]> git.saurik.com Git - bison.git/blame - doc/bison.texi
doc: minor fixes
[bison.git] / doc / bison.texi
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
35430378
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
c932d613 36Copyright @copyright{} 1988-1993, 1995, 1998-2012 Free Software
ea0a7676 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
35430378 41under the terms of the GNU Free Documentation License,
241ac701 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
35430378 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
35430378 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
35430378
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
35430378 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
35430378 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
35430378 91* Copying:: The GNU General Public License says
f56274a8 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f56274a8
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f56274a8
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f56274a8
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
9913d6e4 106* Invocation:: How to run Bison (to produce the parser implementation).
f56274a8
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
71caec06 112* Bibliography:: Publications cited in this manual.
f9b86351 113* Index of Terms:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f56274a8
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
83484365 128* Locations:: Overview of location tracking.
f56274a8
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
35430378 134Writing GLR Parsers
fa7e68c3 135
35430378
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
f56274a8 138* GLR Semantic Actions:: Deferred semantic actions have special concerns.
35430378 139* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 140
bfa74976
RS
141Examples
142
f56274a8
DJ
143* RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145* Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
bfa74976 147* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 148* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
149* Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
151* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
152
153Reverse Polish Notation Calculator
154
f56274a8
DJ
155* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
156* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
157* Rpcalc Lexer:: The lexical analyzer.
158* Rpcalc Main:: The controlling function.
159* Rpcalc Error:: The error reporting function.
160* Rpcalc Generate:: Running Bison on the grammar file.
161* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
162
163Grammar Rules for @code{rpcalc}
164
13863333
AD
165* Rpcalc Input::
166* Rpcalc Line::
167* Rpcalc Expr::
bfa74976 168
342b8b6e
AD
169Location Tracking Calculator: @code{ltcalc}
170
f56274a8
DJ
171* Ltcalc Declarations:: Bison and C declarations for ltcalc.
172* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
173* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 174
bfa74976
RS
175Multi-Function Calculator: @code{mfcalc}
176
f56274a8
DJ
177* Mfcalc Declarations:: Bison declarations for multi-function calculator.
178* Mfcalc Rules:: Grammar rules for the calculator.
179* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
180
181Bison Grammar Files
182
7404cdf3
JD
183* Grammar Outline:: Overall layout of the grammar file.
184* Symbols:: Terminal and nonterminal symbols.
185* Rules:: How to write grammar rules.
186* Recursion:: Writing recursive rules.
187* Semantics:: Semantic values and actions.
188* Tracking Locations:: Locations and actions.
189* Named References:: Using named references in actions.
190* Declarations:: All kinds of Bison declarations are described here.
191* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
192
193Outline of a Bison Grammar
194
f56274a8 195* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 196* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
197* Bison Declarations:: Syntax and usage of the Bison declarations section.
198* Grammar Rules:: Syntax and usage of the grammar rules section.
199* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
200
201Defining Language Semantics
202
203* Value Type:: Specifying one data type for all semantic values.
204* Multiple Types:: Specifying several alternative data types.
205* Actions:: An action is the semantic definition of a grammar rule.
206* Action Types:: Specifying data types for actions to operate on.
207* Mid-Rule Actions:: Most actions go at the end of a rule.
208 This says when, why and how to use the exceptional
209 action in the middle of a rule.
210
93dd49ab
PE
211Tracking Locations
212
213* Location Type:: Specifying a data type for locations.
214* Actions and Locations:: Using locations in actions.
215* Location Default Action:: Defining a general way to compute locations.
216
bfa74976
RS
217Bison Declarations
218
b50d2359 219* Require Decl:: Requiring a Bison version.
bfa74976
RS
220* Token Decl:: Declaring terminal symbols.
221* Precedence Decl:: Declaring terminals with precedence and associativity.
222* Union Decl:: Declaring the set of all semantic value types.
223* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 224* Initial Action Decl:: Code run before parsing starts.
72f889cc 225* Destructor Decl:: Declaring how symbols are freed.
56d60c19 226* Printer Decl:: Declaring how symbol values are displayed.
d6328241 227* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
228* Start Decl:: Specifying the start symbol.
229* Pure Decl:: Requesting a reentrant parser.
9987d1b3 230* Push Decl:: Requesting a push parser.
bfa74976 231* Decl Summary:: Table of all Bison declarations.
2f4518a1 232* %define Summary:: Defining variables to adjust Bison's behavior.
8e6f2266 233* %code Summary:: Inserting code into the parser source.
bfa74976
RS
234
235Parser C-Language Interface
236
f56274a8
DJ
237* Parser Function:: How to call @code{yyparse} and what it returns.
238* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
239* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
240* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
241* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
242* Lexical:: You must supply a function @code{yylex}
243 which reads tokens.
244* Error Reporting:: You must supply a function @code{yyerror}.
245* Action Features:: Special features for use in actions.
246* Internationalization:: How to let the parser speak in the user's
247 native language.
bfa74976
RS
248
249The Lexical Analyzer Function @code{yylex}
250
251* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
252* Token Values:: How @code{yylex} must return the semantic value
253 of the token it has read.
254* Token Locations:: How @code{yylex} must return the text location
255 (line number, etc.) of the token, if the
256 actions want that.
257* Pure Calling:: How the calling convention differs in a pure parser
258 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 259
13863333 260The Bison Parser Algorithm
bfa74976 261
742e4900 262* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
263* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
264* Precedence:: Operator precedence works by resolving conflicts.
265* Contextual Precedence:: When an operator's precedence depends on context.
266* Parser States:: The parser is a finite-state-machine with stack.
267* Reduce/Reduce:: When two rules are applicable in the same situation.
5da0355a 268* Mysterious Conflicts:: Conflicts that look unjustified.
6f04ee6c 269* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 270* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 271* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
272
273Operator Precedence
274
275* Why Precedence:: An example showing why precedence is needed.
276* Using Precedence:: How to specify precedence in Bison grammars.
277* Precedence Examples:: How these features are used in the previous example.
278* How Precedence:: How they work.
c28cd5dc 279* Non Operators:: Using precedence for general conflicts.
bfa74976 280
6f04ee6c
JD
281Tuning LR
282
283* LR Table Construction:: Choose a different construction algorithm.
284* Default Reductions:: Disable default reductions.
285* LAC:: Correct lookahead sets in the parser states.
286* Unreachable States:: Keep unreachable parser states for debugging.
287
bfa74976
RS
288Handling Context Dependencies
289
290* Semantic Tokens:: Token parsing can depend on the semantic context.
291* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
292* Tie-in Recovery:: Lexical tie-ins have implications for how
293 error recovery rules must be written.
294
93dd49ab 295Debugging Your Parser
ec3bc396
AD
296
297* Understanding:: Understanding the structure of your parser.
fc4fdd62 298* Graphviz:: Getting a visual representation of the parser.
9c16d399 299* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
300* Tracing:: Tracing the execution of your parser.
301
56d60c19
AD
302Tracing Your Parser
303
304* Enabling Traces:: Activating run-time trace support
305* Mfcalc Traces:: Extending @code{mfcalc} to support traces
306* The YYPRINT Macro:: Obsolete interface for semantic value reports
307
bfa74976
RS
308Invoking Bison
309
13863333 310* Bison Options:: All the options described in detail,
c827f760 311 in alphabetical order by short options.
bfa74976 312* Option Cross Key:: Alphabetical list of long options.
93dd49ab 313* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 314
8405b70c 315Parsers Written In Other Languages
12545799
AD
316
317* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 318* Java Parsers:: The interface to generate Java parser classes
12545799
AD
319
320C++ Parsers
321
322* C++ Bison Interface:: Asking for C++ parser generation
323* C++ Semantic Values:: %union vs. C++
324* C++ Location Values:: The position and location classes
325* C++ Parser Interface:: Instantiating and running the parser
326* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 327* A Complete C++ Example:: Demonstrating their use
12545799 328
936c88d1
AD
329C++ Location Values
330
331* C++ position:: One point in the source file
332* C++ location:: Two points in the source file
db8ab2be 333* User Defined Location Type:: Required interface for locations
936c88d1 334
12545799
AD
335A Complete C++ Example
336
337* Calc++ --- C++ Calculator:: The specifications
338* Calc++ Parsing Driver:: An active parsing context
339* Calc++ Parser:: A parser class
340* Calc++ Scanner:: A pure C++ Flex scanner
341* Calc++ Top Level:: Conducting the band
342
8405b70c
PB
343Java Parsers
344
f56274a8
DJ
345* Java Bison Interface:: Asking for Java parser generation
346* Java Semantic Values:: %type and %token vs. Java
347* Java Location Values:: The position and location classes
348* Java Parser Interface:: Instantiating and running the parser
349* Java Scanner Interface:: Specifying the scanner for the parser
350* Java Action Features:: Special features for use in actions
351* Java Differences:: Differences between C/C++ and Java Grammars
352* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 353
d1a1114f
AD
354Frequently Asked Questions
355
f56274a8
DJ
356* Memory Exhausted:: Breaking the Stack Limits
357* How Can I Reset the Parser:: @code{yyparse} Keeps some State
358* Strings are Destroyed:: @code{yylval} Loses Track of Strings
359* Implementing Gotos/Loops:: Control Flow in the Calculator
360* Multiple start-symbols:: Factoring closely related grammars
35430378 361* Secure? Conform?:: Is Bison POSIX safe?
f56274a8
DJ
362* I can't build Bison:: Troubleshooting
363* Where can I find help?:: Troubleshouting
364* Bug Reports:: Troublereporting
365* More Languages:: Parsers in C++, Java, and so on
366* Beta Testing:: Experimenting development versions
367* Mailing Lists:: Meeting other Bison users
d1a1114f 368
f2b5126e
PB
369Copying This Manual
370
f56274a8 371* Copying This Manual:: License for copying this manual.
f2b5126e 372
342b8b6e 373@end detailmenu
bfa74976
RS
374@end menu
375
342b8b6e 376@node Introduction
bfa74976
RS
377@unnumbered Introduction
378@cindex introduction
379
6077da58 380@dfn{Bison} is a general-purpose parser generator that converts an
d89e48b3
JD
381annotated context-free grammar into a deterministic LR or generalized
382LR (GLR) parser employing LALR(1) parser tables. As an experimental
383feature, Bison can also generate IELR(1) or canonical LR(1) parser
384tables. Once you are proficient with Bison, you can use it to develop
385a wide range of language parsers, from those used in simple desk
386calculators to complex programming languages.
387
388Bison is upward compatible with Yacc: all properly-written Yacc
389grammars ought to work with Bison with no change. Anyone familiar
390with Yacc should be able to use Bison with little trouble. You need
391to be fluent in C or C++ programming in order to use Bison or to
392understand this manual. Java is also supported as an experimental
393feature.
394
395We begin with tutorial chapters that explain the basic concepts of
396using Bison and show three explained examples, each building on the
397last. If you don't know Bison or Yacc, start by reading these
398chapters. Reference chapters follow, which describe specific aspects
399of Bison in detail.
bfa74976 400
840341d6
JD
401Bison was written originally by Robert Corbett. Richard Stallman made
402it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
403added multi-character string literals and other features. Since then,
404Bison has grown more robust and evolved many other new features thanks
405to the hard work of a long list of volunteers. For details, see the
406@file{THANKS} and @file{ChangeLog} files included in the Bison
407distribution.
931c7513 408
df1af54c 409This edition corresponds to version @value{VERSION} of Bison.
bfa74976 410
342b8b6e 411@node Conditions
bfa74976
RS
412@unnumbered Conditions for Using Bison
413
193d7c70
PE
414The distribution terms for Bison-generated parsers permit using the
415parsers in nonfree programs. Before Bison version 2.2, these extra
35430378 416permissions applied only when Bison was generating LALR(1)
193d7c70 417parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 418parsers could be used only in programs that were free software.
a31239f1 419
35430378 420The other GNU programming tools, such as the GNU C
c827f760 421compiler, have never
9ecbd125 422had such a requirement. They could always be used for nonfree
a31239f1
RS
423software. The reason Bison was different was not due to a special
424policy decision; it resulted from applying the usual General Public
425License to all of the Bison source code.
426
9913d6e4
JD
427The main output of the Bison utility---the Bison parser implementation
428file---contains a verbatim copy of a sizable piece of Bison, which is
429the code for the parser's implementation. (The actions from your
430grammar are inserted into this implementation at one point, but most
431of the rest of the implementation is not changed.) When we applied
432the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
433the effect was to restrict the use of Bison output to free software.
434
435We didn't change the terms because of sympathy for people who want to
436make software proprietary. @strong{Software should be free.} But we
437concluded that limiting Bison's use to free software was doing little to
438encourage people to make other software free. So we decided to make the
439practical conditions for using Bison match the practical conditions for
35430378 440using the other GNU tools.
bfa74976 441
193d7c70
PE
442This exception applies when Bison is generating code for a parser.
443You can tell whether the exception applies to a Bison output file by
444inspecting the file for text beginning with ``As a special
445exception@dots{}''. The text spells out the exact terms of the
446exception.
262aa8dd 447
f16b0819
PE
448@node Copying
449@unnumbered GNU GENERAL PUBLIC LICENSE
450@include gpl-3.0.texi
bfa74976 451
342b8b6e 452@node Concepts
bfa74976
RS
453@chapter The Concepts of Bison
454
455This chapter introduces many of the basic concepts without which the
456details of Bison will not make sense. If you do not already know how to
457use Bison or Yacc, we suggest you start by reading this chapter carefully.
458
459@menu
f56274a8
DJ
460* Language and Grammar:: Languages and context-free grammars,
461 as mathematical ideas.
462* Grammar in Bison:: How we represent grammars for Bison's sake.
463* Semantic Values:: Each token or syntactic grouping can have
464 a semantic value (the value of an integer,
465 the name of an identifier, etc.).
466* Semantic Actions:: Each rule can have an action containing C code.
467* GLR Parsers:: Writing parsers for general context-free languages.
83484365 468* Locations:: Overview of location tracking.
f56274a8
DJ
469* Bison Parser:: What are Bison's input and output,
470 how is the output used?
471* Stages:: Stages in writing and running Bison grammars.
472* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
473@end menu
474
342b8b6e 475@node Language and Grammar
bfa74976
RS
476@section Languages and Context-Free Grammars
477
bfa74976
RS
478@cindex context-free grammar
479@cindex grammar, context-free
480In order for Bison to parse a language, it must be described by a
481@dfn{context-free grammar}. This means that you specify one or more
482@dfn{syntactic groupings} and give rules for constructing them from their
483parts. For example, in the C language, one kind of grouping is called an
484`expression'. One rule for making an expression might be, ``An expression
485can be made of a minus sign and another expression''. Another would be,
486``An expression can be an integer''. As you can see, rules are often
487recursive, but there must be at least one rule which leads out of the
488recursion.
489
35430378 490@cindex BNF
bfa74976
RS
491@cindex Backus-Naur form
492The most common formal system for presenting such rules for humans to read
35430378 493is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 494order to specify the language Algol 60. Any grammar expressed in
35430378
JD
495BNF is a context-free grammar. The input to Bison is
496essentially machine-readable BNF.
bfa74976 497
6f04ee6c
JD
498@cindex LALR grammars
499@cindex IELR grammars
500@cindex LR grammars
501There are various important subclasses of context-free grammars. Although
502it can handle almost all context-free grammars, Bison is optimized for what
503are called LR(1) grammars. In brief, in these grammars, it must be possible
504to tell how to parse any portion of an input string with just a single token
505of lookahead. For historical reasons, Bison by default is limited by the
506additional restrictions of LALR(1), which is hard to explain simply.
5da0355a
JD
507@xref{Mysterious Conflicts}, for more information on this. As an
508experimental feature, you can escape these additional restrictions by
509requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
510Construction}, to learn how.
bfa74976 511
35430378
JD
512@cindex GLR parsing
513@cindex generalized LR (GLR) parsing
676385e2 514@cindex ambiguous grammars
9d9b8b70 515@cindex nondeterministic parsing
9501dc6e 516
35430378 517Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
518roughly that the next grammar rule to apply at any point in the input is
519uniquely determined by the preceding input and a fixed, finite portion
742e4900 520(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 521grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 522apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 523grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 524lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 525With the proper declarations, Bison is also able to parse these more
35430378
JD
526general context-free grammars, using a technique known as GLR
527parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
528are able to handle any context-free grammar for which the number of
529possible parses of any given string is finite.
676385e2 530
bfa74976
RS
531@cindex symbols (abstract)
532@cindex token
533@cindex syntactic grouping
534@cindex grouping, syntactic
9501dc6e
AD
535In the formal grammatical rules for a language, each kind of syntactic
536unit or grouping is named by a @dfn{symbol}. Those which are built by
537grouping smaller constructs according to grammatical rules are called
bfa74976
RS
538@dfn{nonterminal symbols}; those which can't be subdivided are called
539@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
540corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 541corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
542
543We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
544nonterminal, mean. The tokens of C are identifiers, constants (numeric
545and string), and the various keywords, arithmetic operators and
546punctuation marks. So the terminal symbols of a grammar for C include
547`identifier', `number', `string', plus one symbol for each keyword,
548operator or punctuation mark: `if', `return', `const', `static', `int',
549`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
550(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
551lexicography, not grammar.)
552
553Here is a simple C function subdivided into tokens:
554
9edcd895
AD
555@example
556int /* @r{keyword `int'} */
14d4662b 557square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
558 @r{identifier, close-paren} */
559@{ /* @r{open-brace} */
aa08666d
AD
560 return x * x; /* @r{keyword `return', identifier, asterisk,}
561 @r{identifier, semicolon} */
9edcd895
AD
562@} /* @r{close-brace} */
563@end example
bfa74976
RS
564
565The syntactic groupings of C include the expression, the statement, the
566declaration, and the function definition. These are represented in the
567grammar of C by nonterminal symbols `expression', `statement',
568`declaration' and `function definition'. The full grammar uses dozens of
569additional language constructs, each with its own nonterminal symbol, in
570order to express the meanings of these four. The example above is a
571function definition; it contains one declaration, and one statement. In
572the statement, each @samp{x} is an expression and so is @samp{x * x}.
573
574Each nonterminal symbol must have grammatical rules showing how it is made
575out of simpler constructs. For example, one kind of C statement is the
576@code{return} statement; this would be described with a grammar rule which
577reads informally as follows:
578
579@quotation
580A `statement' can be made of a `return' keyword, an `expression' and a
581`semicolon'.
582@end quotation
583
584@noindent
585There would be many other rules for `statement', one for each kind of
586statement in C.
587
588@cindex start symbol
589One nonterminal symbol must be distinguished as the special one which
590defines a complete utterance in the language. It is called the @dfn{start
591symbol}. In a compiler, this means a complete input program. In the C
592language, the nonterminal symbol `sequence of definitions and declarations'
593plays this role.
594
595For example, @samp{1 + 2} is a valid C expression---a valid part of a C
596program---but it is not valid as an @emph{entire} C program. In the
597context-free grammar of C, this follows from the fact that `expression' is
598not the start symbol.
599
600The Bison parser reads a sequence of tokens as its input, and groups the
601tokens using the grammar rules. If the input is valid, the end result is
602that the entire token sequence reduces to a single grouping whose symbol is
603the grammar's start symbol. If we use a grammar for C, the entire input
604must be a `sequence of definitions and declarations'. If not, the parser
605reports a syntax error.
606
342b8b6e 607@node Grammar in Bison
bfa74976
RS
608@section From Formal Rules to Bison Input
609@cindex Bison grammar
610@cindex grammar, Bison
611@cindex formal grammar
612
613A formal grammar is a mathematical construct. To define the language
614for Bison, you must write a file expressing the grammar in Bison syntax:
615a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
616
617A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 618as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
619in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
620
621The Bison representation for a terminal symbol is also called a @dfn{token
622type}. Token types as well can be represented as C-like identifiers. By
623convention, these identifiers should be upper case to distinguish them from
624nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
625@code{RETURN}. A terminal symbol that stands for a particular keyword in
626the language should be named after that keyword converted to upper case.
627The terminal symbol @code{error} is reserved for error recovery.
931c7513 628@xref{Symbols}.
bfa74976
RS
629
630A terminal symbol can also be represented as a character literal, just like
631a C character constant. You should do this whenever a token is just a
632single character (parenthesis, plus-sign, etc.): use that same character in
633a literal as the terminal symbol for that token.
634
931c7513
RS
635A third way to represent a terminal symbol is with a C string constant
636containing several characters. @xref{Symbols}, for more information.
637
bfa74976
RS
638The grammar rules also have an expression in Bison syntax. For example,
639here is the Bison rule for a C @code{return} statement. The semicolon in
640quotes is a literal character token, representing part of the C syntax for
641the statement; the naked semicolon, and the colon, are Bison punctuation
642used in every rule.
643
644@example
de6be119 645stmt: RETURN expr ';' ;
bfa74976
RS
646@end example
647
648@noindent
649@xref{Rules, ,Syntax of Grammar Rules}.
650
342b8b6e 651@node Semantic Values
bfa74976
RS
652@section Semantic Values
653@cindex semantic value
654@cindex value, semantic
655
656A formal grammar selects tokens only by their classifications: for example,
657if a rule mentions the terminal symbol `integer constant', it means that
658@emph{any} integer constant is grammatically valid in that position. The
659precise value of the constant is irrelevant to how to parse the input: if
660@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 661grammatical.
bfa74976
RS
662
663But the precise value is very important for what the input means once it is
664parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6653989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
666has both a token type and a @dfn{semantic value}. @xref{Semantics,
667,Defining Language Semantics},
bfa74976
RS
668for details.
669
670The token type is a terminal symbol defined in the grammar, such as
671@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
672you need to know to decide where the token may validly appear and how to
673group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 674except their types.
bfa74976
RS
675
676The semantic value has all the rest of the information about the
677meaning of the token, such as the value of an integer, or the name of an
678identifier. (A token such as @code{','} which is just punctuation doesn't
679need to have any semantic value.)
680
681For example, an input token might be classified as token type
682@code{INTEGER} and have the semantic value 4. Another input token might
683have the same token type @code{INTEGER} but value 3989. When a grammar
684rule says that @code{INTEGER} is allowed, either of these tokens is
685acceptable because each is an @code{INTEGER}. When the parser accepts the
686token, it keeps track of the token's semantic value.
687
688Each grouping can also have a semantic value as well as its nonterminal
689symbol. For example, in a calculator, an expression typically has a
690semantic value that is a number. In a compiler for a programming
691language, an expression typically has a semantic value that is a tree
692structure describing the meaning of the expression.
693
342b8b6e 694@node Semantic Actions
bfa74976
RS
695@section Semantic Actions
696@cindex semantic actions
697@cindex actions, semantic
698
699In order to be useful, a program must do more than parse input; it must
700also produce some output based on the input. In a Bison grammar, a grammar
701rule can have an @dfn{action} made up of C statements. Each time the
702parser recognizes a match for that rule, the action is executed.
703@xref{Actions}.
13863333 704
bfa74976
RS
705Most of the time, the purpose of an action is to compute the semantic value
706of the whole construct from the semantic values of its parts. For example,
707suppose we have a rule which says an expression can be the sum of two
708expressions. When the parser recognizes such a sum, each of the
709subexpressions has a semantic value which describes how it was built up.
710The action for this rule should create a similar sort of value for the
711newly recognized larger expression.
712
713For example, here is a rule that says an expression can be the sum of
714two subexpressions:
715
716@example
de6be119 717expr: expr '+' expr @{ $$ = $1 + $3; @} ;
bfa74976
RS
718@end example
719
720@noindent
721The action says how to produce the semantic value of the sum expression
722from the values of the two subexpressions.
723
676385e2 724@node GLR Parsers
35430378
JD
725@section Writing GLR Parsers
726@cindex GLR parsing
727@cindex generalized LR (GLR) parsing
676385e2
PH
728@findex %glr-parser
729@cindex conflicts
730@cindex shift/reduce conflicts
fa7e68c3 731@cindex reduce/reduce conflicts
676385e2 732
34a6c2d1 733In some grammars, Bison's deterministic
35430378 734LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
735certain grammar rule at a given point. That is, it may not be able to
736decide (on the basis of the input read so far) which of two possible
737reductions (applications of a grammar rule) applies, or whether to apply
738a reduction or read more of the input and apply a reduction later in the
739input. These are known respectively as @dfn{reduce/reduce} conflicts
740(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
741(@pxref{Shift/Reduce}).
742
35430378 743To use a grammar that is not easily modified to be LR(1), a
9501dc6e 744more general parsing algorithm is sometimes necessary. If you include
676385e2 745@code{%glr-parser} among the Bison declarations in your file
35430378
JD
746(@pxref{Grammar Outline}), the result is a Generalized LR
747(GLR) parser. These parsers handle Bison grammars that
9501dc6e 748contain no unresolved conflicts (i.e., after applying precedence
34a6c2d1 749declarations) identically to deterministic parsers. However, when
9501dc6e 750faced with unresolved shift/reduce and reduce/reduce conflicts,
35430378 751GLR parsers use the simple expedient of doing both,
9501dc6e
AD
752effectively cloning the parser to follow both possibilities. Each of
753the resulting parsers can again split, so that at any given time, there
754can be any number of possible parses being explored. The parsers
676385e2
PH
755proceed in lockstep; that is, all of them consume (shift) a given input
756symbol before any of them proceed to the next. Each of the cloned
757parsers eventually meets one of two possible fates: either it runs into
758a parsing error, in which case it simply vanishes, or it merges with
759another parser, because the two of them have reduced the input to an
760identical set of symbols.
761
762During the time that there are multiple parsers, semantic actions are
763recorded, but not performed. When a parser disappears, its recorded
764semantic actions disappear as well, and are never performed. When a
765reduction makes two parsers identical, causing them to merge, Bison
766records both sets of semantic actions. Whenever the last two parsers
767merge, reverting to the single-parser case, Bison resolves all the
768outstanding actions either by precedences given to the grammar rules
769involved, or by performing both actions, and then calling a designated
770user-defined function on the resulting values to produce an arbitrary
771merged result.
772
fa7e68c3 773@menu
35430378
JD
774* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
775* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
f56274a8 776* GLR Semantic Actions:: Deferred semantic actions have special concerns.
35430378 777* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
778@end menu
779
780@node Simple GLR Parsers
35430378
JD
781@subsection Using GLR on Unambiguous Grammars
782@cindex GLR parsing, unambiguous grammars
783@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
784@findex %glr-parser
785@findex %expect-rr
786@cindex conflicts
787@cindex reduce/reduce conflicts
788@cindex shift/reduce conflicts
789
35430378
JD
790In the simplest cases, you can use the GLR algorithm
791to parse grammars that are unambiguous but fail to be LR(1).
34a6c2d1 792Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
793
794Consider a problem that
795arises in the declaration of enumerated and subrange types in the
796programming language Pascal. Here are some examples:
797
798@example
799type subrange = lo .. hi;
800type enum = (a, b, c);
801@end example
802
803@noindent
804The original language standard allows only numeric
805literals and constant identifiers for the subrange bounds (@samp{lo}
35430378 806and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
80710206) and many other
808Pascal implementations allow arbitrary expressions there. This gives
809rise to the following situation, containing a superfluous pair of
810parentheses:
811
812@example
813type subrange = (a) .. b;
814@end example
815
816@noindent
817Compare this to the following declaration of an enumerated
818type with only one value:
819
820@example
821type enum = (a);
822@end example
823
824@noindent
825(These declarations are contrived, but they are syntactically
826valid, and more-complicated cases can come up in practical programs.)
827
828These two declarations look identical until the @samp{..} token.
35430378 829With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
830possible to decide between the two forms when the identifier
831@samp{a} is parsed. It is, however, desirable
832for a parser to decide this, since in the latter case
833@samp{a} must become a new identifier to represent the enumeration
834value, while in the former case @samp{a} must be evaluated with its
835current meaning, which may be a constant or even a function call.
836
837You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
838to be resolved later, but this typically requires substantial
839contortions in both semantic actions and large parts of the
840grammar, where the parentheses are nested in the recursive rules for
841expressions.
842
843You might think of using the lexer to distinguish between the two
844forms by returning different tokens for currently defined and
845undefined identifiers. But if these declarations occur in a local
846scope, and @samp{a} is defined in an outer scope, then both forms
847are possible---either locally redefining @samp{a}, or using the
848value of @samp{a} from the outer scope. So this approach cannot
849work.
850
e757bb10 851A simple solution to this problem is to declare the parser to
35430378
JD
852use the GLR algorithm.
853When the GLR parser reaches the critical state, it
fa7e68c3
PE
854merely splits into two branches and pursues both syntax rules
855simultaneously. Sooner or later, one of them runs into a parsing
856error. If there is a @samp{..} token before the next
857@samp{;}, the rule for enumerated types fails since it cannot
858accept @samp{..} anywhere; otherwise, the subrange type rule
859fails since it requires a @samp{..} token. So one of the branches
860fails silently, and the other one continues normally, performing
861all the intermediate actions that were postponed during the split.
862
863If the input is syntactically incorrect, both branches fail and the parser
864reports a syntax error as usual.
865
866The effect of all this is that the parser seems to ``guess'' the
867correct branch to take, or in other words, it seems to use more
35430378
JD
868lookahead than the underlying LR(1) algorithm actually allows
869for. In this example, LR(2) would suffice, but also some cases
870that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 871
35430378 872In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
873and the current Bison parser even takes exponential time and space
874for some grammars. In practice, this rarely happens, and for many
875grammars it is possible to prove that it cannot happen.
876The present example contains only one conflict between two
877rules, and the type-declaration context containing the conflict
878cannot be nested. So the number of
879branches that can exist at any time is limited by the constant 2,
880and the parsing time is still linear.
881
882Here is a Bison grammar corresponding to the example above. It
883parses a vastly simplified form of Pascal type declarations.
884
885@example
886%token TYPE DOTDOT ID
887
888@group
889%left '+' '-'
890%left '*' '/'
891@end group
892
893%%
894
895@group
de6be119 896type_decl: TYPE ID '=' type ';' ;
fa7e68c3
PE
897@end group
898
899@group
de6be119
AD
900type:
901 '(' id_list ')'
902| expr DOTDOT expr
903;
fa7e68c3
PE
904@end group
905
906@group
de6be119
AD
907id_list:
908 ID
909| id_list ',' ID
910;
fa7e68c3
PE
911@end group
912
913@group
de6be119
AD
914expr:
915 '(' expr ')'
916| expr '+' expr
917| expr '-' expr
918| expr '*' expr
919| expr '/' expr
920| ID
921;
fa7e68c3
PE
922@end group
923@end example
924
35430378 925When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
926about one reduce/reduce conflict. In the conflicting situation the
927parser chooses one of the alternatives, arbitrarily the one
928declared first. Therefore the following correct input is not
929recognized:
930
931@example
932type t = (a) .. b;
933@end example
934
35430378 935The parser can be turned into a GLR parser, while also telling Bison
9913d6e4
JD
936to be silent about the one known reduce/reduce conflict, by adding
937these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
938@samp{%%}):
939
940@example
941%glr-parser
942%expect-rr 1
943@end example
944
945@noindent
946No change in the grammar itself is required. Now the
947parser recognizes all valid declarations, according to the
948limited syntax above, transparently. In fact, the user does not even
949notice when the parser splits.
950
35430378 951So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
952almost without disadvantages. Even in simple cases like this, however,
953there are at least two potential problems to beware. First, always
35430378
JD
954analyze the conflicts reported by Bison to make sure that GLR
955splitting is only done where it is intended. A GLR parser
f8e1c9e5 956splitting inadvertently may cause problems less obvious than an
35430378 957LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
958conflict. Second, consider interactions with the lexer (@pxref{Semantic
959Tokens}) with great care. Since a split parser consumes tokens without
960performing any actions during the split, the lexer cannot obtain
961information via parser actions. Some cases of lexer interactions can be
35430378 962eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
963lexer to the parser. You must check the remaining cases for
964correctness.
965
966In our example, it would be safe for the lexer to return tokens based on
967their current meanings in some symbol table, because no new symbols are
968defined in the middle of a type declaration. Though it is possible for
969a parser to define the enumeration constants as they are parsed, before
970the type declaration is completed, it actually makes no difference since
971they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
972
973@node Merging GLR Parses
35430378
JD
974@subsection Using GLR to Resolve Ambiguities
975@cindex GLR parsing, ambiguous grammars
976@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
977@findex %dprec
978@findex %merge
979@cindex conflicts
980@cindex reduce/reduce conflicts
981
2a8d363a 982Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
983
984@example
985%@{
38a92d50
PE
986 #include <stdio.h>
987 #define YYSTYPE char const *
988 int yylex (void);
989 void yyerror (char const *);
676385e2
PH
990%@}
991
992%token TYPENAME ID
993
994%right '='
995%left '+'
996
997%glr-parser
998
999%%
1000
de6be119
AD
1001prog:
1002 /* Nothing. */
1003| prog stmt @{ printf ("\n"); @}
1004;
676385e2 1005
de6be119
AD
1006stmt:
1007 expr ';' %dprec 1
1008| decl %dprec 2
1009;
676385e2 1010
de6be119
AD
1011expr:
1012 ID @{ printf ("%s ", $$); @}
1013| TYPENAME '(' expr ')'
1014 @{ printf ("%s <cast> ", $1); @}
1015| expr '+' expr @{ printf ("+ "); @}
1016| expr '=' expr @{ printf ("= "); @}
1017;
676385e2 1018
de6be119
AD
1019decl:
1020 TYPENAME declarator ';'
1021 @{ printf ("%s <declare> ", $1); @}
1022| TYPENAME declarator '=' expr ';'
1023 @{ printf ("%s <init-declare> ", $1); @}
1024;
676385e2 1025
de6be119
AD
1026declarator:
1027 ID @{ printf ("\"%s\" ", $1); @}
1028| '(' declarator ')'
1029;
676385e2
PH
1030@end example
1031
1032@noindent
1033This models a problematic part of the C++ grammar---the ambiguity between
1034certain declarations and statements. For example,
1035
1036@example
1037T (x) = y+z;
1038@end example
1039
1040@noindent
1041parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1042(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1043@samp{x} as an @code{ID}).
676385e2 1044Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1045@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1046time it encounters @code{x} in the example above. Since this is a
35430378 1047GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1048each choice of resolving the reduce/reduce conflict.
1049Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1050however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1051ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1052the other reduces @code{stmt : decl}, after which both parsers are in an
1053identical state: they've seen @samp{prog stmt} and have the same unprocessed
1054input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1055
35430378 1056At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1057grammar of how to choose between the competing parses.
1058In the example above, the two @code{%dprec}
e757bb10 1059declarations specify that Bison is to give precedence
fa7e68c3 1060to the parse that interprets the example as a
676385e2
PH
1061@code{decl}, which implies that @code{x} is a declarator.
1062The parser therefore prints
1063
1064@example
fae437e8 1065"x" y z + T <init-declare>
676385e2
PH
1066@end example
1067
fa7e68c3
PE
1068The @code{%dprec} declarations only come into play when more than one
1069parse survives. Consider a different input string for this parser:
676385e2
PH
1070
1071@example
1072T (x) + y;
1073@end example
1074
1075@noindent
35430378 1076This is another example of using GLR to parse an unambiguous
fa7e68c3 1077construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1078Here, there is no ambiguity (this cannot be parsed as a declaration).
1079However, at the time the Bison parser encounters @code{x}, it does not
1080have enough information to resolve the reduce/reduce conflict (again,
1081between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1082case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1083into two, one assuming that @code{x} is an @code{expr}, and the other
1084assuming @code{x} is a @code{declarator}. The second of these parsers
1085then vanishes when it sees @code{+}, and the parser prints
1086
1087@example
fae437e8 1088x T <cast> y +
676385e2
PH
1089@end example
1090
1091Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1092the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1093actions of the two possible parsers, rather than choosing one over the
1094other. To do so, you could change the declaration of @code{stmt} as
1095follows:
1096
1097@example
de6be119
AD
1098stmt:
1099 expr ';' %merge <stmtMerge>
1100| decl %merge <stmtMerge>
1101;
676385e2
PH
1102@end example
1103
1104@noindent
676385e2
PH
1105and define the @code{stmtMerge} function as:
1106
1107@example
38a92d50
PE
1108static YYSTYPE
1109stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1110@{
1111 printf ("<OR> ");
1112 return "";
1113@}
1114@end example
1115
1116@noindent
1117with an accompanying forward declaration
1118in the C declarations at the beginning of the file:
1119
1120@example
1121%@{
38a92d50 1122 #define YYSTYPE char const *
676385e2
PH
1123 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1124%@}
1125@end example
1126
1127@noindent
fa7e68c3
PE
1128With these declarations, the resulting parser parses the first example
1129as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1130
1131@example
fae437e8 1132"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1133@end example
1134
fa7e68c3 1135Bison requires that all of the
e757bb10 1136productions that participate in any particular merge have identical
fa7e68c3
PE
1137@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1138and the parser will report an error during any parse that results in
1139the offending merge.
9501dc6e 1140
32c29292
JD
1141@node GLR Semantic Actions
1142@subsection GLR Semantic Actions
1143
1144@cindex deferred semantic actions
1145By definition, a deferred semantic action is not performed at the same time as
1146the associated reduction.
1147This raises caveats for several Bison features you might use in a semantic
35430378 1148action in a GLR parser.
32c29292
JD
1149
1150@vindex yychar
35430378 1151@cindex GLR parsers and @code{yychar}
32c29292 1152@vindex yylval
35430378 1153@cindex GLR parsers and @code{yylval}
32c29292 1154@vindex yylloc
35430378 1155@cindex GLR parsers and @code{yylloc}
32c29292 1156In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1157the lookahead token present at the time of the associated reduction.
32c29292
JD
1158After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1159you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1160lookahead token's semantic value and location, if any.
32c29292
JD
1161In a nondeferred semantic action, you can also modify any of these variables to
1162influence syntax analysis.
742e4900 1163@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1164
1165@findex yyclearin
35430378 1166@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1167In a deferred semantic action, it's too late to influence syntax analysis.
1168In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1169shallow copies of the values they had at the time of the associated reduction.
1170For this reason alone, modifying them is dangerous.
1171Moreover, the result of modifying them is undefined and subject to change with
1172future versions of Bison.
1173For example, if a semantic action might be deferred, you should never write it
1174to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1175memory referenced by @code{yylval}.
1176
1177@findex YYERROR
35430378 1178@cindex GLR parsers and @code{YYERROR}
32c29292 1179Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1180(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1181initiate error recovery.
35430378 1182During deterministic GLR operation, the effect of @code{YYERROR} is
34a6c2d1 1183the same as its effect in a deterministic parser.
32c29292
JD
1184In a deferred semantic action, its effect is undefined.
1185@c The effect is probably a syntax error at the split point.
1186
8710fc41 1187Also, see @ref{Location Default Action, ,Default Action for Locations}, which
35430378 1188describes a special usage of @code{YYLLOC_DEFAULT} in GLR parsers.
8710fc41 1189
fa7e68c3 1190@node Compiler Requirements
35430378 1191@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1192@cindex @code{inline}
35430378 1193@cindex GLR parsers and @code{inline}
fa7e68c3 1194
35430378 1195The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1196later. In addition, they use the @code{inline} keyword, which is not
1197C89, but is C99 and is a common extension in pre-C99 compilers. It is
1198up to the user of these parsers to handle
9501dc6e
AD
1199portability issues. For instance, if using Autoconf and the Autoconf
1200macro @code{AC_C_INLINE}, a mere
1201
1202@example
1203%@{
38a92d50 1204 #include <config.h>
9501dc6e
AD
1205%@}
1206@end example
1207
1208@noindent
1209will suffice. Otherwise, we suggest
1210
1211@example
1212%@{
2c0f9706
AD
1213 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1214 && ! defined inline)
1215 # define inline
38a92d50 1216 #endif
9501dc6e
AD
1217%@}
1218@end example
676385e2 1219
83484365 1220@node Locations
847bf1f5
AD
1221@section Locations
1222@cindex location
95923bd6
AD
1223@cindex textual location
1224@cindex location, textual
847bf1f5
AD
1225
1226Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1227and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1228the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1229Bison provides a mechanism for handling these locations.
1230
72d2299c 1231Each token has a semantic value. In a similar fashion, each token has an
7404cdf3
JD
1232associated location, but the type of locations is the same for all tokens
1233and groupings. Moreover, the output parser is equipped with a default data
1234structure for storing locations (@pxref{Tracking Locations}, for more
1235details).
847bf1f5
AD
1236
1237Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1238set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1239is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1240@code{@@3}.
1241
1242When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1243of its left hand side (@pxref{Actions}). In the same way, another default
1244action is used for locations. However, the action for locations is general
847bf1f5 1245enough for most cases, meaning there is usually no need to describe for each
72d2299c 1246rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1247grouping, the default behavior of the output parser is to take the beginning
1248of the first symbol, and the end of the last symbol.
1249
342b8b6e 1250@node Bison Parser
9913d6e4 1251@section Bison Output: the Parser Implementation File
bfa74976
RS
1252@cindex Bison parser
1253@cindex Bison utility
1254@cindex lexical analyzer, purpose
1255@cindex parser
1256
9913d6e4
JD
1257When you run Bison, you give it a Bison grammar file as input. The
1258most important output is a C source file that implements a parser for
1259the language described by the grammar. This parser is called a
1260@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1261implementation file}. Keep in mind that the Bison utility and the
1262Bison parser are two distinct programs: the Bison utility is a program
1263whose output is the Bison parser implementation file that becomes part
1264of your program.
bfa74976
RS
1265
1266The job of the Bison parser is to group tokens into groupings according to
1267the grammar rules---for example, to build identifiers and operators into
1268expressions. As it does this, it runs the actions for the grammar rules it
1269uses.
1270
704a47c4
AD
1271The tokens come from a function called the @dfn{lexical analyzer} that
1272you must supply in some fashion (such as by writing it in C). The Bison
1273parser calls the lexical analyzer each time it wants a new token. It
1274doesn't know what is ``inside'' the tokens (though their semantic values
1275may reflect this). Typically the lexical analyzer makes the tokens by
1276parsing characters of text, but Bison does not depend on this.
1277@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1278
9913d6e4
JD
1279The Bison parser implementation file is C code which defines a
1280function named @code{yyparse} which implements that grammar. This
1281function does not make a complete C program: you must supply some
1282additional functions. One is the lexical analyzer. Another is an
1283error-reporting function which the parser calls to report an error.
1284In addition, a complete C program must start with a function called
1285@code{main}; you have to provide this, and arrange for it to call
1286@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1287C-Language Interface}.
bfa74976 1288
f7ab6a50 1289Aside from the token type names and the symbols in the actions you
9913d6e4
JD
1290write, all symbols defined in the Bison parser implementation file
1291itself begin with @samp{yy} or @samp{YY}. This includes interface
1292functions such as the lexical analyzer function @code{yylex}, the
1293error reporting function @code{yyerror} and the parser function
1294@code{yyparse} itself. This also includes numerous identifiers used
1295for internal purposes. Therefore, you should avoid using C
1296identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1297file except for the ones defined in this manual. Also, you should
1298avoid using the C identifiers @samp{malloc} and @samp{free} for
1299anything other than their usual meanings.
1300
1301In some cases the Bison parser implementation file includes system
1302headers, and in those cases your code should respect the identifiers
1303reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1304@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1305included as needed to declare memory allocators and related types.
1306@code{<libintl.h>} is included if message translation is in use
1307(@pxref{Internationalization}). Other system headers may be included
1308if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1309,Tracing Your Parser}).
7093d0f5 1310
342b8b6e 1311@node Stages
bfa74976
RS
1312@section Stages in Using Bison
1313@cindex stages in using Bison
1314@cindex using Bison
1315
1316The actual language-design process using Bison, from grammar specification
1317to a working compiler or interpreter, has these parts:
1318
1319@enumerate
1320@item
1321Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1322(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1323in the language, describe the action that is to be taken when an
1324instance of that rule is recognized. The action is described by a
1325sequence of C statements.
bfa74976
RS
1326
1327@item
704a47c4
AD
1328Write a lexical analyzer to process input and pass tokens to the parser.
1329The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1330Lexical Analyzer Function @code{yylex}}). It could also be produced
1331using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1332
1333@item
1334Write a controlling function that calls the Bison-produced parser.
1335
1336@item
1337Write error-reporting routines.
1338@end enumerate
1339
1340To turn this source code as written into a runnable program, you
1341must follow these steps:
1342
1343@enumerate
1344@item
1345Run Bison on the grammar to produce the parser.
1346
1347@item
1348Compile the code output by Bison, as well as any other source files.
1349
1350@item
1351Link the object files to produce the finished product.
1352@end enumerate
1353
342b8b6e 1354@node Grammar Layout
bfa74976
RS
1355@section The Overall Layout of a Bison Grammar
1356@cindex grammar file
1357@cindex file format
1358@cindex format of grammar file
1359@cindex layout of Bison grammar
1360
1361The input file for the Bison utility is a @dfn{Bison grammar file}. The
1362general form of a Bison grammar file is as follows:
1363
1364@example
1365%@{
08e49d20 1366@var{Prologue}
bfa74976
RS
1367%@}
1368
1369@var{Bison declarations}
1370
1371%%
1372@var{Grammar rules}
1373%%
08e49d20 1374@var{Epilogue}
bfa74976
RS
1375@end example
1376
1377@noindent
1378The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1379in every Bison grammar file to separate the sections.
1380
72d2299c 1381The prologue may define types and variables used in the actions. You can
342b8b6e 1382also use preprocessor commands to define macros used there, and use
bfa74976 1383@code{#include} to include header files that do any of these things.
38a92d50
PE
1384You need to declare the lexical analyzer @code{yylex} and the error
1385printer @code{yyerror} here, along with any other global identifiers
1386used by the actions in the grammar rules.
bfa74976
RS
1387
1388The Bison declarations declare the names of the terminal and nonterminal
1389symbols, and may also describe operator precedence and the data types of
1390semantic values of various symbols.
1391
1392The grammar rules define how to construct each nonterminal symbol from its
1393parts.
1394
38a92d50
PE
1395The epilogue can contain any code you want to use. Often the
1396definitions of functions declared in the prologue go here. In a
1397simple program, all the rest of the program can go here.
bfa74976 1398
342b8b6e 1399@node Examples
bfa74976
RS
1400@chapter Examples
1401@cindex simple examples
1402@cindex examples, simple
1403
2c0f9706 1404Now we show and explain several sample programs written using Bison: a
bfa74976 1405reverse polish notation calculator, an algebraic (infix) notation
2c0f9706
AD
1406calculator --- later extended to track ``locations'' ---
1407and a multi-function calculator. All
1408produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1409
1410These examples are simple, but Bison grammars for real programming
aa08666d
AD
1411languages are written the same way. You can copy these examples into a
1412source file to try them.
bfa74976
RS
1413
1414@menu
f56274a8
DJ
1415* RPN Calc:: Reverse polish notation calculator;
1416 a first example with no operator precedence.
1417* Infix Calc:: Infix (algebraic) notation calculator.
1418 Operator precedence is introduced.
bfa74976 1419* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1420* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
1421* Multi-function Calc:: Calculator with memory and trig functions.
1422 It uses multiple data-types for semantic values.
1423* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1424@end menu
1425
342b8b6e 1426@node RPN Calc
bfa74976
RS
1427@section Reverse Polish Notation Calculator
1428@cindex reverse polish notation
1429@cindex polish notation calculator
1430@cindex @code{rpcalc}
1431@cindex calculator, simple
1432
1433The first example is that of a simple double-precision @dfn{reverse polish
1434notation} calculator (a calculator using postfix operators). This example
1435provides a good starting point, since operator precedence is not an issue.
1436The second example will illustrate how operator precedence is handled.
1437
1438The source code for this calculator is named @file{rpcalc.y}. The
9913d6e4 1439@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1440
1441@menu
f56274a8
DJ
1442* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1443* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1444* Rpcalc Lexer:: The lexical analyzer.
1445* Rpcalc Main:: The controlling function.
1446* Rpcalc Error:: The error reporting function.
1447* Rpcalc Generate:: Running Bison on the grammar file.
1448* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1449@end menu
1450
f56274a8 1451@node Rpcalc Declarations
bfa74976
RS
1452@subsection Declarations for @code{rpcalc}
1453
1454Here are the C and Bison declarations for the reverse polish notation
1455calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1456
1457@example
72d2299c 1458/* Reverse polish notation calculator. */
bfa74976
RS
1459
1460%@{
38a92d50
PE
1461 #define YYSTYPE double
1462 #include <math.h>
1463 int yylex (void);
1464 void yyerror (char const *);
bfa74976
RS
1465%@}
1466
1467%token NUM
1468
72d2299c 1469%% /* Grammar rules and actions follow. */
bfa74976
RS
1470@end example
1471
75f5aaea 1472The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1473preprocessor directives and two forward declarations.
bfa74976
RS
1474
1475The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1476specifying the C data type for semantic values of both tokens and
1477groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1478Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1479don't define it, @code{int} is the default. Because we specify
1480@code{double}, each token and each expression has an associated value,
1481which is a floating point number.
bfa74976
RS
1482
1483The @code{#include} directive is used to declare the exponentiation
1484function @code{pow}.
1485
38a92d50
PE
1486The forward declarations for @code{yylex} and @code{yyerror} are
1487needed because the C language requires that functions be declared
1488before they are used. These functions will be defined in the
1489epilogue, but the parser calls them so they must be declared in the
1490prologue.
1491
704a47c4
AD
1492The second section, Bison declarations, provides information to Bison
1493about the token types (@pxref{Bison Declarations, ,The Bison
1494Declarations Section}). Each terminal symbol that is not a
1495single-character literal must be declared here. (Single-character
bfa74976
RS
1496literals normally don't need to be declared.) In this example, all the
1497arithmetic operators are designated by single-character literals, so the
1498only terminal symbol that needs to be declared is @code{NUM}, the token
1499type for numeric constants.
1500
342b8b6e 1501@node Rpcalc Rules
bfa74976
RS
1502@subsection Grammar Rules for @code{rpcalc}
1503
1504Here are the grammar rules for the reverse polish notation calculator.
1505
1506@example
2c0f9706 1507@group
de6be119
AD
1508input:
1509 /* empty */
1510| input line
bfa74976 1511;
2c0f9706 1512@end group
bfa74976 1513
2c0f9706 1514@group
de6be119
AD
1515line:
1516 '\n'
1517| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1518;
2c0f9706 1519@end group
bfa74976 1520
2c0f9706 1521@group
de6be119
AD
1522exp:
1523 NUM @{ $$ = $1; @}
1524| exp exp '+' @{ $$ = $1 + $2; @}
1525| exp exp '-' @{ $$ = $1 - $2; @}
1526| exp exp '*' @{ $$ = $1 * $2; @}
1527| exp exp '/' @{ $$ = $1 / $2; @}
1528| exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1529| exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1530;
2c0f9706 1531@end group
bfa74976
RS
1532%%
1533@end example
1534
1535The groupings of the rpcalc ``language'' defined here are the expression
1536(given the name @code{exp}), the line of input (@code{line}), and the
1537complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1538symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1539which is read as ``or''. The following sections explain what these rules
1540mean.
1541
1542The semantics of the language is determined by the actions taken when a
1543grouping is recognized. The actions are the C code that appears inside
1544braces. @xref{Actions}.
1545
1546You must specify these actions in C, but Bison provides the means for
1547passing semantic values between the rules. In each action, the
1548pseudo-variable @code{$$} stands for the semantic value for the grouping
1549that the rule is going to construct. Assigning a value to @code{$$} is the
1550main job of most actions. The semantic values of the components of the
1551rule are referred to as @code{$1}, @code{$2}, and so on.
1552
1553@menu
13863333
AD
1554* Rpcalc Input::
1555* Rpcalc Line::
1556* Rpcalc Expr::
bfa74976
RS
1557@end menu
1558
342b8b6e 1559@node Rpcalc Input
bfa74976
RS
1560@subsubsection Explanation of @code{input}
1561
1562Consider the definition of @code{input}:
1563
1564@example
de6be119
AD
1565input:
1566 /* empty */
1567| input line
bfa74976
RS
1568;
1569@end example
1570
1571This definition reads as follows: ``A complete input is either an empty
1572string, or a complete input followed by an input line''. Notice that
1573``complete input'' is defined in terms of itself. This definition is said
1574to be @dfn{left recursive} since @code{input} appears always as the
1575leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1576
1577The first alternative is empty because there are no symbols between the
1578colon and the first @samp{|}; this means that @code{input} can match an
1579empty string of input (no tokens). We write the rules this way because it
1580is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1581It's conventional to put an empty alternative first and write the comment
1582@samp{/* empty */} in it.
1583
1584The second alternate rule (@code{input line}) handles all nontrivial input.
1585It means, ``After reading any number of lines, read one more line if
1586possible.'' The left recursion makes this rule into a loop. Since the
1587first alternative matches empty input, the loop can be executed zero or
1588more times.
1589
1590The parser function @code{yyparse} continues to process input until a
1591grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1592input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1593
342b8b6e 1594@node Rpcalc Line
bfa74976
RS
1595@subsubsection Explanation of @code{line}
1596
1597Now consider the definition of @code{line}:
1598
1599@example
de6be119
AD
1600line:
1601 '\n'
1602| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1603;
1604@end example
1605
1606The first alternative is a token which is a newline character; this means
1607that rpcalc accepts a blank line (and ignores it, since there is no
1608action). The second alternative is an expression followed by a newline.
1609This is the alternative that makes rpcalc useful. The semantic value of
1610the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1611question is the first symbol in the alternative. The action prints this
1612value, which is the result of the computation the user asked for.
1613
1614This action is unusual because it does not assign a value to @code{$$}. As
1615a consequence, the semantic value associated with the @code{line} is
1616uninitialized (its value will be unpredictable). This would be a bug if
1617that value were ever used, but we don't use it: once rpcalc has printed the
1618value of the user's input line, that value is no longer needed.
1619
342b8b6e 1620@node Rpcalc Expr
bfa74976
RS
1621@subsubsection Explanation of @code{expr}
1622
1623The @code{exp} grouping has several rules, one for each kind of expression.
1624The first rule handles the simplest expressions: those that are just numbers.
1625The second handles an addition-expression, which looks like two expressions
1626followed by a plus-sign. The third handles subtraction, and so on.
1627
1628@example
de6be119
AD
1629exp:
1630 NUM
1631| exp exp '+' @{ $$ = $1 + $2; @}
1632| exp exp '-' @{ $$ = $1 - $2; @}
1633@dots{}
1634;
bfa74976
RS
1635@end example
1636
1637We have used @samp{|} to join all the rules for @code{exp}, but we could
1638equally well have written them separately:
1639
1640@example
de6be119
AD
1641exp: NUM ;
1642exp: exp exp '+' @{ $$ = $1 + $2; @};
1643exp: exp exp '-' @{ $$ = $1 - $2; @};
1644@dots{}
bfa74976
RS
1645@end example
1646
1647Most of the rules have actions that compute the value of the expression in
1648terms of the value of its parts. For example, in the rule for addition,
1649@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1650the second one. The third component, @code{'+'}, has no meaningful
1651associated semantic value, but if it had one you could refer to it as
1652@code{$3}. When @code{yyparse} recognizes a sum expression using this
1653rule, the sum of the two subexpressions' values is produced as the value of
1654the entire expression. @xref{Actions}.
1655
1656You don't have to give an action for every rule. When a rule has no
1657action, Bison by default copies the value of @code{$1} into @code{$$}.
1658This is what happens in the first rule (the one that uses @code{NUM}).
1659
1660The formatting shown here is the recommended convention, but Bison does
72d2299c 1661not require it. You can add or change white space as much as you wish.
bfa74976
RS
1662For example, this:
1663
1664@example
de6be119 1665exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1666@end example
1667
1668@noindent
1669means the same thing as this:
1670
1671@example
de6be119
AD
1672exp:
1673 NUM
1674| exp exp '+' @{ $$ = $1 + $2; @}
1675| @dots{}
99a9344e 1676;
bfa74976
RS
1677@end example
1678
1679@noindent
1680The latter, however, is much more readable.
1681
342b8b6e 1682@node Rpcalc Lexer
bfa74976
RS
1683@subsection The @code{rpcalc} Lexical Analyzer
1684@cindex writing a lexical analyzer
1685@cindex lexical analyzer, writing
1686
704a47c4
AD
1687The lexical analyzer's job is low-level parsing: converting characters
1688or sequences of characters into tokens. The Bison parser gets its
1689tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1690Analyzer Function @code{yylex}}.
bfa74976 1691
35430378 1692Only a simple lexical analyzer is needed for the RPN
c827f760 1693calculator. This
bfa74976
RS
1694lexical analyzer skips blanks and tabs, then reads in numbers as
1695@code{double} and returns them as @code{NUM} tokens. Any other character
1696that isn't part of a number is a separate token. Note that the token-code
1697for such a single-character token is the character itself.
1698
1699The return value of the lexical analyzer function is a numeric code which
1700represents a token type. The same text used in Bison rules to stand for
1701this token type is also a C expression for the numeric code for the type.
1702This works in two ways. If the token type is a character literal, then its
e966383b 1703numeric code is that of the character; you can use the same
bfa74976
RS
1704character literal in the lexical analyzer to express the number. If the
1705token type is an identifier, that identifier is defined by Bison as a C
1706macro whose definition is the appropriate number. In this example,
1707therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1708
1964ad8c
AD
1709The semantic value of the token (if it has one) is stored into the
1710global variable @code{yylval}, which is where the Bison parser will look
1711for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f56274a8 1712defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1713,Declarations for @code{rpcalc}}.)
bfa74976 1714
72d2299c
PE
1715A token type code of zero is returned if the end-of-input is encountered.
1716(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1717
1718Here is the code for the lexical analyzer:
1719
1720@example
1721@group
72d2299c 1722/* The lexical analyzer returns a double floating point
e966383b 1723 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1724 of the character read if not a number. It skips all blanks
1725 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1726
1727#include <ctype.h>
1728@end group
1729
1730@group
13863333
AD
1731int
1732yylex (void)
bfa74976
RS
1733@{
1734 int c;
1735
72d2299c 1736 /* Skip white space. */
13863333 1737 while ((c = getchar ()) == ' ' || c == '\t')
98842516 1738 continue;
bfa74976
RS
1739@end group
1740@group
72d2299c 1741 /* Process numbers. */
13863333 1742 if (c == '.' || isdigit (c))
bfa74976
RS
1743 @{
1744 ungetc (c, stdin);
1745 scanf ("%lf", &yylval);
1746 return NUM;
1747 @}
1748@end group
1749@group
72d2299c 1750 /* Return end-of-input. */
13863333 1751 if (c == EOF)
bfa74976 1752 return 0;
72d2299c 1753 /* Return a single char. */
13863333 1754 return c;
bfa74976
RS
1755@}
1756@end group
1757@end example
1758
342b8b6e 1759@node Rpcalc Main
bfa74976
RS
1760@subsection The Controlling Function
1761@cindex controlling function
1762@cindex main function in simple example
1763
1764In keeping with the spirit of this example, the controlling function is
1765kept to the bare minimum. The only requirement is that it call
1766@code{yyparse} to start the process of parsing.
1767
1768@example
1769@group
13863333
AD
1770int
1771main (void)
bfa74976 1772@{
13863333 1773 return yyparse ();
bfa74976
RS
1774@}
1775@end group
1776@end example
1777
342b8b6e 1778@node Rpcalc Error
bfa74976
RS
1779@subsection The Error Reporting Routine
1780@cindex error reporting routine
1781
1782When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1783function @code{yyerror} to print an error message (usually but not
6e649e65 1784always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1785@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1786here is the definition we will use:
bfa74976
RS
1787
1788@example
1789@group
1790#include <stdio.h>
2c0f9706 1791@end group
bfa74976 1792
2c0f9706 1793@group
38a92d50 1794/* Called by yyparse on error. */
13863333 1795void
38a92d50 1796yyerror (char const *s)
bfa74976 1797@{
4e03e201 1798 fprintf (stderr, "%s\n", s);
bfa74976
RS
1799@}
1800@end group
1801@end example
1802
1803After @code{yyerror} returns, the Bison parser may recover from the error
1804and continue parsing if the grammar contains a suitable error rule
1805(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1806have not written any error rules in this example, so any invalid input will
1807cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1808real calculator, but it is adequate for the first example.
bfa74976 1809
f56274a8 1810@node Rpcalc Generate
bfa74976
RS
1811@subsection Running Bison to Make the Parser
1812@cindex running Bison (introduction)
1813
ceed8467
AD
1814Before running Bison to produce a parser, we need to decide how to
1815arrange all the source code in one or more source files. For such a
9913d6e4
JD
1816simple example, the easiest thing is to put everything in one file,
1817the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1818@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1819(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1820
1821For a large project, you would probably have several source files, and use
1822@code{make} to arrange to recompile them.
1823
9913d6e4
JD
1824With all the source in the grammar file, you use the following command
1825to convert it into a parser implementation file:
bfa74976
RS
1826
1827@example
fa4d969f 1828bison @var{file}.y
bfa74976
RS
1829@end example
1830
1831@noindent
9913d6e4
JD
1832In this example, the grammar file is called @file{rpcalc.y} (for
1833``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1834implementation file named @file{@var{file}.tab.c}, removing the
1835@samp{.y} from the grammar file name. The parser implementation file
1836contains the source code for @code{yyparse}. The additional functions
1837in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1838copied verbatim to the parser implementation file.
bfa74976 1839
342b8b6e 1840@node Rpcalc Compile
9913d6e4 1841@subsection Compiling the Parser Implementation File
bfa74976
RS
1842@cindex compiling the parser
1843
9913d6e4 1844Here is how to compile and run the parser implementation file:
bfa74976
RS
1845
1846@example
1847@group
1848# @r{List files in current directory.}
9edcd895 1849$ @kbd{ls}
bfa74976
RS
1850rpcalc.tab.c rpcalc.y
1851@end group
1852
1853@group
1854# @r{Compile the Bison parser.}
1855# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1856$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1857@end group
1858
1859@group
1860# @r{List files again.}
9edcd895 1861$ @kbd{ls}
bfa74976
RS
1862rpcalc rpcalc.tab.c rpcalc.y
1863@end group
1864@end example
1865
1866The file @file{rpcalc} now contains the executable code. Here is an
1867example session using @code{rpcalc}.
1868
1869@example
9edcd895
AD
1870$ @kbd{rpcalc}
1871@kbd{4 9 +}
bfa74976 187213
9edcd895 1873@kbd{3 7 + 3 4 5 *+-}
bfa74976 1874-13
9edcd895 1875@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 187613
9edcd895 1877@kbd{5 6 / 4 n +}
bfa74976 1878-3.166666667
9edcd895 1879@kbd{3 4 ^} @r{Exponentiation}
bfa74976 188081
9edcd895
AD
1881@kbd{^D} @r{End-of-file indicator}
1882$
bfa74976
RS
1883@end example
1884
342b8b6e 1885@node Infix Calc
bfa74976
RS
1886@section Infix Notation Calculator: @code{calc}
1887@cindex infix notation calculator
1888@cindex @code{calc}
1889@cindex calculator, infix notation
1890
1891We now modify rpcalc to handle infix operators instead of postfix. Infix
1892notation involves the concept of operator precedence and the need for
1893parentheses nested to arbitrary depth. Here is the Bison code for
1894@file{calc.y}, an infix desk-top calculator.
1895
1896@example
38a92d50 1897/* Infix notation calculator. */
bfa74976 1898
2c0f9706 1899@group
bfa74976 1900%@{
38a92d50
PE
1901 #define YYSTYPE double
1902 #include <math.h>
1903 #include <stdio.h>
1904 int yylex (void);
1905 void yyerror (char const *);
bfa74976 1906%@}
2c0f9706 1907@end group
bfa74976 1908
2c0f9706 1909@group
38a92d50 1910/* Bison declarations. */
bfa74976
RS
1911%token NUM
1912%left '-' '+'
1913%left '*' '/'
1914%left NEG /* negation--unary minus */
38a92d50 1915%right '^' /* exponentiation */
2c0f9706 1916@end group
bfa74976 1917
38a92d50 1918%% /* The grammar follows. */
2c0f9706 1919@group
de6be119
AD
1920input:
1921 /* empty */
1922| input line
bfa74976 1923;
2c0f9706 1924@end group
bfa74976 1925
2c0f9706 1926@group
de6be119
AD
1927line:
1928 '\n'
1929| exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976 1930;
2c0f9706 1931@end group
bfa74976 1932
2c0f9706 1933@group
de6be119
AD
1934exp:
1935 NUM @{ $$ = $1; @}
1936| exp '+' exp @{ $$ = $1 + $3; @}
1937| exp '-' exp @{ $$ = $1 - $3; @}
1938| exp '*' exp @{ $$ = $1 * $3; @}
1939| exp '/' exp @{ $$ = $1 / $3; @}
1940| '-' exp %prec NEG @{ $$ = -$2; @}
1941| exp '^' exp @{ $$ = pow ($1, $3); @}
1942| '(' exp ')' @{ $$ = $2; @}
bfa74976 1943;
2c0f9706 1944@end group
bfa74976
RS
1945%%
1946@end example
1947
1948@noindent
ceed8467
AD
1949The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1950same as before.
bfa74976
RS
1951
1952There are two important new features shown in this code.
1953
1954In the second section (Bison declarations), @code{%left} declares token
1955types and says they are left-associative operators. The declarations
1956@code{%left} and @code{%right} (right associativity) take the place of
1957@code{%token} which is used to declare a token type name without
1958associativity. (These tokens are single-character literals, which
1959ordinarily don't need to be declared. We declare them here to specify
1960the associativity.)
1961
1962Operator precedence is determined by the line ordering of the
1963declarations; the higher the line number of the declaration (lower on
1964the page or screen), the higher the precedence. Hence, exponentiation
1965has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1966by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1967Precedence}.
bfa74976 1968
704a47c4
AD
1969The other important new feature is the @code{%prec} in the grammar
1970section for the unary minus operator. The @code{%prec} simply instructs
1971Bison that the rule @samp{| '-' exp} has the same precedence as
1972@code{NEG}---in this case the next-to-highest. @xref{Contextual
1973Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1974
1975Here is a sample run of @file{calc.y}:
1976
1977@need 500
1978@example
9edcd895
AD
1979$ @kbd{calc}
1980@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19816.880952381
9edcd895 1982@kbd{-56 + 2}
bfa74976 1983-54
9edcd895 1984@kbd{3 ^ 2}
bfa74976
RS
19859
1986@end example
1987
342b8b6e 1988@node Simple Error Recovery
bfa74976
RS
1989@section Simple Error Recovery
1990@cindex error recovery, simple
1991
1992Up to this point, this manual has not addressed the issue of @dfn{error
1993recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1994error. All we have handled is error reporting with @code{yyerror}.
1995Recall that by default @code{yyparse} returns after calling
1996@code{yyerror}. This means that an erroneous input line causes the
1997calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1998
1999The Bison language itself includes the reserved word @code{error}, which
2000may be included in the grammar rules. In the example below it has
2001been added to one of the alternatives for @code{line}:
2002
2003@example
2004@group
de6be119
AD
2005line:
2006 '\n'
2007| exp '\n' @{ printf ("\t%.10g\n", $1); @}
2008| error '\n' @{ yyerrok; @}
bfa74976
RS
2009;
2010@end group
2011@end example
2012
ceed8467 2013This addition to the grammar allows for simple error recovery in the
6e649e65 2014event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2015read, the error will be recognized by the third rule for @code{line},
2016and parsing will continue. (The @code{yyerror} function is still called
2017upon to print its message as well.) The action executes the statement
2018@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2019that error recovery is complete (@pxref{Error Recovery}). Note the
2020difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2021misprint.
bfa74976
RS
2022
2023This form of error recovery deals with syntax errors. There are other
2024kinds of errors; for example, division by zero, which raises an exception
2025signal that is normally fatal. A real calculator program must handle this
2026signal and use @code{longjmp} to return to @code{main} and resume parsing
2027input lines; it would also have to discard the rest of the current line of
2028input. We won't discuss this issue further because it is not specific to
2029Bison programs.
2030
342b8b6e
AD
2031@node Location Tracking Calc
2032@section Location Tracking Calculator: @code{ltcalc}
2033@cindex location tracking calculator
2034@cindex @code{ltcalc}
2035@cindex calculator, location tracking
2036
9edcd895
AD
2037This example extends the infix notation calculator with location
2038tracking. This feature will be used to improve the error messages. For
2039the sake of clarity, this example is a simple integer calculator, since
2040most of the work needed to use locations will be done in the lexical
72d2299c 2041analyzer.
342b8b6e
AD
2042
2043@menu
f56274a8
DJ
2044* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2045* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2046* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2047@end menu
2048
f56274a8 2049@node Ltcalc Declarations
342b8b6e
AD
2050@subsection Declarations for @code{ltcalc}
2051
9edcd895
AD
2052The C and Bison declarations for the location tracking calculator are
2053the same as the declarations for the infix notation calculator.
342b8b6e
AD
2054
2055@example
2056/* Location tracking calculator. */
2057
2058%@{
38a92d50
PE
2059 #define YYSTYPE int
2060 #include <math.h>
2061 int yylex (void);
2062 void yyerror (char const *);
342b8b6e
AD
2063%@}
2064
2065/* Bison declarations. */
2066%token NUM
2067
2068%left '-' '+'
2069%left '*' '/'
2070%left NEG
2071%right '^'
2072
38a92d50 2073%% /* The grammar follows. */
342b8b6e
AD
2074@end example
2075
9edcd895
AD
2076@noindent
2077Note there are no declarations specific to locations. Defining a data
2078type for storing locations is not needed: we will use the type provided
2079by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2080four member structure with the following integer fields:
2081@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2082@code{last_column}. By conventions, and in accordance with the GNU
2083Coding Standards and common practice, the line and column count both
2084start at 1.
342b8b6e
AD
2085
2086@node Ltcalc Rules
2087@subsection Grammar Rules for @code{ltcalc}
2088
9edcd895
AD
2089Whether handling locations or not has no effect on the syntax of your
2090language. Therefore, grammar rules for this example will be very close
2091to those of the previous example: we will only modify them to benefit
2092from the new information.
342b8b6e 2093
9edcd895
AD
2094Here, we will use locations to report divisions by zero, and locate the
2095wrong expressions or subexpressions.
342b8b6e
AD
2096
2097@example
2098@group
de6be119
AD
2099input:
2100 /* empty */
2101| input line
342b8b6e
AD
2102;
2103@end group
2104
2105@group
de6be119
AD
2106line:
2107 '\n'
2108| exp '\n' @{ printf ("%d\n", $1); @}
342b8b6e
AD
2109;
2110@end group
2111
2112@group
de6be119
AD
2113exp:
2114 NUM @{ $$ = $1; @}
2115| exp '+' exp @{ $$ = $1 + $3; @}
2116| exp '-' exp @{ $$ = $1 - $3; @}
2117| exp '*' exp @{ $$ = $1 * $3; @}
342b8b6e 2118@end group
342b8b6e 2119@group
de6be119
AD
2120| exp '/' exp
2121 @{
2122 if ($3)
2123 $$ = $1 / $3;
2124 else
2125 @{
2126 $$ = 1;
2127 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2128 @@3.first_line, @@3.first_column,
2129 @@3.last_line, @@3.last_column);
2130 @}
2131 @}
342b8b6e
AD
2132@end group
2133@group
de6be119
AD
2134| '-' exp %prec NEG @{ $$ = -$2; @}
2135| exp '^' exp @{ $$ = pow ($1, $3); @}
2136| '(' exp ')' @{ $$ = $2; @}
342b8b6e
AD
2137@end group
2138@end example
2139
2140This code shows how to reach locations inside of semantic actions, by
2141using the pseudo-variables @code{@@@var{n}} for rule components, and the
2142pseudo-variable @code{@@$} for groupings.
2143
9edcd895
AD
2144We don't need to assign a value to @code{@@$}: the output parser does it
2145automatically. By default, before executing the C code of each action,
2146@code{@@$} is set to range from the beginning of @code{@@1} to the end
2147of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2148can be redefined (@pxref{Location Default Action, , Default Action for
2149Locations}), and for very specific rules, @code{@@$} can be computed by
2150hand.
342b8b6e
AD
2151
2152@node Ltcalc Lexer
2153@subsection The @code{ltcalc} Lexical Analyzer.
2154
9edcd895 2155Until now, we relied on Bison's defaults to enable location
72d2299c 2156tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2157able to feed the parser with the token locations, as it already does for
2158semantic values.
342b8b6e 2159
9edcd895
AD
2160To this end, we must take into account every single character of the
2161input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2162
2163@example
2164@group
2165int
2166yylex (void)
2167@{
2168 int c;
18b519c0 2169@end group
342b8b6e 2170
18b519c0 2171@group
72d2299c 2172 /* Skip white space. */
342b8b6e
AD
2173 while ((c = getchar ()) == ' ' || c == '\t')
2174 ++yylloc.last_column;
18b519c0 2175@end group
342b8b6e 2176
18b519c0 2177@group
72d2299c 2178 /* Step. */
342b8b6e
AD
2179 yylloc.first_line = yylloc.last_line;
2180 yylloc.first_column = yylloc.last_column;
2181@end group
2182
2183@group
72d2299c 2184 /* Process numbers. */
342b8b6e
AD
2185 if (isdigit (c))
2186 @{
2187 yylval = c - '0';
2188 ++yylloc.last_column;
2189 while (isdigit (c = getchar ()))
2190 @{
2191 ++yylloc.last_column;
2192 yylval = yylval * 10 + c - '0';
2193 @}
2194 ungetc (c, stdin);
2195 return NUM;
2196 @}
2197@end group
2198
72d2299c 2199 /* Return end-of-input. */
342b8b6e
AD
2200 if (c == EOF)
2201 return 0;
2202
98842516 2203@group
72d2299c 2204 /* Return a single char, and update location. */
342b8b6e
AD
2205 if (c == '\n')
2206 @{
2207 ++yylloc.last_line;
2208 yylloc.last_column = 0;
2209 @}
2210 else
2211 ++yylloc.last_column;
2212 return c;
2213@}
98842516 2214@end group
342b8b6e
AD
2215@end example
2216
9edcd895
AD
2217Basically, the lexical analyzer performs the same processing as before:
2218it skips blanks and tabs, and reads numbers or single-character tokens.
2219In addition, it updates @code{yylloc}, the global variable (of type
2220@code{YYLTYPE}) containing the token's location.
342b8b6e 2221
9edcd895 2222Now, each time this function returns a token, the parser has its number
72d2299c 2223as well as its semantic value, and its location in the text. The last
9edcd895
AD
2224needed change is to initialize @code{yylloc}, for example in the
2225controlling function:
342b8b6e
AD
2226
2227@example
9edcd895 2228@group
342b8b6e
AD
2229int
2230main (void)
2231@{
2232 yylloc.first_line = yylloc.last_line = 1;
2233 yylloc.first_column = yylloc.last_column = 0;
2234 return yyparse ();
2235@}
9edcd895 2236@end group
342b8b6e
AD
2237@end example
2238
9edcd895
AD
2239Remember that computing locations is not a matter of syntax. Every
2240character must be associated to a location update, whether it is in
2241valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2242
2243@node Multi-function Calc
bfa74976
RS
2244@section Multi-Function Calculator: @code{mfcalc}
2245@cindex multi-function calculator
2246@cindex @code{mfcalc}
2247@cindex calculator, multi-function
2248
2249Now that the basics of Bison have been discussed, it is time to move on to
2250a more advanced problem. The above calculators provided only five
2251functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2252be nice to have a calculator that provides other mathematical functions such
2253as @code{sin}, @code{cos}, etc.
2254
2255It is easy to add new operators to the infix calculator as long as they are
2256only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2257back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2258adding a new operator. But we want something more flexible: built-in
2259functions whose syntax has this form:
2260
2261@example
2262@var{function_name} (@var{argument})
2263@end example
2264
2265@noindent
2266At the same time, we will add memory to the calculator, by allowing you
2267to create named variables, store values in them, and use them later.
2268Here is a sample session with the multi-function calculator:
2269
2270@example
9edcd895
AD
2271$ @kbd{mfcalc}
2272@kbd{pi = 3.141592653589}
bfa74976 22733.1415926536
9edcd895 2274@kbd{sin(pi)}
bfa74976 22750.0000000000
9edcd895 2276@kbd{alpha = beta1 = 2.3}
bfa74976 22772.3000000000
9edcd895 2278@kbd{alpha}
bfa74976 22792.3000000000
9edcd895 2280@kbd{ln(alpha)}
bfa74976 22810.8329091229
9edcd895 2282@kbd{exp(ln(beta1))}
bfa74976 22832.3000000000
9edcd895 2284$
bfa74976
RS
2285@end example
2286
2287Note that multiple assignment and nested function calls are permitted.
2288
2289@menu
f56274a8
DJ
2290* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2291* Mfcalc Rules:: Grammar rules for the calculator.
2292* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2293@end menu
2294
f56274a8 2295@node Mfcalc Declarations
bfa74976
RS
2296@subsection Declarations for @code{mfcalc}
2297
2298Here are the C and Bison declarations for the multi-function calculator.
2299
56d60c19 2300@comment file: mfcalc.y: 1
ea118b72 2301@example
18b519c0 2302@group
bfa74976 2303%@{
38a92d50
PE
2304 #include <math.h> /* For math functions, cos(), sin(), etc. */
2305 #include "calc.h" /* Contains definition of `symrec'. */
2306 int yylex (void);
2307 void yyerror (char const *);
bfa74976 2308%@}
18b519c0 2309@end group
56d60c19 2310
18b519c0 2311@group
bfa74976 2312%union @{
38a92d50
PE
2313 double val; /* For returning numbers. */
2314 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2315@}
18b519c0 2316@end group
38a92d50 2317%token <val> NUM /* Simple double precision number. */
56d60c19 2318%token <tptr> VAR FNCT /* Variable and function. */
bfa74976
RS
2319%type <val> exp
2320
18b519c0 2321@group
bfa74976
RS
2322%right '='
2323%left '-' '+'
2324%left '*' '/'
38a92d50
PE
2325%left NEG /* negation--unary minus */
2326%right '^' /* exponentiation */
18b519c0 2327@end group
ea118b72 2328@end example
bfa74976
RS
2329
2330The above grammar introduces only two new features of the Bison language.
2331These features allow semantic values to have various data types
2332(@pxref{Multiple Types, ,More Than One Value Type}).
2333
2334The @code{%union} declaration specifies the entire list of possible types;
2335this is instead of defining @code{YYSTYPE}. The allowable types are now
2336double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2337the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2338
2339Since values can now have various types, it is necessary to associate a
2340type with each grammar symbol whose semantic value is used. These symbols
2341are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2342declarations are augmented with information about their data type (placed
2343between angle brackets).
2344
704a47c4
AD
2345The Bison construct @code{%type} is used for declaring nonterminal
2346symbols, just as @code{%token} is used for declaring token types. We
2347have not used @code{%type} before because nonterminal symbols are
2348normally declared implicitly by the rules that define them. But
2349@code{exp} must be declared explicitly so we can specify its value type.
2350@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2351
342b8b6e 2352@node Mfcalc Rules
bfa74976
RS
2353@subsection Grammar Rules for @code{mfcalc}
2354
2355Here are the grammar rules for the multi-function calculator.
2356Most of them are copied directly from @code{calc}; three rules,
2357those which mention @code{VAR} or @code{FNCT}, are new.
2358
56d60c19 2359@comment file: mfcalc.y: 3
ea118b72 2360@example
56d60c19 2361%% /* The grammar follows. */
18b519c0 2362@group
de6be119
AD
2363input:
2364 /* empty */
2365| input line
bfa74976 2366;
18b519c0 2367@end group
bfa74976 2368
18b519c0 2369@group
bfa74976 2370line:
de6be119
AD
2371 '\n'
2372| exp '\n' @{ printf ("%.10g\n", $1); @}
2373| error '\n' @{ yyerrok; @}
bfa74976 2374;
18b519c0 2375@end group
bfa74976 2376
18b519c0 2377@group
de6be119
AD
2378exp:
2379 NUM @{ $$ = $1; @}
2380| VAR @{ $$ = $1->value.var; @}
2381| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2382| FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2383| exp '+' exp @{ $$ = $1 + $3; @}
2384| exp '-' exp @{ $$ = $1 - $3; @}
2385| exp '*' exp @{ $$ = $1 * $3; @}
2386| exp '/' exp @{ $$ = $1 / $3; @}
2387| '-' exp %prec NEG @{ $$ = -$2; @}
2388| exp '^' exp @{ $$ = pow ($1, $3); @}
2389| '(' exp ')' @{ $$ = $2; @}
bfa74976 2390;
18b519c0 2391@end group
38a92d50 2392/* End of grammar. */
bfa74976 2393%%
ea118b72 2394@end example
bfa74976 2395
f56274a8 2396@node Mfcalc Symbol Table
bfa74976
RS
2397@subsection The @code{mfcalc} Symbol Table
2398@cindex symbol table example
2399
2400The multi-function calculator requires a symbol table to keep track of the
2401names and meanings of variables and functions. This doesn't affect the
2402grammar rules (except for the actions) or the Bison declarations, but it
2403requires some additional C functions for support.
2404
2405The symbol table itself consists of a linked list of records. Its
2406definition, which is kept in the header @file{calc.h}, is as follows. It
2407provides for either functions or variables to be placed in the table.
2408
ea118b72
AD
2409@comment file: calc.h
2410@example
bfa74976 2411@group
38a92d50 2412/* Function type. */
32dfccf8 2413typedef double (*func_t) (double);
72f889cc 2414@end group
32dfccf8 2415
72f889cc 2416@group
38a92d50 2417/* Data type for links in the chain of symbols. */
bfa74976
RS
2418struct symrec
2419@{
38a92d50 2420 char *name; /* name of symbol */
bfa74976 2421 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2422 union
2423 @{
38a92d50
PE
2424 double var; /* value of a VAR */
2425 func_t fnctptr; /* value of a FNCT */
bfa74976 2426 @} value;
38a92d50 2427 struct symrec *next; /* link field */
bfa74976
RS
2428@};
2429@end group
2430
2431@group
2432typedef struct symrec symrec;
2433
38a92d50 2434/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2435extern symrec *sym_table;
2436
a730d142 2437symrec *putsym (char const *, int);
38a92d50 2438symrec *getsym (char const *);
bfa74976 2439@end group
ea118b72 2440@end example
bfa74976
RS
2441
2442The new version of @code{main} includes a call to @code{init_table}, a
2443function that initializes the symbol table. Here it is, and
2444@code{init_table} as well:
2445
56d60c19 2446@comment file: mfcalc.y: 3
ea118b72 2447@example
bfa74976
RS
2448#include <stdio.h>
2449
18b519c0 2450@group
38a92d50 2451/* Called by yyparse on error. */
13863333 2452void
38a92d50 2453yyerror (char const *s)
bfa74976 2454@{
511dd971 2455 fprintf (stderr, "%s\n", s);
bfa74976 2456@}
18b519c0 2457@end group
bfa74976 2458
18b519c0 2459@group
bfa74976
RS
2460struct init
2461@{
38a92d50
PE
2462 char const *fname;
2463 double (*fnct) (double);
bfa74976
RS
2464@};
2465@end group
2466
2467@group
38a92d50 2468struct init const arith_fncts[] =
13863333 2469@{
32dfccf8
AD
2470 "sin", sin,
2471 "cos", cos,
13863333 2472 "atan", atan,
32dfccf8
AD
2473 "ln", log,
2474 "exp", exp,
13863333
AD
2475 "sqrt", sqrt,
2476 0, 0
2477@};
18b519c0 2478@end group
bfa74976 2479
18b519c0 2480@group
bfa74976 2481/* The symbol table: a chain of `struct symrec'. */
38a92d50 2482symrec *sym_table;
bfa74976
RS
2483@end group
2484
2485@group
72d2299c 2486/* Put arithmetic functions in table. */
13863333
AD
2487void
2488init_table (void)
bfa74976
RS
2489@{
2490 int i;
bfa74976
RS
2491 for (i = 0; arith_fncts[i].fname != 0; i++)
2492 @{
2c0f9706 2493 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2494 ptr->value.fnctptr = arith_fncts[i].fnct;
2495 @}
2496@}
2497@end group
38a92d50
PE
2498
2499@group
2500int
2501main (void)
2502@{
2503 init_table ();
2504 return yyparse ();
2505@}
2506@end group
ea118b72 2507@end example
bfa74976
RS
2508
2509By simply editing the initialization list and adding the necessary include
2510files, you can add additional functions to the calculator.
2511
2512Two important functions allow look-up and installation of symbols in the
2513symbol table. The function @code{putsym} is passed a name and the type
2514(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2515linked to the front of the list, and a pointer to the object is returned.
2516The function @code{getsym} is passed the name of the symbol to look up. If
2517found, a pointer to that symbol is returned; otherwise zero is returned.
2518
56d60c19 2519@comment file: mfcalc.y: 3
ea118b72 2520@example
98842516
AD
2521#include <stdlib.h> /* malloc. */
2522#include <string.h> /* strlen. */
2523
2524@group
bfa74976 2525symrec *
38a92d50 2526putsym (char const *sym_name, int sym_type)
bfa74976 2527@{
2c0f9706 2528 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2529 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2530 strcpy (ptr->name,sym_name);
2531 ptr->type = sym_type;
72d2299c 2532 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2533 ptr->next = (struct symrec *)sym_table;
2534 sym_table = ptr;
2535 return ptr;
2536@}
98842516 2537@end group
bfa74976 2538
98842516 2539@group
bfa74976 2540symrec *
38a92d50 2541getsym (char const *sym_name)
bfa74976
RS
2542@{
2543 symrec *ptr;
2544 for (ptr = sym_table; ptr != (symrec *) 0;
2545 ptr = (symrec *)ptr->next)
2546 if (strcmp (ptr->name,sym_name) == 0)
2547 return ptr;
2548 return 0;
2549@}
98842516 2550@end group
ea118b72 2551@end example
bfa74976
RS
2552
2553The function @code{yylex} must now recognize variables, numeric values, and
2554the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2555characters with a leading letter are recognized as either variables or
bfa74976
RS
2556functions depending on what the symbol table says about them.
2557
2558The string is passed to @code{getsym} for look up in the symbol table. If
2559the name appears in the table, a pointer to its location and its type
2560(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2561already in the table, then it is installed as a @code{VAR} using
2562@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2563returned to @code{yyparse}.
bfa74976
RS
2564
2565No change is needed in the handling of numeric values and arithmetic
2566operators in @code{yylex}.
2567
56d60c19 2568@comment file: mfcalc.y: 3
ea118b72 2569@example
bfa74976
RS
2570@group
2571#include <ctype.h>
18b519c0 2572@end group
13863333 2573
18b519c0 2574@group
13863333
AD
2575int
2576yylex (void)
bfa74976
RS
2577@{
2578 int c;
2579
72d2299c 2580 /* Ignore white space, get first nonwhite character. */
98842516
AD
2581 while ((c = getchar ()) == ' ' || c == '\t')
2582 continue;
bfa74976
RS
2583
2584 if (c == EOF)
2585 return 0;
2586@end group
2587
2588@group
2589 /* Char starts a number => parse the number. */
2590 if (c == '.' || isdigit (c))
2591 @{
2592 ungetc (c, stdin);
2593 scanf ("%lf", &yylval.val);
2594 return NUM;
2595 @}
2596@end group
2597
2598@group
2599 /* Char starts an identifier => read the name. */
2600 if (isalpha (c))
2601 @{
2c0f9706
AD
2602 /* Initially make the buffer long enough
2603 for a 40-character symbol name. */
2604 static size_t length = 40;
bfa74976 2605 static char *symbuf = 0;
2c0f9706 2606 symrec *s;
bfa74976
RS
2607 int i;
2608@end group
2609
2c0f9706
AD
2610 if (!symbuf)
2611 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2612
2613 i = 0;
2614 do
bfa74976
RS
2615@group
2616 @{
2617 /* If buffer is full, make it bigger. */
2618 if (i == length)
2619 @{
2620 length *= 2;
18b519c0 2621 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2622 @}
2623 /* Add this character to the buffer. */
2624 symbuf[i++] = c;
2625 /* Get another character. */
2626 c = getchar ();
2627 @}
2628@end group
2629@group
72d2299c 2630 while (isalnum (c));
bfa74976
RS
2631
2632 ungetc (c, stdin);
2633 symbuf[i] = '\0';
2634@end group
2635
2636@group
2637 s = getsym (symbuf);
2638 if (s == 0)
2639 s = putsym (symbuf, VAR);
2640 yylval.tptr = s;
2641 return s->type;
2642 @}
2643
2644 /* Any other character is a token by itself. */
2645 return c;
2646@}
2647@end group
ea118b72 2648@end example
bfa74976 2649
56d60c19
AD
2650The error reporting function is unchanged, and the new version of
2651@code{main} includes a call to @code{init_table} and sets the @code{yydebug}
2652on user demand (@xref{Tracing, , Tracing Your Parser}, for details):
2653
2654@comment file: mfcalc.y: 3
2655@example
2656@group
2657/* Called by yyparse on error. */
2658void
2659yyerror (char const *s)
2660@{
2661 fprintf (stderr, "%s\n", s);
2662@}
2663@end group
2664
2665@group
2666int
2667main (int argc, char const* argv[])
2668@{
2669 int i;
2670 /* Enable parse traces on option -p. */
2671 for (i = 1; i < argc; ++i)
2672 if (!strcmp(argv[i], "-p"))
2673 yydebug = 1;
2674 init_table ();
2675 return yyparse ();
2676@}
2677@end group
2678@end example
2679
72d2299c 2680This program is both powerful and flexible. You may easily add new
704a47c4
AD
2681functions, and it is a simple job to modify this code to install
2682predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2683
342b8b6e 2684@node Exercises
bfa74976
RS
2685@section Exercises
2686@cindex exercises
2687
2688@enumerate
2689@item
2690Add some new functions from @file{math.h} to the initialization list.
2691
2692@item
2693Add another array that contains constants and their values. Then
2694modify @code{init_table} to add these constants to the symbol table.
2695It will be easiest to give the constants type @code{VAR}.
2696
2697@item
2698Make the program report an error if the user refers to an
2699uninitialized variable in any way except to store a value in it.
2700@end enumerate
2701
342b8b6e 2702@node Grammar File
bfa74976
RS
2703@chapter Bison Grammar Files
2704
2705Bison takes as input a context-free grammar specification and produces a
2706C-language function that recognizes correct instances of the grammar.
2707
9913d6e4 2708The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2709@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2710
2711@menu
7404cdf3
JD
2712* Grammar Outline:: Overall layout of the grammar file.
2713* Symbols:: Terminal and nonterminal symbols.
2714* Rules:: How to write grammar rules.
2715* Recursion:: Writing recursive rules.
2716* Semantics:: Semantic values and actions.
2717* Tracking Locations:: Locations and actions.
2718* Named References:: Using named references in actions.
2719* Declarations:: All kinds of Bison declarations are described here.
2720* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2721@end menu
2722
342b8b6e 2723@node Grammar Outline
bfa74976
RS
2724@section Outline of a Bison Grammar
2725
2726A Bison grammar file has four main sections, shown here with the
2727appropriate delimiters:
2728
2729@example
2730%@{
38a92d50 2731 @var{Prologue}
bfa74976
RS
2732%@}
2733
2734@var{Bison declarations}
2735
2736%%
2737@var{Grammar rules}
2738%%
2739
75f5aaea 2740@var{Epilogue}
bfa74976
RS
2741@end example
2742
2743Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
35430378 2744As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2745continues until end of line.
bfa74976
RS
2746
2747@menu
f56274a8 2748* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2749* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
2750* Bison Declarations:: Syntax and usage of the Bison declarations section.
2751* Grammar Rules:: Syntax and usage of the grammar rules section.
2752* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2753@end menu
2754
38a92d50 2755@node Prologue
75f5aaea
MA
2756@subsection The prologue
2757@cindex declarations section
2758@cindex Prologue
2759@cindex declarations
bfa74976 2760
f8e1c9e5
AD
2761The @var{Prologue} section contains macro definitions and declarations
2762of functions and variables that are used in the actions in the grammar
9913d6e4
JD
2763rules. These are copied to the beginning of the parser implementation
2764file so that they precede the definition of @code{yyparse}. You can
2765use @samp{#include} to get the declarations from a header file. If
2766you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2767@samp{%@}} delimiters that bracket this section.
bfa74976 2768
9c437126 2769The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2770of @samp{%@}} that is outside a comment, a string literal, or a
2771character constant.
2772
c732d2c6
AD
2773You may have more than one @var{Prologue} section, intermixed with the
2774@var{Bison declarations}. This allows you to have C and Bison
2775declarations that refer to each other. For example, the @code{%union}
2776declaration may use types defined in a header file, and you may wish to
2777prototype functions that take arguments of type @code{YYSTYPE}. This
2778can be done with two @var{Prologue} blocks, one before and one after the
2779@code{%union} declaration.
2780
ea118b72 2781@example
c732d2c6 2782%@{
aef3da86 2783 #define _GNU_SOURCE
38a92d50
PE
2784 #include <stdio.h>
2785 #include "ptypes.h"
c732d2c6
AD
2786%@}
2787
2788%union @{
779e7ceb 2789 long int n;
c732d2c6
AD
2790 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2791@}
2792
2793%@{
38a92d50
PE
2794 static void print_token_value (FILE *, int, YYSTYPE);
2795 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2796%@}
2797
2798@dots{}
ea118b72 2799@end example
c732d2c6 2800
aef3da86
PE
2801When in doubt, it is usually safer to put prologue code before all
2802Bison declarations, rather than after. For example, any definitions
2803of feature test macros like @code{_GNU_SOURCE} or
2804@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2805feature test macros can affect the behavior of Bison-generated
2806@code{#include} directives.
2807
2cbe6b7f
JD
2808@node Prologue Alternatives
2809@subsection Prologue Alternatives
2810@cindex Prologue Alternatives
2811
136a0f76 2812@findex %code
16dc6a9e
JD
2813@findex %code requires
2814@findex %code provides
2815@findex %code top
85894313 2816
2cbe6b7f 2817The functionality of @var{Prologue} sections can often be subtle and
9913d6e4
JD
2818inflexible. As an alternative, Bison provides a @code{%code}
2819directive with an explicit qualifier field, which identifies the
2820purpose of the code and thus the location(s) where Bison should
2821generate it. For C/C++, the qualifier can be omitted for the default
2822location, or it can be one of @code{requires}, @code{provides},
8e6f2266 2823@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2824
2825Look again at the example of the previous section:
2826
ea118b72 2827@example
2cbe6b7f
JD
2828%@{
2829 #define _GNU_SOURCE
2830 #include <stdio.h>
2831 #include "ptypes.h"
2832%@}
2833
2834%union @{
2835 long int n;
2836 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2837@}
2838
2839%@{
2840 static void print_token_value (FILE *, int, YYSTYPE);
2841 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2842%@}
2843
2844@dots{}
ea118b72 2845@end example
2cbe6b7f
JD
2846
2847@noindent
9913d6e4
JD
2848Notice that there are two @var{Prologue} sections here, but there's a
2849subtle distinction between their functionality. For example, if you
2850decide to override Bison's default definition for @code{YYLTYPE}, in
2851which @var{Prologue} section should you write your new definition?
2852You should write it in the first since Bison will insert that code
2853into the parser implementation file @emph{before} the default
2854@code{YYLTYPE} definition. In which @var{Prologue} section should you
2855prototype an internal function, @code{trace_token}, that accepts
2856@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2857prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2858@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2859
2860This distinction in functionality between the two @var{Prologue} sections is
2861established by the appearance of the @code{%union} between them.
a501eca9 2862This behavior raises a few questions.
2cbe6b7f
JD
2863First, why should the position of a @code{%union} affect definitions related to
2864@code{YYLTYPE} and @code{yytokentype}?
2865Second, what if there is no @code{%union}?
2866In that case, the second kind of @var{Prologue} section is not available.
2867This behavior is not intuitive.
2868
8e0a5e9e 2869To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2870@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2871Let's go ahead and add the new @code{YYLTYPE} definition and the
2872@code{trace_token} prototype at the same time:
2873
ea118b72 2874@example
16dc6a9e 2875%code top @{
2cbe6b7f
JD
2876 #define _GNU_SOURCE
2877 #include <stdio.h>
8e0a5e9e
JD
2878
2879 /* WARNING: The following code really belongs
16dc6a9e 2880 * in a `%code requires'; see below. */
8e0a5e9e 2881
2cbe6b7f
JD
2882 #include "ptypes.h"
2883 #define YYLTYPE YYLTYPE
2884 typedef struct YYLTYPE
2885 @{
2886 int first_line;
2887 int first_column;
2888 int last_line;
2889 int last_column;
2890 char *filename;
2891 @} YYLTYPE;
2892@}
2893
2894%union @{
2895 long int n;
2896 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2897@}
2898
2899%code @{
2900 static void print_token_value (FILE *, int, YYSTYPE);
2901 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2902 static void trace_token (enum yytokentype token, YYLTYPE loc);
2903@}
2904
2905@dots{}
ea118b72 2906@end example
2cbe6b7f
JD
2907
2908@noindent
16dc6a9e
JD
2909In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2910functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2911explicit which kind you intend.
2cbe6b7f
JD
2912Moreover, both kinds are always available even in the absence of @code{%union}.
2913
9913d6e4
JD
2914The @code{%code top} block above logically contains two parts. The
2915first two lines before the warning need to appear near the top of the
2916parser implementation file. The first line after the warning is
2917required by @code{YYSTYPE} and thus also needs to appear in the parser
2918implementation file. However, if you've instructed Bison to generate
2919a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2920want that line to appear before the @code{YYSTYPE} definition in that
2921header file as well. The @code{YYLTYPE} definition should also appear
2922in the parser header file to override the default @code{YYLTYPE}
2923definition there.
2cbe6b7f 2924
16dc6a9e 2925In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2926lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2927definitions.
16dc6a9e 2928Thus, they belong in one or more @code{%code requires}:
9bc0dd67 2929
ea118b72 2930@example
98842516 2931@group
16dc6a9e 2932%code top @{
2cbe6b7f
JD
2933 #define _GNU_SOURCE
2934 #include <stdio.h>
2935@}
98842516 2936@end group
2cbe6b7f 2937
98842516 2938@group
16dc6a9e 2939%code requires @{
9bc0dd67
JD
2940 #include "ptypes.h"
2941@}
98842516
AD
2942@end group
2943@group
9bc0dd67
JD
2944%union @{
2945 long int n;
2946 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2947@}
98842516 2948@end group
9bc0dd67 2949
98842516 2950@group
16dc6a9e 2951%code requires @{
2cbe6b7f
JD
2952 #define YYLTYPE YYLTYPE
2953 typedef struct YYLTYPE
2954 @{
2955 int first_line;
2956 int first_column;
2957 int last_line;
2958 int last_column;
2959 char *filename;
2960 @} YYLTYPE;
2961@}
98842516 2962@end group
2cbe6b7f 2963
98842516 2964@group
136a0f76 2965%code @{
2cbe6b7f
JD
2966 static void print_token_value (FILE *, int, YYSTYPE);
2967 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2968 static void trace_token (enum yytokentype token, YYLTYPE loc);
2969@}
98842516 2970@end group
2cbe6b7f
JD
2971
2972@dots{}
ea118b72 2973@end example
2cbe6b7f
JD
2974
2975@noindent
9913d6e4
JD
2976Now Bison will insert @code{#include "ptypes.h"} and the new
2977@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
2978and @code{YYLTYPE} definitions in both the parser implementation file
2979and the parser header file. (By the same reasoning, @code{%code
2980requires} would also be the appropriate place to write your own
2981definition for @code{YYSTYPE}.)
2982
2983When you are writing dependency code for @code{YYSTYPE} and
2984@code{YYLTYPE}, you should prefer @code{%code requires} over
2985@code{%code top} regardless of whether you instruct Bison to generate
2986a parser header file. When you are writing code that you need Bison
2987to insert only into the parser implementation file and that has no
2988special need to appear at the top of that file, you should prefer the
2989unqualified @code{%code} over @code{%code top}. These practices will
2990make the purpose of each block of your code explicit to Bison and to
2991other developers reading your grammar file. Following these
2992practices, we expect the unqualified @code{%code} and @code{%code
2993requires} to be the most important of the four @var{Prologue}
16dc6a9e 2994alternatives.
a501eca9 2995
9913d6e4
JD
2996At some point while developing your parser, you might decide to
2997provide @code{trace_token} to modules that are external to your
2998parser. Thus, you might wish for Bison to insert the prototype into
2999both the parser header file and the parser implementation file. Since
3000this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 3001@code{YYLTYPE}, it doesn't make sense to move its prototype to a
9913d6e4
JD
3002@code{%code requires}. More importantly, since it depends upon
3003@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3004sufficient. Instead, move its prototype from the unqualified
3005@code{%code} to a @code{%code provides}:
2cbe6b7f 3006
ea118b72 3007@example
98842516 3008@group
16dc6a9e 3009%code top @{
2cbe6b7f 3010 #define _GNU_SOURCE
136a0f76 3011 #include <stdio.h>
2cbe6b7f 3012@}
98842516 3013@end group
136a0f76 3014
98842516 3015@group
16dc6a9e 3016%code requires @{
2cbe6b7f
JD
3017 #include "ptypes.h"
3018@}
98842516
AD
3019@end group
3020@group
2cbe6b7f
JD
3021%union @{
3022 long int n;
3023 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3024@}
98842516 3025@end group
2cbe6b7f 3026
98842516 3027@group
16dc6a9e 3028%code requires @{
2cbe6b7f
JD
3029 #define YYLTYPE YYLTYPE
3030 typedef struct YYLTYPE
3031 @{
3032 int first_line;
3033 int first_column;
3034 int last_line;
3035 int last_column;
3036 char *filename;
3037 @} YYLTYPE;
3038@}
98842516 3039@end group
2cbe6b7f 3040
98842516 3041@group
16dc6a9e 3042%code provides @{
2cbe6b7f
JD
3043 void trace_token (enum yytokentype token, YYLTYPE loc);
3044@}
98842516 3045@end group
2cbe6b7f 3046
98842516 3047@group
2cbe6b7f 3048%code @{
9bc0dd67
JD
3049 static void print_token_value (FILE *, int, YYSTYPE);
3050 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3051@}
98842516 3052@end group
9bc0dd67
JD
3053
3054@dots{}
ea118b72 3055@end example
9bc0dd67 3056
2cbe6b7f 3057@noindent
9913d6e4
JD
3058Bison will insert the @code{trace_token} prototype into both the
3059parser header file and the parser implementation file after the
3060definitions for @code{yytokentype}, @code{YYLTYPE}, and
3061@code{YYSTYPE}.
3062
3063The above examples are careful to write directives in an order that
3064reflects the layout of the generated parser implementation and header
3065files: @code{%code top}, @code{%code requires}, @code{%code provides},
3066and then @code{%code}. While your grammar files may generally be
3067easier to read if you also follow this order, Bison does not require
3068it. Instead, Bison lets you choose an organization that makes sense
3069to you.
2cbe6b7f 3070
a501eca9 3071You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3072In that case, Bison concatenates the contained code in declaration order.
3073This is the only way in which the position of one of these directives within
3074the grammar file affects its functionality.
3075
3076The result of the previous two properties is greater flexibility in how you may
3077organize your grammar file.
3078For example, you may organize semantic-type-related directives by semantic
3079type:
3080
ea118b72 3081@example
98842516 3082@group
16dc6a9e 3083%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3084%union @{ type1 field1; @}
3085%destructor @{ type1_free ($$); @} <field1>
68fff38a 3086%printer @{ type1_print (yyoutput, $$); @} <field1>
98842516 3087@end group
2cbe6b7f 3088
98842516 3089@group
16dc6a9e 3090%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3091%union @{ type2 field2; @}
3092%destructor @{ type2_free ($$); @} <field2>
68fff38a 3093%printer @{ type2_print (yyoutput, $$); @} <field2>
98842516 3094@end group
ea118b72 3095@end example
2cbe6b7f
JD
3096
3097@noindent
3098You could even place each of the above directive groups in the rules section of
3099the grammar file next to the set of rules that uses the associated semantic
3100type.
61fee93e
JD
3101(In the rules section, you must terminate each of those directives with a
3102semicolon.)
2cbe6b7f
JD
3103And you don't have to worry that some directive (like a @code{%union}) in the
3104definitions section is going to adversely affect their functionality in some
3105counter-intuitive manner just because it comes first.
3106Such an organization is not possible using @var{Prologue} sections.
3107
a501eca9 3108This section has been concerned with explaining the advantages of the four
8e0a5e9e 3109@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3110However, in most cases when using these directives, you shouldn't need to
3111think about all the low-level ordering issues discussed here.
3112Instead, you should simply use these directives to label each block of your
3113code according to its purpose and let Bison handle the ordering.
3114@code{%code} is the most generic label.
16dc6a9e
JD
3115Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3116as needed.
a501eca9 3117
342b8b6e 3118@node Bison Declarations
bfa74976
RS
3119@subsection The Bison Declarations Section
3120@cindex Bison declarations (introduction)
3121@cindex declarations, Bison (introduction)
3122
3123The @var{Bison declarations} section contains declarations that define
3124terminal and nonterminal symbols, specify precedence, and so on.
3125In some simple grammars you may not need any declarations.
3126@xref{Declarations, ,Bison Declarations}.
3127
342b8b6e 3128@node Grammar Rules
bfa74976
RS
3129@subsection The Grammar Rules Section
3130@cindex grammar rules section
3131@cindex rules section for grammar
3132
3133The @dfn{grammar rules} section contains one or more Bison grammar
3134rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3135
3136There must always be at least one grammar rule, and the first
3137@samp{%%} (which precedes the grammar rules) may never be omitted even
3138if it is the first thing in the file.
3139
38a92d50 3140@node Epilogue
75f5aaea 3141@subsection The epilogue
bfa74976 3142@cindex additional C code section
75f5aaea 3143@cindex epilogue
bfa74976
RS
3144@cindex C code, section for additional
3145
9913d6e4
JD
3146The @var{Epilogue} is copied verbatim to the end of the parser
3147implementation file, just as the @var{Prologue} is copied to the
3148beginning. This is the most convenient place to put anything that you
3149want to have in the parser implementation file but which need not come
3150before the definition of @code{yyparse}. For example, the definitions
3151of @code{yylex} and @code{yyerror} often go here. Because C requires
3152functions to be declared before being used, you often need to declare
3153functions like @code{yylex} and @code{yyerror} in the Prologue, even
3154if you define them in the Epilogue. @xref{Interface, ,Parser
3155C-Language Interface}.
bfa74976
RS
3156
3157If the last section is empty, you may omit the @samp{%%} that separates it
3158from the grammar rules.
3159
f8e1c9e5
AD
3160The Bison parser itself contains many macros and identifiers whose names
3161start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3162any such names (except those documented in this manual) in the epilogue
3163of the grammar file.
bfa74976 3164
342b8b6e 3165@node Symbols
bfa74976
RS
3166@section Symbols, Terminal and Nonterminal
3167@cindex nonterminal symbol
3168@cindex terminal symbol
3169@cindex token type
3170@cindex symbol
3171
3172@dfn{Symbols} in Bison grammars represent the grammatical classifications
3173of the language.
3174
3175A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3176class of syntactically equivalent tokens. You use the symbol in grammar
3177rules to mean that a token in that class is allowed. The symbol is
3178represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3179function returns a token type code to indicate what kind of token has
3180been read. You don't need to know what the code value is; you can use
3181the symbol to stand for it.
bfa74976 3182
f8e1c9e5
AD
3183A @dfn{nonterminal symbol} stands for a class of syntactically
3184equivalent groupings. The symbol name is used in writing grammar rules.
3185By convention, it should be all lower case.
bfa74976 3186
eb8c66bb
JD
3187Symbol names can contain letters, underscores, periods, and non-initial
3188digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3189with POSIX Yacc. Periods and dashes make symbol names less convenient to
3190use with named references, which require brackets around such names
3191(@pxref{Named References}). Terminal symbols that contain periods or dashes
3192make little sense: since they are not valid symbols (in most programming
3193languages) they are not exported as token names.
bfa74976 3194
931c7513 3195There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3196
3197@itemize @bullet
3198@item
3199A @dfn{named token type} is written with an identifier, like an
c827f760 3200identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3201such name must be defined with a Bison declaration such as
3202@code{%token}. @xref{Token Decl, ,Token Type Names}.
3203
3204@item
3205@cindex character token
3206@cindex literal token
3207@cindex single-character literal
931c7513
RS
3208A @dfn{character token type} (or @dfn{literal character token}) is
3209written in the grammar using the same syntax used in C for character
3210constants; for example, @code{'+'} is a character token type. A
3211character token type doesn't need to be declared unless you need to
3212specify its semantic value data type (@pxref{Value Type, ,Data Types of
3213Semantic Values}), associativity, or precedence (@pxref{Precedence,
3214,Operator Precedence}).
bfa74976
RS
3215
3216By convention, a character token type is used only to represent a
3217token that consists of that particular character. Thus, the token
3218type @code{'+'} is used to represent the character @samp{+} as a
3219token. Nothing enforces this convention, but if you depart from it,
3220your program will confuse other readers.
3221
3222All the usual escape sequences used in character literals in C can be
3223used in Bison as well, but you must not use the null character as a
72d2299c
PE
3224character literal because its numeric code, zero, signifies
3225end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3226for @code{yylex}}). Also, unlike standard C, trigraphs have no
3227special meaning in Bison character literals, nor is backslash-newline
3228allowed.
931c7513
RS
3229
3230@item
3231@cindex string token
3232@cindex literal string token
9ecbd125 3233@cindex multicharacter literal
931c7513
RS
3234A @dfn{literal string token} is written like a C string constant; for
3235example, @code{"<="} is a literal string token. A literal string token
3236doesn't need to be declared unless you need to specify its semantic
14ded682 3237value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3238(@pxref{Precedence}).
3239
3240You can associate the literal string token with a symbolic name as an
3241alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3242Declarations}). If you don't do that, the lexical analyzer has to
3243retrieve the token number for the literal string token from the
3244@code{yytname} table (@pxref{Calling Convention}).
3245
c827f760 3246@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3247
3248By convention, a literal string token is used only to represent a token
3249that consists of that particular string. Thus, you should use the token
3250type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3251does not enforce this convention, but if you depart from it, people who
931c7513
RS
3252read your program will be confused.
3253
3254All the escape sequences used in string literals in C can be used in
92ac3705
PE
3255Bison as well, except that you must not use a null character within a
3256string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3257meaning in Bison string literals, nor is backslash-newline allowed. A
3258literal string token must contain two or more characters; for a token
3259containing just one character, use a character token (see above).
bfa74976
RS
3260@end itemize
3261
3262How you choose to write a terminal symbol has no effect on its
3263grammatical meaning. That depends only on where it appears in rules and
3264on when the parser function returns that symbol.
3265
72d2299c
PE
3266The value returned by @code{yylex} is always one of the terminal
3267symbols, except that a zero or negative value signifies end-of-input.
3268Whichever way you write the token type in the grammar rules, you write
3269it the same way in the definition of @code{yylex}. The numeric code
3270for a character token type is simply the positive numeric code of the
3271character, so @code{yylex} can use the identical value to generate the
3272requisite code, though you may need to convert it to @code{unsigned
3273char} to avoid sign-extension on hosts where @code{char} is signed.
9913d6e4
JD
3274Each named token type becomes a C macro in the parser implementation
3275file, so @code{yylex} can use the name to stand for the code. (This
3276is why periods don't make sense in terminal symbols.) @xref{Calling
3277Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3278
3279If @code{yylex} is defined in a separate file, you need to arrange for the
3280token-type macro definitions to be available there. Use the @samp{-d}
3281option when you run Bison, so that it will write these macro definitions
3282into a separate header file @file{@var{name}.tab.h} which you can include
3283in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3284
72d2299c 3285If you want to write a grammar that is portable to any Standard C
9d9b8b70 3286host, you must use only nonnull character tokens taken from the basic
c827f760 3287execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3288digits, the 52 lower- and upper-case English letters, and the
3289characters in the following C-language string:
3290
3291@example
3292"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3293@end example
3294
f8e1c9e5
AD
3295The @code{yylex} function and Bison must use a consistent character set
3296and encoding for character tokens. For example, if you run Bison in an
35430378 3297ASCII environment, but then compile and run the resulting
f8e1c9e5 3298program in an environment that uses an incompatible character set like
35430378
JD
3299EBCDIC, the resulting program may not work because the tables
3300generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3301character tokens. It is standard practice for software distributions to
3302contain C source files that were generated by Bison in an
35430378
JD
3303ASCII environment, so installers on platforms that are
3304incompatible with ASCII must rebuild those files before
f8e1c9e5 3305compiling them.
e966383b 3306
bfa74976
RS
3307The symbol @code{error} is a terminal symbol reserved for error recovery
3308(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3309In particular, @code{yylex} should never return this value. The default
3310value of the error token is 256, unless you explicitly assigned 256 to
3311one of your tokens with a @code{%token} declaration.
bfa74976 3312
342b8b6e 3313@node Rules
bfa74976
RS
3314@section Syntax of Grammar Rules
3315@cindex rule syntax
3316@cindex grammar rule syntax
3317@cindex syntax of grammar rules
3318
3319A Bison grammar rule has the following general form:
3320
3321@example
e425e872 3322@group
de6be119 3323@var{result}: @var{components}@dots{};
e425e872 3324@end group
bfa74976
RS
3325@end example
3326
3327@noindent
9ecbd125 3328where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3329and @var{components} are various terminal and nonterminal symbols that
13863333 3330are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3331
3332For example,
3333
3334@example
3335@group
de6be119 3336exp: exp '+' exp;
bfa74976
RS
3337@end group
3338@end example
3339
3340@noindent
3341says that two groupings of type @code{exp}, with a @samp{+} token in between,
3342can be combined into a larger grouping of type @code{exp}.
3343
72d2299c
PE
3344White space in rules is significant only to separate symbols. You can add
3345extra white space as you wish.
bfa74976
RS
3346
3347Scattered among the components can be @var{actions} that determine
3348the semantics of the rule. An action looks like this:
3349
3350@example
3351@{@var{C statements}@}
3352@end example
3353
3354@noindent
287c78f6
PE
3355@cindex braced code
3356This is an example of @dfn{braced code}, that is, C code surrounded by
3357braces, much like a compound statement in C@. Braced code can contain
3358any sequence of C tokens, so long as its braces are balanced. Bison
3359does not check the braced code for correctness directly; it merely
9913d6e4
JD
3360copies the code to the parser implementation file, where the C
3361compiler can check it.
287c78f6
PE
3362
3363Within braced code, the balanced-brace count is not affected by braces
3364within comments, string literals, or character constants, but it is
3365affected by the C digraphs @samp{<%} and @samp{%>} that represent
3366braces. At the top level braced code must be terminated by @samp{@}}
3367and not by a digraph. Bison does not look for trigraphs, so if braced
3368code uses trigraphs you should ensure that they do not affect the
3369nesting of braces or the boundaries of comments, string literals, or
3370character constants.
3371
bfa74976
RS
3372Usually there is only one action and it follows the components.
3373@xref{Actions}.
3374
3375@findex |
3376Multiple rules for the same @var{result} can be written separately or can
3377be joined with the vertical-bar character @samp{|} as follows:
3378
bfa74976
RS
3379@example
3380@group
de6be119
AD
3381@var{result}:
3382 @var{rule1-components}@dots{}
3383| @var{rule2-components}@dots{}
3384@dots{}
3385;
bfa74976
RS
3386@end group
3387@end example
bfa74976
RS
3388
3389@noindent
3390They are still considered distinct rules even when joined in this way.
3391
3392If @var{components} in a rule is empty, it means that @var{result} can
3393match the empty string. For example, here is how to define a
3394comma-separated sequence of zero or more @code{exp} groupings:
3395
3396@example
3397@group
de6be119
AD
3398expseq:
3399 /* empty */
3400| expseq1
3401;
bfa74976
RS
3402@end group
3403
3404@group
de6be119
AD
3405expseq1:
3406 exp
3407| expseq1 ',' exp
3408;
bfa74976
RS
3409@end group
3410@end example
3411
3412@noindent
3413It is customary to write a comment @samp{/* empty */} in each rule
3414with no components.
3415
342b8b6e 3416@node Recursion
bfa74976
RS
3417@section Recursive Rules
3418@cindex recursive rule
3419
f8e1c9e5
AD
3420A rule is called @dfn{recursive} when its @var{result} nonterminal
3421appears also on its right hand side. Nearly all Bison grammars need to
3422use recursion, because that is the only way to define a sequence of any
3423number of a particular thing. Consider this recursive definition of a
9ecbd125 3424comma-separated sequence of one or more expressions:
bfa74976
RS
3425
3426@example
3427@group
de6be119
AD
3428expseq1:
3429 exp
3430| expseq1 ',' exp
3431;
bfa74976
RS
3432@end group
3433@end example
3434
3435@cindex left recursion
3436@cindex right recursion
3437@noindent
3438Since the recursive use of @code{expseq1} is the leftmost symbol in the
3439right hand side, we call this @dfn{left recursion}. By contrast, here
3440the same construct is defined using @dfn{right recursion}:
3441
3442@example
3443@group
de6be119
AD
3444expseq1:
3445 exp
3446| exp ',' expseq1
3447;
bfa74976
RS
3448@end group
3449@end example
3450
3451@noindent
ec3bc396
AD
3452Any kind of sequence can be defined using either left recursion or right
3453recursion, but you should always use left recursion, because it can
3454parse a sequence of any number of elements with bounded stack space.
3455Right recursion uses up space on the Bison stack in proportion to the
3456number of elements in the sequence, because all the elements must be
3457shifted onto the stack before the rule can be applied even once.
3458@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3459of this.
bfa74976
RS
3460
3461@cindex mutual recursion
3462@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3463rule does not appear directly on its right hand side, but does appear
3464in rules for other nonterminals which do appear on its right hand
13863333 3465side.
bfa74976
RS
3466
3467For example:
3468
3469@example
3470@group
de6be119
AD
3471expr:
3472 primary
3473| primary '+' primary
3474;
bfa74976
RS
3475@end group
3476
3477@group
de6be119
AD
3478primary:
3479 constant
3480| '(' expr ')'
3481;
bfa74976
RS
3482@end group
3483@end example
3484
3485@noindent
3486defines two mutually-recursive nonterminals, since each refers to the
3487other.
3488
342b8b6e 3489@node Semantics
bfa74976
RS
3490@section Defining Language Semantics
3491@cindex defining language semantics
13863333 3492@cindex language semantics, defining
bfa74976
RS
3493
3494The grammar rules for a language determine only the syntax. The semantics
3495are determined by the semantic values associated with various tokens and
3496groupings, and by the actions taken when various groupings are recognized.
3497
3498For example, the calculator calculates properly because the value
3499associated with each expression is the proper number; it adds properly
3500because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3501the numbers associated with @var{x} and @var{y}.
3502
3503@menu
3504* Value Type:: Specifying one data type for all semantic values.
3505* Multiple Types:: Specifying several alternative data types.
3506* Actions:: An action is the semantic definition of a grammar rule.
3507* Action Types:: Specifying data types for actions to operate on.
3508* Mid-Rule Actions:: Most actions go at the end of a rule.
3509 This says when, why and how to use the exceptional
3510 action in the middle of a rule.
3511@end menu
3512
342b8b6e 3513@node Value Type
bfa74976
RS
3514@subsection Data Types of Semantic Values
3515@cindex semantic value type
3516@cindex value type, semantic
3517@cindex data types of semantic values
3518@cindex default data type
3519
3520In a simple program it may be sufficient to use the same data type for
3521the semantic values of all language constructs. This was true in the
35430378 3522RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3523Notation Calculator}).
bfa74976 3524
ddc8ede1
PE
3525Bison normally uses the type @code{int} for semantic values if your
3526program uses the same data type for all language constructs. To
bfa74976
RS
3527specify some other type, define @code{YYSTYPE} as a macro, like this:
3528
3529@example
3530#define YYSTYPE double
3531@end example
3532
3533@noindent
50cce58e
PE
3534@code{YYSTYPE}'s replacement list should be a type name
3535that does not contain parentheses or square brackets.
342b8b6e 3536This macro definition must go in the prologue of the grammar file
75f5aaea 3537(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3538
342b8b6e 3539@node Multiple Types
bfa74976
RS
3540@subsection More Than One Value Type
3541
3542In most programs, you will need different data types for different kinds
3543of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3544@code{int} or @code{long int}, while a string constant needs type
3545@code{char *}, and an identifier might need a pointer to an entry in the
3546symbol table.
bfa74976
RS
3547
3548To use more than one data type for semantic values in one parser, Bison
3549requires you to do two things:
3550
3551@itemize @bullet
3552@item
ddc8ede1 3553Specify the entire collection of possible data types, either by using the
704a47c4 3554@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3555Value Types}), or by using a @code{typedef} or a @code{#define} to
3556define @code{YYSTYPE} to be a union type whose member names are
3557the type tags.
bfa74976
RS
3558
3559@item
14ded682
AD
3560Choose one of those types for each symbol (terminal or nonterminal) for
3561which semantic values are used. This is done for tokens with the
3562@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3563and for groupings with the @code{%type} Bison declaration (@pxref{Type
3564Decl, ,Nonterminal Symbols}).
bfa74976
RS
3565@end itemize
3566
342b8b6e 3567@node Actions
bfa74976
RS
3568@subsection Actions
3569@cindex action
3570@vindex $$
3571@vindex $@var{n}
1f68dca5
AR
3572@vindex $@var{name}
3573@vindex $[@var{name}]
bfa74976
RS
3574
3575An action accompanies a syntactic rule and contains C code to be executed
3576each time an instance of that rule is recognized. The task of most actions
3577is to compute a semantic value for the grouping built by the rule from the
3578semantic values associated with tokens or smaller groupings.
3579
287c78f6
PE
3580An action consists of braced code containing C statements, and can be
3581placed at any position in the rule;
704a47c4
AD
3582it is executed at that position. Most rules have just one action at the
3583end of the rule, following all the components. Actions in the middle of
3584a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3585Actions, ,Actions in Mid-Rule}).
bfa74976 3586
9913d6e4
JD
3587The C code in an action can refer to the semantic values of the
3588components matched by the rule with the construct @code{$@var{n}},
3589which stands for the value of the @var{n}th component. The semantic
3590value for the grouping being constructed is @code{$$}. In addition,
3591the semantic values of symbols can be accessed with the named
3592references construct @code{$@var{name}} or @code{$[@var{name}]}.
3593Bison translates both of these constructs into expressions of the
3594appropriate type when it copies the actions into the parser
3595implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3596for the current grouping) is translated to a modifiable lvalue, so it
3597can be assigned to.
bfa74976
RS
3598
3599Here is a typical example:
3600
3601@example
3602@group
de6be119
AD
3603exp:
3604@dots{}
3605| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3606@end group
3607@end example
3608
1f68dca5
AR
3609Or, in terms of named references:
3610
3611@example
3612@group
de6be119
AD
3613exp[result]:
3614@dots{}
3615| exp[left] '+' exp[right] @{ $result = $left + $right; @}
1f68dca5
AR
3616@end group
3617@end example
3618
bfa74976
RS
3619@noindent
3620This rule constructs an @code{exp} from two smaller @code{exp} groupings
3621connected by a plus-sign token. In the action, @code{$1} and @code{$3}
1f68dca5 3622(@code{$left} and @code{$right})
bfa74976
RS
3623refer to the semantic values of the two component @code{exp} groupings,
3624which are the first and third symbols on the right hand side of the rule.
1f68dca5
AR
3625The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3626semantic value of
bfa74976
RS
3627the addition-expression just recognized by the rule. If there were a
3628useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3629referred to as @code{$2}.
bfa74976 3630
ce24f7f5
JD
3631@xref{Named References}, for more information about using the named
3632references construct.
1f68dca5 3633
3ded9a63
AD
3634Note that the vertical-bar character @samp{|} is really a rule
3635separator, and actions are attached to a single rule. This is a
3636difference with tools like Flex, for which @samp{|} stands for either
3637``or'', or ``the same action as that of the next rule''. In the
3638following example, the action is triggered only when @samp{b} is found:
3639
3640@example
3641@group
3642a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3643@end group
3644@end example
3645
bfa74976
RS
3646@cindex default action
3647If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3648@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3649becomes the value of the whole rule. Of course, the default action is
3650valid only if the two data types match. There is no meaningful default
3651action for an empty rule; every empty rule must have an explicit action
3652unless the rule's value does not matter.
bfa74976
RS
3653
3654@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3655to tokens and groupings on the stack @emph{before} those that match the
3656current rule. This is a very risky practice, and to use it reliably
3657you must be certain of the context in which the rule is applied. Here
3658is a case in which you can use this reliably:
3659
3660@example
3661@group
de6be119
AD
3662foo:
3663 expr bar '+' expr @{ @dots{} @}
3664| expr bar '-' expr @{ @dots{} @}
3665;
bfa74976
RS
3666@end group
3667
3668@group
de6be119
AD
3669bar:
3670 /* empty */ @{ previous_expr = $0; @}
3671;
bfa74976
RS
3672@end group
3673@end example
3674
3675As long as @code{bar} is used only in the fashion shown here, @code{$0}
3676always refers to the @code{expr} which precedes @code{bar} in the
3677definition of @code{foo}.
3678
32c29292 3679@vindex yylval
742e4900 3680It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3681any, from a semantic action.
3682This semantic value is stored in @code{yylval}.
3683@xref{Action Features, ,Special Features for Use in Actions}.
3684
342b8b6e 3685@node Action Types
bfa74976
RS
3686@subsection Data Types of Values in Actions
3687@cindex action data types
3688@cindex data types in actions
3689
3690If you have chosen a single data type for semantic values, the @code{$$}
3691and @code{$@var{n}} constructs always have that data type.
3692
3693If you have used @code{%union} to specify a variety of data types, then you
3694must declare a choice among these types for each terminal or nonterminal
3695symbol that can have a semantic value. Then each time you use @code{$$} or
3696@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3697in the rule. In this example,
bfa74976
RS
3698
3699@example
3700@group
de6be119
AD
3701exp:
3702 @dots{}
3703| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3704@end group
3705@end example
3706
3707@noindent
3708@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3709have the data type declared for the nonterminal symbol @code{exp}. If
3710@code{$2} were used, it would have the data type declared for the
e0c471a9 3711terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3712
3713Alternatively, you can specify the data type when you refer to the value,
3714by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3715reference. For example, if you have defined types as shown here:
3716
3717@example
3718@group
3719%union @{
3720 int itype;
3721 double dtype;
3722@}
3723@end group
3724@end example
3725
3726@noindent
3727then you can write @code{$<itype>1} to refer to the first subunit of the
3728rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3729
342b8b6e 3730@node Mid-Rule Actions
bfa74976
RS
3731@subsection Actions in Mid-Rule
3732@cindex actions in mid-rule
3733@cindex mid-rule actions
3734
3735Occasionally it is useful to put an action in the middle of a rule.
3736These actions are written just like usual end-of-rule actions, but they
3737are executed before the parser even recognizes the following components.
3738
3739A mid-rule action may refer to the components preceding it using
3740@code{$@var{n}}, but it may not refer to subsequent components because
3741it is run before they are parsed.
3742
3743The mid-rule action itself counts as one of the components of the rule.
3744This makes a difference when there is another action later in the same rule
3745(and usually there is another at the end): you have to count the actions
3746along with the symbols when working out which number @var{n} to use in
3747@code{$@var{n}}.
3748
3749The mid-rule action can also have a semantic value. The action can set
3750its value with an assignment to @code{$$}, and actions later in the rule
3751can refer to the value using @code{$@var{n}}. Since there is no symbol
3752to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3753in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3754specify a data type each time you refer to this value.
bfa74976
RS
3755
3756There is no way to set the value of the entire rule with a mid-rule
3757action, because assignments to @code{$$} do not have that effect. The
3758only way to set the value for the entire rule is with an ordinary action
3759at the end of the rule.
3760
3761Here is an example from a hypothetical compiler, handling a @code{let}
3762statement that looks like @samp{let (@var{variable}) @var{statement}} and
3763serves to create a variable named @var{variable} temporarily for the
3764duration of @var{statement}. To parse this construct, we must put
3765@var{variable} into the symbol table while @var{statement} is parsed, then
3766remove it afterward. Here is how it is done:
3767
3768@example
3769@group
de6be119
AD
3770stmt:
3771 LET '(' var ')'
3772 @{ $<context>$ = push_context (); declare_variable ($3); @}
3773 stmt
3774 @{ $$ = $6; pop_context ($<context>5); @}
bfa74976
RS
3775@end group
3776@end example
3777
3778@noindent
3779As soon as @samp{let (@var{variable})} has been recognized, the first
3780action is run. It saves a copy of the current semantic context (the
3781list of accessible variables) as its semantic value, using alternative
3782@code{context} in the data-type union. Then it calls
3783@code{declare_variable} to add the new variable to that list. Once the
3784first action is finished, the embedded statement @code{stmt} can be
3785parsed. Note that the mid-rule action is component number 5, so the
3786@samp{stmt} is component number 6.
3787
3788After the embedded statement is parsed, its semantic value becomes the
3789value of the entire @code{let}-statement. Then the semantic value from the
3790earlier action is used to restore the prior list of variables. This
3791removes the temporary @code{let}-variable from the list so that it won't
3792appear to exist while the rest of the program is parsed.
3793
841a7737
JD
3794@findex %destructor
3795@cindex discarded symbols, mid-rule actions
3796@cindex error recovery, mid-rule actions
3797In the above example, if the parser initiates error recovery (@pxref{Error
3798Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3799it might discard the previous semantic context @code{$<context>5} without
3800restoring it.
3801Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3802Discarded Symbols}).
ec5479ce
JD
3803However, Bison currently provides no means to declare a destructor specific to
3804a particular mid-rule action's semantic value.
841a7737
JD
3805
3806One solution is to bury the mid-rule action inside a nonterminal symbol and to
3807declare a destructor for that symbol:
3808
3809@example
3810@group
3811%type <context> let
3812%destructor @{ pop_context ($$); @} let
3813
3814%%
3815
de6be119
AD
3816stmt:
3817 let stmt
3818 @{
3819 $$ = $2;
3820 pop_context ($1);
3821 @};
841a7737 3822
de6be119
AD
3823let:
3824 LET '(' var ')'
3825 @{
3826 $$ = push_context ();
3827 declare_variable ($3);
3828 @};
841a7737
JD
3829
3830@end group
3831@end example
3832
3833@noindent
3834Note that the action is now at the end of its rule.
3835Any mid-rule action can be converted to an end-of-rule action in this way, and
3836this is what Bison actually does to implement mid-rule actions.
3837
bfa74976
RS
3838Taking action before a rule is completely recognized often leads to
3839conflicts since the parser must commit to a parse in order to execute the
3840action. For example, the following two rules, without mid-rule actions,
3841can coexist in a working parser because the parser can shift the open-brace
3842token and look at what follows before deciding whether there is a
3843declaration or not:
3844
3845@example
3846@group
de6be119
AD
3847compound:
3848 '@{' declarations statements '@}'
3849| '@{' statements '@}'
3850;
bfa74976
RS
3851@end group
3852@end example
3853
3854@noindent
3855But when we add a mid-rule action as follows, the rules become nonfunctional:
3856
3857@example
3858@group
de6be119
AD
3859compound:
3860 @{ prepare_for_local_variables (); @}
3861 '@{' declarations statements '@}'
bfa74976
RS
3862@end group
3863@group
de6be119
AD
3864| '@{' statements '@}'
3865;
bfa74976
RS
3866@end group
3867@end example
3868
3869@noindent
3870Now the parser is forced to decide whether to run the mid-rule action
3871when it has read no farther than the open-brace. In other words, it
3872must commit to using one rule or the other, without sufficient
3873information to do it correctly. (The open-brace token is what is called
742e4900
JD
3874the @dfn{lookahead} token at this time, since the parser is still
3875deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3876
3877You might think that you could correct the problem by putting identical
3878actions into the two rules, like this:
3879
3880@example
3881@group
de6be119
AD
3882compound:
3883 @{ prepare_for_local_variables (); @}
3884 '@{' declarations statements '@}'
3885| @{ prepare_for_local_variables (); @}
3886 '@{' statements '@}'
3887;
bfa74976
RS
3888@end group
3889@end example
3890
3891@noindent
3892But this does not help, because Bison does not realize that the two actions
3893are identical. (Bison never tries to understand the C code in an action.)
3894
3895If the grammar is such that a declaration can be distinguished from a
3896statement by the first token (which is true in C), then one solution which
3897does work is to put the action after the open-brace, like this:
3898
3899@example
3900@group
de6be119
AD
3901compound:
3902 '@{' @{ prepare_for_local_variables (); @}
3903 declarations statements '@}'
3904| '@{' statements '@}'
3905;
bfa74976
RS
3906@end group
3907@end example
3908
3909@noindent
3910Now the first token of the following declaration or statement,
3911which would in any case tell Bison which rule to use, can still do so.
3912
3913Another solution is to bury the action inside a nonterminal symbol which
3914serves as a subroutine:
3915
3916@example
3917@group
de6be119
AD
3918subroutine:
3919 /* empty */ @{ prepare_for_local_variables (); @}
3920;
bfa74976
RS
3921@end group
3922
3923@group
de6be119
AD
3924compound:
3925 subroutine '@{' declarations statements '@}'
3926| subroutine '@{' statements '@}'
3927;
bfa74976
RS
3928@end group
3929@end example
3930
3931@noindent
3932Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3933deciding which rule for @code{compound} it will eventually use.
bfa74976 3934
7404cdf3 3935@node Tracking Locations
847bf1f5
AD
3936@section Tracking Locations
3937@cindex location
95923bd6
AD
3938@cindex textual location
3939@cindex location, textual
847bf1f5
AD
3940
3941Though grammar rules and semantic actions are enough to write a fully
72d2299c 3942functional parser, it can be useful to process some additional information,
3e259915
MA
3943especially symbol locations.
3944
704a47c4
AD
3945The way locations are handled is defined by providing a data type, and
3946actions to take when rules are matched.
847bf1f5
AD
3947
3948@menu
3949* Location Type:: Specifying a data type for locations.
3950* Actions and Locations:: Using locations in actions.
3951* Location Default Action:: Defining a general way to compute locations.
3952@end menu
3953
342b8b6e 3954@node Location Type
847bf1f5
AD
3955@subsection Data Type of Locations
3956@cindex data type of locations
3957@cindex default location type
3958
3959Defining a data type for locations is much simpler than for semantic values,
3960since all tokens and groupings always use the same type.
3961
50cce58e
PE
3962You can specify the type of locations by defining a macro called
3963@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3964defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3965When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3966four members:
3967
3968@example
6273355b 3969typedef struct YYLTYPE
847bf1f5
AD
3970@{
3971 int first_line;
3972 int first_column;
3973 int last_line;
3974 int last_column;
6273355b 3975@} YYLTYPE;
847bf1f5
AD
3976@end example
3977
8fbbeba2
AD
3978When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3979initializes all these fields to 1 for @code{yylloc}. To initialize
3980@code{yylloc} with a custom location type (or to chose a different
3981initialization), use the @code{%initial-action} directive. @xref{Initial
3982Action Decl, , Performing Actions before Parsing}.
cd48d21d 3983
342b8b6e 3984@node Actions and Locations
847bf1f5
AD
3985@subsection Actions and Locations
3986@cindex location actions
3987@cindex actions, location
3988@vindex @@$
3989@vindex @@@var{n}
1f68dca5
AR
3990@vindex @@@var{name}
3991@vindex @@[@var{name}]
847bf1f5
AD
3992
3993Actions are not only useful for defining language semantics, but also for
3994describing the behavior of the output parser with locations.
3995
3996The most obvious way for building locations of syntactic groupings is very
72d2299c 3997similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3998constructs can be used to access the locations of the elements being matched.
3999The location of the @var{n}th component of the right hand side is
4000@code{@@@var{n}}, while the location of the left hand side grouping is
4001@code{@@$}.
4002
1f68dca5
AR
4003In addition, the named references construct @code{@@@var{name}} and
4004@code{@@[@var{name}]} may also be used to address the symbol locations.
ce24f7f5
JD
4005@xref{Named References}, for more information about using the named
4006references construct.
1f68dca5 4007
3e259915 4008Here is a basic example using the default data type for locations:
847bf1f5
AD
4009
4010@example
4011@group
de6be119
AD
4012exp:
4013 @dots{}
4014| exp '/' exp
4015 @{
4016 @@$.first_column = @@1.first_column;
4017 @@$.first_line = @@1.first_line;
4018 @@$.last_column = @@3.last_column;
4019 @@$.last_line = @@3.last_line;
4020 if ($3)
4021 $$ = $1 / $3;
4022 else
4023 @{
4024 $$ = 1;
4025 fprintf (stderr,
4026 "Division by zero, l%d,c%d-l%d,c%d",
4027 @@3.first_line, @@3.first_column,
4028 @@3.last_line, @@3.last_column);
4029 @}
4030 @}
847bf1f5
AD
4031@end group
4032@end example
4033
3e259915 4034As for semantic values, there is a default action for locations that is
72d2299c 4035run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4036beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4037last symbol.
3e259915 4038
72d2299c 4039With this default action, the location tracking can be fully automatic. The
3e259915
MA
4040example above simply rewrites this way:
4041
4042@example
4043@group
de6be119
AD
4044exp:
4045 @dots{}
4046| exp '/' exp
4047 @{
4048 if ($3)
4049 $$ = $1 / $3;
4050 else
4051 @{
4052 $$ = 1;
4053 fprintf (stderr,
4054 "Division by zero, l%d,c%d-l%d,c%d",
4055 @@3.first_line, @@3.first_column,
4056 @@3.last_line, @@3.last_column);
4057 @}
4058 @}
3e259915
MA
4059@end group
4060@end example
847bf1f5 4061
32c29292 4062@vindex yylloc
742e4900 4063It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4064from a semantic action.
4065This location is stored in @code{yylloc}.
4066@xref{Action Features, ,Special Features for Use in Actions}.
4067
342b8b6e 4068@node Location Default Action
847bf1f5
AD
4069@subsection Default Action for Locations
4070@vindex YYLLOC_DEFAULT
35430378 4071@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4072
72d2299c 4073Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4074locations are much more general than semantic values, there is room in
4075the output parser to redefine the default action to take for each
72d2299c 4076rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4077matched, before the associated action is run. It is also invoked
4078while processing a syntax error, to compute the error's location.
35430378 4079Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4080parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4081of that ambiguity.
847bf1f5 4082
3e259915 4083Most of the time, this macro is general enough to suppress location
79282c6c 4084dedicated code from semantic actions.
847bf1f5 4085
72d2299c 4086The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4087the location of the grouping (the result of the computation). When a
766de5eb 4088rule is matched, the second parameter identifies locations of
96b93a3d 4089all right hand side elements of the rule being matched, and the third
8710fc41 4090parameter is the size of the rule's right hand side.
35430378 4091When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4092right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4093When processing a syntax error, the second parameter identifies locations
4094of the symbols that were discarded during error processing, and the third
96b93a3d 4095parameter is the number of discarded symbols.
847bf1f5 4096
766de5eb 4097By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4098
ea118b72 4099@example
847bf1f5 4100@group
ea118b72
AD
4101# define YYLLOC_DEFAULT(Cur, Rhs, N) \
4102do \
4103 if (N) \
4104 @{ \
4105 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4106 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4107 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4108 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4109 @} \
4110 else \
4111 @{ \
4112 (Cur).first_line = (Cur).last_line = \
4113 YYRHSLOC(Rhs, 0).last_line; \
4114 (Cur).first_column = (Cur).last_column = \
4115 YYRHSLOC(Rhs, 0).last_column; \
4116 @} \
4117while (0)
847bf1f5 4118@end group
ea118b72 4119@end example
676385e2 4120
2c0f9706 4121@noindent
766de5eb
PE
4122where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4123in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4124just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4125
3e259915 4126When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4127
3e259915 4128@itemize @bullet
79282c6c 4129@item
72d2299c 4130All arguments are free of side-effects. However, only the first one (the
3e259915 4131result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4132
3e259915 4133@item
766de5eb
PE
4134For consistency with semantic actions, valid indexes within the
4135right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4136valid index, and it refers to the symbol just before the reduction.
4137During error processing @var{n} is always positive.
0ae99356
PE
4138
4139@item
4140Your macro should parenthesize its arguments, if need be, since the
4141actual arguments may not be surrounded by parentheses. Also, your
4142macro should expand to something that can be used as a single
4143statement when it is followed by a semicolon.
3e259915 4144@end itemize
847bf1f5 4145
908c8647 4146@node Named References
ce24f7f5 4147@section Named References
908c8647
JD
4148@cindex named references
4149
7d31f092
JD
4150As described in the preceding sections, the traditional way to refer to any
4151semantic value or location is a @dfn{positional reference}, which takes the
4152form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4153such a reference is not very descriptive. Moreover, if you later decide to
4154insert or remove symbols in the right-hand side of a grammar rule, the need
4155to renumber such references can be tedious and error-prone.
4156
4157To avoid these issues, you can also refer to a semantic value or location
4158using a @dfn{named reference}. First of all, original symbol names may be
4159used as named references. For example:
908c8647
JD
4160
4161@example
4162@group
4163invocation: op '(' args ')'
4164 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4165@end group
4166@end example
4167
4168@noindent
7d31f092 4169Positional and named references can be mixed arbitrarily. For example:
908c8647
JD
4170
4171@example
4172@group
4173invocation: op '(' args ')'
4174 @{ $$ = new_invocation ($op, $args, @@$); @}
4175@end group
4176@end example
4177
4178@noindent
4179However, sometimes regular symbol names are not sufficient due to
4180ambiguities:
4181
4182@example
4183@group
4184exp: exp '/' exp
4185 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4186
4187exp: exp '/' exp
4188 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4189
4190exp: exp '/' exp
4191 @{ $$ = $1 / $3; @} // No error.
4192@end group
4193@end example
4194
4195@noindent
4196When ambiguity occurs, explicitly declared names may be used for values and
4197locations. Explicit names are declared as a bracketed name after a symbol
4198appearance in rule definitions. For example:
4199@example
4200@group
4201exp[result]: exp[left] '/' exp[right]
4202 @{ $result = $left / $right; @}
4203@end group
4204@end example
4205
4206@noindent
ce24f7f5
JD
4207In order to access a semantic value generated by a mid-rule action, an
4208explicit name may also be declared by putting a bracketed name after the
4209closing brace of the mid-rule action code:
908c8647
JD
4210@example
4211@group
4212exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4213 @{ $res = $left + $right; @}
4214@end group
4215@end example
4216
4217@noindent
4218
4219In references, in order to specify names containing dots and dashes, an explicit
4220bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4221@example
4222@group
14f4455e 4223if-stmt: "if" '(' expr ')' "then" then.stmt ';'
908c8647
JD
4224 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4225@end group
4226@end example
4227
4228It often happens that named references are followed by a dot, dash or other
4229C punctuation marks and operators. By default, Bison will read
ce24f7f5
JD
4230@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4231@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4232value. In order to force Bison to recognize @samp{name.suffix} in its
4233entirety as the name of a semantic value, the bracketed syntax
4234@samp{$[name.suffix]} must be used.
4235
4236The named references feature is experimental. More user feedback will help
4237to stabilize it.
908c8647 4238
342b8b6e 4239@node Declarations
bfa74976
RS
4240@section Bison Declarations
4241@cindex declarations, Bison
4242@cindex Bison declarations
4243
4244The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4245used in formulating the grammar and the data types of semantic values.
4246@xref{Symbols}.
4247
4248All token type names (but not single-character literal tokens such as
4249@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4250declared if you need to specify which data type to use for the semantic
4251value (@pxref{Multiple Types, ,More Than One Value Type}).
4252
9913d6e4
JD
4253The first rule in the grammar file also specifies the start symbol, by
4254default. If you want some other symbol to be the start symbol, you
4255must declare it explicitly (@pxref{Language and Grammar, ,Languages
4256and Context-Free Grammars}).
bfa74976
RS
4257
4258@menu
b50d2359 4259* Require Decl:: Requiring a Bison version.
bfa74976
RS
4260* Token Decl:: Declaring terminal symbols.
4261* Precedence Decl:: Declaring terminals with precedence and associativity.
4262* Union Decl:: Declaring the set of all semantic value types.
4263* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4264* Initial Action Decl:: Code run before parsing starts.
72f889cc 4265* Destructor Decl:: Declaring how symbols are freed.
56d60c19 4266* Printer Decl:: Declaring how symbol values are displayed.
d6328241 4267* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4268* Start Decl:: Specifying the start symbol.
4269* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4270* Push Decl:: Requesting a push parser.
bfa74976 4271* Decl Summary:: Table of all Bison declarations.
2f4518a1 4272* %define Summary:: Defining variables to adjust Bison's behavior.
8e6f2266 4273* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4274@end menu
4275
b50d2359
AD
4276@node Require Decl
4277@subsection Require a Version of Bison
4278@cindex version requirement
4279@cindex requiring a version of Bison
4280@findex %require
4281
4282You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4283the requirement is not met, @command{bison} exits with an error (exit
4284status 63).
b50d2359
AD
4285
4286@example
4287%require "@var{version}"
4288@end example
4289
342b8b6e 4290@node Token Decl
bfa74976
RS
4291@subsection Token Type Names
4292@cindex declaring token type names
4293@cindex token type names, declaring
931c7513 4294@cindex declaring literal string tokens
bfa74976
RS
4295@findex %token
4296
4297The basic way to declare a token type name (terminal symbol) is as follows:
4298
4299@example
4300%token @var{name}
4301@end example
4302
4303Bison will convert this into a @code{#define} directive in
4304the parser, so that the function @code{yylex} (if it is in this file)
4305can use the name @var{name} to stand for this token type's code.
4306
14ded682
AD
4307Alternatively, you can use @code{%left}, @code{%right}, or
4308@code{%nonassoc} instead of @code{%token}, if you wish to specify
4309associativity and precedence. @xref{Precedence Decl, ,Operator
4310Precedence}.
bfa74976
RS
4311
4312You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4313a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4314following the token name:
bfa74976
RS
4315
4316@example
4317%token NUM 300
1452af69 4318%token XNUM 0x12d // a GNU extension
bfa74976
RS
4319@end example
4320
4321@noindent
4322It is generally best, however, to let Bison choose the numeric codes for
4323all token types. Bison will automatically select codes that don't conflict
e966383b 4324with each other or with normal characters.
bfa74976
RS
4325
4326In the event that the stack type is a union, you must augment the
4327@code{%token} or other token declaration to include the data type
704a47c4
AD
4328alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4329Than One Value Type}).
bfa74976
RS
4330
4331For example:
4332
4333@example
4334@group
4335%union @{ /* define stack type */
4336 double val;
4337 symrec *tptr;
4338@}
4339%token <val> NUM /* define token NUM and its type */
4340@end group
4341@end example
4342
931c7513
RS
4343You can associate a literal string token with a token type name by
4344writing the literal string at the end of a @code{%token}
4345declaration which declares the name. For example:
4346
4347@example
4348%token arrow "=>"
4349@end example
4350
4351@noindent
4352For example, a grammar for the C language might specify these names with
4353equivalent literal string tokens:
4354
4355@example
4356%token <operator> OR "||"
4357%token <operator> LE 134 "<="
4358%left OR "<="
4359@end example
4360
4361@noindent
4362Once you equate the literal string and the token name, you can use them
4363interchangeably in further declarations or the grammar rules. The
4364@code{yylex} function can use the token name or the literal string to
4365obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4366Syntax error messages passed to @code{yyerror} from the parser will reference
4367the literal string instead of the token name.
4368
4369The token numbered as 0 corresponds to end of file; the following line
4370allows for nicer error messages referring to ``end of file'' instead
4371of ``$end'':
4372
4373@example
4374%token END 0 "end of file"
4375@end example
931c7513 4376
342b8b6e 4377@node Precedence Decl
bfa74976
RS
4378@subsection Operator Precedence
4379@cindex precedence declarations
4380@cindex declaring operator precedence
4381@cindex operator precedence, declaring
4382
4383Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4384declare a token and specify its precedence and associativity, all at
4385once. These are called @dfn{precedence declarations}.
704a47c4
AD
4386@xref{Precedence, ,Operator Precedence}, for general information on
4387operator precedence.
bfa74976 4388
ab7f29f8 4389The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4390@code{%token}: either
4391
4392@example
4393%left @var{symbols}@dots{}
4394@end example
4395
4396@noindent
4397or
4398
4399@example
4400%left <@var{type}> @var{symbols}@dots{}
4401@end example
4402
4403And indeed any of these declarations serves the purposes of @code{%token}.
4404But in addition, they specify the associativity and relative precedence for
4405all the @var{symbols}:
4406
4407@itemize @bullet
4408@item
4409The associativity of an operator @var{op} determines how repeated uses
4410of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4411@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4412grouping @var{y} with @var{z} first. @code{%left} specifies
4413left-associativity (grouping @var{x} with @var{y} first) and
4414@code{%right} specifies right-associativity (grouping @var{y} with
4415@var{z} first). @code{%nonassoc} specifies no associativity, which
4416means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4417considered a syntax error.
4418
4419@item
4420The precedence of an operator determines how it nests with other operators.
4421All the tokens declared in a single precedence declaration have equal
4422precedence and nest together according to their associativity.
4423When two tokens declared in different precedence declarations associate,
4424the one declared later has the higher precedence and is grouped first.
4425@end itemize
4426
ab7f29f8
JD
4427For backward compatibility, there is a confusing difference between the
4428argument lists of @code{%token} and precedence declarations.
4429Only a @code{%token} can associate a literal string with a token type name.
4430A precedence declaration always interprets a literal string as a reference to a
4431separate token.
4432For example:
4433
4434@example
4435%left OR "<=" // Does not declare an alias.
4436%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4437@end example
4438
342b8b6e 4439@node Union Decl
bfa74976
RS
4440@subsection The Collection of Value Types
4441@cindex declaring value types
4442@cindex value types, declaring
4443@findex %union
4444
287c78f6
PE
4445The @code{%union} declaration specifies the entire collection of
4446possible data types for semantic values. The keyword @code{%union} is
4447followed by braced code containing the same thing that goes inside a
4448@code{union} in C@.
bfa74976
RS
4449
4450For example:
4451
4452@example
4453@group
4454%union @{
4455 double val;
4456 symrec *tptr;
4457@}
4458@end group
4459@end example
4460
4461@noindent
4462This says that the two alternative types are @code{double} and @code{symrec
4463*}. They are given names @code{val} and @code{tptr}; these names are used
4464in the @code{%token} and @code{%type} declarations to pick one of the types
4465for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4466
35430378 4467As an extension to POSIX, a tag is allowed after the
6273355b
PE
4468@code{union}. For example:
4469
4470@example
4471@group
4472%union value @{
4473 double val;
4474 symrec *tptr;
4475@}
4476@end group
4477@end example
4478
d6ca7905 4479@noindent
6273355b
PE
4480specifies the union tag @code{value}, so the corresponding C type is
4481@code{union value}. If you do not specify a tag, it defaults to
4482@code{YYSTYPE}.
4483
35430378 4484As another extension to POSIX, you may specify multiple
d6ca7905
PE
4485@code{%union} declarations; their contents are concatenated. However,
4486only the first @code{%union} declaration can specify a tag.
4487
6273355b 4488Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4489a semicolon after the closing brace.
4490
ddc8ede1
PE
4491Instead of @code{%union}, you can define and use your own union type
4492@code{YYSTYPE} if your grammar contains at least one
4493@samp{<@var{type}>} tag. For example, you can put the following into
4494a header file @file{parser.h}:
4495
4496@example
4497@group
4498union YYSTYPE @{
4499 double val;
4500 symrec *tptr;
4501@};
4502typedef union YYSTYPE YYSTYPE;
4503@end group
4504@end example
4505
4506@noindent
4507and then your grammar can use the following
4508instead of @code{%union}:
4509
4510@example
4511@group
4512%@{
4513#include "parser.h"
4514%@}
4515%type <val> expr
4516%token <tptr> ID
4517@end group
4518@end example
4519
342b8b6e 4520@node Type Decl
bfa74976
RS
4521@subsection Nonterminal Symbols
4522@cindex declaring value types, nonterminals
4523@cindex value types, nonterminals, declaring
4524@findex %type
4525
4526@noindent
4527When you use @code{%union} to specify multiple value types, you must
4528declare the value type of each nonterminal symbol for which values are
4529used. This is done with a @code{%type} declaration, like this:
4530
4531@example
4532%type <@var{type}> @var{nonterminal}@dots{}
4533@end example
4534
4535@noindent
704a47c4
AD
4536Here @var{nonterminal} is the name of a nonterminal symbol, and
4537@var{type} is the name given in the @code{%union} to the alternative
4538that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4539can give any number of nonterminal symbols in the same @code{%type}
4540declaration, if they have the same value type. Use spaces to separate
4541the symbol names.
bfa74976 4542
931c7513
RS
4543You can also declare the value type of a terminal symbol. To do this,
4544use the same @code{<@var{type}>} construction in a declaration for the
4545terminal symbol. All kinds of token declarations allow
4546@code{<@var{type}>}.
4547
18d192f0
AD
4548@node Initial Action Decl
4549@subsection Performing Actions before Parsing
4550@findex %initial-action
4551
4552Sometimes your parser needs to perform some initializations before
4553parsing. The @code{%initial-action} directive allows for such arbitrary
4554code.
4555
4556@deffn {Directive} %initial-action @{ @var{code} @}
4557@findex %initial-action
287c78f6 4558Declare that the braced @var{code} must be invoked before parsing each time
cd735a8c
AD
4559@code{yyparse} is called. The @var{code} may use @code{$$} (or
4560@code{$<@var{tag}>$}) and @code{@@$} --- initial value and location of the
4561lookahead --- and the @code{%parse-param}.
18d192f0
AD
4562@end deffn
4563
451364ed
AD
4564For instance, if your locations use a file name, you may use
4565
4566@example
48b16bbc 4567%parse-param @{ char const *file_name @};
451364ed
AD
4568%initial-action
4569@{
4626a15d 4570 @@$.initialize (file_name);
451364ed
AD
4571@};
4572@end example
4573
18d192f0 4574
72f889cc
AD
4575@node Destructor Decl
4576@subsection Freeing Discarded Symbols
4577@cindex freeing discarded symbols
4578@findex %destructor
12e35840 4579@findex <*>
3ebecc24 4580@findex <>
a85284cf
AD
4581During error recovery (@pxref{Error Recovery}), symbols already pushed
4582on the stack and tokens coming from the rest of the file are discarded
4583until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4584or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4585symbols on the stack must be discarded. Even if the parser succeeds, it
4586must discard the start symbol.
258b75ca
PE
4587
4588When discarded symbols convey heap based information, this memory is
4589lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4590in traditional compilers, it is unacceptable for programs like shells or
4591protocol implementations that may parse and execute indefinitely.
258b75ca 4592
a85284cf
AD
4593The @code{%destructor} directive defines code that is called when a
4594symbol is automatically discarded.
72f889cc
AD
4595
4596@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4597@findex %destructor
287c78f6 4598Invoke the braced @var{code} whenever the parser discards one of the
4982f078
AD
4599@var{symbols}. Within @var{code}, @code{$$} (or @code{$<@var{tag}>$})
4600designates the semantic value associated with the discarded symbol, and
4601@code{@@$} designates its location. The additional parser parameters are
4602also available (@pxref{Parser Function, , The Parser Function
4603@code{yyparse}}).
ec5479ce 4604
b2a0b7ca
JD
4605When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4606per-symbol @code{%destructor}.
4607You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4608tag among @var{symbols}.
b2a0b7ca 4609In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4610grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4611per-symbol @code{%destructor}.
4612
12e35840 4613Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4614(These default forms are experimental.
4615More user feedback will help to determine whether they should become permanent
4616features.)
3ebecc24 4617You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4618exactly one @code{%destructor} declaration in your grammar file.
4619The parser will invoke the @var{code} associated with one of these whenever it
4620discards any user-defined grammar symbol that has no per-symbol and no per-type
4621@code{%destructor}.
4622The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4623symbol for which you have formally declared a semantic type tag (@code{%type}
4624counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4625The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4626symbol that has no declared semantic type tag.
72f889cc
AD
4627@end deffn
4628
b2a0b7ca 4629@noindent
12e35840 4630For example:
72f889cc 4631
ea118b72 4632@example
ec5479ce
JD
4633%union @{ char *string; @}
4634%token <string> STRING1
4635%token <string> STRING2
4636%type <string> string1
4637%type <string> string2
b2a0b7ca
JD
4638%union @{ char character; @}
4639%token <character> CHR
4640%type <character> chr
12e35840
JD
4641%token TAGLESS
4642
b2a0b7ca 4643%destructor @{ @} <character>
12e35840
JD
4644%destructor @{ free ($$); @} <*>
4645%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4646%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
ea118b72 4647@end example
72f889cc
AD
4648
4649@noindent
b2a0b7ca
JD
4650guarantees that, when the parser discards any user-defined symbol that has a
4651semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4652to @code{free} by default.
ec5479ce
JD
4653However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4654prints its line number to @code{stdout}.
4655It performs only the second @code{%destructor} in this case, so it invokes
4656@code{free} only once.
12e35840
JD
4657Finally, the parser merely prints a message whenever it discards any symbol,
4658such as @code{TAGLESS}, that has no semantic type tag.
4659
4660A Bison-generated parser invokes the default @code{%destructor}s only for
4661user-defined as opposed to Bison-defined symbols.
4662For example, the parser will not invoke either kind of default
4663@code{%destructor} for the special Bison-defined symbols @code{$accept},
4664@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4665none of which you can reference in your grammar.
4666It also will not invoke either for the @code{error} token (@pxref{Table of
4667Symbols, ,error}), which is always defined by Bison regardless of whether you
4668reference it in your grammar.
4669However, it may invoke one of them for the end token (token 0) if you
4670redefine it from @code{$end} to, for example, @code{END}:
3508ce36 4671
ea118b72 4672@example
3508ce36 4673%token END 0
ea118b72 4674@end example
3508ce36 4675
12e35840
JD
4676@cindex actions in mid-rule
4677@cindex mid-rule actions
4678Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4679mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
ce24f7f5
JD
4680That is, Bison does not consider a mid-rule to have a semantic value if you
4681do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4682(where @var{n} is the right-hand side symbol position of the mid-rule) in
4683any later action in that rule. However, if you do reference either, the
4684Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4685it discards the mid-rule symbol.
12e35840 4686
3508ce36
JD
4687@ignore
4688@noindent
4689In the future, it may be possible to redefine the @code{error} token as a
4690nonterminal that captures the discarded symbols.
4691In that case, the parser will invoke the default destructor for it as well.
4692@end ignore
4693
e757bb10
AD
4694@sp 1
4695
4696@cindex discarded symbols
4697@dfn{Discarded symbols} are the following:
4698
4699@itemize
4700@item
4701stacked symbols popped during the first phase of error recovery,
4702@item
4703incoming terminals during the second phase of error recovery,
4704@item
742e4900 4705the current lookahead and the entire stack (except the current
9d9b8b70 4706right-hand side symbols) when the parser returns immediately, and
258b75ca 4707@item
d3e4409a
AD
4708the current lookahead and the entire stack (including the current right-hand
4709side symbols) when the C++ parser (@file{lalr1.cc}) catches an exception in
4710@code{parse},
4711@item
258b75ca 4712the start symbol, when the parser succeeds.
e757bb10
AD
4713@end itemize
4714
9d9b8b70
PE
4715The parser can @dfn{return immediately} because of an explicit call to
4716@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4717exhaustion.
4718
29553547 4719Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4720error via @code{YYERROR} are not discarded automatically. As a rule
4721of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4722the memory.
e757bb10 4723
56d60c19
AD
4724@node Printer Decl
4725@subsection Printing Semantic Values
4726@cindex printing semantic values
4727@findex %printer
4728@findex <*>
4729@findex <>
4730When run-time traces are enabled (@pxref{Tracing, ,Tracing Your Parser}),
4731the parser reports its actions, such as reductions. When a symbol involved
4732in an action is reported, only its kind is displayed, as the parser cannot
4733know how semantic values should be formatted.
4734
4735The @code{%printer} directive defines code that is called when a symbol is
4736reported. Its syntax is the same as @code{%destructor} (@pxref{Destructor
4737Decl, , Freeing Discarded Symbols}).
4738
4739@deffn {Directive} %printer @{ @var{code} @} @var{symbols}
4740@findex %printer
4741@vindex yyoutput
4742@c This is the same text as for %destructor.
4743Invoke the braced @var{code} whenever the parser displays one of the
4744@var{symbols}. Within @var{code}, @code{yyoutput} denotes the output stream
4982f078
AD
4745(a @code{FILE*} in C, and an @code{std::ostream&} in C++), @code{$$} (or
4746@code{$<@var{tag}>$}) designates the semantic value associated with the
4747symbol, and @code{@@$} its location. The additional parser parameters are
4748also available (@pxref{Parser Function, , The Parser Function
4749@code{yyparse}}).
56d60c19
AD
4750
4751The @var{symbols} are defined as for @code{%destructor} (@pxref{Destructor
4752Decl, , Freeing Discarded Symbols}.): they can be per-type (e.g.,
4753@samp{<ival>}), per-symbol (e.g., @samp{exp}, @samp{NUM}, @samp{"float"}),
4754typed per-default (i.e., @samp{<*>}, or untyped per-default (i.e.,
4755@samp{<>}).
4756@end deffn
4757
4758@noindent
4759For example:
4760
4761@example
4762%union @{ char *string; @}
4763%token <string> STRING1
4764%token <string> STRING2
4765%type <string> string1
4766%type <string> string2
4767%union @{ char character; @}
4768%token <character> CHR
4769%type <character> chr
4770%token TAGLESS
4771
4772%printer @{ fprintf (yyoutput, "'%c'", $$); @} <character>
4773%printer @{ fprintf (yyoutput, "&%p", $$); @} <*>
4774%printer @{ fprintf (yyoutput, "\"%s\"", $$); @} STRING1 string1
4775%printer @{ fprintf (yyoutput, "<>"); @} <>
4776@end example
4777
4778@noindent
4779guarantees that, when the parser print any symbol that has a semantic type
4780tag other than @code{<character>}, it display the address of the semantic
4781value by default. However, when the parser displays a @code{STRING1} or a
4782@code{string1}, it formats it as a string in double quotes. It performs
4783only the second @code{%printer} in this case, so it prints only once.
4784Finally, the parser print @samp{<>} for any symbol, such as @code{TAGLESS},
4785that has no semantic type tag. See also
4786
4787
342b8b6e 4788@node Expect Decl
bfa74976
RS
4789@subsection Suppressing Conflict Warnings
4790@cindex suppressing conflict warnings
4791@cindex preventing warnings about conflicts
4792@cindex warnings, preventing
4793@cindex conflicts, suppressing warnings of
4794@findex %expect
d6328241 4795@findex %expect-rr
bfa74976
RS
4796
4797Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4798(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4799have harmless shift/reduce conflicts which are resolved in a predictable
4800way and would be difficult to eliminate. It is desirable to suppress
4801the warning about these conflicts unless the number of conflicts
4802changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4803
4804The declaration looks like this:
4805
4806@example
4807%expect @var{n}
4808@end example
4809
035aa4a0
PE
4810Here @var{n} is a decimal integer. The declaration says there should
4811be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4812Bison reports an error if the number of shift/reduce conflicts differs
4813from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4814
34a6c2d1 4815For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4816serious, and should be eliminated entirely. Bison will always report
35430378 4817reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4818parsers, however, both kinds of conflicts are routine; otherwise,
35430378 4819there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4820also possible to specify an expected number of reduce/reduce conflicts
35430378 4821in GLR parsers, using the declaration:
d6328241
PH
4822
4823@example
4824%expect-rr @var{n}
4825@end example
4826
bfa74976
RS
4827In general, using @code{%expect} involves these steps:
4828
4829@itemize @bullet
4830@item
4831Compile your grammar without @code{%expect}. Use the @samp{-v} option
4832to get a verbose list of where the conflicts occur. Bison will also
4833print the number of conflicts.
4834
4835@item
4836Check each of the conflicts to make sure that Bison's default
4837resolution is what you really want. If not, rewrite the grammar and
4838go back to the beginning.
4839
4840@item
4841Add an @code{%expect} declaration, copying the number @var{n} from the
35430378 4842number which Bison printed. With GLR parsers, add an
035aa4a0 4843@code{%expect-rr} declaration as well.
bfa74976
RS
4844@end itemize
4845
cf22447c
JD
4846Now Bison will report an error if you introduce an unexpected conflict,
4847but will keep silent otherwise.
bfa74976 4848
342b8b6e 4849@node Start Decl
bfa74976
RS
4850@subsection The Start-Symbol
4851@cindex declaring the start symbol
4852@cindex start symbol, declaring
4853@cindex default start symbol
4854@findex %start
4855
4856Bison assumes by default that the start symbol for the grammar is the first
4857nonterminal specified in the grammar specification section. The programmer
4858may override this restriction with the @code{%start} declaration as follows:
4859
4860@example
4861%start @var{symbol}
4862@end example
4863
342b8b6e 4864@node Pure Decl
bfa74976
RS
4865@subsection A Pure (Reentrant) Parser
4866@cindex reentrant parser
4867@cindex pure parser
d9df47b6 4868@findex %define api.pure
bfa74976
RS
4869
4870A @dfn{reentrant} program is one which does not alter in the course of
4871execution; in other words, it consists entirely of @dfn{pure} (read-only)
4872code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4873for example, a nonreentrant program may not be safe to call from a signal
4874handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4875program must be called only within interlocks.
4876
70811b85 4877Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4878suitable for most uses, and it permits compatibility with Yacc. (The
4879standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4880statically allocated variables for communication with @code{yylex},
4881including @code{yylval} and @code{yylloc}.)
bfa74976 4882
70811b85 4883Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4884declaration @code{%define api.pure} says that you want the parser to be
70811b85 4885reentrant. It looks like this:
bfa74976
RS
4886
4887@example
1f1bd572 4888%define api.pure full
bfa74976
RS
4889@end example
4890
70811b85
RS
4891The result is that the communication variables @code{yylval} and
4892@code{yylloc} become local variables in @code{yyparse}, and a different
4893calling convention is used for the lexical analyzer function
4894@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4895Parsers}, for the details of this. The variable @code{yynerrs}
4896becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4897of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4898Reporting Function @code{yyerror}}). The convention for calling
4899@code{yyparse} itself is unchanged.
4900
4901Whether the parser is pure has nothing to do with the grammar rules.
4902You can generate either a pure parser or a nonreentrant parser from any
4903valid grammar.
bfa74976 4904
9987d1b3
JD
4905@node Push Decl
4906@subsection A Push Parser
4907@cindex push parser
4908@cindex push parser
812775a0 4909@findex %define api.push-pull
9987d1b3 4910
59da312b
JD
4911(The current push parsing interface is experimental and may evolve.
4912More user feedback will help to stabilize it.)
4913
f4101aa6
AD
4914A pull parser is called once and it takes control until all its input
4915is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4916each time a new token is made available.
4917
f4101aa6 4918A push parser is typically useful when the parser is part of a
9987d1b3 4919main event loop in the client's application. This is typically
f4101aa6
AD
4920a requirement of a GUI, when the main event loop needs to be triggered
4921within a certain time period.
9987d1b3 4922
d782395d
JD
4923Normally, Bison generates a pull parser.
4924The following Bison declaration says that you want the parser to be a push
2f4518a1 4925parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
4926
4927@example
f37495f6 4928%define api.push-pull push
9987d1b3
JD
4929@end example
4930
4931In almost all cases, you want to ensure that your push parser is also
4932a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4933time you should create an impure push parser is to have backwards
9987d1b3
JD
4934compatibility with the impure Yacc pull mode interface. Unless you know
4935what you are doing, your declarations should look like this:
4936
4937@example
1f1bd572 4938%define api.pure full
f37495f6 4939%define api.push-pull push
9987d1b3
JD
4940@end example
4941
f4101aa6
AD
4942There is a major notable functional difference between the pure push parser
4943and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4944many parser instances, of the same type of parser, in memory at the same time.
4945An impure push parser should only use one parser at a time.
4946
4947When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4948the generated parser. @code{yypstate} is a structure that the generated
4949parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4950function that will create a new parser instance. @code{yypstate_delete}
4951will free the resources associated with the corresponding parser instance.
f4101aa6 4952Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4953token is available to provide the parser. A trivial example
4954of using a pure push parser would look like this:
4955
4956@example
4957int status;
4958yypstate *ps = yypstate_new ();
4959do @{
4960 status = yypush_parse (ps, yylex (), NULL);
4961@} while (status == YYPUSH_MORE);
4962yypstate_delete (ps);
4963@end example
4964
4965If the user decided to use an impure push parser, a few things about
f4101aa6 4966the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4967a global variable instead of a variable in the @code{yypush_parse} function.
4968For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4969changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4970example would thus look like this:
4971
4972@example
4973extern int yychar;
4974int status;
4975yypstate *ps = yypstate_new ();
4976do @{
4977 yychar = yylex ();
4978 status = yypush_parse (ps);
4979@} while (status == YYPUSH_MORE);
4980yypstate_delete (ps);
4981@end example
4982
f4101aa6 4983That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4984for use by the next invocation of the @code{yypush_parse} function.
4985
f4101aa6 4986Bison also supports both the push parser interface along with the pull parser
9987d1b3 4987interface in the same generated parser. In order to get this functionality,
f37495f6
JD
4988you should replace the @code{%define api.push-pull push} declaration with the
4989@code{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4990the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4991and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4992would be used. However, the user should note that it is implemented in the
d782395d
JD
4993generated parser by calling @code{yypull_parse}.
4994This makes the @code{yyparse} function that is generated with the
f37495f6 4995@code{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4996@code{yyparse} function. If the user
4997calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4998stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4999and then @code{yypull_parse} the rest of the input stream. If you would like
5000to switch back and forth between between parsing styles, you would have to
5001write your own @code{yypull_parse} function that knows when to quit looking
5002for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
5003like this:
5004
5005@example
5006yypstate *ps = yypstate_new ();
5007yypull_parse (ps); /* Will call the lexer */
5008yypstate_delete (ps);
5009@end example
5010
1f1bd572
TR
5011Adding the @code{%define api.pure full} declaration does exactly the same thing
5012to the generated parser with @code{%define api.push-pull both} as it did for
f37495f6 5013@code{%define api.push-pull push}.
9987d1b3 5014
342b8b6e 5015@node Decl Summary
bfa74976
RS
5016@subsection Bison Declaration Summary
5017@cindex Bison declaration summary
5018@cindex declaration summary
5019@cindex summary, Bison declaration
5020
d8988b2f 5021Here is a summary of the declarations used to define a grammar:
bfa74976 5022
18b519c0 5023@deffn {Directive} %union
bfa74976
RS
5024Declare the collection of data types that semantic values may have
5025(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 5026@end deffn
bfa74976 5027
18b519c0 5028@deffn {Directive} %token
bfa74976
RS
5029Declare a terminal symbol (token type name) with no precedence
5030or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 5031@end deffn
bfa74976 5032
18b519c0 5033@deffn {Directive} %right
bfa74976
RS
5034Declare a terminal symbol (token type name) that is right-associative
5035(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5036@end deffn
bfa74976 5037
18b519c0 5038@deffn {Directive} %left
bfa74976
RS
5039Declare a terminal symbol (token type name) that is left-associative
5040(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5041@end deffn
bfa74976 5042
18b519c0 5043@deffn {Directive} %nonassoc
bfa74976 5044Declare a terminal symbol (token type name) that is nonassociative
bfa74976 5045(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
5046Using it in a way that would be associative is a syntax error.
5047@end deffn
5048
91d2c560 5049@ifset defaultprec
39a06c25 5050@deffn {Directive} %default-prec
22fccf95 5051Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
5052(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5053@end deffn
91d2c560 5054@end ifset
bfa74976 5055
18b519c0 5056@deffn {Directive} %type
bfa74976
RS
5057Declare the type of semantic values for a nonterminal symbol
5058(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 5059@end deffn
bfa74976 5060
18b519c0 5061@deffn {Directive} %start
89cab50d
AD
5062Specify the grammar's start symbol (@pxref{Start Decl, ,The
5063Start-Symbol}).
18b519c0 5064@end deffn
bfa74976 5065
18b519c0 5066@deffn {Directive} %expect
bfa74976
RS
5067Declare the expected number of shift-reduce conflicts
5068(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
5069@end deffn
5070
bfa74976 5071
d8988b2f
AD
5072@sp 1
5073@noindent
5074In order to change the behavior of @command{bison}, use the following
5075directives:
5076
148d66d8 5077@deffn {Directive} %code @{@var{code}@}
8e6f2266 5078@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 5079@findex %code
8e6f2266
JD
5080Insert @var{code} verbatim into the output parser source at the
5081default location or at the location specified by @var{qualifier}.
5082@xref{%code Summary}.
148d66d8
JD
5083@end deffn
5084
18b519c0 5085@deffn {Directive} %debug
e358222b 5086In the parser implementation file, define the macro @code{YYDEBUG} (or
5a05f42e 5087@code{@var{prefix}DEBUG} with @samp{%define api.prefix @var{prefix}}, see
e358222b
AD
5088@ref{Multiple Parsers, ,Multiple Parsers in the Same Program}) to 1 if it is
5089not already defined, so that the debugging facilities are compiled.
5090@xref{Tracing, ,Tracing Your Parser}.
bd5df716 5091@end deffn
d8988b2f 5092
2f4518a1
JD
5093@deffn {Directive} %define @var{variable}
5094@deffnx {Directive} %define @var{variable} @var{value}
5095@deffnx {Directive} %define @var{variable} "@var{value}"
5096Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5097@end deffn
5098
5099@deffn {Directive} %defines
5100Write a parser header file containing macro definitions for the token
5101type names defined in the grammar as well as a few other declarations.
5102If the parser implementation file is named @file{@var{name}.c} then
5103the parser header file is named @file{@var{name}.h}.
5104
5105For C parsers, the parser header file declares @code{YYSTYPE} unless
5106@code{YYSTYPE} is already defined as a macro or you have used a
5107@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5108you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5109Value Type}) with components that require other definitions, or if you
5110have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5111Type, ,Data Types of Semantic Values}), you need to arrange for these
5112definitions to be propagated to all modules, e.g., by putting them in
5113a prerequisite header that is included both by your parser and by any
5114other module that needs @code{YYSTYPE}.
5115
5116Unless your parser is pure, the parser header file declares
5117@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5118(Reentrant) Parser}.
5119
5120If you have also used locations, the parser header file declares
7404cdf3
JD
5121@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5122@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
2f4518a1
JD
5123
5124This parser header file is normally essential if you wish to put the
5125definition of @code{yylex} in a separate source file, because
5126@code{yylex} typically needs to be able to refer to the
5127above-mentioned declarations and to the token type codes. @xref{Token
5128Values, ,Semantic Values of Tokens}.
5129
5130@findex %code requires
5131@findex %code provides
5132If you have declared @code{%code requires} or @code{%code provides}, the output
5133header also contains their code.
5134@xref{%code Summary}.
c9d5bcc9
AD
5135
5136@cindex Header guard
5137The generated header is protected against multiple inclusions with a C
5138preprocessor guard: @samp{YY_@var{PREFIX}_@var{FILE}_INCLUDED}, where
5139@var{PREFIX} and @var{FILE} are the prefix (@pxref{Multiple Parsers,
5140,Multiple Parsers in the Same Program}) and generated file name turned
5141uppercase, with each series of non alphanumerical characters converted to a
5142single underscore.
5143
5144For instance with @samp{%define api.prefix "calc"} and @samp{%defines
5145"lib/parse.h"}, the header will be guarded as follows.
5146@example
5147#ifndef YY_CALC_LIB_PARSE_H_INCLUDED
5148# define YY_CALC_LIB_PARSE_H_INCLUDED
5149...
5150#endif /* ! YY_CALC_LIB_PARSE_H_INCLUDED */
5151@end example
2f4518a1
JD
5152@end deffn
5153
5154@deffn {Directive} %defines @var{defines-file}
5155Same as above, but save in the file @var{defines-file}.
5156@end deffn
5157
5158@deffn {Directive} %destructor
5159Specify how the parser should reclaim the memory associated to
5160discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5161@end deffn
5162
5163@deffn {Directive} %file-prefix "@var{prefix}"
5164Specify a prefix to use for all Bison output file names. The names
5165are chosen as if the grammar file were named @file{@var{prefix}.y}.
5166@end deffn
5167
5168@deffn {Directive} %language "@var{language}"
5169Specify the programming language for the generated parser. Currently
5170supported languages include C, C++, and Java.
5171@var{language} is case-insensitive.
5172
5173This directive is experimental and its effect may be modified in future
5174releases.
5175@end deffn
5176
5177@deffn {Directive} %locations
5178Generate the code processing the locations (@pxref{Action Features,
5179,Special Features for Use in Actions}). This mode is enabled as soon as
5180the grammar uses the special @samp{@@@var{n}} tokens, but if your
5181grammar does not use it, using @samp{%locations} allows for more
5182accurate syntax error messages.
5183@end deffn
5184
2f4518a1
JD
5185@ifset defaultprec
5186@deffn {Directive} %no-default-prec
5187Do not assign a precedence to rules lacking an explicit @code{%prec}
5188modifier (@pxref{Contextual Precedence, ,Context-Dependent
5189Precedence}).
5190@end deffn
5191@end ifset
5192
5193@deffn {Directive} %no-lines
5194Don't generate any @code{#line} preprocessor commands in the parser
5195implementation file. Ordinarily Bison writes these commands in the
5196parser implementation file so that the C compiler and debuggers will
5197associate errors and object code with your source file (the grammar
5198file). This directive causes them to associate errors with the parser
5199implementation file, treating it as an independent source file in its
5200own right.
5201@end deffn
5202
5203@deffn {Directive} %output "@var{file}"
5204Specify @var{file} for the parser implementation file.
5205@end deffn
5206
5207@deffn {Directive} %pure-parser
5208Deprecated version of @code{%define api.pure} (@pxref{%define
5209Summary,,api.pure}), for which Bison is more careful to warn about
5210unreasonable usage.
5211@end deffn
5212
5213@deffn {Directive} %require "@var{version}"
5214Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5215Require a Version of Bison}.
5216@end deffn
5217
5218@deffn {Directive} %skeleton "@var{file}"
5219Specify the skeleton to use.
5220
5221@c You probably don't need this option unless you are developing Bison.
5222@c You should use @code{%language} if you want to specify the skeleton for a
5223@c different language, because it is clearer and because it will always choose the
5224@c correct skeleton for non-deterministic or push parsers.
5225
5226If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5227file in the Bison installation directory.
5228If it does, @var{file} is an absolute file name or a file name relative to the
5229directory of the grammar file.
5230This is similar to how most shells resolve commands.
5231@end deffn
5232
5233@deffn {Directive} %token-table
5234Generate an array of token names in the parser implementation file.
5235The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5236the name of the token whose internal Bison token code number is
5237@var{i}. The first three elements of @code{yytname} correspond to the
5238predefined tokens @code{"$end"}, @code{"error"}, and
5239@code{"$undefined"}; after these come the symbols defined in the
5240grammar file.
5241
5242The name in the table includes all the characters needed to represent
5243the token in Bison. For single-character literals and literal
5244strings, this includes the surrounding quoting characters and any
5245escape sequences. For example, the Bison single-character literal
5246@code{'+'} corresponds to a three-character name, represented in C as
5247@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5248corresponds to a five-character name, represented in C as
5249@code{"\"\\\\/\""}.
5250
5251When you specify @code{%token-table}, Bison also generates macro
5252definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5253@code{YYNRULES}, and @code{YYNSTATES}:
5254
5255@table @code
5256@item YYNTOKENS
5257The highest token number, plus one.
5258@item YYNNTS
5259The number of nonterminal symbols.
5260@item YYNRULES
5261The number of grammar rules,
5262@item YYNSTATES
5263The number of parser states (@pxref{Parser States}).
5264@end table
5265@end deffn
5266
5267@deffn {Directive} %verbose
5268Write an extra output file containing verbose descriptions of the
5269parser states and what is done for each type of lookahead token in
5270that state. @xref{Understanding, , Understanding Your Parser}, for more
5271information.
5272@end deffn
5273
5274@deffn {Directive} %yacc
5275Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5276including its naming conventions. @xref{Bison Options}, for more.
5277@end deffn
5278
5279
5280@node %define Summary
5281@subsection %define Summary
406dec82
JD
5282
5283There are many features of Bison's behavior that can be controlled by
5284assigning the feature a single value. For historical reasons, some
5285such features are assigned values by dedicated directives, such as
5286@code{%start}, which assigns the start symbol. However, newer such
5287features are associated with variables, which are assigned by the
5288@code{%define} directive:
5289
c1d19e10 5290@deffn {Directive} %define @var{variable}
f37495f6 5291@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5292@deffnx {Directive} %define @var{variable} "@var{value}"
406dec82 5293Define @var{variable} to @var{value}.
9611cfa2 5294
406dec82
JD
5295@var{value} must be placed in quotation marks if it contains any
5296character other than a letter, underscore, period, or non-initial dash
5297or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5298to specifying @code{""}.
9611cfa2 5299
406dec82
JD
5300It is an error if a @var{variable} is defined by @code{%define}
5301multiple times, but see @ref{Bison Options,,-D
5302@var{name}[=@var{value}]}.
5303@end deffn
f37495f6 5304
406dec82
JD
5305The rest of this section summarizes variables and values that
5306@code{%define} accepts.
9611cfa2 5307
406dec82
JD
5308Some @var{variable}s take Boolean values. In this case, Bison will
5309complain if the variable definition does not meet one of the following
5310four conditions:
9611cfa2
JD
5311
5312@enumerate
f37495f6 5313@item @code{@var{value}} is @code{true}
9611cfa2 5314
f37495f6
JD
5315@item @code{@var{value}} is omitted (or @code{""} is specified).
5316This is equivalent to @code{true}.
9611cfa2 5317
f37495f6 5318@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5319
5320@item @var{variable} is never defined.
628be6c9 5321In this case, Bison selects a default value.
9611cfa2 5322@end enumerate
148d66d8 5323
628be6c9
JD
5324What @var{variable}s are accepted, as well as their meanings and default
5325values, depend on the selected target language and/or the parser
5326skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5327Summary,,%skeleton}).
5328Unaccepted @var{variable}s produce an error.
793fbca5
JD
5329Some of the accepted @var{variable}s are:
5330
5331@itemize @bullet
db8ab2be
AD
5332@c ================================================== api.location.type
5333@item @code{api.location.type}
5334@findex %define api.location.type
5335
5336@itemize @bullet
7287be84 5337@item Language(s): C++, Java
db8ab2be
AD
5338
5339@item Purpose: Define the location type.
5340@xref{User Defined Location Type}.
5341
5342@item Accepted Values: String
5343
5344@item Default Value: none
5345
5346@item History: introduced in Bison 2.7
5347@end itemize
5348
4b3847c3
AD
5349@c ================================================== api.prefix
5350@item @code{api.prefix}
5351@findex %define api.prefix
5352
5353@itemize @bullet
5354@item Language(s): All
5355
db8ab2be 5356@item Purpose: Rename exported symbols.
4b3847c3
AD
5357@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5358
5359@item Accepted Values: String
5360
5361@item Default Value: @code{yy}
e358222b
AD
5362
5363@item History: introduced in Bison 2.6
4b3847c3
AD
5364@end itemize
5365
ea118b72 5366@c ================================================== api.pure
4b3847c3 5367@item @code{api.pure}
d9df47b6
JD
5368@findex %define api.pure
5369
5370@itemize @bullet
5371@item Language(s): C
5372
5373@item Purpose: Request a pure (reentrant) parser program.
5374@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5375
1f1bd572
TR
5376@item Accepted Values: @code{true}, @code{false}, @code{full}
5377
5378The value may be omitted: this is equivalent to specifying @code{true}, as is
5379the case for Boolean values.
5380
5381When @code{%define api.pure full} is used, the parser is made reentrant. This
511dd971
AD
5382changes the signature for @code{yylex} (@pxref{Pure Calling}), and also that of
5383@code{yyerror} when the tracking of locations has been activated, as shown
5384below.
1f1bd572
TR
5385
5386The @code{true} value is very similar to the @code{full} value, the only
5387difference is in the signature of @code{yyerror} on Yacc parsers without
5388@code{%parse-param}, for historical reasons.
5389
5390I.e., if @samp{%locations %define api.pure} is passed then the prototypes for
5391@code{yyerror} are:
5392
5393@example
5394void yyerror (char const *msg); /* Yacc parsers. */
5395void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
5396@end example
5397
5398But if @samp{%locations %define api.pure %parse-param @{int *nastiness@}} is
5399used, then both parsers have the same signature:
5400
5401@example
5402void yyerror (YYLTYPE *llocp, int *nastiness, char const *msg);
5403@end example
5404
5405(@pxref{Error Reporting, ,The Error
5406Reporting Function @code{yyerror}})
d9df47b6 5407
f37495f6 5408@item Default Value: @code{false}
1f1bd572
TR
5409
5410@item History: the @code{full} value was introduced in Bison 2.7
d9df47b6
JD
5411@end itemize
5412
4b3847c3
AD
5413@c ================================================== api.push-pull
5414
5415@item @code{api.push-pull}
812775a0 5416@findex %define api.push-pull
793fbca5
JD
5417
5418@itemize @bullet
34a6c2d1 5419@item Language(s): C (deterministic parsers only)
793fbca5 5420
3b1977ea 5421@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5422@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5423(The current push parsing interface is experimental and may evolve.
5424More user feedback will help to stabilize it.)
793fbca5 5425
f37495f6 5426@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5427
f37495f6 5428@item Default Value: @code{pull}
793fbca5
JD
5429@end itemize
5430
232be91a
AD
5431@c ================================================== lr.default-reductions
5432
4b3847c3 5433@item @code{lr.default-reductions}
1d0f55cc 5434@findex %define lr.default-reductions
34a6c2d1
JD
5435
5436@itemize @bullet
5437@item Language(s): all
5438
4c38b19e 5439@item Purpose: Specify the kind of states that are permitted to
6f04ee6c
JD
5440contain default reductions. @xref{Default Reductions}. (The ability to
5441specify where default reductions should be used is experimental. More user
5442feedback will help to stabilize it.)
34a6c2d1 5443
a6e5a280 5444@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
34a6c2d1
JD
5445@item Default Value:
5446@itemize
f37495f6 5447@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
a6e5a280 5448@item @code{most} otherwise.
34a6c2d1
JD
5449@end itemize
5450@end itemize
5451
232be91a
AD
5452@c ============================================ lr.keep-unreachable-states
5453
4b3847c3 5454@item @code{lr.keep-unreachable-states}
812775a0 5455@findex %define lr.keep-unreachable-states
31984206
JD
5456
5457@itemize @bullet
5458@item Language(s): all
3b1977ea 5459@item Purpose: Request that Bison allow unreachable parser states to
6f04ee6c 5460remain in the parser tables. @xref{Unreachable States}.
31984206 5461@item Accepted Values: Boolean
f37495f6 5462@item Default Value: @code{false}
31984206
JD
5463@end itemize
5464
232be91a
AD
5465@c ================================================== lr.type
5466
4b3847c3 5467@item @code{lr.type}
34a6c2d1 5468@findex %define lr.type
34a6c2d1
JD
5469
5470@itemize @bullet
5471@item Language(s): all
5472
3b1977ea 5473@item Purpose: Specify the type of parser tables within the
6f04ee6c 5474LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
34a6c2d1
JD
5475More user feedback will help to stabilize it.)
5476
6f04ee6c 5477@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
34a6c2d1 5478
f37495f6 5479@item Default Value: @code{lalr}
34a6c2d1
JD
5480@end itemize
5481
4b3847c3
AD
5482@c ================================================== namespace
5483
5484@item @code{namespace}
793fbca5
JD
5485@findex %define namespace
5486
5487@itemize
5488@item Languages(s): C++
5489
3b1977ea 5490@item Purpose: Specify the namespace for the parser class.
793fbca5
JD
5491For example, if you specify:
5492
5493@smallexample
5494%define namespace "foo::bar"
5495@end smallexample
5496
5497Bison uses @code{foo::bar} verbatim in references such as:
5498
5499@smallexample
5500foo::bar::parser::semantic_type
5501@end smallexample
5502
5503However, to open a namespace, Bison removes any leading @code{::} and then
5504splits on any remaining occurrences:
5505
5506@smallexample
5507namespace foo @{ namespace bar @{
5508 class position;
5509 class location;
5510@} @}
5511@end smallexample
5512
5513@item Accepted Values: Any absolute or relative C++ namespace reference without
5514a trailing @code{"::"}.
5515For example, @code{"foo"} or @code{"::foo::bar"}.
5516
5517@item Default Value: The value specified by @code{%name-prefix}, which defaults
5518to @code{yy}.
5519This usage of @code{%name-prefix} is for backward compatibility and can be
5520confusing since @code{%name-prefix} also specifies the textual prefix for the
5521lexical analyzer function.
5522Thus, if you specify @code{%name-prefix}, it is best to also specify
5523@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
5524lexical analyzer function.
5525For example, if you specify:
5526
5527@smallexample
5528%define namespace "foo"
5529%name-prefix "bar::"
5530@end smallexample
5531
5532The parser namespace is @code{foo} and @code{yylex} is referenced as
5533@code{bar::lex}.
5534@end itemize
4c38b19e
JD
5535
5536@c ================================================== parse.lac
4b3847c3 5537@item @code{parse.lac}
4c38b19e 5538@findex %define parse.lac
4c38b19e
JD
5539
5540@itemize
6f04ee6c 5541@item Languages(s): C (deterministic parsers only)
4c38b19e 5542
35430378 5543@item Purpose: Enable LAC (lookahead correction) to improve
6f04ee6c 5544syntax error handling. @xref{LAC}.
4c38b19e 5545@item Accepted Values: @code{none}, @code{full}
4c38b19e
JD
5546@item Default Value: @code{none}
5547@end itemize
793fbca5
JD
5548@end itemize
5549
d8988b2f 5550
8e6f2266
JD
5551@node %code Summary
5552@subsection %code Summary
8e6f2266 5553@findex %code
8e6f2266 5554@cindex Prologue
406dec82
JD
5555
5556The @code{%code} directive inserts code verbatim into the output
5557parser source at any of a predefined set of locations. It thus serves
5558as a flexible and user-friendly alternative to the traditional Yacc
5559prologue, @code{%@{@var{code}%@}}. This section summarizes the
5560functionality of @code{%code} for the various target languages
5561supported by Bison. For a detailed discussion of how to use
5562@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5563is advantageous to do so, @pxref{Prologue Alternatives}.
5564
5565@deffn {Directive} %code @{@var{code}@}
5566This is the unqualified form of the @code{%code} directive. It
5567inserts @var{code} verbatim at a language-dependent default location
5568in the parser implementation.
5569
8e6f2266 5570For C/C++, the default location is the parser implementation file
406dec82
JD
5571after the usual contents of the parser header file. Thus, the
5572unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
8e6f2266
JD
5573
5574For Java, the default location is inside the parser class.
5575@end deffn
5576
5577@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5578This is the qualified form of the @code{%code} directive.
406dec82
JD
5579@var{qualifier} identifies the purpose of @var{code} and thus the
5580location(s) where Bison should insert it. That is, if you need to
5581specify location-sensitive @var{code} that does not belong at the
5582default location selected by the unqualified @code{%code} form, use
5583this form instead.
5584@end deffn
5585
5586For any particular qualifier or for the unqualified form, if there are
5587multiple occurrences of the @code{%code} directive, Bison concatenates
5588the specified code in the order in which it appears in the grammar
5589file.
8e6f2266 5590
406dec82
JD
5591Not all qualifiers are accepted for all target languages. Unaccepted
5592qualifiers produce an error. Some of the accepted qualifiers are:
8e6f2266
JD
5593
5594@itemize @bullet
5595@item requires
5596@findex %code requires
5597
5598@itemize @bullet
5599@item Language(s): C, C++
5600
5601@item Purpose: This is the best place to write dependency code required for
5602@code{YYSTYPE} and @code{YYLTYPE}.
5603In other words, it's the best place to define types referenced in @code{%union}
5604directives, and it's the best place to override Bison's default @code{YYSTYPE}
5605and @code{YYLTYPE} definitions.
5606
5607@item Location(s): The parser header file and the parser implementation file
5608before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5609definitions.
5610@end itemize
5611
5612@item provides
5613@findex %code provides
5614
5615@itemize @bullet
5616@item Language(s): C, C++
5617
5618@item Purpose: This is the best place to write additional definitions and
5619declarations that should be provided to other modules.
5620
5621@item Location(s): The parser header file and the parser implementation
5622file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5623token definitions.
5624@end itemize
5625
5626@item top
5627@findex %code top
5628
5629@itemize @bullet
5630@item Language(s): C, C++
5631
5632@item Purpose: The unqualified @code{%code} or @code{%code requires}
5633should usually be more appropriate than @code{%code top}. However,
5634occasionally it is necessary to insert code much nearer the top of the
5635parser implementation file. For example:
5636
ea118b72 5637@example
8e6f2266
JD
5638%code top @{
5639 #define _GNU_SOURCE
5640 #include <stdio.h>
5641@}
ea118b72 5642@end example
8e6f2266
JD
5643
5644@item Location(s): Near the top of the parser implementation file.
5645@end itemize
5646
5647@item imports
5648@findex %code imports
5649
5650@itemize @bullet
5651@item Language(s): Java
5652
5653@item Purpose: This is the best place to write Java import directives.
5654
5655@item Location(s): The parser Java file after any Java package directive and
5656before any class definitions.
5657@end itemize
5658@end itemize
5659
406dec82
JD
5660Though we say the insertion locations are language-dependent, they are
5661technically skeleton-dependent. Writers of non-standard skeletons
5662however should choose their locations consistently with the behavior
5663of the standard Bison skeletons.
8e6f2266 5664
d8988b2f 5665
342b8b6e 5666@node Multiple Parsers
bfa74976
RS
5667@section Multiple Parsers in the Same Program
5668
5669Most programs that use Bison parse only one language and therefore contain
4b3847c3
AD
5670only one Bison parser. But what if you want to parse more than one language
5671with the same program? Then you need to avoid name conflicts between
5672different definitions of functions and variables such as @code{yyparse},
5673@code{yylval}. To use different parsers from the same compilation unit, you
5674also need to avoid conflicts on types and macros (e.g., @code{YYSTYPE})
5675exported in the generated header.
5676
5677The easy way to do this is to define the @code{%define} variable
e358222b
AD
5678@code{api.prefix}. With different @code{api.prefix}s it is guaranteed that
5679headers do not conflict when included together, and that compiled objects
5680can be linked together too. Specifying @samp{%define api.prefix
5681@var{prefix}} (or passing the option @samp{-Dapi.prefix=@var{prefix}}, see
5682@ref{Invocation, ,Invoking Bison}) renames the interface functions and
5683variables of the Bison parser to start with @var{prefix} instead of
5684@samp{yy}, and all the macros to start by @var{PREFIX} (i.e., @var{prefix}
5685upper-cased) instead of @samp{YY}.
4b3847c3
AD
5686
5687The renamed symbols include @code{yyparse}, @code{yylex}, @code{yyerror},
5688@code{yynerrs}, @code{yylval}, @code{yylloc}, @code{yychar} and
5689@code{yydebug}. If you use a push parser, @code{yypush_parse},
5690@code{yypull_parse}, @code{yypstate}, @code{yypstate_new} and
5691@code{yypstate_delete} will also be renamed. The renamed macros include
e358222b
AD
5692@code{YYSTYPE}, @code{YYLTYPE}, and @code{YYDEBUG}, which is treated
5693specifically --- more about this below.
4b3847c3
AD
5694
5695For example, if you use @samp{%define api.prefix c}, the names become
5696@code{cparse}, @code{clex}, @dots{}, @code{CSTYPE}, @code{CLTYPE}, and so
5697on.
5698
5699The @code{%define} variable @code{api.prefix} works in two different ways.
5700In the implementation file, it works by adding macro definitions to the
5701beginning of the parser implementation file, defining @code{yyparse} as
5702@code{@var{prefix}parse}, and so on:
5703
5704@example
5705#define YYSTYPE CTYPE
5706#define yyparse cparse
5707#define yylval clval
5708...
5709YYSTYPE yylval;
5710int yyparse (void);
5711@end example
5712
5713This effectively substitutes one name for the other in the entire parser
5714implementation file, thus the ``original'' names (@code{yylex},
5715@code{YYSTYPE}, @dots{}) are also usable in the parser implementation file.
5716
5717However, in the parser header file, the symbols are defined renamed, for
5718instance:
5719
5720@example
5721extern CSTYPE clval;
5722int cparse (void);
5723@end example
5724
e358222b
AD
5725The macro @code{YYDEBUG} is commonly used to enable the tracing support in
5726parsers. To comply with this tradition, when @code{api.prefix} is used,
5727@code{YYDEBUG} (not renamed) is used as a default value:
5728
5729@example
5730/* Enabling traces. */
5731#ifndef CDEBUG
5732# if defined YYDEBUG
5733# if YYDEBUG
5734# define CDEBUG 1
5735# else
5736# define CDEBUG 0
5737# endif
5738# else
5739# define CDEBUG 0
5740# endif
5741#endif
5742#if CDEBUG
5743extern int cdebug;
5744#endif
5745@end example
5746
5747@sp 2
5748
5749Prior to Bison 2.6, a feature similar to @code{api.prefix} was provided by
5750the obsolete directive @code{%name-prefix} (@pxref{Table of Symbols, ,Bison
5751Symbols}) and the option @code{--name-prefix} (@pxref{Bison Options}).
bfa74976 5752
342b8b6e 5753@node Interface
bfa74976
RS
5754@chapter Parser C-Language Interface
5755@cindex C-language interface
5756@cindex interface
5757
5758The Bison parser is actually a C function named @code{yyparse}. Here we
5759describe the interface conventions of @code{yyparse} and the other
5760functions that it needs to use.
5761
5762Keep in mind that the parser uses many C identifiers starting with
5763@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5764identifier (aside from those in this manual) in an action or in epilogue
5765in the grammar file, you are likely to run into trouble.
bfa74976
RS
5766
5767@menu
f56274a8
DJ
5768* Parser Function:: How to call @code{yyparse} and what it returns.
5769* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5770* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5771* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5772* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5773* Lexical:: You must supply a function @code{yylex}
5774 which reads tokens.
5775* Error Reporting:: You must supply a function @code{yyerror}.
5776* Action Features:: Special features for use in actions.
5777* Internationalization:: How to let the parser speak in the user's
5778 native language.
bfa74976
RS
5779@end menu
5780
342b8b6e 5781@node Parser Function
bfa74976
RS
5782@section The Parser Function @code{yyparse}
5783@findex yyparse
5784
5785You call the function @code{yyparse} to cause parsing to occur. This
5786function reads tokens, executes actions, and ultimately returns when it
5787encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5788write an action which directs @code{yyparse} to return immediately
5789without reading further.
bfa74976 5790
2a8d363a
AD
5791
5792@deftypefun int yyparse (void)
bfa74976
RS
5793The value returned by @code{yyparse} is 0 if parsing was successful (return
5794is due to end-of-input).
5795
b47dbebe
PE
5796The value is 1 if parsing failed because of invalid input, i.e., input
5797that contains a syntax error or that causes @code{YYABORT} to be
5798invoked.
5799
5800The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5801@end deftypefun
bfa74976
RS
5802
5803In an action, you can cause immediate return from @code{yyparse} by using
5804these macros:
5805
2a8d363a 5806@defmac YYACCEPT
bfa74976
RS
5807@findex YYACCEPT
5808Return immediately with value 0 (to report success).
2a8d363a 5809@end defmac
bfa74976 5810
2a8d363a 5811@defmac YYABORT
bfa74976
RS
5812@findex YYABORT
5813Return immediately with value 1 (to report failure).
2a8d363a
AD
5814@end defmac
5815
5816If you use a reentrant parser, you can optionally pass additional
5817parameter information to it in a reentrant way. To do so, use the
5818declaration @code{%parse-param}:
5819
feeb0eda 5820@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5821@findex %parse-param
287c78f6
PE
5822Declare that an argument declared by the braced-code
5823@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5824The @var{argument-declaration} is used when declaring
feeb0eda
PE
5825functions or prototypes. The last identifier in
5826@var{argument-declaration} must be the argument name.
2a8d363a
AD
5827@end deffn
5828
5829Here's an example. Write this in the parser:
5830
5831@example
feeb0eda
PE
5832%parse-param @{int *nastiness@}
5833%parse-param @{int *randomness@}
2a8d363a
AD
5834@end example
5835
5836@noindent
5837Then call the parser like this:
5838
5839@example
5840@{
5841 int nastiness, randomness;
5842 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5843 value = yyparse (&nastiness, &randomness);
5844 @dots{}
5845@}
5846@end example
5847
5848@noindent
5849In the grammar actions, use expressions like this to refer to the data:
5850
5851@example
5852exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5853@end example
5854
1f1bd572
TR
5855@noindent
5856Using the following:
5857@example
5858%parse-param @{int *randomness@}
5859@end example
5860
5861Results in these signatures:
5862@example
5863void yyerror (int *randomness, const char *msg);
5864int yyparse (int *randomness);
5865@end example
5866
5867@noindent
5868Or, if both @code{%define api.pure full} (or just @code{%define api.pure})
5869and @code{%locations} are used:
5870
5871@example
5872void yyerror (YYLTYPE *llocp, int *randomness, const char *msg);
5873int yyparse (int *randomness);
5874@end example
5875
9987d1b3
JD
5876@node Push Parser Function
5877@section The Push Parser Function @code{yypush_parse}
5878@findex yypush_parse
5879
59da312b
JD
5880(The current push parsing interface is experimental and may evolve.
5881More user feedback will help to stabilize it.)
5882
f4101aa6 5883You call the function @code{yypush_parse} to parse a single token. This
f37495f6
JD
5884function is available if either the @code{%define api.push-pull push} or
5885@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5886@xref{Push Decl, ,A Push Parser}.
5887
5888@deftypefun int yypush_parse (yypstate *yyps)
ad60e80f
AD
5889The value returned by @code{yypush_parse} is the same as for yyparse with
5890the following exception: it returns @code{YYPUSH_MORE} if more input is
5891required to finish parsing the grammar.
9987d1b3
JD
5892@end deftypefun
5893
5894@node Pull Parser Function
5895@section The Pull Parser Function @code{yypull_parse}
5896@findex yypull_parse
5897
59da312b
JD
5898(The current push parsing interface is experimental and may evolve.
5899More user feedback will help to stabilize it.)
5900
f4101aa6 5901You call the function @code{yypull_parse} to parse the rest of the input
f37495f6 5902stream. This function is available if the @code{%define api.push-pull both}
f4101aa6 5903declaration is used.
9987d1b3
JD
5904@xref{Push Decl, ,A Push Parser}.
5905
5906@deftypefun int yypull_parse (yypstate *yyps)
5907The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5908@end deftypefun
5909
5910@node Parser Create Function
5911@section The Parser Create Function @code{yystate_new}
5912@findex yypstate_new
5913
59da312b
JD
5914(The current push parsing interface is experimental and may evolve.
5915More user feedback will help to stabilize it.)
5916
f4101aa6 5917You call the function @code{yypstate_new} to create a new parser instance.
f37495f6
JD
5918This function is available if either the @code{%define api.push-pull push} or
5919@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5920@xref{Push Decl, ,A Push Parser}.
5921
34a41a93 5922@deftypefun {yypstate*} yypstate_new (void)
c781580d 5923The function will return a valid parser instance if there was memory available
333e670c
JD
5924or 0 if no memory was available.
5925In impure mode, it will also return 0 if a parser instance is currently
5926allocated.
9987d1b3
JD
5927@end deftypefun
5928
5929@node Parser Delete Function
5930@section The Parser Delete Function @code{yystate_delete}
5931@findex yypstate_delete
5932
59da312b
JD
5933(The current push parsing interface is experimental and may evolve.
5934More user feedback will help to stabilize it.)
5935
9987d1b3 5936You call the function @code{yypstate_delete} to delete a parser instance.
f37495f6
JD
5937function is available if either the @code{%define api.push-pull push} or
5938@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5939@xref{Push Decl, ,A Push Parser}.
5940
5941@deftypefun void yypstate_delete (yypstate *yyps)
5942This function will reclaim the memory associated with a parser instance.
5943After this call, you should no longer attempt to use the parser instance.
5944@end deftypefun
bfa74976 5945
342b8b6e 5946@node Lexical
bfa74976
RS
5947@section The Lexical Analyzer Function @code{yylex}
5948@findex yylex
5949@cindex lexical analyzer
5950
5951The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5952the input stream and returns them to the parser. Bison does not create
5953this function automatically; you must write it so that @code{yyparse} can
5954call it. The function is sometimes referred to as a lexical scanner.
5955
9913d6e4
JD
5956In simple programs, @code{yylex} is often defined at the end of the
5957Bison grammar file. If @code{yylex} is defined in a separate source
5958file, you need to arrange for the token-type macro definitions to be
5959available there. To do this, use the @samp{-d} option when you run
5960Bison, so that it will write these macro definitions into the separate
5961parser header file, @file{@var{name}.tab.h}, which you can include in
5962the other source files that need it. @xref{Invocation, ,Invoking
5963Bison}.
bfa74976
RS
5964
5965@menu
5966* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
5967* Token Values:: How @code{yylex} must return the semantic value
5968 of the token it has read.
5969* Token Locations:: How @code{yylex} must return the text location
5970 (line number, etc.) of the token, if the
5971 actions want that.
5972* Pure Calling:: How the calling convention differs in a pure parser
5973 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5974@end menu
5975
342b8b6e 5976@node Calling Convention
bfa74976
RS
5977@subsection Calling Convention for @code{yylex}
5978
72d2299c
PE
5979The value that @code{yylex} returns must be the positive numeric code
5980for the type of token it has just found; a zero or negative value
5981signifies end-of-input.
bfa74976
RS
5982
5983When a token is referred to in the grammar rules by a name, that name
9913d6e4
JD
5984in the parser implementation file becomes a C macro whose definition
5985is the proper numeric code for that token type. So @code{yylex} can
5986use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
5987
5988When a token is referred to in the grammar rules by a character literal,
5989the numeric code for that character is also the code for the token type.
72d2299c
PE
5990So @code{yylex} can simply return that character code, possibly converted
5991to @code{unsigned char} to avoid sign-extension. The null character
5992must not be used this way, because its code is zero and that
bfa74976
RS
5993signifies end-of-input.
5994
5995Here is an example showing these things:
5996
5997@example
13863333
AD
5998int
5999yylex (void)
bfa74976
RS
6000@{
6001 @dots{}
72d2299c 6002 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
6003 return 0;
6004 @dots{}
6005 if (c == '+' || c == '-')
72d2299c 6006 return c; /* Assume token type for `+' is '+'. */
bfa74976 6007 @dots{}
72d2299c 6008 return INT; /* Return the type of the token. */
bfa74976
RS
6009 @dots{}
6010@}
6011@end example
6012
6013@noindent
6014This interface has been designed so that the output from the @code{lex}
6015utility can be used without change as the definition of @code{yylex}.
6016
931c7513
RS
6017If the grammar uses literal string tokens, there are two ways that
6018@code{yylex} can determine the token type codes for them:
6019
6020@itemize @bullet
6021@item
6022If the grammar defines symbolic token names as aliases for the
6023literal string tokens, @code{yylex} can use these symbolic names like
6024all others. In this case, the use of the literal string tokens in
6025the grammar file has no effect on @code{yylex}.
6026
6027@item
9ecbd125 6028@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6029table. The index of the token in the table is the token type's code.
9ecbd125 6030The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6031double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6032token's characters are escaped as necessary to be suitable as input
6033to Bison.
931c7513 6034
9e0876fb
PE
6035Here's code for looking up a multicharacter token in @code{yytname},
6036assuming that the characters of the token are stored in
6037@code{token_buffer}, and assuming that the token does not contain any
6038characters like @samp{"} that require escaping.
931c7513 6039
ea118b72 6040@example
931c7513
RS
6041for (i = 0; i < YYNTOKENS; i++)
6042 @{
6043 if (yytname[i] != 0
6044 && yytname[i][0] == '"'
68449b3a
PE
6045 && ! strncmp (yytname[i] + 1, token_buffer,
6046 strlen (token_buffer))
931c7513
RS
6047 && yytname[i][strlen (token_buffer) + 1] == '"'
6048 && yytname[i][strlen (token_buffer) + 2] == 0)
6049 break;
6050 @}
ea118b72 6051@end example
931c7513
RS
6052
6053The @code{yytname} table is generated only if you use the
8c9a50be 6054@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6055@end itemize
6056
342b8b6e 6057@node Token Values
bfa74976
RS
6058@subsection Semantic Values of Tokens
6059
6060@vindex yylval
9d9b8b70 6061In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6062be stored into the global variable @code{yylval}. When you are using
6063just one data type for semantic values, @code{yylval} has that type.
6064Thus, if the type is @code{int} (the default), you might write this in
6065@code{yylex}:
6066
6067@example
6068@group
6069 @dots{}
72d2299c
PE
6070 yylval = value; /* Put value onto Bison stack. */
6071 return INT; /* Return the type of the token. */
bfa74976
RS
6072 @dots{}
6073@end group
6074@end example
6075
6076When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6077made from the @code{%union} declaration (@pxref{Union Decl, ,The
6078Collection of Value Types}). So when you store a token's value, you
6079must use the proper member of the union. If the @code{%union}
6080declaration looks like this:
bfa74976
RS
6081
6082@example
6083@group
6084%union @{
6085 int intval;
6086 double val;
6087 symrec *tptr;
6088@}
6089@end group
6090@end example
6091
6092@noindent
6093then the code in @code{yylex} might look like this:
6094
6095@example
6096@group
6097 @dots{}
72d2299c
PE
6098 yylval.intval = value; /* Put value onto Bison stack. */
6099 return INT; /* Return the type of the token. */
bfa74976
RS
6100 @dots{}
6101@end group
6102@end example
6103
95923bd6
AD
6104@node Token Locations
6105@subsection Textual Locations of Tokens
bfa74976
RS
6106
6107@vindex yylloc
7404cdf3
JD
6108If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6109in actions to keep track of the textual locations of tokens and groupings,
6110then you must provide this information in @code{yylex}. The function
6111@code{yyparse} expects to find the textual location of a token just parsed
6112in the global variable @code{yylloc}. So @code{yylex} must store the proper
6113data in that variable.
847bf1f5
AD
6114
6115By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6116initialize the members that are going to be used by the actions. The
6117four members are called @code{first_line}, @code{first_column},
6118@code{last_line} and @code{last_column}. Note that the use of this
6119feature makes the parser noticeably slower.
bfa74976
RS
6120
6121@tindex YYLTYPE
6122The data type of @code{yylloc} has the name @code{YYLTYPE}.
6123
342b8b6e 6124@node Pure Calling
c656404a 6125@subsection Calling Conventions for Pure Parsers
bfa74976 6126
1f1bd572 6127When you use the Bison declaration @code{%define api.pure full} to request a
e425e872
RS
6128pure, reentrant parser, the global communication variables @code{yylval}
6129and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6130Parser}.) In such parsers the two global variables are replaced by
6131pointers passed as arguments to @code{yylex}. You must declare them as
6132shown here, and pass the information back by storing it through those
6133pointers.
bfa74976
RS
6134
6135@example
13863333
AD
6136int
6137yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6138@{
6139 @dots{}
6140 *lvalp = value; /* Put value onto Bison stack. */
6141 return INT; /* Return the type of the token. */
6142 @dots{}
6143@}
6144@end example
6145
6146If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6147textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6148this case, omit the second argument; @code{yylex} will be called with
6149only one argument.
6150
e425e872 6151
2a8d363a
AD
6152If you wish to pass the additional parameter data to @code{yylex}, use
6153@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
6154Function}).
e425e872 6155
feeb0eda 6156@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 6157@findex %lex-param
287c78f6
PE
6158Declare that the braced-code @var{argument-declaration} is an
6159additional @code{yylex} argument declaration.
2a8d363a 6160@end deffn
e425e872 6161
1f1bd572 6162@noindent
2a8d363a 6163For instance:
e425e872
RS
6164
6165@example
feeb0eda 6166%lex-param @{int *nastiness@}
e425e872
RS
6167@end example
6168
6169@noindent
1f1bd572 6170results in the following signature:
c656404a
RS
6171
6172@example
1f1bd572 6173int yylex (int *nastiness);
c656404a
RS
6174@end example
6175
2a8d363a 6176@noindent
1f1bd572 6177If @code{%define api.pure full} (or just @code{%define api.pure}) is added:
c656404a 6178
2a8d363a 6179@example
1f1bd572 6180int yylex (YYSTYPE *lvalp, int *nastiness);
2a8d363a 6181@end example
931c7513 6182
342b8b6e 6183@node Error Reporting
bfa74976
RS
6184@section The Error Reporting Function @code{yyerror}
6185@cindex error reporting function
6186@findex yyerror
6187@cindex parse error
6188@cindex syntax error
6189
6e649e65 6190The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 6191whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6192action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6193macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6194in Actions}).
bfa74976
RS
6195
6196The Bison parser expects to report the error by calling an error
6197reporting function named @code{yyerror}, which you must supply. It is
6198called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6199receives one argument. For a syntax error, the string is normally
6200@w{@code{"syntax error"}}.
bfa74976 6201
2a8d363a 6202@findex %error-verbose
6f04ee6c
JD
6203If you invoke the directive @code{%error-verbose} in the Bison declarations
6204section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6205Bison provides a more verbose and specific error message string instead of
6206just plain @w{@code{"syntax error"}}. However, that message sometimes
6207contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6208
1a059451
PE
6209The parser can detect one other kind of error: memory exhaustion. This
6210can happen when the input contains constructions that are very deeply
bfa74976 6211nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6212parser normally extends its stack automatically up to a very large limit. But
6213if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6214fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6215
6216In some cases diagnostics like @w{@code{"syntax error"}} are
6217translated automatically from English to some other language before
6218they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6219
6220The following definition suffices in simple programs:
6221
6222@example
6223@group
13863333 6224void
38a92d50 6225yyerror (char const *s)
bfa74976
RS
6226@{
6227@end group
6228@group
6229 fprintf (stderr, "%s\n", s);
6230@}
6231@end group
6232@end example
6233
6234After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6235error recovery if you have written suitable error recovery grammar rules
6236(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6237immediately return 1.
6238
93724f13 6239Obviously, in location tracking pure parsers, @code{yyerror} should have
1f1bd572
TR
6240an access to the current location. With @code{%define api.pure}, this is
6241indeed the case for the GLR parsers, but not for the Yacc parser, for
6242historical reasons, and this is the why @code{%define api.pure full} should be
6243prefered over @code{%define api.pure}.
2a8d363a 6244
1f1bd572
TR
6245When @code{%locations %define api.pure full} is used, @code{yyerror} has the
6246following signature:
2a8d363a
AD
6247
6248@example
1f1bd572 6249void yyerror (YYLTYPE *locp, char const *msg);
2a8d363a
AD
6250@end example
6251
1c0c3e95 6252@noindent
38a92d50
PE
6253The prototypes are only indications of how the code produced by Bison
6254uses @code{yyerror}. Bison-generated code always ignores the returned
6255value, so @code{yyerror} can return any type, including @code{void}.
6256Also, @code{yyerror} can be a variadic function; that is why the
6257message is always passed last.
6258
6259Traditionally @code{yyerror} returns an @code{int} that is always
6260ignored, but this is purely for historical reasons, and @code{void} is
6261preferable since it more accurately describes the return type for
6262@code{yyerror}.
93724f13 6263
bfa74976
RS
6264@vindex yynerrs
6265The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6266reported so far. Normally this variable is global; but if you
704a47c4
AD
6267request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6268then it is a local variable which only the actions can access.
bfa74976 6269
342b8b6e 6270@node Action Features
bfa74976
RS
6271@section Special Features for Use in Actions
6272@cindex summary, action features
6273@cindex action features summary
6274
6275Here is a table of Bison constructs, variables and macros that
6276are useful in actions.
6277
18b519c0 6278@deffn {Variable} $$
bfa74976
RS
6279Acts like a variable that contains the semantic value for the
6280grouping made by the current rule. @xref{Actions}.
18b519c0 6281@end deffn
bfa74976 6282
18b519c0 6283@deffn {Variable} $@var{n}
bfa74976
RS
6284Acts like a variable that contains the semantic value for the
6285@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6286@end deffn
bfa74976 6287
18b519c0 6288@deffn {Variable} $<@var{typealt}>$
bfa74976 6289Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6290specified by the @code{%union} declaration. @xref{Action Types, ,Data
6291Types of Values in Actions}.
18b519c0 6292@end deffn
bfa74976 6293
18b519c0 6294@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6295Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6296union specified by the @code{%union} declaration.
e0c471a9 6297@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6298@end deffn
bfa74976 6299
34a41a93 6300@deffn {Macro} YYABORT @code{;}
bfa74976
RS
6301Return immediately from @code{yyparse}, indicating failure.
6302@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6303@end deffn
bfa74976 6304
34a41a93 6305@deffn {Macro} YYACCEPT @code{;}
bfa74976
RS
6306Return immediately from @code{yyparse}, indicating success.
6307@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6308@end deffn
bfa74976 6309
34a41a93 6310@deffn {Macro} YYBACKUP (@var{token}, @var{value})@code{;}
bfa74976
RS
6311@findex YYBACKUP
6312Unshift a token. This macro is allowed only for rules that reduce
742e4900 6313a single value, and only when there is no lookahead token.
35430378 6314It is also disallowed in GLR parsers.
742e4900 6315It installs a lookahead token with token type @var{token} and
bfa74976
RS
6316semantic value @var{value}; then it discards the value that was
6317going to be reduced by this rule.
6318
6319If the macro is used when it is not valid, such as when there is
742e4900 6320a lookahead token already, then it reports a syntax error with
bfa74976
RS
6321a message @samp{cannot back up} and performs ordinary error
6322recovery.
6323
6324In either case, the rest of the action is not executed.
18b519c0 6325@end deffn
bfa74976 6326
18b519c0 6327@deffn {Macro} YYEMPTY
742e4900 6328Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6329@end deffn
bfa74976 6330
32c29292 6331@deffn {Macro} YYEOF
742e4900 6332Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6333stream.
6334@end deffn
6335
34a41a93 6336@deffn {Macro} YYERROR @code{;}
bfa74976
RS
6337Cause an immediate syntax error. This statement initiates error
6338recovery just as if the parser itself had detected an error; however, it
6339does not call @code{yyerror}, and does not print any message. If you
6340want to print an error message, call @code{yyerror} explicitly before
6341the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6342@end deffn
bfa74976 6343
18b519c0 6344@deffn {Macro} YYRECOVERING
02103984
PE
6345@findex YYRECOVERING
6346The expression @code{YYRECOVERING ()} yields 1 when the parser
6347is recovering from a syntax error, and 0 otherwise.
bfa74976 6348@xref{Error Recovery}.
18b519c0 6349@end deffn
bfa74976 6350
18b519c0 6351@deffn {Variable} yychar
742e4900
JD
6352Variable containing either the lookahead token, or @code{YYEOF} when the
6353lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6354has been performed so the next token is not yet known.
6355Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6356Actions}).
742e4900 6357@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6358@end deffn
bfa74976 6359
34a41a93 6360@deffn {Macro} yyclearin @code{;}
742e4900 6361Discard the current lookahead token. This is useful primarily in
32c29292
JD
6362error rules.
6363Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6364Semantic Actions}).
6365@xref{Error Recovery}.
18b519c0 6366@end deffn
bfa74976 6367
34a41a93 6368@deffn {Macro} yyerrok @code{;}
bfa74976 6369Resume generating error messages immediately for subsequent syntax
13863333 6370errors. This is useful primarily in error rules.
bfa74976 6371@xref{Error Recovery}.
18b519c0 6372@end deffn
bfa74976 6373
32c29292 6374@deffn {Variable} yylloc
742e4900 6375Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6376to @code{YYEMPTY} or @code{YYEOF}.
6377Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6378Actions}).
6379@xref{Actions and Locations, ,Actions and Locations}.
6380@end deffn
6381
6382@deffn {Variable} yylval
742e4900 6383Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6384not set to @code{YYEMPTY} or @code{YYEOF}.
6385Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6386Actions}).
6387@xref{Actions, ,Actions}.
6388@end deffn
6389
18b519c0 6390@deffn {Value} @@$
847bf1f5 6391@findex @@$
7404cdf3
JD
6392Acts like a structure variable containing information on the textual
6393location of the grouping made by the current rule. @xref{Tracking
6394Locations}.
bfa74976 6395
847bf1f5
AD
6396@c Check if those paragraphs are still useful or not.
6397
6398@c @example
6399@c struct @{
6400@c int first_line, last_line;
6401@c int first_column, last_column;
6402@c @};
6403@c @end example
6404
6405@c Thus, to get the starting line number of the third component, you would
6406@c use @samp{@@3.first_line}.
bfa74976 6407
847bf1f5
AD
6408@c In order for the members of this structure to contain valid information,
6409@c you must make @code{yylex} supply this information about each token.
6410@c If you need only certain members, then @code{yylex} need only fill in
6411@c those members.
bfa74976 6412
847bf1f5 6413@c The use of this feature makes the parser noticeably slower.
18b519c0 6414@end deffn
847bf1f5 6415
18b519c0 6416@deffn {Value} @@@var{n}
847bf1f5 6417@findex @@@var{n}
7404cdf3
JD
6418Acts like a structure variable containing information on the textual
6419location of the @var{n}th component of the current rule. @xref{Tracking
6420Locations}.
18b519c0 6421@end deffn
bfa74976 6422
f7ab6a50
PE
6423@node Internationalization
6424@section Parser Internationalization
6425@cindex internationalization
6426@cindex i18n
6427@cindex NLS
6428@cindex gettext
6429@cindex bison-po
6430
6431A Bison-generated parser can print diagnostics, including error and
6432tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6433also supports outputting diagnostics in the user's native language. To
6434make this work, the user should set the usual environment variables.
6435@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6436For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
35430378 6437set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6438encoding. The exact set of available locales depends on the user's
6439installation.
6440
6441The maintainer of a package that uses a Bison-generated parser enables
6442the internationalization of the parser's output through the following
35430378
JD
6443steps. Here we assume a package that uses GNU Autoconf and
6444GNU Automake.
f7ab6a50
PE
6445
6446@enumerate
6447@item
30757c8c 6448@cindex bison-i18n.m4
35430378 6449Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6450by the package---often called @file{m4}---copy the
6451@file{bison-i18n.m4} file installed by Bison under
6452@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6453For example:
6454
6455@example
6456cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6457@end example
6458
6459@item
30757c8c
PE
6460@findex BISON_I18N
6461@vindex BISON_LOCALEDIR
6462@vindex YYENABLE_NLS
f7ab6a50
PE
6463In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6464invocation, add an invocation of @code{BISON_I18N}. This macro is
6465defined in the file @file{bison-i18n.m4} that you copied earlier. It
6466causes @samp{configure} to find the value of the
30757c8c
PE
6467@code{BISON_LOCALEDIR} variable, and it defines the source-language
6468symbol @code{YYENABLE_NLS} to enable translations in the
6469Bison-generated parser.
f7ab6a50
PE
6470
6471@item
6472In the @code{main} function of your program, designate the directory
6473containing Bison's runtime message catalog, through a call to
6474@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6475For example:
6476
6477@example
6478bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6479@end example
6480
6481Typically this appears after any other call @code{bindtextdomain
6482(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6483@samp{BISON_LOCALEDIR} to be defined as a string through the
6484@file{Makefile}.
6485
6486@item
6487In the @file{Makefile.am} that controls the compilation of the @code{main}
6488function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6489either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6490
6491@example
6492DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6493@end example
6494
6495or:
6496
6497@example
6498AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6499@end example
6500
6501@item
6502Finally, invoke the command @command{autoreconf} to generate the build
6503infrastructure.
6504@end enumerate
6505
bfa74976 6506
342b8b6e 6507@node Algorithm
13863333
AD
6508@chapter The Bison Parser Algorithm
6509@cindex Bison parser algorithm
bfa74976
RS
6510@cindex algorithm of parser
6511@cindex shifting
6512@cindex reduction
6513@cindex parser stack
6514@cindex stack, parser
6515
6516As Bison reads tokens, it pushes them onto a stack along with their
6517semantic values. The stack is called the @dfn{parser stack}. Pushing a
6518token is traditionally called @dfn{shifting}.
6519
6520For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6521@samp{3} to come. The stack will have four elements, one for each token
6522that was shifted.
6523
6524But the stack does not always have an element for each token read. When
6525the last @var{n} tokens and groupings shifted match the components of a
6526grammar rule, they can be combined according to that rule. This is called
6527@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6528single grouping whose symbol is the result (left hand side) of that rule.
6529Running the rule's action is part of the process of reduction, because this
6530is what computes the semantic value of the resulting grouping.
6531
6532For example, if the infix calculator's parser stack contains this:
6533
6534@example
65351 + 5 * 3
6536@end example
6537
6538@noindent
6539and the next input token is a newline character, then the last three
6540elements can be reduced to 15 via the rule:
6541
6542@example
6543expr: expr '*' expr;
6544@end example
6545
6546@noindent
6547Then the stack contains just these three elements:
6548
6549@example
65501 + 15
6551@end example
6552
6553@noindent
6554At this point, another reduction can be made, resulting in the single value
655516. Then the newline token can be shifted.
6556
6557The parser tries, by shifts and reductions, to reduce the entire input down
6558to a single grouping whose symbol is the grammar's start-symbol
6559(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6560
6561This kind of parser is known in the literature as a bottom-up parser.
6562
6563@menu
742e4900 6564* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6565* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6566* Precedence:: Operator precedence works by resolving conflicts.
6567* Contextual Precedence:: When an operator's precedence depends on context.
6568* Parser States:: The parser is a finite-state-machine with stack.
6569* Reduce/Reduce:: When two rules are applicable in the same situation.
5da0355a 6570* Mysterious Conflicts:: Conflicts that look unjustified.
6f04ee6c 6571* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 6572* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6573* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6574@end menu
6575
742e4900
JD
6576@node Lookahead
6577@section Lookahead Tokens
6578@cindex lookahead token
bfa74976
RS
6579
6580The Bison parser does @emph{not} always reduce immediately as soon as the
6581last @var{n} tokens and groupings match a rule. This is because such a
6582simple strategy is inadequate to handle most languages. Instead, when a
6583reduction is possible, the parser sometimes ``looks ahead'' at the next
6584token in order to decide what to do.
6585
6586When a token is read, it is not immediately shifted; first it becomes the
742e4900 6587@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6588perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6589the lookahead token remains off to the side. When no more reductions
6590should take place, the lookahead token is shifted onto the stack. This
bfa74976 6591does not mean that all possible reductions have been done; depending on the
742e4900 6592token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6593application.
6594
742e4900 6595Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6596expressions which contain binary addition operators and postfix unary
6597factorial operators (@samp{!}), and allow parentheses for grouping.
6598
6599@example
6600@group
de6be119
AD
6601expr:
6602 term '+' expr
6603| term
6604;
bfa74976
RS
6605@end group
6606
6607@group
de6be119
AD
6608term:
6609 '(' expr ')'
6610| term '!'
534cee7a 6611| "number"
de6be119 6612;
bfa74976
RS
6613@end group
6614@end example
6615
6616Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6617should be done? If the following token is @samp{)}, then the first three
6618tokens must be reduced to form an @code{expr}. This is the only valid
6619course, because shifting the @samp{)} would produce a sequence of symbols
6620@w{@code{term ')'}}, and no rule allows this.
6621
6622If the following token is @samp{!}, then it must be shifted immediately so
6623that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6624parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6625@code{expr}. It would then be impossible to shift the @samp{!} because
6626doing so would produce on the stack the sequence of symbols @code{expr
6627'!'}. No rule allows that sequence.
6628
6629@vindex yychar
32c29292
JD
6630@vindex yylval
6631@vindex yylloc
742e4900 6632The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6633Its semantic value and location, if any, are stored in the variables
6634@code{yylval} and @code{yylloc}.
bfa74976
RS
6635@xref{Action Features, ,Special Features for Use in Actions}.
6636
342b8b6e 6637@node Shift/Reduce
bfa74976
RS
6638@section Shift/Reduce Conflicts
6639@cindex conflicts
6640@cindex shift/reduce conflicts
6641@cindex dangling @code{else}
6642@cindex @code{else}, dangling
6643
6644Suppose we are parsing a language which has if-then and if-then-else
6645statements, with a pair of rules like this:
6646
6647@example
6648@group
6649if_stmt:
534cee7a
AD
6650 "if" expr "then" stmt
6651| "if" expr "then" stmt "else" stmt
de6be119 6652;
bfa74976
RS
6653@end group
6654@end example
6655
6656@noindent
534cee7a
AD
6657Here @code{"if"}, @code{"then"} and @code{"else"} are terminal symbols for
6658specific keyword tokens.
bfa74976 6659
534cee7a 6660When the @code{"else"} token is read and becomes the lookahead token, the
bfa74976
RS
6661contents of the stack (assuming the input is valid) are just right for
6662reduction by the first rule. But it is also legitimate to shift the
534cee7a 6663@code{"else"}, because that would lead to eventual reduction by the second
bfa74976
RS
6664rule.
6665
6666This situation, where either a shift or a reduction would be valid, is
6667called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6668these conflicts by choosing to shift, unless otherwise directed by
6669operator precedence declarations. To see the reason for this, let's
6670contrast it with the other alternative.
6671
534cee7a 6672Since the parser prefers to shift the @code{"else"}, the result is to attach
bfa74976
RS
6673the else-clause to the innermost if-statement, making these two inputs
6674equivalent:
6675
6676@example
534cee7a 6677if x then if y then win; else lose;
bfa74976 6678
534cee7a 6679if x then do; if y then win; else lose; end;
bfa74976
RS
6680@end example
6681
6682But if the parser chose to reduce when possible rather than shift, the
6683result would be to attach the else-clause to the outermost if-statement,
6684making these two inputs equivalent:
6685
6686@example
534cee7a 6687if x then if y then win; else lose;
bfa74976 6688
534cee7a 6689if x then do; if y then win; end; else lose;
bfa74976
RS
6690@end example
6691
6692The conflict exists because the grammar as written is ambiguous: either
6693parsing of the simple nested if-statement is legitimate. The established
6694convention is that these ambiguities are resolved by attaching the
6695else-clause to the innermost if-statement; this is what Bison accomplishes
6696by choosing to shift rather than reduce. (It would ideally be cleaner to
6697write an unambiguous grammar, but that is very hard to do in this case.)
6698This particular ambiguity was first encountered in the specifications of
6699Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6700
6701To avoid warnings from Bison about predictable, legitimate shift/reduce
c28cd5dc 6702conflicts, you can use the @code{%expect @var{n}} declaration.
cf22447c
JD
6703There will be no warning as long as the number of shift/reduce conflicts
6704is exactly @var{n}, and Bison will report an error if there is a
6705different number.
c28cd5dc
AD
6706@xref{Expect Decl, ,Suppressing Conflict Warnings}. However, we don't
6707recommend the use of @code{%expect} (except @samp{%expect 0}!), as an equal
6708number of conflicts does not mean that they are the @emph{same}. When
6709possible, you should rather use precedence directives to @emph{fix} the
6710conflicts explicitly (@pxref{Non Operators,, Using Precedence For Non
6711Operators}).
bfa74976
RS
6712
6713The definition of @code{if_stmt} above is solely to blame for the
6714conflict, but the conflict does not actually appear without additional
9913d6e4
JD
6715rules. Here is a complete Bison grammar file that actually manifests
6716the conflict:
bfa74976
RS
6717
6718@example
6719@group
bfa74976
RS
6720%%
6721@end group
6722@group
de6be119
AD
6723stmt:
6724 expr
6725| if_stmt
6726;
bfa74976
RS
6727@end group
6728
6729@group
6730if_stmt:
534cee7a
AD
6731 "if" expr "then" stmt
6732| "if" expr "then" stmt "else" stmt
de6be119 6733;
bfa74976
RS
6734@end group
6735
de6be119 6736expr:
534cee7a 6737 "identifier"
de6be119 6738;
bfa74976
RS
6739@end example
6740
342b8b6e 6741@node Precedence
bfa74976
RS
6742@section Operator Precedence
6743@cindex operator precedence
6744@cindex precedence of operators
6745
6746Another situation where shift/reduce conflicts appear is in arithmetic
6747expressions. Here shifting is not always the preferred resolution; the
6748Bison declarations for operator precedence allow you to specify when to
6749shift and when to reduce.
6750
6751@menu
6752* Why Precedence:: An example showing why precedence is needed.
6753* Using Precedence:: How to specify precedence in Bison grammars.
6754* Precedence Examples:: How these features are used in the previous example.
6755* How Precedence:: How they work.
c28cd5dc 6756* Non Operators:: Using precedence for general conflicts.
bfa74976
RS
6757@end menu
6758
342b8b6e 6759@node Why Precedence
bfa74976
RS
6760@subsection When Precedence is Needed
6761
6762Consider the following ambiguous grammar fragment (ambiguous because the
6763input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6764
6765@example
6766@group
de6be119
AD
6767expr:
6768 expr '-' expr
6769| expr '*' expr
6770| expr '<' expr
6771| '(' expr ')'
6772@dots{}
6773;
bfa74976
RS
6774@end group
6775@end example
6776
6777@noindent
6778Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6779should it reduce them via the rule for the subtraction operator? It
6780depends on the next token. Of course, if the next token is @samp{)}, we
6781must reduce; shifting is invalid because no single rule can reduce the
6782token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6783the next token is @samp{*} or @samp{<}, we have a choice: either
6784shifting or reduction would allow the parse to complete, but with
6785different results.
6786
6787To decide which one Bison should do, we must consider the results. If
6788the next operator token @var{op} is shifted, then it must be reduced
6789first in order to permit another opportunity to reduce the difference.
6790The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6791hand, if the subtraction is reduced before shifting @var{op}, the result
6792is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6793reduce should depend on the relative precedence of the operators
6794@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6795@samp{<}.
bfa74976
RS
6796
6797@cindex associativity
6798What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6799@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6800operators we prefer the former, which is called @dfn{left association}.
6801The latter alternative, @dfn{right association}, is desirable for
6802assignment operators. The choice of left or right association is a
6803matter of whether the parser chooses to shift or reduce when the stack
742e4900 6804contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6805makes right-associativity.
bfa74976 6806
342b8b6e 6807@node Using Precedence
bfa74976
RS
6808@subsection Specifying Operator Precedence
6809@findex %left
6810@findex %right
6811@findex %nonassoc
6812
6813Bison allows you to specify these choices with the operator precedence
6814declarations @code{%left} and @code{%right}. Each such declaration
6815contains a list of tokens, which are operators whose precedence and
6816associativity is being declared. The @code{%left} declaration makes all
6817those operators left-associative and the @code{%right} declaration makes
6818them right-associative. A third alternative is @code{%nonassoc}, which
6819declares that it is a syntax error to find the same operator twice ``in a
6820row''.
6821
6822The relative precedence of different operators is controlled by the
6823order in which they are declared. The first @code{%left} or
6824@code{%right} declaration in the file declares the operators whose
6825precedence is lowest, the next such declaration declares the operators
6826whose precedence is a little higher, and so on.
6827
342b8b6e 6828@node Precedence Examples
bfa74976
RS
6829@subsection Precedence Examples
6830
6831In our example, we would want the following declarations:
6832
6833@example
6834%left '<'
6835%left '-'
6836%left '*'
6837@end example
6838
6839In a more complete example, which supports other operators as well, we
6840would declare them in groups of equal precedence. For example, @code{'+'} is
6841declared with @code{'-'}:
6842
6843@example
534cee7a 6844%left '<' '>' '=' "!=" "<=" ">="
bfa74976
RS
6845%left '+' '-'
6846%left '*' '/'
6847@end example
6848
342b8b6e 6849@node How Precedence
bfa74976
RS
6850@subsection How Precedence Works
6851
6852The first effect of the precedence declarations is to assign precedence
6853levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6854precedence levels to certain rules: each rule gets its precedence from
6855the last terminal symbol mentioned in the components. (You can also
6856specify explicitly the precedence of a rule. @xref{Contextual
6857Precedence, ,Context-Dependent Precedence}.)
6858
6859Finally, the resolution of conflicts works by comparing the precedence
742e4900 6860of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6861token's precedence is higher, the choice is to shift. If the rule's
6862precedence is higher, the choice is to reduce. If they have equal
6863precedence, the choice is made based on the associativity of that
6864precedence level. The verbose output file made by @samp{-v}
6865(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6866resolved.
bfa74976
RS
6867
6868Not all rules and not all tokens have precedence. If either the rule or
742e4900 6869the lookahead token has no precedence, then the default is to shift.
bfa74976 6870
c28cd5dc
AD
6871@node Non Operators
6872@subsection Using Precedence For Non Operators
6873
6874Using properly precedence and associativity directives can help fixing
6875shift/reduce conflicts that do not involve arithmetics-like operators. For
6876instance, the ``dangling @code{else}'' problem (@pxref{Shift/Reduce, ,
6877Shift/Reduce Conflicts}) can be solved elegantly in two different ways.
6878
6879In the present case, the conflict is between the token @code{"else"} willing
6880to be shifted, and the rule @samp{if_stmt: "if" expr "then" stmt}, asking
6881for reduction. By default, the precedence of a rule is that of its last
6882token, here @code{"then"}, so the conflict will be solved appropriately
6883by giving @code{"else"} a precedence higher than that of @code{"then"}, for
6884instance as follows:
6885
6886@example
6887@group
6888%nonassoc "then"
6889%nonassoc "else"
6890@end group
6891@end example
6892
6893Alternatively, you may give both tokens the same precedence, in which case
6894associativity is used to solve the conflict. To preserve the shift action,
6895use right associativity:
6896
6897@example
6898%right "then" "else"
6899@end example
6900
6901Neither solution is perfect however. Since Bison does not provide, so far,
6902support for ``scoped'' precedence, both force you to declare the precedence
6903of these keywords with respect to the other operators your grammar.
6904Therefore, instead of being warned about new conflicts you would be unaware
6905of (e.g., a shift/reduce conflict due to @samp{if test then 1 else 2 + 3}
6906being ambiguous: @samp{if test then 1 else (2 + 3)} or @samp{(if test then 1
6907else 2) + 3}?), the conflict will be already ``fixed''.
6908
342b8b6e 6909@node Contextual Precedence
bfa74976
RS
6910@section Context-Dependent Precedence
6911@cindex context-dependent precedence
6912@cindex unary operator precedence
6913@cindex precedence, context-dependent
6914@cindex precedence, unary operator
6915@findex %prec
6916
6917Often the precedence of an operator depends on the context. This sounds
6918outlandish at first, but it is really very common. For example, a minus
6919sign typically has a very high precedence as a unary operator, and a
6920somewhat lower precedence (lower than multiplication) as a binary operator.
6921
6922The Bison precedence declarations, @code{%left}, @code{%right} and
6923@code{%nonassoc}, can only be used once for a given token; so a token has
6924only one precedence declared in this way. For context-dependent
6925precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6926modifier for rules.
bfa74976
RS
6927
6928The @code{%prec} modifier declares the precedence of a particular rule by
6929specifying a terminal symbol whose precedence should be used for that rule.
6930It's not necessary for that symbol to appear otherwise in the rule. The
6931modifier's syntax is:
6932
6933@example
6934%prec @var{terminal-symbol}
6935@end example
6936
6937@noindent
6938and it is written after the components of the rule. Its effect is to
6939assign the rule the precedence of @var{terminal-symbol}, overriding
6940the precedence that would be deduced for it in the ordinary way. The
6941altered rule precedence then affects how conflicts involving that rule
6942are resolved (@pxref{Precedence, ,Operator Precedence}).
6943
6944Here is how @code{%prec} solves the problem of unary minus. First, declare
6945a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6946are no tokens of this type, but the symbol serves to stand for its
6947precedence:
6948
6949@example
6950@dots{}
6951%left '+' '-'
6952%left '*'
6953%left UMINUS
6954@end example
6955
6956Now the precedence of @code{UMINUS} can be used in specific rules:
6957
6958@example
6959@group
de6be119
AD
6960exp:
6961 @dots{}
6962| exp '-' exp
6963 @dots{}
6964| '-' exp %prec UMINUS
bfa74976
RS
6965@end group
6966@end example
6967
91d2c560 6968@ifset defaultprec
39a06c25
PE
6969If you forget to append @code{%prec UMINUS} to the rule for unary
6970minus, Bison silently assumes that minus has its usual precedence.
6971This kind of problem can be tricky to debug, since one typically
6972discovers the mistake only by testing the code.
6973
22fccf95 6974The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6975this kind of problem systematically. It causes rules that lack a
6976@code{%prec} modifier to have no precedence, even if the last terminal
6977symbol mentioned in their components has a declared precedence.
6978
22fccf95 6979If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6980for all rules that participate in precedence conflict resolution.
6981Then you will see any shift/reduce conflict until you tell Bison how
6982to resolve it, either by changing your grammar or by adding an
6983explicit precedence. This will probably add declarations to the
6984grammar, but it helps to protect against incorrect rule precedences.
6985
22fccf95
PE
6986The effect of @code{%no-default-prec;} can be reversed by giving
6987@code{%default-prec;}, which is the default.
91d2c560 6988@end ifset
39a06c25 6989
342b8b6e 6990@node Parser States
bfa74976
RS
6991@section Parser States
6992@cindex finite-state machine
6993@cindex parser state
6994@cindex state (of parser)
6995
6996The function @code{yyparse} is implemented using a finite-state machine.
6997The values pushed on the parser stack are not simply token type codes; they
6998represent the entire sequence of terminal and nonterminal symbols at or
6999near the top of the stack. The current state collects all the information
7000about previous input which is relevant to deciding what to do next.
7001
742e4900
JD
7002Each time a lookahead token is read, the current parser state together
7003with the type of lookahead token are looked up in a table. This table
7004entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7005specifies the new parser state, which is pushed onto the top of the
7006parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7007This means that a certain number of tokens or groupings are taken off
7008the top of the stack, and replaced by one grouping. In other words,
7009that number of states are popped from the stack, and one new state is
7010pushed.
7011
742e4900 7012There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7013is erroneous in the current state. This causes error processing to begin
7014(@pxref{Error Recovery}).
7015
342b8b6e 7016@node Reduce/Reduce
bfa74976
RS
7017@section Reduce/Reduce Conflicts
7018@cindex reduce/reduce conflict
7019@cindex conflicts, reduce/reduce
7020
7021A reduce/reduce conflict occurs if there are two or more rules that apply
7022to the same sequence of input. This usually indicates a serious error
7023in the grammar.
7024
7025For example, here is an erroneous attempt to define a sequence
7026of zero or more @code{word} groupings.
7027
7028@example
98842516 7029@group
de6be119
AD
7030sequence:
7031 /* empty */ @{ printf ("empty sequence\n"); @}
7032| maybeword
7033| sequence word @{ printf ("added word %s\n", $2); @}
7034;
98842516 7035@end group
bfa74976 7036
98842516 7037@group
de6be119
AD
7038maybeword:
7039 /* empty */ @{ printf ("empty maybeword\n"); @}
7040| word @{ printf ("single word %s\n", $1); @}
7041;
98842516 7042@end group
bfa74976
RS
7043@end example
7044
7045@noindent
7046The error is an ambiguity: there is more than one way to parse a single
7047@code{word} into a @code{sequence}. It could be reduced to a
7048@code{maybeword} and then into a @code{sequence} via the second rule.
7049Alternatively, nothing-at-all could be reduced into a @code{sequence}
7050via the first rule, and this could be combined with the @code{word}
7051using the third rule for @code{sequence}.
7052
7053There is also more than one way to reduce nothing-at-all into a
7054@code{sequence}. This can be done directly via the first rule,
7055or indirectly via @code{maybeword} and then the second rule.
7056
7057You might think that this is a distinction without a difference, because it
7058does not change whether any particular input is valid or not. But it does
7059affect which actions are run. One parsing order runs the second rule's
7060action; the other runs the first rule's action and the third rule's action.
7061In this example, the output of the program changes.
7062
7063Bison resolves a reduce/reduce conflict by choosing to use the rule that
7064appears first in the grammar, but it is very risky to rely on this. Every
7065reduce/reduce conflict must be studied and usually eliminated. Here is the
7066proper way to define @code{sequence}:
7067
7068@example
51356dd2 7069@group
de6be119
AD
7070sequence:
7071 /* empty */ @{ printf ("empty sequence\n"); @}
7072| sequence word @{ printf ("added word %s\n", $2); @}
7073;
51356dd2 7074@end group
bfa74976
RS
7075@end example
7076
7077Here is another common error that yields a reduce/reduce conflict:
7078
7079@example
de6be119 7080sequence:
51356dd2 7081@group
de6be119
AD
7082 /* empty */
7083| sequence words
7084| sequence redirects
7085;
51356dd2 7086@end group
bfa74976 7087
51356dd2 7088@group
de6be119
AD
7089words:
7090 /* empty */
7091| words word
7092;
51356dd2 7093@end group
bfa74976 7094
51356dd2 7095@group
de6be119
AD
7096redirects:
7097 /* empty */
7098| redirects redirect
7099;
51356dd2 7100@end group
bfa74976
RS
7101@end example
7102
7103@noindent
7104The intention here is to define a sequence which can contain either
7105@code{word} or @code{redirect} groupings. The individual definitions of
7106@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7107three together make a subtle ambiguity: even an empty input can be parsed
7108in infinitely many ways!
7109
7110Consider: nothing-at-all could be a @code{words}. Or it could be two
7111@code{words} in a row, or three, or any number. It could equally well be a
7112@code{redirects}, or two, or any number. Or it could be a @code{words}
7113followed by three @code{redirects} and another @code{words}. And so on.
7114
7115Here are two ways to correct these rules. First, to make it a single level
7116of sequence:
7117
7118@example
de6be119
AD
7119sequence:
7120 /* empty */
7121| sequence word
7122| sequence redirect
7123;
bfa74976
RS
7124@end example
7125
7126Second, to prevent either a @code{words} or a @code{redirects}
7127from being empty:
7128
7129@example
98842516 7130@group
de6be119
AD
7131sequence:
7132 /* empty */
7133| sequence words
7134| sequence redirects
7135;
98842516 7136@end group
bfa74976 7137
98842516 7138@group
de6be119
AD
7139words:
7140 word
7141| words word
7142;
98842516 7143@end group
bfa74976 7144
98842516 7145@group
de6be119
AD
7146redirects:
7147 redirect
7148| redirects redirect
7149;
98842516 7150@end group
bfa74976
RS
7151@end example
7152
53e2cd1e
AD
7153Yet this proposal introduces another kind of ambiguity! The input
7154@samp{word word} can be parsed as a single @code{words} composed of two
7155@samp{word}s, or as two one-@code{word} @code{words} (and likewise for
7156@code{redirect}/@code{redirects}). However this ambiguity is now a
7157shift/reduce conflict, and therefore it can now be addressed with precedence
7158directives.
7159
7160To simplify the matter, we will proceed with @code{word} and @code{redirect}
7161being tokens: @code{"word"} and @code{"redirect"}.
7162
7163To prefer the longest @code{words}, the conflict between the token
7164@code{"word"} and the rule @samp{sequence: sequence words} must be resolved
7165as a shift. To this end, we use the same techniques as exposed above, see
7166@ref{Non Operators,, Using Precedence For Non Operators}. One solution
7167relies on precedences: use @code{%prec} to give a lower precedence to the
7168rule:
7169
7170@example
7171%nonassoc "word"
7172%nonassoc "sequence"
7173%%
7174@group
7175sequence:
7176 /* empty */
7177| sequence word %prec "sequence"
7178| sequence redirect %prec "sequence"
7179;
7180@end group
7181
7182@group
7183words:
7184 word
7185| words "word"
7186;
7187@end group
7188@end example
7189
7190Another solution relies on associativity: provide both the token and the
7191rule with the same precedence, but make them right-associative:
7192
7193@example
7194%right "word" "redirect"
7195%%
7196@group
7197sequence:
7198 /* empty */
7199| sequence word %prec "word"
7200| sequence redirect %prec "redirect"
7201;
7202@end group
7203@end example
7204
5da0355a
JD
7205@node Mysterious Conflicts
7206@section Mysterious Conflicts
6f04ee6c 7207@cindex Mysterious Conflicts
bfa74976
RS
7208
7209Sometimes reduce/reduce conflicts can occur that don't look warranted.
7210Here is an example:
7211
7212@example
7213@group
bfa74976 7214%%
de6be119 7215def: param_spec return_spec ',';
bfa74976 7216param_spec:
de6be119
AD
7217 type
7218| name_list ':' type
7219;
bfa74976
RS
7220@end group
7221@group
7222return_spec:
de6be119
AD
7223 type
7224| name ':' type
7225;
bfa74976
RS
7226@end group
7227@group
534cee7a 7228type: "id";
bfa74976
RS
7229@end group
7230@group
534cee7a 7231name: "id";
bfa74976 7232name_list:
de6be119
AD
7233 name
7234| name ',' name_list
7235;
bfa74976
RS
7236@end group
7237@end example
7238
534cee7a
AD
7239It would seem that this grammar can be parsed with only a single token of
7240lookahead: when a @code{param_spec} is being read, an @code{"id"} is a
7241@code{name} if a comma or colon follows, or a @code{type} if another
7242@code{"id"} follows. In other words, this grammar is LR(1).
bfa74976 7243
6f04ee6c
JD
7244@cindex LR
7245@cindex LALR
34a6c2d1 7246However, for historical reasons, Bison cannot by default handle all
35430378 7247LR(1) grammars.
534cee7a 7248In this grammar, two contexts, that after an @code{"id"} at the beginning
34a6c2d1
JD
7249of a @code{param_spec} and likewise at the beginning of a
7250@code{return_spec}, are similar enough that Bison assumes they are the
7251same.
7252They appear similar because the same set of rules would be
bfa74976
RS
7253active---the rule for reducing to a @code{name} and that for reducing to
7254a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7255that the rules would require different lookahead tokens in the two
bfa74976
RS
7256contexts, so it makes a single parser state for them both. Combining
7257the two contexts causes a conflict later. In parser terminology, this
35430378 7258occurrence means that the grammar is not LALR(1).
bfa74976 7259
6f04ee6c
JD
7260@cindex IELR
7261@cindex canonical LR
7262For many practical grammars (specifically those that fall into the non-LR(1)
7263class), the limitations of LALR(1) result in difficulties beyond just
7264mysterious reduce/reduce conflicts. The best way to fix all these problems
7265is to select a different parser table construction algorithm. Either
7266IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7267and easier to debug during development. @xref{LR Table Construction}, for
7268details. (Bison's IELR(1) and canonical LR(1) implementations are
7269experimental. More user feedback will help to stabilize them.)
34a6c2d1 7270
35430378 7271If you instead wish to work around LALR(1)'s limitations, you
34a6c2d1
JD
7272can often fix a mysterious conflict by identifying the two parser states
7273that are being confused, and adding something to make them look
7274distinct. In the above example, adding one rule to
bfa74976
RS
7275@code{return_spec} as follows makes the problem go away:
7276
7277@example
7278@group
bfa74976
RS
7279@dots{}
7280return_spec:
de6be119
AD
7281 type
7282| name ':' type
534cee7a 7283| "id" "bogus" /* This rule is never used. */
de6be119 7284;
bfa74976
RS
7285@end group
7286@end example
7287
7288This corrects the problem because it introduces the possibility of an
534cee7a 7289additional active rule in the context after the @code{"id"} at the beginning of
bfa74976
RS
7290@code{return_spec}. This rule is not active in the corresponding context
7291in a @code{param_spec}, so the two contexts receive distinct parser states.
534cee7a 7292As long as the token @code{"bogus"} is never generated by @code{yylex},
bfa74976
RS
7293the added rule cannot alter the way actual input is parsed.
7294
7295In this particular example, there is another way to solve the problem:
534cee7a 7296rewrite the rule for @code{return_spec} to use @code{"id"} directly
bfa74976
RS
7297instead of via @code{name}. This also causes the two confusing
7298contexts to have different sets of active rules, because the one for
7299@code{return_spec} activates the altered rule for @code{return_spec}
7300rather than the one for @code{name}.
7301
7302@example
7303param_spec:
de6be119
AD
7304 type
7305| name_list ':' type
7306;
bfa74976 7307return_spec:
de6be119 7308 type
534cee7a 7309| "id" ':' type
de6be119 7310;
bfa74976
RS
7311@end example
7312
35430378 7313For a more detailed exposition of LALR(1) parsers and parser
71caec06 7314generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7315
6f04ee6c
JD
7316@node Tuning LR
7317@section Tuning LR
7318
7319The default behavior of Bison's LR-based parsers is chosen mostly for
7320historical reasons, but that behavior is often not robust. For example, in
7321the previous section, we discussed the mysterious conflicts that can be
7322produced by LALR(1), Bison's default parser table construction algorithm.
7323Another example is Bison's @code{%error-verbose} directive, which instructs
7324the generated parser to produce verbose syntax error messages, which can
7325sometimes contain incorrect information.
7326
7327In this section, we explore several modern features of Bison that allow you
7328to tune fundamental aspects of the generated LR-based parsers. Some of
7329these features easily eliminate shortcomings like those mentioned above.
7330Others can be helpful purely for understanding your parser.
7331
7332Most of the features discussed in this section are still experimental. More
7333user feedback will help to stabilize them.
7334
7335@menu
7336* LR Table Construction:: Choose a different construction algorithm.
7337* Default Reductions:: Disable default reductions.
7338* LAC:: Correct lookahead sets in the parser states.
7339* Unreachable States:: Keep unreachable parser states for debugging.
7340@end menu
7341
7342@node LR Table Construction
7343@subsection LR Table Construction
7344@cindex Mysterious Conflict
7345@cindex LALR
7346@cindex IELR
7347@cindex canonical LR
7348@findex %define lr.type
7349
7350For historical reasons, Bison constructs LALR(1) parser tables by default.
7351However, LALR does not possess the full language-recognition power of LR.
7352As a result, the behavior of parsers employing LALR parser tables is often
5da0355a 7353mysterious. We presented a simple example of this effect in @ref{Mysterious
6f04ee6c
JD
7354Conflicts}.
7355
7356As we also demonstrated in that example, the traditional approach to
7357eliminating such mysterious behavior is to restructure the grammar.
7358Unfortunately, doing so correctly is often difficult. Moreover, merely
7359discovering that LALR causes mysterious behavior in your parser can be
7360difficult as well.
7361
7362Fortunately, Bison provides an easy way to eliminate the possibility of such
7363mysterious behavior altogether. You simply need to activate a more powerful
7364parser table construction algorithm by using the @code{%define lr.type}
7365directive.
7366
511dd971 7367@deffn {Directive} {%define lr.type} @var{type}
6f04ee6c 7368Specify the type of parser tables within the LR(1) family. The accepted
511dd971 7369values for @var{type} are:
6f04ee6c
JD
7370
7371@itemize
7372@item @code{lalr} (default)
7373@item @code{ielr}
7374@item @code{canonical-lr}
7375@end itemize
7376
7377(This feature is experimental. More user feedback will help to stabilize
7378it.)
7379@end deffn
7380
7381For example, to activate IELR, you might add the following directive to you
7382grammar file:
7383
7384@example
7385%define lr.type ielr
7386@end example
7387
5da0355a 7388@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
6f04ee6c
JD
7389conflict is then eliminated, so there is no need to invest time in
7390comprehending the conflict or restructuring the grammar to fix it. If,
7391during future development, the grammar evolves such that all mysterious
7392behavior would have disappeared using just LALR, you need not fear that
7393continuing to use IELR will result in unnecessarily large parser tables.
7394That is, IELR generates LALR tables when LALR (using a deterministic parsing
7395algorithm) is sufficient to support the full language-recognition power of
7396LR. Thus, by enabling IELR at the start of grammar development, you can
7397safely and completely eliminate the need to consider LALR's shortcomings.
7398
7399While IELR is almost always preferable, there are circumstances where LALR
7400or the canonical LR parser tables described by Knuth
7401(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7402relative advantages of each parser table construction algorithm within
7403Bison:
7404
7405@itemize
7406@item LALR
7407
7408There are at least two scenarios where LALR can be worthwhile:
7409
7410@itemize
7411@item GLR without static conflict resolution.
7412
7413@cindex GLR with LALR
7414When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
7415conflicts statically (for example, with @code{%left} or @code{%prec}), then
7416the parser explores all potential parses of any given input. In this case,
7417the choice of parser table construction algorithm is guaranteed not to alter
7418the language accepted by the parser. LALR parser tables are the smallest
7419parser tables Bison can currently construct, so they may then be preferable.
7420Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7421more like a deterministic parser in the syntactic contexts where those
7422conflicts appear, and so either IELR or canonical LR can then be helpful to
7423avoid LALR's mysterious behavior.
7424
7425@item Malformed grammars.
7426
7427Occasionally during development, an especially malformed grammar with a
7428major recurring flaw may severely impede the IELR or canonical LR parser
7429table construction algorithm. LALR can be a quick way to construct parser
7430tables in order to investigate such problems while ignoring the more subtle
7431differences from IELR and canonical LR.
7432@end itemize
7433
7434@item IELR
7435
7436IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7437any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7438always accept exactly the same set of sentences. However, like LALR, IELR
7439merges parser states during parser table construction so that the number of
7440parser states is often an order of magnitude less than for canonical LR.
7441More importantly, because canonical LR's extra parser states may contain
7442duplicate conflicts in the case of non-LR grammars, the number of conflicts
7443for IELR is often an order of magnitude less as well. This effect can
7444significantly reduce the complexity of developing a grammar.
7445
7446@item Canonical LR
7447
7448@cindex delayed syntax error detection
7449@cindex LAC
7450@findex %nonassoc
7451While inefficient, canonical LR parser tables can be an interesting means to
7452explore a grammar because they possess a property that IELR and LALR tables
7453do not. That is, if @code{%nonassoc} is not used and default reductions are
7454left disabled (@pxref{Default Reductions}), then, for every left context of
7455every canonical LR state, the set of tokens accepted by that state is
7456guaranteed to be the exact set of tokens that is syntactically acceptable in
7457that left context. It might then seem that an advantage of canonical LR
7458parsers in production is that, under the above constraints, they are
7459guaranteed to detect a syntax error as soon as possible without performing
7460any unnecessary reductions. However, IELR parsers that use LAC are also
7461able to achieve this behavior without sacrificing @code{%nonassoc} or
7462default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7463@end itemize
7464
7465For a more detailed exposition of the mysterious behavior in LALR parsers
7466and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7467@ref{Bibliography,,Denny 2010 November}.
7468
7469@node Default Reductions
7470@subsection Default Reductions
7471@cindex default reductions
7472@findex %define lr.default-reductions
7473@findex %nonassoc
7474
7475After parser table construction, Bison identifies the reduction with the
7476largest lookahead set in each parser state. To reduce the size of the
7477parser state, traditional Bison behavior is to remove that lookahead set and
7478to assign that reduction to be the default parser action. Such a reduction
7479is known as a @dfn{default reduction}.
7480
7481Default reductions affect more than the size of the parser tables. They
7482also affect the behavior of the parser:
7483
7484@itemize
7485@item Delayed @code{yylex} invocations.
7486
7487@cindex delayed yylex invocations
7488@cindex consistent states
7489@cindex defaulted states
7490A @dfn{consistent state} is a state that has only one possible parser
7491action. If that action is a reduction and is encoded as a default
7492reduction, then that consistent state is called a @dfn{defaulted state}.
7493Upon reaching a defaulted state, a Bison-generated parser does not bother to
7494invoke @code{yylex} to fetch the next token before performing the reduction.
7495In other words, whether default reductions are enabled in consistent states
7496determines how soon a Bison-generated parser invokes @code{yylex} for a
7497token: immediately when it @emph{reaches} that token in the input or when it
7498eventually @emph{needs} that token as a lookahead to determine the next
7499parser action. Traditionally, default reductions are enabled, and so the
7500parser exhibits the latter behavior.
7501
7502The presence of defaulted states is an important consideration when
7503designing @code{yylex} and the grammar file. That is, if the behavior of
7504@code{yylex} can influence or be influenced by the semantic actions
7505associated with the reductions in defaulted states, then the delay of the
7506next @code{yylex} invocation until after those reductions is significant.
7507For example, the semantic actions might pop a scope stack that @code{yylex}
7508uses to determine what token to return. Thus, the delay might be necessary
7509to ensure that @code{yylex} does not look up the next token in a scope that
7510should already be considered closed.
7511
7512@item Delayed syntax error detection.
7513
7514@cindex delayed syntax error detection
7515When the parser fetches a new token by invoking @code{yylex}, it checks
7516whether there is an action for that token in the current parser state. The
7517parser detects a syntax error if and only if either (1) there is no action
7518for that token or (2) the action for that token is the error action (due to
7519the use of @code{%nonassoc}). However, if there is a default reduction in
7520that state (which might or might not be a defaulted state), then it is
7521impossible for condition 1 to exist. That is, all tokens have an action.
7522Thus, the parser sometimes fails to detect the syntax error until it reaches
7523a later state.
7524
7525@cindex LAC
7526@c If there's an infinite loop, default reductions can prevent an incorrect
7527@c sentence from being rejected.
7528While default reductions never cause the parser to accept syntactically
7529incorrect sentences, the delay of syntax error detection can have unexpected
7530effects on the behavior of the parser. However, the delay can be caused
7531anyway by parser state merging and the use of @code{%nonassoc}, and it can
7532be fixed by another Bison feature, LAC. We discuss the effects of delayed
7533syntax error detection and LAC more in the next section (@pxref{LAC}).
7534@end itemize
7535
7536For canonical LR, the only default reduction that Bison enables by default
7537is the accept action, which appears only in the accepting state, which has
7538no other action and is thus a defaulted state. However, the default accept
7539action does not delay any @code{yylex} invocation or syntax error detection
7540because the accept action ends the parse.
7541
7542For LALR and IELR, Bison enables default reductions in nearly all states by
7543default. There are only two exceptions. First, states that have a shift
7544action on the @code{error} token do not have default reductions because
7545delayed syntax error detection could then prevent the @code{error} token
7546from ever being shifted in that state. However, parser state merging can
7547cause the same effect anyway, and LAC fixes it in both cases, so future
7548versions of Bison might drop this exception when LAC is activated. Second,
7549GLR parsers do not record the default reduction as the action on a lookahead
7550token for which there is a conflict. The correct action in this case is to
7551split the parse instead.
7552
7553To adjust which states have default reductions enabled, use the
7554@code{%define lr.default-reductions} directive.
7555
511dd971 7556@deffn {Directive} {%define lr.default-reductions} @var{where}
6f04ee6c 7557Specify the kind of states that are permitted to contain default reductions.
511dd971 7558The accepted values of @var{where} are:
6f04ee6c 7559@itemize
a6e5a280 7560@item @code{most} (default for LALR and IELR)
6f04ee6c
JD
7561@item @code{consistent}
7562@item @code{accepting} (default for canonical LR)
7563@end itemize
7564
7565(The ability to specify where default reductions are permitted is
7566experimental. More user feedback will help to stabilize it.)
7567@end deffn
7568
6f04ee6c
JD
7569@node LAC
7570@subsection LAC
7571@findex %define parse.lac
7572@cindex LAC
7573@cindex lookahead correction
7574
7575Canonical LR, IELR, and LALR can suffer from a couple of problems upon
7576encountering a syntax error. First, the parser might perform additional
7577parser stack reductions before discovering the syntax error. Such
7578reductions can perform user semantic actions that are unexpected because
7579they are based on an invalid token, and they cause error recovery to begin
7580in a different syntactic context than the one in which the invalid token was
7581encountered. Second, when verbose error messages are enabled (@pxref{Error
7582Reporting}), the expected token list in the syntax error message can both
7583contain invalid tokens and omit valid tokens.
7584
7585The culprits for the above problems are @code{%nonassoc}, default reductions
7586in inconsistent states (@pxref{Default Reductions}), and parser state
7587merging. Because IELR and LALR merge parser states, they suffer the most.
7588Canonical LR can suffer only if @code{%nonassoc} is used or if default
7589reductions are enabled for inconsistent states.
7590
7591LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
7592that solves these problems for canonical LR, IELR, and LALR without
7593sacrificing @code{%nonassoc}, default reductions, or state merging. You can
7594enable LAC with the @code{%define parse.lac} directive.
7595
511dd971 7596@deffn {Directive} {%define parse.lac} @var{value}
6f04ee6c
JD
7597Enable LAC to improve syntax error handling.
7598@itemize
7599@item @code{none} (default)
7600@item @code{full}
7601@end itemize
7602(This feature is experimental. More user feedback will help to stabilize
7603it. Moreover, it is currently only available for deterministic parsers in
7604C.)
7605@end deffn
7606
7607Conceptually, the LAC mechanism is straight-forward. Whenever the parser
7608fetches a new token from the scanner so that it can determine the next
7609parser action, it immediately suspends normal parsing and performs an
7610exploratory parse using a temporary copy of the normal parser state stack.
7611During this exploratory parse, the parser does not perform user semantic
7612actions. If the exploratory parse reaches a shift action, normal parsing
7613then resumes on the normal parser stacks. If the exploratory parse reaches
7614an error instead, the parser reports a syntax error. If verbose syntax
7615error messages are enabled, the parser must then discover the list of
7616expected tokens, so it performs a separate exploratory parse for each token
7617in the grammar.
7618
7619There is one subtlety about the use of LAC. That is, when in a consistent
7620parser state with a default reduction, the parser will not attempt to fetch
7621a token from the scanner because no lookahead is needed to determine the
7622next parser action. Thus, whether default reductions are enabled in
7623consistent states (@pxref{Default Reductions}) affects how soon the parser
7624detects a syntax error: immediately when it @emph{reaches} an erroneous
7625token or when it eventually @emph{needs} that token as a lookahead to
7626determine the next parser action. The latter behavior is probably more
7627intuitive, so Bison currently provides no way to achieve the former behavior
7628while default reductions are enabled in consistent states.
7629
7630Thus, when LAC is in use, for some fixed decision of whether to enable
7631default reductions in consistent states, canonical LR and IELR behave almost
7632exactly the same for both syntactically acceptable and syntactically
7633unacceptable input. While LALR still does not support the full
7634language-recognition power of canonical LR and IELR, LAC at least enables
7635LALR's syntax error handling to correctly reflect LALR's
7636language-recognition power.
7637
7638There are a few caveats to consider when using LAC:
7639
7640@itemize
7641@item Infinite parsing loops.
7642
7643IELR plus LAC does have one shortcoming relative to canonical LR. Some
7644parsers generated by Bison can loop infinitely. LAC does not fix infinite
7645parsing loops that occur between encountering a syntax error and detecting
7646it, but enabling canonical LR or disabling default reductions sometimes
7647does.
7648
7649@item Verbose error message limitations.
7650
7651Because of internationalization considerations, Bison-generated parsers
7652limit the size of the expected token list they are willing to report in a
7653verbose syntax error message. If the number of expected tokens exceeds that
7654limit, the list is simply dropped from the message. Enabling LAC can
7655increase the size of the list and thus cause the parser to drop it. Of
7656course, dropping the list is better than reporting an incorrect list.
7657
7658@item Performance.
7659
7660Because LAC requires many parse actions to be performed twice, it can have a
7661performance penalty. However, not all parse actions must be performed
7662twice. Specifically, during a series of default reductions in consistent
7663states and shift actions, the parser never has to initiate an exploratory
7664parse. Moreover, the most time-consuming tasks in a parse are often the
7665file I/O, the lexical analysis performed by the scanner, and the user's
7666semantic actions, but none of these are performed during the exploratory
7667parse. Finally, the base of the temporary stack used during an exploratory
7668parse is a pointer into the normal parser state stack so that the stack is
7669never physically copied. In our experience, the performance penalty of LAC
56da1e52 7670has proved insignificant for practical grammars.
6f04ee6c
JD
7671@end itemize
7672
56706c61
JD
7673While the LAC algorithm shares techniques that have been recognized in the
7674parser community for years, for the publication that introduces LAC,
7675@pxref{Bibliography,,Denny 2010 May}.
121c4982 7676
6f04ee6c
JD
7677@node Unreachable States
7678@subsection Unreachable States
7679@findex %define lr.keep-unreachable-states
7680@cindex unreachable states
7681
7682If there exists no sequence of transitions from the parser's start state to
7683some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
7684state}. A state can become unreachable during conflict resolution if Bison
7685disables a shift action leading to it from a predecessor state.
7686
7687By default, Bison removes unreachable states from the parser after conflict
7688resolution because they are useless in the generated parser. However,
7689keeping unreachable states is sometimes useful when trying to understand the
7690relationship between the parser and the grammar.
7691
511dd971 7692@deffn {Directive} {%define lr.keep-unreachable-states} @var{value}
6f04ee6c 7693Request that Bison allow unreachable states to remain in the parser tables.
511dd971 7694@var{value} must be a Boolean. The default is @code{false}.
6f04ee6c
JD
7695@end deffn
7696
7697There are a few caveats to consider:
7698
7699@itemize @bullet
7700@item Missing or extraneous warnings.
7701
7702Unreachable states may contain conflicts and may use rules not used in any
7703other state. Thus, keeping unreachable states may induce warnings that are
7704irrelevant to your parser's behavior, and it may eliminate warnings that are
7705relevant. Of course, the change in warnings may actually be relevant to a
7706parser table analysis that wants to keep unreachable states, so this
7707behavior will likely remain in future Bison releases.
7708
7709@item Other useless states.
7710
7711While Bison is able to remove unreachable states, it is not guaranteed to
7712remove other kinds of useless states. Specifically, when Bison disables
7713reduce actions during conflict resolution, some goto actions may become
7714useless, and thus some additional states may become useless. If Bison were
7715to compute which goto actions were useless and then disable those actions,
7716it could identify such states as unreachable and then remove those states.
7717However, Bison does not compute which goto actions are useless.
7718@end itemize
7719
fae437e8 7720@node Generalized LR Parsing
35430378
JD
7721@section Generalized LR (GLR) Parsing
7722@cindex GLR parsing
7723@cindex generalized LR (GLR) parsing
676385e2 7724@cindex ambiguous grammars
9d9b8b70 7725@cindex nondeterministic parsing
676385e2 7726
fae437e8
AD
7727Bison produces @emph{deterministic} parsers that choose uniquely
7728when to reduce and which reduction to apply
742e4900 7729based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7730As a result, normal Bison handles a proper subset of the family of
7731context-free languages.
fae437e8 7732Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7733sequence of reductions cannot have deterministic parsers in this sense.
7734The same is true of languages that require more than one symbol of
742e4900 7735lookahead, since the parser lacks the information necessary to make a
676385e2 7736decision at the point it must be made in a shift-reduce parser.
5da0355a 7737Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
34a6c2d1 7738there are languages where Bison's default choice of how to
676385e2
PH
7739summarize the input seen so far loses necessary information.
7740
7741When you use the @samp{%glr-parser} declaration in your grammar file,
7742Bison generates a parser that uses a different algorithm, called
35430378 7743Generalized LR (or GLR). A Bison GLR
c827f760 7744parser uses the same basic
676385e2
PH
7745algorithm for parsing as an ordinary Bison parser, but behaves
7746differently in cases where there is a shift-reduce conflict that has not
fae437e8 7747been resolved by precedence rules (@pxref{Precedence}) or a
35430378 7748reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7749situation, it
fae437e8 7750effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7751shift or reduction. These parsers then proceed as usual, consuming
7752tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7753and split further, with the result that instead of a sequence of states,
35430378 7754a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7755
7756In effect, each stack represents a guess as to what the proper parse
7757is. Additional input may indicate that a guess was wrong, in which case
7758the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7759actions generated in each stack are saved, rather than being executed
676385e2 7760immediately. When a stack disappears, its saved semantic actions never
fae437e8 7761get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7762their sets of semantic actions are both saved with the state that
7763results from the reduction. We say that two stacks are equivalent
fae437e8 7764when they both represent the same sequence of states,
676385e2
PH
7765and each pair of corresponding states represents a
7766grammar symbol that produces the same segment of the input token
7767stream.
7768
7769Whenever the parser makes a transition from having multiple
34a6c2d1 7770states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7771algorithm, after resolving and executing the saved-up actions.
7772At this transition, some of the states on the stack will have semantic
7773values that are sets (actually multisets) of possible actions. The
7774parser tries to pick one of the actions by first finding one whose rule
7775has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7776declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7777precedence, but there the same merging function is declared for both
fae437e8 7778rules by the @samp{%merge} declaration,
676385e2
PH
7779Bison resolves and evaluates both and then calls the merge function on
7780the result. Otherwise, it reports an ambiguity.
7781
35430378
JD
7782It is possible to use a data structure for the GLR parsing tree that
7783permits the processing of any LR(1) grammar in linear time (in the
c827f760 7784size of the input), any unambiguous (not necessarily
35430378 7785LR(1)) grammar in
fae437e8 7786quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7787context-free grammar in cubic worst-case time. However, Bison currently
7788uses a simpler data structure that requires time proportional to the
7789length of the input times the maximum number of stacks required for any
9d9b8b70 7790prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7791grammars can require exponential time and space to process. Such badly
7792behaving examples, however, are not generally of practical interest.
9d9b8b70 7793Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7794doubt'' only for a few tokens at a time. Therefore, the current data
35430378 7795structure should generally be adequate. On LR(1) portions of a
34a6c2d1 7796grammar, in particular, it is only slightly slower than with the
35430378 7797deterministic LR(1) Bison parser.
676385e2 7798
71caec06
JD
7799For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
78002000}.
f6481e2f 7801
1a059451
PE
7802@node Memory Management
7803@section Memory Management, and How to Avoid Memory Exhaustion
7804@cindex memory exhaustion
7805@cindex memory management
bfa74976
RS
7806@cindex stack overflow
7807@cindex parser stack overflow
7808@cindex overflow of parser stack
7809
1a059451 7810The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7811not reduced. When this happens, the parser function @code{yyparse}
1a059451 7812calls @code{yyerror} and then returns 2.
bfa74976 7813
c827f760 7814Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f 7815usually results from using a right recursion instead of a left
188867ac 7816recursion, see @ref{Recursion, ,Recursive Rules}.
d1a1114f 7817
bfa74976
RS
7818@vindex YYMAXDEPTH
7819By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7820parser stack can become before memory is exhausted. Define the
bfa74976
RS
7821macro with a value that is an integer. This value is the maximum number
7822of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7823
7824The stack space allowed is not necessarily allocated. If you specify a
1a059451 7825large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7826stack at first, and then makes it bigger by stages as needed. This
7827increasing allocation happens automatically and silently. Therefore,
7828you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7829space for ordinary inputs that do not need much stack.
7830
d7e14fc0
PE
7831However, do not allow @code{YYMAXDEPTH} to be a value so large that
7832arithmetic overflow could occur when calculating the size of the stack
7833space. Also, do not allow @code{YYMAXDEPTH} to be less than
7834@code{YYINITDEPTH}.
7835
bfa74976
RS
7836@cindex default stack limit
7837The default value of @code{YYMAXDEPTH}, if you do not define it, is
783810000.
7839
7840@vindex YYINITDEPTH
7841You can control how much stack is allocated initially by defining the
34a6c2d1
JD
7842macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7843parser in C, this value must be a compile-time constant
d7e14fc0
PE
7844unless you are assuming C99 or some other target language or compiler
7845that allows variable-length arrays. The default is 200.
7846
1a059451 7847Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7848
d1a1114f 7849@c FIXME: C++ output.
c781580d 7850Because of semantic differences between C and C++, the deterministic
34a6c2d1 7851parsers in C produced by Bison cannot grow when compiled
1a059451
PE
7852by C++ compilers. In this precise case (compiling a C parser as C++) you are
7853suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
7854this deficiency in a future release.
d1a1114f 7855
342b8b6e 7856@node Error Recovery
bfa74976
RS
7857@chapter Error Recovery
7858@cindex error recovery
7859@cindex recovery from errors
7860
6e649e65 7861It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7862error. For example, a compiler should recover sufficiently to parse the
7863rest of the input file and check it for errors; a calculator should accept
7864another expression.
7865
7866In a simple interactive command parser where each input is one line, it may
7867be sufficient to allow @code{yyparse} to return 1 on error and have the
7868caller ignore the rest of the input line when that happens (and then call
7869@code{yyparse} again). But this is inadequate for a compiler, because it
7870forgets all the syntactic context leading up to the error. A syntax error
7871deep within a function in the compiler input should not cause the compiler
7872to treat the following line like the beginning of a source file.
7873
7874@findex error
7875You can define how to recover from a syntax error by writing rules to
7876recognize the special token @code{error}. This is a terminal symbol that
7877is always defined (you need not declare it) and reserved for error
7878handling. The Bison parser generates an @code{error} token whenever a
7879syntax error happens; if you have provided a rule to recognize this token
13863333 7880in the current context, the parse can continue.
bfa74976
RS
7881
7882For example:
7883
7884@example
0765d393 7885stmts:
de6be119 7886 /* empty string */
0765d393
AD
7887| stmts '\n'
7888| stmts exp '\n'
7889| stmts error '\n'
bfa74976
RS
7890@end example
7891
7892The fourth rule in this example says that an error followed by a newline
0765d393 7893makes a valid addition to any @code{stmts}.
bfa74976
RS
7894
7895What happens if a syntax error occurs in the middle of an @code{exp}? The
7896error recovery rule, interpreted strictly, applies to the precise sequence
0765d393 7897of a @code{stmts}, an @code{error} and a newline. If an error occurs in
bfa74976 7898the middle of an @code{exp}, there will probably be some additional tokens
0765d393 7899and subexpressions on the stack after the last @code{stmts}, and there
bfa74976
RS
7900will be tokens to read before the next newline. So the rule is not
7901applicable in the ordinary way.
7902
7903But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7904the semantic context and part of the input. First it discards states
7905and objects from the stack until it gets back to a state in which the
bfa74976 7906@code{error} token is acceptable. (This means that the subexpressions
0765d393 7907already parsed are discarded, back to the last complete @code{stmts}.)
72f889cc 7908At this point the @code{error} token can be shifted. Then, if the old
742e4900 7909lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7910tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7911this example, Bison reads and discards input until the next newline so
7912that the fourth rule can apply. Note that discarded symbols are
7913possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7914Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7915
7916The choice of error rules in the grammar is a choice of strategies for
7917error recovery. A simple and useful strategy is simply to skip the rest of
7918the current input line or current statement if an error is detected:
7919
7920@example
0765d393 7921stmt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7922@end example
7923
7924It is also useful to recover to the matching close-delimiter of an
7925opening-delimiter that has already been parsed. Otherwise the
7926close-delimiter will probably appear to be unmatched, and generate another,
7927spurious error message:
7928
7929@example
de6be119
AD
7930primary:
7931 '(' expr ')'
7932| '(' error ')'
7933@dots{}
7934;
bfa74976
RS
7935@end example
7936
7937Error recovery strategies are necessarily guesses. When they guess wrong,
7938one syntax error often leads to another. In the above example, the error
7939recovery rule guesses that an error is due to bad input within one
0765d393
AD
7940@code{stmt}. Suppose that instead a spurious semicolon is inserted in the
7941middle of a valid @code{stmt}. After the error recovery rule recovers
bfa74976
RS
7942from the first error, another syntax error will be found straightaway,
7943since the text following the spurious semicolon is also an invalid
0765d393 7944@code{stmt}.
bfa74976
RS
7945
7946To prevent an outpouring of error messages, the parser will output no error
7947message for another syntax error that happens shortly after the first; only
7948after three consecutive input tokens have been successfully shifted will
7949error messages resume.
7950
7951Note that rules which accept the @code{error} token may have actions, just
7952as any other rules can.
7953
7954@findex yyerrok
7955You can make error messages resume immediately by using the macro
7956@code{yyerrok} in an action. If you do this in the error rule's action, no
7957error messages will be suppressed. This macro requires no arguments;
7958@samp{yyerrok;} is a valid C statement.
7959
7960@findex yyclearin
742e4900 7961The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7962this is unacceptable, then the macro @code{yyclearin} may be used to clear
7963this token. Write the statement @samp{yyclearin;} in the error rule's
7964action.
32c29292 7965@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7966
6e649e65 7967For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7968called that advances the input stream to some point where parsing should
7969once again commence. The next symbol returned by the lexical scanner is
742e4900 7970probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7971with @samp{yyclearin;}.
7972
7973@vindex YYRECOVERING
02103984
PE
7974The expression @code{YYRECOVERING ()} yields 1 when the parser
7975is recovering from a syntax error, and 0 otherwise.
7976Syntax error diagnostics are suppressed while recovering from a syntax
7977error.
bfa74976 7978
342b8b6e 7979@node Context Dependency
bfa74976
RS
7980@chapter Handling Context Dependencies
7981
7982The Bison paradigm is to parse tokens first, then group them into larger
7983syntactic units. In many languages, the meaning of a token is affected by
7984its context. Although this violates the Bison paradigm, certain techniques
7985(known as @dfn{kludges}) may enable you to write Bison parsers for such
7986languages.
7987
7988@menu
7989* Semantic Tokens:: Token parsing can depend on the semantic context.
7990* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7991* Tie-in Recovery:: Lexical tie-ins have implications for how
7992 error recovery rules must be written.
7993@end menu
7994
7995(Actually, ``kludge'' means any technique that gets its job done but is
7996neither clean nor robust.)
7997
342b8b6e 7998@node Semantic Tokens
bfa74976
RS
7999@section Semantic Info in Token Types
8000
8001The C language has a context dependency: the way an identifier is used
8002depends on what its current meaning is. For example, consider this:
8003
8004@example
8005foo (x);
8006@end example
8007
8008This looks like a function call statement, but if @code{foo} is a typedef
8009name, then this is actually a declaration of @code{x}. How can a Bison
8010parser for C decide how to parse this input?
8011
35430378 8012The method used in GNU C is to have two different token types,
bfa74976
RS
8013@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
8014identifier, it looks up the current declaration of the identifier in order
8015to decide which token type to return: @code{TYPENAME} if the identifier is
8016declared as a typedef, @code{IDENTIFIER} otherwise.
8017
8018The grammar rules can then express the context dependency by the choice of
8019token type to recognize. @code{IDENTIFIER} is accepted as an expression,
8020but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
8021@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
8022is @emph{not} significant, such as in declarations that can shadow a
8023typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
8024accepted---there is one rule for each of the two token types.
8025
8026This technique is simple to use if the decision of which kinds of
8027identifiers to allow is made at a place close to where the identifier is
8028parsed. But in C this is not always so: C allows a declaration to
8029redeclare a typedef name provided an explicit type has been specified
8030earlier:
8031
8032@example
3a4f411f
PE
8033typedef int foo, bar;
8034int baz (void)
98842516 8035@group
3a4f411f
PE
8036@{
8037 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
8038 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
8039 return foo (bar);
8040@}
98842516 8041@end group
bfa74976
RS
8042@end example
8043
8044Unfortunately, the name being declared is separated from the declaration
8045construct itself by a complicated syntactic structure---the ``declarator''.
8046
9ecbd125 8047As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
8048all the nonterminal names changed: once for parsing a declaration in
8049which a typedef name can be redefined, and once for parsing a
8050declaration in which that can't be done. Here is a part of the
8051duplication, with actions omitted for brevity:
bfa74976
RS
8052
8053@example
98842516 8054@group
bfa74976 8055initdcl:
de6be119
AD
8056 declarator maybeasm '=' init
8057| declarator maybeasm
8058;
98842516 8059@end group
bfa74976 8060
98842516 8061@group
bfa74976 8062notype_initdcl:
de6be119
AD
8063 notype_declarator maybeasm '=' init
8064| notype_declarator maybeasm
8065;
98842516 8066@end group
bfa74976
RS
8067@end example
8068
8069@noindent
8070Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
8071cannot. The distinction between @code{declarator} and
8072@code{notype_declarator} is the same sort of thing.
8073
8074There is some similarity between this technique and a lexical tie-in
8075(described next), in that information which alters the lexical analysis is
8076changed during parsing by other parts of the program. The difference is
8077here the information is global, and is used for other purposes in the
8078program. A true lexical tie-in has a special-purpose flag controlled by
8079the syntactic context.
8080
342b8b6e 8081@node Lexical Tie-ins
bfa74976
RS
8082@section Lexical Tie-ins
8083@cindex lexical tie-in
8084
8085One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
8086which is set by Bison actions, whose purpose is to alter the way tokens are
8087parsed.
8088
8089For example, suppose we have a language vaguely like C, but with a special
8090construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
8091an expression in parentheses in which all integers are hexadecimal. In
8092particular, the token @samp{a1b} must be treated as an integer rather than
8093as an identifier if it appears in that context. Here is how you can do it:
8094
8095@example
8096@group
8097%@{
38a92d50
PE
8098 int hexflag;
8099 int yylex (void);
8100 void yyerror (char const *);
bfa74976
RS
8101%@}
8102%%
8103@dots{}
8104@end group
8105@group
de6be119
AD
8106expr:
8107 IDENTIFIER
8108| constant
8109| HEX '(' @{ hexflag = 1; @}
8110 expr ')' @{ hexflag = 0; $$ = $4; @}
8111| expr '+' expr @{ $$ = make_sum ($1, $3); @}
8112@dots{}
8113;
bfa74976
RS
8114@end group
8115
8116@group
8117constant:
de6be119
AD
8118 INTEGER
8119| STRING
8120;
bfa74976
RS
8121@end group
8122@end example
8123
8124@noindent
8125Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8126it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8127with letters are parsed as integers if possible.
8128
9913d6e4
JD
8129The declaration of @code{hexflag} shown in the prologue of the grammar
8130file is needed to make it accessible to the actions (@pxref{Prologue,
8131,The Prologue}). You must also write the code in @code{yylex} to obey
8132the flag.
bfa74976 8133
342b8b6e 8134@node Tie-in Recovery
bfa74976
RS
8135@section Lexical Tie-ins and Error Recovery
8136
8137Lexical tie-ins make strict demands on any error recovery rules you have.
8138@xref{Error Recovery}.
8139
8140The reason for this is that the purpose of an error recovery rule is to
8141abort the parsing of one construct and resume in some larger construct.
8142For example, in C-like languages, a typical error recovery rule is to skip
8143tokens until the next semicolon, and then start a new statement, like this:
8144
8145@example
de6be119
AD
8146stmt:
8147 expr ';'
8148| IF '(' expr ')' stmt @{ @dots{} @}
8149@dots{}
8150| error ';' @{ hexflag = 0; @}
8151;
bfa74976
RS
8152@end example
8153
8154If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8155construct, this error rule will apply, and then the action for the
8156completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8157remain set for the entire rest of the input, or until the next @code{hex}
8158keyword, causing identifiers to be misinterpreted as integers.
8159
8160To avoid this problem the error recovery rule itself clears @code{hexflag}.
8161
8162There may also be an error recovery rule that works within expressions.
8163For example, there could be a rule which applies within parentheses
8164and skips to the close-parenthesis:
8165
8166@example
8167@group
de6be119
AD
8168expr:
8169 @dots{}
8170| '(' expr ')' @{ $$ = $2; @}
8171| '(' error ')'
8172@dots{}
bfa74976
RS
8173@end group
8174@end example
8175
8176If this rule acts within the @code{hex} construct, it is not going to abort
8177that construct (since it applies to an inner level of parentheses within
8178the construct). Therefore, it should not clear the flag: the rest of
8179the @code{hex} construct should be parsed with the flag still in effect.
8180
8181What if there is an error recovery rule which might abort out of the
8182@code{hex} construct or might not, depending on circumstances? There is no
8183way you can write the action to determine whether a @code{hex} construct is
8184being aborted or not. So if you are using a lexical tie-in, you had better
8185make sure your error recovery rules are not of this kind. Each rule must
8186be such that you can be sure that it always will, or always won't, have to
8187clear the flag.
8188
ec3bc396
AD
8189@c ================================================== Debugging Your Parser
8190
342b8b6e 8191@node Debugging
bfa74976 8192@chapter Debugging Your Parser
ec3bc396 8193
56d60c19
AD
8194Developing a parser can be a challenge, especially if you don't understand
8195the algorithm (@pxref{Algorithm, ,The Bison Parser Algorithm}). This
8196chapter explains how to generate and read the detailed description of the
8197automaton, and how to enable and understand the parser run-time traces.
ec3bc396
AD
8198
8199@menu
8200* Understanding:: Understanding the structure of your parser.
fc4fdd62 8201* Graphviz:: Getting a visual representation of the parser.
9c16d399 8202* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
8203* Tracing:: Tracing the execution of your parser.
8204@end menu
8205
8206@node Understanding
8207@section Understanding Your Parser
8208
8209As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8210Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8211frequent than one would hope), looking at this automaton is required to
8212tune or simply fix a parser. Bison provides two different
35fe0834 8213representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
8214
8215The textual file is generated when the options @option{--report} or
2ba03112 8216@option{--verbose} are specified, see @ref{Invocation, , Invoking
ec3bc396 8217Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
9913d6e4
JD
8218the parser implementation file name, and adding @samp{.output}
8219instead. Therefore, if the grammar file is @file{foo.y}, then the
8220parser implementation file is called @file{foo.tab.c} by default. As
8221a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8222
8223The following grammar file, @file{calc.y}, will be used in the sequel:
8224
8225@example
8226%token NUM STR
8227%left '+' '-'
8228%left '*'
8229%%
de6be119
AD
8230exp:
8231 exp '+' exp
8232| exp '-' exp
8233| exp '*' exp
8234| exp '/' exp
8235| NUM
8236;
ec3bc396
AD
8237useless: STR;
8238%%
8239@end example
8240
88bce5a2
AD
8241@command{bison} reports:
8242
8243@example
379261b3
JD
8244calc.y: warning: 1 nonterminal useless in grammar
8245calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
8246calc.y:11.1-7: warning: nonterminal useless in grammar: useless
8247calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8248calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8249@end example
8250
8251When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8252creates a file @file{calc.output} with contents detailed below. The
8253order of the output and the exact presentation might vary, but the
8254interpretation is the same.
ec3bc396 8255
ec3bc396
AD
8256@noindent
8257@cindex token, useless
8258@cindex useless token
8259@cindex nonterminal, useless
8260@cindex useless nonterminal
8261@cindex rule, useless
8262@cindex useless rule
84c1cdc7
AD
8263The first section reports useless tokens, nonterminals and rules. Useless
8264nonterminals and rules are removed in order to produce a smaller parser, but
8265useless tokens are preserved, since they might be used by the scanner (note
8266the difference between ``useless'' and ``unused'' below):
ec3bc396
AD
8267
8268@example
84c1cdc7 8269Nonterminals useless in grammar
ec3bc396
AD
8270 useless
8271
84c1cdc7 8272Terminals unused in grammar
ec3bc396
AD
8273 STR
8274
84c1cdc7
AD
8275Rules useless in grammar
8276 6 useless: STR
ec3bc396
AD
8277@end example
8278
8279@noindent
84c1cdc7
AD
8280The next section lists states that still have conflicts.
8281
8282@example
8283State 8 conflicts: 1 shift/reduce
8284State 9 conflicts: 1 shift/reduce
8285State 10 conflicts: 1 shift/reduce
8286State 11 conflicts: 4 shift/reduce
8287@end example
8288
8289@noindent
8290Then Bison reproduces the exact grammar it used:
ec3bc396
AD
8291
8292@example
8293Grammar
8294
84c1cdc7
AD
8295 0 $accept: exp $end
8296
8297 1 exp: exp '+' exp
8298 2 | exp '-' exp
8299 3 | exp '*' exp
8300 4 | exp '/' exp
8301 5 | NUM
ec3bc396
AD
8302@end example
8303
8304@noindent
8305and reports the uses of the symbols:
8306
8307@example
98842516 8308@group
ec3bc396
AD
8309Terminals, with rules where they appear
8310
88bce5a2 8311$end (0) 0
ec3bc396
AD
8312'*' (42) 3
8313'+' (43) 1
8314'-' (45) 2
8315'/' (47) 4
8316error (256)
8317NUM (258) 5
84c1cdc7 8318STR (259)
98842516 8319@end group
ec3bc396 8320
98842516 8321@group
ec3bc396
AD
8322Nonterminals, with rules where they appear
8323
84c1cdc7 8324$accept (9)
ec3bc396 8325 on left: 0
84c1cdc7 8326exp (10)
ec3bc396 8327 on left: 1 2 3 4 5, on right: 0 1 2 3 4
98842516 8328@end group
ec3bc396
AD
8329@end example
8330
8331@noindent
8332@cindex item
8333@cindex pointed rule
8334@cindex rule, pointed
8335Bison then proceeds onto the automaton itself, describing each state
d13d14cc
PE
8336with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
8337item is a production rule together with a point (@samp{.}) marking
8338the location of the input cursor.
ec3bc396
AD
8339
8340@example
8341state 0
8342
84c1cdc7 8343 0 $accept: . exp $end
ec3bc396 8344
84c1cdc7 8345 NUM shift, and go to state 1
ec3bc396 8346
84c1cdc7 8347 exp go to state 2
ec3bc396
AD
8348@end example
8349
8350This reads as follows: ``state 0 corresponds to being at the very
8351beginning of the parsing, in the initial rule, right before the start
8352symbol (here, @code{exp}). When the parser returns to this state right
8353after having reduced a rule that produced an @code{exp}, the control
8354flow jumps to state 2. If there is no such transition on a nonterminal
d13d14cc 8355symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 8356the parse stack, and the control flow jumps to state 1. Any other
742e4900 8357lookahead triggers a syntax error.''
ec3bc396
AD
8358
8359@cindex core, item set
8360@cindex item set core
8361@cindex kernel, item set
8362@cindex item set core
8363Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8364report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8365at the beginning of any rule deriving an @code{exp}. By default Bison
8366reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8367you want to see more detail you can invoke @command{bison} with
d13d14cc 8368@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
8369
8370@example
8371state 0
8372
84c1cdc7
AD
8373 0 $accept: . exp $end
8374 1 exp: . exp '+' exp
8375 2 | . exp '-' exp
8376 3 | . exp '*' exp
8377 4 | . exp '/' exp
8378 5 | . NUM
ec3bc396 8379
84c1cdc7 8380 NUM shift, and go to state 1
ec3bc396 8381
84c1cdc7 8382 exp go to state 2
ec3bc396
AD
8383@end example
8384
8385@noindent
84c1cdc7 8386In the state 1@dots{}
ec3bc396
AD
8387
8388@example
8389state 1
8390
84c1cdc7 8391 5 exp: NUM .
ec3bc396 8392
84c1cdc7 8393 $default reduce using rule 5 (exp)
ec3bc396
AD
8394@end example
8395
8396@noindent
742e4900 8397the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
8398(@samp{$default}), the parser will reduce it. If it was coming from
8399state 0, then, after this reduction it will return to state 0, and will
8400jump to state 2 (@samp{exp: go to state 2}).
8401
8402@example
8403state 2
8404
84c1cdc7
AD
8405 0 $accept: exp . $end
8406 1 exp: exp . '+' exp
8407 2 | exp . '-' exp
8408 3 | exp . '*' exp
8409 4 | exp . '/' exp
ec3bc396 8410
84c1cdc7
AD
8411 $end shift, and go to state 3
8412 '+' shift, and go to state 4
8413 '-' shift, and go to state 5
8414 '*' shift, and go to state 6
8415 '/' shift, and go to state 7
ec3bc396
AD
8416@end example
8417
8418@noindent
8419In state 2, the automaton can only shift a symbol. For instance,
84c1cdc7 8420because of the item @samp{exp: exp . '+' exp}, if the lookahead is
d13d14cc 8421@samp{+} it is shifted onto the parse stack, and the automaton
84c1cdc7 8422jumps to state 4, corresponding to the item @samp{exp: exp '+' . exp}.
d13d14cc
PE
8423Since there is no default action, any lookahead not listed triggers a syntax
8424error.
ec3bc396 8425
34a6c2d1 8426@cindex accepting state
ec3bc396
AD
8427The state 3 is named the @dfn{final state}, or the @dfn{accepting
8428state}:
8429
8430@example
8431state 3
8432
84c1cdc7 8433 0 $accept: exp $end .
ec3bc396 8434
84c1cdc7 8435 $default accept
ec3bc396
AD
8436@end example
8437
8438@noindent
84c1cdc7
AD
8439the initial rule is completed (the start symbol and the end-of-input were
8440read), the parsing exits successfully.
ec3bc396
AD
8441
8442The interpretation of states 4 to 7 is straightforward, and is left to
8443the reader.
8444
8445@example
8446state 4
8447
84c1cdc7 8448 1 exp: exp '+' . exp
ec3bc396 8449
84c1cdc7
AD
8450 NUM shift, and go to state 1
8451
8452 exp go to state 8
ec3bc396 8453
ec3bc396
AD
8454
8455state 5
8456
84c1cdc7
AD
8457 2 exp: exp '-' . exp
8458
8459 NUM shift, and go to state 1
ec3bc396 8460
84c1cdc7 8461 exp go to state 9
ec3bc396 8462
ec3bc396
AD
8463
8464state 6
8465
84c1cdc7 8466 3 exp: exp '*' . exp
ec3bc396 8467
84c1cdc7
AD
8468 NUM shift, and go to state 1
8469
8470 exp go to state 10
ec3bc396 8471
ec3bc396
AD
8472
8473state 7
8474
84c1cdc7 8475 4 exp: exp '/' . exp
ec3bc396 8476
84c1cdc7 8477 NUM shift, and go to state 1
ec3bc396 8478
84c1cdc7 8479 exp go to state 11
ec3bc396
AD
8480@end example
8481
5a99098d
PE
8482As was announced in beginning of the report, @samp{State 8 conflicts:
84831 shift/reduce}:
ec3bc396
AD
8484
8485@example
8486state 8
8487
84c1cdc7
AD
8488 1 exp: exp . '+' exp
8489 1 | exp '+' exp .
8490 2 | exp . '-' exp
8491 3 | exp . '*' exp
8492 4 | exp . '/' exp
ec3bc396 8493
84c1cdc7
AD
8494 '*' shift, and go to state 6
8495 '/' shift, and go to state 7
ec3bc396 8496
84c1cdc7
AD
8497 '/' [reduce using rule 1 (exp)]
8498 $default reduce using rule 1 (exp)
ec3bc396
AD
8499@end example
8500
742e4900 8501Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8502either shifting (and going to state 7), or reducing rule 1. The
8503conflict means that either the grammar is ambiguous, or the parser lacks
8504information to make the right decision. Indeed the grammar is
8505ambiguous, as, since we did not specify the precedence of @samp{/}, the
8506sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8507NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8508NUM}, which corresponds to reducing rule 1.
8509
34a6c2d1 8510Because in deterministic parsing a single decision can be made, Bison
ec3bc396 8511arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
84c1cdc7 8512Shift/Reduce Conflicts}. Discarded actions are reported between
ec3bc396
AD
8513square brackets.
8514
8515Note that all the previous states had a single possible action: either
8516shifting the next token and going to the corresponding state, or
8517reducing a single rule. In the other cases, i.e., when shifting
8518@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8519possible, the lookahead is required to select the action. State 8 is
8520one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8521is shifting, otherwise the action is reducing rule 1. In other words,
8522the first two items, corresponding to rule 1, are not eligible when the
742e4900 8523lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8524precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8525with some set of possible lookahead tokens. When run with
8526@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8527
8528@example
8529state 8
8530
84c1cdc7
AD
8531 1 exp: exp . '+' exp
8532 1 | exp '+' exp . [$end, '+', '-', '/']
8533 2 | exp . '-' exp
8534 3 | exp . '*' exp
8535 4 | exp . '/' exp
8536
8537 '*' shift, and go to state 6
8538 '/' shift, and go to state 7
ec3bc396 8539
84c1cdc7
AD
8540 '/' [reduce using rule 1 (exp)]
8541 $default reduce using rule 1 (exp)
8542@end example
8543
8544Note however that while @samp{NUM + NUM / NUM} is ambiguous (which results in
8545the conflicts on @samp{/}), @samp{NUM + NUM * NUM} is not: the conflict was
8546solved thanks to associativity and precedence directives. If invoked with
8547@option{--report=solved}, Bison includes information about the solved
8548conflicts in the report:
ec3bc396 8549
84c1cdc7
AD
8550@example
8551Conflict between rule 1 and token '+' resolved as reduce (%left '+').
8552Conflict between rule 1 and token '-' resolved as reduce (%left '-').
8553Conflict between rule 1 and token '*' resolved as shift ('+' < '*').
ec3bc396
AD
8554@end example
8555
84c1cdc7 8556
ec3bc396
AD
8557The remaining states are similar:
8558
8559@example
98842516 8560@group
ec3bc396
AD
8561state 9
8562
84c1cdc7
AD
8563 1 exp: exp . '+' exp
8564 2 | exp . '-' exp
8565 2 | exp '-' exp .
8566 3 | exp . '*' exp
8567 4 | exp . '/' exp
ec3bc396 8568
84c1cdc7
AD
8569 '*' shift, and go to state 6
8570 '/' shift, and go to state 7
ec3bc396 8571
84c1cdc7
AD
8572 '/' [reduce using rule 2 (exp)]
8573 $default reduce using rule 2 (exp)
98842516 8574@end group
ec3bc396 8575
98842516 8576@group
ec3bc396
AD
8577state 10
8578
84c1cdc7
AD
8579 1 exp: exp . '+' exp
8580 2 | exp . '-' exp
8581 3 | exp . '*' exp
8582 3 | exp '*' exp .
8583 4 | exp . '/' exp
ec3bc396 8584
84c1cdc7 8585 '/' shift, and go to state 7
ec3bc396 8586
84c1cdc7
AD
8587 '/' [reduce using rule 3 (exp)]
8588 $default reduce using rule 3 (exp)
98842516 8589@end group
ec3bc396 8590
98842516 8591@group
ec3bc396
AD
8592state 11
8593
84c1cdc7
AD
8594 1 exp: exp . '+' exp
8595 2 | exp . '-' exp
8596 3 | exp . '*' exp
8597 4 | exp . '/' exp
8598 4 | exp '/' exp .
8599
8600 '+' shift, and go to state 4
8601 '-' shift, and go to state 5
8602 '*' shift, and go to state 6
8603 '/' shift, and go to state 7
8604
8605 '+' [reduce using rule 4 (exp)]
8606 '-' [reduce using rule 4 (exp)]
8607 '*' [reduce using rule 4 (exp)]
8608 '/' [reduce using rule 4 (exp)]
8609 $default reduce using rule 4 (exp)
98842516 8610@end group
ec3bc396
AD
8611@end example
8612
8613@noindent
fa7e68c3
PE
8614Observe that state 11 contains conflicts not only due to the lack of
8615precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8616@samp{*}, but also because the
ec3bc396
AD
8617associativity of @samp{/} is not specified.
8618
9c16d399
TR
8619Note that Bison may also produce an HTML version of this output, via an XML
8620file and XSLT processing (@pxref{Xml}).
8621
fc4fdd62
TR
8622@c ================================================= Graphical Representation
8623
8624@node Graphviz
8625@section Visualizing Your Parser
8626@cindex dot
8627
8628As another means to gain better understanding of the shift/reduce
8629automaton corresponding to the Bison parser, a DOT file can be generated. Note
8630that debugging a real grammar with this is tedious at best, and impractical
8631most of the times, because the generated files are huge (the generation of
8632a PDF or PNG file from it will take very long, and more often than not it will
8633fail due to memory exhaustion). This option was rather designed for beginners,
8634to help them understand LR parsers.
8635
bfdcc3a0
AD
8636This file is generated when the @option{--graph} option is specified
8637(@pxref{Invocation, , Invoking Bison}). Its name is made by removing
fc4fdd62
TR
8638@samp{.tab.c} or @samp{.c} from the parser implementation file name, and
8639adding @samp{.dot} instead. If the grammar file is @file{foo.y}, the
8640Graphviz output file is called @file{foo.dot}.
8641
8642The following grammar file, @file{rr.y}, will be used in the sequel:
8643
8644@example
8645%%
8646@group
8647exp: a ";" | b ".";
8648a: "0";
8649b: "0";
8650@end group
8651@end example
8652
8653The graphical output is very similar to the textual one, and as such it is
8654easier understood by making direct comparisons between them. See
8655@ref{Debugging, , Debugging Your Parser} for a detailled analysis of the
8656textual report.
8657
8658@subheading Graphical Representation of States
8659
8660The items (pointed rules) for each state are grouped together in graph nodes.
8661Their numbering is the same as in the verbose file. See the following points,
8662about transitions, for examples
8663
8664When invoked with @option{--report=lookaheads}, the lookahead tokens, when
8665needed, are shown next to the relevant rule between square brackets as a
8666comma separated list. This is the case in the figure for the representation of
8667reductions, below.
8668
8669@sp 1
8670
8671The transitions are represented as directed edges between the current and
8672the target states.
8673
8674@subheading Graphical Representation of Shifts
8675
8676Shifts are shown as solid arrows, labelled with the lookahead token for that
8677shift. The following describes a reduction in the @file{rr.output} file:
8678
8679@example
8680@group
8681state 3
8682
8683 1 exp: a . ";"
8684
8685 ";" shift, and go to state 6
8686@end group
8687@end example
8688
8689A Graphviz rendering of this portion of the graph could be:
8690
8691@center @image{figs/example-shift, 100pt}
8692
8693@subheading Graphical Representation of Reductions
8694
8695Reductions are shown as solid arrows, leading to a diamond-shaped node
8696bearing the number of the reduction rule. The arrow is labelled with the
8697appropriate comma separated lookahead tokens. If the reduction is the default
8698action for the given state, there is no such label.
8699
8700This is how reductions are represented in the verbose file @file{rr.output}:
8701@example
8702state 1
8703
8704 3 a: "0" . [";"]
8705 4 b: "0" . ["."]
8706
8707 "." reduce using rule 4 (b)
8708 $default reduce using rule 3 (a)
8709@end example
8710
8711A Graphviz rendering of this portion of the graph could be:
8712
8713@center @image{figs/example-reduce, 120pt}
8714
8715When unresolved conflicts are present, because in deterministic parsing
8716a single decision can be made, Bison can arbitrarily choose to disable a
8717reduction, see @ref{Shift/Reduce, , Shift/Reduce Conflicts}. Discarded actions
8718are distinguished by a red filling color on these nodes, just like how they are
8719reported between square brackets in the verbose file.
8720
8721The reduction corresponding to the rule number 0 is the acceptation state. It
8722is shown as a blue diamond, labelled "Acc".
8723
8724@subheading Graphical representation of go tos
8725
8726The @samp{go to} jump transitions are represented as dotted lines bearing
8727the name of the rule being jumped to.
8728
9c16d399
TR
8729Note that a DOT file may also be produced via an XML file and XSLT
8730processing (@pxref{Xml}).
8731
8732@c ================================================= XML
8733
8734@node Xml
8735@section Visualizing your parser in multiple formats
8736@cindex xml
8737
8738Bison supports two major report formats: textual output
8739(@pxref{Understanding}) when invoked with option @option{--verbose}, and DOT
8740(@pxref{Graphviz}) when invoked with option @option{--graph}. However,
8741another alternative is to output an XML file that may then be, with
8742@command{xsltproc}, rendered as either a raw text format equivalent to the
8743verbose file, or as an HTML version of the same file, with clickable
8744transitions, or even as a DOT. The @file{.output} and DOT files obtained via
be3517b0
TR
8745XSLT have no difference whatsoever with those obtained by invoking
8746@command{bison} with options @option{--verbose} or @option{--graph}.
9c16d399
TR
8747
8748The textual file is generated when the options @option{-x} or
8749@option{--xml[=FILE]} are specified, see @ref{Invocation,,Invoking Bison}.
8750If not specified, its name is made by removing @samp{.tab.c} or @samp{.c}
8751from the parser implementation file name, and adding @samp{.xml} instead.
8752For instance, if the grammar file is @file{foo.y}, the default XML output
8753file is @file{foo.xml}.
8754
8755Bison ships with a @file{data/xslt} directory, containing XSL Transformation
8756files to apply to the XML file. Their names are non-ambiguous:
8757
8758@table @file
8759@item xml2dot.xsl
be3517b0 8760Used to output a copy of the DOT visualization of the automaton.
9c16d399
TR
8761@item xml2text.xsl
8762Used to output a copy of the .output file.
8763@item xml2xhtml.xsl
8764Used to output an xhtml enhancement of the .output file.
8765@end table
8766
8767Sample usage (requires @code{xsltproc}):
8768@example
8769$ bison -x input.y
8770@group
8771$ bison --print-datadir
8772/usr/local/share/bison
8773@end group
8774$ xsltproc /usr/local/share/bison/xslt/xml2xhtml.xsl input.xml > input.html
8775@end example
8776
fc4fdd62 8777@c ================================================= Tracing
ec3bc396
AD
8778
8779@node Tracing
8780@section Tracing Your Parser
bfa74976
RS
8781@findex yydebug
8782@cindex debugging
8783@cindex tracing the parser
8784
56d60c19
AD
8785When a Bison grammar compiles properly but parses ``incorrectly'', the
8786@code{yydebug} parser-trace feature helps figuring out why.
8787
8788@menu
8789* Enabling Traces:: Activating run-time trace support
8790* Mfcalc Traces:: Extending @code{mfcalc} to support traces
8791* The YYPRINT Macro:: Obsolete interface for semantic value reports
8792@end menu
bfa74976 8793
56d60c19
AD
8794@node Enabling Traces
8795@subsection Enabling Traces
3ded9a63
AD
8796There are several means to enable compilation of trace facilities:
8797
8798@table @asis
8799@item the macro @code{YYDEBUG}
8800@findex YYDEBUG
8801Define the macro @code{YYDEBUG} to a nonzero value when you compile the
35430378 8802parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8803@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8804YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8805Prologue}).
8806
e6ae99fe 8807If the @code{%define} variable @code{api.prefix} is used (@pxref{Multiple
e358222b
AD
8808Parsers, ,Multiple Parsers in the Same Program}), for instance @samp{%define
8809api.prefix x}, then if @code{CDEBUG} is defined, its value controls the
5a05f42e
AD
8810tracing feature (enabled if and only if nonzero); otherwise tracing is
8811enabled if and only if @code{YYDEBUG} is nonzero.
e358222b
AD
8812
8813@item the option @option{-t} (POSIX Yacc compliant)
8814@itemx the option @option{--debug} (Bison extension)
8815Use the @samp{-t} option when you run Bison (@pxref{Invocation, ,Invoking
8816Bison}). With @samp{%define api.prefix c}, it defines @code{CDEBUG} to 1,
8817otherwise it defines @code{YYDEBUG} to 1.
3ded9a63
AD
8818
8819@item the directive @samp{%debug}
8820@findex %debug
e358222b
AD
8821Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
8822Summary}). This is a Bison extension, especially useful for languages that
8823don't use a preprocessor. Unless POSIX and Yacc portability matter to you,
8824this is the preferred solution.
3ded9a63
AD
8825@end table
8826
8827We suggest that you always enable the debug option so that debugging is
8828always possible.
bfa74976 8829
56d60c19 8830@findex YYFPRINTF
02a81e05 8831The trace facility outputs messages with macro calls of the form
e2742e46 8832@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8833@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8834arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8835define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8836and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8837
8838Once you have compiled the program with trace facilities, the way to
8839request a trace is to store a nonzero value in the variable @code{yydebug}.
8840You can do this by making the C code do it (in @code{main}, perhaps), or
8841you can alter the value with a C debugger.
8842
8843Each step taken by the parser when @code{yydebug} is nonzero produces a
8844line or two of trace information, written on @code{stderr}. The trace
8845messages tell you these things:
8846
8847@itemize @bullet
8848@item
8849Each time the parser calls @code{yylex}, what kind of token was read.
8850
8851@item
8852Each time a token is shifted, the depth and complete contents of the
8853state stack (@pxref{Parser States}).
8854
8855@item
8856Each time a rule is reduced, which rule it is, and the complete contents
8857of the state stack afterward.
8858@end itemize
8859
56d60c19
AD
8860To make sense of this information, it helps to refer to the automaton
8861description file (@pxref{Understanding, ,Understanding Your Parser}).
8862This file shows the meaning of each state in terms of
704a47c4
AD
8863positions in various rules, and also what each state will do with each
8864possible input token. As you read the successive trace messages, you
8865can see that the parser is functioning according to its specification in
8866the listing file. Eventually you will arrive at the place where
8867something undesirable happens, and you will see which parts of the
8868grammar are to blame.
bfa74976 8869
56d60c19 8870The parser implementation file is a C/C++/Java program and you can use
9913d6e4
JD
8871debuggers on it, but it's not easy to interpret what it is doing. The
8872parser function is a finite-state machine interpreter, and aside from
8873the actions it executes the same code over and over. Only the values
8874of variables show where in the grammar it is working.
bfa74976 8875
56d60c19
AD
8876@node Mfcalc Traces
8877@subsection Enabling Debug Traces for @code{mfcalc}
8878
8879The debugging information normally gives the token type of each token read,
8880but not its semantic value. The @code{%printer} directive allows specify
8881how semantic values are reported, see @ref{Printer Decl, , Printing
8882Semantic Values}. For backward compatibility, Yacc like C parsers may also
8883use the @code{YYPRINT} (@pxref{The YYPRINT Macro, , The @code{YYPRINT}
8884Macro}), but its use is discouraged.
8885
8886As a demonstration of @code{%printer}, consider the multi-function
8887calculator, @code{mfcalc} (@pxref{Multi-function Calc}). To enable run-time
8888traces, and semantic value reports, insert the following directives in its
8889prologue:
8890
8891@comment file: mfcalc.y: 2
8892@example
8893/* Generate the parser description file. */
8894%verbose
8895/* Enable run-time traces (yydebug). */
8896%define parse.trace
8897
8898/* Formatting semantic values. */
8899%printer @{ fprintf (yyoutput, "%s", $$->name); @} VAR;
8900%printer @{ fprintf (yyoutput, "%s()", $$->name); @} FNCT;
8901%printer @{ fprintf (yyoutput, "%g", $$); @} <val>;
8902@end example
8903
8904The @code{%define} directive instructs Bison to generate run-time trace
8905support. Then, activation of these traces is controlled at run-time by the
8906@code{yydebug} variable, which is disabled by default. Because these traces
8907will refer to the ``states'' of the parser, it is helpful to ask for the
8908creation of a description of that parser; this is the purpose of (admittedly
8909ill-named) @code{%verbose} directive.
8910
8911The set of @code{%printer} directives demonstrates how to format the
8912semantic value in the traces. Note that the specification can be done
8913either on the symbol type (e.g., @code{VAR} or @code{FNCT}), or on the type
8914tag: since @code{<val>} is the type for both @code{NUM} and @code{exp}, this
8915printer will be used for them.
8916
8917Here is a sample of the information provided by run-time traces. The traces
8918are sent onto standard error.
8919
8920@example
8921$ @kbd{echo 'sin(1-1)' | ./mfcalc -p}
8922Starting parse
8923Entering state 0
8924Reducing stack by rule 1 (line 34):
8925-> $$ = nterm input ()
8926Stack now 0
8927Entering state 1
8928@end example
8929
8930@noindent
8931This first batch shows a specific feature of this grammar: the first rule
8932(which is in line 34 of @file{mfcalc.y} can be reduced without even having
8933to look for the first token. The resulting left-hand symbol (@code{$$}) is
8934a valueless (@samp{()}) @code{input} non terminal (@code{nterm}).
8935
8936Then the parser calls the scanner.
8937@example
8938Reading a token: Next token is token FNCT (sin())
8939Shifting token FNCT (sin())
8940Entering state 6
8941@end example
8942
8943@noindent
8944That token (@code{token}) is a function (@code{FNCT}) whose value is
8945@samp{sin} as formatted per our @code{%printer} specification: @samp{sin()}.
8946The parser stores (@code{Shifting}) that token, and others, until it can do
8947something about it.
8948
8949@example
8950Reading a token: Next token is token '(' ()
8951Shifting token '(' ()
8952Entering state 14
8953Reading a token: Next token is token NUM (1.000000)
8954Shifting token NUM (1.000000)
8955Entering state 4
8956Reducing stack by rule 6 (line 44):
8957 $1 = token NUM (1.000000)
8958-> $$ = nterm exp (1.000000)
8959Stack now 0 1 6 14
8960Entering state 24
8961@end example
8962
8963@noindent
8964The previous reduction demonstrates the @code{%printer} directive for
8965@code{<val>}: both the token @code{NUM} and the resulting non-terminal
8966@code{exp} have @samp{1} as value.
8967
8968@example
8969Reading a token: Next token is token '-' ()
8970Shifting token '-' ()
8971Entering state 17
8972Reading a token: Next token is token NUM (1.000000)
8973Shifting token NUM (1.000000)
8974Entering state 4
8975Reducing stack by rule 6 (line 44):
8976 $1 = token NUM (1.000000)
8977-> $$ = nterm exp (1.000000)
8978Stack now 0 1 6 14 24 17
8979Entering state 26
8980Reading a token: Next token is token ')' ()
8981Reducing stack by rule 11 (line 49):
8982 $1 = nterm exp (1.000000)
8983 $2 = token '-' ()
8984 $3 = nterm exp (1.000000)
8985-> $$ = nterm exp (0.000000)
8986Stack now 0 1 6 14
8987Entering state 24
8988@end example
8989
8990@noindent
8991The rule for the subtraction was just reduced. The parser is about to
8992discover the end of the call to @code{sin}.
8993
8994@example
8995Next token is token ')' ()
8996Shifting token ')' ()
8997Entering state 31
8998Reducing stack by rule 9 (line 47):
8999 $1 = token FNCT (sin())
9000 $2 = token '(' ()
9001 $3 = nterm exp (0.000000)
9002 $4 = token ')' ()
9003-> $$ = nterm exp (0.000000)
9004Stack now 0 1
9005Entering state 11
9006@end example
9007
9008@noindent
9009Finally, the end-of-line allow the parser to complete the computation, and
9010display its result.
9011
9012@example
9013Reading a token: Next token is token '\n' ()
9014Shifting token '\n' ()
9015Entering state 22
9016Reducing stack by rule 4 (line 40):
9017 $1 = nterm exp (0.000000)
9018 $2 = token '\n' ()
9019@result{} 0
9020-> $$ = nterm line ()
9021Stack now 0 1
9022Entering state 10
9023Reducing stack by rule 2 (line 35):
9024 $1 = nterm input ()
9025 $2 = nterm line ()
9026-> $$ = nterm input ()
9027Stack now 0
9028Entering state 1
9029@end example
9030
9031The parser has returned into state 1, in which it is waiting for the next
9032expression to evaluate, or for the end-of-file token, which causes the
9033completion of the parsing.
9034
9035@example
9036Reading a token: Now at end of input.
9037Shifting token $end ()
9038Entering state 2
9039Stack now 0 1 2
9040Cleanup: popping token $end ()
9041Cleanup: popping nterm input ()
9042@end example
9043
9044
9045@node The YYPRINT Macro
9046@subsection The @code{YYPRINT} Macro
9047
9048@findex YYPRINT
9049Before @code{%printer} support, semantic values could be displayed using the
9050@code{YYPRINT} macro, which works only for terminal symbols and only with
9051the @file{yacc.c} skeleton.
9052
9053@deffn {Macro} YYPRINT (@var{stream}, @var{token}, @var{value});
bfa74976 9054@findex YYPRINT
56d60c19
AD
9055If you define @code{YYPRINT}, it should take three arguments. The parser
9056will pass a standard I/O stream, the numeric code for the token type, and
9057the token value (from @code{yylval}).
9058
9059For @file{yacc.c} only. Obsoleted by @code{%printer}.
9060@end deffn
bfa74976
RS
9061
9062Here is an example of @code{YYPRINT} suitable for the multi-function
f56274a8 9063calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976 9064
ea118b72 9065@example
38a92d50
PE
9066%@{
9067 static void print_token_value (FILE *, int, YYSTYPE);
56d60c19
AD
9068 #define YYPRINT(File, Type, Value) \
9069 print_token_value (File, Type, Value)
38a92d50
PE
9070%@}
9071
9072@dots{} %% @dots{} %% @dots{}
bfa74976
RS
9073
9074static void
831d3c99 9075print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
9076@{
9077 if (type == VAR)
d3c4e709 9078 fprintf (file, "%s", value.tptr->name);
bfa74976 9079 else if (type == NUM)
d3c4e709 9080 fprintf (file, "%d", value.val);
bfa74976 9081@}
ea118b72 9082@end example
bfa74976 9083
ec3bc396
AD
9084@c ================================================= Invoking Bison
9085
342b8b6e 9086@node Invocation
bfa74976
RS
9087@chapter Invoking Bison
9088@cindex invoking Bison
9089@cindex Bison invocation
9090@cindex options for invoking Bison
9091
9092The usual way to invoke Bison is as follows:
9093
9094@example
9095bison @var{infile}
9096@end example
9097
9098Here @var{infile} is the grammar file name, which usually ends in
9913d6e4
JD
9099@samp{.y}. The parser implementation file's name is made by replacing
9100the @samp{.y} with @samp{.tab.c} and removing any leading directory.
9101Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
9102the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
9103also possible, in case you are writing C++ code instead of C in your
9104grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
9105output files will take an extension like the given one as input
9106(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
9107feature takes effect with all options that manipulate file names like
234a3be3
AD
9108@samp{-o} or @samp{-d}.
9109
9110For example :
9111
9112@example
9113bison -d @var{infile.yxx}
9114@end example
84163231 9115@noindent
72d2299c 9116will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
9117
9118@example
b56471a6 9119bison -d -o @var{output.c++} @var{infile.y}
234a3be3 9120@end example
84163231 9121@noindent
234a3be3
AD
9122will produce @file{output.c++} and @file{outfile.h++}.
9123
35430378 9124For compatibility with POSIX, the standard Bison
397ec073
PE
9125distribution also contains a shell script called @command{yacc} that
9126invokes Bison with the @option{-y} option.
9127
bfa74976 9128@menu
13863333 9129* Bison Options:: All the options described in detail,
c827f760 9130 in alphabetical order by short options.
bfa74976 9131* Option Cross Key:: Alphabetical list of long options.
93dd49ab 9132* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
9133@end menu
9134
342b8b6e 9135@node Bison Options
bfa74976
RS
9136@section Bison Options
9137
9138Bison supports both traditional single-letter options and mnemonic long
9139option names. Long option names are indicated with @samp{--} instead of
9140@samp{-}. Abbreviations for option names are allowed as long as they
9141are unique. When a long option takes an argument, like
9142@samp{--file-prefix}, connect the option name and the argument with
9143@samp{=}.
9144
9145Here is a list of options that can be used with Bison, alphabetized by
9146short option. It is followed by a cross key alphabetized by long
9147option.
9148
89cab50d
AD
9149@c Please, keep this ordered as in `bison --help'.
9150@noindent
9151Operations modes:
9152@table @option
9153@item -h
9154@itemx --help
9155Print a summary of the command-line options to Bison and exit.
bfa74976 9156
89cab50d
AD
9157@item -V
9158@itemx --version
9159Print the version number of Bison and exit.
bfa74976 9160
f7ab6a50
PE
9161@item --print-localedir
9162Print the name of the directory containing locale-dependent data.
9163
a0de5091
JD
9164@item --print-datadir
9165Print the name of the directory containing skeletons and XSLT.
9166
89cab50d
AD
9167@item -y
9168@itemx --yacc
9913d6e4
JD
9169Act more like the traditional Yacc command. This can cause different
9170diagnostics to be generated, and may change behavior in other minor
9171ways. Most importantly, imitate Yacc's output file name conventions,
9172so that the parser implementation file is called @file{y.tab.c}, and
9173the other outputs are called @file{y.output} and @file{y.tab.h}.
9174Also, if generating a deterministic parser in C, generate
9175@code{#define} statements in addition to an @code{enum} to associate
9176token numbers with token names. Thus, the following shell script can
9177substitute for Yacc, and the Bison distribution contains such a script
9178for compatibility with POSIX:
bfa74976 9179
89cab50d 9180@example
397ec073 9181#! /bin/sh
26e06a21 9182bison -y "$@@"
89cab50d 9183@end example
54662697
PE
9184
9185The @option{-y}/@option{--yacc} option is intended for use with
9186traditional Yacc grammars. If your grammar uses a Bison extension
9187like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
9188this option is specified.
9189
ecd1b61c
JD
9190@item -W [@var{category}]
9191@itemx --warnings[=@var{category}]
118d4978
AD
9192Output warnings falling in @var{category}. @var{category} can be one
9193of:
9194@table @code
9195@item midrule-values
8e55b3aa
JD
9196Warn about mid-rule values that are set but not used within any of the actions
9197of the parent rule.
9198For example, warn about unused @code{$2} in:
118d4978
AD
9199
9200@example
9201exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
9202@end example
9203
8e55b3aa
JD
9204Also warn about mid-rule values that are used but not set.
9205For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
9206
9207@example
de6be119 9208exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
118d4978
AD
9209@end example
9210
9211These warnings are not enabled by default since they sometimes prove to
9212be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 9213@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 9214
118d4978 9215@item yacc
35430378 9216Incompatibilities with POSIX Yacc.
118d4978 9217
6f8bdce2
JD
9218@item conflicts-sr
9219@itemx conflicts-rr
9220S/R and R/R conflicts. These warnings are enabled by default. However, if
9221the @code{%expect} or @code{%expect-rr} directive is specified, an
9222unexpected number of conflicts is an error, and an expected number of
9223conflicts is not reported, so @option{-W} and @option{--warning} then have
9224no effect on the conflict report.
9225
8ffd7912
JD
9226@item other
9227All warnings not categorized above. These warnings are enabled by default.
9228
9229This category is provided merely for the sake of completeness. Future
9230releases of Bison may move warnings from this category to new, more specific
9231categories.
9232
118d4978 9233@item all
8e55b3aa 9234All the warnings.
118d4978 9235@item none
8e55b3aa 9236Turn off all the warnings.
118d4978 9237@item error
8e55b3aa 9238Treat warnings as errors.
118d4978
AD
9239@end table
9240
9241A category can be turned off by prefixing its name with @samp{no-}. For
cf22447c 9242instance, @option{-Wno-yacc} will hide the warnings about
35430378 9243POSIX Yacc incompatibilities.
89cab50d
AD
9244@end table
9245
9246@noindent
9247Tuning the parser:
9248
9249@table @option
9250@item -t
9251@itemx --debug
9913d6e4
JD
9252In the parser implementation file, define the macro @code{YYDEBUG} to
92531 if it is not already defined, so that the debugging facilities are
9254compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 9255
e14c6831
AD
9256@item -D @var{name}[=@var{value}]
9257@itemx --define=@var{name}[=@var{value}]
c33bc800 9258@itemx -F @var{name}[=@var{value}]
34d41938
JD
9259@itemx --force-define=@var{name}[=@var{value}]
9260Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
2f4518a1 9261(@pxref{%define Summary}) except that Bison processes multiple
34d41938
JD
9262definitions for the same @var{name} as follows:
9263
9264@itemize
9265@item
e3a33f7c
JD
9266Bison quietly ignores all command-line definitions for @var{name} except
9267the last.
34d41938 9268@item
e3a33f7c
JD
9269If that command-line definition is specified by a @code{-D} or
9270@code{--define}, Bison reports an error for any @code{%define}
9271definition for @var{name}.
34d41938 9272@item
e3a33f7c
JD
9273If that command-line definition is specified by a @code{-F} or
9274@code{--force-define} instead, Bison quietly ignores all @code{%define}
9275definitions for @var{name}.
9276@item
9277Otherwise, Bison reports an error if there are multiple @code{%define}
9278definitions for @var{name}.
34d41938
JD
9279@end itemize
9280
9281You should avoid using @code{-F} and @code{--force-define} in your
9913d6e4
JD
9282make files unless you are confident that it is safe to quietly ignore
9283any conflicting @code{%define} that may be added to the grammar file.
e14c6831 9284
0e021770
PE
9285@item -L @var{language}
9286@itemx --language=@var{language}
9287Specify the programming language for the generated parser, as if
9288@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 9289Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 9290@var{language} is case-insensitive.
0e021770 9291
ed4d67dc
JD
9292This option is experimental and its effect may be modified in future
9293releases.
9294
89cab50d 9295@item --locations
d8988b2f 9296Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
9297
9298@item -p @var{prefix}
9299@itemx --name-prefix=@var{prefix}
4b3847c3
AD
9300Pretend that @code{%name-prefix "@var{prefix}"} was specified (@pxref{Decl
9301Summary}). Obsoleted by @code{-Dapi.prefix=@var{prefix}}. @xref{Multiple
9302Parsers, ,Multiple Parsers in the Same Program}.
bfa74976
RS
9303
9304@item -l
9305@itemx --no-lines
9913d6e4
JD
9306Don't put any @code{#line} preprocessor commands in the parser
9307implementation file. Ordinarily Bison puts them in the parser
9308implementation file so that the C compiler and debuggers will
9309associate errors with your source file, the grammar file. This option
9310causes them to associate errors with the parser implementation file,
9311treating it as an independent source file in its own right.
bfa74976 9312
e6e704dc
JD
9313@item -S @var{file}
9314@itemx --skeleton=@var{file}
a7867f53 9315Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
9316(@pxref{Decl Summary, , Bison Declaration Summary}).
9317
ed4d67dc
JD
9318@c You probably don't need this option unless you are developing Bison.
9319@c You should use @option{--language} if you want to specify the skeleton for a
9320@c different language, because it is clearer and because it will always
9321@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 9322
a7867f53
JD
9323If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
9324file in the Bison installation directory.
9325If it does, @var{file} is an absolute file name or a file name relative to the
9326current working directory.
9327This is similar to how most shells resolve commands.
9328
89cab50d
AD
9329@item -k
9330@itemx --token-table
d8988b2f 9331Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 9332@end table
bfa74976 9333
89cab50d
AD
9334@noindent
9335Adjust the output:
bfa74976 9336
89cab50d 9337@table @option
8e55b3aa 9338@item --defines[=@var{file}]
d8988b2f 9339Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 9340file containing macro definitions for the token type names defined in
4bfd5e4e 9341the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 9342
8e55b3aa
JD
9343@item -d
9344This is the same as @code{--defines} except @code{-d} does not accept a
9345@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
9346with other short options.
342b8b6e 9347
89cab50d
AD
9348@item -b @var{file-prefix}
9349@itemx --file-prefix=@var{prefix}
9c437126 9350Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 9351for all Bison output file names. @xref{Decl Summary}.
bfa74976 9352
ec3bc396
AD
9353@item -r @var{things}
9354@itemx --report=@var{things}
9355Write an extra output file containing verbose description of the comma
9356separated list of @var{things} among:
9357
9358@table @code
9359@item state
9360Description of the grammar, conflicts (resolved and unresolved), and
34a6c2d1 9361parser's automaton.
ec3bc396 9362
57f8bd8d
AD
9363@item itemset
9364Implies @code{state} and augments the description of the automaton with
9365the full set of items for each state, instead of its core only.
9366
742e4900 9367@item lookahead
ec3bc396 9368Implies @code{state} and augments the description of the automaton with
742e4900 9369each rule's lookahead set.
ec3bc396 9370
57f8bd8d
AD
9371@item solved
9372Implies @code{state}. Explain how conflicts were solved thanks to
9373precedence and associativity directives.
9374
9375@item all
9376Enable all the items.
9377
9378@item none
9379Do not generate the report.
ec3bc396
AD
9380@end table
9381
1bb2bd75
JD
9382@item --report-file=@var{file}
9383Specify the @var{file} for the verbose description.
9384
bfa74976
RS
9385@item -v
9386@itemx --verbose
9c437126 9387Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 9388file containing verbose descriptions of the grammar and
72d2299c 9389parser. @xref{Decl Summary}.
bfa74976 9390
fa4d969f
PE
9391@item -o @var{file}
9392@itemx --output=@var{file}
9913d6e4 9393Specify the @var{file} for the parser implementation file.
bfa74976 9394
fa4d969f 9395The other output files' names are constructed from @var{file} as
d8988b2f 9396described under the @samp{-v} and @samp{-d} options.
342b8b6e 9397
72183df4 9398@item -g [@var{file}]
8e55b3aa 9399@itemx --graph[=@var{file}]
34a6c2d1 9400Output a graphical representation of the parser's
35fe0834 9401automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
35430378 9402@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
9403@code{@var{file}} is optional.
9404If omitted and the grammar file is @file{foo.y}, the output file will be
9405@file{foo.dot}.
59da312b 9406
72183df4 9407@item -x [@var{file}]
8e55b3aa 9408@itemx --xml[=@var{file}]
34a6c2d1 9409Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 9410@code{@var{file}} is optional.
59da312b
JD
9411If omitted and the grammar file is @file{foo.y}, the output file will be
9412@file{foo.xml}.
9413(The current XML schema is experimental and may evolve.
9414More user feedback will help to stabilize it.)
bfa74976
RS
9415@end table
9416
342b8b6e 9417@node Option Cross Key
bfa74976
RS
9418@section Option Cross Key
9419
9420Here is a list of options, alphabetized by long option, to help you find
34d41938 9421the corresponding short option and directive.
bfa74976 9422
34d41938 9423@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
72183df4 9424@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 9425@include cross-options.texi
aa08666d 9426@end multitable
bfa74976 9427
93dd49ab
PE
9428@node Yacc Library
9429@section Yacc Library
9430
9431The Yacc library contains default implementations of the
9432@code{yyerror} and @code{main} functions. These default
35430378 9433implementations are normally not useful, but POSIX requires
93dd49ab
PE
9434them. To use the Yacc library, link your program with the
9435@option{-ly} option. Note that Bison's implementation of the Yacc
35430378 9436library is distributed under the terms of the GNU General
93dd49ab
PE
9437Public License (@pxref{Copying}).
9438
9439If you use the Yacc library's @code{yyerror} function, you should
9440declare @code{yyerror} as follows:
9441
9442@example
9443int yyerror (char const *);
9444@end example
9445
9446Bison ignores the @code{int} value returned by this @code{yyerror}.
9447If you use the Yacc library's @code{main} function, your
9448@code{yyparse} function should have the following type signature:
9449
9450@example
9451int yyparse (void);
9452@end example
9453
12545799
AD
9454@c ================================================= C++ Bison
9455
8405b70c
PB
9456@node Other Languages
9457@chapter Parsers Written In Other Languages
12545799
AD
9458
9459@menu
9460* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 9461* Java Parsers:: The interface to generate Java parser classes
12545799
AD
9462@end menu
9463
9464@node C++ Parsers
9465@section C++ Parsers
9466
9467@menu
9468* C++ Bison Interface:: Asking for C++ parser generation
9469* C++ Semantic Values:: %union vs. C++
9470* C++ Location Values:: The position and location classes
9471* C++ Parser Interface:: Instantiating and running the parser
9472* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 9473* A Complete C++ Example:: Demonstrating their use
12545799
AD
9474@end menu
9475
9476@node C++ Bison Interface
9477@subsection C++ Bison Interface
ed4d67dc 9478@c - %skeleton "lalr1.cc"
12545799
AD
9479@c - Always pure
9480@c - initial action
9481
34a6c2d1 9482The C++ deterministic parser is selected using the skeleton directive,
baacae49
AD
9483@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
9484@option{--skeleton=lalr1.cc}.
e6e704dc 9485@xref{Decl Summary}.
0e021770 9486
793fbca5
JD
9487When run, @command{bison} will create several entities in the @samp{yy}
9488namespace.
9489@findex %define namespace
2f4518a1
JD
9490Use the @samp{%define namespace} directive to change the namespace
9491name, see @ref{%define Summary,,namespace}. The various classes are
9492generated in the following files:
aa08666d 9493
12545799
AD
9494@table @file
9495@item position.hh
9496@itemx location.hh
db8ab2be
AD
9497The definition of the classes @code{position} and @code{location}, used for
9498location tracking. These files are not generated if the @code{%define}
9499variable @code{api.location.type} is defined. @xref{C++ Location Values}.
12545799
AD
9500
9501@item stack.hh
9502An auxiliary class @code{stack} used by the parser.
9503
fa4d969f
PE
9504@item @var{file}.hh
9505@itemx @var{file}.cc
9913d6e4 9506(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
9507declaration and implementation of the C++ parser class. The basename
9508and extension of these two files follow the same rules as with regular C
9509parsers (@pxref{Invocation}).
12545799 9510
cd8b5791
AD
9511The header is @emph{mandatory}; you must either pass
9512@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
9513@samp{%defines} directive.
9514@end table
9515
9516All these files are documented using Doxygen; run @command{doxygen}
9517for a complete and accurate documentation.
9518
9519@node C++ Semantic Values
9520@subsection C++ Semantic Values
9521@c - No objects in unions
178e123e 9522@c - YYSTYPE
12545799
AD
9523@c - Printer and destructor
9524
9525The @code{%union} directive works as for C, see @ref{Union Decl, ,The
9526Collection of Value Types}. In particular it produces a genuine
9527@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
9528within pseudo-unions (similar to Boost variants) might be implemented to
9529alleviate these issues.}, which have a few specific features in C++.
12545799
AD
9530@itemize @minus
9531@item
fb9712a9
AD
9532The type @code{YYSTYPE} is defined but its use is discouraged: rather
9533you should refer to the parser's encapsulated type
9534@code{yy::parser::semantic_type}.
12545799
AD
9535@item
9536Non POD (Plain Old Data) types cannot be used. C++ forbids any
9537instance of classes with constructors in unions: only @emph{pointers}
9538to such objects are allowed.
9539@end itemize
9540
9541Because objects have to be stored via pointers, memory is not
9542reclaimed automatically: using the @code{%destructor} directive is the
9543only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
9544Symbols}.
9545
9546
9547@node C++ Location Values
9548@subsection C++ Location Values
9549@c - %locations
9550@c - class Position
9551@c - class Location
16dc6a9e 9552@c - %define filename_type "const symbol::Symbol"
12545799
AD
9553
9554When the directive @code{%locations} is used, the C++ parser supports
db8ab2be
AD
9555location tracking, see @ref{Tracking Locations}.
9556
9557By default, two auxiliary classes define a @code{position}, a single point
9558in a file, and a @code{location}, a range composed of a pair of
9559@code{position}s (possibly spanning several files). But if the
9560@code{%define} variable @code{api.location.type} is defined, then these
9561classes will not be generated, and the user defined type will be used.
12545799 9562
936c88d1
AD
9563@tindex uint
9564In this section @code{uint} is an abbreviation for @code{unsigned int}: in
9565genuine code only the latter is used.
9566
9567@menu
db8ab2be
AD
9568* C++ position:: One point in the source file
9569* C++ location:: Two points in the source file
9570* User Defined Location Type:: Required interface for locations
936c88d1
AD
9571@end menu
9572
9573@node C++ position
9574@subsubsection C++ @code{position}
9575
9576@deftypeop {Constructor} {position} {} position (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9577Create a @code{position} denoting a given point. Note that @code{file} is
9578not reclaimed when the @code{position} is destroyed: memory managed must be
9579handled elsewhere.
9580@end deftypeop
9581
9582@deftypemethod {position} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9583Reset the position to the given values.
9584@end deftypemethod
9585
9586@deftypeivar {position} {std::string*} file
12545799
AD
9587The name of the file. It will always be handled as a pointer, the
9588parser will never duplicate nor deallocate it. As an experimental
9589feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 9590filename_type "@var{type}"}.
936c88d1 9591@end deftypeivar
12545799 9592
936c88d1 9593@deftypeivar {position} {uint} line
12545799 9594The line, starting at 1.
936c88d1 9595@end deftypeivar
12545799 9596
936c88d1 9597@deftypemethod {position} {uint} lines (int @var{height} = 1)
12545799
AD
9598Advance by @var{height} lines, resetting the column number.
9599@end deftypemethod
9600
936c88d1
AD
9601@deftypeivar {position} {uint} column
9602The column, starting at 1.
9603@end deftypeivar
12545799 9604
936c88d1 9605@deftypemethod {position} {uint} columns (int @var{width} = 1)
12545799
AD
9606Advance by @var{width} columns, without changing the line number.
9607@end deftypemethod
9608
936c88d1
AD
9609@deftypemethod {position} {position&} operator+= (int @var{width})
9610@deftypemethodx {position} {position} operator+ (int @var{width})
9611@deftypemethodx {position} {position&} operator-= (int @var{width})
9612@deftypemethodx {position} {position} operator- (int @var{width})
12545799
AD
9613Various forms of syntactic sugar for @code{columns}.
9614@end deftypemethod
9615
936c88d1
AD
9616@deftypemethod {position} {bool} operator== (const position& @var{that})
9617@deftypemethodx {position} {bool} operator!= (const position& @var{that})
9618Whether @code{*this} and @code{that} denote equal/different positions.
9619@end deftypemethod
9620
9621@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const position& @var{p})
12545799 9622Report @var{p} on @var{o} like this:
fa4d969f
PE
9623@samp{@var{file}:@var{line}.@var{column}}, or
9624@samp{@var{line}.@var{column}} if @var{file} is null.
936c88d1
AD
9625@end deftypefun
9626
9627@node C++ location
9628@subsubsection C++ @code{location}
9629
9630@deftypeop {Constructor} {location} {} location (const position& @var{begin}, const position& @var{end})
9631Create a @code{Location} from the endpoints of the range.
9632@end deftypeop
9633
9634@deftypeop {Constructor} {location} {} location (const position& @var{pos} = position())
9635@deftypeopx {Constructor} {location} {} location (std::string* @var{file}, uint @var{line}, uint @var{col})
9636Create a @code{Location} denoting an empty range located at a given point.
9637@end deftypeop
9638
9639@deftypemethod {location} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9640Reset the location to an empty range at the given values.
12545799
AD
9641@end deftypemethod
9642
936c88d1
AD
9643@deftypeivar {location} {position} begin
9644@deftypeivarx {location} {position} end
12545799 9645The first, inclusive, position of the range, and the first beyond.
936c88d1 9646@end deftypeivar
12545799 9647
936c88d1
AD
9648@deftypemethod {location} {uint} columns (int @var{width} = 1)
9649@deftypemethodx {location} {uint} lines (int @var{height} = 1)
12545799
AD
9650Advance the @code{end} position.
9651@end deftypemethod
9652
936c88d1
AD
9653@deftypemethod {location} {location} operator+ (const location& @var{end})
9654@deftypemethodx {location} {location} operator+ (int @var{width})
9655@deftypemethodx {location} {location} operator+= (int @var{width})
12545799
AD
9656Various forms of syntactic sugar.
9657@end deftypemethod
9658
9659@deftypemethod {location} {void} step ()
9660Move @code{begin} onto @code{end}.
9661@end deftypemethod
9662
936c88d1
AD
9663@deftypemethod {location} {bool} operator== (const location& @var{that})
9664@deftypemethodx {location} {bool} operator!= (const location& @var{that})
9665Whether @code{*this} and @code{that} denote equal/different ranges of
9666positions.
9667@end deftypemethod
9668
9669@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const location& @var{p})
9670Report @var{p} on @var{o}, taking care of special cases such as: no
9671@code{filename} defined, or equal filename/line or column.
9672@end deftypefun
12545799 9673
db8ab2be
AD
9674@node User Defined Location Type
9675@subsubsection User Defined Location Type
9676@findex %define api.location.type
9677
9678Instead of using the built-in types you may use the @code{%define} variable
9679@code{api.location.type} to specify your own type:
9680
9681@example
9682%define api.location.type @var{LocationType}
9683@end example
9684
9685The requirements over your @var{LocationType} are:
9686@itemize
9687@item
9688it must be copyable;
9689
9690@item
9691in order to compute the (default) value of @code{@@$} in a reduction, the
9692parser basically runs
9693@example
9694@@$.begin = @@$1.begin;
9695@@$.end = @@$@var{N}.end; // The location of last right-hand side symbol.
9696@end example
9697@noindent
9698so there must be copyable @code{begin} and @code{end} members;
9699
9700@item
9701alternatively you may redefine the computation of the default location, in
9702which case these members are not required (@pxref{Location Default Action});
9703
9704@item
9705if traces are enabled, then there must exist an @samp{std::ostream&
9706 operator<< (std::ostream& o, const @var{LocationType}& s)} function.
9707@end itemize
9708
9709@sp 1
9710
9711In programs with several C++ parsers, you may also use the @code{%define}
9712variable @code{api.location.type} to share a common set of built-in
9713definitions for @code{position} and @code{location}. For instance, one
9714parser @file{master/parser.yy} might use:
9715
9716@example
9717%defines
9718%locations
9719%define namespace "master::"
9720@end example
9721
9722@noindent
9723to generate the @file{master/position.hh} and @file{master/location.hh}
9724files, reused by other parsers as follows:
9725
9726@example
7287be84 9727%define api.location.type "master::location"
db8ab2be
AD
9728%code requires @{ #include <master/location.hh> @}
9729@end example
9730
12545799
AD
9731@node C++ Parser Interface
9732@subsection C++ Parser Interface
9733@c - define parser_class_name
9734@c - Ctor
9735@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9736@c debug_stream.
9737@c - Reporting errors
9738
9739The output files @file{@var{output}.hh} and @file{@var{output}.cc}
9740declare and define the parser class in the namespace @code{yy}. The
9741class name defaults to @code{parser}, but may be changed using
16dc6a9e 9742@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 9743this class is detailed below. It can be extended using the
12545799
AD
9744@code{%parse-param} feature: its semantics is slightly changed since
9745it describes an additional member of the parser class, and an
9746additional argument for its constructor.
9747
baacae49
AD
9748@defcv {Type} {parser} {semantic_type}
9749@defcvx {Type} {parser} {location_type}
12545799 9750The types for semantics value and locations.
8a0adb01 9751@end defcv
12545799 9752
baacae49 9753@defcv {Type} {parser} {token}
2c0f9706
AD
9754A structure that contains (only) the @code{yytokentype} enumeration, which
9755defines the tokens. To refer to the token @code{FOO},
9756use @code{yy::parser::token::FOO}. The scanner can use
baacae49
AD
9757@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
9758(@pxref{Calc++ Scanner}).
9759@end defcv
9760
12545799
AD
9761@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
9762Build a new parser object. There are no arguments by default, unless
9763@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
9764@end deftypemethod
9765
9766@deftypemethod {parser} {int} parse ()
9767Run the syntactic analysis, and return 0 on success, 1 otherwise.
d3e4409a
AD
9768
9769@cindex exceptions
9770The whole function is wrapped in a @code{try}/@code{catch} block, so that
9771when an exception is thrown, the @code{%destructor}s are called to release
9772the lookahead symbol, and the symbols pushed on the stack.
12545799
AD
9773@end deftypemethod
9774
9775@deftypemethod {parser} {std::ostream&} debug_stream ()
9776@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
9777Get or set the stream used for tracing the parsing. It defaults to
9778@code{std::cerr}.
9779@end deftypemethod
9780
9781@deftypemethod {parser} {debug_level_type} debug_level ()
9782@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
9783Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 9784or nonzero, full tracing.
12545799
AD
9785@end deftypemethod
9786
9787@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
9788The definition for this member function must be supplied by the user:
9789the parser uses it to report a parser error occurring at @var{l},
9790described by @var{m}.
9791@end deftypemethod
9792
9793
9794@node C++ Scanner Interface
9795@subsection C++ Scanner Interface
9796@c - prefix for yylex.
9797@c - Pure interface to yylex
9798@c - %lex-param
9799
9800The parser invokes the scanner by calling @code{yylex}. Contrary to C
9801parsers, C++ parsers are always pure: there is no point in using the
1f1bd572 9802@code{%define api.pure full} directive. Therefore the interface is as follows.
12545799 9803
baacae49 9804@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
12545799
AD
9805Return the next token. Its type is the return value, its semantic
9806value and location being @var{yylval} and @var{yylloc}. Invocations of
9807@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
9808@end deftypemethod
9809
9810
9811@node A Complete C++ Example
8405b70c 9812@subsection A Complete C++ Example
12545799
AD
9813
9814This section demonstrates the use of a C++ parser with a simple but
9815complete example. This example should be available on your system,
9816ready to compile, in the directory @dfn{../bison/examples/calc++}. It
9817focuses on the use of Bison, therefore the design of the various C++
9818classes is very naive: no accessors, no encapsulation of members etc.
9819We will use a Lex scanner, and more precisely, a Flex scanner, to
9820demonstrate the various interaction. A hand written scanner is
9821actually easier to interface with.
9822
9823@menu
9824* Calc++ --- C++ Calculator:: The specifications
9825* Calc++ Parsing Driver:: An active parsing context
9826* Calc++ Parser:: A parser class
9827* Calc++ Scanner:: A pure C++ Flex scanner
9828* Calc++ Top Level:: Conducting the band
9829@end menu
9830
9831@node Calc++ --- C++ Calculator
8405b70c 9832@subsubsection Calc++ --- C++ Calculator
12545799
AD
9833
9834Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 9835expression, possibly preceded by variable assignments. An
12545799
AD
9836environment containing possibly predefined variables such as
9837@code{one} and @code{two}, is exchanged with the parser. An example
9838of valid input follows.
9839
9840@example
9841three := 3
9842seven := one + two * three
9843seven * seven
9844@end example
9845
9846@node Calc++ Parsing Driver
8405b70c 9847@subsubsection Calc++ Parsing Driver
12545799
AD
9848@c - An env
9849@c - A place to store error messages
9850@c - A place for the result
9851
9852To support a pure interface with the parser (and the scanner) the
9853technique of the ``parsing context'' is convenient: a structure
9854containing all the data to exchange. Since, in addition to simply
9855launch the parsing, there are several auxiliary tasks to execute (open
9856the file for parsing, instantiate the parser etc.), we recommend
9857transforming the simple parsing context structure into a fully blown
9858@dfn{parsing driver} class.
9859
9860The declaration of this driver class, @file{calc++-driver.hh}, is as
9861follows. The first part includes the CPP guard and imports the
fb9712a9
AD
9862required standard library components, and the declaration of the parser
9863class.
12545799 9864
1c59e0a1 9865@comment file: calc++-driver.hh
12545799
AD
9866@example
9867#ifndef CALCXX_DRIVER_HH
9868# define CALCXX_DRIVER_HH
9869# include <string>
9870# include <map>
fb9712a9 9871# include "calc++-parser.hh"
12545799
AD
9872@end example
9873
12545799
AD
9874
9875@noindent
9876Then comes the declaration of the scanning function. Flex expects
9877the signature of @code{yylex} to be defined in the macro
9878@code{YY_DECL}, and the C++ parser expects it to be declared. We can
9879factor both as follows.
1c59e0a1
AD
9880
9881@comment file: calc++-driver.hh
12545799 9882@example
3dc5e96b
PE
9883// Tell Flex the lexer's prototype ...
9884# define YY_DECL \
c095d689
AD
9885 yy::calcxx_parser::token_type \
9886 yylex (yy::calcxx_parser::semantic_type* yylval, \
9887 yy::calcxx_parser::location_type* yylloc, \
9888 calcxx_driver& driver)
12545799
AD
9889// ... and declare it for the parser's sake.
9890YY_DECL;
9891@end example
9892
9893@noindent
9894The @code{calcxx_driver} class is then declared with its most obvious
9895members.
9896
1c59e0a1 9897@comment file: calc++-driver.hh
12545799
AD
9898@example
9899// Conducting the whole scanning and parsing of Calc++.
9900class calcxx_driver
9901@{
9902public:
9903 calcxx_driver ();
9904 virtual ~calcxx_driver ();
9905
9906 std::map<std::string, int> variables;
9907
9908 int result;
9909@end example
9910
9911@noindent
9912To encapsulate the coordination with the Flex scanner, it is useful to
9913have two members function to open and close the scanning phase.
12545799 9914
1c59e0a1 9915@comment file: calc++-driver.hh
12545799
AD
9916@example
9917 // Handling the scanner.
9918 void scan_begin ();
9919 void scan_end ();
9920 bool trace_scanning;
9921@end example
9922
9923@noindent
9924Similarly for the parser itself.
9925
1c59e0a1 9926@comment file: calc++-driver.hh
12545799 9927@example
bb32f4f2
AD
9928 // Run the parser. Return 0 on success.
9929 int parse (const std::string& f);
12545799
AD
9930 std::string file;
9931 bool trace_parsing;
9932@end example
9933
9934@noindent
9935To demonstrate pure handling of parse errors, instead of simply
9936dumping them on the standard error output, we will pass them to the
9937compiler driver using the following two member functions. Finally, we
9938close the class declaration and CPP guard.
9939
1c59e0a1 9940@comment file: calc++-driver.hh
12545799
AD
9941@example
9942 // Error handling.
9943 void error (const yy::location& l, const std::string& m);
9944 void error (const std::string& m);
9945@};
9946#endif // ! CALCXX_DRIVER_HH
9947@end example
9948
9949The implementation of the driver is straightforward. The @code{parse}
9950member function deserves some attention. The @code{error} functions
9951are simple stubs, they should actually register the located error
9952messages and set error state.
9953
1c59e0a1 9954@comment file: calc++-driver.cc
12545799
AD
9955@example
9956#include "calc++-driver.hh"
9957#include "calc++-parser.hh"
9958
9959calcxx_driver::calcxx_driver ()
9960 : trace_scanning (false), trace_parsing (false)
9961@{
9962 variables["one"] = 1;
9963 variables["two"] = 2;
9964@}
9965
9966calcxx_driver::~calcxx_driver ()
9967@{
9968@}
9969
bb32f4f2 9970int
12545799
AD
9971calcxx_driver::parse (const std::string &f)
9972@{
9973 file = f;
9974 scan_begin ();
9975 yy::calcxx_parser parser (*this);
9976 parser.set_debug_level (trace_parsing);
bb32f4f2 9977 int res = parser.parse ();
12545799 9978 scan_end ();
bb32f4f2 9979 return res;
12545799
AD
9980@}
9981
9982void
9983calcxx_driver::error (const yy::location& l, const std::string& m)
9984@{
9985 std::cerr << l << ": " << m << std::endl;
9986@}
9987
9988void
9989calcxx_driver::error (const std::string& m)
9990@{
9991 std::cerr << m << std::endl;
9992@}
9993@end example
9994
9995@node Calc++ Parser
8405b70c 9996@subsubsection Calc++ Parser
12545799 9997
9913d6e4
JD
9998The grammar file @file{calc++-parser.yy} starts by asking for the C++
9999deterministic parser skeleton, the creation of the parser header file,
10000and specifies the name of the parser class. Because the C++ skeleton
10001changed several times, it is safer to require the version you designed
10002the grammar for.
1c59e0a1
AD
10003
10004@comment file: calc++-parser.yy
12545799 10005@example
ea118b72 10006%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 10007%require "@value{VERSION}"
12545799 10008%defines
16dc6a9e 10009%define parser_class_name "calcxx_parser"
fb9712a9
AD
10010@end example
10011
10012@noindent
16dc6a9e 10013@findex %code requires
fb9712a9
AD
10014Then come the declarations/inclusions needed to define the
10015@code{%union}. Because the parser uses the parsing driver and
10016reciprocally, both cannot include the header of the other. Because the
10017driver's header needs detailed knowledge about the parser class (in
10018particular its inner types), it is the parser's header which will simply
10019use a forward declaration of the driver.
8e6f2266 10020@xref{%code Summary}.
fb9712a9
AD
10021
10022@comment file: calc++-parser.yy
10023@example
16dc6a9e 10024%code requires @{
12545799 10025# include <string>
fb9712a9 10026class calcxx_driver;
9bc0dd67 10027@}
12545799
AD
10028@end example
10029
10030@noindent
10031The driver is passed by reference to the parser and to the scanner.
10032This provides a simple but effective pure interface, not relying on
10033global variables.
10034
1c59e0a1 10035@comment file: calc++-parser.yy
12545799
AD
10036@example
10037// The parsing context.
10038%parse-param @{ calcxx_driver& driver @}
10039%lex-param @{ calcxx_driver& driver @}
10040@end example
10041
10042@noindent
10043Then we request the location tracking feature, and initialize the
c781580d 10044first location's file name. Afterward new locations are computed
12545799
AD
10045relatively to the previous locations: the file name will be
10046automatically propagated.
10047
1c59e0a1 10048@comment file: calc++-parser.yy
12545799
AD
10049@example
10050%locations
10051%initial-action
10052@{
10053 // Initialize the initial location.
b47dbebe 10054 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
10055@};
10056@end example
10057
10058@noindent
6f04ee6c
JD
10059Use the two following directives to enable parser tracing and verbose error
10060messages. However, verbose error messages can contain incorrect information
10061(@pxref{LAC}).
12545799 10062
1c59e0a1 10063@comment file: calc++-parser.yy
12545799
AD
10064@example
10065%debug
10066%error-verbose
10067@end example
10068
10069@noindent
10070Semantic values cannot use ``real'' objects, but only pointers to
10071them.
10072
1c59e0a1 10073@comment file: calc++-parser.yy
12545799
AD
10074@example
10075// Symbols.
10076%union
10077@{
10078 int ival;
10079 std::string *sval;
10080@};
10081@end example
10082
fb9712a9 10083@noindent
136a0f76
PB
10084@findex %code
10085The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 10086@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
10087
10088@comment file: calc++-parser.yy
10089@example
136a0f76 10090%code @{
fb9712a9 10091# include "calc++-driver.hh"
34f98f46 10092@}
fb9712a9
AD
10093@end example
10094
10095
12545799
AD
10096@noindent
10097The token numbered as 0 corresponds to end of file; the following line
10098allows for nicer error messages referring to ``end of file'' instead
10099of ``$end''. Similarly user friendly named are provided for each
10100symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
10101avoid name clashes.
10102
1c59e0a1 10103@comment file: calc++-parser.yy
12545799 10104@example
fb9712a9
AD
10105%token END 0 "end of file"
10106%token ASSIGN ":="
10107%token <sval> IDENTIFIER "identifier"
10108%token <ival> NUMBER "number"
a8c2e813 10109%type <ival> exp
12545799
AD
10110@end example
10111
10112@noindent
10113To enable memory deallocation during error recovery, use
10114@code{%destructor}.
10115
287c78f6 10116@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 10117@comment file: calc++-parser.yy
12545799 10118@example
68fff38a 10119%printer @{ yyoutput << *$$; @} "identifier"
12545799
AD
10120%destructor @{ delete $$; @} "identifier"
10121
68fff38a 10122%printer @{ yyoutput << $$; @} <ival>
12545799
AD
10123@end example
10124
10125@noindent
10126The grammar itself is straightforward.
10127
1c59e0a1 10128@comment file: calc++-parser.yy
12545799
AD
10129@example
10130%%
10131%start unit;
10132unit: assignments exp @{ driver.result = $2; @};
10133
de6be119
AD
10134assignments:
10135 /* Nothing. */ @{@}
10136| assignments assignment @{@};
12545799 10137
3dc5e96b
PE
10138assignment:
10139 "identifier" ":=" exp
10140 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
10141
10142%left '+' '-';
10143%left '*' '/';
10144exp: exp '+' exp @{ $$ = $1 + $3; @}
10145 | exp '-' exp @{ $$ = $1 - $3; @}
10146 | exp '*' exp @{ $$ = $1 * $3; @}
10147 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 10148 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 10149 | "number" @{ $$ = $1; @};
12545799
AD
10150%%
10151@end example
10152
10153@noindent
10154Finally the @code{error} member function registers the errors to the
10155driver.
10156
1c59e0a1 10157@comment file: calc++-parser.yy
12545799
AD
10158@example
10159void
1c59e0a1
AD
10160yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
10161 const std::string& m)
12545799
AD
10162@{
10163 driver.error (l, m);
10164@}
10165@end example
10166
10167@node Calc++ Scanner
8405b70c 10168@subsubsection Calc++ Scanner
12545799
AD
10169
10170The Flex scanner first includes the driver declaration, then the
10171parser's to get the set of defined tokens.
10172
1c59e0a1 10173@comment file: calc++-scanner.ll
12545799 10174@example
ea118b72 10175%@{ /* -*- C++ -*- */
04098407 10176# include <cstdlib>
b10dd689
AD
10177# include <cerrno>
10178# include <climits>
12545799
AD
10179# include <string>
10180# include "calc++-driver.hh"
10181# include "calc++-parser.hh"
eaea13f5
PE
10182
10183/* Work around an incompatibility in flex (at least versions
10184 2.5.31 through 2.5.33): it generates code that does
10185 not conform to C89. See Debian bug 333231
10186 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
10187# undef yywrap
10188# define yywrap() 1
eaea13f5 10189
c095d689
AD
10190/* By default yylex returns int, we use token_type.
10191 Unfortunately yyterminate by default returns 0, which is
10192 not of token_type. */
8c5b881d 10193#define yyterminate() return token::END
12545799
AD
10194%@}
10195@end example
10196
10197@noindent
10198Because there is no @code{#include}-like feature we don't need
10199@code{yywrap}, we don't need @code{unput} either, and we parse an
10200actual file, this is not an interactive session with the user.
10201Finally we enable the scanner tracing features.
10202
1c59e0a1 10203@comment file: calc++-scanner.ll
12545799
AD
10204@example
10205%option noyywrap nounput batch debug
10206@end example
10207
10208@noindent
10209Abbreviations allow for more readable rules.
10210
1c59e0a1 10211@comment file: calc++-scanner.ll
12545799
AD
10212@example
10213id [a-zA-Z][a-zA-Z_0-9]*
10214int [0-9]+
10215blank [ \t]
10216@end example
10217
10218@noindent
9d9b8b70 10219The following paragraph suffices to track locations accurately. Each
12545799
AD
10220time @code{yylex} is invoked, the begin position is moved onto the end
10221position. Then when a pattern is matched, the end position is
10222advanced of its width. In case it matched ends of lines, the end
10223cursor is adjusted, and each time blanks are matched, the begin cursor
10224is moved onto the end cursor to effectively ignore the blanks
10225preceding tokens. Comments would be treated equally.
10226
1c59e0a1 10227@comment file: calc++-scanner.ll
12545799 10228@example
98842516 10229@group
828c373b
AD
10230%@{
10231# define YY_USER_ACTION yylloc->columns (yyleng);
10232%@}
98842516 10233@end group
12545799
AD
10234%%
10235%@{
10236 yylloc->step ();
12545799
AD
10237%@}
10238@{blank@}+ yylloc->step ();
10239[\n]+ yylloc->lines (yyleng); yylloc->step ();
10240@end example
10241
10242@noindent
fb9712a9
AD
10243The rules are simple, just note the use of the driver to report errors.
10244It is convenient to use a typedef to shorten
10245@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 10246@code{token::identifier} for instance.
12545799 10247
1c59e0a1 10248@comment file: calc++-scanner.ll
12545799 10249@example
fb9712a9
AD
10250%@{
10251 typedef yy::calcxx_parser::token token;
10252%@}
8c5b881d 10253 /* Convert ints to the actual type of tokens. */
c095d689 10254[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 10255":=" return token::ASSIGN;
04098407
PE
10256@{int@} @{
10257 errno = 0;
10258 long n = strtol (yytext, NULL, 10);
10259 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
10260 driver.error (*yylloc, "integer is out of range");
10261 yylval->ival = n;
fb9712a9 10262 return token::NUMBER;
04098407 10263@}
fb9712a9 10264@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
10265. driver.error (*yylloc, "invalid character");
10266%%
10267@end example
10268
10269@noindent
10270Finally, because the scanner related driver's member function depend
10271on the scanner's data, it is simpler to implement them in this file.
10272
1c59e0a1 10273@comment file: calc++-scanner.ll
12545799 10274@example
98842516 10275@group
12545799
AD
10276void
10277calcxx_driver::scan_begin ()
10278@{
10279 yy_flex_debug = trace_scanning;
56d60c19 10280 if (file.empty () || file == "-")
bb32f4f2
AD
10281 yyin = stdin;
10282 else if (!(yyin = fopen (file.c_str (), "r")))
10283 @{
2c0f9706 10284 error ("cannot open " + file + ": " + strerror(errno));
dd561157 10285 exit (EXIT_FAILURE);
bb32f4f2 10286 @}
12545799 10287@}
98842516 10288@end group
12545799 10289
98842516 10290@group
12545799
AD
10291void
10292calcxx_driver::scan_end ()
10293@{
10294 fclose (yyin);
10295@}
98842516 10296@end group
12545799
AD
10297@end example
10298
10299@node Calc++ Top Level
8405b70c 10300@subsubsection Calc++ Top Level
12545799
AD
10301
10302The top level file, @file{calc++.cc}, poses no problem.
10303
1c59e0a1 10304@comment file: calc++.cc
12545799
AD
10305@example
10306#include <iostream>
10307#include "calc++-driver.hh"
10308
98842516 10309@group
12545799 10310int
fa4d969f 10311main (int argc, char *argv[])
12545799
AD
10312@{
10313 calcxx_driver driver;
56d60c19
AD
10314 for (int i = 1; i < argc; ++i)
10315 if (argv[i] == std::string ("-p"))
12545799 10316 driver.trace_parsing = true;
56d60c19 10317 else if (argv[i] == std::string ("-s"))
12545799 10318 driver.trace_scanning = true;
56d60c19 10319 else if (!driver.parse (argv[i]))
bb32f4f2 10320 std::cout << driver.result << std::endl;
12545799 10321@}
98842516 10322@end group
12545799
AD
10323@end example
10324
8405b70c
PB
10325@node Java Parsers
10326@section Java Parsers
10327
10328@menu
f56274a8
DJ
10329* Java Bison Interface:: Asking for Java parser generation
10330* Java Semantic Values:: %type and %token vs. Java
10331* Java Location Values:: The position and location classes
10332* Java Parser Interface:: Instantiating and running the parser
10333* Java Scanner Interface:: Specifying the scanner for the parser
10334* Java Action Features:: Special features for use in actions
10335* Java Differences:: Differences between C/C++ and Java Grammars
10336* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
10337@end menu
10338
10339@node Java Bison Interface
10340@subsection Java Bison Interface
10341@c - %language "Java"
8405b70c 10342
59da312b
JD
10343(The current Java interface is experimental and may evolve.
10344More user feedback will help to stabilize it.)
10345
e254a580
DJ
10346The Java parser skeletons are selected using the @code{%language "Java"}
10347directive or the @option{-L java}/@option{--language=java} option.
8405b70c 10348
e254a580 10349@c FIXME: Documented bug.
9913d6e4
JD
10350When generating a Java parser, @code{bison @var{basename}.y} will
10351create a single Java source file named @file{@var{basename}.java}
10352containing the parser implementation. Using a grammar file without a
10353@file{.y} suffix is currently broken. The basename of the parser
10354implementation file can be changed by the @code{%file-prefix}
10355directive or the @option{-p}/@option{--name-prefix} option. The
10356entire parser implementation file name can be changed by the
10357@code{%output} directive or the @option{-o}/@option{--output} option.
10358The parser implementation file contains a single class for the parser.
8405b70c 10359
e254a580 10360You can create documentation for generated parsers using Javadoc.
8405b70c 10361
e254a580
DJ
10362Contrary to C parsers, Java parsers do not use global variables; the
10363state of the parser is always local to an instance of the parser class.
10364Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
1f1bd572 10365and @code{%define api.pure full} directives does not do anything when used in
e254a580 10366Java.
8405b70c 10367
e254a580 10368Push parsers are currently unsupported in Java and @code{%define
812775a0 10369api.push-pull} have no effect.
01b477c6 10370
35430378 10371GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
10372@code{glr-parser} directive.
10373
10374No header file can be generated for Java parsers. Do not use the
10375@code{%defines} directive or the @option{-d}/@option{--defines} options.
10376
10377@c FIXME: Possible code change.
10378Currently, support for debugging and verbose errors are always compiled
10379in. Thus the @code{%debug} and @code{%token-table} directives and the
10380@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
10381options have no effect. This may change in the future to eliminate
10382unused code in the generated parser, so use @code{%debug} and
10383@code{%verbose-error} explicitly if needed. Also, in the future the
10384@code{%token-table} directive might enable a public interface to
10385access the token names and codes.
8405b70c
PB
10386
10387@node Java Semantic Values
10388@subsection Java Semantic Values
10389@c - No %union, specify type in %type/%token.
10390@c - YYSTYPE
10391@c - Printer and destructor
10392
10393There is no @code{%union} directive in Java parsers. Instead, the
10394semantic values' types (class names) should be specified in the
10395@code{%type} or @code{%token} directive:
10396
10397@example
10398%type <Expression> expr assignment_expr term factor
10399%type <Integer> number
10400@end example
10401
10402By default, the semantic stack is declared to have @code{Object} members,
10403which means that the class types you specify can be of any class.
10404To improve the type safety of the parser, you can declare the common
e254a580
DJ
10405superclass of all the semantic values using the @code{%define stype}
10406directive. For example, after the following declaration:
8405b70c
PB
10407
10408@example
e254a580 10409%define stype "ASTNode"
8405b70c
PB
10410@end example
10411
10412@noindent
10413any @code{%type} or @code{%token} specifying a semantic type which
10414is not a subclass of ASTNode, will cause a compile-time error.
10415
e254a580 10416@c FIXME: Documented bug.
8405b70c
PB
10417Types used in the directives may be qualified with a package name.
10418Primitive data types are accepted for Java version 1.5 or later. Note
10419that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
10420Generic types may not be used; this is due to a limitation in the
10421implementation of Bison, and may change in future releases.
8405b70c
PB
10422
10423Java parsers do not support @code{%destructor}, since the language
10424adopts garbage collection. The parser will try to hold references
10425to semantic values for as little time as needed.
10426
10427Java parsers do not support @code{%printer}, as @code{toString()}
10428can be used to print the semantic values. This however may change
10429(in a backwards-compatible way) in future versions of Bison.
10430
10431
10432@node Java Location Values
10433@subsection Java Location Values
10434@c - %locations
10435@c - class Position
10436@c - class Location
10437
7404cdf3
JD
10438When the directive @code{%locations} is used, the Java parser supports
10439location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
10440class defines a @dfn{position}, a single point in a file; Bison itself
10441defines a class representing a @dfn{location}, a range composed of a pair of
10442positions (possibly spanning several files). The location class is an inner
10443class of the parser; the name is @code{Location} by default, and may also be
7287be84 10444renamed using @code{%define api.location.type "@var{class-name}"}.
8405b70c
PB
10445
10446The location class treats the position as a completely opaque value.
10447By default, the class name is @code{Position}, but this can be changed
7287be84 10448with @code{%define api.position.type "@var{class-name}"}. This class must
e254a580 10449be supplied by the user.
8405b70c
PB
10450
10451
e254a580
DJ
10452@deftypeivar {Location} {Position} begin
10453@deftypeivarx {Location} {Position} end
8405b70c 10454The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
10455@end deftypeivar
10456
10457@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c046698e 10458Create a @code{Location} denoting an empty range located at a given point.
e254a580 10459@end deftypeop
8405b70c 10460
e254a580
DJ
10461@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
10462Create a @code{Location} from the endpoints of the range.
10463@end deftypeop
10464
10465@deftypemethod {Location} {String} toString ()
8405b70c
PB
10466Prints the range represented by the location. For this to work
10467properly, the position class should override the @code{equals} and
10468@code{toString} methods appropriately.
10469@end deftypemethod
10470
10471
10472@node Java Parser Interface
10473@subsection Java Parser Interface
10474@c - define parser_class_name
10475@c - Ctor
10476@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10477@c debug_stream.
10478@c - Reporting errors
10479
e254a580
DJ
10480The name of the generated parser class defaults to @code{YYParser}. The
10481@code{YY} prefix may be changed using the @code{%name-prefix} directive
10482or the @option{-p}/@option{--name-prefix} option. Alternatively, use
10483@code{%define parser_class_name "@var{name}"} to give a custom name to
10484the class. The interface of this class is detailed below.
8405b70c 10485
e254a580
DJ
10486By default, the parser class has package visibility. A declaration
10487@code{%define public} will change to public visibility. Remember that,
10488according to the Java language specification, the name of the @file{.java}
10489file should match the name of the class in this case. Similarly, you can
10490use @code{abstract}, @code{final} and @code{strictfp} with the
10491@code{%define} declaration to add other modifiers to the parser class.
10492
10493The Java package name of the parser class can be specified using the
10494@code{%define package} directive. The superclass and the implemented
10495interfaces of the parser class can be specified with the @code{%define
10496extends} and @code{%define implements} directives.
10497
10498The parser class defines an inner class, @code{Location}, that is used
10499for location tracking (see @ref{Java Location Values}), and a inner
10500interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
10501these inner class/interface, and the members described in the interface
10502below, all the other members and fields are preceded with a @code{yy} or
10503@code{YY} prefix to avoid clashes with user code.
10504
10505@c FIXME: The following constants and variables are still undocumented:
10506@c @code{bisonVersion}, @code{bisonSkeleton} and @code{errorVerbose}.
10507
10508The parser class can be extended using the @code{%parse-param}
10509directive. Each occurrence of the directive will add a @code{protected
10510final} field to the parser class, and an argument to its constructor,
10511which initialize them automatically.
10512
10513Token names defined by @code{%token} and the predefined @code{EOF} token
10514name are added as constant fields to the parser class.
10515
10516@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
10517Build a new parser object with embedded @code{%code lexer}. There are
10518no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
10519used.
10520@end deftypeop
10521
10522@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
10523Build a new parser object using the specified scanner. There are no
10524additional parameters unless @code{%parse-param}s are used.
10525
10526If the scanner is defined by @code{%code lexer}, this constructor is
10527declared @code{protected} and is called automatically with a scanner
10528created with the correct @code{%lex-param}s.
10529@end deftypeop
8405b70c
PB
10530
10531@deftypemethod {YYParser} {boolean} parse ()
10532Run the syntactic analysis, and return @code{true} on success,
10533@code{false} otherwise.
10534@end deftypemethod
10535
01b477c6 10536@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 10537During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
10538from a syntax error.
10539@xref{Error Recovery}.
8405b70c
PB
10540@end deftypemethod
10541
10542@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
10543@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
10544Get or set the stream used for tracing the parsing. It defaults to
10545@code{System.err}.
10546@end deftypemethod
10547
10548@deftypemethod {YYParser} {int} getDebugLevel ()
10549@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
10550Get or set the tracing level. Currently its value is either 0, no trace,
10551or nonzero, full tracing.
10552@end deftypemethod
10553
8405b70c
PB
10554
10555@node Java Scanner Interface
10556@subsection Java Scanner Interface
01b477c6 10557@c - %code lexer
8405b70c 10558@c - %lex-param
01b477c6 10559@c - Lexer interface
8405b70c 10560
e254a580
DJ
10561There are two possible ways to interface a Bison-generated Java parser
10562with a scanner: the scanner may be defined by @code{%code lexer}, or
10563defined elsewhere. In either case, the scanner has to implement the
10564@code{Lexer} inner interface of the parser class.
10565
10566In the first case, the body of the scanner class is placed in
10567@code{%code lexer} blocks. If you want to pass parameters from the
10568parser constructor to the scanner constructor, specify them with
10569@code{%lex-param}; they are passed before @code{%parse-param}s to the
10570constructor.
01b477c6 10571
59c5ac72 10572In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
10573which is defined within the parser class (e.g., @code{YYParser.Lexer}).
10574The constructor of the parser object will then accept an object
10575implementing the interface; @code{%lex-param} is not used in this
10576case.
10577
10578In both cases, the scanner has to implement the following methods.
10579
e254a580
DJ
10580@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
10581This method is defined by the user to emit an error message. The first
10582parameter is omitted if location tracking is not active. Its type can be
7287be84 10583changed using @code{%define api.location.type "@var{class-name}".}
8405b70c
PB
10584@end deftypemethod
10585
e254a580 10586@deftypemethod {Lexer} {int} yylex ()
8405b70c 10587Return the next token. Its type is the return value, its semantic
c781580d 10588value and location are saved and returned by the their methods in the
e254a580
DJ
10589interface.
10590
10591Use @code{%define lex_throws} to specify any uncaught exceptions.
10592Default is @code{java.io.IOException}.
8405b70c
PB
10593@end deftypemethod
10594
10595@deftypemethod {Lexer} {Position} getStartPos ()
10596@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
10597Return respectively the first position of the last token that
10598@code{yylex} returned, and the first position beyond it. These
10599methods are not needed unless location tracking is active.
8405b70c 10600
7287be84 10601The return type can be changed using @code{%define api.position.type
8405b70c
PB
10602"@var{class-name}".}
10603@end deftypemethod
10604
10605@deftypemethod {Lexer} {Object} getLVal ()
c781580d 10606Return the semantic value of the last token that yylex returned.
8405b70c 10607
e254a580 10608The return type can be changed using @code{%define stype
8405b70c
PB
10609"@var{class-name}".}
10610@end deftypemethod
10611
10612
e254a580
DJ
10613@node Java Action Features
10614@subsection Special Features for Use in Java Actions
10615
10616The following special constructs can be uses in Java actions.
10617Other analogous C action features are currently unavailable for Java.
10618
10619Use @code{%define throws} to specify any uncaught exceptions from parser
10620actions, and initial actions specified by @code{%initial-action}.
10621
10622@defvar $@var{n}
10623The semantic value for the @var{n}th component of the current rule.
10624This may not be assigned to.
10625@xref{Java Semantic Values}.
10626@end defvar
10627
10628@defvar $<@var{typealt}>@var{n}
10629Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
10630@xref{Java Semantic Values}.
10631@end defvar
10632
10633@defvar $$
10634The semantic value for the grouping made by the current rule. As a
10635value, this is in the base type (@code{Object} or as specified by
10636@code{%define stype}) as in not cast to the declared subtype because
10637casts are not allowed on the left-hand side of Java assignments.
10638Use an explicit Java cast if the correct subtype is needed.
10639@xref{Java Semantic Values}.
10640@end defvar
10641
10642@defvar $<@var{typealt}>$
10643Same as @code{$$} since Java always allow assigning to the base type.
10644Perhaps we should use this and @code{$<>$} for the value and @code{$$}
10645for setting the value but there is currently no easy way to distinguish
10646these constructs.
10647@xref{Java Semantic Values}.
10648@end defvar
10649
10650@defvar @@@var{n}
10651The location information of the @var{n}th component of the current rule.
10652This may not be assigned to.
10653@xref{Java Location Values}.
10654@end defvar
10655
10656@defvar @@$
10657The location information of the grouping made by the current rule.
10658@xref{Java Location Values}.
10659@end defvar
10660
34a41a93 10661@deftypefn {Statement} return YYABORT @code{;}
e254a580
DJ
10662Return immediately from the parser, indicating failure.
10663@xref{Java Parser Interface}.
34a41a93 10664@end deftypefn
8405b70c 10665
34a41a93 10666@deftypefn {Statement} return YYACCEPT @code{;}
e254a580
DJ
10667Return immediately from the parser, indicating success.
10668@xref{Java Parser Interface}.
34a41a93 10669@end deftypefn
8405b70c 10670
34a41a93 10671@deftypefn {Statement} {return} YYERROR @code{;}
4a11b852 10672Start error recovery (without printing an error message).
e254a580 10673@xref{Error Recovery}.
34a41a93 10674@end deftypefn
8405b70c 10675
e254a580
DJ
10676@deftypefn {Function} {boolean} recovering ()
10677Return whether error recovery is being done. In this state, the parser
10678reads token until it reaches a known state, and then restarts normal
10679operation.
10680@xref{Error Recovery}.
10681@end deftypefn
8405b70c 10682
e254a580
DJ
10683@deftypefn {Function} {protected void} yyerror (String msg)
10684@deftypefnx {Function} {protected void} yyerror (Position pos, String msg)
10685@deftypefnx {Function} {protected void} yyerror (Location loc, String msg)
10686Print an error message using the @code{yyerror} method of the scanner
10687instance in use.
10688@end deftypefn
8405b70c 10689
8405b70c 10690
8405b70c
PB
10691@node Java Differences
10692@subsection Differences between C/C++ and Java Grammars
10693
10694The different structure of the Java language forces several differences
10695between C/C++ grammars, and grammars designed for Java parsers. This
29553547 10696section summarizes these differences.
8405b70c
PB
10697
10698@itemize
10699@item
01b477c6 10700Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 10701@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
10702macros. Instead, they should be preceded by @code{return} when they
10703appear in an action. The actual definition of these symbols is
8405b70c
PB
10704opaque to the Bison grammar, and it might change in the future. The
10705only meaningful operation that you can do, is to return them.
2ba03112 10706@xref{Java Action Features}.
8405b70c
PB
10707
10708Note that of these three symbols, only @code{YYACCEPT} and
10709@code{YYABORT} will cause a return from the @code{yyparse}
10710method@footnote{Java parsers include the actions in a separate
10711method than @code{yyparse} in order to have an intuitive syntax that
10712corresponds to these C macros.}.
10713
e254a580
DJ
10714@item
10715Java lacks unions, so @code{%union} has no effect. Instead, semantic
10716values have a common base type: @code{Object} or as specified by
c781580d 10717@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
10718@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
10719an union. The type of @code{$$}, even with angle brackets, is the base
10720type since Java casts are not allow on the left-hand side of assignments.
10721Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
15cd62c2 10722left-hand side of assignments. @xref{Java Semantic Values}, and
2ba03112 10723@ref{Java Action Features}.
e254a580 10724
8405b70c 10725@item
c781580d 10726The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
10727@table @asis
10728@item @code{%code imports}
10729blocks are placed at the beginning of the Java source code. They may
10730include copyright notices. For a @code{package} declarations, it is
10731suggested to use @code{%define package} instead.
8405b70c 10732
01b477c6
PB
10733@item unqualified @code{%code}
10734blocks are placed inside the parser class.
10735
10736@item @code{%code lexer}
10737blocks, if specified, should include the implementation of the
10738scanner. If there is no such block, the scanner can be any class
2ba03112 10739that implements the appropriate interface (@pxref{Java Scanner
01b477c6 10740Interface}).
29553547 10741@end table
8405b70c
PB
10742
10743Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
10744In particular, @code{%@{ @dots{} %@}} blocks should not be used
10745and may give an error in future versions of Bison.
10746
01b477c6 10747The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
10748be used to define other classes used by the parser @emph{outside}
10749the parser class.
8405b70c
PB
10750@end itemize
10751
e254a580
DJ
10752
10753@node Java Declarations Summary
10754@subsection Java Declarations Summary
10755
10756This summary only include declarations specific to Java or have special
10757meaning when used in a Java parser.
10758
10759@deffn {Directive} {%language "Java"}
10760Generate a Java class for the parser.
10761@end deffn
10762
10763@deffn {Directive} %lex-param @{@var{type} @var{name}@}
10764A parameter for the lexer class defined by @code{%code lexer}
10765@emph{only}, added as parameters to the lexer constructor and the parser
10766constructor that @emph{creates} a lexer. Default is none.
10767@xref{Java Scanner Interface}.
10768@end deffn
10769
10770@deffn {Directive} %name-prefix "@var{prefix}"
10771The prefix of the parser class name @code{@var{prefix}Parser} if
10772@code{%define parser_class_name} is not used. Default is @code{YY}.
10773@xref{Java Bison Interface}.
10774@end deffn
10775
10776@deffn {Directive} %parse-param @{@var{type} @var{name}@}
10777A parameter for the parser class added as parameters to constructor(s)
10778and as fields initialized by the constructor(s). Default is none.
10779@xref{Java Parser Interface}.
10780@end deffn
10781
10782@deffn {Directive} %token <@var{type}> @var{token} @dots{}
10783Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
10784@xref{Java Semantic Values}.
10785@end deffn
10786
10787@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
10788Declare the type of nonterminals. Note that the angle brackets enclose
10789a Java @emph{type}.
10790@xref{Java Semantic Values}.
10791@end deffn
10792
10793@deffn {Directive} %code @{ @var{code} @dots{} @}
10794Code appended to the inside of the parser class.
10795@xref{Java Differences}.
10796@end deffn
10797
10798@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
10799Code inserted just after the @code{package} declaration.
10800@xref{Java Differences}.
10801@end deffn
10802
10803@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
10804Code added to the body of a inner lexer class within the parser class.
10805@xref{Java Scanner Interface}.
10806@end deffn
10807
10808@deffn {Directive} %% @var{code} @dots{}
10809Code (after the second @code{%%}) appended to the end of the file,
10810@emph{outside} the parser class.
10811@xref{Java Differences}.
10812@end deffn
10813
10814@deffn {Directive} %@{ @var{code} @dots{} %@}
10815Not supported. Use @code{%code import} instead.
10816@xref{Java Differences}.
10817@end deffn
10818
10819@deffn {Directive} {%define abstract}
10820Whether the parser class is declared @code{abstract}. Default is false.
10821@xref{Java Bison Interface}.
10822@end deffn
10823
10824@deffn {Directive} {%define extends} "@var{superclass}"
10825The superclass of the parser class. Default is none.
10826@xref{Java Bison Interface}.
10827@end deffn
10828
10829@deffn {Directive} {%define final}
10830Whether the parser class is declared @code{final}. Default is false.
10831@xref{Java Bison Interface}.
10832@end deffn
10833
10834@deffn {Directive} {%define implements} "@var{interfaces}"
10835The implemented interfaces of the parser class, a comma-separated list.
10836Default is none.
10837@xref{Java Bison Interface}.
10838@end deffn
10839
10840@deffn {Directive} {%define lex_throws} "@var{exceptions}"
10841The exceptions thrown by the @code{yylex} method of the lexer, a
10842comma-separated list. Default is @code{java.io.IOException}.
10843@xref{Java Scanner Interface}.
10844@end deffn
10845
7287be84 10846@deffn {Directive} {%define api.location.type} "@var{class}"
e254a580
DJ
10847The name of the class used for locations (a range between two
10848positions). This class is generated as an inner class of the parser
10849class by @command{bison}. Default is @code{Location}.
7287be84 10850Formerly named @code{location_type}.
e254a580
DJ
10851@xref{Java Location Values}.
10852@end deffn
10853
10854@deffn {Directive} {%define package} "@var{package}"
10855The package to put the parser class in. Default is none.
10856@xref{Java Bison Interface}.
10857@end deffn
10858
10859@deffn {Directive} {%define parser_class_name} "@var{name}"
10860The name of the parser class. Default is @code{YYParser} or
10861@code{@var{name-prefix}Parser}.
10862@xref{Java Bison Interface}.
10863@end deffn
10864
7287be84 10865@deffn {Directive} {%define api.position.type} "@var{class}"
e254a580
DJ
10866The name of the class used for positions. This class must be supplied by
10867the user. Default is @code{Position}.
7287be84 10868Formerly named @code{position_type}.
e254a580
DJ
10869@xref{Java Location Values}.
10870@end deffn
10871
10872@deffn {Directive} {%define public}
10873Whether the parser class is declared @code{public}. Default is false.
10874@xref{Java Bison Interface}.
10875@end deffn
10876
10877@deffn {Directive} {%define stype} "@var{class}"
10878The base type of semantic values. Default is @code{Object}.
10879@xref{Java Semantic Values}.
10880@end deffn
10881
10882@deffn {Directive} {%define strictfp}
10883Whether the parser class is declared @code{strictfp}. Default is false.
10884@xref{Java Bison Interface}.
10885@end deffn
10886
10887@deffn {Directive} {%define throws} "@var{exceptions}"
10888The exceptions thrown by user-supplied parser actions and
10889@code{%initial-action}, a comma-separated list. Default is none.
10890@xref{Java Parser Interface}.
10891@end deffn
10892
10893
12545799 10894@c ================================================= FAQ
d1a1114f
AD
10895
10896@node FAQ
10897@chapter Frequently Asked Questions
10898@cindex frequently asked questions
10899@cindex questions
10900
10901Several questions about Bison come up occasionally. Here some of them
10902are addressed.
10903
10904@menu
55ba27be
AD
10905* Memory Exhausted:: Breaking the Stack Limits
10906* How Can I Reset the Parser:: @code{yyparse} Keeps some State
10907* Strings are Destroyed:: @code{yylval} Loses Track of Strings
10908* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 10909* Multiple start-symbols:: Factoring closely related grammars
35430378 10910* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
10911* I can't build Bison:: Troubleshooting
10912* Where can I find help?:: Troubleshouting
10913* Bug Reports:: Troublereporting
8405b70c 10914* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
10915* Beta Testing:: Experimenting development versions
10916* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
10917@end menu
10918
1a059451
PE
10919@node Memory Exhausted
10920@section Memory Exhausted
d1a1114f 10921
ab8932bf 10922@quotation
1a059451 10923My parser returns with error with a @samp{memory exhausted}
d1a1114f 10924message. What can I do?
ab8932bf 10925@end quotation
d1a1114f 10926
188867ac
AD
10927This question is already addressed elsewhere, see @ref{Recursion, ,Recursive
10928Rules}.
d1a1114f 10929
e64fec0a
PE
10930@node How Can I Reset the Parser
10931@section How Can I Reset the Parser
5b066063 10932
0e14ad77
PE
10933The following phenomenon has several symptoms, resulting in the
10934following typical questions:
5b066063 10935
ab8932bf 10936@quotation
5b066063
AD
10937I invoke @code{yyparse} several times, and on correct input it works
10938properly; but when a parse error is found, all the other calls fail
0e14ad77 10939too. How can I reset the error flag of @code{yyparse}?
ab8932bf 10940@end quotation
5b066063
AD
10941
10942@noindent
10943or
10944
ab8932bf 10945@quotation
0e14ad77 10946My parser includes support for an @samp{#include}-like feature, in
5b066063 10947which case I run @code{yyparse} from @code{yyparse}. This fails
1f1bd572 10948although I did specify @samp{%define api.pure full}.
ab8932bf 10949@end quotation
5b066063 10950
0e14ad77
PE
10951These problems typically come not from Bison itself, but from
10952Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
10953speed, they might not notice a change of input file. As a
10954demonstration, consider the following source file,
10955@file{first-line.l}:
10956
98842516
AD
10957@example
10958@group
10959%@{
5b066063
AD
10960#include <stdio.h>
10961#include <stdlib.h>
98842516
AD
10962%@}
10963@end group
5b066063
AD
10964%%
10965.*\n ECHO; return 1;
10966%%
98842516 10967@group
5b066063 10968int
0e14ad77 10969yyparse (char const *file)
98842516 10970@{
5b066063
AD
10971 yyin = fopen (file, "r");
10972 if (!yyin)
98842516
AD
10973 @{
10974 perror ("fopen");
10975 exit (EXIT_FAILURE);
10976 @}
10977@end group
10978@group
fa7e68c3 10979 /* One token only. */
5b066063 10980 yylex ();
0e14ad77 10981 if (fclose (yyin) != 0)
98842516
AD
10982 @{
10983 perror ("fclose");
10984 exit (EXIT_FAILURE);
10985 @}
5b066063 10986 return 0;
98842516
AD
10987@}
10988@end group
5b066063 10989
98842516 10990@group
5b066063 10991int
0e14ad77 10992main (void)
98842516 10993@{
5b066063
AD
10994 yyparse ("input");
10995 yyparse ("input");
10996 return 0;
98842516
AD
10997@}
10998@end group
10999@end example
5b066063
AD
11000
11001@noindent
11002If the file @file{input} contains
11003
ab8932bf 11004@example
5b066063
AD
11005input:1: Hello,
11006input:2: World!
ab8932bf 11007@end example
5b066063
AD
11008
11009@noindent
0e14ad77 11010then instead of getting the first line twice, you get:
5b066063
AD
11011
11012@example
11013$ @kbd{flex -ofirst-line.c first-line.l}
11014$ @kbd{gcc -ofirst-line first-line.c -ll}
11015$ @kbd{./first-line}
11016input:1: Hello,
11017input:2: World!
11018@end example
11019
0e14ad77
PE
11020Therefore, whenever you change @code{yyin}, you must tell the
11021Lex-generated scanner to discard its current buffer and switch to the
11022new one. This depends upon your implementation of Lex; see its
11023documentation for more. For Flex, it suffices to call
11024@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
11025Flex-generated scanner needs to read from several input streams to
11026handle features like include files, you might consider using Flex
11027functions like @samp{yy_switch_to_buffer} that manipulate multiple
11028input buffers.
5b066063 11029
b165c324
AD
11030If your Flex-generated scanner uses start conditions (@pxref{Start
11031conditions, , Start conditions, flex, The Flex Manual}), you might
11032also want to reset the scanner's state, i.e., go back to the initial
11033start condition, through a call to @samp{BEGIN (0)}.
11034
fef4cb51
AD
11035@node Strings are Destroyed
11036@section Strings are Destroyed
11037
ab8932bf 11038@quotation
c7e441b4 11039My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
11040them. Instead of reporting @samp{"foo", "bar"}, it reports
11041@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
ab8932bf 11042@end quotation
fef4cb51
AD
11043
11044This error is probably the single most frequent ``bug report'' sent to
11045Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 11046of the scanner. Consider the following Lex code:
fef4cb51 11047
ab8932bf 11048@example
98842516 11049@group
ab8932bf 11050%@{
fef4cb51
AD
11051#include <stdio.h>
11052char *yylval = NULL;
ab8932bf 11053%@}
98842516
AD
11054@end group
11055@group
fef4cb51
AD
11056%%
11057.* yylval = yytext; return 1;
11058\n /* IGNORE */
11059%%
98842516
AD
11060@end group
11061@group
fef4cb51
AD
11062int
11063main ()
ab8932bf 11064@{
fa7e68c3 11065 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
11066 char *fst = (yylex (), yylval);
11067 char *snd = (yylex (), yylval);
11068 printf ("\"%s\", \"%s\"\n", fst, snd);
11069 return 0;
ab8932bf 11070@}
98842516 11071@end group
ab8932bf 11072@end example
fef4cb51
AD
11073
11074If you compile and run this code, you get:
11075
11076@example
11077$ @kbd{flex -osplit-lines.c split-lines.l}
11078$ @kbd{gcc -osplit-lines split-lines.c -ll}
11079$ @kbd{printf 'one\ntwo\n' | ./split-lines}
11080"one
11081two", "two"
11082@end example
11083
11084@noindent
11085this is because @code{yytext} is a buffer provided for @emph{reading}
11086in the action, but if you want to keep it, you have to duplicate it
11087(e.g., using @code{strdup}). Note that the output may depend on how
11088your implementation of Lex handles @code{yytext}. For instance, when
11089given the Lex compatibility option @option{-l} (which triggers the
11090option @samp{%array}) Flex generates a different behavior:
11091
11092@example
11093$ @kbd{flex -l -osplit-lines.c split-lines.l}
11094$ @kbd{gcc -osplit-lines split-lines.c -ll}
11095$ @kbd{printf 'one\ntwo\n' | ./split-lines}
11096"two", "two"
11097@end example
11098
11099
2fa09258
AD
11100@node Implementing Gotos/Loops
11101@section Implementing Gotos/Loops
a06ea4aa 11102
ab8932bf 11103@quotation
a06ea4aa 11104My simple calculator supports variables, assignments, and functions,
2fa09258 11105but how can I implement gotos, or loops?
ab8932bf 11106@end quotation
a06ea4aa
AD
11107
11108Although very pedagogical, the examples included in the document blur
a1c84f45 11109the distinction to make between the parser---whose job is to recover
a06ea4aa 11110the structure of a text and to transmit it to subsequent modules of
a1c84f45 11111the program---and the processing (such as the execution) of this
a06ea4aa
AD
11112structure. This works well with so called straight line programs,
11113i.e., precisely those that have a straightforward execution model:
11114execute simple instructions one after the others.
11115
11116@cindex abstract syntax tree
35430378 11117@cindex AST
a06ea4aa
AD
11118If you want a richer model, you will probably need to use the parser
11119to construct a tree that does represent the structure it has
11120recovered; this tree is usually called the @dfn{abstract syntax tree},
35430378 11121or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
11122traversing it in various ways, will enable treatments such as its
11123execution or its translation, which will result in an interpreter or a
11124compiler.
11125
11126This topic is way beyond the scope of this manual, and the reader is
11127invited to consult the dedicated literature.
11128
11129
ed2e6384
AD
11130@node Multiple start-symbols
11131@section Multiple start-symbols
11132
ab8932bf 11133@quotation
ed2e6384
AD
11134I have several closely related grammars, and I would like to share their
11135implementations. In fact, I could use a single grammar but with
11136multiple entry points.
ab8932bf 11137@end quotation
ed2e6384
AD
11138
11139Bison does not support multiple start-symbols, but there is a very
11140simple means to simulate them. If @code{foo} and @code{bar} are the two
11141pseudo start-symbols, then introduce two new tokens, say
11142@code{START_FOO} and @code{START_BAR}, and use them as switches from the
11143real start-symbol:
11144
11145@example
11146%token START_FOO START_BAR;
11147%start start;
de6be119
AD
11148start:
11149 START_FOO foo
11150| START_BAR bar;
ed2e6384
AD
11151@end example
11152
11153These tokens prevents the introduction of new conflicts. As far as the
11154parser goes, that is all that is needed.
11155
11156Now the difficult part is ensuring that the scanner will send these
11157tokens first. If your scanner is hand-written, that should be
11158straightforward. If your scanner is generated by Lex, them there is
11159simple means to do it: recall that anything between @samp{%@{ ... %@}}
11160after the first @code{%%} is copied verbatim in the top of the generated
11161@code{yylex} function. Make sure a variable @code{start_token} is
11162available in the scanner (e.g., a global variable or using
11163@code{%lex-param} etc.), and use the following:
11164
11165@example
11166 /* @r{Prologue.} */
11167%%
11168%@{
11169 if (start_token)
11170 @{
11171 int t = start_token;
11172 start_token = 0;
11173 return t;
11174 @}
11175%@}
11176 /* @r{The rules.} */
11177@end example
11178
11179
55ba27be
AD
11180@node Secure? Conform?
11181@section Secure? Conform?
11182
ab8932bf 11183@quotation
55ba27be 11184Is Bison secure? Does it conform to POSIX?
ab8932bf 11185@end quotation
55ba27be
AD
11186
11187If you're looking for a guarantee or certification, we don't provide it.
11188However, Bison is intended to be a reliable program that conforms to the
35430378 11189POSIX specification for Yacc. If you run into problems,
55ba27be
AD
11190please send us a bug report.
11191
11192@node I can't build Bison
11193@section I can't build Bison
11194
ab8932bf 11195@quotation
8c5b881d
PE
11196I can't build Bison because @command{make} complains that
11197@code{msgfmt} is not found.
55ba27be 11198What should I do?
ab8932bf 11199@end quotation
55ba27be
AD
11200
11201Like most GNU packages with internationalization support, that feature
11202is turned on by default. If you have problems building in the @file{po}
11203subdirectory, it indicates that your system's internationalization
11204support is lacking. You can re-configure Bison with
11205@option{--disable-nls} to turn off this support, or you can install GNU
11206gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
11207Bison. See the file @file{ABOUT-NLS} for more information.
11208
11209
11210@node Where can I find help?
11211@section Where can I find help?
11212
ab8932bf 11213@quotation
55ba27be 11214I'm having trouble using Bison. Where can I find help?
ab8932bf 11215@end quotation
55ba27be
AD
11216
11217First, read this fine manual. Beyond that, you can send mail to
11218@email{help-bison@@gnu.org}. This mailing list is intended to be
11219populated with people who are willing to answer questions about using
11220and installing Bison. Please keep in mind that (most of) the people on
11221the list have aspects of their lives which are not related to Bison (!),
11222so you may not receive an answer to your question right away. This can
11223be frustrating, but please try not to honk them off; remember that any
11224help they provide is purely voluntary and out of the kindness of their
11225hearts.
11226
11227@node Bug Reports
11228@section Bug Reports
11229
ab8932bf 11230@quotation
55ba27be 11231I found a bug. What should I include in the bug report?
ab8932bf 11232@end quotation
55ba27be
AD
11233
11234Before you send a bug report, make sure you are using the latest
11235version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
11236mirrors. Be sure to include the version number in your bug report. If
11237the bug is present in the latest version but not in a previous version,
11238try to determine the most recent version which did not contain the bug.
11239
11240If the bug is parser-related, you should include the smallest grammar
11241you can which demonstrates the bug. The grammar file should also be
11242complete (i.e., I should be able to run it through Bison without having
11243to edit or add anything). The smaller and simpler the grammar, the
11244easier it will be to fix the bug.
11245
11246Include information about your compilation environment, including your
11247operating system's name and version and your compiler's name and
11248version. If you have trouble compiling, you should also include a
11249transcript of the build session, starting with the invocation of
11250`configure'. Depending on the nature of the bug, you may be asked to
11251send additional files as well (such as `config.h' or `config.cache').
11252
11253Patches are most welcome, but not required. That is, do not hesitate to
d6864e19 11254send a bug report just because you cannot provide a fix.
55ba27be
AD
11255
11256Send bug reports to @email{bug-bison@@gnu.org}.
11257
8405b70c
PB
11258@node More Languages
11259@section More Languages
55ba27be 11260
ab8932bf 11261@quotation
8405b70c 11262Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 11263favorite language here}?
ab8932bf 11264@end quotation
55ba27be 11265
8405b70c 11266C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
11267languages; contributions are welcome.
11268
11269@node Beta Testing
11270@section Beta Testing
11271
ab8932bf 11272@quotation
55ba27be 11273What is involved in being a beta tester?
ab8932bf 11274@end quotation
55ba27be
AD
11275
11276It's not terribly involved. Basically, you would download a test
11277release, compile it, and use it to build and run a parser or two. After
11278that, you would submit either a bug report or a message saying that
11279everything is okay. It is important to report successes as well as
11280failures because test releases eventually become mainstream releases,
11281but only if they are adequately tested. If no one tests, development is
11282essentially halted.
11283
11284Beta testers are particularly needed for operating systems to which the
11285developers do not have easy access. They currently have easy access to
11286recent GNU/Linux and Solaris versions. Reports about other operating
11287systems are especially welcome.
11288
11289@node Mailing Lists
11290@section Mailing Lists
11291
ab8932bf 11292@quotation
55ba27be 11293How do I join the help-bison and bug-bison mailing lists?
ab8932bf 11294@end quotation
55ba27be
AD
11295
11296See @url{http://lists.gnu.org/}.
a06ea4aa 11297
d1a1114f
AD
11298@c ================================================= Table of Symbols
11299
342b8b6e 11300@node Table of Symbols
bfa74976
RS
11301@appendix Bison Symbols
11302@cindex Bison symbols, table of
11303@cindex symbols in Bison, table of
11304
18b519c0 11305@deffn {Variable} @@$
3ded9a63 11306In an action, the location of the left-hand side of the rule.
7404cdf3 11307@xref{Tracking Locations}.
18b519c0 11308@end deffn
3ded9a63 11309
18b519c0 11310@deffn {Variable} @@@var{n}
7404cdf3
JD
11311In an action, the location of the @var{n}-th symbol of the right-hand side
11312of the rule. @xref{Tracking Locations}.
18b519c0 11313@end deffn
3ded9a63 11314
1f68dca5 11315@deffn {Variable} @@@var{name}
7404cdf3
JD
11316In an action, the location of a symbol addressed by name. @xref{Tracking
11317Locations}.
1f68dca5
AR
11318@end deffn
11319
11320@deffn {Variable} @@[@var{name}]
7404cdf3
JD
11321In an action, the location of a symbol addressed by name. @xref{Tracking
11322Locations}.
1f68dca5
AR
11323@end deffn
11324
18b519c0 11325@deffn {Variable} $$
3ded9a63
AD
11326In an action, the semantic value of the left-hand side of the rule.
11327@xref{Actions}.
18b519c0 11328@end deffn
3ded9a63 11329
18b519c0 11330@deffn {Variable} $@var{n}
3ded9a63
AD
11331In an action, the semantic value of the @var{n}-th symbol of the
11332right-hand side of the rule. @xref{Actions}.
18b519c0 11333@end deffn
3ded9a63 11334
1f68dca5
AR
11335@deffn {Variable} $@var{name}
11336In an action, the semantic value of a symbol addressed by name.
11337@xref{Actions}.
11338@end deffn
11339
11340@deffn {Variable} $[@var{name}]
11341In an action, the semantic value of a symbol addressed by name.
11342@xref{Actions}.
11343@end deffn
11344
dd8d9022
AD
11345@deffn {Delimiter} %%
11346Delimiter used to separate the grammar rule section from the
11347Bison declarations section or the epilogue.
11348@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 11349@end deffn
bfa74976 11350
dd8d9022
AD
11351@c Don't insert spaces, or check the DVI output.
11352@deffn {Delimiter} %@{@var{code}%@}
9913d6e4
JD
11353All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
11354to the parser implementation file. Such code forms the prologue of
11355the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 11356Grammar}.
18b519c0 11357@end deffn
bfa74976 11358
dd8d9022
AD
11359@deffn {Construct} /*@dots{}*/
11360Comment delimiters, as in C.
18b519c0 11361@end deffn
bfa74976 11362
dd8d9022
AD
11363@deffn {Delimiter} :
11364Separates a rule's result from its components. @xref{Rules, ,Syntax of
11365Grammar Rules}.
18b519c0 11366@end deffn
bfa74976 11367
dd8d9022
AD
11368@deffn {Delimiter} ;
11369Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11370@end deffn
bfa74976 11371
dd8d9022
AD
11372@deffn {Delimiter} |
11373Separates alternate rules for the same result nonterminal.
11374@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11375@end deffn
bfa74976 11376
12e35840
JD
11377@deffn {Directive} <*>
11378Used to define a default tagged @code{%destructor} or default tagged
11379@code{%printer}.
85894313
JD
11380
11381This feature is experimental.
11382More user feedback will help to determine whether it should become a permanent
11383feature.
11384
12e35840
JD
11385@xref{Destructor Decl, , Freeing Discarded Symbols}.
11386@end deffn
11387
3ebecc24 11388@deffn {Directive} <>
12e35840
JD
11389Used to define a default tagless @code{%destructor} or default tagless
11390@code{%printer}.
85894313
JD
11391
11392This feature is experimental.
11393More user feedback will help to determine whether it should become a permanent
11394feature.
11395
12e35840
JD
11396@xref{Destructor Decl, , Freeing Discarded Symbols}.
11397@end deffn
11398
dd8d9022
AD
11399@deffn {Symbol} $accept
11400The predefined nonterminal whose only rule is @samp{$accept: @var{start}
11401$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
11402Start-Symbol}. It cannot be used in the grammar.
18b519c0 11403@end deffn
bfa74976 11404
136a0f76 11405@deffn {Directive} %code @{@var{code}@}
148d66d8 11406@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
406dec82
JD
11407Insert @var{code} verbatim into the output parser source at the
11408default location or at the location specified by @var{qualifier}.
8e6f2266 11409@xref{%code Summary}.
9bc0dd67 11410@end deffn
9bc0dd67 11411
18b519c0 11412@deffn {Directive} %debug
6deb4447 11413Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 11414@end deffn
6deb4447 11415
91d2c560 11416@ifset defaultprec
22fccf95
PE
11417@deffn {Directive} %default-prec
11418Assign a precedence to rules that lack an explicit @samp{%prec}
11419modifier. @xref{Contextual Precedence, ,Context-Dependent
11420Precedence}.
39a06c25 11421@end deffn
91d2c560 11422@end ifset
39a06c25 11423
6f04ee6c
JD
11424@deffn {Directive} %define @var{variable}
11425@deffnx {Directive} %define @var{variable} @var{value}
11426@deffnx {Directive} %define @var{variable} "@var{value}"
2f4518a1 11427Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
11428@end deffn
11429
18b519c0 11430@deffn {Directive} %defines
9913d6e4
JD
11431Bison declaration to create a parser header file, which is usually
11432meant for the scanner. @xref{Decl Summary}.
18b519c0 11433@end deffn
6deb4447 11434
02975b9a
JD
11435@deffn {Directive} %defines @var{defines-file}
11436Same as above, but save in the file @var{defines-file}.
11437@xref{Decl Summary}.
11438@end deffn
11439
18b519c0 11440@deffn {Directive} %destructor
258b75ca 11441Specify how the parser should reclaim the memory associated to
fa7e68c3 11442discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 11443@end deffn
72f889cc 11444
18b519c0 11445@deffn {Directive} %dprec
676385e2 11446Bison declaration to assign a precedence to a rule that is used at parse
c827f760 11447time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
35430378 11448GLR Parsers}.
18b519c0 11449@end deffn
676385e2 11450
dd8d9022
AD
11451@deffn {Symbol} $end
11452The predefined token marking the end of the token stream. It cannot be
11453used in the grammar.
11454@end deffn
11455
11456@deffn {Symbol} error
11457A token name reserved for error recovery. This token may be used in
11458grammar rules so as to allow the Bison parser to recognize an error in
11459the grammar without halting the process. In effect, a sentence
11460containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
11461token @code{error} becomes the current lookahead token. Actions
11462corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
11463token is reset to the token that originally caused the violation.
11464@xref{Error Recovery}.
18d192f0
AD
11465@end deffn
11466
18b519c0 11467@deffn {Directive} %error-verbose
2a8d363a 11468Bison declaration to request verbose, specific error message strings
6f04ee6c 11469when @code{yyerror} is called. @xref{Error Reporting}.
18b519c0 11470@end deffn
2a8d363a 11471
02975b9a 11472@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 11473Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 11474Summary}.
18b519c0 11475@end deffn
d8988b2f 11476
18b519c0 11477@deffn {Directive} %glr-parser
35430378
JD
11478Bison declaration to produce a GLR parser. @xref{GLR
11479Parsers, ,Writing GLR Parsers}.
18b519c0 11480@end deffn
676385e2 11481
dd8d9022
AD
11482@deffn {Directive} %initial-action
11483Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
11484@end deffn
11485
e6e704dc
JD
11486@deffn {Directive} %language
11487Specify the programming language for the generated parser.
11488@xref{Decl Summary}.
11489@end deffn
11490
18b519c0 11491@deffn {Directive} %left
bfa74976
RS
11492Bison declaration to assign left associativity to token(s).
11493@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11494@end deffn
bfa74976 11495
feeb0eda 11496@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
11497Bison declaration to specifying an additional parameter that
11498@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
11499for Pure Parsers}.
18b519c0 11500@end deffn
2a8d363a 11501
18b519c0 11502@deffn {Directive} %merge
676385e2 11503Bison declaration to assign a merging function to a rule. If there is a
fae437e8 11504reduce/reduce conflict with a rule having the same merging function, the
676385e2 11505function is applied to the two semantic values to get a single result.
35430378 11506@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 11507@end deffn
676385e2 11508
02975b9a 11509@deffn {Directive} %name-prefix "@var{prefix}"
4b3847c3
AD
11510Obsoleted by the @code{%define} variable @code{api.prefix} (@pxref{Multiple
11511Parsers, ,Multiple Parsers in the Same Program}).
11512
11513Rename the external symbols (variables and functions) used in the parser so
11514that they start with @var{prefix} instead of @samp{yy}. Contrary to
11515@code{api.prefix}, do no rename types and macros.
11516
11517The precise list of symbols renamed in C parsers is @code{yyparse},
11518@code{yylex}, @code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yychar},
11519@code{yydebug}, and (if locations are used) @code{yylloc}. If you use a
11520push parser, @code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
11521@code{yypstate_new} and @code{yypstate_delete} will also be renamed. For
11522example, if you use @samp{%name-prefix "c_"}, the names become
11523@code{c_parse}, @code{c_lex}, and so on. For C++ parsers, see the
11524@code{%define namespace} documentation in this section.
18b519c0 11525@end deffn
d8988b2f 11526
4b3847c3 11527
91d2c560 11528@ifset defaultprec
22fccf95
PE
11529@deffn {Directive} %no-default-prec
11530Do not assign a precedence to rules that lack an explicit @samp{%prec}
11531modifier. @xref{Contextual Precedence, ,Context-Dependent
11532Precedence}.
11533@end deffn
91d2c560 11534@end ifset
22fccf95 11535
18b519c0 11536@deffn {Directive} %no-lines
931c7513 11537Bison declaration to avoid generating @code{#line} directives in the
9913d6e4 11538parser implementation file. @xref{Decl Summary}.
18b519c0 11539@end deffn
931c7513 11540
18b519c0 11541@deffn {Directive} %nonassoc
9d9b8b70 11542Bison declaration to assign nonassociativity to token(s).
bfa74976 11543@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11544@end deffn
bfa74976 11545
02975b9a 11546@deffn {Directive} %output "@var{file}"
9913d6e4
JD
11547Bison declaration to set the name of the parser implementation file.
11548@xref{Decl Summary}.
18b519c0 11549@end deffn
d8988b2f 11550
feeb0eda 11551@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
11552Bison declaration to specifying an additional parameter that
11553@code{yyparse} should accept. @xref{Parser Function,, The Parser
11554Function @code{yyparse}}.
18b519c0 11555@end deffn
2a8d363a 11556
18b519c0 11557@deffn {Directive} %prec
bfa74976
RS
11558Bison declaration to assign a precedence to a specific rule.
11559@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 11560@end deffn
bfa74976 11561
18b519c0 11562@deffn {Directive} %pure-parser
2f4518a1
JD
11563Deprecated version of @code{%define api.pure} (@pxref{%define
11564Summary,,api.pure}), for which Bison is more careful to warn about
11565unreasonable usage.
18b519c0 11566@end deffn
bfa74976 11567
b50d2359 11568@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
11569Require version @var{version} or higher of Bison. @xref{Require Decl, ,
11570Require a Version of Bison}.
b50d2359
AD
11571@end deffn
11572
18b519c0 11573@deffn {Directive} %right
bfa74976
RS
11574Bison declaration to assign right associativity to token(s).
11575@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11576@end deffn
bfa74976 11577
e6e704dc
JD
11578@deffn {Directive} %skeleton
11579Specify the skeleton to use; usually for development.
11580@xref{Decl Summary}.
11581@end deffn
11582
18b519c0 11583@deffn {Directive} %start
704a47c4
AD
11584Bison declaration to specify the start symbol. @xref{Start Decl, ,The
11585Start-Symbol}.
18b519c0 11586@end deffn
bfa74976 11587
18b519c0 11588@deffn {Directive} %token
bfa74976
RS
11589Bison declaration to declare token(s) without specifying precedence.
11590@xref{Token Decl, ,Token Type Names}.
18b519c0 11591@end deffn
bfa74976 11592
18b519c0 11593@deffn {Directive} %token-table
9913d6e4
JD
11594Bison declaration to include a token name table in the parser
11595implementation file. @xref{Decl Summary}.
18b519c0 11596@end deffn
931c7513 11597
18b519c0 11598@deffn {Directive} %type
704a47c4
AD
11599Bison declaration to declare nonterminals. @xref{Type Decl,
11600,Nonterminal Symbols}.
18b519c0 11601@end deffn
bfa74976 11602
dd8d9022
AD
11603@deffn {Symbol} $undefined
11604The predefined token onto which all undefined values returned by
11605@code{yylex} are mapped. It cannot be used in the grammar, rather, use
11606@code{error}.
11607@end deffn
11608
18b519c0 11609@deffn {Directive} %union
bfa74976
RS
11610Bison declaration to specify several possible data types for semantic
11611values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 11612@end deffn
bfa74976 11613
dd8d9022
AD
11614@deffn {Macro} YYABORT
11615Macro to pretend that an unrecoverable syntax error has occurred, by
11616making @code{yyparse} return 1 immediately. The error reporting
11617function @code{yyerror} is not called. @xref{Parser Function, ,The
11618Parser Function @code{yyparse}}.
8405b70c
PB
11619
11620For Java parsers, this functionality is invoked using @code{return YYABORT;}
11621instead.
dd8d9022 11622@end deffn
3ded9a63 11623
dd8d9022
AD
11624@deffn {Macro} YYACCEPT
11625Macro to pretend that a complete utterance of the language has been
11626read, by making @code{yyparse} return 0 immediately.
11627@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
11628
11629For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
11630instead.
dd8d9022 11631@end deffn
bfa74976 11632
dd8d9022 11633@deffn {Macro} YYBACKUP
742e4900 11634Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 11635token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11636@end deffn
bfa74976 11637
dd8d9022 11638@deffn {Variable} yychar
32c29292 11639External integer variable that contains the integer value of the
742e4900 11640lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
11641@code{yyparse}.) Error-recovery rule actions may examine this variable.
11642@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11643@end deffn
bfa74976 11644
dd8d9022
AD
11645@deffn {Variable} yyclearin
11646Macro used in error-recovery rule actions. It clears the previous
742e4900 11647lookahead token. @xref{Error Recovery}.
18b519c0 11648@end deffn
bfa74976 11649
dd8d9022
AD
11650@deffn {Macro} YYDEBUG
11651Macro to define to equip the parser with tracing code. @xref{Tracing,
11652,Tracing Your Parser}.
18b519c0 11653@end deffn
bfa74976 11654
dd8d9022
AD
11655@deffn {Variable} yydebug
11656External integer variable set to zero by default. If @code{yydebug}
11657is given a nonzero value, the parser will output information on input
11658symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 11659@end deffn
bfa74976 11660
dd8d9022
AD
11661@deffn {Macro} yyerrok
11662Macro to cause parser to recover immediately to its normal mode
11663after a syntax error. @xref{Error Recovery}.
11664@end deffn
11665
11666@deffn {Macro} YYERROR
4a11b852
AD
11667Cause an immediate syntax error. This statement initiates error
11668recovery just as if the parser itself had detected an error; however, it
11669does not call @code{yyerror}, and does not print any message. If you
11670want to print an error message, call @code{yyerror} explicitly before
11671the @samp{YYERROR;} statement. @xref{Error Recovery}.
8405b70c
PB
11672
11673For Java parsers, this functionality is invoked using @code{return YYERROR;}
11674instead.
dd8d9022
AD
11675@end deffn
11676
11677@deffn {Function} yyerror
11678User-supplied function to be called by @code{yyparse} on error.
11679@xref{Error Reporting, ,The Error
11680Reporting Function @code{yyerror}}.
11681@end deffn
11682
11683@deffn {Macro} YYERROR_VERBOSE
11684An obsolete macro that you define with @code{#define} in the prologue
11685to request verbose, specific error message strings
11686when @code{yyerror} is called. It doesn't matter what definition you
258cddbc
AD
11687use for @code{YYERROR_VERBOSE}, just whether you define it.
11688Supported by the C skeletons only; using
6f04ee6c 11689@code{%error-verbose} is preferred. @xref{Error Reporting}.
dd8d9022
AD
11690@end deffn
11691
56d60c19
AD
11692@deffn {Macro} YYFPRINTF
11693Macro used to output run-time traces.
11694@xref{Enabling Traces}.
11695@end deffn
11696
dd8d9022
AD
11697@deffn {Macro} YYINITDEPTH
11698Macro for specifying the initial size of the parser stack.
1a059451 11699@xref{Memory Management}.
dd8d9022
AD
11700@end deffn
11701
11702@deffn {Function} yylex
11703User-supplied lexical analyzer function, called with no arguments to get
11704the next token. @xref{Lexical, ,The Lexical Analyzer Function
11705@code{yylex}}.
11706@end deffn
11707
11708@deffn {Macro} YYLEX_PARAM
11709An obsolete macro for specifying an extra argument (or list of extra
32c29292 11710arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
11711macro is deprecated, and is supported only for Yacc like parsers.
11712@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
11713@end deffn
11714
11715@deffn {Variable} yylloc
11716External variable in which @code{yylex} should place the line and column
11717numbers associated with a token. (In a pure parser, it is a local
11718variable within @code{yyparse}, and its address is passed to
32c29292
JD
11719@code{yylex}.)
11720You can ignore this variable if you don't use the @samp{@@} feature in the
11721grammar actions.
11722@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 11723In semantic actions, it stores the location of the lookahead token.
32c29292 11724@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
11725@end deffn
11726
11727@deffn {Type} YYLTYPE
11728Data type of @code{yylloc}; by default, a structure with four
11729members. @xref{Location Type, , Data Types of Locations}.
11730@end deffn
11731
11732@deffn {Variable} yylval
11733External variable in which @code{yylex} should place the semantic
11734value associated with a token. (In a pure parser, it is a local
11735variable within @code{yyparse}, and its address is passed to
32c29292
JD
11736@code{yylex}.)
11737@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 11738In semantic actions, it stores the semantic value of the lookahead token.
32c29292 11739@xref{Actions, ,Actions}.
dd8d9022
AD
11740@end deffn
11741
11742@deffn {Macro} YYMAXDEPTH
1a059451
PE
11743Macro for specifying the maximum size of the parser stack. @xref{Memory
11744Management}.
dd8d9022
AD
11745@end deffn
11746
11747@deffn {Variable} yynerrs
8a2800e7 11748Global variable which Bison increments each time it reports a syntax error.
f4101aa6 11749(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 11750pure push parser, it is a member of yypstate.)
dd8d9022
AD
11751@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
11752@end deffn
11753
11754@deffn {Function} yyparse
11755The parser function produced by Bison; call this function to start
11756parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
11757@end deffn
11758
56d60c19
AD
11759@deffn {Macro} YYPRINT
11760Macro used to output token semantic values. For @file{yacc.c} only.
11761Obsoleted by @code{%printer}.
11762@xref{The YYPRINT Macro, , The @code{YYPRINT} Macro}.
11763@end deffn
11764
9987d1b3 11765@deffn {Function} yypstate_delete
f4101aa6 11766The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 11767call this function to delete the memory associated with a parser.
f4101aa6 11768@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 11769@code{yypstate_delete}}.
59da312b
JD
11770(The current push parsing interface is experimental and may evolve.
11771More user feedback will help to stabilize it.)
9987d1b3
JD
11772@end deffn
11773
11774@deffn {Function} yypstate_new
f4101aa6 11775The function to create a parser instance, produced by Bison in push mode;
9987d1b3 11776call this function to create a new parser.
f4101aa6 11777@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 11778@code{yypstate_new}}.
59da312b
JD
11779(The current push parsing interface is experimental and may evolve.
11780More user feedback will help to stabilize it.)
9987d1b3
JD
11781@end deffn
11782
11783@deffn {Function} yypull_parse
f4101aa6
AD
11784The parser function produced by Bison in push mode; call this function to
11785parse the rest of the input stream.
11786@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 11787@code{yypull_parse}}.
59da312b
JD
11788(The current push parsing interface is experimental and may evolve.
11789More user feedback will help to stabilize it.)
9987d1b3
JD
11790@end deffn
11791
11792@deffn {Function} yypush_parse
f4101aa6
AD
11793The parser function produced by Bison in push mode; call this function to
11794parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 11795@code{yypush_parse}}.
59da312b
JD
11796(The current push parsing interface is experimental and may evolve.
11797More user feedback will help to stabilize it.)
9987d1b3
JD
11798@end deffn
11799
dd8d9022
AD
11800@deffn {Macro} YYPARSE_PARAM
11801An obsolete macro for specifying the name of a parameter that
11802@code{yyparse} should accept. The use of this macro is deprecated, and
11803is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
11804Conventions for Pure Parsers}.
11805@end deffn
11806
11807@deffn {Macro} YYRECOVERING
02103984
PE
11808The expression @code{YYRECOVERING ()} yields 1 when the parser
11809is recovering from a syntax error, and 0 otherwise.
11810@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
11811@end deffn
11812
11813@deffn {Macro} YYSTACK_USE_ALLOCA
34a6c2d1
JD
11814Macro used to control the use of @code{alloca} when the
11815deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
11816the parser will use @code{malloc} to extend its stacks. If defined to
118171, the parser will use @code{alloca}. Values other than 0 and 1 are
11818reserved for future Bison extensions. If not defined,
11819@code{YYSTACK_USE_ALLOCA} defaults to 0.
11820
55289366 11821In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
11822limited stack and with unreliable stack-overflow checking, you should
11823set @code{YYMAXDEPTH} to a value that cannot possibly result in
11824unchecked stack overflow on any of your target hosts when
11825@code{alloca} is called. You can inspect the code that Bison
11826generates in order to determine the proper numeric values. This will
11827require some expertise in low-level implementation details.
dd8d9022
AD
11828@end deffn
11829
11830@deffn {Type} YYSTYPE
11831Data type of semantic values; @code{int} by default.
11832@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 11833@end deffn
bfa74976 11834
342b8b6e 11835@node Glossary
bfa74976
RS
11836@appendix Glossary
11837@cindex glossary
11838
11839@table @asis
6f04ee6c 11840@item Accepting state
34a6c2d1
JD
11841A state whose only action is the accept action.
11842The accepting state is thus a consistent state.
11843@xref{Understanding,,}.
11844
35430378 11845@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
11846Formal method of specifying context-free grammars originally proposed
11847by John Backus, and slightly improved by Peter Naur in his 1960-01-02
11848committee document contributing to what became the Algol 60 report.
11849@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 11850
6f04ee6c
JD
11851@item Consistent state
11852A state containing only one possible action. @xref{Default Reductions}.
34a6c2d1 11853
bfa74976
RS
11854@item Context-free grammars
11855Grammars specified as rules that can be applied regardless of context.
11856Thus, if there is a rule which says that an integer can be used as an
11857expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
11858permitted. @xref{Language and Grammar, ,Languages and Context-Free
11859Grammars}.
bfa74976 11860
6f04ee6c 11861@item Default reduction
620b5727 11862The reduction that a parser should perform if the current parser state
2f4518a1 11863contains no other action for the lookahead token. In permitted parser
6f04ee6c
JD
11864states, Bison declares the reduction with the largest lookahead set to be
11865the default reduction and removes that lookahead set. @xref{Default
11866Reductions}.
11867
11868@item Defaulted state
11869A consistent state with a default reduction. @xref{Default Reductions}.
34a6c2d1 11870
bfa74976
RS
11871@item Dynamic allocation
11872Allocation of memory that occurs during execution, rather than at
11873compile time or on entry to a function.
11874
11875@item Empty string
11876Analogous to the empty set in set theory, the empty string is a
11877character string of length zero.
11878
11879@item Finite-state stack machine
11880A ``machine'' that has discrete states in which it is said to exist at
11881each instant in time. As input to the machine is processed, the
11882machine moves from state to state as specified by the logic of the
11883machine. In the case of the parser, the input is the language being
11884parsed, and the states correspond to various stages in the grammar
c827f760 11885rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 11886
35430378 11887@item Generalized LR (GLR)
676385e2 11888A parsing algorithm that can handle all context-free grammars, including those
35430378 11889that are not LR(1). It resolves situations that Bison's
34a6c2d1 11890deterministic parsing
676385e2
PH
11891algorithm cannot by effectively splitting off multiple parsers, trying all
11892possible parsers, and discarding those that fail in the light of additional
c827f760 11893right context. @xref{Generalized LR Parsing, ,Generalized
35430378 11894LR Parsing}.
676385e2 11895
bfa74976
RS
11896@item Grouping
11897A language construct that is (in general) grammatically divisible;
c827f760 11898for example, `expression' or `declaration' in C@.
bfa74976
RS
11899@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11900
6f04ee6c
JD
11901@item IELR(1) (Inadequacy Elimination LR(1))
11902A minimal LR(1) parser table construction algorithm. That is, given any
2f4518a1 11903context-free grammar, IELR(1) generates parser tables with the full
6f04ee6c
JD
11904language-recognition power of canonical LR(1) but with nearly the same
11905number of parser states as LALR(1). This reduction in parser states is
11906often an order of magnitude. More importantly, because canonical LR(1)'s
11907extra parser states may contain duplicate conflicts in the case of non-LR(1)
11908grammars, the number of conflicts for IELR(1) is often an order of magnitude
11909less as well. This can significantly reduce the complexity of developing a
11910grammar. @xref{LR Table Construction}.
34a6c2d1 11911
bfa74976
RS
11912@item Infix operator
11913An arithmetic operator that is placed between the operands on which it
11914performs some operation.
11915
11916@item Input stream
11917A continuous flow of data between devices or programs.
11918
35430378 11919@item LAC (Lookahead Correction)
4c38b19e 11920A parsing mechanism that fixes the problem of delayed syntax error
6f04ee6c
JD
11921detection, which is caused by LR state merging, default reductions, and the
11922use of @code{%nonassoc}. Delayed syntax error detection results in
11923unexpected semantic actions, initiation of error recovery in the wrong
11924syntactic context, and an incorrect list of expected tokens in a verbose
11925syntax error message. @xref{LAC}.
4c38b19e 11926
bfa74976
RS
11927@item Language construct
11928One of the typical usage schemas of the language. For example, one of
11929the constructs of the C language is the @code{if} statement.
11930@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11931
11932@item Left associativity
11933Operators having left associativity are analyzed from left to right:
11934@samp{a+b+c} first computes @samp{a+b} and then combines with
11935@samp{c}. @xref{Precedence, ,Operator Precedence}.
11936
11937@item Left recursion
89cab50d
AD
11938A rule whose result symbol is also its first component symbol; for
11939example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
11940Rules}.
bfa74976
RS
11941
11942@item Left-to-right parsing
11943Parsing a sentence of a language by analyzing it token by token from
c827f760 11944left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11945
11946@item Lexical analyzer (scanner)
11947A function that reads an input stream and returns tokens one by one.
11948@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
11949
11950@item Lexical tie-in
11951A flag, set by actions in the grammar rules, which alters the way
11952tokens are parsed. @xref{Lexical Tie-ins}.
11953
931c7513 11954@item Literal string token
14ded682 11955A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 11956
742e4900
JD
11957@item Lookahead token
11958A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 11959Tokens}.
bfa74976 11960
35430378 11961@item LALR(1)
bfa74976 11962The class of context-free grammars that Bison (like most other parser
35430378 11963generators) can handle by default; a subset of LR(1).
5da0355a 11964@xref{Mysterious Conflicts}.
bfa74976 11965
35430378 11966@item LR(1)
bfa74976 11967The class of context-free grammars in which at most one token of
742e4900 11968lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
11969
11970@item Nonterminal symbol
11971A grammar symbol standing for a grammatical construct that can
11972be expressed through rules in terms of smaller constructs; in other
11973words, a construct that is not a token. @xref{Symbols}.
11974
bfa74976
RS
11975@item Parser
11976A function that recognizes valid sentences of a language by analyzing
11977the syntax structure of a set of tokens passed to it from a lexical
11978analyzer.
11979
11980@item Postfix operator
11981An arithmetic operator that is placed after the operands upon which it
11982performs some operation.
11983
11984@item Reduction
11985Replacing a string of nonterminals and/or terminals with a single
89cab50d 11986nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 11987Parser Algorithm}.
bfa74976
RS
11988
11989@item Reentrant
11990A reentrant subprogram is a subprogram which can be in invoked any
11991number of times in parallel, without interference between the various
11992invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
11993
11994@item Reverse polish notation
11995A language in which all operators are postfix operators.
11996
11997@item Right recursion
89cab50d
AD
11998A rule whose result symbol is also its last component symbol; for
11999example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
12000Rules}.
bfa74976
RS
12001
12002@item Semantics
12003In computer languages, the semantics are specified by the actions
12004taken for each instance of the language, i.e., the meaning of
12005each statement. @xref{Semantics, ,Defining Language Semantics}.
12006
12007@item Shift
12008A parser is said to shift when it makes the choice of analyzing
12009further input from the stream rather than reducing immediately some
c827f760 12010already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
12011
12012@item Single-character literal
12013A single character that is recognized and interpreted as is.
12014@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
12015
12016@item Start symbol
12017The nonterminal symbol that stands for a complete valid utterance in
12018the language being parsed. The start symbol is usually listed as the
13863333 12019first nonterminal symbol in a language specification.
bfa74976
RS
12020@xref{Start Decl, ,The Start-Symbol}.
12021
12022@item Symbol table
12023A data structure where symbol names and associated data are stored
12024during parsing to allow for recognition and use of existing
12025information in repeated uses of a symbol. @xref{Multi-function Calc}.
12026
6e649e65
PE
12027@item Syntax error
12028An error encountered during parsing of an input stream due to invalid
12029syntax. @xref{Error Recovery}.
12030
bfa74976
RS
12031@item Token
12032A basic, grammatically indivisible unit of a language. The symbol
12033that describes a token in the grammar is a terminal symbol.
12034The input of the Bison parser is a stream of tokens which comes from
12035the lexical analyzer. @xref{Symbols}.
12036
12037@item Terminal symbol
89cab50d
AD
12038A grammar symbol that has no rules in the grammar and therefore is
12039grammatically indivisible. The piece of text it represents is a token.
12040@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
6f04ee6c
JD
12041
12042@item Unreachable state
12043A parser state to which there does not exist a sequence of transitions from
12044the parser's start state. A state can become unreachable during conflict
12045resolution. @xref{Unreachable States}.
bfa74976
RS
12046@end table
12047
342b8b6e 12048@node Copying This Manual
f2b5126e 12049@appendix Copying This Manual
f2b5126e
PB
12050@include fdl.texi
12051
71caec06
JD
12052@node Bibliography
12053@unnumbered Bibliography
12054
12055@table @asis
12056@item [Denny 2008]
12057Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
12058for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
120592008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
12060pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
12061
12062@item [Denny 2010 May]
12063Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
12064Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
12065University, Clemson, SC, USA (May 2010).
12066@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
12067
12068@item [Denny 2010 November]
12069Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
12070Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
12071in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
120722010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
12073
12074@item [DeRemer 1982]
12075Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
12076Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
12077Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
12078615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
12079
12080@item [Knuth 1965]
12081Donald E. Knuth, On the Translation of Languages from Left to Right, in
12082@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
12083607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
12084
12085@item [Scott 2000]
12086Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
12087@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
12088London, Department of Computer Science, TR-00-12 (December 2000).
12089@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
12090@end table
12091
f9b86351
AD
12092@node Index of Terms
12093@unnumbered Index of Terms
bfa74976
RS
12094
12095@printindex cp
12096
bfa74976 12097@bye
a06ea4aa 12098
232be91a
AD
12099@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
12100@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
12101@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
12102@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
12103@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
12104@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
12105@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
12106@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
12107@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
12108@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
12109@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
12110@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
12111@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
56da1e52 12112@c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum IEC syntaxes
232be91a
AD
12113@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
12114@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
12115@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
12116@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
12117@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
12118@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
12119@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
12120@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
12121@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
56da1e52 12122@c LocalWords: YYINITDEPTH stmts ref initdcl maybeasm notype Lookahead yyoutput
232be91a
AD
12123@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
12124@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
12125@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
12126@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
12127@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
4c38b19e 12128@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
56da1e52
AD
12129@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs sr
12130@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC nterm LR's
232be91a 12131@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
56da1e52 12132@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative Ph
232be91a
AD
12133@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
12134@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
12135@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
56da1e52 12136@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz ACM
232be91a 12137@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
56da1e52 12138@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno filename
232be91a
AD
12139@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
12140@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
12141@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
12142@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
56da1e52 12143@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc PSLR
232be91a
AD
12144@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
12145@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
12146@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
12147@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
5a05f42e 12148@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos uint
56da1e52 12149@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett LALR's
5a05f42e
AD
12150@c LocalWords: subdirectory Solaris nonassociativity perror schemas Malloy ints
12151@c LocalWords: Scannerless ispell american ChangeLog smallexample CSTYPE CLTYPE
7287be84 12152@c LocalWords: clval CDEBUG cdebug deftypeopx yyterminate LocationType
53e2cd1e
AD
12153@c LocalWords: parsers parser's
12154@c LocalWords: associativity subclasses precedences unresolvable runnable
12155@c LocalWords: allocators subunit initializations unreferenced untyped
12156@c LocalWords: errorVerbose subtype subtypes
f3103c5b
AD
12157
12158@c Local Variables:
12159@c ispell-dictionary: "american"
12160@c fill-column: 76
12161@c End: