra output file containing verbose description of the comma
8630separated list of @var{things} among:
8631
8632@table @code
8633@item state
8634Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 8635parser's automaton.
ec3bc396 8636
742e4900 8637@item lookahead
ec3bc396 8638Implies @code{state} and augments the description of the automaton with
742e4900 8639each rule's lookahead set.
ec3bc396
AD
8640
8641@item itemset
8642Implies @code{state} and augments the description of the automaton with
8643the full set of items for each state, instead of its core only.
8644@end table
8645
1bb2bd75
JD
8646@item --report-file=@var{file}
8647Specify the @var{file} for the verbose description.
8648
bfa74976
RS
8649@item -v
8650@itemx --verbose
9c437126 8651Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8652file containing verbose descriptions of the grammar and
72d2299c 8653parser. @xref{Decl Summary}.
bfa74976 8654
fa4d969f
PE
8655@item -o @var{file}
8656@itemx --output=@var{file}
8657Specify the @var{file} for the parser file.
bfa74976 8658
fa4d969f 8659The other output files' names are constructed from @var{file} as
d8988b2f 8660described under the @samp{-v} and @samp{-d} options.
342b8b6e 8661
a7c09cba 8662@item -g [@var{file}]
8e55b3aa 8663@itemx --graph[=@var{file}]
eb45ef3b 8664Output a graphical representation of the parser's
35fe0834
PE
8665automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8666@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
8e55b3aa
JD
8667@code{@var{file}} is optional.
8668If omitted and the grammar file is @file{foo.y}, the output file will be
8669@file{foo.dot}.
59da312b 8670
a7c09cba 8671@item -x [@var{file}]
8e55b3aa 8672@itemx --xml[=@var{file}]
eb45ef3b 8673Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8674@code{@var{file}} is optional.
59da312b
JD
8675If omitted and the grammar file is @file{foo.y}, the output file will be
8676@file{foo.xml}.
8677(The current XML schema is experimental and may evolve.
8678More user feedback will help to stabilize it.)
bfa74976
RS
8679@end table
8680
342b8b6e 8681@node Option Cross Key
bfa74976
RS
8682@section Option Cross Key
8683
8684Here is a list of options, alphabetized by long option, to help you find
de5ab940 8685the corresponding short option and directive.
bfa74976 8686
de5ab940 8687@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 8688@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8689@include cross-options.texi
aa08666d 8690@end multitable
bfa74976 8691
93dd49ab
PE
8692@node Yacc Library
8693@section Yacc Library
8694
8695The Yacc library contains default implementations of the
8696@code{yyerror} and @code{main} functions. These default
8697implementations are normally not useful, but @acronym{POSIX} requires
8698them. To use the Yacc library, link your program with the
8699@option{-ly} option. Note that Bison's implementation of the Yacc
8700library is distributed under the terms of the @acronym{GNU} General
8701Public License (@pxref{Copying}).
8702
8703If you use the Yacc library's @code{yyerror} function, you should
8704declare @code{yyerror} as follows:
8705
8706@example
8707int yyerror (char const *);
8708@end example
8709
8710Bison ignores the @code{int} value returned by this @code{yyerror}.
8711If you use the Yacc library's @code{main} function, your
8712@code{yyparse} function should have the following type signature:
8713
8714@example
8715int yyparse (void);
8716@end example
8717
12545799
AD
8718@c ================================================= C++ Bison
8719
8405b70c
PB
8720@node Other Languages
8721@chapter Parsers Written In Other Languages
12545799
AD
8722
8723@menu
8724* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8725* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8726@end menu
8727
8728@node C++ Parsers
8729@section C++ Parsers
8730
8731@menu
8732* C++ Bison Interface:: Asking for C++ parser generation
8733* C++ Semantic Values:: %union vs. C++
8734* C++ Location Values:: The position and location classes
8735* C++ Parser Interface:: Instantiating and running the parser
8736* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8737* A Complete C++ Example:: Demonstrating their use
12545799
AD
8738@end menu
8739
8740@node C++ Bison Interface
8741@subsection C++ Bison Interface
ed4d67dc 8742@c - %skeleton "lalr1.cc"
12545799
AD
8743@c - Always pure
8744@c - initial action
8745
eb45ef3b 8746The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
8747@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
8748@option{--skeleton=lalr1.cc}.
e6e704dc 8749@xref{Decl Summary}.
0e021770 8750
793fbca5
JD
8751When run, @command{bison} will create several entities in the @samp{yy}
8752namespace.
67501061
AD
8753@findex %define api.namespace
8754Use the @samp{%define api.namespace} directive to change the namespace
8755name, see
793fbca5
JD
8756@ref{Decl Summary}.
8757The various classes are generated in the following files:
aa08666d 8758
12545799
AD
8759@table @file
8760@item position.hh
8761@itemx location.hh
8762The definition of the classes @code{position} and @code{location},
3cdc21cf 8763used for location tracking when enabled. @xref{C++ Location Values}.
12545799
AD
8764
8765@item stack.hh
8766An auxiliary class @code{stack} used by the parser.
8767
fa4d969f
PE
8768@item @var{file}.hh
8769@itemx @var{file}.cc
cd8b5791
AD
8770(Assuming the extension of the input file was @samp{.yy}.) The
8771declaration and implementation of the C++ parser class. The basename
8772and extension of these two files follow the same rules as with regular C
8773parsers (@pxref{Invocation}).
12545799 8774
cd8b5791
AD
8775The header is @emph{mandatory}; you must either pass
8776@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8777@samp{%defines} directive.
8778@end table
8779
8780All these files are documented using Doxygen; run @command{doxygen}
8781for a complete and accurate documentation.
8782
8783@node C++ Semantic Values
8784@subsection C++ Semantic Values
8785@c - No objects in unions
178e123e 8786@c - YYSTYPE
12545799
AD
8787@c - Printer and destructor
8788
3cdc21cf
AD
8789Bison supports two different means to handle semantic values in C++. One is
8790alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
8791practitioners know, unions are inconvenient in C++, therefore another
8792approach is provided, based on variants (@pxref{C++ Variants}).
8793
8794@menu
8795* C++ Unions:: Semantic values cannot be objects
8796* C++ Variants:: Using objects as semantic values
8797@end menu
8798
8799@node C++ Unions
8800@subsubsection C++ Unions
8801
12545799
AD
8802The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8803Collection of Value Types}. In particular it produces a genuine
3cdc21cf 8804@code{union}, which have a few specific features in C++.
12545799
AD
8805@itemize @minus
8806@item
fb9712a9
AD
8807The type @code{YYSTYPE} is defined but its use is discouraged: rather
8808you should refer to the parser's encapsulated type
8809@code{yy::parser::semantic_type}.
12545799
AD
8810@item
8811Non POD (Plain Old Data) types cannot be used. C++ forbids any
8812instance of classes with constructors in unions: only @emph{pointers}
8813to such objects are allowed.
8814@end itemize
8815
8816Because objects have to be stored via pointers, memory is not
8817reclaimed automatically: using the @code{%destructor} directive is the
8818only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8819Symbols}.
8820
3cdc21cf
AD
8821@node C++ Variants
8822@subsubsection C++ Variants
8823
8824Starting with version 2.6, Bison provides a @emph{variant} based
8825implementation of semantic values for C++. This alleviates all the
8826limitations reported in the previous section, and in particular, object
8827types can be used without pointers.
8828
8829To enable variant-based semantic values, set @code{%define} variable
8830@code{variant} (@pxref{Decl Summary, , variant}). Once this defined,
8831@code{%union} is ignored, and instead of using the name of the fields of the
8832@code{%union} to ``type'' the symbols, use genuine types.
8833
8834For instance, instead of
8835
8836@example
8837%union
8838@{
8839 int ival;
8840 std::string* sval;
8841@}
8842%token <ival> NUMBER;
8843%token <sval> STRING;
8844@end example
8845
8846@noindent
8847write
8848
8849@example
8850%token <int> NUMBER;
8851%token <std::string> STRING;
8852@end example
8853
8854@code{STRING} is no longer a pointer, which should fairly simplify the user
8855actions in the grammar and in the scanner (in particular the memory
8856management).
8857
8858Since C++ features destructors, and since it is customary to specialize
8859@code{operator<<} to support uniform printing of values, variants also
8860typically simplify Bison printers and destructors.
8861
8862Variants are stricter than unions. When based on unions, you may play any
8863dirty game with @code{yylval}, say storing an @code{int}, reading a
8864@code{char*}, and then storing a @code{double} in it. This is no longer
8865possible with variants: they must be initialized, then assigned to, and
8866eventually, destroyed.
8867
8868@deftypemethod {semantic_type} {T&} build<T> ()
8869Initialize, but leave empty. Returns the address where the actual value may
8870be stored. Requires that the variant was not initialized yet.
8871@end deftypemethod
8872
8873@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
8874Initialize, and copy-construct from @var{t}.
8875@end deftypemethod
8876
8877
8878@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
8879appeared unacceptable to require Boost on the user's machine (i.e., the
8880machine on which the generated parser will be compiled, not the machine on
8881which @command{bison} was run). Second, for each possible semantic value,
8882Boost.Variant not only stores the value, but also a tag specifying its
8883type. But the parser already ``knows'' the type of the semantic value, so
8884that would be duplicating the information.
8885
8886Therefore we developed light-weight variants whose type tag is external (so
8887they are really like @code{unions} for C++ actually). But our code is much
8888less mature that Boost.Variant. So there is a number of limitations in
8889(the current implementation of) variants:
8890@itemize
8891@item
8892Alignment must be enforced: values should be aligned in memory according to
8893the most demanding type. Computing the smallest alignment possible requires
8894meta-programming techniques that are not currently implemented in Bison, and
8895therefore, since, as far as we know, @code{double} is the most demanding
8896type on all platforms, alignments are enforced for @code{double} whatever
8897types are actually used. This may waste space in some cases.
8898
8899@item
8900Our implementation is not conforming with strict aliasing rules. Alias
8901analysis is a technique used in optimizing compilers to detect when two
8902pointers are disjoint (they cannot ``meet''). Our implementation breaks
8903some of the rules that G++ 4.4 uses in its alias analysis, so @emph{strict
8904alias analysis must be disabled}. Use the option
8905@option{-fno-strict-aliasing} to compile the generated parser.
8906
8907@item
8908There might be portability issues we are not aware of.
8909@end itemize
8910
a6ca4ce2 8911As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 8912is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
8913
8914@node C++ Location Values
8915@subsection C++ Location Values
8916@c - %locations
8917@c - class Position
8918@c - class Location
16dc6a9e 8919@c - %define filename_type "const symbol::Symbol"
12545799
AD
8920
8921When the directive @code{%locations} is used, the C++ parser supports
8922location tracking, see @ref{Locations, , Locations Overview}. Two
8923auxiliary classes define a @code{position}, a single point in a file,
8924and a @code{location}, a range composed of a pair of
8925@code{position}s (possibly spanning several files).
8926
fa4d969f 8927@deftypemethod {position} {std::string*} file
12545799
AD
8928The name of the file. It will always be handled as a pointer, the
8929parser will never duplicate nor deallocate it. As an experimental
8930feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8931filename_type "@var{type}"}.
12545799
AD
8932@end deftypemethod
8933
8934@deftypemethod {position} {unsigned int} line
8935The line, starting at 1.
8936@end deftypemethod
8937
8938@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8939Advance by @var{height} lines, resetting the column number.
8940@end deftypemethod
8941
8942@deftypemethod {position} {unsigned int} column
8943The column, starting at 0.
8944@end deftypemethod
8945
8946@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8947Advance by @var{width} columns, without changing the line number.
8948@end deftypemethod
8949
8950@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8951@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8952@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8953@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8954Various forms of syntactic sugar for @code{columns}.
8955@end deftypemethod
8956
8957@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8958Report @var{p} on @var{o} like this:
fa4d969f
PE
8959@samp{@var{file}:@var{line}.@var{column}}, or
8960@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8961@end deftypemethod
8962
8963@deftypemethod {location} {position} begin
8964@deftypemethodx {location} {position} end
8965The first, inclusive, position of the range, and the first beyond.
8966@end deftypemethod
8967
8968@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8969@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8970Advance the @code{end} position.
8971@end deftypemethod
8972
8973@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8974@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8975@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8976Various forms of syntactic sugar.
8977@end deftypemethod
8978
8979@deftypemethod {location} {void} step ()
8980Move @code{begin} onto @code{end}.
8981@end deftypemethod
8982
8983
8984@node C++ Parser Interface
8985@subsection C++ Parser Interface
8986@c - define parser_class_name
8987@c - Ctor
8988@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8989@c debug_stream.
8990@c - Reporting errors
8991
8992The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8993declare and define the parser class in the namespace @code{yy}. The
8994class name defaults to @code{parser}, but may be changed using
16dc6a9e 8995@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8996this class is detailed below. It can be extended using the
12545799
AD
8997@code{%parse-param} feature: its semantics is slightly changed since
8998it describes an additional member of the parser class, and an
8999additional argument for its constructor.
9000
3cdc21cf
AD
9001@defcv {Type} {parser} {semantic_type}
9002@defcvx {Type} {parser} {location_type}
9003The types for semantic values and locations (if enabled).
9004@end defcv
9005
86e5b440
AD
9006@defcv {Type} {parser} {token}
9007A structure that contains (only) the definition of the tokens as the
9008@code{yytokentype} enumeration. To refer to the token @code{FOO}, the
9009scanner should use @code{yy::parser::token::FOO}. The scanner can use
9010@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
9011(@pxref{Calc++ Scanner}).
9012@end defcv
9013
3cdc21cf
AD
9014@defcv {Type} {parser} {syntax_error}
9015This class derives from @code{std::runtime_error}. Throw instances of it
9016from user actions to raise parse errors. This is equivalent with first
9017invoking @code{error} to report the location and message of the syntax
9018error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
9019But contrary to @code{YYERROR} which can only be invoked from user actions
9020(i.e., written in the action itself), the exception can be thrown from
9021function invoked from the user action.
8a0adb01 9022@end defcv
12545799
AD
9023
9024@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
9025Build a new parser object. There are no arguments by default, unless
9026@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
9027@end deftypemethod
9028
3cdc21cf
AD
9029@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
9030@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
9031Instantiate a syntax-error exception.
9032@end deftypemethod
9033
12545799
AD
9034@deftypemethod {parser} {int} parse ()
9035Run the syntactic analysis, and return 0 on success, 1 otherwise.
9036@end deftypemethod
9037
9038@deftypemethod {parser} {std::ostream&} debug_stream ()
9039@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
9040Get or set the stream used for tracing the parsing. It defaults to
9041@code{std::cerr}.
9042@end deftypemethod
9043
9044@deftypemethod {parser} {debug_level_type} debug_level ()
9045@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
9046Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 9047or nonzero, full tracing.
12545799
AD
9048@end deftypemethod
9049
9050@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 9051@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
9052The definition for this member function must be supplied by the user:
9053the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
9054described by @var{m}. If location tracking is not enabled, the second
9055signature is used.
12545799
AD
9056@end deftypemethod
9057
9058
9059@node C++ Scanner Interface
9060@subsection C++ Scanner Interface
9061@c - prefix for yylex.
9062@c - Pure interface to yylex
9063@c - %lex-param
9064
9065The parser invokes the scanner by calling @code{yylex}. Contrary to C
9066parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
9067@samp{%define api.pure} directive. The actual interface with @code{yylex}
9068depends whether you use unions, or variants.
12545799 9069
3cdc21cf
AD
9070@menu
9071* Split Symbols:: Passing symbols as two/three components
9072* Complete Symbols:: Making symbols a whole
9073@end menu
9074
9075@node Split Symbols
9076@subsubsection Split Symbols
9077
9078Therefore the interface is as follows.
9079
86e5b440
AD
9080@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
9081@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
9082Return the next token. Its type is the return value, its semantic value and
9083location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
9084@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
9085@end deftypemethod
9086
3cdc21cf
AD
9087Note that when using variants, the interface for @code{yylex} is the same,
9088but @code{yylval} is handled differently.
9089
9090Regular union-based code in Lex scanner typically look like:
9091
9092@example
9093[0-9]+ @{
9094 yylval.ival = text_to_int (yytext);
9095 return yy::parser::INTEGER;
9096 @}
9097[a-z]+ @{
9098 yylval.sval = new std::string (yytext);
9099 return yy::parser::IDENTIFIER;
9100 @}
9101@end example
9102
9103Using variants, @code{yylval} is already constructed, but it is not
9104initialized. So the code would look like:
9105
9106@example
9107[0-9]+ @{
9108 yylval.build<int>() = text_to_int (yytext);
9109 return yy::parser::INTEGER;
9110 @}
9111[a-z]+ @{
9112 yylval.build<std::string> = yytext;
9113 return yy::parser::IDENTIFIER;
9114 @}
9115@end example
9116
9117@noindent
9118or
9119
9120@example
9121[0-9]+ @{
9122 yylval.build(text_to_int (yytext));
9123 return yy::parser::INTEGER;
9124 @}
9125[a-z]+ @{
9126 yylval.build(yytext);
9127 return yy::parser::IDENTIFIER;
9128 @}
9129@end example
9130
9131
9132@node Complete Symbols
9133@subsubsection Complete Symbols
9134
9135If you specified both @code{%define variant} and @code{%define lex_symbol},
9136the @code{parser} class also defines the class @code{parser::symbol_type}
9137which defines a @emph{complete} symbol, aggregating its type (i.e., the
9138traditional value returned by @code{yylex}), its semantic value (i.e., the
9139value passed in @code{yylval}, and possibly its location (@code{yylloc}).
9140
9141@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
9142Build a complete terminal symbol which token type is @var{type}, and which
9143semantic value is @var{value}. If location tracking is enabled, also pass
9144the @var{location}.
9145@end deftypemethod
9146
9147This interface is low-level and should not be used for two reasons. First,
9148it is inconvenient, as you still have to build the semantic value, which is
9149a variant, and second, because consistency is not enforced: as with unions,
9150it is still possible to give an integer as semantic value for a string.
9151
9152So for each token type, Bison generates named constructors as follows.
9153
9154@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
9155@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
9156Build a complete terminal symbol for the token type @var{token} (not
9157including the @code{api.tokens.prefix}) whose possible semantic value is
9158@var{value} of adequate @var{value_type}. If location tracking is enabled,
9159also pass the @var{location}.
9160@end deftypemethod
9161
9162For instance, given the following declarations:
9163
9164@example
9165%define api.tokens.prefix "TOK_"
9166%token <std::string> IDENTIFIER;
9167%token <int> INTEGER;
9168%token COLON;
9169@end example
9170
9171@noindent
9172Bison generates the following functions:
9173
9174@example
9175symbol_type make_IDENTIFIER(const std::string& v,
9176 const location_type& l);
9177symbol_type make_INTEGER(const int& v,
9178 const location_type& loc);
9179symbol_type make_COLON(const location_type& loc);
9180@end example
9181
9182@noindent
9183which should be used in a Lex-scanner as follows.
9184
9185@example
9186[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
9187[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
9188":" return yy::parser::make_COLON(loc);
9189@end example
9190
9191Tokens that do not have an identifier are not accessible: you cannot simply
9192use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
9193
9194@node A Complete C++ Example
8405b70c 9195@subsection A Complete C++ Example
12545799
AD
9196
9197This section demonstrates the use of a C++ parser with a simple but
9198complete example. This example should be available on your system,
3cdc21cf 9199ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
9200focuses on the use of Bison, therefore the design of the various C++
9201classes is very naive: no accessors, no encapsulation of members etc.
9202We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 9203demonstrate the various interactions. A hand-written scanner is
12545799
AD
9204actually easier to interface with.
9205
9206@menu
9207* Calc++ --- C++ Calculator:: The specifications
9208* Calc++ Parsing Driver:: An active parsing context
9209* Calc++ Parser:: A parser class
9210* Calc++ Scanner:: A pure C++ Flex scanner
9211* Calc++ Top Level:: Conducting the band
9212@end menu
9213
9214@node Calc++ --- C++ Calculator
8405b70c 9215@subsubsection Calc++ --- C++ Calculator
12545799
AD
9216
9217Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 9218expression, possibly preceded by variable assignments. An
12545799
AD
9219environment containing possibly predefined variables such as
9220@code{one} and @code{two}, is exchanged with the parser. An example
9221of valid input follows.
9222
9223@example
9224three := 3
9225seven := one + two * three
9226seven * seven
9227@end example
9228
9229@node Calc++ Parsing Driver
8405b70c 9230@subsubsection Calc++ Parsing Driver
12545799
AD
9231@c - An env
9232@c - A place to store error messages
9233@c - A place for the result
9234
9235To support a pure interface with the parser (and the scanner) the
9236technique of the ``parsing context'' is convenient: a structure
9237containing all the data to exchange. Since, in addition to simply
9238launch the parsing, there are several auxiliary tasks to execute (open
9239the file for parsing, instantiate the parser etc.), we recommend
9240transforming the simple parsing context structure into a fully blown
9241@dfn{parsing driver} class.
9242
9243The declaration of this driver class, @file{calc++-driver.hh}, is as
9244follows. The first part includes the CPP guard and imports the
fb9712a9
AD
9245required standard library components, and the declaration of the parser
9246class.
12545799 9247
1c59e0a1 9248@comment file: calc++-driver.hh
12545799
AD
9249@example
9250#ifndef CALCXX_DRIVER_HH
9251# define CALCXX_DRIVER_HH
9252# include <string>
9253# include <map>
fb9712a9 9254# include "calc++-parser.hh"
12545799
AD
9255@end example
9256
12545799
AD
9257
9258@noindent
9259Then comes the declaration of the scanning function. Flex expects
9260the signature of @code{yylex} to be defined in the macro
9261@code{YY_DECL}, and the C++ parser expects it to be declared. We can
9262factor both as follows.
1c59e0a1
AD
9263
9264@comment file: calc++-driver.hh
12545799 9265@example
3dc5e96b 9266// Tell Flex the lexer's prototype ...
3cdc21cf
AD
9267# define YY_DECL \
9268 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
9269// ... and declare it for the parser's sake.
9270YY_DECL;
9271@end example
9272
9273@noindent
9274The @code{calcxx_driver} class is then declared with its most obvious
9275members.
9276
1c59e0a1 9277@comment file: calc++-driver.hh
12545799
AD
9278@example
9279// Conducting the whole scanning and parsing of Calc++.
9280class calcxx_driver
9281@{
9282public:
9283 calcxx_driver ();
9284 virtual ~calcxx_driver ();
9285
9286 std::map<std::string, int> variables;
9287
9288 int result;
9289@end example
9290
9291@noindent
3cdc21cf
AD
9292To encapsulate the coordination with the Flex scanner, it is useful to have
9293member functions to open and close the scanning phase.
12545799 9294
1c59e0a1 9295@comment file: calc++-driver.hh
12545799
AD
9296@example
9297 // Handling the scanner.
9298 void scan_begin ();
9299 void scan_end ();
9300 bool trace_scanning;
9301@end example
9302
9303@noindent
9304Similarly for the parser itself.
9305
1c59e0a1 9306@comment file: calc++-driver.hh
12545799 9307@example
3cdc21cf
AD
9308 // Run the parser on file F.
9309 // Return 0 on success.
bb32f4f2 9310 int parse (const std::string& f);
3cdc21cf
AD
9311 // The name of the file being parsed.
9312 // Used later to pass the file name to the location tracker.
12545799 9313 std::string file;
3cdc21cf 9314 // Whether parser traces should be generated.
12545799
AD
9315 bool trace_parsing;
9316@end example
9317
9318@noindent
9319To demonstrate pure handling of parse errors, instead of simply
9320dumping them on the standard error output, we will pass them to the
9321compiler driver using the following two member functions. Finally, we
9322close the class declaration and CPP guard.
9323
1c59e0a1 9324@comment file: calc++-driver.hh
12545799
AD
9325@example
9326 // Error handling.
9327 void error (const yy::location& l, const std::string& m);
9328 void error (const std::string& m);
9329@};
9330#endif // ! CALCXX_DRIVER_HH
9331@end example
9332
9333The implementation of the driver is straightforward. The @code{parse}
9334member function deserves some attention. The @code{error} functions
9335are simple stubs, they should actually register the located error
9336messages and set error state.
9337
1c59e0a1 9338@comment file: calc++-driver.cc
12545799
AD
9339@example
9340#include "calc++-driver.hh"
9341#include "calc++-parser.hh"
9342
9343calcxx_driver::calcxx_driver ()
9344 : trace_scanning (false), trace_parsing (false)
9345@{
9346 variables["one"] = 1;
9347 variables["two"] = 2;
9348@}
9349
9350calcxx_driver::~calcxx_driver ()
9351@{
9352@}
9353
bb32f4f2 9354int
12545799
AD
9355calcxx_driver::parse (const std::string &f)
9356@{
9357 file = f;
9358 scan_begin ();
9359 yy::calcxx_parser parser (*this);
9360 parser.set_debug_level (trace_parsing);
bb32f4f2 9361 int res = parser.parse ();
12545799 9362 scan_end ();
bb32f4f2 9363 return res;
12545799
AD
9364@}
9365
9366void
9367calcxx_driver::error (const yy::location& l, const std::string& m)
9368@{
9369 std::cerr << l << ": " << m << std::endl;
9370@}
9371
9372void
9373calcxx_driver::error (const std::string& m)
9374@{
9375 std::cerr << m << std::endl;
9376@}
9377@end example
9378
9379@node Calc++ Parser
8405b70c 9380@subsubsection Calc++ Parser
12545799 9381
b50d2359 9382The parser definition file @file{calc++-parser.yy} starts by asking for
eb45ef3b
JD
9383the C++ deterministic parser skeleton, the creation of the parser header
9384file, and specifies the name of the parser class.
9385Because the C++ skeleton changed several times, it is safer to require
9386the version you designed the grammar for.
1c59e0a1
AD
9387
9388@comment file: calc++-parser.yy
12545799 9389@example
ed4d67dc 9390%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 9391%require "@value{VERSION}"
12545799 9392%defines
16dc6a9e 9393%define parser_class_name "calcxx_parser"
fb9712a9
AD
9394@end example
9395
3cdc21cf
AD
9396@noindent
9397@findex %define variant
9398@findex %define lex_symbol
9399This example will use genuine C++ objects as semantic values, therefore, we
9400require the variant-based interface. To make sure we properly use it, we
9401enable assertions. To fully benefit from type-safety and more natural
9402definition of ``symbol'', we enable @code{lex_symbol}.
9403
9404@comment file: calc++-parser.yy
9405@example
9406%define variant
9407%define parse.assert
9408%define lex_symbol
9409@end example
9410
fb9712a9 9411@noindent
16dc6a9e 9412@findex %code requires
3cdc21cf
AD
9413Then come the declarations/inclusions needed by the semantic values.
9414Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 9415to include the header of the other, which is, of course, insane. This
3cdc21cf 9416mutual dependency will be broken using forward declarations. Because the
fb9712a9 9417driver's header needs detailed knowledge about the parser class (in
3cdc21cf
AD
9418particular its inner types), it is the parser's header which will use a
9419forward declaration of the driver. @xref{Decl Summary, ,%code}.
fb9712a9
AD
9420
9421@comment file: calc++-parser.yy
9422@example
3cdc21cf
AD
9423%code requires
9424@{
12545799 9425# include <string>
fb9712a9 9426class calcxx_driver;
9bc0dd67 9427@}
12545799
AD
9428@end example
9429
9430@noindent
9431The driver is passed by reference to the parser and to the scanner.
9432This provides a simple but effective pure interface, not relying on
9433global variables.
9434
1c59e0a1 9435@comment file: calc++-parser.yy
12545799
AD
9436@example
9437// The parsing context.
2055a44e 9438%param @{ calcxx_driver& driver @}
12545799
AD
9439@end example
9440
9441@noindent
2055a44e 9442Then we request location tracking, and initialize the
f50bfcd6 9443first location's file name. Afterward new locations are computed
12545799 9444relatively to the previous locations: the file name will be
2055a44e 9445propagated.
12545799 9446
1c59e0a1 9447@comment file: calc++-parser.yy
12545799
AD
9448@example
9449%locations
9450%initial-action
9451@{
9452 // Initialize the initial location.
b47dbebe 9453 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
9454@};
9455@end example
9456
9457@noindent
2055a44e 9458Use the following two directives to enable parser tracing and verbose
12545799
AD
9459error messages.
9460
1c59e0a1 9461@comment file: calc++-parser.yy
12545799 9462@example
fa819509 9463%define parse.trace
cf499cff 9464%define parse.error verbose
12545799
AD
9465@end example
9466
fb9712a9 9467@noindent
136a0f76
PB
9468@findex %code
9469The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 9470@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
9471
9472@comment file: calc++-parser.yy
9473@example
3cdc21cf
AD
9474%code
9475@{
fb9712a9 9476# include "calc++-driver.hh"
34f98f46 9477@}
fb9712a9
AD
9478@end example
9479
9480
12545799
AD
9481@noindent
9482The token numbered as 0 corresponds to end of file; the following line
99c08fb6
AD
9483allows for nicer error messages referring to ``end of file'' instead of
9484``$end''. Similarly user friendly names are provided for each symbol.
9485To avoid name clashes in the generated files (@pxref{Calc++ Scanner}),
4c6622c2 9486prefix tokens with @code{TOK_} (@pxref{Decl Summary,, api.tokens.prefix}).
12545799 9487
1c59e0a1 9488@comment file: calc++-parser.yy
12545799 9489@example
4c6622c2 9490%define api.tokens.prefix "TOK_"
3cdc21cf
AD
9491%token
9492 END 0 "end of file"
9493 ASSIGN ":="
9494 MINUS "-"
9495 PLUS "+"
9496 STAR "*"
9497 SLASH "/"
9498 LPAREN "("
9499 RPAREN ")"
9500;
12545799
AD
9501@end example
9502
9503@noindent
3cdc21cf
AD
9504Since we use variant-based semantic values, @code{%union} is not used, and
9505both @code{%type} and @code{%token} expect genuine types, as opposed to type
9506tags.
12545799 9507
1c59e0a1 9508@comment file: calc++-parser.yy
12545799 9509@example
3cdc21cf
AD
9510%token <std::string> IDENTIFIER "identifier"
9511%token <int> NUMBER "number"
9512%type <int> exp
9513@end example
9514
9515@noindent
9516No @code{%destructor} is needed to enable memory deallocation during error
9517recovery; the memory, for strings for instance, will be reclaimed by the
9518regular destructors. All the values are printed using their
9519@code{operator<<}.
12545799 9520
3cdc21cf
AD
9521@c FIXME: Document %printer, and mention that it takes a braced-code operand.
9522@comment file: calc++-parser.yy
9523@example
9524%printer @{ debug_stream () << $$; @} <*>;
12545799
AD
9525@end example
9526
9527@noindent
3cdc21cf
AD
9528The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
9529Location Tracking Calculator: @code{ltcalc}}).
12545799 9530
1c59e0a1 9531@comment file: calc++-parser.yy
12545799
AD
9532@example
9533%%
9534%start unit;
9535unit: assignments exp @{ driver.result = $2; @};
9536
99c08fb6
AD
9537assignments:
9538 assignments assignment @{@}
9539| /* Nothing. */ @{@};
12545799 9540
3dc5e96b 9541assignment:
3cdc21cf 9542 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 9543
3cdc21cf
AD
9544%left "+" "-";
9545%left "*" "/";
99c08fb6 9546exp:
3cdc21cf
AD
9547 exp "+" exp @{ $$ = $1 + $3; @}
9548| exp "-" exp @{ $$ = $1 - $3; @}
9549| exp "*" exp @{ $$ = $1 * $3; @}
9550| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 9551| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 9552| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 9553| "number" @{ std::swap ($$, $1); @};
12545799
AD
9554%%
9555@end example
9556
9557@noindent
9558Finally the @code{error} member function registers the errors to the
9559driver.
9560
1c59e0a1 9561@comment file: calc++-parser.yy
12545799
AD
9562@example
9563void
3cdc21cf 9564yy::calcxx_parser::error (const location_type& l,
1c59e0a1 9565 const std::string& m)
12545799
AD
9566@{
9567 driver.error (l, m);
9568@}
9569@end example
9570
9571@node Calc++ Scanner
8405b70c 9572@subsubsection Calc++ Scanner
12545799
AD
9573
9574The Flex scanner first includes the driver declaration, then the
9575parser's to get the set of defined tokens.
9576
1c59e0a1 9577@comment file: calc++-scanner.ll
12545799
AD
9578@example
9579%@{ /* -*- C++ -*- */
3c248d70
AD
9580# include <cerrno>
9581# include <climits>
3cdc21cf 9582# include <cstdlib>
12545799
AD
9583# include <string>
9584# include "calc++-driver.hh"
9585# include "calc++-parser.hh"
eaea13f5 9586
3cdc21cf
AD
9587// Work around an incompatibility in flex (at least versions
9588// 2.5.31 through 2.5.33): it generates code that does
9589// not conform to C89. See Debian bug 333231
9590// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
9591# undef yywrap
9592# define yywrap() 1
eaea13f5 9593
3cdc21cf
AD
9594// The location of the current token.
9595static yy::location loc;
12545799
AD
9596%@}
9597@end example
9598
9599@noindent
9600Because there is no @code{#include}-like feature we don't need
9601@code{yywrap}, we don't need @code{unput} either, and we parse an
9602actual file, this is not an interactive session with the user.
3cdc21cf 9603Finally, we enable scanner tracing.
12545799 9604
1c59e0a1 9605@comment file: calc++-scanner.ll
12545799
AD
9606@example
9607%option noyywrap nounput batch debug
9608@end example
9609
9610@noindent
9611Abbreviations allow for more readable rules.
9612
1c59e0a1 9613@comment file: calc++-scanner.ll
12545799
AD
9614@example
9615id [a-zA-Z][a-zA-Z_0-9]*
9616int [0-9]+
9617blank [ \t]
9618@end example
9619
9620@noindent
9d9b8b70 9621The following paragraph suffices to track locations accurately. Each
12545799 9622time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
9623position. Then when a pattern is matched, its width is added to the end
9624column. When matching ends of lines, the end
12545799
AD
9625cursor is adjusted, and each time blanks are matched, the begin cursor
9626is moved onto the end cursor to effectively ignore the blanks
9627preceding tokens. Comments would be treated equally.
9628
1c59e0a1 9629@comment file: calc++-scanner.ll
12545799 9630@example
828c373b 9631%@{
3cdc21cf
AD
9632 // Code run each time a pattern is matched.
9633 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 9634%@}
12545799
AD
9635%%
9636%@{
3cdc21cf
AD
9637 // Code run each time yylex is called.
9638 loc.step ();
12545799 9639%@}
3cdc21cf
AD
9640@{blank@}+ loc.step ();
9641[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
9642@end example
9643
9644@noindent
3cdc21cf 9645The rules are simple. The driver is used to report errors.
12545799 9646
1c59e0a1 9647@comment file: calc++-scanner.ll
12545799 9648@example
3cdc21cf
AD
9649"-" return yy::calcxx_parser::make_MINUS(loc);
9650"+" return yy::calcxx_parser::make_PLUS(loc);
9651"*" return yy::calcxx_parser::make_STAR(loc);
9652"/" return yy::calcxx_parser::make_SLASH(loc);
9653"(" return yy::calcxx_parser::make_LPAREN(loc);
9654")" return yy::calcxx_parser::make_RPAREN(loc);
9655":=" return yy::calcxx_parser::make_ASSIGN(loc);
9656
04098407
PE
9657@{int@} @{
9658 errno = 0;
9659 long n = strtol (yytext, NULL, 10);
9660 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
9661 driver.error (loc, "integer is out of range");
9662 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 9663@}
3cdc21cf
AD
9664@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
9665. driver.error (loc, "invalid character");
9666<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
9667%%
9668@end example
9669
9670@noindent
3cdc21cf 9671Finally, because the scanner-related driver's member-functions depend
12545799
AD
9672on the scanner's data, it is simpler to implement them in this file.
9673
1c59e0a1 9674@comment file: calc++-scanner.ll
12545799
AD
9675@example
9676void
9677calcxx_driver::scan_begin ()
9678@{
9679 yy_flex_debug = trace_scanning;
bb32f4f2
AD
9680 if (file == "-")
9681 yyin = stdin;
9682 else if (!(yyin = fopen (file.c_str (), "r")))
9683 @{
3cdc21cf 9684 error (std::string ("cannot open ") + file + ": " + strerror(errno));
bb32f4f2
AD
9685 exit (1);
9686 @}
12545799
AD
9687@}
9688
9689void
9690calcxx_driver::scan_end ()
9691@{
9692 fclose (yyin);
9693@}
9694@end example
9695
9696@node Calc++ Top Level
8405b70c 9697@subsubsection Calc++ Top Level
12545799
AD
9698
9699The top level file, @file{calc++.cc}, poses no problem.
9700
1c59e0a1 9701@comment file: calc++.cc
12545799
AD
9702@example
9703#include <iostream>
9704#include "calc++-driver.hh"
9705
9706int
fa4d969f 9707main (int argc, char *argv[])
12545799 9708@{
414c76a4 9709 int res = 0;
12545799
AD
9710 calcxx_driver driver;
9711 for (++argv; argv[0]; ++argv)
9712 if (*argv == std::string ("-p"))
9713 driver.trace_parsing = true;
9714 else if (*argv == std::string ("-s"))
9715 driver.trace_scanning = true;
bb32f4f2
AD
9716 else if (!driver.parse (*argv))
9717 std::cout << driver.result << std::endl;
414c76a4
AD
9718 else
9719 res = 1;
9720 return res;
12545799
AD
9721@}
9722@end example
9723
8405b70c
PB
9724@node Java Parsers
9725@section Java Parsers
9726
9727@menu
f5f419de
DJ
9728* Java Bison Interface:: Asking for Java parser generation
9729* Java Semantic Values:: %type and %token vs. Java
9730* Java Location Values:: The position and location classes
9731* Java Parser Interface:: Instantiating and running the parser
9732* Java Scanner Interface:: Specifying the scanner for the parser
9733* Java Action Features:: Special features for use in actions
9734* Java Differences:: Differences between C/C++ and Java Grammars
9735* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
9736@end menu
9737
9738@node Java Bison Interface
9739@subsection Java Bison Interface
9740@c - %language "Java"
8405b70c 9741
59da312b
JD
9742(The current Java interface is experimental and may evolve.
9743More user feedback will help to stabilize it.)
9744
e254a580
DJ
9745The Java parser skeletons are selected using the @code{%language "Java"}
9746directive or the @option{-L java}/@option{--language=java} option.
8405b70c 9747
e254a580
DJ
9748@c FIXME: Documented bug.
9749When generating a Java parser, @code{bison @var{basename}.y} will create
9750a single Java source file named @file{@var{basename}.java}. Using an
9751input file without a @file{.y} suffix is currently broken. The basename
9752of the output file can be changed by the @code{%file-prefix} directive
9753or the @option{-p}/@option{--name-prefix} option. The entire output file
9754name can be changed by the @code{%output} directive or the
9755@option{-o}/@option{--output} option. The output file contains a single
9756class for the parser.
8405b70c 9757
e254a580 9758You can create documentation for generated parsers using Javadoc.
8405b70c 9759
e254a580
DJ
9760Contrary to C parsers, Java parsers do not use global variables; the
9761state of the parser is always local to an instance of the parser class.
9762Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
67501061 9763and @samp{%define api.pure} directives does not do anything when used in
e254a580 9764Java.
8405b70c 9765
e254a580 9766Push parsers are currently unsupported in Java and @code{%define
67212941 9767api.push-pull} have no effect.
01b477c6 9768
e254a580
DJ
9769@acronym{GLR} parsers are currently unsupported in Java. Do not use the
9770@code{glr-parser} directive.
9771
9772No header file can be generated for Java parsers. Do not use the
9773@code{%defines} directive or the @option{-d}/@option{--defines} options.
9774
9775@c FIXME: Possible code change.
fa819509
AD
9776Currently, support for tracing is always compiled
9777in. Thus the @samp{%define parse.trace} and @samp{%token-table}
9778directives and the
e254a580
DJ
9779@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
9780options have no effect. This may change in the future to eliminate
fa819509
AD
9781unused code in the generated parser, so use @samp{%define parse.trace}
9782explicitly
1979121c 9783if needed. Also, in the future the
e254a580
DJ
9784@code{%token-table} directive might enable a public interface to
9785access the token names and codes.
8405b70c 9786
09ccae9b 9787Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 9788hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
9789Try reducing the amount of code in actions and static initializers;
9790otherwise, report a bug so that the parser skeleton will be improved.
9791
9792
8405b70c
PB
9793@node Java Semantic Values
9794@subsection Java Semantic Values
9795@c - No %union, specify type in %type/%token.
9796@c - YYSTYPE
9797@c - Printer and destructor
9798
9799There is no @code{%union} directive in Java parsers. Instead, the
9800semantic values' types (class names) should be specified in the
9801@code{%type} or @code{%token} directive:
9802
9803@example
9804%type <Expression> expr assignment_expr term factor
9805%type <Integer> number
9806@end example
9807
9808By default, the semantic stack is declared to have @code{Object} members,
9809which means that the class types you specify can be of any class.
9810To improve the type safety of the parser, you can declare the common
67501061 9811superclass of all the semantic values using the @samp{%define stype}
e254a580 9812directive. For example, after the following declaration:
8405b70c
PB
9813
9814@example
e254a580 9815%define stype "ASTNode"
8405b70c
PB
9816@end example
9817
9818@noindent
9819any @code{%type} or @code{%token} specifying a semantic type which
9820is not a subclass of ASTNode, will cause a compile-time error.
9821
e254a580 9822@c FIXME: Documented bug.
8405b70c
PB
9823Types used in the directives may be qualified with a package name.
9824Primitive data types are accepted for Java version 1.5 or later. Note
9825that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
9826Generic types may not be used; this is due to a limitation in the
9827implementation of Bison, and may change in future releases.
8405b70c
PB
9828
9829Java parsers do not support @code{%destructor}, since the language
9830adopts garbage collection. The parser will try to hold references
9831to semantic values for as little time as needed.
9832
9833Java parsers do not support @code{%printer}, as @code{toString()}
9834can be used to print the semantic values. This however may change
9835(in a backwards-compatible way) in future versions of Bison.
9836
9837
9838@node Java Location Values
9839@subsection Java Location Values
9840@c - %locations
9841@c - class Position
9842@c - class Location
9843
9844When the directive @code{%locations} is used, the Java parser
9845supports location tracking, see @ref{Locations, , Locations Overview}.
9846An auxiliary user-defined class defines a @dfn{position}, a single point
9847in a file; Bison itself defines a class representing a @dfn{location},
9848a range composed of a pair of positions (possibly spanning several
9849files). The location class is an inner class of the parser; the name
e254a580 9850is @code{Location} by default, and may also be renamed using
cf499cff 9851@samp{%define location_type "@var{class-name}"}.
8405b70c
PB
9852
9853The location class treats the position as a completely opaque value.
9854By default, the class name is @code{Position}, but this can be changed
67501061 9855with @samp{%define position_type "@var{class-name}"}. This class must
e254a580 9856be supplied by the user.
8405b70c
PB
9857
9858
e254a580
DJ
9859@deftypeivar {Location} {Position} begin
9860@deftypeivarx {Location} {Position} end
8405b70c 9861The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
9862@end deftypeivar
9863
9864@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 9865Create a @code{Location} denoting an empty range located at a given point.
e254a580 9866@end deftypeop
8405b70c 9867
e254a580
DJ
9868@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
9869Create a @code{Location} from the endpoints of the range.
9870@end deftypeop
9871
9872@deftypemethod {Location} {String} toString ()
8405b70c
PB
9873Prints the range represented by the location. For this to work
9874properly, the position class should override the @code{equals} and
9875@code{toString} methods appropriately.
9876@end deftypemethod
9877
9878
9879@node Java Parser Interface
9880@subsection Java Parser Interface
9881@c - define parser_class_name
9882@c - Ctor
9883@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9884@c debug_stream.
9885@c - Reporting errors
9886
e254a580
DJ
9887The name of the generated parser class defaults to @code{YYParser}. The
9888@code{YY} prefix may be changed using the @code{%name-prefix} directive
9889or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 9890@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 9891the class. The interface of this class is detailed below.
8405b70c 9892
e254a580 9893By default, the parser class has package visibility. A declaration
67501061 9894@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
9895according to the Java language specification, the name of the @file{.java}
9896file should match the name of the class in this case. Similarly, you can
9897use @code{abstract}, @code{final} and @code{strictfp} with the
9898@code{%define} declaration to add other modifiers to the parser class.
67501061 9899A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 9900be used to add any number of annotations to the parser class.
e254a580
DJ
9901
9902The Java package name of the parser class can be specified using the
67501061 9903@samp{%define package} directive. The superclass and the implemented
e254a580 9904interfaces of the parser class can be specified with the @code{%define
67501061 9905extends} and @samp{%define implements} directives.
e254a580
DJ
9906
9907The parser class defines an inner class, @code{Location}, that is used
9908for location tracking (see @ref{Java Location Values}), and a inner
9909interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
9910these inner class/interface, and the members described in the interface
9911below, all the other members and fields are preceded with a @code{yy} or
9912@code{YY} prefix to avoid clashes with user code.
9913
e254a580
DJ
9914The parser class can be extended using the @code{%parse-param}
9915directive. Each occurrence of the directive will add a @code{protected
9916final} field to the parser class, and an argument to its constructor,
9917which initialize them automatically.
9918
e254a580
DJ
9919@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
9920Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
9921no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
9922@code{%lex-param}s are used.
1979121c
DJ
9923
9924Use @code{%code init} for code added to the start of the constructor
9925body. This is especially useful to initialize superclasses. Use
f50bfcd6 9926@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
9927@end deftypeop
9928
9929@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
9930Build a new parser object using the specified scanner. There are no
2055a44e
AD
9931additional parameters unless @code{%param}s and/or @code{%parse-param}s are
9932used.
e254a580
DJ
9933
9934If the scanner is defined by @code{%code lexer}, this constructor is
9935declared @code{protected} and is called automatically with a scanner
2055a44e 9936created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
9937
9938Use @code{%code init} for code added to the start of the constructor
9939body. This is especially useful to initialize superclasses. Use
67501061 9940@samp{%define init_throws} to specify any uncatch exceptions.
e254a580 9941@end deftypeop
8405b70c
PB
9942
9943@deftypemethod {YYParser} {boolean} parse ()
9944Run the syntactic analysis, and return @code{true} on success,
9945@code{false} otherwise.
9946@end deftypemethod
9947
1979121c
DJ
9948@deftypemethod {YYParser} {boolean} getErrorVerbose ()
9949@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
9950Get or set the option to produce verbose error messages. These are only
cf499cff 9951available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
9952verbose error messages.
9953@end deftypemethod
9954
9955@deftypemethod {YYParser} {void} yyerror (String @var{msg})
9956@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
9957@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
9958Print an error message using the @code{yyerror} method of the scanner
9959instance in use. The @code{Location} and @code{Position} parameters are
9960available only if location tracking is active.
9961@end deftypemethod
9962
01b477c6 9963@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9964During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9965from a syntax error.
9966@xref{Error Recovery}.
8405b70c
PB
9967@end deftypemethod
9968
9969@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9970@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9971Get or set the stream used for tracing the parsing. It defaults to
9972@code{System.err}.
9973@end deftypemethod
9974
9975@deftypemethod {YYParser} {int} getDebugLevel ()
9976@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
9977Get or set the tracing level. Currently its value is either 0, no trace,
9978or nonzero, full tracing.
9979@end deftypemethod
9980
1979121c
DJ
9981@deftypecv {Constant} {YYParser} {String} {bisonVersion}
9982@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
9983Identify the Bison version and skeleton used to generate this parser.
9984@end deftypecv
9985
8405b70c
PB
9986
9987@node Java Scanner Interface
9988@subsection Java Scanner Interface
01b477c6 9989@c - %code lexer
8405b70c 9990@c - %lex-param
01b477c6 9991@c - Lexer interface
8405b70c 9992
e254a580
DJ
9993There are two possible ways to interface a Bison-generated Java parser
9994with a scanner: the scanner may be defined by @code{%code lexer}, or
9995defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
9996@code{Lexer} inner interface of the parser class. This interface also
9997contain constants for all user-defined token names and the predefined
9998@code{EOF} token.
e254a580
DJ
9999
10000In the first case, the body of the scanner class is placed in
10001@code{%code lexer} blocks. If you want to pass parameters from the
10002parser constructor to the scanner constructor, specify them with
10003@code{%lex-param}; they are passed before @code{%parse-param}s to the
10004constructor.
01b477c6 10005
59c5ac72 10006In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
10007which is defined within the parser class (e.g., @code{YYParser.Lexer}).
10008The constructor of the parser object will then accept an object
10009implementing the interface; @code{%lex-param} is not used in this
10010case.
10011
10012In both cases, the scanner has to implement the following methods.
10013
e254a580
DJ
10014@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
10015This method is defined by the user to emit an error message. The first
10016parameter is omitted if location tracking is not active. Its type can be
67501061 10017changed using @samp{%define location_type "@var{class-name}".}
8405b70c
PB
10018@end deftypemethod
10019
e254a580 10020@deftypemethod {Lexer} {int} yylex ()
8405b70c 10021Return the next token. Its type is the return value, its semantic
f50bfcd6 10022value and location are saved and returned by the their methods in the
e254a580
DJ
10023interface.
10024
67501061 10025Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 10026Default is @code{java.io.IOException}.
8405b70c
PB
10027@end deftypemethod
10028
10029@deftypemethod {Lexer} {Position} getStartPos ()
10030@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
10031Return respectively the first position of the last token that
10032@code{yylex} returned, and the first position beyond it. These
10033methods are not needed unless location tracking is active.
8405b70c 10034
67501061 10035The return type can be changed using @samp{%define position_type
8405b70c
PB
10036"@var{class-name}".}
10037@end deftypemethod
10038
10039@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 10040Return the semantic value of the last token that yylex returned.
8405b70c 10041
67501061 10042The return type can be changed using @samp{%define stype
8405b70c
PB
10043"@var{class-name}".}
10044@end deftypemethod
10045
10046
e254a580
DJ
10047@node Java Action Features
10048@subsection Special Features for Use in Java Actions
10049
10050The following special constructs can be uses in Java actions.
10051Other analogous C action features are currently unavailable for Java.
10052
67501061 10053Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
10054actions, and initial actions specified by @code{%initial-action}.
10055
10056@defvar $@var{n}
10057The semantic value for the @var{n}th component of the current rule.
10058This may not be assigned to.
10059@xref{Java Semantic Values}.
10060@end defvar
10061
10062@defvar $<@var{typealt}>@var{n}
10063Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
10064@xref{Java Semantic Values}.
10065@end defvar
10066
10067@defvar $$
10068The semantic value for the grouping made by the current rule. As a
10069value, this is in the base type (@code{Object} or as specified by
67501061 10070@samp{%define stype}) as in not cast to the declared subtype because
e254a580
DJ
10071casts are not allowed on the left-hand side of Java assignments.
10072Use an explicit Java cast if the correct subtype is needed.
10073@xref{Java Semantic Values}.
10074@end defvar
10075
10076@defvar $<@var{typealt}>$
10077Same as @code{$$} since Java always allow assigning to the base type.
10078Perhaps we should use this and @code{$<>$} for the value and @code{$$}
10079for setting the value but there is currently no easy way to distinguish
10080these constructs.
10081@xref{Java Semantic Values}.
10082@end defvar
10083
10084@defvar @@@var{n}
10085The location information of the @var{n}th component of the current rule.
10086This may not be assigned to.
10087@xref{Java Location Values}.
10088@end defvar
10089
10090@defvar @@$
10091The location information of the grouping made by the current rule.
10092@xref{Java Location Values}.
10093@end defvar
10094
10095@deffn {Statement} {return YYABORT;}
10096Return immediately from the parser, indicating failure.
10097@xref{Java Parser Interface}.
10098@end deffn
8405b70c 10099
e254a580
DJ
10100@deffn {Statement} {return YYACCEPT;}
10101Return immediately from the parser, indicating success.
10102@xref{Java Parser Interface}.
10103@end deffn
8405b70c 10104
e254a580 10105@deffn {Statement} {return YYERROR;}
c265fd6b 10106Start error recovery without printing an error message.
e254a580
DJ
10107@xref{Error Recovery}.
10108@end deffn
8405b70c 10109
e254a580
DJ
10110@deftypefn {Function} {boolean} recovering ()
10111Return whether error recovery is being done. In this state, the parser
10112reads token until it reaches a known state, and then restarts normal
10113operation.
10114@xref{Error Recovery}.
10115@end deftypefn
8405b70c 10116
1979121c
DJ
10117@deftypefn {Function} {void} yyerror (String @var{msg})
10118@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
10119@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 10120Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
10121instance in use. The @code{Location} and @code{Position} parameters are
10122available only if location tracking is active.
e254a580 10123@end deftypefn
8405b70c 10124
8405b70c 10125
8405b70c
PB
10126@node Java Differences
10127@subsection Differences between C/C++ and Java Grammars
10128
10129The different structure of the Java language forces several differences
10130between C/C++ grammars, and grammars designed for Java parsers. This
29553547 10131section summarizes these differences.
8405b70c
PB
10132
10133@itemize
10134@item
01b477c6 10135Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 10136@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
10137macros. Instead, they should be preceded by @code{return} when they
10138appear in an action. The actual definition of these symbols is
8405b70c
PB
10139opaque to the Bison grammar, and it might change in the future. The
10140only meaningful operation that you can do, is to return them.
e254a580 10141See @pxref{Java Action Features}.
8405b70c
PB
10142
10143Note that of these three symbols, only @code{YYACCEPT} and
10144@code{YYABORT} will cause a return from the @code{yyparse}
10145method@footnote{Java parsers include the actions in a separate
10146method than @code{yyparse} in order to have an intuitive syntax that
10147corresponds to these C macros.}.
10148
e254a580
DJ
10149@item
10150Java lacks unions, so @code{%union} has no effect. Instead, semantic
10151values have a common base type: @code{Object} or as specified by
f50bfcd6 10152@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
10153@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
10154an union. The type of @code{$$}, even with angle brackets, is the base
10155type since Java casts are not allow on the left-hand side of assignments.
10156Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
10157left-hand side of assignments. See @pxref{Java Semantic Values} and
10158@pxref{Java Action Features}.
10159
8405b70c 10160@item
f50bfcd6 10161The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
10162@table @asis
10163@item @code{%code imports}
10164blocks are placed at the beginning of the Java source code. They may
10165include copyright notices. For a @code{package} declarations, it is
67501061 10166suggested to use @samp{%define package} instead.
8405b70c 10167
01b477c6
PB
10168@item unqualified @code{%code}
10169blocks are placed inside the parser class.
10170
10171@item @code{%code lexer}
10172blocks, if specified, should include the implementation of the
10173scanner. If there is no such block, the scanner can be any class
10174that implements the appropriate interface (see @pxref{Java Scanner
10175Interface}).
29553547 10176@end table
8405b70c
PB
10177
10178Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
10179In particular, @code{%@{ @dots{} %@}} blocks should not be used
10180and may give an error in future versions of Bison.
10181
01b477c6 10182The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
10183be used to define other classes used by the parser @emph{outside}
10184the parser class.
8405b70c
PB
10185@end itemize
10186
e254a580
DJ
10187
10188@node Java Declarations Summary
10189@subsection Java Declarations Summary
10190
10191This summary only include declarations specific to Java or have special
10192meaning when used in a Java parser.
10193
10194@deffn {Directive} {%language "Java"}
10195Generate a Java class for the parser.
10196@end deffn
10197
10198@deffn {Directive} %lex-param @{@var{type} @var{name}@}
10199A parameter for the lexer class defined by @code{%code lexer}
10200@emph{only}, added as parameters to the lexer constructor and the parser
10201constructor that @emph{creates} a lexer. Default is none.
10202@xref{Java Scanner Interface}.
10203@end deffn
10204
10205@deffn {Directive} %name-prefix "@var{prefix}"
10206The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 10207@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
10208@xref{Java Bison Interface}.
10209@end deffn
10210
10211@deffn {Directive} %parse-param @{@var{type} @var{name}@}
10212A parameter for the parser class added as parameters to constructor(s)
10213and as fields initialized by the constructor(s). Default is none.
10214@xref{Java Parser Interface}.
10215@end deffn
10216
10217@deffn {Directive} %token <@var{type}> @var{token} @dots{}
10218Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
10219@xref{Java Semantic Values}.
10220@end deffn
10221
10222@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
10223Declare the type of nonterminals. Note that the angle brackets enclose
10224a Java @emph{type}.
10225@xref{Java Semantic Values}.
10226@end deffn
10227
10228@deffn {Directive} %code @{ @var{code} @dots{} @}
10229Code appended to the inside of the parser class.
10230@xref{Java Differences}.
10231@end deffn
10232
10233@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
10234Code inserted just after the @code{package} declaration.
10235@xref{Java Differences}.
10236@end deffn
10237
1979121c
DJ
10238@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
10239Code inserted at the beginning of the parser constructor body.
10240@xref{Java Parser Interface}.
10241@end deffn
10242
e254a580
DJ
10243@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
10244Code added to the body of a inner lexer class within the parser class.
10245@xref{Java Scanner Interface}.
10246@end deffn
10247
10248@deffn {Directive} %% @var{code} @dots{}
10249Code (after the second @code{%%}) appended to the end of the file,
10250@emph{outside} the parser class.
10251@xref{Java Differences}.
10252@end deffn
10253
10254@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 10255Not supported. Use @code{%code imports} instead.
e254a580
DJ
10256@xref{Java Differences}.
10257@end deffn
10258
10259@deffn {Directive} {%define abstract}
10260Whether the parser class is declared @code{abstract}. Default is false.
10261@xref{Java Bison Interface}.
10262@end deffn
10263
1979121c
DJ
10264@deffn {Directive} {%define annotations} "@var{annotations}"
10265The Java annotations for the parser class. Default is none.
10266@xref{Java Bison Interface}.
10267@end deffn
10268
e254a580
DJ
10269@deffn {Directive} {%define extends} "@var{superclass}"
10270The superclass of the parser class. Default is none.
10271@xref{Java Bison Interface}.
10272@end deffn
10273
10274@deffn {Directive} {%define final}
10275Whether the parser class is declared @code{final}. Default is false.
10276@xref{Java Bison Interface}.
10277@end deffn
10278
10279@deffn {Directive} {%define implements} "@var{interfaces}"
10280The implemented interfaces of the parser class, a comma-separated list.
10281Default is none.
10282@xref{Java Bison Interface}.
10283@end deffn
10284
1979121c
DJ
10285@deffn {Directive} {%define init_throws} "@var{exceptions}"
10286The exceptions thrown by @code{%code init} from the parser class
10287constructor. Default is none.
10288@xref{Java Parser Interface}.
10289@end deffn
10290
e254a580
DJ
10291@deffn {Directive} {%define lex_throws} "@var{exceptions}"
10292The exceptions thrown by the @code{yylex} method of the lexer, a
10293comma-separated list. Default is @code{java.io.IOException}.
10294@xref{Java Scanner Interface}.
10295@end deffn
10296
10297@deffn {Directive} {%define location_type} "@var{class}"
10298The name of the class used for locations (a range between two
10299positions). This class is generated as an inner class of the parser
10300class by @command{bison}. Default is @code{Location}.
10301@xref{Java Location Values}.
10302@end deffn
10303
10304@deffn {Directive} {%define package} "@var{package}"
10305The package to put the parser class in. Default is none.
10306@xref{Java Bison Interface}.
10307@end deffn
10308
10309@deffn {Directive} {%define parser_class_name} "@var{name}"
10310The name of the parser class. Default is @code{YYParser} or
10311@code{@var{name-prefix}Parser}.
10312@xref{Java Bison Interface}.
10313@end deffn
10314
10315@deffn {Directive} {%define position_type} "@var{class}"
10316The name of the class used for positions. This class must be supplied by
10317the user. Default is @code{Position}.
10318@xref{Java Location Values}.
10319@end deffn
10320
10321@deffn {Directive} {%define public}
10322Whether the parser class is declared @code{public}. Default is false.
10323@xref{Java Bison Interface}.
10324@end deffn
10325
10326@deffn {Directive} {%define stype} "@var{class}"
10327The base type of semantic values. Default is @code{Object}.
10328@xref{Java Semantic Values}.
10329@end deffn
10330
10331@deffn {Directive} {%define strictfp}
10332Whether the parser class is declared @code{strictfp}. Default is false.
10333@xref{Java Bison Interface}.
10334@end deffn
10335
10336@deffn {Directive} {%define throws} "@var{exceptions}"
10337The exceptions thrown by user-supplied parser actions and
10338@code{%initial-action}, a comma-separated list. Default is none.
10339@xref{Java Parser Interface}.
10340@end deffn
10341
10342
12545799 10343@c ================================================= FAQ
d1a1114f
AD
10344
10345@node FAQ
10346@chapter Frequently Asked Questions
10347@cindex frequently asked questions
10348@cindex questions
10349
10350Several questions about Bison come up occasionally. Here some of them
10351are addressed.
10352
10353@menu
55ba27be
AD
10354* Memory Exhausted:: Breaking the Stack Limits
10355* How Can I Reset the Parser:: @code{yyparse} Keeps some State
10356* Strings are Destroyed:: @code{yylval} Loses Track of Strings
10357* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 10358* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
10359* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
10360* I can't build Bison:: Troubleshooting
10361* Where can I find help?:: Troubleshouting
10362* Bug Reports:: Troublereporting
8405b70c 10363* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
10364* Beta Testing:: Experimenting development versions
10365* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
10366@end menu
10367
1a059451
PE
10368@node Memory Exhausted
10369@section Memory Exhausted
d1a1114f
AD
10370
10371@display
1a059451 10372My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
10373message. What can I do?
10374@end display
10375
10376This question is already addressed elsewhere, @xref{Recursion,
10377,Recursive Rules}.
10378
e64fec0a
PE
10379@node How Can I Reset the Parser
10380@section How Can I Reset the Parser
5b066063 10381
0e14ad77
PE
10382The following phenomenon has several symptoms, resulting in the
10383following typical questions:
5b066063
AD
10384
10385@display
10386I invoke @code{yyparse} several times, and on correct input it works
10387properly; but when a parse error is found, all the other calls fail
0e14ad77 10388too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
10389@end display
10390
10391@noindent
10392or
10393
10394@display
0e14ad77 10395My parser includes support for an @samp{#include}-like feature, in
5b066063 10396which case I run @code{yyparse} from @code{yyparse}. This fails
67501061 10397although I did specify @samp{%define api.pure}.
5b066063
AD
10398@end display
10399
0e14ad77
PE
10400These problems typically come not from Bison itself, but from
10401Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
10402speed, they might not notice a change of input file. As a
10403demonstration, consider the following source file,
10404@file{first-line.l}:
10405
10406@verbatim
10407%{
10408#include <stdio.h>
10409#include <stdlib.h>
10410%}
10411%%
10412.*\n ECHO; return 1;
10413%%
10414int
0e14ad77 10415yyparse (char const *file)
5b066063
AD
10416{
10417 yyin = fopen (file, "r");
10418 if (!yyin)
10419 exit (2);
fa7e68c3 10420 /* One token only. */
5b066063 10421 yylex ();
0e14ad77 10422 if (fclose (yyin) != 0)
5b066063
AD
10423 exit (3);
10424 return 0;
10425}
10426
10427int
0e14ad77 10428main (void)
5b066063
AD
10429{
10430 yyparse ("input");
10431 yyparse ("input");
10432 return 0;
10433}
10434@end verbatim
10435
10436@noindent
10437If the file @file{input} contains
10438
10439@verbatim
10440input:1: Hello,
10441input:2: World!
10442@end verbatim
10443
10444@noindent
0e14ad77 10445then instead of getting the first line twice, you get:
5b066063
AD
10446
10447@example
10448$ @kbd{flex -ofirst-line.c first-line.l}
10449$ @kbd{gcc -ofirst-line first-line.c -ll}
10450$ @kbd{./first-line}
10451input:1: Hello,
10452input:2: World!
10453@end example
10454
0e14ad77
PE
10455Therefore, whenever you change @code{yyin}, you must tell the
10456Lex-generated scanner to discard its current buffer and switch to the
10457new one. This depends upon your implementation of Lex; see its
10458documentation for more. For Flex, it suffices to call
10459@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
10460Flex-generated scanner needs to read from several input streams to
10461handle features like include files, you might consider using Flex
10462functions like @samp{yy_switch_to_buffer} that manipulate multiple
10463input buffers.
5b066063 10464
b165c324
AD
10465If your Flex-generated scanner uses start conditions (@pxref{Start
10466conditions, , Start conditions, flex, The Flex Manual}), you might
10467also want to reset the scanner's state, i.e., go back to the initial
10468start condition, through a call to @samp{BEGIN (0)}.
10469
fef4cb51
AD
10470@node Strings are Destroyed
10471@section Strings are Destroyed
10472
10473@display
c7e441b4 10474My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
10475them. Instead of reporting @samp{"foo", "bar"}, it reports
10476@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
10477@end display
10478
10479This error is probably the single most frequent ``bug report'' sent to
10480Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 10481of the scanner. Consider the following Lex code:
fef4cb51
AD
10482
10483@verbatim
10484%{
10485#include <stdio.h>
10486char *yylval = NULL;
10487%}
10488%%
10489.* yylval = yytext; return 1;
10490\n /* IGNORE */
10491%%
10492int
10493main ()
10494{
fa7e68c3 10495 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
10496 char *fst = (yylex (), yylval);
10497 char *snd = (yylex (), yylval);
10498 printf ("\"%s\", \"%s\"\n", fst, snd);
10499 return 0;
10500}
10501@end verbatim
10502
10503If you compile and run this code, you get:
10504
10505@example
10506$ @kbd{flex -osplit-lines.c split-lines.l}
10507$ @kbd{gcc -osplit-lines split-lines.c -ll}
10508$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10509"one
10510two", "two"
10511@end example
10512
10513@noindent
10514this is because @code{yytext} is a buffer provided for @emph{reading}
10515in the action, but if you want to keep it, you have to duplicate it
10516(e.g., using @code{strdup}). Note that the output may depend on how
10517your implementation of Lex handles @code{yytext}. For instance, when
10518given the Lex compatibility option @option{-l} (which triggers the
10519option @samp{%array}) Flex generates a different behavior:
10520
10521@example
10522$ @kbd{flex -l -osplit-lines.c split-lines.l}
10523$ @kbd{gcc -osplit-lines split-lines.c -ll}
10524$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10525"two", "two"
10526@end example
10527
10528
2fa09258
AD
10529@node Implementing Gotos/Loops
10530@section Implementing Gotos/Loops
a06ea4aa
AD
10531
10532@display
10533My simple calculator supports variables, assignments, and functions,
2fa09258 10534but how can I implement gotos, or loops?
a06ea4aa
AD
10535@end display
10536
10537Although very pedagogical, the examples included in the document blur
a1c84f45 10538the distinction to make between the parser---whose job is to recover
a06ea4aa 10539the structure of a text and to transmit it to subsequent modules of
a1c84f45 10540the program---and the processing (such as the execution) of this
a06ea4aa
AD
10541structure. This works well with so called straight line programs,
10542i.e., precisely those that have a straightforward execution model:
10543execute simple instructions one after the others.
10544
10545@cindex abstract syntax tree
10546@cindex @acronym{AST}
10547If you want a richer model, you will probably need to use the parser
10548to construct a tree that does represent the structure it has
10549recovered; this tree is usually called the @dfn{abstract syntax tree},
10550or @dfn{@acronym{AST}} for short. Then, walking through this tree,
10551traversing it in various ways, will enable treatments such as its
10552execution or its translation, which will result in an interpreter or a
10553compiler.
10554
10555This topic is way beyond the scope of this manual, and the reader is
10556invited to consult the dedicated literature.
10557
10558
ed2e6384
AD
10559@node Multiple start-symbols
10560@section Multiple start-symbols
10561
10562@display
10563I have several closely related grammars, and I would like to share their
10564implementations. In fact, I could use a single grammar but with
10565multiple entry points.
10566@end display
10567
10568Bison does not support multiple start-symbols, but there is a very
10569simple means to simulate them. If @code{foo} and @code{bar} are the two
10570pseudo start-symbols, then introduce two new tokens, say
10571@code{START_FOO} and @code{START_BAR}, and use them as switches from the
10572real start-symbol:
10573
10574@example
10575%token START_FOO START_BAR;
10576%start start;
10577start: START_FOO foo
10578 | START_BAR bar;
10579@end example
10580
10581These tokens prevents the introduction of new conflicts. As far as the
10582parser goes, that is all that is needed.
10583
10584Now the difficult part is ensuring that the scanner will send these
10585tokens first. If your scanner is hand-written, that should be
10586straightforward. If your scanner is generated by Lex, them there is
10587simple means to do it: recall that anything between @samp{%@{ ... %@}}
10588after the first @code{%%} is copied verbatim in the top of the generated
10589@code{yylex} function. Make sure a variable @code{start_token} is
10590available in the scanner (e.g., a global variable or using
10591@code{%lex-param} etc.), and use the following:
10592
10593@example
10594 /* @r{Prologue.} */
10595%%
10596%@{
10597 if (start_token)
10598 @{
10599 int t = start_token;
10600 start_token = 0;
10601 return t;
10602 @}
10603%@}
10604 /* @r{The rules.} */
10605@end example
10606
10607
55ba27be
AD
10608@node Secure? Conform?
10609@section Secure? Conform?
10610
10611@display
10612Is Bison secure? Does it conform to POSIX?
10613@end display
10614
10615If you're looking for a guarantee or certification, we don't provide it.
10616However, Bison is intended to be a reliable program that conforms to the
10617@acronym{POSIX} specification for Yacc. If you run into problems,
10618please send us a bug report.
10619
10620@node I can't build Bison
10621@section I can't build Bison
10622
10623@display
8c5b881d
PE
10624I can't build Bison because @command{make} complains that
10625@code{msgfmt} is not found.
55ba27be
AD
10626What should I do?
10627@end display
10628
10629Like most GNU packages with internationalization support, that feature
10630is turned on by default. If you have problems building in the @file{po}
10631subdirectory, it indicates that your system's internationalization
10632support is lacking. You can re-configure Bison with
10633@option{--disable-nls} to turn off this support, or you can install GNU
10634gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
10635Bison. See the file @file{ABOUT-NLS} for more information.
10636
10637
10638@node Where can I find help?
10639@section Where can I find help?
10640
10641@display
10642I'm having trouble using Bison. Where can I find help?
10643@end display
10644
10645First, read this fine manual. Beyond that, you can send mail to
10646@email{help-bison@@gnu.org}. This mailing list is intended to be
10647populated with people who are willing to answer questions about using
10648and installing Bison. Please keep in mind that (most of) the people on
10649the list have aspects of their lives which are not related to Bison (!),
10650so you may not receive an answer to your question right away. This can
10651be frustrating, but please try not to honk them off; remember that any
10652help they provide is purely voluntary and out of the kindness of their
10653hearts.
10654
10655@node Bug Reports
10656@section Bug Reports
10657
10658@display
10659I found a bug. What should I include in the bug report?
10660@end display
10661
10662Before you send a bug report, make sure you are using the latest
10663version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
10664mirrors. Be sure to include the version number in your bug report. If
10665the bug is present in the latest version but not in a previous version,
10666try to determine the most recent version which did not contain the bug.
10667
10668If the bug is parser-related, you should include the smallest grammar
10669you can which demonstrates the bug. The grammar file should also be
10670complete (i.e., I should be able to run it through Bison without having
10671to edit or add anything). The smaller and simpler the grammar, the
10672easier it will be to fix the bug.
10673
10674Include information about your compilation environment, including your
10675operating system's name and version and your compiler's name and
10676version. If you have trouble compiling, you should also include a
10677transcript of the build session, starting with the invocation of
10678`configure'. Depending on the nature of the bug, you may be asked to
10679send additional files as well (such as `config.h' or `config.cache').
10680
10681Patches are most welcome, but not required. That is, do not hesitate to
10682send a bug report just because you can not provide a fix.
10683
10684Send bug reports to @email{bug-bison@@gnu.org}.
10685
8405b70c
PB
10686@node More Languages
10687@section More Languages
55ba27be
AD
10688
10689@display
8405b70c 10690Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
10691favorite language here}?
10692@end display
10693
8405b70c 10694C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
10695languages; contributions are welcome.
10696
10697@node Beta Testing
10698@section Beta Testing
10699
10700@display
10701What is involved in being a beta tester?
10702@end display
10703
10704It's not terribly involved. Basically, you would download a test
10705release, compile it, and use it to build and run a parser or two. After
10706that, you would submit either a bug report or a message saying that
10707everything is okay. It is important to report successes as well as
10708failures because test releases eventually become mainstream releases,
10709but only if they are adequately tested. If no one tests, development is
10710essentially halted.
10711
10712Beta testers are particularly needed for operating systems to which the
10713developers do not have easy access. They currently have easy access to
10714recent GNU/Linux and Solaris versions. Reports about other operating
10715systems are especially welcome.
10716
10717@node Mailing Lists
10718@section Mailing Lists
10719
10720@display
10721How do I join the help-bison and bug-bison mailing lists?
10722@end display
10723
10724See @url{http://lists.gnu.org/}.
a06ea4aa 10725
d1a1114f
AD
10726@c ================================================= Table of Symbols
10727
342b8b6e 10728@node Table of Symbols
bfa74976
RS
10729@appendix Bison Symbols
10730@cindex Bison symbols, table of
10731@cindex symbols in Bison, table of
10732
18b519c0 10733@deffn {Variable} @@$
3ded9a63 10734In an action, the location of the left-hand side of the rule.
88bce5a2 10735@xref{Locations, , Locations Overview}.
18b519c0 10736@end deffn
3ded9a63 10737
18b519c0 10738@deffn {Variable} @@@var{n}
3ded9a63
AD
10739In an action, the location of the @var{n}-th symbol of the right-hand
10740side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 10741@end deffn
3ded9a63 10742
d013372c
AR
10743@deffn {Variable} @@@var{name}
10744In an action, the location of a symbol addressed by name.
10745@xref{Locations, , Locations Overview}.
10746@end deffn
10747
10748@deffn {Variable} @@[@var{name}]
10749In an action, the location of a symbol addressed by name.
10750@xref{Locations, , Locations Overview}.
10751@end deffn
10752
18b519c0 10753@deffn {Variable} $$
3ded9a63
AD
10754In an action, the semantic value of the left-hand side of the rule.
10755@xref{Actions}.
18b519c0 10756@end deffn
3ded9a63 10757
18b519c0 10758@deffn {Variable} $@var{n}
3ded9a63
AD
10759In an action, the semantic value of the @var{n}-th symbol of the
10760right-hand side of the rule. @xref{Actions}.
18b519c0 10761@end deffn
3ded9a63 10762
d013372c
AR
10763@deffn {Variable} $@var{name}
10764In an action, the semantic value of a symbol addressed by name.
10765@xref{Actions}.
10766@end deffn
10767
10768@deffn {Variable} $[@var{name}]
10769In an action, the semantic value of a symbol addressed by name.
10770@xref{Actions}.
10771@end deffn
10772
dd8d9022
AD
10773@deffn {Delimiter} %%
10774Delimiter used to separate the grammar rule section from the
10775Bison declarations section or the epilogue.
10776@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 10777@end deffn
bfa74976 10778
dd8d9022
AD
10779@c Don't insert spaces, or check the DVI output.
10780@deffn {Delimiter} %@{@var{code}%@}
10781All code listed between @samp{%@{} and @samp{%@}} is copied directly to
10782the output file uninterpreted. Such code forms the prologue of the input
10783file. @xref{Grammar Outline, ,Outline of a Bison
10784Grammar}.
18b519c0 10785@end deffn
bfa74976 10786
ca2a6d15
PH
10787@deffn {Directive} %?@{@var{expression}@}
10788Predicate actions. This is a type of action clause that may appear in
10789rules. The expression is evaluated, and if false, causes a syntax error. In
10790@acronym{GLR} parsers during nondeterministic operation,
10791this silently causes an alternative parse to die. During deterministic
10792operation, it is the same as the effect of YYERROR.
10793@xref{Semantic Predicates}.
10794
10795This feature is experimental.
10796More user feedback will help to determine whether it should become a permanent
10797feature.
10798@end deffn
10799
dd8d9022
AD
10800@deffn {Construct} /*@dots{}*/
10801Comment delimiters, as in C.
18b519c0 10802@end deffn
bfa74976 10803
dd8d9022
AD
10804@deffn {Delimiter} :
10805Separates a rule's result from its components. @xref{Rules, ,Syntax of
10806Grammar Rules}.
18b519c0 10807@end deffn
bfa74976 10808
dd8d9022
AD
10809@deffn {Delimiter} ;
10810Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10811@end deffn
bfa74976 10812
dd8d9022
AD
10813@deffn {Delimiter} |
10814Separates alternate rules for the same result nonterminal.
10815@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10816@end deffn
bfa74976 10817
12e35840
JD
10818@deffn {Directive} <*>
10819Used to define a default tagged @code{%destructor} or default tagged
10820@code{%printer}.
85894313
JD
10821
10822This feature is experimental.
10823More user feedback will help to determine whether it should become a permanent
10824feature.
10825
12e35840
JD
10826@xref{Destructor Decl, , Freeing Discarded Symbols}.
10827@end deffn
10828
3ebecc24 10829@deffn {Directive} <>
12e35840
JD
10830Used to define a default tagless @code{%destructor} or default tagless
10831@code{%printer}.
85894313
JD
10832
10833This feature is experimental.
10834More user feedback will help to determine whether it should become a permanent
10835feature.
10836
12e35840
JD
10837@xref{Destructor Decl, , Freeing Discarded Symbols}.
10838@end deffn
10839
dd8d9022
AD
10840@deffn {Symbol} $accept
10841The predefined nonterminal whose only rule is @samp{$accept: @var{start}
10842$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
10843Start-Symbol}. It cannot be used in the grammar.
18b519c0 10844@end deffn
bfa74976 10845
136a0f76 10846@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
10847@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
10848Insert @var{code} verbatim into output parser source.
10849@xref{Decl Summary,,%code}.
9bc0dd67
JD
10850@end deffn
10851
10852@deffn {Directive} %debug
10853Equip the parser for debugging. @xref{Decl Summary}.
10854@end deffn
10855
91d2c560 10856@ifset defaultprec
22fccf95
PE
10857@deffn {Directive} %default-prec
10858Assign a precedence to rules that lack an explicit @samp{%prec}
10859modifier. @xref{Contextual Precedence, ,Context-Dependent
10860Precedence}.
39a06c25 10861@end deffn
91d2c560 10862@end ifset
39a06c25 10863
148d66d8
JD
10864@deffn {Directive} %define @var{define-variable}
10865@deffnx {Directive} %define @var{define-variable} @var{value}
cf499cff 10866@deffnx {Directive} %define @var{define-variable} "@var{value}"
148d66d8
JD
10867Define a variable to adjust Bison's behavior.
10868@xref{Decl Summary,,%define}.
10869@end deffn
10870
18b519c0 10871@deffn {Directive} %defines
6deb4447
AD
10872Bison declaration to create a header file meant for the scanner.
10873@xref{Decl Summary}.
18b519c0 10874@end deffn
6deb4447 10875
02975b9a
JD
10876@deffn {Directive} %defines @var{defines-file}
10877Same as above, but save in the file @var{defines-file}.
10878@xref{Decl Summary}.
10879@end deffn
10880
18b519c0 10881@deffn {Directive} %destructor
258b75ca 10882Specify how the parser should reclaim the memory associated to
fa7e68c3 10883discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 10884@end deffn
72f889cc 10885
18b519c0 10886@deffn {Directive} %dprec
676385e2 10887Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
10888time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
10889@acronym{GLR} Parsers}.
18b519c0 10890@end deffn
676385e2 10891
dd8d9022
AD
10892@deffn {Symbol} $end
10893The predefined token marking the end of the token stream. It cannot be
10894used in the grammar.
10895@end deffn
10896
10897@deffn {Symbol} error
10898A token name reserved for error recovery. This token may be used in
10899grammar rules so as to allow the Bison parser to recognize an error in
10900the grammar without halting the process. In effect, a sentence
10901containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
10902token @code{error} becomes the current lookahead token. Actions
10903corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
10904token is reset to the token that originally caused the violation.
10905@xref{Error Recovery}.
18d192f0
AD
10906@end deffn
10907
18b519c0 10908@deffn {Directive} %error-verbose
cf499cff 10909An obsolete directive standing for @samp{%define parse.error verbose}.
18b519c0 10910@end deffn
2a8d363a 10911
02975b9a 10912@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 10913Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 10914Summary}.
18b519c0 10915@end deffn
d8988b2f 10916
18b519c0 10917@deffn {Directive} %glr-parser
c827f760
PE
10918Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
10919Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10920@end deffn
676385e2 10921
dd8d9022
AD
10922@deffn {Directive} %initial-action
10923Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
10924@end deffn
10925
e6e704dc
JD
10926@deffn {Directive} %language
10927Specify the programming language for the generated parser.
10928@xref{Decl Summary}.
10929@end deffn
10930
18b519c0 10931@deffn {Directive} %left
d78f0ac9 10932Bison declaration to assign precedence and left associativity to token(s).
bfa74976 10933@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10934@end deffn
bfa74976 10935
2055a44e
AD
10936@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
10937Bison declaration to specifying additional arguments that
2a8d363a
AD
10938@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
10939for Pure Parsers}.
18b519c0 10940@end deffn
2a8d363a 10941
18b519c0 10942@deffn {Directive} %merge
676385e2 10943Bison declaration to assign a merging function to a rule. If there is a
fae437e8 10944reduce/reduce conflict with a rule having the same merging function, the
676385e2 10945function is applied to the two semantic values to get a single result.
c827f760 10946@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10947@end deffn
676385e2 10948
02975b9a 10949@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 10950Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 10951@end deffn
d8988b2f 10952
91d2c560 10953@ifset defaultprec
22fccf95
PE
10954@deffn {Directive} %no-default-prec
10955Do not assign a precedence to rules that lack an explicit @samp{%prec}
10956modifier. @xref{Contextual Precedence, ,Context-Dependent
10957Precedence}.
10958@end deffn
91d2c560 10959@end ifset
22fccf95 10960
18b519c0 10961@deffn {Directive} %no-lines
931c7513
RS
10962Bison declaration to avoid generating @code{#line} directives in the
10963parser file. @xref{Decl Summary}.
18b519c0 10964@end deffn
931c7513 10965
18b519c0 10966@deffn {Directive} %nonassoc
d78f0ac9 10967Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 10968@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10969@end deffn
bfa74976 10970
02975b9a 10971@deffn {Directive} %output "@var{file}"
72d2299c 10972Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 10973Summary}.
18b519c0 10974@end deffn
d8988b2f 10975
2055a44e
AD
10976@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
10977Bison declaration to specify additional arguments that both
10978@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
10979Parser Function @code{yyparse}}.
10980@end deffn
10981
10982@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
10983Bison declaration to specify additional arguments that @code{yyparse}
10984should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 10985@end deffn
2a8d363a 10986
18b519c0 10987@deffn {Directive} %prec
bfa74976
RS
10988Bison declaration to assign a precedence to a specific rule.
10989@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 10990@end deffn
bfa74976 10991
d78f0ac9
AD
10992@deffn {Directive} %precedence
10993Bison declaration to assign precedence to token(s), but no associativity
10994@xref{Precedence Decl, ,Operator Precedence}.
10995@end deffn
10996
18b519c0 10997@deffn {Directive} %pure-parser
67501061 10998Deprecated version of @samp{%define api.pure} (@pxref{Decl Summary, ,%define}),
d9df47b6 10999for which Bison is more careful to warn about unreasonable usage.
18b519c0 11000@end deffn
bfa74976 11001
b50d2359 11002@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
11003Require version @var{version} or higher of Bison. @xref{Require Decl, ,
11004Require a Version of Bison}.
b50d2359
AD
11005@end deffn
11006
18b519c0 11007@deffn {Directive} %right
d78f0ac9 11008Bison declaration to assign precedence and right associativity to token(s).
bfa74976 11009@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11010@end deffn
bfa74976 11011
e6e704dc
JD
11012@deffn {Directive} %skeleton
11013Specify the skeleton to use; usually for development.
11014@xref{Decl Summary}.
11015@end deffn
11016
18b519c0 11017@deffn {Directive} %start
704a47c4
AD
11018Bison declaration to specify the start symbol. @xref{Start Decl, ,The
11019Start-Symbol}.
18b519c0 11020@end deffn
bfa74976 11021
18b519c0 11022@deffn {Directive} %token
bfa74976
RS
11023Bison declaration to declare token(s) without specifying precedence.
11024@xref{Token Decl, ,Token Type Names}.
18b519c0 11025@end deffn
bfa74976 11026
18b519c0 11027@deffn {Directive} %token-table
931c7513
RS
11028Bison declaration to include a token name table in the parser file.
11029@xref{Decl Summary}.
18b519c0 11030@end deffn
931c7513 11031
18b519c0 11032@deffn {Directive} %type
704a47c4
AD
11033Bison declaration to declare nonterminals. @xref{Type Decl,
11034,Nonterminal Symbols}.
18b519c0 11035@end deffn
bfa74976 11036
dd8d9022
AD
11037@deffn {Symbol} $undefined
11038The predefined token onto which all undefined values returned by
11039@code{yylex} are mapped. It cannot be used in the grammar, rather, use
11040@code{error}.
11041@end deffn
11042
18b519c0 11043@deffn {Directive} %union
bfa74976
RS
11044Bison declaration to specify several possible data types for semantic
11045values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 11046@end deffn
bfa74976 11047
dd8d9022
AD
11048@deffn {Macro} YYABORT
11049Macro to pretend that an unrecoverable syntax error has occurred, by
11050making @code{yyparse} return 1 immediately. The error reporting
11051function @code{yyerror} is not called. @xref{Parser Function, ,The
11052Parser Function @code{yyparse}}.
8405b70c
PB
11053
11054For Java parsers, this functionality is invoked using @code{return YYABORT;}
11055instead.
dd8d9022 11056@end deffn
3ded9a63 11057
dd8d9022
AD
11058@deffn {Macro} YYACCEPT
11059Macro to pretend that a complete utterance of the language has been
11060read, by making @code{yyparse} return 0 immediately.
11061@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
11062
11063For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
11064instead.
dd8d9022 11065@end deffn
bfa74976 11066
dd8d9022 11067@deffn {Macro} YYBACKUP
742e4900 11068Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 11069token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11070@end deffn
bfa74976 11071
dd8d9022 11072@deffn {Variable} yychar
32c29292 11073External integer variable that contains the integer value of the
742e4900 11074lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
11075@code{yyparse}.) Error-recovery rule actions may examine this variable.
11076@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11077@end deffn
bfa74976 11078
dd8d9022
AD
11079@deffn {Variable} yyclearin
11080Macro used in error-recovery rule actions. It clears the previous
742e4900 11081lookahead token. @xref{Error Recovery}.
18b519c0 11082@end deffn
bfa74976 11083
dd8d9022
AD
11084@deffn {Macro} YYDEBUG
11085Macro to define to equip the parser with tracing code. @xref{Tracing,
11086,Tracing Your Parser}.
18b519c0 11087@end deffn
bfa74976 11088
dd8d9022
AD
11089@deffn {Variable} yydebug
11090External integer variable set to zero by default. If @code{yydebug}
11091is given a nonzero value, the parser will output information on input
11092symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 11093@end deffn
bfa74976 11094
dd8d9022
AD
11095@deffn {Macro} yyerrok
11096Macro to cause parser to recover immediately to its normal mode
11097after a syntax error. @xref{Error Recovery}.
11098@end deffn
11099
11100@deffn {Macro} YYERROR
11101Macro to pretend that a syntax error has just been detected: call
11102@code{yyerror} and then perform normal error recovery if possible
11103(@pxref{Error Recovery}), or (if recovery is impossible) make
11104@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
11105
11106For Java parsers, this functionality is invoked using @code{return YYERROR;}
11107instead.
dd8d9022
AD
11108@end deffn
11109
11110@deffn {Function} yyerror
11111User-supplied function to be called by @code{yyparse} on error.
71b00ed8 11112@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
11113@end deffn
11114
11115@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
11116An obsolete macro used in the @file{yacc.c} skeleton, that you define
11117with @code{#define} in the prologue to request verbose, specific error
11118message strings when @code{yyerror} is called. It doesn't matter what
11119definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 11120it. Using @samp{%define parse.error verbose} is preferred
31b850d2 11121(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
11122@end deffn
11123
11124@deffn {Macro} YYINITDEPTH
11125Macro for specifying the initial size of the parser stack.
1a059451 11126@xref{Memory Management}.
dd8d9022
AD
11127@end deffn
11128
11129@deffn {Function} yylex
11130User-supplied lexical analyzer function, called with no arguments to get
11131the next token. @xref{Lexical, ,The Lexical Analyzer Function
11132@code{yylex}}.
11133@end deffn
11134
11135@deffn {Macro} YYLEX_PARAM
11136An obsolete macro for specifying an extra argument (or list of extra
32c29292 11137arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
11138macro is deprecated, and is supported only for Yacc like parsers.
11139@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
11140@end deffn
11141
11142@deffn {Variable} yylloc
11143External variable in which @code{yylex} should place the line and column
11144numbers associated with a token. (In a pure parser, it is a local
11145variable within @code{yyparse}, and its address is passed to
32c29292
JD
11146@code{yylex}.)
11147You can ignore this variable if you don't use the @samp{@@} feature in the
11148grammar actions.
11149@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 11150In semantic actions, it stores the location of the lookahead token.
32c29292 11151@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
11152@end deffn
11153
11154@deffn {Type} YYLTYPE
11155Data type of @code{yylloc}; by default, a structure with four
11156members. @xref{Location Type, , Data Types of Locations}.
11157@end deffn
11158
11159@deffn {Variable} yylval
11160External variable in which @code{yylex} should place the semantic
11161value associated with a token. (In a pure parser, it is a local
11162variable within @code{yyparse}, and its address is passed to
32c29292
JD
11163@code{yylex}.)
11164@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 11165In semantic actions, it stores the semantic value of the lookahead token.
32c29292 11166@xref{Actions, ,Actions}.
dd8d9022
AD
11167@end deffn
11168
11169@deffn {Macro} YYMAXDEPTH
1a059451
PE
11170Macro for specifying the maximum size of the parser stack. @xref{Memory
11171Management}.
dd8d9022
AD
11172@end deffn
11173
11174@deffn {Variable} yynerrs
8a2800e7 11175Global variable which Bison increments each time it reports a syntax error.
f4101aa6 11176(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 11177pure push parser, it is a member of yypstate.)
dd8d9022
AD
11178@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
11179@end deffn
11180
11181@deffn {Function} yyparse
11182The parser function produced by Bison; call this function to start
11183parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
11184@end deffn
11185
9987d1b3 11186@deffn {Function} yypstate_delete
f4101aa6 11187The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 11188call this function to delete the memory associated with a parser.
f4101aa6 11189@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 11190@code{yypstate_delete}}.
59da312b
JD
11191(The current push parsing interface is experimental and may evolve.
11192More user feedback will help to stabilize it.)
9987d1b3
JD
11193@end deffn
11194
11195@deffn {Function} yypstate_new
f4101aa6 11196The function to create a parser instance, produced by Bison in push mode;
9987d1b3 11197call this function to create a new parser.
f4101aa6 11198@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 11199@code{yypstate_new}}.
59da312b
JD
11200(The current push parsing interface is experimental and may evolve.
11201More user feedback will help to stabilize it.)
9987d1b3
JD
11202@end deffn
11203
11204@deffn {Function} yypull_parse
f4101aa6
AD
11205The parser function produced by Bison in push mode; call this function to
11206parse the rest of the input stream.
11207@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 11208@code{yypull_parse}}.
59da312b
JD
11209(The current push parsing interface is experimental and may evolve.
11210More user feedback will help to stabilize it.)
9987d1b3
JD
11211@end deffn
11212
11213@deffn {Function} yypush_parse
f4101aa6
AD
11214The parser function produced by Bison in push mode; call this function to
11215parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 11216@code{yypush_parse}}.
59da312b
JD
11217(The current push parsing interface is experimental and may evolve.
11218More user feedback will help to stabilize it.)
9987d1b3
JD
11219@end deffn
11220
dd8d9022
AD
11221@deffn {Macro} YYPARSE_PARAM
11222An obsolete macro for specifying the name of a parameter that
11223@code{yyparse} should accept. The use of this macro is deprecated, and
11224is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
11225Conventions for Pure Parsers}.
11226@end deffn
11227
11228@deffn {Macro} YYRECOVERING
02103984
PE
11229The expression @code{YYRECOVERING ()} yields 1 when the parser
11230is recovering from a syntax error, and 0 otherwise.
11231@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
11232@end deffn
11233
11234@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
11235Macro used to control the use of @code{alloca} when the
11236deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
11237the parser will use @code{malloc} to extend its stacks. If defined to
112381, the parser will use @code{alloca}. Values other than 0 and 1 are
11239reserved for future Bison extensions. If not defined,
11240@code{YYSTACK_USE_ALLOCA} defaults to 0.
11241
55289366 11242In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
11243limited stack and with unreliable stack-overflow checking, you should
11244set @code{YYMAXDEPTH} to a value that cannot possibly result in
11245unchecked stack overflow on any of your target hosts when
11246@code{alloca} is called. You can inspect the code that Bison
11247generates in order to determine the proper numeric values. This will
11248require some expertise in low-level implementation details.
dd8d9022
AD
11249@end deffn
11250
11251@deffn {Type} YYSTYPE
11252Data type of semantic values; @code{int} by default.
11253@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 11254@end deffn
bfa74976 11255
342b8b6e 11256@node Glossary
bfa74976
RS
11257@appendix Glossary
11258@cindex glossary
11259
11260@table @asis
eb45ef3b
JD
11261@item Accepting State
11262A state whose only action is the accept action.
11263The accepting state is thus a consistent state.
11264@xref{Understanding,,}.
11265
c827f760
PE
11266@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
11267Formal method of specifying context-free grammars originally proposed
11268by John Backus, and slightly improved by Peter Naur in his 1960-01-02
11269committee document contributing to what became the Algol 60 report.
11270@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 11271
eb45ef3b
JD
11272@item Consistent State
11273A state containing only one possible action.
5bab9d08 11274@xref{Decl Summary,,lr.default-reductions}.
eb45ef3b 11275
bfa74976
RS
11276@item Context-free grammars
11277Grammars specified as rules that can be applied regardless of context.
11278Thus, if there is a rule which says that an integer can be used as an
11279expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
11280permitted. @xref{Language and Grammar, ,Languages and Context-Free
11281Grammars}.
bfa74976 11282
110ef36a
JD
11283@item Default Reduction
11284The reduction that a parser should perform if the current parser state
eb45ef3b 11285contains no other action for the lookahead token.
110ef36a
JD
11286In permitted parser states, Bison declares the reduction with the
11287largest lookahead set to be the default reduction and removes that
11288lookahead set.
5bab9d08 11289@xref{Decl Summary,,lr.default-reductions}.
eb45ef3b 11290
bfa74976
RS
11291@item Dynamic allocation
11292Allocation of memory that occurs during execution, rather than at
11293compile time or on entry to a function.
11294
11295@item Empty string
11296Analogous to the empty set in set theory, the empty string is a
11297character string of length zero.
11298
11299@item Finite-state stack machine
11300A ``machine'' that has discrete states in which it is said to exist at
11301each instant in time. As input to the machine is processed, the
11302machine moves from state to state as specified by the logic of the
11303machine. In the case of the parser, the input is the language being
11304parsed, and the states correspond to various stages in the grammar
c827f760 11305rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 11306
c827f760 11307@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 11308A parsing algorithm that can handle all context-free grammars, including those
eb45ef3b
JD
11309that are not @acronym{LR}(1). It resolves situations that Bison's
11310deterministic parsing
676385e2
PH
11311algorithm cannot by effectively splitting off multiple parsers, trying all
11312possible parsers, and discarding those that fail in the light of additional
c827f760
PE
11313right context. @xref{Generalized LR Parsing, ,Generalized
11314@acronym{LR} Parsing}.
676385e2 11315
bfa74976
RS
11316@item Grouping
11317A language construct that is (in general) grammatically divisible;
c827f760 11318for example, `expression' or `declaration' in C@.
bfa74976
RS
11319@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11320
eb45ef3b
JD
11321@item @acronym{IELR}(1)
11322A minimal @acronym{LR}(1) parser table generation algorithm.
11323That is, given any context-free grammar, @acronym{IELR}(1) generates
11324parser tables with the full language recognition power of canonical
11325@acronym{LR}(1) but with nearly the same number of parser states as
11326@acronym{LALR}(1).
11327This reduction in parser states is often an order of magnitude.
11328More importantly, because canonical @acronym{LR}(1)'s extra parser
11329states may contain duplicate conflicts in the case of
11330non-@acronym{LR}(1) grammars, the number of conflicts for
11331@acronym{IELR}(1) is often an order of magnitude less as well.
11332This can significantly reduce the complexity of developing of a grammar.
11333@xref{Decl Summary,,lr.type}.
11334
bfa74976
RS
11335@item Infix operator
11336An arithmetic operator that is placed between the operands on which it
11337performs some operation.
11338
11339@item Input stream
11340A continuous flow of data between devices or programs.
11341
fcf834f9
JD
11342@item @acronym{LAC} (Lookahead Correction)
11343A parsing mechanism that fixes the problem of delayed syntax error
11344detection, which is caused by LR state merging, default reductions, and
11345the use of @code{%nonassoc}. Delayed syntax error detection results in
11346unexpected semantic actions, initiation of error recovery in the wrong
11347syntactic context, and an incorrect list of expected tokens in a verbose
11348syntax error message. @xref{Decl Summary,,parse.lac}.
11349
bfa74976
RS
11350@item Language construct
11351One of the typical usage schemas of the language. For example, one of
11352the constructs of the C language is the @code{if} statement.
11353@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11354
11355@item Left associativity
11356Operators having left associativity are analyzed from left to right:
11357@samp{a+b+c} first computes @samp{a+b} and then combines with
11358@samp{c}. @xref{Precedence, ,Operator Precedence}.
11359
11360@item Left recursion
89cab50d
AD
11361A rule whose result symbol is also its first component symbol; for
11362example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
11363Rules}.
bfa74976
RS
11364
11365@item Left-to-right parsing
11366Parsing a sentence of a language by analyzing it token by token from
c827f760 11367left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11368
11369@item Lexical analyzer (scanner)
11370A function that reads an input stream and returns tokens one by one.
11371@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
11372
11373@item Lexical tie-in
11374A flag, set by actions in the grammar rules, which alters the way
11375tokens are parsed. @xref{Lexical Tie-ins}.
11376
931c7513 11377@item Literal string token
14ded682 11378A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 11379
742e4900
JD
11380@item Lookahead token
11381A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 11382Tokens}.
bfa74976 11383
c827f760 11384@item @acronym{LALR}(1)
bfa74976 11385The class of context-free grammars that Bison (like most other parser
eb45ef3b
JD
11386generators) can handle by default; a subset of @acronym{LR}(1).
11387@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 11388
c827f760 11389@item @acronym{LR}(1)
bfa74976 11390The class of context-free grammars in which at most one token of
742e4900 11391lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
11392
11393@item Nonterminal symbol
11394A grammar symbol standing for a grammatical construct that can
11395be expressed through rules in terms of smaller constructs; in other
11396words, a construct that is not a token. @xref{Symbols}.
11397
bfa74976
RS
11398@item Parser
11399A function that recognizes valid sentences of a language by analyzing
11400the syntax structure of a set of tokens passed to it from a lexical
11401analyzer.
11402
11403@item Postfix operator
11404An arithmetic operator that is placed after the operands upon which it
11405performs some operation.
11406
11407@item Reduction
11408Replacing a string of nonterminals and/or terminals with a single
89cab50d 11409nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 11410Parser Algorithm}.
bfa74976
RS
11411
11412@item Reentrant
11413A reentrant subprogram is a subprogram which can be in invoked any
11414number of times in parallel, without interference between the various
11415invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
11416
11417@item Reverse polish notation
11418A language in which all operators are postfix operators.
11419
11420@item Right recursion
89cab50d
AD
11421A rule whose result symbol is also its last component symbol; for
11422example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
11423Rules}.
bfa74976
RS
11424
11425@item Semantics
11426In computer languages, the semantics are specified by the actions
11427taken for each instance of the language, i.e., the meaning of
11428each statement. @xref{Semantics, ,Defining Language Semantics}.
11429
11430@item Shift
11431A parser is said to shift when it makes the choice of analyzing
11432further input from the stream rather than reducing immediately some
c827f760 11433already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11434
11435@item Single-character literal
11436A single character that is recognized and interpreted as is.
11437@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
11438
11439@item Start symbol
11440The nonterminal symbol that stands for a complete valid utterance in
11441the language being parsed. The start symbol is usually listed as the
13863333 11442first nonterminal symbol in a language specification.
bfa74976
RS
11443@xref{Start Decl, ,The Start-Symbol}.
11444
11445@item Symbol table
11446A data structure where symbol names and associated data are stored
11447during parsing to allow for recognition and use of existing
11448information in repeated uses of a symbol. @xref{Multi-function Calc}.
11449
6e649e65
PE
11450@item Syntax error
11451An error encountered during parsing of an input stream due to invalid
11452syntax. @xref{Error Recovery}.
11453
bfa74976
RS
11454@item Token
11455A basic, grammatically indivisible unit of a language. The symbol
11456that describes a token in the grammar is a terminal symbol.
11457The input of the Bison parser is a stream of tokens which comes from
11458the lexical analyzer. @xref{Symbols}.
11459
11460@item Terminal symbol
89cab50d
AD
11461A grammar symbol that has no rules in the grammar and therefore is
11462grammatically indivisible. The piece of text it represents is a token.
11463@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
11464@end table
11465
342b8b6e 11466@node Copying This Manual
f2b5126e 11467@appendix Copying This Manual
f2b5126e
PB
11468@include fdl.texi
11469
342b8b6e 11470@node Index
bfa74976
RS
11471@unnumbered Index
11472
11473@printindex cp
11474
bfa74976 11475@bye
a06ea4aa 11476
6b5a0de9
AD
11477@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
11478@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
11479@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
11480@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
11481@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
11482@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
11483@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
11484@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
11485@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
11486@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
11487@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
11488@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
11489@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
11490@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym enum
11491@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
11492@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
11493@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
11494@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
11495@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
11496@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
11497@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
11498@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
11499@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
11500@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype Lookahead
11501@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
11502@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
11503@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
11504@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
11505@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 11506@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
6b5a0de9
AD
11507@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs
11508@c LocalWords: yytokentype filename destructor multicharacter nonnull EBCDIC
11509@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
11510@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative
11511@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
11512@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
11513@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
11514@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz
11515@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
11516@c LocalWords: makefiles Graphviz multitable headitem hh basename Doxygen fno
11517@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
11518@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
11519@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
11520@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
11521@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc
11522@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
11523@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
11524@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
11525@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
11526@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
1625df5b 11527@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt
6b5a0de9 11528@c LocalWords: subdirectory Solaris nonassociativity
e944aaff
AD
11529
11530@c Local Variables:
11531@c ispell-dictionary: "american"
11532@c fill-column: 76
11533@c End: