]> git.saurik.com Git - bison.git/blame - doc/bison.texi
regen
[bison.git] / doc / bison.texi
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
7d6bad19 36Copyright @copyright{} 1988-1993, 1995, 1998-2013 Free Software
575619af 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 106* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
5e528941 112* Bibliography:: Publications cited in this manual.
f9b86351 113* Index of Terms:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 128* Locations:: Overview of location tracking.
f5f419de
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
8a4281b9 134Writing GLR Parsers
fa7e68c3 135
8a4281b9
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 140* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
24ec0837
AD
166* Rpcalc Input:: Explanation of the @code{input} nonterminal
167* Rpcalc Line:: Explanation of the @code{line} nonterminal
168* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
181* Mfcalc Lexer:: The lexical analyzer.
182* Mfcalc Main:: The controlling function.
bfa74976
RS
183
184Bison Grammar Files
185
303834cc
JD
186* Grammar Outline:: Overall layout of the grammar file.
187* Symbols:: Terminal and nonterminal symbols.
188* Rules:: How to write grammar rules.
303834cc
JD
189* Semantics:: Semantic values and actions.
190* Tracking Locations:: Locations and actions.
191* Named References:: Using named references in actions.
192* Declarations:: All kinds of Bison declarations are described here.
193* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
194
195Outline of a Bison Grammar
196
f5f419de 197* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 198* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
199* Bison Declarations:: Syntax and usage of the Bison declarations section.
200* Grammar Rules:: Syntax and usage of the grammar rules section.
201* Epilogue:: Syntax and usage of the epilogue.
bfa74976 202
09add9c2
AD
203Grammar Rules
204
205* Rules Syntax:: Syntax of the rules.
206* Empty Rules:: Symbols that can match the empty string.
207* Recursion:: Writing recursive rules.
208
209
bfa74976
RS
210Defining Language Semantics
211
212* Value Type:: Specifying one data type for all semantic values.
213* Multiple Types:: Specifying several alternative data types.
90b89dad 214* Type Generation:: Generating the semantic value type.
e4d49586
AD
215* Union Decl:: Declaring the set of all semantic value types.
216* Structured Value Type:: Providing a structured semantic value type.
bfa74976
RS
217* Actions:: An action is the semantic definition of a grammar rule.
218* Action Types:: Specifying data types for actions to operate on.
219* Mid-Rule Actions:: Most actions go at the end of a rule.
220 This says when, why and how to use the exceptional
221 action in the middle of a rule.
222
be22823e
AD
223Actions in Mid-Rule
224
225* Using Mid-Rule Actions:: Putting an action in the middle of a rule.
226* Mid-Rule Action Translation:: How mid-rule actions are actually processed.
227* Mid-Rule Conflicts:: Mid-rule actions can cause conflicts.
228
93dd49ab
PE
229Tracking Locations
230
231* Location Type:: Specifying a data type for locations.
232* Actions and Locations:: Using locations in actions.
233* Location Default Action:: Defining a general way to compute locations.
234
bfa74976
RS
235Bison Declarations
236
b50d2359 237* Require Decl:: Requiring a Bison version.
bfa74976
RS
238* Token Decl:: Declaring terminal symbols.
239* Precedence Decl:: Declaring terminals with precedence and associativity.
bfa74976 240* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 241* Initial Action Decl:: Code run before parsing starts.
72f889cc 242* Destructor Decl:: Declaring how symbols are freed.
93c150b6 243* Printer Decl:: Declaring how symbol values are displayed.
d6328241 244* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
245* Start Decl:: Specifying the start symbol.
246* Pure Decl:: Requesting a reentrant parser.
9987d1b3 247* Push Decl:: Requesting a push parser.
bfa74976 248* Decl Summary:: Table of all Bison declarations.
35c1e5f0 249* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 250* %code Summary:: Inserting code into the parser source.
bfa74976
RS
251
252Parser C-Language Interface
253
f5f419de
DJ
254* Parser Function:: How to call @code{yyparse} and what it returns.
255* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
256* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
257* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
258* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
259* Lexical:: You must supply a function @code{yylex}
260 which reads tokens.
261* Error Reporting:: You must supply a function @code{yyerror}.
262* Action Features:: Special features for use in actions.
263* Internationalization:: How to let the parser speak in the user's
264 native language.
bfa74976
RS
265
266The Lexical Analyzer Function @code{yylex}
267
268* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
269* Token Values:: How @code{yylex} must return the semantic value
270 of the token it has read.
271* Token Locations:: How @code{yylex} must return the text location
272 (line number, etc.) of the token, if the
273 actions want that.
274* Pure Calling:: How the calling convention differs in a pure parser
275 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 276
13863333 277The Bison Parser Algorithm
bfa74976 278
742e4900 279* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
280* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
281* Precedence:: Operator precedence works by resolving conflicts.
282* Contextual Precedence:: When an operator's precedence depends on context.
283* Parser States:: The parser is a finite-state-machine with stack.
284* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 285* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 286* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 287* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 288* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
289
290Operator Precedence
291
292* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
293* Using Precedence:: How to specify precedence and associativity.
294* Precedence Only:: How to specify precedence only.
bfa74976
RS
295* Precedence Examples:: How these features are used in the previous example.
296* How Precedence:: How they work.
c28cd5dc 297* Non Operators:: Using precedence for general conflicts.
bfa74976 298
7fceb615
JD
299Tuning LR
300
301* LR Table Construction:: Choose a different construction algorithm.
302* Default Reductions:: Disable default reductions.
303* LAC:: Correct lookahead sets in the parser states.
304* Unreachable States:: Keep unreachable parser states for debugging.
305
bfa74976
RS
306Handling Context Dependencies
307
308* Semantic Tokens:: Token parsing can depend on the semantic context.
309* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
310* Tie-in Recovery:: Lexical tie-ins have implications for how
311 error recovery rules must be written.
312
93dd49ab 313Debugging Your Parser
ec3bc396
AD
314
315* Understanding:: Understanding the structure of your parser.
fc4fdd62 316* Graphviz:: Getting a visual representation of the parser.
9c16d399 317* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
318* Tracing:: Tracing the execution of your parser.
319
93c150b6
AD
320Tracing Your Parser
321
322* Enabling Traces:: Activating run-time trace support
323* Mfcalc Traces:: Extending @code{mfcalc} to support traces
324* The YYPRINT Macro:: Obsolete interface for semantic value reports
325
bfa74976
RS
326Invoking Bison
327
13863333 328* Bison Options:: All the options described in detail,
c827f760 329 in alphabetical order by short options.
bfa74976 330* Option Cross Key:: Alphabetical list of long options.
93dd49ab 331* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 332
8405b70c 333Parsers Written In Other Languages
12545799
AD
334
335* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 336* Java Parsers:: The interface to generate Java parser classes
12545799
AD
337
338C++ Parsers
339
340* C++ Bison Interface:: Asking for C++ parser generation
341* C++ Semantic Values:: %union vs. C++
342* C++ Location Values:: The position and location classes
343* C++ Parser Interface:: Instantiating and running the parser
344* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 345* A Complete C++ Example:: Demonstrating their use
12545799 346
936c88d1
AD
347C++ Location Values
348
349* C++ position:: One point in the source file
350* C++ location:: Two points in the source file
db8ab2be 351* User Defined Location Type:: Required interface for locations
936c88d1 352
12545799
AD
353A Complete C++ Example
354
355* Calc++ --- C++ Calculator:: The specifications
356* Calc++ Parsing Driver:: An active parsing context
357* Calc++ Parser:: A parser class
358* Calc++ Scanner:: A pure C++ Flex scanner
359* Calc++ Top Level:: Conducting the band
360
8405b70c
PB
361Java Parsers
362
f5f419de
DJ
363* Java Bison Interface:: Asking for Java parser generation
364* Java Semantic Values:: %type and %token vs. Java
365* Java Location Values:: The position and location classes
366* Java Parser Interface:: Instantiating and running the parser
367* Java Scanner Interface:: Specifying the scanner for the parser
368* Java Action Features:: Special features for use in actions
369* Java Differences:: Differences between C/C++ and Java Grammars
370* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 371
d1a1114f
AD
372Frequently Asked Questions
373
f5f419de
DJ
374* Memory Exhausted:: Breaking the Stack Limits
375* How Can I Reset the Parser:: @code{yyparse} Keeps some State
376* Strings are Destroyed:: @code{yylval} Loses Track of Strings
377* Implementing Gotos/Loops:: Control Flow in the Calculator
378* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 379* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
380* I can't build Bison:: Troubleshooting
381* Where can I find help?:: Troubleshouting
382* Bug Reports:: Troublereporting
383* More Languages:: Parsers in C++, Java, and so on
384* Beta Testing:: Experimenting development versions
385* Mailing Lists:: Meeting other Bison users
d1a1114f 386
f2b5126e
PB
387Copying This Manual
388
f5f419de 389* Copying This Manual:: License for copying this manual.
f2b5126e 390
342b8b6e 391@end detailmenu
bfa74976
RS
392@end menu
393
342b8b6e 394@node Introduction
bfa74976
RS
395@unnumbered Introduction
396@cindex introduction
397
6077da58 398@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
399annotated context-free grammar into a deterministic LR or generalized
400LR (GLR) parser employing LALR(1) parser tables. As an experimental
401feature, Bison can also generate IELR(1) or canonical LR(1) parser
402tables. Once you are proficient with Bison, you can use it to develop
403a wide range of language parsers, from those used in simple desk
404calculators to complex programming languages.
405
406Bison is upward compatible with Yacc: all properly-written Yacc
407grammars ought to work with Bison with no change. Anyone familiar
408with Yacc should be able to use Bison with little trouble. You need
409to be fluent in C or C++ programming in order to use Bison or to
410understand this manual. Java is also supported as an experimental
411feature.
412
413We begin with tutorial chapters that explain the basic concepts of
414using Bison and show three explained examples, each building on the
415last. If you don't know Bison or Yacc, start by reading these
416chapters. Reference chapters follow, which describe specific aspects
417of Bison in detail.
bfa74976 418
679e9935
JD
419Bison was written originally by Robert Corbett. Richard Stallman made
420it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
421added multi-character string literals and other features. Since then,
422Bison has grown more robust and evolved many other new features thanks
423to the hard work of a long list of volunteers. For details, see the
424@file{THANKS} and @file{ChangeLog} files included in the Bison
425distribution.
931c7513 426
df1af54c 427This edition corresponds to version @value{VERSION} of Bison.
bfa74976 428
342b8b6e 429@node Conditions
bfa74976
RS
430@unnumbered Conditions for Using Bison
431
193d7c70
PE
432The distribution terms for Bison-generated parsers permit using the
433parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 434permissions applied only when Bison was generating LALR(1)
193d7c70 435parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 436parsers could be used only in programs that were free software.
a31239f1 437
8a4281b9 438The other GNU programming tools, such as the GNU C
c827f760 439compiler, have never
9ecbd125 440had such a requirement. They could always be used for nonfree
a31239f1
RS
441software. The reason Bison was different was not due to a special
442policy decision; it resulted from applying the usual General Public
443License to all of the Bison source code.
444
ff7571c0
JD
445The main output of the Bison utility---the Bison parser implementation
446file---contains a verbatim copy of a sizable piece of Bison, which is
447the code for the parser's implementation. (The actions from your
448grammar are inserted into this implementation at one point, but most
449of the rest of the implementation is not changed.) When we applied
450the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
451the effect was to restrict the use of Bison output to free software.
452
453We didn't change the terms because of sympathy for people who want to
454make software proprietary. @strong{Software should be free.} But we
455concluded that limiting Bison's use to free software was doing little to
456encourage people to make other software free. So we decided to make the
457practical conditions for using Bison match the practical conditions for
8a4281b9 458using the other GNU tools.
bfa74976 459
193d7c70
PE
460This exception applies when Bison is generating code for a parser.
461You can tell whether the exception applies to a Bison output file by
462inspecting the file for text beginning with ``As a special
463exception@dots{}''. The text spells out the exact terms of the
464exception.
262aa8dd 465
f16b0819
PE
466@node Copying
467@unnumbered GNU GENERAL PUBLIC LICENSE
468@include gpl-3.0.texi
bfa74976 469
342b8b6e 470@node Concepts
bfa74976
RS
471@chapter The Concepts of Bison
472
473This chapter introduces many of the basic concepts without which the
474details of Bison will not make sense. If you do not already know how to
475use Bison or Yacc, we suggest you start by reading this chapter carefully.
476
477@menu
f5f419de
DJ
478* Language and Grammar:: Languages and context-free grammars,
479 as mathematical ideas.
480* Grammar in Bison:: How we represent grammars for Bison's sake.
481* Semantic Values:: Each token or syntactic grouping can have
482 a semantic value (the value of an integer,
483 the name of an identifier, etc.).
484* Semantic Actions:: Each rule can have an action containing C code.
485* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 486* Locations:: Overview of location tracking.
f5f419de
DJ
487* Bison Parser:: What are Bison's input and output,
488 how is the output used?
489* Stages:: Stages in writing and running Bison grammars.
490* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
491@end menu
492
342b8b6e 493@node Language and Grammar
bfa74976
RS
494@section Languages and Context-Free Grammars
495
bfa74976
RS
496@cindex context-free grammar
497@cindex grammar, context-free
498In order for Bison to parse a language, it must be described by a
499@dfn{context-free grammar}. This means that you specify one or more
500@dfn{syntactic groupings} and give rules for constructing them from their
501parts. For example, in the C language, one kind of grouping is called an
502`expression'. One rule for making an expression might be, ``An expression
503can be made of a minus sign and another expression''. Another would be,
504``An expression can be an integer''. As you can see, rules are often
505recursive, but there must be at least one rule which leads out of the
506recursion.
507
8a4281b9 508@cindex BNF
bfa74976
RS
509@cindex Backus-Naur form
510The most common formal system for presenting such rules for humans to read
8a4281b9 511is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 512order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
513BNF is a context-free grammar. The input to Bison is
514essentially machine-readable BNF.
bfa74976 515
7fceb615
JD
516@cindex LALR grammars
517@cindex IELR grammars
518@cindex LR grammars
519There are various important subclasses of context-free grammars. Although
520it can handle almost all context-free grammars, Bison is optimized for what
521are called LR(1) grammars. In brief, in these grammars, it must be possible
522to tell how to parse any portion of an input string with just a single token
523of lookahead. For historical reasons, Bison by default is limited by the
524additional restrictions of LALR(1), which is hard to explain simply.
cc09e5be
JD
525@xref{Mysterious Conflicts}, for more information on this. As an
526experimental feature, you can escape these additional restrictions by
527requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
528Construction}, to learn how.
bfa74976 529
8a4281b9
JD
530@cindex GLR parsing
531@cindex generalized LR (GLR) parsing
676385e2 532@cindex ambiguous grammars
9d9b8b70 533@cindex nondeterministic parsing
9501dc6e 534
8a4281b9 535Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
536roughly that the next grammar rule to apply at any point in the input is
537uniquely determined by the preceding input and a fixed, finite portion
742e4900 538(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 539grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 540apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 541grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 542lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 543With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
544general context-free grammars, using a technique known as GLR
545parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
546are able to handle any context-free grammar for which the number of
547possible parses of any given string is finite.
676385e2 548
bfa74976
RS
549@cindex symbols (abstract)
550@cindex token
551@cindex syntactic grouping
552@cindex grouping, syntactic
9501dc6e
AD
553In the formal grammatical rules for a language, each kind of syntactic
554unit or grouping is named by a @dfn{symbol}. Those which are built by
555grouping smaller constructs according to grammatical rules are called
bfa74976
RS
556@dfn{nonterminal symbols}; those which can't be subdivided are called
557@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
558corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 559corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
560
561We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
562nonterminal, mean. The tokens of C are identifiers, constants (numeric
563and string), and the various keywords, arithmetic operators and
564punctuation marks. So the terminal symbols of a grammar for C include
565`identifier', `number', `string', plus one symbol for each keyword,
566operator or punctuation mark: `if', `return', `const', `static', `int',
567`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
568(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
569lexicography, not grammar.)
570
571Here is a simple C function subdivided into tokens:
572
9edcd895
AD
573@example
574int /* @r{keyword `int'} */
14d4662b 575square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
576 @r{identifier, close-paren} */
577@{ /* @r{open-brace} */
aa08666d
AD
578 return x * x; /* @r{keyword `return', identifier, asterisk,}
579 @r{identifier, semicolon} */
9edcd895
AD
580@} /* @r{close-brace} */
581@end example
bfa74976
RS
582
583The syntactic groupings of C include the expression, the statement, the
584declaration, and the function definition. These are represented in the
585grammar of C by nonterminal symbols `expression', `statement',
586`declaration' and `function definition'. The full grammar uses dozens of
587additional language constructs, each with its own nonterminal symbol, in
588order to express the meanings of these four. The example above is a
589function definition; it contains one declaration, and one statement. In
590the statement, each @samp{x} is an expression and so is @samp{x * x}.
591
592Each nonterminal symbol must have grammatical rules showing how it is made
593out of simpler constructs. For example, one kind of C statement is the
594@code{return} statement; this would be described with a grammar rule which
595reads informally as follows:
596
597@quotation
598A `statement' can be made of a `return' keyword, an `expression' and a
599`semicolon'.
600@end quotation
601
602@noindent
603There would be many other rules for `statement', one for each kind of
604statement in C.
605
606@cindex start symbol
607One nonterminal symbol must be distinguished as the special one which
608defines a complete utterance in the language. It is called the @dfn{start
609symbol}. In a compiler, this means a complete input program. In the C
610language, the nonterminal symbol `sequence of definitions and declarations'
611plays this role.
612
613For example, @samp{1 + 2} is a valid C expression---a valid part of a C
614program---but it is not valid as an @emph{entire} C program. In the
615context-free grammar of C, this follows from the fact that `expression' is
616not the start symbol.
617
618The Bison parser reads a sequence of tokens as its input, and groups the
619tokens using the grammar rules. If the input is valid, the end result is
620that the entire token sequence reduces to a single grouping whose symbol is
621the grammar's start symbol. If we use a grammar for C, the entire input
622must be a `sequence of definitions and declarations'. If not, the parser
623reports a syntax error.
624
342b8b6e 625@node Grammar in Bison
bfa74976
RS
626@section From Formal Rules to Bison Input
627@cindex Bison grammar
628@cindex grammar, Bison
629@cindex formal grammar
630
631A formal grammar is a mathematical construct. To define the language
632for Bison, you must write a file expressing the grammar in Bison syntax:
633a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
634
635A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 636as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
637in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
638
639The Bison representation for a terminal symbol is also called a @dfn{token
640type}. Token types as well can be represented as C-like identifiers. By
641convention, these identifiers should be upper case to distinguish them from
642nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
643@code{RETURN}. A terminal symbol that stands for a particular keyword in
644the language should be named after that keyword converted to upper case.
645The terminal symbol @code{error} is reserved for error recovery.
931c7513 646@xref{Symbols}.
bfa74976
RS
647
648A terminal symbol can also be represented as a character literal, just like
649a C character constant. You should do this whenever a token is just a
650single character (parenthesis, plus-sign, etc.): use that same character in
651a literal as the terminal symbol for that token.
652
931c7513
RS
653A third way to represent a terminal symbol is with a C string constant
654containing several characters. @xref{Symbols}, for more information.
655
bfa74976
RS
656The grammar rules also have an expression in Bison syntax. For example,
657here is the Bison rule for a C @code{return} statement. The semicolon in
658quotes is a literal character token, representing part of the C syntax for
659the statement; the naked semicolon, and the colon, are Bison punctuation
660used in every rule.
661
662@example
5e9b6624 663stmt: RETURN expr ';' ;
bfa74976
RS
664@end example
665
666@noindent
667@xref{Rules, ,Syntax of Grammar Rules}.
668
342b8b6e 669@node Semantic Values
bfa74976
RS
670@section Semantic Values
671@cindex semantic value
672@cindex value, semantic
673
674A formal grammar selects tokens only by their classifications: for example,
675if a rule mentions the terminal symbol `integer constant', it means that
676@emph{any} integer constant is grammatically valid in that position. The
677precise value of the constant is irrelevant to how to parse the input: if
678@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 679grammatical.
bfa74976
RS
680
681But the precise value is very important for what the input means once it is
682parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6833989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
684has both a token type and a @dfn{semantic value}. @xref{Semantics,
685,Defining Language Semantics},
bfa74976
RS
686for details.
687
688The token type is a terminal symbol defined in the grammar, such as
689@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
690you need to know to decide where the token may validly appear and how to
691group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 692except their types.
bfa74976
RS
693
694The semantic value has all the rest of the information about the
695meaning of the token, such as the value of an integer, or the name of an
696identifier. (A token such as @code{','} which is just punctuation doesn't
697need to have any semantic value.)
698
699For example, an input token might be classified as token type
700@code{INTEGER} and have the semantic value 4. Another input token might
701have the same token type @code{INTEGER} but value 3989. When a grammar
702rule says that @code{INTEGER} is allowed, either of these tokens is
703acceptable because each is an @code{INTEGER}. When the parser accepts the
704token, it keeps track of the token's semantic value.
705
706Each grouping can also have a semantic value as well as its nonterminal
707symbol. For example, in a calculator, an expression typically has a
708semantic value that is a number. In a compiler for a programming
709language, an expression typically has a semantic value that is a tree
710structure describing the meaning of the expression.
711
342b8b6e 712@node Semantic Actions
bfa74976
RS
713@section Semantic Actions
714@cindex semantic actions
715@cindex actions, semantic
716
717In order to be useful, a program must do more than parse input; it must
718also produce some output based on the input. In a Bison grammar, a grammar
719rule can have an @dfn{action} made up of C statements. Each time the
720parser recognizes a match for that rule, the action is executed.
721@xref{Actions}.
13863333 722
bfa74976
RS
723Most of the time, the purpose of an action is to compute the semantic value
724of the whole construct from the semantic values of its parts. For example,
725suppose we have a rule which says an expression can be the sum of two
726expressions. When the parser recognizes such a sum, each of the
727subexpressions has a semantic value which describes how it was built up.
728The action for this rule should create a similar sort of value for the
729newly recognized larger expression.
730
731For example, here is a rule that says an expression can be the sum of
732two subexpressions:
733
734@example
5e9b6624 735expr: expr '+' expr @{ $$ = $1 + $3; @} ;
bfa74976
RS
736@end example
737
738@noindent
739The action says how to produce the semantic value of the sum expression
740from the values of the two subexpressions.
741
676385e2 742@node GLR Parsers
8a4281b9
JD
743@section Writing GLR Parsers
744@cindex GLR parsing
745@cindex generalized LR (GLR) parsing
676385e2
PH
746@findex %glr-parser
747@cindex conflicts
748@cindex shift/reduce conflicts
fa7e68c3 749@cindex reduce/reduce conflicts
676385e2 750
eb45ef3b 751In some grammars, Bison's deterministic
8a4281b9 752LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
753certain grammar rule at a given point. That is, it may not be able to
754decide (on the basis of the input read so far) which of two possible
755reductions (applications of a grammar rule) applies, or whether to apply
756a reduction or read more of the input and apply a reduction later in the
757input. These are known respectively as @dfn{reduce/reduce} conflicts
758(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
759(@pxref{Shift/Reduce}).
760
8a4281b9 761To use a grammar that is not easily modified to be LR(1), a
9501dc6e 762more general parsing algorithm is sometimes necessary. If you include
676385e2 763@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
764(@pxref{Grammar Outline}), the result is a Generalized LR
765(GLR) parser. These parsers handle Bison grammars that
9501dc6e 766contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 767declarations) identically to deterministic parsers. However, when
9501dc6e 768faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 769GLR parsers use the simple expedient of doing both,
9501dc6e
AD
770effectively cloning the parser to follow both possibilities. Each of
771the resulting parsers can again split, so that at any given time, there
772can be any number of possible parses being explored. The parsers
676385e2
PH
773proceed in lockstep; that is, all of them consume (shift) a given input
774symbol before any of them proceed to the next. Each of the cloned
775parsers eventually meets one of two possible fates: either it runs into
776a parsing error, in which case it simply vanishes, or it merges with
777another parser, because the two of them have reduced the input to an
778identical set of symbols.
779
780During the time that there are multiple parsers, semantic actions are
781recorded, but not performed. When a parser disappears, its recorded
782semantic actions disappear as well, and are never performed. When a
783reduction makes two parsers identical, causing them to merge, Bison
784records both sets of semantic actions. Whenever the last two parsers
785merge, reverting to the single-parser case, Bison resolves all the
786outstanding actions either by precedences given to the grammar rules
787involved, or by performing both actions, and then calling a designated
788user-defined function on the resulting values to produce an arbitrary
789merged result.
790
fa7e68c3 791@menu
8a4281b9
JD
792* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
793* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 794* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 795* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 796* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
797@end menu
798
799@node Simple GLR Parsers
8a4281b9
JD
800@subsection Using GLR on Unambiguous Grammars
801@cindex GLR parsing, unambiguous grammars
802@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
803@findex %glr-parser
804@findex %expect-rr
805@cindex conflicts
806@cindex reduce/reduce conflicts
807@cindex shift/reduce conflicts
808
8a4281b9
JD
809In the simplest cases, you can use the GLR algorithm
810to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 811Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
812
813Consider a problem that
814arises in the declaration of enumerated and subrange types in the
815programming language Pascal. Here are some examples:
816
817@example
818type subrange = lo .. hi;
819type enum = (a, b, c);
820@end example
821
822@noindent
823The original language standard allows only numeric
824literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 825and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
82610206) and many other
827Pascal implementations allow arbitrary expressions there. This gives
828rise to the following situation, containing a superfluous pair of
829parentheses:
830
831@example
832type subrange = (a) .. b;
833@end example
834
835@noindent
836Compare this to the following declaration of an enumerated
837type with only one value:
838
839@example
840type enum = (a);
841@end example
842
843@noindent
844(These declarations are contrived, but they are syntactically
845valid, and more-complicated cases can come up in practical programs.)
846
847These two declarations look identical until the @samp{..} token.
8a4281b9 848With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
849possible to decide between the two forms when the identifier
850@samp{a} is parsed. It is, however, desirable
851for a parser to decide this, since in the latter case
852@samp{a} must become a new identifier to represent the enumeration
853value, while in the former case @samp{a} must be evaluated with its
854current meaning, which may be a constant or even a function call.
855
856You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
857to be resolved later, but this typically requires substantial
858contortions in both semantic actions and large parts of the
859grammar, where the parentheses are nested in the recursive rules for
860expressions.
861
862You might think of using the lexer to distinguish between the two
863forms by returning different tokens for currently defined and
864undefined identifiers. But if these declarations occur in a local
865scope, and @samp{a} is defined in an outer scope, then both forms
866are possible---either locally redefining @samp{a}, or using the
867value of @samp{a} from the outer scope. So this approach cannot
868work.
869
e757bb10 870A simple solution to this problem is to declare the parser to
8a4281b9
JD
871use the GLR algorithm.
872When the GLR parser reaches the critical state, it
fa7e68c3
PE
873merely splits into two branches and pursues both syntax rules
874simultaneously. Sooner or later, one of them runs into a parsing
875error. If there is a @samp{..} token before the next
876@samp{;}, the rule for enumerated types fails since it cannot
877accept @samp{..} anywhere; otherwise, the subrange type rule
878fails since it requires a @samp{..} token. So one of the branches
879fails silently, and the other one continues normally, performing
880all the intermediate actions that were postponed during the split.
881
882If the input is syntactically incorrect, both branches fail and the parser
883reports a syntax error as usual.
884
885The effect of all this is that the parser seems to ``guess'' the
886correct branch to take, or in other words, it seems to use more
8a4281b9
JD
887lookahead than the underlying LR(1) algorithm actually allows
888for. In this example, LR(2) would suffice, but also some cases
889that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 890
8a4281b9 891In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
892and the current Bison parser even takes exponential time and space
893for some grammars. In practice, this rarely happens, and for many
894grammars it is possible to prove that it cannot happen.
895The present example contains only one conflict between two
896rules, and the type-declaration context containing the conflict
897cannot be nested. So the number of
898branches that can exist at any time is limited by the constant 2,
899and the parsing time is still linear.
900
901Here is a Bison grammar corresponding to the example above. It
902parses a vastly simplified form of Pascal type declarations.
903
904@example
905%token TYPE DOTDOT ID
906
907@group
908%left '+' '-'
909%left '*' '/'
910@end group
911
912%%
5e9b6624 913type_decl: TYPE ID '=' type ';' ;
fa7e68c3
PE
914
915@group
5e9b6624
AD
916type:
917 '(' id_list ')'
918| expr DOTDOT expr
919;
fa7e68c3
PE
920@end group
921
922@group
5e9b6624
AD
923id_list:
924 ID
925| id_list ',' ID
926;
fa7e68c3
PE
927@end group
928
929@group
5e9b6624
AD
930expr:
931 '(' expr ')'
932| expr '+' expr
933| expr '-' expr
934| expr '*' expr
935| expr '/' expr
936| ID
937;
fa7e68c3
PE
938@end group
939@end example
940
8a4281b9 941When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
942about one reduce/reduce conflict. In the conflicting situation the
943parser chooses one of the alternatives, arbitrarily the one
944declared first. Therefore the following correct input is not
945recognized:
946
947@example
948type t = (a) .. b;
949@end example
950
8a4281b9 951The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
952to be silent about the one known reduce/reduce conflict, by adding
953these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
954@samp{%%}):
955
956@example
957%glr-parser
958%expect-rr 1
959@end example
960
961@noindent
962No change in the grammar itself is required. Now the
963parser recognizes all valid declarations, according to the
964limited syntax above, transparently. In fact, the user does not even
965notice when the parser splits.
966
8a4281b9 967So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
968almost without disadvantages. Even in simple cases like this, however,
969there are at least two potential problems to beware. First, always
8a4281b9
JD
970analyze the conflicts reported by Bison to make sure that GLR
971splitting is only done where it is intended. A GLR parser
f8e1c9e5 972splitting inadvertently may cause problems less obvious than an
8a4281b9 973LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
974conflict. Second, consider interactions with the lexer (@pxref{Semantic
975Tokens}) with great care. Since a split parser consumes tokens without
976performing any actions during the split, the lexer cannot obtain
977information via parser actions. Some cases of lexer interactions can be
8a4281b9 978eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
979lexer to the parser. You must check the remaining cases for
980correctness.
981
982In our example, it would be safe for the lexer to return tokens based on
983their current meanings in some symbol table, because no new symbols are
984defined in the middle of a type declaration. Though it is possible for
985a parser to define the enumeration constants as they are parsed, before
986the type declaration is completed, it actually makes no difference since
987they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
988
989@node Merging GLR Parses
8a4281b9
JD
990@subsection Using GLR to Resolve Ambiguities
991@cindex GLR parsing, ambiguous grammars
992@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
993@findex %dprec
994@findex %merge
995@cindex conflicts
996@cindex reduce/reduce conflicts
997
2a8d363a 998Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
999
1000@example
1001%@{
38a92d50
PE
1002 #include <stdio.h>
1003 #define YYSTYPE char const *
1004 int yylex (void);
1005 void yyerror (char const *);
676385e2
PH
1006%@}
1007
1008%token TYPENAME ID
1009
1010%right '='
1011%left '+'
1012
1013%glr-parser
1014
1015%%
1016
5e9b6624 1017prog:
6240346a 1018 %empty
5e9b6624
AD
1019| prog stmt @{ printf ("\n"); @}
1020;
676385e2 1021
5e9b6624
AD
1022stmt:
1023 expr ';' %dprec 1
1024| decl %dprec 2
1025;
676385e2 1026
5e9b6624
AD
1027expr:
1028 ID @{ printf ("%s ", $$); @}
1029| TYPENAME '(' expr ')'
1030 @{ printf ("%s <cast> ", $1); @}
1031| expr '+' expr @{ printf ("+ "); @}
1032| expr '=' expr @{ printf ("= "); @}
1033;
676385e2 1034
5e9b6624
AD
1035decl:
1036 TYPENAME declarator ';'
1037 @{ printf ("%s <declare> ", $1); @}
1038| TYPENAME declarator '=' expr ';'
1039 @{ printf ("%s <init-declare> ", $1); @}
1040;
676385e2 1041
5e9b6624
AD
1042declarator:
1043 ID @{ printf ("\"%s\" ", $1); @}
1044| '(' declarator ')'
1045;
676385e2
PH
1046@end example
1047
1048@noindent
1049This models a problematic part of the C++ grammar---the ambiguity between
1050certain declarations and statements. For example,
1051
1052@example
1053T (x) = y+z;
1054@end example
1055
1056@noindent
1057parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1058(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1059@samp{x} as an @code{ID}).
676385e2 1060Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1061@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1062time it encounters @code{x} in the example above. Since this is a
8a4281b9 1063GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1064each choice of resolving the reduce/reduce conflict.
1065Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1066however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1067ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1068the other reduces @code{stmt : decl}, after which both parsers are in an
1069identical state: they've seen @samp{prog stmt} and have the same unprocessed
1070input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1071
8a4281b9 1072At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1073grammar of how to choose between the competing parses.
1074In the example above, the two @code{%dprec}
e757bb10 1075declarations specify that Bison is to give precedence
fa7e68c3 1076to the parse that interprets the example as a
676385e2
PH
1077@code{decl}, which implies that @code{x} is a declarator.
1078The parser therefore prints
1079
1080@example
fae437e8 1081"x" y z + T <init-declare>
676385e2
PH
1082@end example
1083
fa7e68c3
PE
1084The @code{%dprec} declarations only come into play when more than one
1085parse survives. Consider a different input string for this parser:
676385e2
PH
1086
1087@example
1088T (x) + y;
1089@end example
1090
1091@noindent
8a4281b9 1092This is another example of using GLR to parse an unambiguous
fa7e68c3 1093construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1094Here, there is no ambiguity (this cannot be parsed as a declaration).
1095However, at the time the Bison parser encounters @code{x}, it does not
1096have enough information to resolve the reduce/reduce conflict (again,
1097between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1098case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1099into two, one assuming that @code{x} is an @code{expr}, and the other
1100assuming @code{x} is a @code{declarator}. The second of these parsers
1101then vanishes when it sees @code{+}, and the parser prints
1102
1103@example
fae437e8 1104x T <cast> y +
676385e2
PH
1105@end example
1106
1107Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1108the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1109actions of the two possible parsers, rather than choosing one over the
1110other. To do so, you could change the declaration of @code{stmt} as
1111follows:
1112
1113@example
5e9b6624
AD
1114stmt:
1115 expr ';' %merge <stmtMerge>
1116| decl %merge <stmtMerge>
1117;
676385e2
PH
1118@end example
1119
1120@noindent
676385e2
PH
1121and define the @code{stmtMerge} function as:
1122
1123@example
38a92d50
PE
1124static YYSTYPE
1125stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1126@{
1127 printf ("<OR> ");
1128 return "";
1129@}
1130@end example
1131
1132@noindent
1133with an accompanying forward declaration
1134in the C declarations at the beginning of the file:
1135
1136@example
1137%@{
38a92d50 1138 #define YYSTYPE char const *
676385e2
PH
1139 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1140%@}
1141@end example
1142
1143@noindent
fa7e68c3
PE
1144With these declarations, the resulting parser parses the first example
1145as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1146
1147@example
fae437e8 1148"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1149@end example
1150
fa7e68c3 1151Bison requires that all of the
e757bb10 1152productions that participate in any particular merge have identical
fa7e68c3
PE
1153@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1154and the parser will report an error during any parse that results in
1155the offending merge.
9501dc6e 1156
32c29292
JD
1157@node GLR Semantic Actions
1158@subsection GLR Semantic Actions
1159
8a4281b9 1160The nature of GLR parsing and the structure of the generated
20be2f92
PH
1161parsers give rise to certain restrictions on semantic values and actions.
1162
1163@subsubsection Deferred semantic actions
32c29292
JD
1164@cindex deferred semantic actions
1165By definition, a deferred semantic action is not performed at the same time as
1166the associated reduction.
1167This raises caveats for several Bison features you might use in a semantic
8a4281b9 1168action in a GLR parser.
32c29292
JD
1169
1170@vindex yychar
8a4281b9 1171@cindex GLR parsers and @code{yychar}
32c29292 1172@vindex yylval
8a4281b9 1173@cindex GLR parsers and @code{yylval}
32c29292 1174@vindex yylloc
8a4281b9 1175@cindex GLR parsers and @code{yylloc}
32c29292 1176In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1177the lookahead token present at the time of the associated reduction.
32c29292
JD
1178After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1179you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1180lookahead token's semantic value and location, if any.
32c29292
JD
1181In a nondeferred semantic action, you can also modify any of these variables to
1182influence syntax analysis.
742e4900 1183@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1184
1185@findex yyclearin
8a4281b9 1186@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1187In a deferred semantic action, it's too late to influence syntax analysis.
1188In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1189shallow copies of the values they had at the time of the associated reduction.
1190For this reason alone, modifying them is dangerous.
1191Moreover, the result of modifying them is undefined and subject to change with
1192future versions of Bison.
1193For example, if a semantic action might be deferred, you should never write it
1194to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1195memory referenced by @code{yylval}.
1196
20be2f92 1197@subsubsection YYERROR
32c29292 1198@findex YYERROR
8a4281b9 1199@cindex GLR parsers and @code{YYERROR}
32c29292 1200Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1201(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1202initiate error recovery.
8a4281b9 1203During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1204the same as its effect in a deterministic parser.
411614fa
JM
1205The effect in a deferred action is similar, but the precise point of the
1206error is undefined; instead, the parser reverts to deterministic operation,
20be2f92
PH
1207selecting an unspecified stack on which to continue with a syntax error.
1208In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1209parsing, @code{YYERROR} silently prunes
1210the parse that invoked the test.
1211
1212@subsubsection Restrictions on semantic values and locations
8a4281b9 1213GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1214semantic values and location types when using the generated parsers as
1215C++ code.
8710fc41 1216
ca2a6d15
PH
1217@node Semantic Predicates
1218@subsection Controlling a Parse with Arbitrary Predicates
1219@findex %?
8a4281b9 1220@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1221
1222In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1223GLR parsers
ca2a6d15
PH
1224allow you to reject parses on the basis of arbitrary computations executed
1225in user code, without having Bison treat this rejection as an error
1226if there are alternative parses. (This feature is experimental and may
1227evolve. We welcome user feedback.) For example,
1228
c93f22fc
AD
1229@example
1230widget:
5e9b6624
AD
1231 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1232| %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1233;
c93f22fc 1234@end example
ca2a6d15
PH
1235
1236@noindent
411614fa 1237is one way to allow the same parser to handle two different syntaxes for
ca2a6d15
PH
1238widgets. The clause preceded by @code{%?} is treated like an ordinary
1239action, except that its text is treated as an expression and is always
411614fa 1240evaluated immediately (even when in nondeterministic mode). If the
ca2a6d15 1241expression yields 0 (false), the clause is treated as a syntax error,
411614fa 1242which, in a nondeterministic parser, causes the stack in which it is reduced
ca2a6d15
PH
1243to die. In a deterministic parser, it acts like YYERROR.
1244
1245As the example shows, predicates otherwise look like semantic actions, and
1246therefore you must be take them into account when determining the numbers
1247to use for denoting the semantic values of right-hand side symbols.
1248Predicate actions, however, have no defined value, and may not be given
1249labels.
1250
1251There is a subtle difference between semantic predicates and ordinary
1252actions in nondeterministic mode, since the latter are deferred.
411614fa 1253For example, we could try to rewrite the previous example as
ca2a6d15 1254
c93f22fc
AD
1255@example
1256widget:
5e9b6624
AD
1257 @{ if (!new_syntax) YYERROR; @}
1258 "widget" id new_args @{ $$ = f($3, $4); @}
1259| @{ if (new_syntax) YYERROR; @}
1260 "widget" id old_args @{ $$ = f($3, $4); @}
1261;
c93f22fc 1262@end example
ca2a6d15
PH
1263
1264@noindent
1265(reversing the sense of the predicate tests to cause an error when they are
1266false). However, this
1267does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1268have overlapping syntax.
411614fa 1269Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1270a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1271for cases where @code{new_args} and @code{old_args} recognize the same string
1272@emph{before} performing the tests of @code{new_syntax}. It therefore
1273reports an error.
1274
1275Finally, be careful in writing predicates: deferred actions have not been
1276evaluated, so that using them in a predicate will have undefined effects.
1277
fa7e68c3 1278@node Compiler Requirements
8a4281b9 1279@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1280@cindex @code{inline}
8a4281b9 1281@cindex GLR parsers and @code{inline}
fa7e68c3 1282
8a4281b9 1283The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1284later. In addition, they use the @code{inline} keyword, which is not
1285C89, but is C99 and is a common extension in pre-C99 compilers. It is
1286up to the user of these parsers to handle
9501dc6e
AD
1287portability issues. For instance, if using Autoconf and the Autoconf
1288macro @code{AC_C_INLINE}, a mere
1289
1290@example
1291%@{
38a92d50 1292 #include <config.h>
9501dc6e
AD
1293%@}
1294@end example
1295
1296@noindent
1297will suffice. Otherwise, we suggest
1298
1299@example
1300%@{
aaaa2aae
AD
1301 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1302 && ! defined inline)
1303 # define inline
38a92d50 1304 #endif
9501dc6e
AD
1305%@}
1306@end example
676385e2 1307
1769eb30 1308@node Locations
847bf1f5
AD
1309@section Locations
1310@cindex location
95923bd6
AD
1311@cindex textual location
1312@cindex location, textual
847bf1f5
AD
1313
1314Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1315and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1316the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1317Bison provides a mechanism for handling these locations.
1318
72d2299c 1319Each token has a semantic value. In a similar fashion, each token has an
303834cc
JD
1320associated location, but the type of locations is the same for all tokens
1321and groupings. Moreover, the output parser is equipped with a default data
1322structure for storing locations (@pxref{Tracking Locations}, for more
1323details).
847bf1f5
AD
1324
1325Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1326set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1327is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1328@code{@@3}.
1329
1330When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1331of its left hand side (@pxref{Actions}). In the same way, another default
1332action is used for locations. However, the action for locations is general
847bf1f5 1333enough for most cases, meaning there is usually no need to describe for each
72d2299c 1334rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1335grouping, the default behavior of the output parser is to take the beginning
1336of the first symbol, and the end of the last symbol.
1337
342b8b6e 1338@node Bison Parser
ff7571c0 1339@section Bison Output: the Parser Implementation File
bfa74976
RS
1340@cindex Bison parser
1341@cindex Bison utility
1342@cindex lexical analyzer, purpose
1343@cindex parser
1344
ff7571c0
JD
1345When you run Bison, you give it a Bison grammar file as input. The
1346most important output is a C source file that implements a parser for
1347the language described by the grammar. This parser is called a
1348@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1349implementation file}. Keep in mind that the Bison utility and the
1350Bison parser are two distinct programs: the Bison utility is a program
1351whose output is the Bison parser implementation file that becomes part
1352of your program.
bfa74976
RS
1353
1354The job of the Bison parser is to group tokens into groupings according to
1355the grammar rules---for example, to build identifiers and operators into
1356expressions. As it does this, it runs the actions for the grammar rules it
1357uses.
1358
704a47c4
AD
1359The tokens come from a function called the @dfn{lexical analyzer} that
1360you must supply in some fashion (such as by writing it in C). The Bison
1361parser calls the lexical analyzer each time it wants a new token. It
1362doesn't know what is ``inside'' the tokens (though their semantic values
1363may reflect this). Typically the lexical analyzer makes the tokens by
1364parsing characters of text, but Bison does not depend on this.
1365@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1366
ff7571c0
JD
1367The Bison parser implementation file is C code which defines a
1368function named @code{yyparse} which implements that grammar. This
1369function does not make a complete C program: you must supply some
1370additional functions. One is the lexical analyzer. Another is an
1371error-reporting function which the parser calls to report an error.
1372In addition, a complete C program must start with a function called
1373@code{main}; you have to provide this, and arrange for it to call
1374@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1375C-Language Interface}.
bfa74976 1376
f7ab6a50 1377Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1378write, all symbols defined in the Bison parser implementation file
1379itself begin with @samp{yy} or @samp{YY}. This includes interface
1380functions such as the lexical analyzer function @code{yylex}, the
1381error reporting function @code{yyerror} and the parser function
1382@code{yyparse} itself. This also includes numerous identifiers used
1383for internal purposes. Therefore, you should avoid using C
1384identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1385file except for the ones defined in this manual. Also, you should
1386avoid using the C identifiers @samp{malloc} and @samp{free} for
1387anything other than their usual meanings.
1388
1389In some cases the Bison parser implementation file includes system
1390headers, and in those cases your code should respect the identifiers
1391reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1392@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1393included as needed to declare memory allocators and related types.
1394@code{<libintl.h>} is included if message translation is in use
1395(@pxref{Internationalization}). Other system headers may be included
1396if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1397,Tracing Your Parser}).
7093d0f5 1398
342b8b6e 1399@node Stages
bfa74976
RS
1400@section Stages in Using Bison
1401@cindex stages in using Bison
1402@cindex using Bison
1403
1404The actual language-design process using Bison, from grammar specification
1405to a working compiler or interpreter, has these parts:
1406
1407@enumerate
1408@item
1409Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1410(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1411in the language, describe the action that is to be taken when an
1412instance of that rule is recognized. The action is described by a
1413sequence of C statements.
bfa74976
RS
1414
1415@item
704a47c4
AD
1416Write a lexical analyzer to process input and pass tokens to the parser.
1417The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1418Lexical Analyzer Function @code{yylex}}). It could also be produced
1419using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1420
1421@item
1422Write a controlling function that calls the Bison-produced parser.
1423
1424@item
1425Write error-reporting routines.
1426@end enumerate
1427
1428To turn this source code as written into a runnable program, you
1429must follow these steps:
1430
1431@enumerate
1432@item
1433Run Bison on the grammar to produce the parser.
1434
1435@item
1436Compile the code output by Bison, as well as any other source files.
1437
1438@item
1439Link the object files to produce the finished product.
1440@end enumerate
1441
342b8b6e 1442@node Grammar Layout
bfa74976
RS
1443@section The Overall Layout of a Bison Grammar
1444@cindex grammar file
1445@cindex file format
1446@cindex format of grammar file
1447@cindex layout of Bison grammar
1448
1449The input file for the Bison utility is a @dfn{Bison grammar file}. The
1450general form of a Bison grammar file is as follows:
1451
1452@example
1453%@{
08e49d20 1454@var{Prologue}
bfa74976
RS
1455%@}
1456
1457@var{Bison declarations}
1458
1459%%
1460@var{Grammar rules}
1461%%
08e49d20 1462@var{Epilogue}
bfa74976
RS
1463@end example
1464
1465@noindent
1466The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1467in every Bison grammar file to separate the sections.
1468
72d2299c 1469The prologue may define types and variables used in the actions. You can
342b8b6e 1470also use preprocessor commands to define macros used there, and use
bfa74976 1471@code{#include} to include header files that do any of these things.
38a92d50
PE
1472You need to declare the lexical analyzer @code{yylex} and the error
1473printer @code{yyerror} here, along with any other global identifiers
1474used by the actions in the grammar rules.
bfa74976
RS
1475
1476The Bison declarations declare the names of the terminal and nonterminal
1477symbols, and may also describe operator precedence and the data types of
1478semantic values of various symbols.
1479
1480The grammar rules define how to construct each nonterminal symbol from its
1481parts.
1482
38a92d50
PE
1483The epilogue can contain any code you want to use. Often the
1484definitions of functions declared in the prologue go here. In a
1485simple program, all the rest of the program can go here.
bfa74976 1486
342b8b6e 1487@node Examples
bfa74976
RS
1488@chapter Examples
1489@cindex simple examples
1490@cindex examples, simple
1491
aaaa2aae 1492Now we show and explain several sample programs written using Bison: a
bfa74976 1493reverse polish notation calculator, an algebraic (infix) notation
aaaa2aae
AD
1494calculator --- later extended to track ``locations'' ---
1495and a multi-function calculator. All
1496produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1497
1498These examples are simple, but Bison grammars for real programming
aa08666d
AD
1499languages are written the same way. You can copy these examples into a
1500source file to try them.
bfa74976
RS
1501
1502@menu
f5f419de
DJ
1503* RPN Calc:: Reverse polish notation calculator;
1504 a first example with no operator precedence.
1505* Infix Calc:: Infix (algebraic) notation calculator.
1506 Operator precedence is introduced.
bfa74976 1507* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1508* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1509* Multi-function Calc:: Calculator with memory and trig functions.
1510 It uses multiple data-types for semantic values.
1511* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1512@end menu
1513
342b8b6e 1514@node RPN Calc
bfa74976
RS
1515@section Reverse Polish Notation Calculator
1516@cindex reverse polish notation
1517@cindex polish notation calculator
1518@cindex @code{rpcalc}
1519@cindex calculator, simple
1520
1521The first example is that of a simple double-precision @dfn{reverse polish
1522notation} calculator (a calculator using postfix operators). This example
1523provides a good starting point, since operator precedence is not an issue.
1524The second example will illustrate how operator precedence is handled.
1525
1526The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1527@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1528
1529@menu
f5f419de
DJ
1530* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1531* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1532* Rpcalc Lexer:: The lexical analyzer.
1533* Rpcalc Main:: The controlling function.
1534* Rpcalc Error:: The error reporting function.
1535* Rpcalc Generate:: Running Bison on the grammar file.
1536* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1537@end menu
1538
f5f419de 1539@node Rpcalc Declarations
bfa74976
RS
1540@subsection Declarations for @code{rpcalc}
1541
1542Here are the C and Bison declarations for the reverse polish notation
1543calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1544
24ec0837 1545@comment file: rpcalc.y
bfa74976 1546@example
72d2299c 1547/* Reverse polish notation calculator. */
bfa74976 1548
efbc95a7 1549@group
bfa74976 1550%@{
24ec0837 1551 #include <stdio.h>
38a92d50
PE
1552 #include <math.h>
1553 int yylex (void);
1554 void yyerror (char const *);
bfa74976 1555%@}
efbc95a7 1556@end group
bfa74976 1557
435575cb 1558%define api.value.type @{double@}
bfa74976
RS
1559%token NUM
1560
72d2299c 1561%% /* Grammar rules and actions follow. */
bfa74976
RS
1562@end example
1563
75f5aaea 1564The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1565preprocessor directives and two forward declarations.
bfa74976 1566
bfa74976
RS
1567The @code{#include} directive is used to declare the exponentiation
1568function @code{pow}.
1569
38a92d50
PE
1570The forward declarations for @code{yylex} and @code{yyerror} are
1571needed because the C language requires that functions be declared
1572before they are used. These functions will be defined in the
1573epilogue, but the parser calls them so they must be declared in the
1574prologue.
1575
21e3a2b5
AD
1576The second section, Bison declarations, provides information to Bison about
1577the tokens and their types (@pxref{Bison Declarations, ,The Bison
1578Declarations Section}).
1579
1580The @code{%define} directive defines the variable @code{api.value.type},
1581thus specifying the C data type for semantic values of both tokens and
1582groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The Bison
1583parser will use whatever type @code{api.value.type} is defined as; if you
1584don't define it, @code{int} is the default. Because we specify
435575cb
AD
1585@samp{@{double@}}, each token and each expression has an associated value,
1586which is a floating point number. C code can use @code{YYSTYPE} to refer to
1587the value @code{api.value.type}.
21e3a2b5
AD
1588
1589Each terminal symbol that is not a single-character literal must be
1590declared. (Single-character literals normally don't need to be declared.)
1591In this example, all the arithmetic operators are designated by
1592single-character literals, so the only terminal symbol that needs to be
1593declared is @code{NUM}, the token type for numeric constants.
bfa74976 1594
342b8b6e 1595@node Rpcalc Rules
bfa74976
RS
1596@subsection Grammar Rules for @code{rpcalc}
1597
1598Here are the grammar rules for the reverse polish notation calculator.
1599
24ec0837 1600@comment file: rpcalc.y
bfa74976 1601@example
aaaa2aae 1602@group
5e9b6624 1603input:
6240346a 1604 %empty
5e9b6624 1605| input line
bfa74976 1606;
aaaa2aae 1607@end group
bfa74976 1608
aaaa2aae 1609@group
5e9b6624
AD
1610line:
1611 '\n'
1612| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1613;
aaaa2aae 1614@end group
bfa74976 1615
aaaa2aae 1616@group
5e9b6624
AD
1617exp:
1618 NUM @{ $$ = $1; @}
1619| exp exp '+' @{ $$ = $1 + $2; @}
1620| exp exp '-' @{ $$ = $1 - $2; @}
1621| exp exp '*' @{ $$ = $1 * $2; @}
1622| exp exp '/' @{ $$ = $1 / $2; @}
1623| exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1624| exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1625;
aaaa2aae 1626@end group
bfa74976
RS
1627%%
1628@end example
1629
1630The groupings of the rpcalc ``language'' defined here are the expression
1631(given the name @code{exp}), the line of input (@code{line}), and the
1632complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1633symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1634which is read as ``or''. The following sections explain what these rules
1635mean.
1636
1637The semantics of the language is determined by the actions taken when a
1638grouping is recognized. The actions are the C code that appears inside
1639braces. @xref{Actions}.
1640
1641You must specify these actions in C, but Bison provides the means for
1642passing semantic values between the rules. In each action, the
1643pseudo-variable @code{$$} stands for the semantic value for the grouping
1644that the rule is going to construct. Assigning a value to @code{$$} is the
1645main job of most actions. The semantic values of the components of the
1646rule are referred to as @code{$1}, @code{$2}, and so on.
1647
1648@menu
24ec0837
AD
1649* Rpcalc Input:: Explanation of the @code{input} nonterminal
1650* Rpcalc Line:: Explanation of the @code{line} nonterminal
1651* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976
RS
1652@end menu
1653
342b8b6e 1654@node Rpcalc Input
bfa74976
RS
1655@subsubsection Explanation of @code{input}
1656
1657Consider the definition of @code{input}:
1658
1659@example
5e9b6624 1660input:
6240346a 1661 %empty
5e9b6624 1662| input line
bfa74976
RS
1663;
1664@end example
1665
1666This definition reads as follows: ``A complete input is either an empty
1667string, or a complete input followed by an input line''. Notice that
1668``complete input'' is defined in terms of itself. This definition is said
1669to be @dfn{left recursive} since @code{input} appears always as the
1670leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1671
1672The first alternative is empty because there are no symbols between the
1673colon and the first @samp{|}; this means that @code{input} can match an
1674empty string of input (no tokens). We write the rules this way because it
1675is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
6240346a
AD
1676It's conventional to put an empty alternative first and to use the
1677(optional) @code{%empty} directive, or to write the comment @samp{/* empty
1678*/} in it (@pxref{Empty Rules}).
bfa74976
RS
1679
1680The second alternate rule (@code{input line}) handles all nontrivial input.
1681It means, ``After reading any number of lines, read one more line if
1682possible.'' The left recursion makes this rule into a loop. Since the
1683first alternative matches empty input, the loop can be executed zero or
1684more times.
1685
1686The parser function @code{yyparse} continues to process input until a
1687grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1688input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1689
342b8b6e 1690@node Rpcalc Line
bfa74976
RS
1691@subsubsection Explanation of @code{line}
1692
1693Now consider the definition of @code{line}:
1694
1695@example
5e9b6624
AD
1696line:
1697 '\n'
1698| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1699;
1700@end example
1701
1702The first alternative is a token which is a newline character; this means
1703that rpcalc accepts a blank line (and ignores it, since there is no
1704action). The second alternative is an expression followed by a newline.
1705This is the alternative that makes rpcalc useful. The semantic value of
1706the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1707question is the first symbol in the alternative. The action prints this
1708value, which is the result of the computation the user asked for.
1709
1710This action is unusual because it does not assign a value to @code{$$}. As
1711a consequence, the semantic value associated with the @code{line} is
1712uninitialized (its value will be unpredictable). This would be a bug if
1713that value were ever used, but we don't use it: once rpcalc has printed the
1714value of the user's input line, that value is no longer needed.
1715
342b8b6e 1716@node Rpcalc Expr
bfa74976
RS
1717@subsubsection Explanation of @code{expr}
1718
1719The @code{exp} grouping has several rules, one for each kind of expression.
1720The first rule handles the simplest expressions: those that are just numbers.
1721The second handles an addition-expression, which looks like two expressions
1722followed by a plus-sign. The third handles subtraction, and so on.
1723
1724@example
5e9b6624
AD
1725exp:
1726 NUM
1727| exp exp '+' @{ $$ = $1 + $2; @}
1728| exp exp '-' @{ $$ = $1 - $2; @}
1729@dots{}
1730;
bfa74976
RS
1731@end example
1732
1733We have used @samp{|} to join all the rules for @code{exp}, but we could
1734equally well have written them separately:
1735
1736@example
5e9b6624
AD
1737exp: NUM ;
1738exp: exp exp '+' @{ $$ = $1 + $2; @};
1739exp: exp exp '-' @{ $$ = $1 - $2; @};
1740@dots{}
bfa74976
RS
1741@end example
1742
1743Most of the rules have actions that compute the value of the expression in
1744terms of the value of its parts. For example, in the rule for addition,
1745@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1746the second one. The third component, @code{'+'}, has no meaningful
1747associated semantic value, but if it had one you could refer to it as
1748@code{$3}. When @code{yyparse} recognizes a sum expression using this
1749rule, the sum of the two subexpressions' values is produced as the value of
1750the entire expression. @xref{Actions}.
1751
1752You don't have to give an action for every rule. When a rule has no
1753action, Bison by default copies the value of @code{$1} into @code{$$}.
1754This is what happens in the first rule (the one that uses @code{NUM}).
1755
1756The formatting shown here is the recommended convention, but Bison does
72d2299c 1757not require it. You can add or change white space as much as you wish.
bfa74976
RS
1758For example, this:
1759
1760@example
5e9b6624 1761exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1762@end example
1763
1764@noindent
1765means the same thing as this:
1766
1767@example
5e9b6624
AD
1768exp:
1769 NUM
1770| exp exp '+' @{ $$ = $1 + $2; @}
1771| @dots{}
99a9344e 1772;
bfa74976
RS
1773@end example
1774
1775@noindent
1776The latter, however, is much more readable.
1777
342b8b6e 1778@node Rpcalc Lexer
bfa74976
RS
1779@subsection The @code{rpcalc} Lexical Analyzer
1780@cindex writing a lexical analyzer
1781@cindex lexical analyzer, writing
1782
704a47c4
AD
1783The lexical analyzer's job is low-level parsing: converting characters
1784or sequences of characters into tokens. The Bison parser gets its
1785tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1786Analyzer Function @code{yylex}}.
bfa74976 1787
8a4281b9 1788Only a simple lexical analyzer is needed for the RPN
c827f760 1789calculator. This
bfa74976
RS
1790lexical analyzer skips blanks and tabs, then reads in numbers as
1791@code{double} and returns them as @code{NUM} tokens. Any other character
1792that isn't part of a number is a separate token. Note that the token-code
1793for such a single-character token is the character itself.
1794
1795The return value of the lexical analyzer function is a numeric code which
1796represents a token type. The same text used in Bison rules to stand for
1797this token type is also a C expression for the numeric code for the type.
1798This works in two ways. If the token type is a character literal, then its
e966383b 1799numeric code is that of the character; you can use the same
bfa74976
RS
1800character literal in the lexical analyzer to express the number. If the
1801token type is an identifier, that identifier is defined by Bison as a C
1802macro whose definition is the appropriate number. In this example,
1803therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1804
1964ad8c
AD
1805The semantic value of the token (if it has one) is stored into the
1806global variable @code{yylval}, which is where the Bison parser will look
21e3a2b5
AD
1807for it. (The C data type of @code{yylval} is @code{YYSTYPE}, whose value
1808was defined at the beginning of the grammar via @samp{%define api.value.type
435575cb 1809@{double@}}; @pxref{Rpcalc Declarations,,Declarations for @code{rpcalc}}.)
bfa74976 1810
72d2299c
PE
1811A token type code of zero is returned if the end-of-input is encountered.
1812(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1813
1814Here is the code for the lexical analyzer:
1815
24ec0837 1816@comment file: rpcalc.y
bfa74976
RS
1817@example
1818@group
72d2299c 1819/* The lexical analyzer returns a double floating point
e966383b 1820 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1821 of the character read if not a number. It skips all blanks
1822 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1823
1824#include <ctype.h>
1825@end group
1826
1827@group
13863333
AD
1828int
1829yylex (void)
bfa74976
RS
1830@{
1831 int c;
1832
72d2299c 1833 /* Skip white space. */
13863333 1834 while ((c = getchar ()) == ' ' || c == '\t')
d4fca427 1835 continue;
bfa74976
RS
1836@end group
1837@group
72d2299c 1838 /* Process numbers. */
13863333 1839 if (c == '.' || isdigit (c))
bfa74976
RS
1840 @{
1841 ungetc (c, stdin);
1842 scanf ("%lf", &yylval);
1843 return NUM;
1844 @}
1845@end group
1846@group
72d2299c 1847 /* Return end-of-input. */
13863333 1848 if (c == EOF)
bfa74976 1849 return 0;
72d2299c 1850 /* Return a single char. */
13863333 1851 return c;
bfa74976
RS
1852@}
1853@end group
1854@end example
1855
342b8b6e 1856@node Rpcalc Main
bfa74976
RS
1857@subsection The Controlling Function
1858@cindex controlling function
1859@cindex main function in simple example
1860
1861In keeping with the spirit of this example, the controlling function is
1862kept to the bare minimum. The only requirement is that it call
1863@code{yyparse} to start the process of parsing.
1864
24ec0837 1865@comment file: rpcalc.y
bfa74976
RS
1866@example
1867@group
13863333
AD
1868int
1869main (void)
bfa74976 1870@{
13863333 1871 return yyparse ();
bfa74976
RS
1872@}
1873@end group
1874@end example
1875
342b8b6e 1876@node Rpcalc Error
bfa74976
RS
1877@subsection The Error Reporting Routine
1878@cindex error reporting routine
1879
1880When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1881function @code{yyerror} to print an error message (usually but not
6e649e65 1882always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1883@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1884here is the definition we will use:
bfa74976 1885
24ec0837 1886@comment file: rpcalc.y
bfa74976 1887@example
bfa74976
RS
1888#include <stdio.h>
1889
aaaa2aae 1890@group
38a92d50 1891/* Called by yyparse on error. */
13863333 1892void
38a92d50 1893yyerror (char const *s)
bfa74976 1894@{
4e03e201 1895 fprintf (stderr, "%s\n", s);
bfa74976
RS
1896@}
1897@end group
1898@end example
1899
1900After @code{yyerror} returns, the Bison parser may recover from the error
1901and continue parsing if the grammar contains a suitable error rule
1902(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1903have not written any error rules in this example, so any invalid input will
1904cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1905real calculator, but it is adequate for the first example.
bfa74976 1906
f5f419de 1907@node Rpcalc Generate
bfa74976
RS
1908@subsection Running Bison to Make the Parser
1909@cindex running Bison (introduction)
1910
ceed8467
AD
1911Before running Bison to produce a parser, we need to decide how to
1912arrange all the source code in one or more source files. For such a
ff7571c0
JD
1913simple example, the easiest thing is to put everything in one file,
1914the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1915@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1916(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1917
1918For a large project, you would probably have several source files, and use
1919@code{make} to arrange to recompile them.
1920
ff7571c0
JD
1921With all the source in the grammar file, you use the following command
1922to convert it into a parser implementation file:
bfa74976
RS
1923
1924@example
fa4d969f 1925bison @var{file}.y
bfa74976
RS
1926@end example
1927
1928@noindent
ff7571c0
JD
1929In this example, the grammar file is called @file{rpcalc.y} (for
1930``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1931implementation file named @file{@var{file}.tab.c}, removing the
1932@samp{.y} from the grammar file name. The parser implementation file
1933contains the source code for @code{yyparse}. The additional functions
1934in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1935copied verbatim to the parser implementation file.
bfa74976 1936
342b8b6e 1937@node Rpcalc Compile
ff7571c0 1938@subsection Compiling the Parser Implementation File
bfa74976
RS
1939@cindex compiling the parser
1940
ff7571c0 1941Here is how to compile and run the parser implementation file:
bfa74976
RS
1942
1943@example
1944@group
1945# @r{List files in current directory.}
9edcd895 1946$ @kbd{ls}
bfa74976
RS
1947rpcalc.tab.c rpcalc.y
1948@end group
1949
1950@group
1951# @r{Compile the Bison parser.}
1952# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1953$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1954@end group
1955
1956@group
1957# @r{List files again.}
9edcd895 1958$ @kbd{ls}
bfa74976
RS
1959rpcalc rpcalc.tab.c rpcalc.y
1960@end group
1961@end example
1962
1963The file @file{rpcalc} now contains the executable code. Here is an
1964example session using @code{rpcalc}.
1965
1966@example
9edcd895
AD
1967$ @kbd{rpcalc}
1968@kbd{4 9 +}
24ec0837 1969@result{} 13
9edcd895 1970@kbd{3 7 + 3 4 5 *+-}
24ec0837 1971@result{} -13
9edcd895 1972@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
24ec0837 1973@result{} 13
9edcd895 1974@kbd{5 6 / 4 n +}
24ec0837 1975@result{} -3.166666667
9edcd895 1976@kbd{3 4 ^} @r{Exponentiation}
24ec0837 1977@result{} 81
9edcd895
AD
1978@kbd{^D} @r{End-of-file indicator}
1979$
bfa74976
RS
1980@end example
1981
342b8b6e 1982@node Infix Calc
bfa74976
RS
1983@section Infix Notation Calculator: @code{calc}
1984@cindex infix notation calculator
1985@cindex @code{calc}
1986@cindex calculator, infix notation
1987
1988We now modify rpcalc to handle infix operators instead of postfix. Infix
1989notation involves the concept of operator precedence and the need for
1990parentheses nested to arbitrary depth. Here is the Bison code for
1991@file{calc.y}, an infix desk-top calculator.
1992
1993@example
38a92d50 1994/* Infix notation calculator. */
bfa74976 1995
aaaa2aae 1996@group
bfa74976 1997%@{
38a92d50
PE
1998 #include <math.h>
1999 #include <stdio.h>
2000 int yylex (void);
2001 void yyerror (char const *);
bfa74976 2002%@}
aaaa2aae 2003@end group
bfa74976 2004
aaaa2aae 2005@group
38a92d50 2006/* Bison declarations. */
435575cb 2007%define api.value.type @{double@}
bfa74976
RS
2008%token NUM
2009%left '-' '+'
2010%left '*' '/'
d78f0ac9
AD
2011%precedence NEG /* negation--unary minus */
2012%right '^' /* exponentiation */
aaaa2aae 2013@end group
bfa74976 2014
38a92d50 2015%% /* The grammar follows. */
aaaa2aae 2016@group
5e9b6624 2017input:
6240346a 2018 %empty
5e9b6624 2019| input line
bfa74976 2020;
aaaa2aae 2021@end group
bfa74976 2022
aaaa2aae 2023@group
5e9b6624
AD
2024line:
2025 '\n'
2026| exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976 2027;
aaaa2aae 2028@end group
bfa74976 2029
aaaa2aae 2030@group
5e9b6624
AD
2031exp:
2032 NUM @{ $$ = $1; @}
2033| exp '+' exp @{ $$ = $1 + $3; @}
2034| exp '-' exp @{ $$ = $1 - $3; @}
2035| exp '*' exp @{ $$ = $1 * $3; @}
2036| exp '/' exp @{ $$ = $1 / $3; @}
2037| '-' exp %prec NEG @{ $$ = -$2; @}
2038| exp '^' exp @{ $$ = pow ($1, $3); @}
2039| '(' exp ')' @{ $$ = $2; @}
bfa74976 2040;
aaaa2aae 2041@end group
bfa74976
RS
2042%%
2043@end example
2044
2045@noindent
ceed8467
AD
2046The functions @code{yylex}, @code{yyerror} and @code{main} can be the
2047same as before.
bfa74976
RS
2048
2049There are two important new features shown in this code.
2050
2051In the second section (Bison declarations), @code{%left} declares token
2052types and says they are left-associative operators. The declarations
2053@code{%left} and @code{%right} (right associativity) take the place of
2054@code{%token} which is used to declare a token type name without
d78f0ac9 2055associativity/precedence. (These tokens are single-character literals, which
bfa74976 2056ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 2057the associativity/precedence.)
bfa74976
RS
2058
2059Operator precedence is determined by the line ordering of the
2060declarations; the higher the line number of the declaration (lower on
2061the page or screen), the higher the precedence. Hence, exponentiation
2062has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
2063by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
2064only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 2065Precedence}.
bfa74976 2066
704a47c4
AD
2067The other important new feature is the @code{%prec} in the grammar
2068section for the unary minus operator. The @code{%prec} simply instructs
2069Bison that the rule @samp{| '-' exp} has the same precedence as
2070@code{NEG}---in this case the next-to-highest. @xref{Contextual
2071Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2072
2073Here is a sample run of @file{calc.y}:
2074
2075@need 500
2076@example
9edcd895
AD
2077$ @kbd{calc}
2078@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20796.880952381
9edcd895 2080@kbd{-56 + 2}
bfa74976 2081-54
9edcd895 2082@kbd{3 ^ 2}
bfa74976
RS
20839
2084@end example
2085
342b8b6e 2086@node Simple Error Recovery
bfa74976
RS
2087@section Simple Error Recovery
2088@cindex error recovery, simple
2089
2090Up to this point, this manual has not addressed the issue of @dfn{error
2091recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2092error. All we have handled is error reporting with @code{yyerror}.
2093Recall that by default @code{yyparse} returns after calling
2094@code{yyerror}. This means that an erroneous input line causes the
2095calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2096
2097The Bison language itself includes the reserved word @code{error}, which
2098may be included in the grammar rules. In the example below it has
2099been added to one of the alternatives for @code{line}:
2100
2101@example
2102@group
5e9b6624
AD
2103line:
2104 '\n'
2105| exp '\n' @{ printf ("\t%.10g\n", $1); @}
2106| error '\n' @{ yyerrok; @}
bfa74976
RS
2107;
2108@end group
2109@end example
2110
ceed8467 2111This addition to the grammar allows for simple error recovery in the
6e649e65 2112event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2113read, the error will be recognized by the third rule for @code{line},
2114and parsing will continue. (The @code{yyerror} function is still called
2115upon to print its message as well.) The action executes the statement
2116@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2117that error recovery is complete (@pxref{Error Recovery}). Note the
2118difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2119misprint.
bfa74976
RS
2120
2121This form of error recovery deals with syntax errors. There are other
2122kinds of errors; for example, division by zero, which raises an exception
2123signal that is normally fatal. A real calculator program must handle this
2124signal and use @code{longjmp} to return to @code{main} and resume parsing
2125input lines; it would also have to discard the rest of the current line of
2126input. We won't discuss this issue further because it is not specific to
2127Bison programs.
2128
342b8b6e
AD
2129@node Location Tracking Calc
2130@section Location Tracking Calculator: @code{ltcalc}
2131@cindex location tracking calculator
2132@cindex @code{ltcalc}
2133@cindex calculator, location tracking
2134
9edcd895
AD
2135This example extends the infix notation calculator with location
2136tracking. This feature will be used to improve the error messages. For
2137the sake of clarity, this example is a simple integer calculator, since
2138most of the work needed to use locations will be done in the lexical
72d2299c 2139analyzer.
342b8b6e
AD
2140
2141@menu
f5f419de
DJ
2142* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2143* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2144* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2145@end menu
2146
f5f419de 2147@node Ltcalc Declarations
342b8b6e
AD
2148@subsection Declarations for @code{ltcalc}
2149
9edcd895
AD
2150The C and Bison declarations for the location tracking calculator are
2151the same as the declarations for the infix notation calculator.
342b8b6e
AD
2152
2153@example
2154/* Location tracking calculator. */
2155
2156%@{
38a92d50
PE
2157 #include <math.h>
2158 int yylex (void);
2159 void yyerror (char const *);
342b8b6e
AD
2160%@}
2161
2162/* Bison declarations. */
aba47f56 2163%define api.value.type @{int@}
342b8b6e
AD
2164%token NUM
2165
2166%left '-' '+'
2167%left '*' '/'
d78f0ac9 2168%precedence NEG
342b8b6e
AD
2169%right '^'
2170
38a92d50 2171%% /* The grammar follows. */
342b8b6e
AD
2172@end example
2173
9edcd895
AD
2174@noindent
2175Note there are no declarations specific to locations. Defining a data
2176type for storing locations is not needed: we will use the type provided
2177by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2178four member structure with the following integer fields:
2179@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2180@code{last_column}. By conventions, and in accordance with the GNU
2181Coding Standards and common practice, the line and column count both
2182start at 1.
342b8b6e
AD
2183
2184@node Ltcalc Rules
2185@subsection Grammar Rules for @code{ltcalc}
2186
9edcd895
AD
2187Whether handling locations or not has no effect on the syntax of your
2188language. Therefore, grammar rules for this example will be very close
2189to those of the previous example: we will only modify them to benefit
2190from the new information.
342b8b6e 2191
9edcd895
AD
2192Here, we will use locations to report divisions by zero, and locate the
2193wrong expressions or subexpressions.
342b8b6e
AD
2194
2195@example
2196@group
5e9b6624 2197input:
6240346a 2198 %empty
5e9b6624 2199| input line
342b8b6e
AD
2200;
2201@end group
2202
2203@group
5e9b6624
AD
2204line:
2205 '\n'
2206| exp '\n' @{ printf ("%d\n", $1); @}
342b8b6e
AD
2207;
2208@end group
2209
2210@group
5e9b6624
AD
2211exp:
2212 NUM @{ $$ = $1; @}
2213| exp '+' exp @{ $$ = $1 + $3; @}
2214| exp '-' exp @{ $$ = $1 - $3; @}
2215| exp '*' exp @{ $$ = $1 * $3; @}
342b8b6e 2216@end group
342b8b6e 2217@group
5e9b6624
AD
2218| exp '/' exp
2219 @{
2220 if ($3)
2221 $$ = $1 / $3;
2222 else
2223 @{
2224 $$ = 1;
2225 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2226 @@3.first_line, @@3.first_column,
2227 @@3.last_line, @@3.last_column);
2228 @}
2229 @}
342b8b6e
AD
2230@end group
2231@group
5e9b6624
AD
2232| '-' exp %prec NEG @{ $$ = -$2; @}
2233| exp '^' exp @{ $$ = pow ($1, $3); @}
2234| '(' exp ')' @{ $$ = $2; @}
342b8b6e
AD
2235@end group
2236@end example
2237
2238This code shows how to reach locations inside of semantic actions, by
2239using the pseudo-variables @code{@@@var{n}} for rule components, and the
2240pseudo-variable @code{@@$} for groupings.
2241
9edcd895
AD
2242We don't need to assign a value to @code{@@$}: the output parser does it
2243automatically. By default, before executing the C code of each action,
2244@code{@@$} is set to range from the beginning of @code{@@1} to the end
2245of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2246can be redefined (@pxref{Location Default Action, , Default Action for
2247Locations}), and for very specific rules, @code{@@$} can be computed by
2248hand.
342b8b6e
AD
2249
2250@node Ltcalc Lexer
2251@subsection The @code{ltcalc} Lexical Analyzer.
2252
9edcd895 2253Until now, we relied on Bison's defaults to enable location
72d2299c 2254tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2255able to feed the parser with the token locations, as it already does for
2256semantic values.
342b8b6e 2257
9edcd895
AD
2258To this end, we must take into account every single character of the
2259input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2260
2261@example
2262@group
2263int
2264yylex (void)
2265@{
2266 int c;
18b519c0 2267@end group
342b8b6e 2268
18b519c0 2269@group
72d2299c 2270 /* Skip white space. */
342b8b6e
AD
2271 while ((c = getchar ()) == ' ' || c == '\t')
2272 ++yylloc.last_column;
18b519c0 2273@end group
342b8b6e 2274
18b519c0 2275@group
72d2299c 2276 /* Step. */
342b8b6e
AD
2277 yylloc.first_line = yylloc.last_line;
2278 yylloc.first_column = yylloc.last_column;
2279@end group
2280
2281@group
72d2299c 2282 /* Process numbers. */
342b8b6e
AD
2283 if (isdigit (c))
2284 @{
2285 yylval = c - '0';
2286 ++yylloc.last_column;
2287 while (isdigit (c = getchar ()))
2288 @{
2289 ++yylloc.last_column;
2290 yylval = yylval * 10 + c - '0';
2291 @}
2292 ungetc (c, stdin);
2293 return NUM;
2294 @}
2295@end group
2296
72d2299c 2297 /* Return end-of-input. */
342b8b6e
AD
2298 if (c == EOF)
2299 return 0;
2300
d4fca427 2301@group
72d2299c 2302 /* Return a single char, and update location. */
342b8b6e
AD
2303 if (c == '\n')
2304 @{
2305 ++yylloc.last_line;
2306 yylloc.last_column = 0;
2307 @}
2308 else
2309 ++yylloc.last_column;
2310 return c;
2311@}
d4fca427 2312@end group
342b8b6e
AD
2313@end example
2314
9edcd895
AD
2315Basically, the lexical analyzer performs the same processing as before:
2316it skips blanks and tabs, and reads numbers or single-character tokens.
2317In addition, it updates @code{yylloc}, the global variable (of type
2318@code{YYLTYPE}) containing the token's location.
342b8b6e 2319
9edcd895 2320Now, each time this function returns a token, the parser has its number
72d2299c 2321as well as its semantic value, and its location in the text. The last
9edcd895
AD
2322needed change is to initialize @code{yylloc}, for example in the
2323controlling function:
342b8b6e
AD
2324
2325@example
9edcd895 2326@group
342b8b6e
AD
2327int
2328main (void)
2329@{
2330 yylloc.first_line = yylloc.last_line = 1;
2331 yylloc.first_column = yylloc.last_column = 0;
2332 return yyparse ();
2333@}
9edcd895 2334@end group
342b8b6e
AD
2335@end example
2336
9edcd895
AD
2337Remember that computing locations is not a matter of syntax. Every
2338character must be associated to a location update, whether it is in
2339valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2340
2341@node Multi-function Calc
bfa74976
RS
2342@section Multi-Function Calculator: @code{mfcalc}
2343@cindex multi-function calculator
2344@cindex @code{mfcalc}
2345@cindex calculator, multi-function
2346
2347Now that the basics of Bison have been discussed, it is time to move on to
2348a more advanced problem. The above calculators provided only five
2349functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2350be nice to have a calculator that provides other mathematical functions such
2351as @code{sin}, @code{cos}, etc.
2352
2353It is easy to add new operators to the infix calculator as long as they are
2354only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2355back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2356adding a new operator. But we want something more flexible: built-in
2357functions whose syntax has this form:
2358
2359@example
2360@var{function_name} (@var{argument})
2361@end example
2362
2363@noindent
2364At the same time, we will add memory to the calculator, by allowing you
2365to create named variables, store values in them, and use them later.
2366Here is a sample session with the multi-function calculator:
2367
2368@example
d4fca427 2369@group
9edcd895
AD
2370$ @kbd{mfcalc}
2371@kbd{pi = 3.141592653589}
f9c75dd0 2372@result{} 3.1415926536
d4fca427
AD
2373@end group
2374@group
9edcd895 2375@kbd{sin(pi)}
f9c75dd0 2376@result{} 0.0000000000
d4fca427 2377@end group
9edcd895 2378@kbd{alpha = beta1 = 2.3}
f9c75dd0 2379@result{} 2.3000000000
9edcd895 2380@kbd{alpha}
f9c75dd0 2381@result{} 2.3000000000
9edcd895 2382@kbd{ln(alpha)}
f9c75dd0 2383@result{} 0.8329091229
9edcd895 2384@kbd{exp(ln(beta1))}
f9c75dd0 2385@result{} 2.3000000000
9edcd895 2386$
bfa74976
RS
2387@end example
2388
2389Note that multiple assignment and nested function calls are permitted.
2390
2391@menu
f5f419de
DJ
2392* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2393* Mfcalc Rules:: Grammar rules for the calculator.
2394* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
2395* Mfcalc Lexer:: The lexical analyzer.
2396* Mfcalc Main:: The controlling function.
bfa74976
RS
2397@end menu
2398
f5f419de 2399@node Mfcalc Declarations
bfa74976
RS
2400@subsection Declarations for @code{mfcalc}
2401
2402Here are the C and Bison declarations for the multi-function calculator.
2403
93c150b6 2404@comment file: mfcalc.y: 1
c93f22fc 2405@example
18b519c0 2406@group
bfa74976 2407%@{
f9c75dd0 2408 #include <stdio.h> /* For printf, etc. */
578e3413 2409 #include <math.h> /* For pow, used in the grammar. */
4c9b8f13 2410 #include "calc.h" /* Contains definition of 'symrec'. */
38a92d50
PE
2411 int yylex (void);
2412 void yyerror (char const *);
bfa74976 2413%@}
18b519c0 2414@end group
93c150b6 2415
90b89dad
AD
2416%define api.value.type union /* Generate YYSTYPE from these types: */
2417%token <double> NUM /* Simple double precision number. */
2418%token <symrec*> VAR FNCT /* Symbol table pointer: variable and function. */
2419%type <double> exp
bfa74976 2420
18b519c0 2421@group
e8f7155d 2422%precedence '='
bfa74976
RS
2423%left '-' '+'
2424%left '*' '/'
d78f0ac9
AD
2425%precedence NEG /* negation--unary minus */
2426%right '^' /* exponentiation */
18b519c0 2427@end group
c93f22fc 2428@end example
bfa74976
RS
2429
2430The above grammar introduces only two new features of the Bison language.
2431These features allow semantic values to have various data types
2432(@pxref{Multiple Types, ,More Than One Value Type}).
2433
90b89dad
AD
2434The special @code{union} value assigned to the @code{%define} variable
2435@code{api.value.type} specifies that the symbols are defined with their data
2436types. Bison will generate an appropriate definition of @code{YYSTYPE} to
2437store these values.
bfa74976 2438
90b89dad
AD
2439Since values can now have various types, it is necessary to associate a type
2440with each grammar symbol whose semantic value is used. These symbols are
2441@code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their declarations are
2442augmented with their data type (placed between angle brackets). For
2443instance, values of @code{NUM} are stored in @code{double}.
bfa74976 2444
90b89dad
AD
2445The Bison construct @code{%type} is used for declaring nonterminal symbols,
2446just as @code{%token} is used for declaring token types. Previously we did
2447not use @code{%type} before because nonterminal symbols are normally
2448declared implicitly by the rules that define them. But @code{exp} must be
2449declared explicitly so we can specify its value type. @xref{Type Decl,
2450,Nonterminal Symbols}.
bfa74976 2451
342b8b6e 2452@node Mfcalc Rules
bfa74976
RS
2453@subsection Grammar Rules for @code{mfcalc}
2454
2455Here are the grammar rules for the multi-function calculator.
2456Most of them are copied directly from @code{calc}; three rules,
2457those which mention @code{VAR} or @code{FNCT}, are new.
2458
93c150b6 2459@comment file: mfcalc.y: 3
c93f22fc 2460@example
93c150b6 2461%% /* The grammar follows. */
18b519c0 2462@group
5e9b6624 2463input:
6240346a 2464 %empty
5e9b6624 2465| input line
bfa74976 2466;
18b519c0 2467@end group
bfa74976 2468
18b519c0 2469@group
bfa74976 2470line:
5e9b6624
AD
2471 '\n'
2472| exp '\n' @{ printf ("%.10g\n", $1); @}
2473| error '\n' @{ yyerrok; @}
bfa74976 2474;
18b519c0 2475@end group
bfa74976 2476
18b519c0 2477@group
5e9b6624
AD
2478exp:
2479 NUM @{ $$ = $1; @}
2480| VAR @{ $$ = $1->value.var; @}
2481| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2482| FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2483| exp '+' exp @{ $$ = $1 + $3; @}
2484| exp '-' exp @{ $$ = $1 - $3; @}
2485| exp '*' exp @{ $$ = $1 * $3; @}
2486| exp '/' exp @{ $$ = $1 / $3; @}
2487| '-' exp %prec NEG @{ $$ = -$2; @}
2488| exp '^' exp @{ $$ = pow ($1, $3); @}
2489| '(' exp ')' @{ $$ = $2; @}
bfa74976 2490;
18b519c0 2491@end group
38a92d50 2492/* End of grammar. */
bfa74976 2493%%
c93f22fc 2494@end example
bfa74976 2495
f5f419de 2496@node Mfcalc Symbol Table
bfa74976
RS
2497@subsection The @code{mfcalc} Symbol Table
2498@cindex symbol table example
2499
2500The multi-function calculator requires a symbol table to keep track of the
2501names and meanings of variables and functions. This doesn't affect the
2502grammar rules (except for the actions) or the Bison declarations, but it
2503requires some additional C functions for support.
2504
2505The symbol table itself consists of a linked list of records. Its
2506definition, which is kept in the header @file{calc.h}, is as follows. It
2507provides for either functions or variables to be placed in the table.
2508
f9c75dd0 2509@comment file: calc.h
c93f22fc 2510@example
bfa74976 2511@group
38a92d50 2512/* Function type. */
32dfccf8 2513typedef double (*func_t) (double);
72f889cc 2514@end group
32dfccf8 2515
72f889cc 2516@group
38a92d50 2517/* Data type for links in the chain of symbols. */
bfa74976
RS
2518struct symrec
2519@{
38a92d50 2520 char *name; /* name of symbol */
bfa74976 2521 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2522 union
2523 @{
38a92d50
PE
2524 double var; /* value of a VAR */
2525 func_t fnctptr; /* value of a FNCT */
bfa74976 2526 @} value;
38a92d50 2527 struct symrec *next; /* link field */
bfa74976
RS
2528@};
2529@end group
2530
2531@group
2532typedef struct symrec symrec;
2533
4c9b8f13 2534/* The symbol table: a chain of 'struct symrec'. */
bfa74976
RS
2535extern symrec *sym_table;
2536
a730d142 2537symrec *putsym (char const *, int);
38a92d50 2538symrec *getsym (char const *);
bfa74976 2539@end group
c93f22fc 2540@end example
bfa74976 2541
aeb57fb6
AD
2542The new version of @code{main} will call @code{init_table} to initialize
2543the symbol table:
bfa74976 2544
93c150b6 2545@comment file: mfcalc.y: 3
c93f22fc 2546@example
18b519c0 2547@group
bfa74976
RS
2548struct init
2549@{
38a92d50
PE
2550 char const *fname;
2551 double (*fnct) (double);
bfa74976
RS
2552@};
2553@end group
2554
2555@group
38a92d50 2556struct init const arith_fncts[] =
13863333 2557@{
f9c75dd0
AD
2558 @{ "atan", atan @},
2559 @{ "cos", cos @},
2560 @{ "exp", exp @},
2561 @{ "ln", log @},
2562 @{ "sin", sin @},
2563 @{ "sqrt", sqrt @},
2564 @{ 0, 0 @},
13863333 2565@};
18b519c0 2566@end group
bfa74976 2567
18b519c0 2568@group
4c9b8f13 2569/* The symbol table: a chain of 'struct symrec'. */
38a92d50 2570symrec *sym_table;
bfa74976
RS
2571@end group
2572
2573@group
72d2299c 2574/* Put arithmetic functions in table. */
f9c75dd0 2575static
13863333
AD
2576void
2577init_table (void)
bfa74976
RS
2578@{
2579 int i;
bfa74976
RS
2580 for (i = 0; arith_fncts[i].fname != 0; i++)
2581 @{
aaaa2aae 2582 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2583 ptr->value.fnctptr = arith_fncts[i].fnct;
2584 @}
2585@}
2586@end group
c93f22fc 2587@end example
bfa74976
RS
2588
2589By simply editing the initialization list and adding the necessary include
2590files, you can add additional functions to the calculator.
2591
2592Two important functions allow look-up and installation of symbols in the
2593symbol table. The function @code{putsym} is passed a name and the type
2594(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2595linked to the front of the list, and a pointer to the object is returned.
2596The function @code{getsym} is passed the name of the symbol to look up. If
2597found, a pointer to that symbol is returned; otherwise zero is returned.
2598
93c150b6 2599@comment file: mfcalc.y: 3
c93f22fc 2600@example
f9c75dd0
AD
2601#include <stdlib.h> /* malloc. */
2602#include <string.h> /* strlen. */
2603
d4fca427 2604@group
bfa74976 2605symrec *
38a92d50 2606putsym (char const *sym_name, int sym_type)
bfa74976 2607@{
aaaa2aae 2608 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2609 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2610 strcpy (ptr->name,sym_name);
2611 ptr->type = sym_type;
72d2299c 2612 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2613 ptr->next = (struct symrec *)sym_table;
2614 sym_table = ptr;
2615 return ptr;
2616@}
d4fca427 2617@end group
bfa74976 2618
d4fca427 2619@group
bfa74976 2620symrec *
38a92d50 2621getsym (char const *sym_name)
bfa74976
RS
2622@{
2623 symrec *ptr;
2624 for (ptr = sym_table; ptr != (symrec *) 0;
2625 ptr = (symrec *)ptr->next)
f518dbaf 2626 if (strcmp (ptr->name, sym_name) == 0)
bfa74976
RS
2627 return ptr;
2628 return 0;
2629@}
d4fca427 2630@end group
c93f22fc 2631@end example
bfa74976 2632
aeb57fb6
AD
2633@node Mfcalc Lexer
2634@subsection The @code{mfcalc} Lexer
2635
bfa74976
RS
2636The function @code{yylex} must now recognize variables, numeric values, and
2637the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2638characters with a leading letter are recognized as either variables or
bfa74976
RS
2639functions depending on what the symbol table says about them.
2640
2641The string is passed to @code{getsym} for look up in the symbol table. If
2642the name appears in the table, a pointer to its location and its type
2643(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2644already in the table, then it is installed as a @code{VAR} using
2645@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2646returned to @code{yyparse}.
bfa74976
RS
2647
2648No change is needed in the handling of numeric values and arithmetic
2649operators in @code{yylex}.
2650
93c150b6 2651@comment file: mfcalc.y: 3
c93f22fc 2652@example
bfa74976 2653#include <ctype.h>
13863333 2654
18b519c0 2655@group
13863333
AD
2656int
2657yylex (void)
bfa74976
RS
2658@{
2659 int c;
2660
72d2299c 2661 /* Ignore white space, get first nonwhite character. */
d4fca427
AD
2662 while ((c = getchar ()) == ' ' || c == '\t')
2663 continue;
bfa74976
RS
2664
2665 if (c == EOF)
2666 return 0;
2667@end group
2668
2669@group
2670 /* Char starts a number => parse the number. */
2671 if (c == '.' || isdigit (c))
2672 @{
2673 ungetc (c, stdin);
90b89dad 2674 scanf ("%lf", &yylval.NUM);
bfa74976
RS
2675 return NUM;
2676 @}
2677@end group
90b89dad 2678@end example
bfa74976 2679
90b89dad
AD
2680@noindent
2681Bison generated a definition of @code{YYSTYPE} with a member named
2682@code{NUM} to store value of @code{NUM} symbols.
2683
2684@comment file: mfcalc.y: 3
2685@example
bfa74976
RS
2686@group
2687 /* Char starts an identifier => read the name. */
2688 if (isalpha (c))
2689 @{
aaaa2aae
AD
2690 /* Initially make the buffer long enough
2691 for a 40-character symbol name. */
2692 static size_t length = 40;
bfa74976 2693 static char *symbuf = 0;
aaaa2aae 2694 symrec *s;
bfa74976
RS
2695 int i;
2696@end group
aaaa2aae
AD
2697 if (!symbuf)
2698 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2699
2700 i = 0;
2701 do
bfa74976
RS
2702@group
2703 @{
2704 /* If buffer is full, make it bigger. */
2705 if (i == length)
2706 @{
2707 length *= 2;
18b519c0 2708 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2709 @}
2710 /* Add this character to the buffer. */
2711 symbuf[i++] = c;
2712 /* Get another character. */
2713 c = getchar ();
2714 @}
2715@end group
2716@group
72d2299c 2717 while (isalnum (c));
bfa74976
RS
2718
2719 ungetc (c, stdin);
2720 symbuf[i] = '\0';
2721@end group
2722
2723@group
2724 s = getsym (symbuf);
2725 if (s == 0)
2726 s = putsym (symbuf, VAR);
90b89dad 2727 *((symrec**) &yylval) = s;
bfa74976
RS
2728 return s->type;
2729 @}
2730
2731 /* Any other character is a token by itself. */
2732 return c;
2733@}
2734@end group
c93f22fc 2735@end example
bfa74976 2736
aeb57fb6
AD
2737@node Mfcalc Main
2738@subsection The @code{mfcalc} Main
2739
2740The error reporting function is unchanged, and the new version of
93c150b6
AD
2741@code{main} includes a call to @code{init_table} and sets the @code{yydebug}
2742on user demand (@xref{Tracing, , Tracing Your Parser}, for details):
aeb57fb6 2743
93c150b6 2744@comment file: mfcalc.y: 3
c93f22fc 2745@example
aeb57fb6
AD
2746@group
2747/* Called by yyparse on error. */
2748void
2749yyerror (char const *s)
2750@{
2751 fprintf (stderr, "%s\n", s);
2752@}
2753@end group
2754
aaaa2aae 2755@group
aeb57fb6
AD
2756int
2757main (int argc, char const* argv[])
2758@{
93c150b6
AD
2759 int i;
2760 /* Enable parse traces on option -p. */
2761 for (i = 1; i < argc; ++i)
2762 if (!strcmp(argv[i], "-p"))
2763 yydebug = 1;
aeb57fb6
AD
2764 init_table ();
2765 return yyparse ();
2766@}
2767@end group
c93f22fc 2768@end example
aeb57fb6 2769
72d2299c 2770This program is both powerful and flexible. You may easily add new
704a47c4
AD
2771functions, and it is a simple job to modify this code to install
2772predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2773
342b8b6e 2774@node Exercises
bfa74976
RS
2775@section Exercises
2776@cindex exercises
2777
2778@enumerate
2779@item
2780Add some new functions from @file{math.h} to the initialization list.
2781
2782@item
2783Add another array that contains constants and their values. Then
2784modify @code{init_table} to add these constants to the symbol table.
2785It will be easiest to give the constants type @code{VAR}.
2786
2787@item
2788Make the program report an error if the user refers to an
2789uninitialized variable in any way except to store a value in it.
2790@end enumerate
2791
342b8b6e 2792@node Grammar File
bfa74976
RS
2793@chapter Bison Grammar Files
2794
2795Bison takes as input a context-free grammar specification and produces a
2796C-language function that recognizes correct instances of the grammar.
2797
ff7571c0 2798The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2799@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2800
2801@menu
303834cc
JD
2802* Grammar Outline:: Overall layout of the grammar file.
2803* Symbols:: Terminal and nonterminal symbols.
2804* Rules:: How to write grammar rules.
303834cc
JD
2805* Semantics:: Semantic values and actions.
2806* Tracking Locations:: Locations and actions.
2807* Named References:: Using named references in actions.
2808* Declarations:: All kinds of Bison declarations are described here.
2809* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2810@end menu
2811
342b8b6e 2812@node Grammar Outline
bfa74976 2813@section Outline of a Bison Grammar
c949ada3
AD
2814@cindex comment
2815@findex // @dots{}
2816@findex /* @dots{} */
bfa74976
RS
2817
2818A Bison grammar file has four main sections, shown here with the
2819appropriate delimiters:
2820
2821@example
2822%@{
38a92d50 2823 @var{Prologue}
bfa74976
RS
2824%@}
2825
2826@var{Bison declarations}
2827
2828%%
2829@var{Grammar rules}
2830%%
2831
75f5aaea 2832@var{Epilogue}
bfa74976
RS
2833@end example
2834
2835Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
c949ada3
AD
2836As a GNU extension, @samp{//} introduces a comment that continues until end
2837of line.
bfa74976
RS
2838
2839@menu
f5f419de 2840* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2841* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2842* Bison Declarations:: Syntax and usage of the Bison declarations section.
2843* Grammar Rules:: Syntax and usage of the grammar rules section.
2844* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2845@end menu
2846
38a92d50 2847@node Prologue
75f5aaea
MA
2848@subsection The prologue
2849@cindex declarations section
2850@cindex Prologue
2851@cindex declarations
bfa74976 2852
f8e1c9e5
AD
2853The @var{Prologue} section contains macro definitions and declarations
2854of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2855rules. These are copied to the beginning of the parser implementation
2856file so that they precede the definition of @code{yyparse}. You can
2857use @samp{#include} to get the declarations from a header file. If
2858you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2859@samp{%@}} delimiters that bracket this section.
bfa74976 2860
9c437126 2861The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2862of @samp{%@}} that is outside a comment, a string literal, or a
2863character constant.
2864
c732d2c6
AD
2865You may have more than one @var{Prologue} section, intermixed with the
2866@var{Bison declarations}. This allows you to have C and Bison
2867declarations that refer to each other. For example, the @code{%union}
2868declaration may use types defined in a header file, and you may wish to
2869prototype functions that take arguments of type @code{YYSTYPE}. This
2870can be done with two @var{Prologue} blocks, one before and one after the
2871@code{%union} declaration.
2872
c93f22fc 2873@example
efbc95a7 2874@group
c732d2c6 2875%@{
aef3da86 2876 #define _GNU_SOURCE
38a92d50
PE
2877 #include <stdio.h>
2878 #include "ptypes.h"
c732d2c6 2879%@}
efbc95a7 2880@end group
c732d2c6 2881
efbc95a7 2882@group
c732d2c6 2883%union @{
779e7ceb 2884 long int n;
c732d2c6
AD
2885 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2886@}
efbc95a7 2887@end group
c732d2c6 2888
efbc95a7 2889@group
c732d2c6 2890%@{
38a92d50
PE
2891 static void print_token_value (FILE *, int, YYSTYPE);
2892 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6 2893%@}
efbc95a7 2894@end group
c732d2c6
AD
2895
2896@dots{}
c93f22fc 2897@end example
c732d2c6 2898
aef3da86
PE
2899When in doubt, it is usually safer to put prologue code before all
2900Bison declarations, rather than after. For example, any definitions
2901of feature test macros like @code{_GNU_SOURCE} or
2902@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2903feature test macros can affect the behavior of Bison-generated
2904@code{#include} directives.
2905
2cbe6b7f
JD
2906@node Prologue Alternatives
2907@subsection Prologue Alternatives
2908@cindex Prologue Alternatives
2909
136a0f76 2910@findex %code
16dc6a9e
JD
2911@findex %code requires
2912@findex %code provides
2913@findex %code top
85894313 2914
2cbe6b7f 2915The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2916inflexible. As an alternative, Bison provides a @code{%code}
2917directive with an explicit qualifier field, which identifies the
2918purpose of the code and thus the location(s) where Bison should
2919generate it. For C/C++, the qualifier can be omitted for the default
2920location, or it can be one of @code{requires}, @code{provides},
e0c07222 2921@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2922
2923Look again at the example of the previous section:
2924
c93f22fc 2925@example
efbc95a7 2926@group
2cbe6b7f
JD
2927%@{
2928 #define _GNU_SOURCE
2929 #include <stdio.h>
2930 #include "ptypes.h"
2931%@}
efbc95a7 2932@end group
2cbe6b7f 2933
efbc95a7 2934@group
2cbe6b7f
JD
2935%union @{
2936 long int n;
2937 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2938@}
efbc95a7 2939@end group
2cbe6b7f 2940
efbc95a7 2941@group
2cbe6b7f
JD
2942%@{
2943 static void print_token_value (FILE *, int, YYSTYPE);
2944 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2945%@}
efbc95a7 2946@end group
2cbe6b7f
JD
2947
2948@dots{}
c93f22fc 2949@end example
2cbe6b7f
JD
2950
2951@noindent
ff7571c0
JD
2952Notice that there are two @var{Prologue} sections here, but there's a
2953subtle distinction between their functionality. For example, if you
2954decide to override Bison's default definition for @code{YYLTYPE}, in
2955which @var{Prologue} section should you write your new definition?
2956You should write it in the first since Bison will insert that code
2957into the parser implementation file @emph{before} the default
2958@code{YYLTYPE} definition. In which @var{Prologue} section should you
2959prototype an internal function, @code{trace_token}, that accepts
2960@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2961prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2962@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2963
2964This distinction in functionality between the two @var{Prologue} sections is
2965established by the appearance of the @code{%union} between them.
a501eca9 2966This behavior raises a few questions.
2cbe6b7f
JD
2967First, why should the position of a @code{%union} affect definitions related to
2968@code{YYLTYPE} and @code{yytokentype}?
2969Second, what if there is no @code{%union}?
2970In that case, the second kind of @var{Prologue} section is not available.
2971This behavior is not intuitive.
2972
8e0a5e9e 2973To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2974@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2975Let's go ahead and add the new @code{YYLTYPE} definition and the
2976@code{trace_token} prototype at the same time:
2977
c93f22fc 2978@example
16dc6a9e 2979%code top @{
2cbe6b7f
JD
2980 #define _GNU_SOURCE
2981 #include <stdio.h>
8e0a5e9e
JD
2982
2983 /* WARNING: The following code really belongs
4c9b8f13 2984 * in a '%code requires'; see below. */
8e0a5e9e 2985
2cbe6b7f
JD
2986 #include "ptypes.h"
2987 #define YYLTYPE YYLTYPE
2988 typedef struct YYLTYPE
2989 @{
2990 int first_line;
2991 int first_column;
2992 int last_line;
2993 int last_column;
2994 char *filename;
2995 @} YYLTYPE;
2996@}
2997
efbc95a7 2998@group
2cbe6b7f
JD
2999%union @{
3000 long int n;
3001 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3002@}
efbc95a7 3003@end group
2cbe6b7f 3004
efbc95a7 3005@group
2cbe6b7f
JD
3006%code @{
3007 static void print_token_value (FILE *, int, YYSTYPE);
3008 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3009 static void trace_token (enum yytokentype token, YYLTYPE loc);
3010@}
efbc95a7 3011@end group
2cbe6b7f
JD
3012
3013@dots{}
c93f22fc 3014@end example
2cbe6b7f
JD
3015
3016@noindent
16dc6a9e
JD
3017In this way, @code{%code top} and the unqualified @code{%code} achieve the same
3018functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 3019explicit which kind you intend.
2cbe6b7f
JD
3020Moreover, both kinds are always available even in the absence of @code{%union}.
3021
ff7571c0
JD
3022The @code{%code top} block above logically contains two parts. The
3023first two lines before the warning need to appear near the top of the
3024parser implementation file. The first line after the warning is
3025required by @code{YYSTYPE} and thus also needs to appear in the parser
3026implementation file. However, if you've instructed Bison to generate
3027a parser header file (@pxref{Decl Summary, ,%defines}), you probably
3028want that line to appear before the @code{YYSTYPE} definition in that
3029header file as well. The @code{YYLTYPE} definition should also appear
3030in the parser header file to override the default @code{YYLTYPE}
3031definition there.
2cbe6b7f 3032
16dc6a9e 3033In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
3034lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
3035definitions.
16dc6a9e 3036Thus, they belong in one or more @code{%code requires}:
9bc0dd67 3037
c93f22fc 3038@example
d4fca427 3039@group
16dc6a9e 3040%code top @{
2cbe6b7f
JD
3041 #define _GNU_SOURCE
3042 #include <stdio.h>
3043@}
d4fca427 3044@end group
2cbe6b7f 3045
d4fca427 3046@group
16dc6a9e 3047%code requires @{
9bc0dd67
JD
3048 #include "ptypes.h"
3049@}
d4fca427
AD
3050@end group
3051@group
9bc0dd67
JD
3052%union @{
3053 long int n;
3054 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3055@}
d4fca427 3056@end group
9bc0dd67 3057
d4fca427 3058@group
16dc6a9e 3059%code requires @{
2cbe6b7f
JD
3060 #define YYLTYPE YYLTYPE
3061 typedef struct YYLTYPE
3062 @{
3063 int first_line;
3064 int first_column;
3065 int last_line;
3066 int last_column;
3067 char *filename;
3068 @} YYLTYPE;
3069@}
d4fca427 3070@end group
2cbe6b7f 3071
d4fca427 3072@group
136a0f76 3073%code @{
2cbe6b7f
JD
3074 static void print_token_value (FILE *, int, YYSTYPE);
3075 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3076 static void trace_token (enum yytokentype token, YYLTYPE loc);
3077@}
d4fca427 3078@end group
2cbe6b7f
JD
3079
3080@dots{}
c93f22fc 3081@end example
2cbe6b7f
JD
3082
3083@noindent
ff7571c0
JD
3084Now Bison will insert @code{#include "ptypes.h"} and the new
3085@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
3086and @code{YYLTYPE} definitions in both the parser implementation file
3087and the parser header file. (By the same reasoning, @code{%code
3088requires} would also be the appropriate place to write your own
3089definition for @code{YYSTYPE}.)
3090
3091When you are writing dependency code for @code{YYSTYPE} and
3092@code{YYLTYPE}, you should prefer @code{%code requires} over
3093@code{%code top} regardless of whether you instruct Bison to generate
3094a parser header file. When you are writing code that you need Bison
3095to insert only into the parser implementation file and that has no
3096special need to appear at the top of that file, you should prefer the
3097unqualified @code{%code} over @code{%code top}. These practices will
3098make the purpose of each block of your code explicit to Bison and to
3099other developers reading your grammar file. Following these
3100practices, we expect the unqualified @code{%code} and @code{%code
3101requires} to be the most important of the four @var{Prologue}
16dc6a9e 3102alternatives.
a501eca9 3103
ff7571c0
JD
3104At some point while developing your parser, you might decide to
3105provide @code{trace_token} to modules that are external to your
3106parser. Thus, you might wish for Bison to insert the prototype into
3107both the parser header file and the parser implementation file. Since
3108this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 3109@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
3110@code{%code requires}. More importantly, since it depends upon
3111@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3112sufficient. Instead, move its prototype from the unqualified
3113@code{%code} to a @code{%code provides}:
2cbe6b7f 3114
c93f22fc 3115@example
d4fca427 3116@group
16dc6a9e 3117%code top @{
2cbe6b7f 3118 #define _GNU_SOURCE
136a0f76 3119 #include <stdio.h>
2cbe6b7f 3120@}
d4fca427 3121@end group
136a0f76 3122
d4fca427 3123@group
16dc6a9e 3124%code requires @{
2cbe6b7f
JD
3125 #include "ptypes.h"
3126@}
d4fca427
AD
3127@end group
3128@group
2cbe6b7f
JD
3129%union @{
3130 long int n;
3131 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3132@}
d4fca427 3133@end group
2cbe6b7f 3134
d4fca427 3135@group
16dc6a9e 3136%code requires @{
2cbe6b7f
JD
3137 #define YYLTYPE YYLTYPE
3138 typedef struct YYLTYPE
3139 @{
3140 int first_line;
3141 int first_column;
3142 int last_line;
3143 int last_column;
3144 char *filename;
3145 @} YYLTYPE;
3146@}
d4fca427 3147@end group
2cbe6b7f 3148
d4fca427 3149@group
16dc6a9e 3150%code provides @{
2cbe6b7f
JD
3151 void trace_token (enum yytokentype token, YYLTYPE loc);
3152@}
d4fca427 3153@end group
2cbe6b7f 3154
d4fca427 3155@group
2cbe6b7f 3156%code @{
9bc0dd67
JD
3157 static void print_token_value (FILE *, int, YYSTYPE);
3158 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3159@}
d4fca427 3160@end group
9bc0dd67
JD
3161
3162@dots{}
c93f22fc 3163@end example
9bc0dd67 3164
2cbe6b7f 3165@noindent
ff7571c0
JD
3166Bison will insert the @code{trace_token} prototype into both the
3167parser header file and the parser implementation file after the
3168definitions for @code{yytokentype}, @code{YYLTYPE}, and
3169@code{YYSTYPE}.
2cbe6b7f 3170
ff7571c0
JD
3171The above examples are careful to write directives in an order that
3172reflects the layout of the generated parser implementation and header
3173files: @code{%code top}, @code{%code requires}, @code{%code provides},
3174and then @code{%code}. While your grammar files may generally be
3175easier to read if you also follow this order, Bison does not require
3176it. Instead, Bison lets you choose an organization that makes sense
3177to you.
2cbe6b7f 3178
a501eca9 3179You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3180In that case, Bison concatenates the contained code in declaration order.
3181This is the only way in which the position of one of these directives within
3182the grammar file affects its functionality.
3183
3184The result of the previous two properties is greater flexibility in how you may
3185organize your grammar file.
3186For example, you may organize semantic-type-related directives by semantic
3187type:
3188
c93f22fc 3189@example
d4fca427 3190@group
16dc6a9e 3191%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3192%union @{ type1 field1; @}
3193%destructor @{ type1_free ($$); @} <field1>
c5026327 3194%printer @{ type1_print (yyoutput, $$); @} <field1>
d4fca427 3195@end group
2cbe6b7f 3196
d4fca427 3197@group
16dc6a9e 3198%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3199%union @{ type2 field2; @}
3200%destructor @{ type2_free ($$); @} <field2>
c5026327 3201%printer @{ type2_print (yyoutput, $$); @} <field2>
d4fca427 3202@end group
c93f22fc 3203@end example
2cbe6b7f
JD
3204
3205@noindent
3206You could even place each of the above directive groups in the rules section of
3207the grammar file next to the set of rules that uses the associated semantic
3208type.
61fee93e
JD
3209(In the rules section, you must terminate each of those directives with a
3210semicolon.)
2cbe6b7f
JD
3211And you don't have to worry that some directive (like a @code{%union}) in the
3212definitions section is going to adversely affect their functionality in some
3213counter-intuitive manner just because it comes first.
3214Such an organization is not possible using @var{Prologue} sections.
3215
a501eca9 3216This section has been concerned with explaining the advantages of the four
8e0a5e9e 3217@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3218However, in most cases when using these directives, you shouldn't need to
3219think about all the low-level ordering issues discussed here.
3220Instead, you should simply use these directives to label each block of your
3221code according to its purpose and let Bison handle the ordering.
3222@code{%code} is the most generic label.
16dc6a9e
JD
3223Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3224as needed.
a501eca9 3225
342b8b6e 3226@node Bison Declarations
bfa74976
RS
3227@subsection The Bison Declarations Section
3228@cindex Bison declarations (introduction)
3229@cindex declarations, Bison (introduction)
3230
3231The @var{Bison declarations} section contains declarations that define
3232terminal and nonterminal symbols, specify precedence, and so on.
3233In some simple grammars you may not need any declarations.
3234@xref{Declarations, ,Bison Declarations}.
3235
342b8b6e 3236@node Grammar Rules
bfa74976
RS
3237@subsection The Grammar Rules Section
3238@cindex grammar rules section
3239@cindex rules section for grammar
3240
3241The @dfn{grammar rules} section contains one or more Bison grammar
3242rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3243
3244There must always be at least one grammar rule, and the first
3245@samp{%%} (which precedes the grammar rules) may never be omitted even
3246if it is the first thing in the file.
3247
38a92d50 3248@node Epilogue
75f5aaea 3249@subsection The epilogue
bfa74976 3250@cindex additional C code section
75f5aaea 3251@cindex epilogue
bfa74976
RS
3252@cindex C code, section for additional
3253
ff7571c0
JD
3254The @var{Epilogue} is copied verbatim to the end of the parser
3255implementation file, just as the @var{Prologue} is copied to the
3256beginning. This is the most convenient place to put anything that you
3257want to have in the parser implementation file but which need not come
3258before the definition of @code{yyparse}. For example, the definitions
3259of @code{yylex} and @code{yyerror} often go here. Because C requires
3260functions to be declared before being used, you often need to declare
3261functions like @code{yylex} and @code{yyerror} in the Prologue, even
3262if you define them in the Epilogue. @xref{Interface, ,Parser
3263C-Language Interface}.
bfa74976
RS
3264
3265If the last section is empty, you may omit the @samp{%%} that separates it
3266from the grammar rules.
3267
f8e1c9e5
AD
3268The Bison parser itself contains many macros and identifiers whose names
3269start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3270any such names (except those documented in this manual) in the epilogue
3271of the grammar file.
bfa74976 3272
342b8b6e 3273@node Symbols
bfa74976
RS
3274@section Symbols, Terminal and Nonterminal
3275@cindex nonterminal symbol
3276@cindex terminal symbol
3277@cindex token type
3278@cindex symbol
3279
3280@dfn{Symbols} in Bison grammars represent the grammatical classifications
3281of the language.
3282
3283A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3284class of syntactically equivalent tokens. You use the symbol in grammar
3285rules to mean that a token in that class is allowed. The symbol is
3286represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3287function returns a token type code to indicate what kind of token has
3288been read. You don't need to know what the code value is; you can use
3289the symbol to stand for it.
bfa74976 3290
f8e1c9e5
AD
3291A @dfn{nonterminal symbol} stands for a class of syntactically
3292equivalent groupings. The symbol name is used in writing grammar rules.
3293By convention, it should be all lower case.
bfa74976 3294
82f3355e
JD
3295Symbol names can contain letters, underscores, periods, and non-initial
3296digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3297with POSIX Yacc. Periods and dashes make symbol names less convenient to
3298use with named references, which require brackets around such names
3299(@pxref{Named References}). Terminal symbols that contain periods or dashes
3300make little sense: since they are not valid symbols (in most programming
3301languages) they are not exported as token names.
bfa74976 3302
931c7513 3303There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3304
3305@itemize @bullet
3306@item
3307A @dfn{named token type} is written with an identifier, like an
c827f760 3308identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3309such name must be defined with a Bison declaration such as
3310@code{%token}. @xref{Token Decl, ,Token Type Names}.
3311
3312@item
3313@cindex character token
3314@cindex literal token
3315@cindex single-character literal
931c7513
RS
3316A @dfn{character token type} (or @dfn{literal character token}) is
3317written in the grammar using the same syntax used in C for character
3318constants; for example, @code{'+'} is a character token type. A
3319character token type doesn't need to be declared unless you need to
3320specify its semantic value data type (@pxref{Value Type, ,Data Types of
3321Semantic Values}), associativity, or precedence (@pxref{Precedence,
3322,Operator Precedence}).
bfa74976
RS
3323
3324By convention, a character token type is used only to represent a
3325token that consists of that particular character. Thus, the token
3326type @code{'+'} is used to represent the character @samp{+} as a
3327token. Nothing enforces this convention, but if you depart from it,
3328your program will confuse other readers.
3329
3330All the usual escape sequences used in character literals in C can be
3331used in Bison as well, but you must not use the null character as a
72d2299c
PE
3332character literal because its numeric code, zero, signifies
3333end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3334for @code{yylex}}). Also, unlike standard C, trigraphs have no
3335special meaning in Bison character literals, nor is backslash-newline
3336allowed.
931c7513
RS
3337
3338@item
3339@cindex string token
3340@cindex literal string token
9ecbd125 3341@cindex multicharacter literal
931c7513
RS
3342A @dfn{literal string token} is written like a C string constant; for
3343example, @code{"<="} is a literal string token. A literal string token
3344doesn't need to be declared unless you need to specify its semantic
14ded682 3345value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3346(@pxref{Precedence}).
3347
3348You can associate the literal string token with a symbolic name as an
3349alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3350Declarations}). If you don't do that, the lexical analyzer has to
3351retrieve the token number for the literal string token from the
3352@code{yytname} table (@pxref{Calling Convention}).
3353
c827f760 3354@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3355
3356By convention, a literal string token is used only to represent a token
3357that consists of that particular string. Thus, you should use the token
3358type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3359does not enforce this convention, but if you depart from it, people who
931c7513
RS
3360read your program will be confused.
3361
3362All the escape sequences used in string literals in C can be used in
92ac3705
PE
3363Bison as well, except that you must not use a null character within a
3364string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3365meaning in Bison string literals, nor is backslash-newline allowed. A
3366literal string token must contain two or more characters; for a token
3367containing just one character, use a character token (see above).
bfa74976
RS
3368@end itemize
3369
3370How you choose to write a terminal symbol has no effect on its
3371grammatical meaning. That depends only on where it appears in rules and
3372on when the parser function returns that symbol.
3373
72d2299c
PE
3374The value returned by @code{yylex} is always one of the terminal
3375symbols, except that a zero or negative value signifies end-of-input.
3376Whichever way you write the token type in the grammar rules, you write
3377it the same way in the definition of @code{yylex}. The numeric code
3378for a character token type is simply the positive numeric code of the
3379character, so @code{yylex} can use the identical value to generate the
3380requisite code, though you may need to convert it to @code{unsigned
3381char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3382Each named token type becomes a C macro in the parser implementation
3383file, so @code{yylex} can use the name to stand for the code. (This
3384is why periods don't make sense in terminal symbols.) @xref{Calling
3385Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3386
3387If @code{yylex} is defined in a separate file, you need to arrange for the
3388token-type macro definitions to be available there. Use the @samp{-d}
3389option when you run Bison, so that it will write these macro definitions
3390into a separate header file @file{@var{name}.tab.h} which you can include
3391in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3392
72d2299c 3393If you want to write a grammar that is portable to any Standard C
9d9b8b70 3394host, you must use only nonnull character tokens taken from the basic
c827f760 3395execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3396digits, the 52 lower- and upper-case English letters, and the
3397characters in the following C-language string:
3398
3399@example
3400"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3401@end example
3402
f8e1c9e5
AD
3403The @code{yylex} function and Bison must use a consistent character set
3404and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3405ASCII environment, but then compile and run the resulting
f8e1c9e5 3406program in an environment that uses an incompatible character set like
8a4281b9
JD
3407EBCDIC, the resulting program may not work because the tables
3408generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3409character tokens. It is standard practice for software distributions to
3410contain C source files that were generated by Bison in an
8a4281b9
JD
3411ASCII environment, so installers on platforms that are
3412incompatible with ASCII must rebuild those files before
f8e1c9e5 3413compiling them.
e966383b 3414
bfa74976
RS
3415The symbol @code{error} is a terminal symbol reserved for error recovery
3416(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3417In particular, @code{yylex} should never return this value. The default
3418value of the error token is 256, unless you explicitly assigned 256 to
3419one of your tokens with a @code{%token} declaration.
bfa74976 3420
342b8b6e 3421@node Rules
09add9c2
AD
3422@section Grammar Rules
3423
3424A Bison grammar is a list of rules.
3425
3426@menu
3427* Rules Syntax:: Syntax of the rules.
3428* Empty Rules:: Symbols that can match the empty string.
3429* Recursion:: Writing recursive rules.
3430@end menu
3431
3432@node Rules Syntax
3433@subsection Syntax of Grammar Rules
bfa74976
RS
3434@cindex rule syntax
3435@cindex grammar rule syntax
3436@cindex syntax of grammar rules
3437
3438A Bison grammar rule has the following general form:
3439
3440@example
5e9b6624 3441@var{result}: @var{components}@dots{};
bfa74976
RS
3442@end example
3443
3444@noindent
9ecbd125 3445where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3446and @var{components} are various terminal and nonterminal symbols that
13863333 3447are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3448
3449For example,
3450
3451@example
5e9b6624 3452exp: exp '+' exp;
bfa74976
RS
3453@end example
3454
3455@noindent
3456says that two groupings of type @code{exp}, with a @samp{+} token in between,
3457can be combined into a larger grouping of type @code{exp}.
3458
72d2299c
PE
3459White space in rules is significant only to separate symbols. You can add
3460extra white space as you wish.
bfa74976
RS
3461
3462Scattered among the components can be @var{actions} that determine
3463the semantics of the rule. An action looks like this:
3464
3465@example
3466@{@var{C statements}@}
3467@end example
3468
3469@noindent
287c78f6
PE
3470@cindex braced code
3471This is an example of @dfn{braced code}, that is, C code surrounded by
3472braces, much like a compound statement in C@. Braced code can contain
3473any sequence of C tokens, so long as its braces are balanced. Bison
3474does not check the braced code for correctness directly; it merely
ff7571c0
JD
3475copies the code to the parser implementation file, where the C
3476compiler can check it.
287c78f6
PE
3477
3478Within braced code, the balanced-brace count is not affected by braces
3479within comments, string literals, or character constants, but it is
3480affected by the C digraphs @samp{<%} and @samp{%>} that represent
3481braces. At the top level braced code must be terminated by @samp{@}}
3482and not by a digraph. Bison does not look for trigraphs, so if braced
3483code uses trigraphs you should ensure that they do not affect the
3484nesting of braces or the boundaries of comments, string literals, or
3485character constants.
3486
bfa74976
RS
3487Usually there is only one action and it follows the components.
3488@xref{Actions}.
3489
3490@findex |
3491Multiple rules for the same @var{result} can be written separately or can
3492be joined with the vertical-bar character @samp{|} as follows:
3493
bfa74976
RS
3494@example
3495@group
5e9b6624
AD
3496@var{result}:
3497 @var{rule1-components}@dots{}
3498| @var{rule2-components}@dots{}
3499@dots{}
3500;
bfa74976
RS
3501@end group
3502@end example
bfa74976
RS
3503
3504@noindent
3505They are still considered distinct rules even when joined in this way.
3506
09add9c2
AD
3507@node Empty Rules
3508@subsection Empty Rules
3509@cindex empty rule
3510@cindex rule, empty
3511@findex %empty
3512
3513A rule is said to be @dfn{empty} if its right-hand side (@var{components})
3514is empty. It means that @var{result} can match the empty string. For
3515example, here is how to define an optional semicolon:
3516
3517@example
3518semicolon.opt: | ";";
3519@end example
3520
3521@noindent
3522It is easy not to see an empty rule, especially when @code{|} is used. The
3523@code{%empty} directive allows to make explicit that a rule is empty on
3524purpose:
bfa74976
RS
3525
3526@example
3527@group
09add9c2
AD
3528semicolon.opt:
3529 %empty
3530| ";"
5e9b6624 3531;
bfa74976 3532@end group
09add9c2 3533@end example
bfa74976 3534
09add9c2
AD
3535Flagging a non-empty rule with @code{%empty} is an error. If run with
3536@option{-Wempty-rule}, @command{bison} will report empty rules without
3537@code{%empty}. Using @code{%empty} enables this warning, unless
3538@option{-Wno-empty-rule} was specified.
3539
3540The @code{%empty} directive is a Bison extension, it does not work with
3541Yacc. To remain compatible with POSIX Yacc, it is customary to write a
3542comment @samp{/* empty */} in each rule with no components:
3543
3544@example
bfa74976 3545@group
09add9c2
AD
3546semicolon.opt:
3547 /* empty */
3548| ";"
5e9b6624 3549;
bfa74976
RS
3550@end group
3551@end example
3552
bfa74976 3553
342b8b6e 3554@node Recursion
09add9c2 3555@subsection Recursive Rules
bfa74976 3556@cindex recursive rule
09add9c2 3557@cindex rule, recursive
bfa74976 3558
f8e1c9e5
AD
3559A rule is called @dfn{recursive} when its @var{result} nonterminal
3560appears also on its right hand side. Nearly all Bison grammars need to
3561use recursion, because that is the only way to define a sequence of any
3562number of a particular thing. Consider this recursive definition of a
9ecbd125 3563comma-separated sequence of one or more expressions:
bfa74976
RS
3564
3565@example
3566@group
5e9b6624
AD
3567expseq1:
3568 exp
3569| expseq1 ',' exp
3570;
bfa74976
RS
3571@end group
3572@end example
3573
3574@cindex left recursion
3575@cindex right recursion
3576@noindent
3577Since the recursive use of @code{expseq1} is the leftmost symbol in the
3578right hand side, we call this @dfn{left recursion}. By contrast, here
3579the same construct is defined using @dfn{right recursion}:
3580
3581@example
3582@group
5e9b6624
AD
3583expseq1:
3584 exp
3585| exp ',' expseq1
3586;
bfa74976
RS
3587@end group
3588@end example
3589
3590@noindent
ec3bc396
AD
3591Any kind of sequence can be defined using either left recursion or right
3592recursion, but you should always use left recursion, because it can
3593parse a sequence of any number of elements with bounded stack space.
3594Right recursion uses up space on the Bison stack in proportion to the
3595number of elements in the sequence, because all the elements must be
3596shifted onto the stack before the rule can be applied even once.
3597@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3598of this.
bfa74976
RS
3599
3600@cindex mutual recursion
3601@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3602rule does not appear directly on its right hand side, but does appear
3603in rules for other nonterminals which do appear on its right hand
13863333 3604side.
bfa74976
RS
3605
3606For example:
3607
3608@example
3609@group
5e9b6624
AD
3610expr:
3611 primary
3612| primary '+' primary
3613;
bfa74976
RS
3614@end group
3615
3616@group
5e9b6624
AD
3617primary:
3618 constant
3619| '(' expr ')'
3620;
bfa74976
RS
3621@end group
3622@end example
3623
3624@noindent
3625defines two mutually-recursive nonterminals, since each refers to the
3626other.
3627
342b8b6e 3628@node Semantics
bfa74976
RS
3629@section Defining Language Semantics
3630@cindex defining language semantics
13863333 3631@cindex language semantics, defining
bfa74976
RS
3632
3633The grammar rules for a language determine only the syntax. The semantics
3634are determined by the semantic values associated with various tokens and
3635groupings, and by the actions taken when various groupings are recognized.
3636
3637For example, the calculator calculates properly because the value
3638associated with each expression is the proper number; it adds properly
3639because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3640the numbers associated with @var{x} and @var{y}.
3641
3642@menu
3643* Value Type:: Specifying one data type for all semantic values.
3644* Multiple Types:: Specifying several alternative data types.
90b89dad 3645* Type Generation:: Generating the semantic value type.
e4d49586
AD
3646* Union Decl:: Declaring the set of all semantic value types.
3647* Structured Value Type:: Providing a structured semantic value type.
bfa74976
RS
3648* Actions:: An action is the semantic definition of a grammar rule.
3649* Action Types:: Specifying data types for actions to operate on.
3650* Mid-Rule Actions:: Most actions go at the end of a rule.
3651 This says when, why and how to use the exceptional
3652 action in the middle of a rule.
3653@end menu
3654
342b8b6e 3655@node Value Type
bfa74976
RS
3656@subsection Data Types of Semantic Values
3657@cindex semantic value type
3658@cindex value type, semantic
3659@cindex data types of semantic values
3660@cindex default data type
3661
3662In a simple program it may be sufficient to use the same data type for
3663the semantic values of all language constructs. This was true in the
8a4281b9 3664RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3665Notation Calculator}).
bfa74976 3666
ddc8ede1
PE
3667Bison normally uses the type @code{int} for semantic values if your
3668program uses the same data type for all language constructs. To
21e3a2b5
AD
3669specify some other type, define the @code{%define} variable
3670@code{api.value.type} like this:
3671
3672@example
435575cb 3673%define api.value.type @{double@}
21e3a2b5
AD
3674@end example
3675
3676@noindent
3677or
3678
3679@example
435575cb 3680%define api.value.type @{struct semantic_type@}
21e3a2b5
AD
3681@end example
3682
3683The value of @code{api.value.type} should be a type name that does not
3684contain parentheses or square brackets.
3685
3686Alternatively, instead of relying of Bison's @code{%define} support, you may
3687rely on the C/C++ preprocessor and define @code{YYSTYPE} as a macro, like
3688this:
bfa74976
RS
3689
3690@example
3691#define YYSTYPE double
3692@end example
3693
3694@noindent
342b8b6e 3695This macro definition must go in the prologue of the grammar file
21e3a2b5
AD
3696(@pxref{Grammar Outline, ,Outline of a Bison Grammar}). If compatibility
3697with POSIX Yacc matters to you, use this. Note however that Bison cannot
3698know @code{YYSTYPE}'s value, not even whether it is defined, so there are
3699services it cannot provide. Besides this works only for languages that have
3700a preprocessor.
bfa74976 3701
342b8b6e 3702@node Multiple Types
bfa74976
RS
3703@subsection More Than One Value Type
3704
3705In most programs, you will need different data types for different kinds
3706of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3707@code{int} or @code{long int}, while a string constant needs type
3708@code{char *}, and an identifier might need a pointer to an entry in the
3709symbol table.
bfa74976
RS
3710
3711To use more than one data type for semantic values in one parser, Bison
3712requires you to do two things:
3713
3714@itemize @bullet
3715@item
e4d49586
AD
3716Specify the entire collection of possible data types. There are several
3717options:
3718@itemize @bullet
90b89dad
AD
3719@item
3720let Bison compute the union type from the tags you assign to symbols;
3721
e4d49586
AD
3722@item
3723use the @code{%union} Bison declaration (@pxref{Union Decl, ,The Union
3724Declaration});
3725
3726@item
3727define the @code{%define} variable @code{api.value.type} to be a union type
3728whose members are the type tags (@pxref{Structured Value Type,, Providing a
3729Structured Semantic Value Type});
3730
3731@item
3732use a @code{typedef} or a @code{#define} to define @code{YYSTYPE} to be a
3733union type whose member names are the type tags.
3734@end itemize
bfa74976
RS
3735
3736@item
14ded682
AD
3737Choose one of those types for each symbol (terminal or nonterminal) for
3738which semantic values are used. This is done for tokens with the
3739@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3740and for groupings with the @code{%type} Bison declaration (@pxref{Type
3741Decl, ,Nonterminal Symbols}).
bfa74976
RS
3742@end itemize
3743
90b89dad
AD
3744@node Type Generation
3745@subsection Generating the Semantic Value Type
3746@cindex declaring value types
3747@cindex value types, declaring
3748@findex %define api.value.type union
3749
3750The special value @code{union} of the @code{%define} variable
3751@code{api.value.type} instructs Bison that the tags used with the
3752@code{%token} and @code{%type} directives are genuine types, not names of
3753members of @code{YYSTYPE}.
3754
3755For example:
3756
3757@example
3758%define api.value.type union
3759%token <int> INT "integer"
3760%token <int> 'n'
3761%type <int> expr
3762%token <char const *> ID "identifier"
3763@end example
3764
3765@noindent
3766generates an appropriate value of @code{YYSTYPE} to support each symbol
3767type. The name of the member of @code{YYSTYPE} for tokens than have a
3768declared identifier @var{id} (such as @code{INT} and @code{ID} above, but
3769not @code{'n'}) is @code{@var{id}}. The other symbols have unspecified
3770names on which you should not depend; instead, relying on C casts to access
3771the semantic value with the appropriate type:
3772
3773@example
3774/* For an "integer". */
3775yylval.INT = 42;
3776return INT;
3777
3778/* For an 'n', also declared as int. */
3779*((int*)&yylval) = 42;
3780return 'n';
3781
3782/* For an "identifier". */
3783yylval.ID = "42";
3784return ID;
3785@end example
3786
3787If the @code{%define} variable @code{api.token.prefix} is defined
3788(@pxref{%define Summary,,api.token.prefix}), then it is also used to prefix
3789the union member names. For instance, with @samp{%define api.token.prefix
630a0218 3790@{TOK_@}}:
90b89dad
AD
3791
3792@example
3793/* For an "integer". */
3794yylval.TOK_INT = 42;
3795return TOK_INT;
3796@end example
3797
1fa19a76
AD
3798This Bison extension cannot work if @code{%yacc} (or
3799@option{-y}/@option{--yacc}) is enabled, as POSIX mandates that Yacc
3800generate tokens as macros (e.g., @samp{#define INT 258}, or @samp{#define
3801TOK_INT 258}).
3802
90b89dad
AD
3803This feature is new, and user feedback would be most welcome.
3804
3805A similar feature is provided for C++ that in addition overcomes C++
3806limitations (that forbid non-trivial objects to be part of a @code{union}):
3807@samp{%define api.value.type variant}, see @ref{C++ Variants}.
3808
e4d49586
AD
3809@node Union Decl
3810@subsection The Union Declaration
3811@cindex declaring value types
3812@cindex value types, declaring
3813@findex %union
3814
3815The @code{%union} declaration specifies the entire collection of possible
3816data types for semantic values. The keyword @code{%union} is followed by
3817braced code containing the same thing that goes inside a @code{union} in C@.
3818
3819For example:
3820
3821@example
3822@group
3823%union @{
3824 double val;
3825 symrec *tptr;
3826@}
3827@end group
3828@end example
3829
3830@noindent
3831This says that the two alternative types are @code{double} and @code{symrec
3832*}. They are given names @code{val} and @code{tptr}; these names are used
3833in the @code{%token} and @code{%type} declarations to pick one of the types
3834for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
3835
3836As an extension to POSIX, a tag is allowed after the @code{%union}. For
3837example:
3838
3839@example
3840@group
3841%union value @{
3842 double val;
3843 symrec *tptr;
3844@}
3845@end group
3846@end example
3847
3848@noindent
3849specifies the union tag @code{value}, so the corresponding C type is
3850@code{union value}. If you do not specify a tag, it defaults to
3851@code{YYSTYPE}.
3852
3853As another extension to POSIX, you may specify multiple @code{%union}
3854declarations; their contents are concatenated. However, only the first
3855@code{%union} declaration can specify a tag.
3856
3857Note that, unlike making a @code{union} declaration in C, you need not write
3858a semicolon after the closing brace.
3859
3860@node Structured Value Type
3861@subsection Providing a Structured Semantic Value Type
3862@cindex declaring value types
3863@cindex value types, declaring
3864@findex %union
3865
3866Instead of @code{%union}, you can define and use your own union type
3867@code{YYSTYPE} if your grammar contains at least one @samp{<@var{type}>}
3868tag. For example, you can put the following into a header file
3869@file{parser.h}:
3870
3871@example
3872@group
3873union YYSTYPE @{
3874 double val;
3875 symrec *tptr;
3876@};
3877@end group
3878@end example
3879
3880@noindent
3881and then your grammar can use the following instead of @code{%union}:
3882
3883@example
3884@group
3885%@{
3886#include "parser.h"
3887%@}
aba47f56 3888%define api.value.type @{union YYSTYPE@}
e4d49586
AD
3889%type <val> expr
3890%token <tptr> ID
3891@end group
3892@end example
3893
3894Actually, you may also provide a @code{struct} rather that a @code{union},
3895which may be handy if you want to track information for every symbol (such
3896as preceding comments).
3897
3898The type you provide may even be structured and include pointers, in which
3899case the type tags you provide may be composite, with @samp{.} and @samp{->}
3900operators.
3901
342b8b6e 3902@node Actions
bfa74976
RS
3903@subsection Actions
3904@cindex action
3905@vindex $$
3906@vindex $@var{n}
d013372c
AR
3907@vindex $@var{name}
3908@vindex $[@var{name}]
bfa74976
RS
3909
3910An action accompanies a syntactic rule and contains C code to be executed
3911each time an instance of that rule is recognized. The task of most actions
3912is to compute a semantic value for the grouping built by the rule from the
3913semantic values associated with tokens or smaller groupings.
3914
287c78f6
PE
3915An action consists of braced code containing C statements, and can be
3916placed at any position in the rule;
704a47c4
AD
3917it is executed at that position. Most rules have just one action at the
3918end of the rule, following all the components. Actions in the middle of
3919a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3920Actions, ,Actions in Mid-Rule}).
bfa74976 3921
ff7571c0
JD
3922The C code in an action can refer to the semantic values of the
3923components matched by the rule with the construct @code{$@var{n}},
3924which stands for the value of the @var{n}th component. The semantic
3925value for the grouping being constructed is @code{$$}. In addition,
3926the semantic values of symbols can be accessed with the named
3927references construct @code{$@var{name}} or @code{$[@var{name}]}.
3928Bison translates both of these constructs into expressions of the
3929appropriate type when it copies the actions into the parser
3930implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3931for the current grouping) is translated to a modifiable lvalue, so it
3932can be assigned to.
bfa74976
RS
3933
3934Here is a typical example:
3935
3936@example
3937@group
5e9b6624
AD
3938exp:
3939@dots{}
3940| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3941@end group
3942@end example
3943
d013372c
AR
3944Or, in terms of named references:
3945
3946@example
3947@group
5e9b6624
AD
3948exp[result]:
3949@dots{}
3950| exp[left] '+' exp[right] @{ $result = $left + $right; @}
d013372c
AR
3951@end group
3952@end example
3953
bfa74976
RS
3954@noindent
3955This rule constructs an @code{exp} from two smaller @code{exp} groupings
3956connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3957(@code{$left} and @code{$right})
bfa74976
RS
3958refer to the semantic values of the two component @code{exp} groupings,
3959which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3960The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3961semantic value of
bfa74976
RS
3962the addition-expression just recognized by the rule. If there were a
3963useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3964referred to as @code{$2}.
bfa74976 3965
a7b15ab9
JD
3966@xref{Named References}, for more information about using the named
3967references construct.
d013372c 3968
3ded9a63
AD
3969Note that the vertical-bar character @samp{|} is really a rule
3970separator, and actions are attached to a single rule. This is a
3971difference with tools like Flex, for which @samp{|} stands for either
3972``or'', or ``the same action as that of the next rule''. In the
3973following example, the action is triggered only when @samp{b} is found:
3974
3975@example
3ded9a63 3976a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3ded9a63
AD
3977@end example
3978
bfa74976
RS
3979@cindex default action
3980If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3981@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3982becomes the value of the whole rule. Of course, the default action is
3983valid only if the two data types match. There is no meaningful default
3984action for an empty rule; every empty rule must have an explicit action
3985unless the rule's value does not matter.
bfa74976
RS
3986
3987@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3988to tokens and groupings on the stack @emph{before} those that match the
3989current rule. This is a very risky practice, and to use it reliably
3990you must be certain of the context in which the rule is applied. Here
3991is a case in which you can use this reliably:
3992
3993@example
3994@group
5e9b6624
AD
3995foo:
3996 expr bar '+' expr @{ @dots{} @}
3997| expr bar '-' expr @{ @dots{} @}
3998;
bfa74976
RS
3999@end group
4000
4001@group
5e9b6624 4002bar:
6240346a 4003 %empty @{ previous_expr = $0; @}
5e9b6624 4004;
bfa74976
RS
4005@end group
4006@end example
4007
4008As long as @code{bar} is used only in the fashion shown here, @code{$0}
4009always refers to the @code{expr} which precedes @code{bar} in the
4010definition of @code{foo}.
4011
32c29292 4012@vindex yylval
742e4900 4013It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
4014any, from a semantic action.
4015This semantic value is stored in @code{yylval}.
4016@xref{Action Features, ,Special Features for Use in Actions}.
4017
342b8b6e 4018@node Action Types
bfa74976
RS
4019@subsection Data Types of Values in Actions
4020@cindex action data types
4021@cindex data types in actions
4022
4023If you have chosen a single data type for semantic values, the @code{$$}
4024and @code{$@var{n}} constructs always have that data type.
4025
4026If you have used @code{%union} to specify a variety of data types, then you
4027must declare a choice among these types for each terminal or nonterminal
4028symbol that can have a semantic value. Then each time you use @code{$$} or
4029@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 4030in the rule. In this example,
bfa74976
RS
4031
4032@example
4033@group
5e9b6624
AD
4034exp:
4035 @dots{}
4036| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
4037@end group
4038@end example
4039
4040@noindent
4041@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
4042have the data type declared for the nonterminal symbol @code{exp}. If
4043@code{$2} were used, it would have the data type declared for the
e0c471a9 4044terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
4045
4046Alternatively, you can specify the data type when you refer to the value,
4047by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
4048reference. For example, if you have defined types as shown here:
4049
4050@example
4051@group
4052%union @{
4053 int itype;
4054 double dtype;
4055@}
4056@end group
4057@end example
4058
4059@noindent
4060then you can write @code{$<itype>1} to refer to the first subunit of the
4061rule as an integer, or @code{$<dtype>1} to refer to it as a double.
4062
342b8b6e 4063@node Mid-Rule Actions
bfa74976
RS
4064@subsection Actions in Mid-Rule
4065@cindex actions in mid-rule
4066@cindex mid-rule actions
4067
4068Occasionally it is useful to put an action in the middle of a rule.
4069These actions are written just like usual end-of-rule actions, but they
4070are executed before the parser even recognizes the following components.
4071
be22823e
AD
4072@menu
4073* Using Mid-Rule Actions:: Putting an action in the middle of a rule.
4074* Mid-Rule Action Translation:: How mid-rule actions are actually processed.
4075* Mid-Rule Conflicts:: Mid-rule actions can cause conflicts.
4076@end menu
4077
4078@node Using Mid-Rule Actions
4079@subsubsection Using Mid-Rule Actions
4080
bfa74976
RS
4081A mid-rule action may refer to the components preceding it using
4082@code{$@var{n}}, but it may not refer to subsequent components because
4083it is run before they are parsed.
4084
4085The mid-rule action itself counts as one of the components of the rule.
4086This makes a difference when there is another action later in the same rule
4087(and usually there is another at the end): you have to count the actions
4088along with the symbols when working out which number @var{n} to use in
4089@code{$@var{n}}.
4090
4091The mid-rule action can also have a semantic value. The action can set
4092its value with an assignment to @code{$$}, and actions later in the rule
4093can refer to the value using @code{$@var{n}}. Since there is no symbol
4094to name the action, there is no way to declare a data type for the value
fdc6758b
MA
4095in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
4096specify a data type each time you refer to this value.
bfa74976
RS
4097
4098There is no way to set the value of the entire rule with a mid-rule
4099action, because assignments to @code{$$} do not have that effect. The
4100only way to set the value for the entire rule is with an ordinary action
4101at the end of the rule.
4102
4103Here is an example from a hypothetical compiler, handling a @code{let}
4104statement that looks like @samp{let (@var{variable}) @var{statement}} and
4105serves to create a variable named @var{variable} temporarily for the
4106duration of @var{statement}. To parse this construct, we must put
4107@var{variable} into the symbol table while @var{statement} is parsed, then
4108remove it afterward. Here is how it is done:
4109
4110@example
4111@group
5e9b6624 4112stmt:
c949ada3
AD
4113 "let" '(' var ')'
4114 @{
4115 $<context>$ = push_context ();
4116 declare_variable ($3);
4117 @}
5e9b6624 4118 stmt
c949ada3
AD
4119 @{
4120 $$ = $6;
4121 pop_context ($<context>5);
4122 @}
bfa74976
RS
4123@end group
4124@end example
4125
4126@noindent
4127As soon as @samp{let (@var{variable})} has been recognized, the first
4128action is run. It saves a copy of the current semantic context (the
4129list of accessible variables) as its semantic value, using alternative
4130@code{context} in the data-type union. Then it calls
4131@code{declare_variable} to add the new variable to that list. Once the
4132first action is finished, the embedded statement @code{stmt} can be
be22823e
AD
4133parsed.
4134
4135Note that the mid-rule action is component number 5, so the @samp{stmt} is
4136component number 6. Named references can be used to improve the readability
4137and maintainability (@pxref{Named References}):
4138
4139@example
4140@group
4141stmt:
4142 "let" '(' var ')'
4143 @{
4144 $<context>let = push_context ();
4145 declare_variable ($3);
4146 @}[let]
4147 stmt
4148 @{
4149 $$ = $6;
4150 pop_context ($<context>let);
4151 @}
4152@end group
4153@end example
bfa74976
RS
4154
4155After the embedded statement is parsed, its semantic value becomes the
4156value of the entire @code{let}-statement. Then the semantic value from the
4157earlier action is used to restore the prior list of variables. This
4158removes the temporary @code{let}-variable from the list so that it won't
4159appear to exist while the rest of the program is parsed.
4160
841a7737
JD
4161@findex %destructor
4162@cindex discarded symbols, mid-rule actions
4163@cindex error recovery, mid-rule actions
4164In the above example, if the parser initiates error recovery (@pxref{Error
4165Recovery}) while parsing the tokens in the embedded statement @code{stmt},
4166it might discard the previous semantic context @code{$<context>5} without
4167restoring it.
4168Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
4169Discarded Symbols}).
ec5479ce
JD
4170However, Bison currently provides no means to declare a destructor specific to
4171a particular mid-rule action's semantic value.
841a7737
JD
4172
4173One solution is to bury the mid-rule action inside a nonterminal symbol and to
4174declare a destructor for that symbol:
4175
4176@example
4177@group
4178%type <context> let
4179%destructor @{ pop_context ($$); @} let
09add9c2 4180@end group
841a7737
JD
4181
4182%%
4183
09add9c2 4184@group
5e9b6624
AD
4185stmt:
4186 let stmt
4187 @{
4188 $$ = $2;
be22823e 4189 pop_context ($let);
5e9b6624 4190 @};
09add9c2 4191@end group
841a7737 4192
09add9c2 4193@group
5e9b6624 4194let:
c949ada3 4195 "let" '(' var ')'
5e9b6624 4196 @{
be22823e 4197 $let = push_context ();
5e9b6624
AD
4198 declare_variable ($3);
4199 @};
841a7737
JD
4200
4201@end group
4202@end example
4203
4204@noindent
4205Note that the action is now at the end of its rule.
4206Any mid-rule action can be converted to an end-of-rule action in this way, and
4207this is what Bison actually does to implement mid-rule actions.
4208
be22823e
AD
4209@node Mid-Rule Action Translation
4210@subsubsection Mid-Rule Action Translation
4211@vindex $@@@var{n}
4212@vindex @@@var{n}
4213
4214As hinted earlier, mid-rule actions are actually transformed into regular
4215rules and actions. The various reports generated by Bison (textual,
4216graphical, etc., see @ref{Understanding, , Understanding Your Parser})
4217reveal this translation, best explained by means of an example. The
4218following rule:
4219
4220@example
4221exp: @{ a(); @} "b" @{ c(); @} @{ d(); @} "e" @{ f(); @};
4222@end example
4223
4224@noindent
4225is translated into:
4226
4227@example
6240346a
AD
4228$@@1: %empty @{ a(); @};
4229$@@2: %empty @{ c(); @};
4230$@@3: %empty @{ d(); @};
be22823e
AD
4231exp: $@@1 "b" $@@2 $@@3 "e" @{ f(); @};
4232@end example
4233
4234@noindent
4235with new nonterminal symbols @code{$@@@var{n}}, where @var{n} is a number.
4236
4237A mid-rule action is expected to generate a value if it uses @code{$$}, or
4238the (final) action uses @code{$@var{n}} where @var{n} denote the mid-rule
4239action. In that case its nonterminal is rather named @code{@@@var{n}}:
4240
4241@example
4242exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4243@end example
4244
4245@noindent
4246is translated into
4247
4248@example
6240346a
AD
4249@@1: %empty @{ a(); @};
4250@@2: %empty @{ $$ = c(); @};
4251$@@3: %empty @{ d(); @};
be22823e
AD
4252exp: @@1 "b" @@2 $@@3 "e" @{ f = $1; @}
4253@end example
4254
4255There are probably two errors in the above example: the first mid-rule
4256action does not generate a value (it does not use @code{$$} although the
4257final action uses it), and the value of the second one is not used (the
4258final action does not use @code{$3}). Bison reports these errors when the
4259@code{midrule-value} warnings are enabled (@pxref{Invocation, ,Invoking
4260Bison}):
4261
4262@example
4263$ bison -fcaret -Wmidrule-value mid.y
4264@group
4265mid.y:2.6-13: warning: unset value: $$
4266 exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4267 ^^^^^^^^
4268@end group
4269@group
4270mid.y:2.19-31: warning: unused value: $3
4271 exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4272 ^^^^^^^^^^^^^
4273@end group
4274@end example
4275
4276
4277@node Mid-Rule Conflicts
4278@subsubsection Conflicts due to Mid-Rule Actions
bfa74976
RS
4279Taking action before a rule is completely recognized often leads to
4280conflicts since the parser must commit to a parse in order to execute the
4281action. For example, the following two rules, without mid-rule actions,
4282can coexist in a working parser because the parser can shift the open-brace
4283token and look at what follows before deciding whether there is a
4284declaration or not:
4285
4286@example
4287@group
5e9b6624
AD
4288compound:
4289 '@{' declarations statements '@}'
4290| '@{' statements '@}'
4291;
bfa74976
RS
4292@end group
4293@end example
4294
4295@noindent
4296But when we add a mid-rule action as follows, the rules become nonfunctional:
4297
4298@example
4299@group
5e9b6624
AD
4300compound:
4301 @{ prepare_for_local_variables (); @}
4302 '@{' declarations statements '@}'
bfa74976
RS
4303@end group
4304@group
5e9b6624
AD
4305| '@{' statements '@}'
4306;
bfa74976
RS
4307@end group
4308@end example
4309
4310@noindent
4311Now the parser is forced to decide whether to run the mid-rule action
4312when it has read no farther than the open-brace. In other words, it
4313must commit to using one rule or the other, without sufficient
4314information to do it correctly. (The open-brace token is what is called
742e4900
JD
4315the @dfn{lookahead} token at this time, since the parser is still
4316deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
4317
4318You might think that you could correct the problem by putting identical
4319actions into the two rules, like this:
4320
4321@example
4322@group
5e9b6624
AD
4323compound:
4324 @{ prepare_for_local_variables (); @}
4325 '@{' declarations statements '@}'
4326| @{ prepare_for_local_variables (); @}
4327 '@{' statements '@}'
4328;
bfa74976
RS
4329@end group
4330@end example
4331
4332@noindent
4333But this does not help, because Bison does not realize that the two actions
4334are identical. (Bison never tries to understand the C code in an action.)
4335
4336If the grammar is such that a declaration can be distinguished from a
4337statement by the first token (which is true in C), then one solution which
4338does work is to put the action after the open-brace, like this:
4339
4340@example
4341@group
5e9b6624
AD
4342compound:
4343 '@{' @{ prepare_for_local_variables (); @}
4344 declarations statements '@}'
4345| '@{' statements '@}'
4346;
bfa74976
RS
4347@end group
4348@end example
4349
4350@noindent
4351Now the first token of the following declaration or statement,
4352which would in any case tell Bison which rule to use, can still do so.
4353
4354Another solution is to bury the action inside a nonterminal symbol which
4355serves as a subroutine:
4356
4357@example
4358@group
5e9b6624 4359subroutine:
6240346a 4360 %empty @{ prepare_for_local_variables (); @}
5e9b6624 4361;
bfa74976
RS
4362@end group
4363
4364@group
5e9b6624
AD
4365compound:
4366 subroutine '@{' declarations statements '@}'
4367| subroutine '@{' statements '@}'
4368;
bfa74976
RS
4369@end group
4370@end example
4371
4372@noindent
4373Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 4374deciding which rule for @code{compound} it will eventually use.
bfa74976 4375
be22823e 4376
303834cc 4377@node Tracking Locations
847bf1f5
AD
4378@section Tracking Locations
4379@cindex location
95923bd6
AD
4380@cindex textual location
4381@cindex location, textual
847bf1f5
AD
4382
4383Though grammar rules and semantic actions are enough to write a fully
72d2299c 4384functional parser, it can be useful to process some additional information,
3e259915
MA
4385especially symbol locations.
4386
704a47c4
AD
4387The way locations are handled is defined by providing a data type, and
4388actions to take when rules are matched.
847bf1f5
AD
4389
4390@menu
4391* Location Type:: Specifying a data type for locations.
4392* Actions and Locations:: Using locations in actions.
4393* Location Default Action:: Defining a general way to compute locations.
4394@end menu
4395
342b8b6e 4396@node Location Type
847bf1f5
AD
4397@subsection Data Type of Locations
4398@cindex data type of locations
4399@cindex default location type
4400
4401Defining a data type for locations is much simpler than for semantic values,
4402since all tokens and groupings always use the same type.
4403
50cce58e
PE
4404You can specify the type of locations by defining a macro called
4405@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 4406defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
4407When @code{YYLTYPE} is not defined, Bison uses a default structure type with
4408four members:
4409
4410@example
6273355b 4411typedef struct YYLTYPE
847bf1f5
AD
4412@{
4413 int first_line;
4414 int first_column;
4415 int last_line;
4416 int last_column;
6273355b 4417@} YYLTYPE;
847bf1f5
AD
4418@end example
4419
d59e456d
AD
4420When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
4421initializes all these fields to 1 for @code{yylloc}. To initialize
4422@code{yylloc} with a custom location type (or to chose a different
4423initialization), use the @code{%initial-action} directive. @xref{Initial
4424Action Decl, , Performing Actions before Parsing}.
cd48d21d 4425
342b8b6e 4426@node Actions and Locations
847bf1f5
AD
4427@subsection Actions and Locations
4428@cindex location actions
4429@cindex actions, location
4430@vindex @@$
4431@vindex @@@var{n}
d013372c
AR
4432@vindex @@@var{name}
4433@vindex @@[@var{name}]
847bf1f5
AD
4434
4435Actions are not only useful for defining language semantics, but also for
4436describing the behavior of the output parser with locations.
4437
4438The most obvious way for building locations of syntactic groupings is very
72d2299c 4439similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4440constructs can be used to access the locations of the elements being matched.
4441The location of the @var{n}th component of the right hand side is
4442@code{@@@var{n}}, while the location of the left hand side grouping is
4443@code{@@$}.
4444
d013372c
AR
4445In addition, the named references construct @code{@@@var{name}} and
4446@code{@@[@var{name}]} may also be used to address the symbol locations.
a7b15ab9
JD
4447@xref{Named References}, for more information about using the named
4448references construct.
d013372c 4449
3e259915 4450Here is a basic example using the default data type for locations:
847bf1f5
AD
4451
4452@example
4453@group
5e9b6624
AD
4454exp:
4455 @dots{}
4456| exp '/' exp
4457 @{
4458 @@$.first_column = @@1.first_column;
4459 @@$.first_line = @@1.first_line;
4460 @@$.last_column = @@3.last_column;
4461 @@$.last_line = @@3.last_line;
4462 if ($3)
4463 $$ = $1 / $3;
4464 else
4465 @{
4466 $$ = 1;
71846502 4467 fprintf (stderr, "%d.%d-%d.%d: division by zero",
5e9b6624
AD
4468 @@3.first_line, @@3.first_column,
4469 @@3.last_line, @@3.last_column);
4470 @}
4471 @}
847bf1f5
AD
4472@end group
4473@end example
4474
3e259915 4475As for semantic values, there is a default action for locations that is
72d2299c 4476run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4477beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4478last symbol.
3e259915 4479
72d2299c 4480With this default action, the location tracking can be fully automatic. The
3e259915
MA
4481example above simply rewrites this way:
4482
4483@example
4484@group
5e9b6624
AD
4485exp:
4486 @dots{}
4487| exp '/' exp
4488 @{
4489 if ($3)
4490 $$ = $1 / $3;
4491 else
4492 @{
4493 $$ = 1;
71846502 4494 fprintf (stderr, "%d.%d-%d.%d: division by zero",
5e9b6624
AD
4495 @@3.first_line, @@3.first_column,
4496 @@3.last_line, @@3.last_column);
4497 @}
4498 @}
3e259915
MA
4499@end group
4500@end example
847bf1f5 4501
32c29292 4502@vindex yylloc
742e4900 4503It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4504from a semantic action.
4505This location is stored in @code{yylloc}.
4506@xref{Action Features, ,Special Features for Use in Actions}.
4507
342b8b6e 4508@node Location Default Action
847bf1f5
AD
4509@subsection Default Action for Locations
4510@vindex YYLLOC_DEFAULT
8a4281b9 4511@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4512
72d2299c 4513Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4514locations are much more general than semantic values, there is room in
4515the output parser to redefine the default action to take for each
72d2299c 4516rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4517matched, before the associated action is run. It is also invoked
4518while processing a syntax error, to compute the error's location.
8a4281b9 4519Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4520parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4521of that ambiguity.
847bf1f5 4522
3e259915 4523Most of the time, this macro is general enough to suppress location
79282c6c 4524dedicated code from semantic actions.
847bf1f5 4525
72d2299c 4526The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4527the location of the grouping (the result of the computation). When a
766de5eb 4528rule is matched, the second parameter identifies locations of
96b93a3d 4529all right hand side elements of the rule being matched, and the third
8710fc41 4530parameter is the size of the rule's right hand side.
8a4281b9 4531When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4532right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4533When processing a syntax error, the second parameter identifies locations
4534of the symbols that were discarded during error processing, and the third
96b93a3d 4535parameter is the number of discarded symbols.
847bf1f5 4536
766de5eb 4537By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4538
c93f22fc
AD
4539@example
4540@group
4541# define YYLLOC_DEFAULT(Cur, Rhs, N) \
4542do \
4543 if (N) \
4544 @{ \
4545 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4546 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4547 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4548 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4549 @} \
4550 else \
4551 @{ \
4552 (Cur).first_line = (Cur).last_line = \
4553 YYRHSLOC(Rhs, 0).last_line; \
4554 (Cur).first_column = (Cur).last_column = \
4555 YYRHSLOC(Rhs, 0).last_column; \
4556 @} \
4557while (0)
4558@end group
4559@end example
676385e2 4560
aaaa2aae 4561@noindent
766de5eb
PE
4562where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4563in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4564just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4565
3e259915 4566When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4567
3e259915 4568@itemize @bullet
79282c6c 4569@item
72d2299c 4570All arguments are free of side-effects. However, only the first one (the
3e259915 4571result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4572
3e259915 4573@item
766de5eb
PE
4574For consistency with semantic actions, valid indexes within the
4575right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4576valid index, and it refers to the symbol just before the reduction.
4577During error processing @var{n} is always positive.
0ae99356
PE
4578
4579@item
4580Your macro should parenthesize its arguments, if need be, since the
4581actual arguments may not be surrounded by parentheses. Also, your
4582macro should expand to something that can be used as a single
4583statement when it is followed by a semicolon.
3e259915 4584@end itemize
847bf1f5 4585
378e917c 4586@node Named References
a7b15ab9 4587@section Named References
378e917c
JD
4588@cindex named references
4589
a40e77eb
JD
4590As described in the preceding sections, the traditional way to refer to any
4591semantic value or location is a @dfn{positional reference}, which takes the
4592form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4593such a reference is not very descriptive. Moreover, if you later decide to
4594insert or remove symbols in the right-hand side of a grammar rule, the need
4595to renumber such references can be tedious and error-prone.
4596
4597To avoid these issues, you can also refer to a semantic value or location
4598using a @dfn{named reference}. First of all, original symbol names may be
4599used as named references. For example:
378e917c
JD
4600
4601@example
4602@group
4603invocation: op '(' args ')'
4604 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4605@end group
4606@end example
4607
4608@noindent
a40e77eb 4609Positional and named references can be mixed arbitrarily. For example:
378e917c
JD
4610
4611@example
4612@group
4613invocation: op '(' args ')'
4614 @{ $$ = new_invocation ($op, $args, @@$); @}
4615@end group
4616@end example
4617
4618@noindent
4619However, sometimes regular symbol names are not sufficient due to
4620ambiguities:
4621
4622@example
4623@group
4624exp: exp '/' exp
4625 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4626
4627exp: exp '/' exp
4628 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4629
4630exp: exp '/' exp
4631 @{ $$ = $1 / $3; @} // No error.
4632@end group
4633@end example
4634
4635@noindent
4636When ambiguity occurs, explicitly declared names may be used for values and
4637locations. Explicit names are declared as a bracketed name after a symbol
4638appearance in rule definitions. For example:
4639@example
4640@group
4641exp[result]: exp[left] '/' exp[right]
4642 @{ $result = $left / $right; @}
4643@end group
4644@end example
4645
4646@noindent
a7b15ab9
JD
4647In order to access a semantic value generated by a mid-rule action, an
4648explicit name may also be declared by putting a bracketed name after the
4649closing brace of the mid-rule action code:
378e917c
JD
4650@example
4651@group
4652exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4653 @{ $res = $left + $right; @}
4654@end group
4655@end example
4656
4657@noindent
4658
4659In references, in order to specify names containing dots and dashes, an explicit
4660bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4661@example
4662@group
762caaf6 4663if-stmt: "if" '(' expr ')' "then" then.stmt ';'
378e917c
JD
4664 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4665@end group
4666@end example
4667
4668It often happens that named references are followed by a dot, dash or other
4669C punctuation marks and operators. By default, Bison will read
a7b15ab9
JD
4670@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4671@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4672value. In order to force Bison to recognize @samp{name.suffix} in its
4673entirety as the name of a semantic value, the bracketed syntax
4674@samp{$[name.suffix]} must be used.
4675
4676The named references feature is experimental. More user feedback will help
4677to stabilize it.
378e917c 4678
342b8b6e 4679@node Declarations
bfa74976
RS
4680@section Bison Declarations
4681@cindex declarations, Bison
4682@cindex Bison declarations
4683
4684The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4685used in formulating the grammar and the data types of semantic values.
4686@xref{Symbols}.
4687
4688All token type names (but not single-character literal tokens such as
4689@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4690declared if you need to specify which data type to use for the semantic
4691value (@pxref{Multiple Types, ,More Than One Value Type}).
4692
ff7571c0
JD
4693The first rule in the grammar file also specifies the start symbol, by
4694default. If you want some other symbol to be the start symbol, you
4695must declare it explicitly (@pxref{Language and Grammar, ,Languages
4696and Context-Free Grammars}).
bfa74976
RS
4697
4698@menu
b50d2359 4699* Require Decl:: Requiring a Bison version.
bfa74976
RS
4700* Token Decl:: Declaring terminal symbols.
4701* Precedence Decl:: Declaring terminals with precedence and associativity.
bfa74976 4702* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4703* Initial Action Decl:: Code run before parsing starts.
72f889cc 4704* Destructor Decl:: Declaring how symbols are freed.
93c150b6 4705* Printer Decl:: Declaring how symbol values are displayed.
d6328241 4706* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4707* Start Decl:: Specifying the start symbol.
4708* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4709* Push Decl:: Requesting a push parser.
bfa74976 4710* Decl Summary:: Table of all Bison declarations.
35c1e5f0 4711* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 4712* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4713@end menu
4714
b50d2359
AD
4715@node Require Decl
4716@subsection Require a Version of Bison
4717@cindex version requirement
4718@cindex requiring a version of Bison
4719@findex %require
4720
4721You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4722the requirement is not met, @command{bison} exits with an error (exit
4723status 63).
b50d2359
AD
4724
4725@example
4726%require "@var{version}"
4727@end example
4728
342b8b6e 4729@node Token Decl
bfa74976
RS
4730@subsection Token Type Names
4731@cindex declaring token type names
4732@cindex token type names, declaring
931c7513 4733@cindex declaring literal string tokens
bfa74976
RS
4734@findex %token
4735
4736The basic way to declare a token type name (terminal symbol) is as follows:
4737
4738@example
4739%token @var{name}
4740@end example
4741
4742Bison will convert this into a @code{#define} directive in
4743the parser, so that the function @code{yylex} (if it is in this file)
4744can use the name @var{name} to stand for this token type's code.
4745
d78f0ac9
AD
4746Alternatively, you can use @code{%left}, @code{%right},
4747@code{%precedence}, or
14ded682
AD
4748@code{%nonassoc} instead of @code{%token}, if you wish to specify
4749associativity and precedence. @xref{Precedence Decl, ,Operator
4750Precedence}.
bfa74976
RS
4751
4752You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4753a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4754following the token name:
bfa74976
RS
4755
4756@example
4757%token NUM 300
1452af69 4758%token XNUM 0x12d // a GNU extension
bfa74976
RS
4759@end example
4760
4761@noindent
4762It is generally best, however, to let Bison choose the numeric codes for
4763all token types. Bison will automatically select codes that don't conflict
e966383b 4764with each other or with normal characters.
bfa74976
RS
4765
4766In the event that the stack type is a union, you must augment the
4767@code{%token} or other token declaration to include the data type
704a47c4
AD
4768alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4769Than One Value Type}).
bfa74976
RS
4770
4771For example:
4772
4773@example
4774@group
4775%union @{ /* define stack type */
4776 double val;
4777 symrec *tptr;
4778@}
4779%token <val> NUM /* define token NUM and its type */
4780@end group
4781@end example
4782
931c7513
RS
4783You can associate a literal string token with a token type name by
4784writing the literal string at the end of a @code{%token}
4785declaration which declares the name. For example:
4786
4787@example
4788%token arrow "=>"
4789@end example
4790
4791@noindent
4792For example, a grammar for the C language might specify these names with
4793equivalent literal string tokens:
4794
4795@example
4796%token <operator> OR "||"
4797%token <operator> LE 134 "<="
4798%left OR "<="
4799@end example
4800
4801@noindent
4802Once you equate the literal string and the token name, you can use them
4803interchangeably in further declarations or the grammar rules. The
4804@code{yylex} function can use the token name or the literal string to
4805obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4806Syntax error messages passed to @code{yyerror} from the parser will reference
4807the literal string instead of the token name.
4808
4809The token numbered as 0 corresponds to end of file; the following line
4810allows for nicer error messages referring to ``end of file'' instead
4811of ``$end'':
4812
4813@example
4814%token END 0 "end of file"
4815@end example
931c7513 4816
342b8b6e 4817@node Precedence Decl
bfa74976
RS
4818@subsection Operator Precedence
4819@cindex precedence declarations
4820@cindex declaring operator precedence
4821@cindex operator precedence, declaring
4822
d78f0ac9
AD
4823Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4824@code{%precedence} declaration to
bfa74976
RS
4825declare a token and specify its precedence and associativity, all at
4826once. These are called @dfn{precedence declarations}.
704a47c4
AD
4827@xref{Precedence, ,Operator Precedence}, for general information on
4828operator precedence.
bfa74976 4829
ab7f29f8 4830The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4831@code{%token}: either
4832
4833@example
4834%left @var{symbols}@dots{}
4835@end example
4836
4837@noindent
4838or
4839
4840@example
4841%left <@var{type}> @var{symbols}@dots{}
4842@end example
4843
4844And indeed any of these declarations serves the purposes of @code{%token}.
4845But in addition, they specify the associativity and relative precedence for
4846all the @var{symbols}:
4847
4848@itemize @bullet
4849@item
4850The associativity of an operator @var{op} determines how repeated uses
4851of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4852@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4853grouping @var{y} with @var{z} first. @code{%left} specifies
4854left-associativity (grouping @var{x} with @var{y} first) and
4855@code{%right} specifies right-associativity (grouping @var{y} with
4856@var{z} first). @code{%nonassoc} specifies no associativity, which
4857means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4858considered a syntax error.
4859
d78f0ac9
AD
4860@code{%precedence} gives only precedence to the @var{symbols}, and
4861defines no associativity at all. Use this to define precedence only,
4862and leave any potential conflict due to associativity enabled.
4863
bfa74976
RS
4864@item
4865The precedence of an operator determines how it nests with other operators.
4866All the tokens declared in a single precedence declaration have equal
4867precedence and nest together according to their associativity.
4868When two tokens declared in different precedence declarations associate,
4869the one declared later has the higher precedence and is grouped first.
4870@end itemize
4871
ab7f29f8
JD
4872For backward compatibility, there is a confusing difference between the
4873argument lists of @code{%token} and precedence declarations.
4874Only a @code{%token} can associate a literal string with a token type name.
4875A precedence declaration always interprets a literal string as a reference to a
4876separate token.
4877For example:
4878
4879@example
4880%left OR "<=" // Does not declare an alias.
4881%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4882@end example
4883
342b8b6e 4884@node Type Decl
bfa74976
RS
4885@subsection Nonterminal Symbols
4886@cindex declaring value types, nonterminals
4887@cindex value types, nonterminals, declaring
4888@findex %type
4889
4890@noindent
4891When you use @code{%union} to specify multiple value types, you must
4892declare the value type of each nonterminal symbol for which values are
4893used. This is done with a @code{%type} declaration, like this:
4894
4895@example
4896%type <@var{type}> @var{nonterminal}@dots{}
4897@end example
4898
4899@noindent
704a47c4
AD
4900Here @var{nonterminal} is the name of a nonterminal symbol, and
4901@var{type} is the name given in the @code{%union} to the alternative
e4d49586 4902that you want (@pxref{Union Decl, ,The Union Declaration}). You
704a47c4
AD
4903can give any number of nonterminal symbols in the same @code{%type}
4904declaration, if they have the same value type. Use spaces to separate
4905the symbol names.
bfa74976 4906
931c7513
RS
4907You can also declare the value type of a terminal symbol. To do this,
4908use the same @code{<@var{type}>} construction in a declaration for the
4909terminal symbol. All kinds of token declarations allow
4910@code{<@var{type}>}.
4911
18d192f0
AD
4912@node Initial Action Decl
4913@subsection Performing Actions before Parsing
4914@findex %initial-action
4915
4916Sometimes your parser needs to perform some initializations before
4917parsing. The @code{%initial-action} directive allows for such arbitrary
4918code.
4919
4920@deffn {Directive} %initial-action @{ @var{code} @}
4921@findex %initial-action
287c78f6 4922Declare that the braced @var{code} must be invoked before parsing each time
cd735a8c
AD
4923@code{yyparse} is called. The @var{code} may use @code{$$} (or
4924@code{$<@var{tag}>$}) and @code{@@$} --- initial value and location of the
4925lookahead --- and the @code{%parse-param}.
18d192f0
AD
4926@end deffn
4927
451364ed
AD
4928For instance, if your locations use a file name, you may use
4929
4930@example
48b16bbc 4931%parse-param @{ char const *file_name @};
451364ed
AD
4932%initial-action
4933@{
4626a15d 4934 @@$.initialize (file_name);
451364ed
AD
4935@};
4936@end example
4937
18d192f0 4938
72f889cc
AD
4939@node Destructor Decl
4940@subsection Freeing Discarded Symbols
4941@cindex freeing discarded symbols
4942@findex %destructor
12e35840 4943@findex <*>
3ebecc24 4944@findex <>
a85284cf
AD
4945During error recovery (@pxref{Error Recovery}), symbols already pushed
4946on the stack and tokens coming from the rest of the file are discarded
4947until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4948or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4949symbols on the stack must be discarded. Even if the parser succeeds, it
4950must discard the start symbol.
258b75ca
PE
4951
4952When discarded symbols convey heap based information, this memory is
4953lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4954in traditional compilers, it is unacceptable for programs like shells or
4955protocol implementations that may parse and execute indefinitely.
258b75ca 4956
a85284cf
AD
4957The @code{%destructor} directive defines code that is called when a
4958symbol is automatically discarded.
72f889cc
AD
4959
4960@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4961@findex %destructor
287c78f6 4962Invoke the braced @var{code} whenever the parser discards one of the
4982f078
AD
4963@var{symbols}. Within @var{code}, @code{$$} (or @code{$<@var{tag}>$})
4964designates the semantic value associated with the discarded symbol, and
4965@code{@@$} designates its location. The additional parser parameters are
4966also available (@pxref{Parser Function, , The Parser Function
4967@code{yyparse}}).
ec5479ce 4968
b2a0b7ca
JD
4969When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4970per-symbol @code{%destructor}.
4971You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4972tag among @var{symbols}.
b2a0b7ca 4973In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4974grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4975per-symbol @code{%destructor}.
4976
12e35840 4977Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4978(These default forms are experimental.
4979More user feedback will help to determine whether they should become permanent
4980features.)
3ebecc24 4981You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4982exactly one @code{%destructor} declaration in your grammar file.
4983The parser will invoke the @var{code} associated with one of these whenever it
4984discards any user-defined grammar symbol that has no per-symbol and no per-type
4985@code{%destructor}.
4986The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4987symbol for which you have formally declared a semantic type tag (@code{%type}
4988counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4989The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4990symbol that has no declared semantic type tag.
72f889cc
AD
4991@end deffn
4992
b2a0b7ca 4993@noindent
12e35840 4994For example:
72f889cc 4995
c93f22fc 4996@example
ec5479ce 4997%union @{ char *string; @}
d1a07886
AD
4998%token <string> STRING1 STRING2
4999%type <string> string1 string2
b2a0b7ca
JD
5000%union @{ char character; @}
5001%token <character> CHR
5002%type <character> chr
12e35840
JD
5003%token TAGLESS
5004
b2a0b7ca 5005%destructor @{ @} <character>
12e35840
JD
5006%destructor @{ free ($$); @} <*>
5007%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 5008%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
c93f22fc 5009@end example
72f889cc
AD
5010
5011@noindent
b2a0b7ca
JD
5012guarantees that, when the parser discards any user-defined symbol that has a
5013semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 5014to @code{free} by default.
ec5479ce
JD
5015However, when the parser discards a @code{STRING1} or a @code{string1}, it also
5016prints its line number to @code{stdout}.
5017It performs only the second @code{%destructor} in this case, so it invokes
5018@code{free} only once.
12e35840
JD
5019Finally, the parser merely prints a message whenever it discards any symbol,
5020such as @code{TAGLESS}, that has no semantic type tag.
5021
5022A Bison-generated parser invokes the default @code{%destructor}s only for
5023user-defined as opposed to Bison-defined symbols.
5024For example, the parser will not invoke either kind of default
5025@code{%destructor} for the special Bison-defined symbols @code{$accept},
5026@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
5027none of which you can reference in your grammar.
5028It also will not invoke either for the @code{error} token (@pxref{Table of
5029Symbols, ,error}), which is always defined by Bison regardless of whether you
5030reference it in your grammar.
5031However, it may invoke one of them for the end token (token 0) if you
5032redefine it from @code{$end} to, for example, @code{END}:
3508ce36 5033
c93f22fc 5034@example
3508ce36 5035%token END 0
c93f22fc 5036@end example
3508ce36 5037
12e35840
JD
5038@cindex actions in mid-rule
5039@cindex mid-rule actions
5040Finally, Bison will never invoke a @code{%destructor} for an unreferenced
5041mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
a7b15ab9
JD
5042That is, Bison does not consider a mid-rule to have a semantic value if you
5043do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
5044(where @var{n} is the right-hand side symbol position of the mid-rule) in
5045any later action in that rule. However, if you do reference either, the
5046Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
5047it discards the mid-rule symbol.
12e35840 5048
3508ce36
JD
5049@ignore
5050@noindent
5051In the future, it may be possible to redefine the @code{error} token as a
5052nonterminal that captures the discarded symbols.
5053In that case, the parser will invoke the default destructor for it as well.
5054@end ignore
5055
e757bb10
AD
5056@sp 1
5057
5058@cindex discarded symbols
5059@dfn{Discarded symbols} are the following:
5060
5061@itemize
5062@item
5063stacked symbols popped during the first phase of error recovery,
5064@item
5065incoming terminals during the second phase of error recovery,
5066@item
742e4900 5067the current lookahead and the entire stack (except the current
9d9b8b70 5068right-hand side symbols) when the parser returns immediately, and
258b75ca 5069@item
d3e4409a
AD
5070the current lookahead and the entire stack (including the current right-hand
5071side symbols) when the C++ parser (@file{lalr1.cc}) catches an exception in
5072@code{parse},
5073@item
258b75ca 5074the start symbol, when the parser succeeds.
e757bb10
AD
5075@end itemize
5076
9d9b8b70
PE
5077The parser can @dfn{return immediately} because of an explicit call to
5078@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
5079exhaustion.
5080
29553547 5081Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
5082error via @code{YYERROR} are not discarded automatically. As a rule
5083of thumb, destructors are invoked only when user actions cannot manage
a85284cf 5084the memory.
e757bb10 5085
93c150b6
AD
5086@node Printer Decl
5087@subsection Printing Semantic Values
5088@cindex printing semantic values
5089@findex %printer
5090@findex <*>
5091@findex <>
5092When run-time traces are enabled (@pxref{Tracing, ,Tracing Your Parser}),
5093the parser reports its actions, such as reductions. When a symbol involved
5094in an action is reported, only its kind is displayed, as the parser cannot
5095know how semantic values should be formatted.
5096
5097The @code{%printer} directive defines code that is called when a symbol is
5098reported. Its syntax is the same as @code{%destructor} (@pxref{Destructor
5099Decl, , Freeing Discarded Symbols}).
5100
5101@deffn {Directive} %printer @{ @var{code} @} @var{symbols}
5102@findex %printer
5103@vindex yyoutput
5104@c This is the same text as for %destructor.
5105Invoke the braced @var{code} whenever the parser displays one of the
5106@var{symbols}. Within @var{code}, @code{yyoutput} denotes the output stream
4982f078
AD
5107(a @code{FILE*} in C, and an @code{std::ostream&} in C++), @code{$$} (or
5108@code{$<@var{tag}>$}) designates the semantic value associated with the
5109symbol, and @code{@@$} its location. The additional parser parameters are
5110also available (@pxref{Parser Function, , The Parser Function
5111@code{yyparse}}).
93c150b6
AD
5112
5113The @var{symbols} are defined as for @code{%destructor} (@pxref{Destructor
5114Decl, , Freeing Discarded Symbols}.): they can be per-type (e.g.,
5115@samp{<ival>}), per-symbol (e.g., @samp{exp}, @samp{NUM}, @samp{"float"}),
5116typed per-default (i.e., @samp{<*>}, or untyped per-default (i.e.,
5117@samp{<>}).
5118@end deffn
5119
5120@noindent
5121For example:
5122
5123@example
5124%union @{ char *string; @}
d1a07886
AD
5125%token <string> STRING1 STRING2
5126%type <string> string1 string2
93c150b6
AD
5127%union @{ char character; @}
5128%token <character> CHR
5129%type <character> chr
5130%token TAGLESS
5131
5132%printer @{ fprintf (yyoutput, "'%c'", $$); @} <character>
5133%printer @{ fprintf (yyoutput, "&%p", $$); @} <*>
5134%printer @{ fprintf (yyoutput, "\"%s\"", $$); @} STRING1 string1
5135%printer @{ fprintf (yyoutput, "<>"); @} <>
5136@end example
5137
5138@noindent
5139guarantees that, when the parser print any symbol that has a semantic type
5140tag other than @code{<character>}, it display the address of the semantic
5141value by default. However, when the parser displays a @code{STRING1} or a
5142@code{string1}, it formats it as a string in double quotes. It performs
5143only the second @code{%printer} in this case, so it prints only once.
5144Finally, the parser print @samp{<>} for any symbol, such as @code{TAGLESS},
5145that has no semantic type tag. See also
5146
5147
342b8b6e 5148@node Expect Decl
bfa74976
RS
5149@subsection Suppressing Conflict Warnings
5150@cindex suppressing conflict warnings
5151@cindex preventing warnings about conflicts
5152@cindex warnings, preventing
5153@cindex conflicts, suppressing warnings of
5154@findex %expect
d6328241 5155@findex %expect-rr
bfa74976
RS
5156
5157Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
5158(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
5159have harmless shift/reduce conflicts which are resolved in a predictable
5160way and would be difficult to eliminate. It is desirable to suppress
5161the warning about these conflicts unless the number of conflicts
5162changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
5163
5164The declaration looks like this:
5165
5166@example
5167%expect @var{n}
5168@end example
5169
035aa4a0
PE
5170Here @var{n} is a decimal integer. The declaration says there should
5171be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
5172Bison reports an error if the number of shift/reduce conflicts differs
5173from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 5174
eb45ef3b 5175For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 5176serious, and should be eliminated entirely. Bison will always report
8a4281b9 5177reduce/reduce conflicts for these parsers. With GLR
035aa4a0 5178parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 5179there would be no need to use GLR parsing. Therefore, it is
035aa4a0 5180also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 5181in GLR parsers, using the declaration:
d6328241
PH
5182
5183@example
5184%expect-rr @var{n}
5185@end example
5186
bfa74976
RS
5187In general, using @code{%expect} involves these steps:
5188
5189@itemize @bullet
5190@item
5191Compile your grammar without @code{%expect}. Use the @samp{-v} option
5192to get a verbose list of where the conflicts occur. Bison will also
5193print the number of conflicts.
5194
5195@item
5196Check each of the conflicts to make sure that Bison's default
5197resolution is what you really want. If not, rewrite the grammar and
5198go back to the beginning.
5199
5200@item
5201Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 5202number which Bison printed. With GLR parsers, add an
035aa4a0 5203@code{%expect-rr} declaration as well.
bfa74976
RS
5204@end itemize
5205
93d7dde9
JD
5206Now Bison will report an error if you introduce an unexpected conflict,
5207but will keep silent otherwise.
bfa74976 5208
342b8b6e 5209@node Start Decl
bfa74976
RS
5210@subsection The Start-Symbol
5211@cindex declaring the start symbol
5212@cindex start symbol, declaring
5213@cindex default start symbol
5214@findex %start
5215
5216Bison assumes by default that the start symbol for the grammar is the first
5217nonterminal specified in the grammar specification section. The programmer
5218may override this restriction with the @code{%start} declaration as follows:
5219
5220@example
5221%start @var{symbol}
5222@end example
5223
342b8b6e 5224@node Pure Decl
bfa74976
RS
5225@subsection A Pure (Reentrant) Parser
5226@cindex reentrant parser
5227@cindex pure parser
d9df47b6 5228@findex %define api.pure
bfa74976
RS
5229
5230A @dfn{reentrant} program is one which does not alter in the course of
5231execution; in other words, it consists entirely of @dfn{pure} (read-only)
5232code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
5233for example, a nonreentrant program may not be safe to call from a signal
5234handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
5235program must be called only within interlocks.
5236
70811b85 5237Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
5238suitable for most uses, and it permits compatibility with Yacc. (The
5239standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
5240statically allocated variables for communication with @code{yylex},
5241including @code{yylval} and @code{yylloc}.)
bfa74976 5242
70811b85 5243Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 5244declaration @samp{%define api.pure} says that you want the parser to be
70811b85 5245reentrant. It looks like this:
bfa74976
RS
5246
5247@example
1f1bd572 5248%define api.pure full
bfa74976
RS
5249@end example
5250
70811b85
RS
5251The result is that the communication variables @code{yylval} and
5252@code{yylloc} become local variables in @code{yyparse}, and a different
5253calling convention is used for the lexical analyzer function
5254@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
5255Parsers}, for the details of this. The variable @code{yynerrs}
5256becomes local in @code{yyparse} in pull mode but it becomes a member
a73aa764 5257of @code{yypstate} in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
5258Reporting Function @code{yyerror}}). The convention for calling
5259@code{yyparse} itself is unchanged.
5260
5261Whether the parser is pure has nothing to do with the grammar rules.
5262You can generate either a pure parser or a nonreentrant parser from any
5263valid grammar.
bfa74976 5264
9987d1b3
JD
5265@node Push Decl
5266@subsection A Push Parser
5267@cindex push parser
5268@cindex push parser
67212941 5269@findex %define api.push-pull
9987d1b3 5270
59da312b
JD
5271(The current push parsing interface is experimental and may evolve.
5272More user feedback will help to stabilize it.)
5273
f4101aa6
AD
5274A pull parser is called once and it takes control until all its input
5275is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
5276each time a new token is made available.
5277
f4101aa6 5278A push parser is typically useful when the parser is part of a
9987d1b3 5279main event loop in the client's application. This is typically
f4101aa6
AD
5280a requirement of a GUI, when the main event loop needs to be triggered
5281within a certain time period.
9987d1b3 5282
d782395d
JD
5283Normally, Bison generates a pull parser.
5284The following Bison declaration says that you want the parser to be a push
35c1e5f0 5285parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
5286
5287@example
cf499cff 5288%define api.push-pull push
9987d1b3
JD
5289@end example
5290
5291In almost all cases, you want to ensure that your push parser is also
5292a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 5293time you should create an impure push parser is to have backwards
9987d1b3
JD
5294compatibility with the impure Yacc pull mode interface. Unless you know
5295what you are doing, your declarations should look like this:
5296
5297@example
1f1bd572 5298%define api.pure full
cf499cff 5299%define api.push-pull push
9987d1b3
JD
5300@end example
5301
f4101aa6
AD
5302There is a major notable functional difference between the pure push parser
5303and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
5304many parser instances, of the same type of parser, in memory at the same time.
5305An impure push parser should only use one parser at a time.
5306
5307When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
5308the generated parser. @code{yypstate} is a structure that the generated
5309parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
5310function that will create a new parser instance. @code{yypstate_delete}
5311will free the resources associated with the corresponding parser instance.
f4101aa6 5312Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
5313token is available to provide the parser. A trivial example
5314of using a pure push parser would look like this:
5315
5316@example
5317int status;
5318yypstate *ps = yypstate_new ();
5319do @{
5320 status = yypush_parse (ps, yylex (), NULL);
5321@} while (status == YYPUSH_MORE);
5322yypstate_delete (ps);
5323@end example
5324
5325If the user decided to use an impure push parser, a few things about
f4101aa6 5326the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
5327a global variable instead of a variable in the @code{yypush_parse} function.
5328For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 5329changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
5330example would thus look like this:
5331
5332@example
5333extern int yychar;
5334int status;
5335yypstate *ps = yypstate_new ();
5336do @{
5337 yychar = yylex ();
5338 status = yypush_parse (ps);
5339@} while (status == YYPUSH_MORE);
5340yypstate_delete (ps);
5341@end example
5342
f4101aa6 5343That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
5344for use by the next invocation of the @code{yypush_parse} function.
5345
f4101aa6 5346Bison also supports both the push parser interface along with the pull parser
9987d1b3 5347interface in the same generated parser. In order to get this functionality,
cf499cff
JD
5348you should replace the @samp{%define api.push-pull push} declaration with the
5349@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 5350the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
5351and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
5352would be used. However, the user should note that it is implemented in the
d782395d
JD
5353generated parser by calling @code{yypull_parse}.
5354This makes the @code{yyparse} function that is generated with the
cf499cff 5355@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
5356@code{yyparse} function. If the user
5357calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
5358stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
5359and then @code{yypull_parse} the rest of the input stream. If you would like
5360to switch back and forth between between parsing styles, you would have to
5361write your own @code{yypull_parse} function that knows when to quit looking
5362for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
5363like this:
5364
5365@example
5366yypstate *ps = yypstate_new ();
5367yypull_parse (ps); /* Will call the lexer */
5368yypstate_delete (ps);
5369@end example
5370
67501061 5371Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
5372the generated parser with @samp{%define api.push-pull both} as it did for
5373@samp{%define api.push-pull push}.
9987d1b3 5374
342b8b6e 5375@node Decl Summary
bfa74976
RS
5376@subsection Bison Declaration Summary
5377@cindex Bison declaration summary
5378@cindex declaration summary
5379@cindex summary, Bison declaration
5380
d8988b2f 5381Here is a summary of the declarations used to define a grammar:
bfa74976 5382
18b519c0 5383@deffn {Directive} %union
bfa74976 5384Declare the collection of data types that semantic values may have
e4d49586 5385(@pxref{Union Decl, ,The Union Declaration}).
18b519c0 5386@end deffn
bfa74976 5387
18b519c0 5388@deffn {Directive} %token
bfa74976
RS
5389Declare a terminal symbol (token type name) with no precedence
5390or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 5391@end deffn
bfa74976 5392
18b519c0 5393@deffn {Directive} %right
bfa74976
RS
5394Declare a terminal symbol (token type name) that is right-associative
5395(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5396@end deffn
bfa74976 5397
18b519c0 5398@deffn {Directive} %left
bfa74976
RS
5399Declare a terminal symbol (token type name) that is left-associative
5400(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5401@end deffn
bfa74976 5402
18b519c0 5403@deffn {Directive} %nonassoc
bfa74976 5404Declare a terminal symbol (token type name) that is nonassociative
bfa74976 5405(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
5406Using it in a way that would be associative is a syntax error.
5407@end deffn
5408
91d2c560 5409@ifset defaultprec
39a06c25 5410@deffn {Directive} %default-prec
22fccf95 5411Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
5412(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5413@end deffn
91d2c560 5414@end ifset
bfa74976 5415
18b519c0 5416@deffn {Directive} %type
bfa74976
RS
5417Declare the type of semantic values for a nonterminal symbol
5418(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 5419@end deffn
bfa74976 5420
18b519c0 5421@deffn {Directive} %start
89cab50d
AD
5422Specify the grammar's start symbol (@pxref{Start Decl, ,The
5423Start-Symbol}).
18b519c0 5424@end deffn
bfa74976 5425
18b519c0 5426@deffn {Directive} %expect
bfa74976
RS
5427Declare the expected number of shift-reduce conflicts
5428(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
5429@end deffn
5430
bfa74976 5431
d8988b2f
AD
5432@sp 1
5433@noindent
5434In order to change the behavior of @command{bison}, use the following
5435directives:
5436
148d66d8 5437@deffn {Directive} %code @{@var{code}@}
e0c07222 5438@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 5439@findex %code
e0c07222
JD
5440Insert @var{code} verbatim into the output parser source at the
5441default location or at the location specified by @var{qualifier}.
5442@xref{%code Summary}.
148d66d8
JD
5443@end deffn
5444
18b519c0 5445@deffn {Directive} %debug
60aa04a2 5446Instrument the parser for traces. Obsoleted by @samp{%define
fa819509 5447parse.trace}.
ec3bc396 5448@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5449@end deffn
d8988b2f 5450
35c1e5f0
JD
5451@deffn {Directive} %define @var{variable}
5452@deffnx {Directive} %define @var{variable} @var{value}
aba47f56 5453@deffnx {Directive} %define @var{variable} @{@var{value}@}
35c1e5f0
JD
5454@deffnx {Directive} %define @var{variable} "@var{value}"
5455Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5456@end deffn
5457
5458@deffn {Directive} %defines
5459Write a parser header file containing macro definitions for the token
5460type names defined in the grammar as well as a few other declarations.
5461If the parser implementation file is named @file{@var{name}.c} then
5462the parser header file is named @file{@var{name}.h}.
5463
5464For C parsers, the parser header file declares @code{YYSTYPE} unless
5465@code{YYSTYPE} is already defined as a macro or you have used a
5466@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5467you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5468Value Type}) with components that require other definitions, or if you
5469have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5470Type, ,Data Types of Semantic Values}), you need to arrange for these
5471definitions to be propagated to all modules, e.g., by putting them in
5472a prerequisite header that is included both by your parser and by any
5473other module that needs @code{YYSTYPE}.
5474
5475Unless your parser is pure, the parser header file declares
5476@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5477(Reentrant) Parser}.
5478
5479If you have also used locations, the parser header file declares
303834cc
JD
5480@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5481@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
35c1e5f0
JD
5482
5483This parser header file is normally essential if you wish to put the
5484definition of @code{yylex} in a separate source file, because
5485@code{yylex} typically needs to be able to refer to the
5486above-mentioned declarations and to the token type codes. @xref{Token
5487Values, ,Semantic Values of Tokens}.
5488
5489@findex %code requires
5490@findex %code provides
5491If you have declared @code{%code requires} or @code{%code provides}, the output
5492header also contains their code.
5493@xref{%code Summary}.
c9d5bcc9
AD
5494
5495@cindex Header guard
5496The generated header is protected against multiple inclusions with a C
5497preprocessor guard: @samp{YY_@var{PREFIX}_@var{FILE}_INCLUDED}, where
5498@var{PREFIX} and @var{FILE} are the prefix (@pxref{Multiple Parsers,
5499,Multiple Parsers in the Same Program}) and generated file name turned
5500uppercase, with each series of non alphanumerical characters converted to a
5501single underscore.
5502
aba47f56 5503For instance with @samp{%define api.prefix @{calc@}} and @samp{%defines
c9d5bcc9
AD
5504"lib/parse.h"}, the header will be guarded as follows.
5505@example
5506#ifndef YY_CALC_LIB_PARSE_H_INCLUDED
5507# define YY_CALC_LIB_PARSE_H_INCLUDED
5508...
5509#endif /* ! YY_CALC_LIB_PARSE_H_INCLUDED */
5510@end example
35c1e5f0
JD
5511@end deffn
5512
5513@deffn {Directive} %defines @var{defines-file}
fe65b144 5514Same as above, but save in the file @file{@var{defines-file}}.
35c1e5f0
JD
5515@end deffn
5516
5517@deffn {Directive} %destructor
5518Specify how the parser should reclaim the memory associated to
5519discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5520@end deffn
5521
5522@deffn {Directive} %file-prefix "@var{prefix}"
5523Specify a prefix to use for all Bison output file names. The names
5524are chosen as if the grammar file were named @file{@var{prefix}.y}.
5525@end deffn
5526
5527@deffn {Directive} %language "@var{language}"
5528Specify the programming language for the generated parser. Currently
5529supported languages include C, C++, and Java.
5530@var{language} is case-insensitive.
5531
35c1e5f0
JD
5532@end deffn
5533
5534@deffn {Directive} %locations
5535Generate the code processing the locations (@pxref{Action Features,
5536,Special Features for Use in Actions}). This mode is enabled as soon as
5537the grammar uses the special @samp{@@@var{n}} tokens, but if your
5538grammar does not use it, using @samp{%locations} allows for more
5539accurate syntax error messages.
5540@end deffn
5541
5542@deffn {Directive} %name-prefix "@var{prefix}"
5543Rename the external symbols used in the parser so that they start with
5544@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5545in C parsers
5546is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5547@code{yylval}, @code{yychar}, @code{yydebug}, and
5548(if locations are used) @code{yylloc}. If you use a push parser,
5549@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5550@code{yypstate_new} and @code{yypstate_delete} will
5551also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5552names become @code{c_parse}, @code{c_lex}, and so on.
5553For C++ parsers, see the @samp{%define api.namespace} documentation in this
5554section.
5555@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5556@end deffn
5557
5558@ifset defaultprec
5559@deffn {Directive} %no-default-prec
5560Do not assign a precedence to rules lacking an explicit @code{%prec}
5561modifier (@pxref{Contextual Precedence, ,Context-Dependent
5562Precedence}).
5563@end deffn
5564@end ifset
5565
5566@deffn {Directive} %no-lines
5567Don't generate any @code{#line} preprocessor commands in the parser
5568implementation file. Ordinarily Bison writes these commands in the
5569parser implementation file so that the C compiler and debuggers will
5570associate errors and object code with your source file (the grammar
5571file). This directive causes them to associate errors with the parser
5572implementation file, treating it as an independent source file in its
5573own right.
5574@end deffn
5575
5576@deffn {Directive} %output "@var{file}"
fe65b144 5577Generate the parser implementation in @file{@var{file}}.
35c1e5f0
JD
5578@end deffn
5579
5580@deffn {Directive} %pure-parser
5581Deprecated version of @samp{%define api.pure} (@pxref{%define
5582Summary,,api.pure}), for which Bison is more careful to warn about
5583unreasonable usage.
5584@end deffn
5585
5586@deffn {Directive} %require "@var{version}"
5587Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5588Require a Version of Bison}.
5589@end deffn
5590
5591@deffn {Directive} %skeleton "@var{file}"
5592Specify the skeleton to use.
5593
5594@c You probably don't need this option unless you are developing Bison.
5595@c You should use @code{%language} if you want to specify the skeleton for a
5596@c different language, because it is clearer and because it will always choose the
5597@c correct skeleton for non-deterministic or push parsers.
5598
5599If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5600file in the Bison installation directory.
5601If it does, @var{file} is an absolute file name or a file name relative to the
5602directory of the grammar file.
5603This is similar to how most shells resolve commands.
5604@end deffn
5605
5606@deffn {Directive} %token-table
5607Generate an array of token names in the parser implementation file.
5608The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5609the name of the token whose internal Bison token code number is
5610@var{i}. The first three elements of @code{yytname} correspond to the
5611predefined tokens @code{"$end"}, @code{"error"}, and
5612@code{"$undefined"}; after these come the symbols defined in the
5613grammar file.
5614
5615The name in the table includes all the characters needed to represent
5616the token in Bison. For single-character literals and literal
5617strings, this includes the surrounding quoting characters and any
5618escape sequences. For example, the Bison single-character literal
5619@code{'+'} corresponds to a three-character name, represented in C as
5620@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5621corresponds to a five-character name, represented in C as
5622@code{"\"\\\\/\""}.
5623
5624When you specify @code{%token-table}, Bison also generates macro
5625definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5626@code{YYNRULES}, and @code{YYNSTATES}:
5627
5628@table @code
5629@item YYNTOKENS
5630The highest token number, plus one.
5631@item YYNNTS
5632The number of nonterminal symbols.
5633@item YYNRULES
5634The number of grammar rules,
5635@item YYNSTATES
5636The number of parser states (@pxref{Parser States}).
5637@end table
5638@end deffn
5639
5640@deffn {Directive} %verbose
5641Write an extra output file containing verbose descriptions of the
5642parser states and what is done for each type of lookahead token in
5643that state. @xref{Understanding, , Understanding Your Parser}, for more
5644information.
5645@end deffn
5646
5647@deffn {Directive} %yacc
5648Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5649including its naming conventions. @xref{Bison Options}, for more.
5650@end deffn
5651
5652
5653@node %define Summary
5654@subsection %define Summary
51151d91
JD
5655
5656There are many features of Bison's behavior that can be controlled by
5657assigning the feature a single value. For historical reasons, some
5658such features are assigned values by dedicated directives, such as
5659@code{%start}, which assigns the start symbol. However, newer such
5660features are associated with variables, which are assigned by the
5661@code{%define} directive:
5662
c1d19e10 5663@deffn {Directive} %define @var{variable}
cf499cff 5664@deffnx {Directive} %define @var{variable} @var{value}
aba47f56 5665@deffnx {Directive} %define @var{variable} @{@var{value}@}
c1d19e10 5666@deffnx {Directive} %define @var{variable} "@var{value}"
51151d91 5667Define @var{variable} to @var{value}.
9611cfa2 5668
aba47f56
AD
5669The type of the values depend on the syntax. Braces denote value in the
5670target language (e.g., a namespace, a type, etc.). Keyword values (no
5671delimiters) denote finite choice (e.g., a variation of a feature). String
5672values denote remaining cases (e.g., a file name).
9611cfa2 5673
aba47f56
AD
5674It is an error if a @var{variable} is defined by @code{%define} multiple
5675times, but see @ref{Bison Options,,-D @var{name}[=@var{value}]}.
51151d91 5676@end deffn
cf499cff 5677
51151d91
JD
5678The rest of this section summarizes variables and values that
5679@code{%define} accepts.
9611cfa2 5680
51151d91
JD
5681Some @var{variable}s take Boolean values. In this case, Bison will
5682complain if the variable definition does not meet one of the following
5683four conditions:
9611cfa2
JD
5684
5685@enumerate
cf499cff 5686@item @code{@var{value}} is @code{true}
9611cfa2 5687
cf499cff
JD
5688@item @code{@var{value}} is omitted (or @code{""} is specified).
5689This is equivalent to @code{true}.
9611cfa2 5690
cf499cff 5691@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5692
5693@item @var{variable} is never defined.
c6abeab1 5694In this case, Bison selects a default value.
9611cfa2 5695@end enumerate
148d66d8 5696
c6abeab1
JD
5697What @var{variable}s are accepted, as well as their meanings and default
5698values, depend on the selected target language and/or the parser
5699skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5700Summary,,%skeleton}).
5701Unaccepted @var{variable}s produce an error.
dbf3962c 5702Some of the accepted @var{variable}s are described below.
793fbca5 5703
6574576c 5704@c ================================================== api.namespace
eb0e86ac 5705@deffn Directive {%define api.namespace} @{@var{namespace}@}
67501061
AD
5706@itemize
5707@item Languages(s): C++
5708
f1b238df 5709@item Purpose: Specify the namespace for the parser class.
67501061
AD
5710For example, if you specify:
5711
c93f22fc 5712@example
eb0e86ac 5713%define api.namespace @{foo::bar@}
c93f22fc 5714@end example
67501061
AD
5715
5716Bison uses @code{foo::bar} verbatim in references such as:
5717
c93f22fc 5718@example
67501061 5719foo::bar::parser::semantic_type
c93f22fc 5720@end example
67501061
AD
5721
5722However, to open a namespace, Bison removes any leading @code{::} and then
5723splits on any remaining occurrences:
5724
c93f22fc 5725@example
67501061
AD
5726namespace foo @{ namespace bar @{
5727 class position;
5728 class location;
5729@} @}
c93f22fc 5730@end example
67501061
AD
5731
5732@item Accepted Values:
5733Any absolute or relative C++ namespace reference without a trailing
5734@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5735
5736@item Default Value:
5737The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5738This usage of @code{%name-prefix} is for backward compatibility and can
5739be confusing since @code{%name-prefix} also specifies the textual prefix
5740for the lexical analyzer function. Thus, if you specify
5741@code{%name-prefix}, it is best to also specify @samp{%define
5742api.namespace} so that @code{%name-prefix} @emph{only} affects the
5743lexical analyzer function. For example, if you specify:
5744
c93f22fc 5745@example
eb0e86ac 5746%define api.namespace @{foo@}
67501061 5747%name-prefix "bar::"
c93f22fc 5748@end example
67501061
AD
5749
5750The parser namespace is @code{foo} and @code{yylex} is referenced as
5751@code{bar::lex}.
5752@end itemize
dbf3962c
AD
5753@end deffn
5754@c api.namespace
67501061 5755
db8ab2be 5756@c ================================================== api.location.type
aba47f56 5757@deffn {Directive} {%define api.location.type} @{@var{type}@}
db8ab2be
AD
5758
5759@itemize @bullet
7287be84 5760@item Language(s): C++, Java
db8ab2be
AD
5761
5762@item Purpose: Define the location type.
5763@xref{User Defined Location Type}.
5764
5765@item Accepted Values: String
5766
5767@item Default Value: none
5768
a256496a
AD
5769@item History:
5770Introduced in Bison 2.7 for C, C++ and Java. Introduced under the name
5771@code{location_type} for C++ in Bison 2.5 and for Java in Bison 2.4.
db8ab2be 5772@end itemize
dbf3962c 5773@end deffn
67501061 5774
4b3847c3 5775@c ================================================== api.prefix
aba47f56 5776@deffn {Directive} {%define api.prefix} @{@var{prefix}@}
4b3847c3
AD
5777
5778@itemize @bullet
5779@item Language(s): All
5780
db8ab2be 5781@item Purpose: Rename exported symbols.
4b3847c3
AD
5782@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5783
5784@item Accepted Values: String
5785
5786@item Default Value: @code{yy}
e358222b
AD
5787
5788@item History: introduced in Bison 2.6
4b3847c3 5789@end itemize
dbf3962c 5790@end deffn
67501061
AD
5791
5792@c ================================================== api.pure
aba47f56 5793@deffn Directive {%define api.pure} @var{purity}
d9df47b6
JD
5794
5795@itemize @bullet
5796@item Language(s): C
5797
5798@item Purpose: Request a pure (reentrant) parser program.
5799@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5800
1f1bd572
TR
5801@item Accepted Values: @code{true}, @code{false}, @code{full}
5802
5803The value may be omitted: this is equivalent to specifying @code{true}, as is
5804the case for Boolean values.
5805
5806When @code{%define api.pure full} is used, the parser is made reentrant. This
511dd971
AD
5807changes the signature for @code{yylex} (@pxref{Pure Calling}), and also that of
5808@code{yyerror} when the tracking of locations has been activated, as shown
5809below.
1f1bd572
TR
5810
5811The @code{true} value is very similar to the @code{full} value, the only
5812difference is in the signature of @code{yyerror} on Yacc parsers without
5813@code{%parse-param}, for historical reasons.
5814
5815I.e., if @samp{%locations %define api.pure} is passed then the prototypes for
5816@code{yyerror} are:
5817
5818@example
c949ada3
AD
5819void yyerror (char const *msg); // Yacc parsers.
5820void yyerror (YYLTYPE *locp, char const *msg); // GLR parsers.
1f1bd572
TR
5821@end example
5822
5823But if @samp{%locations %define api.pure %parse-param @{int *nastiness@}} is
5824used, then both parsers have the same signature:
5825
5826@example
5827void yyerror (YYLTYPE *llocp, int *nastiness, char const *msg);
5828@end example
5829
5830(@pxref{Error Reporting, ,The Error
5831Reporting Function @code{yyerror}})
d9df47b6 5832
cf499cff 5833@item Default Value: @code{false}
1f1bd572 5834
a256496a
AD
5835@item History:
5836the @code{full} value was introduced in Bison 2.7
d9df47b6 5837@end itemize
dbf3962c 5838@end deffn
71b00ed8 5839@c api.pure
d9df47b6 5840
67501061
AD
5841
5842
5843@c ================================================== api.push-pull
dbf3962c 5844@deffn Directive {%define api.push-pull} @var{kind}
793fbca5
JD
5845
5846@itemize @bullet
eb45ef3b 5847@item Language(s): C (deterministic parsers only)
793fbca5 5848
f1b238df 5849@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5850@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5851(The current push parsing interface is experimental and may evolve.
5852More user feedback will help to stabilize it.)
793fbca5 5853
cf499cff 5854@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5855
cf499cff 5856@item Default Value: @code{pull}
793fbca5 5857@end itemize
dbf3962c 5858@end deffn
67212941 5859@c api.push-pull
71b00ed8 5860
6b5a0de9
AD
5861
5862
e36ec1f4 5863@c ================================================== api.token.constructor
dbf3962c 5864@deffn Directive {%define api.token.constructor}
e36ec1f4
AD
5865
5866@itemize @bullet
5867@item Language(s):
5868C++
5869
5870@item Purpose:
5871When variant-based semantic values are enabled (@pxref{C++ Variants}),
5872request that symbols be handled as a whole (type, value, and possibly
5873location) in the scanner. @xref{Complete Symbols}, for details.
5874
5875@item Accepted Values:
5876Boolean.
5877
5878@item Default Value:
5879@code{false}
5880@item History:
c53b6848 5881introduced in Bison 3.0
e36ec1f4 5882@end itemize
dbf3962c 5883@end deffn
e36ec1f4
AD
5884@c api.token.constructor
5885
5886
2a6b66c5 5887@c ================================================== api.token.prefix
630a0218 5888@deffn Directive {%define api.token.prefix} @{@var{prefix}@}
4c6622c2
AD
5889
5890@itemize
5891@item Languages(s): all
5892
5893@item Purpose:
5894Add a prefix to the token names when generating their definition in the
5895target language. For instance
5896
5897@example
5898%token FILE for ERROR
630a0218 5899%define api.token.prefix @{TOK_@}
4c6622c2
AD
5900%%
5901start: FILE for ERROR;
5902@end example
5903
5904@noindent
5905generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5906and @code{TOK_ERROR} in the generated source files. In particular, the
5907scanner must use these prefixed token names, while the grammar itself
5908may still use the short names (as in the sample rule given above). The
5909generated informational files (@file{*.output}, @file{*.xml},
90b89dad
AD
5910@file{*.dot}) are not modified by this prefix.
5911
5912Bison also prefixes the generated member names of the semantic value union.
5913@xref{Type Generation,, Generating the Semantic Value Type}, for more
5914details.
5915
5916See @ref{Calc++ Parser} and @ref{Calc++ Scanner}, for a complete example.
4c6622c2
AD
5917
5918@item Accepted Values:
5919Any string. Should be a valid identifier prefix in the target language,
5920in other words, it should typically be an identifier itself (sequence of
5921letters, underscores, and ---not at the beginning--- digits).
5922
5923@item Default Value:
5924empty
2a6b66c5 5925@item History:
630a0218 5926introduced in Bison 3.0
4c6622c2 5927@end itemize
dbf3962c 5928@end deffn
2a6b66c5 5929@c api.token.prefix
4c6622c2
AD
5930
5931
ae8880de 5932@c ================================================== api.value.type
dbf3962c 5933@deffn Directive {%define api.value.type} @var{type}
ae8880de
AD
5934@itemize @bullet
5935@item Language(s):
6574576c 5936all
ae8880de
AD
5937
5938@item Purpose:
6574576c
AD
5939The type for semantic values.
5940
5941@item Accepted Values:
5942@table @asis
5943@item @code{""}
5944This grammar has no semantic value at all. This is not properly supported
5945yet.
5946@item @code{%union} (C, C++)
5947The type is defined thanks to the @code{%union} directive. You don't have
5948to define @code{api.value.type} in that case, using @code{%union} suffices.
e4d49586 5949@xref{Union Decl, ,The Union Declaration}.
6574576c
AD
5950For instance:
5951@example
5952%define api.value.type "%union"
5953%union
5954@{
5955 int ival;
5956 char *sval;
5957@}
5958%token <ival> INT "integer"
5959%token <sval> STR "string"
5960@end example
5961
5962@item @code{union} (C, C++)
5963The symbols are defined with type names, from which Bison will generate a
5964@code{union}. For instance:
5965@example
5966%define api.value.type "union"
5967%token <int> INT "integer"
5968%token <char *> STR "string"
5969@end example
5970This feature needs user feedback to stabilize. Note that most C++ objects
5971cannot be stored in a @code{union}.
5972
5973@item @code{variant} (C++)
5974This is similar to @code{union}, but special storage techniques are used to
5975allow any kind of C++ object to be used. For instance:
5976@example
5977%define api.value.type "variant"
5978%token <int> INT "integer"
5979%token <std::string> STR "string"
5980@end example
5981This feature needs user feedback to stabilize.
ae8880de
AD
5982@xref{C++ Variants}.
5983
6574576c
AD
5984@item any other identifier
5985Use this name as semantic value.
5986@example
5987%code requires
5988@{
5989 struct my_value
5990 @{
5991 enum
5992 @{
5993 is_int, is_str
5994 @} kind;
5995 union
5996 @{
5997 int ival;
5998 char *sval;
5999 @} u;
6000 @};
6001@}
6002%define api.value.type "struct my_value"
6003%token <u.ival> INT "integer"
6004%token <u.sval> STR "string"
6005@end example
6006@end table
6007
dbf3962c 6008@item Default Value:
6574576c
AD
6009@itemize @minus
6010@item
6011@code{%union} if @code{%union} is used, otherwise @dots{}
6012@item
6013@code{int} if type tags are used (i.e., @samp{%token <@var{type}>@dots{}} or
6014@samp{%token <@var{type}>@dots{}} is used), otherwise @dots{}
6015@item
6016@code{""}
6017@end itemize
6018
dbf3962c 6019@item History:
c53b6848 6020introduced in Bison 3.0. Was introduced for Java only in 2.3b as
dbf3962c
AD
6021@code{stype}.
6022@end itemize
6023@end deffn
ae8880de
AD
6024@c api.value.type
6025
a256496a
AD
6026
6027@c ================================================== location_type
dbf3962c 6028@deffn Directive {%define location_type}
a256496a 6029Obsoleted by @code{api.location.type} since Bison 2.7.
dbf3962c 6030@end deffn
a256496a
AD
6031
6032
f3bc3386 6033@c ================================================== lr.default-reduction
6b5a0de9 6034
dbf3962c 6035@deffn Directive {%define lr.default-reduction} @var{when}
eb45ef3b
JD
6036
6037@itemize @bullet
6038@item Language(s): all
6039
fcf834f9 6040@item Purpose: Specify the kind of states that are permitted to
7fceb615
JD
6041contain default reductions. @xref{Default Reductions}. (The ability to
6042specify where default reductions should be used is experimental. More user
6043feedback will help to stabilize it.)
eb45ef3b 6044
f0ad1b2f 6045@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
eb45ef3b
JD
6046@item Default Value:
6047@itemize
cf499cff 6048@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
f0ad1b2f 6049@item @code{most} otherwise.
eb45ef3b 6050@end itemize
f3bc3386 6051@item History:
c53b6848
AD
6052introduced as @code{lr.default-reductions} in 2.5, renamed as
6053@code{lr.default-reduction} in 3.0.
eb45ef3b 6054@end itemize
dbf3962c 6055@end deffn
eb45ef3b 6056
f3bc3386 6057@c ============================================ lr.keep-unreachable-state
6b5a0de9 6058
dbf3962c 6059@deffn Directive {%define lr.keep-unreachable-state}
31984206
JD
6060
6061@itemize @bullet
6062@item Language(s): all
f1b238df 6063@item Purpose: Request that Bison allow unreachable parser states to
7fceb615 6064remain in the parser tables. @xref{Unreachable States}.
31984206 6065@item Accepted Values: Boolean
cf499cff 6066@item Default Value: @code{false}
a256496a 6067@item History:
f3bc3386 6068introduced as @code{lr.keep_unreachable_states} in 2.3b, renamed as
5807bb91 6069@code{lr.keep-unreachable-states} in 2.5, and as
c53b6848 6070@code{lr.keep-unreachable-state} in 3.0.
dbf3962c
AD
6071@end itemize
6072@end deffn
f3bc3386 6073@c lr.keep-unreachable-state
31984206 6074
6b5a0de9
AD
6075@c ================================================== lr.type
6076
dbf3962c 6077@deffn Directive {%define lr.type} @var{type}
eb45ef3b
JD
6078
6079@itemize @bullet
6080@item Language(s): all
6081
f1b238df 6082@item Purpose: Specify the type of parser tables within the
7fceb615 6083LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
eb45ef3b
JD
6084More user feedback will help to stabilize it.)
6085
7fceb615 6086@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
eb45ef3b 6087
cf499cff 6088@item Default Value: @code{lalr}
eb45ef3b 6089@end itemize
dbf3962c 6090@end deffn
67501061
AD
6091
6092@c ================================================== namespace
eb0e86ac 6093@deffn Directive %define namespace @{@var{namespace}@}
67501061 6094Obsoleted by @code{api.namespace}
fa819509 6095@c namespace
dbf3962c 6096@end deffn
31b850d2
AD
6097
6098@c ================================================== parse.assert
dbf3962c 6099@deffn Directive {%define parse.assert}
0c90a1f5
AD
6100
6101@itemize
6102@item Languages(s): C++
6103
6104@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
6105In C++, when variants are used (@pxref{C++ Variants}), symbols must be
6106constructed and
0c90a1f5
AD
6107destroyed properly. This option checks these constraints.
6108
6109@item Accepted Values: Boolean
6110
6111@item Default Value: @code{false}
6112@end itemize
dbf3962c 6113@end deffn
0c90a1f5
AD
6114@c parse.assert
6115
31b850d2
AD
6116
6117@c ================================================== parse.error
dbf3962c 6118@deffn Directive {%define parse.error}
31b850d2
AD
6119@itemize
6120@item Languages(s):
fcf834f9 6121all
31b850d2
AD
6122@item Purpose:
6123Control the kind of error messages passed to the error reporting
6124function. @xref{Error Reporting, ,The Error Reporting Function
6125@code{yyerror}}.
6126@item Accepted Values:
6127@itemize
cf499cff 6128@item @code{simple}
31b850d2
AD
6129Error messages passed to @code{yyerror} are simply @w{@code{"syntax
6130error"}}.
cf499cff 6131@item @code{verbose}
7fceb615
JD
6132Error messages report the unexpected token, and possibly the expected ones.
6133However, this report can often be incorrect when LAC is not enabled
6134(@pxref{LAC}).
31b850d2
AD
6135@end itemize
6136
6137@item Default Value:
6138@code{simple}
6139@end itemize
dbf3962c 6140@end deffn
31b850d2
AD
6141@c parse.error
6142
6143
fcf834f9 6144@c ================================================== parse.lac
dbf3962c 6145@deffn Directive {%define parse.lac}
fcf834f9
JD
6146
6147@itemize
7fceb615 6148@item Languages(s): C (deterministic parsers only)
fcf834f9 6149
8a4281b9 6150@item Purpose: Enable LAC (lookahead correction) to improve
7fceb615 6151syntax error handling. @xref{LAC}.
fcf834f9 6152@item Accepted Values: @code{none}, @code{full}
fcf834f9
JD
6153@item Default Value: @code{none}
6154@end itemize
dbf3962c 6155@end deffn
fcf834f9
JD
6156@c parse.lac
6157
31b850d2 6158@c ================================================== parse.trace
dbf3962c 6159@deffn Directive {%define parse.trace}
fa819509
AD
6160
6161@itemize
60aa04a2 6162@item Languages(s): C, C++, Java
fa819509
AD
6163
6164@item Purpose: Require parser instrumentation for tracing.
60aa04a2
AD
6165@xref{Tracing, ,Tracing Your Parser}.
6166
6167In C/C++, define the macro @code{YYDEBUG} (or @code{@var{prefix}DEBUG} with
6168@samp{%define api.prefix @var{prefix}}), see @ref{Multiple Parsers,
6169,Multiple Parsers in the Same Program}) to 1 in the parser implementation
ff7571c0 6170file if it is not already defined, so that the debugging facilities are
60aa04a2 6171compiled.
793fbca5 6172
fa819509
AD
6173@item Accepted Values: Boolean
6174
6175@item Default Value: @code{false}
6176@end itemize
dbf3962c 6177@end deffn
fa819509 6178@c parse.trace
592d0b1e 6179
e0c07222
JD
6180@node %code Summary
6181@subsection %code Summary
e0c07222 6182@findex %code
e0c07222 6183@cindex Prologue
51151d91
JD
6184
6185The @code{%code} directive inserts code verbatim into the output
6186parser source at any of a predefined set of locations. It thus serves
6187as a flexible and user-friendly alternative to the traditional Yacc
6188prologue, @code{%@{@var{code}%@}}. This section summarizes the
6189functionality of @code{%code} for the various target languages
6190supported by Bison. For a detailed discussion of how to use
6191@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
6192is advantageous to do so, @pxref{Prologue Alternatives}.
6193
6194@deffn {Directive} %code @{@var{code}@}
6195This is the unqualified form of the @code{%code} directive. It
6196inserts @var{code} verbatim at a language-dependent default location
6197in the parser implementation.
6198
e0c07222 6199For C/C++, the default location is the parser implementation file
51151d91
JD
6200after the usual contents of the parser header file. Thus, the
6201unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
e0c07222
JD
6202
6203For Java, the default location is inside the parser class.
6204@end deffn
6205
6206@deffn {Directive} %code @var{qualifier} @{@var{code}@}
6207This is the qualified form of the @code{%code} directive.
51151d91
JD
6208@var{qualifier} identifies the purpose of @var{code} and thus the
6209location(s) where Bison should insert it. That is, if you need to
6210specify location-sensitive @var{code} that does not belong at the
6211default location selected by the unqualified @code{%code} form, use
6212this form instead.
6213@end deffn
6214
6215For any particular qualifier or for the unqualified form, if there are
6216multiple occurrences of the @code{%code} directive, Bison concatenates
6217the specified code in the order in which it appears in the grammar
6218file.
e0c07222 6219
51151d91
JD
6220Not all qualifiers are accepted for all target languages. Unaccepted
6221qualifiers produce an error. Some of the accepted qualifiers are:
e0c07222 6222
84072495 6223@table @code
e0c07222
JD
6224@item requires
6225@findex %code requires
6226
6227@itemize @bullet
6228@item Language(s): C, C++
6229
6230@item Purpose: This is the best place to write dependency code required for
21e3a2b5
AD
6231@code{YYSTYPE} and @code{YYLTYPE}. In other words, it's the best place to
6232define types referenced in @code{%union} directives. If you use
6233@code{#define} to override Bison's default @code{YYSTYPE} and @code{YYLTYPE}
6234definitions, then it is also the best place. However you should rather
6235@code{%define} @code{api.value.type} and @code{api.location.type}.
e0c07222
JD
6236
6237@item Location(s): The parser header file and the parser implementation file
6238before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
6239definitions.
6240@end itemize
6241
6242@item provides
6243@findex %code provides
6244
6245@itemize @bullet
6246@item Language(s): C, C++
6247
6248@item Purpose: This is the best place to write additional definitions and
6249declarations that should be provided to other modules.
6250
6251@item Location(s): The parser header file and the parser implementation
6252file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
6253token definitions.
6254@end itemize
6255
6256@item top
6257@findex %code top
6258
6259@itemize @bullet
6260@item Language(s): C, C++
6261
6262@item Purpose: The unqualified @code{%code} or @code{%code requires}
6263should usually be more appropriate than @code{%code top}. However,
6264occasionally it is necessary to insert code much nearer the top of the
6265parser implementation file. For example:
6266
c93f22fc 6267@example
e0c07222
JD
6268%code top @{
6269 #define _GNU_SOURCE
6270 #include <stdio.h>
6271@}
c93f22fc 6272@end example
e0c07222
JD
6273
6274@item Location(s): Near the top of the parser implementation file.
6275@end itemize
6276
6277@item imports
6278@findex %code imports
6279
6280@itemize @bullet
6281@item Language(s): Java
6282
6283@item Purpose: This is the best place to write Java import directives.
6284
6285@item Location(s): The parser Java file after any Java package directive and
6286before any class definitions.
6287@end itemize
84072495 6288@end table
e0c07222 6289
51151d91
JD
6290Though we say the insertion locations are language-dependent, they are
6291technically skeleton-dependent. Writers of non-standard skeletons
6292however should choose their locations consistently with the behavior
6293of the standard Bison skeletons.
e0c07222 6294
d8988b2f 6295
342b8b6e 6296@node Multiple Parsers
bfa74976
RS
6297@section Multiple Parsers in the Same Program
6298
6299Most programs that use Bison parse only one language and therefore contain
4b3847c3
AD
6300only one Bison parser. But what if you want to parse more than one language
6301with the same program? Then you need to avoid name conflicts between
6302different definitions of functions and variables such as @code{yyparse},
6303@code{yylval}. To use different parsers from the same compilation unit, you
6304also need to avoid conflicts on types and macros (e.g., @code{YYSTYPE})
6305exported in the generated header.
6306
6307The easy way to do this is to define the @code{%define} variable
e358222b
AD
6308@code{api.prefix}. With different @code{api.prefix}s it is guaranteed that
6309headers do not conflict when included together, and that compiled objects
6310can be linked together too. Specifying @samp{%define api.prefix
6311@var{prefix}} (or passing the option @samp{-Dapi.prefix=@var{prefix}}, see
6312@ref{Invocation, ,Invoking Bison}) renames the interface functions and
6313variables of the Bison parser to start with @var{prefix} instead of
6314@samp{yy}, and all the macros to start by @var{PREFIX} (i.e., @var{prefix}
6315upper-cased) instead of @samp{YY}.
4b3847c3
AD
6316
6317The renamed symbols include @code{yyparse}, @code{yylex}, @code{yyerror},
6318@code{yynerrs}, @code{yylval}, @code{yylloc}, @code{yychar} and
6319@code{yydebug}. If you use a push parser, @code{yypush_parse},
6320@code{yypull_parse}, @code{yypstate}, @code{yypstate_new} and
6321@code{yypstate_delete} will also be renamed. The renamed macros include
e358222b
AD
6322@code{YYSTYPE}, @code{YYLTYPE}, and @code{YYDEBUG}, which is treated
6323specifically --- more about this below.
4b3847c3
AD
6324
6325For example, if you use @samp{%define api.prefix c}, the names become
6326@code{cparse}, @code{clex}, @dots{}, @code{CSTYPE}, @code{CLTYPE}, and so
6327on.
6328
6329The @code{%define} variable @code{api.prefix} works in two different ways.
6330In the implementation file, it works by adding macro definitions to the
6331beginning of the parser implementation file, defining @code{yyparse} as
6332@code{@var{prefix}parse}, and so on:
6333
6334@example
6335#define YYSTYPE CTYPE
6336#define yyparse cparse
6337#define yylval clval
6338...
6339YYSTYPE yylval;
6340int yyparse (void);
6341@end example
6342
6343This effectively substitutes one name for the other in the entire parser
6344implementation file, thus the ``original'' names (@code{yylex},
6345@code{YYSTYPE}, @dots{}) are also usable in the parser implementation file.
6346
6347However, in the parser header file, the symbols are defined renamed, for
6348instance:
bfa74976 6349
4b3847c3
AD
6350@example
6351extern CSTYPE clval;
6352int cparse (void);
6353@end example
bfa74976 6354
e358222b
AD
6355The macro @code{YYDEBUG} is commonly used to enable the tracing support in
6356parsers. To comply with this tradition, when @code{api.prefix} is used,
6357@code{YYDEBUG} (not renamed) is used as a default value:
6358
6359@example
4d9bdbe3 6360/* Debug traces. */
e358222b
AD
6361#ifndef CDEBUG
6362# if defined YYDEBUG
6363# if YYDEBUG
6364# define CDEBUG 1
6365# else
6366# define CDEBUG 0
6367# endif
6368# else
6369# define CDEBUG 0
6370# endif
6371#endif
6372#if CDEBUG
6373extern int cdebug;
6374#endif
6375@end example
6376
6377@sp 2
6378
6379Prior to Bison 2.6, a feature similar to @code{api.prefix} was provided by
6380the obsolete directive @code{%name-prefix} (@pxref{Table of Symbols, ,Bison
6381Symbols}) and the option @code{--name-prefix} (@pxref{Bison Options}).
bfa74976 6382
342b8b6e 6383@node Interface
bfa74976
RS
6384@chapter Parser C-Language Interface
6385@cindex C-language interface
6386@cindex interface
6387
6388The Bison parser is actually a C function named @code{yyparse}. Here we
6389describe the interface conventions of @code{yyparse} and the other
6390functions that it needs to use.
6391
6392Keep in mind that the parser uses many C identifiers starting with
6393@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
6394identifier (aside from those in this manual) in an action or in epilogue
6395in the grammar file, you are likely to run into trouble.
bfa74976
RS
6396
6397@menu
f5f419de
DJ
6398* Parser Function:: How to call @code{yyparse} and what it returns.
6399* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
6400* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
6401* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
6402* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
6403* Lexical:: You must supply a function @code{yylex}
6404 which reads tokens.
6405* Error Reporting:: You must supply a function @code{yyerror}.
6406* Action Features:: Special features for use in actions.
6407* Internationalization:: How to let the parser speak in the user's
6408 native language.
bfa74976
RS
6409@end menu
6410
342b8b6e 6411@node Parser Function
bfa74976
RS
6412@section The Parser Function @code{yyparse}
6413@findex yyparse
6414
6415You call the function @code{yyparse} to cause parsing to occur. This
6416function reads tokens, executes actions, and ultimately returns when it
6417encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
6418write an action which directs @code{yyparse} to return immediately
6419without reading further.
bfa74976 6420
2a8d363a
AD
6421
6422@deftypefun int yyparse (void)
bfa74976
RS
6423The value returned by @code{yyparse} is 0 if parsing was successful (return
6424is due to end-of-input).
6425
b47dbebe
PE
6426The value is 1 if parsing failed because of invalid input, i.e., input
6427that contains a syntax error or that causes @code{YYABORT} to be
6428invoked.
6429
6430The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 6431@end deftypefun
bfa74976
RS
6432
6433In an action, you can cause immediate return from @code{yyparse} by using
6434these macros:
6435
2a8d363a 6436@defmac YYACCEPT
bfa74976
RS
6437@findex YYACCEPT
6438Return immediately with value 0 (to report success).
2a8d363a 6439@end defmac
bfa74976 6440
2a8d363a 6441@defmac YYABORT
bfa74976
RS
6442@findex YYABORT
6443Return immediately with value 1 (to report failure).
2a8d363a
AD
6444@end defmac
6445
6446If you use a reentrant parser, you can optionally pass additional
6447parameter information to it in a reentrant way. To do so, use the
6448declaration @code{%parse-param}:
6449
2055a44e 6450@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6451@findex %parse-param
2055a44e
AD
6452Declare that one or more
6453@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 6454The @var{argument-declaration} is used when declaring
feeb0eda
PE
6455functions or prototypes. The last identifier in
6456@var{argument-declaration} must be the argument name.
2a8d363a
AD
6457@end deffn
6458
6459Here's an example. Write this in the parser:
6460
6461@example
2055a44e 6462%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
6463@end example
6464
6465@noindent
6466Then call the parser like this:
6467
6468@example
6469@{
6470 int nastiness, randomness;
6471 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
6472 value = yyparse (&nastiness, &randomness);
6473 @dots{}
6474@}
6475@end example
6476
6477@noindent
6478In the grammar actions, use expressions like this to refer to the data:
6479
6480@example
6481exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
6482@end example
6483
1f1bd572
TR
6484@noindent
6485Using the following:
6486@example
6487%parse-param @{int *randomness@}
6488@end example
6489
6490Results in these signatures:
6491@example
6492void yyerror (int *randomness, const char *msg);
6493int yyparse (int *randomness);
6494@end example
6495
6496@noindent
6497Or, if both @code{%define api.pure full} (or just @code{%define api.pure})
6498and @code{%locations} are used:
6499
6500@example
6501void yyerror (YYLTYPE *llocp, int *randomness, const char *msg);
6502int yyparse (int *randomness);
6503@end example
6504
9987d1b3
JD
6505@node Push Parser Function
6506@section The Push Parser Function @code{yypush_parse}
6507@findex yypush_parse
6508
59da312b
JD
6509(The current push parsing interface is experimental and may evolve.
6510More user feedback will help to stabilize it.)
6511
f4101aa6 6512You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
6513function is available if either the @samp{%define api.push-pull push} or
6514@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6515@xref{Push Decl, ,A Push Parser}.
6516
a73aa764 6517@deftypefun int yypush_parse (yypstate *@var{yyps})
ad60e80f
AD
6518The value returned by @code{yypush_parse} is the same as for yyparse with
6519the following exception: it returns @code{YYPUSH_MORE} if more input is
6520required to finish parsing the grammar.
9987d1b3
JD
6521@end deftypefun
6522
6523@node Pull Parser Function
6524@section The Pull Parser Function @code{yypull_parse}
6525@findex yypull_parse
6526
59da312b
JD
6527(The current push parsing interface is experimental and may evolve.
6528More user feedback will help to stabilize it.)
6529
f4101aa6 6530You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 6531stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 6532declaration is used.
9987d1b3
JD
6533@xref{Push Decl, ,A Push Parser}.
6534
a73aa764 6535@deftypefun int yypull_parse (yypstate *@var{yyps})
9987d1b3
JD
6536The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
6537@end deftypefun
6538
6539@node Parser Create Function
6540@section The Parser Create Function @code{yystate_new}
6541@findex yypstate_new
6542
59da312b
JD
6543(The current push parsing interface is experimental and may evolve.
6544More user feedback will help to stabilize it.)
6545
f4101aa6 6546You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
6547This function is available if either the @samp{%define api.push-pull push} or
6548@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6549@xref{Push Decl, ,A Push Parser}.
6550
34a41a93 6551@deftypefun {yypstate*} yypstate_new (void)
f50bfcd6 6552The function will return a valid parser instance if there was memory available
333e670c
JD
6553or 0 if no memory was available.
6554In impure mode, it will also return 0 if a parser instance is currently
6555allocated.
9987d1b3
JD
6556@end deftypefun
6557
6558@node Parser Delete Function
6559@section The Parser Delete Function @code{yystate_delete}
6560@findex yypstate_delete
6561
59da312b
JD
6562(The current push parsing interface is experimental and may evolve.
6563More user feedback will help to stabilize it.)
6564
9987d1b3 6565You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
6566function is available if either the @samp{%define api.push-pull push} or
6567@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6568@xref{Push Decl, ,A Push Parser}.
6569
a73aa764 6570@deftypefun void yypstate_delete (yypstate *@var{yyps})
9987d1b3
JD
6571This function will reclaim the memory associated with a parser instance.
6572After this call, you should no longer attempt to use the parser instance.
6573@end deftypefun
bfa74976 6574
342b8b6e 6575@node Lexical
bfa74976
RS
6576@section The Lexical Analyzer Function @code{yylex}
6577@findex yylex
6578@cindex lexical analyzer
6579
6580The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
6581the input stream and returns them to the parser. Bison does not create
6582this function automatically; you must write it so that @code{yyparse} can
6583call it. The function is sometimes referred to as a lexical scanner.
6584
ff7571c0
JD
6585In simple programs, @code{yylex} is often defined at the end of the
6586Bison grammar file. If @code{yylex} is defined in a separate source
6587file, you need to arrange for the token-type macro definitions to be
6588available there. To do this, use the @samp{-d} option when you run
6589Bison, so that it will write these macro definitions into the separate
6590parser header file, @file{@var{name}.tab.h}, which you can include in
6591the other source files that need it. @xref{Invocation, ,Invoking
6592Bison}.
bfa74976
RS
6593
6594@menu
6595* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
6596* Token Values:: How @code{yylex} must return the semantic value
6597 of the token it has read.
6598* Token Locations:: How @code{yylex} must return the text location
6599 (line number, etc.) of the token, if the
6600 actions want that.
6601* Pure Calling:: How the calling convention differs in a pure parser
6602 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
6603@end menu
6604
342b8b6e 6605@node Calling Convention
bfa74976
RS
6606@subsection Calling Convention for @code{yylex}
6607
72d2299c
PE
6608The value that @code{yylex} returns must be the positive numeric code
6609for the type of token it has just found; a zero or negative value
6610signifies end-of-input.
bfa74976
RS
6611
6612When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
6613in the parser implementation file becomes a C macro whose definition
6614is the proper numeric code for that token type. So @code{yylex} can
6615use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
6616
6617When a token is referred to in the grammar rules by a character literal,
6618the numeric code for that character is also the code for the token type.
72d2299c
PE
6619So @code{yylex} can simply return that character code, possibly converted
6620to @code{unsigned char} to avoid sign-extension. The null character
6621must not be used this way, because its code is zero and that
bfa74976
RS
6622signifies end-of-input.
6623
6624Here is an example showing these things:
6625
6626@example
13863333
AD
6627int
6628yylex (void)
bfa74976
RS
6629@{
6630 @dots{}
72d2299c 6631 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
6632 return 0;
6633 @dots{}
6634 if (c == '+' || c == '-')
4c9b8f13 6635 return c; /* Assume token type for '+' is '+'. */
bfa74976 6636 @dots{}
72d2299c 6637 return INT; /* Return the type of the token. */
bfa74976
RS
6638 @dots{}
6639@}
6640@end example
6641
6642@noindent
6643This interface has been designed so that the output from the @code{lex}
6644utility can be used without change as the definition of @code{yylex}.
6645
931c7513
RS
6646If the grammar uses literal string tokens, there are two ways that
6647@code{yylex} can determine the token type codes for them:
6648
6649@itemize @bullet
6650@item
6651If the grammar defines symbolic token names as aliases for the
6652literal string tokens, @code{yylex} can use these symbolic names like
6653all others. In this case, the use of the literal string tokens in
6654the grammar file has no effect on @code{yylex}.
6655
6656@item
9ecbd125 6657@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6658table. The index of the token in the table is the token type's code.
9ecbd125 6659The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6660double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6661token's characters are escaped as necessary to be suitable as input
6662to Bison.
931c7513 6663
9e0876fb
PE
6664Here's code for looking up a multicharacter token in @code{yytname},
6665assuming that the characters of the token are stored in
6666@code{token_buffer}, and assuming that the token does not contain any
6667characters like @samp{"} that require escaping.
931c7513 6668
c93f22fc 6669@example
931c7513
RS
6670for (i = 0; i < YYNTOKENS; i++)
6671 @{
6672 if (yytname[i] != 0
6673 && yytname[i][0] == '"'
68449b3a
PE
6674 && ! strncmp (yytname[i] + 1, token_buffer,
6675 strlen (token_buffer))
931c7513
RS
6676 && yytname[i][strlen (token_buffer) + 1] == '"'
6677 && yytname[i][strlen (token_buffer) + 2] == 0)
6678 break;
6679 @}
c93f22fc 6680@end example
931c7513
RS
6681
6682The @code{yytname} table is generated only if you use the
8c9a50be 6683@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6684@end itemize
6685
342b8b6e 6686@node Token Values
bfa74976
RS
6687@subsection Semantic Values of Tokens
6688
6689@vindex yylval
9d9b8b70 6690In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6691be stored into the global variable @code{yylval}. When you are using
6692just one data type for semantic values, @code{yylval} has that type.
6693Thus, if the type is @code{int} (the default), you might write this in
6694@code{yylex}:
6695
6696@example
6697@group
6698 @dots{}
72d2299c
PE
6699 yylval = value; /* Put value onto Bison stack. */
6700 return INT; /* Return the type of the token. */
bfa74976
RS
6701 @dots{}
6702@end group
6703@end example
6704
6705When you are using multiple data types, @code{yylval}'s type is a union
704a47c4 6706made from the @code{%union} declaration (@pxref{Union Decl, ,The
e4d49586 6707Union Declaration}). So when you store a token's value, you
704a47c4
AD
6708must use the proper member of the union. If the @code{%union}
6709declaration looks like this:
bfa74976
RS
6710
6711@example
6712@group
6713%union @{
6714 int intval;
6715 double val;
6716 symrec *tptr;
6717@}
6718@end group
6719@end example
6720
6721@noindent
6722then the code in @code{yylex} might look like this:
6723
6724@example
6725@group
6726 @dots{}
72d2299c
PE
6727 yylval.intval = value; /* Put value onto Bison stack. */
6728 return INT; /* Return the type of the token. */
bfa74976
RS
6729 @dots{}
6730@end group
6731@end example
6732
95923bd6
AD
6733@node Token Locations
6734@subsection Textual Locations of Tokens
bfa74976
RS
6735
6736@vindex yylloc
303834cc
JD
6737If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6738in actions to keep track of the textual locations of tokens and groupings,
6739then you must provide this information in @code{yylex}. The function
6740@code{yyparse} expects to find the textual location of a token just parsed
6741in the global variable @code{yylloc}. So @code{yylex} must store the proper
6742data in that variable.
847bf1f5
AD
6743
6744By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6745initialize the members that are going to be used by the actions. The
6746four members are called @code{first_line}, @code{first_column},
6747@code{last_line} and @code{last_column}. Note that the use of this
6748feature makes the parser noticeably slower.
bfa74976
RS
6749
6750@tindex YYLTYPE
6751The data type of @code{yylloc} has the name @code{YYLTYPE}.
6752
342b8b6e 6753@node Pure Calling
c656404a 6754@subsection Calling Conventions for Pure Parsers
bfa74976 6755
1f1bd572 6756When you use the Bison declaration @code{%define api.pure full} to request a
e425e872
RS
6757pure, reentrant parser, the global communication variables @code{yylval}
6758and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6759Parser}.) In such parsers the two global variables are replaced by
6760pointers passed as arguments to @code{yylex}. You must declare them as
6761shown here, and pass the information back by storing it through those
6762pointers.
bfa74976
RS
6763
6764@example
13863333
AD
6765int
6766yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6767@{
6768 @dots{}
6769 *lvalp = value; /* Put value onto Bison stack. */
6770 return INT; /* Return the type of the token. */
6771 @dots{}
6772@}
6773@end example
6774
6775If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6776textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6777this case, omit the second argument; @code{yylex} will be called with
6778only one argument.
6779
2055a44e 6780If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6781@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6782Function}). To pass additional arguments to both @code{yylex} and
6783@code{yyparse}, use @code{%param}.
e425e872 6784
2055a44e 6785@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6786@findex %lex-param
2055a44e
AD
6787Specify that @var{argument-declaration} are additional @code{yylex} argument
6788declarations. You may pass one or more such declarations, which is
6789equivalent to repeating @code{%lex-param}.
6790@end deffn
6791
6792@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6793@findex %param
6794Specify that @var{argument-declaration} are additional
6795@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6796@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6797@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6798declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6799@end deffn
e425e872 6800
1f1bd572 6801@noindent
2a8d363a 6802For instance:
e425e872
RS
6803
6804@example
2055a44e
AD
6805%lex-param @{scanner_mode *mode@}
6806%parse-param @{parser_mode *mode@}
6807%param @{environment_type *env@}
e425e872
RS
6808@end example
6809
6810@noindent
18ad57b3 6811results in the following signatures:
e425e872
RS
6812
6813@example
2055a44e
AD
6814int yylex (scanner_mode *mode, environment_type *env);
6815int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6816@end example
6817
5807bb91 6818If @samp{%define api.pure full} is added:
c656404a
RS
6819
6820@example
2055a44e
AD
6821int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6822int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6823@end example
6824
2a8d363a 6825@noindent
5807bb91
AD
6826and finally, if both @samp{%define api.pure full} and @code{%locations} are
6827used:
c656404a 6828
2a8d363a 6829@example
2055a44e
AD
6830int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6831 scanner_mode *mode, environment_type *env);
6832int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6833@end example
931c7513 6834
342b8b6e 6835@node Error Reporting
bfa74976
RS
6836@section The Error Reporting Function @code{yyerror}
6837@cindex error reporting function
6838@findex yyerror
6839@cindex parse error
6840@cindex syntax error
6841
31b850d2 6842The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6843whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6844action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6845macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6846in Actions}).
bfa74976
RS
6847
6848The Bison parser expects to report the error by calling an error
6849reporting function named @code{yyerror}, which you must supply. It is
6850called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6851receives one argument. For a syntax error, the string is normally
6852@w{@code{"syntax error"}}.
bfa74976 6853
31b850d2 6854@findex %define parse.error
7fceb615
JD
6855If you invoke @samp{%define parse.error verbose} in the Bison declarations
6856section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6857Bison provides a more verbose and specific error message string instead of
6858just plain @w{@code{"syntax error"}}. However, that message sometimes
6859contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6860
1a059451
PE
6861The parser can detect one other kind of error: memory exhaustion. This
6862can happen when the input contains constructions that are very deeply
bfa74976 6863nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6864parser normally extends its stack automatically up to a very large limit. But
6865if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6866fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6867
6868In some cases diagnostics like @w{@code{"syntax error"}} are
6869translated automatically from English to some other language before
6870they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6871
6872The following definition suffices in simple programs:
6873
6874@example
6875@group
13863333 6876void
38a92d50 6877yyerror (char const *s)
bfa74976
RS
6878@{
6879@end group
6880@group
6881 fprintf (stderr, "%s\n", s);
6882@}
6883@end group
6884@end example
6885
6886After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6887error recovery if you have written suitable error recovery grammar rules
6888(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6889immediately return 1.
6890
93724f13 6891Obviously, in location tracking pure parsers, @code{yyerror} should have
1f1bd572
TR
6892an access to the current location. With @code{%define api.pure}, this is
6893indeed the case for the GLR parsers, but not for the Yacc parser, for
6894historical reasons, and this is the why @code{%define api.pure full} should be
6895prefered over @code{%define api.pure}.
2a8d363a 6896
1f1bd572
TR
6897When @code{%locations %define api.pure full} is used, @code{yyerror} has the
6898following signature:
2a8d363a
AD
6899
6900@example
1f1bd572 6901void yyerror (YYLTYPE *locp, char const *msg);
2a8d363a
AD
6902@end example
6903
1c0c3e95 6904@noindent
38a92d50
PE
6905The prototypes are only indications of how the code produced by Bison
6906uses @code{yyerror}. Bison-generated code always ignores the returned
6907value, so @code{yyerror} can return any type, including @code{void}.
6908Also, @code{yyerror} can be a variadic function; that is why the
6909message is always passed last.
6910
6911Traditionally @code{yyerror} returns an @code{int} that is always
6912ignored, but this is purely for historical reasons, and @code{void} is
6913preferable since it more accurately describes the return type for
6914@code{yyerror}.
93724f13 6915
bfa74976
RS
6916@vindex yynerrs
6917The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6918reported so far. Normally this variable is global; but if you
704a47c4
AD
6919request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6920then it is a local variable which only the actions can access.
bfa74976 6921
342b8b6e 6922@node Action Features
bfa74976
RS
6923@section Special Features for Use in Actions
6924@cindex summary, action features
6925@cindex action features summary
6926
6927Here is a table of Bison constructs, variables and macros that
6928are useful in actions.
6929
18b519c0 6930@deffn {Variable} $$
bfa74976
RS
6931Acts like a variable that contains the semantic value for the
6932grouping made by the current rule. @xref{Actions}.
18b519c0 6933@end deffn
bfa74976 6934
18b519c0 6935@deffn {Variable} $@var{n}
bfa74976
RS
6936Acts like a variable that contains the semantic value for the
6937@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6938@end deffn
bfa74976 6939
18b519c0 6940@deffn {Variable} $<@var{typealt}>$
bfa74976 6941Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6942specified by the @code{%union} declaration. @xref{Action Types, ,Data
6943Types of Values in Actions}.
18b519c0 6944@end deffn
bfa74976 6945
18b519c0 6946@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6947Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6948union specified by the @code{%union} declaration.
e0c471a9 6949@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6950@end deffn
bfa74976 6951
34a41a93 6952@deffn {Macro} YYABORT @code{;}
bfa74976
RS
6953Return immediately from @code{yyparse}, indicating failure.
6954@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6955@end deffn
bfa74976 6956
34a41a93 6957@deffn {Macro} YYACCEPT @code{;}
bfa74976
RS
6958Return immediately from @code{yyparse}, indicating success.
6959@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6960@end deffn
bfa74976 6961
34a41a93 6962@deffn {Macro} YYBACKUP (@var{token}, @var{value})@code{;}
bfa74976
RS
6963@findex YYBACKUP
6964Unshift a token. This macro is allowed only for rules that reduce
742e4900 6965a single value, and only when there is no lookahead token.
8a4281b9 6966It is also disallowed in GLR parsers.
742e4900 6967It installs a lookahead token with token type @var{token} and
bfa74976
RS
6968semantic value @var{value}; then it discards the value that was
6969going to be reduced by this rule.
6970
6971If the macro is used when it is not valid, such as when there is
742e4900 6972a lookahead token already, then it reports a syntax error with
bfa74976
RS
6973a message @samp{cannot back up} and performs ordinary error
6974recovery.
6975
6976In either case, the rest of the action is not executed.
18b519c0 6977@end deffn
bfa74976 6978
18b519c0 6979@deffn {Macro} YYEMPTY
742e4900 6980Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6981@end deffn
bfa74976 6982
32c29292 6983@deffn {Macro} YYEOF
742e4900 6984Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6985stream.
6986@end deffn
6987
34a41a93 6988@deffn {Macro} YYERROR @code{;}
bfa74976
RS
6989Cause an immediate syntax error. This statement initiates error
6990recovery just as if the parser itself had detected an error; however, it
6991does not call @code{yyerror}, and does not print any message. If you
6992want to print an error message, call @code{yyerror} explicitly before
6993the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6994@end deffn
bfa74976 6995
18b519c0 6996@deffn {Macro} YYRECOVERING
02103984
PE
6997@findex YYRECOVERING
6998The expression @code{YYRECOVERING ()} yields 1 when the parser
6999is recovering from a syntax error, and 0 otherwise.
bfa74976 7000@xref{Error Recovery}.
18b519c0 7001@end deffn
bfa74976 7002
18b519c0 7003@deffn {Variable} yychar
742e4900
JD
7004Variable containing either the lookahead token, or @code{YYEOF} when the
7005lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
7006has been performed so the next token is not yet known.
7007Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
7008Actions}).
742e4900 7009@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 7010@end deffn
bfa74976 7011
34a41a93 7012@deffn {Macro} yyclearin @code{;}
742e4900 7013Discard the current lookahead token. This is useful primarily in
32c29292
JD
7014error rules.
7015Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
7016Semantic Actions}).
7017@xref{Error Recovery}.
18b519c0 7018@end deffn
bfa74976 7019
34a41a93 7020@deffn {Macro} yyerrok @code{;}
bfa74976 7021Resume generating error messages immediately for subsequent syntax
13863333 7022errors. This is useful primarily in error rules.
bfa74976 7023@xref{Error Recovery}.
18b519c0 7024@end deffn
bfa74976 7025
32c29292 7026@deffn {Variable} yylloc
742e4900 7027Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
7028to @code{YYEMPTY} or @code{YYEOF}.
7029Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
7030Actions}).
7031@xref{Actions and Locations, ,Actions and Locations}.
7032@end deffn
7033
7034@deffn {Variable} yylval
742e4900 7035Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
7036not set to @code{YYEMPTY} or @code{YYEOF}.
7037Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
7038Actions}).
7039@xref{Actions, ,Actions}.
7040@end deffn
7041
18b519c0 7042@deffn {Value} @@$
303834cc
JD
7043Acts like a structure variable containing information on the textual
7044location of the grouping made by the current rule. @xref{Tracking
7045Locations}.
bfa74976 7046
847bf1f5
AD
7047@c Check if those paragraphs are still useful or not.
7048
7049@c @example
7050@c struct @{
7051@c int first_line, last_line;
7052@c int first_column, last_column;
7053@c @};
7054@c @end example
7055
7056@c Thus, to get the starting line number of the third component, you would
7057@c use @samp{@@3.first_line}.
bfa74976 7058
847bf1f5
AD
7059@c In order for the members of this structure to contain valid information,
7060@c you must make @code{yylex} supply this information about each token.
7061@c If you need only certain members, then @code{yylex} need only fill in
7062@c those members.
bfa74976 7063
847bf1f5 7064@c The use of this feature makes the parser noticeably slower.
18b519c0 7065@end deffn
847bf1f5 7066
18b519c0 7067@deffn {Value} @@@var{n}
847bf1f5 7068@findex @@@var{n}
303834cc
JD
7069Acts like a structure variable containing information on the textual
7070location of the @var{n}th component of the current rule. @xref{Tracking
7071Locations}.
18b519c0 7072@end deffn
bfa74976 7073
f7ab6a50
PE
7074@node Internationalization
7075@section Parser Internationalization
7076@cindex internationalization
7077@cindex i18n
7078@cindex NLS
7079@cindex gettext
7080@cindex bison-po
7081
7082A Bison-generated parser can print diagnostics, including error and
7083tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
7084also supports outputting diagnostics in the user's native language. To
7085make this work, the user should set the usual environment variables.
7086@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
7087For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 7088set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
7089encoding. The exact set of available locales depends on the user's
7090installation.
7091
7092The maintainer of a package that uses a Bison-generated parser enables
7093the internationalization of the parser's output through the following
8a4281b9
JD
7094steps. Here we assume a package that uses GNU Autoconf and
7095GNU Automake.
f7ab6a50
PE
7096
7097@enumerate
7098@item
30757c8c 7099@cindex bison-i18n.m4
8a4281b9 7100Into the directory containing the GNU Autoconf macros used
c949ada3 7101by the package ---often called @file{m4}--- copy the
f7ab6a50
PE
7102@file{bison-i18n.m4} file installed by Bison under
7103@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
7104For example:
7105
7106@example
7107cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
7108@end example
7109
7110@item
30757c8c
PE
7111@findex BISON_I18N
7112@vindex BISON_LOCALEDIR
7113@vindex YYENABLE_NLS
f7ab6a50
PE
7114In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
7115invocation, add an invocation of @code{BISON_I18N}. This macro is
7116defined in the file @file{bison-i18n.m4} that you copied earlier. It
7117causes @samp{configure} to find the value of the
30757c8c
PE
7118@code{BISON_LOCALEDIR} variable, and it defines the source-language
7119symbol @code{YYENABLE_NLS} to enable translations in the
7120Bison-generated parser.
f7ab6a50
PE
7121
7122@item
7123In the @code{main} function of your program, designate the directory
7124containing Bison's runtime message catalog, through a call to
7125@samp{bindtextdomain} with domain name @samp{bison-runtime}.
7126For example:
7127
7128@example
7129bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
7130@end example
7131
7132Typically this appears after any other call @code{bindtextdomain
7133(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
7134@samp{BISON_LOCALEDIR} to be defined as a string through the
7135@file{Makefile}.
7136
7137@item
7138In the @file{Makefile.am} that controls the compilation of the @code{main}
7139function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
7140either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
7141
7142@example
7143DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
7144@end example
7145
7146or:
7147
7148@example
7149AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
7150@end example
7151
7152@item
7153Finally, invoke the command @command{autoreconf} to generate the build
7154infrastructure.
7155@end enumerate
7156
bfa74976 7157
342b8b6e 7158@node Algorithm
13863333
AD
7159@chapter The Bison Parser Algorithm
7160@cindex Bison parser algorithm
bfa74976
RS
7161@cindex algorithm of parser
7162@cindex shifting
7163@cindex reduction
7164@cindex parser stack
7165@cindex stack, parser
7166
7167As Bison reads tokens, it pushes them onto a stack along with their
7168semantic values. The stack is called the @dfn{parser stack}. Pushing a
7169token is traditionally called @dfn{shifting}.
7170
7171For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
7172@samp{3} to come. The stack will have four elements, one for each token
7173that was shifted.
7174
7175But the stack does not always have an element for each token read. When
7176the last @var{n} tokens and groupings shifted match the components of a
7177grammar rule, they can be combined according to that rule. This is called
7178@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
7179single grouping whose symbol is the result (left hand side) of that rule.
7180Running the rule's action is part of the process of reduction, because this
7181is what computes the semantic value of the resulting grouping.
7182
7183For example, if the infix calculator's parser stack contains this:
7184
7185@example
71861 + 5 * 3
7187@end example
7188
7189@noindent
7190and the next input token is a newline character, then the last three
7191elements can be reduced to 15 via the rule:
7192
7193@example
7194expr: expr '*' expr;
7195@end example
7196
7197@noindent
7198Then the stack contains just these three elements:
7199
7200@example
72011 + 15
7202@end example
7203
7204@noindent
7205At this point, another reduction can be made, resulting in the single value
720616. Then the newline token can be shifted.
7207
7208The parser tries, by shifts and reductions, to reduce the entire input down
7209to a single grouping whose symbol is the grammar's start-symbol
7210(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
7211
7212This kind of parser is known in the literature as a bottom-up parser.
7213
7214@menu
742e4900 7215* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
7216* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
7217* Precedence:: Operator precedence works by resolving conflicts.
7218* Contextual Precedence:: When an operator's precedence depends on context.
7219* Parser States:: The parser is a finite-state-machine with stack.
7220* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 7221* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 7222* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 7223* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 7224* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
7225@end menu
7226
742e4900
JD
7227@node Lookahead
7228@section Lookahead Tokens
7229@cindex lookahead token
bfa74976
RS
7230
7231The Bison parser does @emph{not} always reduce immediately as soon as the
7232last @var{n} tokens and groupings match a rule. This is because such a
7233simple strategy is inadequate to handle most languages. Instead, when a
7234reduction is possible, the parser sometimes ``looks ahead'' at the next
7235token in order to decide what to do.
7236
7237When a token is read, it is not immediately shifted; first it becomes the
742e4900 7238@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 7239perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
7240the lookahead token remains off to the side. When no more reductions
7241should take place, the lookahead token is shifted onto the stack. This
bfa74976 7242does not mean that all possible reductions have been done; depending on the
742e4900 7243token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
7244application.
7245
742e4900 7246Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
7247expressions which contain binary addition operators and postfix unary
7248factorial operators (@samp{!}), and allow parentheses for grouping.
7249
7250@example
7251@group
5e9b6624
AD
7252expr:
7253 term '+' expr
7254| term
7255;
bfa74976
RS
7256@end group
7257
7258@group
5e9b6624
AD
7259term:
7260 '(' expr ')'
7261| term '!'
534cee7a 7262| "number"
5e9b6624 7263;
bfa74976
RS
7264@end group
7265@end example
7266
7267Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
7268should be done? If the following token is @samp{)}, then the first three
7269tokens must be reduced to form an @code{expr}. This is the only valid
7270course, because shifting the @samp{)} would produce a sequence of symbols
7271@w{@code{term ')'}}, and no rule allows this.
7272
7273If the following token is @samp{!}, then it must be shifted immediately so
7274that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
7275parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
7276@code{expr}. It would then be impossible to shift the @samp{!} because
7277doing so would produce on the stack the sequence of symbols @code{expr
7278'!'}. No rule allows that sequence.
7279
7280@vindex yychar
32c29292
JD
7281@vindex yylval
7282@vindex yylloc
742e4900 7283The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
7284Its semantic value and location, if any, are stored in the variables
7285@code{yylval} and @code{yylloc}.
bfa74976
RS
7286@xref{Action Features, ,Special Features for Use in Actions}.
7287
342b8b6e 7288@node Shift/Reduce
bfa74976
RS
7289@section Shift/Reduce Conflicts
7290@cindex conflicts
7291@cindex shift/reduce conflicts
7292@cindex dangling @code{else}
7293@cindex @code{else}, dangling
7294
7295Suppose we are parsing a language which has if-then and if-then-else
7296statements, with a pair of rules like this:
7297
7298@example
7299@group
7300if_stmt:
534cee7a
AD
7301 "if" expr "then" stmt
7302| "if" expr "then" stmt "else" stmt
5e9b6624 7303;
bfa74976
RS
7304@end group
7305@end example
7306
7307@noindent
534cee7a
AD
7308Here @code{"if"}, @code{"then"} and @code{"else"} are terminal symbols for
7309specific keyword tokens.
bfa74976 7310
534cee7a 7311When the @code{"else"} token is read and becomes the lookahead token, the
bfa74976
RS
7312contents of the stack (assuming the input is valid) are just right for
7313reduction by the first rule. But it is also legitimate to shift the
534cee7a 7314@code{"else"}, because that would lead to eventual reduction by the second
bfa74976
RS
7315rule.
7316
7317This situation, where either a shift or a reduction would be valid, is
7318called a @dfn{shift/reduce conflict}. Bison is designed to resolve
7319these conflicts by choosing to shift, unless otherwise directed by
7320operator precedence declarations. To see the reason for this, let's
7321contrast it with the other alternative.
7322
534cee7a 7323Since the parser prefers to shift the @code{"else"}, the result is to attach
bfa74976
RS
7324the else-clause to the innermost if-statement, making these two inputs
7325equivalent:
7326
7327@example
534cee7a 7328if x then if y then win; else lose;
bfa74976 7329
534cee7a 7330if x then do; if y then win; else lose; end;
bfa74976
RS
7331@end example
7332
7333But if the parser chose to reduce when possible rather than shift, the
7334result would be to attach the else-clause to the outermost if-statement,
7335making these two inputs equivalent:
7336
7337@example
534cee7a 7338if x then if y then win; else lose;
bfa74976 7339
534cee7a 7340if x then do; if y then win; end; else lose;
bfa74976
RS
7341@end example
7342
7343The conflict exists because the grammar as written is ambiguous: either
7344parsing of the simple nested if-statement is legitimate. The established
7345convention is that these ambiguities are resolved by attaching the
7346else-clause to the innermost if-statement; this is what Bison accomplishes
7347by choosing to shift rather than reduce. (It would ideally be cleaner to
7348write an unambiguous grammar, but that is very hard to do in this case.)
7349This particular ambiguity was first encountered in the specifications of
7350Algol 60 and is called the ``dangling @code{else}'' ambiguity.
7351
7352To avoid warnings from Bison about predictable, legitimate shift/reduce
c28cd5dc 7353conflicts, you can use the @code{%expect @var{n}} declaration.
93d7dde9
JD
7354There will be no warning as long as the number of shift/reduce conflicts
7355is exactly @var{n}, and Bison will report an error if there is a
7356different number.
c28cd5dc
AD
7357@xref{Expect Decl, ,Suppressing Conflict Warnings}. However, we don't
7358recommend the use of @code{%expect} (except @samp{%expect 0}!), as an equal
7359number of conflicts does not mean that they are the @emph{same}. When
7360possible, you should rather use precedence directives to @emph{fix} the
7361conflicts explicitly (@pxref{Non Operators,, Using Precedence For Non
7362Operators}).
bfa74976
RS
7363
7364The definition of @code{if_stmt} above is solely to blame for the
7365conflict, but the conflict does not actually appear without additional
ff7571c0
JD
7366rules. Here is a complete Bison grammar file that actually manifests
7367the conflict:
bfa74976
RS
7368
7369@example
bfa74976 7370%%
bfa74976 7371@group
5e9b6624
AD
7372stmt:
7373 expr
7374| if_stmt
7375;
bfa74976
RS
7376@end group
7377
7378@group
7379if_stmt:
534cee7a
AD
7380 "if" expr "then" stmt
7381| "if" expr "then" stmt "else" stmt
5e9b6624 7382;
bfa74976
RS
7383@end group
7384
5e9b6624 7385expr:
534cee7a 7386 "identifier"
5e9b6624 7387;
bfa74976
RS
7388@end example
7389
342b8b6e 7390@node Precedence
bfa74976
RS
7391@section Operator Precedence
7392@cindex operator precedence
7393@cindex precedence of operators
7394
7395Another situation where shift/reduce conflicts appear is in arithmetic
7396expressions. Here shifting is not always the preferred resolution; the
7397Bison declarations for operator precedence allow you to specify when to
7398shift and when to reduce.
7399
7400@menu
7401* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
7402* Using Precedence:: How to specify precedence and associativity.
7403* Precedence Only:: How to specify precedence only.
bfa74976
RS
7404* Precedence Examples:: How these features are used in the previous example.
7405* How Precedence:: How they work.
c28cd5dc 7406* Non Operators:: Using precedence for general conflicts.
bfa74976
RS
7407@end menu
7408
342b8b6e 7409@node Why Precedence
bfa74976
RS
7410@subsection When Precedence is Needed
7411
7412Consider the following ambiguous grammar fragment (ambiguous because the
7413input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
7414
7415@example
7416@group
5e9b6624
AD
7417expr:
7418 expr '-' expr
7419| expr '*' expr
7420| expr '<' expr
7421| '(' expr ')'
7422@dots{}
7423;
bfa74976
RS
7424@end group
7425@end example
7426
7427@noindent
7428Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
7429should it reduce them via the rule for the subtraction operator? It
7430depends on the next token. Of course, if the next token is @samp{)}, we
7431must reduce; shifting is invalid because no single rule can reduce the
7432token sequence @w{@samp{- 2 )}} or anything starting with that. But if
7433the next token is @samp{*} or @samp{<}, we have a choice: either
7434shifting or reduction would allow the parse to complete, but with
7435different results.
7436
7437To decide which one Bison should do, we must consider the results. If
7438the next operator token @var{op} is shifted, then it must be reduced
7439first in order to permit another opportunity to reduce the difference.
7440The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
7441hand, if the subtraction is reduced before shifting @var{op}, the result
7442is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
7443reduce should depend on the relative precedence of the operators
7444@samp{-} and @var{op}: @samp{*} should be shifted first, but not
7445@samp{<}.
bfa74976
RS
7446
7447@cindex associativity
7448What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
7449@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
7450operators we prefer the former, which is called @dfn{left association}.
7451The latter alternative, @dfn{right association}, is desirable for
7452assignment operators. The choice of left or right association is a
7453matter of whether the parser chooses to shift or reduce when the stack
742e4900 7454contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 7455makes right-associativity.
bfa74976 7456
342b8b6e 7457@node Using Precedence
bfa74976
RS
7458@subsection Specifying Operator Precedence
7459@findex %left
bfa74976 7460@findex %nonassoc
d78f0ac9
AD
7461@findex %precedence
7462@findex %right
bfa74976
RS
7463
7464Bison allows you to specify these choices with the operator precedence
7465declarations @code{%left} and @code{%right}. Each such declaration
7466contains a list of tokens, which are operators whose precedence and
7467associativity is being declared. The @code{%left} declaration makes all
7468those operators left-associative and the @code{%right} declaration makes
7469them right-associative. A third alternative is @code{%nonassoc}, which
7470declares that it is a syntax error to find the same operator twice ``in a
7471row''.
d78f0ac9
AD
7472The last alternative, @code{%precedence}, allows to define only
7473precedence and no associativity at all. As a result, any
7474associativity-related conflict that remains will be reported as an
7475compile-time error. The directive @code{%nonassoc} creates run-time
7476error: using the operator in a associative way is a syntax error. The
7477directive @code{%precedence} creates compile-time errors: an operator
7478@emph{can} be involved in an associativity-related conflict, contrary to
7479what expected the grammar author.
bfa74976
RS
7480
7481The relative precedence of different operators is controlled by the
d78f0ac9
AD
7482order in which they are declared. The first precedence/associativity
7483declaration in the file declares the operators whose
bfa74976
RS
7484precedence is lowest, the next such declaration declares the operators
7485whose precedence is a little higher, and so on.
7486
d78f0ac9
AD
7487@node Precedence Only
7488@subsection Specifying Precedence Only
7489@findex %precedence
7490
8a4281b9 7491Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
7492@code{%nonassoc}, which all defines precedence and associativity, little
7493attention is paid to the fact that precedence cannot be defined without
7494defining associativity. Yet, sometimes, when trying to solve a
7495conflict, precedence suffices. In such a case, using @code{%left},
7496@code{%right}, or @code{%nonassoc} might hide future (associativity
7497related) conflicts that would remain hidden.
7498
7499The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 7500Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
7501in the following situation, where the period denotes the current parsing
7502state:
7503
7504@example
7505if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
7506@end example
7507
7508The conflict involves the reduction of the rule @samp{IF expr THEN
7509stmt}, which precedence is by default that of its last token
7510(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
7511disambiguation (attach the @code{else} to the closest @code{if}),
7512shifting must be preferred, i.e., the precedence of @code{ELSE} must be
7513higher than that of @code{THEN}. But neither is expected to be involved
7514in an associativity related conflict, which can be specified as follows.
7515
7516@example
7517%precedence THEN
7518%precedence ELSE
7519@end example
7520
7521The unary-minus is another typical example where associativity is
7522usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 7523Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
7524used to declare the precedence of @code{NEG}, which is more than needed
7525since it also defines its associativity. While this is harmless in the
7526traditional example, who knows how @code{NEG} might be used in future
7527evolutions of the grammar@dots{}
7528
342b8b6e 7529@node Precedence Examples
bfa74976
RS
7530@subsection Precedence Examples
7531
7532In our example, we would want the following declarations:
7533
7534@example
7535%left '<'
7536%left '-'
7537%left '*'
7538@end example
7539
7540In a more complete example, which supports other operators as well, we
7541would declare them in groups of equal precedence. For example, @code{'+'} is
7542declared with @code{'-'}:
7543
7544@example
534cee7a 7545%left '<' '>' '=' "!=" "<=" ">="
bfa74976
RS
7546%left '+' '-'
7547%left '*' '/'
7548@end example
7549
342b8b6e 7550@node How Precedence
bfa74976
RS
7551@subsection How Precedence Works
7552
7553The first effect of the precedence declarations is to assign precedence
7554levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
7555precedence levels to certain rules: each rule gets its precedence from
7556the last terminal symbol mentioned in the components. (You can also
7557specify explicitly the precedence of a rule. @xref{Contextual
7558Precedence, ,Context-Dependent Precedence}.)
7559
7560Finally, the resolution of conflicts works by comparing the precedence
742e4900 7561of the rule being considered with that of the lookahead token. If the
704a47c4
AD
7562token's precedence is higher, the choice is to shift. If the rule's
7563precedence is higher, the choice is to reduce. If they have equal
7564precedence, the choice is made based on the associativity of that
7565precedence level. The verbose output file made by @samp{-v}
7566(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
7567resolved.
bfa74976
RS
7568
7569Not all rules and not all tokens have precedence. If either the rule or
742e4900 7570the lookahead token has no precedence, then the default is to shift.
bfa74976 7571
c28cd5dc
AD
7572@node Non Operators
7573@subsection Using Precedence For Non Operators
7574
7575Using properly precedence and associativity directives can help fixing
7576shift/reduce conflicts that do not involve arithmetics-like operators. For
7577instance, the ``dangling @code{else}'' problem (@pxref{Shift/Reduce, ,
7578Shift/Reduce Conflicts}) can be solved elegantly in two different ways.
7579
7580In the present case, the conflict is between the token @code{"else"} willing
7581to be shifted, and the rule @samp{if_stmt: "if" expr "then" stmt}, asking
7582for reduction. By default, the precedence of a rule is that of its last
7583token, here @code{"then"}, so the conflict will be solved appropriately
7584by giving @code{"else"} a precedence higher than that of @code{"then"}, for
7585instance as follows:
7586
7587@example
7588@group
589149dc
AD
7589%precedence "then"
7590%precedence "else"
c28cd5dc
AD
7591@end group
7592@end example
7593
7594Alternatively, you may give both tokens the same precedence, in which case
7595associativity is used to solve the conflict. To preserve the shift action,
7596use right associativity:
7597
7598@example
7599%right "then" "else"
7600@end example
7601
7602Neither solution is perfect however. Since Bison does not provide, so far,
589149dc 7603``scoped'' precedence, both force you to declare the precedence
c28cd5dc
AD
7604of these keywords with respect to the other operators your grammar.
7605Therefore, instead of being warned about new conflicts you would be unaware
7606of (e.g., a shift/reduce conflict due to @samp{if test then 1 else 2 + 3}
7607being ambiguous: @samp{if test then 1 else (2 + 3)} or @samp{(if test then 1
7608else 2) + 3}?), the conflict will be already ``fixed''.
7609
342b8b6e 7610@node Contextual Precedence
bfa74976
RS
7611@section Context-Dependent Precedence
7612@cindex context-dependent precedence
7613@cindex unary operator precedence
7614@cindex precedence, context-dependent
7615@cindex precedence, unary operator
7616@findex %prec
7617
7618Often the precedence of an operator depends on the context. This sounds
7619outlandish at first, but it is really very common. For example, a minus
7620sign typically has a very high precedence as a unary operator, and a
7621somewhat lower precedence (lower than multiplication) as a binary operator.
7622
d78f0ac9
AD
7623The Bison precedence declarations
7624can only be used once for a given token; so a token has
bfa74976
RS
7625only one precedence declared in this way. For context-dependent
7626precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 7627modifier for rules.
bfa74976
RS
7628
7629The @code{%prec} modifier declares the precedence of a particular rule by
7630specifying a terminal symbol whose precedence should be used for that rule.
7631It's not necessary for that symbol to appear otherwise in the rule. The
7632modifier's syntax is:
7633
7634@example
7635%prec @var{terminal-symbol}
7636@end example
7637
7638@noindent
7639and it is written after the components of the rule. Its effect is to
7640assign the rule the precedence of @var{terminal-symbol}, overriding
7641the precedence that would be deduced for it in the ordinary way. The
7642altered rule precedence then affects how conflicts involving that rule
7643are resolved (@pxref{Precedence, ,Operator Precedence}).
7644
7645Here is how @code{%prec} solves the problem of unary minus. First, declare
7646a precedence for a fictitious terminal symbol named @code{UMINUS}. There
7647are no tokens of this type, but the symbol serves to stand for its
7648precedence:
7649
7650@example
7651@dots{}
7652%left '+' '-'
7653%left '*'
7654%left UMINUS
7655@end example
7656
7657Now the precedence of @code{UMINUS} can be used in specific rules:
7658
7659@example
7660@group
5e9b6624
AD
7661exp:
7662 @dots{}
7663| exp '-' exp
7664 @dots{}
7665| '-' exp %prec UMINUS
bfa74976
RS
7666@end group
7667@end example
7668
91d2c560 7669@ifset defaultprec
39a06c25
PE
7670If you forget to append @code{%prec UMINUS} to the rule for unary
7671minus, Bison silently assumes that minus has its usual precedence.
7672This kind of problem can be tricky to debug, since one typically
7673discovers the mistake only by testing the code.
7674
22fccf95 7675The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
7676this kind of problem systematically. It causes rules that lack a
7677@code{%prec} modifier to have no precedence, even if the last terminal
7678symbol mentioned in their components has a declared precedence.
7679
22fccf95 7680If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
7681for all rules that participate in precedence conflict resolution.
7682Then you will see any shift/reduce conflict until you tell Bison how
7683to resolve it, either by changing your grammar or by adding an
7684explicit precedence. This will probably add declarations to the
7685grammar, but it helps to protect against incorrect rule precedences.
7686
22fccf95
PE
7687The effect of @code{%no-default-prec;} can be reversed by giving
7688@code{%default-prec;}, which is the default.
91d2c560 7689@end ifset
39a06c25 7690
342b8b6e 7691@node Parser States
bfa74976
RS
7692@section Parser States
7693@cindex finite-state machine
7694@cindex parser state
7695@cindex state (of parser)
7696
7697The function @code{yyparse} is implemented using a finite-state machine.
7698The values pushed on the parser stack are not simply token type codes; they
7699represent the entire sequence of terminal and nonterminal symbols at or
7700near the top of the stack. The current state collects all the information
7701about previous input which is relevant to deciding what to do next.
7702
742e4900
JD
7703Each time a lookahead token is read, the current parser state together
7704with the type of lookahead token are looked up in a table. This table
7705entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7706specifies the new parser state, which is pushed onto the top of the
7707parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7708This means that a certain number of tokens or groupings are taken off
7709the top of the stack, and replaced by one grouping. In other words,
7710that number of states are popped from the stack, and one new state is
7711pushed.
7712
742e4900 7713There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7714is erroneous in the current state. This causes error processing to begin
7715(@pxref{Error Recovery}).
7716
342b8b6e 7717@node Reduce/Reduce
bfa74976
RS
7718@section Reduce/Reduce Conflicts
7719@cindex reduce/reduce conflict
7720@cindex conflicts, reduce/reduce
7721
7722A reduce/reduce conflict occurs if there are two or more rules that apply
7723to the same sequence of input. This usually indicates a serious error
7724in the grammar.
7725
7726For example, here is an erroneous attempt to define a sequence
7727of zero or more @code{word} groupings.
7728
7729@example
d4fca427 7730@group
5e9b6624 7731sequence:
6240346a 7732 %empty @{ printf ("empty sequence\n"); @}
5e9b6624
AD
7733| maybeword
7734| sequence word @{ printf ("added word %s\n", $2); @}
7735;
d4fca427 7736@end group
bfa74976 7737
d4fca427 7738@group
5e9b6624 7739maybeword:
6240346a
AD
7740 %empty @{ printf ("empty maybeword\n"); @}
7741| word @{ printf ("single word %s\n", $1); @}
5e9b6624 7742;
d4fca427 7743@end group
bfa74976
RS
7744@end example
7745
7746@noindent
7747The error is an ambiguity: there is more than one way to parse a single
7748@code{word} into a @code{sequence}. It could be reduced to a
7749@code{maybeword} and then into a @code{sequence} via the second rule.
7750Alternatively, nothing-at-all could be reduced into a @code{sequence}
7751via the first rule, and this could be combined with the @code{word}
7752using the third rule for @code{sequence}.
7753
7754There is also more than one way to reduce nothing-at-all into a
7755@code{sequence}. This can be done directly via the first rule,
7756or indirectly via @code{maybeword} and then the second rule.
7757
7758You might think that this is a distinction without a difference, because it
7759does not change whether any particular input is valid or not. But it does
7760affect which actions are run. One parsing order runs the second rule's
7761action; the other runs the first rule's action and the third rule's action.
7762In this example, the output of the program changes.
7763
7764Bison resolves a reduce/reduce conflict by choosing to use the rule that
7765appears first in the grammar, but it is very risky to rely on this. Every
7766reduce/reduce conflict must be studied and usually eliminated. Here is the
7767proper way to define @code{sequence}:
7768
7769@example
51356dd2 7770@group
5e9b6624 7771sequence:
6240346a 7772 %empty @{ printf ("empty sequence\n"); @}
5e9b6624
AD
7773| sequence word @{ printf ("added word %s\n", $2); @}
7774;
51356dd2 7775@end group
bfa74976
RS
7776@end example
7777
7778Here is another common error that yields a reduce/reduce conflict:
7779
7780@example
51356dd2 7781@group
589149dc 7782sequence:
6240346a 7783 %empty
5e9b6624
AD
7784| sequence words
7785| sequence redirects
7786;
51356dd2 7787@end group
bfa74976 7788
51356dd2 7789@group
5e9b6624 7790words:
6240346a 7791 %empty
5e9b6624
AD
7792| words word
7793;
51356dd2 7794@end group
bfa74976 7795
51356dd2 7796@group
5e9b6624 7797redirects:
6240346a 7798 %empty
5e9b6624
AD
7799| redirects redirect
7800;
51356dd2 7801@end group
bfa74976
RS
7802@end example
7803
7804@noindent
7805The intention here is to define a sequence which can contain either
7806@code{word} or @code{redirect} groupings. The individual definitions of
7807@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7808three together make a subtle ambiguity: even an empty input can be parsed
7809in infinitely many ways!
7810
7811Consider: nothing-at-all could be a @code{words}. Or it could be two
7812@code{words} in a row, or three, or any number. It could equally well be a
7813@code{redirects}, or two, or any number. Or it could be a @code{words}
7814followed by three @code{redirects} and another @code{words}. And so on.
7815
7816Here are two ways to correct these rules. First, to make it a single level
7817of sequence:
7818
7819@example
5e9b6624 7820sequence:
6240346a 7821 %empty
5e9b6624
AD
7822| sequence word
7823| sequence redirect
7824;
bfa74976
RS
7825@end example
7826
7827Second, to prevent either a @code{words} or a @code{redirects}
7828from being empty:
7829
7830@example
d4fca427 7831@group
5e9b6624 7832sequence:
6240346a 7833 %empty
5e9b6624
AD
7834| sequence words
7835| sequence redirects
7836;
d4fca427 7837@end group
bfa74976 7838
d4fca427 7839@group
5e9b6624
AD
7840words:
7841 word
7842| words word
7843;
d4fca427 7844@end group
bfa74976 7845
d4fca427 7846@group
5e9b6624
AD
7847redirects:
7848 redirect
7849| redirects redirect
7850;
d4fca427 7851@end group
bfa74976
RS
7852@end example
7853
53e2cd1e
AD
7854Yet this proposal introduces another kind of ambiguity! The input
7855@samp{word word} can be parsed as a single @code{words} composed of two
7856@samp{word}s, or as two one-@code{word} @code{words} (and likewise for
7857@code{redirect}/@code{redirects}). However this ambiguity is now a
7858shift/reduce conflict, and therefore it can now be addressed with precedence
7859directives.
7860
7861To simplify the matter, we will proceed with @code{word} and @code{redirect}
7862being tokens: @code{"word"} and @code{"redirect"}.
7863
7864To prefer the longest @code{words}, the conflict between the token
7865@code{"word"} and the rule @samp{sequence: sequence words} must be resolved
7866as a shift. To this end, we use the same techniques as exposed above, see
7867@ref{Non Operators,, Using Precedence For Non Operators}. One solution
7868relies on precedences: use @code{%prec} to give a lower precedence to the
7869rule:
7870
7871@example
589149dc
AD
7872%precedence "word"
7873%precedence "sequence"
53e2cd1e
AD
7874%%
7875@group
7876sequence:
6240346a 7877 %empty
53e2cd1e
AD
7878| sequence word %prec "sequence"
7879| sequence redirect %prec "sequence"
7880;
7881@end group
7882
7883@group
7884words:
7885 word
7886| words "word"
7887;
7888@end group
7889@end example
7890
7891Another solution relies on associativity: provide both the token and the
7892rule with the same precedence, but make them right-associative:
7893
7894@example
7895%right "word" "redirect"
7896%%
7897@group
7898sequence:
6240346a 7899 %empty
53e2cd1e
AD
7900| sequence word %prec "word"
7901| sequence redirect %prec "redirect"
7902;
7903@end group
7904@end example
7905
cc09e5be
JD
7906@node Mysterious Conflicts
7907@section Mysterious Conflicts
7fceb615 7908@cindex Mysterious Conflicts
bfa74976
RS
7909
7910Sometimes reduce/reduce conflicts can occur that don't look warranted.
7911Here is an example:
7912
7913@example
7914@group
bfa74976 7915%%
5e9b6624 7916def: param_spec return_spec ',';
bfa74976 7917param_spec:
5e9b6624
AD
7918 type
7919| name_list ':' type
7920;
bfa74976 7921@end group
589149dc 7922
bfa74976
RS
7923@group
7924return_spec:
5e9b6624
AD
7925 type
7926| name ':' type
7927;
bfa74976 7928@end group
589149dc 7929
534cee7a 7930type: "id";
589149dc 7931
bfa74976 7932@group
534cee7a 7933name: "id";
bfa74976 7934name_list:
5e9b6624
AD
7935 name
7936| name ',' name_list
7937;
bfa74976
RS
7938@end group
7939@end example
7940
534cee7a
AD
7941It would seem that this grammar can be parsed with only a single token of
7942lookahead: when a @code{param_spec} is being read, an @code{"id"} is a
7943@code{name} if a comma or colon follows, or a @code{type} if another
7944@code{"id"} follows. In other words, this grammar is LR(1).
bfa74976 7945
7fceb615
JD
7946@cindex LR
7947@cindex LALR
eb45ef3b 7948However, for historical reasons, Bison cannot by default handle all
8a4281b9 7949LR(1) grammars.
534cee7a 7950In this grammar, two contexts, that after an @code{"id"} at the beginning
eb45ef3b
JD
7951of a @code{param_spec} and likewise at the beginning of a
7952@code{return_spec}, are similar enough that Bison assumes they are the
7953same.
7954They appear similar because the same set of rules would be
bfa74976
RS
7955active---the rule for reducing to a @code{name} and that for reducing to
7956a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7957that the rules would require different lookahead tokens in the two
bfa74976
RS
7958contexts, so it makes a single parser state for them both. Combining
7959the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7960occurrence means that the grammar is not LALR(1).
bfa74976 7961
7fceb615
JD
7962@cindex IELR
7963@cindex canonical LR
7964For many practical grammars (specifically those that fall into the non-LR(1)
7965class), the limitations of LALR(1) result in difficulties beyond just
7966mysterious reduce/reduce conflicts. The best way to fix all these problems
7967is to select a different parser table construction algorithm. Either
7968IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7969and easier to debug during development. @xref{LR Table Construction}, for
7970details. (Bison's IELR(1) and canonical LR(1) implementations are
7971experimental. More user feedback will help to stabilize them.)
eb45ef3b 7972
8a4281b9 7973If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7974can often fix a mysterious conflict by identifying the two parser states
7975that are being confused, and adding something to make them look
7976distinct. In the above example, adding one rule to
bfa74976
RS
7977@code{return_spec} as follows makes the problem go away:
7978
7979@example
7980@group
bfa74976
RS
7981@dots{}
7982return_spec:
5e9b6624
AD
7983 type
7984| name ':' type
534cee7a 7985| "id" "bogus" /* This rule is never used. */
5e9b6624 7986;
bfa74976
RS
7987@end group
7988@end example
7989
7990This corrects the problem because it introduces the possibility of an
534cee7a 7991additional active rule in the context after the @code{"id"} at the beginning of
bfa74976
RS
7992@code{return_spec}. This rule is not active in the corresponding context
7993in a @code{param_spec}, so the two contexts receive distinct parser states.
534cee7a 7994As long as the token @code{"bogus"} is never generated by @code{yylex},
bfa74976
RS
7995the added rule cannot alter the way actual input is parsed.
7996
7997In this particular example, there is another way to solve the problem:
534cee7a 7998rewrite the rule for @code{return_spec} to use @code{"id"} directly
bfa74976
RS
7999instead of via @code{name}. This also causes the two confusing
8000contexts to have different sets of active rules, because the one for
8001@code{return_spec} activates the altered rule for @code{return_spec}
8002rather than the one for @code{name}.
8003
8004@example
589149dc 8005@group
bfa74976 8006param_spec:
5e9b6624
AD
8007 type
8008| name_list ':' type
8009;
589149dc
AD
8010@end group
8011
8012@group
bfa74976 8013return_spec:
5e9b6624 8014 type
534cee7a 8015| "id" ':' type
5e9b6624 8016;
589149dc 8017@end group
bfa74976
RS
8018@end example
8019
8a4281b9 8020For a more detailed exposition of LALR(1) parsers and parser
5e528941 8021generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 8022
7fceb615
JD
8023@node Tuning LR
8024@section Tuning LR
8025
8026The default behavior of Bison's LR-based parsers is chosen mostly for
8027historical reasons, but that behavior is often not robust. For example, in
8028the previous section, we discussed the mysterious conflicts that can be
8029produced by LALR(1), Bison's default parser table construction algorithm.
8030Another example is Bison's @code{%define parse.error verbose} directive,
8031which instructs the generated parser to produce verbose syntax error
8032messages, which can sometimes contain incorrect information.
8033
8034In this section, we explore several modern features of Bison that allow you
8035to tune fundamental aspects of the generated LR-based parsers. Some of
8036these features easily eliminate shortcomings like those mentioned above.
8037Others can be helpful purely for understanding your parser.
8038
8039Most of the features discussed in this section are still experimental. More
8040user feedback will help to stabilize them.
8041
8042@menu
8043* LR Table Construction:: Choose a different construction algorithm.
8044* Default Reductions:: Disable default reductions.
8045* LAC:: Correct lookahead sets in the parser states.
8046* Unreachable States:: Keep unreachable parser states for debugging.
8047@end menu
8048
8049@node LR Table Construction
8050@subsection LR Table Construction
8051@cindex Mysterious Conflict
8052@cindex LALR
8053@cindex IELR
8054@cindex canonical LR
8055@findex %define lr.type
8056
8057For historical reasons, Bison constructs LALR(1) parser tables by default.
8058However, LALR does not possess the full language-recognition power of LR.
8059As a result, the behavior of parsers employing LALR parser tables is often
cc09e5be 8060mysterious. We presented a simple example of this effect in @ref{Mysterious
7fceb615
JD
8061Conflicts}.
8062
8063As we also demonstrated in that example, the traditional approach to
8064eliminating such mysterious behavior is to restructure the grammar.
8065Unfortunately, doing so correctly is often difficult. Moreover, merely
8066discovering that LALR causes mysterious behavior in your parser can be
8067difficult as well.
8068
8069Fortunately, Bison provides an easy way to eliminate the possibility of such
8070mysterious behavior altogether. You simply need to activate a more powerful
8071parser table construction algorithm by using the @code{%define lr.type}
8072directive.
8073
511dd971 8074@deffn {Directive} {%define lr.type} @var{type}
7fceb615 8075Specify the type of parser tables within the LR(1) family. The accepted
511dd971 8076values for @var{type} are:
7fceb615
JD
8077
8078@itemize
8079@item @code{lalr} (default)
8080@item @code{ielr}
8081@item @code{canonical-lr}
8082@end itemize
8083
8084(This feature is experimental. More user feedback will help to stabilize
8085it.)
8086@end deffn
8087
8088For example, to activate IELR, you might add the following directive to you
8089grammar file:
8090
8091@example
8092%define lr.type ielr
8093@end example
8094
cc09e5be 8095@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7fceb615
JD
8096conflict is then eliminated, so there is no need to invest time in
8097comprehending the conflict or restructuring the grammar to fix it. If,
8098during future development, the grammar evolves such that all mysterious
8099behavior would have disappeared using just LALR, you need not fear that
8100continuing to use IELR will result in unnecessarily large parser tables.
8101That is, IELR generates LALR tables when LALR (using a deterministic parsing
8102algorithm) is sufficient to support the full language-recognition power of
8103LR. Thus, by enabling IELR at the start of grammar development, you can
8104safely and completely eliminate the need to consider LALR's shortcomings.
8105
8106While IELR is almost always preferable, there are circumstances where LALR
8107or the canonical LR parser tables described by Knuth
8108(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
8109relative advantages of each parser table construction algorithm within
8110Bison:
8111
8112@itemize
8113@item LALR
8114
8115There are at least two scenarios where LALR can be worthwhile:
8116
8117@itemize
8118@item GLR without static conflict resolution.
8119
8120@cindex GLR with LALR
8121When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
589149dc
AD
8122conflicts statically (for example, with @code{%left} or @code{%precedence}),
8123then
7fceb615
JD
8124the parser explores all potential parses of any given input. In this case,
8125the choice of parser table construction algorithm is guaranteed not to alter
8126the language accepted by the parser. LALR parser tables are the smallest
8127parser tables Bison can currently construct, so they may then be preferable.
8128Nevertheless, once you begin to resolve conflicts statically, GLR behaves
8129more like a deterministic parser in the syntactic contexts where those
8130conflicts appear, and so either IELR or canonical LR can then be helpful to
8131avoid LALR's mysterious behavior.
8132
8133@item Malformed grammars.
8134
8135Occasionally during development, an especially malformed grammar with a
8136major recurring flaw may severely impede the IELR or canonical LR parser
8137table construction algorithm. LALR can be a quick way to construct parser
8138tables in order to investigate such problems while ignoring the more subtle
8139differences from IELR and canonical LR.
8140@end itemize
8141
8142@item IELR
8143
8144IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
8145any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
8146always accept exactly the same set of sentences. However, like LALR, IELR
8147merges parser states during parser table construction so that the number of
8148parser states is often an order of magnitude less than for canonical LR.
8149More importantly, because canonical LR's extra parser states may contain
8150duplicate conflicts in the case of non-LR grammars, the number of conflicts
8151for IELR is often an order of magnitude less as well. This effect can
8152significantly reduce the complexity of developing a grammar.
8153
8154@item Canonical LR
8155
8156@cindex delayed syntax error detection
8157@cindex LAC
8158@findex %nonassoc
8159While inefficient, canonical LR parser tables can be an interesting means to
8160explore a grammar because they possess a property that IELR and LALR tables
8161do not. That is, if @code{%nonassoc} is not used and default reductions are
8162left disabled (@pxref{Default Reductions}), then, for every left context of
8163every canonical LR state, the set of tokens accepted by that state is
8164guaranteed to be the exact set of tokens that is syntactically acceptable in
8165that left context. It might then seem that an advantage of canonical LR
8166parsers in production is that, under the above constraints, they are
8167guaranteed to detect a syntax error as soon as possible without performing
8168any unnecessary reductions. However, IELR parsers that use LAC are also
8169able to achieve this behavior without sacrificing @code{%nonassoc} or
8170default reductions. For details and a few caveats of LAC, @pxref{LAC}.
8171@end itemize
8172
8173For a more detailed exposition of the mysterious behavior in LALR parsers
8174and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
8175@ref{Bibliography,,Denny 2010 November}.
8176
8177@node Default Reductions
8178@subsection Default Reductions
8179@cindex default reductions
f3bc3386 8180@findex %define lr.default-reduction
7fceb615
JD
8181@findex %nonassoc
8182
8183After parser table construction, Bison identifies the reduction with the
8184largest lookahead set in each parser state. To reduce the size of the
8185parser state, traditional Bison behavior is to remove that lookahead set and
8186to assign that reduction to be the default parser action. Such a reduction
8187is known as a @dfn{default reduction}.
8188
8189Default reductions affect more than the size of the parser tables. They
8190also affect the behavior of the parser:
8191
8192@itemize
8193@item Delayed @code{yylex} invocations.
8194
8195@cindex delayed yylex invocations
8196@cindex consistent states
8197@cindex defaulted states
8198A @dfn{consistent state} is a state that has only one possible parser
8199action. If that action is a reduction and is encoded as a default
8200reduction, then that consistent state is called a @dfn{defaulted state}.
8201Upon reaching a defaulted state, a Bison-generated parser does not bother to
8202invoke @code{yylex} to fetch the next token before performing the reduction.
8203In other words, whether default reductions are enabled in consistent states
8204determines how soon a Bison-generated parser invokes @code{yylex} for a
8205token: immediately when it @emph{reaches} that token in the input or when it
8206eventually @emph{needs} that token as a lookahead to determine the next
8207parser action. Traditionally, default reductions are enabled, and so the
8208parser exhibits the latter behavior.
8209
8210The presence of defaulted states is an important consideration when
8211designing @code{yylex} and the grammar file. That is, if the behavior of
8212@code{yylex} can influence or be influenced by the semantic actions
8213associated with the reductions in defaulted states, then the delay of the
8214next @code{yylex} invocation until after those reductions is significant.
8215For example, the semantic actions might pop a scope stack that @code{yylex}
8216uses to determine what token to return. Thus, the delay might be necessary
8217to ensure that @code{yylex} does not look up the next token in a scope that
8218should already be considered closed.
8219
8220@item Delayed syntax error detection.
8221
8222@cindex delayed syntax error detection
8223When the parser fetches a new token by invoking @code{yylex}, it checks
8224whether there is an action for that token in the current parser state. The
8225parser detects a syntax error if and only if either (1) there is no action
8226for that token or (2) the action for that token is the error action (due to
8227the use of @code{%nonassoc}). However, if there is a default reduction in
8228that state (which might or might not be a defaulted state), then it is
8229impossible for condition 1 to exist. That is, all tokens have an action.
8230Thus, the parser sometimes fails to detect the syntax error until it reaches
8231a later state.
8232
8233@cindex LAC
8234@c If there's an infinite loop, default reductions can prevent an incorrect
8235@c sentence from being rejected.
8236While default reductions never cause the parser to accept syntactically
8237incorrect sentences, the delay of syntax error detection can have unexpected
8238effects on the behavior of the parser. However, the delay can be caused
8239anyway by parser state merging and the use of @code{%nonassoc}, and it can
8240be fixed by another Bison feature, LAC. We discuss the effects of delayed
8241syntax error detection and LAC more in the next section (@pxref{LAC}).
8242@end itemize
8243
8244For canonical LR, the only default reduction that Bison enables by default
8245is the accept action, which appears only in the accepting state, which has
8246no other action and is thus a defaulted state. However, the default accept
8247action does not delay any @code{yylex} invocation or syntax error detection
8248because the accept action ends the parse.
8249
8250For LALR and IELR, Bison enables default reductions in nearly all states by
8251default. There are only two exceptions. First, states that have a shift
8252action on the @code{error} token do not have default reductions because
8253delayed syntax error detection could then prevent the @code{error} token
8254from ever being shifted in that state. However, parser state merging can
8255cause the same effect anyway, and LAC fixes it in both cases, so future
8256versions of Bison might drop this exception when LAC is activated. Second,
8257GLR parsers do not record the default reduction as the action on a lookahead
8258token for which there is a conflict. The correct action in this case is to
8259split the parse instead.
8260
8261To adjust which states have default reductions enabled, use the
f3bc3386 8262@code{%define lr.default-reduction} directive.
7fceb615 8263
5807bb91 8264@deffn {Directive} {%define lr.default-reduction} @var{where}
7fceb615 8265Specify the kind of states that are permitted to contain default reductions.
511dd971 8266The accepted values of @var{where} are:
7fceb615 8267@itemize
f0ad1b2f 8268@item @code{most} (default for LALR and IELR)
7fceb615
JD
8269@item @code{consistent}
8270@item @code{accepting} (default for canonical LR)
8271@end itemize
8272
8273(The ability to specify where default reductions are permitted is
8274experimental. More user feedback will help to stabilize it.)
8275@end deffn
8276
7fceb615
JD
8277@node LAC
8278@subsection LAC
8279@findex %define parse.lac
8280@cindex LAC
8281@cindex lookahead correction
8282
8283Canonical LR, IELR, and LALR can suffer from a couple of problems upon
8284encountering a syntax error. First, the parser might perform additional
8285parser stack reductions before discovering the syntax error. Such
8286reductions can perform user semantic actions that are unexpected because
8287they are based on an invalid token, and they cause error recovery to begin
8288in a different syntactic context than the one in which the invalid token was
8289encountered. Second, when verbose error messages are enabled (@pxref{Error
8290Reporting}), the expected token list in the syntax error message can both
8291contain invalid tokens and omit valid tokens.
8292
8293The culprits for the above problems are @code{%nonassoc}, default reductions
8294in inconsistent states (@pxref{Default Reductions}), and parser state
8295merging. Because IELR and LALR merge parser states, they suffer the most.
8296Canonical LR can suffer only if @code{%nonassoc} is used or if default
8297reductions are enabled for inconsistent states.
8298
8299LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
8300that solves these problems for canonical LR, IELR, and LALR without
8301sacrificing @code{%nonassoc}, default reductions, or state merging. You can
8302enable LAC with the @code{%define parse.lac} directive.
8303
511dd971 8304@deffn {Directive} {%define parse.lac} @var{value}
7fceb615
JD
8305Enable LAC to improve syntax error handling.
8306@itemize
8307@item @code{none} (default)
8308@item @code{full}
8309@end itemize
8310(This feature is experimental. More user feedback will help to stabilize
8311it. Moreover, it is currently only available for deterministic parsers in
8312C.)
8313@end deffn
8314
8315Conceptually, the LAC mechanism is straight-forward. Whenever the parser
8316fetches a new token from the scanner so that it can determine the next
8317parser action, it immediately suspends normal parsing and performs an
8318exploratory parse using a temporary copy of the normal parser state stack.
8319During this exploratory parse, the parser does not perform user semantic
8320actions. If the exploratory parse reaches a shift action, normal parsing
8321then resumes on the normal parser stacks. If the exploratory parse reaches
8322an error instead, the parser reports a syntax error. If verbose syntax
8323error messages are enabled, the parser must then discover the list of
8324expected tokens, so it performs a separate exploratory parse for each token
8325in the grammar.
8326
8327There is one subtlety about the use of LAC. That is, when in a consistent
8328parser state with a default reduction, the parser will not attempt to fetch
8329a token from the scanner because no lookahead is needed to determine the
8330next parser action. Thus, whether default reductions are enabled in
8331consistent states (@pxref{Default Reductions}) affects how soon the parser
8332detects a syntax error: immediately when it @emph{reaches} an erroneous
8333token or when it eventually @emph{needs} that token as a lookahead to
8334determine the next parser action. The latter behavior is probably more
8335intuitive, so Bison currently provides no way to achieve the former behavior
8336while default reductions are enabled in consistent states.
8337
8338Thus, when LAC is in use, for some fixed decision of whether to enable
8339default reductions in consistent states, canonical LR and IELR behave almost
8340exactly the same for both syntactically acceptable and syntactically
8341unacceptable input. While LALR still does not support the full
8342language-recognition power of canonical LR and IELR, LAC at least enables
8343LALR's syntax error handling to correctly reflect LALR's
8344language-recognition power.
8345
8346There are a few caveats to consider when using LAC:
8347
8348@itemize
8349@item Infinite parsing loops.
8350
8351IELR plus LAC does have one shortcoming relative to canonical LR. Some
8352parsers generated by Bison can loop infinitely. LAC does not fix infinite
8353parsing loops that occur between encountering a syntax error and detecting
8354it, but enabling canonical LR or disabling default reductions sometimes
8355does.
8356
8357@item Verbose error message limitations.
8358
8359Because of internationalization considerations, Bison-generated parsers
8360limit the size of the expected token list they are willing to report in a
8361verbose syntax error message. If the number of expected tokens exceeds that
8362limit, the list is simply dropped from the message. Enabling LAC can
8363increase the size of the list and thus cause the parser to drop it. Of
8364course, dropping the list is better than reporting an incorrect list.
8365
8366@item Performance.
8367
8368Because LAC requires many parse actions to be performed twice, it can have a
8369performance penalty. However, not all parse actions must be performed
8370twice. Specifically, during a series of default reductions in consistent
8371states and shift actions, the parser never has to initiate an exploratory
8372parse. Moreover, the most time-consuming tasks in a parse are often the
8373file I/O, the lexical analysis performed by the scanner, and the user's
8374semantic actions, but none of these are performed during the exploratory
8375parse. Finally, the base of the temporary stack used during an exploratory
8376parse is a pointer into the normal parser state stack so that the stack is
8377never physically copied. In our experience, the performance penalty of LAC
5a321748 8378has proved insignificant for practical grammars.
7fceb615
JD
8379@end itemize
8380
709c7d11
JD
8381While the LAC algorithm shares techniques that have been recognized in the
8382parser community for years, for the publication that introduces LAC,
8383@pxref{Bibliography,,Denny 2010 May}.
15e46f2d 8384
7fceb615
JD
8385@node Unreachable States
8386@subsection Unreachable States
f3bc3386 8387@findex %define lr.keep-unreachable-state
7fceb615
JD
8388@cindex unreachable states
8389
8390If there exists no sequence of transitions from the parser's start state to
8391some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
8392state}. A state can become unreachable during conflict resolution if Bison
8393disables a shift action leading to it from a predecessor state.
8394
8395By default, Bison removes unreachable states from the parser after conflict
8396resolution because they are useless in the generated parser. However,
8397keeping unreachable states is sometimes useful when trying to understand the
8398relationship between the parser and the grammar.
8399
5807bb91 8400@deffn {Directive} {%define lr.keep-unreachable-state} @var{value}
7fceb615 8401Request that Bison allow unreachable states to remain in the parser tables.
511dd971 8402@var{value} must be a Boolean. The default is @code{false}.
7fceb615
JD
8403@end deffn
8404
8405There are a few caveats to consider:
8406
8407@itemize @bullet
8408@item Missing or extraneous warnings.
8409
8410Unreachable states may contain conflicts and may use rules not used in any
8411other state. Thus, keeping unreachable states may induce warnings that are
8412irrelevant to your parser's behavior, and it may eliminate warnings that are
8413relevant. Of course, the change in warnings may actually be relevant to a
8414parser table analysis that wants to keep unreachable states, so this
8415behavior will likely remain in future Bison releases.
8416
8417@item Other useless states.
8418
8419While Bison is able to remove unreachable states, it is not guaranteed to
8420remove other kinds of useless states. Specifically, when Bison disables
8421reduce actions during conflict resolution, some goto actions may become
8422useless, and thus some additional states may become useless. If Bison were
8423to compute which goto actions were useless and then disable those actions,
8424it could identify such states as unreachable and then remove those states.
8425However, Bison does not compute which goto actions are useless.
8426@end itemize
8427
fae437e8 8428@node Generalized LR Parsing
8a4281b9
JD
8429@section Generalized LR (GLR) Parsing
8430@cindex GLR parsing
8431@cindex generalized LR (GLR) parsing
676385e2 8432@cindex ambiguous grammars
9d9b8b70 8433@cindex nondeterministic parsing
676385e2 8434
fae437e8
AD
8435Bison produces @emph{deterministic} parsers that choose uniquely
8436when to reduce and which reduction to apply
742e4900 8437based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
8438As a result, normal Bison handles a proper subset of the family of
8439context-free languages.
fae437e8 8440Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
8441sequence of reductions cannot have deterministic parsers in this sense.
8442The same is true of languages that require more than one symbol of
742e4900 8443lookahead, since the parser lacks the information necessary to make a
676385e2 8444decision at the point it must be made in a shift-reduce parser.
cc09e5be 8445Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
eb45ef3b 8446there are languages where Bison's default choice of how to
676385e2
PH
8447summarize the input seen so far loses necessary information.
8448
8449When you use the @samp{%glr-parser} declaration in your grammar file,
8450Bison generates a parser that uses a different algorithm, called
8a4281b9 8451Generalized LR (or GLR). A Bison GLR
c827f760 8452parser uses the same basic
676385e2
PH
8453algorithm for parsing as an ordinary Bison parser, but behaves
8454differently in cases where there is a shift-reduce conflict that has not
fae437e8 8455been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 8456reduce-reduce conflict. When a GLR parser encounters such a
c827f760 8457situation, it
fae437e8 8458effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
8459shift or reduction. These parsers then proceed as usual, consuming
8460tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 8461and split further, with the result that instead of a sequence of states,
8a4281b9 8462a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
8463
8464In effect, each stack represents a guess as to what the proper parse
8465is. Additional input may indicate that a guess was wrong, in which case
8466the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 8467actions generated in each stack are saved, rather than being executed
676385e2 8468immediately. When a stack disappears, its saved semantic actions never
fae437e8 8469get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
8470their sets of semantic actions are both saved with the state that
8471results from the reduction. We say that two stacks are equivalent
fae437e8 8472when they both represent the same sequence of states,
676385e2
PH
8473and each pair of corresponding states represents a
8474grammar symbol that produces the same segment of the input token
8475stream.
8476
8477Whenever the parser makes a transition from having multiple
eb45ef3b 8478states to having one, it reverts to the normal deterministic parsing
676385e2
PH
8479algorithm, after resolving and executing the saved-up actions.
8480At this transition, some of the states on the stack will have semantic
8481values that are sets (actually multisets) of possible actions. The
8482parser tries to pick one of the actions by first finding one whose rule
8483has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 8484declaration. Otherwise, if the alternative actions are not ordered by
676385e2 8485precedence, but there the same merging function is declared for both
fae437e8 8486rules by the @samp{%merge} declaration,
676385e2
PH
8487Bison resolves and evaluates both and then calls the merge function on
8488the result. Otherwise, it reports an ambiguity.
8489
8a4281b9
JD
8490It is possible to use a data structure for the GLR parsing tree that
8491permits the processing of any LR(1) grammar in linear time (in the
c827f760 8492size of the input), any unambiguous (not necessarily
8a4281b9 8493LR(1)) grammar in
fae437e8 8494quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
8495context-free grammar in cubic worst-case time. However, Bison currently
8496uses a simpler data structure that requires time proportional to the
8497length of the input times the maximum number of stacks required for any
9d9b8b70 8498prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
8499grammars can require exponential time and space to process. Such badly
8500behaving examples, however, are not generally of practical interest.
9d9b8b70 8501Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 8502doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 8503structure should generally be adequate. On LR(1) portions of a
eb45ef3b 8504grammar, in particular, it is only slightly slower than with the
8a4281b9 8505deterministic LR(1) Bison parser.
676385e2 8506
5e528941
JD
8507For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
85082000}.
f6481e2f 8509
1a059451
PE
8510@node Memory Management
8511@section Memory Management, and How to Avoid Memory Exhaustion
8512@cindex memory exhaustion
8513@cindex memory management
bfa74976
RS
8514@cindex stack overflow
8515@cindex parser stack overflow
8516@cindex overflow of parser stack
8517
1a059451 8518The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 8519not reduced. When this happens, the parser function @code{yyparse}
1a059451 8520calls @code{yyerror} and then returns 2.
bfa74976 8521
c827f760 8522Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f 8523usually results from using a right recursion instead of a left
188867ac 8524recursion, see @ref{Recursion, ,Recursive Rules}.
d1a1114f 8525
bfa74976
RS
8526@vindex YYMAXDEPTH
8527By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 8528parser stack can become before memory is exhausted. Define the
bfa74976
RS
8529macro with a value that is an integer. This value is the maximum number
8530of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
8531
8532The stack space allowed is not necessarily allocated. If you specify a
1a059451 8533large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
8534stack at first, and then makes it bigger by stages as needed. This
8535increasing allocation happens automatically and silently. Therefore,
8536you do not need to make @code{YYMAXDEPTH} painfully small merely to save
8537space for ordinary inputs that do not need much stack.
8538
d7e14fc0
PE
8539However, do not allow @code{YYMAXDEPTH} to be a value so large that
8540arithmetic overflow could occur when calculating the size of the stack
8541space. Also, do not allow @code{YYMAXDEPTH} to be less than
8542@code{YYINITDEPTH}.
8543
bfa74976
RS
8544@cindex default stack limit
8545The default value of @code{YYMAXDEPTH}, if you do not define it, is
854610000.
8547
8548@vindex YYINITDEPTH
8549You can control how much stack is allocated initially by defining the
eb45ef3b
JD
8550macro @code{YYINITDEPTH} to a positive integer. For the deterministic
8551parser in C, this value must be a compile-time constant
d7e14fc0
PE
8552unless you are assuming C99 or some other target language or compiler
8553that allows variable-length arrays. The default is 200.
8554
1a059451 8555Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 8556
20be2f92 8557You can generate a deterministic parser containing C++ user code from
411614fa 8558the default (C) skeleton, as well as from the C++ skeleton
20be2f92
PH
8559(@pxref{C++ Parsers}). However, if you do use the default skeleton
8560and want to allow the parsing stack to grow,
8561be careful not to use semantic types or location types that require
8562non-trivial copy constructors.
8563The C skeleton bypasses these constructors when copying data to
8564new, larger stacks.
d1a1114f 8565
342b8b6e 8566@node Error Recovery
bfa74976
RS
8567@chapter Error Recovery
8568@cindex error recovery
8569@cindex recovery from errors
8570
6e649e65 8571It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
8572error. For example, a compiler should recover sufficiently to parse the
8573rest of the input file and check it for errors; a calculator should accept
8574another expression.
8575
8576In a simple interactive command parser where each input is one line, it may
8577be sufficient to allow @code{yyparse} to return 1 on error and have the
8578caller ignore the rest of the input line when that happens (and then call
8579@code{yyparse} again). But this is inadequate for a compiler, because it
8580forgets all the syntactic context leading up to the error. A syntax error
8581deep within a function in the compiler input should not cause the compiler
8582to treat the following line like the beginning of a source file.
8583
8584@findex error
8585You can define how to recover from a syntax error by writing rules to
8586recognize the special token @code{error}. This is a terminal symbol that
8587is always defined (you need not declare it) and reserved for error
8588handling. The Bison parser generates an @code{error} token whenever a
8589syntax error happens; if you have provided a rule to recognize this token
13863333 8590in the current context, the parse can continue.
bfa74976
RS
8591
8592For example:
8593
8594@example
0860e383 8595stmts:
6240346a 8596 %empty
0860e383
AD
8597| stmts '\n'
8598| stmts exp '\n'
8599| stmts error '\n'
bfa74976
RS
8600@end example
8601
8602The fourth rule in this example says that an error followed by a newline
0860e383 8603makes a valid addition to any @code{stmts}.
bfa74976
RS
8604
8605What happens if a syntax error occurs in the middle of an @code{exp}? The
8606error recovery rule, interpreted strictly, applies to the precise sequence
0860e383 8607of a @code{stmts}, an @code{error} and a newline. If an error occurs in
bfa74976 8608the middle of an @code{exp}, there will probably be some additional tokens
0860e383 8609and subexpressions on the stack after the last @code{stmts}, and there
bfa74976
RS
8610will be tokens to read before the next newline. So the rule is not
8611applicable in the ordinary way.
8612
8613But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
8614the semantic context and part of the input. First it discards states
8615and objects from the stack until it gets back to a state in which the
bfa74976 8616@code{error} token is acceptable. (This means that the subexpressions
0860e383 8617already parsed are discarded, back to the last complete @code{stmts}.)
72f889cc 8618At this point the @code{error} token can be shifted. Then, if the old
742e4900 8619lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 8620tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
8621this example, Bison reads and discards input until the next newline so
8622that the fourth rule can apply. Note that discarded symbols are
8623possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
8624Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
8625
8626The choice of error rules in the grammar is a choice of strategies for
8627error recovery. A simple and useful strategy is simply to skip the rest of
8628the current input line or current statement if an error is detected:
8629
8630@example
0860e383 8631stmt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
8632@end example
8633
8634It is also useful to recover to the matching close-delimiter of an
8635opening-delimiter that has already been parsed. Otherwise the
8636close-delimiter will probably appear to be unmatched, and generate another,
8637spurious error message:
8638
8639@example
5e9b6624
AD
8640primary:
8641 '(' expr ')'
8642| '(' error ')'
8643@dots{}
8644;
bfa74976
RS
8645@end example
8646
8647Error recovery strategies are necessarily guesses. When they guess wrong,
8648one syntax error often leads to another. In the above example, the error
8649recovery rule guesses that an error is due to bad input within one
0860e383
AD
8650@code{stmt}. Suppose that instead a spurious semicolon is inserted in the
8651middle of a valid @code{stmt}. After the error recovery rule recovers
bfa74976
RS
8652from the first error, another syntax error will be found straightaway,
8653since the text following the spurious semicolon is also an invalid
0860e383 8654@code{stmt}.
bfa74976
RS
8655
8656To prevent an outpouring of error messages, the parser will output no error
8657message for another syntax error that happens shortly after the first; only
8658after three consecutive input tokens have been successfully shifted will
8659error messages resume.
8660
8661Note that rules which accept the @code{error} token may have actions, just
8662as any other rules can.
8663
8664@findex yyerrok
8665You can make error messages resume immediately by using the macro
8666@code{yyerrok} in an action. If you do this in the error rule's action, no
8667error messages will be suppressed. This macro requires no arguments;
8668@samp{yyerrok;} is a valid C statement.
8669
8670@findex yyclearin
742e4900 8671The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
8672this is unacceptable, then the macro @code{yyclearin} may be used to clear
8673this token. Write the statement @samp{yyclearin;} in the error rule's
8674action.
32c29292 8675@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 8676
6e649e65 8677For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
8678called that advances the input stream to some point where parsing should
8679once again commence. The next symbol returned by the lexical scanner is
742e4900 8680probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
8681with @samp{yyclearin;}.
8682
8683@vindex YYRECOVERING
02103984
PE
8684The expression @code{YYRECOVERING ()} yields 1 when the parser
8685is recovering from a syntax error, and 0 otherwise.
8686Syntax error diagnostics are suppressed while recovering from a syntax
8687error.
bfa74976 8688
342b8b6e 8689@node Context Dependency
bfa74976
RS
8690@chapter Handling Context Dependencies
8691
8692The Bison paradigm is to parse tokens first, then group them into larger
8693syntactic units. In many languages, the meaning of a token is affected by
8694its context. Although this violates the Bison paradigm, certain techniques
8695(known as @dfn{kludges}) may enable you to write Bison parsers for such
8696languages.
8697
8698@menu
8699* Semantic Tokens:: Token parsing can depend on the semantic context.
8700* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
8701* Tie-in Recovery:: Lexical tie-ins have implications for how
8702 error recovery rules must be written.
8703@end menu
8704
8705(Actually, ``kludge'' means any technique that gets its job done but is
8706neither clean nor robust.)
8707
342b8b6e 8708@node Semantic Tokens
bfa74976
RS
8709@section Semantic Info in Token Types
8710
8711The C language has a context dependency: the way an identifier is used
8712depends on what its current meaning is. For example, consider this:
8713
8714@example
8715foo (x);
8716@end example
8717
8718This looks like a function call statement, but if @code{foo} is a typedef
8719name, then this is actually a declaration of @code{x}. How can a Bison
8720parser for C decide how to parse this input?
8721
8a4281b9 8722The method used in GNU C is to have two different token types,
bfa74976
RS
8723@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
8724identifier, it looks up the current declaration of the identifier in order
8725to decide which token type to return: @code{TYPENAME} if the identifier is
8726declared as a typedef, @code{IDENTIFIER} otherwise.
8727
8728The grammar rules can then express the context dependency by the choice of
8729token type to recognize. @code{IDENTIFIER} is accepted as an expression,
8730but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
8731@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
8732is @emph{not} significant, such as in declarations that can shadow a
8733typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
8734accepted---there is one rule for each of the two token types.
8735
8736This technique is simple to use if the decision of which kinds of
8737identifiers to allow is made at a place close to where the identifier is
8738parsed. But in C this is not always so: C allows a declaration to
8739redeclare a typedef name provided an explicit type has been specified
8740earlier:
8741
8742@example
3a4f411f
PE
8743typedef int foo, bar;
8744int baz (void)
d4fca427 8745@group
3a4f411f
PE
8746@{
8747 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
8748 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
8749 return foo (bar);
8750@}
d4fca427 8751@end group
bfa74976
RS
8752@end example
8753
8754Unfortunately, the name being declared is separated from the declaration
8755construct itself by a complicated syntactic structure---the ``declarator''.
8756
9ecbd125 8757As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
8758all the nonterminal names changed: once for parsing a declaration in
8759which a typedef name can be redefined, and once for parsing a
8760declaration in which that can't be done. Here is a part of the
8761duplication, with actions omitted for brevity:
bfa74976
RS
8762
8763@example
d4fca427 8764@group
bfa74976 8765initdcl:
5e9b6624
AD
8766 declarator maybeasm '=' init
8767| declarator maybeasm
8768;
d4fca427 8769@end group
bfa74976 8770
d4fca427 8771@group
bfa74976 8772notype_initdcl:
5e9b6624
AD
8773 notype_declarator maybeasm '=' init
8774| notype_declarator maybeasm
8775;
d4fca427 8776@end group
bfa74976
RS
8777@end example
8778
8779@noindent
8780Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
8781cannot. The distinction between @code{declarator} and
8782@code{notype_declarator} is the same sort of thing.
8783
8784There is some similarity between this technique and a lexical tie-in
8785(described next), in that information which alters the lexical analysis is
8786changed during parsing by other parts of the program. The difference is
8787here the information is global, and is used for other purposes in the
8788program. A true lexical tie-in has a special-purpose flag controlled by
8789the syntactic context.
8790
342b8b6e 8791@node Lexical Tie-ins
bfa74976
RS
8792@section Lexical Tie-ins
8793@cindex lexical tie-in
8794
8795One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
8796which is set by Bison actions, whose purpose is to alter the way tokens are
8797parsed.
8798
8799For example, suppose we have a language vaguely like C, but with a special
8800construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
8801an expression in parentheses in which all integers are hexadecimal. In
8802particular, the token @samp{a1b} must be treated as an integer rather than
8803as an identifier if it appears in that context. Here is how you can do it:
8804
8805@example
8806@group
8807%@{
38a92d50
PE
8808 int hexflag;
8809 int yylex (void);
8810 void yyerror (char const *);
bfa74976
RS
8811%@}
8812%%
8813@dots{}
8814@end group
8815@group
5e9b6624
AD
8816expr:
8817 IDENTIFIER
8818| constant
8819| HEX '(' @{ hexflag = 1; @}
8820 expr ')' @{ hexflag = 0; $$ = $4; @}
8821| expr '+' expr @{ $$ = make_sum ($1, $3); @}
8822@dots{}
8823;
bfa74976
RS
8824@end group
8825
8826@group
8827constant:
5e9b6624
AD
8828 INTEGER
8829| STRING
8830;
bfa74976
RS
8831@end group
8832@end example
8833
8834@noindent
8835Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8836it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8837with letters are parsed as integers if possible.
8838
ff7571c0
JD
8839The declaration of @code{hexflag} shown in the prologue of the grammar
8840file is needed to make it accessible to the actions (@pxref{Prologue,
8841,The Prologue}). You must also write the code in @code{yylex} to obey
8842the flag.
bfa74976 8843
342b8b6e 8844@node Tie-in Recovery
bfa74976
RS
8845@section Lexical Tie-ins and Error Recovery
8846
8847Lexical tie-ins make strict demands on any error recovery rules you have.
8848@xref{Error Recovery}.
8849
8850The reason for this is that the purpose of an error recovery rule is to
8851abort the parsing of one construct and resume in some larger construct.
8852For example, in C-like languages, a typical error recovery rule is to skip
8853tokens until the next semicolon, and then start a new statement, like this:
8854
8855@example
5e9b6624
AD
8856stmt:
8857 expr ';'
8858| IF '(' expr ')' stmt @{ @dots{} @}
8859@dots{}
8860| error ';' @{ hexflag = 0; @}
8861;
bfa74976
RS
8862@end example
8863
8864If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8865construct, this error rule will apply, and then the action for the
8866completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8867remain set for the entire rest of the input, or until the next @code{hex}
8868keyword, causing identifiers to be misinterpreted as integers.
8869
8870To avoid this problem the error recovery rule itself clears @code{hexflag}.
8871
8872There may also be an error recovery rule that works within expressions.
8873For example, there could be a rule which applies within parentheses
8874and skips to the close-parenthesis:
8875
8876@example
8877@group
5e9b6624
AD
8878expr:
8879 @dots{}
8880| '(' expr ')' @{ $$ = $2; @}
8881| '(' error ')'
8882@dots{}
bfa74976
RS
8883@end group
8884@end example
8885
8886If this rule acts within the @code{hex} construct, it is not going to abort
8887that construct (since it applies to an inner level of parentheses within
8888the construct). Therefore, it should not clear the flag: the rest of
8889the @code{hex} construct should be parsed with the flag still in effect.
8890
8891What if there is an error recovery rule which might abort out of the
8892@code{hex} construct or might not, depending on circumstances? There is no
8893way you can write the action to determine whether a @code{hex} construct is
8894being aborted or not. So if you are using a lexical tie-in, you had better
8895make sure your error recovery rules are not of this kind. Each rule must
8896be such that you can be sure that it always will, or always won't, have to
8897clear the flag.
8898
ec3bc396
AD
8899@c ================================================== Debugging Your Parser
8900
342b8b6e 8901@node Debugging
bfa74976 8902@chapter Debugging Your Parser
ec3bc396 8903
93c150b6
AD
8904Developing a parser can be a challenge, especially if you don't understand
8905the algorithm (@pxref{Algorithm, ,The Bison Parser Algorithm}). This
c949ada3
AD
8906chapter explains how understand and debug a parser.
8907
8908The first sections focus on the static part of the parser: its structure.
8909They explain how to generate and read the detailed description of the
8910automaton. There are several formats available:
8911@itemize @minus
8912@item
8913as text, see @ref{Understanding, , Understanding Your Parser};
8914
8915@item
8916as a graph, see @ref{Graphviz,, Visualizing Your Parser};
8917
8918@item
8919or as a markup report that can be turned, for instance, into HTML, see
8920@ref{Xml,, Visualizing your parser in multiple formats}.
8921@end itemize
8922
8923The last section focuses on the dynamic part of the parser: how to enable
8924and understand the parser run-time traces (@pxref{Tracing, ,Tracing Your
8925Parser}).
ec3bc396
AD
8926
8927@menu
8928* Understanding:: Understanding the structure of your parser.
fc4fdd62 8929* Graphviz:: Getting a visual representation of the parser.
9c16d399 8930* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
8931* Tracing:: Tracing the execution of your parser.
8932@end menu
8933
8934@node Understanding
8935@section Understanding Your Parser
8936
8937As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8938Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8939frequent than one would hope), looking at this automaton is required to
c949ada3 8940tune or simply fix a parser.
ec3bc396
AD
8941
8942The textual file is generated when the options @option{--report} or
e3fd1dcb 8943@option{--verbose} are specified, see @ref{Invocation, , Invoking
ec3bc396 8944Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
8945the parser implementation file name, and adding @samp{.output}
8946instead. Therefore, if the grammar file is @file{foo.y}, then the
8947parser implementation file is called @file{foo.tab.c} by default. As
8948a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8949
8950The following grammar file, @file{calc.y}, will be used in the sequel:
8951
8952@example
8953%token NUM STR
c949ada3 8954@group
ec3bc396
AD
8955%left '+' '-'
8956%left '*'
c949ada3 8957@end group
ec3bc396 8958%%
c949ada3 8959@group
5e9b6624
AD
8960exp:
8961 exp '+' exp
8962| exp '-' exp
8963| exp '*' exp
8964| exp '/' exp
8965| NUM
8966;
c949ada3 8967@end group
ec3bc396
AD
8968useless: STR;
8969%%
8970@end example
8971
88bce5a2
AD
8972@command{bison} reports:
8973
8974@example
8f0d265e
JD
8975calc.y: warning: 1 nonterminal useless in grammar
8976calc.y: warning: 1 rule useless in grammar
c949ada3
AD
8977calc.y:12.1-7: warning: nonterminal useless in grammar: useless
8978calc.y:12.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8979calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8980@end example
8981
8982When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8983creates a file @file{calc.output} with contents detailed below. The
8984order of the output and the exact presentation might vary, but the
8985interpretation is the same.
ec3bc396 8986
ec3bc396
AD
8987@noindent
8988@cindex token, useless
8989@cindex useless token
8990@cindex nonterminal, useless
8991@cindex useless nonterminal
8992@cindex rule, useless
8993@cindex useless rule
62243aa5 8994The first section reports useless tokens, nonterminals and rules. Useless
29e20e22
AD
8995nonterminals and rules are removed in order to produce a smaller parser, but
8996useless tokens are preserved, since they might be used by the scanner (note
8997the difference between ``useless'' and ``unused'' below):
ec3bc396
AD
8998
8999@example
29e20e22 9000Nonterminals useless in grammar
ec3bc396
AD
9001 useless
9002
29e20e22 9003Terminals unused in grammar
ec3bc396
AD
9004 STR
9005
29e20e22
AD
9006Rules useless in grammar
9007 6 useless: STR
ec3bc396
AD
9008@end example
9009
9010@noindent
29e20e22
AD
9011The next section lists states that still have conflicts.
9012
9013@example
9014State 8 conflicts: 1 shift/reduce
9015State 9 conflicts: 1 shift/reduce
9016State 10 conflicts: 1 shift/reduce
9017State 11 conflicts: 4 shift/reduce
9018@end example
9019
9020@noindent
9021Then Bison reproduces the exact grammar it used:
ec3bc396
AD
9022
9023@example
9024Grammar
9025
29e20e22
AD
9026 0 $accept: exp $end
9027
9028 1 exp: exp '+' exp
9029 2 | exp '-' exp
9030 3 | exp '*' exp
9031 4 | exp '/' exp
9032 5 | NUM
ec3bc396
AD
9033@end example
9034
9035@noindent
9036and reports the uses of the symbols:
9037
9038@example
d4fca427 9039@group
ec3bc396
AD
9040Terminals, with rules where they appear
9041
88bce5a2 9042$end (0) 0
ec3bc396
AD
9043'*' (42) 3
9044'+' (43) 1
9045'-' (45) 2
9046'/' (47) 4
9047error (256)
9048NUM (258) 5
29e20e22 9049STR (259)
d4fca427 9050@end group
ec3bc396 9051
d4fca427 9052@group
ec3bc396
AD
9053Nonterminals, with rules where they appear
9054
29e20e22 9055$accept (9)
ec3bc396 9056 on left: 0
29e20e22 9057exp (10)
ec3bc396 9058 on left: 1 2 3 4 5, on right: 0 1 2 3 4
d4fca427 9059@end group
ec3bc396
AD
9060@end example
9061
9062@noindent
9063@cindex item
9064@cindex pointed rule
9065@cindex rule, pointed
9066Bison then proceeds onto the automaton itself, describing each state
35880c82
PE
9067with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
9068item is a production rule together with a point (@samp{.}) marking
9069the location of the input cursor.
ec3bc396
AD
9070
9071@example
c949ada3 9072State 0
ec3bc396 9073
29e20e22 9074 0 $accept: . exp $end
ec3bc396 9075
29e20e22 9076 NUM shift, and go to state 1
ec3bc396 9077
29e20e22 9078 exp go to state 2
ec3bc396
AD
9079@end example
9080
9081This reads as follows: ``state 0 corresponds to being at the very
9082beginning of the parsing, in the initial rule, right before the start
9083symbol (here, @code{exp}). When the parser returns to this state right
9084after having reduced a rule that produced an @code{exp}, the control
9085flow jumps to state 2. If there is no such transition on a nonterminal
35880c82 9086symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 9087the parse stack, and the control flow jumps to state 1. Any other
742e4900 9088lookahead triggers a syntax error.''
ec3bc396
AD
9089
9090@cindex core, item set
9091@cindex item set core
9092@cindex kernel, item set
9093@cindex item set core
9094Even though the only active rule in state 0 seems to be rule 0, the
742e4900 9095report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
9096at the beginning of any rule deriving an @code{exp}. By default Bison
9097reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
9098you want to see more detail you can invoke @command{bison} with
35880c82 9099@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
9100
9101@example
c949ada3 9102State 0
ec3bc396 9103
29e20e22
AD
9104 0 $accept: . exp $end
9105 1 exp: . exp '+' exp
9106 2 | . exp '-' exp
9107 3 | . exp '*' exp
9108 4 | . exp '/' exp
9109 5 | . NUM
ec3bc396 9110
29e20e22 9111 NUM shift, and go to state 1
ec3bc396 9112
29e20e22 9113 exp go to state 2
ec3bc396
AD
9114@end example
9115
9116@noindent
29e20e22 9117In the state 1@dots{}
ec3bc396
AD
9118
9119@example
c949ada3 9120State 1
ec3bc396 9121
29e20e22 9122 5 exp: NUM .
ec3bc396 9123
29e20e22 9124 $default reduce using rule 5 (exp)
ec3bc396
AD
9125@end example
9126
9127@noindent
742e4900 9128the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396 9129(@samp{$default}), the parser will reduce it. If it was coming from
c949ada3 9130State 0, then, after this reduction it will return to state 0, and will
ec3bc396
AD
9131jump to state 2 (@samp{exp: go to state 2}).
9132
9133@example
c949ada3 9134State 2
ec3bc396 9135
29e20e22
AD
9136 0 $accept: exp . $end
9137 1 exp: exp . '+' exp
9138 2 | exp . '-' exp
9139 3 | exp . '*' exp
9140 4 | exp . '/' exp
ec3bc396 9141
29e20e22
AD
9142 $end shift, and go to state 3
9143 '+' shift, and go to state 4
9144 '-' shift, and go to state 5
9145 '*' shift, and go to state 6
9146 '/' shift, and go to state 7
ec3bc396
AD
9147@end example
9148
9149@noindent
9150In state 2, the automaton can only shift a symbol. For instance,
29e20e22 9151because of the item @samp{exp: exp . '+' exp}, if the lookahead is
35880c82 9152@samp{+} it is shifted onto the parse stack, and the automaton
29e20e22 9153jumps to state 4, corresponding to the item @samp{exp: exp '+' . exp}.
35880c82
PE
9154Since there is no default action, any lookahead not listed triggers a syntax
9155error.
ec3bc396 9156
eb45ef3b 9157@cindex accepting state
ec3bc396
AD
9158The state 3 is named the @dfn{final state}, or the @dfn{accepting
9159state}:
9160
9161@example
c949ada3 9162State 3
ec3bc396 9163
29e20e22 9164 0 $accept: exp $end .
ec3bc396 9165
29e20e22 9166 $default accept
ec3bc396
AD
9167@end example
9168
9169@noindent
29e20e22
AD
9170the initial rule is completed (the start symbol and the end-of-input were
9171read), the parsing exits successfully.
ec3bc396
AD
9172
9173The interpretation of states 4 to 7 is straightforward, and is left to
9174the reader.
9175
9176@example
c949ada3 9177State 4
ec3bc396 9178
29e20e22 9179 1 exp: exp '+' . exp
ec3bc396 9180
29e20e22
AD
9181 NUM shift, and go to state 1
9182
9183 exp go to state 8
ec3bc396 9184
ec3bc396 9185
c949ada3 9186State 5
ec3bc396 9187
29e20e22
AD
9188 2 exp: exp '-' . exp
9189
9190 NUM shift, and go to state 1
ec3bc396 9191
29e20e22 9192 exp go to state 9
ec3bc396 9193
ec3bc396 9194
c949ada3 9195State 6
ec3bc396 9196
29e20e22 9197 3 exp: exp '*' . exp
ec3bc396 9198
29e20e22
AD
9199 NUM shift, and go to state 1
9200
9201 exp go to state 10
ec3bc396 9202
ec3bc396 9203
c949ada3 9204State 7
ec3bc396 9205
29e20e22 9206 4 exp: exp '/' . exp
ec3bc396 9207
29e20e22 9208 NUM shift, and go to state 1
ec3bc396 9209
29e20e22 9210 exp go to state 11
ec3bc396
AD
9211@end example
9212
5a99098d
PE
9213As was announced in beginning of the report, @samp{State 8 conflicts:
92141 shift/reduce}:
ec3bc396
AD
9215
9216@example
c949ada3 9217State 8
ec3bc396 9218
29e20e22
AD
9219 1 exp: exp . '+' exp
9220 1 | exp '+' exp .
9221 2 | exp . '-' exp
9222 3 | exp . '*' exp
9223 4 | exp . '/' exp
ec3bc396 9224
29e20e22
AD
9225 '*' shift, and go to state 6
9226 '/' shift, and go to state 7
ec3bc396 9227
29e20e22
AD
9228 '/' [reduce using rule 1 (exp)]
9229 $default reduce using rule 1 (exp)
ec3bc396
AD
9230@end example
9231
742e4900 9232Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
9233either shifting (and going to state 7), or reducing rule 1. The
9234conflict means that either the grammar is ambiguous, or the parser lacks
9235information to make the right decision. Indeed the grammar is
9236ambiguous, as, since we did not specify the precedence of @samp{/}, the
9237sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
9238NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
9239NUM}, which corresponds to reducing rule 1.
9240
eb45ef3b 9241Because in deterministic parsing a single decision can be made, Bison
ec3bc396 9242arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
29e20e22 9243Shift/Reduce Conflicts}. Discarded actions are reported between
ec3bc396
AD
9244square brackets.
9245
9246Note that all the previous states had a single possible action: either
9247shifting the next token and going to the corresponding state, or
9248reducing a single rule. In the other cases, i.e., when shifting
9249@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
9250possible, the lookahead is required to select the action. State 8 is
9251one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
9252is shifting, otherwise the action is reducing rule 1. In other words,
9253the first two items, corresponding to rule 1, are not eligible when the
742e4900 9254lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 9255precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
9256with some set of possible lookahead tokens. When run with
9257@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
9258
9259@example
c949ada3 9260State 8
ec3bc396 9261
29e20e22
AD
9262 1 exp: exp . '+' exp
9263 1 | exp '+' exp . [$end, '+', '-', '/']
9264 2 | exp . '-' exp
9265 3 | exp . '*' exp
9266 4 | exp . '/' exp
9267
9268 '*' shift, and go to state 6
9269 '/' shift, and go to state 7
ec3bc396 9270
29e20e22
AD
9271 '/' [reduce using rule 1 (exp)]
9272 $default reduce using rule 1 (exp)
9273@end example
9274
9275Note however that while @samp{NUM + NUM / NUM} is ambiguous (which results in
9276the conflicts on @samp{/}), @samp{NUM + NUM * NUM} is not: the conflict was
9277solved thanks to associativity and precedence directives. If invoked with
9278@option{--report=solved}, Bison includes information about the solved
9279conflicts in the report:
ec3bc396 9280
29e20e22
AD
9281@example
9282Conflict between rule 1 and token '+' resolved as reduce (%left '+').
9283Conflict between rule 1 and token '-' resolved as reduce (%left '-').
9284Conflict between rule 1 and token '*' resolved as shift ('+' < '*').
ec3bc396
AD
9285@end example
9286
29e20e22 9287
ec3bc396
AD
9288The remaining states are similar:
9289
9290@example
d4fca427 9291@group
c949ada3 9292State 9
ec3bc396 9293
29e20e22
AD
9294 1 exp: exp . '+' exp
9295 2 | exp . '-' exp
9296 2 | exp '-' exp .
9297 3 | exp . '*' exp
9298 4 | exp . '/' exp
ec3bc396 9299
29e20e22
AD
9300 '*' shift, and go to state 6
9301 '/' shift, and go to state 7
ec3bc396 9302
29e20e22
AD
9303 '/' [reduce using rule 2 (exp)]
9304 $default reduce using rule 2 (exp)
d4fca427 9305@end group
ec3bc396 9306
d4fca427 9307@group
c949ada3 9308State 10
ec3bc396 9309
29e20e22
AD
9310 1 exp: exp . '+' exp
9311 2 | exp . '-' exp
9312 3 | exp . '*' exp
9313 3 | exp '*' exp .
9314 4 | exp . '/' exp
ec3bc396 9315
29e20e22 9316 '/' shift, and go to state 7
ec3bc396 9317
29e20e22
AD
9318 '/' [reduce using rule 3 (exp)]
9319 $default reduce using rule 3 (exp)
d4fca427 9320@end group
ec3bc396 9321
d4fca427 9322@group
c949ada3 9323State 11
ec3bc396 9324
29e20e22
AD
9325 1 exp: exp . '+' exp
9326 2 | exp . '-' exp
9327 3 | exp . '*' exp
9328 4 | exp . '/' exp
9329 4 | exp '/' exp .
9330
9331 '+' shift, and go to state 4
9332 '-' shift, and go to state 5
9333 '*' shift, and go to state 6
9334 '/' shift, and go to state 7
9335
9336 '+' [reduce using rule 4 (exp)]
9337 '-' [reduce using rule 4 (exp)]
9338 '*' [reduce using rule 4 (exp)]
9339 '/' [reduce using rule 4 (exp)]
9340 $default reduce using rule 4 (exp)
d4fca427 9341@end group
ec3bc396
AD
9342@end example
9343
9344@noindent
fa7e68c3 9345Observe that state 11 contains conflicts not only due to the lack of
c949ada3
AD
9346precedence of @samp{/} with respect to @samp{+}, @samp{-}, and @samp{*}, but
9347also because the associativity of @samp{/} is not specified.
ec3bc396 9348
c949ada3
AD
9349Bison may also produce an HTML version of this output, via an XML file and
9350XSLT processing (@pxref{Xml,,Visualizing your parser in multiple formats}).
9c16d399 9351
fc4fdd62
TR
9352@c ================================================= Graphical Representation
9353
9354@node Graphviz
9355@section Visualizing Your Parser
9356@cindex dot
9357
9358As another means to gain better understanding of the shift/reduce
9359automaton corresponding to the Bison parser, a DOT file can be generated. Note
9360that debugging a real grammar with this is tedious at best, and impractical
9361most of the times, because the generated files are huge (the generation of
9362a PDF or PNG file from it will take very long, and more often than not it will
9363fail due to memory exhaustion). This option was rather designed for beginners,
9364to help them understand LR parsers.
9365
bfdcc3a0
AD
9366This file is generated when the @option{--graph} option is specified
9367(@pxref{Invocation, , Invoking Bison}). Its name is made by removing
fc4fdd62
TR
9368@samp{.tab.c} or @samp{.c} from the parser implementation file name, and
9369adding @samp{.dot} instead. If the grammar file is @file{foo.y}, the
c949ada3
AD
9370Graphviz output file is called @file{foo.dot}. A DOT file may also be
9371produced via an XML file and XSLT processing (@pxref{Xml,,Visualizing your
9372parser in multiple formats}).
9373
fc4fdd62
TR
9374
9375The following grammar file, @file{rr.y}, will be used in the sequel:
9376
9377@example
9378%%
9379@group
9380exp: a ";" | b ".";
9381a: "0";
9382b: "0";
9383@end group
9384@end example
9385
c949ada3
AD
9386The graphical output
9387@ifnotinfo
9388(see @ref{fig:graph})
9389@end ifnotinfo
9390is very similar to the textual one, and as such it is easier understood by
9391making direct comparisons between them. @xref{Debugging, , Debugging Your
9392Parser}, for a detailled analysis of the textual report.
9393
9394@ifnotinfo
9395@float Figure,fig:graph
9396@image{figs/example, 430pt}
9397@caption{A graphical rendering of the parser.}
9398@end float
9399@end ifnotinfo
fc4fdd62
TR
9400
9401@subheading Graphical Representation of States
9402
9403The items (pointed rules) for each state are grouped together in graph nodes.
9404Their numbering is the same as in the verbose file. See the following points,
9405about transitions, for examples
9406
9407When invoked with @option{--report=lookaheads}, the lookahead tokens, when
9408needed, are shown next to the relevant rule between square brackets as a
9409comma separated list. This is the case in the figure for the representation of
9410reductions, below.
9411
9412@sp 1
9413
9414The transitions are represented as directed edges between the current and
9415the target states.
9416
9417@subheading Graphical Representation of Shifts
9418
9419Shifts are shown as solid arrows, labelled with the lookahead token for that
9420shift. The following describes a reduction in the @file{rr.output} file:
9421
9422@example
9423@group
c949ada3 9424State 3
fc4fdd62
TR
9425
9426 1 exp: a . ";"
9427
9428 ";" shift, and go to state 6
9429@end group
9430@end example
9431
9432A Graphviz rendering of this portion of the graph could be:
9433
9434@center @image{figs/example-shift, 100pt}
9435
9436@subheading Graphical Representation of Reductions
9437
9438Reductions are shown as solid arrows, leading to a diamond-shaped node
9439bearing the number of the reduction rule. The arrow is labelled with the
9440appropriate comma separated lookahead tokens. If the reduction is the default
9441action for the given state, there is no such label.
9442
9443This is how reductions are represented in the verbose file @file{rr.output}:
9444@example
c949ada3 9445State 1
fc4fdd62
TR
9446
9447 3 a: "0" . [";"]
9448 4 b: "0" . ["."]
9449
9450 "." reduce using rule 4 (b)
9451 $default reduce using rule 3 (a)
9452@end example
9453
9454A Graphviz rendering of this portion of the graph could be:
9455
9456@center @image{figs/example-reduce, 120pt}
9457
9458When unresolved conflicts are present, because in deterministic parsing
9459a single decision can be made, Bison can arbitrarily choose to disable a
9460reduction, see @ref{Shift/Reduce, , Shift/Reduce Conflicts}. Discarded actions
9461are distinguished by a red filling color on these nodes, just like how they are
9462reported between square brackets in the verbose file.
9463
c949ada3
AD
9464The reduction corresponding to the rule number 0 is the acceptation
9465state. It is shown as a blue diamond, labelled ``Acc''.
fc4fdd62
TR
9466
9467@subheading Graphical representation of go tos
9468
9469The @samp{go to} jump transitions are represented as dotted lines bearing
9470the name of the rule being jumped to.
9471
9c16d399
TR
9472@c ================================================= XML
9473
9474@node Xml
9475@section Visualizing your parser in multiple formats
9476@cindex xml
9477
9478Bison supports two major report formats: textual output
c949ada3
AD
9479(@pxref{Understanding, ,Understanding Your Parser}) when invoked
9480with option @option{--verbose}, and DOT
9481(@pxref{Graphviz,, Visualizing Your Parser}) when invoked with
9482option @option{--graph}. However,
9c16d399
TR
9483another alternative is to output an XML file that may then be, with
9484@command{xsltproc}, rendered as either a raw text format equivalent to the
9485verbose file, or as an HTML version of the same file, with clickable
9486transitions, or even as a DOT. The @file{.output} and DOT files obtained via
be3517b0
TR
9487XSLT have no difference whatsoever with those obtained by invoking
9488@command{bison} with options @option{--verbose} or @option{--graph}.
9c16d399 9489
c949ada3 9490The XML file is generated when the options @option{-x} or
9c16d399
TR
9491@option{--xml[=FILE]} are specified, see @ref{Invocation,,Invoking Bison}.
9492If not specified, its name is made by removing @samp{.tab.c} or @samp{.c}
9493from the parser implementation file name, and adding @samp{.xml} instead.
9494For instance, if the grammar file is @file{foo.y}, the default XML output
9495file is @file{foo.xml}.
9496
9497Bison ships with a @file{data/xslt} directory, containing XSL Transformation
9498files to apply to the XML file. Their names are non-ambiguous:
9499
9500@table @file
9501@item xml2dot.xsl
be3517b0 9502Used to output a copy of the DOT visualization of the automaton.
9c16d399 9503@item xml2text.xsl
c949ada3 9504Used to output a copy of the @samp{.output} file.
9c16d399 9505@item xml2xhtml.xsl
c949ada3 9506Used to output an xhtml enhancement of the @samp{.output} file.
9c16d399
TR
9507@end table
9508
c949ada3 9509Sample usage (requires @command{xsltproc}):
9c16d399 9510@example
c949ada3 9511$ bison -x gr.y
9c16d399
TR
9512@group
9513$ bison --print-datadir
9514/usr/local/share/bison
9515@end group
c949ada3 9516$ xsltproc /usr/local/share/bison/xslt/xml2xhtml.xsl gr.xml >gr.html
9c16d399
TR
9517@end example
9518
fc4fdd62 9519@c ================================================= Tracing
ec3bc396
AD
9520
9521@node Tracing
9522@section Tracing Your Parser
bfa74976
RS
9523@findex yydebug
9524@cindex debugging
9525@cindex tracing the parser
9526
93c150b6
AD
9527When a Bison grammar compiles properly but parses ``incorrectly'', the
9528@code{yydebug} parser-trace feature helps figuring out why.
9529
9530@menu
9531* Enabling Traces:: Activating run-time trace support
9532* Mfcalc Traces:: Extending @code{mfcalc} to support traces
9533* The YYPRINT Macro:: Obsolete interface for semantic value reports
9534@end menu
bfa74976 9535
93c150b6
AD
9536@node Enabling Traces
9537@subsection Enabling Traces
3ded9a63
AD
9538There are several means to enable compilation of trace facilities:
9539
9540@table @asis
9541@item the macro @code{YYDEBUG}
9542@findex YYDEBUG
9543Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 9544parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
9545@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
9546YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
9547Prologue}).
9548
e6ae99fe 9549If the @code{%define} variable @code{api.prefix} is used (@pxref{Multiple
e358222b
AD
9550Parsers, ,Multiple Parsers in the Same Program}), for instance @samp{%define
9551api.prefix x}, then if @code{CDEBUG} is defined, its value controls the
5a05f42e
AD
9552tracing feature (enabled if and only if nonzero); otherwise tracing is
9553enabled if and only if @code{YYDEBUG} is nonzero.
e358222b
AD
9554
9555@item the option @option{-t} (POSIX Yacc compliant)
9556@itemx the option @option{--debug} (Bison extension)
9557Use the @samp{-t} option when you run Bison (@pxref{Invocation, ,Invoking
9558Bison}). With @samp{%define api.prefix c}, it defines @code{CDEBUG} to 1,
9559otherwise it defines @code{YYDEBUG} to 1.
3ded9a63
AD
9560
9561@item the directive @samp{%debug}
9562@findex %debug
fa819509
AD
9563Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
9564Summary}). This Bison extension is maintained for backward
9565compatibility with previous versions of Bison.
9566
9567@item the variable @samp{parse.trace}
9568@findex %define parse.trace
35c1e5f0
JD
9569Add the @samp{%define parse.trace} directive (@pxref{%define
9570Summary,,parse.trace}), or pass the @option{-Dparse.trace} option
fa819509 9571(@pxref{Bison Options}). This is a Bison extension, which is especially
35c1e5f0
JD
9572useful for languages that don't use a preprocessor. Unless POSIX and Yacc
9573portability matter to you, this is the preferred solution.
3ded9a63
AD
9574@end table
9575
fa819509 9576We suggest that you always enable the trace option so that debugging is
3ded9a63 9577always possible.
bfa74976 9578
93c150b6 9579@findex YYFPRINTF
02a81e05 9580The trace facility outputs messages with macro calls of the form
e2742e46 9581@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 9582@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
9583arguments. If you define @code{YYDEBUG} to a nonzero value but do not
9584define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 9585and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
9586
9587Once you have compiled the program with trace facilities, the way to
9588request a trace is to store a nonzero value in the variable @code{yydebug}.
9589You can do this by making the C code do it (in @code{main}, perhaps), or
9590you can alter the value with a C debugger.
9591
9592Each step taken by the parser when @code{yydebug} is nonzero produces a
9593line or two of trace information, written on @code{stderr}. The trace
9594messages tell you these things:
9595
9596@itemize @bullet
9597@item
9598Each time the parser calls @code{yylex}, what kind of token was read.
9599
9600@item
9601Each time a token is shifted, the depth and complete contents of the
9602state stack (@pxref{Parser States}).
9603
9604@item
9605Each time a rule is reduced, which rule it is, and the complete contents
9606of the state stack afterward.
9607@end itemize
9608
93c150b6
AD
9609To make sense of this information, it helps to refer to the automaton
9610description file (@pxref{Understanding, ,Understanding Your Parser}).
9611This file shows the meaning of each state in terms of
704a47c4
AD
9612positions in various rules, and also what each state will do with each
9613possible input token. As you read the successive trace messages, you
9614can see that the parser is functioning according to its specification in
9615the listing file. Eventually you will arrive at the place where
9616something undesirable happens, and you will see which parts of the
9617grammar are to blame.
bfa74976 9618
93c150b6 9619The parser implementation file is a C/C++/Java program and you can use
ff7571c0
JD
9620debuggers on it, but it's not easy to interpret what it is doing. The
9621parser function is a finite-state machine interpreter, and aside from
9622the actions it executes the same code over and over. Only the values
9623of variables show where in the grammar it is working.
bfa74976 9624
93c150b6
AD
9625@node Mfcalc Traces
9626@subsection Enabling Debug Traces for @code{mfcalc}
9627
9628The debugging information normally gives the token type of each token read,
9629but not its semantic value. The @code{%printer} directive allows specify
9630how semantic values are reported, see @ref{Printer Decl, , Printing
9631Semantic Values}. For backward compatibility, Yacc like C parsers may also
9632use the @code{YYPRINT} (@pxref{The YYPRINT Macro, , The @code{YYPRINT}
9633Macro}), but its use is discouraged.
9634
9635As a demonstration of @code{%printer}, consider the multi-function
9636calculator, @code{mfcalc} (@pxref{Multi-function Calc}). To enable run-time
9637traces, and semantic value reports, insert the following directives in its
9638prologue:
9639
9640@comment file: mfcalc.y: 2
9641@example
9642/* Generate the parser description file. */
9643%verbose
9644/* Enable run-time traces (yydebug). */
9645%define parse.trace
9646
9647/* Formatting semantic values. */
9648%printer @{ fprintf (yyoutput, "%s", $$->name); @} VAR;
9649%printer @{ fprintf (yyoutput, "%s()", $$->name); @} FNCT;
90b89dad 9650%printer @{ fprintf (yyoutput, "%g", $$); @} <double>;
93c150b6
AD
9651@end example
9652
9653The @code{%define} directive instructs Bison to generate run-time trace
9654support. Then, activation of these traces is controlled at run-time by the
9655@code{yydebug} variable, which is disabled by default. Because these traces
9656will refer to the ``states'' of the parser, it is helpful to ask for the
9657creation of a description of that parser; this is the purpose of (admittedly
9658ill-named) @code{%verbose} directive.
9659
9660The set of @code{%printer} directives demonstrates how to format the
9661semantic value in the traces. Note that the specification can be done
9662either on the symbol type (e.g., @code{VAR} or @code{FNCT}), or on the type
90b89dad
AD
9663tag: since @code{<double>} is the type for both @code{NUM} and @code{exp},
9664this printer will be used for them.
93c150b6
AD
9665
9666Here is a sample of the information provided by run-time traces. The traces
9667are sent onto standard error.
9668
9669@example
9670$ @kbd{echo 'sin(1-1)' | ./mfcalc -p}
9671Starting parse
9672Entering state 0
9673Reducing stack by rule 1 (line 34):
9674-> $$ = nterm input ()
9675Stack now 0
9676Entering state 1
9677@end example
9678
9679@noindent
9680This first batch shows a specific feature of this grammar: the first rule
9681(which is in line 34 of @file{mfcalc.y} can be reduced without even having
9682to look for the first token. The resulting left-hand symbol (@code{$$}) is
9683a valueless (@samp{()}) @code{input} non terminal (@code{nterm}).
9684
9685Then the parser calls the scanner.
9686@example
9687Reading a token: Next token is token FNCT (sin())
9688Shifting token FNCT (sin())
9689Entering state 6
9690@end example
9691
9692@noindent
9693That token (@code{token}) is a function (@code{FNCT}) whose value is
9694@samp{sin} as formatted per our @code{%printer} specification: @samp{sin()}.
9695The parser stores (@code{Shifting}) that token, and others, until it can do
9696something about it.
9697
9698@example
9699Reading a token: Next token is token '(' ()
9700Shifting token '(' ()
9701Entering state 14
9702Reading a token: Next token is token NUM (1.000000)
9703Shifting token NUM (1.000000)
9704Entering state 4
9705Reducing stack by rule 6 (line 44):
9706 $1 = token NUM (1.000000)
9707-> $$ = nterm exp (1.000000)
9708Stack now 0 1 6 14
9709Entering state 24
9710@end example
9711
9712@noindent
9713The previous reduction demonstrates the @code{%printer} directive for
90b89dad 9714@code{<double>}: both the token @code{NUM} and the resulting nonterminal
93c150b6
AD
9715@code{exp} have @samp{1} as value.
9716
9717@example
9718Reading a token: Next token is token '-' ()
9719Shifting token '-' ()
9720Entering state 17
9721Reading a token: Next token is token NUM (1.000000)
9722Shifting token NUM (1.000000)
9723Entering state 4
9724Reducing stack by rule 6 (line 44):
9725 $1 = token NUM (1.000000)
9726-> $$ = nterm exp (1.000000)
9727Stack now 0 1 6 14 24 17
9728Entering state 26
9729Reading a token: Next token is token ')' ()
9730Reducing stack by rule 11 (line 49):
9731 $1 = nterm exp (1.000000)
9732 $2 = token '-' ()
9733 $3 = nterm exp (1.000000)
9734-> $$ = nterm exp (0.000000)
9735Stack now 0 1 6 14
9736Entering state 24
9737@end example
9738
9739@noindent
9740The rule for the subtraction was just reduced. The parser is about to
9741discover the end of the call to @code{sin}.
9742
9743@example
9744Next token is token ')' ()
9745Shifting token ')' ()
9746Entering state 31
9747Reducing stack by rule 9 (line 47):
9748 $1 = token FNCT (sin())
9749 $2 = token '(' ()
9750 $3 = nterm exp (0.000000)
9751 $4 = token ')' ()
9752-> $$ = nterm exp (0.000000)
9753Stack now 0 1
9754Entering state 11
9755@end example
9756
9757@noindent
9758Finally, the end-of-line allow the parser to complete the computation, and
9759display its result.
9760
9761@example
9762Reading a token: Next token is token '\n' ()
9763Shifting token '\n' ()
9764Entering state 22
9765Reducing stack by rule 4 (line 40):
9766 $1 = nterm exp (0.000000)
9767 $2 = token '\n' ()
9768@result{} 0
9769-> $$ = nterm line ()
9770Stack now 0 1
9771Entering state 10
9772Reducing stack by rule 2 (line 35):
9773 $1 = nterm input ()
9774 $2 = nterm line ()
9775-> $$ = nterm input ()
9776Stack now 0
9777Entering state 1
9778@end example
9779
9780The parser has returned into state 1, in which it is waiting for the next
9781expression to evaluate, or for the end-of-file token, which causes the
9782completion of the parsing.
9783
9784@example
9785Reading a token: Now at end of input.
9786Shifting token $end ()
9787Entering state 2
9788Stack now 0 1 2
9789Cleanup: popping token $end ()
9790Cleanup: popping nterm input ()
9791@end example
9792
9793
9794@node The YYPRINT Macro
9795@subsection The @code{YYPRINT} Macro
9796
bfa74976 9797@findex YYPRINT
93c150b6
AD
9798Before @code{%printer} support, semantic values could be displayed using the
9799@code{YYPRINT} macro, which works only for terminal symbols and only with
9800the @file{yacc.c} skeleton.
9801
9802@deffn {Macro} YYPRINT (@var{stream}, @var{token}, @var{value});
9803@findex YYPRINT
9804If you define @code{YYPRINT}, it should take three arguments. The parser
9805will pass a standard I/O stream, the numeric code for the token type, and
9806the token value (from @code{yylval}).
9807
9808For @file{yacc.c} only. Obsoleted by @code{%printer}.
9809@end deffn
bfa74976
RS
9810
9811Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 9812calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976 9813
c93f22fc 9814@example
38a92d50
PE
9815%@{
9816 static void print_token_value (FILE *, int, YYSTYPE);
93c150b6
AD
9817 #define YYPRINT(File, Type, Value) \
9818 print_token_value (File, Type, Value)
38a92d50
PE
9819%@}
9820
9821@dots{} %% @dots{} %% @dots{}
bfa74976
RS
9822
9823static void
831d3c99 9824print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
9825@{
9826 if (type == VAR)
d3c4e709 9827 fprintf (file, "%s", value.tptr->name);
bfa74976 9828 else if (type == NUM)
d3c4e709 9829 fprintf (file, "%d", value.val);
bfa74976 9830@}
c93f22fc 9831@end example
bfa74976 9832
ec3bc396
AD
9833@c ================================================= Invoking Bison
9834
342b8b6e 9835@node Invocation
bfa74976
RS
9836@chapter Invoking Bison
9837@cindex invoking Bison
9838@cindex Bison invocation
9839@cindex options for invoking Bison
9840
9841The usual way to invoke Bison is as follows:
9842
9843@example
9844bison @var{infile}
9845@end example
9846
9847Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
9848@samp{.y}. The parser implementation file's name is made by replacing
9849the @samp{.y} with @samp{.tab.c} and removing any leading directory.
9850Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
9851the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
9852also possible, in case you are writing C++ code instead of C in your
9853grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
9854output files will take an extension like the given one as input
9855(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
9856feature takes effect with all options that manipulate file names like
234a3be3
AD
9857@samp{-o} or @samp{-d}.
9858
9859For example :
9860
9861@example
9862bison -d @var{infile.yxx}
9863@end example
84163231 9864@noindent
72d2299c 9865will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
9866
9867@example
b56471a6 9868bison -d -o @var{output.c++} @var{infile.y}
234a3be3 9869@end example
84163231 9870@noindent
234a3be3
AD
9871will produce @file{output.c++} and @file{outfile.h++}.
9872
8a4281b9 9873For compatibility with POSIX, the standard Bison
397ec073
PE
9874distribution also contains a shell script called @command{yacc} that
9875invokes Bison with the @option{-y} option.
9876
bfa74976 9877@menu
13863333 9878* Bison Options:: All the options described in detail,
c827f760 9879 in alphabetical order by short options.
bfa74976 9880* Option Cross Key:: Alphabetical list of long options.
93dd49ab 9881* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
9882@end menu
9883
342b8b6e 9884@node Bison Options
bfa74976
RS
9885@section Bison Options
9886
9887Bison supports both traditional single-letter options and mnemonic long
9888option names. Long option names are indicated with @samp{--} instead of
9889@samp{-}. Abbreviations for option names are allowed as long as they
9890are unique. When a long option takes an argument, like
9891@samp{--file-prefix}, connect the option name and the argument with
9892@samp{=}.
9893
9894Here is a list of options that can be used with Bison, alphabetized by
9895short option. It is followed by a cross key alphabetized by long
9896option.
9897
4c9b8f13 9898@c Please, keep this ordered as in 'bison --help'.
89cab50d
AD
9899@noindent
9900Operations modes:
9901@table @option
9902@item -h
9903@itemx --help
9904Print a summary of the command-line options to Bison and exit.
bfa74976 9905
89cab50d
AD
9906@item -V
9907@itemx --version
9908Print the version number of Bison and exit.
bfa74976 9909
f7ab6a50
PE
9910@item --print-localedir
9911Print the name of the directory containing locale-dependent data.
9912
a0de5091
JD
9913@item --print-datadir
9914Print the name of the directory containing skeletons and XSLT.
9915
89cab50d
AD
9916@item -y
9917@itemx --yacc
ff7571c0
JD
9918Act more like the traditional Yacc command. This can cause different
9919diagnostics to be generated, and may change behavior in other minor
9920ways. Most importantly, imitate Yacc's output file name conventions,
9921so that the parser implementation file is called @file{y.tab.c}, and
9922the other outputs are called @file{y.output} and @file{y.tab.h}.
9923Also, if generating a deterministic parser in C, generate
9924@code{#define} statements in addition to an @code{enum} to associate
9925token numbers with token names. Thus, the following shell script can
9926substitute for Yacc, and the Bison distribution contains such a script
9927for compatibility with POSIX:
bfa74976 9928
89cab50d 9929@example
397ec073 9930#! /bin/sh
26e06a21 9931bison -y "$@@"
89cab50d 9932@end example
54662697
PE
9933
9934The @option{-y}/@option{--yacc} option is intended for use with
9935traditional Yacc grammars. If your grammar uses a Bison extension
9936like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
9937this option is specified.
9938
1d5b3c08
JD
9939@item -W [@var{category}]
9940@itemx --warnings[=@var{category}]
118d4978
AD
9941Output warnings falling in @var{category}. @var{category} can be one
9942of:
9943@table @code
9944@item midrule-values
8e55b3aa
JD
9945Warn about mid-rule values that are set but not used within any of the actions
9946of the parent rule.
9947For example, warn about unused @code{$2} in:
118d4978
AD
9948
9949@example
9950exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
9951@end example
9952
8e55b3aa
JD
9953Also warn about mid-rule values that are used but not set.
9954For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
9955
9956@example
5e9b6624 9957exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
118d4978
AD
9958@end example
9959
9960These warnings are not enabled by default since they sometimes prove to
9961be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 9962@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 9963
118d4978 9964@item yacc
8a4281b9 9965Incompatibilities with POSIX Yacc.
118d4978 9966
786743d5
JD
9967@item conflicts-sr
9968@itemx conflicts-rr
9969S/R and R/R conflicts. These warnings are enabled by default. However, if
9970the @code{%expect} or @code{%expect-rr} directive is specified, an
9971unexpected number of conflicts is an error, and an expected number of
9972conflicts is not reported, so @option{-W} and @option{--warning} then have
9973no effect on the conflict report.
9974
518e8830
AD
9975@item deprecated
9976Deprecated constructs whose support will be removed in future versions of
9977Bison.
9978
09add9c2
AD
9979@item empty-rule
9980Empty rules without @code{%empty}. @xref{Empty Rules}. Disabled by
9981default, but enabled by uses of @code{%empty}, unless
9982@option{-Wno-empty-rule} was specified.
9983
cc2235ac
VT
9984@item precedence
9985Useless precedence and associativity directives. Disabled by default.
9986
9987Consider for instance the following grammar:
9988
9989@example
9990@group
9991%nonassoc "="
9992%left "+"
9993%left "*"
9994%precedence "("
9995@end group
9996%%
9997@group
9998stmt:
9999 exp
10000| "var" "=" exp
10001;
10002@end group
10003
10004@group
10005exp:
10006 exp "+" exp
10007| exp "*" "num"
10008| "(" exp ")"
10009| "num"
10010;
10011@end group
10012@end example
10013
10014Bison reports:
10015
10016@c cannot leave the location and the [-Wprecedence] for lack of
10017@c width in PDF.
10018@example
10019@group
10020warning: useless precedence and associativity for "="
10021 %nonassoc "="
10022 ^^^
10023@end group
10024@group
10025warning: useless associativity for "*", use %precedence
10026 %left "*"
10027 ^^^
10028@end group
10029@group
10030warning: useless precedence for "("
10031 %precedence "("
10032 ^^^
10033@end group
10034@end example
10035
10036One would get the exact same parser with the following directives instead:
10037
10038@example
10039@group
10040%left "+"
10041%precedence "*"
10042@end group
10043@end example
10044
c39014ae
JD
10045@item other
10046All warnings not categorized above. These warnings are enabled by default.
10047
10048This category is provided merely for the sake of completeness. Future
10049releases of Bison may move warnings from this category to new, more specific
10050categories.
10051
118d4978 10052@item all
f24695ef
AD
10053All the warnings except @code{yacc}.
10054
118d4978 10055@item none
8e55b3aa 10056Turn off all the warnings.
f24695ef 10057
118d4978 10058@item error
1048a1c9 10059See @option{-Werror}, below.
118d4978
AD
10060@end table
10061
10062A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 10063instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 10064POSIX Yacc incompatibilities.
1048a1c9
AD
10065
10066@item -Werror[=@var{category}]
10067@itemx -Wno-error[=@var{category}]
10068Enable warnings falling in @var{category}, and treat them as errors. If no
10069@var{category} is given, it defaults to making all enabled warnings into errors.
10070
10071@var{category} is the same as for @option{--warnings}, with the exception that
10072it may not be prefixed with @samp{no-} (see above).
10073
10074Prefixed with @samp{no}, it deactivates the error treatment for this
10075@var{category}. However, the warning itself won't be disabled, or enabled, by
10076this option.
10077
10078Note that the precedence of the @samp{=} and @samp{,} operators is such that
10079the following commands are @emph{not} equivalent, as the first will not treat
10080S/R conflicts as errors.
10081
10082@example
10083$ bison -Werror=yacc,conflicts-sr input.y
10084$ bison -Werror=yacc,error=conflicts-sr input.y
10085@end example
f3ead217 10086
7bada535
TR
10087@item -f [@var{feature}]
10088@itemx --feature[=@var{feature}]
10089Activate miscellaneous @var{feature}. @var{feature} can be one of:
10090@table @code
10091@item caret
10092@itemx diagnostics-show-caret
10093Show caret errors, in a manner similar to GCC's
10094@option{-fdiagnostics-show-caret}, or Clang's @option{-fcaret-diagnotics}. The
10095location provided with the message is used to quote the corresponding line of
10096the source file, underlining the important part of it with carets (^). Here is
c949ada3 10097an example, using the following file @file{in.y}:
7bada535
TR
10098
10099@example
10100%type <ival> exp
10101%%
10102exp: exp '+' exp @{ $exp = $1 + $2; @};
10103@end example
10104
016426c1 10105When invoked with @option{-fcaret} (or nothing), Bison will report:
7bada535
TR
10106
10107@example
10108@group
c949ada3 10109in.y:3.20-23: error: ambiguous reference: '$exp'
7bada535
TR
10110 exp: exp '+' exp @{ $exp = $1 + $2; @};
10111 ^^^^
10112@end group
10113@group
c949ada3 10114in.y:3.1-3: refers to: $exp at $$
7bada535
TR
10115 exp: exp '+' exp @{ $exp = $1 + $2; @};
10116 ^^^
10117@end group
10118@group
c949ada3 10119in.y:3.6-8: refers to: $exp at $1
7bada535
TR
10120 exp: exp '+' exp @{ $exp = $1 + $2; @};
10121 ^^^
10122@end group
10123@group
c949ada3 10124in.y:3.14-16: refers to: $exp at $3
7bada535
TR
10125 exp: exp '+' exp @{ $exp = $1 + $2; @};
10126 ^^^
10127@end group
10128@group
c949ada3 10129in.y:3.32-33: error: $2 of 'exp' has no declared type
7bada535
TR
10130 exp: exp '+' exp @{ $exp = $1 + $2; @};
10131 ^^
10132@end group
10133@end example
10134
016426c1
TR
10135Whereas, when invoked with @option{-fno-caret}, Bison will only report:
10136
10137@example
10138@group
10139in.y:3.20-23: error: ambiguous reference: ‘$exp’
10140in.y:3.1-3: refers to: $exp at $$
10141in.y:3.6-8: refers to: $exp at $1
10142in.y:3.14-16: refers to: $exp at $3
10143in.y:3.32-33: error: $2 of ‘exp’ has no declared type
10144@end group
10145@end example
10146
10147This option is activated by default.
10148
7bada535 10149@end table
89cab50d
AD
10150@end table
10151
10152@noindent
10153Tuning the parser:
10154
10155@table @option
10156@item -t
10157@itemx --debug
ff7571c0
JD
10158In the parser implementation file, define the macro @code{YYDEBUG} to
101591 if it is not already defined, so that the debugging facilities are
10160compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 10161
58697c6d
AD
10162@item -D @var{name}[=@var{value}]
10163@itemx --define=@var{name}[=@var{value}]
17aed602 10164@itemx -F @var{name}[=@var{value}]
de5ab940
JD
10165@itemx --force-define=@var{name}[=@var{value}]
10166Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
35c1e5f0 10167(@pxref{%define Summary}) except that Bison processes multiple
de5ab940
JD
10168definitions for the same @var{name} as follows:
10169
10170@itemize
10171@item
0b6d43c5
JD
10172Bison quietly ignores all command-line definitions for @var{name} except
10173the last.
de5ab940 10174@item
0b6d43c5
JD
10175If that command-line definition is specified by a @code{-D} or
10176@code{--define}, Bison reports an error for any @code{%define}
10177definition for @var{name}.
de5ab940 10178@item
0b6d43c5
JD
10179If that command-line definition is specified by a @code{-F} or
10180@code{--force-define} instead, Bison quietly ignores all @code{%define}
10181definitions for @var{name}.
10182@item
10183Otherwise, Bison reports an error if there are multiple @code{%define}
10184definitions for @var{name}.
de5ab940
JD
10185@end itemize
10186
10187You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
10188make files unless you are confident that it is safe to quietly ignore
10189any conflicting @code{%define} that may be added to the grammar file.
58697c6d 10190
0e021770
PE
10191@item -L @var{language}
10192@itemx --language=@var{language}
10193Specify the programming language for the generated parser, as if
10194@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 10195Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 10196@var{language} is case-insensitive.
0e021770 10197
89cab50d 10198@item --locations
d8988b2f 10199Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
10200
10201@item -p @var{prefix}
10202@itemx --name-prefix=@var{prefix}
4b3847c3
AD
10203Pretend that @code{%name-prefix "@var{prefix}"} was specified (@pxref{Decl
10204Summary}). Obsoleted by @code{-Dapi.prefix=@var{prefix}}. @xref{Multiple
10205Parsers, ,Multiple Parsers in the Same Program}.
bfa74976
RS
10206
10207@item -l
10208@itemx --no-lines
ff7571c0
JD
10209Don't put any @code{#line} preprocessor commands in the parser
10210implementation file. Ordinarily Bison puts them in the parser
10211implementation file so that the C compiler and debuggers will
10212associate errors with your source file, the grammar file. This option
10213causes them to associate errors with the parser implementation file,
10214treating it as an independent source file in its own right.
bfa74976 10215
e6e704dc
JD
10216@item -S @var{file}
10217@itemx --skeleton=@var{file}
a7867f53 10218Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
10219(@pxref{Decl Summary, , Bison Declaration Summary}).
10220
ed4d67dc
JD
10221@c You probably don't need this option unless you are developing Bison.
10222@c You should use @option{--language} if you want to specify the skeleton for a
10223@c different language, because it is clearer and because it will always
10224@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 10225
a7867f53
JD
10226If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
10227file in the Bison installation directory.
10228If it does, @var{file} is an absolute file name or a file name relative to the
10229current working directory.
10230This is similar to how most shells resolve commands.
10231
89cab50d
AD
10232@item -k
10233@itemx --token-table
d8988b2f 10234Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 10235@end table
bfa74976 10236
89cab50d
AD
10237@noindent
10238Adjust the output:
bfa74976 10239
89cab50d 10240@table @option
8e55b3aa 10241@item --defines[=@var{file}]
d8988b2f 10242Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 10243file containing macro definitions for the token type names defined in
4bfd5e4e 10244the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 10245
8e55b3aa
JD
10246@item -d
10247This is the same as @code{--defines} except @code{-d} does not accept a
10248@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
10249with other short options.
342b8b6e 10250
89cab50d
AD
10251@item -b @var{file-prefix}
10252@itemx --file-prefix=@var{prefix}
9c437126 10253Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 10254for all Bison output file names. @xref{Decl Summary}.
bfa74976 10255
ec3bc396
AD
10256@item -r @var{things}
10257@itemx --report=@var{things}
10258Write an extra output file containing verbose description of the comma
10259separated list of @var{things} among:
10260
10261@table @code
10262@item state
10263Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 10264parser's automaton.
ec3bc396 10265
57f8bd8d
AD
10266@item itemset
10267Implies @code{state} and augments the description of the automaton with
10268the full set of items for each state, instead of its core only.
10269
742e4900 10270@item lookahead
ec3bc396 10271Implies @code{state} and augments the description of the automaton with
742e4900 10272each rule's lookahead set.
ec3bc396 10273
57f8bd8d
AD
10274@item solved
10275Implies @code{state}. Explain how conflicts were solved thanks to
10276precedence and associativity directives.
10277
10278@item all
10279Enable all the items.
10280
10281@item none
10282Do not generate the report.
ec3bc396
AD
10283@end table
10284
1bb2bd75
JD
10285@item --report-file=@var{file}
10286Specify the @var{file} for the verbose description.
10287
bfa74976
RS
10288@item -v
10289@itemx --verbose
9c437126 10290Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 10291file containing verbose descriptions of the grammar and
72d2299c 10292parser. @xref{Decl Summary}.
bfa74976 10293
fa4d969f
PE
10294@item -o @var{file}
10295@itemx --output=@var{file}
ff7571c0 10296Specify the @var{file} for the parser implementation file.
bfa74976 10297
fa4d969f 10298The other output files' names are constructed from @var{file} as
d8988b2f 10299described under the @samp{-v} and @samp{-d} options.
342b8b6e 10300
a7c09cba 10301@item -g [@var{file}]
8e55b3aa 10302@itemx --graph[=@var{file}]
eb45ef3b 10303Output a graphical representation of the parser's
35fe0834 10304automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 10305@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
10306@code{@var{file}} is optional.
10307If omitted and the grammar file is @file{foo.y}, the output file will be
10308@file{foo.dot}.
59da312b 10309
a7c09cba 10310@item -x [@var{file}]
8e55b3aa 10311@itemx --xml[=@var{file}]
eb45ef3b 10312Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 10313@code{@var{file}} is optional.
59da312b
JD
10314If omitted and the grammar file is @file{foo.y}, the output file will be
10315@file{foo.xml}.
10316(The current XML schema is experimental and may evolve.
10317More user feedback will help to stabilize it.)
bfa74976
RS
10318@end table
10319
342b8b6e 10320@node Option Cross Key
bfa74976
RS
10321@section Option Cross Key
10322
10323Here is a list of options, alphabetized by long option, to help you find
de5ab940 10324the corresponding short option and directive.
bfa74976 10325
de5ab940 10326@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 10327@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 10328@include cross-options.texi
aa08666d 10329@end multitable
bfa74976 10330
93dd49ab
PE
10331@node Yacc Library
10332@section Yacc Library
10333
10334The Yacc library contains default implementations of the
10335@code{yyerror} and @code{main} functions. These default
8a4281b9 10336implementations are normally not useful, but POSIX requires
93dd49ab
PE
10337them. To use the Yacc library, link your program with the
10338@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 10339library is distributed under the terms of the GNU General
93dd49ab
PE
10340Public License (@pxref{Copying}).
10341
10342If you use the Yacc library's @code{yyerror} function, you should
10343declare @code{yyerror} as follows:
10344
10345@example
10346int yyerror (char const *);
10347@end example
10348
10349Bison ignores the @code{int} value returned by this @code{yyerror}.
10350If you use the Yacc library's @code{main} function, your
10351@code{yyparse} function should have the following type signature:
10352
10353@example
10354int yyparse (void);
10355@end example
10356
12545799
AD
10357@c ================================================= C++ Bison
10358
8405b70c
PB
10359@node Other Languages
10360@chapter Parsers Written In Other Languages
12545799
AD
10361
10362@menu
10363* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 10364* Java Parsers:: The interface to generate Java parser classes
12545799
AD
10365@end menu
10366
10367@node C++ Parsers
10368@section C++ Parsers
10369
10370@menu
10371* C++ Bison Interface:: Asking for C++ parser generation
10372* C++ Semantic Values:: %union vs. C++
10373* C++ Location Values:: The position and location classes
10374* C++ Parser Interface:: Instantiating and running the parser
10375* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 10376* A Complete C++ Example:: Demonstrating their use
12545799
AD
10377@end menu
10378
10379@node C++ Bison Interface
10380@subsection C++ Bison Interface
ed4d67dc 10381@c - %skeleton "lalr1.cc"
12545799
AD
10382@c - Always pure
10383@c - initial action
10384
eb45ef3b 10385The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
10386@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
10387@option{--skeleton=lalr1.cc}.
e6e704dc 10388@xref{Decl Summary}.
0e021770 10389
793fbca5
JD
10390When run, @command{bison} will create several entities in the @samp{yy}
10391namespace.
67501061 10392@findex %define api.namespace
35c1e5f0
JD
10393Use the @samp{%define api.namespace} directive to change the namespace name,
10394see @ref{%define Summary,,api.namespace}. The various classes are generated
10395in the following files:
aa08666d 10396
12545799
AD
10397@table @file
10398@item position.hh
10399@itemx location.hh
db8ab2be 10400The definition of the classes @code{position} and @code{location}, used for
f6b561d9
AD
10401location tracking when enabled. These files are not generated if the
10402@code{%define} variable @code{api.location.type} is defined. @xref{C++
10403Location Values}.
12545799
AD
10404
10405@item stack.hh
10406An auxiliary class @code{stack} used by the parser.
10407
fa4d969f
PE
10408@item @var{file}.hh
10409@itemx @var{file}.cc
ff7571c0 10410(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
10411declaration and implementation of the C++ parser class. The basename
10412and extension of these two files follow the same rules as with regular C
10413parsers (@pxref{Invocation}).
12545799 10414
cd8b5791
AD
10415The header is @emph{mandatory}; you must either pass
10416@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
10417@samp{%defines} directive.
10418@end table
10419
10420All these files are documented using Doxygen; run @command{doxygen}
10421for a complete and accurate documentation.
10422
10423@node C++ Semantic Values
10424@subsection C++ Semantic Values
10425@c - No objects in unions
178e123e 10426@c - YYSTYPE
12545799
AD
10427@c - Printer and destructor
10428
3cdc21cf
AD
10429Bison supports two different means to handle semantic values in C++. One is
10430alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
10431practitioners know, unions are inconvenient in C++, therefore another
10432approach is provided, based on variants (@pxref{C++ Variants}).
10433
10434@menu
10435* C++ Unions:: Semantic values cannot be objects
10436* C++ Variants:: Using objects as semantic values
10437@end menu
10438
10439@node C++ Unions
10440@subsubsection C++ Unions
10441
12545799 10442The @code{%union} directive works as for C, see @ref{Union Decl, ,The
e4d49586 10443Union Declaration}. In particular it produces a genuine
3cdc21cf 10444@code{union}, which have a few specific features in C++.
12545799
AD
10445@itemize @minus
10446@item
fb9712a9
AD
10447The type @code{YYSTYPE} is defined but its use is discouraged: rather
10448you should refer to the parser's encapsulated type
10449@code{yy::parser::semantic_type}.
12545799
AD
10450@item
10451Non POD (Plain Old Data) types cannot be used. C++ forbids any
10452instance of classes with constructors in unions: only @emph{pointers}
10453to such objects are allowed.
10454@end itemize
10455
10456Because objects have to be stored via pointers, memory is not
10457reclaimed automatically: using the @code{%destructor} directive is the
10458only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
10459Symbols}.
10460
3cdc21cf
AD
10461@node C++ Variants
10462@subsubsection C++ Variants
10463
ae8880de
AD
10464Bison provides a @emph{variant} based implementation of semantic values for
10465C++. This alleviates all the limitations reported in the previous section,
10466and in particular, object types can be used without pointers.
3cdc21cf
AD
10467
10468To enable variant-based semantic values, set @code{%define} variable
35c1e5f0 10469@code{variant} (@pxref{%define Summary,, variant}). Once this defined,
3cdc21cf
AD
10470@code{%union} is ignored, and instead of using the name of the fields of the
10471@code{%union} to ``type'' the symbols, use genuine types.
10472
10473For instance, instead of
10474
10475@example
10476%union
10477@{
10478 int ival;
10479 std::string* sval;
10480@}
10481%token <ival> NUMBER;
10482%token <sval> STRING;
10483@end example
10484
10485@noindent
10486write
10487
10488@example
10489%token <int> NUMBER;
10490%token <std::string> STRING;
10491@end example
10492
10493@code{STRING} is no longer a pointer, which should fairly simplify the user
10494actions in the grammar and in the scanner (in particular the memory
10495management).
10496
10497Since C++ features destructors, and since it is customary to specialize
10498@code{operator<<} to support uniform printing of values, variants also
10499typically simplify Bison printers and destructors.
10500
10501Variants are stricter than unions. When based on unions, you may play any
10502dirty game with @code{yylval}, say storing an @code{int}, reading a
10503@code{char*}, and then storing a @code{double} in it. This is no longer
10504possible with variants: they must be initialized, then assigned to, and
10505eventually, destroyed.
10506
10507@deftypemethod {semantic_type} {T&} build<T> ()
10508Initialize, but leave empty. Returns the address where the actual value may
10509be stored. Requires that the variant was not initialized yet.
10510@end deftypemethod
10511
10512@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
10513Initialize, and copy-construct from @var{t}.
10514@end deftypemethod
10515
10516
10517@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
10518appeared unacceptable to require Boost on the user's machine (i.e., the
10519machine on which the generated parser will be compiled, not the machine on
10520which @command{bison} was run). Second, for each possible semantic value,
10521Boost.Variant not only stores the value, but also a tag specifying its
10522type. But the parser already ``knows'' the type of the semantic value, so
10523that would be duplicating the information.
10524
10525Therefore we developed light-weight variants whose type tag is external (so
10526they are really like @code{unions} for C++ actually). But our code is much
10527less mature that Boost.Variant. So there is a number of limitations in
10528(the current implementation of) variants:
10529@itemize
10530@item
10531Alignment must be enforced: values should be aligned in memory according to
10532the most demanding type. Computing the smallest alignment possible requires
10533meta-programming techniques that are not currently implemented in Bison, and
10534therefore, since, as far as we know, @code{double} is the most demanding
10535type on all platforms, alignments are enforced for @code{double} whatever
10536types are actually used. This may waste space in some cases.
10537
3cdc21cf
AD
10538@item
10539There might be portability issues we are not aware of.
10540@end itemize
10541
a6ca4ce2 10542As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 10543is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
10544
10545@node C++ Location Values
10546@subsection C++ Location Values
10547@c - %locations
10548@c - class Position
10549@c - class Location
16dc6a9e 10550@c - %define filename_type "const symbol::Symbol"
12545799
AD
10551
10552When the directive @code{%locations} is used, the C++ parser supports
db8ab2be
AD
10553location tracking, see @ref{Tracking Locations}.
10554
10555By default, two auxiliary classes define a @code{position}, a single point
10556in a file, and a @code{location}, a range composed of a pair of
10557@code{position}s (possibly spanning several files). But if the
10558@code{%define} variable @code{api.location.type} is defined, then these
10559classes will not be generated, and the user defined type will be used.
12545799 10560
936c88d1
AD
10561@tindex uint
10562In this section @code{uint} is an abbreviation for @code{unsigned int}: in
10563genuine code only the latter is used.
10564
10565@menu
10566* C++ position:: One point in the source file
10567* C++ location:: Two points in the source file
db8ab2be 10568* User Defined Location Type:: Required interface for locations
936c88d1
AD
10569@end menu
10570
10571@node C++ position
10572@subsubsection C++ @code{position}
10573
10574@deftypeop {Constructor} {position} {} position (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10575Create a @code{position} denoting a given point. Note that @code{file} is
10576not reclaimed when the @code{position} is destroyed: memory managed must be
10577handled elsewhere.
10578@end deftypeop
10579
10580@deftypemethod {position} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10581Reset the position to the given values.
10582@end deftypemethod
10583
10584@deftypeivar {position} {std::string*} file
12545799
AD
10585The name of the file. It will always be handled as a pointer, the
10586parser will never duplicate nor deallocate it. As an experimental
10587feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 10588filename_type "@var{type}"}.
936c88d1 10589@end deftypeivar
12545799 10590
936c88d1 10591@deftypeivar {position} {uint} line
12545799 10592The line, starting at 1.
936c88d1 10593@end deftypeivar
12545799 10594
75ae8299
AD
10595@deftypemethod {position} {void} lines (int @var{height} = 1)
10596If @var{height} is not null, advance by @var{height} lines, resetting the
10597column number. The resulting line number cannot be less than 1.
12545799
AD
10598@end deftypemethod
10599
936c88d1
AD
10600@deftypeivar {position} {uint} column
10601The column, starting at 1.
10602@end deftypeivar
12545799 10603
75ae8299
AD
10604@deftypemethod {position} {void} columns (int @var{width} = 1)
10605Advance by @var{width} columns, without changing the line number. The
10606resulting column number cannot be less than 1.
12545799
AD
10607@end deftypemethod
10608
936c88d1
AD
10609@deftypemethod {position} {position&} operator+= (int @var{width})
10610@deftypemethodx {position} {position} operator+ (int @var{width})
10611@deftypemethodx {position} {position&} operator-= (int @var{width})
10612@deftypemethodx {position} {position} operator- (int @var{width})
12545799
AD
10613Various forms of syntactic sugar for @code{columns}.
10614@end deftypemethod
10615
936c88d1
AD
10616@deftypemethod {position} {bool} operator== (const position& @var{that})
10617@deftypemethodx {position} {bool} operator!= (const position& @var{that})
10618Whether @code{*this} and @code{that} denote equal/different positions.
10619@end deftypemethod
10620
10621@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const position& @var{p})
12545799 10622Report @var{p} on @var{o} like this:
fa4d969f
PE
10623@samp{@var{file}:@var{line}.@var{column}}, or
10624@samp{@var{line}.@var{column}} if @var{file} is null.
936c88d1
AD
10625@end deftypefun
10626
10627@node C++ location
10628@subsubsection C++ @code{location}
10629
10630@deftypeop {Constructor} {location} {} location (const position& @var{begin}, const position& @var{end})
10631Create a @code{Location} from the endpoints of the range.
10632@end deftypeop
10633
10634@deftypeop {Constructor} {location} {} location (const position& @var{pos} = position())
10635@deftypeopx {Constructor} {location} {} location (std::string* @var{file}, uint @var{line}, uint @var{col})
10636Create a @code{Location} denoting an empty range located at a given point.
10637@end deftypeop
10638
10639@deftypemethod {location} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10640Reset the location to an empty range at the given values.
12545799
AD
10641@end deftypemethod
10642
936c88d1
AD
10643@deftypeivar {location} {position} begin
10644@deftypeivarx {location} {position} end
12545799 10645The first, inclusive, position of the range, and the first beyond.
936c88d1 10646@end deftypeivar
12545799 10647
75ae8299
AD
10648@deftypemethod {location} {void} columns (int @var{width} = 1)
10649@deftypemethodx {location} {void} lines (int @var{height} = 1)
10650Forwarded to the @code{end} position.
12545799
AD
10651@end deftypemethod
10652
936c88d1
AD
10653@deftypemethod {location} {location} operator+ (const location& @var{end})
10654@deftypemethodx {location} {location} operator+ (int @var{width})
10655@deftypemethodx {location} {location} operator+= (int @var{width})
75ae8299
AD
10656@deftypemethodx {location} {location} operator- (int @var{width})
10657@deftypemethodx {location} {location} operator-= (int @var{width})
12545799
AD
10658Various forms of syntactic sugar.
10659@end deftypemethod
10660
10661@deftypemethod {location} {void} step ()
10662Move @code{begin} onto @code{end}.
10663@end deftypemethod
10664
936c88d1
AD
10665@deftypemethod {location} {bool} operator== (const location& @var{that})
10666@deftypemethodx {location} {bool} operator!= (const location& @var{that})
10667Whether @code{*this} and @code{that} denote equal/different ranges of
10668positions.
10669@end deftypemethod
10670
10671@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const location& @var{p})
10672Report @var{p} on @var{o}, taking care of special cases such as: no
10673@code{filename} defined, or equal filename/line or column.
10674@end deftypefun
12545799 10675
db8ab2be
AD
10676@node User Defined Location Type
10677@subsubsection User Defined Location Type
10678@findex %define api.location.type
10679
10680Instead of using the built-in types you may use the @code{%define} variable
10681@code{api.location.type} to specify your own type:
10682
10683@example
10684%define api.location.type @var{LocationType}
10685@end example
10686
10687The requirements over your @var{LocationType} are:
10688@itemize
10689@item
10690it must be copyable;
10691
10692@item
10693in order to compute the (default) value of @code{@@$} in a reduction, the
10694parser basically runs
10695@example
10696@@$.begin = @@$1.begin;
10697@@$.end = @@$@var{N}.end; // The location of last right-hand side symbol.
10698@end example
10699@noindent
10700so there must be copyable @code{begin} and @code{end} members;
10701
10702@item
10703alternatively you may redefine the computation of the default location, in
10704which case these members are not required (@pxref{Location Default Action});
10705
10706@item
10707if traces are enabled, then there must exist an @samp{std::ostream&
10708 operator<< (std::ostream& o, const @var{LocationType}& s)} function.
10709@end itemize
10710
10711@sp 1
10712
10713In programs with several C++ parsers, you may also use the @code{%define}
10714variable @code{api.location.type} to share a common set of built-in
10715definitions for @code{position} and @code{location}. For instance, one
10716parser @file{master/parser.yy} might use:
10717
10718@example
10719%defines
10720%locations
10721%define namespace "master::"
10722@end example
10723
10724@noindent
10725to generate the @file{master/position.hh} and @file{master/location.hh}
10726files, reused by other parsers as follows:
10727
10728@example
7287be84 10729%define api.location.type "master::location"
db8ab2be
AD
10730%code requires @{ #include <master/location.hh> @}
10731@end example
10732
12545799
AD
10733@node C++ Parser Interface
10734@subsection C++ Parser Interface
10735@c - define parser_class_name
10736@c - Ctor
10737@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10738@c debug_stream.
10739@c - Reporting errors
10740
10741The output files @file{@var{output}.hh} and @file{@var{output}.cc}
10742declare and define the parser class in the namespace @code{yy}. The
10743class name defaults to @code{parser}, but may be changed using
16dc6a9e 10744@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 10745this class is detailed below. It can be extended using the
12545799
AD
10746@code{%parse-param} feature: its semantics is slightly changed since
10747it describes an additional member of the parser class, and an
10748additional argument for its constructor.
10749
3cdc21cf
AD
10750@defcv {Type} {parser} {semantic_type}
10751@defcvx {Type} {parser} {location_type}
10752The types for semantic values and locations (if enabled).
10753@end defcv
10754
86e5b440 10755@defcv {Type} {parser} {token}
aaaa2aae
AD
10756A structure that contains (only) the @code{yytokentype} enumeration, which
10757defines the tokens. To refer to the token @code{FOO},
10758use @code{yy::parser::token::FOO}. The scanner can use
86e5b440
AD
10759@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
10760(@pxref{Calc++ Scanner}).
10761@end defcv
10762
3cdc21cf
AD
10763@defcv {Type} {parser} {syntax_error}
10764This class derives from @code{std::runtime_error}. Throw instances of it
a6552c5d
AD
10765from the scanner or from the user actions to raise parse errors. This is
10766equivalent with first
3cdc21cf
AD
10767invoking @code{error} to report the location and message of the syntax
10768error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
10769But contrary to @code{YYERROR} which can only be invoked from user actions
10770(i.e., written in the action itself), the exception can be thrown from
10771function invoked from the user action.
8a0adb01 10772@end defcv
12545799
AD
10773
10774@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
10775Build a new parser object. There are no arguments by default, unless
10776@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
10777@end deftypemethod
10778
3cdc21cf
AD
10779@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
10780@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
10781Instantiate a syntax-error exception.
10782@end deftypemethod
10783
12545799
AD
10784@deftypemethod {parser} {int} parse ()
10785Run the syntactic analysis, and return 0 on success, 1 otherwise.
d3e4409a
AD
10786
10787@cindex exceptions
10788The whole function is wrapped in a @code{try}/@code{catch} block, so that
10789when an exception is thrown, the @code{%destructor}s are called to release
10790the lookahead symbol, and the symbols pushed on the stack.
12545799
AD
10791@end deftypemethod
10792
10793@deftypemethod {parser} {std::ostream&} debug_stream ()
10794@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
10795Get or set the stream used for tracing the parsing. It defaults to
10796@code{std::cerr}.
10797@end deftypemethod
10798
10799@deftypemethod {parser} {debug_level_type} debug_level ()
10800@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
10801Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 10802or nonzero, full tracing.
12545799
AD
10803@end deftypemethod
10804
10805@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 10806@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
10807The definition for this member function must be supplied by the user:
10808the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
10809described by @var{m}. If location tracking is not enabled, the second
10810signature is used.
12545799
AD
10811@end deftypemethod
10812
10813
10814@node C++ Scanner Interface
10815@subsection C++ Scanner Interface
10816@c - prefix for yylex.
10817@c - Pure interface to yylex
10818@c - %lex-param
10819
10820The parser invokes the scanner by calling @code{yylex}. Contrary to C
10821parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
10822@samp{%define api.pure} directive. The actual interface with @code{yylex}
10823depends whether you use unions, or variants.
12545799 10824
3cdc21cf
AD
10825@menu
10826* Split Symbols:: Passing symbols as two/three components
10827* Complete Symbols:: Making symbols a whole
10828@end menu
10829
10830@node Split Symbols
10831@subsubsection Split Symbols
10832
5807bb91 10833The interface is as follows.
3cdc21cf 10834
86e5b440
AD
10835@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
10836@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
10837Return the next token. Its type is the return value, its semantic value and
10838location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
10839@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
10840@end deftypemethod
10841
3cdc21cf
AD
10842Note that when using variants, the interface for @code{yylex} is the same,
10843but @code{yylval} is handled differently.
10844
10845Regular union-based code in Lex scanner typically look like:
10846
10847@example
10848[0-9]+ @{
10849 yylval.ival = text_to_int (yytext);
10850 return yy::parser::INTEGER;
10851 @}
10852[a-z]+ @{
10853 yylval.sval = new std::string (yytext);
10854 return yy::parser::IDENTIFIER;
10855 @}
10856@end example
10857
10858Using variants, @code{yylval} is already constructed, but it is not
10859initialized. So the code would look like:
10860
10861@example
10862[0-9]+ @{
10863 yylval.build<int>() = text_to_int (yytext);
10864 return yy::parser::INTEGER;
10865 @}
10866[a-z]+ @{
10867 yylval.build<std::string> = yytext;
10868 return yy::parser::IDENTIFIER;
10869 @}
10870@end example
10871
10872@noindent
10873or
10874
10875@example
10876[0-9]+ @{
10877 yylval.build(text_to_int (yytext));
10878 return yy::parser::INTEGER;
10879 @}
10880[a-z]+ @{
10881 yylval.build(yytext);
10882 return yy::parser::IDENTIFIER;
10883 @}
10884@end example
10885
10886
10887@node Complete Symbols
10888@subsubsection Complete Symbols
10889
ae8880de 10890If you specified both @code{%define api.value.type variant} and
e36ec1f4 10891@code{%define api.token.constructor},
3cdc21cf
AD
10892the @code{parser} class also defines the class @code{parser::symbol_type}
10893which defines a @emph{complete} symbol, aggregating its type (i.e., the
10894traditional value returned by @code{yylex}), its semantic value (i.e., the
10895value passed in @code{yylval}, and possibly its location (@code{yylloc}).
10896
10897@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
10898Build a complete terminal symbol which token type is @var{type}, and which
10899semantic value is @var{value}. If location tracking is enabled, also pass
10900the @var{location}.
10901@end deftypemethod
10902
10903This interface is low-level and should not be used for two reasons. First,
10904it is inconvenient, as you still have to build the semantic value, which is
10905a variant, and second, because consistency is not enforced: as with unions,
10906it is still possible to give an integer as semantic value for a string.
10907
10908So for each token type, Bison generates named constructors as follows.
10909
10910@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
10911@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
10912Build a complete terminal symbol for the token type @var{token} (not
2a6b66c5 10913including the @code{api.token.prefix}) whose possible semantic value is
3cdc21cf
AD
10914@var{value} of adequate @var{value_type}. If location tracking is enabled,
10915also pass the @var{location}.
10916@end deftypemethod
10917
10918For instance, given the following declarations:
10919
10920@example
630a0218 10921%define api.token.prefix @{TOK_@}
3cdc21cf
AD
10922%token <std::string> IDENTIFIER;
10923%token <int> INTEGER;
10924%token COLON;
10925@end example
10926
10927@noindent
10928Bison generates the following functions:
10929
10930@example
10931symbol_type make_IDENTIFIER(const std::string& v,
10932 const location_type& l);
10933symbol_type make_INTEGER(const int& v,
10934 const location_type& loc);
10935symbol_type make_COLON(const location_type& loc);
10936@end example
10937
10938@noindent
10939which should be used in a Lex-scanner as follows.
10940
10941@example
10942[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
10943[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
10944":" return yy::parser::make_COLON(loc);
10945@end example
10946
10947Tokens that do not have an identifier are not accessible: you cannot simply
10948use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
10949
10950@node A Complete C++ Example
8405b70c 10951@subsection A Complete C++ Example
12545799
AD
10952
10953This section demonstrates the use of a C++ parser with a simple but
10954complete example. This example should be available on your system,
3cdc21cf 10955ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
10956focuses on the use of Bison, therefore the design of the various C++
10957classes is very naive: no accessors, no encapsulation of members etc.
10958We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 10959demonstrate the various interactions. A hand-written scanner is
12545799
AD
10960actually easier to interface with.
10961
10962@menu
10963* Calc++ --- C++ Calculator:: The specifications
10964* Calc++ Parsing Driver:: An active parsing context
10965* Calc++ Parser:: A parser class
10966* Calc++ Scanner:: A pure C++ Flex scanner
10967* Calc++ Top Level:: Conducting the band
10968@end menu
10969
10970@node Calc++ --- C++ Calculator
8405b70c 10971@subsubsection Calc++ --- C++ Calculator
12545799
AD
10972
10973Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 10974expression, possibly preceded by variable assignments. An
12545799
AD
10975environment containing possibly predefined variables such as
10976@code{one} and @code{two}, is exchanged with the parser. An example
10977of valid input follows.
10978
10979@example
10980three := 3
10981seven := one + two * three
10982seven * seven
10983@end example
10984
10985@node Calc++ Parsing Driver
8405b70c 10986@subsubsection Calc++ Parsing Driver
12545799
AD
10987@c - An env
10988@c - A place to store error messages
10989@c - A place for the result
10990
10991To support a pure interface with the parser (and the scanner) the
10992technique of the ``parsing context'' is convenient: a structure
10993containing all the data to exchange. Since, in addition to simply
10994launch the parsing, there are several auxiliary tasks to execute (open
10995the file for parsing, instantiate the parser etc.), we recommend
10996transforming the simple parsing context structure into a fully blown
10997@dfn{parsing driver} class.
10998
10999The declaration of this driver class, @file{calc++-driver.hh}, is as
11000follows. The first part includes the CPP guard and imports the
fb9712a9
AD
11001required standard library components, and the declaration of the parser
11002class.
12545799 11003
1c59e0a1 11004@comment file: calc++-driver.hh
12545799
AD
11005@example
11006#ifndef CALCXX_DRIVER_HH
11007# define CALCXX_DRIVER_HH
11008# include <string>
11009# include <map>
fb9712a9 11010# include "calc++-parser.hh"
12545799
AD
11011@end example
11012
12545799
AD
11013
11014@noindent
11015Then comes the declaration of the scanning function. Flex expects
11016the signature of @code{yylex} to be defined in the macro
11017@code{YY_DECL}, and the C++ parser expects it to be declared. We can
11018factor both as follows.
1c59e0a1
AD
11019
11020@comment file: calc++-driver.hh
12545799 11021@example
3dc5e96b 11022// Tell Flex the lexer's prototype ...
3cdc21cf
AD
11023# define YY_DECL \
11024 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
11025// ... and declare it for the parser's sake.
11026YY_DECL;
11027@end example
11028
11029@noindent
11030The @code{calcxx_driver} class is then declared with its most obvious
11031members.
11032
1c59e0a1 11033@comment file: calc++-driver.hh
12545799
AD
11034@example
11035// Conducting the whole scanning and parsing of Calc++.
11036class calcxx_driver
11037@{
11038public:
11039 calcxx_driver ();
11040 virtual ~calcxx_driver ();
11041
11042 std::map<std::string, int> variables;
11043
11044 int result;
11045@end example
11046
11047@noindent
3cdc21cf
AD
11048To encapsulate the coordination with the Flex scanner, it is useful to have
11049member functions to open and close the scanning phase.
12545799 11050
1c59e0a1 11051@comment file: calc++-driver.hh
12545799
AD
11052@example
11053 // Handling the scanner.
11054 void scan_begin ();
11055 void scan_end ();
11056 bool trace_scanning;
11057@end example
11058
11059@noindent
11060Similarly for the parser itself.
11061
1c59e0a1 11062@comment file: calc++-driver.hh
12545799 11063@example
3cdc21cf
AD
11064 // Run the parser on file F.
11065 // Return 0 on success.
bb32f4f2 11066 int parse (const std::string& f);
3cdc21cf
AD
11067 // The name of the file being parsed.
11068 // Used later to pass the file name to the location tracker.
12545799 11069 std::string file;
3cdc21cf 11070 // Whether parser traces should be generated.
12545799
AD
11071 bool trace_parsing;
11072@end example
11073
11074@noindent
11075To demonstrate pure handling of parse errors, instead of simply
11076dumping them on the standard error output, we will pass them to the
11077compiler driver using the following two member functions. Finally, we
11078close the class declaration and CPP guard.
11079
1c59e0a1 11080@comment file: calc++-driver.hh
12545799
AD
11081@example
11082 // Error handling.
11083 void error (const yy::location& l, const std::string& m);
11084 void error (const std::string& m);
11085@};
11086#endif // ! CALCXX_DRIVER_HH
11087@end example
11088
11089The implementation of the driver is straightforward. The @code{parse}
11090member function deserves some attention. The @code{error} functions
11091are simple stubs, they should actually register the located error
11092messages and set error state.
11093
1c59e0a1 11094@comment file: calc++-driver.cc
12545799
AD
11095@example
11096#include "calc++-driver.hh"
11097#include "calc++-parser.hh"
11098
11099calcxx_driver::calcxx_driver ()
11100 : trace_scanning (false), trace_parsing (false)
11101@{
11102 variables["one"] = 1;
11103 variables["two"] = 2;
11104@}
11105
11106calcxx_driver::~calcxx_driver ()
11107@{
11108@}
11109
bb32f4f2 11110int
12545799
AD
11111calcxx_driver::parse (const std::string &f)
11112@{
11113 file = f;
11114 scan_begin ();
11115 yy::calcxx_parser parser (*this);
11116 parser.set_debug_level (trace_parsing);
bb32f4f2 11117 int res = parser.parse ();
12545799 11118 scan_end ();
bb32f4f2 11119 return res;
12545799
AD
11120@}
11121
11122void
11123calcxx_driver::error (const yy::location& l, const std::string& m)
11124@{
11125 std::cerr << l << ": " << m << std::endl;
11126@}
11127
11128void
11129calcxx_driver::error (const std::string& m)
11130@{
11131 std::cerr << m << std::endl;
11132@}
11133@end example
11134
11135@node Calc++ Parser
8405b70c 11136@subsubsection Calc++ Parser
12545799 11137
ff7571c0
JD
11138The grammar file @file{calc++-parser.yy} starts by asking for the C++
11139deterministic parser skeleton, the creation of the parser header file,
11140and specifies the name of the parser class. Because the C++ skeleton
11141changed several times, it is safer to require the version you designed
11142the grammar for.
1c59e0a1
AD
11143
11144@comment file: calc++-parser.yy
12545799 11145@example
c93f22fc 11146%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 11147%require "@value{VERSION}"
12545799 11148%defines
16dc6a9e 11149%define parser_class_name "calcxx_parser"
fb9712a9
AD
11150@end example
11151
3cdc21cf 11152@noindent
e36ec1f4 11153@findex %define api.token.constructor
ae8880de 11154@findex %define api.value.type variant
3cdc21cf
AD
11155This example will use genuine C++ objects as semantic values, therefore, we
11156require the variant-based interface. To make sure we properly use it, we
11157enable assertions. To fully benefit from type-safety and more natural
e36ec1f4 11158definition of ``symbol'', we enable @code{api.token.constructor}.
3cdc21cf
AD
11159
11160@comment file: calc++-parser.yy
11161@example
e36ec1f4 11162%define api.token.constructor
ae8880de 11163%define api.value.type variant
3cdc21cf 11164%define parse.assert
3cdc21cf
AD
11165@end example
11166
fb9712a9 11167@noindent
16dc6a9e 11168@findex %code requires
3cdc21cf
AD
11169Then come the declarations/inclusions needed by the semantic values.
11170Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 11171to include the header of the other, which is, of course, insane. This
3cdc21cf 11172mutual dependency will be broken using forward declarations. Because the
fb9712a9 11173driver's header needs detailed knowledge about the parser class (in
3cdc21cf 11174particular its inner types), it is the parser's header which will use a
e0c07222 11175forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
11176
11177@comment file: calc++-parser.yy
11178@example
3cdc21cf
AD
11179%code requires
11180@{
12545799 11181# include <string>
fb9712a9 11182class calcxx_driver;
9bc0dd67 11183@}
12545799
AD
11184@end example
11185
11186@noindent
11187The driver is passed by reference to the parser and to the scanner.
11188This provides a simple but effective pure interface, not relying on
11189global variables.
11190
1c59e0a1 11191@comment file: calc++-parser.yy
12545799
AD
11192@example
11193// The parsing context.
2055a44e 11194%param @{ calcxx_driver& driver @}
12545799
AD
11195@end example
11196
11197@noindent
2055a44e 11198Then we request location tracking, and initialize the
f50bfcd6 11199first location's file name. Afterward new locations are computed
12545799 11200relatively to the previous locations: the file name will be
2055a44e 11201propagated.
12545799 11202
1c59e0a1 11203@comment file: calc++-parser.yy
12545799
AD
11204@example
11205%locations
11206%initial-action
11207@{
11208 // Initialize the initial location.
b47dbebe 11209 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
11210@};
11211@end example
11212
11213@noindent
7fceb615
JD
11214Use the following two directives to enable parser tracing and verbose error
11215messages. However, verbose error messages can contain incorrect information
11216(@pxref{LAC}).
12545799 11217
1c59e0a1 11218@comment file: calc++-parser.yy
12545799 11219@example
fa819509 11220%define parse.trace
cf499cff 11221%define parse.error verbose
12545799
AD
11222@end example
11223
fb9712a9 11224@noindent
136a0f76
PB
11225@findex %code
11226The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 11227@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
11228
11229@comment file: calc++-parser.yy
11230@example
3cdc21cf
AD
11231%code
11232@{
fb9712a9 11233# include "calc++-driver.hh"
34f98f46 11234@}
fb9712a9
AD
11235@end example
11236
11237
12545799
AD
11238@noindent
11239The token numbered as 0 corresponds to end of file; the following line
99c08fb6 11240allows for nicer error messages referring to ``end of file'' instead of
35c1e5f0
JD
11241``$end''. Similarly user friendly names are provided for each symbol. To
11242avoid name clashes in the generated files (@pxref{Calc++ Scanner}), prefix
2a6b66c5 11243tokens with @code{TOK_} (@pxref{%define Summary,,api.token.prefix}).
12545799 11244
1c59e0a1 11245@comment file: calc++-parser.yy
12545799 11246@example
630a0218 11247%define api.token.prefix @{TOK_@}
3cdc21cf
AD
11248%token
11249 END 0 "end of file"
11250 ASSIGN ":="
11251 MINUS "-"
11252 PLUS "+"
11253 STAR "*"
11254 SLASH "/"
11255 LPAREN "("
11256 RPAREN ")"
11257;
12545799
AD
11258@end example
11259
11260@noindent
3cdc21cf
AD
11261Since we use variant-based semantic values, @code{%union} is not used, and
11262both @code{%type} and @code{%token} expect genuine types, as opposed to type
11263tags.
12545799 11264
1c59e0a1 11265@comment file: calc++-parser.yy
12545799 11266@example
3cdc21cf
AD
11267%token <std::string> IDENTIFIER "identifier"
11268%token <int> NUMBER "number"
11269%type <int> exp
11270@end example
11271
11272@noindent
11273No @code{%destructor} is needed to enable memory deallocation during error
11274recovery; the memory, for strings for instance, will be reclaimed by the
11275regular destructors. All the values are printed using their
a76c741d 11276@code{operator<<} (@pxref{Printer Decl, , Printing Semantic Values}).
12545799 11277
3cdc21cf
AD
11278@comment file: calc++-parser.yy
11279@example
c5026327 11280%printer @{ yyoutput << $$; @} <*>;
12545799
AD
11281@end example
11282
11283@noindent
3cdc21cf
AD
11284The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
11285Location Tracking Calculator: @code{ltcalc}}).
12545799 11286
1c59e0a1 11287@comment file: calc++-parser.yy
12545799
AD
11288@example
11289%%
11290%start unit;
11291unit: assignments exp @{ driver.result = $2; @};
11292
99c08fb6 11293assignments:
6240346a 11294 %empty @{@}
5e9b6624 11295| assignments assignment @{@};
12545799 11296
3dc5e96b 11297assignment:
3cdc21cf 11298 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 11299
3cdc21cf
AD
11300%left "+" "-";
11301%left "*" "/";
99c08fb6 11302exp:
3cdc21cf
AD
11303 exp "+" exp @{ $$ = $1 + $3; @}
11304| exp "-" exp @{ $$ = $1 - $3; @}
11305| exp "*" exp @{ $$ = $1 * $3; @}
11306| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 11307| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 11308| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 11309| "number" @{ std::swap ($$, $1); @};
12545799
AD
11310%%
11311@end example
11312
11313@noindent
11314Finally the @code{error} member function registers the errors to the
11315driver.
11316
1c59e0a1 11317@comment file: calc++-parser.yy
12545799
AD
11318@example
11319void
3cdc21cf 11320yy::calcxx_parser::error (const location_type& l,
1c59e0a1 11321 const std::string& m)
12545799
AD
11322@{
11323 driver.error (l, m);
11324@}
11325@end example
11326
11327@node Calc++ Scanner
8405b70c 11328@subsubsection Calc++ Scanner
12545799
AD
11329
11330The Flex scanner first includes the driver declaration, then the
11331parser's to get the set of defined tokens.
11332
1c59e0a1 11333@comment file: calc++-scanner.ll
12545799 11334@example
c93f22fc 11335%@{ /* -*- C++ -*- */
3c248d70
AD
11336# include <cerrno>
11337# include <climits>
3cdc21cf 11338# include <cstdlib>
12545799
AD
11339# include <string>
11340# include "calc++-driver.hh"
11341# include "calc++-parser.hh"
eaea13f5 11342
3cdc21cf
AD
11343// Work around an incompatibility in flex (at least versions
11344// 2.5.31 through 2.5.33): it generates code that does
11345// not conform to C89. See Debian bug 333231
11346// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
11347# undef yywrap
11348# define yywrap() 1
eaea13f5 11349
3cdc21cf
AD
11350// The location of the current token.
11351static yy::location loc;
12545799
AD
11352%@}
11353@end example
11354
11355@noindent
11356Because there is no @code{#include}-like feature we don't need
11357@code{yywrap}, we don't need @code{unput} either, and we parse an
11358actual file, this is not an interactive session with the user.
3cdc21cf 11359Finally, we enable scanner tracing.
12545799 11360
1c59e0a1 11361@comment file: calc++-scanner.ll
12545799 11362@example
6908c2e1 11363%option noyywrap nounput batch debug noinput
12545799
AD
11364@end example
11365
11366@noindent
11367Abbreviations allow for more readable rules.
11368
1c59e0a1 11369@comment file: calc++-scanner.ll
12545799
AD
11370@example
11371id [a-zA-Z][a-zA-Z_0-9]*
11372int [0-9]+
11373blank [ \t]
11374@end example
11375
11376@noindent
9d9b8b70 11377The following paragraph suffices to track locations accurately. Each
12545799 11378time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
11379position. Then when a pattern is matched, its width is added to the end
11380column. When matching ends of lines, the end
12545799
AD
11381cursor is adjusted, and each time blanks are matched, the begin cursor
11382is moved onto the end cursor to effectively ignore the blanks
11383preceding tokens. Comments would be treated equally.
11384
1c59e0a1 11385@comment file: calc++-scanner.ll
12545799 11386@example
d4fca427 11387@group
828c373b 11388%@{
3cdc21cf
AD
11389 // Code run each time a pattern is matched.
11390 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 11391%@}
d4fca427 11392@end group
12545799 11393%%
d4fca427 11394@group
12545799 11395%@{
3cdc21cf
AD
11396 // Code run each time yylex is called.
11397 loc.step ();
12545799 11398%@}
d4fca427 11399@end group
3cdc21cf
AD
11400@{blank@}+ loc.step ();
11401[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
11402@end example
11403
11404@noindent
3cdc21cf 11405The rules are simple. The driver is used to report errors.
12545799 11406
1c59e0a1 11407@comment file: calc++-scanner.ll
12545799 11408@example
3cdc21cf
AD
11409"-" return yy::calcxx_parser::make_MINUS(loc);
11410"+" return yy::calcxx_parser::make_PLUS(loc);
11411"*" return yy::calcxx_parser::make_STAR(loc);
11412"/" return yy::calcxx_parser::make_SLASH(loc);
11413"(" return yy::calcxx_parser::make_LPAREN(loc);
11414")" return yy::calcxx_parser::make_RPAREN(loc);
11415":=" return yy::calcxx_parser::make_ASSIGN(loc);
11416
d4fca427 11417@group
04098407
PE
11418@{int@} @{
11419 errno = 0;
11420 long n = strtol (yytext, NULL, 10);
11421 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
11422 driver.error (loc, "integer is out of range");
11423 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 11424@}
d4fca427 11425@end group
3cdc21cf
AD
11426@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
11427. driver.error (loc, "invalid character");
11428<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
11429%%
11430@end example
11431
11432@noindent
3cdc21cf 11433Finally, because the scanner-related driver's member-functions depend
12545799
AD
11434on the scanner's data, it is simpler to implement them in this file.
11435
1c59e0a1 11436@comment file: calc++-scanner.ll
12545799 11437@example
d4fca427 11438@group
12545799
AD
11439void
11440calcxx_driver::scan_begin ()
11441@{
11442 yy_flex_debug = trace_scanning;
93c150b6 11443 if (file.empty () || file == "-")
bb32f4f2
AD
11444 yyin = stdin;
11445 else if (!(yyin = fopen (file.c_str (), "r")))
11446 @{
aaaa2aae 11447 error ("cannot open " + file + ": " + strerror(errno));
d0f2b7f8 11448 exit (EXIT_FAILURE);
bb32f4f2 11449 @}
12545799 11450@}
d4fca427 11451@end group
12545799 11452
d4fca427 11453@group
12545799
AD
11454void
11455calcxx_driver::scan_end ()
11456@{
11457 fclose (yyin);
11458@}
d4fca427 11459@end group
12545799
AD
11460@end example
11461
11462@node Calc++ Top Level
8405b70c 11463@subsubsection Calc++ Top Level
12545799
AD
11464
11465The top level file, @file{calc++.cc}, poses no problem.
11466
1c59e0a1 11467@comment file: calc++.cc
12545799
AD
11468@example
11469#include <iostream>
11470#include "calc++-driver.hh"
11471
d4fca427 11472@group
12545799 11473int
fa4d969f 11474main (int argc, char *argv[])
12545799 11475@{
414c76a4 11476 int res = 0;
12545799 11477 calcxx_driver driver;
93c150b6
AD
11478 for (int i = 1; i < argc; ++i)
11479 if (argv[i] == std::string ("-p"))
12545799 11480 driver.trace_parsing = true;
93c150b6 11481 else if (argv[i] == std::string ("-s"))
12545799 11482 driver.trace_scanning = true;
93c150b6 11483 else if (!driver.parse (argv[i]))
bb32f4f2 11484 std::cout << driver.result << std::endl;
414c76a4
AD
11485 else
11486 res = 1;
11487 return res;
12545799 11488@}
d4fca427 11489@end group
12545799
AD
11490@end example
11491
8405b70c
PB
11492@node Java Parsers
11493@section Java Parsers
11494
11495@menu
f5f419de
DJ
11496* Java Bison Interface:: Asking for Java parser generation
11497* Java Semantic Values:: %type and %token vs. Java
11498* Java Location Values:: The position and location classes
11499* Java Parser Interface:: Instantiating and running the parser
11500* Java Scanner Interface:: Specifying the scanner for the parser
11501* Java Action Features:: Special features for use in actions
11502* Java Differences:: Differences between C/C++ and Java Grammars
11503* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
11504@end menu
11505
11506@node Java Bison Interface
11507@subsection Java Bison Interface
11508@c - %language "Java"
8405b70c 11509
59da312b
JD
11510(The current Java interface is experimental and may evolve.
11511More user feedback will help to stabilize it.)
11512
e254a580
DJ
11513The Java parser skeletons are selected using the @code{%language "Java"}
11514directive or the @option{-L java}/@option{--language=java} option.
8405b70c 11515
e254a580 11516@c FIXME: Documented bug.
ff7571c0
JD
11517When generating a Java parser, @code{bison @var{basename}.y} will
11518create a single Java source file named @file{@var{basename}.java}
11519containing the parser implementation. Using a grammar file without a
11520@file{.y} suffix is currently broken. The basename of the parser
11521implementation file can be changed by the @code{%file-prefix}
11522directive or the @option{-p}/@option{--name-prefix} option. The
11523entire parser implementation file name can be changed by the
11524@code{%output} directive or the @option{-o}/@option{--output} option.
11525The parser implementation file contains a single class for the parser.
8405b70c 11526
e254a580 11527You can create documentation for generated parsers using Javadoc.
8405b70c 11528
e254a580
DJ
11529Contrary to C parsers, Java parsers do not use global variables; the
11530state of the parser is always local to an instance of the parser class.
11531Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
5807bb91 11532and @code{%define api.pure} directives do nothing when used in Java.
8405b70c 11533
e254a580 11534Push parsers are currently unsupported in Java and @code{%define
67212941 11535api.push-pull} have no effect.
01b477c6 11536
8a4281b9 11537GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
11538@code{glr-parser} directive.
11539
11540No header file can be generated for Java parsers. Do not use the
11541@code{%defines} directive or the @option{-d}/@option{--defines} options.
11542
11543@c FIXME: Possible code change.
fa819509
AD
11544Currently, support for tracing is always compiled
11545in. Thus the @samp{%define parse.trace} and @samp{%token-table}
11546directives and the
e254a580
DJ
11547@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
11548options have no effect. This may change in the future to eliminate
fa819509
AD
11549unused code in the generated parser, so use @samp{%define parse.trace}
11550explicitly
1979121c 11551if needed. Also, in the future the
e254a580
DJ
11552@code{%token-table} directive might enable a public interface to
11553access the token names and codes.
8405b70c 11554
09ccae9b 11555Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 11556hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
11557Try reducing the amount of code in actions and static initializers;
11558otherwise, report a bug so that the parser skeleton will be improved.
11559
11560
8405b70c
PB
11561@node Java Semantic Values
11562@subsection Java Semantic Values
11563@c - No %union, specify type in %type/%token.
11564@c - YYSTYPE
11565@c - Printer and destructor
11566
11567There is no @code{%union} directive in Java parsers. Instead, the
11568semantic values' types (class names) should be specified in the
11569@code{%type} or @code{%token} directive:
11570
11571@example
11572%type <Expression> expr assignment_expr term factor
11573%type <Integer> number
11574@end example
11575
11576By default, the semantic stack is declared to have @code{Object} members,
11577which means that the class types you specify can be of any class.
11578To improve the type safety of the parser, you can declare the common
4119d1ea 11579superclass of all the semantic values using the @samp{%define api.value.type}
e254a580 11580directive. For example, after the following declaration:
8405b70c
PB
11581
11582@example
4119d1ea 11583%define api.value.type "ASTNode"
8405b70c
PB
11584@end example
11585
11586@noindent
11587any @code{%type} or @code{%token} specifying a semantic type which
11588is not a subclass of ASTNode, will cause a compile-time error.
11589
e254a580 11590@c FIXME: Documented bug.
8405b70c
PB
11591Types used in the directives may be qualified with a package name.
11592Primitive data types are accepted for Java version 1.5 or later. Note
11593that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
11594Generic types may not be used; this is due to a limitation in the
11595implementation of Bison, and may change in future releases.
8405b70c
PB
11596
11597Java parsers do not support @code{%destructor}, since the language
11598adopts garbage collection. The parser will try to hold references
11599to semantic values for as little time as needed.
11600
11601Java parsers do not support @code{%printer}, as @code{toString()}
11602can be used to print the semantic values. This however may change
11603(in a backwards-compatible way) in future versions of Bison.
11604
11605
11606@node Java Location Values
11607@subsection Java Location Values
11608@c - %locations
11609@c - class Position
11610@c - class Location
11611
303834cc
JD
11612When the directive @code{%locations} is used, the Java parser supports
11613location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
11614class defines a @dfn{position}, a single point in a file; Bison itself
11615defines a class representing a @dfn{location}, a range composed of a pair of
11616positions (possibly spanning several files). The location class is an inner
11617class of the parser; the name is @code{Location} by default, and may also be
7287be84 11618renamed using @code{%define api.location.type "@var{class-name}"}.
8405b70c
PB
11619
11620The location class treats the position as a completely opaque value.
11621By default, the class name is @code{Position}, but this can be changed
7287be84 11622with @code{%define api.position.type "@var{class-name}"}. This class must
e254a580 11623be supplied by the user.
8405b70c
PB
11624
11625
e254a580
DJ
11626@deftypeivar {Location} {Position} begin
11627@deftypeivarx {Location} {Position} end
8405b70c 11628The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
11629@end deftypeivar
11630
11631@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 11632Create a @code{Location} denoting an empty range located at a given point.
e254a580 11633@end deftypeop
8405b70c 11634
e254a580
DJ
11635@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
11636Create a @code{Location} from the endpoints of the range.
11637@end deftypeop
11638
11639@deftypemethod {Location} {String} toString ()
8405b70c
PB
11640Prints the range represented by the location. For this to work
11641properly, the position class should override the @code{equals} and
11642@code{toString} methods appropriately.
11643@end deftypemethod
11644
11645
11646@node Java Parser Interface
11647@subsection Java Parser Interface
11648@c - define parser_class_name
11649@c - Ctor
11650@c - parse, error, set_debug_level, debug_level, set_debug_stream,
11651@c debug_stream.
11652@c - Reporting errors
11653
e254a580
DJ
11654The name of the generated parser class defaults to @code{YYParser}. The
11655@code{YY} prefix may be changed using the @code{%name-prefix} directive
11656or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 11657@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 11658the class. The interface of this class is detailed below.
8405b70c 11659
e254a580 11660By default, the parser class has package visibility. A declaration
67501061 11661@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
11662according to the Java language specification, the name of the @file{.java}
11663file should match the name of the class in this case. Similarly, you can
11664use @code{abstract}, @code{final} and @code{strictfp} with the
11665@code{%define} declaration to add other modifiers to the parser class.
67501061 11666A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 11667be used to add any number of annotations to the parser class.
e254a580
DJ
11668
11669The Java package name of the parser class can be specified using the
67501061 11670@samp{%define package} directive. The superclass and the implemented
e254a580 11671interfaces of the parser class can be specified with the @code{%define
67501061 11672extends} and @samp{%define implements} directives.
e254a580
DJ
11673
11674The parser class defines an inner class, @code{Location}, that is used
11675for location tracking (see @ref{Java Location Values}), and a inner
11676interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
11677these inner class/interface, and the members described in the interface
11678below, all the other members and fields are preceded with a @code{yy} or
11679@code{YY} prefix to avoid clashes with user code.
11680
e254a580
DJ
11681The parser class can be extended using the @code{%parse-param}
11682directive. Each occurrence of the directive will add a @code{protected
11683final} field to the parser class, and an argument to its constructor,
11684which initialize them automatically.
11685
e254a580
DJ
11686@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
11687Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
11688no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
11689@code{%lex-param}s are used.
1979121c
DJ
11690
11691Use @code{%code init} for code added to the start of the constructor
11692body. This is especially useful to initialize superclasses. Use
f50bfcd6 11693@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
11694@end deftypeop
11695
11696@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
11697Build a new parser object using the specified scanner. There are no
2055a44e
AD
11698additional parameters unless @code{%param}s and/or @code{%parse-param}s are
11699used.
e254a580
DJ
11700
11701If the scanner is defined by @code{%code lexer}, this constructor is
11702declared @code{protected} and is called automatically with a scanner
2055a44e 11703created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
11704
11705Use @code{%code init} for code added to the start of the constructor
11706body. This is especially useful to initialize superclasses. Use
5a321748 11707@samp{%define init_throws} to specify any uncaught exceptions.
e254a580 11708@end deftypeop
8405b70c
PB
11709
11710@deftypemethod {YYParser} {boolean} parse ()
11711Run the syntactic analysis, and return @code{true} on success,
11712@code{false} otherwise.
11713@end deftypemethod
11714
1979121c
DJ
11715@deftypemethod {YYParser} {boolean} getErrorVerbose ()
11716@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
11717Get or set the option to produce verbose error messages. These are only
cf499cff 11718available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
11719verbose error messages.
11720@end deftypemethod
11721
11722@deftypemethod {YYParser} {void} yyerror (String @var{msg})
11723@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
11724@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
11725Print an error message using the @code{yyerror} method of the scanner
11726instance in use. The @code{Location} and @code{Position} parameters are
11727available only if location tracking is active.
11728@end deftypemethod
11729
01b477c6 11730@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 11731During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
11732from a syntax error.
11733@xref{Error Recovery}.
8405b70c
PB
11734@end deftypemethod
11735
11736@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
11737@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
11738Get or set the stream used for tracing the parsing. It defaults to
11739@code{System.err}.
11740@end deftypemethod
11741
11742@deftypemethod {YYParser} {int} getDebugLevel ()
11743@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
11744Get or set the tracing level. Currently its value is either 0, no trace,
11745or nonzero, full tracing.
11746@end deftypemethod
11747
1979121c
DJ
11748@deftypecv {Constant} {YYParser} {String} {bisonVersion}
11749@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
11750Identify the Bison version and skeleton used to generate this parser.
11751@end deftypecv
11752
8405b70c
PB
11753
11754@node Java Scanner Interface
11755@subsection Java Scanner Interface
01b477c6 11756@c - %code lexer
8405b70c 11757@c - %lex-param
01b477c6 11758@c - Lexer interface
8405b70c 11759
e254a580
DJ
11760There are two possible ways to interface a Bison-generated Java parser
11761with a scanner: the scanner may be defined by @code{%code lexer}, or
11762defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
11763@code{Lexer} inner interface of the parser class. This interface also
11764contain constants for all user-defined token names and the predefined
11765@code{EOF} token.
e254a580
DJ
11766
11767In the first case, the body of the scanner class is placed in
11768@code{%code lexer} blocks. If you want to pass parameters from the
11769parser constructor to the scanner constructor, specify them with
11770@code{%lex-param}; they are passed before @code{%parse-param}s to the
11771constructor.
01b477c6 11772
59c5ac72 11773In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
11774which is defined within the parser class (e.g., @code{YYParser.Lexer}).
11775The constructor of the parser object will then accept an object
11776implementing the interface; @code{%lex-param} is not used in this
11777case.
11778
11779In both cases, the scanner has to implement the following methods.
11780
e254a580
DJ
11781@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
11782This method is defined by the user to emit an error message. The first
11783parameter is omitted if location tracking is not active. Its type can be
7287be84 11784changed using @code{%define api.location.type "@var{class-name}".}
8405b70c
PB
11785@end deftypemethod
11786
e254a580 11787@deftypemethod {Lexer} {int} yylex ()
8405b70c 11788Return the next token. Its type is the return value, its semantic
f50bfcd6 11789value and location are saved and returned by the their methods in the
e254a580
DJ
11790interface.
11791
67501061 11792Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 11793Default is @code{java.io.IOException}.
8405b70c
PB
11794@end deftypemethod
11795
11796@deftypemethod {Lexer} {Position} getStartPos ()
11797@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
11798Return respectively the first position of the last token that
11799@code{yylex} returned, and the first position beyond it. These
11800methods are not needed unless location tracking is active.
8405b70c 11801
7287be84 11802The return type can be changed using @code{%define api.position.type
8405b70c
PB
11803"@var{class-name}".}
11804@end deftypemethod
11805
11806@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 11807Return the semantic value of the last token that yylex returned.
8405b70c 11808
4119d1ea 11809The return type can be changed using @samp{%define api.value.type
8405b70c
PB
11810"@var{class-name}".}
11811@end deftypemethod
11812
11813
e254a580
DJ
11814@node Java Action Features
11815@subsection Special Features for Use in Java Actions
11816
11817The following special constructs can be uses in Java actions.
11818Other analogous C action features are currently unavailable for Java.
11819
67501061 11820Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
11821actions, and initial actions specified by @code{%initial-action}.
11822
11823@defvar $@var{n}
11824The semantic value for the @var{n}th component of the current rule.
11825This may not be assigned to.
11826@xref{Java Semantic Values}.
11827@end defvar
11828
11829@defvar $<@var{typealt}>@var{n}
11830Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
11831@xref{Java Semantic Values}.
11832@end defvar
11833
11834@defvar $$
11835The semantic value for the grouping made by the current rule. As a
11836value, this is in the base type (@code{Object} or as specified by
4119d1ea 11837@samp{%define api.value.type}) as in not cast to the declared subtype because
e254a580
DJ
11838casts are not allowed on the left-hand side of Java assignments.
11839Use an explicit Java cast if the correct subtype is needed.
11840@xref{Java Semantic Values}.
11841@end defvar
11842
11843@defvar $<@var{typealt}>$
11844Same as @code{$$} since Java always allow assigning to the base type.
11845Perhaps we should use this and @code{$<>$} for the value and @code{$$}
11846for setting the value but there is currently no easy way to distinguish
11847these constructs.
11848@xref{Java Semantic Values}.
11849@end defvar
11850
11851@defvar @@@var{n}
11852The location information of the @var{n}th component of the current rule.
11853This may not be assigned to.
11854@xref{Java Location Values}.
11855@end defvar
11856
11857@defvar @@$
11858The location information of the grouping made by the current rule.
11859@xref{Java Location Values}.
11860@end defvar
11861
34a41a93 11862@deftypefn {Statement} return YYABORT @code{;}
e254a580
DJ
11863Return immediately from the parser, indicating failure.
11864@xref{Java Parser Interface}.
34a41a93 11865@end deftypefn
8405b70c 11866
34a41a93 11867@deftypefn {Statement} return YYACCEPT @code{;}
e254a580
DJ
11868Return immediately from the parser, indicating success.
11869@xref{Java Parser Interface}.
34a41a93 11870@end deftypefn
8405b70c 11871
34a41a93 11872@deftypefn {Statement} {return} YYERROR @code{;}
4a11b852 11873Start error recovery (without printing an error message).
e254a580 11874@xref{Error Recovery}.
34a41a93 11875@end deftypefn
8405b70c 11876
e254a580
DJ
11877@deftypefn {Function} {boolean} recovering ()
11878Return whether error recovery is being done. In this state, the parser
11879reads token until it reaches a known state, and then restarts normal
11880operation.
11881@xref{Error Recovery}.
11882@end deftypefn
8405b70c 11883
1979121c
DJ
11884@deftypefn {Function} {void} yyerror (String @var{msg})
11885@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
11886@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 11887Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
11888instance in use. The @code{Location} and @code{Position} parameters are
11889available only if location tracking is active.
e254a580 11890@end deftypefn
8405b70c 11891
8405b70c 11892
8405b70c
PB
11893@node Java Differences
11894@subsection Differences between C/C++ and Java Grammars
11895
11896The different structure of the Java language forces several differences
11897between C/C++ grammars, and grammars designed for Java parsers. This
29553547 11898section summarizes these differences.
8405b70c
PB
11899
11900@itemize
11901@item
01b477c6 11902Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 11903@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
11904macros. Instead, they should be preceded by @code{return} when they
11905appear in an action. The actual definition of these symbols is
8405b70c
PB
11906opaque to the Bison grammar, and it might change in the future. The
11907only meaningful operation that you can do, is to return them.
e3fd1dcb 11908@xref{Java Action Features}.
8405b70c
PB
11909
11910Note that of these three symbols, only @code{YYACCEPT} and
11911@code{YYABORT} will cause a return from the @code{yyparse}
11912method@footnote{Java parsers include the actions in a separate
11913method than @code{yyparse} in order to have an intuitive syntax that
11914corresponds to these C macros.}.
11915
e254a580
DJ
11916@item
11917Java lacks unions, so @code{%union} has no effect. Instead, semantic
11918values have a common base type: @code{Object} or as specified by
4119d1ea 11919@samp{%define api.value.type}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
11920@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
11921an union. The type of @code{$$}, even with angle brackets, is the base
11922type since Java casts are not allow on the left-hand side of assignments.
11923Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
15cd62c2 11924left-hand side of assignments. @xref{Java Semantic Values}, and
e3fd1dcb 11925@ref{Java Action Features}.
e254a580 11926
8405b70c 11927@item
f50bfcd6 11928The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
11929@table @asis
11930@item @code{%code imports}
11931blocks are placed at the beginning of the Java source code. They may
11932include copyright notices. For a @code{package} declarations, it is
67501061 11933suggested to use @samp{%define package} instead.
8405b70c 11934
01b477c6
PB
11935@item unqualified @code{%code}
11936blocks are placed inside the parser class.
11937
11938@item @code{%code lexer}
11939blocks, if specified, should include the implementation of the
11940scanner. If there is no such block, the scanner can be any class
e3fd1dcb 11941that implements the appropriate interface (@pxref{Java Scanner
01b477c6 11942Interface}).
29553547 11943@end table
8405b70c
PB
11944
11945Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
11946In particular, @code{%@{ @dots{} %@}} blocks should not be used
11947and may give an error in future versions of Bison.
11948
01b477c6 11949The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
11950be used to define other classes used by the parser @emph{outside}
11951the parser class.
8405b70c
PB
11952@end itemize
11953
e254a580
DJ
11954
11955@node Java Declarations Summary
11956@subsection Java Declarations Summary
11957
11958This summary only include declarations specific to Java or have special
11959meaning when used in a Java parser.
11960
11961@deffn {Directive} {%language "Java"}
11962Generate a Java class for the parser.
11963@end deffn
11964
11965@deffn {Directive} %lex-param @{@var{type} @var{name}@}
11966A parameter for the lexer class defined by @code{%code lexer}
11967@emph{only}, added as parameters to the lexer constructor and the parser
11968constructor that @emph{creates} a lexer. Default is none.
11969@xref{Java Scanner Interface}.
11970@end deffn
11971
11972@deffn {Directive} %name-prefix "@var{prefix}"
11973The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 11974@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
11975@xref{Java Bison Interface}.
11976@end deffn
11977
11978@deffn {Directive} %parse-param @{@var{type} @var{name}@}
11979A parameter for the parser class added as parameters to constructor(s)
11980and as fields initialized by the constructor(s). Default is none.
11981@xref{Java Parser Interface}.
11982@end deffn
11983
11984@deffn {Directive} %token <@var{type}> @var{token} @dots{}
11985Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
11986@xref{Java Semantic Values}.
11987@end deffn
11988
11989@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
11990Declare the type of nonterminals. Note that the angle brackets enclose
11991a Java @emph{type}.
11992@xref{Java Semantic Values}.
11993@end deffn
11994
11995@deffn {Directive} %code @{ @var{code} @dots{} @}
11996Code appended to the inside of the parser class.
11997@xref{Java Differences}.
11998@end deffn
11999
12000@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
12001Code inserted just after the @code{package} declaration.
12002@xref{Java Differences}.
12003@end deffn
12004
1979121c
DJ
12005@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
12006Code inserted at the beginning of the parser constructor body.
12007@xref{Java Parser Interface}.
12008@end deffn
12009
e254a580
DJ
12010@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
12011Code added to the body of a inner lexer class within the parser class.
12012@xref{Java Scanner Interface}.
12013@end deffn
12014
12015@deffn {Directive} %% @var{code} @dots{}
12016Code (after the second @code{%%}) appended to the end of the file,
12017@emph{outside} the parser class.
12018@xref{Java Differences}.
12019@end deffn
12020
12021@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 12022Not supported. Use @code{%code imports} instead.
e254a580
DJ
12023@xref{Java Differences}.
12024@end deffn
12025
12026@deffn {Directive} {%define abstract}
12027Whether the parser class is declared @code{abstract}. Default is false.
12028@xref{Java Bison Interface}.
12029@end deffn
12030
1979121c
DJ
12031@deffn {Directive} {%define annotations} "@var{annotations}"
12032The Java annotations for the parser class. Default is none.
12033@xref{Java Bison Interface}.
12034@end deffn
12035
e254a580
DJ
12036@deffn {Directive} {%define extends} "@var{superclass}"
12037The superclass of the parser class. Default is none.
12038@xref{Java Bison Interface}.
12039@end deffn
12040
12041@deffn {Directive} {%define final}
12042Whether the parser class is declared @code{final}. Default is false.
12043@xref{Java Bison Interface}.
12044@end deffn
12045
12046@deffn {Directive} {%define implements} "@var{interfaces}"
12047The implemented interfaces of the parser class, a comma-separated list.
12048Default is none.
12049@xref{Java Bison Interface}.
12050@end deffn
12051
1979121c
DJ
12052@deffn {Directive} {%define init_throws} "@var{exceptions}"
12053The exceptions thrown by @code{%code init} from the parser class
12054constructor. Default is none.
12055@xref{Java Parser Interface}.
12056@end deffn
12057
e254a580
DJ
12058@deffn {Directive} {%define lex_throws} "@var{exceptions}"
12059The exceptions thrown by the @code{yylex} method of the lexer, a
12060comma-separated list. Default is @code{java.io.IOException}.
12061@xref{Java Scanner Interface}.
12062@end deffn
12063
7287be84 12064@deffn {Directive} {%define api.location.type} "@var{class}"
e254a580
DJ
12065The name of the class used for locations (a range between two
12066positions). This class is generated as an inner class of the parser
12067class by @command{bison}. Default is @code{Location}.
7287be84 12068Formerly named @code{location_type}.
e254a580
DJ
12069@xref{Java Location Values}.
12070@end deffn
12071
12072@deffn {Directive} {%define package} "@var{package}"
12073The package to put the parser class in. Default is none.
12074@xref{Java Bison Interface}.
12075@end deffn
12076
12077@deffn {Directive} {%define parser_class_name} "@var{name}"
12078The name of the parser class. Default is @code{YYParser} or
12079@code{@var{name-prefix}Parser}.
12080@xref{Java Bison Interface}.
12081@end deffn
12082
7287be84 12083@deffn {Directive} {%define api.position.type} "@var{class}"
e254a580
DJ
12084The name of the class used for positions. This class must be supplied by
12085the user. Default is @code{Position}.
7287be84 12086Formerly named @code{position_type}.
e254a580
DJ
12087@xref{Java Location Values}.
12088@end deffn
12089
12090@deffn {Directive} {%define public}
12091Whether the parser class is declared @code{public}. Default is false.
12092@xref{Java Bison Interface}.
12093@end deffn
12094
4119d1ea 12095@deffn {Directive} {%define api.value.type} "@var{class}"
e254a580
DJ
12096The base type of semantic values. Default is @code{Object}.
12097@xref{Java Semantic Values}.
12098@end deffn
12099
12100@deffn {Directive} {%define strictfp}
12101Whether the parser class is declared @code{strictfp}. Default is false.
12102@xref{Java Bison Interface}.
12103@end deffn
12104
12105@deffn {Directive} {%define throws} "@var{exceptions}"
12106The exceptions thrown by user-supplied parser actions and
12107@code{%initial-action}, a comma-separated list. Default is none.
12108@xref{Java Parser Interface}.
12109@end deffn
12110
12111
12545799 12112@c ================================================= FAQ
d1a1114f
AD
12113
12114@node FAQ
12115@chapter Frequently Asked Questions
12116@cindex frequently asked questions
12117@cindex questions
12118
12119Several questions about Bison come up occasionally. Here some of them
12120are addressed.
12121
12122@menu
55ba27be
AD
12123* Memory Exhausted:: Breaking the Stack Limits
12124* How Can I Reset the Parser:: @code{yyparse} Keeps some State
12125* Strings are Destroyed:: @code{yylval} Loses Track of Strings
12126* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 12127* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 12128* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
12129* I can't build Bison:: Troubleshooting
12130* Where can I find help?:: Troubleshouting
12131* Bug Reports:: Troublereporting
8405b70c 12132* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
12133* Beta Testing:: Experimenting development versions
12134* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
12135@end menu
12136
1a059451
PE
12137@node Memory Exhausted
12138@section Memory Exhausted
d1a1114f 12139
71b52b13 12140@quotation
1a059451 12141My parser returns with error with a @samp{memory exhausted}
d1a1114f 12142message. What can I do?
71b52b13 12143@end quotation
d1a1114f 12144
188867ac
AD
12145This question is already addressed elsewhere, see @ref{Recursion, ,Recursive
12146Rules}.
d1a1114f 12147
e64fec0a
PE
12148@node How Can I Reset the Parser
12149@section How Can I Reset the Parser
5b066063 12150
0e14ad77
PE
12151The following phenomenon has several symptoms, resulting in the
12152following typical questions:
5b066063 12153
71b52b13 12154@quotation
5b066063
AD
12155I invoke @code{yyparse} several times, and on correct input it works
12156properly; but when a parse error is found, all the other calls fail
0e14ad77 12157too. How can I reset the error flag of @code{yyparse}?
71b52b13 12158@end quotation
5b066063
AD
12159
12160@noindent
12161or
12162
71b52b13 12163@quotation
0e14ad77 12164My parser includes support for an @samp{#include}-like feature, in
5b066063 12165which case I run @code{yyparse} from @code{yyparse}. This fails
1f1bd572 12166although I did specify @samp{%define api.pure full}.
71b52b13 12167@end quotation
5b066063 12168
0e14ad77
PE
12169These problems typically come not from Bison itself, but from
12170Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
12171speed, they might not notice a change of input file. As a
12172demonstration, consider the following source file,
12173@file{first-line.l}:
12174
d4fca427
AD
12175@example
12176@group
12177%@{
5b066063
AD
12178#include <stdio.h>
12179#include <stdlib.h>
d4fca427
AD
12180%@}
12181@end group
5b066063
AD
12182%%
12183.*\n ECHO; return 1;
12184%%
d4fca427 12185@group
5b066063 12186int
0e14ad77 12187yyparse (char const *file)
d4fca427 12188@{
5b066063
AD
12189 yyin = fopen (file, "r");
12190 if (!yyin)
d4fca427
AD
12191 @{
12192 perror ("fopen");
12193 exit (EXIT_FAILURE);
12194 @}
12195@end group
12196@group
fa7e68c3 12197 /* One token only. */
5b066063 12198 yylex ();
0e14ad77 12199 if (fclose (yyin) != 0)
d4fca427
AD
12200 @{
12201 perror ("fclose");
12202 exit (EXIT_FAILURE);
12203 @}
5b066063 12204 return 0;
d4fca427
AD
12205@}
12206@end group
5b066063 12207
d4fca427 12208@group
5b066063 12209int
0e14ad77 12210main (void)
d4fca427 12211@{
5b066063
AD
12212 yyparse ("input");
12213 yyparse ("input");
12214 return 0;
d4fca427
AD
12215@}
12216@end group
12217@end example
5b066063
AD
12218
12219@noindent
12220If the file @file{input} contains
12221
71b52b13 12222@example
5b066063
AD
12223input:1: Hello,
12224input:2: World!
71b52b13 12225@end example
5b066063
AD
12226
12227@noindent
0e14ad77 12228then instead of getting the first line twice, you get:
5b066063
AD
12229
12230@example
12231$ @kbd{flex -ofirst-line.c first-line.l}
12232$ @kbd{gcc -ofirst-line first-line.c -ll}
12233$ @kbd{./first-line}
12234input:1: Hello,
12235input:2: World!
12236@end example
12237
0e14ad77
PE
12238Therefore, whenever you change @code{yyin}, you must tell the
12239Lex-generated scanner to discard its current buffer and switch to the
12240new one. This depends upon your implementation of Lex; see its
12241documentation for more. For Flex, it suffices to call
12242@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
12243Flex-generated scanner needs to read from several input streams to
12244handle features like include files, you might consider using Flex
12245functions like @samp{yy_switch_to_buffer} that manipulate multiple
12246input buffers.
5b066063 12247
b165c324
AD
12248If your Flex-generated scanner uses start conditions (@pxref{Start
12249conditions, , Start conditions, flex, The Flex Manual}), you might
12250also want to reset the scanner's state, i.e., go back to the initial
12251start condition, through a call to @samp{BEGIN (0)}.
12252
fef4cb51
AD
12253@node Strings are Destroyed
12254@section Strings are Destroyed
12255
71b52b13 12256@quotation
c7e441b4 12257My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
12258them. Instead of reporting @samp{"foo", "bar"}, it reports
12259@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
71b52b13 12260@end quotation
fef4cb51
AD
12261
12262This error is probably the single most frequent ``bug report'' sent to
12263Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 12264of the scanner. Consider the following Lex code:
fef4cb51 12265
71b52b13 12266@example
d4fca427 12267@group
71b52b13 12268%@{
fef4cb51
AD
12269#include <stdio.h>
12270char *yylval = NULL;
71b52b13 12271%@}
d4fca427
AD
12272@end group
12273@group
fef4cb51
AD
12274%%
12275.* yylval = yytext; return 1;
12276\n /* IGNORE */
12277%%
d4fca427
AD
12278@end group
12279@group
fef4cb51
AD
12280int
12281main ()
71b52b13 12282@{
fa7e68c3 12283 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
12284 char *fst = (yylex (), yylval);
12285 char *snd = (yylex (), yylval);
12286 printf ("\"%s\", \"%s\"\n", fst, snd);
12287 return 0;
71b52b13 12288@}
d4fca427 12289@end group
71b52b13 12290@end example
fef4cb51
AD
12291
12292If you compile and run this code, you get:
12293
12294@example
12295$ @kbd{flex -osplit-lines.c split-lines.l}
12296$ @kbd{gcc -osplit-lines split-lines.c -ll}
12297$ @kbd{printf 'one\ntwo\n' | ./split-lines}
12298"one
12299two", "two"
12300@end example
12301
12302@noindent
12303this is because @code{yytext} is a buffer provided for @emph{reading}
12304in the action, but if you want to keep it, you have to duplicate it
12305(e.g., using @code{strdup}). Note that the output may depend on how
12306your implementation of Lex handles @code{yytext}. For instance, when
12307given the Lex compatibility option @option{-l} (which triggers the
12308option @samp{%array}) Flex generates a different behavior:
12309
12310@example
12311$ @kbd{flex -l -osplit-lines.c split-lines.l}
12312$ @kbd{gcc -osplit-lines split-lines.c -ll}
12313$ @kbd{printf 'one\ntwo\n' | ./split-lines}
12314"two", "two"
12315@end example
12316
12317
2fa09258
AD
12318@node Implementing Gotos/Loops
12319@section Implementing Gotos/Loops
a06ea4aa 12320
71b52b13 12321@quotation
a06ea4aa 12322My simple calculator supports variables, assignments, and functions,
2fa09258 12323but how can I implement gotos, or loops?
71b52b13 12324@end quotation
a06ea4aa
AD
12325
12326Although very pedagogical, the examples included in the document blur
a1c84f45 12327the distinction to make between the parser---whose job is to recover
a06ea4aa 12328the structure of a text and to transmit it to subsequent modules of
a1c84f45 12329the program---and the processing (such as the execution) of this
a06ea4aa
AD
12330structure. This works well with so called straight line programs,
12331i.e., precisely those that have a straightforward execution model:
12332execute simple instructions one after the others.
12333
12334@cindex abstract syntax tree
8a4281b9 12335@cindex AST
a06ea4aa
AD
12336If you want a richer model, you will probably need to use the parser
12337to construct a tree that does represent the structure it has
12338recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 12339or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
12340traversing it in various ways, will enable treatments such as its
12341execution or its translation, which will result in an interpreter or a
12342compiler.
12343
12344This topic is way beyond the scope of this manual, and the reader is
12345invited to consult the dedicated literature.
12346
12347
ed2e6384
AD
12348@node Multiple start-symbols
12349@section Multiple start-symbols
12350
71b52b13 12351@quotation
ed2e6384
AD
12352I have several closely related grammars, and I would like to share their
12353implementations. In fact, I could use a single grammar but with
12354multiple entry points.
71b52b13 12355@end quotation
ed2e6384
AD
12356
12357Bison does not support multiple start-symbols, but there is a very
12358simple means to simulate them. If @code{foo} and @code{bar} are the two
12359pseudo start-symbols, then introduce two new tokens, say
12360@code{START_FOO} and @code{START_BAR}, and use them as switches from the
12361real start-symbol:
12362
12363@example
12364%token START_FOO START_BAR;
12365%start start;
5e9b6624
AD
12366start:
12367 START_FOO foo
12368| START_BAR bar;
ed2e6384
AD
12369@end example
12370
12371These tokens prevents the introduction of new conflicts. As far as the
12372parser goes, that is all that is needed.
12373
12374Now the difficult part is ensuring that the scanner will send these
12375tokens first. If your scanner is hand-written, that should be
12376straightforward. If your scanner is generated by Lex, them there is
12377simple means to do it: recall that anything between @samp{%@{ ... %@}}
12378after the first @code{%%} is copied verbatim in the top of the generated
12379@code{yylex} function. Make sure a variable @code{start_token} is
12380available in the scanner (e.g., a global variable or using
12381@code{%lex-param} etc.), and use the following:
12382
12383@example
12384 /* @r{Prologue.} */
12385%%
12386%@{
12387 if (start_token)
12388 @{
12389 int t = start_token;
12390 start_token = 0;
12391 return t;
12392 @}
12393%@}
12394 /* @r{The rules.} */
12395@end example
12396
12397
55ba27be
AD
12398@node Secure? Conform?
12399@section Secure? Conform?
12400
71b52b13 12401@quotation
55ba27be 12402Is Bison secure? Does it conform to POSIX?
71b52b13 12403@end quotation
55ba27be
AD
12404
12405If you're looking for a guarantee or certification, we don't provide it.
12406However, Bison is intended to be a reliable program that conforms to the
8a4281b9 12407POSIX specification for Yacc. If you run into problems,
55ba27be
AD
12408please send us a bug report.
12409
12410@node I can't build Bison
12411@section I can't build Bison
12412
71b52b13 12413@quotation
8c5b881d
PE
12414I can't build Bison because @command{make} complains that
12415@code{msgfmt} is not found.
55ba27be 12416What should I do?
71b52b13 12417@end quotation
55ba27be
AD
12418
12419Like most GNU packages with internationalization support, that feature
12420is turned on by default. If you have problems building in the @file{po}
12421subdirectory, it indicates that your system's internationalization
12422support is lacking. You can re-configure Bison with
12423@option{--disable-nls} to turn off this support, or you can install GNU
12424gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
12425Bison. See the file @file{ABOUT-NLS} for more information.
12426
12427
12428@node Where can I find help?
12429@section Where can I find help?
12430
71b52b13 12431@quotation
55ba27be 12432I'm having trouble using Bison. Where can I find help?
71b52b13 12433@end quotation
55ba27be
AD
12434
12435First, read this fine manual. Beyond that, you can send mail to
12436@email{help-bison@@gnu.org}. This mailing list is intended to be
12437populated with people who are willing to answer questions about using
12438and installing Bison. Please keep in mind that (most of) the people on
12439the list have aspects of their lives which are not related to Bison (!),
12440so you may not receive an answer to your question right away. This can
12441be frustrating, but please try not to honk them off; remember that any
12442help they provide is purely voluntary and out of the kindness of their
12443hearts.
12444
12445@node Bug Reports
12446@section Bug Reports
12447
71b52b13 12448@quotation
55ba27be 12449I found a bug. What should I include in the bug report?
71b52b13 12450@end quotation
55ba27be
AD
12451
12452Before you send a bug report, make sure you are using the latest
12453version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
12454mirrors. Be sure to include the version number in your bug report. If
12455the bug is present in the latest version but not in a previous version,
12456try to determine the most recent version which did not contain the bug.
12457
12458If the bug is parser-related, you should include the smallest grammar
12459you can which demonstrates the bug. The grammar file should also be
12460complete (i.e., I should be able to run it through Bison without having
12461to edit or add anything). The smaller and simpler the grammar, the
12462easier it will be to fix the bug.
12463
12464Include information about your compilation environment, including your
12465operating system's name and version and your compiler's name and
12466version. If you have trouble compiling, you should also include a
12467transcript of the build session, starting with the invocation of
12468`configure'. Depending on the nature of the bug, you may be asked to
4c9b8f13 12469send additional files as well (such as @file{config.h} or @file{config.cache}).
55ba27be
AD
12470
12471Patches are most welcome, but not required. That is, do not hesitate to
411614fa 12472send a bug report just because you cannot provide a fix.
55ba27be
AD
12473
12474Send bug reports to @email{bug-bison@@gnu.org}.
12475
8405b70c
PB
12476@node More Languages
12477@section More Languages
55ba27be 12478
71b52b13 12479@quotation
8405b70c 12480Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 12481favorite language here}?
71b52b13 12482@end quotation
55ba27be 12483
8405b70c 12484C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
12485languages; contributions are welcome.
12486
12487@node Beta Testing
12488@section Beta Testing
12489
71b52b13 12490@quotation
55ba27be 12491What is involved in being a beta tester?
71b52b13 12492@end quotation
55ba27be
AD
12493
12494It's not terribly involved. Basically, you would download a test
12495release, compile it, and use it to build and run a parser or two. After
12496that, you would submit either a bug report or a message saying that
12497everything is okay. It is important to report successes as well as
12498failures because test releases eventually become mainstream releases,
12499but only if they are adequately tested. If no one tests, development is
12500essentially halted.
12501
12502Beta testers are particularly needed for operating systems to which the
12503developers do not have easy access. They currently have easy access to
12504recent GNU/Linux and Solaris versions. Reports about other operating
12505systems are especially welcome.
12506
12507@node Mailing Lists
12508@section Mailing Lists
12509
71b52b13 12510@quotation
55ba27be 12511How do I join the help-bison and bug-bison mailing lists?
71b52b13 12512@end quotation
55ba27be
AD
12513
12514See @url{http://lists.gnu.org/}.
a06ea4aa 12515
d1a1114f
AD
12516@c ================================================= Table of Symbols
12517
342b8b6e 12518@node Table of Symbols
bfa74976
RS
12519@appendix Bison Symbols
12520@cindex Bison symbols, table of
12521@cindex symbols in Bison, table of
12522
18b519c0 12523@deffn {Variable} @@$
3ded9a63 12524In an action, the location of the left-hand side of the rule.
303834cc 12525@xref{Tracking Locations}.
18b519c0 12526@end deffn
3ded9a63 12527
18b519c0 12528@deffn {Variable} @@@var{n}
be22823e 12529@deffnx {Symbol} @@@var{n}
303834cc
JD
12530In an action, the location of the @var{n}-th symbol of the right-hand side
12531of the rule. @xref{Tracking Locations}.
be22823e
AD
12532
12533In a grammar, the Bison-generated nonterminal symbol for a mid-rule action
12534with a semantical value. @xref{Mid-Rule Action Translation}.
18b519c0 12535@end deffn
3ded9a63 12536
d013372c 12537@deffn {Variable} @@@var{name}
c949ada3
AD
12538@deffnx {Variable} @@[@var{name}]
12539In an action, the location of a symbol addressed by @var{name}.
12540@xref{Tracking Locations}.
d013372c
AR
12541@end deffn
12542
be22823e
AD
12543@deffn {Symbol} $@@@var{n}
12544In a grammar, the Bison-generated nonterminal symbol for a mid-rule action
12545with no semantical value. @xref{Mid-Rule Action Translation}.
d013372c
AR
12546@end deffn
12547
18b519c0 12548@deffn {Variable} $$
3ded9a63
AD
12549In an action, the semantic value of the left-hand side of the rule.
12550@xref{Actions}.
18b519c0 12551@end deffn
3ded9a63 12552
18b519c0 12553@deffn {Variable} $@var{n}
3ded9a63
AD
12554In an action, the semantic value of the @var{n}-th symbol of the
12555right-hand side of the rule. @xref{Actions}.
18b519c0 12556@end deffn
3ded9a63 12557
d013372c 12558@deffn {Variable} $@var{name}
c949ada3
AD
12559@deffnx {Variable} $[@var{name}]
12560In an action, the semantic value of a symbol addressed by @var{name}.
d013372c
AR
12561@xref{Actions}.
12562@end deffn
12563
dd8d9022
AD
12564@deffn {Delimiter} %%
12565Delimiter used to separate the grammar rule section from the
12566Bison declarations section or the epilogue.
12567@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 12568@end deffn
bfa74976 12569
dd8d9022
AD
12570@c Don't insert spaces, or check the DVI output.
12571@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
12572All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
12573to the parser implementation file. Such code forms the prologue of
12574the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 12575Grammar}.
18b519c0 12576@end deffn
bfa74976 12577
ca2a6d15
PH
12578@deffn {Directive} %?@{@var{expression}@}
12579Predicate actions. This is a type of action clause that may appear in
12580rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 12581GLR parsers during nondeterministic operation,
ca2a6d15
PH
12582this silently causes an alternative parse to die. During deterministic
12583operation, it is the same as the effect of YYERROR.
12584@xref{Semantic Predicates}.
12585
12586This feature is experimental.
12587More user feedback will help to determine whether it should become a permanent
12588feature.
12589@end deffn
12590
c949ada3
AD
12591@deffn {Construct} /* @dots{} */
12592@deffnx {Construct} // @dots{}
12593Comments, as in C/C++.
18b519c0 12594@end deffn
bfa74976 12595
dd8d9022
AD
12596@deffn {Delimiter} :
12597Separates a rule's result from its components. @xref{Rules, ,Syntax of
12598Grammar Rules}.
18b519c0 12599@end deffn
bfa74976 12600
dd8d9022
AD
12601@deffn {Delimiter} ;
12602Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 12603@end deffn
bfa74976 12604
dd8d9022
AD
12605@deffn {Delimiter} |
12606Separates alternate rules for the same result nonterminal.
12607@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 12608@end deffn
bfa74976 12609
12e35840
JD
12610@deffn {Directive} <*>
12611Used to define a default tagged @code{%destructor} or default tagged
12612@code{%printer}.
85894313
JD
12613
12614This feature is experimental.
12615More user feedback will help to determine whether it should become a permanent
12616feature.
12617
12e35840
JD
12618@xref{Destructor Decl, , Freeing Discarded Symbols}.
12619@end deffn
12620
3ebecc24 12621@deffn {Directive} <>
12e35840
JD
12622Used to define a default tagless @code{%destructor} or default tagless
12623@code{%printer}.
85894313
JD
12624
12625This feature is experimental.
12626More user feedback will help to determine whether it should become a permanent
12627feature.
12628
12e35840
JD
12629@xref{Destructor Decl, , Freeing Discarded Symbols}.
12630@end deffn
12631
dd8d9022
AD
12632@deffn {Symbol} $accept
12633The predefined nonterminal whose only rule is @samp{$accept: @var{start}
12634$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
12635Start-Symbol}. It cannot be used in the grammar.
18b519c0 12636@end deffn
bfa74976 12637
136a0f76 12638@deffn {Directive} %code @{@var{code}@}
148d66d8 12639@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
51151d91
JD
12640Insert @var{code} verbatim into the output parser source at the
12641default location or at the location specified by @var{qualifier}.
e0c07222 12642@xref{%code Summary}.
9bc0dd67
JD
12643@end deffn
12644
12645@deffn {Directive} %debug
12646Equip the parser for debugging. @xref{Decl Summary}.
12647@end deffn
12648
91d2c560 12649@ifset defaultprec
22fccf95
PE
12650@deffn {Directive} %default-prec
12651Assign a precedence to rules that lack an explicit @samp{%prec}
12652modifier. @xref{Contextual Precedence, ,Context-Dependent
12653Precedence}.
39a06c25 12654@end deffn
91d2c560 12655@end ifset
39a06c25 12656
7fceb615
JD
12657@deffn {Directive} %define @var{variable}
12658@deffnx {Directive} %define @var{variable} @var{value}
12659@deffnx {Directive} %define @var{variable} "@var{value}"
35c1e5f0 12660Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
12661@end deffn
12662
18b519c0 12663@deffn {Directive} %defines
ff7571c0
JD
12664Bison declaration to create a parser header file, which is usually
12665meant for the scanner. @xref{Decl Summary}.
18b519c0 12666@end deffn
6deb4447 12667
02975b9a
JD
12668@deffn {Directive} %defines @var{defines-file}
12669Same as above, but save in the file @var{defines-file}.
12670@xref{Decl Summary}.
12671@end deffn
12672
18b519c0 12673@deffn {Directive} %destructor
258b75ca 12674Specify how the parser should reclaim the memory associated to
fa7e68c3 12675discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 12676@end deffn
72f889cc 12677
18b519c0 12678@deffn {Directive} %dprec
676385e2 12679Bison declaration to assign a precedence to a rule that is used at parse
c827f760 12680time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 12681GLR Parsers}.
18b519c0 12682@end deffn
676385e2 12683
09add9c2
AD
12684@deffn {Directive} %empty
12685Bison declaration to declare make explicit that a rule has an empty
12686right-hand side. @xref{Empty Rules}.
12687@end deffn
12688
dd8d9022
AD
12689@deffn {Symbol} $end
12690The predefined token marking the end of the token stream. It cannot be
12691used in the grammar.
12692@end deffn
12693
12694@deffn {Symbol} error
12695A token name reserved for error recovery. This token may be used in
12696grammar rules so as to allow the Bison parser to recognize an error in
12697the grammar without halting the process. In effect, a sentence
12698containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
12699token @code{error} becomes the current lookahead token. Actions
12700corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
12701token is reset to the token that originally caused the violation.
12702@xref{Error Recovery}.
18d192f0
AD
12703@end deffn
12704
18b519c0 12705@deffn {Directive} %error-verbose
7fceb615
JD
12706An obsolete directive standing for @samp{%define parse.error verbose}
12707(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
18b519c0 12708@end deffn
2a8d363a 12709
02975b9a 12710@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 12711Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 12712Summary}.
18b519c0 12713@end deffn
d8988b2f 12714
18b519c0 12715@deffn {Directive} %glr-parser
8a4281b9
JD
12716Bison declaration to produce a GLR parser. @xref{GLR
12717Parsers, ,Writing GLR Parsers}.
18b519c0 12718@end deffn
676385e2 12719
dd8d9022
AD
12720@deffn {Directive} %initial-action
12721Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
12722@end deffn
12723
e6e704dc
JD
12724@deffn {Directive} %language
12725Specify the programming language for the generated parser.
12726@xref{Decl Summary}.
12727@end deffn
12728
18b519c0 12729@deffn {Directive} %left
d78f0ac9 12730Bison declaration to assign precedence and left associativity to token(s).
bfa74976 12731@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12732@end deffn
bfa74976 12733
2055a44e
AD
12734@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
12735Bison declaration to specifying additional arguments that
2a8d363a
AD
12736@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
12737for Pure Parsers}.
18b519c0 12738@end deffn
2a8d363a 12739
18b519c0 12740@deffn {Directive} %merge
676385e2 12741Bison declaration to assign a merging function to a rule. If there is a
fae437e8 12742reduce/reduce conflict with a rule having the same merging function, the
676385e2 12743function is applied to the two semantic values to get a single result.
8a4281b9 12744@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 12745@end deffn
676385e2 12746
02975b9a 12747@deffn {Directive} %name-prefix "@var{prefix}"
4b3847c3
AD
12748Obsoleted by the @code{%define} variable @code{api.prefix} (@pxref{Multiple
12749Parsers, ,Multiple Parsers in the Same Program}).
12750
12751Rename the external symbols (variables and functions) used in the parser so
12752that they start with @var{prefix} instead of @samp{yy}. Contrary to
12753@code{api.prefix}, do no rename types and macros.
12754
12755The precise list of symbols renamed in C parsers is @code{yyparse},
12756@code{yylex}, @code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yychar},
12757@code{yydebug}, and (if locations are used) @code{yylloc}. If you use a
12758push parser, @code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
12759@code{yypstate_new} and @code{yypstate_delete} will also be renamed. For
12760example, if you use @samp{%name-prefix "c_"}, the names become
12761@code{c_parse}, @code{c_lex}, and so on. For C++ parsers, see the
07e65a77 12762@code{%define api.namespace} documentation in this section.
18b519c0 12763@end deffn
d8988b2f 12764
4b3847c3 12765
91d2c560 12766@ifset defaultprec
22fccf95
PE
12767@deffn {Directive} %no-default-prec
12768Do not assign a precedence to rules that lack an explicit @samp{%prec}
12769modifier. @xref{Contextual Precedence, ,Context-Dependent
12770Precedence}.
12771@end deffn
91d2c560 12772@end ifset
22fccf95 12773
18b519c0 12774@deffn {Directive} %no-lines
931c7513 12775Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 12776parser implementation file. @xref{Decl Summary}.
18b519c0 12777@end deffn
931c7513 12778
18b519c0 12779@deffn {Directive} %nonassoc
d78f0ac9 12780Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 12781@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12782@end deffn
bfa74976 12783
02975b9a 12784@deffn {Directive} %output "@var{file}"
ff7571c0
JD
12785Bison declaration to set the name of the parser implementation file.
12786@xref{Decl Summary}.
18b519c0 12787@end deffn
d8988b2f 12788
2055a44e
AD
12789@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
12790Bison declaration to specify additional arguments that both
12791@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
12792Parser Function @code{yyparse}}.
12793@end deffn
12794
12795@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
12796Bison declaration to specify additional arguments that @code{yyparse}
12797should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 12798@end deffn
2a8d363a 12799
18b519c0 12800@deffn {Directive} %prec
bfa74976
RS
12801Bison declaration to assign a precedence to a specific rule.
12802@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 12803@end deffn
bfa74976 12804
d78f0ac9
AD
12805@deffn {Directive} %precedence
12806Bison declaration to assign precedence to token(s), but no associativity
12807@xref{Precedence Decl, ,Operator Precedence}.
12808@end deffn
12809
18b519c0 12810@deffn {Directive} %pure-parser
35c1e5f0
JD
12811Deprecated version of @samp{%define api.pure} (@pxref{%define
12812Summary,,api.pure}), for which Bison is more careful to warn about
12813unreasonable usage.
18b519c0 12814@end deffn
bfa74976 12815
b50d2359 12816@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
12817Require version @var{version} or higher of Bison. @xref{Require Decl, ,
12818Require a Version of Bison}.
b50d2359
AD
12819@end deffn
12820
18b519c0 12821@deffn {Directive} %right
d78f0ac9 12822Bison declaration to assign precedence and right associativity to token(s).
bfa74976 12823@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12824@end deffn
bfa74976 12825
e6e704dc
JD
12826@deffn {Directive} %skeleton
12827Specify the skeleton to use; usually for development.
12828@xref{Decl Summary}.
12829@end deffn
12830
18b519c0 12831@deffn {Directive} %start
704a47c4
AD
12832Bison declaration to specify the start symbol. @xref{Start Decl, ,The
12833Start-Symbol}.
18b519c0 12834@end deffn
bfa74976 12835
18b519c0 12836@deffn {Directive} %token
bfa74976
RS
12837Bison declaration to declare token(s) without specifying precedence.
12838@xref{Token Decl, ,Token Type Names}.
18b519c0 12839@end deffn
bfa74976 12840
18b519c0 12841@deffn {Directive} %token-table
ff7571c0
JD
12842Bison declaration to include a token name table in the parser
12843implementation file. @xref{Decl Summary}.
18b519c0 12844@end deffn
931c7513 12845
18b519c0 12846@deffn {Directive} %type
704a47c4
AD
12847Bison declaration to declare nonterminals. @xref{Type Decl,
12848,Nonterminal Symbols}.
18b519c0 12849@end deffn
bfa74976 12850
dd8d9022
AD
12851@deffn {Symbol} $undefined
12852The predefined token onto which all undefined values returned by
12853@code{yylex} are mapped. It cannot be used in the grammar, rather, use
12854@code{error}.
12855@end deffn
12856
18b519c0 12857@deffn {Directive} %union
bfa74976 12858Bison declaration to specify several possible data types for semantic
e4d49586 12859values. @xref{Union Decl, ,The Union Declaration}.
18b519c0 12860@end deffn
bfa74976 12861
dd8d9022
AD
12862@deffn {Macro} YYABORT
12863Macro to pretend that an unrecoverable syntax error has occurred, by
12864making @code{yyparse} return 1 immediately. The error reporting
12865function @code{yyerror} is not called. @xref{Parser Function, ,The
12866Parser Function @code{yyparse}}.
8405b70c
PB
12867
12868For Java parsers, this functionality is invoked using @code{return YYABORT;}
12869instead.
dd8d9022 12870@end deffn
3ded9a63 12871
dd8d9022
AD
12872@deffn {Macro} YYACCEPT
12873Macro to pretend that a complete utterance of the language has been
12874read, by making @code{yyparse} return 0 immediately.
12875@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
12876
12877For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
12878instead.
dd8d9022 12879@end deffn
bfa74976 12880
dd8d9022 12881@deffn {Macro} YYBACKUP
742e4900 12882Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 12883token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 12884@end deffn
bfa74976 12885
dd8d9022 12886@deffn {Variable} yychar
32c29292 12887External integer variable that contains the integer value of the
742e4900 12888lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
12889@code{yyparse}.) Error-recovery rule actions may examine this variable.
12890@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 12891@end deffn
bfa74976 12892
dd8d9022
AD
12893@deffn {Variable} yyclearin
12894Macro used in error-recovery rule actions. It clears the previous
742e4900 12895lookahead token. @xref{Error Recovery}.
18b519c0 12896@end deffn
bfa74976 12897
dd8d9022
AD
12898@deffn {Macro} YYDEBUG
12899Macro to define to equip the parser with tracing code. @xref{Tracing,
12900,Tracing Your Parser}.
18b519c0 12901@end deffn
bfa74976 12902
dd8d9022
AD
12903@deffn {Variable} yydebug
12904External integer variable set to zero by default. If @code{yydebug}
12905is given a nonzero value, the parser will output information on input
12906symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 12907@end deffn
bfa74976 12908
dd8d9022
AD
12909@deffn {Macro} yyerrok
12910Macro to cause parser to recover immediately to its normal mode
12911after a syntax error. @xref{Error Recovery}.
12912@end deffn
12913
12914@deffn {Macro} YYERROR
4a11b852
AD
12915Cause an immediate syntax error. This statement initiates error
12916recovery just as if the parser itself had detected an error; however, it
12917does not call @code{yyerror}, and does not print any message. If you
12918want to print an error message, call @code{yyerror} explicitly before
12919the @samp{YYERROR;} statement. @xref{Error Recovery}.
8405b70c
PB
12920
12921For Java parsers, this functionality is invoked using @code{return YYERROR;}
12922instead.
dd8d9022
AD
12923@end deffn
12924
12925@deffn {Function} yyerror
12926User-supplied function to be called by @code{yyparse} on error.
71b00ed8 12927@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
12928@end deffn
12929
12930@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
12931An obsolete macro used in the @file{yacc.c} skeleton, that you define
12932with @code{#define} in the prologue to request verbose, specific error
12933message strings when @code{yyerror} is called. It doesn't matter what
12934definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 12935it. Using @samp{%define parse.error verbose} is preferred
31b850d2 12936(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
12937@end deffn
12938
93c150b6
AD
12939@deffn {Macro} YYFPRINTF
12940Macro used to output run-time traces.
12941@xref{Enabling Traces}.
12942@end deffn
12943
dd8d9022
AD
12944@deffn {Macro} YYINITDEPTH
12945Macro for specifying the initial size of the parser stack.
1a059451 12946@xref{Memory Management}.
dd8d9022
AD
12947@end deffn
12948
12949@deffn {Function} yylex
12950User-supplied lexical analyzer function, called with no arguments to get
12951the next token. @xref{Lexical, ,The Lexical Analyzer Function
12952@code{yylex}}.
12953@end deffn
12954
dd8d9022
AD
12955@deffn {Variable} yylloc
12956External variable in which @code{yylex} should place the line and column
12957numbers associated with a token. (In a pure parser, it is a local
12958variable within @code{yyparse}, and its address is passed to
32c29292
JD
12959@code{yylex}.)
12960You can ignore this variable if you don't use the @samp{@@} feature in the
12961grammar actions.
12962@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 12963In semantic actions, it stores the location of the lookahead token.
32c29292 12964@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
12965@end deffn
12966
12967@deffn {Type} YYLTYPE
12968Data type of @code{yylloc}; by default, a structure with four
12969members. @xref{Location Type, , Data Types of Locations}.
12970@end deffn
12971
12972@deffn {Variable} yylval
12973External variable in which @code{yylex} should place the semantic
12974value associated with a token. (In a pure parser, it is a local
12975variable within @code{yyparse}, and its address is passed to
32c29292
JD
12976@code{yylex}.)
12977@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 12978In semantic actions, it stores the semantic value of the lookahead token.
32c29292 12979@xref{Actions, ,Actions}.
dd8d9022
AD
12980@end deffn
12981
12982@deffn {Macro} YYMAXDEPTH
1a059451
PE
12983Macro for specifying the maximum size of the parser stack. @xref{Memory
12984Management}.
dd8d9022
AD
12985@end deffn
12986
12987@deffn {Variable} yynerrs
8a2800e7 12988Global variable which Bison increments each time it reports a syntax error.
f4101aa6 12989(In a pure parser, it is a local variable within @code{yyparse}. In a
a73aa764 12990pure push parser, it is a member of @code{yypstate}.)
dd8d9022
AD
12991@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
12992@end deffn
12993
12994@deffn {Function} yyparse
12995The parser function produced by Bison; call this function to start
12996parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
12997@end deffn
12998
93c150b6
AD
12999@deffn {Macro} YYPRINT
13000Macro used to output token semantic values. For @file{yacc.c} only.
13001Obsoleted by @code{%printer}.
13002@xref{The YYPRINT Macro, , The @code{YYPRINT} Macro}.
13003@end deffn
13004
9987d1b3 13005@deffn {Function} yypstate_delete
f4101aa6 13006The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 13007call this function to delete the memory associated with a parser.
f4101aa6 13008@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 13009@code{yypstate_delete}}.
59da312b
JD
13010(The current push parsing interface is experimental and may evolve.
13011More user feedback will help to stabilize it.)
9987d1b3
JD
13012@end deffn
13013
13014@deffn {Function} yypstate_new
f4101aa6 13015The function to create a parser instance, produced by Bison in push mode;
9987d1b3 13016call this function to create a new parser.
f4101aa6 13017@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 13018@code{yypstate_new}}.
59da312b
JD
13019(The current push parsing interface is experimental and may evolve.
13020More user feedback will help to stabilize it.)
9987d1b3
JD
13021@end deffn
13022
13023@deffn {Function} yypull_parse
f4101aa6
AD
13024The parser function produced by Bison in push mode; call this function to
13025parse the rest of the input stream.
13026@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 13027@code{yypull_parse}}.
59da312b
JD
13028(The current push parsing interface is experimental and may evolve.
13029More user feedback will help to stabilize it.)
9987d1b3
JD
13030@end deffn
13031
13032@deffn {Function} yypush_parse
f4101aa6
AD
13033The parser function produced by Bison in push mode; call this function to
13034parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 13035@code{yypush_parse}}.
59da312b
JD
13036(The current push parsing interface is experimental and may evolve.
13037More user feedback will help to stabilize it.)
9987d1b3
JD
13038@end deffn
13039
dd8d9022 13040@deffn {Macro} YYRECOVERING
02103984
PE
13041The expression @code{YYRECOVERING ()} yields 1 when the parser
13042is recovering from a syntax error, and 0 otherwise.
13043@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
13044@end deffn
13045
13046@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
13047Macro used to control the use of @code{alloca} when the
13048deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
13049the parser will use @code{malloc} to extend its stacks. If defined to
130501, the parser will use @code{alloca}. Values other than 0 and 1 are
13051reserved for future Bison extensions. If not defined,
13052@code{YYSTACK_USE_ALLOCA} defaults to 0.
13053
55289366 13054In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
13055limited stack and with unreliable stack-overflow checking, you should
13056set @code{YYMAXDEPTH} to a value that cannot possibly result in
13057unchecked stack overflow on any of your target hosts when
13058@code{alloca} is called. You can inspect the code that Bison
13059generates in order to determine the proper numeric values. This will
13060require some expertise in low-level implementation details.
dd8d9022
AD
13061@end deffn
13062
13063@deffn {Type} YYSTYPE
21e3a2b5 13064Deprecated in favor of the @code{%define} variable @code{api.value.type}.
dd8d9022
AD
13065Data type of semantic values; @code{int} by default.
13066@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 13067@end deffn
bfa74976 13068
342b8b6e 13069@node Glossary
bfa74976
RS
13070@appendix Glossary
13071@cindex glossary
13072
13073@table @asis
7fceb615 13074@item Accepting state
eb45ef3b
JD
13075A state whose only action is the accept action.
13076The accepting state is thus a consistent state.
c949ada3 13077@xref{Understanding, ,Understanding Your Parser}.
eb45ef3b 13078
8a4281b9 13079@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
13080Formal method of specifying context-free grammars originally proposed
13081by John Backus, and slightly improved by Peter Naur in his 1960-01-02
13082committee document contributing to what became the Algol 60 report.
13083@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 13084
7fceb615
JD
13085@item Consistent state
13086A state containing only one possible action. @xref{Default Reductions}.
eb45ef3b 13087
bfa74976
RS
13088@item Context-free grammars
13089Grammars specified as rules that can be applied regardless of context.
13090Thus, if there is a rule which says that an integer can be used as an
13091expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
13092permitted. @xref{Language and Grammar, ,Languages and Context-Free
13093Grammars}.
bfa74976 13094
7fceb615 13095@item Default reduction
110ef36a 13096The reduction that a parser should perform if the current parser state
35c1e5f0 13097contains no other action for the lookahead token. In permitted parser
7fceb615
JD
13098states, Bison declares the reduction with the largest lookahead set to be
13099the default reduction and removes that lookahead set. @xref{Default
13100Reductions}.
13101
13102@item Defaulted state
13103A consistent state with a default reduction. @xref{Default Reductions}.
eb45ef3b 13104
bfa74976
RS
13105@item Dynamic allocation
13106Allocation of memory that occurs during execution, rather than at
13107compile time or on entry to a function.
13108
13109@item Empty string
13110Analogous to the empty set in set theory, the empty string is a
13111character string of length zero.
13112
13113@item Finite-state stack machine
13114A ``machine'' that has discrete states in which it is said to exist at
13115each instant in time. As input to the machine is processed, the
13116machine moves from state to state as specified by the logic of the
13117machine. In the case of the parser, the input is the language being
13118parsed, and the states correspond to various stages in the grammar
c827f760 13119rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 13120
8a4281b9 13121@item Generalized LR (GLR)
676385e2 13122A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 13123that are not LR(1). It resolves situations that Bison's
eb45ef3b 13124deterministic parsing
676385e2
PH
13125algorithm cannot by effectively splitting off multiple parsers, trying all
13126possible parsers, and discarding those that fail in the light of additional
c827f760 13127right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 13128LR Parsing}.
676385e2 13129
bfa74976
RS
13130@item Grouping
13131A language construct that is (in general) grammatically divisible;
c827f760 13132for example, `expression' or `declaration' in C@.
bfa74976
RS
13133@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
13134
7fceb615
JD
13135@item IELR(1) (Inadequacy Elimination LR(1))
13136A minimal LR(1) parser table construction algorithm. That is, given any
35c1e5f0 13137context-free grammar, IELR(1) generates parser tables with the full
7fceb615
JD
13138language-recognition power of canonical LR(1) but with nearly the same
13139number of parser states as LALR(1). This reduction in parser states is
13140often an order of magnitude. More importantly, because canonical LR(1)'s
13141extra parser states may contain duplicate conflicts in the case of non-LR(1)
13142grammars, the number of conflicts for IELR(1) is often an order of magnitude
13143less as well. This can significantly reduce the complexity of developing a
13144grammar. @xref{LR Table Construction}.
eb45ef3b 13145
bfa74976
RS
13146@item Infix operator
13147An arithmetic operator that is placed between the operands on which it
13148performs some operation.
13149
13150@item Input stream
13151A continuous flow of data between devices or programs.
13152
8a4281b9 13153@item LAC (Lookahead Correction)
fcf834f9 13154A parsing mechanism that fixes the problem of delayed syntax error
7fceb615
JD
13155detection, which is caused by LR state merging, default reductions, and the
13156use of @code{%nonassoc}. Delayed syntax error detection results in
13157unexpected semantic actions, initiation of error recovery in the wrong
13158syntactic context, and an incorrect list of expected tokens in a verbose
13159syntax error message. @xref{LAC}.
fcf834f9 13160
bfa74976
RS
13161@item Language construct
13162One of the typical usage schemas of the language. For example, one of
13163the constructs of the C language is the @code{if} statement.
13164@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
13165
13166@item Left associativity
13167Operators having left associativity are analyzed from left to right:
13168@samp{a+b+c} first computes @samp{a+b} and then combines with
13169@samp{c}. @xref{Precedence, ,Operator Precedence}.
13170
13171@item Left recursion
89cab50d
AD
13172A rule whose result symbol is also its first component symbol; for
13173example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
13174Rules}.
bfa74976
RS
13175
13176@item Left-to-right parsing
13177Parsing a sentence of a language by analyzing it token by token from
c827f760 13178left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
13179
13180@item Lexical analyzer (scanner)
13181A function that reads an input stream and returns tokens one by one.
13182@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
13183
13184@item Lexical tie-in
13185A flag, set by actions in the grammar rules, which alters the way
13186tokens are parsed. @xref{Lexical Tie-ins}.
13187
931c7513 13188@item Literal string token
14ded682 13189A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 13190
742e4900
JD
13191@item Lookahead token
13192A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 13193Tokens}.
bfa74976 13194
8a4281b9 13195@item LALR(1)
bfa74976 13196The class of context-free grammars that Bison (like most other parser
8a4281b9 13197generators) can handle by default; a subset of LR(1).
cc09e5be 13198@xref{Mysterious Conflicts}.
bfa74976 13199
8a4281b9 13200@item LR(1)
bfa74976 13201The class of context-free grammars in which at most one token of
742e4900 13202lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
13203
13204@item Nonterminal symbol
13205A grammar symbol standing for a grammatical construct that can
13206be expressed through rules in terms of smaller constructs; in other
13207words, a construct that is not a token. @xref{Symbols}.
13208
bfa74976
RS
13209@item Parser
13210A function that recognizes valid sentences of a language by analyzing
13211the syntax structure of a set of tokens passed to it from a lexical
13212analyzer.
13213
13214@item Postfix operator
13215An arithmetic operator that is placed after the operands upon which it
13216performs some operation.
13217
13218@item Reduction
13219Replacing a string of nonterminals and/or terminals with a single
89cab50d 13220nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 13221Parser Algorithm}.
bfa74976
RS
13222
13223@item Reentrant
13224A reentrant subprogram is a subprogram which can be in invoked any
13225number of times in parallel, without interference between the various
13226invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
13227
13228@item Reverse polish notation
13229A language in which all operators are postfix operators.
13230
13231@item Right recursion
89cab50d
AD
13232A rule whose result symbol is also its last component symbol; for
13233example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
13234Rules}.
bfa74976
RS
13235
13236@item Semantics
13237In computer languages, the semantics are specified by the actions
13238taken for each instance of the language, i.e., the meaning of
13239each statement. @xref{Semantics, ,Defining Language Semantics}.
13240
13241@item Shift
13242A parser is said to shift when it makes the choice of analyzing
13243further input from the stream rather than reducing immediately some
c827f760 13244already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
13245
13246@item Single-character literal
13247A single character that is recognized and interpreted as is.
13248@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
13249
13250@item Start symbol
13251The nonterminal symbol that stands for a complete valid utterance in
13252the language being parsed. The start symbol is usually listed as the
13863333 13253first nonterminal symbol in a language specification.
bfa74976
RS
13254@xref{Start Decl, ,The Start-Symbol}.
13255
13256@item Symbol table
13257A data structure where symbol names and associated data are stored
13258during parsing to allow for recognition and use of existing
13259information in repeated uses of a symbol. @xref{Multi-function Calc}.
13260
6e649e65
PE
13261@item Syntax error
13262An error encountered during parsing of an input stream due to invalid
13263syntax. @xref{Error Recovery}.
13264
bfa74976
RS
13265@item Token
13266A basic, grammatically indivisible unit of a language. The symbol
13267that describes a token in the grammar is a terminal symbol.
13268The input of the Bison parser is a stream of tokens which comes from
13269the lexical analyzer. @xref{Symbols}.
13270
13271@item Terminal symbol
89cab50d
AD
13272A grammar symbol that has no rules in the grammar and therefore is
13273grammatically indivisible. The piece of text it represents is a token.
13274@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7fceb615
JD
13275
13276@item Unreachable state
13277A parser state to which there does not exist a sequence of transitions from
13278the parser's start state. A state can become unreachable during conflict
13279resolution. @xref{Unreachable States}.
bfa74976
RS
13280@end table
13281
342b8b6e 13282@node Copying This Manual
f2b5126e 13283@appendix Copying This Manual
f2b5126e
PB
13284@include fdl.texi
13285
5e528941
JD
13286@node Bibliography
13287@unnumbered Bibliography
13288
13289@table @asis
13290@item [Denny 2008]
13291Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
13292for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
132932008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
13294pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
13295
13296@item [Denny 2010 May]
13297Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
13298Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
13299University, Clemson, SC, USA (May 2010).
13300@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
13301
13302@item [Denny 2010 November]
13303Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
13304Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
13305in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
133062010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
13307
13308@item [DeRemer 1982]
13309Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
13310Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
13311Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
13312615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
13313
13314@item [Knuth 1965]
13315Donald E. Knuth, On the Translation of Languages from Left to Right, in
13316@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
13317607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
13318
13319@item [Scott 2000]
13320Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
13321@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
13322London, Department of Computer Science, TR-00-12 (December 2000).
13323@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
13324@end table
13325
f9b86351
AD
13326@node Index of Terms
13327@unnumbered Index of Terms
bfa74976
RS
13328
13329@printindex cp
13330
bfa74976 13331@bye
a06ea4aa 13332
6b5a0de9
AD
13333@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
13334@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
13335@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
13336@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
13337@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
13338@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
13339@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
13340@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
13341@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
13342@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
13343@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
13344@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
13345@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
5a321748 13346@c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum IEC syntaxes
6b5a0de9
AD
13347@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
13348@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
13349@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
13350@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
13351@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
13352@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
13353@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
13354@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
13355@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
5a321748 13356@c LocalWords: YYINITDEPTH stmts ref initdcl maybeasm notype Lookahead yyoutput
6b5a0de9
AD
13357@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
13358@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
13359@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
13360@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
13361@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 13362@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
5a321748
AD
13363@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs sr
13364@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC nterm LR's
6b5a0de9 13365@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
5a321748 13366@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative Ph
6b5a0de9
AD
13367@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
13368@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
13369@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
5a321748 13370@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz ACM
6b5a0de9 13371@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
5a321748 13372@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno filename
6b5a0de9
AD
13373@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
13374@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
13375@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
13376@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
5a321748 13377@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc PSLR
6b5a0de9
AD
13378@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
13379@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
13380@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
13381@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
5a05f42e 13382@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos uint
5a321748 13383@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett LALR's
5a05f42e
AD
13384@c LocalWords: subdirectory Solaris nonassociativity perror schemas Malloy ints
13385@c LocalWords: Scannerless ispell american ChangeLog smallexample CSTYPE CLTYPE
7287be84 13386@c LocalWords: clval CDEBUG cdebug deftypeopx yyterminate LocationType
53e2cd1e
AD
13387@c LocalWords: parsers parser's
13388@c LocalWords: associativity subclasses precedences unresolvable runnable
13389@c LocalWords: allocators subunit initializations unreferenced untyped
13390@c LocalWords: errorVerbose subtype subtypes
e944aaff
AD
13391
13392@c Local Variables:
13393@c ispell-dictionary: "american"
13394@c fill-column: 76
13395@c End: