]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
lalr1.cc: use state_type.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
e1145ad8
AD
33This manual (@value{UPDATED}) is for @acronym{GNU} Bison (version
34@value{VERSION}), the @acronym{GNU} parser generator.
fae437e8 35
a06ea4aa 36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
1d5b3c08
JD
371999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free
38Software Foundation, Inc.
fae437e8
AD
39
40@quotation
41Permission is granted to copy, distribute and/or modify this document
c827f760 42under the terms of the @acronym{GNU} Free Documentation License,
592fde95 43Version 1.2 or any later version published by the Free Software
c827f760
PE
44Foundation; with no Invariant Sections, with the Front-Cover texts
45being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
46(a) below. A copy of the license is included in the section entitled
47``@acronym{GNU} Free Documentation License.''
48
389c8cfd
PE
49(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
50modify this @acronym{GNU} manual. Buying copies from the @acronym{FSF}
51supports it in developing @acronym{GNU} and promoting software
52freedom.''
fae437e8
AD
53@end quotation
54@end copying
55
e62f1a89 56@dircategory Software development
fae437e8 57@direntry
c827f760 58* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 59@end direntry
bfa74976 60
bfa74976
RS
61@titlepage
62@title Bison
c827f760 63@subtitle The Yacc-compatible Parser Generator
df1af54c 64@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
65
66@author by Charles Donnelly and Richard Stallman
67
68@page
69@vskip 0pt plus 1filll
fae437e8 70@insertcopying
bfa74976
RS
71@sp 2
72Published by the Free Software Foundation @*
0fb669f9
PE
7351 Franklin Street, Fifth Floor @*
74Boston, MA 02110-1301 USA @*
9ecbd125 75Printed copies are available from the Free Software Foundation.@*
c827f760 76@acronym{ISBN} 1-882114-44-2
bfa74976
RS
77@sp 2
78Cover art by Etienne Suvasa.
79@end titlepage
d5796688
JT
80
81@contents
bfa74976 82
342b8b6e
AD
83@ifnottex
84@node Top
85@top Bison
fae437e8 86@insertcopying
342b8b6e 87@end ifnottex
bfa74976
RS
88
89@menu
13863333
AD
90* Introduction::
91* Conditions::
f5f419de
DJ
92* Copying:: The @acronym{GNU} General Public License says
93 how you can copy and share Bison.
bfa74976
RS
94
95Tutorial sections:
f5f419de
DJ
96* Concepts:: Basic concepts for understanding Bison.
97* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
98
99Reference sections:
f5f419de
DJ
100* Grammar File:: Writing Bison declarations and rules.
101* Interface:: C-language interface to the parser function @code{yyparse}.
102* Algorithm:: How the Bison parser works at run-time.
103* Error Recovery:: Writing rules for error recovery.
bfa74976 104* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
105 messy for Bison to handle straightforwardly.
106* Debugging:: Understanding or debugging Bison parsers.
107* Invocation:: How to run Bison (to produce the parser source file).
108* Other Languages:: Creating C++ and Java parsers.
109* FAQ:: Frequently Asked Questions
110* Table of Symbols:: All the keywords of the Bison language are explained.
111* Glossary:: Basic concepts are explained.
112* Copying This Manual:: License for copying this manual.
113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
128* Locations Overview:: Tracking Locations.
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
fa7e68c3
PE
134Writing @acronym{GLR} Parsers
135
f5f419de
DJ
136* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
137* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
138* GLR Semantic Actions:: Deferred semantic actions have special concerns.
139* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 140
bfa74976
RS
141Examples
142
f5f419de
DJ
143* RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145* Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
bfa74976 147* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 148* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
149* Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
151* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
152
153Reverse Polish Notation Calculator
154
f5f419de
DJ
155* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
156* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
157* Rpcalc Lexer:: The lexical analyzer.
158* Rpcalc Main:: The controlling function.
159* Rpcalc Error:: The error reporting function.
160* Rpcalc Generate:: Running Bison on the grammar file.
161* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
162
163Grammar Rules for @code{rpcalc}
164
13863333
AD
165* Rpcalc Input::
166* Rpcalc Line::
167* Rpcalc Expr::
bfa74976 168
342b8b6e
AD
169Location Tracking Calculator: @code{ltcalc}
170
f5f419de
DJ
171* Ltcalc Declarations:: Bison and C declarations for ltcalc.
172* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
173* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 174
bfa74976
RS
175Multi-Function Calculator: @code{mfcalc}
176
f5f419de
DJ
177* Mfcalc Declarations:: Bison declarations for multi-function calculator.
178* Mfcalc Rules:: Grammar rules for the calculator.
179* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
180
181Bison Grammar Files
182
183* Grammar Outline:: Overall layout of the grammar file.
184* Symbols:: Terminal and nonterminal symbols.
185* Rules:: How to write grammar rules.
186* Recursion:: Writing recursive rules.
187* Semantics:: Semantic values and actions.
93dd49ab 188* Locations:: Locations and actions.
bfa74976
RS
189* Declarations:: All kinds of Bison declarations are described here.
190* Multiple Parsers:: Putting more than one Bison parser in one program.
191
192Outline of a Bison Grammar
193
f5f419de 194* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 195* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
196* Bison Declarations:: Syntax and usage of the Bison declarations section.
197* Grammar Rules:: Syntax and usage of the grammar rules section.
198* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
199
200Defining Language Semantics
201
202* Value Type:: Specifying one data type for all semantic values.
203* Multiple Types:: Specifying several alternative data types.
204* Actions:: An action is the semantic definition of a grammar rule.
205* Action Types:: Specifying data types for actions to operate on.
206* Mid-Rule Actions:: Most actions go at the end of a rule.
207 This says when, why and how to use the exceptional
208 action in the middle of a rule.
209
93dd49ab
PE
210Tracking Locations
211
212* Location Type:: Specifying a data type for locations.
213* Actions and Locations:: Using locations in actions.
214* Location Default Action:: Defining a general way to compute locations.
215
bfa74976
RS
216Bison Declarations
217
b50d2359 218* Require Decl:: Requiring a Bison version.
bfa74976
RS
219* Token Decl:: Declaring terminal symbols.
220* Precedence Decl:: Declaring terminals with precedence and associativity.
221* Union Decl:: Declaring the set of all semantic value types.
222* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 223* Initial Action Decl:: Code run before parsing starts.
72f889cc 224* Destructor Decl:: Declaring how symbols are freed.
d6328241 225* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
226* Start Decl:: Specifying the start symbol.
227* Pure Decl:: Requesting a reentrant parser.
9987d1b3 228* Push Decl:: Requesting a push parser.
bfa74976
RS
229* Decl Summary:: Table of all Bison declarations.
230
231Parser C-Language Interface
232
f5f419de
DJ
233* Parser Function:: How to call @code{yyparse} and what it returns.
234* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
235* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
236* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
237* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
238* Lexical:: You must supply a function @code{yylex}
239 which reads tokens.
240* Error Reporting:: You must supply a function @code{yyerror}.
241* Action Features:: Special features for use in actions.
242* Internationalization:: How to let the parser speak in the user's
243 native language.
bfa74976
RS
244
245The Lexical Analyzer Function @code{yylex}
246
247* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
248* Token Values:: How @code{yylex} must return the semantic value
249 of the token it has read.
250* Token Locations:: How @code{yylex} must return the text location
251 (line number, etc.) of the token, if the
252 actions want that.
253* Pure Calling:: How the calling convention differs in a pure parser
254 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 255
13863333 256The Bison Parser Algorithm
bfa74976 257
742e4900 258* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
259* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
260* Precedence:: Operator precedence works by resolving conflicts.
261* Contextual Precedence:: When an operator's precedence depends on context.
262* Parser States:: The parser is a finite-state-machine with stack.
263* Reduce/Reduce:: When two rules are applicable in the same situation.
f5f419de 264* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 265* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 266* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
267
268Operator Precedence
269
270* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
271* Using Precedence:: How to specify precedence and associativity.
272* Precedence Only:: How to specify precedence only.
bfa74976
RS
273* Precedence Examples:: How these features are used in the previous example.
274* How Precedence:: How they work.
275
276Handling Context Dependencies
277
278* Semantic Tokens:: Token parsing can depend on the semantic context.
279* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
280* Tie-in Recovery:: Lexical tie-ins have implications for how
281 error recovery rules must be written.
282
93dd49ab 283Debugging Your Parser
ec3bc396
AD
284
285* Understanding:: Understanding the structure of your parser.
286* Tracing:: Tracing the execution of your parser.
287
bfa74976
RS
288Invoking Bison
289
13863333 290* Bison Options:: All the options described in detail,
c827f760 291 in alphabetical order by short options.
bfa74976 292* Option Cross Key:: Alphabetical list of long options.
93dd49ab 293* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 294
8405b70c 295Parsers Written In Other Languages
12545799
AD
296
297* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 298* Java Parsers:: The interface to generate Java parser classes
12545799
AD
299
300C++ Parsers
301
302* C++ Bison Interface:: Asking for C++ parser generation
303* C++ Semantic Values:: %union vs. C++
304* C++ Location Values:: The position and location classes
305* C++ Parser Interface:: Instantiating and running the parser
306* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 307* A Complete C++ Example:: Demonstrating their use
12545799
AD
308
309A Complete C++ Example
310
311* Calc++ --- C++ Calculator:: The specifications
312* Calc++ Parsing Driver:: An active parsing context
313* Calc++ Parser:: A parser class
314* Calc++ Scanner:: A pure C++ Flex scanner
315* Calc++ Top Level:: Conducting the band
316
8405b70c
PB
317Java Parsers
318
f5f419de
DJ
319* Java Bison Interface:: Asking for Java parser generation
320* Java Semantic Values:: %type and %token vs. Java
321* Java Location Values:: The position and location classes
322* Java Parser Interface:: Instantiating and running the parser
323* Java Scanner Interface:: Specifying the scanner for the parser
324* Java Action Features:: Special features for use in actions
325* Java Differences:: Differences between C/C++ and Java Grammars
326* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 327
d1a1114f
AD
328Frequently Asked Questions
329
f5f419de
DJ
330* Memory Exhausted:: Breaking the Stack Limits
331* How Can I Reset the Parser:: @code{yyparse} Keeps some State
332* Strings are Destroyed:: @code{yylval} Loses Track of Strings
333* Implementing Gotos/Loops:: Control Flow in the Calculator
334* Multiple start-symbols:: Factoring closely related grammars
335* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
336* I can't build Bison:: Troubleshooting
337* Where can I find help?:: Troubleshouting
338* Bug Reports:: Troublereporting
339* More Languages:: Parsers in C++, Java, and so on
340* Beta Testing:: Experimenting development versions
341* Mailing Lists:: Meeting other Bison users
d1a1114f 342
f2b5126e
PB
343Copying This Manual
344
f5f419de 345* Copying This Manual:: License for copying this manual.
f2b5126e 346
342b8b6e 347@end detailmenu
bfa74976
RS
348@end menu
349
342b8b6e 350@node Introduction
bfa74976
RS
351@unnumbered Introduction
352@cindex introduction
353
6077da58 354@dfn{Bison} is a general-purpose parser generator that converts an
eb45ef3b
JD
355annotated context-free grammar into a deterministic or @acronym{GLR}
356parser employing @acronym{LALR}(1), @acronym{IELR}(1), or canonical
357@acronym{LR}(1) parser tables.
358Once you are proficient with Bison, you can use it to develop a wide
359range of language parsers, from those used in simple desk calculators to
360complex programming languages.
bfa74976
RS
361
362Bison is upward compatible with Yacc: all properly-written Yacc grammars
363ought to work with Bison with no change. Anyone familiar with Yacc
364should be able to use Bison with little trouble. You need to be fluent in
1e137b71 365C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
366
367We begin with tutorial chapters that explain the basic concepts of using
368Bison and show three explained examples, each building on the last. If you
369don't know Bison or Yacc, start by reading these chapters. Reference
370chapters follow which describe specific aspects of Bison in detail.
371
931c7513
RS
372Bison was written primarily by Robert Corbett; Richard Stallman made it
373Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 374multi-character string literals and other features.
931c7513 375
df1af54c 376This edition corresponds to version @value{VERSION} of Bison.
bfa74976 377
342b8b6e 378@node Conditions
bfa74976
RS
379@unnumbered Conditions for Using Bison
380
193d7c70
PE
381The distribution terms for Bison-generated parsers permit using the
382parsers in nonfree programs. Before Bison version 2.2, these extra
383permissions applied only when Bison was generating @acronym{LALR}(1)
384parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 385parsers could be used only in programs that were free software.
a31239f1 386
c827f760
PE
387The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
388compiler, have never
9ecbd125 389had such a requirement. They could always be used for nonfree
a31239f1
RS
390software. The reason Bison was different was not due to a special
391policy decision; it resulted from applying the usual General Public
392License to all of the Bison source code.
393
394The output of the Bison utility---the Bison parser file---contains a
395verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
396parser's implementation. (The actions from your grammar are inserted
397into this implementation at one point, but most of the rest of the
398implementation is not changed.) When we applied the @acronym{GPL}
399terms to the skeleton code for the parser's implementation,
a31239f1
RS
400the effect was to restrict the use of Bison output to free software.
401
402We didn't change the terms because of sympathy for people who want to
403make software proprietary. @strong{Software should be free.} But we
404concluded that limiting Bison's use to free software was doing little to
405encourage people to make other software free. So we decided to make the
406practical conditions for using Bison match the practical conditions for
c827f760 407using the other @acronym{GNU} tools.
bfa74976 408
193d7c70
PE
409This exception applies when Bison is generating code for a parser.
410You can tell whether the exception applies to a Bison output file by
411inspecting the file for text beginning with ``As a special
412exception@dots{}''. The text spells out the exact terms of the
413exception.
262aa8dd 414
f16b0819
PE
415@node Copying
416@unnumbered GNU GENERAL PUBLIC LICENSE
417@include gpl-3.0.texi
bfa74976 418
342b8b6e 419@node Concepts
bfa74976
RS
420@chapter The Concepts of Bison
421
422This chapter introduces many of the basic concepts without which the
423details of Bison will not make sense. If you do not already know how to
424use Bison or Yacc, we suggest you start by reading this chapter carefully.
425
426@menu
f5f419de
DJ
427* Language and Grammar:: Languages and context-free grammars,
428 as mathematical ideas.
429* Grammar in Bison:: How we represent grammars for Bison's sake.
430* Semantic Values:: Each token or syntactic grouping can have
431 a semantic value (the value of an integer,
432 the name of an identifier, etc.).
433* Semantic Actions:: Each rule can have an action containing C code.
434* GLR Parsers:: Writing parsers for general context-free languages.
435* Locations Overview:: Tracking Locations.
436* Bison Parser:: What are Bison's input and output,
437 how is the output used?
438* Stages:: Stages in writing and running Bison grammars.
439* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
440@end menu
441
342b8b6e 442@node Language and Grammar
bfa74976
RS
443@section Languages and Context-Free Grammars
444
bfa74976
RS
445@cindex context-free grammar
446@cindex grammar, context-free
447In order for Bison to parse a language, it must be described by a
448@dfn{context-free grammar}. This means that you specify one or more
449@dfn{syntactic groupings} and give rules for constructing them from their
450parts. For example, in the C language, one kind of grouping is called an
451`expression'. One rule for making an expression might be, ``An expression
452can be made of a minus sign and another expression''. Another would be,
453``An expression can be an integer''. As you can see, rules are often
454recursive, but there must be at least one rule which leads out of the
455recursion.
456
c827f760 457@cindex @acronym{BNF}
bfa74976
RS
458@cindex Backus-Naur form
459The most common formal system for presenting such rules for humans to read
c827f760
PE
460is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
461order to specify the language Algol 60. Any grammar expressed in
462@acronym{BNF} is a context-free grammar. The input to Bison is
463essentially machine-readable @acronym{BNF}.
bfa74976 464
c827f760 465@cindex @acronym{LALR}(1) grammars
eb45ef3b 466@cindex @acronym{IELR}(1) grammars
c827f760 467@cindex @acronym{LR}(1) grammars
eb45ef3b
JD
468There are various important subclasses of context-free grammars.
469Although it can handle almost all context-free grammars, Bison is
470optimized for what are called @acronym{LR}(1) grammars.
471In brief, in these grammars, it must be possible to tell how to parse
472any portion of an input string with just a single token of lookahead.
473For historical reasons, Bison by default is limited by the additional
474restrictions of @acronym{LALR}(1), which is hard to explain simply.
c827f760
PE
475@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
476more information on this.
eb45ef3b
JD
477To escape these additional restrictions, you can request
478@acronym{IELR}(1) or canonical @acronym{LR}(1) parser tables.
479@xref{Decl Summary,,lr.type}, to learn how.
bfa74976 480
c827f760
PE
481@cindex @acronym{GLR} parsing
482@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 483@cindex ambiguous grammars
9d9b8b70 484@cindex nondeterministic parsing
9501dc6e 485
eb45ef3b 486Parsers for @acronym{LR}(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
487roughly that the next grammar rule to apply at any point in the input is
488uniquely determined by the preceding input and a fixed, finite portion
742e4900 489(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 490grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 491apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 492grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 493lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
494With the proper declarations, Bison is also able to parse these more
495general context-free grammars, using a technique known as @acronym{GLR}
496parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
497are able to handle any context-free grammar for which the number of
498possible parses of any given string is finite.
676385e2 499
bfa74976
RS
500@cindex symbols (abstract)
501@cindex token
502@cindex syntactic grouping
503@cindex grouping, syntactic
9501dc6e
AD
504In the formal grammatical rules for a language, each kind of syntactic
505unit or grouping is named by a @dfn{symbol}. Those which are built by
506grouping smaller constructs according to grammatical rules are called
bfa74976
RS
507@dfn{nonterminal symbols}; those which can't be subdivided are called
508@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
509corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 510corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
511
512We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
513nonterminal, mean. The tokens of C are identifiers, constants (numeric
514and string), and the various keywords, arithmetic operators and
515punctuation marks. So the terminal symbols of a grammar for C include
516`identifier', `number', `string', plus one symbol for each keyword,
517operator or punctuation mark: `if', `return', `const', `static', `int',
518`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
519(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
520lexicography, not grammar.)
521
522Here is a simple C function subdivided into tokens:
523
9edcd895
AD
524@ifinfo
525@example
526int /* @r{keyword `int'} */
14d4662b 527square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
528 @r{identifier, close-paren} */
529@{ /* @r{open-brace} */
aa08666d
AD
530 return x * x; /* @r{keyword `return', identifier, asterisk,}
531 @r{identifier, semicolon} */
9edcd895
AD
532@} /* @r{close-brace} */
533@end example
534@end ifinfo
535@ifnotinfo
bfa74976
RS
536@example
537int /* @r{keyword `int'} */
14d4662b 538square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 539@{ /* @r{open-brace} */
9edcd895 540 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
541@} /* @r{close-brace} */
542@end example
9edcd895 543@end ifnotinfo
bfa74976
RS
544
545The syntactic groupings of C include the expression, the statement, the
546declaration, and the function definition. These are represented in the
547grammar of C by nonterminal symbols `expression', `statement',
548`declaration' and `function definition'. The full grammar uses dozens of
549additional language constructs, each with its own nonterminal symbol, in
550order to express the meanings of these four. The example above is a
551function definition; it contains one declaration, and one statement. In
552the statement, each @samp{x} is an expression and so is @samp{x * x}.
553
554Each nonterminal symbol must have grammatical rules showing how it is made
555out of simpler constructs. For example, one kind of C statement is the
556@code{return} statement; this would be described with a grammar rule which
557reads informally as follows:
558
559@quotation
560A `statement' can be made of a `return' keyword, an `expression' and a
561`semicolon'.
562@end quotation
563
564@noindent
565There would be many other rules for `statement', one for each kind of
566statement in C.
567
568@cindex start symbol
569One nonterminal symbol must be distinguished as the special one which
570defines a complete utterance in the language. It is called the @dfn{start
571symbol}. In a compiler, this means a complete input program. In the C
572language, the nonterminal symbol `sequence of definitions and declarations'
573plays this role.
574
575For example, @samp{1 + 2} is a valid C expression---a valid part of a C
576program---but it is not valid as an @emph{entire} C program. In the
577context-free grammar of C, this follows from the fact that `expression' is
578not the start symbol.
579
580The Bison parser reads a sequence of tokens as its input, and groups the
581tokens using the grammar rules. If the input is valid, the end result is
582that the entire token sequence reduces to a single grouping whose symbol is
583the grammar's start symbol. If we use a grammar for C, the entire input
584must be a `sequence of definitions and declarations'. If not, the parser
585reports a syntax error.
586
342b8b6e 587@node Grammar in Bison
bfa74976
RS
588@section From Formal Rules to Bison Input
589@cindex Bison grammar
590@cindex grammar, Bison
591@cindex formal grammar
592
593A formal grammar is a mathematical construct. To define the language
594for Bison, you must write a file expressing the grammar in Bison syntax:
595a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
596
597A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 598as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
599in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
600
601The Bison representation for a terminal symbol is also called a @dfn{token
602type}. Token types as well can be represented as C-like identifiers. By
603convention, these identifiers should be upper case to distinguish them from
604nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
605@code{RETURN}. A terminal symbol that stands for a particular keyword in
606the language should be named after that keyword converted to upper case.
607The terminal symbol @code{error} is reserved for error recovery.
931c7513 608@xref{Symbols}.
bfa74976
RS
609
610A terminal symbol can also be represented as a character literal, just like
611a C character constant. You should do this whenever a token is just a
612single character (parenthesis, plus-sign, etc.): use that same character in
613a literal as the terminal symbol for that token.
614
931c7513
RS
615A third way to represent a terminal symbol is with a C string constant
616containing several characters. @xref{Symbols}, for more information.
617
bfa74976
RS
618The grammar rules also have an expression in Bison syntax. For example,
619here is the Bison rule for a C @code{return} statement. The semicolon in
620quotes is a literal character token, representing part of the C syntax for
621the statement; the naked semicolon, and the colon, are Bison punctuation
622used in every rule.
623
624@example
625stmt: RETURN expr ';'
626 ;
627@end example
628
629@noindent
630@xref{Rules, ,Syntax of Grammar Rules}.
631
342b8b6e 632@node Semantic Values
bfa74976
RS
633@section Semantic Values
634@cindex semantic value
635@cindex value, semantic
636
637A formal grammar selects tokens only by their classifications: for example,
638if a rule mentions the terminal symbol `integer constant', it means that
639@emph{any} integer constant is grammatically valid in that position. The
640precise value of the constant is irrelevant to how to parse the input: if
641@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 642grammatical.
bfa74976
RS
643
644But the precise value is very important for what the input means once it is
645parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6463989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
647has both a token type and a @dfn{semantic value}. @xref{Semantics,
648,Defining Language Semantics},
bfa74976
RS
649for details.
650
651The token type is a terminal symbol defined in the grammar, such as
652@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
653you need to know to decide where the token may validly appear and how to
654group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 655except their types.
bfa74976
RS
656
657The semantic value has all the rest of the information about the
658meaning of the token, such as the value of an integer, or the name of an
659identifier. (A token such as @code{','} which is just punctuation doesn't
660need to have any semantic value.)
661
662For example, an input token might be classified as token type
663@code{INTEGER} and have the semantic value 4. Another input token might
664have the same token type @code{INTEGER} but value 3989. When a grammar
665rule says that @code{INTEGER} is allowed, either of these tokens is
666acceptable because each is an @code{INTEGER}. When the parser accepts the
667token, it keeps track of the token's semantic value.
668
669Each grouping can also have a semantic value as well as its nonterminal
670symbol. For example, in a calculator, an expression typically has a
671semantic value that is a number. In a compiler for a programming
672language, an expression typically has a semantic value that is a tree
673structure describing the meaning of the expression.
674
342b8b6e 675@node Semantic Actions
bfa74976
RS
676@section Semantic Actions
677@cindex semantic actions
678@cindex actions, semantic
679
680In order to be useful, a program must do more than parse input; it must
681also produce some output based on the input. In a Bison grammar, a grammar
682rule can have an @dfn{action} made up of C statements. Each time the
683parser recognizes a match for that rule, the action is executed.
684@xref{Actions}.
13863333 685
bfa74976
RS
686Most of the time, the purpose of an action is to compute the semantic value
687of the whole construct from the semantic values of its parts. For example,
688suppose we have a rule which says an expression can be the sum of two
689expressions. When the parser recognizes such a sum, each of the
690subexpressions has a semantic value which describes how it was built up.
691The action for this rule should create a similar sort of value for the
692newly recognized larger expression.
693
694For example, here is a rule that says an expression can be the sum of
695two subexpressions:
696
697@example
698expr: expr '+' expr @{ $$ = $1 + $3; @}
699 ;
700@end example
701
702@noindent
703The action says how to produce the semantic value of the sum expression
704from the values of the two subexpressions.
705
676385e2 706@node GLR Parsers
c827f760
PE
707@section Writing @acronym{GLR} Parsers
708@cindex @acronym{GLR} parsing
709@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
710@findex %glr-parser
711@cindex conflicts
712@cindex shift/reduce conflicts
fa7e68c3 713@cindex reduce/reduce conflicts
676385e2 714
eb45ef3b
JD
715In some grammars, Bison's deterministic
716@acronym{LR}(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
717certain grammar rule at a given point. That is, it may not be able to
718decide (on the basis of the input read so far) which of two possible
719reductions (applications of a grammar rule) applies, or whether to apply
720a reduction or read more of the input and apply a reduction later in the
721input. These are known respectively as @dfn{reduce/reduce} conflicts
722(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
723(@pxref{Shift/Reduce}).
724
eb45ef3b 725To use a grammar that is not easily modified to be @acronym{LR}(1), a
9501dc6e 726more general parsing algorithm is sometimes necessary. If you include
676385e2 727@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 728(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
729(@acronym{GLR}) parser. These parsers handle Bison grammars that
730contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 731declarations) identically to deterministic parsers. However, when
9501dc6e
AD
732faced with unresolved shift/reduce and reduce/reduce conflicts,
733@acronym{GLR} parsers use the simple expedient of doing both,
734effectively cloning the parser to follow both possibilities. Each of
735the resulting parsers can again split, so that at any given time, there
736can be any number of possible parses being explored. The parsers
676385e2
PH
737proceed in lockstep; that is, all of them consume (shift) a given input
738symbol before any of them proceed to the next. Each of the cloned
739parsers eventually meets one of two possible fates: either it runs into
740a parsing error, in which case it simply vanishes, or it merges with
741another parser, because the two of them have reduced the input to an
742identical set of symbols.
743
744During the time that there are multiple parsers, semantic actions are
745recorded, but not performed. When a parser disappears, its recorded
746semantic actions disappear as well, and are never performed. When a
747reduction makes two parsers identical, causing them to merge, Bison
748records both sets of semantic actions. Whenever the last two parsers
749merge, reverting to the single-parser case, Bison resolves all the
750outstanding actions either by precedences given to the grammar rules
751involved, or by performing both actions, and then calling a designated
752user-defined function on the resulting values to produce an arbitrary
753merged result.
754
fa7e68c3 755@menu
f5f419de
DJ
756* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
757* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
758* GLR Semantic Actions:: Deferred semantic actions have special concerns.
759* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
760@end menu
761
762@node Simple GLR Parsers
763@subsection Using @acronym{GLR} on Unambiguous Grammars
764@cindex @acronym{GLR} parsing, unambiguous grammars
765@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
766@findex %glr-parser
767@findex %expect-rr
768@cindex conflicts
769@cindex reduce/reduce conflicts
770@cindex shift/reduce conflicts
771
772In the simplest cases, you can use the @acronym{GLR} algorithm
eb45ef3b
JD
773to parse grammars that are unambiguous but fail to be @acronym{LR}(1).
774Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
775
776Consider a problem that
777arises in the declaration of enumerated and subrange types in the
778programming language Pascal. Here are some examples:
779
780@example
781type subrange = lo .. hi;
782type enum = (a, b, c);
783@end example
784
785@noindent
786The original language standard allows only numeric
787literals and constant identifiers for the subrange bounds (@samp{lo}
788and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
78910206) and many other
790Pascal implementations allow arbitrary expressions there. This gives
791rise to the following situation, containing a superfluous pair of
792parentheses:
793
794@example
795type subrange = (a) .. b;
796@end example
797
798@noindent
799Compare this to the following declaration of an enumerated
800type with only one value:
801
802@example
803type enum = (a);
804@end example
805
806@noindent
807(These declarations are contrived, but they are syntactically
808valid, and more-complicated cases can come up in practical programs.)
809
810These two declarations look identical until the @samp{..} token.
eb45ef3b 811With normal @acronym{LR}(1) one-token lookahead it is not
fa7e68c3
PE
812possible to decide between the two forms when the identifier
813@samp{a} is parsed. It is, however, desirable
814for a parser to decide this, since in the latter case
815@samp{a} must become a new identifier to represent the enumeration
816value, while in the former case @samp{a} must be evaluated with its
817current meaning, which may be a constant or even a function call.
818
819You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
820to be resolved later, but this typically requires substantial
821contortions in both semantic actions and large parts of the
822grammar, where the parentheses are nested in the recursive rules for
823expressions.
824
825You might think of using the lexer to distinguish between the two
826forms by returning different tokens for currently defined and
827undefined identifiers. But if these declarations occur in a local
828scope, and @samp{a} is defined in an outer scope, then both forms
829are possible---either locally redefining @samp{a}, or using the
830value of @samp{a} from the outer scope. So this approach cannot
831work.
832
e757bb10 833A simple solution to this problem is to declare the parser to
fa7e68c3
PE
834use the @acronym{GLR} algorithm.
835When the @acronym{GLR} parser reaches the critical state, it
836merely splits into two branches and pursues both syntax rules
837simultaneously. Sooner or later, one of them runs into a parsing
838error. If there is a @samp{..} token before the next
839@samp{;}, the rule for enumerated types fails since it cannot
840accept @samp{..} anywhere; otherwise, the subrange type rule
841fails since it requires a @samp{..} token. So one of the branches
842fails silently, and the other one continues normally, performing
843all the intermediate actions that were postponed during the split.
844
845If the input is syntactically incorrect, both branches fail and the parser
846reports a syntax error as usual.
847
848The effect of all this is that the parser seems to ``guess'' the
849correct branch to take, or in other words, it seems to use more
eb45ef3b
JD
850lookahead than the underlying @acronym{LR}(1) algorithm actually allows
851for. In this example, @acronym{LR}(2) would suffice, but also some cases
852that are not @acronym{LR}(@math{k}) for any @math{k} can be handled this way.
fa7e68c3
PE
853
854In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
855and the current Bison parser even takes exponential time and space
856for some grammars. In practice, this rarely happens, and for many
857grammars it is possible to prove that it cannot happen.
858The present example contains only one conflict between two
859rules, and the type-declaration context containing the conflict
860cannot be nested. So the number of
861branches that can exist at any time is limited by the constant 2,
862and the parsing time is still linear.
863
864Here is a Bison grammar corresponding to the example above. It
865parses a vastly simplified form of Pascal type declarations.
866
867@example
868%token TYPE DOTDOT ID
869
870@group
871%left '+' '-'
872%left '*' '/'
873@end group
874
875%%
876
877@group
878type_decl : TYPE ID '=' type ';'
879 ;
880@end group
881
882@group
883type : '(' id_list ')'
884 | expr DOTDOT expr
885 ;
886@end group
887
888@group
889id_list : ID
890 | id_list ',' ID
891 ;
892@end group
893
894@group
895expr : '(' expr ')'
896 | expr '+' expr
897 | expr '-' expr
898 | expr '*' expr
899 | expr '/' expr
900 | ID
901 ;
902@end group
903@end example
904
eb45ef3b 905When used as a normal @acronym{LR}(1) grammar, Bison correctly complains
fa7e68c3
PE
906about one reduce/reduce conflict. In the conflicting situation the
907parser chooses one of the alternatives, arbitrarily the one
908declared first. Therefore the following correct input is not
909recognized:
910
911@example
912type t = (a) .. b;
913@end example
914
915The parser can be turned into a @acronym{GLR} parser, while also telling Bison
916to be silent about the one known reduce/reduce conflict, by
e757bb10 917adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
918@samp{%%}):
919
920@example
921%glr-parser
922%expect-rr 1
923@end example
924
925@noindent
926No change in the grammar itself is required. Now the
927parser recognizes all valid declarations, according to the
928limited syntax above, transparently. In fact, the user does not even
929notice when the parser splits.
930
f8e1c9e5
AD
931So here we have a case where we can use the benefits of @acronym{GLR},
932almost without disadvantages. Even in simple cases like this, however,
933there are at least two potential problems to beware. First, always
934analyze the conflicts reported by Bison to make sure that @acronym{GLR}
935splitting is only done where it is intended. A @acronym{GLR} parser
936splitting inadvertently may cause problems less obvious than an
eb45ef3b 937@acronym{LR} parser statically choosing the wrong alternative in a
f8e1c9e5
AD
938conflict. Second, consider interactions with the lexer (@pxref{Semantic
939Tokens}) with great care. Since a split parser consumes tokens without
940performing any actions during the split, the lexer cannot obtain
941information via parser actions. Some cases of lexer interactions can be
942eliminated by using @acronym{GLR} to shift the complications from the
943lexer to the parser. You must check the remaining cases for
944correctness.
945
946In our example, it would be safe for the lexer to return tokens based on
947their current meanings in some symbol table, because no new symbols are
948defined in the middle of a type declaration. Though it is possible for
949a parser to define the enumeration constants as they are parsed, before
950the type declaration is completed, it actually makes no difference since
951they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
952
953@node Merging GLR Parses
954@subsection Using @acronym{GLR} to Resolve Ambiguities
955@cindex @acronym{GLR} parsing, ambiguous grammars
956@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
957@findex %dprec
958@findex %merge
959@cindex conflicts
960@cindex reduce/reduce conflicts
961
2a8d363a 962Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
963
964@example
965%@{
38a92d50
PE
966 #include <stdio.h>
967 #define YYSTYPE char const *
968 int yylex (void);
969 void yyerror (char const *);
676385e2
PH
970%@}
971
972%token TYPENAME ID
973
974%right '='
975%left '+'
976
977%glr-parser
978
979%%
980
fae437e8 981prog :
676385e2
PH
982 | prog stmt @{ printf ("\n"); @}
983 ;
984
985stmt : expr ';' %dprec 1
986 | decl %dprec 2
987 ;
988
2a8d363a 989expr : ID @{ printf ("%s ", $$); @}
fae437e8 990 | TYPENAME '(' expr ')'
2a8d363a
AD
991 @{ printf ("%s <cast> ", $1); @}
992 | expr '+' expr @{ printf ("+ "); @}
993 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
994 ;
995
fae437e8 996decl : TYPENAME declarator ';'
2a8d363a 997 @{ printf ("%s <declare> ", $1); @}
676385e2 998 | TYPENAME declarator '=' expr ';'
2a8d363a 999 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1000 ;
1001
2a8d363a 1002declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1003 | '(' declarator ')'
1004 ;
1005@end example
1006
1007@noindent
1008This models a problematic part of the C++ grammar---the ambiguity between
1009certain declarations and statements. For example,
1010
1011@example
1012T (x) = y+z;
1013@end example
1014
1015@noindent
1016parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1017(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1018@samp{x} as an @code{ID}).
676385e2 1019Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1020@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1021time it encounters @code{x} in the example above. Since this is a
1022@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1023each choice of resolving the reduce/reduce conflict.
1024Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1025however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1026ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1027the other reduces @code{stmt : decl}, after which both parsers are in an
1028identical state: they've seen @samp{prog stmt} and have the same unprocessed
1029input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1030
1031At this point, the @acronym{GLR} parser requires a specification in the
1032grammar of how to choose between the competing parses.
1033In the example above, the two @code{%dprec}
e757bb10 1034declarations specify that Bison is to give precedence
fa7e68c3 1035to the parse that interprets the example as a
676385e2
PH
1036@code{decl}, which implies that @code{x} is a declarator.
1037The parser therefore prints
1038
1039@example
fae437e8 1040"x" y z + T <init-declare>
676385e2
PH
1041@end example
1042
fa7e68c3
PE
1043The @code{%dprec} declarations only come into play when more than one
1044parse survives. Consider a different input string for this parser:
676385e2
PH
1045
1046@example
1047T (x) + y;
1048@end example
1049
1050@noindent
e757bb10 1051This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1052construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1053Here, there is no ambiguity (this cannot be parsed as a declaration).
1054However, at the time the Bison parser encounters @code{x}, it does not
1055have enough information to resolve the reduce/reduce conflict (again,
1056between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1057case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1058into two, one assuming that @code{x} is an @code{expr}, and the other
1059assuming @code{x} is a @code{declarator}. The second of these parsers
1060then vanishes when it sees @code{+}, and the parser prints
1061
1062@example
fae437e8 1063x T <cast> y +
676385e2
PH
1064@end example
1065
1066Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1067the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1068actions of the two possible parsers, rather than choosing one over the
1069other. To do so, you could change the declaration of @code{stmt} as
1070follows:
1071
1072@example
1073stmt : expr ';' %merge <stmtMerge>
1074 | decl %merge <stmtMerge>
1075 ;
1076@end example
1077
1078@noindent
676385e2
PH
1079and define the @code{stmtMerge} function as:
1080
1081@example
38a92d50
PE
1082static YYSTYPE
1083stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1084@{
1085 printf ("<OR> ");
1086 return "";
1087@}
1088@end example
1089
1090@noindent
1091with an accompanying forward declaration
1092in the C declarations at the beginning of the file:
1093
1094@example
1095%@{
38a92d50 1096 #define YYSTYPE char const *
676385e2
PH
1097 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1098%@}
1099@end example
1100
1101@noindent
fa7e68c3
PE
1102With these declarations, the resulting parser parses the first example
1103as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1104
1105@example
fae437e8 1106"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1107@end example
1108
fa7e68c3 1109Bison requires that all of the
e757bb10 1110productions that participate in any particular merge have identical
fa7e68c3
PE
1111@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1112and the parser will report an error during any parse that results in
1113the offending merge.
9501dc6e 1114
32c29292
JD
1115@node GLR Semantic Actions
1116@subsection GLR Semantic Actions
1117
1118@cindex deferred semantic actions
1119By definition, a deferred semantic action is not performed at the same time as
1120the associated reduction.
1121This raises caveats for several Bison features you might use in a semantic
1122action in a @acronym{GLR} parser.
1123
1124@vindex yychar
1125@cindex @acronym{GLR} parsers and @code{yychar}
1126@vindex yylval
1127@cindex @acronym{GLR} parsers and @code{yylval}
1128@vindex yylloc
1129@cindex @acronym{GLR} parsers and @code{yylloc}
1130In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1131the lookahead token present at the time of the associated reduction.
32c29292
JD
1132After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1133you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1134lookahead token's semantic value and location, if any.
32c29292
JD
1135In a nondeferred semantic action, you can also modify any of these variables to
1136influence syntax analysis.
742e4900 1137@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1138
1139@findex yyclearin
1140@cindex @acronym{GLR} parsers and @code{yyclearin}
1141In a deferred semantic action, it's too late to influence syntax analysis.
1142In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1143shallow copies of the values they had at the time of the associated reduction.
1144For this reason alone, modifying them is dangerous.
1145Moreover, the result of modifying them is undefined and subject to change with
1146future versions of Bison.
1147For example, if a semantic action might be deferred, you should never write it
1148to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1149memory referenced by @code{yylval}.
1150
1151@findex YYERROR
1152@cindex @acronym{GLR} parsers and @code{YYERROR}
1153Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1154(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1155initiate error recovery.
1156During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
eb45ef3b 1157the same as its effect in a deterministic parser.
32c29292
JD
1158In a deferred semantic action, its effect is undefined.
1159@c The effect is probably a syntax error at the split point.
1160
8710fc41
JD
1161Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1162describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1163
fa7e68c3
PE
1164@node Compiler Requirements
1165@subsection Considerations when Compiling @acronym{GLR} Parsers
1166@cindex @code{inline}
9501dc6e 1167@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1168
38a92d50
PE
1169The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1170later. In addition, they use the @code{inline} keyword, which is not
1171C89, but is C99 and is a common extension in pre-C99 compilers. It is
1172up to the user of these parsers to handle
9501dc6e
AD
1173portability issues. For instance, if using Autoconf and the Autoconf
1174macro @code{AC_C_INLINE}, a mere
1175
1176@example
1177%@{
38a92d50 1178 #include <config.h>
9501dc6e
AD
1179%@}
1180@end example
1181
1182@noindent
1183will suffice. Otherwise, we suggest
1184
1185@example
1186%@{
38a92d50
PE
1187 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1188 #define inline
1189 #endif
9501dc6e
AD
1190%@}
1191@end example
676385e2 1192
342b8b6e 1193@node Locations Overview
847bf1f5
AD
1194@section Locations
1195@cindex location
95923bd6
AD
1196@cindex textual location
1197@cindex location, textual
847bf1f5
AD
1198
1199Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1200and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1201the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1202Bison provides a mechanism for handling these locations.
1203
72d2299c 1204Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1205associated location, but the type of locations is the same for all tokens and
72d2299c 1206groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1207structure for storing locations (@pxref{Locations}, for more details).
1208
1209Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1210set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1211is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1212@code{@@3}.
1213
1214When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1215of its left hand side (@pxref{Actions}). In the same way, another default
1216action is used for locations. However, the action for locations is general
847bf1f5 1217enough for most cases, meaning there is usually no need to describe for each
72d2299c 1218rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1219grouping, the default behavior of the output parser is to take the beginning
1220of the first symbol, and the end of the last symbol.
1221
342b8b6e 1222@node Bison Parser
bfa74976
RS
1223@section Bison Output: the Parser File
1224@cindex Bison parser
1225@cindex Bison utility
1226@cindex lexical analyzer, purpose
1227@cindex parser
1228
1229When you run Bison, you give it a Bison grammar file as input. The output
1230is a C source file that parses the language described by the grammar.
1231This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1232utility and the Bison parser are two distinct programs: the Bison utility
1233is a program whose output is the Bison parser that becomes part of your
1234program.
1235
1236The job of the Bison parser is to group tokens into groupings according to
1237the grammar rules---for example, to build identifiers and operators into
1238expressions. As it does this, it runs the actions for the grammar rules it
1239uses.
1240
704a47c4
AD
1241The tokens come from a function called the @dfn{lexical analyzer} that
1242you must supply in some fashion (such as by writing it in C). The Bison
1243parser calls the lexical analyzer each time it wants a new token. It
1244doesn't know what is ``inside'' the tokens (though their semantic values
1245may reflect this). Typically the lexical analyzer makes the tokens by
1246parsing characters of text, but Bison does not depend on this.
1247@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1248
1249The Bison parser file is C code which defines a function named
1250@code{yyparse} which implements that grammar. This function does not make
1251a complete C program: you must supply some additional functions. One is
1252the lexical analyzer. Another is an error-reporting function which the
1253parser calls to report an error. In addition, a complete C program must
1254start with a function called @code{main}; you have to provide this, and
1255arrange for it to call @code{yyparse} or the parser will never run.
1256@xref{Interface, ,Parser C-Language Interface}.
1257
f7ab6a50 1258Aside from the token type names and the symbols in the actions you
7093d0f5 1259write, all symbols defined in the Bison parser file itself
bfa74976
RS
1260begin with @samp{yy} or @samp{YY}. This includes interface functions
1261such as the lexical analyzer function @code{yylex}, the error reporting
1262function @code{yyerror} and the parser function @code{yyparse} itself.
1263This also includes numerous identifiers used for internal purposes.
1264Therefore, you should avoid using C identifiers starting with @samp{yy}
1265or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1266this manual. Also, you should avoid using the C identifiers
1267@samp{malloc} and @samp{free} for anything other than their usual
1268meanings.
bfa74976 1269
7093d0f5
AD
1270In some cases the Bison parser file includes system headers, and in
1271those cases your code should respect the identifiers reserved by those
55289366 1272headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1273@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1274declare memory allocators and related types. @code{<libintl.h>} is
1275included if message translation is in use
1276(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1277be included if you define @code{YYDEBUG} to a nonzero value
1278(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1279
342b8b6e 1280@node Stages
bfa74976
RS
1281@section Stages in Using Bison
1282@cindex stages in using Bison
1283@cindex using Bison
1284
1285The actual language-design process using Bison, from grammar specification
1286to a working compiler or interpreter, has these parts:
1287
1288@enumerate
1289@item
1290Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1291(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1292in the language, describe the action that is to be taken when an
1293instance of that rule is recognized. The action is described by a
1294sequence of C statements.
bfa74976
RS
1295
1296@item
704a47c4
AD
1297Write a lexical analyzer to process input and pass tokens to the parser.
1298The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1299Lexical Analyzer Function @code{yylex}}). It could also be produced
1300using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1301
1302@item
1303Write a controlling function that calls the Bison-produced parser.
1304
1305@item
1306Write error-reporting routines.
1307@end enumerate
1308
1309To turn this source code as written into a runnable program, you
1310must follow these steps:
1311
1312@enumerate
1313@item
1314Run Bison on the grammar to produce the parser.
1315
1316@item
1317Compile the code output by Bison, as well as any other source files.
1318
1319@item
1320Link the object files to produce the finished product.
1321@end enumerate
1322
342b8b6e 1323@node Grammar Layout
bfa74976
RS
1324@section The Overall Layout of a Bison Grammar
1325@cindex grammar file
1326@cindex file format
1327@cindex format of grammar file
1328@cindex layout of Bison grammar
1329
1330The input file for the Bison utility is a @dfn{Bison grammar file}. The
1331general form of a Bison grammar file is as follows:
1332
1333@example
1334%@{
08e49d20 1335@var{Prologue}
bfa74976
RS
1336%@}
1337
1338@var{Bison declarations}
1339
1340%%
1341@var{Grammar rules}
1342%%
08e49d20 1343@var{Epilogue}
bfa74976
RS
1344@end example
1345
1346@noindent
1347The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1348in every Bison grammar file to separate the sections.
1349
72d2299c 1350The prologue may define types and variables used in the actions. You can
342b8b6e 1351also use preprocessor commands to define macros used there, and use
bfa74976 1352@code{#include} to include header files that do any of these things.
38a92d50
PE
1353You need to declare the lexical analyzer @code{yylex} and the error
1354printer @code{yyerror} here, along with any other global identifiers
1355used by the actions in the grammar rules.
bfa74976
RS
1356
1357The Bison declarations declare the names of the terminal and nonterminal
1358symbols, and may also describe operator precedence and the data types of
1359semantic values of various symbols.
1360
1361The grammar rules define how to construct each nonterminal symbol from its
1362parts.
1363
38a92d50
PE
1364The epilogue can contain any code you want to use. Often the
1365definitions of functions declared in the prologue go here. In a
1366simple program, all the rest of the program can go here.
bfa74976 1367
342b8b6e 1368@node Examples
bfa74976
RS
1369@chapter Examples
1370@cindex simple examples
1371@cindex examples, simple
1372
1373Now we show and explain three sample programs written using Bison: a
1374reverse polish notation calculator, an algebraic (infix) notation
1375calculator, and a multi-function calculator. All three have been tested
1376under BSD Unix 4.3; each produces a usable, though limited, interactive
1377desk-top calculator.
1378
1379These examples are simple, but Bison grammars for real programming
aa08666d
AD
1380languages are written the same way. You can copy these examples into a
1381source file to try them.
bfa74976
RS
1382
1383@menu
f5f419de
DJ
1384* RPN Calc:: Reverse polish notation calculator;
1385 a first example with no operator precedence.
1386* Infix Calc:: Infix (algebraic) notation calculator.
1387 Operator precedence is introduced.
bfa74976 1388* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1389* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1390* Multi-function Calc:: Calculator with memory and trig functions.
1391 It uses multiple data-types for semantic values.
1392* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1393@end menu
1394
342b8b6e 1395@node RPN Calc
bfa74976
RS
1396@section Reverse Polish Notation Calculator
1397@cindex reverse polish notation
1398@cindex polish notation calculator
1399@cindex @code{rpcalc}
1400@cindex calculator, simple
1401
1402The first example is that of a simple double-precision @dfn{reverse polish
1403notation} calculator (a calculator using postfix operators). This example
1404provides a good starting point, since operator precedence is not an issue.
1405The second example will illustrate how operator precedence is handled.
1406
1407The source code for this calculator is named @file{rpcalc.y}. The
1408@samp{.y} extension is a convention used for Bison input files.
1409
1410@menu
f5f419de
DJ
1411* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1412* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1413* Rpcalc Lexer:: The lexical analyzer.
1414* Rpcalc Main:: The controlling function.
1415* Rpcalc Error:: The error reporting function.
1416* Rpcalc Generate:: Running Bison on the grammar file.
1417* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1418@end menu
1419
f5f419de 1420@node Rpcalc Declarations
bfa74976
RS
1421@subsection Declarations for @code{rpcalc}
1422
1423Here are the C and Bison declarations for the reverse polish notation
1424calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1425
1426@example
72d2299c 1427/* Reverse polish notation calculator. */
bfa74976
RS
1428
1429%@{
38a92d50
PE
1430 #define YYSTYPE double
1431 #include <math.h>
1432 int yylex (void);
1433 void yyerror (char const *);
bfa74976
RS
1434%@}
1435
1436%token NUM
1437
72d2299c 1438%% /* Grammar rules and actions follow. */
bfa74976
RS
1439@end example
1440
75f5aaea 1441The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1442preprocessor directives and two forward declarations.
bfa74976
RS
1443
1444The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1445specifying the C data type for semantic values of both tokens and
1446groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1447Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1448don't define it, @code{int} is the default. Because we specify
1449@code{double}, each token and each expression has an associated value,
1450which is a floating point number.
bfa74976
RS
1451
1452The @code{#include} directive is used to declare the exponentiation
1453function @code{pow}.
1454
38a92d50
PE
1455The forward declarations for @code{yylex} and @code{yyerror} are
1456needed because the C language requires that functions be declared
1457before they are used. These functions will be defined in the
1458epilogue, but the parser calls them so they must be declared in the
1459prologue.
1460
704a47c4
AD
1461The second section, Bison declarations, provides information to Bison
1462about the token types (@pxref{Bison Declarations, ,The Bison
1463Declarations Section}). Each terminal symbol that is not a
1464single-character literal must be declared here. (Single-character
bfa74976
RS
1465literals normally don't need to be declared.) In this example, all the
1466arithmetic operators are designated by single-character literals, so the
1467only terminal symbol that needs to be declared is @code{NUM}, the token
1468type for numeric constants.
1469
342b8b6e 1470@node Rpcalc Rules
bfa74976
RS
1471@subsection Grammar Rules for @code{rpcalc}
1472
1473Here are the grammar rules for the reverse polish notation calculator.
1474
1475@example
1476input: /* empty */
1477 | input line
1478;
1479
1480line: '\n'
18b519c0 1481 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1482;
1483
18b519c0
AD
1484exp: NUM @{ $$ = $1; @}
1485 | exp exp '+' @{ $$ = $1 + $2; @}
1486 | exp exp '-' @{ $$ = $1 - $2; @}
1487 | exp exp '*' @{ $$ = $1 * $2; @}
1488 | exp exp '/' @{ $$ = $1 / $2; @}
1489 /* Exponentiation */
1490 | exp exp '^' @{ $$ = pow ($1, $2); @}
1491 /* Unary minus */
1492 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1493;
1494%%
1495@end example
1496
1497The groupings of the rpcalc ``language'' defined here are the expression
1498(given the name @code{exp}), the line of input (@code{line}), and the
1499complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1500symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1501which is read as ``or''. The following sections explain what these rules
1502mean.
1503
1504The semantics of the language is determined by the actions taken when a
1505grouping is recognized. The actions are the C code that appears inside
1506braces. @xref{Actions}.
1507
1508You must specify these actions in C, but Bison provides the means for
1509passing semantic values between the rules. In each action, the
1510pseudo-variable @code{$$} stands for the semantic value for the grouping
1511that the rule is going to construct. Assigning a value to @code{$$} is the
1512main job of most actions. The semantic values of the components of the
1513rule are referred to as @code{$1}, @code{$2}, and so on.
1514
1515@menu
13863333
AD
1516* Rpcalc Input::
1517* Rpcalc Line::
1518* Rpcalc Expr::
bfa74976
RS
1519@end menu
1520
342b8b6e 1521@node Rpcalc Input
bfa74976
RS
1522@subsubsection Explanation of @code{input}
1523
1524Consider the definition of @code{input}:
1525
1526@example
1527input: /* empty */
1528 | input line
1529;
1530@end example
1531
1532This definition reads as follows: ``A complete input is either an empty
1533string, or a complete input followed by an input line''. Notice that
1534``complete input'' is defined in terms of itself. This definition is said
1535to be @dfn{left recursive} since @code{input} appears always as the
1536leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1537
1538The first alternative is empty because there are no symbols between the
1539colon and the first @samp{|}; this means that @code{input} can match an
1540empty string of input (no tokens). We write the rules this way because it
1541is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1542It's conventional to put an empty alternative first and write the comment
1543@samp{/* empty */} in it.
1544
1545The second alternate rule (@code{input line}) handles all nontrivial input.
1546It means, ``After reading any number of lines, read one more line if
1547possible.'' The left recursion makes this rule into a loop. Since the
1548first alternative matches empty input, the loop can be executed zero or
1549more times.
1550
1551The parser function @code{yyparse} continues to process input until a
1552grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1553input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1554
342b8b6e 1555@node Rpcalc Line
bfa74976
RS
1556@subsubsection Explanation of @code{line}
1557
1558Now consider the definition of @code{line}:
1559
1560@example
1561line: '\n'
1562 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1563;
1564@end example
1565
1566The first alternative is a token which is a newline character; this means
1567that rpcalc accepts a blank line (and ignores it, since there is no
1568action). The second alternative is an expression followed by a newline.
1569This is the alternative that makes rpcalc useful. The semantic value of
1570the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1571question is the first symbol in the alternative. The action prints this
1572value, which is the result of the computation the user asked for.
1573
1574This action is unusual because it does not assign a value to @code{$$}. As
1575a consequence, the semantic value associated with the @code{line} is
1576uninitialized (its value will be unpredictable). This would be a bug if
1577that value were ever used, but we don't use it: once rpcalc has printed the
1578value of the user's input line, that value is no longer needed.
1579
342b8b6e 1580@node Rpcalc Expr
bfa74976
RS
1581@subsubsection Explanation of @code{expr}
1582
1583The @code{exp} grouping has several rules, one for each kind of expression.
1584The first rule handles the simplest expressions: those that are just numbers.
1585The second handles an addition-expression, which looks like two expressions
1586followed by a plus-sign. The third handles subtraction, and so on.
1587
1588@example
1589exp: NUM
1590 | exp exp '+' @{ $$ = $1 + $2; @}
1591 | exp exp '-' @{ $$ = $1 - $2; @}
1592 @dots{}
1593 ;
1594@end example
1595
1596We have used @samp{|} to join all the rules for @code{exp}, but we could
1597equally well have written them separately:
1598
1599@example
1600exp: NUM ;
1601exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1602exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1603 @dots{}
1604@end example
1605
1606Most of the rules have actions that compute the value of the expression in
1607terms of the value of its parts. For example, in the rule for addition,
1608@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1609the second one. The third component, @code{'+'}, has no meaningful
1610associated semantic value, but if it had one you could refer to it as
1611@code{$3}. When @code{yyparse} recognizes a sum expression using this
1612rule, the sum of the two subexpressions' values is produced as the value of
1613the entire expression. @xref{Actions}.
1614
1615You don't have to give an action for every rule. When a rule has no
1616action, Bison by default copies the value of @code{$1} into @code{$$}.
1617This is what happens in the first rule (the one that uses @code{NUM}).
1618
1619The formatting shown here is the recommended convention, but Bison does
72d2299c 1620not require it. You can add or change white space as much as you wish.
bfa74976
RS
1621For example, this:
1622
1623@example
99a9344e 1624exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1625@end example
1626
1627@noindent
1628means the same thing as this:
1629
1630@example
1631exp: NUM
1632 | exp exp '+' @{ $$ = $1 + $2; @}
1633 | @dots{}
99a9344e 1634;
bfa74976
RS
1635@end example
1636
1637@noindent
1638The latter, however, is much more readable.
1639
342b8b6e 1640@node Rpcalc Lexer
bfa74976
RS
1641@subsection The @code{rpcalc} Lexical Analyzer
1642@cindex writing a lexical analyzer
1643@cindex lexical analyzer, writing
1644
704a47c4
AD
1645The lexical analyzer's job is low-level parsing: converting characters
1646or sequences of characters into tokens. The Bison parser gets its
1647tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1648Analyzer Function @code{yylex}}.
bfa74976 1649
c827f760
PE
1650Only a simple lexical analyzer is needed for the @acronym{RPN}
1651calculator. This
bfa74976
RS
1652lexical analyzer skips blanks and tabs, then reads in numbers as
1653@code{double} and returns them as @code{NUM} tokens. Any other character
1654that isn't part of a number is a separate token. Note that the token-code
1655for such a single-character token is the character itself.
1656
1657The return value of the lexical analyzer function is a numeric code which
1658represents a token type. The same text used in Bison rules to stand for
1659this token type is also a C expression for the numeric code for the type.
1660This works in two ways. If the token type is a character literal, then its
e966383b 1661numeric code is that of the character; you can use the same
bfa74976
RS
1662character literal in the lexical analyzer to express the number. If the
1663token type is an identifier, that identifier is defined by Bison as a C
1664macro whose definition is the appropriate number. In this example,
1665therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1666
1964ad8c
AD
1667The semantic value of the token (if it has one) is stored into the
1668global variable @code{yylval}, which is where the Bison parser will look
1669for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1670defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1671,Declarations for @code{rpcalc}}.)
bfa74976 1672
72d2299c
PE
1673A token type code of zero is returned if the end-of-input is encountered.
1674(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1675
1676Here is the code for the lexical analyzer:
1677
1678@example
1679@group
72d2299c 1680/* The lexical analyzer returns a double floating point
e966383b 1681 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1682 of the character read if not a number. It skips all blanks
1683 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1684
1685#include <ctype.h>
1686@end group
1687
1688@group
13863333
AD
1689int
1690yylex (void)
bfa74976
RS
1691@{
1692 int c;
1693
72d2299c 1694 /* Skip white space. */
13863333 1695 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1696 ;
1697@end group
1698@group
72d2299c 1699 /* Process numbers. */
13863333 1700 if (c == '.' || isdigit (c))
bfa74976
RS
1701 @{
1702 ungetc (c, stdin);
1703 scanf ("%lf", &yylval);
1704 return NUM;
1705 @}
1706@end group
1707@group
72d2299c 1708 /* Return end-of-input. */
13863333 1709 if (c == EOF)
bfa74976 1710 return 0;
72d2299c 1711 /* Return a single char. */
13863333 1712 return c;
bfa74976
RS
1713@}
1714@end group
1715@end example
1716
342b8b6e 1717@node Rpcalc Main
bfa74976
RS
1718@subsection The Controlling Function
1719@cindex controlling function
1720@cindex main function in simple example
1721
1722In keeping with the spirit of this example, the controlling function is
1723kept to the bare minimum. The only requirement is that it call
1724@code{yyparse} to start the process of parsing.
1725
1726@example
1727@group
13863333
AD
1728int
1729main (void)
bfa74976 1730@{
13863333 1731 return yyparse ();
bfa74976
RS
1732@}
1733@end group
1734@end example
1735
342b8b6e 1736@node Rpcalc Error
bfa74976
RS
1737@subsection The Error Reporting Routine
1738@cindex error reporting routine
1739
1740When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1741function @code{yyerror} to print an error message (usually but not
6e649e65 1742always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1743@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1744here is the definition we will use:
bfa74976
RS
1745
1746@example
1747@group
1748#include <stdio.h>
1749
38a92d50 1750/* Called by yyparse on error. */
13863333 1751void
38a92d50 1752yyerror (char const *s)
bfa74976 1753@{
4e03e201 1754 fprintf (stderr, "%s\n", s);
bfa74976
RS
1755@}
1756@end group
1757@end example
1758
1759After @code{yyerror} returns, the Bison parser may recover from the error
1760and continue parsing if the grammar contains a suitable error rule
1761(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1762have not written any error rules in this example, so any invalid input will
1763cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1764real calculator, but it is adequate for the first example.
bfa74976 1765
f5f419de 1766@node Rpcalc Generate
bfa74976
RS
1767@subsection Running Bison to Make the Parser
1768@cindex running Bison (introduction)
1769
ceed8467
AD
1770Before running Bison to produce a parser, we need to decide how to
1771arrange all the source code in one or more source files. For such a
1772simple example, the easiest thing is to put everything in one file. The
1773definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1774end, in the epilogue of the file
75f5aaea 1775(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1776
1777For a large project, you would probably have several source files, and use
1778@code{make} to arrange to recompile them.
1779
1780With all the source in a single file, you use the following command to
1781convert it into a parser file:
1782
1783@example
fa4d969f 1784bison @var{file}.y
bfa74976
RS
1785@end example
1786
1787@noindent
1788In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1789@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1790removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1791Bison contains the source code for @code{yyparse}. The additional
1792functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1793are copied verbatim to the output.
1794
342b8b6e 1795@node Rpcalc Compile
bfa74976
RS
1796@subsection Compiling the Parser File
1797@cindex compiling the parser
1798
1799Here is how to compile and run the parser file:
1800
1801@example
1802@group
1803# @r{List files in current directory.}
9edcd895 1804$ @kbd{ls}
bfa74976
RS
1805rpcalc.tab.c rpcalc.y
1806@end group
1807
1808@group
1809# @r{Compile the Bison parser.}
1810# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1811$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1812@end group
1813
1814@group
1815# @r{List files again.}
9edcd895 1816$ @kbd{ls}
bfa74976
RS
1817rpcalc rpcalc.tab.c rpcalc.y
1818@end group
1819@end example
1820
1821The file @file{rpcalc} now contains the executable code. Here is an
1822example session using @code{rpcalc}.
1823
1824@example
9edcd895
AD
1825$ @kbd{rpcalc}
1826@kbd{4 9 +}
bfa74976 182713
9edcd895 1828@kbd{3 7 + 3 4 5 *+-}
bfa74976 1829-13
9edcd895 1830@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 183113
9edcd895 1832@kbd{5 6 / 4 n +}
bfa74976 1833-3.166666667
9edcd895 1834@kbd{3 4 ^} @r{Exponentiation}
bfa74976 183581
9edcd895
AD
1836@kbd{^D} @r{End-of-file indicator}
1837$
bfa74976
RS
1838@end example
1839
342b8b6e 1840@node Infix Calc
bfa74976
RS
1841@section Infix Notation Calculator: @code{calc}
1842@cindex infix notation calculator
1843@cindex @code{calc}
1844@cindex calculator, infix notation
1845
1846We now modify rpcalc to handle infix operators instead of postfix. Infix
1847notation involves the concept of operator precedence and the need for
1848parentheses nested to arbitrary depth. Here is the Bison code for
1849@file{calc.y}, an infix desk-top calculator.
1850
1851@example
38a92d50 1852/* Infix notation calculator. */
bfa74976
RS
1853
1854%@{
38a92d50
PE
1855 #define YYSTYPE double
1856 #include <math.h>
1857 #include <stdio.h>
1858 int yylex (void);
1859 void yyerror (char const *);
bfa74976
RS
1860%@}
1861
38a92d50 1862/* Bison declarations. */
bfa74976
RS
1863%token NUM
1864%left '-' '+'
1865%left '*' '/'
d78f0ac9
AD
1866%precedence NEG /* negation--unary minus */
1867%right '^' /* exponentiation */
bfa74976 1868
38a92d50
PE
1869%% /* The grammar follows. */
1870input: /* empty */
bfa74976
RS
1871 | input line
1872;
1873
1874line: '\n'
1875 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1876;
1877
1878exp: NUM @{ $$ = $1; @}
1879 | exp '+' exp @{ $$ = $1 + $3; @}
1880 | exp '-' exp @{ $$ = $1 - $3; @}
1881 | exp '*' exp @{ $$ = $1 * $3; @}
1882 | exp '/' exp @{ $$ = $1 / $3; @}
1883 | '-' exp %prec NEG @{ $$ = -$2; @}
1884 | exp '^' exp @{ $$ = pow ($1, $3); @}
1885 | '(' exp ')' @{ $$ = $2; @}
1886;
1887%%
1888@end example
1889
1890@noindent
ceed8467
AD
1891The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1892same as before.
bfa74976
RS
1893
1894There are two important new features shown in this code.
1895
1896In the second section (Bison declarations), @code{%left} declares token
1897types and says they are left-associative operators. The declarations
1898@code{%left} and @code{%right} (right associativity) take the place of
1899@code{%token} which is used to declare a token type name without
d78f0ac9 1900associativity/precedence. (These tokens are single-character literals, which
bfa74976 1901ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 1902the associativity/precedence.)
bfa74976
RS
1903
1904Operator precedence is determined by the line ordering of the
1905declarations; the higher the line number of the declaration (lower on
1906the page or screen), the higher the precedence. Hence, exponentiation
1907has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
1908by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
1909only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 1910Precedence}.
bfa74976 1911
704a47c4
AD
1912The other important new feature is the @code{%prec} in the grammar
1913section for the unary minus operator. The @code{%prec} simply instructs
1914Bison that the rule @samp{| '-' exp} has the same precedence as
1915@code{NEG}---in this case the next-to-highest. @xref{Contextual
1916Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1917
1918Here is a sample run of @file{calc.y}:
1919
1920@need 500
1921@example
9edcd895
AD
1922$ @kbd{calc}
1923@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19246.880952381
9edcd895 1925@kbd{-56 + 2}
bfa74976 1926-54
9edcd895 1927@kbd{3 ^ 2}
bfa74976
RS
19289
1929@end example
1930
342b8b6e 1931@node Simple Error Recovery
bfa74976
RS
1932@section Simple Error Recovery
1933@cindex error recovery, simple
1934
1935Up to this point, this manual has not addressed the issue of @dfn{error
1936recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1937error. All we have handled is error reporting with @code{yyerror}.
1938Recall that by default @code{yyparse} returns after calling
1939@code{yyerror}. This means that an erroneous input line causes the
1940calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1941
1942The Bison language itself includes the reserved word @code{error}, which
1943may be included in the grammar rules. In the example below it has
1944been added to one of the alternatives for @code{line}:
1945
1946@example
1947@group
1948line: '\n'
1949 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1950 | error '\n' @{ yyerrok; @}
1951;
1952@end group
1953@end example
1954
ceed8467 1955This addition to the grammar allows for simple error recovery in the
6e649e65 1956event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1957read, the error will be recognized by the third rule for @code{line},
1958and parsing will continue. (The @code{yyerror} function is still called
1959upon to print its message as well.) The action executes the statement
1960@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1961that error recovery is complete (@pxref{Error Recovery}). Note the
1962difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1963misprint.
bfa74976
RS
1964
1965This form of error recovery deals with syntax errors. There are other
1966kinds of errors; for example, division by zero, which raises an exception
1967signal that is normally fatal. A real calculator program must handle this
1968signal and use @code{longjmp} to return to @code{main} and resume parsing
1969input lines; it would also have to discard the rest of the current line of
1970input. We won't discuss this issue further because it is not specific to
1971Bison programs.
1972
342b8b6e
AD
1973@node Location Tracking Calc
1974@section Location Tracking Calculator: @code{ltcalc}
1975@cindex location tracking calculator
1976@cindex @code{ltcalc}
1977@cindex calculator, location tracking
1978
9edcd895
AD
1979This example extends the infix notation calculator with location
1980tracking. This feature will be used to improve the error messages. For
1981the sake of clarity, this example is a simple integer calculator, since
1982most of the work needed to use locations will be done in the lexical
72d2299c 1983analyzer.
342b8b6e
AD
1984
1985@menu
f5f419de
DJ
1986* Ltcalc Declarations:: Bison and C declarations for ltcalc.
1987* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
1988* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
1989@end menu
1990
f5f419de 1991@node Ltcalc Declarations
342b8b6e
AD
1992@subsection Declarations for @code{ltcalc}
1993
9edcd895
AD
1994The C and Bison declarations for the location tracking calculator are
1995the same as the declarations for the infix notation calculator.
342b8b6e
AD
1996
1997@example
1998/* Location tracking calculator. */
1999
2000%@{
38a92d50
PE
2001 #define YYSTYPE int
2002 #include <math.h>
2003 int yylex (void);
2004 void yyerror (char const *);
342b8b6e
AD
2005%@}
2006
2007/* Bison declarations. */
2008%token NUM
2009
2010%left '-' '+'
2011%left '*' '/'
d78f0ac9 2012%precedence NEG
342b8b6e
AD
2013%right '^'
2014
38a92d50 2015%% /* The grammar follows. */
342b8b6e
AD
2016@end example
2017
9edcd895
AD
2018@noindent
2019Note there are no declarations specific to locations. Defining a data
2020type for storing locations is not needed: we will use the type provided
2021by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2022four member structure with the following integer fields:
2023@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2024@code{last_column}. By conventions, and in accordance with the GNU
2025Coding Standards and common practice, the line and column count both
2026start at 1.
342b8b6e
AD
2027
2028@node Ltcalc Rules
2029@subsection Grammar Rules for @code{ltcalc}
2030
9edcd895
AD
2031Whether handling locations or not has no effect on the syntax of your
2032language. Therefore, grammar rules for this example will be very close
2033to those of the previous example: we will only modify them to benefit
2034from the new information.
342b8b6e 2035
9edcd895
AD
2036Here, we will use locations to report divisions by zero, and locate the
2037wrong expressions or subexpressions.
342b8b6e
AD
2038
2039@example
2040@group
2041input : /* empty */
2042 | input line
2043;
2044@end group
2045
2046@group
2047line : '\n'
2048 | exp '\n' @{ printf ("%d\n", $1); @}
2049;
2050@end group
2051
2052@group
2053exp : NUM @{ $$ = $1; @}
2054 | exp '+' exp @{ $$ = $1 + $3; @}
2055 | exp '-' exp @{ $$ = $1 - $3; @}
2056 | exp '*' exp @{ $$ = $1 * $3; @}
2057@end group
342b8b6e 2058@group
9edcd895 2059 | exp '/' exp
342b8b6e
AD
2060 @{
2061 if ($3)
2062 $$ = $1 / $3;
2063 else
2064 @{
2065 $$ = 1;
9edcd895
AD
2066 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2067 @@3.first_line, @@3.first_column,
2068 @@3.last_line, @@3.last_column);
342b8b6e
AD
2069 @}
2070 @}
2071@end group
2072@group
178e123e 2073 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2074 | exp '^' exp @{ $$ = pow ($1, $3); @}
2075 | '(' exp ')' @{ $$ = $2; @}
2076@end group
2077@end example
2078
2079This code shows how to reach locations inside of semantic actions, by
2080using the pseudo-variables @code{@@@var{n}} for rule components, and the
2081pseudo-variable @code{@@$} for groupings.
2082
9edcd895
AD
2083We don't need to assign a value to @code{@@$}: the output parser does it
2084automatically. By default, before executing the C code of each action,
2085@code{@@$} is set to range from the beginning of @code{@@1} to the end
2086of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2087can be redefined (@pxref{Location Default Action, , Default Action for
2088Locations}), and for very specific rules, @code{@@$} can be computed by
2089hand.
342b8b6e
AD
2090
2091@node Ltcalc Lexer
2092@subsection The @code{ltcalc} Lexical Analyzer.
2093
9edcd895 2094Until now, we relied on Bison's defaults to enable location
72d2299c 2095tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2096able to feed the parser with the token locations, as it already does for
2097semantic values.
342b8b6e 2098
9edcd895
AD
2099To this end, we must take into account every single character of the
2100input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2101
2102@example
2103@group
2104int
2105yylex (void)
2106@{
2107 int c;
18b519c0 2108@end group
342b8b6e 2109
18b519c0 2110@group
72d2299c 2111 /* Skip white space. */
342b8b6e
AD
2112 while ((c = getchar ()) == ' ' || c == '\t')
2113 ++yylloc.last_column;
18b519c0 2114@end group
342b8b6e 2115
18b519c0 2116@group
72d2299c 2117 /* Step. */
342b8b6e
AD
2118 yylloc.first_line = yylloc.last_line;
2119 yylloc.first_column = yylloc.last_column;
2120@end group
2121
2122@group
72d2299c 2123 /* Process numbers. */
342b8b6e
AD
2124 if (isdigit (c))
2125 @{
2126 yylval = c - '0';
2127 ++yylloc.last_column;
2128 while (isdigit (c = getchar ()))
2129 @{
2130 ++yylloc.last_column;
2131 yylval = yylval * 10 + c - '0';
2132 @}
2133 ungetc (c, stdin);
2134 return NUM;
2135 @}
2136@end group
2137
72d2299c 2138 /* Return end-of-input. */
342b8b6e
AD
2139 if (c == EOF)
2140 return 0;
2141
72d2299c 2142 /* Return a single char, and update location. */
342b8b6e
AD
2143 if (c == '\n')
2144 @{
2145 ++yylloc.last_line;
2146 yylloc.last_column = 0;
2147 @}
2148 else
2149 ++yylloc.last_column;
2150 return c;
2151@}
2152@end example
2153
9edcd895
AD
2154Basically, the lexical analyzer performs the same processing as before:
2155it skips blanks and tabs, and reads numbers or single-character tokens.
2156In addition, it updates @code{yylloc}, the global variable (of type
2157@code{YYLTYPE}) containing the token's location.
342b8b6e 2158
9edcd895 2159Now, each time this function returns a token, the parser has its number
72d2299c 2160as well as its semantic value, and its location in the text. The last
9edcd895
AD
2161needed change is to initialize @code{yylloc}, for example in the
2162controlling function:
342b8b6e
AD
2163
2164@example
9edcd895 2165@group
342b8b6e
AD
2166int
2167main (void)
2168@{
2169 yylloc.first_line = yylloc.last_line = 1;
2170 yylloc.first_column = yylloc.last_column = 0;
2171 return yyparse ();
2172@}
9edcd895 2173@end group
342b8b6e
AD
2174@end example
2175
9edcd895
AD
2176Remember that computing locations is not a matter of syntax. Every
2177character must be associated to a location update, whether it is in
2178valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2179
2180@node Multi-function Calc
bfa74976
RS
2181@section Multi-Function Calculator: @code{mfcalc}
2182@cindex multi-function calculator
2183@cindex @code{mfcalc}
2184@cindex calculator, multi-function
2185
2186Now that the basics of Bison have been discussed, it is time to move on to
2187a more advanced problem. The above calculators provided only five
2188functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2189be nice to have a calculator that provides other mathematical functions such
2190as @code{sin}, @code{cos}, etc.
2191
2192It is easy to add new operators to the infix calculator as long as they are
2193only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2194back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2195adding a new operator. But we want something more flexible: built-in
2196functions whose syntax has this form:
2197
2198@example
2199@var{function_name} (@var{argument})
2200@end example
2201
2202@noindent
2203At the same time, we will add memory to the calculator, by allowing you
2204to create named variables, store values in them, and use them later.
2205Here is a sample session with the multi-function calculator:
2206
2207@example
9edcd895
AD
2208$ @kbd{mfcalc}
2209@kbd{pi = 3.141592653589}
bfa74976 22103.1415926536
9edcd895 2211@kbd{sin(pi)}
bfa74976 22120.0000000000
9edcd895 2213@kbd{alpha = beta1 = 2.3}
bfa74976 22142.3000000000
9edcd895 2215@kbd{alpha}
bfa74976 22162.3000000000
9edcd895 2217@kbd{ln(alpha)}
bfa74976 22180.8329091229
9edcd895 2219@kbd{exp(ln(beta1))}
bfa74976 22202.3000000000
9edcd895 2221$
bfa74976
RS
2222@end example
2223
2224Note that multiple assignment and nested function calls are permitted.
2225
2226@menu
f5f419de
DJ
2227* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2228* Mfcalc Rules:: Grammar rules for the calculator.
2229* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2230@end menu
2231
f5f419de 2232@node Mfcalc Declarations
bfa74976
RS
2233@subsection Declarations for @code{mfcalc}
2234
2235Here are the C and Bison declarations for the multi-function calculator.
2236
2237@smallexample
18b519c0 2238@group
bfa74976 2239%@{
38a92d50
PE
2240 #include <math.h> /* For math functions, cos(), sin(), etc. */
2241 #include "calc.h" /* Contains definition of `symrec'. */
2242 int yylex (void);
2243 void yyerror (char const *);
bfa74976 2244%@}
18b519c0
AD
2245@end group
2246@group
bfa74976 2247%union @{
38a92d50
PE
2248 double val; /* For returning numbers. */
2249 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2250@}
18b519c0 2251@end group
38a92d50
PE
2252%token <val> NUM /* Simple double precision number. */
2253%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2254%type <val> exp
2255
18b519c0 2256@group
bfa74976
RS
2257%right '='
2258%left '-' '+'
2259%left '*' '/'
d78f0ac9
AD
2260%precedence NEG /* negation--unary minus */
2261%right '^' /* exponentiation */
18b519c0 2262@end group
38a92d50 2263%% /* The grammar follows. */
bfa74976
RS
2264@end smallexample
2265
2266The above grammar introduces only two new features of the Bison language.
2267These features allow semantic values to have various data types
2268(@pxref{Multiple Types, ,More Than One Value Type}).
2269
2270The @code{%union} declaration specifies the entire list of possible types;
2271this is instead of defining @code{YYSTYPE}. The allowable types are now
2272double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2273the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2274
2275Since values can now have various types, it is necessary to associate a
2276type with each grammar symbol whose semantic value is used. These symbols
2277are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2278declarations are augmented with information about their data type (placed
2279between angle brackets).
2280
704a47c4
AD
2281The Bison construct @code{%type} is used for declaring nonterminal
2282symbols, just as @code{%token} is used for declaring token types. We
2283have not used @code{%type} before because nonterminal symbols are
2284normally declared implicitly by the rules that define them. But
2285@code{exp} must be declared explicitly so we can specify its value type.
2286@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2287
342b8b6e 2288@node Mfcalc Rules
bfa74976
RS
2289@subsection Grammar Rules for @code{mfcalc}
2290
2291Here are the grammar rules for the multi-function calculator.
2292Most of them are copied directly from @code{calc}; three rules,
2293those which mention @code{VAR} or @code{FNCT}, are new.
2294
2295@smallexample
18b519c0 2296@group
bfa74976
RS
2297input: /* empty */
2298 | input line
2299;
18b519c0 2300@end group
bfa74976 2301
18b519c0 2302@group
bfa74976
RS
2303line:
2304 '\n'
2305 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2306 | error '\n' @{ yyerrok; @}
2307;
18b519c0 2308@end group
bfa74976 2309
18b519c0 2310@group
bfa74976
RS
2311exp: NUM @{ $$ = $1; @}
2312 | VAR @{ $$ = $1->value.var; @}
2313 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2314 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2315 | exp '+' exp @{ $$ = $1 + $3; @}
2316 | exp '-' exp @{ $$ = $1 - $3; @}
2317 | exp '*' exp @{ $$ = $1 * $3; @}
2318 | exp '/' exp @{ $$ = $1 / $3; @}
2319 | '-' exp %prec NEG @{ $$ = -$2; @}
2320 | exp '^' exp @{ $$ = pow ($1, $3); @}
2321 | '(' exp ')' @{ $$ = $2; @}
2322;
18b519c0 2323@end group
38a92d50 2324/* End of grammar. */
bfa74976
RS
2325%%
2326@end smallexample
2327
f5f419de 2328@node Mfcalc Symbol Table
bfa74976
RS
2329@subsection The @code{mfcalc} Symbol Table
2330@cindex symbol table example
2331
2332The multi-function calculator requires a symbol table to keep track of the
2333names and meanings of variables and functions. This doesn't affect the
2334grammar rules (except for the actions) or the Bison declarations, but it
2335requires some additional C functions for support.
2336
2337The symbol table itself consists of a linked list of records. Its
2338definition, which is kept in the header @file{calc.h}, is as follows. It
2339provides for either functions or variables to be placed in the table.
2340
2341@smallexample
2342@group
38a92d50 2343/* Function type. */
32dfccf8 2344typedef double (*func_t) (double);
72f889cc 2345@end group
32dfccf8 2346
72f889cc 2347@group
38a92d50 2348/* Data type for links in the chain of symbols. */
bfa74976
RS
2349struct symrec
2350@{
38a92d50 2351 char *name; /* name of symbol */
bfa74976 2352 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2353 union
2354 @{
38a92d50
PE
2355 double var; /* value of a VAR */
2356 func_t fnctptr; /* value of a FNCT */
bfa74976 2357 @} value;
38a92d50 2358 struct symrec *next; /* link field */
bfa74976
RS
2359@};
2360@end group
2361
2362@group
2363typedef struct symrec symrec;
2364
38a92d50 2365/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2366extern symrec *sym_table;
2367
a730d142 2368symrec *putsym (char const *, int);
38a92d50 2369symrec *getsym (char const *);
bfa74976
RS
2370@end group
2371@end smallexample
2372
2373The new version of @code{main} includes a call to @code{init_table}, a
2374function that initializes the symbol table. Here it is, and
2375@code{init_table} as well:
2376
2377@smallexample
bfa74976
RS
2378#include <stdio.h>
2379
18b519c0 2380@group
38a92d50 2381/* Called by yyparse on error. */
13863333 2382void
38a92d50 2383yyerror (char const *s)
bfa74976
RS
2384@{
2385 printf ("%s\n", s);
2386@}
18b519c0 2387@end group
bfa74976 2388
18b519c0 2389@group
bfa74976
RS
2390struct init
2391@{
38a92d50
PE
2392 char const *fname;
2393 double (*fnct) (double);
bfa74976
RS
2394@};
2395@end group
2396
2397@group
38a92d50 2398struct init const arith_fncts[] =
13863333 2399@{
32dfccf8
AD
2400 "sin", sin,
2401 "cos", cos,
13863333 2402 "atan", atan,
32dfccf8
AD
2403 "ln", log,
2404 "exp", exp,
13863333
AD
2405 "sqrt", sqrt,
2406 0, 0
2407@};
18b519c0 2408@end group
bfa74976 2409
18b519c0 2410@group
bfa74976 2411/* The symbol table: a chain of `struct symrec'. */
38a92d50 2412symrec *sym_table;
bfa74976
RS
2413@end group
2414
2415@group
72d2299c 2416/* Put arithmetic functions in table. */
13863333
AD
2417void
2418init_table (void)
bfa74976
RS
2419@{
2420 int i;
2421 symrec *ptr;
2422 for (i = 0; arith_fncts[i].fname != 0; i++)
2423 @{
2424 ptr = putsym (arith_fncts[i].fname, FNCT);
2425 ptr->value.fnctptr = arith_fncts[i].fnct;
2426 @}
2427@}
2428@end group
38a92d50
PE
2429
2430@group
2431int
2432main (void)
2433@{
2434 init_table ();
2435 return yyparse ();
2436@}
2437@end group
bfa74976
RS
2438@end smallexample
2439
2440By simply editing the initialization list and adding the necessary include
2441files, you can add additional functions to the calculator.
2442
2443Two important functions allow look-up and installation of symbols in the
2444symbol table. The function @code{putsym} is passed a name and the type
2445(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2446linked to the front of the list, and a pointer to the object is returned.
2447The function @code{getsym} is passed the name of the symbol to look up. If
2448found, a pointer to that symbol is returned; otherwise zero is returned.
2449
2450@smallexample
2451symrec *
38a92d50 2452putsym (char const *sym_name, int sym_type)
bfa74976
RS
2453@{
2454 symrec *ptr;
2455 ptr = (symrec *) malloc (sizeof (symrec));
2456 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2457 strcpy (ptr->name,sym_name);
2458 ptr->type = sym_type;
72d2299c 2459 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2460 ptr->next = (struct symrec *)sym_table;
2461 sym_table = ptr;
2462 return ptr;
2463@}
2464
2465symrec *
38a92d50 2466getsym (char const *sym_name)
bfa74976
RS
2467@{
2468 symrec *ptr;
2469 for (ptr = sym_table; ptr != (symrec *) 0;
2470 ptr = (symrec *)ptr->next)
2471 if (strcmp (ptr->name,sym_name) == 0)
2472 return ptr;
2473 return 0;
2474@}
2475@end smallexample
2476
2477The function @code{yylex} must now recognize variables, numeric values, and
2478the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2479characters with a leading letter are recognized as either variables or
bfa74976
RS
2480functions depending on what the symbol table says about them.
2481
2482The string is passed to @code{getsym} for look up in the symbol table. If
2483the name appears in the table, a pointer to its location and its type
2484(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2485already in the table, then it is installed as a @code{VAR} using
2486@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2487returned to @code{yyparse}.
bfa74976
RS
2488
2489No change is needed in the handling of numeric values and arithmetic
2490operators in @code{yylex}.
2491
2492@smallexample
2493@group
2494#include <ctype.h>
18b519c0 2495@end group
13863333 2496
18b519c0 2497@group
13863333
AD
2498int
2499yylex (void)
bfa74976
RS
2500@{
2501 int c;
2502
72d2299c 2503 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2504 while ((c = getchar ()) == ' ' || c == '\t');
2505
2506 if (c == EOF)
2507 return 0;
2508@end group
2509
2510@group
2511 /* Char starts a number => parse the number. */
2512 if (c == '.' || isdigit (c))
2513 @{
2514 ungetc (c, stdin);
2515 scanf ("%lf", &yylval.val);
2516 return NUM;
2517 @}
2518@end group
2519
2520@group
2521 /* Char starts an identifier => read the name. */
2522 if (isalpha (c))
2523 @{
2524 symrec *s;
2525 static char *symbuf = 0;
2526 static int length = 0;
2527 int i;
2528@end group
2529
2530@group
2531 /* Initially make the buffer long enough
2532 for a 40-character symbol name. */
2533 if (length == 0)
2534 length = 40, symbuf = (char *)malloc (length + 1);
2535
2536 i = 0;
2537 do
2538@end group
2539@group
2540 @{
2541 /* If buffer is full, make it bigger. */
2542 if (i == length)
2543 @{
2544 length *= 2;
18b519c0 2545 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2546 @}
2547 /* Add this character to the buffer. */
2548 symbuf[i++] = c;
2549 /* Get another character. */
2550 c = getchar ();
2551 @}
2552@end group
2553@group
72d2299c 2554 while (isalnum (c));
bfa74976
RS
2555
2556 ungetc (c, stdin);
2557 symbuf[i] = '\0';
2558@end group
2559
2560@group
2561 s = getsym (symbuf);
2562 if (s == 0)
2563 s = putsym (symbuf, VAR);
2564 yylval.tptr = s;
2565 return s->type;
2566 @}
2567
2568 /* Any other character is a token by itself. */
2569 return c;
2570@}
2571@end group
2572@end smallexample
2573
72d2299c 2574This program is both powerful and flexible. You may easily add new
704a47c4
AD
2575functions, and it is a simple job to modify this code to install
2576predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2577
342b8b6e 2578@node Exercises
bfa74976
RS
2579@section Exercises
2580@cindex exercises
2581
2582@enumerate
2583@item
2584Add some new functions from @file{math.h} to the initialization list.
2585
2586@item
2587Add another array that contains constants and their values. Then
2588modify @code{init_table} to add these constants to the symbol table.
2589It will be easiest to give the constants type @code{VAR}.
2590
2591@item
2592Make the program report an error if the user refers to an
2593uninitialized variable in any way except to store a value in it.
2594@end enumerate
2595
342b8b6e 2596@node Grammar File
bfa74976
RS
2597@chapter Bison Grammar Files
2598
2599Bison takes as input a context-free grammar specification and produces a
2600C-language function that recognizes correct instances of the grammar.
2601
2602The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2603@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2604
2605@menu
2606* Grammar Outline:: Overall layout of the grammar file.
2607* Symbols:: Terminal and nonterminal symbols.
2608* Rules:: How to write grammar rules.
2609* Recursion:: Writing recursive rules.
2610* Semantics:: Semantic values and actions.
847bf1f5 2611* Locations:: Locations and actions.
bfa74976
RS
2612* Declarations:: All kinds of Bison declarations are described here.
2613* Multiple Parsers:: Putting more than one Bison parser in one program.
2614@end menu
2615
342b8b6e 2616@node Grammar Outline
bfa74976
RS
2617@section Outline of a Bison Grammar
2618
2619A Bison grammar file has four main sections, shown here with the
2620appropriate delimiters:
2621
2622@example
2623%@{
38a92d50 2624 @var{Prologue}
bfa74976
RS
2625%@}
2626
2627@var{Bison declarations}
2628
2629%%
2630@var{Grammar rules}
2631%%
2632
75f5aaea 2633@var{Epilogue}
bfa74976
RS
2634@end example
2635
2636Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2637As a @acronym{GNU} extension, @samp{//} introduces a comment that
2638continues until end of line.
bfa74976
RS
2639
2640@menu
f5f419de 2641* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2642* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2643* Bison Declarations:: Syntax and usage of the Bison declarations section.
2644* Grammar Rules:: Syntax and usage of the grammar rules section.
2645* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2646@end menu
2647
38a92d50 2648@node Prologue
75f5aaea
MA
2649@subsection The prologue
2650@cindex declarations section
2651@cindex Prologue
2652@cindex declarations
bfa74976 2653
f8e1c9e5
AD
2654The @var{Prologue} section contains macro definitions and declarations
2655of functions and variables that are used in the actions in the grammar
2656rules. These are copied to the beginning of the parser file so that
2657they precede the definition of @code{yyparse}. You can use
2658@samp{#include} to get the declarations from a header file. If you
2659don't need any C declarations, you may omit the @samp{%@{} and
2660@samp{%@}} delimiters that bracket this section.
bfa74976 2661
9c437126 2662The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2663of @samp{%@}} that is outside a comment, a string literal, or a
2664character constant.
2665
c732d2c6
AD
2666You may have more than one @var{Prologue} section, intermixed with the
2667@var{Bison declarations}. This allows you to have C and Bison
2668declarations that refer to each other. For example, the @code{%union}
2669declaration may use types defined in a header file, and you may wish to
2670prototype functions that take arguments of type @code{YYSTYPE}. This
2671can be done with two @var{Prologue} blocks, one before and one after the
2672@code{%union} declaration.
2673
2674@smallexample
2675%@{
aef3da86 2676 #define _GNU_SOURCE
38a92d50
PE
2677 #include <stdio.h>
2678 #include "ptypes.h"
c732d2c6
AD
2679%@}
2680
2681%union @{
779e7ceb 2682 long int n;
c732d2c6
AD
2683 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2684@}
2685
2686%@{
38a92d50
PE
2687 static void print_token_value (FILE *, int, YYSTYPE);
2688 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2689%@}
2690
2691@dots{}
2692@end smallexample
2693
aef3da86
PE
2694When in doubt, it is usually safer to put prologue code before all
2695Bison declarations, rather than after. For example, any definitions
2696of feature test macros like @code{_GNU_SOURCE} or
2697@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2698feature test macros can affect the behavior of Bison-generated
2699@code{#include} directives.
2700
2cbe6b7f
JD
2701@node Prologue Alternatives
2702@subsection Prologue Alternatives
2703@cindex Prologue Alternatives
2704
136a0f76 2705@findex %code
16dc6a9e
JD
2706@findex %code requires
2707@findex %code provides
2708@findex %code top
85894313 2709
2cbe6b7f
JD
2710The functionality of @var{Prologue} sections can often be subtle and
2711inflexible.
8e0a5e9e
JD
2712As an alternative, Bison provides a %code directive with an explicit qualifier
2713field, which identifies the purpose of the code and thus the location(s) where
2714Bison should generate it.
2715For C/C++, the qualifier can be omitted for the default location, or it can be
8405b70c 2716one of @code{requires}, @code{provides}, @code{top}.
148d66d8 2717@xref{Decl Summary,,%code}.
2cbe6b7f
JD
2718
2719Look again at the example of the previous section:
2720
2721@smallexample
2722%@{
2723 #define _GNU_SOURCE
2724 #include <stdio.h>
2725 #include "ptypes.h"
2726%@}
2727
2728%union @{
2729 long int n;
2730 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2731@}
2732
2733%@{
2734 static void print_token_value (FILE *, int, YYSTYPE);
2735 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2736%@}
2737
2738@dots{}
2739@end smallexample
2740
2741@noindent
2742Notice that there are two @var{Prologue} sections here, but there's a subtle
2743distinction between their functionality.
2744For example, if you decide to override Bison's default definition for
2745@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2746definition?
2747You should write it in the first since Bison will insert that code into the
8e0a5e9e 2748parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2749In which @var{Prologue} section should you prototype an internal function,
2750@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2751arguments?
2752You should prototype it in the second since Bison will insert that code
2753@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2754
2755This distinction in functionality between the two @var{Prologue} sections is
2756established by the appearance of the @code{%union} between them.
a501eca9 2757This behavior raises a few questions.
2cbe6b7f
JD
2758First, why should the position of a @code{%union} affect definitions related to
2759@code{YYLTYPE} and @code{yytokentype}?
2760Second, what if there is no @code{%union}?
2761In that case, the second kind of @var{Prologue} section is not available.
2762This behavior is not intuitive.
2763
8e0a5e9e 2764To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2765@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2766Let's go ahead and add the new @code{YYLTYPE} definition and the
2767@code{trace_token} prototype at the same time:
2768
2769@smallexample
16dc6a9e 2770%code top @{
2cbe6b7f
JD
2771 #define _GNU_SOURCE
2772 #include <stdio.h>
8e0a5e9e
JD
2773
2774 /* WARNING: The following code really belongs
16dc6a9e 2775 * in a `%code requires'; see below. */
8e0a5e9e 2776
2cbe6b7f
JD
2777 #include "ptypes.h"
2778 #define YYLTYPE YYLTYPE
2779 typedef struct YYLTYPE
2780 @{
2781 int first_line;
2782 int first_column;
2783 int last_line;
2784 int last_column;
2785 char *filename;
2786 @} YYLTYPE;
2787@}
2788
2789%union @{
2790 long int n;
2791 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2792@}
2793
2794%code @{
2795 static void print_token_value (FILE *, int, YYSTYPE);
2796 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2797 static void trace_token (enum yytokentype token, YYLTYPE loc);
2798@}
2799
2800@dots{}
2801@end smallexample
2802
2803@noindent
16dc6a9e
JD
2804In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2805functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2806explicit which kind you intend.
2cbe6b7f
JD
2807Moreover, both kinds are always available even in the absence of @code{%union}.
2808
16dc6a9e 2809The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2810The first two lines before the warning need to appear near the top of the
2811parser source code file.
2812The first line after the warning is required by @code{YYSTYPE} and thus also
2813needs to appear in the parser source code file.
2cbe6b7f 2814However, if you've instructed Bison to generate a parser header file
148d66d8
JD
2815(@pxref{Decl Summary, ,%defines}), you probably want that line to appear before
2816the @code{YYSTYPE} definition in that header file as well.
8e0a5e9e 2817The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2818override the default @code{YYLTYPE} definition there.
2819
16dc6a9e 2820In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2821lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2822definitions.
16dc6a9e 2823Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2824
2825@smallexample
16dc6a9e 2826%code top @{
2cbe6b7f
JD
2827 #define _GNU_SOURCE
2828 #include <stdio.h>
2829@}
2830
16dc6a9e 2831%code requires @{
9bc0dd67
JD
2832 #include "ptypes.h"
2833@}
2834%union @{
2835 long int n;
2836 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2837@}
2838
16dc6a9e 2839%code requires @{
2cbe6b7f
JD
2840 #define YYLTYPE YYLTYPE
2841 typedef struct YYLTYPE
2842 @{
2843 int first_line;
2844 int first_column;
2845 int last_line;
2846 int last_column;
2847 char *filename;
2848 @} YYLTYPE;
2849@}
2850
136a0f76 2851%code @{
2cbe6b7f
JD
2852 static void print_token_value (FILE *, int, YYSTYPE);
2853 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2854 static void trace_token (enum yytokentype token, YYLTYPE loc);
2855@}
2856
2857@dots{}
2858@end smallexample
2859
2860@noindent
2861Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2862definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2863definitions in both the parser source code file and the parser header file.
16dc6a9e 2864(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2865place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2866
a501eca9 2867When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2868should prefer @code{%code requires} over @code{%code top} regardless of whether
2869you instruct Bison to generate a parser header file.
a501eca9 2870When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2871source code file and that has no special need to appear at the top of that
16dc6a9e 2872file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2873These practices will make the purpose of each block of your code explicit to
2874Bison and to other developers reading your grammar file.
8e0a5e9e 2875Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2876@code{%code requires} to be the most important of the four @var{Prologue}
2877alternatives.
a501eca9 2878
2cbe6b7f
JD
2879At some point while developing your parser, you might decide to provide
2880@code{trace_token} to modules that are external to your parser.
2881Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2882header file and the parser source code file.
2883Since this function is not a dependency required by @code{YYSTYPE} or
2884@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2885@code{%code requires}.
2cbe6b7f 2886More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2887@code{%code requires} is not sufficient.
8e0a5e9e 2888Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2889@code{%code provides}:
2cbe6b7f
JD
2890
2891@smallexample
16dc6a9e 2892%code top @{
2cbe6b7f 2893 #define _GNU_SOURCE
136a0f76 2894 #include <stdio.h>
2cbe6b7f 2895@}
136a0f76 2896
16dc6a9e 2897%code requires @{
2cbe6b7f
JD
2898 #include "ptypes.h"
2899@}
2900%union @{
2901 long int n;
2902 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2903@}
2904
16dc6a9e 2905%code requires @{
2cbe6b7f
JD
2906 #define YYLTYPE YYLTYPE
2907 typedef struct YYLTYPE
2908 @{
2909 int first_line;
2910 int first_column;
2911 int last_line;
2912 int last_column;
2913 char *filename;
2914 @} YYLTYPE;
2915@}
2916
16dc6a9e 2917%code provides @{
2cbe6b7f
JD
2918 void trace_token (enum yytokentype token, YYLTYPE loc);
2919@}
2920
2921%code @{
9bc0dd67
JD
2922 static void print_token_value (FILE *, int, YYSTYPE);
2923 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2924@}
9bc0dd67
JD
2925
2926@dots{}
2927@end smallexample
2928
2cbe6b7f
JD
2929@noindent
2930Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
2931file and the parser source code file after the definitions for
2932@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
2933
2934The above examples are careful to write directives in an order that reflects
8e0a5e9e 2935the layout of the generated parser source code and header files:
16dc6a9e 2936@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 2937@code{%code}.
a501eca9 2938While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
2939this order, Bison does not require it.
2940Instead, Bison lets you choose an organization that makes sense to you.
2941
a501eca9 2942You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2943In that case, Bison concatenates the contained code in declaration order.
2944This is the only way in which the position of one of these directives within
2945the grammar file affects its functionality.
2946
2947The result of the previous two properties is greater flexibility in how you may
2948organize your grammar file.
2949For example, you may organize semantic-type-related directives by semantic
2950type:
2951
2952@smallexample
16dc6a9e 2953%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2954%union @{ type1 field1; @}
2955%destructor @{ type1_free ($$); @} <field1>
2956%printer @{ type1_print ($$); @} <field1>
2957
16dc6a9e 2958%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2959%union @{ type2 field2; @}
2960%destructor @{ type2_free ($$); @} <field2>
2961%printer @{ type2_print ($$); @} <field2>
2962@end smallexample
2963
2964@noindent
2965You could even place each of the above directive groups in the rules section of
2966the grammar file next to the set of rules that uses the associated semantic
2967type.
61fee93e
JD
2968(In the rules section, you must terminate each of those directives with a
2969semicolon.)
2cbe6b7f
JD
2970And you don't have to worry that some directive (like a @code{%union}) in the
2971definitions section is going to adversely affect their functionality in some
2972counter-intuitive manner just because it comes first.
2973Such an organization is not possible using @var{Prologue} sections.
2974
a501eca9 2975This section has been concerned with explaining the advantages of the four
8e0a5e9e 2976@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2977However, in most cases when using these directives, you shouldn't need to
2978think about all the low-level ordering issues discussed here.
2979Instead, you should simply use these directives to label each block of your
2980code according to its purpose and let Bison handle the ordering.
2981@code{%code} is the most generic label.
16dc6a9e
JD
2982Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
2983as needed.
a501eca9 2984
342b8b6e 2985@node Bison Declarations
bfa74976
RS
2986@subsection The Bison Declarations Section
2987@cindex Bison declarations (introduction)
2988@cindex declarations, Bison (introduction)
2989
2990The @var{Bison declarations} section contains declarations that define
2991terminal and nonterminal symbols, specify precedence, and so on.
2992In some simple grammars you may not need any declarations.
2993@xref{Declarations, ,Bison Declarations}.
2994
342b8b6e 2995@node Grammar Rules
bfa74976
RS
2996@subsection The Grammar Rules Section
2997@cindex grammar rules section
2998@cindex rules section for grammar
2999
3000The @dfn{grammar rules} section contains one or more Bison grammar
3001rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3002
3003There must always be at least one grammar rule, and the first
3004@samp{%%} (which precedes the grammar rules) may never be omitted even
3005if it is the first thing in the file.
3006
38a92d50 3007@node Epilogue
75f5aaea 3008@subsection The epilogue
bfa74976 3009@cindex additional C code section
75f5aaea 3010@cindex epilogue
bfa74976
RS
3011@cindex C code, section for additional
3012
08e49d20
PE
3013The @var{Epilogue} is copied verbatim to the end of the parser file, just as
3014the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
3015place to put anything that you want to have in the parser file but which need
3016not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
3017definitions of @code{yylex} and @code{yyerror} often go here. Because
3018C requires functions to be declared before being used, you often need
3019to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 3020even if you define them in the Epilogue.
75f5aaea 3021@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3022
3023If the last section is empty, you may omit the @samp{%%} that separates it
3024from the grammar rules.
3025
f8e1c9e5
AD
3026The Bison parser itself contains many macros and identifiers whose names
3027start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3028any such names (except those documented in this manual) in the epilogue
3029of the grammar file.
bfa74976 3030
342b8b6e 3031@node Symbols
bfa74976
RS
3032@section Symbols, Terminal and Nonterminal
3033@cindex nonterminal symbol
3034@cindex terminal symbol
3035@cindex token type
3036@cindex symbol
3037
3038@dfn{Symbols} in Bison grammars represent the grammatical classifications
3039of the language.
3040
3041A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3042class of syntactically equivalent tokens. You use the symbol in grammar
3043rules to mean that a token in that class is allowed. The symbol is
3044represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3045function returns a token type code to indicate what kind of token has
3046been read. You don't need to know what the code value is; you can use
3047the symbol to stand for it.
bfa74976 3048
f8e1c9e5
AD
3049A @dfn{nonterminal symbol} stands for a class of syntactically
3050equivalent groupings. The symbol name is used in writing grammar rules.
3051By convention, it should be all lower case.
bfa74976 3052
cdf3f113
AD
3053Symbol names can contain letters, underscores, periods, dashes, and (not
3054at the beginning) digits. Dashes in symbol names are a GNU
4f646c37
AD
3055extension, incompatible with @acronym{POSIX} Yacc. Terminal symbols
3056that contain periods or dashes make little sense: since they are not
3057valid symbols (in most programming languages) they are not exported as
3058token names.
bfa74976 3059
931c7513 3060There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3061
3062@itemize @bullet
3063@item
3064A @dfn{named token type} is written with an identifier, like an
c827f760 3065identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3066such name must be defined with a Bison declaration such as
3067@code{%token}. @xref{Token Decl, ,Token Type Names}.
3068
3069@item
3070@cindex character token
3071@cindex literal token
3072@cindex single-character literal
931c7513
RS
3073A @dfn{character token type} (or @dfn{literal character token}) is
3074written in the grammar using the same syntax used in C for character
3075constants; for example, @code{'+'} is a character token type. A
3076character token type doesn't need to be declared unless you need to
3077specify its semantic value data type (@pxref{Value Type, ,Data Types of
3078Semantic Values}), associativity, or precedence (@pxref{Precedence,
3079,Operator Precedence}).
bfa74976
RS
3080
3081By convention, a character token type is used only to represent a
3082token that consists of that particular character. Thus, the token
3083type @code{'+'} is used to represent the character @samp{+} as a
3084token. Nothing enforces this convention, but if you depart from it,
3085your program will confuse other readers.
3086
3087All the usual escape sequences used in character literals in C can be
3088used in Bison as well, but you must not use the null character as a
72d2299c
PE
3089character literal because its numeric code, zero, signifies
3090end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3091for @code{yylex}}). Also, unlike standard C, trigraphs have no
3092special meaning in Bison character literals, nor is backslash-newline
3093allowed.
931c7513
RS
3094
3095@item
3096@cindex string token
3097@cindex literal string token
9ecbd125 3098@cindex multicharacter literal
931c7513
RS
3099A @dfn{literal string token} is written like a C string constant; for
3100example, @code{"<="} is a literal string token. A literal string token
3101doesn't need to be declared unless you need to specify its semantic
14ded682 3102value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3103(@pxref{Precedence}).
3104
3105You can associate the literal string token with a symbolic name as an
3106alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3107Declarations}). If you don't do that, the lexical analyzer has to
3108retrieve the token number for the literal string token from the
3109@code{yytname} table (@pxref{Calling Convention}).
3110
c827f760 3111@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3112
3113By convention, a literal string token is used only to represent a token
3114that consists of that particular string. Thus, you should use the token
3115type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3116does not enforce this convention, but if you depart from it, people who
931c7513
RS
3117read your program will be confused.
3118
3119All the escape sequences used in string literals in C can be used in
92ac3705
PE
3120Bison as well, except that you must not use a null character within a
3121string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3122meaning in Bison string literals, nor is backslash-newline allowed. A
3123literal string token must contain two or more characters; for a token
3124containing just one character, use a character token (see above).
bfa74976
RS
3125@end itemize
3126
3127How you choose to write a terminal symbol has no effect on its
3128grammatical meaning. That depends only on where it appears in rules and
3129on when the parser function returns that symbol.
3130
72d2299c
PE
3131The value returned by @code{yylex} is always one of the terminal
3132symbols, except that a zero or negative value signifies end-of-input.
3133Whichever way you write the token type in the grammar rules, you write
3134it the same way in the definition of @code{yylex}. The numeric code
3135for a character token type is simply the positive numeric code of the
3136character, so @code{yylex} can use the identical value to generate the
3137requisite code, though you may need to convert it to @code{unsigned
3138char} to avoid sign-extension on hosts where @code{char} is signed.
3139Each named token type becomes a C macro in
bfa74976 3140the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3141(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3142@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3143
3144If @code{yylex} is defined in a separate file, you need to arrange for the
3145token-type macro definitions to be available there. Use the @samp{-d}
3146option when you run Bison, so that it will write these macro definitions
3147into a separate header file @file{@var{name}.tab.h} which you can include
3148in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3149
72d2299c 3150If you want to write a grammar that is portable to any Standard C
9d9b8b70 3151host, you must use only nonnull character tokens taken from the basic
c827f760 3152execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3153digits, the 52 lower- and upper-case English letters, and the
3154characters in the following C-language string:
3155
3156@example
3157"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3158@end example
3159
f8e1c9e5
AD
3160The @code{yylex} function and Bison must use a consistent character set
3161and encoding for character tokens. For example, if you run Bison in an
3162@acronym{ASCII} environment, but then compile and run the resulting
3163program in an environment that uses an incompatible character set like
3164@acronym{EBCDIC}, the resulting program may not work because the tables
3165generated by Bison will assume @acronym{ASCII} numeric values for
3166character tokens. It is standard practice for software distributions to
3167contain C source files that were generated by Bison in an
3168@acronym{ASCII} environment, so installers on platforms that are
3169incompatible with @acronym{ASCII} must rebuild those files before
3170compiling them.
e966383b 3171
bfa74976
RS
3172The symbol @code{error} is a terminal symbol reserved for error recovery
3173(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3174In particular, @code{yylex} should never return this value. The default
3175value of the error token is 256, unless you explicitly assigned 256 to
3176one of your tokens with a @code{%token} declaration.
bfa74976 3177
342b8b6e 3178@node Rules
bfa74976
RS
3179@section Syntax of Grammar Rules
3180@cindex rule syntax
3181@cindex grammar rule syntax
3182@cindex syntax of grammar rules
3183
3184A Bison grammar rule has the following general form:
3185
3186@example
e425e872 3187@group
bfa74976
RS
3188@var{result}: @var{components}@dots{}
3189 ;
e425e872 3190@end group
bfa74976
RS
3191@end example
3192
3193@noindent
9ecbd125 3194where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3195and @var{components} are various terminal and nonterminal symbols that
13863333 3196are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3197
3198For example,
3199
3200@example
3201@group
3202exp: exp '+' exp
3203 ;
3204@end group
3205@end example
3206
3207@noindent
3208says that two groupings of type @code{exp}, with a @samp{+} token in between,
3209can be combined into a larger grouping of type @code{exp}.
3210
72d2299c
PE
3211White space in rules is significant only to separate symbols. You can add
3212extra white space as you wish.
bfa74976
RS
3213
3214Scattered among the components can be @var{actions} that determine
3215the semantics of the rule. An action looks like this:
3216
3217@example
3218@{@var{C statements}@}
3219@end example
3220
3221@noindent
287c78f6
PE
3222@cindex braced code
3223This is an example of @dfn{braced code}, that is, C code surrounded by
3224braces, much like a compound statement in C@. Braced code can contain
3225any sequence of C tokens, so long as its braces are balanced. Bison
3226does not check the braced code for correctness directly; it merely
3227copies the code to the output file, where the C compiler can check it.
3228
3229Within braced code, the balanced-brace count is not affected by braces
3230within comments, string literals, or character constants, but it is
3231affected by the C digraphs @samp{<%} and @samp{%>} that represent
3232braces. At the top level braced code must be terminated by @samp{@}}
3233and not by a digraph. Bison does not look for trigraphs, so if braced
3234code uses trigraphs you should ensure that they do not affect the
3235nesting of braces or the boundaries of comments, string literals, or
3236character constants.
3237
bfa74976
RS
3238Usually there is only one action and it follows the components.
3239@xref{Actions}.
3240
3241@findex |
3242Multiple rules for the same @var{result} can be written separately or can
3243be joined with the vertical-bar character @samp{|} as follows:
3244
bfa74976
RS
3245@example
3246@group
3247@var{result}: @var{rule1-components}@dots{}
3248 | @var{rule2-components}@dots{}
3249 @dots{}
3250 ;
3251@end group
3252@end example
bfa74976
RS
3253
3254@noindent
3255They are still considered distinct rules even when joined in this way.
3256
3257If @var{components} in a rule is empty, it means that @var{result} can
3258match the empty string. For example, here is how to define a
3259comma-separated sequence of zero or more @code{exp} groupings:
3260
3261@example
3262@group
3263expseq: /* empty */
3264 | expseq1
3265 ;
3266@end group
3267
3268@group
3269expseq1: exp
3270 | expseq1 ',' exp
3271 ;
3272@end group
3273@end example
3274
3275@noindent
3276It is customary to write a comment @samp{/* empty */} in each rule
3277with no components.
3278
342b8b6e 3279@node Recursion
bfa74976
RS
3280@section Recursive Rules
3281@cindex recursive rule
3282
f8e1c9e5
AD
3283A rule is called @dfn{recursive} when its @var{result} nonterminal
3284appears also on its right hand side. Nearly all Bison grammars need to
3285use recursion, because that is the only way to define a sequence of any
3286number of a particular thing. Consider this recursive definition of a
9ecbd125 3287comma-separated sequence of one or more expressions:
bfa74976
RS
3288
3289@example
3290@group
3291expseq1: exp
3292 | expseq1 ',' exp
3293 ;
3294@end group
3295@end example
3296
3297@cindex left recursion
3298@cindex right recursion
3299@noindent
3300Since the recursive use of @code{expseq1} is the leftmost symbol in the
3301right hand side, we call this @dfn{left recursion}. By contrast, here
3302the same construct is defined using @dfn{right recursion}:
3303
3304@example
3305@group
3306expseq1: exp
3307 | exp ',' expseq1
3308 ;
3309@end group
3310@end example
3311
3312@noindent
ec3bc396
AD
3313Any kind of sequence can be defined using either left recursion or right
3314recursion, but you should always use left recursion, because it can
3315parse a sequence of any number of elements with bounded stack space.
3316Right recursion uses up space on the Bison stack in proportion to the
3317number of elements in the sequence, because all the elements must be
3318shifted onto the stack before the rule can be applied even once.
3319@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3320of this.
bfa74976
RS
3321
3322@cindex mutual recursion
3323@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3324rule does not appear directly on its right hand side, but does appear
3325in rules for other nonterminals which do appear on its right hand
13863333 3326side.
bfa74976
RS
3327
3328For example:
3329
3330@example
3331@group
3332expr: primary
3333 | primary '+' primary
3334 ;
3335@end group
3336
3337@group
3338primary: constant
3339 | '(' expr ')'
3340 ;
3341@end group
3342@end example
3343
3344@noindent
3345defines two mutually-recursive nonterminals, since each refers to the
3346other.
3347
342b8b6e 3348@node Semantics
bfa74976
RS
3349@section Defining Language Semantics
3350@cindex defining language semantics
13863333 3351@cindex language semantics, defining
bfa74976
RS
3352
3353The grammar rules for a language determine only the syntax. The semantics
3354are determined by the semantic values associated with various tokens and
3355groupings, and by the actions taken when various groupings are recognized.
3356
3357For example, the calculator calculates properly because the value
3358associated with each expression is the proper number; it adds properly
3359because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3360the numbers associated with @var{x} and @var{y}.
3361
3362@menu
3363* Value Type:: Specifying one data type for all semantic values.
3364* Multiple Types:: Specifying several alternative data types.
3365* Actions:: An action is the semantic definition of a grammar rule.
3366* Action Types:: Specifying data types for actions to operate on.
3367* Mid-Rule Actions:: Most actions go at the end of a rule.
3368 This says when, why and how to use the exceptional
3369 action in the middle of a rule.
3370@end menu
3371
342b8b6e 3372@node Value Type
bfa74976
RS
3373@subsection Data Types of Semantic Values
3374@cindex semantic value type
3375@cindex value type, semantic
3376@cindex data types of semantic values
3377@cindex default data type
3378
3379In a simple program it may be sufficient to use the same data type for
3380the semantic values of all language constructs. This was true in the
c827f760 3381@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3382Notation Calculator}).
bfa74976 3383
ddc8ede1
PE
3384Bison normally uses the type @code{int} for semantic values if your
3385program uses the same data type for all language constructs. To
bfa74976
RS
3386specify some other type, define @code{YYSTYPE} as a macro, like this:
3387
3388@example
3389#define YYSTYPE double
3390@end example
3391
3392@noindent
50cce58e
PE
3393@code{YYSTYPE}'s replacement list should be a type name
3394that does not contain parentheses or square brackets.
342b8b6e 3395This macro definition must go in the prologue of the grammar file
75f5aaea 3396(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3397
342b8b6e 3398@node Multiple Types
bfa74976
RS
3399@subsection More Than One Value Type
3400
3401In most programs, you will need different data types for different kinds
3402of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3403@code{int} or @code{long int}, while a string constant needs type
3404@code{char *}, and an identifier might need a pointer to an entry in the
3405symbol table.
bfa74976
RS
3406
3407To use more than one data type for semantic values in one parser, Bison
3408requires you to do two things:
3409
3410@itemize @bullet
3411@item
ddc8ede1 3412Specify the entire collection of possible data types, either by using the
704a47c4 3413@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3414Value Types}), or by using a @code{typedef} or a @code{#define} to
3415define @code{YYSTYPE} to be a union type whose member names are
3416the type tags.
bfa74976
RS
3417
3418@item
14ded682
AD
3419Choose one of those types for each symbol (terminal or nonterminal) for
3420which semantic values are used. This is done for tokens with the
3421@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3422and for groupings with the @code{%type} Bison declaration (@pxref{Type
3423Decl, ,Nonterminal Symbols}).
bfa74976
RS
3424@end itemize
3425
342b8b6e 3426@node Actions
bfa74976
RS
3427@subsection Actions
3428@cindex action
3429@vindex $$
3430@vindex $@var{n}
3431
3432An action accompanies a syntactic rule and contains C code to be executed
3433each time an instance of that rule is recognized. The task of most actions
3434is to compute a semantic value for the grouping built by the rule from the
3435semantic values associated with tokens or smaller groupings.
3436
287c78f6
PE
3437An action consists of braced code containing C statements, and can be
3438placed at any position in the rule;
704a47c4
AD
3439it is executed at that position. Most rules have just one action at the
3440end of the rule, following all the components. Actions in the middle of
3441a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3442Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3443
3444The C code in an action can refer to the semantic values of the components
3445matched by the rule with the construct @code{$@var{n}}, which stands for
3446the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3447being constructed is @code{$$}. Bison translates both of these
3448constructs into expressions of the appropriate type when it copies the
3449actions into the parser file. @code{$$} is translated to a modifiable
3450lvalue, so it can be assigned to.
bfa74976
RS
3451
3452Here is a typical example:
3453
3454@example
3455@group
3456exp: @dots{}
3457 | exp '+' exp
3458 @{ $$ = $1 + $3; @}
3459@end group
3460@end example
3461
3462@noindent
3463This rule constructs an @code{exp} from two smaller @code{exp} groupings
3464connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3465refer to the semantic values of the two component @code{exp} groupings,
3466which are the first and third symbols on the right hand side of the rule.
3467The sum is stored into @code{$$} so that it becomes the semantic value of
3468the addition-expression just recognized by the rule. If there were a
3469useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3470referred to as @code{$2}.
bfa74976 3471
3ded9a63
AD
3472Note that the vertical-bar character @samp{|} is really a rule
3473separator, and actions are attached to a single rule. This is a
3474difference with tools like Flex, for which @samp{|} stands for either
3475``or'', or ``the same action as that of the next rule''. In the
3476following example, the action is triggered only when @samp{b} is found:
3477
3478@example
3479@group
3480a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3481@end group
3482@end example
3483
bfa74976
RS
3484@cindex default action
3485If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3486@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3487becomes the value of the whole rule. Of course, the default action is
3488valid only if the two data types match. There is no meaningful default
3489action for an empty rule; every empty rule must have an explicit action
3490unless the rule's value does not matter.
bfa74976
RS
3491
3492@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3493to tokens and groupings on the stack @emph{before} those that match the
3494current rule. This is a very risky practice, and to use it reliably
3495you must be certain of the context in which the rule is applied. Here
3496is a case in which you can use this reliably:
3497
3498@example
3499@group
3500foo: expr bar '+' expr @{ @dots{} @}
3501 | expr bar '-' expr @{ @dots{} @}
3502 ;
3503@end group
3504
3505@group
3506bar: /* empty */
3507 @{ previous_expr = $0; @}
3508 ;
3509@end group
3510@end example
3511
3512As long as @code{bar} is used only in the fashion shown here, @code{$0}
3513always refers to the @code{expr} which precedes @code{bar} in the
3514definition of @code{foo}.
3515
32c29292 3516@vindex yylval
742e4900 3517It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3518any, from a semantic action.
3519This semantic value is stored in @code{yylval}.
3520@xref{Action Features, ,Special Features for Use in Actions}.
3521
342b8b6e 3522@node Action Types
bfa74976
RS
3523@subsection Data Types of Values in Actions
3524@cindex action data types
3525@cindex data types in actions
3526
3527If you have chosen a single data type for semantic values, the @code{$$}
3528and @code{$@var{n}} constructs always have that data type.
3529
3530If you have used @code{%union} to specify a variety of data types, then you
3531must declare a choice among these types for each terminal or nonterminal
3532symbol that can have a semantic value. Then each time you use @code{$$} or
3533@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3534in the rule. In this example,
bfa74976
RS
3535
3536@example
3537@group
3538exp: @dots{}
3539 | exp '+' exp
3540 @{ $$ = $1 + $3; @}
3541@end group
3542@end example
3543
3544@noindent
3545@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3546have the data type declared for the nonterminal symbol @code{exp}. If
3547@code{$2} were used, it would have the data type declared for the
e0c471a9 3548terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3549
3550Alternatively, you can specify the data type when you refer to the value,
3551by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3552reference. For example, if you have defined types as shown here:
3553
3554@example
3555@group
3556%union @{
3557 int itype;
3558 double dtype;
3559@}
3560@end group
3561@end example
3562
3563@noindent
3564then you can write @code{$<itype>1} to refer to the first subunit of the
3565rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3566
342b8b6e 3567@node Mid-Rule Actions
bfa74976
RS
3568@subsection Actions in Mid-Rule
3569@cindex actions in mid-rule
3570@cindex mid-rule actions
3571
3572Occasionally it is useful to put an action in the middle of a rule.
3573These actions are written just like usual end-of-rule actions, but they
3574are executed before the parser even recognizes the following components.
3575
3576A mid-rule action may refer to the components preceding it using
3577@code{$@var{n}}, but it may not refer to subsequent components because
3578it is run before they are parsed.
3579
3580The mid-rule action itself counts as one of the components of the rule.
3581This makes a difference when there is another action later in the same rule
3582(and usually there is another at the end): you have to count the actions
3583along with the symbols when working out which number @var{n} to use in
3584@code{$@var{n}}.
3585
3586The mid-rule action can also have a semantic value. The action can set
3587its value with an assignment to @code{$$}, and actions later in the rule
3588can refer to the value using @code{$@var{n}}. Since there is no symbol
3589to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3590in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3591specify a data type each time you refer to this value.
bfa74976
RS
3592
3593There is no way to set the value of the entire rule with a mid-rule
3594action, because assignments to @code{$$} do not have that effect. The
3595only way to set the value for the entire rule is with an ordinary action
3596at the end of the rule.
3597
3598Here is an example from a hypothetical compiler, handling a @code{let}
3599statement that looks like @samp{let (@var{variable}) @var{statement}} and
3600serves to create a variable named @var{variable} temporarily for the
3601duration of @var{statement}. To parse this construct, we must put
3602@var{variable} into the symbol table while @var{statement} is parsed, then
3603remove it afterward. Here is how it is done:
3604
3605@example
3606@group
3607stmt: LET '(' var ')'
3608 @{ $<context>$ = push_context ();
3609 declare_variable ($3); @}
3610 stmt @{ $$ = $6;
3611 pop_context ($<context>5); @}
3612@end group
3613@end example
3614
3615@noindent
3616As soon as @samp{let (@var{variable})} has been recognized, the first
3617action is run. It saves a copy of the current semantic context (the
3618list of accessible variables) as its semantic value, using alternative
3619@code{context} in the data-type union. Then it calls
3620@code{declare_variable} to add the new variable to that list. Once the
3621first action is finished, the embedded statement @code{stmt} can be
3622parsed. Note that the mid-rule action is component number 5, so the
3623@samp{stmt} is component number 6.
3624
3625After the embedded statement is parsed, its semantic value becomes the
3626value of the entire @code{let}-statement. Then the semantic value from the
3627earlier action is used to restore the prior list of variables. This
3628removes the temporary @code{let}-variable from the list so that it won't
3629appear to exist while the rest of the program is parsed.
3630
841a7737
JD
3631@findex %destructor
3632@cindex discarded symbols, mid-rule actions
3633@cindex error recovery, mid-rule actions
3634In the above example, if the parser initiates error recovery (@pxref{Error
3635Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3636it might discard the previous semantic context @code{$<context>5} without
3637restoring it.
3638Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3639Discarded Symbols}).
ec5479ce
JD
3640However, Bison currently provides no means to declare a destructor specific to
3641a particular mid-rule action's semantic value.
841a7737
JD
3642
3643One solution is to bury the mid-rule action inside a nonterminal symbol and to
3644declare a destructor for that symbol:
3645
3646@example
3647@group
3648%type <context> let
3649%destructor @{ pop_context ($$); @} let
3650
3651%%
3652
3653stmt: let stmt
3654 @{ $$ = $2;
3655 pop_context ($1); @}
3656 ;
3657
3658let: LET '(' var ')'
3659 @{ $$ = push_context ();
3660 declare_variable ($3); @}
3661 ;
3662
3663@end group
3664@end example
3665
3666@noindent
3667Note that the action is now at the end of its rule.
3668Any mid-rule action can be converted to an end-of-rule action in this way, and
3669this is what Bison actually does to implement mid-rule actions.
3670
bfa74976
RS
3671Taking action before a rule is completely recognized often leads to
3672conflicts since the parser must commit to a parse in order to execute the
3673action. For example, the following two rules, without mid-rule actions,
3674can coexist in a working parser because the parser can shift the open-brace
3675token and look at what follows before deciding whether there is a
3676declaration or not:
3677
3678@example
3679@group
3680compound: '@{' declarations statements '@}'
3681 | '@{' statements '@}'
3682 ;
3683@end group
3684@end example
3685
3686@noindent
3687But when we add a mid-rule action as follows, the rules become nonfunctional:
3688
3689@example
3690@group
3691compound: @{ prepare_for_local_variables (); @}
3692 '@{' declarations statements '@}'
3693@end group
3694@group
3695 | '@{' statements '@}'
3696 ;
3697@end group
3698@end example
3699
3700@noindent
3701Now the parser is forced to decide whether to run the mid-rule action
3702when it has read no farther than the open-brace. In other words, it
3703must commit to using one rule or the other, without sufficient
3704information to do it correctly. (The open-brace token is what is called
742e4900
JD
3705the @dfn{lookahead} token at this time, since the parser is still
3706deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3707
3708You might think that you could correct the problem by putting identical
3709actions into the two rules, like this:
3710
3711@example
3712@group
3713compound: @{ prepare_for_local_variables (); @}
3714 '@{' declarations statements '@}'
3715 | @{ prepare_for_local_variables (); @}
3716 '@{' statements '@}'
3717 ;
3718@end group
3719@end example
3720
3721@noindent
3722But this does not help, because Bison does not realize that the two actions
3723are identical. (Bison never tries to understand the C code in an action.)
3724
3725If the grammar is such that a declaration can be distinguished from a
3726statement by the first token (which is true in C), then one solution which
3727does work is to put the action after the open-brace, like this:
3728
3729@example
3730@group
3731compound: '@{' @{ prepare_for_local_variables (); @}
3732 declarations statements '@}'
3733 | '@{' statements '@}'
3734 ;
3735@end group
3736@end example
3737
3738@noindent
3739Now the first token of the following declaration or statement,
3740which would in any case tell Bison which rule to use, can still do so.
3741
3742Another solution is to bury the action inside a nonterminal symbol which
3743serves as a subroutine:
3744
3745@example
3746@group
3747subroutine: /* empty */
3748 @{ prepare_for_local_variables (); @}
3749 ;
3750
3751@end group
3752
3753@group
3754compound: subroutine
3755 '@{' declarations statements '@}'
3756 | subroutine
3757 '@{' statements '@}'
3758 ;
3759@end group
3760@end example
3761
3762@noindent
3763Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3764deciding which rule for @code{compound} it will eventually use.
bfa74976 3765
342b8b6e 3766@node Locations
847bf1f5
AD
3767@section Tracking Locations
3768@cindex location
95923bd6
AD
3769@cindex textual location
3770@cindex location, textual
847bf1f5
AD
3771
3772Though grammar rules and semantic actions are enough to write a fully
72d2299c 3773functional parser, it can be useful to process some additional information,
3e259915
MA
3774especially symbol locations.
3775
704a47c4
AD
3776The way locations are handled is defined by providing a data type, and
3777actions to take when rules are matched.
847bf1f5
AD
3778
3779@menu
3780* Location Type:: Specifying a data type for locations.
3781* Actions and Locations:: Using locations in actions.
3782* Location Default Action:: Defining a general way to compute locations.
3783@end menu
3784
342b8b6e 3785@node Location Type
847bf1f5
AD
3786@subsection Data Type of Locations
3787@cindex data type of locations
3788@cindex default location type
3789
3790Defining a data type for locations is much simpler than for semantic values,
3791since all tokens and groupings always use the same type.
3792
50cce58e
PE
3793You can specify the type of locations by defining a macro called
3794@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3795defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3796When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3797four members:
3798
3799@example
6273355b 3800typedef struct YYLTYPE
847bf1f5
AD
3801@{
3802 int first_line;
3803 int first_column;
3804 int last_line;
3805 int last_column;
6273355b 3806@} YYLTYPE;
847bf1f5
AD
3807@end example
3808
cd48d21d
AD
3809At the beginning of the parsing, Bison initializes all these fields to 1
3810for @code{yylloc}.
3811
342b8b6e 3812@node Actions and Locations
847bf1f5
AD
3813@subsection Actions and Locations
3814@cindex location actions
3815@cindex actions, location
3816@vindex @@$
3817@vindex @@@var{n}
3818
3819Actions are not only useful for defining language semantics, but also for
3820describing the behavior of the output parser with locations.
3821
3822The most obvious way for building locations of syntactic groupings is very
72d2299c 3823similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3824constructs can be used to access the locations of the elements being matched.
3825The location of the @var{n}th component of the right hand side is
3826@code{@@@var{n}}, while the location of the left hand side grouping is
3827@code{@@$}.
3828
3e259915 3829Here is a basic example using the default data type for locations:
847bf1f5
AD
3830
3831@example
3832@group
3833exp: @dots{}
3e259915 3834 | exp '/' exp
847bf1f5 3835 @{
3e259915
MA
3836 @@$.first_column = @@1.first_column;
3837 @@$.first_line = @@1.first_line;
847bf1f5
AD
3838 @@$.last_column = @@3.last_column;
3839 @@$.last_line = @@3.last_line;
3e259915
MA
3840 if ($3)
3841 $$ = $1 / $3;
3842 else
3843 @{
3844 $$ = 1;
4e03e201
AD
3845 fprintf (stderr,
3846 "Division by zero, l%d,c%d-l%d,c%d",
3847 @@3.first_line, @@3.first_column,
3848 @@3.last_line, @@3.last_column);
3e259915 3849 @}
847bf1f5
AD
3850 @}
3851@end group
3852@end example
3853
3e259915 3854As for semantic values, there is a default action for locations that is
72d2299c 3855run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3856beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3857last symbol.
3e259915 3858
72d2299c 3859With this default action, the location tracking can be fully automatic. The
3e259915
MA
3860example above simply rewrites this way:
3861
3862@example
3863@group
3864exp: @dots{}
3865 | exp '/' exp
3866 @{
3867 if ($3)
3868 $$ = $1 / $3;
3869 else
3870 @{
3871 $$ = 1;
4e03e201
AD
3872 fprintf (stderr,
3873 "Division by zero, l%d,c%d-l%d,c%d",
3874 @@3.first_line, @@3.first_column,
3875 @@3.last_line, @@3.last_column);
3e259915
MA
3876 @}
3877 @}
3878@end group
3879@end example
847bf1f5 3880
32c29292 3881@vindex yylloc
742e4900 3882It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3883from a semantic action.
3884This location is stored in @code{yylloc}.
3885@xref{Action Features, ,Special Features for Use in Actions}.
3886
342b8b6e 3887@node Location Default Action
847bf1f5
AD
3888@subsection Default Action for Locations
3889@vindex YYLLOC_DEFAULT
8710fc41 3890@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3891
72d2299c 3892Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3893locations are much more general than semantic values, there is room in
3894the output parser to redefine the default action to take for each
72d2299c 3895rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3896matched, before the associated action is run. It is also invoked
3897while processing a syntax error, to compute the error's location.
8710fc41
JD
3898Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3899parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3900of that ambiguity.
847bf1f5 3901
3e259915 3902Most of the time, this macro is general enough to suppress location
79282c6c 3903dedicated code from semantic actions.
847bf1f5 3904
72d2299c 3905The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3906the location of the grouping (the result of the computation). When a
766de5eb 3907rule is matched, the second parameter identifies locations of
96b93a3d 3908all right hand side elements of the rule being matched, and the third
8710fc41
JD
3909parameter is the size of the rule's right hand side.
3910When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3911right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3912When processing a syntax error, the second parameter identifies locations
3913of the symbols that were discarded during error processing, and the third
96b93a3d 3914parameter is the number of discarded symbols.
847bf1f5 3915
766de5eb 3916By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3917
766de5eb 3918@smallexample
847bf1f5 3919@group
766de5eb
PE
3920# define YYLLOC_DEFAULT(Current, Rhs, N) \
3921 do \
3922 if (N) \
3923 @{ \
3924 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3925 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3926 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3927 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3928 @} \
3929 else \
3930 @{ \
3931 (Current).first_line = (Current).last_line = \
3932 YYRHSLOC(Rhs, 0).last_line; \
3933 (Current).first_column = (Current).last_column = \
3934 YYRHSLOC(Rhs, 0).last_column; \
3935 @} \
3936 while (0)
847bf1f5 3937@end group
766de5eb 3938@end smallexample
676385e2 3939
766de5eb
PE
3940where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3941in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3942just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3943
3e259915 3944When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3945
3e259915 3946@itemize @bullet
79282c6c 3947@item
72d2299c 3948All arguments are free of side-effects. However, only the first one (the
3e259915 3949result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3950
3e259915 3951@item
766de5eb
PE
3952For consistency with semantic actions, valid indexes within the
3953right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3954valid index, and it refers to the symbol just before the reduction.
3955During error processing @var{n} is always positive.
0ae99356
PE
3956
3957@item
3958Your macro should parenthesize its arguments, if need be, since the
3959actual arguments may not be surrounded by parentheses. Also, your
3960macro should expand to something that can be used as a single
3961statement when it is followed by a semicolon.
3e259915 3962@end itemize
847bf1f5 3963
342b8b6e 3964@node Declarations
bfa74976
RS
3965@section Bison Declarations
3966@cindex declarations, Bison
3967@cindex Bison declarations
3968
3969The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3970used in formulating the grammar and the data types of semantic values.
3971@xref{Symbols}.
3972
3973All token type names (but not single-character literal tokens such as
3974@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3975declared if you need to specify which data type to use for the semantic
3976value (@pxref{Multiple Types, ,More Than One Value Type}).
3977
3978The first rule in the file also specifies the start symbol, by default.
3979If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3980it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3981Grammars}).
bfa74976
RS
3982
3983@menu
b50d2359 3984* Require Decl:: Requiring a Bison version.
bfa74976
RS
3985* Token Decl:: Declaring terminal symbols.
3986* Precedence Decl:: Declaring terminals with precedence and associativity.
3987* Union Decl:: Declaring the set of all semantic value types.
3988* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3989* Initial Action Decl:: Code run before parsing starts.
72f889cc 3990* Destructor Decl:: Declaring how symbols are freed.
d6328241 3991* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3992* Start Decl:: Specifying the start symbol.
3993* Pure Decl:: Requesting a reentrant parser.
9987d1b3 3994* Push Decl:: Requesting a push parser.
bfa74976
RS
3995* Decl Summary:: Table of all Bison declarations.
3996@end menu
3997
b50d2359
AD
3998@node Require Decl
3999@subsection Require a Version of Bison
4000@cindex version requirement
4001@cindex requiring a version of Bison
4002@findex %require
4003
4004You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4005the requirement is not met, @command{bison} exits with an error (exit
4006status 63).
b50d2359
AD
4007
4008@example
4009%require "@var{version}"
4010@end example
4011
342b8b6e 4012@node Token Decl
bfa74976
RS
4013@subsection Token Type Names
4014@cindex declaring token type names
4015@cindex token type names, declaring
931c7513 4016@cindex declaring literal string tokens
bfa74976
RS
4017@findex %token
4018
4019The basic way to declare a token type name (terminal symbol) is as follows:
4020
4021@example
4022%token @var{name}
4023@end example
4024
4025Bison will convert this into a @code{#define} directive in
4026the parser, so that the function @code{yylex} (if it is in this file)
4027can use the name @var{name} to stand for this token type's code.
4028
d78f0ac9
AD
4029Alternatively, you can use @code{%left}, @code{%right},
4030@code{%precedence}, or
14ded682
AD
4031@code{%nonassoc} instead of @code{%token}, if you wish to specify
4032associativity and precedence. @xref{Precedence Decl, ,Operator
4033Precedence}.
bfa74976
RS
4034
4035You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4036a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4037following the token name:
bfa74976
RS
4038
4039@example
4040%token NUM 300
1452af69 4041%token XNUM 0x12d // a GNU extension
bfa74976
RS
4042@end example
4043
4044@noindent
4045It is generally best, however, to let Bison choose the numeric codes for
4046all token types. Bison will automatically select codes that don't conflict
e966383b 4047with each other or with normal characters.
bfa74976
RS
4048
4049In the event that the stack type is a union, you must augment the
4050@code{%token} or other token declaration to include the data type
704a47c4
AD
4051alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4052Than One Value Type}).
bfa74976
RS
4053
4054For example:
4055
4056@example
4057@group
4058%union @{ /* define stack type */
4059 double val;
4060 symrec *tptr;
4061@}
4062%token <val> NUM /* define token NUM and its type */
4063@end group
4064@end example
4065
931c7513
RS
4066You can associate a literal string token with a token type name by
4067writing the literal string at the end of a @code{%token}
4068declaration which declares the name. For example:
4069
4070@example
4071%token arrow "=>"
4072@end example
4073
4074@noindent
4075For example, a grammar for the C language might specify these names with
4076equivalent literal string tokens:
4077
4078@example
4079%token <operator> OR "||"
4080%token <operator> LE 134 "<="
4081%left OR "<="
4082@end example
4083
4084@noindent
4085Once you equate the literal string and the token name, you can use them
4086interchangeably in further declarations or the grammar rules. The
4087@code{yylex} function can use the token name or the literal string to
4088obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4089Syntax error messages passed to @code{yyerror} from the parser will reference
4090the literal string instead of the token name.
4091
4092The token numbered as 0 corresponds to end of file; the following line
4093allows for nicer error messages referring to ``end of file'' instead
4094of ``$end'':
4095
4096@example
4097%token END 0 "end of file"
4098@end example
931c7513 4099
342b8b6e 4100@node Precedence Decl
bfa74976
RS
4101@subsection Operator Precedence
4102@cindex precedence declarations
4103@cindex declaring operator precedence
4104@cindex operator precedence, declaring
4105
d78f0ac9
AD
4106Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4107@code{%precedence} declaration to
bfa74976
RS
4108declare a token and specify its precedence and associativity, all at
4109once. These are called @dfn{precedence declarations}.
704a47c4
AD
4110@xref{Precedence, ,Operator Precedence}, for general information on
4111operator precedence.
bfa74976 4112
ab7f29f8 4113The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4114@code{%token}: either
4115
4116@example
4117%left @var{symbols}@dots{}
4118@end example
4119
4120@noindent
4121or
4122
4123@example
4124%left <@var{type}> @var{symbols}@dots{}
4125@end example
4126
4127And indeed any of these declarations serves the purposes of @code{%token}.
4128But in addition, they specify the associativity and relative precedence for
4129all the @var{symbols}:
4130
4131@itemize @bullet
4132@item
4133The associativity of an operator @var{op} determines how repeated uses
4134of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4135@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4136grouping @var{y} with @var{z} first. @code{%left} specifies
4137left-associativity (grouping @var{x} with @var{y} first) and
4138@code{%right} specifies right-associativity (grouping @var{y} with
4139@var{z} first). @code{%nonassoc} specifies no associativity, which
4140means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4141considered a syntax error.
4142
d78f0ac9
AD
4143@code{%precedence} gives only precedence to the @var{symbols}, and
4144defines no associativity at all. Use this to define precedence only,
4145and leave any potential conflict due to associativity enabled.
4146
bfa74976
RS
4147@item
4148The precedence of an operator determines how it nests with other operators.
4149All the tokens declared in a single precedence declaration have equal
4150precedence and nest together according to their associativity.
4151When two tokens declared in different precedence declarations associate,
4152the one declared later has the higher precedence and is grouped first.
4153@end itemize
4154
ab7f29f8
JD
4155For backward compatibility, there is a confusing difference between the
4156argument lists of @code{%token} and precedence declarations.
4157Only a @code{%token} can associate a literal string with a token type name.
4158A precedence declaration always interprets a literal string as a reference to a
4159separate token.
4160For example:
4161
4162@example
4163%left OR "<=" // Does not declare an alias.
4164%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4165@end example
4166
342b8b6e 4167@node Union Decl
bfa74976
RS
4168@subsection The Collection of Value Types
4169@cindex declaring value types
4170@cindex value types, declaring
4171@findex %union
4172
287c78f6
PE
4173The @code{%union} declaration specifies the entire collection of
4174possible data types for semantic values. The keyword @code{%union} is
4175followed by braced code containing the same thing that goes inside a
4176@code{union} in C@.
bfa74976
RS
4177
4178For example:
4179
4180@example
4181@group
4182%union @{
4183 double val;
4184 symrec *tptr;
4185@}
4186@end group
4187@end example
4188
4189@noindent
4190This says that the two alternative types are @code{double} and @code{symrec
4191*}. They are given names @code{val} and @code{tptr}; these names are used
4192in the @code{%token} and @code{%type} declarations to pick one of the types
4193for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4194
6273355b
PE
4195As an extension to @acronym{POSIX}, a tag is allowed after the
4196@code{union}. For example:
4197
4198@example
4199@group
4200%union value @{
4201 double val;
4202 symrec *tptr;
4203@}
4204@end group
4205@end example
4206
d6ca7905 4207@noindent
6273355b
PE
4208specifies the union tag @code{value}, so the corresponding C type is
4209@code{union value}. If you do not specify a tag, it defaults to
4210@code{YYSTYPE}.
4211
d6ca7905
PE
4212As another extension to @acronym{POSIX}, you may specify multiple
4213@code{%union} declarations; their contents are concatenated. However,
4214only the first @code{%union} declaration can specify a tag.
4215
6273355b 4216Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4217a semicolon after the closing brace.
4218
ddc8ede1
PE
4219Instead of @code{%union}, you can define and use your own union type
4220@code{YYSTYPE} if your grammar contains at least one
4221@samp{<@var{type}>} tag. For example, you can put the following into
4222a header file @file{parser.h}:
4223
4224@example
4225@group
4226union YYSTYPE @{
4227 double val;
4228 symrec *tptr;
4229@};
4230typedef union YYSTYPE YYSTYPE;
4231@end group
4232@end example
4233
4234@noindent
4235and then your grammar can use the following
4236instead of @code{%union}:
4237
4238@example
4239@group
4240%@{
4241#include "parser.h"
4242%@}
4243%type <val> expr
4244%token <tptr> ID
4245@end group
4246@end example
4247
342b8b6e 4248@node Type Decl
bfa74976
RS
4249@subsection Nonterminal Symbols
4250@cindex declaring value types, nonterminals
4251@cindex value types, nonterminals, declaring
4252@findex %type
4253
4254@noindent
4255When you use @code{%union} to specify multiple value types, you must
4256declare the value type of each nonterminal symbol for which values are
4257used. This is done with a @code{%type} declaration, like this:
4258
4259@example
4260%type <@var{type}> @var{nonterminal}@dots{}
4261@end example
4262
4263@noindent
704a47c4
AD
4264Here @var{nonterminal} is the name of a nonterminal symbol, and
4265@var{type} is the name given in the @code{%union} to the alternative
4266that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4267can give any number of nonterminal symbols in the same @code{%type}
4268declaration, if they have the same value type. Use spaces to separate
4269the symbol names.
bfa74976 4270
931c7513
RS
4271You can also declare the value type of a terminal symbol. To do this,
4272use the same @code{<@var{type}>} construction in a declaration for the
4273terminal symbol. All kinds of token declarations allow
4274@code{<@var{type}>}.
4275
18d192f0
AD
4276@node Initial Action Decl
4277@subsection Performing Actions before Parsing
4278@findex %initial-action
4279
4280Sometimes your parser needs to perform some initializations before
4281parsing. The @code{%initial-action} directive allows for such arbitrary
4282code.
4283
4284@deffn {Directive} %initial-action @{ @var{code} @}
4285@findex %initial-action
287c78f6 4286Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4287@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4288@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4289@code{%parse-param}.
18d192f0
AD
4290@end deffn
4291
451364ed
AD
4292For instance, if your locations use a file name, you may use
4293
4294@example
48b16bbc 4295%parse-param @{ char const *file_name @};
451364ed
AD
4296%initial-action
4297@{
4626a15d 4298 @@$.initialize (file_name);
451364ed
AD
4299@};
4300@end example
4301
18d192f0 4302
72f889cc
AD
4303@node Destructor Decl
4304@subsection Freeing Discarded Symbols
4305@cindex freeing discarded symbols
4306@findex %destructor
12e35840 4307@findex <*>
3ebecc24 4308@findex <>
a85284cf
AD
4309During error recovery (@pxref{Error Recovery}), symbols already pushed
4310on the stack and tokens coming from the rest of the file are discarded
4311until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4312or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4313symbols on the stack must be discarded. Even if the parser succeeds, it
4314must discard the start symbol.
258b75ca
PE
4315
4316When discarded symbols convey heap based information, this memory is
4317lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4318in traditional compilers, it is unacceptable for programs like shells or
4319protocol implementations that may parse and execute indefinitely.
258b75ca 4320
a85284cf
AD
4321The @code{%destructor} directive defines code that is called when a
4322symbol is automatically discarded.
72f889cc
AD
4323
4324@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4325@findex %destructor
287c78f6
PE
4326Invoke the braced @var{code} whenever the parser discards one of the
4327@var{symbols}.
4b367315 4328Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4329with the discarded symbol, and @code{@@$} designates its location.
4330The additional parser parameters are also available (@pxref{Parser Function, ,
4331The Parser Function @code{yyparse}}).
ec5479ce 4332
b2a0b7ca
JD
4333When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4334per-symbol @code{%destructor}.
4335You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4336tag among @var{symbols}.
b2a0b7ca 4337In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4338grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4339per-symbol @code{%destructor}.
4340
12e35840 4341Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4342(These default forms are experimental.
4343More user feedback will help to determine whether they should become permanent
4344features.)
3ebecc24 4345You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4346exactly one @code{%destructor} declaration in your grammar file.
4347The parser will invoke the @var{code} associated with one of these whenever it
4348discards any user-defined grammar symbol that has no per-symbol and no per-type
4349@code{%destructor}.
4350The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4351symbol for which you have formally declared a semantic type tag (@code{%type}
4352counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4353The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4354symbol that has no declared semantic type tag.
72f889cc
AD
4355@end deffn
4356
b2a0b7ca 4357@noindent
12e35840 4358For example:
72f889cc
AD
4359
4360@smallexample
ec5479ce
JD
4361%union @{ char *string; @}
4362%token <string> STRING1
4363%token <string> STRING2
4364%type <string> string1
4365%type <string> string2
b2a0b7ca
JD
4366%union @{ char character; @}
4367%token <character> CHR
4368%type <character> chr
12e35840
JD
4369%token TAGLESS
4370
b2a0b7ca 4371%destructor @{ @} <character>
12e35840
JD
4372%destructor @{ free ($$); @} <*>
4373%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4374%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4375@end smallexample
4376
4377@noindent
b2a0b7ca
JD
4378guarantees that, when the parser discards any user-defined symbol that has a
4379semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4380to @code{free} by default.
ec5479ce
JD
4381However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4382prints its line number to @code{stdout}.
4383It performs only the second @code{%destructor} in this case, so it invokes
4384@code{free} only once.
12e35840
JD
4385Finally, the parser merely prints a message whenever it discards any symbol,
4386such as @code{TAGLESS}, that has no semantic type tag.
4387
4388A Bison-generated parser invokes the default @code{%destructor}s only for
4389user-defined as opposed to Bison-defined symbols.
4390For example, the parser will not invoke either kind of default
4391@code{%destructor} for the special Bison-defined symbols @code{$accept},
4392@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4393none of which you can reference in your grammar.
4394It also will not invoke either for the @code{error} token (@pxref{Table of
4395Symbols, ,error}), which is always defined by Bison regardless of whether you
4396reference it in your grammar.
4397However, it may invoke one of them for the end token (token 0) if you
4398redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4399
4400@smallexample
4401%token END 0
4402@end smallexample
4403
12e35840
JD
4404@cindex actions in mid-rule
4405@cindex mid-rule actions
4406Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4407mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4408That is, Bison does not consider a mid-rule to have a semantic value if you do
4409not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4410@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4411rule.
4412However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4413@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4414
3508ce36
JD
4415@ignore
4416@noindent
4417In the future, it may be possible to redefine the @code{error} token as a
4418nonterminal that captures the discarded symbols.
4419In that case, the parser will invoke the default destructor for it as well.
4420@end ignore
4421
e757bb10
AD
4422@sp 1
4423
4424@cindex discarded symbols
4425@dfn{Discarded symbols} are the following:
4426
4427@itemize
4428@item
4429stacked symbols popped during the first phase of error recovery,
4430@item
4431incoming terminals during the second phase of error recovery,
4432@item
742e4900 4433the current lookahead and the entire stack (except the current
9d9b8b70 4434right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4435@item
4436the start symbol, when the parser succeeds.
e757bb10
AD
4437@end itemize
4438
9d9b8b70
PE
4439The parser can @dfn{return immediately} because of an explicit call to
4440@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4441exhaustion.
4442
29553547 4443Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4444error via @code{YYERROR} are not discarded automatically. As a rule
4445of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4446the memory.
e757bb10 4447
342b8b6e 4448@node Expect Decl
bfa74976
RS
4449@subsection Suppressing Conflict Warnings
4450@cindex suppressing conflict warnings
4451@cindex preventing warnings about conflicts
4452@cindex warnings, preventing
4453@cindex conflicts, suppressing warnings of
4454@findex %expect
d6328241 4455@findex %expect-rr
bfa74976
RS
4456
4457Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4458(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4459have harmless shift/reduce conflicts which are resolved in a predictable
4460way and would be difficult to eliminate. It is desirable to suppress
4461the warning about these conflicts unless the number of conflicts
4462changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4463
4464The declaration looks like this:
4465
4466@example
4467%expect @var{n}
4468@end example
4469
035aa4a0
PE
4470Here @var{n} is a decimal integer. The declaration says there should
4471be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4472Bison reports an error if the number of shift/reduce conflicts differs
4473from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4474
eb45ef3b 4475For deterministic parsers, reduce/reduce conflicts are more
035aa4a0
PE
4476serious, and should be eliminated entirely. Bison will always report
4477reduce/reduce conflicts for these parsers. With @acronym{GLR}
4478parsers, however, both kinds of conflicts are routine; otherwise,
4479there would be no need to use @acronym{GLR} parsing. Therefore, it is
4480also possible to specify an expected number of reduce/reduce conflicts
4481in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4482
4483@example
4484%expect-rr @var{n}
4485@end example
4486
bfa74976
RS
4487In general, using @code{%expect} involves these steps:
4488
4489@itemize @bullet
4490@item
4491Compile your grammar without @code{%expect}. Use the @samp{-v} option
4492to get a verbose list of where the conflicts occur. Bison will also
4493print the number of conflicts.
4494
4495@item
4496Check each of the conflicts to make sure that Bison's default
4497resolution is what you really want. If not, rewrite the grammar and
4498go back to the beginning.
4499
4500@item
4501Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4502number which Bison printed. With @acronym{GLR} parsers, add an
4503@code{%expect-rr} declaration as well.
bfa74976
RS
4504@end itemize
4505
035aa4a0
PE
4506Now Bison will warn you if you introduce an unexpected conflict, but
4507will keep silent otherwise.
bfa74976 4508
342b8b6e 4509@node Start Decl
bfa74976
RS
4510@subsection The Start-Symbol
4511@cindex declaring the start symbol
4512@cindex start symbol, declaring
4513@cindex default start symbol
4514@findex %start
4515
4516Bison assumes by default that the start symbol for the grammar is the first
4517nonterminal specified in the grammar specification section. The programmer
4518may override this restriction with the @code{%start} declaration as follows:
4519
4520@example
4521%start @var{symbol}
4522@end example
4523
342b8b6e 4524@node Pure Decl
bfa74976
RS
4525@subsection A Pure (Reentrant) Parser
4526@cindex reentrant parser
4527@cindex pure parser
d9df47b6 4528@findex %define api.pure
bfa74976
RS
4529
4530A @dfn{reentrant} program is one which does not alter in the course of
4531execution; in other words, it consists entirely of @dfn{pure} (read-only)
4532code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4533for example, a nonreentrant program may not be safe to call from a signal
4534handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4535program must be called only within interlocks.
4536
70811b85 4537Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4538suitable for most uses, and it permits compatibility with Yacc. (The
4539standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4540statically allocated variables for communication with @code{yylex},
4541including @code{yylval} and @code{yylloc}.)
bfa74976 4542
70811b85 4543Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 4544declaration @samp{%define api.pure} says that you want the parser to be
70811b85 4545reentrant. It looks like this:
bfa74976
RS
4546
4547@example
d9df47b6 4548%define api.pure
bfa74976
RS
4549@end example
4550
70811b85
RS
4551The result is that the communication variables @code{yylval} and
4552@code{yylloc} become local variables in @code{yyparse}, and a different
4553calling convention is used for the lexical analyzer function
4554@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4555Parsers}, for the details of this. The variable @code{yynerrs}
4556becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4557of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4558Reporting Function @code{yyerror}}). The convention for calling
4559@code{yyparse} itself is unchanged.
4560
4561Whether the parser is pure has nothing to do with the grammar rules.
4562You can generate either a pure parser or a nonreentrant parser from any
4563valid grammar.
bfa74976 4564
9987d1b3
JD
4565@node Push Decl
4566@subsection A Push Parser
4567@cindex push parser
4568@cindex push parser
67212941 4569@findex %define api.push-pull
9987d1b3 4570
59da312b
JD
4571(The current push parsing interface is experimental and may evolve.
4572More user feedback will help to stabilize it.)
4573
f4101aa6
AD
4574A pull parser is called once and it takes control until all its input
4575is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4576each time a new token is made available.
4577
f4101aa6 4578A push parser is typically useful when the parser is part of a
9987d1b3 4579main event loop in the client's application. This is typically
f4101aa6
AD
4580a requirement of a GUI, when the main event loop needs to be triggered
4581within a certain time period.
9987d1b3 4582
d782395d
JD
4583Normally, Bison generates a pull parser.
4584The following Bison declaration says that you want the parser to be a push
67212941 4585parser (@pxref{Decl Summary,,%define api.push-pull}):
9987d1b3
JD
4586
4587@example
67212941 4588%define api.push-pull "push"
9987d1b3
JD
4589@end example
4590
4591In almost all cases, you want to ensure that your push parser is also
4592a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4593time you should create an impure push parser is to have backwards
9987d1b3
JD
4594compatibility with the impure Yacc pull mode interface. Unless you know
4595what you are doing, your declarations should look like this:
4596
4597@example
d9df47b6 4598%define api.pure
67212941 4599%define api.push-pull "push"
9987d1b3
JD
4600@end example
4601
f4101aa6
AD
4602There is a major notable functional difference between the pure push parser
4603and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4604many parser instances, of the same type of parser, in memory at the same time.
4605An impure push parser should only use one parser at a time.
4606
4607When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4608the generated parser. @code{yypstate} is a structure that the generated
4609parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4610function that will create a new parser instance. @code{yypstate_delete}
4611will free the resources associated with the corresponding parser instance.
f4101aa6 4612Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4613token is available to provide the parser. A trivial example
4614of using a pure push parser would look like this:
4615
4616@example
4617int status;
4618yypstate *ps = yypstate_new ();
4619do @{
4620 status = yypush_parse (ps, yylex (), NULL);
4621@} while (status == YYPUSH_MORE);
4622yypstate_delete (ps);
4623@end example
4624
4625If the user decided to use an impure push parser, a few things about
f4101aa6 4626the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4627a global variable instead of a variable in the @code{yypush_parse} function.
4628For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4629changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4630example would thus look like this:
4631
4632@example
4633extern int yychar;
4634int status;
4635yypstate *ps = yypstate_new ();
4636do @{
4637 yychar = yylex ();
4638 status = yypush_parse (ps);
4639@} while (status == YYPUSH_MORE);
4640yypstate_delete (ps);
4641@end example
4642
f4101aa6 4643That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4644for use by the next invocation of the @code{yypush_parse} function.
4645
f4101aa6 4646Bison also supports both the push parser interface along with the pull parser
9987d1b3 4647interface in the same generated parser. In order to get this functionality,
67501061
AD
4648you should replace the @samp{%define api.push-pull "push"} declaration with the
4649@samp{%define api.push-pull "both"} declaration. Doing this will create all of
c373bf8b 4650the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4651and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4652would be used. However, the user should note that it is implemented in the
d782395d
JD
4653generated parser by calling @code{yypull_parse}.
4654This makes the @code{yyparse} function that is generated with the
67501061 4655@samp{%define api.push-pull "both"} declaration slower than the normal
d782395d
JD
4656@code{yyparse} function. If the user
4657calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4658stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4659and then @code{yypull_parse} the rest of the input stream. If you would like
4660to switch back and forth between between parsing styles, you would have to
4661write your own @code{yypull_parse} function that knows when to quit looking
4662for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4663like this:
4664
4665@example
4666yypstate *ps = yypstate_new ();
4667yypull_parse (ps); /* Will call the lexer */
4668yypstate_delete (ps);
4669@end example
4670
67501061
AD
4671Adding the @samp{%define api.pure} declaration does exactly the same thing to
4672the generated parser with @samp{%define api.push-pull "both"} as it did for
4673@samp{%define api.push-pull "push"}.
9987d1b3 4674
342b8b6e 4675@node Decl Summary
bfa74976
RS
4676@subsection Bison Declaration Summary
4677@cindex Bison declaration summary
4678@cindex declaration summary
4679@cindex summary, Bison declaration
4680
d8988b2f 4681Here is a summary of the declarations used to define a grammar:
bfa74976 4682
18b519c0 4683@deffn {Directive} %union
bfa74976
RS
4684Declare the collection of data types that semantic values may have
4685(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4686@end deffn
bfa74976 4687
18b519c0 4688@deffn {Directive} %token
bfa74976
RS
4689Declare a terminal symbol (token type name) with no precedence
4690or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4691@end deffn
bfa74976 4692
18b519c0 4693@deffn {Directive} %right
bfa74976
RS
4694Declare a terminal symbol (token type name) that is right-associative
4695(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4696@end deffn
bfa74976 4697
18b519c0 4698@deffn {Directive} %left
bfa74976
RS
4699Declare a terminal symbol (token type name) that is left-associative
4700(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4701@end deffn
bfa74976 4702
18b519c0 4703@deffn {Directive} %nonassoc
bfa74976 4704Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4705(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4706Using it in a way that would be associative is a syntax error.
4707@end deffn
4708
91d2c560 4709@ifset defaultprec
39a06c25 4710@deffn {Directive} %default-prec
22fccf95 4711Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4712(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4713@end deffn
91d2c560 4714@end ifset
bfa74976 4715
18b519c0 4716@deffn {Directive} %type
bfa74976
RS
4717Declare the type of semantic values for a nonterminal symbol
4718(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4719@end deffn
bfa74976 4720
18b519c0 4721@deffn {Directive} %start
89cab50d
AD
4722Specify the grammar's start symbol (@pxref{Start Decl, ,The
4723Start-Symbol}).
18b519c0 4724@end deffn
bfa74976 4725
18b519c0 4726@deffn {Directive} %expect
bfa74976
RS
4727Declare the expected number of shift-reduce conflicts
4728(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4729@end deffn
4730
bfa74976 4731
d8988b2f
AD
4732@sp 1
4733@noindent
4734In order to change the behavior of @command{bison}, use the following
4735directives:
4736
148d66d8
JD
4737@deffn {Directive} %code @{@var{code}@}
4738@findex %code
4739This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4740It inserts @var{code} verbatim at a language-dependent default location in the
4741output@footnote{The default location is actually skeleton-dependent;
4742 writers of non-standard skeletons however should choose the default location
4743 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4744
4745@cindex Prologue
8405b70c 4746For C/C++, the default location is the parser source code
148d66d8
JD
4747file after the usual contents of the parser header file.
4748Thus, @code{%code} replaces the traditional Yacc prologue,
4749@code{%@{@var{code}%@}}, for most purposes.
4750For a detailed discussion, see @ref{Prologue Alternatives}.
4751
8405b70c 4752For Java, the default location is inside the parser class.
148d66d8
JD
4753@end deffn
4754
4755@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4756This is the qualified form of the @code{%code} directive.
4757If you need to specify location-sensitive verbatim @var{code} that does not
4758belong at the default location selected by the unqualified @code{%code} form,
4759use this form instead.
4760
4761@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4762where Bison should generate it.
4763Not all values of @var{qualifier} are available for all target languages:
4764
4765@itemize @bullet
148d66d8 4766@item requires
793fbca5 4767@findex %code requires
148d66d8
JD
4768
4769@itemize @bullet
4770@item Language(s): C, C++
4771
4772@item Purpose: This is the best place to write dependency code required for
4773@code{YYSTYPE} and @code{YYLTYPE}.
4774In other words, it's the best place to define types referenced in @code{%union}
4775directives, and it's the best place to override Bison's default @code{YYSTYPE}
4776and @code{YYLTYPE} definitions.
4777
4778@item Location(s): The parser header file and the parser source code file
4779before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
4780@end itemize
4781
4782@item provides
4783@findex %code provides
4784
4785@itemize @bullet
4786@item Language(s): C, C++
4787
4788@item Purpose: This is the best place to write additional definitions and
4789declarations that should be provided to other modules.
4790
4791@item Location(s): The parser header file and the parser source code file after
4792the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
4793@end itemize
4794
4795@item top
4796@findex %code top
4797
4798@itemize @bullet
4799@item Language(s): C, C++
4800
4801@item Purpose: The unqualified @code{%code} or @code{%code requires} should
4802usually be more appropriate than @code{%code top}.
4803However, occasionally it is necessary to insert code much nearer the top of the
4804parser source code file.
4805For example:
4806
4807@smallexample
4808%code top @{
4809 #define _GNU_SOURCE
4810 #include <stdio.h>
4811@}
4812@end smallexample
4813
4814@item Location(s): Near the top of the parser source code file.
4815@end itemize
8405b70c 4816
148d66d8
JD
4817@item imports
4818@findex %code imports
4819
4820@itemize @bullet
4821@item Language(s): Java
4822
4823@item Purpose: This is the best place to write Java import directives.
4824
4825@item Location(s): The parser Java file after any Java package directive and
4826before any class definitions.
4827@end itemize
148d66d8
JD
4828@end itemize
4829
148d66d8
JD
4830@cindex Prologue
4831For a detailed discussion of how to use @code{%code} in place of the
4832traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
4833@end deffn
4834
18b519c0 4835@deffn {Directive} %debug
fa819509
AD
4836Instrument the output parser for traces. Obsoleted by @samp{%define
4837parse.trace}.
ec3bc396 4838@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 4839@end deffn
d8988b2f 4840
c1d19e10
PB
4841@deffn {Directive} %define @var{variable}
4842@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2
JD
4843Define a variable to adjust Bison's behavior.
4844The possible choices for @var{variable}, as well as their meanings, depend on
4845the selected target language and/or the parser skeleton (@pxref{Decl
ed4d67dc 4846Summary,,%language}, @pxref{Decl Summary,,%skeleton}).
9611cfa2 4847
0b6d43c5
JD
4848It is an error if a @var{variable} is defined by @code{%define} multiple
4849times, but @ref{Bison Options,,-D @var{name}[=@var{value}]}.
9611cfa2
JD
4850
4851Omitting @code{"@var{value}"} is always equivalent to specifying it as
4852@code{""}.
4853
922bdd7f 4854Some @var{variable}s may be used as Booleans.
9611cfa2
JD
4855In this case, Bison will complain if the variable definition does not meet one
4856of the following four conditions:
4857
4858@enumerate
4859@item @code{"@var{value}"} is @code{"true"}
4860
4861@item @code{"@var{value}"} is omitted (or is @code{""}).
4862This is equivalent to @code{"true"}.
4863
4864@item @code{"@var{value}"} is @code{"false"}.
4865
4866@item @var{variable} is never defined.
4867In this case, Bison selects a default value, which may depend on the selected
4868target language and/or parser skeleton.
4869@end enumerate
148d66d8 4870
793fbca5
JD
4871Some of the accepted @var{variable}s are:
4872
fa819509 4873@table @code
67501061
AD
4874@c ================================================== namespace
4875@item api.namespace
4876@findex %define api.namespace
4877@itemize
4878@item Languages(s): C++
4879
4880@item Purpose: Specifies the namespace for the parser class.
4881For example, if you specify:
4882
4883@smallexample
4884%define api.namespace "foo::bar"
4885@end smallexample
4886
4887Bison uses @code{foo::bar} verbatim in references such as:
4888
4889@smallexample
4890foo::bar::parser::semantic_type
4891@end smallexample
4892
4893However, to open a namespace, Bison removes any leading @code{::} and then
4894splits on any remaining occurrences:
4895
4896@smallexample
4897namespace foo @{ namespace bar @{
4898 class position;
4899 class location;
4900@} @}
4901@end smallexample
4902
4903@item Accepted Values:
4904Any absolute or relative C++ namespace reference without a trailing
4905@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
4906
4907@item Default Value:
4908The value specified by @code{%name-prefix}, which defaults to @code{yy}.
4909This usage of @code{%name-prefix} is for backward compatibility and can
4910be confusing since @code{%name-prefix} also specifies the textual prefix
4911for the lexical analyzer function. Thus, if you specify
4912@code{%name-prefix}, it is best to also specify @samp{%define
4913api.namespace} so that @code{%name-prefix} @emph{only} affects the
4914lexical analyzer function. For example, if you specify:
4915
4916@smallexample
4917%define api.namespace "foo"
4918%name-prefix "bar::"
4919@end smallexample
4920
4921The parser namespace is @code{foo} and @code{yylex} is referenced as
4922@code{bar::lex}.
4923@end itemize
4924@c namespace
4925
4926
4927
4928@c ================================================== api.pure
d9df47b6
JD
4929@item api.pure
4930@findex %define api.pure
4931
4932@itemize @bullet
4933@item Language(s): C
4934
4935@item Purpose: Request a pure (reentrant) parser program.
4936@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
4937
4938@item Accepted Values: Boolean
4939
4940@item Default Value: @code{"false"}
4941@end itemize
71b00ed8 4942@c api.pure
d9df47b6 4943
67501061
AD
4944
4945
4946@c ================================================== api.push-pull
67212941
JD
4947@item api.push-pull
4948@findex %define api.push-pull
793fbca5
JD
4949
4950@itemize @bullet
eb45ef3b 4951@item Language(s): C (deterministic parsers only)
793fbca5
JD
4952
4953@item Purpose: Requests a pull parser, a push parser, or both.
d782395d 4954@xref{Push Decl, ,A Push Parser}.
59da312b
JD
4955(The current push parsing interface is experimental and may evolve.
4956More user feedback will help to stabilize it.)
793fbca5
JD
4957
4958@item Accepted Values: @code{"pull"}, @code{"push"}, @code{"both"}
4959
4960@item Default Value: @code{"pull"}
4961@end itemize
67212941 4962@c api.push-pull
71b00ed8 4963
4c6622c2
AD
4964@item api.tokens.prefix
4965@findex %define api.tokens.prefix
4966
4967@itemize
4968@item Languages(s): all
4969
4970@item Purpose:
4971Add a prefix to the token names when generating their definition in the
4972target language. For instance
4973
4974@example
4975%token FILE for ERROR
4976%define api.tokens.prefix "TOK_"
4977%%
4978start: FILE for ERROR;
4979@end example
4980
4981@noindent
4982generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
4983and @code{TOK_ERROR} in the generated source files. In particular, the
4984scanner must use these prefixed token names, while the grammar itself
4985may still use the short names (as in the sample rule given above). The
4986generated informational files (@file{*.output}, @file{*.xml},
4987@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
4988and @ref{Calc++ Scanner}, for a complete example.
4989
4990@item Accepted Values:
4991Any string. Should be a valid identifier prefix in the target language,
4992in other words, it should typically be an identifier itself (sequence of
4993letters, underscores, and ---not at the beginning--- digits).
4994
4995@item Default Value:
4996empty
4997@end itemize
4998@c api.tokens.prefix
4999
5000
5bab9d08 5001@item lr.default-reductions
110ef36a 5002@cindex default reductions
5bab9d08 5003@findex %define lr.default-reductions
eb45ef3b
JD
5004@cindex delayed syntax errors
5005@cindex syntax errors delayed
5006
5007@itemize @bullet
5008@item Language(s): all
5009
5010@item Purpose: Specifies the kind of states that are permitted to
110ef36a
JD
5011contain default reductions.
5012That is, in such a state, Bison declares the reduction with the largest
5013lookahead set to be the default reduction and then removes that
5014lookahead set.
5015The advantages of default reductions are discussed below.
eb45ef3b
JD
5016The disadvantage is that, when the generated parser encounters a
5017syntactically unacceptable token, the parser might then perform
110ef36a 5018unnecessary default reductions before it can detect the syntax error.
eb45ef3b
JD
5019
5020(This feature is experimental.
5021More user feedback will help to stabilize it.)
5022
5023@item Accepted Values:
5024@itemize
5025@item @code{"all"}.
5026For @acronym{LALR} and @acronym{IELR} parsers (@pxref{Decl
5027Summary,,lr.type}) by default, all states are permitted to contain
110ef36a 5028default reductions.
eb45ef3b
JD
5029The advantage is that parser table sizes can be significantly reduced.
5030The reason Bison does not by default attempt to address the disadvantage
5031of delayed syntax error detection is that this disadvantage is already
5032inherent in @acronym{LALR} and @acronym{IELR} parser tables.
110ef36a
JD
5033That is, unlike in a canonical @acronym{LR} state, the lookahead sets of
5034reductions in an @acronym{LALR} or @acronym{IELR} state can contain
5035tokens that are syntactically incorrect for some left contexts.
eb45ef3b
JD
5036
5037@item @code{"consistent"}.
5038@cindex consistent states
5039A consistent state is a state that has only one possible action.
5040If that action is a reduction, then the parser does not need to request
5041a lookahead token from the scanner before performing that action.
5042However, the parser only recognizes the ability to ignore the lookahead
110ef36a
JD
5043token when such a reduction is encoded as a default reduction.
5044Thus, if default reductions are permitted in and only in consistent
5045states, then a canonical @acronym{LR} parser reports a syntax error as
5046soon as it @emph{needs} the syntactically unacceptable token from the
5047scanner.
eb45ef3b
JD
5048
5049@item @code{"accepting"}.
5050@cindex accepting state
110ef36a
JD
5051By default, the only default reduction permitted in a canonical
5052@acronym{LR} parser is the accept action in the accepting state, which
5053the parser reaches only after reading all tokens from the input.
eb45ef3b
JD
5054Thus, the default canonical @acronym{LR} parser reports a syntax error
5055as soon as it @emph{reaches} the syntactically unacceptable token
5056without performing any extra reductions.
5057@end itemize
5058
5059@item Default Value:
5060@itemize
5061@item @code{"accepting"} if @code{lr.type} is @code{"canonical LR"}.
5062@item @code{"all"} otherwise.
5063@end itemize
5064@end itemize
5065
67212941
JD
5066@item lr.keep-unreachable-states
5067@findex %define lr.keep-unreachable-states
31984206
JD
5068
5069@itemize @bullet
5070@item Language(s): all
5071
5072@item Purpose: Requests that Bison allow unreachable parser states to remain in
5073the parser tables.
5074Bison considers a state to be unreachable if there exists no sequence of
5075transitions from the start state to that state.
5076A state can become unreachable during conflict resolution if Bison disables a
5077shift action leading to it from a predecessor state.
5078Keeping unreachable states is sometimes useful for analysis purposes, but they
5079are useless in the generated parser.
5080
5081@item Accepted Values: Boolean
5082
5083@item Default Value: @code{"false"}
5084
5085@item Caveats:
5086
5087@itemize @bullet
cff03fb2
JD
5088
5089@item Unreachable states may contain conflicts and may use rules not used in
5090any other state.
31984206
JD
5091Thus, keeping unreachable states may induce warnings that are irrelevant to
5092your parser's behavior, and it may eliminate warnings that are relevant.
5093Of course, the change in warnings may actually be relevant to a parser table
5094analysis that wants to keep unreachable states, so this behavior will likely
5095remain in future Bison releases.
5096
5097@item While Bison is able to remove unreachable states, it is not guaranteed to
5098remove other kinds of useless states.
5099Specifically, when Bison disables reduce actions during conflict resolution,
5100some goto actions may become useless, and thus some additional states may
5101become useless.
5102If Bison were to compute which goto actions were useless and then disable those
5103actions, it could identify such states as unreachable and then remove those
5104states.
5105However, Bison does not compute which goto actions are useless.
5106@end itemize
5107@end itemize
67212941 5108@c lr.keep-unreachable-states
31984206 5109
eb45ef3b
JD
5110@item lr.type
5111@findex %define lr.type
5112@cindex @acronym{LALR}
5113@cindex @acronym{IELR}
5114@cindex @acronym{LR}
5115
5116@itemize @bullet
5117@item Language(s): all
5118
5119@item Purpose: Specifies the type of parser tables within the
5120@acronym{LR}(1) family.
5121(This feature is experimental.
5122More user feedback will help to stabilize it.)
5123
5124@item Accepted Values:
5125@itemize
5126@item @code{"LALR"}.
5127While Bison generates @acronym{LALR} parser tables by default for
5128historical reasons, @acronym{IELR} or canonical @acronym{LR} is almost
5129always preferable for deterministic parsers.
5130The trouble is that @acronym{LALR} parser tables can suffer from
110ef36a
JD
5131mysterious conflicts and thus may not accept the full set of sentences
5132that @acronym{IELR} and canonical @acronym{LR} accept.
eb45ef3b
JD
5133@xref{Mystery Conflicts}, for details.
5134However, there are at least two scenarios where @acronym{LALR} may be
5135worthwhile:
5136@itemize
5137@cindex @acronym{GLR} with @acronym{LALR}
5138@item When employing @acronym{GLR} parsers (@pxref{GLR Parsers}), if you
5139do not resolve any conflicts statically (for example, with @code{%left}
5140or @code{%prec}), then the parser explores all potential parses of any
5141given input.
110ef36a
JD
5142In this case, the use of @acronym{LALR} parser tables is guaranteed not
5143to alter the language accepted by the parser.
eb45ef3b
JD
5144@acronym{LALR} parser tables are the smallest parser tables Bison can
5145currently generate, so they may be preferable.
5146
5147@item Occasionally during development, an especially malformed grammar
5148with a major recurring flaw may severely impede the @acronym{IELR} or
5149canonical @acronym{LR} parser table generation algorithm.
5150@acronym{LALR} can be a quick way to generate parser tables in order to
5151investigate such problems while ignoring the more subtle differences
5152from @acronym{IELR} and canonical @acronym{LR}.
5153@end itemize
5154
5155@item @code{"IELR"}.
5156@acronym{IELR} is a minimal @acronym{LR} algorithm.
5157That is, given any grammar (@acronym{LR} or non-@acronym{LR}),
5158@acronym{IELR} and canonical @acronym{LR} always accept exactly the same
5159set of sentences.
5160However, as for @acronym{LALR}, the number of parser states is often an
5161order of magnitude less for @acronym{IELR} than for canonical
5162@acronym{LR}.
5163More importantly, because canonical @acronym{LR}'s extra parser states
5164may contain duplicate conflicts in the case of non-@acronym{LR}
5165grammars, the number of conflicts for @acronym{IELR} is often an order
5166of magnitude less as well.
5167This can significantly reduce the complexity of developing of a grammar.
5168
5169@item @code{"canonical LR"}.
5170@cindex delayed syntax errors
5171@cindex syntax errors delayed
110ef36a
JD
5172The only advantage of canonical @acronym{LR} over @acronym{IELR} is
5173that, for every left context of every canonical @acronym{LR} state, the
5174set of tokens accepted by that state is the exact set of tokens that is
5175syntactically acceptable in that left context.
5176Thus, the only difference in parsing behavior is that the canonical
eb45ef3b
JD
5177@acronym{LR} parser can report a syntax error as soon as possible
5178without performing any unnecessary reductions.
5bab9d08 5179@xref{Decl Summary,,lr.default-reductions}, for further details.
eb45ef3b
JD
5180Even when canonical @acronym{LR} behavior is ultimately desired,
5181@acronym{IELR}'s elimination of duplicate conflicts should still
5182facilitate the development of a grammar.
5183@end itemize
5184
5185@item Default Value: @code{"LALR"}
5186@end itemize
5187
67501061
AD
5188
5189@c ================================================== namespace
793fbca5
JD
5190@item namespace
5191@findex %define namespace
67501061 5192Obsoleted by @code{api.namespace}
fa819509
AD
5193@c namespace
5194
31b850d2
AD
5195
5196@c ================================================== parse.assert
0c90a1f5
AD
5197@item parse.assert
5198@findex %define parse.assert
5199
5200@itemize
5201@item Languages(s): C++
5202
5203@item Purpose: Issue runtime assertions to catch invalid uses.
5204In C++, when variants are used, symbols must be constructed and
5205destroyed properly. This option checks these constraints.
5206
5207@item Accepted Values: Boolean
5208
5209@item Default Value: @code{false}
5210@end itemize
5211@c parse.assert
5212
31b850d2
AD
5213
5214@c ================================================== parse.error
5215@item parse.error
5216@findex %define parse.error
5217@itemize
5218@item Languages(s):
5219all.
5220@item Purpose:
5221Control the kind of error messages passed to the error reporting
5222function. @xref{Error Reporting, ,The Error Reporting Function
5223@code{yyerror}}.
5224@item Accepted Values:
5225@itemize
5226@item @code{"simple"}
5227Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5228error"}}.
5229@item @code{"verbose"}
5230Error messages report the unexpected token, and possibly the expected
5231ones.
5232@end itemize
5233
5234@item Default Value:
5235@code{simple}
5236@end itemize
5237@c parse.error
5238
5239
5240@c ================================================== parse.trace
fa819509
AD
5241@item parse.trace
5242@findex %define parse.trace
5243
5244@itemize
5245@item Languages(s): C, C++
5246
5247@item Purpose: Require parser instrumentation for tracing.
5248In C/C++, define the macro @code{YYDEBUG} to 1 in the parser file if it
5249is not already defined, so that the debugging facilities are compiled.
5250@xref{Tracing, ,Tracing Your Parser}.
793fbca5 5251
fa819509
AD
5252@item Accepted Values: Boolean
5253
5254@item Default Value: @code{false}
5255@end itemize
fa819509 5256@c parse.trace
99c08fb6 5257
99c08fb6 5258@end table
d782395d 5259@end deffn
99c08fb6 5260@c ---------------------------------------------------------- %define
d782395d 5261
18b519c0 5262@deffn {Directive} %defines
4bfd5e4e
PE
5263Write a header file containing macro definitions for the token type
5264names defined in the grammar as well as a few other declarations.
d8988b2f 5265If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 5266is named @file{@var{name}.h}.
d8988b2f 5267
b321737f 5268For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
5269@code{YYSTYPE} is already defined as a macro or you have used a
5270@code{<@var{type}>} tag without using @code{%union}.
5271Therefore, if you are using a @code{%union}
f8e1c9e5
AD
5272(@pxref{Multiple Types, ,More Than One Value Type}) with components that
5273require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 5274or type definition
f8e1c9e5
AD
5275(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
5276arrange for these definitions to be propagated to all modules, e.g., by
5277putting them in a prerequisite header that is included both by your
5278parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
5279
5280Unless your parser is pure, the output header declares @code{yylval}
5281as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
5282Parser}.
5283
5284If you have also used locations, the output header declares
5285@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 5286the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
5287Locations}.
5288
f8e1c9e5
AD
5289This output file is normally essential if you wish to put the definition
5290of @code{yylex} in a separate source file, because @code{yylex}
5291typically needs to be able to refer to the above-mentioned declarations
5292and to the token type codes. @xref{Token Values, ,Semantic Values of
5293Tokens}.
9bc0dd67 5294
16dc6a9e
JD
5295@findex %code requires
5296@findex %code provides
5297If you have declared @code{%code requires} or @code{%code provides}, the output
5298header also contains their code.
148d66d8 5299@xref{Decl Summary, ,%code}.
592d0b1e
PB
5300@end deffn
5301
02975b9a
JD
5302@deffn {Directive} %defines @var{defines-file}
5303Same as above, but save in the file @var{defines-file}.
5304@end deffn
5305
18b519c0 5306@deffn {Directive} %destructor
258b75ca 5307Specify how the parser should reclaim the memory associated to
fa7e68c3 5308discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 5309@end deffn
72f889cc 5310
02975b9a 5311@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
5312Specify a prefix to use for all Bison output file names. The names are
5313chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 5314@end deffn
d8988b2f 5315
e6e704dc 5316@deffn {Directive} %language "@var{language}"
0e021770 5317Specify the programming language for the generated parser. Currently
59da312b 5318supported languages include C, C++, and Java.
e6e704dc 5319@var{language} is case-insensitive.
ed4d67dc
JD
5320
5321This directive is experimental and its effect may be modified in future
5322releases.
0e021770
PE
5323@end deffn
5324
18b519c0 5325@deffn {Directive} %locations
89cab50d
AD
5326Generate the code processing the locations (@pxref{Action Features,
5327,Special Features for Use in Actions}). This mode is enabled as soon as
5328the grammar uses the special @samp{@@@var{n}} tokens, but if your
5329grammar does not use it, using @samp{%locations} allows for more
6e649e65 5330accurate syntax error messages.
18b519c0 5331@end deffn
89cab50d 5332
02975b9a 5333@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5334Rename the external symbols used in the parser so that they start with
5335@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5336in C parsers
d8988b2f 5337is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5338@code{yylval}, @code{yychar}, @code{yydebug}, and
f4101aa6
AD
5339(if locations are used) @code{yylloc}. If you use a push parser,
5340@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5341@code{yypstate_new} and @code{yypstate_delete} will
5342also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5 5343names become @code{c_parse}, @code{c_lex}, and so on.
67501061 5344For C++ parsers, see the @samp{%define api.namespace} documentation in this
793fbca5 5345section.
aa08666d 5346@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5347@end deffn
931c7513 5348
91d2c560 5349@ifset defaultprec
22fccf95
PE
5350@deffn {Directive} %no-default-prec
5351Do not assign a precedence to rules lacking an explicit @code{%prec}
5352modifier (@pxref{Contextual Precedence, ,Context-Dependent
5353Precedence}).
5354@end deffn
91d2c560 5355@end ifset
22fccf95 5356
18b519c0 5357@deffn {Directive} %no-lines
931c7513
RS
5358Don't generate any @code{#line} preprocessor commands in the parser
5359file. Ordinarily Bison writes these commands in the parser file so that
5360the C compiler and debuggers will associate errors and object code with
5361your source file (the grammar file). This directive causes them to
5362associate errors with the parser file, treating it an independent source
5363file in its own right.
18b519c0 5364@end deffn
931c7513 5365
02975b9a 5366@deffn {Directive} %output "@var{file}"
fa4d969f 5367Specify @var{file} for the parser file.
18b519c0 5368@end deffn
6deb4447 5369
18b519c0 5370@deffn {Directive} %pure-parser
67501061 5371Deprecated version of @samp{%define api.pure} (@pxref{Decl Summary, ,%define}),
d9df47b6 5372for which Bison is more careful to warn about unreasonable usage.
18b519c0 5373@end deffn
6deb4447 5374
b50d2359 5375@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5376Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5377Require a Version of Bison}.
b50d2359
AD
5378@end deffn
5379
0e021770 5380@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5381Specify the skeleton to use.
5382
ed4d67dc
JD
5383@c You probably don't need this option unless you are developing Bison.
5384@c You should use @code{%language} if you want to specify the skeleton for a
5385@c different language, because it is clearer and because it will always choose the
5386@c correct skeleton for non-deterministic or push parsers.
a7867f53
JD
5387
5388If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5389file in the Bison installation directory.
5390If it does, @var{file} is an absolute file name or a file name relative to the
5391directory of the grammar file.
5392This is similar to how most shells resolve commands.
0e021770
PE
5393@end deffn
5394
18b519c0 5395@deffn {Directive} %token-table
931c7513
RS
5396Generate an array of token names in the parser file. The name of the
5397array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 5398token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
5399three elements of @code{yytname} correspond to the predefined tokens
5400@code{"$end"},
88bce5a2
AD
5401@code{"error"}, and @code{"$undefined"}; after these come the symbols
5402defined in the grammar file.
931c7513 5403
9e0876fb
PE
5404The name in the table includes all the characters needed to represent
5405the token in Bison. For single-character literals and literal
5406strings, this includes the surrounding quoting characters and any
5407escape sequences. For example, the Bison single-character literal
5408@code{'+'} corresponds to a three-character name, represented in C as
5409@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5410corresponds to a five-character name, represented in C as
5411@code{"\"\\\\/\""}.
931c7513 5412
8c9a50be 5413When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5414definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5415@code{YYNRULES}, and @code{YYNSTATES}:
5416
5417@table @code
5418@item YYNTOKENS
5419The highest token number, plus one.
5420@item YYNNTS
9ecbd125 5421The number of nonterminal symbols.
931c7513
RS
5422@item YYNRULES
5423The number of grammar rules,
5424@item YYNSTATES
5425The number of parser states (@pxref{Parser States}).
5426@end table
18b519c0 5427@end deffn
d8988b2f 5428
18b519c0 5429@deffn {Directive} %verbose
d8988b2f 5430Write an extra output file containing verbose descriptions of the
742e4900 5431parser states and what is done for each type of lookahead token in
72d2299c 5432that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5433information.
18b519c0 5434@end deffn
d8988b2f 5435
18b519c0 5436@deffn {Directive} %yacc
d8988b2f
AD
5437Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5438including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5439@end deffn
d8988b2f
AD
5440
5441
342b8b6e 5442@node Multiple Parsers
bfa74976
RS
5443@section Multiple Parsers in the Same Program
5444
5445Most programs that use Bison parse only one language and therefore contain
5446only one Bison parser. But what if you want to parse more than one
5447language with the same program? Then you need to avoid a name conflict
5448between different definitions of @code{yyparse}, @code{yylval}, and so on.
5449
5450The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5451(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5452functions and variables of the Bison parser to start with @var{prefix}
5453instead of @samp{yy}. You can use this to give each parser distinct
5454names that do not conflict.
bfa74976
RS
5455
5456The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5457@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5458@code{yychar} and @code{yydebug}. If you use a push parser,
5459@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5460@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5461For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5462@code{clex}, and so on.
bfa74976
RS
5463
5464@strong{All the other variables and macros associated with Bison are not
5465renamed.} These others are not global; there is no conflict if the same
5466name is used in different parsers. For example, @code{YYSTYPE} is not
5467renamed, but defining this in different ways in different parsers causes
5468no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5469
5470The @samp{-p} option works by adding macro definitions to the beginning
5471of the parser source file, defining @code{yyparse} as
5472@code{@var{prefix}parse}, and so on. This effectively substitutes one
5473name for the other in the entire parser file.
5474
342b8b6e 5475@node Interface
bfa74976
RS
5476@chapter Parser C-Language Interface
5477@cindex C-language interface
5478@cindex interface
5479
5480The Bison parser is actually a C function named @code{yyparse}. Here we
5481describe the interface conventions of @code{yyparse} and the other
5482functions that it needs to use.
5483
5484Keep in mind that the parser uses many C identifiers starting with
5485@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5486identifier (aside from those in this manual) in an action or in epilogue
5487in the grammar file, you are likely to run into trouble.
bfa74976
RS
5488
5489@menu
f5f419de
DJ
5490* Parser Function:: How to call @code{yyparse} and what it returns.
5491* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5492* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5493* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5494* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5495* Lexical:: You must supply a function @code{yylex}
5496 which reads tokens.
5497* Error Reporting:: You must supply a function @code{yyerror}.
5498* Action Features:: Special features for use in actions.
5499* Internationalization:: How to let the parser speak in the user's
5500 native language.
bfa74976
RS
5501@end menu
5502
342b8b6e 5503@node Parser Function
bfa74976
RS
5504@section The Parser Function @code{yyparse}
5505@findex yyparse
5506
5507You call the function @code{yyparse} to cause parsing to occur. This
5508function reads tokens, executes actions, and ultimately returns when it
5509encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5510write an action which directs @code{yyparse} to return immediately
5511without reading further.
bfa74976 5512
2a8d363a
AD
5513
5514@deftypefun int yyparse (void)
bfa74976
RS
5515The value returned by @code{yyparse} is 0 if parsing was successful (return
5516is due to end-of-input).
5517
b47dbebe
PE
5518The value is 1 if parsing failed because of invalid input, i.e., input
5519that contains a syntax error or that causes @code{YYABORT} to be
5520invoked.
5521
5522The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5523@end deftypefun
bfa74976
RS
5524
5525In an action, you can cause immediate return from @code{yyparse} by using
5526these macros:
5527
2a8d363a 5528@defmac YYACCEPT
bfa74976
RS
5529@findex YYACCEPT
5530Return immediately with value 0 (to report success).
2a8d363a 5531@end defmac
bfa74976 5532
2a8d363a 5533@defmac YYABORT
bfa74976
RS
5534@findex YYABORT
5535Return immediately with value 1 (to report failure).
2a8d363a
AD
5536@end defmac
5537
5538If you use a reentrant parser, you can optionally pass additional
5539parameter information to it in a reentrant way. To do so, use the
5540declaration @code{%parse-param}:
5541
feeb0eda 5542@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5543@findex %parse-param
287c78f6
PE
5544Declare that an argument declared by the braced-code
5545@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5546The @var{argument-declaration} is used when declaring
feeb0eda
PE
5547functions or prototypes. The last identifier in
5548@var{argument-declaration} must be the argument name.
2a8d363a
AD
5549@end deffn
5550
5551Here's an example. Write this in the parser:
5552
5553@example
feeb0eda
PE
5554%parse-param @{int *nastiness@}
5555%parse-param @{int *randomness@}
2a8d363a
AD
5556@end example
5557
5558@noindent
5559Then call the parser like this:
5560
5561@example
5562@{
5563 int nastiness, randomness;
5564 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5565 value = yyparse (&nastiness, &randomness);
5566 @dots{}
5567@}
5568@end example
5569
5570@noindent
5571In the grammar actions, use expressions like this to refer to the data:
5572
5573@example
5574exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5575@end example
5576
9987d1b3
JD
5577@node Push Parser Function
5578@section The Push Parser Function @code{yypush_parse}
5579@findex yypush_parse
5580
59da312b
JD
5581(The current push parsing interface is experimental and may evolve.
5582More user feedback will help to stabilize it.)
5583
f4101aa6 5584You call the function @code{yypush_parse} to parse a single token. This
67501061
AD
5585function is available if either the @samp{%define api.push-pull "push"} or
5586@samp{%define api.push-pull "both"} declaration is used.
9987d1b3
JD
5587@xref{Push Decl, ,A Push Parser}.
5588
5589@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5590The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5591following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5592is required to finish parsing the grammar.
5593@end deftypefun
5594
5595@node Pull Parser Function
5596@section The Pull Parser Function @code{yypull_parse}
5597@findex yypull_parse
5598
59da312b
JD
5599(The current push parsing interface is experimental and may evolve.
5600More user feedback will help to stabilize it.)
5601
f4101aa6 5602You call the function @code{yypull_parse} to parse the rest of the input
67501061 5603stream. This function is available if the @samp{%define api.push-pull "both"}
f4101aa6 5604declaration is used.
9987d1b3
JD
5605@xref{Push Decl, ,A Push Parser}.
5606
5607@deftypefun int yypull_parse (yypstate *yyps)
5608The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5609@end deftypefun
5610
5611@node Parser Create Function
5612@section The Parser Create Function @code{yystate_new}
5613@findex yypstate_new
5614
59da312b
JD
5615(The current push parsing interface is experimental and may evolve.
5616More user feedback will help to stabilize it.)
5617
f4101aa6 5618You call the function @code{yypstate_new} to create a new parser instance.
67501061
AD
5619This function is available if either the @samp{%define api.push-pull "push"} or
5620@samp{%define api.push-pull "both"} declaration is used.
9987d1b3
JD
5621@xref{Push Decl, ,A Push Parser}.
5622
5623@deftypefun yypstate *yypstate_new (void)
5624The fuction will return a valid parser instance if there was memory available
333e670c
JD
5625or 0 if no memory was available.
5626In impure mode, it will also return 0 if a parser instance is currently
5627allocated.
9987d1b3
JD
5628@end deftypefun
5629
5630@node Parser Delete Function
5631@section The Parser Delete Function @code{yystate_delete}
5632@findex yypstate_delete
5633
59da312b
JD
5634(The current push parsing interface is experimental and may evolve.
5635More user feedback will help to stabilize it.)
5636
9987d1b3 5637You call the function @code{yypstate_delete} to delete a parser instance.
67501061
AD
5638function is available if either the @samp{%define api.push-pull "push"} or
5639@samp{%define api.push-pull "both"} declaration is used.
9987d1b3
JD
5640@xref{Push Decl, ,A Push Parser}.
5641
5642@deftypefun void yypstate_delete (yypstate *yyps)
5643This function will reclaim the memory associated with a parser instance.
5644After this call, you should no longer attempt to use the parser instance.
5645@end deftypefun
bfa74976 5646
342b8b6e 5647@node Lexical
bfa74976
RS
5648@section The Lexical Analyzer Function @code{yylex}
5649@findex yylex
5650@cindex lexical analyzer
5651
5652The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5653the input stream and returns them to the parser. Bison does not create
5654this function automatically; you must write it so that @code{yyparse} can
5655call it. The function is sometimes referred to as a lexical scanner.
5656
5657In simple programs, @code{yylex} is often defined at the end of the Bison
5658grammar file. If @code{yylex} is defined in a separate source file, you
5659need to arrange for the token-type macro definitions to be available there.
5660To do this, use the @samp{-d} option when you run Bison, so that it will
5661write these macro definitions into a separate header file
5662@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 5663that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
5664
5665@menu
5666* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
5667* Token Values:: How @code{yylex} must return the semantic value
5668 of the token it has read.
5669* Token Locations:: How @code{yylex} must return the text location
5670 (line number, etc.) of the token, if the
5671 actions want that.
5672* Pure Calling:: How the calling convention differs in a pure parser
5673 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5674@end menu
5675
342b8b6e 5676@node Calling Convention
bfa74976
RS
5677@subsection Calling Convention for @code{yylex}
5678
72d2299c
PE
5679The value that @code{yylex} returns must be the positive numeric code
5680for the type of token it has just found; a zero or negative value
5681signifies end-of-input.
bfa74976
RS
5682
5683When a token is referred to in the grammar rules by a name, that name
5684in the parser file becomes a C macro whose definition is the proper
5685numeric code for that token type. So @code{yylex} can use the name
5686to indicate that type. @xref{Symbols}.
5687
5688When a token is referred to in the grammar rules by a character literal,
5689the numeric code for that character is also the code for the token type.
72d2299c
PE
5690So @code{yylex} can simply return that character code, possibly converted
5691to @code{unsigned char} to avoid sign-extension. The null character
5692must not be used this way, because its code is zero and that
bfa74976
RS
5693signifies end-of-input.
5694
5695Here is an example showing these things:
5696
5697@example
13863333
AD
5698int
5699yylex (void)
bfa74976
RS
5700@{
5701 @dots{}
72d2299c 5702 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5703 return 0;
5704 @dots{}
5705 if (c == '+' || c == '-')
72d2299c 5706 return c; /* Assume token type for `+' is '+'. */
bfa74976 5707 @dots{}
72d2299c 5708 return INT; /* Return the type of the token. */
bfa74976
RS
5709 @dots{}
5710@}
5711@end example
5712
5713@noindent
5714This interface has been designed so that the output from the @code{lex}
5715utility can be used without change as the definition of @code{yylex}.
5716
931c7513
RS
5717If the grammar uses literal string tokens, there are two ways that
5718@code{yylex} can determine the token type codes for them:
5719
5720@itemize @bullet
5721@item
5722If the grammar defines symbolic token names as aliases for the
5723literal string tokens, @code{yylex} can use these symbolic names like
5724all others. In this case, the use of the literal string tokens in
5725the grammar file has no effect on @code{yylex}.
5726
5727@item
9ecbd125 5728@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5729table. The index of the token in the table is the token type's code.
9ecbd125 5730The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5731double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5732token's characters are escaped as necessary to be suitable as input
5733to Bison.
931c7513 5734
9e0876fb
PE
5735Here's code for looking up a multicharacter token in @code{yytname},
5736assuming that the characters of the token are stored in
5737@code{token_buffer}, and assuming that the token does not contain any
5738characters like @samp{"} that require escaping.
931c7513
RS
5739
5740@smallexample
5741for (i = 0; i < YYNTOKENS; i++)
5742 @{
5743 if (yytname[i] != 0
5744 && yytname[i][0] == '"'
68449b3a
PE
5745 && ! strncmp (yytname[i] + 1, token_buffer,
5746 strlen (token_buffer))
931c7513
RS
5747 && yytname[i][strlen (token_buffer) + 1] == '"'
5748 && yytname[i][strlen (token_buffer) + 2] == 0)
5749 break;
5750 @}
5751@end smallexample
5752
5753The @code{yytname} table is generated only if you use the
8c9a50be 5754@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5755@end itemize
5756
342b8b6e 5757@node Token Values
bfa74976
RS
5758@subsection Semantic Values of Tokens
5759
5760@vindex yylval
9d9b8b70 5761In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5762be stored into the global variable @code{yylval}. When you are using
5763just one data type for semantic values, @code{yylval} has that type.
5764Thus, if the type is @code{int} (the default), you might write this in
5765@code{yylex}:
5766
5767@example
5768@group
5769 @dots{}
72d2299c
PE
5770 yylval = value; /* Put value onto Bison stack. */
5771 return INT; /* Return the type of the token. */
bfa74976
RS
5772 @dots{}
5773@end group
5774@end example
5775
5776When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5777made from the @code{%union} declaration (@pxref{Union Decl, ,The
5778Collection of Value Types}). So when you store a token's value, you
5779must use the proper member of the union. If the @code{%union}
5780declaration looks like this:
bfa74976
RS
5781
5782@example
5783@group
5784%union @{
5785 int intval;
5786 double val;
5787 symrec *tptr;
5788@}
5789@end group
5790@end example
5791
5792@noindent
5793then the code in @code{yylex} might look like this:
5794
5795@example
5796@group
5797 @dots{}
72d2299c
PE
5798 yylval.intval = value; /* Put value onto Bison stack. */
5799 return INT; /* Return the type of the token. */
bfa74976
RS
5800 @dots{}
5801@end group
5802@end example
5803
95923bd6
AD
5804@node Token Locations
5805@subsection Textual Locations of Tokens
bfa74976
RS
5806
5807@vindex yylloc
847bf1f5 5808If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5809Tracking Locations}) in actions to keep track of the textual locations
5810of tokens and groupings, then you must provide this information in
5811@code{yylex}. The function @code{yyparse} expects to find the textual
5812location of a token just parsed in the global variable @code{yylloc}.
5813So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5814
5815By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5816initialize the members that are going to be used by the actions. The
5817four members are called @code{first_line}, @code{first_column},
5818@code{last_line} and @code{last_column}. Note that the use of this
5819feature makes the parser noticeably slower.
bfa74976
RS
5820
5821@tindex YYLTYPE
5822The data type of @code{yylloc} has the name @code{YYLTYPE}.
5823
342b8b6e 5824@node Pure Calling
c656404a 5825@subsection Calling Conventions for Pure Parsers
bfa74976 5826
67501061 5827When you use the Bison declaration @samp{%define api.pure} to request a
e425e872
RS
5828pure, reentrant parser, the global communication variables @code{yylval}
5829and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5830Parser}.) In such parsers the two global variables are replaced by
5831pointers passed as arguments to @code{yylex}. You must declare them as
5832shown here, and pass the information back by storing it through those
5833pointers.
bfa74976
RS
5834
5835@example
13863333
AD
5836int
5837yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5838@{
5839 @dots{}
5840 *lvalp = value; /* Put value onto Bison stack. */
5841 return INT; /* Return the type of the token. */
5842 @dots{}
5843@}
5844@end example
5845
5846If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5847textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5848this case, omit the second argument; @code{yylex} will be called with
5849only one argument.
5850
e425e872 5851
2a8d363a
AD
5852If you wish to pass the additional parameter data to @code{yylex}, use
5853@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5854Function}).
e425e872 5855
feeb0eda 5856@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5857@findex %lex-param
287c78f6
PE
5858Declare that the braced-code @var{argument-declaration} is an
5859additional @code{yylex} argument declaration.
2a8d363a 5860@end deffn
e425e872 5861
2a8d363a 5862For instance:
e425e872
RS
5863
5864@example
feeb0eda
PE
5865%parse-param @{int *nastiness@}
5866%lex-param @{int *nastiness@}
5867%parse-param @{int *randomness@}
e425e872
RS
5868@end example
5869
5870@noindent
2a8d363a 5871results in the following signature:
e425e872
RS
5872
5873@example
2a8d363a
AD
5874int yylex (int *nastiness);
5875int yyparse (int *nastiness, int *randomness);
e425e872
RS
5876@end example
5877
67501061 5878If @samp{%define api.pure} is added:
c656404a
RS
5879
5880@example
2a8d363a
AD
5881int yylex (YYSTYPE *lvalp, int *nastiness);
5882int yyparse (int *nastiness, int *randomness);
c656404a
RS
5883@end example
5884
2a8d363a 5885@noindent
67501061 5886and finally, if both @samp{%define api.pure} and @code{%locations} are used:
c656404a 5887
2a8d363a
AD
5888@example
5889int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5890int yyparse (int *nastiness, int *randomness);
5891@end example
931c7513 5892
342b8b6e 5893@node Error Reporting
bfa74976
RS
5894@section The Error Reporting Function @code{yyerror}
5895@cindex error reporting function
5896@findex yyerror
5897@cindex parse error
5898@cindex syntax error
5899
31b850d2 5900The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 5901whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 5902action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
5903macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
5904in Actions}).
bfa74976
RS
5905
5906The Bison parser expects to report the error by calling an error
5907reporting function named @code{yyerror}, which you must supply. It is
5908called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
5909receives one argument. For a syntax error, the string is normally
5910@w{@code{"syntax error"}}.
bfa74976 5911
31b850d2
AD
5912@findex %define parse.error
5913If you invoke @samp{%define parse.error "verbose"} in the Bison
2a8d363a
AD
5914declarations section (@pxref{Bison Declarations, ,The Bison Declarations
5915Section}), then Bison provides a more verbose and specific error message
6e649e65 5916string instead of just plain @w{@code{"syntax error"}}.
bfa74976 5917
1a059451
PE
5918The parser can detect one other kind of error: memory exhaustion. This
5919can happen when the input contains constructions that are very deeply
bfa74976 5920nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
5921parser normally extends its stack automatically up to a very large limit. But
5922if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
5923fashion, except that the argument string is @w{@code{"memory exhausted"}}.
5924
5925In some cases diagnostics like @w{@code{"syntax error"}} are
5926translated automatically from English to some other language before
5927they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
5928
5929The following definition suffices in simple programs:
5930
5931@example
5932@group
13863333 5933void
38a92d50 5934yyerror (char const *s)
bfa74976
RS
5935@{
5936@end group
5937@group
5938 fprintf (stderr, "%s\n", s);
5939@}
5940@end group
5941@end example
5942
5943After @code{yyerror} returns to @code{yyparse}, the latter will attempt
5944error recovery if you have written suitable error recovery grammar rules
5945(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
5946immediately return 1.
5947
93724f13 5948Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
5949an access to the current location.
5950This is indeed the case for the @acronym{GLR}
2a8d363a 5951parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 5952@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
5953@code{yyerror} are:
5954
5955@example
38a92d50
PE
5956void yyerror (char const *msg); /* Yacc parsers. */
5957void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
5958@end example
5959
feeb0eda 5960If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
5961
5962@example
b317297e
PE
5963void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
5964void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
5965@end example
5966
fa7e68c3 5967Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
5968convention for absolutely pure parsers, i.e., when the calling
5969convention of @code{yylex} @emph{and} the calling convention of
67501061 5970@samp{%define api.pure} are pure.
d9df47b6 5971I.e.:
2a8d363a
AD
5972
5973@example
5974/* Location tracking. */
5975%locations
5976/* Pure yylex. */
d9df47b6 5977%define api.pure
feeb0eda 5978%lex-param @{int *nastiness@}
2a8d363a 5979/* Pure yyparse. */
feeb0eda
PE
5980%parse-param @{int *nastiness@}
5981%parse-param @{int *randomness@}
2a8d363a
AD
5982@end example
5983
5984@noindent
5985results in the following signatures for all the parser kinds:
5986
5987@example
5988int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5989int yyparse (int *nastiness, int *randomness);
93724f13
AD
5990void yyerror (YYLTYPE *locp,
5991 int *nastiness, int *randomness,
38a92d50 5992 char const *msg);
2a8d363a
AD
5993@end example
5994
1c0c3e95 5995@noindent
38a92d50
PE
5996The prototypes are only indications of how the code produced by Bison
5997uses @code{yyerror}. Bison-generated code always ignores the returned
5998value, so @code{yyerror} can return any type, including @code{void}.
5999Also, @code{yyerror} can be a variadic function; that is why the
6000message is always passed last.
6001
6002Traditionally @code{yyerror} returns an @code{int} that is always
6003ignored, but this is purely for historical reasons, and @code{void} is
6004preferable since it more accurately describes the return type for
6005@code{yyerror}.
93724f13 6006
bfa74976
RS
6007@vindex yynerrs
6008The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6009reported so far. Normally this variable is global; but if you
704a47c4
AD
6010request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6011then it is a local variable which only the actions can access.
bfa74976 6012
342b8b6e 6013@node Action Features
bfa74976
RS
6014@section Special Features for Use in Actions
6015@cindex summary, action features
6016@cindex action features summary
6017
6018Here is a table of Bison constructs, variables and macros that
6019are useful in actions.
6020
18b519c0 6021@deffn {Variable} $$
bfa74976
RS
6022Acts like a variable that contains the semantic value for the
6023grouping made by the current rule. @xref{Actions}.
18b519c0 6024@end deffn
bfa74976 6025
18b519c0 6026@deffn {Variable} $@var{n}
bfa74976
RS
6027Acts like a variable that contains the semantic value for the
6028@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6029@end deffn
bfa74976 6030
18b519c0 6031@deffn {Variable} $<@var{typealt}>$
bfa74976 6032Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6033specified by the @code{%union} declaration. @xref{Action Types, ,Data
6034Types of Values in Actions}.
18b519c0 6035@end deffn
bfa74976 6036
18b519c0 6037@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6038Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6039union specified by the @code{%union} declaration.
e0c471a9 6040@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6041@end deffn
bfa74976 6042
18b519c0 6043@deffn {Macro} YYABORT;
bfa74976
RS
6044Return immediately from @code{yyparse}, indicating failure.
6045@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6046@end deffn
bfa74976 6047
18b519c0 6048@deffn {Macro} YYACCEPT;
bfa74976
RS
6049Return immediately from @code{yyparse}, indicating success.
6050@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6051@end deffn
bfa74976 6052
18b519c0 6053@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6054@findex YYBACKUP
6055Unshift a token. This macro is allowed only for rules that reduce
742e4900 6056a single value, and only when there is no lookahead token.
c827f760 6057It is also disallowed in @acronym{GLR} parsers.
742e4900 6058It installs a lookahead token with token type @var{token} and
bfa74976
RS
6059semantic value @var{value}; then it discards the value that was
6060going to be reduced by this rule.
6061
6062If the macro is used when it is not valid, such as when there is
742e4900 6063a lookahead token already, then it reports a syntax error with
bfa74976
RS
6064a message @samp{cannot back up} and performs ordinary error
6065recovery.
6066
6067In either case, the rest of the action is not executed.
18b519c0 6068@end deffn
bfa74976 6069
18b519c0 6070@deffn {Macro} YYEMPTY
bfa74976 6071@vindex YYEMPTY
742e4900 6072Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6073@end deffn
bfa74976 6074
32c29292
JD
6075@deffn {Macro} YYEOF
6076@vindex YYEOF
742e4900 6077Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6078stream.
6079@end deffn
6080
18b519c0 6081@deffn {Macro} YYERROR;
bfa74976
RS
6082@findex YYERROR
6083Cause an immediate syntax error. This statement initiates error
6084recovery just as if the parser itself had detected an error; however, it
6085does not call @code{yyerror}, and does not print any message. If you
6086want to print an error message, call @code{yyerror} explicitly before
6087the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6088@end deffn
bfa74976 6089
18b519c0 6090@deffn {Macro} YYRECOVERING
02103984
PE
6091@findex YYRECOVERING
6092The expression @code{YYRECOVERING ()} yields 1 when the parser
6093is recovering from a syntax error, and 0 otherwise.
bfa74976 6094@xref{Error Recovery}.
18b519c0 6095@end deffn
bfa74976 6096
18b519c0 6097@deffn {Variable} yychar
742e4900
JD
6098Variable containing either the lookahead token, or @code{YYEOF} when the
6099lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6100has been performed so the next token is not yet known.
6101Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6102Actions}).
742e4900 6103@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6104@end deffn
bfa74976 6105
18b519c0 6106@deffn {Macro} yyclearin;
742e4900 6107Discard the current lookahead token. This is useful primarily in
32c29292
JD
6108error rules.
6109Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6110Semantic Actions}).
6111@xref{Error Recovery}.
18b519c0 6112@end deffn
bfa74976 6113
18b519c0 6114@deffn {Macro} yyerrok;
bfa74976 6115Resume generating error messages immediately for subsequent syntax
13863333 6116errors. This is useful primarily in error rules.
bfa74976 6117@xref{Error Recovery}.
18b519c0 6118@end deffn
bfa74976 6119
32c29292 6120@deffn {Variable} yylloc
742e4900 6121Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6122to @code{YYEMPTY} or @code{YYEOF}.
6123Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6124Actions}).
6125@xref{Actions and Locations, ,Actions and Locations}.
6126@end deffn
6127
6128@deffn {Variable} yylval
742e4900 6129Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6130not set to @code{YYEMPTY} or @code{YYEOF}.
6131Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6132Actions}).
6133@xref{Actions, ,Actions}.
6134@end deffn
6135
18b519c0 6136@deffn {Value} @@$
847bf1f5 6137@findex @@$
95923bd6 6138Acts like a structure variable containing information on the textual location
847bf1f5
AD
6139of the grouping made by the current rule. @xref{Locations, ,
6140Tracking Locations}.
bfa74976 6141
847bf1f5
AD
6142@c Check if those paragraphs are still useful or not.
6143
6144@c @example
6145@c struct @{
6146@c int first_line, last_line;
6147@c int first_column, last_column;
6148@c @};
6149@c @end example
6150
6151@c Thus, to get the starting line number of the third component, you would
6152@c use @samp{@@3.first_line}.
bfa74976 6153
847bf1f5
AD
6154@c In order for the members of this structure to contain valid information,
6155@c you must make @code{yylex} supply this information about each token.
6156@c If you need only certain members, then @code{yylex} need only fill in
6157@c those members.
bfa74976 6158
847bf1f5 6159@c The use of this feature makes the parser noticeably slower.
18b519c0 6160@end deffn
847bf1f5 6161
18b519c0 6162@deffn {Value} @@@var{n}
847bf1f5 6163@findex @@@var{n}
95923bd6 6164Acts like a structure variable containing information on the textual location
847bf1f5
AD
6165of the @var{n}th component of the current rule. @xref{Locations, ,
6166Tracking Locations}.
18b519c0 6167@end deffn
bfa74976 6168
f7ab6a50
PE
6169@node Internationalization
6170@section Parser Internationalization
6171@cindex internationalization
6172@cindex i18n
6173@cindex NLS
6174@cindex gettext
6175@cindex bison-po
6176
6177A Bison-generated parser can print diagnostics, including error and
6178tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6179also supports outputting diagnostics in the user's native language. To
6180make this work, the user should set the usual environment variables.
6181@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6182For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
6183set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
6184encoding. The exact set of available locales depends on the user's
6185installation.
6186
6187The maintainer of a package that uses a Bison-generated parser enables
6188the internationalization of the parser's output through the following
6189steps. Here we assume a package that uses @acronym{GNU} Autoconf and
6190@acronym{GNU} Automake.
6191
6192@enumerate
6193@item
30757c8c 6194@cindex bison-i18n.m4
f7ab6a50
PE
6195Into the directory containing the @acronym{GNU} Autoconf macros used
6196by the package---often called @file{m4}---copy the
6197@file{bison-i18n.m4} file installed by Bison under
6198@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6199For example:
6200
6201@example
6202cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6203@end example
6204
6205@item
30757c8c
PE
6206@findex BISON_I18N
6207@vindex BISON_LOCALEDIR
6208@vindex YYENABLE_NLS
f7ab6a50
PE
6209In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6210invocation, add an invocation of @code{BISON_I18N}. This macro is
6211defined in the file @file{bison-i18n.m4} that you copied earlier. It
6212causes @samp{configure} to find the value of the
30757c8c
PE
6213@code{BISON_LOCALEDIR} variable, and it defines the source-language
6214symbol @code{YYENABLE_NLS} to enable translations in the
6215Bison-generated parser.
f7ab6a50
PE
6216
6217@item
6218In the @code{main} function of your program, designate the directory
6219containing Bison's runtime message catalog, through a call to
6220@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6221For example:
6222
6223@example
6224bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6225@end example
6226
6227Typically this appears after any other call @code{bindtextdomain
6228(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6229@samp{BISON_LOCALEDIR} to be defined as a string through the
6230@file{Makefile}.
6231
6232@item
6233In the @file{Makefile.am} that controls the compilation of the @code{main}
6234function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6235either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6236
6237@example
6238DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6239@end example
6240
6241or:
6242
6243@example
6244AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6245@end example
6246
6247@item
6248Finally, invoke the command @command{autoreconf} to generate the build
6249infrastructure.
6250@end enumerate
6251
bfa74976 6252
342b8b6e 6253@node Algorithm
13863333
AD
6254@chapter The Bison Parser Algorithm
6255@cindex Bison parser algorithm
bfa74976
RS
6256@cindex algorithm of parser
6257@cindex shifting
6258@cindex reduction
6259@cindex parser stack
6260@cindex stack, parser
6261
6262As Bison reads tokens, it pushes them onto a stack along with their
6263semantic values. The stack is called the @dfn{parser stack}. Pushing a
6264token is traditionally called @dfn{shifting}.
6265
6266For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6267@samp{3} to come. The stack will have four elements, one for each token
6268that was shifted.
6269
6270But the stack does not always have an element for each token read. When
6271the last @var{n} tokens and groupings shifted match the components of a
6272grammar rule, they can be combined according to that rule. This is called
6273@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6274single grouping whose symbol is the result (left hand side) of that rule.
6275Running the rule's action is part of the process of reduction, because this
6276is what computes the semantic value of the resulting grouping.
6277
6278For example, if the infix calculator's parser stack contains this:
6279
6280@example
62811 + 5 * 3
6282@end example
6283
6284@noindent
6285and the next input token is a newline character, then the last three
6286elements can be reduced to 15 via the rule:
6287
6288@example
6289expr: expr '*' expr;
6290@end example
6291
6292@noindent
6293Then the stack contains just these three elements:
6294
6295@example
62961 + 15
6297@end example
6298
6299@noindent
6300At this point, another reduction can be made, resulting in the single value
630116. Then the newline token can be shifted.
6302
6303The parser tries, by shifts and reductions, to reduce the entire input down
6304to a single grouping whose symbol is the grammar's start-symbol
6305(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6306
6307This kind of parser is known in the literature as a bottom-up parser.
6308
6309@menu
742e4900 6310* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6311* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6312* Precedence:: Operator precedence works by resolving conflicts.
6313* Contextual Precedence:: When an operator's precedence depends on context.
6314* Parser States:: The parser is a finite-state-machine with stack.
6315* Reduce/Reduce:: When two rules are applicable in the same situation.
f5f419de 6316* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6317* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6318* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6319@end menu
6320
742e4900
JD
6321@node Lookahead
6322@section Lookahead Tokens
6323@cindex lookahead token
bfa74976
RS
6324
6325The Bison parser does @emph{not} always reduce immediately as soon as the
6326last @var{n} tokens and groupings match a rule. This is because such a
6327simple strategy is inadequate to handle most languages. Instead, when a
6328reduction is possible, the parser sometimes ``looks ahead'' at the next
6329token in order to decide what to do.
6330
6331When a token is read, it is not immediately shifted; first it becomes the
742e4900 6332@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6333perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6334the lookahead token remains off to the side. When no more reductions
6335should take place, the lookahead token is shifted onto the stack. This
bfa74976 6336does not mean that all possible reductions have been done; depending on the
742e4900 6337token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6338application.
6339
742e4900 6340Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6341expressions which contain binary addition operators and postfix unary
6342factorial operators (@samp{!}), and allow parentheses for grouping.
6343
6344@example
6345@group
6346expr: term '+' expr
6347 | term
6348 ;
6349@end group
6350
6351@group
6352term: '(' expr ')'
6353 | term '!'
6354 | NUMBER
6355 ;
6356@end group
6357@end example
6358
6359Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6360should be done? If the following token is @samp{)}, then the first three
6361tokens must be reduced to form an @code{expr}. This is the only valid
6362course, because shifting the @samp{)} would produce a sequence of symbols
6363@w{@code{term ')'}}, and no rule allows this.
6364
6365If the following token is @samp{!}, then it must be shifted immediately so
6366that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6367parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6368@code{expr}. It would then be impossible to shift the @samp{!} because
6369doing so would produce on the stack the sequence of symbols @code{expr
6370'!'}. No rule allows that sequence.
6371
6372@vindex yychar
32c29292
JD
6373@vindex yylval
6374@vindex yylloc
742e4900 6375The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6376Its semantic value and location, if any, are stored in the variables
6377@code{yylval} and @code{yylloc}.
bfa74976
RS
6378@xref{Action Features, ,Special Features for Use in Actions}.
6379
342b8b6e 6380@node Shift/Reduce
bfa74976
RS
6381@section Shift/Reduce Conflicts
6382@cindex conflicts
6383@cindex shift/reduce conflicts
6384@cindex dangling @code{else}
6385@cindex @code{else}, dangling
6386
6387Suppose we are parsing a language which has if-then and if-then-else
6388statements, with a pair of rules like this:
6389
6390@example
6391@group
6392if_stmt:
6393 IF expr THEN stmt
6394 | IF expr THEN stmt ELSE stmt
6395 ;
6396@end group
6397@end example
6398
6399@noindent
6400Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6401terminal symbols for specific keyword tokens.
6402
742e4900 6403When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6404contents of the stack (assuming the input is valid) are just right for
6405reduction by the first rule. But it is also legitimate to shift the
6406@code{ELSE}, because that would lead to eventual reduction by the second
6407rule.
6408
6409This situation, where either a shift or a reduction would be valid, is
6410called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6411these conflicts by choosing to shift, unless otherwise directed by
6412operator precedence declarations. To see the reason for this, let's
6413contrast it with the other alternative.
6414
6415Since the parser prefers to shift the @code{ELSE}, the result is to attach
6416the else-clause to the innermost if-statement, making these two inputs
6417equivalent:
6418
6419@example
6420if x then if y then win (); else lose;
6421
6422if x then do; if y then win (); else lose; end;
6423@end example
6424
6425But if the parser chose to reduce when possible rather than shift, the
6426result would be to attach the else-clause to the outermost if-statement,
6427making these two inputs equivalent:
6428
6429@example
6430if x then if y then win (); else lose;
6431
6432if x then do; if y then win (); end; else lose;
6433@end example
6434
6435The conflict exists because the grammar as written is ambiguous: either
6436parsing of the simple nested if-statement is legitimate. The established
6437convention is that these ambiguities are resolved by attaching the
6438else-clause to the innermost if-statement; this is what Bison accomplishes
6439by choosing to shift rather than reduce. (It would ideally be cleaner to
6440write an unambiguous grammar, but that is very hard to do in this case.)
6441This particular ambiguity was first encountered in the specifications of
6442Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6443
6444To avoid warnings from Bison about predictable, legitimate shift/reduce
6445conflicts, use the @code{%expect @var{n}} declaration. There will be no
6446warning as long as the number of shift/reduce conflicts is exactly @var{n}.
6447@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6448
6449The definition of @code{if_stmt} above is solely to blame for the
6450conflict, but the conflict does not actually appear without additional
6451rules. Here is a complete Bison input file that actually manifests the
6452conflict:
6453
6454@example
6455@group
6456%token IF THEN ELSE variable
6457%%
6458@end group
6459@group
6460stmt: expr
6461 | if_stmt
6462 ;
6463@end group
6464
6465@group
6466if_stmt:
6467 IF expr THEN stmt
6468 | IF expr THEN stmt ELSE stmt
6469 ;
6470@end group
6471
6472expr: variable
6473 ;
6474@end example
6475
342b8b6e 6476@node Precedence
bfa74976
RS
6477@section Operator Precedence
6478@cindex operator precedence
6479@cindex precedence of operators
6480
6481Another situation where shift/reduce conflicts appear is in arithmetic
6482expressions. Here shifting is not always the preferred resolution; the
6483Bison declarations for operator precedence allow you to specify when to
6484shift and when to reduce.
6485
6486@menu
6487* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
6488* Using Precedence:: How to specify precedence and associativity.
6489* Precedence Only:: How to specify precedence only.
bfa74976
RS
6490* Precedence Examples:: How these features are used in the previous example.
6491* How Precedence:: How they work.
6492@end menu
6493
342b8b6e 6494@node Why Precedence
bfa74976
RS
6495@subsection When Precedence is Needed
6496
6497Consider the following ambiguous grammar fragment (ambiguous because the
6498input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6499
6500@example
6501@group
6502expr: expr '-' expr
6503 | expr '*' expr
6504 | expr '<' expr
6505 | '(' expr ')'
6506 @dots{}
6507 ;
6508@end group
6509@end example
6510
6511@noindent
6512Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6513should it reduce them via the rule for the subtraction operator? It
6514depends on the next token. Of course, if the next token is @samp{)}, we
6515must reduce; shifting is invalid because no single rule can reduce the
6516token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6517the next token is @samp{*} or @samp{<}, we have a choice: either
6518shifting or reduction would allow the parse to complete, but with
6519different results.
6520
6521To decide which one Bison should do, we must consider the results. If
6522the next operator token @var{op} is shifted, then it must be reduced
6523first in order to permit another opportunity to reduce the difference.
6524The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6525hand, if the subtraction is reduced before shifting @var{op}, the result
6526is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6527reduce should depend on the relative precedence of the operators
6528@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6529@samp{<}.
bfa74976
RS
6530
6531@cindex associativity
6532What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6533@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6534operators we prefer the former, which is called @dfn{left association}.
6535The latter alternative, @dfn{right association}, is desirable for
6536assignment operators. The choice of left or right association is a
6537matter of whether the parser chooses to shift or reduce when the stack
742e4900 6538contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6539makes right-associativity.
bfa74976 6540
342b8b6e 6541@node Using Precedence
bfa74976
RS
6542@subsection Specifying Operator Precedence
6543@findex %left
bfa74976 6544@findex %nonassoc
d78f0ac9
AD
6545@findex %precedence
6546@findex %right
bfa74976
RS
6547
6548Bison allows you to specify these choices with the operator precedence
6549declarations @code{%left} and @code{%right}. Each such declaration
6550contains a list of tokens, which are operators whose precedence and
6551associativity is being declared. The @code{%left} declaration makes all
6552those operators left-associative and the @code{%right} declaration makes
6553them right-associative. A third alternative is @code{%nonassoc}, which
6554declares that it is a syntax error to find the same operator twice ``in a
6555row''.
d78f0ac9
AD
6556The last alternative, @code{%precedence}, allows to define only
6557precedence and no associativity at all. As a result, any
6558associativity-related conflict that remains will be reported as an
6559compile-time error. The directive @code{%nonassoc} creates run-time
6560error: using the operator in a associative way is a syntax error. The
6561directive @code{%precedence} creates compile-time errors: an operator
6562@emph{can} be involved in an associativity-related conflict, contrary to
6563what expected the grammar author.
bfa74976
RS
6564
6565The relative precedence of different operators is controlled by the
d78f0ac9
AD
6566order in which they are declared. The first precedence/associativity
6567declaration in the file declares the operators whose
bfa74976
RS
6568precedence is lowest, the next such declaration declares the operators
6569whose precedence is a little higher, and so on.
6570
d78f0ac9
AD
6571@node Precedence Only
6572@subsection Specifying Precedence Only
6573@findex %precedence
6574
6575Since @acronym{POSIX} Yacc defines only @code{%left}, @code{%right}, and
6576@code{%nonassoc}, which all defines precedence and associativity, little
6577attention is paid to the fact that precedence cannot be defined without
6578defining associativity. Yet, sometimes, when trying to solve a
6579conflict, precedence suffices. In such a case, using @code{%left},
6580@code{%right}, or @code{%nonassoc} might hide future (associativity
6581related) conflicts that would remain hidden.
6582
6583The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
6584Conflicts}) can be solved explictly. This shift/reduce conflicts occurs
6585in the following situation, where the period denotes the current parsing
6586state:
6587
6588@example
6589if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
6590@end example
6591
6592The conflict involves the reduction of the rule @samp{IF expr THEN
6593stmt}, which precedence is by default that of its last token
6594(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
6595disambiguation (attach the @code{else} to the closest @code{if}),
6596shifting must be preferred, i.e., the precedence of @code{ELSE} must be
6597higher than that of @code{THEN}. But neither is expected to be involved
6598in an associativity related conflict, which can be specified as follows.
6599
6600@example
6601%precedence THEN
6602%precedence ELSE
6603@end example
6604
6605The unary-minus is another typical example where associativity is
6606usually over-specified, see @ref{Infix Calc, , Infix Notation
6607Calculator: @code{calc}}. The @code{%left} directive is traditionaly
6608used to declare the precedence of @code{NEG}, which is more than needed
6609since it also defines its associativity. While this is harmless in the
6610traditional example, who knows how @code{NEG} might be used in future
6611evolutions of the grammar@dots{}
6612
342b8b6e 6613@node Precedence Examples
bfa74976
RS
6614@subsection Precedence Examples
6615
6616In our example, we would want the following declarations:
6617
6618@example
6619%left '<'
6620%left '-'
6621%left '*'
6622@end example
6623
6624In a more complete example, which supports other operators as well, we
6625would declare them in groups of equal precedence. For example, @code{'+'} is
6626declared with @code{'-'}:
6627
6628@example
6629%left '<' '>' '=' NE LE GE
6630%left '+' '-'
6631%left '*' '/'
6632@end example
6633
6634@noindent
6635(Here @code{NE} and so on stand for the operators for ``not equal''
6636and so on. We assume that these tokens are more than one character long
6637and therefore are represented by names, not character literals.)
6638
342b8b6e 6639@node How Precedence
bfa74976
RS
6640@subsection How Precedence Works
6641
6642The first effect of the precedence declarations is to assign precedence
6643levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6644precedence levels to certain rules: each rule gets its precedence from
6645the last terminal symbol mentioned in the components. (You can also
6646specify explicitly the precedence of a rule. @xref{Contextual
6647Precedence, ,Context-Dependent Precedence}.)
6648
6649Finally, the resolution of conflicts works by comparing the precedence
742e4900 6650of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6651token's precedence is higher, the choice is to shift. If the rule's
6652precedence is higher, the choice is to reduce. If they have equal
6653precedence, the choice is made based on the associativity of that
6654precedence level. The verbose output file made by @samp{-v}
6655(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6656resolved.
bfa74976
RS
6657
6658Not all rules and not all tokens have precedence. If either the rule or
742e4900 6659the lookahead token has no precedence, then the default is to shift.
bfa74976 6660
342b8b6e 6661@node Contextual Precedence
bfa74976
RS
6662@section Context-Dependent Precedence
6663@cindex context-dependent precedence
6664@cindex unary operator precedence
6665@cindex precedence, context-dependent
6666@cindex precedence, unary operator
6667@findex %prec
6668
6669Often the precedence of an operator depends on the context. This sounds
6670outlandish at first, but it is really very common. For example, a minus
6671sign typically has a very high precedence as a unary operator, and a
6672somewhat lower precedence (lower than multiplication) as a binary operator.
6673
d78f0ac9
AD
6674The Bison precedence declarations
6675can only be used once for a given token; so a token has
bfa74976
RS
6676only one precedence declared in this way. For context-dependent
6677precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6678modifier for rules.
bfa74976
RS
6679
6680The @code{%prec} modifier declares the precedence of a particular rule by
6681specifying a terminal symbol whose precedence should be used for that rule.
6682It's not necessary for that symbol to appear otherwise in the rule. The
6683modifier's syntax is:
6684
6685@example
6686%prec @var{terminal-symbol}
6687@end example
6688
6689@noindent
6690and it is written after the components of the rule. Its effect is to
6691assign the rule the precedence of @var{terminal-symbol}, overriding
6692the precedence that would be deduced for it in the ordinary way. The
6693altered rule precedence then affects how conflicts involving that rule
6694are resolved (@pxref{Precedence, ,Operator Precedence}).
6695
6696Here is how @code{%prec} solves the problem of unary minus. First, declare
6697a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6698are no tokens of this type, but the symbol serves to stand for its
6699precedence:
6700
6701@example
6702@dots{}
6703%left '+' '-'
6704%left '*'
6705%left UMINUS
6706@end example
6707
6708Now the precedence of @code{UMINUS} can be used in specific rules:
6709
6710@example
6711@group
6712exp: @dots{}
6713 | exp '-' exp
6714 @dots{}
6715 | '-' exp %prec UMINUS
6716@end group
6717@end example
6718
91d2c560 6719@ifset defaultprec
39a06c25
PE
6720If you forget to append @code{%prec UMINUS} to the rule for unary
6721minus, Bison silently assumes that minus has its usual precedence.
6722This kind of problem can be tricky to debug, since one typically
6723discovers the mistake only by testing the code.
6724
22fccf95 6725The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6726this kind of problem systematically. It causes rules that lack a
6727@code{%prec} modifier to have no precedence, even if the last terminal
6728symbol mentioned in their components has a declared precedence.
6729
22fccf95 6730If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6731for all rules that participate in precedence conflict resolution.
6732Then you will see any shift/reduce conflict until you tell Bison how
6733to resolve it, either by changing your grammar or by adding an
6734explicit precedence. This will probably add declarations to the
6735grammar, but it helps to protect against incorrect rule precedences.
6736
22fccf95
PE
6737The effect of @code{%no-default-prec;} can be reversed by giving
6738@code{%default-prec;}, which is the default.
91d2c560 6739@end ifset
39a06c25 6740
342b8b6e 6741@node Parser States
bfa74976
RS
6742@section Parser States
6743@cindex finite-state machine
6744@cindex parser state
6745@cindex state (of parser)
6746
6747The function @code{yyparse} is implemented using a finite-state machine.
6748The values pushed on the parser stack are not simply token type codes; they
6749represent the entire sequence of terminal and nonterminal symbols at or
6750near the top of the stack. The current state collects all the information
6751about previous input which is relevant to deciding what to do next.
6752
742e4900
JD
6753Each time a lookahead token is read, the current parser state together
6754with the type of lookahead token are looked up in a table. This table
6755entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6756specifies the new parser state, which is pushed onto the top of the
6757parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6758This means that a certain number of tokens or groupings are taken off
6759the top of the stack, and replaced by one grouping. In other words,
6760that number of states are popped from the stack, and one new state is
6761pushed.
6762
742e4900 6763There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6764is erroneous in the current state. This causes error processing to begin
6765(@pxref{Error Recovery}).
6766
342b8b6e 6767@node Reduce/Reduce
bfa74976
RS
6768@section Reduce/Reduce Conflicts
6769@cindex reduce/reduce conflict
6770@cindex conflicts, reduce/reduce
6771
6772A reduce/reduce conflict occurs if there are two or more rules that apply
6773to the same sequence of input. This usually indicates a serious error
6774in the grammar.
6775
6776For example, here is an erroneous attempt to define a sequence
6777of zero or more @code{word} groupings.
6778
6779@example
6780sequence: /* empty */
6781 @{ printf ("empty sequence\n"); @}
6782 | maybeword
6783 | sequence word
6784 @{ printf ("added word %s\n", $2); @}
6785 ;
6786
6787maybeword: /* empty */
6788 @{ printf ("empty maybeword\n"); @}
6789 | word
6790 @{ printf ("single word %s\n", $1); @}
6791 ;
6792@end example
6793
6794@noindent
6795The error is an ambiguity: there is more than one way to parse a single
6796@code{word} into a @code{sequence}. It could be reduced to a
6797@code{maybeword} and then into a @code{sequence} via the second rule.
6798Alternatively, nothing-at-all could be reduced into a @code{sequence}
6799via the first rule, and this could be combined with the @code{word}
6800using the third rule for @code{sequence}.
6801
6802There is also more than one way to reduce nothing-at-all into a
6803@code{sequence}. This can be done directly via the first rule,
6804or indirectly via @code{maybeword} and then the second rule.
6805
6806You might think that this is a distinction without a difference, because it
6807does not change whether any particular input is valid or not. But it does
6808affect which actions are run. One parsing order runs the second rule's
6809action; the other runs the first rule's action and the third rule's action.
6810In this example, the output of the program changes.
6811
6812Bison resolves a reduce/reduce conflict by choosing to use the rule that
6813appears first in the grammar, but it is very risky to rely on this. Every
6814reduce/reduce conflict must be studied and usually eliminated. Here is the
6815proper way to define @code{sequence}:
6816
6817@example
6818sequence: /* empty */
6819 @{ printf ("empty sequence\n"); @}
6820 | sequence word
6821 @{ printf ("added word %s\n", $2); @}
6822 ;
6823@end example
6824
6825Here is another common error that yields a reduce/reduce conflict:
6826
6827@example
6828sequence: /* empty */
6829 | sequence words
6830 | sequence redirects
6831 ;
6832
6833words: /* empty */
6834 | words word
6835 ;
6836
6837redirects:/* empty */
6838 | redirects redirect
6839 ;
6840@end example
6841
6842@noindent
6843The intention here is to define a sequence which can contain either
6844@code{word} or @code{redirect} groupings. The individual definitions of
6845@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6846three together make a subtle ambiguity: even an empty input can be parsed
6847in infinitely many ways!
6848
6849Consider: nothing-at-all could be a @code{words}. Or it could be two
6850@code{words} in a row, or three, or any number. It could equally well be a
6851@code{redirects}, or two, or any number. Or it could be a @code{words}
6852followed by three @code{redirects} and another @code{words}. And so on.
6853
6854Here are two ways to correct these rules. First, to make it a single level
6855of sequence:
6856
6857@example
6858sequence: /* empty */
6859 | sequence word
6860 | sequence redirect
6861 ;
6862@end example
6863
6864Second, to prevent either a @code{words} or a @code{redirects}
6865from being empty:
6866
6867@example
6868sequence: /* empty */
6869 | sequence words
6870 | sequence redirects
6871 ;
6872
6873words: word
6874 | words word
6875 ;
6876
6877redirects:redirect
6878 | redirects redirect
6879 ;
6880@end example
6881
342b8b6e 6882@node Mystery Conflicts
bfa74976
RS
6883@section Mysterious Reduce/Reduce Conflicts
6884
6885Sometimes reduce/reduce conflicts can occur that don't look warranted.
6886Here is an example:
6887
6888@example
6889@group
6890%token ID
6891
6892%%
6893def: param_spec return_spec ','
6894 ;
6895param_spec:
6896 type
6897 | name_list ':' type
6898 ;
6899@end group
6900@group
6901return_spec:
6902 type
6903 | name ':' type
6904 ;
6905@end group
6906@group
6907type: ID
6908 ;
6909@end group
6910@group
6911name: ID
6912 ;
6913name_list:
6914 name
6915 | name ',' name_list
6916 ;
6917@end group
6918@end example
6919
6920It would seem that this grammar can be parsed with only a single token
742e4900 6921of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6922a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 6923@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 6924
c827f760
PE
6925@cindex @acronym{LR}(1)
6926@cindex @acronym{LALR}(1)
eb45ef3b
JD
6927However, for historical reasons, Bison cannot by default handle all
6928@acronym{LR}(1) grammars.
6929In this grammar, two contexts, that after an @code{ID} at the beginning
6930of a @code{param_spec} and likewise at the beginning of a
6931@code{return_spec}, are similar enough that Bison assumes they are the
6932same.
6933They appear similar because the same set of rules would be
bfa74976
RS
6934active---the rule for reducing to a @code{name} and that for reducing to
6935a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6936that the rules would require different lookahead tokens in the two
bfa74976
RS
6937contexts, so it makes a single parser state for them both. Combining
6938the two contexts causes a conflict later. In parser terminology, this
c827f760 6939occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976 6940
eb45ef3b
JD
6941For many practical grammars (specifically those that fall into the
6942non-@acronym{LR}(1) class), the limitations of @acronym{LALR}(1) result in
6943difficulties beyond just mysterious reduce/reduce conflicts.
6944The best way to fix all these problems is to select a different parser
6945table generation algorithm.
6946Either @acronym{IELR}(1) or canonical @acronym{LR}(1) would suffice, but
6947the former is more efficient and easier to debug during development.
6948@xref{Decl Summary,,lr.type}, for details.
6949(Bison's @acronym{IELR}(1) and canonical @acronym{LR}(1) implementations
6950are experimental.
6951More user feedback will help to stabilize them.)
6952
6953If you instead wish to work around @acronym{LALR}(1)'s limitations, you
6954can often fix a mysterious conflict by identifying the two parser states
6955that are being confused, and adding something to make them look
6956distinct. In the above example, adding one rule to
bfa74976
RS
6957@code{return_spec} as follows makes the problem go away:
6958
6959@example
6960@group
6961%token BOGUS
6962@dots{}
6963%%
6964@dots{}
6965return_spec:
6966 type
6967 | name ':' type
6968 /* This rule is never used. */
6969 | ID BOGUS
6970 ;
6971@end group
6972@end example
6973
6974This corrects the problem because it introduces the possibility of an
6975additional active rule in the context after the @code{ID} at the beginning of
6976@code{return_spec}. This rule is not active in the corresponding context
6977in a @code{param_spec}, so the two contexts receive distinct parser states.
6978As long as the token @code{BOGUS} is never generated by @code{yylex},
6979the added rule cannot alter the way actual input is parsed.
6980
6981In this particular example, there is another way to solve the problem:
6982rewrite the rule for @code{return_spec} to use @code{ID} directly
6983instead of via @code{name}. This also causes the two confusing
6984contexts to have different sets of active rules, because the one for
6985@code{return_spec} activates the altered rule for @code{return_spec}
6986rather than the one for @code{name}.
6987
6988@example
6989param_spec:
6990 type
6991 | name_list ':' type
6992 ;
6993return_spec:
6994 type
6995 | ID ':' type
6996 ;
6997@end example
6998
e054b190
PE
6999For a more detailed exposition of @acronym{LALR}(1) parsers and parser
7000generators, please see:
7001Frank DeRemer and Thomas Pennello, Efficient Computation of
7002@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
7003Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
7004pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
7005
fae437e8 7006@node Generalized LR Parsing
c827f760
PE
7007@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
7008@cindex @acronym{GLR} parsing
7009@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 7010@cindex ambiguous grammars
9d9b8b70 7011@cindex nondeterministic parsing
676385e2 7012
fae437e8
AD
7013Bison produces @emph{deterministic} parsers that choose uniquely
7014when to reduce and which reduction to apply
742e4900 7015based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7016As a result, normal Bison handles a proper subset of the family of
7017context-free languages.
fae437e8 7018Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7019sequence of reductions cannot have deterministic parsers in this sense.
7020The same is true of languages that require more than one symbol of
742e4900 7021lookahead, since the parser lacks the information necessary to make a
676385e2 7022decision at the point it must be made in a shift-reduce parser.
fae437e8 7023Finally, as previously mentioned (@pxref{Mystery Conflicts}),
eb45ef3b 7024there are languages where Bison's default choice of how to
676385e2
PH
7025summarize the input seen so far loses necessary information.
7026
7027When you use the @samp{%glr-parser} declaration in your grammar file,
7028Bison generates a parser that uses a different algorithm, called
c827f760
PE
7029Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
7030parser uses the same basic
676385e2
PH
7031algorithm for parsing as an ordinary Bison parser, but behaves
7032differently in cases where there is a shift-reduce conflict that has not
fae437e8 7033been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
7034reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
7035situation, it
fae437e8 7036effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7037shift or reduction. These parsers then proceed as usual, consuming
7038tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7039and split further, with the result that instead of a sequence of states,
c827f760 7040a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
7041
7042In effect, each stack represents a guess as to what the proper parse
7043is. Additional input may indicate that a guess was wrong, in which case
7044the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7045actions generated in each stack are saved, rather than being executed
676385e2 7046immediately. When a stack disappears, its saved semantic actions never
fae437e8 7047get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7048their sets of semantic actions are both saved with the state that
7049results from the reduction. We say that two stacks are equivalent
fae437e8 7050when they both represent the same sequence of states,
676385e2
PH
7051and each pair of corresponding states represents a
7052grammar symbol that produces the same segment of the input token
7053stream.
7054
7055Whenever the parser makes a transition from having multiple
eb45ef3b 7056states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7057algorithm, after resolving and executing the saved-up actions.
7058At this transition, some of the states on the stack will have semantic
7059values that are sets (actually multisets) of possible actions. The
7060parser tries to pick one of the actions by first finding one whose rule
7061has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7062declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7063precedence, but there the same merging function is declared for both
fae437e8 7064rules by the @samp{%merge} declaration,
676385e2
PH
7065Bison resolves and evaluates both and then calls the merge function on
7066the result. Otherwise, it reports an ambiguity.
7067
c827f760 7068It is possible to use a data structure for the @acronym{GLR} parsing tree that
eb45ef3b 7069permits the processing of any @acronym{LR}(1) grammar in linear time (in the
c827f760 7070size of the input), any unambiguous (not necessarily
eb45ef3b 7071@acronym{LR}(1)) grammar in
fae437e8 7072quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7073context-free grammar in cubic worst-case time. However, Bison currently
7074uses a simpler data structure that requires time proportional to the
7075length of the input times the maximum number of stacks required for any
9d9b8b70 7076prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7077grammars can require exponential time and space to process. Such badly
7078behaving examples, however, are not generally of practical interest.
9d9b8b70 7079Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7080doubt'' only for a few tokens at a time. Therefore, the current data
eb45ef3b
JD
7081structure should generally be adequate. On @acronym{LR}(1) portions of a
7082grammar, in particular, it is only slightly slower than with the
7083deterministic @acronym{LR}(1) Bison parser.
676385e2 7084
fa7e68c3 7085For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
7086Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
7087Generalised @acronym{LR} Parsers, Royal Holloway, University of
7088London, Department of Computer Science, TR-00-12,
7089@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
7090(2000-12-24).
7091
1a059451
PE
7092@node Memory Management
7093@section Memory Management, and How to Avoid Memory Exhaustion
7094@cindex memory exhaustion
7095@cindex memory management
bfa74976
RS
7096@cindex stack overflow
7097@cindex parser stack overflow
7098@cindex overflow of parser stack
7099
1a059451 7100The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7101not reduced. When this happens, the parser function @code{yyparse}
1a059451 7102calls @code{yyerror} and then returns 2.
bfa74976 7103
c827f760 7104Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7105usually results from using a right recursion instead of a left
7106recursion, @xref{Recursion, ,Recursive Rules}.
7107
bfa74976
RS
7108@vindex YYMAXDEPTH
7109By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7110parser stack can become before memory is exhausted. Define the
bfa74976
RS
7111macro with a value that is an integer. This value is the maximum number
7112of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7113
7114The stack space allowed is not necessarily allocated. If you specify a
1a059451 7115large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7116stack at first, and then makes it bigger by stages as needed. This
7117increasing allocation happens automatically and silently. Therefore,
7118you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7119space for ordinary inputs that do not need much stack.
7120
d7e14fc0
PE
7121However, do not allow @code{YYMAXDEPTH} to be a value so large that
7122arithmetic overflow could occur when calculating the size of the stack
7123space. Also, do not allow @code{YYMAXDEPTH} to be less than
7124@code{YYINITDEPTH}.
7125
bfa74976
RS
7126@cindex default stack limit
7127The default value of @code{YYMAXDEPTH}, if you do not define it, is
712810000.
7129
7130@vindex YYINITDEPTH
7131You can control how much stack is allocated initially by defining the
eb45ef3b
JD
7132macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7133parser in C, this value must be a compile-time constant
d7e14fc0
PE
7134unless you are assuming C99 or some other target language or compiler
7135that allows variable-length arrays. The default is 200.
7136
1a059451 7137Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7138
d1a1114f 7139@c FIXME: C++ output.
eb45ef3b
JD
7140Because of semantical differences between C and C++, the deterministic
7141parsers in C produced by Bison cannot grow when compiled
1a059451
PE
7142by C++ compilers. In this precise case (compiling a C parser as C++) you are
7143suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
7144this deficiency in a future release.
d1a1114f 7145
342b8b6e 7146@node Error Recovery
bfa74976
RS
7147@chapter Error Recovery
7148@cindex error recovery
7149@cindex recovery from errors
7150
6e649e65 7151It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7152error. For example, a compiler should recover sufficiently to parse the
7153rest of the input file and check it for errors; a calculator should accept
7154another expression.
7155
7156In a simple interactive command parser where each input is one line, it may
7157be sufficient to allow @code{yyparse} to return 1 on error and have the
7158caller ignore the rest of the input line when that happens (and then call
7159@code{yyparse} again). But this is inadequate for a compiler, because it
7160forgets all the syntactic context leading up to the error. A syntax error
7161deep within a function in the compiler input should not cause the compiler
7162to treat the following line like the beginning of a source file.
7163
7164@findex error
7165You can define how to recover from a syntax error by writing rules to
7166recognize the special token @code{error}. This is a terminal symbol that
7167is always defined (you need not declare it) and reserved for error
7168handling. The Bison parser generates an @code{error} token whenever a
7169syntax error happens; if you have provided a rule to recognize this token
13863333 7170in the current context, the parse can continue.
bfa74976
RS
7171
7172For example:
7173
7174@example
7175stmnts: /* empty string */
7176 | stmnts '\n'
7177 | stmnts exp '\n'
7178 | stmnts error '\n'
7179@end example
7180
7181The fourth rule in this example says that an error followed by a newline
7182makes a valid addition to any @code{stmnts}.
7183
7184What happens if a syntax error occurs in the middle of an @code{exp}? The
7185error recovery rule, interpreted strictly, applies to the precise sequence
7186of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7187the middle of an @code{exp}, there will probably be some additional tokens
7188and subexpressions on the stack after the last @code{stmnts}, and there
7189will be tokens to read before the next newline. So the rule is not
7190applicable in the ordinary way.
7191
7192But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7193the semantic context and part of the input. First it discards states
7194and objects from the stack until it gets back to a state in which the
bfa74976 7195@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7196already parsed are discarded, back to the last complete @code{stmnts}.)
7197At this point the @code{error} token can be shifted. Then, if the old
742e4900 7198lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7199tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7200this example, Bison reads and discards input until the next newline so
7201that the fourth rule can apply. Note that discarded symbols are
7202possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7203Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7204
7205The choice of error rules in the grammar is a choice of strategies for
7206error recovery. A simple and useful strategy is simply to skip the rest of
7207the current input line or current statement if an error is detected:
7208
7209@example
72d2299c 7210stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7211@end example
7212
7213It is also useful to recover to the matching close-delimiter of an
7214opening-delimiter that has already been parsed. Otherwise the
7215close-delimiter will probably appear to be unmatched, and generate another,
7216spurious error message:
7217
7218@example
7219primary: '(' expr ')'
7220 | '(' error ')'
7221 @dots{}
7222 ;
7223@end example
7224
7225Error recovery strategies are necessarily guesses. When they guess wrong,
7226one syntax error often leads to another. In the above example, the error
7227recovery rule guesses that an error is due to bad input within one
7228@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7229middle of a valid @code{stmnt}. After the error recovery rule recovers
7230from the first error, another syntax error will be found straightaway,
7231since the text following the spurious semicolon is also an invalid
7232@code{stmnt}.
7233
7234To prevent an outpouring of error messages, the parser will output no error
7235message for another syntax error that happens shortly after the first; only
7236after three consecutive input tokens have been successfully shifted will
7237error messages resume.
7238
7239Note that rules which accept the @code{error} token may have actions, just
7240as any other rules can.
7241
7242@findex yyerrok
7243You can make error messages resume immediately by using the macro
7244@code{yyerrok} in an action. If you do this in the error rule's action, no
7245error messages will be suppressed. This macro requires no arguments;
7246@samp{yyerrok;} is a valid C statement.
7247
7248@findex yyclearin
742e4900 7249The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7250this is unacceptable, then the macro @code{yyclearin} may be used to clear
7251this token. Write the statement @samp{yyclearin;} in the error rule's
7252action.
32c29292 7253@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7254
6e649e65 7255For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7256called that advances the input stream to some point where parsing should
7257once again commence. The next symbol returned by the lexical scanner is
742e4900 7258probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7259with @samp{yyclearin;}.
7260
7261@vindex YYRECOVERING
02103984
PE
7262The expression @code{YYRECOVERING ()} yields 1 when the parser
7263is recovering from a syntax error, and 0 otherwise.
7264Syntax error diagnostics are suppressed while recovering from a syntax
7265error.
bfa74976 7266
342b8b6e 7267@node Context Dependency
bfa74976
RS
7268@chapter Handling Context Dependencies
7269
7270The Bison paradigm is to parse tokens first, then group them into larger
7271syntactic units. In many languages, the meaning of a token is affected by
7272its context. Although this violates the Bison paradigm, certain techniques
7273(known as @dfn{kludges}) may enable you to write Bison parsers for such
7274languages.
7275
7276@menu
7277* Semantic Tokens:: Token parsing can depend on the semantic context.
7278* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7279* Tie-in Recovery:: Lexical tie-ins have implications for how
7280 error recovery rules must be written.
7281@end menu
7282
7283(Actually, ``kludge'' means any technique that gets its job done but is
7284neither clean nor robust.)
7285
342b8b6e 7286@node Semantic Tokens
bfa74976
RS
7287@section Semantic Info in Token Types
7288
7289The C language has a context dependency: the way an identifier is used
7290depends on what its current meaning is. For example, consider this:
7291
7292@example
7293foo (x);
7294@end example
7295
7296This looks like a function call statement, but if @code{foo} is a typedef
7297name, then this is actually a declaration of @code{x}. How can a Bison
7298parser for C decide how to parse this input?
7299
c827f760 7300The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
7301@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7302identifier, it looks up the current declaration of the identifier in order
7303to decide which token type to return: @code{TYPENAME} if the identifier is
7304declared as a typedef, @code{IDENTIFIER} otherwise.
7305
7306The grammar rules can then express the context dependency by the choice of
7307token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7308but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7309@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7310is @emph{not} significant, such as in declarations that can shadow a
7311typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7312accepted---there is one rule for each of the two token types.
7313
7314This technique is simple to use if the decision of which kinds of
7315identifiers to allow is made at a place close to where the identifier is
7316parsed. But in C this is not always so: C allows a declaration to
7317redeclare a typedef name provided an explicit type has been specified
7318earlier:
7319
7320@example
3a4f411f
PE
7321typedef int foo, bar;
7322int baz (void)
7323@{
7324 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7325 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7326 return foo (bar);
7327@}
bfa74976
RS
7328@end example
7329
7330Unfortunately, the name being declared is separated from the declaration
7331construct itself by a complicated syntactic structure---the ``declarator''.
7332
9ecbd125 7333As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7334all the nonterminal names changed: once for parsing a declaration in
7335which a typedef name can be redefined, and once for parsing a
7336declaration in which that can't be done. Here is a part of the
7337duplication, with actions omitted for brevity:
bfa74976
RS
7338
7339@example
7340initdcl:
7341 declarator maybeasm '='
7342 init
7343 | declarator maybeasm
7344 ;
7345
7346notype_initdcl:
7347 notype_declarator maybeasm '='
7348 init
7349 | notype_declarator maybeasm
7350 ;
7351@end example
7352
7353@noindent
7354Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7355cannot. The distinction between @code{declarator} and
7356@code{notype_declarator} is the same sort of thing.
7357
7358There is some similarity between this technique and a lexical tie-in
7359(described next), in that information which alters the lexical analysis is
7360changed during parsing by other parts of the program. The difference is
7361here the information is global, and is used for other purposes in the
7362program. A true lexical tie-in has a special-purpose flag controlled by
7363the syntactic context.
7364
342b8b6e 7365@node Lexical Tie-ins
bfa74976
RS
7366@section Lexical Tie-ins
7367@cindex lexical tie-in
7368
7369One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7370which is set by Bison actions, whose purpose is to alter the way tokens are
7371parsed.
7372
7373For example, suppose we have a language vaguely like C, but with a special
7374construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7375an expression in parentheses in which all integers are hexadecimal. In
7376particular, the token @samp{a1b} must be treated as an integer rather than
7377as an identifier if it appears in that context. Here is how you can do it:
7378
7379@example
7380@group
7381%@{
38a92d50
PE
7382 int hexflag;
7383 int yylex (void);
7384 void yyerror (char const *);
bfa74976
RS
7385%@}
7386%%
7387@dots{}
7388@end group
7389@group
7390expr: IDENTIFIER
7391 | constant
7392 | HEX '('
7393 @{ hexflag = 1; @}
7394 expr ')'
7395 @{ hexflag = 0;
7396 $$ = $4; @}
7397 | expr '+' expr
7398 @{ $$ = make_sum ($1, $3); @}
7399 @dots{}
7400 ;
7401@end group
7402
7403@group
7404constant:
7405 INTEGER
7406 | STRING
7407 ;
7408@end group
7409@end example
7410
7411@noindent
7412Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7413it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7414with letters are parsed as integers if possible.
7415
342b8b6e
AD
7416The declaration of @code{hexflag} shown in the prologue of the parser file
7417is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 7418You must also write the code in @code{yylex} to obey the flag.
bfa74976 7419
342b8b6e 7420@node Tie-in Recovery
bfa74976
RS
7421@section Lexical Tie-ins and Error Recovery
7422
7423Lexical tie-ins make strict demands on any error recovery rules you have.
7424@xref{Error Recovery}.
7425
7426The reason for this is that the purpose of an error recovery rule is to
7427abort the parsing of one construct and resume in some larger construct.
7428For example, in C-like languages, a typical error recovery rule is to skip
7429tokens until the next semicolon, and then start a new statement, like this:
7430
7431@example
7432stmt: expr ';'
7433 | IF '(' expr ')' stmt @{ @dots{} @}
7434 @dots{}
7435 error ';'
7436 @{ hexflag = 0; @}
7437 ;
7438@end example
7439
7440If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7441construct, this error rule will apply, and then the action for the
7442completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7443remain set for the entire rest of the input, or until the next @code{hex}
7444keyword, causing identifiers to be misinterpreted as integers.
7445
7446To avoid this problem the error recovery rule itself clears @code{hexflag}.
7447
7448There may also be an error recovery rule that works within expressions.
7449For example, there could be a rule which applies within parentheses
7450and skips to the close-parenthesis:
7451
7452@example
7453@group
7454expr: @dots{}
7455 | '(' expr ')'
7456 @{ $$ = $2; @}
7457 | '(' error ')'
7458 @dots{}
7459@end group
7460@end example
7461
7462If this rule acts within the @code{hex} construct, it is not going to abort
7463that construct (since it applies to an inner level of parentheses within
7464the construct). Therefore, it should not clear the flag: the rest of
7465the @code{hex} construct should be parsed with the flag still in effect.
7466
7467What if there is an error recovery rule which might abort out of the
7468@code{hex} construct or might not, depending on circumstances? There is no
7469way you can write the action to determine whether a @code{hex} construct is
7470being aborted or not. So if you are using a lexical tie-in, you had better
7471make sure your error recovery rules are not of this kind. Each rule must
7472be such that you can be sure that it always will, or always won't, have to
7473clear the flag.
7474
ec3bc396
AD
7475@c ================================================== Debugging Your Parser
7476
342b8b6e 7477@node Debugging
bfa74976 7478@chapter Debugging Your Parser
ec3bc396
AD
7479
7480Developing a parser can be a challenge, especially if you don't
7481understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7482Algorithm}). Even so, sometimes a detailed description of the automaton
7483can help (@pxref{Understanding, , Understanding Your Parser}), or
7484tracing the execution of the parser can give some insight on why it
7485behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7486
7487@menu
7488* Understanding:: Understanding the structure of your parser.
7489* Tracing:: Tracing the execution of your parser.
7490@end menu
7491
7492@node Understanding
7493@section Understanding Your Parser
7494
7495As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7496Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7497frequent than one would hope), looking at this automaton is required to
7498tune or simply fix a parser. Bison provides two different
35fe0834 7499representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7500
7501The textual file is generated when the options @option{--report} or
7502@option{--verbose} are specified, see @xref{Invocation, , Invoking
7503Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
7504the parser output file name, and adding @samp{.output} instead.
7505Therefore, if the input file is @file{foo.y}, then the parser file is
7506called @file{foo.tab.c} by default. As a consequence, the verbose
7507output file is called @file{foo.output}.
7508
7509The following grammar file, @file{calc.y}, will be used in the sequel:
7510
7511@example
7512%token NUM STR
7513%left '+' '-'
7514%left '*'
7515%%
7516exp: exp '+' exp
7517 | exp '-' exp
7518 | exp '*' exp
7519 | exp '/' exp
7520 | NUM
7521 ;
7522useless: STR;
7523%%
7524@end example
7525
88bce5a2
AD
7526@command{bison} reports:
7527
7528@example
8f0d265e
JD
7529calc.y: warning: 1 nonterminal useless in grammar
7530calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
7531calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7532calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7533calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7534@end example
7535
7536When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7537creates a file @file{calc.output} with contents detailed below. The
7538order of the output and the exact presentation might vary, but the
7539interpretation is the same.
ec3bc396
AD
7540
7541The first section includes details on conflicts that were solved thanks
7542to precedence and/or associativity:
7543
7544@example
7545Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7546Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7547Conflict in state 8 between rule 2 and token '*' resolved as shift.
7548@exdent @dots{}
7549@end example
7550
7551@noindent
7552The next section lists states that still have conflicts.
7553
7554@example
5a99098d
PE
7555State 8 conflicts: 1 shift/reduce
7556State 9 conflicts: 1 shift/reduce
7557State 10 conflicts: 1 shift/reduce
7558State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7559@end example
7560
7561@noindent
7562@cindex token, useless
7563@cindex useless token
7564@cindex nonterminal, useless
7565@cindex useless nonterminal
7566@cindex rule, useless
7567@cindex useless rule
7568The next section reports useless tokens, nonterminal and rules. Useless
7569nonterminals and rules are removed in order to produce a smaller parser,
7570but useless tokens are preserved, since they might be used by the
d80fb37a 7571scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7572below):
7573
7574@example
d80fb37a 7575Nonterminals useless in grammar:
ec3bc396
AD
7576 useless
7577
d80fb37a 7578Terminals unused in grammar:
ec3bc396
AD
7579 STR
7580
cff03fb2 7581Rules useless in grammar:
ec3bc396
AD
7582#6 useless: STR;
7583@end example
7584
7585@noindent
7586The next section reproduces the exact grammar that Bison used:
7587
7588@example
7589Grammar
7590
7591 Number, Line, Rule
88bce5a2 7592 0 5 $accept -> exp $end
ec3bc396
AD
7593 1 5 exp -> exp '+' exp
7594 2 6 exp -> exp '-' exp
7595 3 7 exp -> exp '*' exp
7596 4 8 exp -> exp '/' exp
7597 5 9 exp -> NUM
7598@end example
7599
7600@noindent
7601and reports the uses of the symbols:
7602
7603@example
7604Terminals, with rules where they appear
7605
88bce5a2 7606$end (0) 0
ec3bc396
AD
7607'*' (42) 3
7608'+' (43) 1
7609'-' (45) 2
7610'/' (47) 4
7611error (256)
7612NUM (258) 5
7613
7614Nonterminals, with rules where they appear
7615
88bce5a2 7616$accept (8)
ec3bc396
AD
7617 on left: 0
7618exp (9)
7619 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7620@end example
7621
7622@noindent
7623@cindex item
7624@cindex pointed rule
7625@cindex rule, pointed
7626Bison then proceeds onto the automaton itself, describing each state
7627with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7628item is a production rule together with a point (marked by @samp{.})
7629that the input cursor.
7630
7631@example
7632state 0
7633
88bce5a2 7634 $accept -> . exp $ (rule 0)
ec3bc396 7635
2a8d363a 7636 NUM shift, and go to state 1
ec3bc396 7637
2a8d363a 7638 exp go to state 2
ec3bc396
AD
7639@end example
7640
7641This reads as follows: ``state 0 corresponds to being at the very
7642beginning of the parsing, in the initial rule, right before the start
7643symbol (here, @code{exp}). When the parser returns to this state right
7644after having reduced a rule that produced an @code{exp}, the control
7645flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7646symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7647the parse stack, and the control flow jumps to state 1. Any other
742e4900 7648lookahead triggers a syntax error.''
ec3bc396
AD
7649
7650@cindex core, item set
7651@cindex item set core
7652@cindex kernel, item set
7653@cindex item set core
7654Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7655report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7656at the beginning of any rule deriving an @code{exp}. By default Bison
7657reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7658you want to see more detail you can invoke @command{bison} with
7659@option{--report=itemset} to list all the items, include those that can
7660be derived:
7661
7662@example
7663state 0
7664
88bce5a2 7665 $accept -> . exp $ (rule 0)
ec3bc396
AD
7666 exp -> . exp '+' exp (rule 1)
7667 exp -> . exp '-' exp (rule 2)
7668 exp -> . exp '*' exp (rule 3)
7669 exp -> . exp '/' exp (rule 4)
7670 exp -> . NUM (rule 5)
7671
7672 NUM shift, and go to state 1
7673
7674 exp go to state 2
7675@end example
7676
7677@noindent
7678In the state 1...
7679
7680@example
7681state 1
7682
7683 exp -> NUM . (rule 5)
7684
2a8d363a 7685 $default reduce using rule 5 (exp)
ec3bc396
AD
7686@end example
7687
7688@noindent
742e4900 7689the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7690(@samp{$default}), the parser will reduce it. If it was coming from
7691state 0, then, after this reduction it will return to state 0, and will
7692jump to state 2 (@samp{exp: go to state 2}).
7693
7694@example
7695state 2
7696
88bce5a2 7697 $accept -> exp . $ (rule 0)
ec3bc396
AD
7698 exp -> exp . '+' exp (rule 1)
7699 exp -> exp . '-' exp (rule 2)
7700 exp -> exp . '*' exp (rule 3)
7701 exp -> exp . '/' exp (rule 4)
7702
2a8d363a
AD
7703 $ shift, and go to state 3
7704 '+' shift, and go to state 4
7705 '-' shift, and go to state 5
7706 '*' shift, and go to state 6
7707 '/' shift, and go to state 7
ec3bc396
AD
7708@end example
7709
7710@noindent
7711In state 2, the automaton can only shift a symbol. For instance,
742e4900 7712because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
7713@samp{+}, it will be shifted on the parse stack, and the automaton
7714control will jump to state 4, corresponding to the item @samp{exp -> exp
7715'+' . exp}. Since there is no default action, any other token than
6e649e65 7716those listed above will trigger a syntax error.
ec3bc396 7717
eb45ef3b 7718@cindex accepting state
ec3bc396
AD
7719The state 3 is named the @dfn{final state}, or the @dfn{accepting
7720state}:
7721
7722@example
7723state 3
7724
88bce5a2 7725 $accept -> exp $ . (rule 0)
ec3bc396 7726
2a8d363a 7727 $default accept
ec3bc396
AD
7728@end example
7729
7730@noindent
7731the initial rule is completed (the start symbol and the end
7732of input were read), the parsing exits successfully.
7733
7734The interpretation of states 4 to 7 is straightforward, and is left to
7735the reader.
7736
7737@example
7738state 4
7739
7740 exp -> exp '+' . exp (rule 1)
7741
2a8d363a 7742 NUM shift, and go to state 1
ec3bc396 7743
2a8d363a 7744 exp go to state 8
ec3bc396
AD
7745
7746state 5
7747
7748 exp -> exp '-' . exp (rule 2)
7749
2a8d363a 7750 NUM shift, and go to state 1
ec3bc396 7751
2a8d363a 7752 exp go to state 9
ec3bc396
AD
7753
7754state 6
7755
7756 exp -> exp '*' . exp (rule 3)
7757
2a8d363a 7758 NUM shift, and go to state 1
ec3bc396 7759
2a8d363a 7760 exp go to state 10
ec3bc396
AD
7761
7762state 7
7763
7764 exp -> exp '/' . exp (rule 4)
7765
2a8d363a 7766 NUM shift, and go to state 1
ec3bc396 7767
2a8d363a 7768 exp go to state 11
ec3bc396
AD
7769@end example
7770
5a99098d
PE
7771As was announced in beginning of the report, @samp{State 8 conflicts:
77721 shift/reduce}:
ec3bc396
AD
7773
7774@example
7775state 8
7776
7777 exp -> exp . '+' exp (rule 1)
7778 exp -> exp '+' exp . (rule 1)
7779 exp -> exp . '-' exp (rule 2)
7780 exp -> exp . '*' exp (rule 3)
7781 exp -> exp . '/' exp (rule 4)
7782
2a8d363a
AD
7783 '*' shift, and go to state 6
7784 '/' shift, and go to state 7
ec3bc396 7785
2a8d363a
AD
7786 '/' [reduce using rule 1 (exp)]
7787 $default reduce using rule 1 (exp)
ec3bc396
AD
7788@end example
7789
742e4900 7790Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
7791either shifting (and going to state 7), or reducing rule 1. The
7792conflict means that either the grammar is ambiguous, or the parser lacks
7793information to make the right decision. Indeed the grammar is
7794ambiguous, as, since we did not specify the precedence of @samp{/}, the
7795sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
7796NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
7797NUM}, which corresponds to reducing rule 1.
7798
eb45ef3b 7799Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
7800arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
7801Shift/Reduce Conflicts}. Discarded actions are reported in between
7802square brackets.
7803
7804Note that all the previous states had a single possible action: either
7805shifting the next token and going to the corresponding state, or
7806reducing a single rule. In the other cases, i.e., when shifting
7807@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
7808possible, the lookahead is required to select the action. State 8 is
7809one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
7810is shifting, otherwise the action is reducing rule 1. In other words,
7811the first two items, corresponding to rule 1, are not eligible when the
742e4900 7812lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 7813precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
7814with some set of possible lookahead tokens. When run with
7815@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
7816
7817@example
7818state 8
7819
88c78747 7820 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
7821 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
7822 exp -> exp . '-' exp (rule 2)
7823 exp -> exp . '*' exp (rule 3)
7824 exp -> exp . '/' exp (rule 4)
7825
7826 '*' shift, and go to state 6
7827 '/' shift, and go to state 7
7828
7829 '/' [reduce using rule 1 (exp)]
7830 $default reduce using rule 1 (exp)
7831@end example
7832
7833The remaining states are similar:
7834
7835@example
7836state 9
7837
7838 exp -> exp . '+' exp (rule 1)
7839 exp -> exp . '-' exp (rule 2)
7840 exp -> exp '-' exp . (rule 2)
7841 exp -> exp . '*' exp (rule 3)
7842 exp -> exp . '/' exp (rule 4)
7843
2a8d363a
AD
7844 '*' shift, and go to state 6
7845 '/' shift, and go to state 7
ec3bc396 7846
2a8d363a
AD
7847 '/' [reduce using rule 2 (exp)]
7848 $default reduce using rule 2 (exp)
ec3bc396
AD
7849
7850state 10
7851
7852 exp -> exp . '+' exp (rule 1)
7853 exp -> exp . '-' exp (rule 2)
7854 exp -> exp . '*' exp (rule 3)
7855 exp -> exp '*' exp . (rule 3)
7856 exp -> exp . '/' exp (rule 4)
7857
2a8d363a 7858 '/' shift, and go to state 7
ec3bc396 7859
2a8d363a
AD
7860 '/' [reduce using rule 3 (exp)]
7861 $default reduce using rule 3 (exp)
ec3bc396
AD
7862
7863state 11
7864
7865 exp -> exp . '+' exp (rule 1)
7866 exp -> exp . '-' exp (rule 2)
7867 exp -> exp . '*' exp (rule 3)
7868 exp -> exp . '/' exp (rule 4)
7869 exp -> exp '/' exp . (rule 4)
7870
2a8d363a
AD
7871 '+' shift, and go to state 4
7872 '-' shift, and go to state 5
7873 '*' shift, and go to state 6
7874 '/' shift, and go to state 7
ec3bc396 7875
2a8d363a
AD
7876 '+' [reduce using rule 4 (exp)]
7877 '-' [reduce using rule 4 (exp)]
7878 '*' [reduce using rule 4 (exp)]
7879 '/' [reduce using rule 4 (exp)]
7880 $default reduce using rule 4 (exp)
ec3bc396
AD
7881@end example
7882
7883@noindent
fa7e68c3
PE
7884Observe that state 11 contains conflicts not only due to the lack of
7885precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7886@samp{*}, but also because the
ec3bc396
AD
7887associativity of @samp{/} is not specified.
7888
7889
7890@node Tracing
7891@section Tracing Your Parser
bfa74976
RS
7892@findex yydebug
7893@cindex debugging
7894@cindex tracing the parser
7895
7896If a Bison grammar compiles properly but doesn't do what you want when it
7897runs, the @code{yydebug} parser-trace feature can help you figure out why.
7898
3ded9a63
AD
7899There are several means to enable compilation of trace facilities:
7900
7901@table @asis
7902@item the macro @code{YYDEBUG}
7903@findex YYDEBUG
7904Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 7905parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
7906@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7907YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7908Prologue}).
7909
7910@item the option @option{-t}, @option{--debug}
7911Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 7912,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
7913
7914@item the directive @samp{%debug}
7915@findex %debug
fa819509
AD
7916Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
7917Summary}). This Bison extension is maintained for backward
7918compatibility with previous versions of Bison.
7919
7920@item the variable @samp{parse.trace}
7921@findex %define parse.trace
7922Add the @samp{%define parse.trace} directive (@pxref{Decl Summary,
7923,Bison Declaration Summary}), or pass the @option{-Dparse.trace} option
7924(@pxref{Bison Options}). This is a Bison extension, which is especially
7925useful for languages that don't use a preprocessor. Unless
7926@acronym{POSIX} and Yacc portability matter to you, this is the
7927preferred solution.
3ded9a63
AD
7928@end table
7929
fa819509 7930We suggest that you always enable the trace option so that debugging is
3ded9a63 7931always possible.
bfa74976 7932
02a81e05 7933The trace facility outputs messages with macro calls of the form
e2742e46 7934@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 7935@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
7936arguments. If you define @code{YYDEBUG} to a nonzero value but do not
7937define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 7938and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
7939
7940Once you have compiled the program with trace facilities, the way to
7941request a trace is to store a nonzero value in the variable @code{yydebug}.
7942You can do this by making the C code do it (in @code{main}, perhaps), or
7943you can alter the value with a C debugger.
7944
7945Each step taken by the parser when @code{yydebug} is nonzero produces a
7946line or two of trace information, written on @code{stderr}. The trace
7947messages tell you these things:
7948
7949@itemize @bullet
7950@item
7951Each time the parser calls @code{yylex}, what kind of token was read.
7952
7953@item
7954Each time a token is shifted, the depth and complete contents of the
7955state stack (@pxref{Parser States}).
7956
7957@item
7958Each time a rule is reduced, which rule it is, and the complete contents
7959of the state stack afterward.
7960@end itemize
7961
7962To make sense of this information, it helps to refer to the listing file
704a47c4
AD
7963produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
7964Bison}). This file shows the meaning of each state in terms of
7965positions in various rules, and also what each state will do with each
7966possible input token. As you read the successive trace messages, you
7967can see that the parser is functioning according to its specification in
7968the listing file. Eventually you will arrive at the place where
7969something undesirable happens, and you will see which parts of the
7970grammar are to blame.
bfa74976
RS
7971
7972The parser file is a C program and you can use C debuggers on it, but it's
7973not easy to interpret what it is doing. The parser function is a
7974finite-state machine interpreter, and aside from the actions it executes
7975the same code over and over. Only the values of variables show where in
7976the grammar it is working.
7977
7978@findex YYPRINT
7979The debugging information normally gives the token type of each token
7980read, but not its semantic value. You can optionally define a macro
7981named @code{YYPRINT} to provide a way to print the value. If you define
7982@code{YYPRINT}, it should take three arguments. The parser will pass a
7983standard I/O stream, the numeric code for the token type, and the token
7984value (from @code{yylval}).
7985
7986Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 7987calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
7988
7989@smallexample
38a92d50
PE
7990%@{
7991 static void print_token_value (FILE *, int, YYSTYPE);
7992 #define YYPRINT(file, type, value) print_token_value (file, type, value)
7993%@}
7994
7995@dots{} %% @dots{} %% @dots{}
bfa74976
RS
7996
7997static void
831d3c99 7998print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
7999@{
8000 if (type == VAR)
d3c4e709 8001 fprintf (file, "%s", value.tptr->name);
bfa74976 8002 else if (type == NUM)
d3c4e709 8003 fprintf (file, "%d", value.val);
bfa74976
RS
8004@}
8005@end smallexample
8006
ec3bc396
AD
8007@c ================================================= Invoking Bison
8008
342b8b6e 8009@node Invocation
bfa74976
RS
8010@chapter Invoking Bison
8011@cindex invoking Bison
8012@cindex Bison invocation
8013@cindex options for invoking Bison
8014
8015The usual way to invoke Bison is as follows:
8016
8017@example
8018bison @var{infile}
8019@end example
8020
8021Here @var{infile} is the grammar file name, which usually ends in
8022@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
8023with @samp{.tab.c} and removing any leading directory. Thus, the
8024@samp{bison foo.y} file name yields
8025@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
8026@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 8027C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
8028or @file{foo.y++}. Then, the output files will take an extension like
8029the given one as input (respectively @file{foo.tab.cpp} and
8030@file{foo.tab.c++}).
fa4d969f 8031This feature takes effect with all options that manipulate file names like
234a3be3
AD
8032@samp{-o} or @samp{-d}.
8033
8034For example :
8035
8036@example
8037bison -d @var{infile.yxx}
8038@end example
84163231 8039@noindent
72d2299c 8040will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8041
8042@example
b56471a6 8043bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8044@end example
84163231 8045@noindent
234a3be3
AD
8046will produce @file{output.c++} and @file{outfile.h++}.
8047
397ec073
PE
8048For compatibility with @acronym{POSIX}, the standard Bison
8049distribution also contains a shell script called @command{yacc} that
8050invokes Bison with the @option{-y} option.
8051
bfa74976 8052@menu
13863333 8053* Bison Options:: All the options described in detail,
c827f760 8054 in alphabetical order by short options.
bfa74976 8055* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8056* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8057@end menu
8058
342b8b6e 8059@node Bison Options
bfa74976
RS
8060@section Bison Options
8061
8062Bison supports both traditional single-letter options and mnemonic long
8063option names. Long option names are indicated with @samp{--} instead of
8064@samp{-}. Abbreviations for option names are allowed as long as they
8065are unique. When a long option takes an argument, like
8066@samp{--file-prefix}, connect the option name and the argument with
8067@samp{=}.
8068
8069Here is a list of options that can be used with Bison, alphabetized by
8070short option. It is followed by a cross key alphabetized by long
8071option.
8072
89cab50d
AD
8073@c Please, keep this ordered as in `bison --help'.
8074@noindent
8075Operations modes:
8076@table @option
8077@item -h
8078@itemx --help
8079Print a summary of the command-line options to Bison and exit.
bfa74976 8080
89cab50d
AD
8081@item -V
8082@itemx --version
8083Print the version number of Bison and exit.
bfa74976 8084
f7ab6a50
PE
8085@item --print-localedir
8086Print the name of the directory containing locale-dependent data.
8087
a0de5091
JD
8088@item --print-datadir
8089Print the name of the directory containing skeletons and XSLT.
8090
89cab50d
AD
8091@item -y
8092@itemx --yacc
54662697
PE
8093Act more like the traditional Yacc command. This can cause
8094different diagnostics to be generated, and may change behavior in
8095other minor ways. Most importantly, imitate Yacc's output
8096file name conventions, so that the parser output file is called
89cab50d 8097@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e 8098@file{y.tab.h}.
eb45ef3b 8099Also, if generating a deterministic parser in C, generate @code{#define}
b931235e
JD
8100statements in addition to an @code{enum} to associate token numbers with token
8101names.
8102Thus, the following shell script can substitute for Yacc, and the Bison
8103distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 8104
89cab50d 8105@example
397ec073 8106#! /bin/sh
26e06a21 8107bison -y "$@@"
89cab50d 8108@end example
54662697
PE
8109
8110The @option{-y}/@option{--yacc} option is intended for use with
8111traditional Yacc grammars. If your grammar uses a Bison extension
8112like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8113this option is specified.
8114
1d5b3c08
JD
8115@item -W [@var{category}]
8116@itemx --warnings[=@var{category}]
118d4978
AD
8117Output warnings falling in @var{category}. @var{category} can be one
8118of:
8119@table @code
8120@item midrule-values
8e55b3aa
JD
8121Warn about mid-rule values that are set but not used within any of the actions
8122of the parent rule.
8123For example, warn about unused @code{$2} in:
118d4978
AD
8124
8125@example
8126exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8127@end example
8128
8e55b3aa
JD
8129Also warn about mid-rule values that are used but not set.
8130For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8131
8132@example
8133 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
8134@end example
8135
8136These warnings are not enabled by default since they sometimes prove to
8137be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8138@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
8139
8140
8141@item yacc
8142Incompatibilities with @acronym{POSIX} Yacc.
8143
8144@item all
8e55b3aa 8145All the warnings.
118d4978 8146@item none
8e55b3aa 8147Turn off all the warnings.
118d4978 8148@item error
8e55b3aa 8149Treat warnings as errors.
118d4978
AD
8150@end table
8151
8152A category can be turned off by prefixing its name with @samp{no-}. For
8153instance, @option{-Wno-syntax} will hide the warnings about unused
8154variables.
89cab50d
AD
8155@end table
8156
8157@noindent
8158Tuning the parser:
8159
8160@table @option
8161@item -t
8162@itemx --debug
4947ebdb
PE
8163In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
8164already defined, so that the debugging facilities are compiled.
ec3bc396 8165@xref{Tracing, ,Tracing Your Parser}.
89cab50d 8166
58697c6d
AD
8167@item -D @var{name}[=@var{value}]
8168@itemx --define=@var{name}[=@var{value}]
de5ab940
JD
8169@item -F @var{name}[=@var{value}]
8170@itemx --force-define=@var{name}[=@var{value}]
8171Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
8172(@pxref{Decl Summary, ,%define}) except that Bison processes multiple
8173definitions for the same @var{name} as follows:
8174
8175@itemize
8176@item
0b6d43c5
JD
8177Bison quietly ignores all command-line definitions for @var{name} except
8178the last.
de5ab940 8179@item
0b6d43c5
JD
8180If that command-line definition is specified by a @code{-D} or
8181@code{--define}, Bison reports an error for any @code{%define}
8182definition for @var{name}.
de5ab940 8183@item
0b6d43c5
JD
8184If that command-line definition is specified by a @code{-F} or
8185@code{--force-define} instead, Bison quietly ignores all @code{%define}
8186definitions for @var{name}.
8187@item
8188Otherwise, Bison reports an error if there are multiple @code{%define}
8189definitions for @var{name}.
de5ab940
JD
8190@end itemize
8191
8192You should avoid using @code{-F} and @code{--force-define} in your
8193makefiles unless you are confident that it is safe to quietly ignore any
8194conflicting @code{%define} that may be added to the grammar file.
58697c6d 8195
0e021770
PE
8196@item -L @var{language}
8197@itemx --language=@var{language}
8198Specify the programming language for the generated parser, as if
8199@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8200Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8201@var{language} is case-insensitive.
0e021770 8202
ed4d67dc
JD
8203This option is experimental and its effect may be modified in future
8204releases.
8205
89cab50d 8206@item --locations
d8988b2f 8207Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8208
8209@item -p @var{prefix}
8210@itemx --name-prefix=@var{prefix}
02975b9a 8211Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8212@xref{Decl Summary}.
bfa74976
RS
8213
8214@item -l
8215@itemx --no-lines
8216Don't put any @code{#line} preprocessor commands in the parser file.
8217Ordinarily Bison puts them in the parser file so that the C compiler
8218and debuggers will associate errors with your source file, the
8219grammar file. This option causes them to associate errors with the
95e742f7 8220parser file, treating it as an independent source file in its own right.
bfa74976 8221
e6e704dc
JD
8222@item -S @var{file}
8223@itemx --skeleton=@var{file}
a7867f53 8224Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8225(@pxref{Decl Summary, , Bison Declaration Summary}).
8226
ed4d67dc
JD
8227@c You probably don't need this option unless you are developing Bison.
8228@c You should use @option{--language} if you want to specify the skeleton for a
8229@c different language, because it is clearer and because it will always
8230@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8231
a7867f53
JD
8232If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8233file in the Bison installation directory.
8234If it does, @var{file} is an absolute file name or a file name relative to the
8235current working directory.
8236This is similar to how most shells resolve commands.
8237
89cab50d
AD
8238@item -k
8239@itemx --token-table
d8988b2f 8240Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8241@end table
bfa74976 8242
89cab50d
AD
8243@noindent
8244Adjust the output:
bfa74976 8245
89cab50d 8246@table @option
8e55b3aa 8247@item --defines[=@var{file}]
d8988b2f 8248Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8249file containing macro definitions for the token type names defined in
4bfd5e4e 8250the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8251
8e55b3aa
JD
8252@item -d
8253This is the same as @code{--defines} except @code{-d} does not accept a
8254@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8255with other short options.
342b8b6e 8256
89cab50d
AD
8257@item -b @var{file-prefix}
8258@itemx --file-prefix=@var{prefix}
9c437126 8259Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8260for all Bison output file names. @xref{Decl Summary}.
bfa74976 8261
ec3bc396
AD
8262@item -r @var{things}
8263@itemx --report=@var{things}
8264Write an extra output file containing verbose description of the comma
8265separated list of @var{things} among:
8266
8267@table @code
8268@item state
8269Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 8270parser's automaton.
ec3bc396 8271
742e4900 8272@item lookahead
ec3bc396 8273Implies @code{state} and augments the description of the automaton with
742e4900 8274each rule's lookahead set.
ec3bc396
AD
8275
8276@item itemset
8277Implies @code{state} and augments the description of the automaton with
8278the full set of items for each state, instead of its core only.
8279@end table
8280
1bb2bd75
JD
8281@item --report-file=@var{file}
8282Specify the @var{file} for the verbose description.
8283
bfa74976
RS
8284@item -v
8285@itemx --verbose
9c437126 8286Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8287file containing verbose descriptions of the grammar and
72d2299c 8288parser. @xref{Decl Summary}.
bfa74976 8289
fa4d969f
PE
8290@item -o @var{file}
8291@itemx --output=@var{file}
8292Specify the @var{file} for the parser file.
bfa74976 8293
fa4d969f 8294The other output files' names are constructed from @var{file} as
d8988b2f 8295described under the @samp{-v} and @samp{-d} options.
342b8b6e 8296
a7c09cba 8297@item -g [@var{file}]
8e55b3aa 8298@itemx --graph[=@var{file}]
eb45ef3b 8299Output a graphical representation of the parser's
35fe0834
PE
8300automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8301@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
8e55b3aa
JD
8302@code{@var{file}} is optional.
8303If omitted and the grammar file is @file{foo.y}, the output file will be
8304@file{foo.dot}.
59da312b 8305
a7c09cba 8306@item -x [@var{file}]
8e55b3aa 8307@itemx --xml[=@var{file}]
eb45ef3b 8308Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8309@code{@var{file}} is optional.
59da312b
JD
8310If omitted and the grammar file is @file{foo.y}, the output file will be
8311@file{foo.xml}.
8312(The current XML schema is experimental and may evolve.
8313More user feedback will help to stabilize it.)
bfa74976
RS
8314@end table
8315
342b8b6e 8316@node Option Cross Key
bfa74976
RS
8317@section Option Cross Key
8318
8319Here is a list of options, alphabetized by long option, to help you find
de5ab940 8320the corresponding short option and directive.
bfa74976 8321
de5ab940 8322@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 8323@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8324@include cross-options.texi
aa08666d 8325@end multitable
bfa74976 8326
93dd49ab
PE
8327@node Yacc Library
8328@section Yacc Library
8329
8330The Yacc library contains default implementations of the
8331@code{yyerror} and @code{main} functions. These default
8332implementations are normally not useful, but @acronym{POSIX} requires
8333them. To use the Yacc library, link your program with the
8334@option{-ly} option. Note that Bison's implementation of the Yacc
8335library is distributed under the terms of the @acronym{GNU} General
8336Public License (@pxref{Copying}).
8337
8338If you use the Yacc library's @code{yyerror} function, you should
8339declare @code{yyerror} as follows:
8340
8341@example
8342int yyerror (char const *);
8343@end example
8344
8345Bison ignores the @code{int} value returned by this @code{yyerror}.
8346If you use the Yacc library's @code{main} function, your
8347@code{yyparse} function should have the following type signature:
8348
8349@example
8350int yyparse (void);
8351@end example
8352
12545799
AD
8353@c ================================================= C++ Bison
8354
8405b70c
PB
8355@node Other Languages
8356@chapter Parsers Written In Other Languages
12545799
AD
8357
8358@menu
8359* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8360* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8361@end menu
8362
8363@node C++ Parsers
8364@section C++ Parsers
8365
8366@menu
8367* C++ Bison Interface:: Asking for C++ parser generation
8368* C++ Semantic Values:: %union vs. C++
8369* C++ Location Values:: The position and location classes
8370* C++ Parser Interface:: Instantiating and running the parser
8371* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8372* A Complete C++ Example:: Demonstrating their use
12545799
AD
8373@end menu
8374
8375@node C++ Bison Interface
8376@subsection C++ Bison Interface
ed4d67dc 8377@c - %skeleton "lalr1.cc"
12545799
AD
8378@c - Always pure
8379@c - initial action
8380
eb45ef3b 8381The C++ deterministic parser is selected using the skeleton directive,
ed4d67dc
JD
8382@samp{%skeleton "lalr1.c"}, or the synonymous command-line option
8383@option{--skeleton=lalr1.c}.
e6e704dc 8384@xref{Decl Summary}.
0e021770 8385
793fbca5
JD
8386When run, @command{bison} will create several entities in the @samp{yy}
8387namespace.
67501061
AD
8388@findex %define api.namespace
8389Use the @samp{%define api.namespace} directive to change the namespace
8390name, see
793fbca5
JD
8391@ref{Decl Summary}.
8392The various classes are generated in the following files:
aa08666d 8393
12545799
AD
8394@table @file
8395@item position.hh
8396@itemx location.hh
8397The definition of the classes @code{position} and @code{location},
8398used for location tracking. @xref{C++ Location Values}.
8399
8400@item stack.hh
8401An auxiliary class @code{stack} used by the parser.
8402
fa4d969f
PE
8403@item @var{file}.hh
8404@itemx @var{file}.cc
cd8b5791
AD
8405(Assuming the extension of the input file was @samp{.yy}.) The
8406declaration and implementation of the C++ parser class. The basename
8407and extension of these two files follow the same rules as with regular C
8408parsers (@pxref{Invocation}).
12545799 8409
cd8b5791
AD
8410The header is @emph{mandatory}; you must either pass
8411@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8412@samp{%defines} directive.
8413@end table
8414
8415All these files are documented using Doxygen; run @command{doxygen}
8416for a complete and accurate documentation.
8417
8418@node C++ Semantic Values
8419@subsection C++ Semantic Values
8420@c - No objects in unions
178e123e 8421@c - YYSTYPE
12545799
AD
8422@c - Printer and destructor
8423
8424The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8425Collection of Value Types}. In particular it produces a genuine
8426@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
8427within pseudo-unions (similar to Boost variants) might be implemented to
8428alleviate these issues.}, which have a few specific features in C++.
12545799
AD
8429@itemize @minus
8430@item
fb9712a9
AD
8431The type @code{YYSTYPE} is defined but its use is discouraged: rather
8432you should refer to the parser's encapsulated type
8433@code{yy::parser::semantic_type}.
12545799
AD
8434@item
8435Non POD (Plain Old Data) types cannot be used. C++ forbids any
8436instance of classes with constructors in unions: only @emph{pointers}
8437to such objects are allowed.
8438@end itemize
8439
8440Because objects have to be stored via pointers, memory is not
8441reclaimed automatically: using the @code{%destructor} directive is the
8442only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8443Symbols}.
8444
8445
8446@node C++ Location Values
8447@subsection C++ Location Values
8448@c - %locations
8449@c - class Position
8450@c - class Location
16dc6a9e 8451@c - %define filename_type "const symbol::Symbol"
12545799
AD
8452
8453When the directive @code{%locations} is used, the C++ parser supports
8454location tracking, see @ref{Locations, , Locations Overview}. Two
8455auxiliary classes define a @code{position}, a single point in a file,
8456and a @code{location}, a range composed of a pair of
8457@code{position}s (possibly spanning several files).
8458
fa4d969f 8459@deftypemethod {position} {std::string*} file
12545799
AD
8460The name of the file. It will always be handled as a pointer, the
8461parser will never duplicate nor deallocate it. As an experimental
8462feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8463filename_type "@var{type}"}.
12545799
AD
8464@end deftypemethod
8465
8466@deftypemethod {position} {unsigned int} line
8467The line, starting at 1.
8468@end deftypemethod
8469
8470@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8471Advance by @var{height} lines, resetting the column number.
8472@end deftypemethod
8473
8474@deftypemethod {position} {unsigned int} column
8475The column, starting at 0.
8476@end deftypemethod
8477
8478@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8479Advance by @var{width} columns, without changing the line number.
8480@end deftypemethod
8481
8482@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8483@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8484@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8485@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8486Various forms of syntactic sugar for @code{columns}.
8487@end deftypemethod
8488
8489@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8490Report @var{p} on @var{o} like this:
fa4d969f
PE
8491@samp{@var{file}:@var{line}.@var{column}}, or
8492@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8493@end deftypemethod
8494
8495@deftypemethod {location} {position} begin
8496@deftypemethodx {location} {position} end
8497The first, inclusive, position of the range, and the first beyond.
8498@end deftypemethod
8499
8500@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8501@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8502Advance the @code{end} position.
8503@end deftypemethod
8504
8505@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8506@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8507@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8508Various forms of syntactic sugar.
8509@end deftypemethod
8510
8511@deftypemethod {location} {void} step ()
8512Move @code{begin} onto @code{end}.
8513@end deftypemethod
8514
8515
8516@node C++ Parser Interface
8517@subsection C++ Parser Interface
8518@c - define parser_class_name
8519@c - Ctor
8520@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8521@c debug_stream.
8522@c - Reporting errors
8523
8524The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8525declare and define the parser class in the namespace @code{yy}. The
8526class name defaults to @code{parser}, but may be changed using
16dc6a9e 8527@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8528this class is detailed below. It can be extended using the
12545799
AD
8529@code{%parse-param} feature: its semantics is slightly changed since
8530it describes an additional member of the parser class, and an
8531additional argument for its constructor.
8532
8a0adb01
AD
8533@defcv {Type} {parser} {semantic_value_type}
8534@defcvx {Type} {parser} {location_value_type}
12545799 8535The types for semantics value and locations.
8a0adb01 8536@end defcv
12545799
AD
8537
8538@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8539Build a new parser object. There are no arguments by default, unless
8540@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8541@end deftypemethod
8542
8543@deftypemethod {parser} {int} parse ()
8544Run the syntactic analysis, and return 0 on success, 1 otherwise.
8545@end deftypemethod
8546
8547@deftypemethod {parser} {std::ostream&} debug_stream ()
8548@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8549Get or set the stream used for tracing the parsing. It defaults to
8550@code{std::cerr}.
8551@end deftypemethod
8552
8553@deftypemethod {parser} {debug_level_type} debug_level ()
8554@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8555Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8556or nonzero, full tracing.
12545799
AD
8557@end deftypemethod
8558
8559@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
8560The definition for this member function must be supplied by the user:
8561the parser uses it to report a parser error occurring at @var{l},
8562described by @var{m}.
8563@end deftypemethod
8564
8565
8566@node C++ Scanner Interface
8567@subsection C++ Scanner Interface
8568@c - prefix for yylex.
8569@c - Pure interface to yylex
8570@c - %lex-param
8571
8572The parser invokes the scanner by calling @code{yylex}. Contrary to C
8573parsers, C++ parsers are always pure: there is no point in using the
67501061 8574@samp{%define api.pure} directive. Therefore the interface is as follows.
12545799
AD
8575
8576@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
8577Return the next token. Its type is the return value, its semantic
8578value and location being @var{yylval} and @var{yylloc}. Invocations of
8579@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8580@end deftypemethod
8581
8582
8583@node A Complete C++ Example
8405b70c 8584@subsection A Complete C++ Example
12545799
AD
8585
8586This section demonstrates the use of a C++ parser with a simple but
8587complete example. This example should be available on your system,
8588ready to compile, in the directory @dfn{../bison/examples/calc++}. It
8589focuses on the use of Bison, therefore the design of the various C++
8590classes is very naive: no accessors, no encapsulation of members etc.
8591We will use a Lex scanner, and more precisely, a Flex scanner, to
8592demonstrate the various interaction. A hand written scanner is
8593actually easier to interface with.
8594
8595@menu
8596* Calc++ --- C++ Calculator:: The specifications
8597* Calc++ Parsing Driver:: An active parsing context
8598* Calc++ Parser:: A parser class
8599* Calc++ Scanner:: A pure C++ Flex scanner
8600* Calc++ Top Level:: Conducting the band
8601@end menu
8602
8603@node Calc++ --- C++ Calculator
8405b70c 8604@subsubsection Calc++ --- C++ Calculator
12545799
AD
8605
8606Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 8607expression, possibly preceded by variable assignments. An
12545799
AD
8608environment containing possibly predefined variables such as
8609@code{one} and @code{two}, is exchanged with the parser. An example
8610of valid input follows.
8611
8612@example
8613three := 3
8614seven := one + two * three
8615seven * seven
8616@end example
8617
8618@node Calc++ Parsing Driver
8405b70c 8619@subsubsection Calc++ Parsing Driver
12545799
AD
8620@c - An env
8621@c - A place to store error messages
8622@c - A place for the result
8623
8624To support a pure interface with the parser (and the scanner) the
8625technique of the ``parsing context'' is convenient: a structure
8626containing all the data to exchange. Since, in addition to simply
8627launch the parsing, there are several auxiliary tasks to execute (open
8628the file for parsing, instantiate the parser etc.), we recommend
8629transforming the simple parsing context structure into a fully blown
8630@dfn{parsing driver} class.
8631
8632The declaration of this driver class, @file{calc++-driver.hh}, is as
8633follows. The first part includes the CPP guard and imports the
fb9712a9
AD
8634required standard library components, and the declaration of the parser
8635class.
12545799 8636
1c59e0a1 8637@comment file: calc++-driver.hh
12545799
AD
8638@example
8639#ifndef CALCXX_DRIVER_HH
8640# define CALCXX_DRIVER_HH
8641# include <string>
8642# include <map>
fb9712a9 8643# include "calc++-parser.hh"
12545799
AD
8644@end example
8645
12545799
AD
8646
8647@noindent
8648Then comes the declaration of the scanning function. Flex expects
8649the signature of @code{yylex} to be defined in the macro
8650@code{YY_DECL}, and the C++ parser expects it to be declared. We can
8651factor both as follows.
1c59e0a1
AD
8652
8653@comment file: calc++-driver.hh
12545799 8654@example
3dc5e96b
PE
8655// Tell Flex the lexer's prototype ...
8656# define YY_DECL \
c095d689
AD
8657 yy::calcxx_parser::token_type \
8658 yylex (yy::calcxx_parser::semantic_type* yylval, \
8659 yy::calcxx_parser::location_type* yylloc, \
8660 calcxx_driver& driver)
12545799
AD
8661// ... and declare it for the parser's sake.
8662YY_DECL;
8663@end example
8664
8665@noindent
8666The @code{calcxx_driver} class is then declared with its most obvious
8667members.
8668
1c59e0a1 8669@comment file: calc++-driver.hh
12545799
AD
8670@example
8671// Conducting the whole scanning and parsing of Calc++.
8672class calcxx_driver
8673@{
8674public:
8675 calcxx_driver ();
8676 virtual ~calcxx_driver ();
8677
8678 std::map<std::string, int> variables;
8679
8680 int result;
8681@end example
8682
8683@noindent
8684To encapsulate the coordination with the Flex scanner, it is useful to
8685have two members function to open and close the scanning phase.
12545799 8686
1c59e0a1 8687@comment file: calc++-driver.hh
12545799
AD
8688@example
8689 // Handling the scanner.
8690 void scan_begin ();
8691 void scan_end ();
8692 bool trace_scanning;
8693@end example
8694
8695@noindent
8696Similarly for the parser itself.
8697
1c59e0a1 8698@comment file: calc++-driver.hh
12545799 8699@example
bb32f4f2
AD
8700 // Run the parser. Return 0 on success.
8701 int parse (const std::string& f);
12545799
AD
8702 std::string file;
8703 bool trace_parsing;
8704@end example
8705
8706@noindent
8707To demonstrate pure handling of parse errors, instead of simply
8708dumping them on the standard error output, we will pass them to the
8709compiler driver using the following two member functions. Finally, we
8710close the class declaration and CPP guard.
8711
1c59e0a1 8712@comment file: calc++-driver.hh
12545799
AD
8713@example
8714 // Error handling.
8715 void error (const yy::location& l, const std::string& m);
8716 void error (const std::string& m);
8717@};
8718#endif // ! CALCXX_DRIVER_HH
8719@end example
8720
8721The implementation of the driver is straightforward. The @code{parse}
8722member function deserves some attention. The @code{error} functions
8723are simple stubs, they should actually register the located error
8724messages and set error state.
8725
1c59e0a1 8726@comment file: calc++-driver.cc
12545799
AD
8727@example
8728#include "calc++-driver.hh"
8729#include "calc++-parser.hh"
8730
8731calcxx_driver::calcxx_driver ()
8732 : trace_scanning (false), trace_parsing (false)
8733@{
8734 variables["one"] = 1;
8735 variables["two"] = 2;
8736@}
8737
8738calcxx_driver::~calcxx_driver ()
8739@{
8740@}
8741
bb32f4f2 8742int
12545799
AD
8743calcxx_driver::parse (const std::string &f)
8744@{
8745 file = f;
8746 scan_begin ();
8747 yy::calcxx_parser parser (*this);
8748 parser.set_debug_level (trace_parsing);
bb32f4f2 8749 int res = parser.parse ();
12545799 8750 scan_end ();
bb32f4f2 8751 return res;
12545799
AD
8752@}
8753
8754void
8755calcxx_driver::error (const yy::location& l, const std::string& m)
8756@{
8757 std::cerr << l << ": " << m << std::endl;
8758@}
8759
8760void
8761calcxx_driver::error (const std::string& m)
8762@{
8763 std::cerr << m << std::endl;
8764@}
8765@end example
8766
8767@node Calc++ Parser
8405b70c 8768@subsubsection Calc++ Parser
12545799 8769
b50d2359 8770The parser definition file @file{calc++-parser.yy} starts by asking for
eb45ef3b
JD
8771the C++ deterministic parser skeleton, the creation of the parser header
8772file, and specifies the name of the parser class.
8773Because the C++ skeleton changed several times, it is safer to require
8774the version you designed the grammar for.
1c59e0a1
AD
8775
8776@comment file: calc++-parser.yy
12545799 8777@example
ed4d67dc 8778%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 8779%require "@value{VERSION}"
12545799 8780%defines
16dc6a9e 8781%define parser_class_name "calcxx_parser"
fb9712a9
AD
8782@end example
8783
8784@noindent
16dc6a9e 8785@findex %code requires
fb9712a9
AD
8786Then come the declarations/inclusions needed to define the
8787@code{%union}. Because the parser uses the parsing driver and
8788reciprocally, both cannot include the header of the other. Because the
8789driver's header needs detailed knowledge about the parser class (in
8790particular its inner types), it is the parser's header which will simply
8791use a forward declaration of the driver.
148d66d8 8792@xref{Decl Summary, ,%code}.
fb9712a9
AD
8793
8794@comment file: calc++-parser.yy
8795@example
16dc6a9e 8796%code requires @{
12545799 8797# include <string>
fb9712a9 8798class calcxx_driver;
9bc0dd67 8799@}
12545799
AD
8800@end example
8801
8802@noindent
8803The driver is passed by reference to the parser and to the scanner.
8804This provides a simple but effective pure interface, not relying on
8805global variables.
8806
1c59e0a1 8807@comment file: calc++-parser.yy
12545799
AD
8808@example
8809// The parsing context.
8810%parse-param @{ calcxx_driver& driver @}
8811%lex-param @{ calcxx_driver& driver @}
8812@end example
8813
8814@noindent
8815Then we request the location tracking feature, and initialize the
8816first location's file name. Afterwards new locations are computed
8817relatively to the previous locations: the file name will be
8818automatically propagated.
8819
1c59e0a1 8820@comment file: calc++-parser.yy
12545799
AD
8821@example
8822%locations
8823%initial-action
8824@{
8825 // Initialize the initial location.
b47dbebe 8826 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
8827@};
8828@end example
8829
8830@noindent
8831Use the two following directives to enable parser tracing and verbose
8832error messages.
8833
1c59e0a1 8834@comment file: calc++-parser.yy
12545799 8835@example
fa819509 8836%define parse.trace
31b850d2 8837%define parse.error "verbose"
12545799
AD
8838@end example
8839
8840@noindent
8841Semantic values cannot use ``real'' objects, but only pointers to
8842them.
8843
1c59e0a1 8844@comment file: calc++-parser.yy
12545799
AD
8845@example
8846// Symbols.
8847%union
8848@{
8849 int ival;
8850 std::string *sval;
8851@};
8852@end example
8853
fb9712a9 8854@noindent
136a0f76
PB
8855@findex %code
8856The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 8857@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
8858
8859@comment file: calc++-parser.yy
8860@example
136a0f76 8861%code @{
fb9712a9 8862# include "calc++-driver.hh"
34f98f46 8863@}
fb9712a9
AD
8864@end example
8865
8866
12545799
AD
8867@noindent
8868The token numbered as 0 corresponds to end of file; the following line
99c08fb6
AD
8869allows for nicer error messages referring to ``end of file'' instead of
8870``$end''. Similarly user friendly names are provided for each symbol.
8871To avoid name clashes in the generated files (@pxref{Calc++ Scanner}),
4c6622c2 8872prefix tokens with @code{TOK_} (@pxref{Decl Summary,, api.tokens.prefix}).
12545799 8873
1c59e0a1 8874@comment file: calc++-parser.yy
12545799 8875@example
4c6622c2 8876%define api.tokens.prefix "TOK_"
fb9712a9
AD
8877%token END 0 "end of file"
8878%token ASSIGN ":="
8879%token <sval> IDENTIFIER "identifier"
8880%token <ival> NUMBER "number"
a8c2e813 8881%type <ival> exp
12545799
AD
8882@end example
8883
8884@noindent
8885To enable memory deallocation during error recovery, use
8886@code{%destructor}.
8887
287c78f6 8888@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 8889@comment file: calc++-parser.yy
12545799
AD
8890@example
8891%printer @{ debug_stream () << *$$; @} "identifier"
8892%destructor @{ delete $$; @} "identifier"
8893
a8c2e813 8894%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
8895@end example
8896
8897@noindent
8898The grammar itself is straightforward.
8899
1c59e0a1 8900@comment file: calc++-parser.yy
12545799
AD
8901@example
8902%%
8903%start unit;
8904unit: assignments exp @{ driver.result = $2; @};
8905
99c08fb6
AD
8906assignments:
8907 assignments assignment @{@}
8908| /* Nothing. */ @{@};
12545799 8909
3dc5e96b 8910assignment:
99c08fb6 8911 "identifier" ":=" exp
3dc5e96b 8912 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
8913
8914%left '+' '-';
8915%left '*' '/';
99c08fb6
AD
8916exp:
8917 exp '+' exp @{ $$ = $1 + $3; @}
8918| exp '-' exp @{ $$ = $1 - $3; @}
8919| exp '*' exp @{ $$ = $1 * $3; @}
8920| exp '/' exp @{ $$ = $1 / $3; @}
8921| '(' exp ')' @{ $$ = $2; @}
8922| "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
8923| "number" @{ $$ = $1; @};
12545799
AD
8924%%
8925@end example
8926
8927@noindent
8928Finally the @code{error} member function registers the errors to the
8929driver.
8930
1c59e0a1 8931@comment file: calc++-parser.yy
12545799
AD
8932@example
8933void
1c59e0a1
AD
8934yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
8935 const std::string& m)
12545799
AD
8936@{
8937 driver.error (l, m);
8938@}
8939@end example
8940
8941@node Calc++ Scanner
8405b70c 8942@subsubsection Calc++ Scanner
12545799
AD
8943
8944The Flex scanner first includes the driver declaration, then the
8945parser's to get the set of defined tokens.
8946
1c59e0a1 8947@comment file: calc++-scanner.ll
12545799
AD
8948@example
8949%@{ /* -*- C++ -*- */
04098407 8950# include <cstdlib>
3c248d70
AD
8951# include <cerrno>
8952# include <climits>
12545799
AD
8953# include <string>
8954# include "calc++-driver.hh"
8955# include "calc++-parser.hh"
eaea13f5
PE
8956
8957/* Work around an incompatibility in flex (at least versions
8958 2.5.31 through 2.5.33): it generates code that does
8959 not conform to C89. See Debian bug 333231
8960 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
8961# undef yywrap
8962# define yywrap() 1
eaea13f5 8963
99c08fb6
AD
8964/* By default yylex returns an int; we use token_type.
8965 The default yyterminate implementation returns 0, which is
c095d689 8966 not of token_type. */
99c08fb6 8967#define yyterminate() return TOKEN(END)
12545799
AD
8968%@}
8969@end example
8970
8971@noindent
8972Because there is no @code{#include}-like feature we don't need
8973@code{yywrap}, we don't need @code{unput} either, and we parse an
8974actual file, this is not an interactive session with the user.
8975Finally we enable the scanner tracing features.
8976
1c59e0a1 8977@comment file: calc++-scanner.ll
12545799
AD
8978@example
8979%option noyywrap nounput batch debug
8980@end example
8981
8982@noindent
8983Abbreviations allow for more readable rules.
8984
1c59e0a1 8985@comment file: calc++-scanner.ll
12545799
AD
8986@example
8987id [a-zA-Z][a-zA-Z_0-9]*
8988int [0-9]+
8989blank [ \t]
8990@end example
8991
8992@noindent
9d9b8b70 8993The following paragraph suffices to track locations accurately. Each
12545799
AD
8994time @code{yylex} is invoked, the begin position is moved onto the end
8995position. Then when a pattern is matched, the end position is
8996advanced of its width. In case it matched ends of lines, the end
8997cursor is adjusted, and each time blanks are matched, the begin cursor
8998is moved onto the end cursor to effectively ignore the blanks
8999preceding tokens. Comments would be treated equally.
9000
1c59e0a1 9001@comment file: calc++-scanner.ll
12545799 9002@example
828c373b
AD
9003%@{
9004# define YY_USER_ACTION yylloc->columns (yyleng);
9005%@}
12545799
AD
9006%%
9007%@{
9008 yylloc->step ();
12545799
AD
9009%@}
9010@{blank@}+ yylloc->step ();
9011[\n]+ yylloc->lines (yyleng); yylloc->step ();
9012@end example
9013
9014@noindent
99c08fb6
AD
9015The rules are simple. The driver is used to report errors. It is
9016convenient to use a macro to shorten
9017@code{yy::calcxx_parser::token::TOK_@var{Name}} into
9018@code{TOKEN(@var{Name})}; note the token prefix, @code{TOK_}.
12545799 9019
1c59e0a1 9020@comment file: calc++-scanner.ll
12545799 9021@example
fb9712a9 9022%@{
99c08fb6
AD
9023# define TOKEN(Name) \
9024 yy::calcxx_parser::token::TOK_ ## Name
fb9712a9 9025%@}
8c5b881d 9026 /* Convert ints to the actual type of tokens. */
1a7a65f9 9027[-+*/()] return yy::calcxx_parser::token_type (yytext[0]);
99c08fb6 9028":=" return TOKEN(ASSIGN);
04098407
PE
9029@{int@} @{
9030 errno = 0;
9031 long n = strtol (yytext, NULL, 10);
9032 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
9033 driver.error (*yylloc, "integer is out of range");
9034 yylval->ival = n;
99c08fb6
AD
9035 return TOKEN(NUMBER);
9036@}
9037@{id@} @{
9038 yylval->sval = new std::string (yytext);
9039 return TOKEN(IDENTIFIER);
04098407 9040@}
12545799
AD
9041. driver.error (*yylloc, "invalid character");
9042%%
9043@end example
9044
9045@noindent
9046Finally, because the scanner related driver's member function depend
9047on the scanner's data, it is simpler to implement them in this file.
9048
1c59e0a1 9049@comment file: calc++-scanner.ll
12545799
AD
9050@example
9051void
9052calcxx_driver::scan_begin ()
9053@{
9054 yy_flex_debug = trace_scanning;
bb32f4f2
AD
9055 if (file == "-")
9056 yyin = stdin;
9057 else if (!(yyin = fopen (file.c_str (), "r")))
9058 @{
9059 error (std::string ("cannot open ") + file);
9060 exit (1);
9061 @}
12545799
AD
9062@}
9063
9064void
9065calcxx_driver::scan_end ()
9066@{
9067 fclose (yyin);
9068@}
9069@end example
9070
9071@node Calc++ Top Level
8405b70c 9072@subsubsection Calc++ Top Level
12545799
AD
9073
9074The top level file, @file{calc++.cc}, poses no problem.
9075
1c59e0a1 9076@comment file: calc++.cc
12545799
AD
9077@example
9078#include <iostream>
9079#include "calc++-driver.hh"
9080
9081int
fa4d969f 9082main (int argc, char *argv[])
12545799 9083@{
414c76a4 9084 int res = 0;
12545799
AD
9085 calcxx_driver driver;
9086 for (++argv; argv[0]; ++argv)
9087 if (*argv == std::string ("-p"))
9088 driver.trace_parsing = true;
9089 else if (*argv == std::string ("-s"))
9090 driver.trace_scanning = true;
bb32f4f2
AD
9091 else if (!driver.parse (*argv))
9092 std::cout << driver.result << std::endl;
414c76a4
AD
9093 else
9094 res = 1;
9095 return res;
12545799
AD
9096@}
9097@end example
9098
8405b70c
PB
9099@node Java Parsers
9100@section Java Parsers
9101
9102@menu
f5f419de
DJ
9103* Java Bison Interface:: Asking for Java parser generation
9104* Java Semantic Values:: %type and %token vs. Java
9105* Java Location Values:: The position and location classes
9106* Java Parser Interface:: Instantiating and running the parser
9107* Java Scanner Interface:: Specifying the scanner for the parser
9108* Java Action Features:: Special features for use in actions
9109* Java Differences:: Differences between C/C++ and Java Grammars
9110* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
9111@end menu
9112
9113@node Java Bison Interface
9114@subsection Java Bison Interface
9115@c - %language "Java"
8405b70c 9116
59da312b
JD
9117(The current Java interface is experimental and may evolve.
9118More user feedback will help to stabilize it.)
9119
e254a580
DJ
9120The Java parser skeletons are selected using the @code{%language "Java"}
9121directive or the @option{-L java}/@option{--language=java} option.
8405b70c 9122
e254a580
DJ
9123@c FIXME: Documented bug.
9124When generating a Java parser, @code{bison @var{basename}.y} will create
9125a single Java source file named @file{@var{basename}.java}. Using an
9126input file without a @file{.y} suffix is currently broken. The basename
9127of the output file can be changed by the @code{%file-prefix} directive
9128or the @option{-p}/@option{--name-prefix} option. The entire output file
9129name can be changed by the @code{%output} directive or the
9130@option{-o}/@option{--output} option. The output file contains a single
9131class for the parser.
8405b70c 9132
e254a580 9133You can create documentation for generated parsers using Javadoc.
8405b70c 9134
e254a580
DJ
9135Contrary to C parsers, Java parsers do not use global variables; the
9136state of the parser is always local to an instance of the parser class.
9137Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
67501061 9138and @samp{%define api.pure} directives does not do anything when used in
e254a580 9139Java.
8405b70c 9140
e254a580 9141Push parsers are currently unsupported in Java and @code{%define
67212941 9142api.push-pull} have no effect.
01b477c6 9143
e254a580
DJ
9144@acronym{GLR} parsers are currently unsupported in Java. Do not use the
9145@code{glr-parser} directive.
9146
9147No header file can be generated for Java parsers. Do not use the
9148@code{%defines} directive or the @option{-d}/@option{--defines} options.
9149
9150@c FIXME: Possible code change.
fa819509
AD
9151Currently, support for tracing is always compiled
9152in. Thus the @samp{%define parse.trace} and @samp{%token-table}
9153directives and the
e254a580
DJ
9154@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
9155options have no effect. This may change in the future to eliminate
fa819509
AD
9156unused code in the generated parser, so use @samp{%define parse.trace}
9157explicitly
1979121c 9158if needed. Also, in the future the
e254a580
DJ
9159@code{%token-table} directive might enable a public interface to
9160access the token names and codes.
8405b70c 9161
09ccae9b
DJ
9162Getting a ``code too large'' error from the Java compiler means the code
9163hit the 64KB bytecode per method limination of the Java class file.
9164Try reducing the amount of code in actions and static initializers;
9165otherwise, report a bug so that the parser skeleton will be improved.
9166
9167
8405b70c
PB
9168@node Java Semantic Values
9169@subsection Java Semantic Values
9170@c - No %union, specify type in %type/%token.
9171@c - YYSTYPE
9172@c - Printer and destructor
9173
9174There is no @code{%union} directive in Java parsers. Instead, the
9175semantic values' types (class names) should be specified in the
9176@code{%type} or @code{%token} directive:
9177
9178@example
9179%type <Expression> expr assignment_expr term factor
9180%type <Integer> number
9181@end example
9182
9183By default, the semantic stack is declared to have @code{Object} members,
9184which means that the class types you specify can be of any class.
9185To improve the type safety of the parser, you can declare the common
67501061 9186superclass of all the semantic values using the @samp{%define stype}
e254a580 9187directive. For example, after the following declaration:
8405b70c
PB
9188
9189@example
e254a580 9190%define stype "ASTNode"
8405b70c
PB
9191@end example
9192
9193@noindent
9194any @code{%type} or @code{%token} specifying a semantic type which
9195is not a subclass of ASTNode, will cause a compile-time error.
9196
e254a580 9197@c FIXME: Documented bug.
8405b70c
PB
9198Types used in the directives may be qualified with a package name.
9199Primitive data types are accepted for Java version 1.5 or later. Note
9200that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
9201Generic types may not be used; this is due to a limitation in the
9202implementation of Bison, and may change in future releases.
8405b70c
PB
9203
9204Java parsers do not support @code{%destructor}, since the language
9205adopts garbage collection. The parser will try to hold references
9206to semantic values for as little time as needed.
9207
9208Java parsers do not support @code{%printer}, as @code{toString()}
9209can be used to print the semantic values. This however may change
9210(in a backwards-compatible way) in future versions of Bison.
9211
9212
9213@node Java Location Values
9214@subsection Java Location Values
9215@c - %locations
9216@c - class Position
9217@c - class Location
9218
9219When the directive @code{%locations} is used, the Java parser
9220supports location tracking, see @ref{Locations, , Locations Overview}.
9221An auxiliary user-defined class defines a @dfn{position}, a single point
9222in a file; Bison itself defines a class representing a @dfn{location},
9223a range composed of a pair of positions (possibly spanning several
9224files). The location class is an inner class of the parser; the name
e254a580 9225is @code{Location} by default, and may also be renamed using
67501061 9226@samp{%define location_type "@var{class-name}}.
8405b70c
PB
9227
9228The location class treats the position as a completely opaque value.
9229By default, the class name is @code{Position}, but this can be changed
67501061 9230with @samp{%define position_type "@var{class-name}"}. This class must
e254a580 9231be supplied by the user.
8405b70c
PB
9232
9233
e254a580
DJ
9234@deftypeivar {Location} {Position} begin
9235@deftypeivarx {Location} {Position} end
8405b70c 9236The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
9237@end deftypeivar
9238
9239@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 9240Create a @code{Location} denoting an empty range located at a given point.
e254a580 9241@end deftypeop
8405b70c 9242
e254a580
DJ
9243@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
9244Create a @code{Location} from the endpoints of the range.
9245@end deftypeop
9246
9247@deftypemethod {Location} {String} toString ()
8405b70c
PB
9248Prints the range represented by the location. For this to work
9249properly, the position class should override the @code{equals} and
9250@code{toString} methods appropriately.
9251@end deftypemethod
9252
9253
9254@node Java Parser Interface
9255@subsection Java Parser Interface
9256@c - define parser_class_name
9257@c - Ctor
9258@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9259@c debug_stream.
9260@c - Reporting errors
9261
e254a580
DJ
9262The name of the generated parser class defaults to @code{YYParser}. The
9263@code{YY} prefix may be changed using the @code{%name-prefix} directive
9264or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 9265@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 9266the class. The interface of this class is detailed below.
8405b70c 9267
e254a580 9268By default, the parser class has package visibility. A declaration
67501061 9269@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
9270according to the Java language specification, the name of the @file{.java}
9271file should match the name of the class in this case. Similarly, you can
9272use @code{abstract}, @code{final} and @code{strictfp} with the
9273@code{%define} declaration to add other modifiers to the parser class.
67501061 9274A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 9275be used to add any number of annotations to the parser class.
e254a580
DJ
9276
9277The Java package name of the parser class can be specified using the
67501061 9278@samp{%define package} directive. The superclass and the implemented
e254a580 9279interfaces of the parser class can be specified with the @code{%define
67501061 9280extends} and @samp{%define implements} directives.
e254a580
DJ
9281
9282The parser class defines an inner class, @code{Location}, that is used
9283for location tracking (see @ref{Java Location Values}), and a inner
9284interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
9285these inner class/interface, and the members described in the interface
9286below, all the other members and fields are preceded with a @code{yy} or
9287@code{YY} prefix to avoid clashes with user code.
9288
e254a580
DJ
9289The parser class can be extended using the @code{%parse-param}
9290directive. Each occurrence of the directive will add a @code{protected
9291final} field to the parser class, and an argument to its constructor,
9292which initialize them automatically.
9293
e254a580
DJ
9294@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
9295Build a new parser object with embedded @code{%code lexer}. There are
9296no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
9297used.
1979121c
DJ
9298
9299Use @code{%code init} for code added to the start of the constructor
9300body. This is especially useful to initialize superclasses. Use
67501061 9301@samp{%define init_throws} to specify any uncatch exceptions.
e254a580
DJ
9302@end deftypeop
9303
9304@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
9305Build a new parser object using the specified scanner. There are no
9306additional parameters unless @code{%parse-param}s are used.
9307
9308If the scanner is defined by @code{%code lexer}, this constructor is
9309declared @code{protected} and is called automatically with a scanner
9310created with the correct @code{%lex-param}s.
1979121c
DJ
9311
9312Use @code{%code init} for code added to the start of the constructor
9313body. This is especially useful to initialize superclasses. Use
67501061 9314@samp{%define init_throws} to specify any uncatch exceptions.
e254a580 9315@end deftypeop
8405b70c
PB
9316
9317@deftypemethod {YYParser} {boolean} parse ()
9318Run the syntactic analysis, and return @code{true} on success,
9319@code{false} otherwise.
9320@end deftypemethod
9321
1979121c
DJ
9322@deftypemethod {YYParser} {boolean} getErrorVerbose ()
9323@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
9324Get or set the option to produce verbose error messages. These are only
31b850d2 9325available with @samp{%define parse.error "verbose"}, which also turns on
1979121c
DJ
9326verbose error messages.
9327@end deftypemethod
9328
9329@deftypemethod {YYParser} {void} yyerror (String @var{msg})
9330@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
9331@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
9332Print an error message using the @code{yyerror} method of the scanner
9333instance in use. The @code{Location} and @code{Position} parameters are
9334available only if location tracking is active.
9335@end deftypemethod
9336
01b477c6 9337@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9338During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9339from a syntax error.
9340@xref{Error Recovery}.
8405b70c
PB
9341@end deftypemethod
9342
9343@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9344@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9345Get or set the stream used for tracing the parsing. It defaults to
9346@code{System.err}.
9347@end deftypemethod
9348
9349@deftypemethod {YYParser} {int} getDebugLevel ()
9350@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
9351Get or set the tracing level. Currently its value is either 0, no trace,
9352or nonzero, full tracing.
9353@end deftypemethod
9354
1979121c
DJ
9355@deftypecv {Constant} {YYParser} {String} {bisonVersion}
9356@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
9357Identify the Bison version and skeleton used to generate this parser.
9358@end deftypecv
9359
8405b70c
PB
9360
9361@node Java Scanner Interface
9362@subsection Java Scanner Interface
01b477c6 9363@c - %code lexer
8405b70c 9364@c - %lex-param
01b477c6 9365@c - Lexer interface
8405b70c 9366
e254a580
DJ
9367There are two possible ways to interface a Bison-generated Java parser
9368with a scanner: the scanner may be defined by @code{%code lexer}, or
9369defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
9370@code{Lexer} inner interface of the parser class. This interface also
9371contain constants for all user-defined token names and the predefined
9372@code{EOF} token.
e254a580
DJ
9373
9374In the first case, the body of the scanner class is placed in
9375@code{%code lexer} blocks. If you want to pass parameters from the
9376parser constructor to the scanner constructor, specify them with
9377@code{%lex-param}; they are passed before @code{%parse-param}s to the
9378constructor.
01b477c6 9379
59c5ac72 9380In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
9381which is defined within the parser class (e.g., @code{YYParser.Lexer}).
9382The constructor of the parser object will then accept an object
9383implementing the interface; @code{%lex-param} is not used in this
9384case.
9385
9386In both cases, the scanner has to implement the following methods.
9387
e254a580
DJ
9388@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
9389This method is defined by the user to emit an error message. The first
9390parameter is omitted if location tracking is not active. Its type can be
67501061 9391changed using @samp{%define location_type "@var{class-name}".}
8405b70c
PB
9392@end deftypemethod
9393
e254a580 9394@deftypemethod {Lexer} {int} yylex ()
8405b70c
PB
9395Return the next token. Its type is the return value, its semantic
9396value and location are saved and returned by the ther methods in the
e254a580
DJ
9397interface.
9398
67501061 9399Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 9400Default is @code{java.io.IOException}.
8405b70c
PB
9401@end deftypemethod
9402
9403@deftypemethod {Lexer} {Position} getStartPos ()
9404@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
9405Return respectively the first position of the last token that
9406@code{yylex} returned, and the first position beyond it. These
9407methods are not needed unless location tracking is active.
8405b70c 9408
67501061 9409The return type can be changed using @samp{%define position_type
8405b70c
PB
9410"@var{class-name}".}
9411@end deftypemethod
9412
9413@deftypemethod {Lexer} {Object} getLVal ()
59c5ac72 9414Return the semantical value of the last token that yylex returned.
8405b70c 9415
67501061 9416The return type can be changed using @samp{%define stype
8405b70c
PB
9417"@var{class-name}".}
9418@end deftypemethod
9419
9420
e254a580
DJ
9421@node Java Action Features
9422@subsection Special Features for Use in Java Actions
9423
9424The following special constructs can be uses in Java actions.
9425Other analogous C action features are currently unavailable for Java.
9426
67501061 9427Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
9428actions, and initial actions specified by @code{%initial-action}.
9429
9430@defvar $@var{n}
9431The semantic value for the @var{n}th component of the current rule.
9432This may not be assigned to.
9433@xref{Java Semantic Values}.
9434@end defvar
9435
9436@defvar $<@var{typealt}>@var{n}
9437Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9438@xref{Java Semantic Values}.
9439@end defvar
9440
9441@defvar $$
9442The semantic value for the grouping made by the current rule. As a
9443value, this is in the base type (@code{Object} or as specified by
67501061 9444@samp{%define stype}) as in not cast to the declared subtype because
e254a580
DJ
9445casts are not allowed on the left-hand side of Java assignments.
9446Use an explicit Java cast if the correct subtype is needed.
9447@xref{Java Semantic Values}.
9448@end defvar
9449
9450@defvar $<@var{typealt}>$
9451Same as @code{$$} since Java always allow assigning to the base type.
9452Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9453for setting the value but there is currently no easy way to distinguish
9454these constructs.
9455@xref{Java Semantic Values}.
9456@end defvar
9457
9458@defvar @@@var{n}
9459The location information of the @var{n}th component of the current rule.
9460This may not be assigned to.
9461@xref{Java Location Values}.
9462@end defvar
9463
9464@defvar @@$
9465The location information of the grouping made by the current rule.
9466@xref{Java Location Values}.
9467@end defvar
9468
9469@deffn {Statement} {return YYABORT;}
9470Return immediately from the parser, indicating failure.
9471@xref{Java Parser Interface}.
9472@end deffn
8405b70c 9473
e254a580
DJ
9474@deffn {Statement} {return YYACCEPT;}
9475Return immediately from the parser, indicating success.
9476@xref{Java Parser Interface}.
9477@end deffn
8405b70c 9478
e254a580 9479@deffn {Statement} {return YYERROR;}
c265fd6b 9480Start error recovery without printing an error message.
e254a580
DJ
9481@xref{Error Recovery}.
9482@end deffn
8405b70c 9483
e254a580 9484@deffn {Statement} {return YYFAIL;}
c265fd6b 9485Print an error message and start error recovery.
e254a580
DJ
9486@xref{Error Recovery}.
9487@end deffn
8405b70c 9488
e254a580
DJ
9489@deftypefn {Function} {boolean} recovering ()
9490Return whether error recovery is being done. In this state, the parser
9491reads token until it reaches a known state, and then restarts normal
9492operation.
9493@xref{Error Recovery}.
9494@end deftypefn
8405b70c 9495
1979121c
DJ
9496@deftypefn {Function} {void} yyerror (String @var{msg})
9497@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
9498@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 9499Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
9500instance in use. The @code{Location} and @code{Position} parameters are
9501available only if location tracking is active.
e254a580 9502@end deftypefn
8405b70c 9503
8405b70c 9504
8405b70c
PB
9505@node Java Differences
9506@subsection Differences between C/C++ and Java Grammars
9507
9508The different structure of the Java language forces several differences
9509between C/C++ grammars, and grammars designed for Java parsers. This
29553547 9510section summarizes these differences.
8405b70c
PB
9511
9512@itemize
9513@item
01b477c6 9514Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 9515@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
9516macros. Instead, they should be preceded by @code{return} when they
9517appear in an action. The actual definition of these symbols is
8405b70c
PB
9518opaque to the Bison grammar, and it might change in the future. The
9519only meaningful operation that you can do, is to return them.
e254a580 9520See @pxref{Java Action Features}.
8405b70c
PB
9521
9522Note that of these three symbols, only @code{YYACCEPT} and
9523@code{YYABORT} will cause a return from the @code{yyparse}
9524method@footnote{Java parsers include the actions in a separate
9525method than @code{yyparse} in order to have an intuitive syntax that
9526corresponds to these C macros.}.
9527
e254a580
DJ
9528@item
9529Java lacks unions, so @code{%union} has no effect. Instead, semantic
9530values have a common base type: @code{Object} or as specified by
67501061 9531@samp{%define stype}. Angle backets on @code{%token}, @code{type},
e254a580
DJ
9532@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
9533an union. The type of @code{$$}, even with angle brackets, is the base
9534type since Java casts are not allow on the left-hand side of assignments.
9535Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
9536left-hand side of assignments. See @pxref{Java Semantic Values} and
9537@pxref{Java Action Features}.
9538
8405b70c
PB
9539@item
9540The prolog declarations have a different meaning than in C/C++ code.
01b477c6
PB
9541@table @asis
9542@item @code{%code imports}
9543blocks are placed at the beginning of the Java source code. They may
9544include copyright notices. For a @code{package} declarations, it is
67501061 9545suggested to use @samp{%define package} instead.
8405b70c 9546
01b477c6
PB
9547@item unqualified @code{%code}
9548blocks are placed inside the parser class.
9549
9550@item @code{%code lexer}
9551blocks, if specified, should include the implementation of the
9552scanner. If there is no such block, the scanner can be any class
9553that implements the appropriate interface (see @pxref{Java Scanner
9554Interface}).
29553547 9555@end table
8405b70c
PB
9556
9557Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
9558In particular, @code{%@{ @dots{} %@}} blocks should not be used
9559and may give an error in future versions of Bison.
9560
01b477c6 9561The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
9562be used to define other classes used by the parser @emph{outside}
9563the parser class.
8405b70c
PB
9564@end itemize
9565
e254a580
DJ
9566
9567@node Java Declarations Summary
9568@subsection Java Declarations Summary
9569
9570This summary only include declarations specific to Java or have special
9571meaning when used in a Java parser.
9572
9573@deffn {Directive} {%language "Java"}
9574Generate a Java class for the parser.
9575@end deffn
9576
9577@deffn {Directive} %lex-param @{@var{type} @var{name}@}
9578A parameter for the lexer class defined by @code{%code lexer}
9579@emph{only}, added as parameters to the lexer constructor and the parser
9580constructor that @emph{creates} a lexer. Default is none.
9581@xref{Java Scanner Interface}.
9582@end deffn
9583
9584@deffn {Directive} %name-prefix "@var{prefix}"
9585The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 9586@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
9587@xref{Java Bison Interface}.
9588@end deffn
9589
9590@deffn {Directive} %parse-param @{@var{type} @var{name}@}
9591A parameter for the parser class added as parameters to constructor(s)
9592and as fields initialized by the constructor(s). Default is none.
9593@xref{Java Parser Interface}.
9594@end deffn
9595
9596@deffn {Directive} %token <@var{type}> @var{token} @dots{}
9597Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
9598@xref{Java Semantic Values}.
9599@end deffn
9600
9601@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
9602Declare the type of nonterminals. Note that the angle brackets enclose
9603a Java @emph{type}.
9604@xref{Java Semantic Values}.
9605@end deffn
9606
9607@deffn {Directive} %code @{ @var{code} @dots{} @}
9608Code appended to the inside of the parser class.
9609@xref{Java Differences}.
9610@end deffn
9611
9612@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
9613Code inserted just after the @code{package} declaration.
9614@xref{Java Differences}.
9615@end deffn
9616
1979121c
DJ
9617@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
9618Code inserted at the beginning of the parser constructor body.
9619@xref{Java Parser Interface}.
9620@end deffn
9621
e254a580
DJ
9622@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
9623Code added to the body of a inner lexer class within the parser class.
9624@xref{Java Scanner Interface}.
9625@end deffn
9626
9627@deffn {Directive} %% @var{code} @dots{}
9628Code (after the second @code{%%}) appended to the end of the file,
9629@emph{outside} the parser class.
9630@xref{Java Differences}.
9631@end deffn
9632
9633@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 9634Not supported. Use @code{%code imports} instead.
e254a580
DJ
9635@xref{Java Differences}.
9636@end deffn
9637
9638@deffn {Directive} {%define abstract}
9639Whether the parser class is declared @code{abstract}. Default is false.
9640@xref{Java Bison Interface}.
9641@end deffn
9642
1979121c
DJ
9643@deffn {Directive} {%define annotations} "@var{annotations}"
9644The Java annotations for the parser class. Default is none.
9645@xref{Java Bison Interface}.
9646@end deffn
9647
e254a580
DJ
9648@deffn {Directive} {%define extends} "@var{superclass}"
9649The superclass of the parser class. Default is none.
9650@xref{Java Bison Interface}.
9651@end deffn
9652
9653@deffn {Directive} {%define final}
9654Whether the parser class is declared @code{final}. Default is false.
9655@xref{Java Bison Interface}.
9656@end deffn
9657
9658@deffn {Directive} {%define implements} "@var{interfaces}"
9659The implemented interfaces of the parser class, a comma-separated list.
9660Default is none.
9661@xref{Java Bison Interface}.
9662@end deffn
9663
1979121c
DJ
9664@deffn {Directive} {%define init_throws} "@var{exceptions}"
9665The exceptions thrown by @code{%code init} from the parser class
9666constructor. Default is none.
9667@xref{Java Parser Interface}.
9668@end deffn
9669
e254a580
DJ
9670@deffn {Directive} {%define lex_throws} "@var{exceptions}"
9671The exceptions thrown by the @code{yylex} method of the lexer, a
9672comma-separated list. Default is @code{java.io.IOException}.
9673@xref{Java Scanner Interface}.
9674@end deffn
9675
9676@deffn {Directive} {%define location_type} "@var{class}"
9677The name of the class used for locations (a range between two
9678positions). This class is generated as an inner class of the parser
9679class by @command{bison}. Default is @code{Location}.
9680@xref{Java Location Values}.
9681@end deffn
9682
9683@deffn {Directive} {%define package} "@var{package}"
9684The package to put the parser class in. Default is none.
9685@xref{Java Bison Interface}.
9686@end deffn
9687
9688@deffn {Directive} {%define parser_class_name} "@var{name}"
9689The name of the parser class. Default is @code{YYParser} or
9690@code{@var{name-prefix}Parser}.
9691@xref{Java Bison Interface}.
9692@end deffn
9693
9694@deffn {Directive} {%define position_type} "@var{class}"
9695The name of the class used for positions. This class must be supplied by
9696the user. Default is @code{Position}.
9697@xref{Java Location Values}.
9698@end deffn
9699
9700@deffn {Directive} {%define public}
9701Whether the parser class is declared @code{public}. Default is false.
9702@xref{Java Bison Interface}.
9703@end deffn
9704
9705@deffn {Directive} {%define stype} "@var{class}"
9706The base type of semantic values. Default is @code{Object}.
9707@xref{Java Semantic Values}.
9708@end deffn
9709
9710@deffn {Directive} {%define strictfp}
9711Whether the parser class is declared @code{strictfp}. Default is false.
9712@xref{Java Bison Interface}.
9713@end deffn
9714
9715@deffn {Directive} {%define throws} "@var{exceptions}"
9716The exceptions thrown by user-supplied parser actions and
9717@code{%initial-action}, a comma-separated list. Default is none.
9718@xref{Java Parser Interface}.
9719@end deffn
9720
9721
12545799 9722@c ================================================= FAQ
d1a1114f
AD
9723
9724@node FAQ
9725@chapter Frequently Asked Questions
9726@cindex frequently asked questions
9727@cindex questions
9728
9729Several questions about Bison come up occasionally. Here some of them
9730are addressed.
9731
9732@menu
55ba27be
AD
9733* Memory Exhausted:: Breaking the Stack Limits
9734* How Can I Reset the Parser:: @code{yyparse} Keeps some State
9735* Strings are Destroyed:: @code{yylval} Loses Track of Strings
9736* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 9737* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
9738* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
9739* I can't build Bison:: Troubleshooting
9740* Where can I find help?:: Troubleshouting
9741* Bug Reports:: Troublereporting
8405b70c 9742* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
9743* Beta Testing:: Experimenting development versions
9744* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
9745@end menu
9746
1a059451
PE
9747@node Memory Exhausted
9748@section Memory Exhausted
d1a1114f
AD
9749
9750@display
1a059451 9751My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
9752message. What can I do?
9753@end display
9754
9755This question is already addressed elsewhere, @xref{Recursion,
9756,Recursive Rules}.
9757
e64fec0a
PE
9758@node How Can I Reset the Parser
9759@section How Can I Reset the Parser
5b066063 9760
0e14ad77
PE
9761The following phenomenon has several symptoms, resulting in the
9762following typical questions:
5b066063
AD
9763
9764@display
9765I invoke @code{yyparse} several times, and on correct input it works
9766properly; but when a parse error is found, all the other calls fail
0e14ad77 9767too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
9768@end display
9769
9770@noindent
9771or
9772
9773@display
0e14ad77 9774My parser includes support for an @samp{#include}-like feature, in
5b066063 9775which case I run @code{yyparse} from @code{yyparse}. This fails
67501061 9776although I did specify @samp{%define api.pure}.
5b066063
AD
9777@end display
9778
0e14ad77
PE
9779These problems typically come not from Bison itself, but from
9780Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
9781speed, they might not notice a change of input file. As a
9782demonstration, consider the following source file,
9783@file{first-line.l}:
9784
9785@verbatim
9786%{
9787#include <stdio.h>
9788#include <stdlib.h>
9789%}
9790%%
9791.*\n ECHO; return 1;
9792%%
9793int
0e14ad77 9794yyparse (char const *file)
5b066063
AD
9795{
9796 yyin = fopen (file, "r");
9797 if (!yyin)
9798 exit (2);
fa7e68c3 9799 /* One token only. */
5b066063 9800 yylex ();
0e14ad77 9801 if (fclose (yyin) != 0)
5b066063
AD
9802 exit (3);
9803 return 0;
9804}
9805
9806int
0e14ad77 9807main (void)
5b066063
AD
9808{
9809 yyparse ("input");
9810 yyparse ("input");
9811 return 0;
9812}
9813@end verbatim
9814
9815@noindent
9816If the file @file{input} contains
9817
9818@verbatim
9819input:1: Hello,
9820input:2: World!
9821@end verbatim
9822
9823@noindent
0e14ad77 9824then instead of getting the first line twice, you get:
5b066063
AD
9825
9826@example
9827$ @kbd{flex -ofirst-line.c first-line.l}
9828$ @kbd{gcc -ofirst-line first-line.c -ll}
9829$ @kbd{./first-line}
9830input:1: Hello,
9831input:2: World!
9832@end example
9833
0e14ad77
PE
9834Therefore, whenever you change @code{yyin}, you must tell the
9835Lex-generated scanner to discard its current buffer and switch to the
9836new one. This depends upon your implementation of Lex; see its
9837documentation for more. For Flex, it suffices to call
9838@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
9839Flex-generated scanner needs to read from several input streams to
9840handle features like include files, you might consider using Flex
9841functions like @samp{yy_switch_to_buffer} that manipulate multiple
9842input buffers.
5b066063 9843
b165c324
AD
9844If your Flex-generated scanner uses start conditions (@pxref{Start
9845conditions, , Start conditions, flex, The Flex Manual}), you might
9846also want to reset the scanner's state, i.e., go back to the initial
9847start condition, through a call to @samp{BEGIN (0)}.
9848
fef4cb51
AD
9849@node Strings are Destroyed
9850@section Strings are Destroyed
9851
9852@display
c7e441b4 9853My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
9854them. Instead of reporting @samp{"foo", "bar"}, it reports
9855@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
9856@end display
9857
9858This error is probably the single most frequent ``bug report'' sent to
9859Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 9860of the scanner. Consider the following Lex code:
fef4cb51
AD
9861
9862@verbatim
9863%{
9864#include <stdio.h>
9865char *yylval = NULL;
9866%}
9867%%
9868.* yylval = yytext; return 1;
9869\n /* IGNORE */
9870%%
9871int
9872main ()
9873{
fa7e68c3 9874 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
9875 char *fst = (yylex (), yylval);
9876 char *snd = (yylex (), yylval);
9877 printf ("\"%s\", \"%s\"\n", fst, snd);
9878 return 0;
9879}
9880@end verbatim
9881
9882If you compile and run this code, you get:
9883
9884@example
9885$ @kbd{flex -osplit-lines.c split-lines.l}
9886$ @kbd{gcc -osplit-lines split-lines.c -ll}
9887$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9888"one
9889two", "two"
9890@end example
9891
9892@noindent
9893this is because @code{yytext} is a buffer provided for @emph{reading}
9894in the action, but if you want to keep it, you have to duplicate it
9895(e.g., using @code{strdup}). Note that the output may depend on how
9896your implementation of Lex handles @code{yytext}. For instance, when
9897given the Lex compatibility option @option{-l} (which triggers the
9898option @samp{%array}) Flex generates a different behavior:
9899
9900@example
9901$ @kbd{flex -l -osplit-lines.c split-lines.l}
9902$ @kbd{gcc -osplit-lines split-lines.c -ll}
9903$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9904"two", "two"
9905@end example
9906
9907
2fa09258
AD
9908@node Implementing Gotos/Loops
9909@section Implementing Gotos/Loops
a06ea4aa
AD
9910
9911@display
9912My simple calculator supports variables, assignments, and functions,
2fa09258 9913but how can I implement gotos, or loops?
a06ea4aa
AD
9914@end display
9915
9916Although very pedagogical, the examples included in the document blur
a1c84f45 9917the distinction to make between the parser---whose job is to recover
a06ea4aa 9918the structure of a text and to transmit it to subsequent modules of
a1c84f45 9919the program---and the processing (such as the execution) of this
a06ea4aa
AD
9920structure. This works well with so called straight line programs,
9921i.e., precisely those that have a straightforward execution model:
9922execute simple instructions one after the others.
9923
9924@cindex abstract syntax tree
9925@cindex @acronym{AST}
9926If you want a richer model, you will probably need to use the parser
9927to construct a tree that does represent the structure it has
9928recovered; this tree is usually called the @dfn{abstract syntax tree},
9929or @dfn{@acronym{AST}} for short. Then, walking through this tree,
9930traversing it in various ways, will enable treatments such as its
9931execution or its translation, which will result in an interpreter or a
9932compiler.
9933
9934This topic is way beyond the scope of this manual, and the reader is
9935invited to consult the dedicated literature.
9936
9937
ed2e6384
AD
9938@node Multiple start-symbols
9939@section Multiple start-symbols
9940
9941@display
9942I have several closely related grammars, and I would like to share their
9943implementations. In fact, I could use a single grammar but with
9944multiple entry points.
9945@end display
9946
9947Bison does not support multiple start-symbols, but there is a very
9948simple means to simulate them. If @code{foo} and @code{bar} are the two
9949pseudo start-symbols, then introduce two new tokens, say
9950@code{START_FOO} and @code{START_BAR}, and use them as switches from the
9951real start-symbol:
9952
9953@example
9954%token START_FOO START_BAR;
9955%start start;
9956start: START_FOO foo
9957 | START_BAR bar;
9958@end example
9959
9960These tokens prevents the introduction of new conflicts. As far as the
9961parser goes, that is all that is needed.
9962
9963Now the difficult part is ensuring that the scanner will send these
9964tokens first. If your scanner is hand-written, that should be
9965straightforward. If your scanner is generated by Lex, them there is
9966simple means to do it: recall that anything between @samp{%@{ ... %@}}
9967after the first @code{%%} is copied verbatim in the top of the generated
9968@code{yylex} function. Make sure a variable @code{start_token} is
9969available in the scanner (e.g., a global variable or using
9970@code{%lex-param} etc.), and use the following:
9971
9972@example
9973 /* @r{Prologue.} */
9974%%
9975%@{
9976 if (start_token)
9977 @{
9978 int t = start_token;
9979 start_token = 0;
9980 return t;
9981 @}
9982%@}
9983 /* @r{The rules.} */
9984@end example
9985
9986
55ba27be
AD
9987@node Secure? Conform?
9988@section Secure? Conform?
9989
9990@display
9991Is Bison secure? Does it conform to POSIX?
9992@end display
9993
9994If you're looking for a guarantee or certification, we don't provide it.
9995However, Bison is intended to be a reliable program that conforms to the
9996@acronym{POSIX} specification for Yacc. If you run into problems,
9997please send us a bug report.
9998
9999@node I can't build Bison
10000@section I can't build Bison
10001
10002@display
8c5b881d
PE
10003I can't build Bison because @command{make} complains that
10004@code{msgfmt} is not found.
55ba27be
AD
10005What should I do?
10006@end display
10007
10008Like most GNU packages with internationalization support, that feature
10009is turned on by default. If you have problems building in the @file{po}
10010subdirectory, it indicates that your system's internationalization
10011support is lacking. You can re-configure Bison with
10012@option{--disable-nls} to turn off this support, or you can install GNU
10013gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
10014Bison. See the file @file{ABOUT-NLS} for more information.
10015
10016
10017@node Where can I find help?
10018@section Where can I find help?
10019
10020@display
10021I'm having trouble using Bison. Where can I find help?
10022@end display
10023
10024First, read this fine manual. Beyond that, you can send mail to
10025@email{help-bison@@gnu.org}. This mailing list is intended to be
10026populated with people who are willing to answer questions about using
10027and installing Bison. Please keep in mind that (most of) the people on
10028the list have aspects of their lives which are not related to Bison (!),
10029so you may not receive an answer to your question right away. This can
10030be frustrating, but please try not to honk them off; remember that any
10031help they provide is purely voluntary and out of the kindness of their
10032hearts.
10033
10034@node Bug Reports
10035@section Bug Reports
10036
10037@display
10038I found a bug. What should I include in the bug report?
10039@end display
10040
10041Before you send a bug report, make sure you are using the latest
10042version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
10043mirrors. Be sure to include the version number in your bug report. If
10044the bug is present in the latest version but not in a previous version,
10045try to determine the most recent version which did not contain the bug.
10046
10047If the bug is parser-related, you should include the smallest grammar
10048you can which demonstrates the bug. The grammar file should also be
10049complete (i.e., I should be able to run it through Bison without having
10050to edit or add anything). The smaller and simpler the grammar, the
10051easier it will be to fix the bug.
10052
10053Include information about your compilation environment, including your
10054operating system's name and version and your compiler's name and
10055version. If you have trouble compiling, you should also include a
10056transcript of the build session, starting with the invocation of
10057`configure'. Depending on the nature of the bug, you may be asked to
10058send additional files as well (such as `config.h' or `config.cache').
10059
10060Patches are most welcome, but not required. That is, do not hesitate to
10061send a bug report just because you can not provide a fix.
10062
10063Send bug reports to @email{bug-bison@@gnu.org}.
10064
8405b70c
PB
10065@node More Languages
10066@section More Languages
55ba27be
AD
10067
10068@display
8405b70c 10069Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
10070favorite language here}?
10071@end display
10072
8405b70c 10073C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
10074languages; contributions are welcome.
10075
10076@node Beta Testing
10077@section Beta Testing
10078
10079@display
10080What is involved in being a beta tester?
10081@end display
10082
10083It's not terribly involved. Basically, you would download a test
10084release, compile it, and use it to build and run a parser or two. After
10085that, you would submit either a bug report or a message saying that
10086everything is okay. It is important to report successes as well as
10087failures because test releases eventually become mainstream releases,
10088but only if they are adequately tested. If no one tests, development is
10089essentially halted.
10090
10091Beta testers are particularly needed for operating systems to which the
10092developers do not have easy access. They currently have easy access to
10093recent GNU/Linux and Solaris versions. Reports about other operating
10094systems are especially welcome.
10095
10096@node Mailing Lists
10097@section Mailing Lists
10098
10099@display
10100How do I join the help-bison and bug-bison mailing lists?
10101@end display
10102
10103See @url{http://lists.gnu.org/}.
a06ea4aa 10104
d1a1114f
AD
10105@c ================================================= Table of Symbols
10106
342b8b6e 10107@node Table of Symbols
bfa74976
RS
10108@appendix Bison Symbols
10109@cindex Bison symbols, table of
10110@cindex symbols in Bison, table of
10111
18b519c0 10112@deffn {Variable} @@$
3ded9a63 10113In an action, the location of the left-hand side of the rule.
88bce5a2 10114@xref{Locations, , Locations Overview}.
18b519c0 10115@end deffn
3ded9a63 10116
18b519c0 10117@deffn {Variable} @@@var{n}
3ded9a63
AD
10118In an action, the location of the @var{n}-th symbol of the right-hand
10119side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 10120@end deffn
3ded9a63 10121
18b519c0 10122@deffn {Variable} $$
3ded9a63
AD
10123In an action, the semantic value of the left-hand side of the rule.
10124@xref{Actions}.
18b519c0 10125@end deffn
3ded9a63 10126
18b519c0 10127@deffn {Variable} $@var{n}
3ded9a63
AD
10128In an action, the semantic value of the @var{n}-th symbol of the
10129right-hand side of the rule. @xref{Actions}.
18b519c0 10130@end deffn
3ded9a63 10131
dd8d9022
AD
10132@deffn {Delimiter} %%
10133Delimiter used to separate the grammar rule section from the
10134Bison declarations section or the epilogue.
10135@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 10136@end deffn
bfa74976 10137
dd8d9022
AD
10138@c Don't insert spaces, or check the DVI output.
10139@deffn {Delimiter} %@{@var{code}%@}
10140All code listed between @samp{%@{} and @samp{%@}} is copied directly to
10141the output file uninterpreted. Such code forms the prologue of the input
10142file. @xref{Grammar Outline, ,Outline of a Bison
10143Grammar}.
18b519c0 10144@end deffn
bfa74976 10145
dd8d9022
AD
10146@deffn {Construct} /*@dots{}*/
10147Comment delimiters, as in C.
18b519c0 10148@end deffn
bfa74976 10149
dd8d9022
AD
10150@deffn {Delimiter} :
10151Separates a rule's result from its components. @xref{Rules, ,Syntax of
10152Grammar Rules}.
18b519c0 10153@end deffn
bfa74976 10154
dd8d9022
AD
10155@deffn {Delimiter} ;
10156Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10157@end deffn
bfa74976 10158
dd8d9022
AD
10159@deffn {Delimiter} |
10160Separates alternate rules for the same result nonterminal.
10161@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10162@end deffn
bfa74976 10163
12e35840
JD
10164@deffn {Directive} <*>
10165Used to define a default tagged @code{%destructor} or default tagged
10166@code{%printer}.
85894313
JD
10167
10168This feature is experimental.
10169More user feedback will help to determine whether it should become a permanent
10170feature.
10171
12e35840
JD
10172@xref{Destructor Decl, , Freeing Discarded Symbols}.
10173@end deffn
10174
3ebecc24 10175@deffn {Directive} <>
12e35840
JD
10176Used to define a default tagless @code{%destructor} or default tagless
10177@code{%printer}.
85894313
JD
10178
10179This feature is experimental.
10180More user feedback will help to determine whether it should become a permanent
10181feature.
10182
12e35840
JD
10183@xref{Destructor Decl, , Freeing Discarded Symbols}.
10184@end deffn
10185
dd8d9022
AD
10186@deffn {Symbol} $accept
10187The predefined nonterminal whose only rule is @samp{$accept: @var{start}
10188$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
10189Start-Symbol}. It cannot be used in the grammar.
18b519c0 10190@end deffn
bfa74976 10191
136a0f76 10192@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
10193@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
10194Insert @var{code} verbatim into output parser source.
10195@xref{Decl Summary,,%code}.
9bc0dd67
JD
10196@end deffn
10197
10198@deffn {Directive} %debug
10199Equip the parser for debugging. @xref{Decl Summary}.
10200@end deffn
10201
91d2c560 10202@ifset defaultprec
22fccf95
PE
10203@deffn {Directive} %default-prec
10204Assign a precedence to rules that lack an explicit @samp{%prec}
10205modifier. @xref{Contextual Precedence, ,Context-Dependent
10206Precedence}.
39a06c25 10207@end deffn
91d2c560 10208@end ifset
39a06c25 10209
148d66d8
JD
10210@deffn {Directive} %define @var{define-variable}
10211@deffnx {Directive} %define @var{define-variable} @var{value}
10212Define a variable to adjust Bison's behavior.
10213@xref{Decl Summary,,%define}.
10214@end deffn
10215
18b519c0 10216@deffn {Directive} %defines
6deb4447
AD
10217Bison declaration to create a header file meant for the scanner.
10218@xref{Decl Summary}.
18b519c0 10219@end deffn
6deb4447 10220
02975b9a
JD
10221@deffn {Directive} %defines @var{defines-file}
10222Same as above, but save in the file @var{defines-file}.
10223@xref{Decl Summary}.
10224@end deffn
10225
18b519c0 10226@deffn {Directive} %destructor
258b75ca 10227Specify how the parser should reclaim the memory associated to
fa7e68c3 10228discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 10229@end deffn
72f889cc 10230
18b519c0 10231@deffn {Directive} %dprec
676385e2 10232Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
10233time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
10234@acronym{GLR} Parsers}.
18b519c0 10235@end deffn
676385e2 10236
dd8d9022
AD
10237@deffn {Symbol} $end
10238The predefined token marking the end of the token stream. It cannot be
10239used in the grammar.
10240@end deffn
10241
10242@deffn {Symbol} error
10243A token name reserved for error recovery. This token may be used in
10244grammar rules so as to allow the Bison parser to recognize an error in
10245the grammar without halting the process. In effect, a sentence
10246containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
10247token @code{error} becomes the current lookahead token. Actions
10248corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
10249token is reset to the token that originally caused the violation.
10250@xref{Error Recovery}.
18d192f0
AD
10251@end deffn
10252
18b519c0 10253@deffn {Directive} %error-verbose
31b850d2 10254An obsolete directive standing for @samp{%define parse.error "verbose"}.
18b519c0 10255@end deffn
2a8d363a 10256
02975b9a 10257@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 10258Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 10259Summary}.
18b519c0 10260@end deffn
d8988b2f 10261
18b519c0 10262@deffn {Directive} %glr-parser
c827f760
PE
10263Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
10264Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10265@end deffn
676385e2 10266
dd8d9022
AD
10267@deffn {Directive} %initial-action
10268Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
10269@end deffn
10270
e6e704dc
JD
10271@deffn {Directive} %language
10272Specify the programming language for the generated parser.
10273@xref{Decl Summary}.
10274@end deffn
10275
18b519c0 10276@deffn {Directive} %left
d78f0ac9 10277Bison declaration to assign precedence and left associativity to token(s).
bfa74976 10278@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10279@end deffn
bfa74976 10280
feeb0eda 10281@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
10282Bison declaration to specifying an additional parameter that
10283@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
10284for Pure Parsers}.
18b519c0 10285@end deffn
2a8d363a 10286
18b519c0 10287@deffn {Directive} %merge
676385e2 10288Bison declaration to assign a merging function to a rule. If there is a
fae437e8 10289reduce/reduce conflict with a rule having the same merging function, the
676385e2 10290function is applied to the two semantic values to get a single result.
c827f760 10291@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10292@end deffn
676385e2 10293
02975b9a 10294@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 10295Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 10296@end deffn
d8988b2f 10297
91d2c560 10298@ifset defaultprec
22fccf95
PE
10299@deffn {Directive} %no-default-prec
10300Do not assign a precedence to rules that lack an explicit @samp{%prec}
10301modifier. @xref{Contextual Precedence, ,Context-Dependent
10302Precedence}.
10303@end deffn
91d2c560 10304@end ifset
22fccf95 10305
18b519c0 10306@deffn {Directive} %no-lines
931c7513
RS
10307Bison declaration to avoid generating @code{#line} directives in the
10308parser file. @xref{Decl Summary}.
18b519c0 10309@end deffn
931c7513 10310
18b519c0 10311@deffn {Directive} %nonassoc
d78f0ac9 10312Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 10313@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10314@end deffn
bfa74976 10315
02975b9a 10316@deffn {Directive} %output "@var{file}"
72d2299c 10317Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 10318Summary}.
18b519c0 10319@end deffn
d8988b2f 10320
feeb0eda 10321@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
10322Bison declaration to specifying an additional parameter that
10323@code{yyparse} should accept. @xref{Parser Function,, The Parser
10324Function @code{yyparse}}.
18b519c0 10325@end deffn
2a8d363a 10326
18b519c0 10327@deffn {Directive} %prec
bfa74976
RS
10328Bison declaration to assign a precedence to a specific rule.
10329@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 10330@end deffn
bfa74976 10331
d78f0ac9
AD
10332@deffn {Directive} %precedence
10333Bison declaration to assign precedence to token(s), but no associativity
10334@xref{Precedence Decl, ,Operator Precedence}.
10335@end deffn
10336
18b519c0 10337@deffn {Directive} %pure-parser
67501061 10338Deprecated version of @samp{%define api.pure} (@pxref{Decl Summary, ,%define}),
d9df47b6 10339for which Bison is more careful to warn about unreasonable usage.
18b519c0 10340@end deffn
bfa74976 10341
b50d2359 10342@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
10343Require version @var{version} or higher of Bison. @xref{Require Decl, ,
10344Require a Version of Bison}.
b50d2359
AD
10345@end deffn
10346
18b519c0 10347@deffn {Directive} %right
d78f0ac9 10348Bison declaration to assign precedence and right associativity to token(s).
bfa74976 10349@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10350@end deffn
bfa74976 10351
e6e704dc
JD
10352@deffn {Directive} %skeleton
10353Specify the skeleton to use; usually for development.
10354@xref{Decl Summary}.
10355@end deffn
10356
18b519c0 10357@deffn {Directive} %start
704a47c4
AD
10358Bison declaration to specify the start symbol. @xref{Start Decl, ,The
10359Start-Symbol}.
18b519c0 10360@end deffn
bfa74976 10361
18b519c0 10362@deffn {Directive} %token
bfa74976
RS
10363Bison declaration to declare token(s) without specifying precedence.
10364@xref{Token Decl, ,Token Type Names}.
18b519c0 10365@end deffn
bfa74976 10366
18b519c0 10367@deffn {Directive} %token-table
931c7513
RS
10368Bison declaration to include a token name table in the parser file.
10369@xref{Decl Summary}.
18b519c0 10370@end deffn
931c7513 10371
18b519c0 10372@deffn {Directive} %type
704a47c4
AD
10373Bison declaration to declare nonterminals. @xref{Type Decl,
10374,Nonterminal Symbols}.
18b519c0 10375@end deffn
bfa74976 10376
dd8d9022
AD
10377@deffn {Symbol} $undefined
10378The predefined token onto which all undefined values returned by
10379@code{yylex} are mapped. It cannot be used in the grammar, rather, use
10380@code{error}.
10381@end deffn
10382
18b519c0 10383@deffn {Directive} %union
bfa74976
RS
10384Bison declaration to specify several possible data types for semantic
10385values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 10386@end deffn
bfa74976 10387
dd8d9022
AD
10388@deffn {Macro} YYABORT
10389Macro to pretend that an unrecoverable syntax error has occurred, by
10390making @code{yyparse} return 1 immediately. The error reporting
10391function @code{yyerror} is not called. @xref{Parser Function, ,The
10392Parser Function @code{yyparse}}.
8405b70c
PB
10393
10394For Java parsers, this functionality is invoked using @code{return YYABORT;}
10395instead.
dd8d9022 10396@end deffn
3ded9a63 10397
dd8d9022
AD
10398@deffn {Macro} YYACCEPT
10399Macro to pretend that a complete utterance of the language has been
10400read, by making @code{yyparse} return 0 immediately.
10401@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
10402
10403For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
10404instead.
dd8d9022 10405@end deffn
bfa74976 10406
dd8d9022 10407@deffn {Macro} YYBACKUP
742e4900 10408Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 10409token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10410@end deffn
bfa74976 10411
dd8d9022 10412@deffn {Variable} yychar
32c29292 10413External integer variable that contains the integer value of the
742e4900 10414lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
10415@code{yyparse}.) Error-recovery rule actions may examine this variable.
10416@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10417@end deffn
bfa74976 10418
dd8d9022
AD
10419@deffn {Variable} yyclearin
10420Macro used in error-recovery rule actions. It clears the previous
742e4900 10421lookahead token. @xref{Error Recovery}.
18b519c0 10422@end deffn
bfa74976 10423
dd8d9022
AD
10424@deffn {Macro} YYDEBUG
10425Macro to define to equip the parser with tracing code. @xref{Tracing,
10426,Tracing Your Parser}.
18b519c0 10427@end deffn
bfa74976 10428
dd8d9022
AD
10429@deffn {Variable} yydebug
10430External integer variable set to zero by default. If @code{yydebug}
10431is given a nonzero value, the parser will output information on input
10432symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 10433@end deffn
bfa74976 10434
dd8d9022
AD
10435@deffn {Macro} yyerrok
10436Macro to cause parser to recover immediately to its normal mode
10437after a syntax error. @xref{Error Recovery}.
10438@end deffn
10439
10440@deffn {Macro} YYERROR
10441Macro to pretend that a syntax error has just been detected: call
10442@code{yyerror} and then perform normal error recovery if possible
10443(@pxref{Error Recovery}), or (if recovery is impossible) make
10444@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
10445
10446For Java parsers, this functionality is invoked using @code{return YYERROR;}
10447instead.
dd8d9022
AD
10448@end deffn
10449
10450@deffn {Function} yyerror
10451User-supplied function to be called by @code{yyparse} on error.
71b00ed8 10452@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
10453@end deffn
10454
10455@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
10456An obsolete macro used in the @file{yacc.c} skeleton, that you define
10457with @code{#define} in the prologue to request verbose, specific error
10458message strings when @code{yyerror} is called. It doesn't matter what
10459definition you use for @code{YYERROR_VERBOSE}, just whether you define
31b850d2
AD
10460it. Using @samp{%define parse.error "verbose"} is preferred
10461(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
10462@end deffn
10463
10464@deffn {Macro} YYINITDEPTH
10465Macro for specifying the initial size of the parser stack.
1a059451 10466@xref{Memory Management}.
dd8d9022
AD
10467@end deffn
10468
10469@deffn {Function} yylex
10470User-supplied lexical analyzer function, called with no arguments to get
10471the next token. @xref{Lexical, ,The Lexical Analyzer Function
10472@code{yylex}}.
10473@end deffn
10474
10475@deffn {Macro} YYLEX_PARAM
10476An obsolete macro for specifying an extra argument (or list of extra
32c29292 10477arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
10478macro is deprecated, and is supported only for Yacc like parsers.
10479@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
10480@end deffn
10481
10482@deffn {Variable} yylloc
10483External variable in which @code{yylex} should place the line and column
10484numbers associated with a token. (In a pure parser, it is a local
10485variable within @code{yyparse}, and its address is passed to
32c29292
JD
10486@code{yylex}.)
10487You can ignore this variable if you don't use the @samp{@@} feature in the
10488grammar actions.
10489@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 10490In semantic actions, it stores the location of the lookahead token.
32c29292 10491@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
10492@end deffn
10493
10494@deffn {Type} YYLTYPE
10495Data type of @code{yylloc}; by default, a structure with four
10496members. @xref{Location Type, , Data Types of Locations}.
10497@end deffn
10498
10499@deffn {Variable} yylval
10500External variable in which @code{yylex} should place the semantic
10501value associated with a token. (In a pure parser, it is a local
10502variable within @code{yyparse}, and its address is passed to
32c29292
JD
10503@code{yylex}.)
10504@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 10505In semantic actions, it stores the semantic value of the lookahead token.
32c29292 10506@xref{Actions, ,Actions}.
dd8d9022
AD
10507@end deffn
10508
10509@deffn {Macro} YYMAXDEPTH
1a059451
PE
10510Macro for specifying the maximum size of the parser stack. @xref{Memory
10511Management}.
dd8d9022
AD
10512@end deffn
10513
10514@deffn {Variable} yynerrs
8a2800e7 10515Global variable which Bison increments each time it reports a syntax error.
f4101aa6 10516(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 10517pure push parser, it is a member of yypstate.)
dd8d9022
AD
10518@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
10519@end deffn
10520
10521@deffn {Function} yyparse
10522The parser function produced by Bison; call this function to start
10523parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
10524@end deffn
10525
9987d1b3 10526@deffn {Function} yypstate_delete
f4101aa6 10527The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 10528call this function to delete the memory associated with a parser.
f4101aa6 10529@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 10530@code{yypstate_delete}}.
59da312b
JD
10531(The current push parsing interface is experimental and may evolve.
10532More user feedback will help to stabilize it.)
9987d1b3
JD
10533@end deffn
10534
10535@deffn {Function} yypstate_new
f4101aa6 10536The function to create a parser instance, produced by Bison in push mode;
9987d1b3 10537call this function to create a new parser.
f4101aa6 10538@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 10539@code{yypstate_new}}.
59da312b
JD
10540(The current push parsing interface is experimental and may evolve.
10541More user feedback will help to stabilize it.)
9987d1b3
JD
10542@end deffn
10543
10544@deffn {Function} yypull_parse
f4101aa6
AD
10545The parser function produced by Bison in push mode; call this function to
10546parse the rest of the input stream.
10547@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 10548@code{yypull_parse}}.
59da312b
JD
10549(The current push parsing interface is experimental and may evolve.
10550More user feedback will help to stabilize it.)
9987d1b3
JD
10551@end deffn
10552
10553@deffn {Function} yypush_parse
f4101aa6
AD
10554The parser function produced by Bison in push mode; call this function to
10555parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 10556@code{yypush_parse}}.
59da312b
JD
10557(The current push parsing interface is experimental and may evolve.
10558More user feedback will help to stabilize it.)
9987d1b3
JD
10559@end deffn
10560
dd8d9022
AD
10561@deffn {Macro} YYPARSE_PARAM
10562An obsolete macro for specifying the name of a parameter that
10563@code{yyparse} should accept. The use of this macro is deprecated, and
10564is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
10565Conventions for Pure Parsers}.
10566@end deffn
10567
10568@deffn {Macro} YYRECOVERING
02103984
PE
10569The expression @code{YYRECOVERING ()} yields 1 when the parser
10570is recovering from a syntax error, and 0 otherwise.
10571@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
10572@end deffn
10573
10574@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
10575Macro used to control the use of @code{alloca} when the
10576deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
10577the parser will use @code{malloc} to extend its stacks. If defined to
105781, the parser will use @code{alloca}. Values other than 0 and 1 are
10579reserved for future Bison extensions. If not defined,
10580@code{YYSTACK_USE_ALLOCA} defaults to 0.
10581
55289366 10582In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
10583limited stack and with unreliable stack-overflow checking, you should
10584set @code{YYMAXDEPTH} to a value that cannot possibly result in
10585unchecked stack overflow on any of your target hosts when
10586@code{alloca} is called. You can inspect the code that Bison
10587generates in order to determine the proper numeric values. This will
10588require some expertise in low-level implementation details.
dd8d9022
AD
10589@end deffn
10590
10591@deffn {Type} YYSTYPE
10592Data type of semantic values; @code{int} by default.
10593@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 10594@end deffn
bfa74976 10595
342b8b6e 10596@node Glossary
bfa74976
RS
10597@appendix Glossary
10598@cindex glossary
10599
10600@table @asis
eb45ef3b
JD
10601@item Accepting State
10602A state whose only action is the accept action.
10603The accepting state is thus a consistent state.
10604@xref{Understanding,,}.
10605
c827f760
PE
10606@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
10607Formal method of specifying context-free grammars originally proposed
10608by John Backus, and slightly improved by Peter Naur in his 1960-01-02
10609committee document contributing to what became the Algol 60 report.
10610@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 10611
eb45ef3b
JD
10612@item Consistent State
10613A state containing only one possible action.
5bab9d08 10614@xref{Decl Summary,,lr.default-reductions}.
eb45ef3b 10615
bfa74976
RS
10616@item Context-free grammars
10617Grammars specified as rules that can be applied regardless of context.
10618Thus, if there is a rule which says that an integer can be used as an
10619expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
10620permitted. @xref{Language and Grammar, ,Languages and Context-Free
10621Grammars}.
bfa74976 10622
110ef36a
JD
10623@item Default Reduction
10624The reduction that a parser should perform if the current parser state
eb45ef3b 10625contains no other action for the lookahead token.
110ef36a
JD
10626In permitted parser states, Bison declares the reduction with the
10627largest lookahead set to be the default reduction and removes that
10628lookahead set.
5bab9d08 10629@xref{Decl Summary,,lr.default-reductions}.
eb45ef3b 10630
bfa74976
RS
10631@item Dynamic allocation
10632Allocation of memory that occurs during execution, rather than at
10633compile time or on entry to a function.
10634
10635@item Empty string
10636Analogous to the empty set in set theory, the empty string is a
10637character string of length zero.
10638
10639@item Finite-state stack machine
10640A ``machine'' that has discrete states in which it is said to exist at
10641each instant in time. As input to the machine is processed, the
10642machine moves from state to state as specified by the logic of the
10643machine. In the case of the parser, the input is the language being
10644parsed, and the states correspond to various stages in the grammar
c827f760 10645rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 10646
c827f760 10647@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 10648A parsing algorithm that can handle all context-free grammars, including those
eb45ef3b
JD
10649that are not @acronym{LR}(1). It resolves situations that Bison's
10650deterministic parsing
676385e2
PH
10651algorithm cannot by effectively splitting off multiple parsers, trying all
10652possible parsers, and discarding those that fail in the light of additional
c827f760
PE
10653right context. @xref{Generalized LR Parsing, ,Generalized
10654@acronym{LR} Parsing}.
676385e2 10655
bfa74976
RS
10656@item Grouping
10657A language construct that is (in general) grammatically divisible;
c827f760 10658for example, `expression' or `declaration' in C@.
bfa74976
RS
10659@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10660
eb45ef3b
JD
10661@item @acronym{IELR}(1)
10662A minimal @acronym{LR}(1) parser table generation algorithm.
10663That is, given any context-free grammar, @acronym{IELR}(1) generates
10664parser tables with the full language recognition power of canonical
10665@acronym{LR}(1) but with nearly the same number of parser states as
10666@acronym{LALR}(1).
10667This reduction in parser states is often an order of magnitude.
10668More importantly, because canonical @acronym{LR}(1)'s extra parser
10669states may contain duplicate conflicts in the case of
10670non-@acronym{LR}(1) grammars, the number of conflicts for
10671@acronym{IELR}(1) is often an order of magnitude less as well.
10672This can significantly reduce the complexity of developing of a grammar.
10673@xref{Decl Summary,,lr.type}.
10674
bfa74976
RS
10675@item Infix operator
10676An arithmetic operator that is placed between the operands on which it
10677performs some operation.
10678
10679@item Input stream
10680A continuous flow of data between devices or programs.
10681
10682@item Language construct
10683One of the typical usage schemas of the language. For example, one of
10684the constructs of the C language is the @code{if} statement.
10685@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10686
10687@item Left associativity
10688Operators having left associativity are analyzed from left to right:
10689@samp{a+b+c} first computes @samp{a+b} and then combines with
10690@samp{c}. @xref{Precedence, ,Operator Precedence}.
10691
10692@item Left recursion
89cab50d
AD
10693A rule whose result symbol is also its first component symbol; for
10694example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
10695Rules}.
bfa74976
RS
10696
10697@item Left-to-right parsing
10698Parsing a sentence of a language by analyzing it token by token from
c827f760 10699left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10700
10701@item Lexical analyzer (scanner)
10702A function that reads an input stream and returns tokens one by one.
10703@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
10704
10705@item Lexical tie-in
10706A flag, set by actions in the grammar rules, which alters the way
10707tokens are parsed. @xref{Lexical Tie-ins}.
10708
931c7513 10709@item Literal string token
14ded682 10710A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 10711
742e4900
JD
10712@item Lookahead token
10713A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 10714Tokens}.
bfa74976 10715
c827f760 10716@item @acronym{LALR}(1)
bfa74976 10717The class of context-free grammars that Bison (like most other parser
eb45ef3b
JD
10718generators) can handle by default; a subset of @acronym{LR}(1).
10719@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 10720
c827f760 10721@item @acronym{LR}(1)
bfa74976 10722The class of context-free grammars in which at most one token of
742e4900 10723lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
10724
10725@item Nonterminal symbol
10726A grammar symbol standing for a grammatical construct that can
10727be expressed through rules in terms of smaller constructs; in other
10728words, a construct that is not a token. @xref{Symbols}.
10729
bfa74976
RS
10730@item Parser
10731A function that recognizes valid sentences of a language by analyzing
10732the syntax structure of a set of tokens passed to it from a lexical
10733analyzer.
10734
10735@item Postfix operator
10736An arithmetic operator that is placed after the operands upon which it
10737performs some operation.
10738
10739@item Reduction
10740Replacing a string of nonterminals and/or terminals with a single
89cab50d 10741nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 10742Parser Algorithm}.
bfa74976
RS
10743
10744@item Reentrant
10745A reentrant subprogram is a subprogram which can be in invoked any
10746number of times in parallel, without interference between the various
10747invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
10748
10749@item Reverse polish notation
10750A language in which all operators are postfix operators.
10751
10752@item Right recursion
89cab50d
AD
10753A rule whose result symbol is also its last component symbol; for
10754example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
10755Rules}.
bfa74976
RS
10756
10757@item Semantics
10758In computer languages, the semantics are specified by the actions
10759taken for each instance of the language, i.e., the meaning of
10760each statement. @xref{Semantics, ,Defining Language Semantics}.
10761
10762@item Shift
10763A parser is said to shift when it makes the choice of analyzing
10764further input from the stream rather than reducing immediately some
c827f760 10765already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10766
10767@item Single-character literal
10768A single character that is recognized and interpreted as is.
10769@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
10770
10771@item Start symbol
10772The nonterminal symbol that stands for a complete valid utterance in
10773the language being parsed. The start symbol is usually listed as the
13863333 10774first nonterminal symbol in a language specification.
bfa74976
RS
10775@xref{Start Decl, ,The Start-Symbol}.
10776
10777@item Symbol table
10778A data structure where symbol names and associated data are stored
10779during parsing to allow for recognition and use of existing
10780information in repeated uses of a symbol. @xref{Multi-function Calc}.
10781
6e649e65
PE
10782@item Syntax error
10783An error encountered during parsing of an input stream due to invalid
10784syntax. @xref{Error Recovery}.
10785
bfa74976
RS
10786@item Token
10787A basic, grammatically indivisible unit of a language. The symbol
10788that describes a token in the grammar is a terminal symbol.
10789The input of the Bison parser is a stream of tokens which comes from
10790the lexical analyzer. @xref{Symbols}.
10791
10792@item Terminal symbol
89cab50d
AD
10793A grammar symbol that has no rules in the grammar and therefore is
10794grammatically indivisible. The piece of text it represents is a token.
10795@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
10796@end table
10797
342b8b6e 10798@node Copying This Manual
f2b5126e 10799@appendix Copying This Manual
f2b5126e
PB
10800@include fdl.texi
10801
342b8b6e 10802@node Index
bfa74976
RS
10803@unnumbered Index
10804
10805@printindex cp
10806
bfa74976 10807@bye
a06ea4aa
AD
10808
10809@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
10810@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
10811@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
10812@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
10813@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
f5f419de 10814@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex
a06ea4aa
AD
10815@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
10816@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
10817@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
10818@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
10819@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
10820@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
178e123e 10821@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln
a06ea4aa
AD
10822@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
10823@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
10824@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
10825@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
178e123e 10826@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs
a06ea4aa
AD
10827@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
10828@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
10829@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 10830@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa 10831@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
35fe0834 10832@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype
a06ea4aa 10833@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
35fe0834 10834@c LocalWords: infile ypp yxx outfile itemx tex leaderfill
a06ea4aa 10835@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
178e123e 10836@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST
eb45ef3b 10837@c LocalWords: YYSTACK DVI fdl printindex IELR