]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
maint: prepare to use date ranges in copyright notices.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
e1145ad8
AD
33This manual (@value{UPDATED}) is for @acronym{GNU} Bison (version
34@value{VERSION}), the @acronym{GNU} parser generator.
fae437e8 35
6e30ede8
PE
36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998, 1999,
372000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free
38Software Foundation, Inc.
fae437e8
AD
39
40@quotation
41Permission is granted to copy, distribute and/or modify this document
c827f760 42under the terms of the @acronym{GNU} Free Documentation License,
241ac701 43Version 1.3 or any later version published by the Free Software
c827f760
PE
44Foundation; with no Invariant Sections, with the Front-Cover texts
45being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
46(a) below. A copy of the license is included in the section entitled
47``@acronym{GNU} Free Documentation License.''
48
389c8cfd
PE
49(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
50modify this @acronym{GNU} manual. Buying copies from the @acronym{FSF}
51supports it in developing @acronym{GNU} and promoting software
52freedom.''
fae437e8
AD
53@end quotation
54@end copying
55
e62f1a89 56@dircategory Software development
fae437e8 57@direntry
c827f760 58* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 59@end direntry
bfa74976 60
bfa74976
RS
61@titlepage
62@title Bison
c827f760 63@subtitle The Yacc-compatible Parser Generator
df1af54c 64@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
65
66@author by Charles Donnelly and Richard Stallman
67
68@page
69@vskip 0pt plus 1filll
fae437e8 70@insertcopying
bfa74976
RS
71@sp 2
72Published by the Free Software Foundation @*
0fb669f9
PE
7351 Franklin Street, Fifth Floor @*
74Boston, MA 02110-1301 USA @*
9ecbd125 75Printed copies are available from the Free Software Foundation.@*
c827f760 76@acronym{ISBN} 1-882114-44-2
bfa74976
RS
77@sp 2
78Cover art by Etienne Suvasa.
79@end titlepage
d5796688
JT
80
81@contents
bfa74976 82
342b8b6e
AD
83@ifnottex
84@node Top
85@top Bison
fae437e8 86@insertcopying
342b8b6e 87@end ifnottex
bfa74976
RS
88
89@menu
13863333
AD
90* Introduction::
91* Conditions::
f56274a8
DJ
92* Copying:: The @acronym{GNU} General Public License says
93 how you can copy and share Bison.
bfa74976
RS
94
95Tutorial sections:
f56274a8
DJ
96* Concepts:: Basic concepts for understanding Bison.
97* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
98
99Reference sections:
f56274a8
DJ
100* Grammar File:: Writing Bison declarations and rules.
101* Interface:: C-language interface to the parser function @code{yyparse}.
102* Algorithm:: How the Bison parser works at run-time.
103* Error Recovery:: Writing rules for error recovery.
bfa74976 104* Context Dependency:: What to do if your language syntax is too
f56274a8
DJ
105 messy for Bison to handle straightforwardly.
106* Debugging:: Understanding or debugging Bison parsers.
107* Invocation:: How to run Bison (to produce the parser source file).
108* Other Languages:: Creating C++ and Java parsers.
109* FAQ:: Frequently Asked Questions
110* Table of Symbols:: All the keywords of the Bison language are explained.
111* Glossary:: Basic concepts are explained.
112* Copying This Manual:: License for copying this manual.
113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f56274a8
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
128* Locations Overview:: Tracking Locations.
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
fa7e68c3
PE
134Writing @acronym{GLR} Parsers
135
f56274a8
DJ
136* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
137* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
138* GLR Semantic Actions:: Deferred semantic actions have special concerns.
139* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 140
bfa74976
RS
141Examples
142
f56274a8
DJ
143* RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145* Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
bfa74976 147* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 148* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
149* Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
151* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
152
153Reverse Polish Notation Calculator
154
f56274a8
DJ
155* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
156* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
157* Rpcalc Lexer:: The lexical analyzer.
158* Rpcalc Main:: The controlling function.
159* Rpcalc Error:: The error reporting function.
160* Rpcalc Generate:: Running Bison on the grammar file.
161* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
162
163Grammar Rules for @code{rpcalc}
164
13863333
AD
165* Rpcalc Input::
166* Rpcalc Line::
167* Rpcalc Expr::
bfa74976 168
342b8b6e
AD
169Location Tracking Calculator: @code{ltcalc}
170
f56274a8
DJ
171* Ltcalc Declarations:: Bison and C declarations for ltcalc.
172* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
173* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 174
bfa74976
RS
175Multi-Function Calculator: @code{mfcalc}
176
f56274a8
DJ
177* Mfcalc Declarations:: Bison declarations for multi-function calculator.
178* Mfcalc Rules:: Grammar rules for the calculator.
179* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
180
181Bison Grammar Files
182
183* Grammar Outline:: Overall layout of the grammar file.
184* Symbols:: Terminal and nonterminal symbols.
185* Rules:: How to write grammar rules.
186* Recursion:: Writing recursive rules.
187* Semantics:: Semantic values and actions.
93dd49ab 188* Locations:: Locations and actions.
bfa74976
RS
189* Declarations:: All kinds of Bison declarations are described here.
190* Multiple Parsers:: Putting more than one Bison parser in one program.
191
192Outline of a Bison Grammar
193
f56274a8 194* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 195* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
196* Bison Declarations:: Syntax and usage of the Bison declarations section.
197* Grammar Rules:: Syntax and usage of the grammar rules section.
198* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
199
200Defining Language Semantics
201
202* Value Type:: Specifying one data type for all semantic values.
203* Multiple Types:: Specifying several alternative data types.
204* Actions:: An action is the semantic definition of a grammar rule.
205* Action Types:: Specifying data types for actions to operate on.
206* Mid-Rule Actions:: Most actions go at the end of a rule.
207 This says when, why and how to use the exceptional
208 action in the middle of a rule.
1f68dca5 209* Named References:: Using named references in actions.
bfa74976 210
93dd49ab
PE
211Tracking Locations
212
213* Location Type:: Specifying a data type for locations.
214* Actions and Locations:: Using locations in actions.
215* Location Default Action:: Defining a general way to compute locations.
216
bfa74976
RS
217Bison Declarations
218
b50d2359 219* Require Decl:: Requiring a Bison version.
bfa74976
RS
220* Token Decl:: Declaring terminal symbols.
221* Precedence Decl:: Declaring terminals with precedence and associativity.
222* Union Decl:: Declaring the set of all semantic value types.
223* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 224* Initial Action Decl:: Code run before parsing starts.
72f889cc 225* Destructor Decl:: Declaring how symbols are freed.
d6328241 226* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
227* Start Decl:: Specifying the start symbol.
228* Pure Decl:: Requesting a reentrant parser.
9987d1b3 229* Push Decl:: Requesting a push parser.
bfa74976
RS
230* Decl Summary:: Table of all Bison declarations.
231
232Parser C-Language Interface
233
f56274a8
DJ
234* Parser Function:: How to call @code{yyparse} and what it returns.
235* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
236* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
237* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
238* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
239* Lexical:: You must supply a function @code{yylex}
240 which reads tokens.
241* Error Reporting:: You must supply a function @code{yyerror}.
242* Action Features:: Special features for use in actions.
243* Internationalization:: How to let the parser speak in the user's
244 native language.
bfa74976
RS
245
246The Lexical Analyzer Function @code{yylex}
247
248* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
249* Token Values:: How @code{yylex} must return the semantic value
250 of the token it has read.
251* Token Locations:: How @code{yylex} must return the text location
252 (line number, etc.) of the token, if the
253 actions want that.
254* Pure Calling:: How the calling convention differs in a pure parser
255 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 256
13863333 257The Bison Parser Algorithm
bfa74976 258
742e4900 259* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
260* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
261* Precedence:: Operator precedence works by resolving conflicts.
262* Contextual Precedence:: When an operator's precedence depends on context.
263* Parser States:: The parser is a finite-state-machine with stack.
264* Reduce/Reduce:: When two rules are applicable in the same situation.
f56274a8 265* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 266* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 267* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
268
269Operator Precedence
270
271* Why Precedence:: An example showing why precedence is needed.
272* Using Precedence:: How to specify precedence in Bison grammars.
273* Precedence Examples:: How these features are used in the previous example.
274* How Precedence:: How they work.
275
276Handling Context Dependencies
277
278* Semantic Tokens:: Token parsing can depend on the semantic context.
279* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
280* Tie-in Recovery:: Lexical tie-ins have implications for how
281 error recovery rules must be written.
282
93dd49ab 283Debugging Your Parser
ec3bc396
AD
284
285* Understanding:: Understanding the structure of your parser.
286* Tracing:: Tracing the execution of your parser.
287
bfa74976
RS
288Invoking Bison
289
13863333 290* Bison Options:: All the options described in detail,
c827f760 291 in alphabetical order by short options.
bfa74976 292* Option Cross Key:: Alphabetical list of long options.
93dd49ab 293* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 294
8405b70c 295Parsers Written In Other Languages
12545799
AD
296
297* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 298* Java Parsers:: The interface to generate Java parser classes
12545799
AD
299
300C++ Parsers
301
302* C++ Bison Interface:: Asking for C++ parser generation
303* C++ Semantic Values:: %union vs. C++
304* C++ Location Values:: The position and location classes
305* C++ Parser Interface:: Instantiating and running the parser
306* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 307* A Complete C++ Example:: Demonstrating their use
12545799
AD
308
309A Complete C++ Example
310
311* Calc++ --- C++ Calculator:: The specifications
312* Calc++ Parsing Driver:: An active parsing context
313* Calc++ Parser:: A parser class
314* Calc++ Scanner:: A pure C++ Flex scanner
315* Calc++ Top Level:: Conducting the band
316
8405b70c
PB
317Java Parsers
318
f56274a8
DJ
319* Java Bison Interface:: Asking for Java parser generation
320* Java Semantic Values:: %type and %token vs. Java
321* Java Location Values:: The position and location classes
322* Java Parser Interface:: Instantiating and running the parser
323* Java Scanner Interface:: Specifying the scanner for the parser
324* Java Action Features:: Special features for use in actions
325* Java Differences:: Differences between C/C++ and Java Grammars
326* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 327
d1a1114f
AD
328Frequently Asked Questions
329
f56274a8
DJ
330* Memory Exhausted:: Breaking the Stack Limits
331* How Can I Reset the Parser:: @code{yyparse} Keeps some State
332* Strings are Destroyed:: @code{yylval} Loses Track of Strings
333* Implementing Gotos/Loops:: Control Flow in the Calculator
334* Multiple start-symbols:: Factoring closely related grammars
335* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
336* I can't build Bison:: Troubleshooting
337* Where can I find help?:: Troubleshouting
338* Bug Reports:: Troublereporting
339* More Languages:: Parsers in C++, Java, and so on
340* Beta Testing:: Experimenting development versions
341* Mailing Lists:: Meeting other Bison users
d1a1114f 342
f2b5126e
PB
343Copying This Manual
344
f56274a8 345* Copying This Manual:: License for copying this manual.
f2b5126e 346
342b8b6e 347@end detailmenu
bfa74976
RS
348@end menu
349
342b8b6e 350@node Introduction
bfa74976
RS
351@unnumbered Introduction
352@cindex introduction
353
6077da58 354@dfn{Bison} is a general-purpose parser generator that converts an
51c7ca01
JD
355annotated context-free grammar into a deterministic @acronym{LR} or
356generalized @acronym{LR} (@acronym{GLR}) parser employing
357@acronym{LALR}(1), @acronym{IELR}(1), or canonical @acronym{LR}(1)
358parser tables.
34a6c2d1
JD
359Once you are proficient with Bison, you can use it to develop a wide
360range of language parsers, from those used in simple desk calculators to
361complex programming languages.
bfa74976
RS
362
363Bison is upward compatible with Yacc: all properly-written Yacc grammars
364ought to work with Bison with no change. Anyone familiar with Yacc
365should be able to use Bison with little trouble. You need to be fluent in
1e137b71 366C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
367
368We begin with tutorial chapters that explain the basic concepts of using
369Bison and show three explained examples, each building on the last. If you
370don't know Bison or Yacc, start by reading these chapters. Reference
371chapters follow which describe specific aspects of Bison in detail.
372
931c7513
RS
373Bison was written primarily by Robert Corbett; Richard Stallman made it
374Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 375multi-character string literals and other features.
931c7513 376
df1af54c 377This edition corresponds to version @value{VERSION} of Bison.
bfa74976 378
342b8b6e 379@node Conditions
bfa74976
RS
380@unnumbered Conditions for Using Bison
381
193d7c70
PE
382The distribution terms for Bison-generated parsers permit using the
383parsers in nonfree programs. Before Bison version 2.2, these extra
384permissions applied only when Bison was generating @acronym{LALR}(1)
385parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 386parsers could be used only in programs that were free software.
a31239f1 387
c827f760
PE
388The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
389compiler, have never
9ecbd125 390had such a requirement. They could always be used for nonfree
a31239f1
RS
391software. The reason Bison was different was not due to a special
392policy decision; it resulted from applying the usual General Public
393License to all of the Bison source code.
394
395The output of the Bison utility---the Bison parser file---contains a
396verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
397parser's implementation. (The actions from your grammar are inserted
398into this implementation at one point, but most of the rest of the
399implementation is not changed.) When we applied the @acronym{GPL}
400terms to the skeleton code for the parser's implementation,
a31239f1
RS
401the effect was to restrict the use of Bison output to free software.
402
403We didn't change the terms because of sympathy for people who want to
404make software proprietary. @strong{Software should be free.} But we
405concluded that limiting Bison's use to free software was doing little to
406encourage people to make other software free. So we decided to make the
407practical conditions for using Bison match the practical conditions for
c827f760 408using the other @acronym{GNU} tools.
bfa74976 409
193d7c70
PE
410This exception applies when Bison is generating code for a parser.
411You can tell whether the exception applies to a Bison output file by
412inspecting the file for text beginning with ``As a special
413exception@dots{}''. The text spells out the exact terms of the
414exception.
262aa8dd 415
f16b0819
PE
416@node Copying
417@unnumbered GNU GENERAL PUBLIC LICENSE
418@include gpl-3.0.texi
bfa74976 419
342b8b6e 420@node Concepts
bfa74976
RS
421@chapter The Concepts of Bison
422
423This chapter introduces many of the basic concepts without which the
424details of Bison will not make sense. If you do not already know how to
425use Bison or Yacc, we suggest you start by reading this chapter carefully.
426
427@menu
f56274a8
DJ
428* Language and Grammar:: Languages and context-free grammars,
429 as mathematical ideas.
430* Grammar in Bison:: How we represent grammars for Bison's sake.
431* Semantic Values:: Each token or syntactic grouping can have
432 a semantic value (the value of an integer,
433 the name of an identifier, etc.).
434* Semantic Actions:: Each rule can have an action containing C code.
435* GLR Parsers:: Writing parsers for general context-free languages.
436* Locations Overview:: Tracking Locations.
437* Bison Parser:: What are Bison's input and output,
438 how is the output used?
439* Stages:: Stages in writing and running Bison grammars.
440* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
441@end menu
442
342b8b6e 443@node Language and Grammar
bfa74976
RS
444@section Languages and Context-Free Grammars
445
bfa74976
RS
446@cindex context-free grammar
447@cindex grammar, context-free
448In order for Bison to parse a language, it must be described by a
449@dfn{context-free grammar}. This means that you specify one or more
450@dfn{syntactic groupings} and give rules for constructing them from their
451parts. For example, in the C language, one kind of grouping is called an
452`expression'. One rule for making an expression might be, ``An expression
453can be made of a minus sign and another expression''. Another would be,
454``An expression can be an integer''. As you can see, rules are often
455recursive, but there must be at least one rule which leads out of the
456recursion.
457
c827f760 458@cindex @acronym{BNF}
bfa74976
RS
459@cindex Backus-Naur form
460The most common formal system for presenting such rules for humans to read
c827f760
PE
461is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
462order to specify the language Algol 60. Any grammar expressed in
463@acronym{BNF} is a context-free grammar. The input to Bison is
464essentially machine-readable @acronym{BNF}.
bfa74976 465
c827f760 466@cindex @acronym{LALR}(1) grammars
34a6c2d1 467@cindex @acronym{IELR}(1) grammars
c827f760 468@cindex @acronym{LR}(1) grammars
34a6c2d1
JD
469There are various important subclasses of context-free grammars.
470Although it can handle almost all context-free grammars, Bison is
471optimized for what are called @acronym{LR}(1) grammars.
472In brief, in these grammars, it must be possible to tell how to parse
473any portion of an input string with just a single token of lookahead.
474For historical reasons, Bison by default is limited by the additional
475restrictions of @acronym{LALR}(1), which is hard to explain simply.
c827f760
PE
476@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
477more information on this.
3b1977ea
JD
478As an experimental feature, you can escape these additional restrictions by
479requesting @acronym{IELR}(1) or canonical @acronym{LR}(1) parser tables.
34a6c2d1 480@xref{Decl Summary,,lr.type}, to learn how.
bfa74976 481
c827f760
PE
482@cindex @acronym{GLR} parsing
483@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 484@cindex ambiguous grammars
9d9b8b70 485@cindex nondeterministic parsing
9501dc6e 486
34a6c2d1 487Parsers for @acronym{LR}(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
488roughly that the next grammar rule to apply at any point in the input is
489uniquely determined by the preceding input and a fixed, finite portion
742e4900 490(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 491grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 492apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 493grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 494lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
495With the proper declarations, Bison is also able to parse these more
496general context-free grammars, using a technique known as @acronym{GLR}
497parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
498are able to handle any context-free grammar for which the number of
499possible parses of any given string is finite.
676385e2 500
bfa74976
RS
501@cindex symbols (abstract)
502@cindex token
503@cindex syntactic grouping
504@cindex grouping, syntactic
9501dc6e
AD
505In the formal grammatical rules for a language, each kind of syntactic
506unit or grouping is named by a @dfn{symbol}. Those which are built by
507grouping smaller constructs according to grammatical rules are called
bfa74976
RS
508@dfn{nonterminal symbols}; those which can't be subdivided are called
509@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
510corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 511corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
512
513We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
514nonterminal, mean. The tokens of C are identifiers, constants (numeric
515and string), and the various keywords, arithmetic operators and
516punctuation marks. So the terminal symbols of a grammar for C include
517`identifier', `number', `string', plus one symbol for each keyword,
518operator or punctuation mark: `if', `return', `const', `static', `int',
519`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
520(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
521lexicography, not grammar.)
522
523Here is a simple C function subdivided into tokens:
524
9edcd895
AD
525@ifinfo
526@example
527int /* @r{keyword `int'} */
14d4662b 528square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
529 @r{identifier, close-paren} */
530@{ /* @r{open-brace} */
aa08666d
AD
531 return x * x; /* @r{keyword `return', identifier, asterisk,}
532 @r{identifier, semicolon} */
9edcd895
AD
533@} /* @r{close-brace} */
534@end example
535@end ifinfo
536@ifnotinfo
bfa74976
RS
537@example
538int /* @r{keyword `int'} */
14d4662b 539square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 540@{ /* @r{open-brace} */
9edcd895 541 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
542@} /* @r{close-brace} */
543@end example
9edcd895 544@end ifnotinfo
bfa74976
RS
545
546The syntactic groupings of C include the expression, the statement, the
547declaration, and the function definition. These are represented in the
548grammar of C by nonterminal symbols `expression', `statement',
549`declaration' and `function definition'. The full grammar uses dozens of
550additional language constructs, each with its own nonterminal symbol, in
551order to express the meanings of these four. The example above is a
552function definition; it contains one declaration, and one statement. In
553the statement, each @samp{x} is an expression and so is @samp{x * x}.
554
555Each nonterminal symbol must have grammatical rules showing how it is made
556out of simpler constructs. For example, one kind of C statement is the
557@code{return} statement; this would be described with a grammar rule which
558reads informally as follows:
559
560@quotation
561A `statement' can be made of a `return' keyword, an `expression' and a
562`semicolon'.
563@end quotation
564
565@noindent
566There would be many other rules for `statement', one for each kind of
567statement in C.
568
569@cindex start symbol
570One nonterminal symbol must be distinguished as the special one which
571defines a complete utterance in the language. It is called the @dfn{start
572symbol}. In a compiler, this means a complete input program. In the C
573language, the nonterminal symbol `sequence of definitions and declarations'
574plays this role.
575
576For example, @samp{1 + 2} is a valid C expression---a valid part of a C
577program---but it is not valid as an @emph{entire} C program. In the
578context-free grammar of C, this follows from the fact that `expression' is
579not the start symbol.
580
581The Bison parser reads a sequence of tokens as its input, and groups the
582tokens using the grammar rules. If the input is valid, the end result is
583that the entire token sequence reduces to a single grouping whose symbol is
584the grammar's start symbol. If we use a grammar for C, the entire input
585must be a `sequence of definitions and declarations'. If not, the parser
586reports a syntax error.
587
342b8b6e 588@node Grammar in Bison
bfa74976
RS
589@section From Formal Rules to Bison Input
590@cindex Bison grammar
591@cindex grammar, Bison
592@cindex formal grammar
593
594A formal grammar is a mathematical construct. To define the language
595for Bison, you must write a file expressing the grammar in Bison syntax:
596a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
597
598A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 599as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
600in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
601
602The Bison representation for a terminal symbol is also called a @dfn{token
603type}. Token types as well can be represented as C-like identifiers. By
604convention, these identifiers should be upper case to distinguish them from
605nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
606@code{RETURN}. A terminal symbol that stands for a particular keyword in
607the language should be named after that keyword converted to upper case.
608The terminal symbol @code{error} is reserved for error recovery.
931c7513 609@xref{Symbols}.
bfa74976
RS
610
611A terminal symbol can also be represented as a character literal, just like
612a C character constant. You should do this whenever a token is just a
613single character (parenthesis, plus-sign, etc.): use that same character in
614a literal as the terminal symbol for that token.
615
931c7513
RS
616A third way to represent a terminal symbol is with a C string constant
617containing several characters. @xref{Symbols}, for more information.
618
bfa74976
RS
619The grammar rules also have an expression in Bison syntax. For example,
620here is the Bison rule for a C @code{return} statement. The semicolon in
621quotes is a literal character token, representing part of the C syntax for
622the statement; the naked semicolon, and the colon, are Bison punctuation
623used in every rule.
624
625@example
626stmt: RETURN expr ';'
627 ;
628@end example
629
630@noindent
631@xref{Rules, ,Syntax of Grammar Rules}.
632
342b8b6e 633@node Semantic Values
bfa74976
RS
634@section Semantic Values
635@cindex semantic value
636@cindex value, semantic
637
638A formal grammar selects tokens only by their classifications: for example,
639if a rule mentions the terminal symbol `integer constant', it means that
640@emph{any} integer constant is grammatically valid in that position. The
641precise value of the constant is irrelevant to how to parse the input: if
642@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 643grammatical.
bfa74976
RS
644
645But the precise value is very important for what the input means once it is
646parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6473989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
648has both a token type and a @dfn{semantic value}. @xref{Semantics,
649,Defining Language Semantics},
bfa74976
RS
650for details.
651
652The token type is a terminal symbol defined in the grammar, such as
653@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
654you need to know to decide where the token may validly appear and how to
655group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 656except their types.
bfa74976
RS
657
658The semantic value has all the rest of the information about the
659meaning of the token, such as the value of an integer, or the name of an
660identifier. (A token such as @code{','} which is just punctuation doesn't
661need to have any semantic value.)
662
663For example, an input token might be classified as token type
664@code{INTEGER} and have the semantic value 4. Another input token might
665have the same token type @code{INTEGER} but value 3989. When a grammar
666rule says that @code{INTEGER} is allowed, either of these tokens is
667acceptable because each is an @code{INTEGER}. When the parser accepts the
668token, it keeps track of the token's semantic value.
669
670Each grouping can also have a semantic value as well as its nonterminal
671symbol. For example, in a calculator, an expression typically has a
672semantic value that is a number. In a compiler for a programming
673language, an expression typically has a semantic value that is a tree
674structure describing the meaning of the expression.
675
342b8b6e 676@node Semantic Actions
bfa74976
RS
677@section Semantic Actions
678@cindex semantic actions
679@cindex actions, semantic
680
681In order to be useful, a program must do more than parse input; it must
682also produce some output based on the input. In a Bison grammar, a grammar
683rule can have an @dfn{action} made up of C statements. Each time the
684parser recognizes a match for that rule, the action is executed.
685@xref{Actions}.
13863333 686
bfa74976
RS
687Most of the time, the purpose of an action is to compute the semantic value
688of the whole construct from the semantic values of its parts. For example,
689suppose we have a rule which says an expression can be the sum of two
690expressions. When the parser recognizes such a sum, each of the
691subexpressions has a semantic value which describes how it was built up.
692The action for this rule should create a similar sort of value for the
693newly recognized larger expression.
694
695For example, here is a rule that says an expression can be the sum of
696two subexpressions:
697
698@example
699expr: expr '+' expr @{ $$ = $1 + $3; @}
700 ;
701@end example
702
703@noindent
704The action says how to produce the semantic value of the sum expression
705from the values of the two subexpressions.
706
676385e2 707@node GLR Parsers
c827f760
PE
708@section Writing @acronym{GLR} Parsers
709@cindex @acronym{GLR} parsing
710@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
711@findex %glr-parser
712@cindex conflicts
713@cindex shift/reduce conflicts
fa7e68c3 714@cindex reduce/reduce conflicts
676385e2 715
34a6c2d1
JD
716In some grammars, Bison's deterministic
717@acronym{LR}(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
718certain grammar rule at a given point. That is, it may not be able to
719decide (on the basis of the input read so far) which of two possible
720reductions (applications of a grammar rule) applies, or whether to apply
721a reduction or read more of the input and apply a reduction later in the
722input. These are known respectively as @dfn{reduce/reduce} conflicts
723(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
724(@pxref{Shift/Reduce}).
725
34a6c2d1 726To use a grammar that is not easily modified to be @acronym{LR}(1), a
9501dc6e 727more general parsing algorithm is sometimes necessary. If you include
676385e2 728@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 729(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
730(@acronym{GLR}) parser. These parsers handle Bison grammars that
731contain no unresolved conflicts (i.e., after applying precedence
34a6c2d1 732declarations) identically to deterministic parsers. However, when
9501dc6e
AD
733faced with unresolved shift/reduce and reduce/reduce conflicts,
734@acronym{GLR} parsers use the simple expedient of doing both,
735effectively cloning the parser to follow both possibilities. Each of
736the resulting parsers can again split, so that at any given time, there
737can be any number of possible parses being explored. The parsers
676385e2
PH
738proceed in lockstep; that is, all of them consume (shift) a given input
739symbol before any of them proceed to the next. Each of the cloned
740parsers eventually meets one of two possible fates: either it runs into
741a parsing error, in which case it simply vanishes, or it merges with
742another parser, because the two of them have reduced the input to an
743identical set of symbols.
744
745During the time that there are multiple parsers, semantic actions are
746recorded, but not performed. When a parser disappears, its recorded
747semantic actions disappear as well, and are never performed. When a
748reduction makes two parsers identical, causing them to merge, Bison
749records both sets of semantic actions. Whenever the last two parsers
750merge, reverting to the single-parser case, Bison resolves all the
751outstanding actions either by precedences given to the grammar rules
752involved, or by performing both actions, and then calling a designated
753user-defined function on the resulting values to produce an arbitrary
754merged result.
755
fa7e68c3 756@menu
f56274a8
DJ
757* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
758* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
759* GLR Semantic Actions:: Deferred semantic actions have special concerns.
760* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
761@end menu
762
763@node Simple GLR Parsers
764@subsection Using @acronym{GLR} on Unambiguous Grammars
765@cindex @acronym{GLR} parsing, unambiguous grammars
766@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
767@findex %glr-parser
768@findex %expect-rr
769@cindex conflicts
770@cindex reduce/reduce conflicts
771@cindex shift/reduce conflicts
772
773In the simplest cases, you can use the @acronym{GLR} algorithm
34a6c2d1
JD
774to parse grammars that are unambiguous but fail to be @acronym{LR}(1).
775Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
776
777Consider a problem that
778arises in the declaration of enumerated and subrange types in the
779programming language Pascal. Here are some examples:
780
781@example
782type subrange = lo .. hi;
783type enum = (a, b, c);
784@end example
785
786@noindent
787The original language standard allows only numeric
788literals and constant identifiers for the subrange bounds (@samp{lo}
789and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
79010206) and many other
791Pascal implementations allow arbitrary expressions there. This gives
792rise to the following situation, containing a superfluous pair of
793parentheses:
794
795@example
796type subrange = (a) .. b;
797@end example
798
799@noindent
800Compare this to the following declaration of an enumerated
801type with only one value:
802
803@example
804type enum = (a);
805@end example
806
807@noindent
808(These declarations are contrived, but they are syntactically
809valid, and more-complicated cases can come up in practical programs.)
810
811These two declarations look identical until the @samp{..} token.
34a6c2d1 812With normal @acronym{LR}(1) one-token lookahead it is not
fa7e68c3
PE
813possible to decide between the two forms when the identifier
814@samp{a} is parsed. It is, however, desirable
815for a parser to decide this, since in the latter case
816@samp{a} must become a new identifier to represent the enumeration
817value, while in the former case @samp{a} must be evaluated with its
818current meaning, which may be a constant or even a function call.
819
820You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
821to be resolved later, but this typically requires substantial
822contortions in both semantic actions and large parts of the
823grammar, where the parentheses are nested in the recursive rules for
824expressions.
825
826You might think of using the lexer to distinguish between the two
827forms by returning different tokens for currently defined and
828undefined identifiers. But if these declarations occur in a local
829scope, and @samp{a} is defined in an outer scope, then both forms
830are possible---either locally redefining @samp{a}, or using the
831value of @samp{a} from the outer scope. So this approach cannot
832work.
833
e757bb10 834A simple solution to this problem is to declare the parser to
fa7e68c3
PE
835use the @acronym{GLR} algorithm.
836When the @acronym{GLR} parser reaches the critical state, it
837merely splits into two branches and pursues both syntax rules
838simultaneously. Sooner or later, one of them runs into a parsing
839error. If there is a @samp{..} token before the next
840@samp{;}, the rule for enumerated types fails since it cannot
841accept @samp{..} anywhere; otherwise, the subrange type rule
842fails since it requires a @samp{..} token. So one of the branches
843fails silently, and the other one continues normally, performing
844all the intermediate actions that were postponed during the split.
845
846If the input is syntactically incorrect, both branches fail and the parser
847reports a syntax error as usual.
848
849The effect of all this is that the parser seems to ``guess'' the
850correct branch to take, or in other words, it seems to use more
34a6c2d1
JD
851lookahead than the underlying @acronym{LR}(1) algorithm actually allows
852for. In this example, @acronym{LR}(2) would suffice, but also some cases
853that are not @acronym{LR}(@math{k}) for any @math{k} can be handled this way.
fa7e68c3
PE
854
855In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
856and the current Bison parser even takes exponential time and space
857for some grammars. In practice, this rarely happens, and for many
858grammars it is possible to prove that it cannot happen.
859The present example contains only one conflict between two
860rules, and the type-declaration context containing the conflict
861cannot be nested. So the number of
862branches that can exist at any time is limited by the constant 2,
863and the parsing time is still linear.
864
865Here is a Bison grammar corresponding to the example above. It
866parses a vastly simplified form of Pascal type declarations.
867
868@example
869%token TYPE DOTDOT ID
870
871@group
872%left '+' '-'
873%left '*' '/'
874@end group
875
876%%
877
878@group
879type_decl : TYPE ID '=' type ';'
880 ;
881@end group
882
883@group
884type : '(' id_list ')'
885 | expr DOTDOT expr
886 ;
887@end group
888
889@group
890id_list : ID
891 | id_list ',' ID
892 ;
893@end group
894
895@group
896expr : '(' expr ')'
897 | expr '+' expr
898 | expr '-' expr
899 | expr '*' expr
900 | expr '/' expr
901 | ID
902 ;
903@end group
904@end example
905
34a6c2d1 906When used as a normal @acronym{LR}(1) grammar, Bison correctly complains
fa7e68c3
PE
907about one reduce/reduce conflict. In the conflicting situation the
908parser chooses one of the alternatives, arbitrarily the one
909declared first. Therefore the following correct input is not
910recognized:
911
912@example
913type t = (a) .. b;
914@end example
915
916The parser can be turned into a @acronym{GLR} parser, while also telling Bison
917to be silent about the one known reduce/reduce conflict, by
e757bb10 918adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
919@samp{%%}):
920
921@example
922%glr-parser
923%expect-rr 1
924@end example
925
926@noindent
927No change in the grammar itself is required. Now the
928parser recognizes all valid declarations, according to the
929limited syntax above, transparently. In fact, the user does not even
930notice when the parser splits.
931
f8e1c9e5
AD
932So here we have a case where we can use the benefits of @acronym{GLR},
933almost without disadvantages. Even in simple cases like this, however,
934there are at least two potential problems to beware. First, always
935analyze the conflicts reported by Bison to make sure that @acronym{GLR}
936splitting is only done where it is intended. A @acronym{GLR} parser
937splitting inadvertently may cause problems less obvious than an
34a6c2d1 938@acronym{LR} parser statically choosing the wrong alternative in a
f8e1c9e5
AD
939conflict. Second, consider interactions with the lexer (@pxref{Semantic
940Tokens}) with great care. Since a split parser consumes tokens without
941performing any actions during the split, the lexer cannot obtain
942information via parser actions. Some cases of lexer interactions can be
943eliminated by using @acronym{GLR} to shift the complications from the
944lexer to the parser. You must check the remaining cases for
945correctness.
946
947In our example, it would be safe for the lexer to return tokens based on
948their current meanings in some symbol table, because no new symbols are
949defined in the middle of a type declaration. Though it is possible for
950a parser to define the enumeration constants as they are parsed, before
951the type declaration is completed, it actually makes no difference since
952they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
953
954@node Merging GLR Parses
955@subsection Using @acronym{GLR} to Resolve Ambiguities
956@cindex @acronym{GLR} parsing, ambiguous grammars
957@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
958@findex %dprec
959@findex %merge
960@cindex conflicts
961@cindex reduce/reduce conflicts
962
2a8d363a 963Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
964
965@example
966%@{
38a92d50
PE
967 #include <stdio.h>
968 #define YYSTYPE char const *
969 int yylex (void);
970 void yyerror (char const *);
676385e2
PH
971%@}
972
973%token TYPENAME ID
974
975%right '='
976%left '+'
977
978%glr-parser
979
980%%
981
fae437e8 982prog :
676385e2
PH
983 | prog stmt @{ printf ("\n"); @}
984 ;
985
986stmt : expr ';' %dprec 1
987 | decl %dprec 2
988 ;
989
2a8d363a 990expr : ID @{ printf ("%s ", $$); @}
fae437e8 991 | TYPENAME '(' expr ')'
2a8d363a
AD
992 @{ printf ("%s <cast> ", $1); @}
993 | expr '+' expr @{ printf ("+ "); @}
994 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
995 ;
996
fae437e8 997decl : TYPENAME declarator ';'
2a8d363a 998 @{ printf ("%s <declare> ", $1); @}
676385e2 999 | TYPENAME declarator '=' expr ';'
2a8d363a 1000 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1001 ;
1002
2a8d363a 1003declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1004 | '(' declarator ')'
1005 ;
1006@end example
1007
1008@noindent
1009This models a problematic part of the C++ grammar---the ambiguity between
1010certain declarations and statements. For example,
1011
1012@example
1013T (x) = y+z;
1014@end example
1015
1016@noindent
1017parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1018(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1019@samp{x} as an @code{ID}).
676385e2 1020Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1021@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1022time it encounters @code{x} in the example above. Since this is a
1023@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1024each choice of resolving the reduce/reduce conflict.
1025Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1026however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1027ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1028the other reduces @code{stmt : decl}, after which both parsers are in an
1029identical state: they've seen @samp{prog stmt} and have the same unprocessed
1030input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1031
1032At this point, the @acronym{GLR} parser requires a specification in the
1033grammar of how to choose between the competing parses.
1034In the example above, the two @code{%dprec}
e757bb10 1035declarations specify that Bison is to give precedence
fa7e68c3 1036to the parse that interprets the example as a
676385e2
PH
1037@code{decl}, which implies that @code{x} is a declarator.
1038The parser therefore prints
1039
1040@example
fae437e8 1041"x" y z + T <init-declare>
676385e2
PH
1042@end example
1043
fa7e68c3
PE
1044The @code{%dprec} declarations only come into play when more than one
1045parse survives. Consider a different input string for this parser:
676385e2
PH
1046
1047@example
1048T (x) + y;
1049@end example
1050
1051@noindent
e757bb10 1052This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1053construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1054Here, there is no ambiguity (this cannot be parsed as a declaration).
1055However, at the time the Bison parser encounters @code{x}, it does not
1056have enough information to resolve the reduce/reduce conflict (again,
1057between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1058case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1059into two, one assuming that @code{x} is an @code{expr}, and the other
1060assuming @code{x} is a @code{declarator}. The second of these parsers
1061then vanishes when it sees @code{+}, and the parser prints
1062
1063@example
fae437e8 1064x T <cast> y +
676385e2
PH
1065@end example
1066
1067Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1068the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1069actions of the two possible parsers, rather than choosing one over the
1070other. To do so, you could change the declaration of @code{stmt} as
1071follows:
1072
1073@example
1074stmt : expr ';' %merge <stmtMerge>
1075 | decl %merge <stmtMerge>
1076 ;
1077@end example
1078
1079@noindent
676385e2
PH
1080and define the @code{stmtMerge} function as:
1081
1082@example
38a92d50
PE
1083static YYSTYPE
1084stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1085@{
1086 printf ("<OR> ");
1087 return "";
1088@}
1089@end example
1090
1091@noindent
1092with an accompanying forward declaration
1093in the C declarations at the beginning of the file:
1094
1095@example
1096%@{
38a92d50 1097 #define YYSTYPE char const *
676385e2
PH
1098 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1099%@}
1100@end example
1101
1102@noindent
fa7e68c3
PE
1103With these declarations, the resulting parser parses the first example
1104as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1105
1106@example
fae437e8 1107"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1108@end example
1109
fa7e68c3 1110Bison requires that all of the
e757bb10 1111productions that participate in any particular merge have identical
fa7e68c3
PE
1112@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1113and the parser will report an error during any parse that results in
1114the offending merge.
9501dc6e 1115
32c29292
JD
1116@node GLR Semantic Actions
1117@subsection GLR Semantic Actions
1118
1119@cindex deferred semantic actions
1120By definition, a deferred semantic action is not performed at the same time as
1121the associated reduction.
1122This raises caveats for several Bison features you might use in a semantic
1123action in a @acronym{GLR} parser.
1124
1125@vindex yychar
1126@cindex @acronym{GLR} parsers and @code{yychar}
1127@vindex yylval
1128@cindex @acronym{GLR} parsers and @code{yylval}
1129@vindex yylloc
1130@cindex @acronym{GLR} parsers and @code{yylloc}
1131In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1132the lookahead token present at the time of the associated reduction.
32c29292
JD
1133After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1134you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1135lookahead token's semantic value and location, if any.
32c29292
JD
1136In a nondeferred semantic action, you can also modify any of these variables to
1137influence syntax analysis.
742e4900 1138@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1139
1140@findex yyclearin
1141@cindex @acronym{GLR} parsers and @code{yyclearin}
1142In a deferred semantic action, it's too late to influence syntax analysis.
1143In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1144shallow copies of the values they had at the time of the associated reduction.
1145For this reason alone, modifying them is dangerous.
1146Moreover, the result of modifying them is undefined and subject to change with
1147future versions of Bison.
1148For example, if a semantic action might be deferred, you should never write it
1149to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1150memory referenced by @code{yylval}.
1151
1152@findex YYERROR
1153@cindex @acronym{GLR} parsers and @code{YYERROR}
1154Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1155(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1156initiate error recovery.
1157During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
34a6c2d1 1158the same as its effect in a deterministic parser.
32c29292
JD
1159In a deferred semantic action, its effect is undefined.
1160@c The effect is probably a syntax error at the split point.
1161
8710fc41
JD
1162Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1163describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1164
fa7e68c3
PE
1165@node Compiler Requirements
1166@subsection Considerations when Compiling @acronym{GLR} Parsers
1167@cindex @code{inline}
9501dc6e 1168@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1169
38a92d50
PE
1170The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1171later. In addition, they use the @code{inline} keyword, which is not
1172C89, but is C99 and is a common extension in pre-C99 compilers. It is
1173up to the user of these parsers to handle
9501dc6e
AD
1174portability issues. For instance, if using Autoconf and the Autoconf
1175macro @code{AC_C_INLINE}, a mere
1176
1177@example
1178%@{
38a92d50 1179 #include <config.h>
9501dc6e
AD
1180%@}
1181@end example
1182
1183@noindent
1184will suffice. Otherwise, we suggest
1185
1186@example
1187%@{
38a92d50
PE
1188 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1189 #define inline
1190 #endif
9501dc6e
AD
1191%@}
1192@end example
676385e2 1193
342b8b6e 1194@node Locations Overview
847bf1f5
AD
1195@section Locations
1196@cindex location
95923bd6
AD
1197@cindex textual location
1198@cindex location, textual
847bf1f5
AD
1199
1200Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1201and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1202the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1203Bison provides a mechanism for handling these locations.
1204
72d2299c 1205Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1206associated location, but the type of locations is the same for all tokens and
72d2299c 1207groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1208structure for storing locations (@pxref{Locations}, for more details).
1209
1210Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1211set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1212is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1213@code{@@3}.
1214
1215When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1216of its left hand side (@pxref{Actions}). In the same way, another default
1217action is used for locations. However, the action for locations is general
847bf1f5 1218enough for most cases, meaning there is usually no need to describe for each
72d2299c 1219rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1220grouping, the default behavior of the output parser is to take the beginning
1221of the first symbol, and the end of the last symbol.
1222
342b8b6e 1223@node Bison Parser
bfa74976
RS
1224@section Bison Output: the Parser File
1225@cindex Bison parser
1226@cindex Bison utility
1227@cindex lexical analyzer, purpose
1228@cindex parser
1229
1230When you run Bison, you give it a Bison grammar file as input. The output
1231is a C source file that parses the language described by the grammar.
1232This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1233utility and the Bison parser are two distinct programs: the Bison utility
1234is a program whose output is the Bison parser that becomes part of your
1235program.
1236
1237The job of the Bison parser is to group tokens into groupings according to
1238the grammar rules---for example, to build identifiers and operators into
1239expressions. As it does this, it runs the actions for the grammar rules it
1240uses.
1241
704a47c4
AD
1242The tokens come from a function called the @dfn{lexical analyzer} that
1243you must supply in some fashion (such as by writing it in C). The Bison
1244parser calls the lexical analyzer each time it wants a new token. It
1245doesn't know what is ``inside'' the tokens (though their semantic values
1246may reflect this). Typically the lexical analyzer makes the tokens by
1247parsing characters of text, but Bison does not depend on this.
1248@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1249
1250The Bison parser file is C code which defines a function named
1251@code{yyparse} which implements that grammar. This function does not make
1252a complete C program: you must supply some additional functions. One is
1253the lexical analyzer. Another is an error-reporting function which the
1254parser calls to report an error. In addition, a complete C program must
1255start with a function called @code{main}; you have to provide this, and
1256arrange for it to call @code{yyparse} or the parser will never run.
1257@xref{Interface, ,Parser C-Language Interface}.
1258
f7ab6a50 1259Aside from the token type names and the symbols in the actions you
7093d0f5 1260write, all symbols defined in the Bison parser file itself
bfa74976
RS
1261begin with @samp{yy} or @samp{YY}. This includes interface functions
1262such as the lexical analyzer function @code{yylex}, the error reporting
1263function @code{yyerror} and the parser function @code{yyparse} itself.
1264This also includes numerous identifiers used for internal purposes.
1265Therefore, you should avoid using C identifiers starting with @samp{yy}
1266or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1267this manual. Also, you should avoid using the C identifiers
1268@samp{malloc} and @samp{free} for anything other than their usual
1269meanings.
bfa74976 1270
7093d0f5
AD
1271In some cases the Bison parser file includes system headers, and in
1272those cases your code should respect the identifiers reserved by those
55289366 1273headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1274@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1275declare memory allocators and related types. @code{<libintl.h>} is
1276included if message translation is in use
1277(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1278be included if you define @code{YYDEBUG} to a nonzero value
1279(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1280
342b8b6e 1281@node Stages
bfa74976
RS
1282@section Stages in Using Bison
1283@cindex stages in using Bison
1284@cindex using Bison
1285
1286The actual language-design process using Bison, from grammar specification
1287to a working compiler or interpreter, has these parts:
1288
1289@enumerate
1290@item
1291Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1292(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1293in the language, describe the action that is to be taken when an
1294instance of that rule is recognized. The action is described by a
1295sequence of C statements.
bfa74976
RS
1296
1297@item
704a47c4
AD
1298Write a lexical analyzer to process input and pass tokens to the parser.
1299The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1300Lexical Analyzer Function @code{yylex}}). It could also be produced
1301using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1302
1303@item
1304Write a controlling function that calls the Bison-produced parser.
1305
1306@item
1307Write error-reporting routines.
1308@end enumerate
1309
1310To turn this source code as written into a runnable program, you
1311must follow these steps:
1312
1313@enumerate
1314@item
1315Run Bison on the grammar to produce the parser.
1316
1317@item
1318Compile the code output by Bison, as well as any other source files.
1319
1320@item
1321Link the object files to produce the finished product.
1322@end enumerate
1323
342b8b6e 1324@node Grammar Layout
bfa74976
RS
1325@section The Overall Layout of a Bison Grammar
1326@cindex grammar file
1327@cindex file format
1328@cindex format of grammar file
1329@cindex layout of Bison grammar
1330
1331The input file for the Bison utility is a @dfn{Bison grammar file}. The
1332general form of a Bison grammar file is as follows:
1333
1334@example
1335%@{
08e49d20 1336@var{Prologue}
bfa74976
RS
1337%@}
1338
1339@var{Bison declarations}
1340
1341%%
1342@var{Grammar rules}
1343%%
08e49d20 1344@var{Epilogue}
bfa74976
RS
1345@end example
1346
1347@noindent
1348The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1349in every Bison grammar file to separate the sections.
1350
72d2299c 1351The prologue may define types and variables used in the actions. You can
342b8b6e 1352also use preprocessor commands to define macros used there, and use
bfa74976 1353@code{#include} to include header files that do any of these things.
38a92d50
PE
1354You need to declare the lexical analyzer @code{yylex} and the error
1355printer @code{yyerror} here, along with any other global identifiers
1356used by the actions in the grammar rules.
bfa74976
RS
1357
1358The Bison declarations declare the names of the terminal and nonterminal
1359symbols, and may also describe operator precedence and the data types of
1360semantic values of various symbols.
1361
1362The grammar rules define how to construct each nonterminal symbol from its
1363parts.
1364
38a92d50
PE
1365The epilogue can contain any code you want to use. Often the
1366definitions of functions declared in the prologue go here. In a
1367simple program, all the rest of the program can go here.
bfa74976 1368
342b8b6e 1369@node Examples
bfa74976
RS
1370@chapter Examples
1371@cindex simple examples
1372@cindex examples, simple
1373
1374Now we show and explain three sample programs written using Bison: a
1375reverse polish notation calculator, an algebraic (infix) notation
1376calculator, and a multi-function calculator. All three have been tested
1377under BSD Unix 4.3; each produces a usable, though limited, interactive
1378desk-top calculator.
1379
1380These examples are simple, but Bison grammars for real programming
aa08666d
AD
1381languages are written the same way. You can copy these examples into a
1382source file to try them.
bfa74976
RS
1383
1384@menu
f56274a8
DJ
1385* RPN Calc:: Reverse polish notation calculator;
1386 a first example with no operator precedence.
1387* Infix Calc:: Infix (algebraic) notation calculator.
1388 Operator precedence is introduced.
bfa74976 1389* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1390* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
1391* Multi-function Calc:: Calculator with memory and trig functions.
1392 It uses multiple data-types for semantic values.
1393* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1394@end menu
1395
342b8b6e 1396@node RPN Calc
bfa74976
RS
1397@section Reverse Polish Notation Calculator
1398@cindex reverse polish notation
1399@cindex polish notation calculator
1400@cindex @code{rpcalc}
1401@cindex calculator, simple
1402
1403The first example is that of a simple double-precision @dfn{reverse polish
1404notation} calculator (a calculator using postfix operators). This example
1405provides a good starting point, since operator precedence is not an issue.
1406The second example will illustrate how operator precedence is handled.
1407
1408The source code for this calculator is named @file{rpcalc.y}. The
1409@samp{.y} extension is a convention used for Bison input files.
1410
1411@menu
f56274a8
DJ
1412* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1413* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1414* Rpcalc Lexer:: The lexical analyzer.
1415* Rpcalc Main:: The controlling function.
1416* Rpcalc Error:: The error reporting function.
1417* Rpcalc Generate:: Running Bison on the grammar file.
1418* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1419@end menu
1420
f56274a8 1421@node Rpcalc Declarations
bfa74976
RS
1422@subsection Declarations for @code{rpcalc}
1423
1424Here are the C and Bison declarations for the reverse polish notation
1425calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1426
1427@example
72d2299c 1428/* Reverse polish notation calculator. */
bfa74976
RS
1429
1430%@{
38a92d50
PE
1431 #define YYSTYPE double
1432 #include <math.h>
1433 int yylex (void);
1434 void yyerror (char const *);
bfa74976
RS
1435%@}
1436
1437%token NUM
1438
72d2299c 1439%% /* Grammar rules and actions follow. */
bfa74976
RS
1440@end example
1441
75f5aaea 1442The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1443preprocessor directives and two forward declarations.
bfa74976
RS
1444
1445The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1446specifying the C data type for semantic values of both tokens and
1447groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1448Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1449don't define it, @code{int} is the default. Because we specify
1450@code{double}, each token and each expression has an associated value,
1451which is a floating point number.
bfa74976
RS
1452
1453The @code{#include} directive is used to declare the exponentiation
1454function @code{pow}.
1455
38a92d50
PE
1456The forward declarations for @code{yylex} and @code{yyerror} are
1457needed because the C language requires that functions be declared
1458before they are used. These functions will be defined in the
1459epilogue, but the parser calls them so they must be declared in the
1460prologue.
1461
704a47c4
AD
1462The second section, Bison declarations, provides information to Bison
1463about the token types (@pxref{Bison Declarations, ,The Bison
1464Declarations Section}). Each terminal symbol that is not a
1465single-character literal must be declared here. (Single-character
bfa74976
RS
1466literals normally don't need to be declared.) In this example, all the
1467arithmetic operators are designated by single-character literals, so the
1468only terminal symbol that needs to be declared is @code{NUM}, the token
1469type for numeric constants.
1470
342b8b6e 1471@node Rpcalc Rules
bfa74976
RS
1472@subsection Grammar Rules for @code{rpcalc}
1473
1474Here are the grammar rules for the reverse polish notation calculator.
1475
1476@example
1477input: /* empty */
1478 | input line
1479;
1480
1481line: '\n'
18b519c0 1482 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1483;
1484
18b519c0
AD
1485exp: NUM @{ $$ = $1; @}
1486 | exp exp '+' @{ $$ = $1 + $2; @}
1487 | exp exp '-' @{ $$ = $1 - $2; @}
1488 | exp exp '*' @{ $$ = $1 * $2; @}
1489 | exp exp '/' @{ $$ = $1 / $2; @}
1490 /* Exponentiation */
1491 | exp exp '^' @{ $$ = pow ($1, $2); @}
1492 /* Unary minus */
1493 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1494;
1495%%
1496@end example
1497
1498The groupings of the rpcalc ``language'' defined here are the expression
1499(given the name @code{exp}), the line of input (@code{line}), and the
1500complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1501symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1502which is read as ``or''. The following sections explain what these rules
1503mean.
1504
1505The semantics of the language is determined by the actions taken when a
1506grouping is recognized. The actions are the C code that appears inside
1507braces. @xref{Actions}.
1508
1509You must specify these actions in C, but Bison provides the means for
1510passing semantic values between the rules. In each action, the
1511pseudo-variable @code{$$} stands for the semantic value for the grouping
1512that the rule is going to construct. Assigning a value to @code{$$} is the
1513main job of most actions. The semantic values of the components of the
1514rule are referred to as @code{$1}, @code{$2}, and so on.
1515
1516@menu
13863333
AD
1517* Rpcalc Input::
1518* Rpcalc Line::
1519* Rpcalc Expr::
bfa74976
RS
1520@end menu
1521
342b8b6e 1522@node Rpcalc Input
bfa74976
RS
1523@subsubsection Explanation of @code{input}
1524
1525Consider the definition of @code{input}:
1526
1527@example
1528input: /* empty */
1529 | input line
1530;
1531@end example
1532
1533This definition reads as follows: ``A complete input is either an empty
1534string, or a complete input followed by an input line''. Notice that
1535``complete input'' is defined in terms of itself. This definition is said
1536to be @dfn{left recursive} since @code{input} appears always as the
1537leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1538
1539The first alternative is empty because there are no symbols between the
1540colon and the first @samp{|}; this means that @code{input} can match an
1541empty string of input (no tokens). We write the rules this way because it
1542is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1543It's conventional to put an empty alternative first and write the comment
1544@samp{/* empty */} in it.
1545
1546The second alternate rule (@code{input line}) handles all nontrivial input.
1547It means, ``After reading any number of lines, read one more line if
1548possible.'' The left recursion makes this rule into a loop. Since the
1549first alternative matches empty input, the loop can be executed zero or
1550more times.
1551
1552The parser function @code{yyparse} continues to process input until a
1553grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1554input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1555
342b8b6e 1556@node Rpcalc Line
bfa74976
RS
1557@subsubsection Explanation of @code{line}
1558
1559Now consider the definition of @code{line}:
1560
1561@example
1562line: '\n'
1563 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1564;
1565@end example
1566
1567The first alternative is a token which is a newline character; this means
1568that rpcalc accepts a blank line (and ignores it, since there is no
1569action). The second alternative is an expression followed by a newline.
1570This is the alternative that makes rpcalc useful. The semantic value of
1571the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1572question is the first symbol in the alternative. The action prints this
1573value, which is the result of the computation the user asked for.
1574
1575This action is unusual because it does not assign a value to @code{$$}. As
1576a consequence, the semantic value associated with the @code{line} is
1577uninitialized (its value will be unpredictable). This would be a bug if
1578that value were ever used, but we don't use it: once rpcalc has printed the
1579value of the user's input line, that value is no longer needed.
1580
342b8b6e 1581@node Rpcalc Expr
bfa74976
RS
1582@subsubsection Explanation of @code{expr}
1583
1584The @code{exp} grouping has several rules, one for each kind of expression.
1585The first rule handles the simplest expressions: those that are just numbers.
1586The second handles an addition-expression, which looks like two expressions
1587followed by a plus-sign. The third handles subtraction, and so on.
1588
1589@example
1590exp: NUM
1591 | exp exp '+' @{ $$ = $1 + $2; @}
1592 | exp exp '-' @{ $$ = $1 - $2; @}
1593 @dots{}
1594 ;
1595@end example
1596
1597We have used @samp{|} to join all the rules for @code{exp}, but we could
1598equally well have written them separately:
1599
1600@example
1601exp: NUM ;
1602exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1603exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1604 @dots{}
1605@end example
1606
1607Most of the rules have actions that compute the value of the expression in
1608terms of the value of its parts. For example, in the rule for addition,
1609@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1610the second one. The third component, @code{'+'}, has no meaningful
1611associated semantic value, but if it had one you could refer to it as
1612@code{$3}. When @code{yyparse} recognizes a sum expression using this
1613rule, the sum of the two subexpressions' values is produced as the value of
1614the entire expression. @xref{Actions}.
1615
1616You don't have to give an action for every rule. When a rule has no
1617action, Bison by default copies the value of @code{$1} into @code{$$}.
1618This is what happens in the first rule (the one that uses @code{NUM}).
1619
1620The formatting shown here is the recommended convention, but Bison does
72d2299c 1621not require it. You can add or change white space as much as you wish.
bfa74976
RS
1622For example, this:
1623
1624@example
99a9344e 1625exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1626@end example
1627
1628@noindent
1629means the same thing as this:
1630
1631@example
1632exp: NUM
1633 | exp exp '+' @{ $$ = $1 + $2; @}
1634 | @dots{}
99a9344e 1635;
bfa74976
RS
1636@end example
1637
1638@noindent
1639The latter, however, is much more readable.
1640
342b8b6e 1641@node Rpcalc Lexer
bfa74976
RS
1642@subsection The @code{rpcalc} Lexical Analyzer
1643@cindex writing a lexical analyzer
1644@cindex lexical analyzer, writing
1645
704a47c4
AD
1646The lexical analyzer's job is low-level parsing: converting characters
1647or sequences of characters into tokens. The Bison parser gets its
1648tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1649Analyzer Function @code{yylex}}.
bfa74976 1650
c827f760
PE
1651Only a simple lexical analyzer is needed for the @acronym{RPN}
1652calculator. This
bfa74976
RS
1653lexical analyzer skips blanks and tabs, then reads in numbers as
1654@code{double} and returns them as @code{NUM} tokens. Any other character
1655that isn't part of a number is a separate token. Note that the token-code
1656for such a single-character token is the character itself.
1657
1658The return value of the lexical analyzer function is a numeric code which
1659represents a token type. The same text used in Bison rules to stand for
1660this token type is also a C expression for the numeric code for the type.
1661This works in two ways. If the token type is a character literal, then its
e966383b 1662numeric code is that of the character; you can use the same
bfa74976
RS
1663character literal in the lexical analyzer to express the number. If the
1664token type is an identifier, that identifier is defined by Bison as a C
1665macro whose definition is the appropriate number. In this example,
1666therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1667
1964ad8c
AD
1668The semantic value of the token (if it has one) is stored into the
1669global variable @code{yylval}, which is where the Bison parser will look
1670for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f56274a8 1671defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1672,Declarations for @code{rpcalc}}.)
bfa74976 1673
72d2299c
PE
1674A token type code of zero is returned if the end-of-input is encountered.
1675(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1676
1677Here is the code for the lexical analyzer:
1678
1679@example
1680@group
72d2299c 1681/* The lexical analyzer returns a double floating point
e966383b 1682 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1683 of the character read if not a number. It skips all blanks
1684 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1685
1686#include <ctype.h>
1687@end group
1688
1689@group
13863333
AD
1690int
1691yylex (void)
bfa74976
RS
1692@{
1693 int c;
1694
72d2299c 1695 /* Skip white space. */
13863333 1696 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1697 ;
1698@end group
1699@group
72d2299c 1700 /* Process numbers. */
13863333 1701 if (c == '.' || isdigit (c))
bfa74976
RS
1702 @{
1703 ungetc (c, stdin);
1704 scanf ("%lf", &yylval);
1705 return NUM;
1706 @}
1707@end group
1708@group
72d2299c 1709 /* Return end-of-input. */
13863333 1710 if (c == EOF)
bfa74976 1711 return 0;
72d2299c 1712 /* Return a single char. */
13863333 1713 return c;
bfa74976
RS
1714@}
1715@end group
1716@end example
1717
342b8b6e 1718@node Rpcalc Main
bfa74976
RS
1719@subsection The Controlling Function
1720@cindex controlling function
1721@cindex main function in simple example
1722
1723In keeping with the spirit of this example, the controlling function is
1724kept to the bare minimum. The only requirement is that it call
1725@code{yyparse} to start the process of parsing.
1726
1727@example
1728@group
13863333
AD
1729int
1730main (void)
bfa74976 1731@{
13863333 1732 return yyparse ();
bfa74976
RS
1733@}
1734@end group
1735@end example
1736
342b8b6e 1737@node Rpcalc Error
bfa74976
RS
1738@subsection The Error Reporting Routine
1739@cindex error reporting routine
1740
1741When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1742function @code{yyerror} to print an error message (usually but not
6e649e65 1743always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1744@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1745here is the definition we will use:
bfa74976
RS
1746
1747@example
1748@group
1749#include <stdio.h>
1750
38a92d50 1751/* Called by yyparse on error. */
13863333 1752void
38a92d50 1753yyerror (char const *s)
bfa74976 1754@{
4e03e201 1755 fprintf (stderr, "%s\n", s);
bfa74976
RS
1756@}
1757@end group
1758@end example
1759
1760After @code{yyerror} returns, the Bison parser may recover from the error
1761and continue parsing if the grammar contains a suitable error rule
1762(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1763have not written any error rules in this example, so any invalid input will
1764cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1765real calculator, but it is adequate for the first example.
bfa74976 1766
f56274a8 1767@node Rpcalc Generate
bfa74976
RS
1768@subsection Running Bison to Make the Parser
1769@cindex running Bison (introduction)
1770
ceed8467
AD
1771Before running Bison to produce a parser, we need to decide how to
1772arrange all the source code in one or more source files. For such a
1773simple example, the easiest thing is to put everything in one file. The
1774definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1775end, in the epilogue of the file
75f5aaea 1776(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1777
1778For a large project, you would probably have several source files, and use
1779@code{make} to arrange to recompile them.
1780
1781With all the source in a single file, you use the following command to
1782convert it into a parser file:
1783
1784@example
fa4d969f 1785bison @var{file}.y
bfa74976
RS
1786@end example
1787
1788@noindent
1789In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1790@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1791removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1792Bison contains the source code for @code{yyparse}. The additional
1793functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1794are copied verbatim to the output.
1795
342b8b6e 1796@node Rpcalc Compile
bfa74976
RS
1797@subsection Compiling the Parser File
1798@cindex compiling the parser
1799
1800Here is how to compile and run the parser file:
1801
1802@example
1803@group
1804# @r{List files in current directory.}
9edcd895 1805$ @kbd{ls}
bfa74976
RS
1806rpcalc.tab.c rpcalc.y
1807@end group
1808
1809@group
1810# @r{Compile the Bison parser.}
1811# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1812$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1813@end group
1814
1815@group
1816# @r{List files again.}
9edcd895 1817$ @kbd{ls}
bfa74976
RS
1818rpcalc rpcalc.tab.c rpcalc.y
1819@end group
1820@end example
1821
1822The file @file{rpcalc} now contains the executable code. Here is an
1823example session using @code{rpcalc}.
1824
1825@example
9edcd895
AD
1826$ @kbd{rpcalc}
1827@kbd{4 9 +}
bfa74976 182813
9edcd895 1829@kbd{3 7 + 3 4 5 *+-}
bfa74976 1830-13
9edcd895 1831@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 183213
9edcd895 1833@kbd{5 6 / 4 n +}
bfa74976 1834-3.166666667
9edcd895 1835@kbd{3 4 ^} @r{Exponentiation}
bfa74976 183681
9edcd895
AD
1837@kbd{^D} @r{End-of-file indicator}
1838$
bfa74976
RS
1839@end example
1840
342b8b6e 1841@node Infix Calc
bfa74976
RS
1842@section Infix Notation Calculator: @code{calc}
1843@cindex infix notation calculator
1844@cindex @code{calc}
1845@cindex calculator, infix notation
1846
1847We now modify rpcalc to handle infix operators instead of postfix. Infix
1848notation involves the concept of operator precedence and the need for
1849parentheses nested to arbitrary depth. Here is the Bison code for
1850@file{calc.y}, an infix desk-top calculator.
1851
1852@example
38a92d50 1853/* Infix notation calculator. */
bfa74976
RS
1854
1855%@{
38a92d50
PE
1856 #define YYSTYPE double
1857 #include <math.h>
1858 #include <stdio.h>
1859 int yylex (void);
1860 void yyerror (char const *);
bfa74976
RS
1861%@}
1862
38a92d50 1863/* Bison declarations. */
bfa74976
RS
1864%token NUM
1865%left '-' '+'
1866%left '*' '/'
1867%left NEG /* negation--unary minus */
38a92d50 1868%right '^' /* exponentiation */
bfa74976 1869
38a92d50
PE
1870%% /* The grammar follows. */
1871input: /* empty */
bfa74976
RS
1872 | input line
1873;
1874
1875line: '\n'
1876 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1877;
1878
1879exp: NUM @{ $$ = $1; @}
1880 | exp '+' exp @{ $$ = $1 + $3; @}
1881 | exp '-' exp @{ $$ = $1 - $3; @}
1882 | exp '*' exp @{ $$ = $1 * $3; @}
1883 | exp '/' exp @{ $$ = $1 / $3; @}
1884 | '-' exp %prec NEG @{ $$ = -$2; @}
1885 | exp '^' exp @{ $$ = pow ($1, $3); @}
1886 | '(' exp ')' @{ $$ = $2; @}
1887;
1888%%
1889@end example
1890
1891@noindent
ceed8467
AD
1892The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1893same as before.
bfa74976
RS
1894
1895There are two important new features shown in this code.
1896
1897In the second section (Bison declarations), @code{%left} declares token
1898types and says they are left-associative operators. The declarations
1899@code{%left} and @code{%right} (right associativity) take the place of
1900@code{%token} which is used to declare a token type name without
1901associativity. (These tokens are single-character literals, which
1902ordinarily don't need to be declared. We declare them here to specify
1903the associativity.)
1904
1905Operator precedence is determined by the line ordering of the
1906declarations; the higher the line number of the declaration (lower on
1907the page or screen), the higher the precedence. Hence, exponentiation
1908has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1909by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1910Precedence}.
bfa74976 1911
704a47c4
AD
1912The other important new feature is the @code{%prec} in the grammar
1913section for the unary minus operator. The @code{%prec} simply instructs
1914Bison that the rule @samp{| '-' exp} has the same precedence as
1915@code{NEG}---in this case the next-to-highest. @xref{Contextual
1916Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1917
1918Here is a sample run of @file{calc.y}:
1919
1920@need 500
1921@example
9edcd895
AD
1922$ @kbd{calc}
1923@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19246.880952381
9edcd895 1925@kbd{-56 + 2}
bfa74976 1926-54
9edcd895 1927@kbd{3 ^ 2}
bfa74976
RS
19289
1929@end example
1930
342b8b6e 1931@node Simple Error Recovery
bfa74976
RS
1932@section Simple Error Recovery
1933@cindex error recovery, simple
1934
1935Up to this point, this manual has not addressed the issue of @dfn{error
1936recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1937error. All we have handled is error reporting with @code{yyerror}.
1938Recall that by default @code{yyparse} returns after calling
1939@code{yyerror}. This means that an erroneous input line causes the
1940calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1941
1942The Bison language itself includes the reserved word @code{error}, which
1943may be included in the grammar rules. In the example below it has
1944been added to one of the alternatives for @code{line}:
1945
1946@example
1947@group
1948line: '\n'
1949 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1950 | error '\n' @{ yyerrok; @}
1951;
1952@end group
1953@end example
1954
ceed8467 1955This addition to the grammar allows for simple error recovery in the
6e649e65 1956event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1957read, the error will be recognized by the third rule for @code{line},
1958and parsing will continue. (The @code{yyerror} function is still called
1959upon to print its message as well.) The action executes the statement
1960@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1961that error recovery is complete (@pxref{Error Recovery}). Note the
1962difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1963misprint.
bfa74976
RS
1964
1965This form of error recovery deals with syntax errors. There are other
1966kinds of errors; for example, division by zero, which raises an exception
1967signal that is normally fatal. A real calculator program must handle this
1968signal and use @code{longjmp} to return to @code{main} and resume parsing
1969input lines; it would also have to discard the rest of the current line of
1970input. We won't discuss this issue further because it is not specific to
1971Bison programs.
1972
342b8b6e
AD
1973@node Location Tracking Calc
1974@section Location Tracking Calculator: @code{ltcalc}
1975@cindex location tracking calculator
1976@cindex @code{ltcalc}
1977@cindex calculator, location tracking
1978
9edcd895
AD
1979This example extends the infix notation calculator with location
1980tracking. This feature will be used to improve the error messages. For
1981the sake of clarity, this example is a simple integer calculator, since
1982most of the work needed to use locations will be done in the lexical
72d2299c 1983analyzer.
342b8b6e
AD
1984
1985@menu
f56274a8
DJ
1986* Ltcalc Declarations:: Bison and C declarations for ltcalc.
1987* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
1988* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
1989@end menu
1990
f56274a8 1991@node Ltcalc Declarations
342b8b6e
AD
1992@subsection Declarations for @code{ltcalc}
1993
9edcd895
AD
1994The C and Bison declarations for the location tracking calculator are
1995the same as the declarations for the infix notation calculator.
342b8b6e
AD
1996
1997@example
1998/* Location tracking calculator. */
1999
2000%@{
38a92d50
PE
2001 #define YYSTYPE int
2002 #include <math.h>
2003 int yylex (void);
2004 void yyerror (char const *);
342b8b6e
AD
2005%@}
2006
2007/* Bison declarations. */
2008%token NUM
2009
2010%left '-' '+'
2011%left '*' '/'
2012%left NEG
2013%right '^'
2014
38a92d50 2015%% /* The grammar follows. */
342b8b6e
AD
2016@end example
2017
9edcd895
AD
2018@noindent
2019Note there are no declarations specific to locations. Defining a data
2020type for storing locations is not needed: we will use the type provided
2021by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2022four member structure with the following integer fields:
2023@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2024@code{last_column}. By conventions, and in accordance with the GNU
2025Coding Standards and common practice, the line and column count both
2026start at 1.
342b8b6e
AD
2027
2028@node Ltcalc Rules
2029@subsection Grammar Rules for @code{ltcalc}
2030
9edcd895
AD
2031Whether handling locations or not has no effect on the syntax of your
2032language. Therefore, grammar rules for this example will be very close
2033to those of the previous example: we will only modify them to benefit
2034from the new information.
342b8b6e 2035
9edcd895
AD
2036Here, we will use locations to report divisions by zero, and locate the
2037wrong expressions or subexpressions.
342b8b6e
AD
2038
2039@example
2040@group
2041input : /* empty */
2042 | input line
2043;
2044@end group
2045
2046@group
2047line : '\n'
2048 | exp '\n' @{ printf ("%d\n", $1); @}
2049;
2050@end group
2051
2052@group
2053exp : NUM @{ $$ = $1; @}
2054 | exp '+' exp @{ $$ = $1 + $3; @}
2055 | exp '-' exp @{ $$ = $1 - $3; @}
2056 | exp '*' exp @{ $$ = $1 * $3; @}
2057@end group
342b8b6e 2058@group
9edcd895 2059 | exp '/' exp
342b8b6e
AD
2060 @{
2061 if ($3)
2062 $$ = $1 / $3;
2063 else
2064 @{
2065 $$ = 1;
9edcd895
AD
2066 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2067 @@3.first_line, @@3.first_column,
2068 @@3.last_line, @@3.last_column);
342b8b6e
AD
2069 @}
2070 @}
2071@end group
2072@group
178e123e 2073 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2074 | exp '^' exp @{ $$ = pow ($1, $3); @}
2075 | '(' exp ')' @{ $$ = $2; @}
2076@end group
2077@end example
2078
2079This code shows how to reach locations inside of semantic actions, by
2080using the pseudo-variables @code{@@@var{n}} for rule components, and the
2081pseudo-variable @code{@@$} for groupings.
2082
9edcd895
AD
2083We don't need to assign a value to @code{@@$}: the output parser does it
2084automatically. By default, before executing the C code of each action,
2085@code{@@$} is set to range from the beginning of @code{@@1} to the end
2086of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2087can be redefined (@pxref{Location Default Action, , Default Action for
2088Locations}), and for very specific rules, @code{@@$} can be computed by
2089hand.
342b8b6e
AD
2090
2091@node Ltcalc Lexer
2092@subsection The @code{ltcalc} Lexical Analyzer.
2093
9edcd895 2094Until now, we relied on Bison's defaults to enable location
72d2299c 2095tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2096able to feed the parser with the token locations, as it already does for
2097semantic values.
342b8b6e 2098
9edcd895
AD
2099To this end, we must take into account every single character of the
2100input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2101
2102@example
2103@group
2104int
2105yylex (void)
2106@{
2107 int c;
18b519c0 2108@end group
342b8b6e 2109
18b519c0 2110@group
72d2299c 2111 /* Skip white space. */
342b8b6e
AD
2112 while ((c = getchar ()) == ' ' || c == '\t')
2113 ++yylloc.last_column;
18b519c0 2114@end group
342b8b6e 2115
18b519c0 2116@group
72d2299c 2117 /* Step. */
342b8b6e
AD
2118 yylloc.first_line = yylloc.last_line;
2119 yylloc.first_column = yylloc.last_column;
2120@end group
2121
2122@group
72d2299c 2123 /* Process numbers. */
342b8b6e
AD
2124 if (isdigit (c))
2125 @{
2126 yylval = c - '0';
2127 ++yylloc.last_column;
2128 while (isdigit (c = getchar ()))
2129 @{
2130 ++yylloc.last_column;
2131 yylval = yylval * 10 + c - '0';
2132 @}
2133 ungetc (c, stdin);
2134 return NUM;
2135 @}
2136@end group
2137
72d2299c 2138 /* Return end-of-input. */
342b8b6e
AD
2139 if (c == EOF)
2140 return 0;
2141
72d2299c 2142 /* Return a single char, and update location. */
342b8b6e
AD
2143 if (c == '\n')
2144 @{
2145 ++yylloc.last_line;
2146 yylloc.last_column = 0;
2147 @}
2148 else
2149 ++yylloc.last_column;
2150 return c;
2151@}
2152@end example
2153
9edcd895
AD
2154Basically, the lexical analyzer performs the same processing as before:
2155it skips blanks and tabs, and reads numbers or single-character tokens.
2156In addition, it updates @code{yylloc}, the global variable (of type
2157@code{YYLTYPE}) containing the token's location.
342b8b6e 2158
9edcd895 2159Now, each time this function returns a token, the parser has its number
72d2299c 2160as well as its semantic value, and its location in the text. The last
9edcd895
AD
2161needed change is to initialize @code{yylloc}, for example in the
2162controlling function:
342b8b6e
AD
2163
2164@example
9edcd895 2165@group
342b8b6e
AD
2166int
2167main (void)
2168@{
2169 yylloc.first_line = yylloc.last_line = 1;
2170 yylloc.first_column = yylloc.last_column = 0;
2171 return yyparse ();
2172@}
9edcd895 2173@end group
342b8b6e
AD
2174@end example
2175
9edcd895
AD
2176Remember that computing locations is not a matter of syntax. Every
2177character must be associated to a location update, whether it is in
2178valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2179
2180@node Multi-function Calc
bfa74976
RS
2181@section Multi-Function Calculator: @code{mfcalc}
2182@cindex multi-function calculator
2183@cindex @code{mfcalc}
2184@cindex calculator, multi-function
2185
2186Now that the basics of Bison have been discussed, it is time to move on to
2187a more advanced problem. The above calculators provided only five
2188functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2189be nice to have a calculator that provides other mathematical functions such
2190as @code{sin}, @code{cos}, etc.
2191
2192It is easy to add new operators to the infix calculator as long as they are
2193only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2194back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2195adding a new operator. But we want something more flexible: built-in
2196functions whose syntax has this form:
2197
2198@example
2199@var{function_name} (@var{argument})
2200@end example
2201
2202@noindent
2203At the same time, we will add memory to the calculator, by allowing you
2204to create named variables, store values in them, and use them later.
2205Here is a sample session with the multi-function calculator:
2206
2207@example
9edcd895
AD
2208$ @kbd{mfcalc}
2209@kbd{pi = 3.141592653589}
bfa74976 22103.1415926536
9edcd895 2211@kbd{sin(pi)}
bfa74976 22120.0000000000
9edcd895 2213@kbd{alpha = beta1 = 2.3}
bfa74976 22142.3000000000
9edcd895 2215@kbd{alpha}
bfa74976 22162.3000000000
9edcd895 2217@kbd{ln(alpha)}
bfa74976 22180.8329091229
9edcd895 2219@kbd{exp(ln(beta1))}
bfa74976 22202.3000000000
9edcd895 2221$
bfa74976
RS
2222@end example
2223
2224Note that multiple assignment and nested function calls are permitted.
2225
2226@menu
f56274a8
DJ
2227* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2228* Mfcalc Rules:: Grammar rules for the calculator.
2229* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2230@end menu
2231
f56274a8 2232@node Mfcalc Declarations
bfa74976
RS
2233@subsection Declarations for @code{mfcalc}
2234
2235Here are the C and Bison declarations for the multi-function calculator.
2236
2237@smallexample
18b519c0 2238@group
bfa74976 2239%@{
38a92d50
PE
2240 #include <math.h> /* For math functions, cos(), sin(), etc. */
2241 #include "calc.h" /* Contains definition of `symrec'. */
2242 int yylex (void);
2243 void yyerror (char const *);
bfa74976 2244%@}
18b519c0
AD
2245@end group
2246@group
bfa74976 2247%union @{
38a92d50
PE
2248 double val; /* For returning numbers. */
2249 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2250@}
18b519c0 2251@end group
38a92d50
PE
2252%token <val> NUM /* Simple double precision number. */
2253%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2254%type <val> exp
2255
18b519c0 2256@group
bfa74976
RS
2257%right '='
2258%left '-' '+'
2259%left '*' '/'
38a92d50
PE
2260%left NEG /* negation--unary minus */
2261%right '^' /* exponentiation */
18b519c0 2262@end group
38a92d50 2263%% /* The grammar follows. */
bfa74976
RS
2264@end smallexample
2265
2266The above grammar introduces only two new features of the Bison language.
2267These features allow semantic values to have various data types
2268(@pxref{Multiple Types, ,More Than One Value Type}).
2269
2270The @code{%union} declaration specifies the entire list of possible types;
2271this is instead of defining @code{YYSTYPE}. The allowable types are now
2272double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2273the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2274
2275Since values can now have various types, it is necessary to associate a
2276type with each grammar symbol whose semantic value is used. These symbols
2277are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2278declarations are augmented with information about their data type (placed
2279between angle brackets).
2280
704a47c4
AD
2281The Bison construct @code{%type} is used for declaring nonterminal
2282symbols, just as @code{%token} is used for declaring token types. We
2283have not used @code{%type} before because nonterminal symbols are
2284normally declared implicitly by the rules that define them. But
2285@code{exp} must be declared explicitly so we can specify its value type.
2286@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2287
342b8b6e 2288@node Mfcalc Rules
bfa74976
RS
2289@subsection Grammar Rules for @code{mfcalc}
2290
2291Here are the grammar rules for the multi-function calculator.
2292Most of them are copied directly from @code{calc}; three rules,
2293those which mention @code{VAR} or @code{FNCT}, are new.
2294
2295@smallexample
18b519c0 2296@group
bfa74976
RS
2297input: /* empty */
2298 | input line
2299;
18b519c0 2300@end group
bfa74976 2301
18b519c0 2302@group
bfa74976
RS
2303line:
2304 '\n'
2305 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2306 | error '\n' @{ yyerrok; @}
2307;
18b519c0 2308@end group
bfa74976 2309
18b519c0 2310@group
bfa74976
RS
2311exp: NUM @{ $$ = $1; @}
2312 | VAR @{ $$ = $1->value.var; @}
2313 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2314 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2315 | exp '+' exp @{ $$ = $1 + $3; @}
2316 | exp '-' exp @{ $$ = $1 - $3; @}
2317 | exp '*' exp @{ $$ = $1 * $3; @}
2318 | exp '/' exp @{ $$ = $1 / $3; @}
2319 | '-' exp %prec NEG @{ $$ = -$2; @}
2320 | exp '^' exp @{ $$ = pow ($1, $3); @}
2321 | '(' exp ')' @{ $$ = $2; @}
2322;
18b519c0 2323@end group
38a92d50 2324/* End of grammar. */
bfa74976
RS
2325%%
2326@end smallexample
2327
f56274a8 2328@node Mfcalc Symbol Table
bfa74976
RS
2329@subsection The @code{mfcalc} Symbol Table
2330@cindex symbol table example
2331
2332The multi-function calculator requires a symbol table to keep track of the
2333names and meanings of variables and functions. This doesn't affect the
2334grammar rules (except for the actions) or the Bison declarations, but it
2335requires some additional C functions for support.
2336
2337The symbol table itself consists of a linked list of records. Its
2338definition, which is kept in the header @file{calc.h}, is as follows. It
2339provides for either functions or variables to be placed in the table.
2340
2341@smallexample
2342@group
38a92d50 2343/* Function type. */
32dfccf8 2344typedef double (*func_t) (double);
72f889cc 2345@end group
32dfccf8 2346
72f889cc 2347@group
38a92d50 2348/* Data type for links in the chain of symbols. */
bfa74976
RS
2349struct symrec
2350@{
38a92d50 2351 char *name; /* name of symbol */
bfa74976 2352 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2353 union
2354 @{
38a92d50
PE
2355 double var; /* value of a VAR */
2356 func_t fnctptr; /* value of a FNCT */
bfa74976 2357 @} value;
38a92d50 2358 struct symrec *next; /* link field */
bfa74976
RS
2359@};
2360@end group
2361
2362@group
2363typedef struct symrec symrec;
2364
38a92d50 2365/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2366extern symrec *sym_table;
2367
a730d142 2368symrec *putsym (char const *, int);
38a92d50 2369symrec *getsym (char const *);
bfa74976
RS
2370@end group
2371@end smallexample
2372
2373The new version of @code{main} includes a call to @code{init_table}, a
2374function that initializes the symbol table. Here it is, and
2375@code{init_table} as well:
2376
2377@smallexample
bfa74976
RS
2378#include <stdio.h>
2379
18b519c0 2380@group
38a92d50 2381/* Called by yyparse on error. */
13863333 2382void
38a92d50 2383yyerror (char const *s)
bfa74976
RS
2384@{
2385 printf ("%s\n", s);
2386@}
18b519c0 2387@end group
bfa74976 2388
18b519c0 2389@group
bfa74976
RS
2390struct init
2391@{
38a92d50
PE
2392 char const *fname;
2393 double (*fnct) (double);
bfa74976
RS
2394@};
2395@end group
2396
2397@group
38a92d50 2398struct init const arith_fncts[] =
13863333 2399@{
32dfccf8
AD
2400 "sin", sin,
2401 "cos", cos,
13863333 2402 "atan", atan,
32dfccf8
AD
2403 "ln", log,
2404 "exp", exp,
13863333
AD
2405 "sqrt", sqrt,
2406 0, 0
2407@};
18b519c0 2408@end group
bfa74976 2409
18b519c0 2410@group
bfa74976 2411/* The symbol table: a chain of `struct symrec'. */
38a92d50 2412symrec *sym_table;
bfa74976
RS
2413@end group
2414
2415@group
72d2299c 2416/* Put arithmetic functions in table. */
13863333
AD
2417void
2418init_table (void)
bfa74976
RS
2419@{
2420 int i;
2421 symrec *ptr;
2422 for (i = 0; arith_fncts[i].fname != 0; i++)
2423 @{
2424 ptr = putsym (arith_fncts[i].fname, FNCT);
2425 ptr->value.fnctptr = arith_fncts[i].fnct;
2426 @}
2427@}
2428@end group
38a92d50
PE
2429
2430@group
2431int
2432main (void)
2433@{
2434 init_table ();
2435 return yyparse ();
2436@}
2437@end group
bfa74976
RS
2438@end smallexample
2439
2440By simply editing the initialization list and adding the necessary include
2441files, you can add additional functions to the calculator.
2442
2443Two important functions allow look-up and installation of symbols in the
2444symbol table. The function @code{putsym} is passed a name and the type
2445(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2446linked to the front of the list, and a pointer to the object is returned.
2447The function @code{getsym} is passed the name of the symbol to look up. If
2448found, a pointer to that symbol is returned; otherwise zero is returned.
2449
2450@smallexample
2451symrec *
38a92d50 2452putsym (char const *sym_name, int sym_type)
bfa74976
RS
2453@{
2454 symrec *ptr;
2455 ptr = (symrec *) malloc (sizeof (symrec));
2456 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2457 strcpy (ptr->name,sym_name);
2458 ptr->type = sym_type;
72d2299c 2459 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2460 ptr->next = (struct symrec *)sym_table;
2461 sym_table = ptr;
2462 return ptr;
2463@}
2464
2465symrec *
38a92d50 2466getsym (char const *sym_name)
bfa74976
RS
2467@{
2468 symrec *ptr;
2469 for (ptr = sym_table; ptr != (symrec *) 0;
2470 ptr = (symrec *)ptr->next)
2471 if (strcmp (ptr->name,sym_name) == 0)
2472 return ptr;
2473 return 0;
2474@}
2475@end smallexample
2476
2477The function @code{yylex} must now recognize variables, numeric values, and
2478the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2479characters with a leading letter are recognized as either variables or
bfa74976
RS
2480functions depending on what the symbol table says about them.
2481
2482The string is passed to @code{getsym} for look up in the symbol table. If
2483the name appears in the table, a pointer to its location and its type
2484(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2485already in the table, then it is installed as a @code{VAR} using
2486@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2487returned to @code{yyparse}.
bfa74976
RS
2488
2489No change is needed in the handling of numeric values and arithmetic
2490operators in @code{yylex}.
2491
2492@smallexample
2493@group
2494#include <ctype.h>
18b519c0 2495@end group
13863333 2496
18b519c0 2497@group
13863333
AD
2498int
2499yylex (void)
bfa74976
RS
2500@{
2501 int c;
2502
72d2299c 2503 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2504 while ((c = getchar ()) == ' ' || c == '\t');
2505
2506 if (c == EOF)
2507 return 0;
2508@end group
2509
2510@group
2511 /* Char starts a number => parse the number. */
2512 if (c == '.' || isdigit (c))
2513 @{
2514 ungetc (c, stdin);
2515 scanf ("%lf", &yylval.val);
2516 return NUM;
2517 @}
2518@end group
2519
2520@group
2521 /* Char starts an identifier => read the name. */
2522 if (isalpha (c))
2523 @{
2524 symrec *s;
2525 static char *symbuf = 0;
2526 static int length = 0;
2527 int i;
2528@end group
2529
2530@group
2531 /* Initially make the buffer long enough
2532 for a 40-character symbol name. */
2533 if (length == 0)
2534 length = 40, symbuf = (char *)malloc (length + 1);
2535
2536 i = 0;
2537 do
2538@end group
2539@group
2540 @{
2541 /* If buffer is full, make it bigger. */
2542 if (i == length)
2543 @{
2544 length *= 2;
18b519c0 2545 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2546 @}
2547 /* Add this character to the buffer. */
2548 symbuf[i++] = c;
2549 /* Get another character. */
2550 c = getchar ();
2551 @}
2552@end group
2553@group
72d2299c 2554 while (isalnum (c));
bfa74976
RS
2555
2556 ungetc (c, stdin);
2557 symbuf[i] = '\0';
2558@end group
2559
2560@group
2561 s = getsym (symbuf);
2562 if (s == 0)
2563 s = putsym (symbuf, VAR);
2564 yylval.tptr = s;
2565 return s->type;
2566 @}
2567
2568 /* Any other character is a token by itself. */
2569 return c;
2570@}
2571@end group
2572@end smallexample
2573
72d2299c 2574This program is both powerful and flexible. You may easily add new
704a47c4
AD
2575functions, and it is a simple job to modify this code to install
2576predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2577
342b8b6e 2578@node Exercises
bfa74976
RS
2579@section Exercises
2580@cindex exercises
2581
2582@enumerate
2583@item
2584Add some new functions from @file{math.h} to the initialization list.
2585
2586@item
2587Add another array that contains constants and their values. Then
2588modify @code{init_table} to add these constants to the symbol table.
2589It will be easiest to give the constants type @code{VAR}.
2590
2591@item
2592Make the program report an error if the user refers to an
2593uninitialized variable in any way except to store a value in it.
2594@end enumerate
2595
342b8b6e 2596@node Grammar File
bfa74976
RS
2597@chapter Bison Grammar Files
2598
2599Bison takes as input a context-free grammar specification and produces a
2600C-language function that recognizes correct instances of the grammar.
2601
2602The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2603@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2604
2605@menu
2606* Grammar Outline:: Overall layout of the grammar file.
2607* Symbols:: Terminal and nonterminal symbols.
2608* Rules:: How to write grammar rules.
2609* Recursion:: Writing recursive rules.
2610* Semantics:: Semantic values and actions.
847bf1f5 2611* Locations:: Locations and actions.
bfa74976
RS
2612* Declarations:: All kinds of Bison declarations are described here.
2613* Multiple Parsers:: Putting more than one Bison parser in one program.
2614@end menu
2615
342b8b6e 2616@node Grammar Outline
bfa74976
RS
2617@section Outline of a Bison Grammar
2618
2619A Bison grammar file has four main sections, shown here with the
2620appropriate delimiters:
2621
2622@example
2623%@{
38a92d50 2624 @var{Prologue}
bfa74976
RS
2625%@}
2626
2627@var{Bison declarations}
2628
2629%%
2630@var{Grammar rules}
2631%%
2632
75f5aaea 2633@var{Epilogue}
bfa74976
RS
2634@end example
2635
2636Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2637As a @acronym{GNU} extension, @samp{//} introduces a comment that
2638continues until end of line.
bfa74976
RS
2639
2640@menu
f56274a8 2641* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2642* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
2643* Bison Declarations:: Syntax and usage of the Bison declarations section.
2644* Grammar Rules:: Syntax and usage of the grammar rules section.
2645* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2646@end menu
2647
38a92d50 2648@node Prologue
75f5aaea
MA
2649@subsection The prologue
2650@cindex declarations section
2651@cindex Prologue
2652@cindex declarations
bfa74976 2653
f8e1c9e5
AD
2654The @var{Prologue} section contains macro definitions and declarations
2655of functions and variables that are used in the actions in the grammar
2656rules. These are copied to the beginning of the parser file so that
2657they precede the definition of @code{yyparse}. You can use
2658@samp{#include} to get the declarations from a header file. If you
2659don't need any C declarations, you may omit the @samp{%@{} and
2660@samp{%@}} delimiters that bracket this section.
bfa74976 2661
9c437126 2662The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2663of @samp{%@}} that is outside a comment, a string literal, or a
2664character constant.
2665
c732d2c6
AD
2666You may have more than one @var{Prologue} section, intermixed with the
2667@var{Bison declarations}. This allows you to have C and Bison
2668declarations that refer to each other. For example, the @code{%union}
2669declaration may use types defined in a header file, and you may wish to
2670prototype functions that take arguments of type @code{YYSTYPE}. This
2671can be done with two @var{Prologue} blocks, one before and one after the
2672@code{%union} declaration.
2673
2674@smallexample
2675%@{
aef3da86 2676 #define _GNU_SOURCE
38a92d50
PE
2677 #include <stdio.h>
2678 #include "ptypes.h"
c732d2c6
AD
2679%@}
2680
2681%union @{
779e7ceb 2682 long int n;
c732d2c6
AD
2683 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2684@}
2685
2686%@{
38a92d50
PE
2687 static void print_token_value (FILE *, int, YYSTYPE);
2688 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2689%@}
2690
2691@dots{}
2692@end smallexample
2693
aef3da86
PE
2694When in doubt, it is usually safer to put prologue code before all
2695Bison declarations, rather than after. For example, any definitions
2696of feature test macros like @code{_GNU_SOURCE} or
2697@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2698feature test macros can affect the behavior of Bison-generated
2699@code{#include} directives.
2700
2cbe6b7f
JD
2701@node Prologue Alternatives
2702@subsection Prologue Alternatives
2703@cindex Prologue Alternatives
2704
136a0f76 2705@findex %code
16dc6a9e
JD
2706@findex %code requires
2707@findex %code provides
2708@findex %code top
85894313 2709
2cbe6b7f
JD
2710The functionality of @var{Prologue} sections can often be subtle and
2711inflexible.
8e0a5e9e
JD
2712As an alternative, Bison provides a %code directive with an explicit qualifier
2713field, which identifies the purpose of the code and thus the location(s) where
2714Bison should generate it.
2715For C/C++, the qualifier can be omitted for the default location, or it can be
8405b70c 2716one of @code{requires}, @code{provides}, @code{top}.
148d66d8 2717@xref{Decl Summary,,%code}.
2cbe6b7f
JD
2718
2719Look again at the example of the previous section:
2720
2721@smallexample
2722%@{
2723 #define _GNU_SOURCE
2724 #include <stdio.h>
2725 #include "ptypes.h"
2726%@}
2727
2728%union @{
2729 long int n;
2730 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2731@}
2732
2733%@{
2734 static void print_token_value (FILE *, int, YYSTYPE);
2735 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2736%@}
2737
2738@dots{}
2739@end smallexample
2740
2741@noindent
2742Notice that there are two @var{Prologue} sections here, but there's a subtle
2743distinction between their functionality.
2744For example, if you decide to override Bison's default definition for
2745@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2746definition?
2747You should write it in the first since Bison will insert that code into the
8e0a5e9e 2748parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2749In which @var{Prologue} section should you prototype an internal function,
2750@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2751arguments?
2752You should prototype it in the second since Bison will insert that code
2753@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2754
2755This distinction in functionality between the two @var{Prologue} sections is
2756established by the appearance of the @code{%union} between them.
a501eca9 2757This behavior raises a few questions.
2cbe6b7f
JD
2758First, why should the position of a @code{%union} affect definitions related to
2759@code{YYLTYPE} and @code{yytokentype}?
2760Second, what if there is no @code{%union}?
2761In that case, the second kind of @var{Prologue} section is not available.
2762This behavior is not intuitive.
2763
8e0a5e9e 2764To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2765@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2766Let's go ahead and add the new @code{YYLTYPE} definition and the
2767@code{trace_token} prototype at the same time:
2768
2769@smallexample
16dc6a9e 2770%code top @{
2cbe6b7f
JD
2771 #define _GNU_SOURCE
2772 #include <stdio.h>
8e0a5e9e
JD
2773
2774 /* WARNING: The following code really belongs
16dc6a9e 2775 * in a `%code requires'; see below. */
8e0a5e9e 2776
2cbe6b7f
JD
2777 #include "ptypes.h"
2778 #define YYLTYPE YYLTYPE
2779 typedef struct YYLTYPE
2780 @{
2781 int first_line;
2782 int first_column;
2783 int last_line;
2784 int last_column;
2785 char *filename;
2786 @} YYLTYPE;
2787@}
2788
2789%union @{
2790 long int n;
2791 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2792@}
2793
2794%code @{
2795 static void print_token_value (FILE *, int, YYSTYPE);
2796 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2797 static void trace_token (enum yytokentype token, YYLTYPE loc);
2798@}
2799
2800@dots{}
2801@end smallexample
2802
2803@noindent
16dc6a9e
JD
2804In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2805functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2806explicit which kind you intend.
2cbe6b7f
JD
2807Moreover, both kinds are always available even in the absence of @code{%union}.
2808
16dc6a9e 2809The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2810The first two lines before the warning need to appear near the top of the
2811parser source code file.
2812The first line after the warning is required by @code{YYSTYPE} and thus also
2813needs to appear in the parser source code file.
2cbe6b7f 2814However, if you've instructed Bison to generate a parser header file
148d66d8
JD
2815(@pxref{Decl Summary, ,%defines}), you probably want that line to appear before
2816the @code{YYSTYPE} definition in that header file as well.
8e0a5e9e 2817The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2818override the default @code{YYLTYPE} definition there.
2819
16dc6a9e 2820In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2821lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2822definitions.
16dc6a9e 2823Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2824
2825@smallexample
16dc6a9e 2826%code top @{
2cbe6b7f
JD
2827 #define _GNU_SOURCE
2828 #include <stdio.h>
2829@}
2830
16dc6a9e 2831%code requires @{
9bc0dd67
JD
2832 #include "ptypes.h"
2833@}
2834%union @{
2835 long int n;
2836 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2837@}
2838
16dc6a9e 2839%code requires @{
2cbe6b7f
JD
2840 #define YYLTYPE YYLTYPE
2841 typedef struct YYLTYPE
2842 @{
2843 int first_line;
2844 int first_column;
2845 int last_line;
2846 int last_column;
2847 char *filename;
2848 @} YYLTYPE;
2849@}
2850
136a0f76 2851%code @{
2cbe6b7f
JD
2852 static void print_token_value (FILE *, int, YYSTYPE);
2853 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2854 static void trace_token (enum yytokentype token, YYLTYPE loc);
2855@}
2856
2857@dots{}
2858@end smallexample
2859
2860@noindent
2861Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2862definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2863definitions in both the parser source code file and the parser header file.
16dc6a9e 2864(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2865place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2866
a501eca9 2867When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2868should prefer @code{%code requires} over @code{%code top} regardless of whether
2869you instruct Bison to generate a parser header file.
a501eca9 2870When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2871source code file and that has no special need to appear at the top of that
16dc6a9e 2872file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2873These practices will make the purpose of each block of your code explicit to
2874Bison and to other developers reading your grammar file.
8e0a5e9e 2875Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2876@code{%code requires} to be the most important of the four @var{Prologue}
2877alternatives.
a501eca9 2878
2cbe6b7f
JD
2879At some point while developing your parser, you might decide to provide
2880@code{trace_token} to modules that are external to your parser.
2881Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2882header file and the parser source code file.
2883Since this function is not a dependency required by @code{YYSTYPE} or
2884@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2885@code{%code requires}.
2cbe6b7f 2886More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2887@code{%code requires} is not sufficient.
8e0a5e9e 2888Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2889@code{%code provides}:
2cbe6b7f
JD
2890
2891@smallexample
16dc6a9e 2892%code top @{
2cbe6b7f 2893 #define _GNU_SOURCE
136a0f76 2894 #include <stdio.h>
2cbe6b7f 2895@}
136a0f76 2896
16dc6a9e 2897%code requires @{
2cbe6b7f
JD
2898 #include "ptypes.h"
2899@}
2900%union @{
2901 long int n;
2902 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2903@}
2904
16dc6a9e 2905%code requires @{
2cbe6b7f
JD
2906 #define YYLTYPE YYLTYPE
2907 typedef struct YYLTYPE
2908 @{
2909 int first_line;
2910 int first_column;
2911 int last_line;
2912 int last_column;
2913 char *filename;
2914 @} YYLTYPE;
2915@}
2916
16dc6a9e 2917%code provides @{
2cbe6b7f
JD
2918 void trace_token (enum yytokentype token, YYLTYPE loc);
2919@}
2920
2921%code @{
9bc0dd67
JD
2922 static void print_token_value (FILE *, int, YYSTYPE);
2923 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2924@}
9bc0dd67
JD
2925
2926@dots{}
2927@end smallexample
2928
2cbe6b7f
JD
2929@noindent
2930Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
2931file and the parser source code file after the definitions for
2932@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
2933
2934The above examples are careful to write directives in an order that reflects
8e0a5e9e 2935the layout of the generated parser source code and header files:
16dc6a9e 2936@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 2937@code{%code}.
a501eca9 2938While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
2939this order, Bison does not require it.
2940Instead, Bison lets you choose an organization that makes sense to you.
2941
a501eca9 2942You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2943In that case, Bison concatenates the contained code in declaration order.
2944This is the only way in which the position of one of these directives within
2945the grammar file affects its functionality.
2946
2947The result of the previous two properties is greater flexibility in how you may
2948organize your grammar file.
2949For example, you may organize semantic-type-related directives by semantic
2950type:
2951
2952@smallexample
16dc6a9e 2953%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2954%union @{ type1 field1; @}
2955%destructor @{ type1_free ($$); @} <field1>
2956%printer @{ type1_print ($$); @} <field1>
2957
16dc6a9e 2958%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2959%union @{ type2 field2; @}
2960%destructor @{ type2_free ($$); @} <field2>
2961%printer @{ type2_print ($$); @} <field2>
2962@end smallexample
2963
2964@noindent
2965You could even place each of the above directive groups in the rules section of
2966the grammar file next to the set of rules that uses the associated semantic
2967type.
61fee93e
JD
2968(In the rules section, you must terminate each of those directives with a
2969semicolon.)
2cbe6b7f
JD
2970And you don't have to worry that some directive (like a @code{%union}) in the
2971definitions section is going to adversely affect their functionality in some
2972counter-intuitive manner just because it comes first.
2973Such an organization is not possible using @var{Prologue} sections.
2974
a501eca9 2975This section has been concerned with explaining the advantages of the four
8e0a5e9e 2976@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2977However, in most cases when using these directives, you shouldn't need to
2978think about all the low-level ordering issues discussed here.
2979Instead, you should simply use these directives to label each block of your
2980code according to its purpose and let Bison handle the ordering.
2981@code{%code} is the most generic label.
16dc6a9e
JD
2982Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
2983as needed.
a501eca9 2984
342b8b6e 2985@node Bison Declarations
bfa74976
RS
2986@subsection The Bison Declarations Section
2987@cindex Bison declarations (introduction)
2988@cindex declarations, Bison (introduction)
2989
2990The @var{Bison declarations} section contains declarations that define
2991terminal and nonterminal symbols, specify precedence, and so on.
2992In some simple grammars you may not need any declarations.
2993@xref{Declarations, ,Bison Declarations}.
2994
342b8b6e 2995@node Grammar Rules
bfa74976
RS
2996@subsection The Grammar Rules Section
2997@cindex grammar rules section
2998@cindex rules section for grammar
2999
3000The @dfn{grammar rules} section contains one or more Bison grammar
3001rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3002
3003There must always be at least one grammar rule, and the first
3004@samp{%%} (which precedes the grammar rules) may never be omitted even
3005if it is the first thing in the file.
3006
38a92d50 3007@node Epilogue
75f5aaea 3008@subsection The epilogue
bfa74976 3009@cindex additional C code section
75f5aaea 3010@cindex epilogue
bfa74976
RS
3011@cindex C code, section for additional
3012
08e49d20
PE
3013The @var{Epilogue} is copied verbatim to the end of the parser file, just as
3014the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
3015place to put anything that you want to have in the parser file but which need
3016not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
3017definitions of @code{yylex} and @code{yyerror} often go here. Because
3018C requires functions to be declared before being used, you often need
3019to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 3020even if you define them in the Epilogue.
75f5aaea 3021@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3022
3023If the last section is empty, you may omit the @samp{%%} that separates it
3024from the grammar rules.
3025
f8e1c9e5
AD
3026The Bison parser itself contains many macros and identifiers whose names
3027start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3028any such names (except those documented in this manual) in the epilogue
3029of the grammar file.
bfa74976 3030
342b8b6e 3031@node Symbols
bfa74976
RS
3032@section Symbols, Terminal and Nonterminal
3033@cindex nonterminal symbol
3034@cindex terminal symbol
3035@cindex token type
3036@cindex symbol
3037
3038@dfn{Symbols} in Bison grammars represent the grammatical classifications
3039of the language.
3040
3041A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3042class of syntactically equivalent tokens. You use the symbol in grammar
3043rules to mean that a token in that class is allowed. The symbol is
3044represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3045function returns a token type code to indicate what kind of token has
3046been read. You don't need to know what the code value is; you can use
3047the symbol to stand for it.
bfa74976 3048
f8e1c9e5
AD
3049A @dfn{nonterminal symbol} stands for a class of syntactically
3050equivalent groupings. The symbol name is used in writing grammar rules.
3051By convention, it should be all lower case.
bfa74976 3052
c046698e
AD
3053Symbol names can contain letters, underscores, periods, dashes, and (not
3054at the beginning) digits. Dashes in symbol names are a GNU
663ce7bb
AD
3055extension, incompatible with @acronym{POSIX} Yacc. Terminal symbols
3056that contain periods or dashes make little sense: since they are not
3057valid symbols (in most programming languages) they are not exported as
3058token names.
bfa74976 3059
931c7513 3060There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3061
3062@itemize @bullet
3063@item
3064A @dfn{named token type} is written with an identifier, like an
c827f760 3065identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3066such name must be defined with a Bison declaration such as
3067@code{%token}. @xref{Token Decl, ,Token Type Names}.
3068
3069@item
3070@cindex character token
3071@cindex literal token
3072@cindex single-character literal
931c7513
RS
3073A @dfn{character token type} (or @dfn{literal character token}) is
3074written in the grammar using the same syntax used in C for character
3075constants; for example, @code{'+'} is a character token type. A
3076character token type doesn't need to be declared unless you need to
3077specify its semantic value data type (@pxref{Value Type, ,Data Types of
3078Semantic Values}), associativity, or precedence (@pxref{Precedence,
3079,Operator Precedence}).
bfa74976
RS
3080
3081By convention, a character token type is used only to represent a
3082token that consists of that particular character. Thus, the token
3083type @code{'+'} is used to represent the character @samp{+} as a
3084token. Nothing enforces this convention, but if you depart from it,
3085your program will confuse other readers.
3086
3087All the usual escape sequences used in character literals in C can be
3088used in Bison as well, but you must not use the null character as a
72d2299c
PE
3089character literal because its numeric code, zero, signifies
3090end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3091for @code{yylex}}). Also, unlike standard C, trigraphs have no
3092special meaning in Bison character literals, nor is backslash-newline
3093allowed.
931c7513
RS
3094
3095@item
3096@cindex string token
3097@cindex literal string token
9ecbd125 3098@cindex multicharacter literal
931c7513
RS
3099A @dfn{literal string token} is written like a C string constant; for
3100example, @code{"<="} is a literal string token. A literal string token
3101doesn't need to be declared unless you need to specify its semantic
14ded682 3102value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3103(@pxref{Precedence}).
3104
3105You can associate the literal string token with a symbolic name as an
3106alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3107Declarations}). If you don't do that, the lexical analyzer has to
3108retrieve the token number for the literal string token from the
3109@code{yytname} table (@pxref{Calling Convention}).
3110
c827f760 3111@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3112
3113By convention, a literal string token is used only to represent a token
3114that consists of that particular string. Thus, you should use the token
3115type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3116does not enforce this convention, but if you depart from it, people who
931c7513
RS
3117read your program will be confused.
3118
3119All the escape sequences used in string literals in C can be used in
92ac3705
PE
3120Bison as well, except that you must not use a null character within a
3121string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3122meaning in Bison string literals, nor is backslash-newline allowed. A
3123literal string token must contain two or more characters; for a token
3124containing just one character, use a character token (see above).
bfa74976
RS
3125@end itemize
3126
3127How you choose to write a terminal symbol has no effect on its
3128grammatical meaning. That depends only on where it appears in rules and
3129on when the parser function returns that symbol.
3130
72d2299c
PE
3131The value returned by @code{yylex} is always one of the terminal
3132symbols, except that a zero or negative value signifies end-of-input.
3133Whichever way you write the token type in the grammar rules, you write
3134it the same way in the definition of @code{yylex}. The numeric code
3135for a character token type is simply the positive numeric code of the
3136character, so @code{yylex} can use the identical value to generate the
3137requisite code, though you may need to convert it to @code{unsigned
3138char} to avoid sign-extension on hosts where @code{char} is signed.
3139Each named token type becomes a C macro in
bfa74976 3140the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3141(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3142@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3143
3144If @code{yylex} is defined in a separate file, you need to arrange for the
3145token-type macro definitions to be available there. Use the @samp{-d}
3146option when you run Bison, so that it will write these macro definitions
3147into a separate header file @file{@var{name}.tab.h} which you can include
3148in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3149
72d2299c 3150If you want to write a grammar that is portable to any Standard C
9d9b8b70 3151host, you must use only nonnull character tokens taken from the basic
c827f760 3152execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3153digits, the 52 lower- and upper-case English letters, and the
3154characters in the following C-language string:
3155
3156@example
3157"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3158@end example
3159
f8e1c9e5
AD
3160The @code{yylex} function and Bison must use a consistent character set
3161and encoding for character tokens. For example, if you run Bison in an
3162@acronym{ASCII} environment, but then compile and run the resulting
3163program in an environment that uses an incompatible character set like
3164@acronym{EBCDIC}, the resulting program may not work because the tables
3165generated by Bison will assume @acronym{ASCII} numeric values for
3166character tokens. It is standard practice for software distributions to
3167contain C source files that were generated by Bison in an
3168@acronym{ASCII} environment, so installers on platforms that are
3169incompatible with @acronym{ASCII} must rebuild those files before
3170compiling them.
e966383b 3171
bfa74976
RS
3172The symbol @code{error} is a terminal symbol reserved for error recovery
3173(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3174In particular, @code{yylex} should never return this value. The default
3175value of the error token is 256, unless you explicitly assigned 256 to
3176one of your tokens with a @code{%token} declaration.
bfa74976 3177
342b8b6e 3178@node Rules
bfa74976
RS
3179@section Syntax of Grammar Rules
3180@cindex rule syntax
3181@cindex grammar rule syntax
3182@cindex syntax of grammar rules
3183
3184A Bison grammar rule has the following general form:
3185
3186@example
e425e872 3187@group
bfa74976
RS
3188@var{result}: @var{components}@dots{}
3189 ;
e425e872 3190@end group
bfa74976
RS
3191@end example
3192
3193@noindent
9ecbd125 3194where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3195and @var{components} are various terminal and nonterminal symbols that
13863333 3196are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3197
3198For example,
3199
3200@example
3201@group
3202exp: exp '+' exp
3203 ;
3204@end group
3205@end example
3206
3207@noindent
3208says that two groupings of type @code{exp}, with a @samp{+} token in between,
3209can be combined into a larger grouping of type @code{exp}.
3210
72d2299c
PE
3211White space in rules is significant only to separate symbols. You can add
3212extra white space as you wish.
bfa74976
RS
3213
3214Scattered among the components can be @var{actions} that determine
3215the semantics of the rule. An action looks like this:
3216
3217@example
3218@{@var{C statements}@}
3219@end example
3220
3221@noindent
287c78f6
PE
3222@cindex braced code
3223This is an example of @dfn{braced code}, that is, C code surrounded by
3224braces, much like a compound statement in C@. Braced code can contain
3225any sequence of C tokens, so long as its braces are balanced. Bison
3226does not check the braced code for correctness directly; it merely
3227copies the code to the output file, where the C compiler can check it.
3228
3229Within braced code, the balanced-brace count is not affected by braces
3230within comments, string literals, or character constants, but it is
3231affected by the C digraphs @samp{<%} and @samp{%>} that represent
3232braces. At the top level braced code must be terminated by @samp{@}}
3233and not by a digraph. Bison does not look for trigraphs, so if braced
3234code uses trigraphs you should ensure that they do not affect the
3235nesting of braces or the boundaries of comments, string literals, or
3236character constants.
3237
bfa74976
RS
3238Usually there is only one action and it follows the components.
3239@xref{Actions}.
3240
3241@findex |
3242Multiple rules for the same @var{result} can be written separately or can
3243be joined with the vertical-bar character @samp{|} as follows:
3244
bfa74976
RS
3245@example
3246@group
3247@var{result}: @var{rule1-components}@dots{}
3248 | @var{rule2-components}@dots{}
3249 @dots{}
3250 ;
3251@end group
3252@end example
bfa74976
RS
3253
3254@noindent
3255They are still considered distinct rules even when joined in this way.
3256
3257If @var{components} in a rule is empty, it means that @var{result} can
3258match the empty string. For example, here is how to define a
3259comma-separated sequence of zero or more @code{exp} groupings:
3260
3261@example
3262@group
3263expseq: /* empty */
3264 | expseq1
3265 ;
3266@end group
3267
3268@group
3269expseq1: exp
3270 | expseq1 ',' exp
3271 ;
3272@end group
3273@end example
3274
3275@noindent
3276It is customary to write a comment @samp{/* empty */} in each rule
3277with no components.
3278
342b8b6e 3279@node Recursion
bfa74976
RS
3280@section Recursive Rules
3281@cindex recursive rule
3282
f8e1c9e5
AD
3283A rule is called @dfn{recursive} when its @var{result} nonterminal
3284appears also on its right hand side. Nearly all Bison grammars need to
3285use recursion, because that is the only way to define a sequence of any
3286number of a particular thing. Consider this recursive definition of a
9ecbd125 3287comma-separated sequence of one or more expressions:
bfa74976
RS
3288
3289@example
3290@group
3291expseq1: exp
3292 | expseq1 ',' exp
3293 ;
3294@end group
3295@end example
3296
3297@cindex left recursion
3298@cindex right recursion
3299@noindent
3300Since the recursive use of @code{expseq1} is the leftmost symbol in the
3301right hand side, we call this @dfn{left recursion}. By contrast, here
3302the same construct is defined using @dfn{right recursion}:
3303
3304@example
3305@group
3306expseq1: exp
3307 | exp ',' expseq1
3308 ;
3309@end group
3310@end example
3311
3312@noindent
ec3bc396
AD
3313Any kind of sequence can be defined using either left recursion or right
3314recursion, but you should always use left recursion, because it can
3315parse a sequence of any number of elements with bounded stack space.
3316Right recursion uses up space on the Bison stack in proportion to the
3317number of elements in the sequence, because all the elements must be
3318shifted onto the stack before the rule can be applied even once.
3319@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3320of this.
bfa74976
RS
3321
3322@cindex mutual recursion
3323@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3324rule does not appear directly on its right hand side, but does appear
3325in rules for other nonterminals which do appear on its right hand
13863333 3326side.
bfa74976
RS
3327
3328For example:
3329
3330@example
3331@group
3332expr: primary
3333 | primary '+' primary
3334 ;
3335@end group
3336
3337@group
3338primary: constant
3339 | '(' expr ')'
3340 ;
3341@end group
3342@end example
3343
3344@noindent
3345defines two mutually-recursive nonterminals, since each refers to the
3346other.
3347
342b8b6e 3348@node Semantics
bfa74976
RS
3349@section Defining Language Semantics
3350@cindex defining language semantics
13863333 3351@cindex language semantics, defining
bfa74976
RS
3352
3353The grammar rules for a language determine only the syntax. The semantics
3354are determined by the semantic values associated with various tokens and
3355groupings, and by the actions taken when various groupings are recognized.
3356
3357For example, the calculator calculates properly because the value
3358associated with each expression is the proper number; it adds properly
3359because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3360the numbers associated with @var{x} and @var{y}.
3361
3362@menu
3363* Value Type:: Specifying one data type for all semantic values.
3364* Multiple Types:: Specifying several alternative data types.
3365* Actions:: An action is the semantic definition of a grammar rule.
3366* Action Types:: Specifying data types for actions to operate on.
3367* Mid-Rule Actions:: Most actions go at the end of a rule.
3368 This says when, why and how to use the exceptional
3369 action in the middle of a rule.
1f68dca5 3370* Named References:: Using named references in actions.
bfa74976
RS
3371@end menu
3372
342b8b6e 3373@node Value Type
bfa74976
RS
3374@subsection Data Types of Semantic Values
3375@cindex semantic value type
3376@cindex value type, semantic
3377@cindex data types of semantic values
3378@cindex default data type
3379
3380In a simple program it may be sufficient to use the same data type for
3381the semantic values of all language constructs. This was true in the
c827f760 3382@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3383Notation Calculator}).
bfa74976 3384
ddc8ede1
PE
3385Bison normally uses the type @code{int} for semantic values if your
3386program uses the same data type for all language constructs. To
bfa74976
RS
3387specify some other type, define @code{YYSTYPE} as a macro, like this:
3388
3389@example
3390#define YYSTYPE double
3391@end example
3392
3393@noindent
50cce58e
PE
3394@code{YYSTYPE}'s replacement list should be a type name
3395that does not contain parentheses or square brackets.
342b8b6e 3396This macro definition must go in the prologue of the grammar file
75f5aaea 3397(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3398
342b8b6e 3399@node Multiple Types
bfa74976
RS
3400@subsection More Than One Value Type
3401
3402In most programs, you will need different data types for different kinds
3403of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3404@code{int} or @code{long int}, while a string constant needs type
3405@code{char *}, and an identifier might need a pointer to an entry in the
3406symbol table.
bfa74976
RS
3407
3408To use more than one data type for semantic values in one parser, Bison
3409requires you to do two things:
3410
3411@itemize @bullet
3412@item
ddc8ede1 3413Specify the entire collection of possible data types, either by using the
704a47c4 3414@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3415Value Types}), or by using a @code{typedef} or a @code{#define} to
3416define @code{YYSTYPE} to be a union type whose member names are
3417the type tags.
bfa74976
RS
3418
3419@item
14ded682
AD
3420Choose one of those types for each symbol (terminal or nonterminal) for
3421which semantic values are used. This is done for tokens with the
3422@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3423and for groupings with the @code{%type} Bison declaration (@pxref{Type
3424Decl, ,Nonterminal Symbols}).
bfa74976
RS
3425@end itemize
3426
342b8b6e 3427@node Actions
bfa74976
RS
3428@subsection Actions
3429@cindex action
3430@vindex $$
3431@vindex $@var{n}
1f68dca5
AR
3432@vindex $@var{name}
3433@vindex $[@var{name}]
bfa74976
RS
3434
3435An action accompanies a syntactic rule and contains C code to be executed
3436each time an instance of that rule is recognized. The task of most actions
3437is to compute a semantic value for the grouping built by the rule from the
3438semantic values associated with tokens or smaller groupings.
3439
287c78f6
PE
3440An action consists of braced code containing C statements, and can be
3441placed at any position in the rule;
704a47c4
AD
3442it is executed at that position. Most rules have just one action at the
3443end of the rule, following all the components. Actions in the middle of
3444a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3445Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3446
3447The C code in an action can refer to the semantic values of the components
3448matched by the rule with the construct @code{$@var{n}}, which stands for
3449the value of the @var{n}th component. The semantic value for the grouping
1f68dca5
AR
3450being constructed is @code{$$}. In addition, the semantic values of
3451symbols can be accessed with the named references construct
3452@code{$@var{name}} or @code{$[@var{name}]}. Bison translates both of these
0cc3da3a 3453constructs into expressions of the appropriate type when it copies the
1f68dca5
AR
3454actions into the parser file. @code{$$} (or @code{$@var{name}}, when it
3455stands for the current grouping) is translated to a modifiable
0cc3da3a 3456lvalue, so it can be assigned to.
bfa74976
RS
3457
3458Here is a typical example:
3459
3460@example
3461@group
3462exp: @dots{}
3463 | exp '+' exp
3464 @{ $$ = $1 + $3; @}
3465@end group
3466@end example
3467
1f68dca5
AR
3468Or, in terms of named references:
3469
3470@example
3471@group
3472exp[result]: @dots{}
3473 | exp[left] '+' exp[right]
3474 @{ $result = $left + $right; @}
3475@end group
3476@end example
3477
bfa74976
RS
3478@noindent
3479This rule constructs an @code{exp} from two smaller @code{exp} groupings
3480connected by a plus-sign token. In the action, @code{$1} and @code{$3}
1f68dca5 3481(@code{$left} and @code{$right})
bfa74976
RS
3482refer to the semantic values of the two component @code{exp} groupings,
3483which are the first and third symbols on the right hand side of the rule.
1f68dca5
AR
3484The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3485semantic value of
bfa74976
RS
3486the addition-expression just recognized by the rule. If there were a
3487useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3488referred to as @code{$2}.
bfa74976 3489
1f68dca5
AR
3490@xref{Named References,,Using Named References}, for more information
3491about using the named references construct.
3492
3ded9a63
AD
3493Note that the vertical-bar character @samp{|} is really a rule
3494separator, and actions are attached to a single rule. This is a
3495difference with tools like Flex, for which @samp{|} stands for either
3496``or'', or ``the same action as that of the next rule''. In the
3497following example, the action is triggered only when @samp{b} is found:
3498
3499@example
3500@group
3501a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3502@end group
3503@end example
3504
bfa74976
RS
3505@cindex default action
3506If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3507@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3508becomes the value of the whole rule. Of course, the default action is
3509valid only if the two data types match. There is no meaningful default
3510action for an empty rule; every empty rule must have an explicit action
3511unless the rule's value does not matter.
bfa74976
RS
3512
3513@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3514to tokens and groupings on the stack @emph{before} those that match the
3515current rule. This is a very risky practice, and to use it reliably
3516you must be certain of the context in which the rule is applied. Here
3517is a case in which you can use this reliably:
3518
3519@example
3520@group
3521foo: expr bar '+' expr @{ @dots{} @}
3522 | expr bar '-' expr @{ @dots{} @}
3523 ;
3524@end group
3525
3526@group
3527bar: /* empty */
3528 @{ previous_expr = $0; @}
3529 ;
3530@end group
3531@end example
3532
3533As long as @code{bar} is used only in the fashion shown here, @code{$0}
3534always refers to the @code{expr} which precedes @code{bar} in the
3535definition of @code{foo}.
3536
32c29292 3537@vindex yylval
742e4900 3538It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3539any, from a semantic action.
3540This semantic value is stored in @code{yylval}.
3541@xref{Action Features, ,Special Features for Use in Actions}.
3542
342b8b6e 3543@node Action Types
bfa74976
RS
3544@subsection Data Types of Values in Actions
3545@cindex action data types
3546@cindex data types in actions
3547
3548If you have chosen a single data type for semantic values, the @code{$$}
3549and @code{$@var{n}} constructs always have that data type.
3550
3551If you have used @code{%union} to specify a variety of data types, then you
3552must declare a choice among these types for each terminal or nonterminal
3553symbol that can have a semantic value. Then each time you use @code{$$} or
3554@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3555in the rule. In this example,
bfa74976
RS
3556
3557@example
3558@group
3559exp: @dots{}
3560 | exp '+' exp
3561 @{ $$ = $1 + $3; @}
3562@end group
3563@end example
3564
3565@noindent
3566@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3567have the data type declared for the nonterminal symbol @code{exp}. If
3568@code{$2} were used, it would have the data type declared for the
e0c471a9 3569terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3570
3571Alternatively, you can specify the data type when you refer to the value,
3572by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3573reference. For example, if you have defined types as shown here:
3574
3575@example
3576@group
3577%union @{
3578 int itype;
3579 double dtype;
3580@}
3581@end group
3582@end example
3583
3584@noindent
3585then you can write @code{$<itype>1} to refer to the first subunit of the
3586rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3587
342b8b6e 3588@node Mid-Rule Actions
bfa74976
RS
3589@subsection Actions in Mid-Rule
3590@cindex actions in mid-rule
3591@cindex mid-rule actions
3592
3593Occasionally it is useful to put an action in the middle of a rule.
3594These actions are written just like usual end-of-rule actions, but they
3595are executed before the parser even recognizes the following components.
3596
3597A mid-rule action may refer to the components preceding it using
3598@code{$@var{n}}, but it may not refer to subsequent components because
3599it is run before they are parsed.
3600
3601The mid-rule action itself counts as one of the components of the rule.
3602This makes a difference when there is another action later in the same rule
3603(and usually there is another at the end): you have to count the actions
3604along with the symbols when working out which number @var{n} to use in
3605@code{$@var{n}}.
3606
3607The mid-rule action can also have a semantic value. The action can set
3608its value with an assignment to @code{$$}, and actions later in the rule
3609can refer to the value using @code{$@var{n}}. Since there is no symbol
3610to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3611in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3612specify a data type each time you refer to this value.
bfa74976
RS
3613
3614There is no way to set the value of the entire rule with a mid-rule
3615action, because assignments to @code{$$} do not have that effect. The
3616only way to set the value for the entire rule is with an ordinary action
3617at the end of the rule.
3618
3619Here is an example from a hypothetical compiler, handling a @code{let}
3620statement that looks like @samp{let (@var{variable}) @var{statement}} and
3621serves to create a variable named @var{variable} temporarily for the
3622duration of @var{statement}. To parse this construct, we must put
3623@var{variable} into the symbol table while @var{statement} is parsed, then
3624remove it afterward. Here is how it is done:
3625
3626@example
3627@group
3628stmt: LET '(' var ')'
3629 @{ $<context>$ = push_context ();
3630 declare_variable ($3); @}
3631 stmt @{ $$ = $6;
3632 pop_context ($<context>5); @}
3633@end group
3634@end example
3635
3636@noindent
3637As soon as @samp{let (@var{variable})} has been recognized, the first
3638action is run. It saves a copy of the current semantic context (the
3639list of accessible variables) as its semantic value, using alternative
3640@code{context} in the data-type union. Then it calls
3641@code{declare_variable} to add the new variable to that list. Once the
3642first action is finished, the embedded statement @code{stmt} can be
3643parsed. Note that the mid-rule action is component number 5, so the
3644@samp{stmt} is component number 6.
3645
3646After the embedded statement is parsed, its semantic value becomes the
3647value of the entire @code{let}-statement. Then the semantic value from the
3648earlier action is used to restore the prior list of variables. This
3649removes the temporary @code{let}-variable from the list so that it won't
3650appear to exist while the rest of the program is parsed.
3651
841a7737
JD
3652@findex %destructor
3653@cindex discarded symbols, mid-rule actions
3654@cindex error recovery, mid-rule actions
3655In the above example, if the parser initiates error recovery (@pxref{Error
3656Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3657it might discard the previous semantic context @code{$<context>5} without
3658restoring it.
3659Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3660Discarded Symbols}).
ec5479ce
JD
3661However, Bison currently provides no means to declare a destructor specific to
3662a particular mid-rule action's semantic value.
841a7737
JD
3663
3664One solution is to bury the mid-rule action inside a nonterminal symbol and to
3665declare a destructor for that symbol:
3666
3667@example
3668@group
3669%type <context> let
3670%destructor @{ pop_context ($$); @} let
3671
3672%%
3673
3674stmt: let stmt
3675 @{ $$ = $2;
3676 pop_context ($1); @}
3677 ;
3678
3679let: LET '(' var ')'
3680 @{ $$ = push_context ();
3681 declare_variable ($3); @}
3682 ;
3683
3684@end group
3685@end example
3686
3687@noindent
3688Note that the action is now at the end of its rule.
3689Any mid-rule action can be converted to an end-of-rule action in this way, and
3690this is what Bison actually does to implement mid-rule actions.
3691
bfa74976
RS
3692Taking action before a rule is completely recognized often leads to
3693conflicts since the parser must commit to a parse in order to execute the
3694action. For example, the following two rules, without mid-rule actions,
3695can coexist in a working parser because the parser can shift the open-brace
3696token and look at what follows before deciding whether there is a
3697declaration or not:
3698
3699@example
3700@group
3701compound: '@{' declarations statements '@}'
3702 | '@{' statements '@}'
3703 ;
3704@end group
3705@end example
3706
3707@noindent
3708But when we add a mid-rule action as follows, the rules become nonfunctional:
3709
3710@example
3711@group
3712compound: @{ prepare_for_local_variables (); @}
3713 '@{' declarations statements '@}'
3714@end group
3715@group
3716 | '@{' statements '@}'
3717 ;
3718@end group
3719@end example
3720
3721@noindent
3722Now the parser is forced to decide whether to run the mid-rule action
3723when it has read no farther than the open-brace. In other words, it
3724must commit to using one rule or the other, without sufficient
3725information to do it correctly. (The open-brace token is what is called
742e4900
JD
3726the @dfn{lookahead} token at this time, since the parser is still
3727deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3728
3729You might think that you could correct the problem by putting identical
3730actions into the two rules, like this:
3731
3732@example
3733@group
3734compound: @{ prepare_for_local_variables (); @}
3735 '@{' declarations statements '@}'
3736 | @{ prepare_for_local_variables (); @}
3737 '@{' statements '@}'
3738 ;
3739@end group
3740@end example
3741
3742@noindent
3743But this does not help, because Bison does not realize that the two actions
3744are identical. (Bison never tries to understand the C code in an action.)
3745
3746If the grammar is such that a declaration can be distinguished from a
3747statement by the first token (which is true in C), then one solution which
3748does work is to put the action after the open-brace, like this:
3749
3750@example
3751@group
3752compound: '@{' @{ prepare_for_local_variables (); @}
3753 declarations statements '@}'
3754 | '@{' statements '@}'
3755 ;
3756@end group
3757@end example
3758
3759@noindent
3760Now the first token of the following declaration or statement,
3761which would in any case tell Bison which rule to use, can still do so.
3762
3763Another solution is to bury the action inside a nonterminal symbol which
3764serves as a subroutine:
3765
3766@example
3767@group
3768subroutine: /* empty */
3769 @{ prepare_for_local_variables (); @}
3770 ;
3771
3772@end group
3773
3774@group
3775compound: subroutine
3776 '@{' declarations statements '@}'
3777 | subroutine
3778 '@{' statements '@}'
3779 ;
3780@end group
3781@end example
3782
3783@noindent
3784Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3785deciding which rule for @code{compound} it will eventually use.
bfa74976 3786
1f68dca5
AR
3787@node Named References
3788@subsection Using Named References
3789@cindex named references
3790
3791While every semantic value can be accessed with positional references
3792@code{$@var{n}} and @code{$$}, it's often much more convenient to refer to
3793them by name. First of all, original symbol names may be used as named
3794references. For example:
3795
3796@example
3797@group
3798invocation: op '(' args ')'
3799 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
3800@end group
3801@end example
3802
3803@noindent
3804The positional @code{$$}, @code{@@$}, @code{$n}, and @code{@@n} can be
3805mixed with @code{$name} and @code{@@name} arbitrarily. For example:
3806
3807@example
3808@group
3809invocation: op '(' args ')'
3810 @{ $$ = new_invocation ($op, $args, @@$); @}
3811@end group
3812@end example
3813
3814@noindent
3815However, sometimes regular symbol names are not sufficient due to
3816ambiguities:
3817
3818@example
3819@group
3820exp: exp '/' exp
3821 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
3822
3823exp: exp '/' exp
3824 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
3825
3826exp: exp '/' exp
3827 @{ $$ = $1 / $3; @} // No error.
3828@end group
3829@end example
3830
3831@noindent
3832When ambiguity occurs, explicitly declared names may be used for values and
3833locations. Explicit names are declared as a bracketed name after a symbol
3834appearance in rule definitions. For example:
3835@example
3836@group
3837exp[result]: exp[left] '/' exp[right]
3838 @{ $result = $left / $right; @}
3839@end group
3840@end example
3841
3842@noindent
3843Explicit names may be declared for RHS and for LHS symbols as well. In order
3844to access a semantic value generated by a mid-rule action, an explicit name
3845may also be declared by putting a bracketed name after the closing brace of
3846the mid-rule action code:
3847@example
3848@group
3849exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
3850 @{ $res = $left + $right; @}
3851@end group
3852@end example
3853
3854@noindent
3855
3856In references, in order to specify names containing dots and dashes, an explicit
3857bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
3858@example
3859@group
3860if-stmt: IF '(' expr ')' THEN then.stmt ';'
3861 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
3862@end group
3863@end example
3864
3865It often happens that named references are followed by a dot, dash or other
3866C punctuation marks and operators. By default, Bison will read
3867@code{$name.suffix} as a reference to symbol value @code{$name} followed by
3868@samp{.suffix}, i.e., an access to the @samp{suffix} field of the semantic
3869value. In order to force Bison to recognize @code{name.suffix} in its entirety
3870as the name of a semantic value, bracketed syntax @code{$[name.suffix]}
3871must be used.
3872
3873
342b8b6e 3874@node Locations
847bf1f5
AD
3875@section Tracking Locations
3876@cindex location
95923bd6
AD
3877@cindex textual location
3878@cindex location, textual
847bf1f5
AD
3879
3880Though grammar rules and semantic actions are enough to write a fully
72d2299c 3881functional parser, it can be useful to process some additional information,
3e259915
MA
3882especially symbol locations.
3883
704a47c4
AD
3884The way locations are handled is defined by providing a data type, and
3885actions to take when rules are matched.
847bf1f5
AD
3886
3887@menu
3888* Location Type:: Specifying a data type for locations.
3889* Actions and Locations:: Using locations in actions.
3890* Location Default Action:: Defining a general way to compute locations.
3891@end menu
3892
342b8b6e 3893@node Location Type
847bf1f5
AD
3894@subsection Data Type of Locations
3895@cindex data type of locations
3896@cindex default location type
3897
3898Defining a data type for locations is much simpler than for semantic values,
3899since all tokens and groupings always use the same type.
3900
50cce58e
PE
3901You can specify the type of locations by defining a macro called
3902@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3903defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3904When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3905four members:
3906
3907@example
6273355b 3908typedef struct YYLTYPE
847bf1f5
AD
3909@{
3910 int first_line;
3911 int first_column;
3912 int last_line;
3913 int last_column;
6273355b 3914@} YYLTYPE;
847bf1f5
AD
3915@end example
3916
8fbbeba2
AD
3917When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3918initializes all these fields to 1 for @code{yylloc}. To initialize
3919@code{yylloc} with a custom location type (or to chose a different
3920initialization), use the @code{%initial-action} directive. @xref{Initial
3921Action Decl, , Performing Actions before Parsing}.
cd48d21d 3922
342b8b6e 3923@node Actions and Locations
847bf1f5
AD
3924@subsection Actions and Locations
3925@cindex location actions
3926@cindex actions, location
3927@vindex @@$
3928@vindex @@@var{n}
1f68dca5
AR
3929@vindex @@@var{name}
3930@vindex @@[@var{name}]
847bf1f5
AD
3931
3932Actions are not only useful for defining language semantics, but also for
3933describing the behavior of the output parser with locations.
3934
3935The most obvious way for building locations of syntactic groupings is very
72d2299c 3936similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3937constructs can be used to access the locations of the elements being matched.
3938The location of the @var{n}th component of the right hand side is
3939@code{@@@var{n}}, while the location of the left hand side grouping is
3940@code{@@$}.
3941
1f68dca5
AR
3942In addition, the named references construct @code{@@@var{name}} and
3943@code{@@[@var{name}]} may also be used to address the symbol locations.
3944@xref{Named References,,Using Named References}, for more information
3945about using the named references construct.
3946
3e259915 3947Here is a basic example using the default data type for locations:
847bf1f5
AD
3948
3949@example
3950@group
3951exp: @dots{}
3e259915 3952 | exp '/' exp
847bf1f5 3953 @{
3e259915
MA
3954 @@$.first_column = @@1.first_column;
3955 @@$.first_line = @@1.first_line;
847bf1f5
AD
3956 @@$.last_column = @@3.last_column;
3957 @@$.last_line = @@3.last_line;
3e259915
MA
3958 if ($3)
3959 $$ = $1 / $3;
3960 else
3961 @{
3962 $$ = 1;
4e03e201
AD
3963 fprintf (stderr,
3964 "Division by zero, l%d,c%d-l%d,c%d",
3965 @@3.first_line, @@3.first_column,
3966 @@3.last_line, @@3.last_column);
3e259915 3967 @}
847bf1f5
AD
3968 @}
3969@end group
3970@end example
3971
3e259915 3972As for semantic values, there is a default action for locations that is
72d2299c 3973run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3974beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3975last symbol.
3e259915 3976
72d2299c 3977With this default action, the location tracking can be fully automatic. The
3e259915
MA
3978example above simply rewrites this way:
3979
3980@example
3981@group
3982exp: @dots{}
3983 | exp '/' exp
3984 @{
3985 if ($3)
3986 $$ = $1 / $3;
3987 else
3988 @{
3989 $$ = 1;
4e03e201
AD
3990 fprintf (stderr,
3991 "Division by zero, l%d,c%d-l%d,c%d",
3992 @@3.first_line, @@3.first_column,
3993 @@3.last_line, @@3.last_column);
3e259915
MA
3994 @}
3995 @}
3996@end group
3997@end example
847bf1f5 3998
32c29292 3999@vindex yylloc
742e4900 4000It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4001from a semantic action.
4002This location is stored in @code{yylloc}.
4003@xref{Action Features, ,Special Features for Use in Actions}.
4004
342b8b6e 4005@node Location Default Action
847bf1f5
AD
4006@subsection Default Action for Locations
4007@vindex YYLLOC_DEFAULT
8710fc41 4008@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4009
72d2299c 4010Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4011locations are much more general than semantic values, there is room in
4012the output parser to redefine the default action to take for each
72d2299c 4013rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4014matched, before the associated action is run. It is also invoked
4015while processing a syntax error, to compute the error's location.
8710fc41
JD
4016Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
4017parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4018of that ambiguity.
847bf1f5 4019
3e259915 4020Most of the time, this macro is general enough to suppress location
79282c6c 4021dedicated code from semantic actions.
847bf1f5 4022
72d2299c 4023The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4024the location of the grouping (the result of the computation). When a
766de5eb 4025rule is matched, the second parameter identifies locations of
96b93a3d 4026all right hand side elements of the rule being matched, and the third
8710fc41
JD
4027parameter is the size of the rule's right hand side.
4028When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
4029right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4030When processing a syntax error, the second parameter identifies locations
4031of the symbols that were discarded during error processing, and the third
96b93a3d 4032parameter is the number of discarded symbols.
847bf1f5 4033
766de5eb 4034By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4035
766de5eb 4036@smallexample
847bf1f5 4037@group
766de5eb
PE
4038# define YYLLOC_DEFAULT(Current, Rhs, N) \
4039 do \
4040 if (N) \
4041 @{ \
4042 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
4043 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
4044 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
4045 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
4046 @} \
4047 else \
4048 @{ \
4049 (Current).first_line = (Current).last_line = \
4050 YYRHSLOC(Rhs, 0).last_line; \
4051 (Current).first_column = (Current).last_column = \
4052 YYRHSLOC(Rhs, 0).last_column; \
4053 @} \
4054 while (0)
847bf1f5 4055@end group
766de5eb 4056@end smallexample
676385e2 4057
766de5eb
PE
4058where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4059in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4060just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4061
3e259915 4062When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4063
3e259915 4064@itemize @bullet
79282c6c 4065@item
72d2299c 4066All arguments are free of side-effects. However, only the first one (the
3e259915 4067result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4068
3e259915 4069@item
766de5eb
PE
4070For consistency with semantic actions, valid indexes within the
4071right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4072valid index, and it refers to the symbol just before the reduction.
4073During error processing @var{n} is always positive.
0ae99356
PE
4074
4075@item
4076Your macro should parenthesize its arguments, if need be, since the
4077actual arguments may not be surrounded by parentheses. Also, your
4078macro should expand to something that can be used as a single
4079statement when it is followed by a semicolon.
3e259915 4080@end itemize
847bf1f5 4081
342b8b6e 4082@node Declarations
bfa74976
RS
4083@section Bison Declarations
4084@cindex declarations, Bison
4085@cindex Bison declarations
4086
4087The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4088used in formulating the grammar and the data types of semantic values.
4089@xref{Symbols}.
4090
4091All token type names (but not single-character literal tokens such as
4092@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4093declared if you need to specify which data type to use for the semantic
4094value (@pxref{Multiple Types, ,More Than One Value Type}).
4095
4096The first rule in the file also specifies the start symbol, by default.
4097If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
4098it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
4099Grammars}).
bfa74976
RS
4100
4101@menu
b50d2359 4102* Require Decl:: Requiring a Bison version.
bfa74976
RS
4103* Token Decl:: Declaring terminal symbols.
4104* Precedence Decl:: Declaring terminals with precedence and associativity.
4105* Union Decl:: Declaring the set of all semantic value types.
4106* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4107* Initial Action Decl:: Code run before parsing starts.
72f889cc 4108* Destructor Decl:: Declaring how symbols are freed.
d6328241 4109* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4110* Start Decl:: Specifying the start symbol.
4111* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4112* Push Decl:: Requesting a push parser.
bfa74976
RS
4113* Decl Summary:: Table of all Bison declarations.
4114@end menu
4115
b50d2359
AD
4116@node Require Decl
4117@subsection Require a Version of Bison
4118@cindex version requirement
4119@cindex requiring a version of Bison
4120@findex %require
4121
4122You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4123the requirement is not met, @command{bison} exits with an error (exit
4124status 63).
b50d2359
AD
4125
4126@example
4127%require "@var{version}"
4128@end example
4129
342b8b6e 4130@node Token Decl
bfa74976
RS
4131@subsection Token Type Names
4132@cindex declaring token type names
4133@cindex token type names, declaring
931c7513 4134@cindex declaring literal string tokens
bfa74976
RS
4135@findex %token
4136
4137The basic way to declare a token type name (terminal symbol) is as follows:
4138
4139@example
4140%token @var{name}
4141@end example
4142
4143Bison will convert this into a @code{#define} directive in
4144the parser, so that the function @code{yylex} (if it is in this file)
4145can use the name @var{name} to stand for this token type's code.
4146
14ded682
AD
4147Alternatively, you can use @code{%left}, @code{%right}, or
4148@code{%nonassoc} instead of @code{%token}, if you wish to specify
4149associativity and precedence. @xref{Precedence Decl, ,Operator
4150Precedence}.
bfa74976
RS
4151
4152You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4153a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4154following the token name:
bfa74976
RS
4155
4156@example
4157%token NUM 300
1452af69 4158%token XNUM 0x12d // a GNU extension
bfa74976
RS
4159@end example
4160
4161@noindent
4162It is generally best, however, to let Bison choose the numeric codes for
4163all token types. Bison will automatically select codes that don't conflict
e966383b 4164with each other or with normal characters.
bfa74976
RS
4165
4166In the event that the stack type is a union, you must augment the
4167@code{%token} or other token declaration to include the data type
704a47c4
AD
4168alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4169Than One Value Type}).
bfa74976
RS
4170
4171For example:
4172
4173@example
4174@group
4175%union @{ /* define stack type */
4176 double val;
4177 symrec *tptr;
4178@}
4179%token <val> NUM /* define token NUM and its type */
4180@end group
4181@end example
4182
931c7513
RS
4183You can associate a literal string token with a token type name by
4184writing the literal string at the end of a @code{%token}
4185declaration which declares the name. For example:
4186
4187@example
4188%token arrow "=>"
4189@end example
4190
4191@noindent
4192For example, a grammar for the C language might specify these names with
4193equivalent literal string tokens:
4194
4195@example
4196%token <operator> OR "||"
4197%token <operator> LE 134 "<="
4198%left OR "<="
4199@end example
4200
4201@noindent
4202Once you equate the literal string and the token name, you can use them
4203interchangeably in further declarations or the grammar rules. The
4204@code{yylex} function can use the token name or the literal string to
4205obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4206Syntax error messages passed to @code{yyerror} from the parser will reference
4207the literal string instead of the token name.
4208
4209The token numbered as 0 corresponds to end of file; the following line
4210allows for nicer error messages referring to ``end of file'' instead
4211of ``$end'':
4212
4213@example
4214%token END 0 "end of file"
4215@end example
931c7513 4216
342b8b6e 4217@node Precedence Decl
bfa74976
RS
4218@subsection Operator Precedence
4219@cindex precedence declarations
4220@cindex declaring operator precedence
4221@cindex operator precedence, declaring
4222
4223Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4224declare a token and specify its precedence and associativity, all at
4225once. These are called @dfn{precedence declarations}.
704a47c4
AD
4226@xref{Precedence, ,Operator Precedence}, for general information on
4227operator precedence.
bfa74976 4228
ab7f29f8 4229The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4230@code{%token}: either
4231
4232@example
4233%left @var{symbols}@dots{}
4234@end example
4235
4236@noindent
4237or
4238
4239@example
4240%left <@var{type}> @var{symbols}@dots{}
4241@end example
4242
4243And indeed any of these declarations serves the purposes of @code{%token}.
4244But in addition, they specify the associativity and relative precedence for
4245all the @var{symbols}:
4246
4247@itemize @bullet
4248@item
4249The associativity of an operator @var{op} determines how repeated uses
4250of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4251@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4252grouping @var{y} with @var{z} first. @code{%left} specifies
4253left-associativity (grouping @var{x} with @var{y} first) and
4254@code{%right} specifies right-associativity (grouping @var{y} with
4255@var{z} first). @code{%nonassoc} specifies no associativity, which
4256means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4257considered a syntax error.
4258
4259@item
4260The precedence of an operator determines how it nests with other operators.
4261All the tokens declared in a single precedence declaration have equal
4262precedence and nest together according to their associativity.
4263When two tokens declared in different precedence declarations associate,
4264the one declared later has the higher precedence and is grouped first.
4265@end itemize
4266
ab7f29f8
JD
4267For backward compatibility, there is a confusing difference between the
4268argument lists of @code{%token} and precedence declarations.
4269Only a @code{%token} can associate a literal string with a token type name.
4270A precedence declaration always interprets a literal string as a reference to a
4271separate token.
4272For example:
4273
4274@example
4275%left OR "<=" // Does not declare an alias.
4276%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4277@end example
4278
342b8b6e 4279@node Union Decl
bfa74976
RS
4280@subsection The Collection of Value Types
4281@cindex declaring value types
4282@cindex value types, declaring
4283@findex %union
4284
287c78f6
PE
4285The @code{%union} declaration specifies the entire collection of
4286possible data types for semantic values. The keyword @code{%union} is
4287followed by braced code containing the same thing that goes inside a
4288@code{union} in C@.
bfa74976
RS
4289
4290For example:
4291
4292@example
4293@group
4294%union @{
4295 double val;
4296 symrec *tptr;
4297@}
4298@end group
4299@end example
4300
4301@noindent
4302This says that the two alternative types are @code{double} and @code{symrec
4303*}. They are given names @code{val} and @code{tptr}; these names are used
4304in the @code{%token} and @code{%type} declarations to pick one of the types
4305for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4306
6273355b
PE
4307As an extension to @acronym{POSIX}, a tag is allowed after the
4308@code{union}. For example:
4309
4310@example
4311@group
4312%union value @{
4313 double val;
4314 symrec *tptr;
4315@}
4316@end group
4317@end example
4318
d6ca7905 4319@noindent
6273355b
PE
4320specifies the union tag @code{value}, so the corresponding C type is
4321@code{union value}. If you do not specify a tag, it defaults to
4322@code{YYSTYPE}.
4323
d6ca7905
PE
4324As another extension to @acronym{POSIX}, you may specify multiple
4325@code{%union} declarations; their contents are concatenated. However,
4326only the first @code{%union} declaration can specify a tag.
4327
6273355b 4328Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4329a semicolon after the closing brace.
4330
ddc8ede1
PE
4331Instead of @code{%union}, you can define and use your own union type
4332@code{YYSTYPE} if your grammar contains at least one
4333@samp{<@var{type}>} tag. For example, you can put the following into
4334a header file @file{parser.h}:
4335
4336@example
4337@group
4338union YYSTYPE @{
4339 double val;
4340 symrec *tptr;
4341@};
4342typedef union YYSTYPE YYSTYPE;
4343@end group
4344@end example
4345
4346@noindent
4347and then your grammar can use the following
4348instead of @code{%union}:
4349
4350@example
4351@group
4352%@{
4353#include "parser.h"
4354%@}
4355%type <val> expr
4356%token <tptr> ID
4357@end group
4358@end example
4359
342b8b6e 4360@node Type Decl
bfa74976
RS
4361@subsection Nonterminal Symbols
4362@cindex declaring value types, nonterminals
4363@cindex value types, nonterminals, declaring
4364@findex %type
4365
4366@noindent
4367When you use @code{%union} to specify multiple value types, you must
4368declare the value type of each nonterminal symbol for which values are
4369used. This is done with a @code{%type} declaration, like this:
4370
4371@example
4372%type <@var{type}> @var{nonterminal}@dots{}
4373@end example
4374
4375@noindent
704a47c4
AD
4376Here @var{nonterminal} is the name of a nonterminal symbol, and
4377@var{type} is the name given in the @code{%union} to the alternative
4378that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4379can give any number of nonterminal symbols in the same @code{%type}
4380declaration, if they have the same value type. Use spaces to separate
4381the symbol names.
bfa74976 4382
931c7513
RS
4383You can also declare the value type of a terminal symbol. To do this,
4384use the same @code{<@var{type}>} construction in a declaration for the
4385terminal symbol. All kinds of token declarations allow
4386@code{<@var{type}>}.
4387
18d192f0
AD
4388@node Initial Action Decl
4389@subsection Performing Actions before Parsing
4390@findex %initial-action
4391
4392Sometimes your parser needs to perform some initializations before
4393parsing. The @code{%initial-action} directive allows for such arbitrary
4394code.
4395
4396@deffn {Directive} %initial-action @{ @var{code} @}
4397@findex %initial-action
287c78f6 4398Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4399@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4400@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4401@code{%parse-param}.
18d192f0
AD
4402@end deffn
4403
451364ed
AD
4404For instance, if your locations use a file name, you may use
4405
4406@example
48b16bbc 4407%parse-param @{ char const *file_name @};
451364ed
AD
4408%initial-action
4409@{
4626a15d 4410 @@$.initialize (file_name);
451364ed
AD
4411@};
4412@end example
4413
18d192f0 4414
72f889cc
AD
4415@node Destructor Decl
4416@subsection Freeing Discarded Symbols
4417@cindex freeing discarded symbols
4418@findex %destructor
12e35840 4419@findex <*>
3ebecc24 4420@findex <>
a85284cf
AD
4421During error recovery (@pxref{Error Recovery}), symbols already pushed
4422on the stack and tokens coming from the rest of the file are discarded
4423until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4424or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4425symbols on the stack must be discarded. Even if the parser succeeds, it
4426must discard the start symbol.
258b75ca
PE
4427
4428When discarded symbols convey heap based information, this memory is
4429lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4430in traditional compilers, it is unacceptable for programs like shells or
4431protocol implementations that may parse and execute indefinitely.
258b75ca 4432
a85284cf
AD
4433The @code{%destructor} directive defines code that is called when a
4434symbol is automatically discarded.
72f889cc
AD
4435
4436@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4437@findex %destructor
287c78f6
PE
4438Invoke the braced @var{code} whenever the parser discards one of the
4439@var{symbols}.
4b367315 4440Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4441with the discarded symbol, and @code{@@$} designates its location.
4442The additional parser parameters are also available (@pxref{Parser Function, ,
4443The Parser Function @code{yyparse}}).
ec5479ce 4444
b2a0b7ca
JD
4445When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4446per-symbol @code{%destructor}.
4447You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4448tag among @var{symbols}.
b2a0b7ca 4449In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4450grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4451per-symbol @code{%destructor}.
4452
12e35840 4453Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4454(These default forms are experimental.
4455More user feedback will help to determine whether they should become permanent
4456features.)
3ebecc24 4457You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4458exactly one @code{%destructor} declaration in your grammar file.
4459The parser will invoke the @var{code} associated with one of these whenever it
4460discards any user-defined grammar symbol that has no per-symbol and no per-type
4461@code{%destructor}.
4462The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4463symbol for which you have formally declared a semantic type tag (@code{%type}
4464counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4465The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4466symbol that has no declared semantic type tag.
72f889cc
AD
4467@end deffn
4468
b2a0b7ca 4469@noindent
12e35840 4470For example:
72f889cc
AD
4471
4472@smallexample
ec5479ce
JD
4473%union @{ char *string; @}
4474%token <string> STRING1
4475%token <string> STRING2
4476%type <string> string1
4477%type <string> string2
b2a0b7ca
JD
4478%union @{ char character; @}
4479%token <character> CHR
4480%type <character> chr
12e35840
JD
4481%token TAGLESS
4482
b2a0b7ca 4483%destructor @{ @} <character>
12e35840
JD
4484%destructor @{ free ($$); @} <*>
4485%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4486%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4487@end smallexample
4488
4489@noindent
b2a0b7ca
JD
4490guarantees that, when the parser discards any user-defined symbol that has a
4491semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4492to @code{free} by default.
ec5479ce
JD
4493However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4494prints its line number to @code{stdout}.
4495It performs only the second @code{%destructor} in this case, so it invokes
4496@code{free} only once.
12e35840
JD
4497Finally, the parser merely prints a message whenever it discards any symbol,
4498such as @code{TAGLESS}, that has no semantic type tag.
4499
4500A Bison-generated parser invokes the default @code{%destructor}s only for
4501user-defined as opposed to Bison-defined symbols.
4502For example, the parser will not invoke either kind of default
4503@code{%destructor} for the special Bison-defined symbols @code{$accept},
4504@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4505none of which you can reference in your grammar.
4506It also will not invoke either for the @code{error} token (@pxref{Table of
4507Symbols, ,error}), which is always defined by Bison regardless of whether you
4508reference it in your grammar.
4509However, it may invoke one of them for the end token (token 0) if you
4510redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4511
4512@smallexample
4513%token END 0
4514@end smallexample
4515
12e35840
JD
4516@cindex actions in mid-rule
4517@cindex mid-rule actions
4518Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4519mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4520That is, Bison does not consider a mid-rule to have a semantic value if you do
4521not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4522@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4523rule.
4524However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4525@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4526
3508ce36
JD
4527@ignore
4528@noindent
4529In the future, it may be possible to redefine the @code{error} token as a
4530nonterminal that captures the discarded symbols.
4531In that case, the parser will invoke the default destructor for it as well.
4532@end ignore
4533
e757bb10
AD
4534@sp 1
4535
4536@cindex discarded symbols
4537@dfn{Discarded symbols} are the following:
4538
4539@itemize
4540@item
4541stacked symbols popped during the first phase of error recovery,
4542@item
4543incoming terminals during the second phase of error recovery,
4544@item
742e4900 4545the current lookahead and the entire stack (except the current
9d9b8b70 4546right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4547@item
4548the start symbol, when the parser succeeds.
e757bb10
AD
4549@end itemize
4550
9d9b8b70
PE
4551The parser can @dfn{return immediately} because of an explicit call to
4552@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4553exhaustion.
4554
29553547 4555Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4556error via @code{YYERROR} are not discarded automatically. As a rule
4557of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4558the memory.
e757bb10 4559
342b8b6e 4560@node Expect Decl
bfa74976
RS
4561@subsection Suppressing Conflict Warnings
4562@cindex suppressing conflict warnings
4563@cindex preventing warnings about conflicts
4564@cindex warnings, preventing
4565@cindex conflicts, suppressing warnings of
4566@findex %expect
d6328241 4567@findex %expect-rr
bfa74976
RS
4568
4569Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4570(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4571have harmless shift/reduce conflicts which are resolved in a predictable
4572way and would be difficult to eliminate. It is desirable to suppress
4573the warning about these conflicts unless the number of conflicts
4574changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4575
4576The declaration looks like this:
4577
4578@example
4579%expect @var{n}
4580@end example
4581
035aa4a0
PE
4582Here @var{n} is a decimal integer. The declaration says there should
4583be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4584Bison reports an error if the number of shift/reduce conflicts differs
4585from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4586
34a6c2d1 4587For deterministic parsers, reduce/reduce conflicts are more
035aa4a0
PE
4588serious, and should be eliminated entirely. Bison will always report
4589reduce/reduce conflicts for these parsers. With @acronym{GLR}
4590parsers, however, both kinds of conflicts are routine; otherwise,
4591there would be no need to use @acronym{GLR} parsing. Therefore, it is
4592also possible to specify an expected number of reduce/reduce conflicts
4593in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4594
4595@example
4596%expect-rr @var{n}
4597@end example
4598
bfa74976
RS
4599In general, using @code{%expect} involves these steps:
4600
4601@itemize @bullet
4602@item
4603Compile your grammar without @code{%expect}. Use the @samp{-v} option
4604to get a verbose list of where the conflicts occur. Bison will also
4605print the number of conflicts.
4606
4607@item
4608Check each of the conflicts to make sure that Bison's default
4609resolution is what you really want. If not, rewrite the grammar and
4610go back to the beginning.
4611
4612@item
4613Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4614number which Bison printed. With @acronym{GLR} parsers, add an
4615@code{%expect-rr} declaration as well.
bfa74976
RS
4616@end itemize
4617
cf22447c
JD
4618Now Bison will report an error if you introduce an unexpected conflict,
4619but will keep silent otherwise.
bfa74976 4620
342b8b6e 4621@node Start Decl
bfa74976
RS
4622@subsection The Start-Symbol
4623@cindex declaring the start symbol
4624@cindex start symbol, declaring
4625@cindex default start symbol
4626@findex %start
4627
4628Bison assumes by default that the start symbol for the grammar is the first
4629nonterminal specified in the grammar specification section. The programmer
4630may override this restriction with the @code{%start} declaration as follows:
4631
4632@example
4633%start @var{symbol}
4634@end example
4635
342b8b6e 4636@node Pure Decl
bfa74976
RS
4637@subsection A Pure (Reentrant) Parser
4638@cindex reentrant parser
4639@cindex pure parser
d9df47b6 4640@findex %define api.pure
bfa74976
RS
4641
4642A @dfn{reentrant} program is one which does not alter in the course of
4643execution; in other words, it consists entirely of @dfn{pure} (read-only)
4644code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4645for example, a nonreentrant program may not be safe to call from a signal
4646handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4647program must be called only within interlocks.
4648
70811b85 4649Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4650suitable for most uses, and it permits compatibility with Yacc. (The
4651standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4652statically allocated variables for communication with @code{yylex},
4653including @code{yylval} and @code{yylloc}.)
bfa74976 4654
70811b85 4655Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4656declaration @code{%define api.pure} says that you want the parser to be
70811b85 4657reentrant. It looks like this:
bfa74976
RS
4658
4659@example
d9df47b6 4660%define api.pure
bfa74976
RS
4661@end example
4662
70811b85
RS
4663The result is that the communication variables @code{yylval} and
4664@code{yylloc} become local variables in @code{yyparse}, and a different
4665calling convention is used for the lexical analyzer function
4666@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4667Parsers}, for the details of this. The variable @code{yynerrs}
4668becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4669of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4670Reporting Function @code{yyerror}}). The convention for calling
4671@code{yyparse} itself is unchanged.
4672
4673Whether the parser is pure has nothing to do with the grammar rules.
4674You can generate either a pure parser or a nonreentrant parser from any
4675valid grammar.
bfa74976 4676
9987d1b3
JD
4677@node Push Decl
4678@subsection A Push Parser
4679@cindex push parser
4680@cindex push parser
812775a0 4681@findex %define api.push-pull
9987d1b3 4682
59da312b
JD
4683(The current push parsing interface is experimental and may evolve.
4684More user feedback will help to stabilize it.)
4685
f4101aa6
AD
4686A pull parser is called once and it takes control until all its input
4687is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4688each time a new token is made available.
4689
f4101aa6 4690A push parser is typically useful when the parser is part of a
9987d1b3 4691main event loop in the client's application. This is typically
f4101aa6
AD
4692a requirement of a GUI, when the main event loop needs to be triggered
4693within a certain time period.
9987d1b3 4694
d782395d
JD
4695Normally, Bison generates a pull parser.
4696The following Bison declaration says that you want the parser to be a push
812775a0 4697parser (@pxref{Decl Summary,,%define api.push-pull}):
9987d1b3
JD
4698
4699@example
f37495f6 4700%define api.push-pull push
9987d1b3
JD
4701@end example
4702
4703In almost all cases, you want to ensure that your push parser is also
4704a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4705time you should create an impure push parser is to have backwards
9987d1b3
JD
4706compatibility with the impure Yacc pull mode interface. Unless you know
4707what you are doing, your declarations should look like this:
4708
4709@example
d9df47b6 4710%define api.pure
f37495f6 4711%define api.push-pull push
9987d1b3
JD
4712@end example
4713
f4101aa6
AD
4714There is a major notable functional difference between the pure push parser
4715and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4716many parser instances, of the same type of parser, in memory at the same time.
4717An impure push parser should only use one parser at a time.
4718
4719When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4720the generated parser. @code{yypstate} is a structure that the generated
4721parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4722function that will create a new parser instance. @code{yypstate_delete}
4723will free the resources associated with the corresponding parser instance.
f4101aa6 4724Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4725token is available to provide the parser. A trivial example
4726of using a pure push parser would look like this:
4727
4728@example
4729int status;
4730yypstate *ps = yypstate_new ();
4731do @{
4732 status = yypush_parse (ps, yylex (), NULL);
4733@} while (status == YYPUSH_MORE);
4734yypstate_delete (ps);
4735@end example
4736
4737If the user decided to use an impure push parser, a few things about
f4101aa6 4738the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4739a global variable instead of a variable in the @code{yypush_parse} function.
4740For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4741changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4742example would thus look like this:
4743
4744@example
4745extern int yychar;
4746int status;
4747yypstate *ps = yypstate_new ();
4748do @{
4749 yychar = yylex ();
4750 status = yypush_parse (ps);
4751@} while (status == YYPUSH_MORE);
4752yypstate_delete (ps);
4753@end example
4754
f4101aa6 4755That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4756for use by the next invocation of the @code{yypush_parse} function.
4757
f4101aa6 4758Bison also supports both the push parser interface along with the pull parser
9987d1b3 4759interface in the same generated parser. In order to get this functionality,
f37495f6
JD
4760you should replace the @code{%define api.push-pull push} declaration with the
4761@code{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4762the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4763and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4764would be used. However, the user should note that it is implemented in the
d782395d
JD
4765generated parser by calling @code{yypull_parse}.
4766This makes the @code{yyparse} function that is generated with the
f37495f6 4767@code{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4768@code{yyparse} function. If the user
4769calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4770stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4771and then @code{yypull_parse} the rest of the input stream. If you would like
4772to switch back and forth between between parsing styles, you would have to
4773write your own @code{yypull_parse} function that knows when to quit looking
4774for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4775like this:
4776
4777@example
4778yypstate *ps = yypstate_new ();
4779yypull_parse (ps); /* Will call the lexer */
4780yypstate_delete (ps);
4781@end example
4782
d9df47b6 4783Adding the @code{%define api.pure} declaration does exactly the same thing to
f37495f6
JD
4784the generated parser with @code{%define api.push-pull both} as it did for
4785@code{%define api.push-pull push}.
9987d1b3 4786
342b8b6e 4787@node Decl Summary
bfa74976
RS
4788@subsection Bison Declaration Summary
4789@cindex Bison declaration summary
4790@cindex declaration summary
4791@cindex summary, Bison declaration
4792
d8988b2f 4793Here is a summary of the declarations used to define a grammar:
bfa74976 4794
18b519c0 4795@deffn {Directive} %union
bfa74976
RS
4796Declare the collection of data types that semantic values may have
4797(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4798@end deffn
bfa74976 4799
18b519c0 4800@deffn {Directive} %token
bfa74976
RS
4801Declare a terminal symbol (token type name) with no precedence
4802or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4803@end deffn
bfa74976 4804
18b519c0 4805@deffn {Directive} %right
bfa74976
RS
4806Declare a terminal symbol (token type name) that is right-associative
4807(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4808@end deffn
bfa74976 4809
18b519c0 4810@deffn {Directive} %left
bfa74976
RS
4811Declare a terminal symbol (token type name) that is left-associative
4812(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4813@end deffn
bfa74976 4814
18b519c0 4815@deffn {Directive} %nonassoc
bfa74976 4816Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4817(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4818Using it in a way that would be associative is a syntax error.
4819@end deffn
4820
91d2c560 4821@ifset defaultprec
39a06c25 4822@deffn {Directive} %default-prec
22fccf95 4823Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4824(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4825@end deffn
91d2c560 4826@end ifset
bfa74976 4827
18b519c0 4828@deffn {Directive} %type
bfa74976
RS
4829Declare the type of semantic values for a nonterminal symbol
4830(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4831@end deffn
bfa74976 4832
18b519c0 4833@deffn {Directive} %start
89cab50d
AD
4834Specify the grammar's start symbol (@pxref{Start Decl, ,The
4835Start-Symbol}).
18b519c0 4836@end deffn
bfa74976 4837
18b519c0 4838@deffn {Directive} %expect
bfa74976
RS
4839Declare the expected number of shift-reduce conflicts
4840(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4841@end deffn
4842
bfa74976 4843
d8988b2f
AD
4844@sp 1
4845@noindent
4846In order to change the behavior of @command{bison}, use the following
4847directives:
4848
148d66d8
JD
4849@deffn {Directive} %code @{@var{code}@}
4850@findex %code
4851This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4852It inserts @var{code} verbatim at a language-dependent default location in the
4853output@footnote{The default location is actually skeleton-dependent;
4854 writers of non-standard skeletons however should choose the default location
4855 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4856
4857@cindex Prologue
8405b70c 4858For C/C++, the default location is the parser source code
148d66d8
JD
4859file after the usual contents of the parser header file.
4860Thus, @code{%code} replaces the traditional Yacc prologue,
4861@code{%@{@var{code}%@}}, for most purposes.
4862For a detailed discussion, see @ref{Prologue Alternatives}.
4863
8405b70c 4864For Java, the default location is inside the parser class.
148d66d8
JD
4865@end deffn
4866
4867@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4868This is the qualified form of the @code{%code} directive.
4869If you need to specify location-sensitive verbatim @var{code} that does not
4870belong at the default location selected by the unqualified @code{%code} form,
4871use this form instead.
4872
4873@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4874where Bison should generate it.
628be6c9
JD
4875Not all @var{qualifier}s are accepted for all target languages.
4876Unaccepted @var{qualifier}s produce an error.
4877Some of the accepted @var{qualifier}s are:
148d66d8
JD
4878
4879@itemize @bullet
148d66d8 4880@item requires
793fbca5 4881@findex %code requires
148d66d8
JD
4882
4883@itemize @bullet
4884@item Language(s): C, C++
4885
4886@item Purpose: This is the best place to write dependency code required for
4887@code{YYSTYPE} and @code{YYLTYPE}.
4888In other words, it's the best place to define types referenced in @code{%union}
4889directives, and it's the best place to override Bison's default @code{YYSTYPE}
4890and @code{YYLTYPE} definitions.
4891
4892@item Location(s): The parser header file and the parser source code file
4893before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
4894@end itemize
4895
4896@item provides
4897@findex %code provides
4898
4899@itemize @bullet
4900@item Language(s): C, C++
4901
4902@item Purpose: This is the best place to write additional definitions and
4903declarations that should be provided to other modules.
4904
4905@item Location(s): The parser header file and the parser source code file after
4906the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
4907@end itemize
4908
4909@item top
4910@findex %code top
4911
4912@itemize @bullet
4913@item Language(s): C, C++
4914
4915@item Purpose: The unqualified @code{%code} or @code{%code requires} should
4916usually be more appropriate than @code{%code top}.
4917However, occasionally it is necessary to insert code much nearer the top of the
4918parser source code file.
4919For example:
4920
4921@smallexample
4922%code top @{
4923 #define _GNU_SOURCE
4924 #include <stdio.h>
4925@}
4926@end smallexample
4927
4928@item Location(s): Near the top of the parser source code file.
4929@end itemize
8405b70c 4930
148d66d8
JD
4931@item imports
4932@findex %code imports
4933
4934@itemize @bullet
4935@item Language(s): Java
4936
4937@item Purpose: This is the best place to write Java import directives.
4938
4939@item Location(s): The parser Java file after any Java package directive and
4940before any class definitions.
4941@end itemize
148d66d8
JD
4942@end itemize
4943
148d66d8
JD
4944@cindex Prologue
4945For a detailed discussion of how to use @code{%code} in place of the
4946traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
4947@end deffn
4948
18b519c0 4949@deffn {Directive} %debug
4947ebdb
PE
4950In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4951already defined, so that the debugging facilities are compiled.
ec3bc396 4952@xref{Tracing, ,Tracing Your Parser}.
bd5df716 4953@end deffn
d8988b2f 4954
c1d19e10 4955@deffn {Directive} %define @var{variable}
f37495f6 4956@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 4957@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2 4958Define a variable to adjust Bison's behavior.
9611cfa2 4959
e3a33f7c 4960It is an error if a @var{variable} is defined by @code{%define} multiple
c33bc800 4961times, but see @ref{Bison Options,,-D @var{name}[=@var{value}]}.
9611cfa2 4962
f37495f6
JD
4963@var{value} must be placed in quotation marks if it contains any
4964character other than a letter, underscore, period, dash, or non-initial
4965digit.
4966
4967Omitting @code{"@var{value}"} entirely is always equivalent to specifying
9611cfa2
JD
4968@code{""}.
4969
628be6c9 4970Some @var{variable}s take Boolean values.
9611cfa2
JD
4971In this case, Bison will complain if the variable definition does not meet one
4972of the following four conditions:
4973
4974@enumerate
f37495f6 4975@item @code{@var{value}} is @code{true}
9611cfa2 4976
f37495f6
JD
4977@item @code{@var{value}} is omitted (or @code{""} is specified).
4978This is equivalent to @code{true}.
9611cfa2 4979
f37495f6 4980@item @code{@var{value}} is @code{false}.
9611cfa2
JD
4981
4982@item @var{variable} is never defined.
628be6c9 4983In this case, Bison selects a default value.
9611cfa2 4984@end enumerate
148d66d8 4985
628be6c9
JD
4986What @var{variable}s are accepted, as well as their meanings and default
4987values, depend on the selected target language and/or the parser
4988skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
4989Summary,,%skeleton}).
4990Unaccepted @var{variable}s produce an error.
793fbca5
JD
4991Some of the accepted @var{variable}s are:
4992
4993@itemize @bullet
d9df47b6
JD
4994@item api.pure
4995@findex %define api.pure
4996
4997@itemize @bullet
4998@item Language(s): C
4999
5000@item Purpose: Request a pure (reentrant) parser program.
5001@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5002
5003@item Accepted Values: Boolean
5004
f37495f6 5005@item Default Value: @code{false}
d9df47b6
JD
5006@end itemize
5007
812775a0
JD
5008@item api.push-pull
5009@findex %define api.push-pull
793fbca5
JD
5010
5011@itemize @bullet
34a6c2d1 5012@item Language(s): C (deterministic parsers only)
793fbca5 5013
3b1977ea 5014@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5015@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5016(The current push parsing interface is experimental and may evolve.
5017More user feedback will help to stabilize it.)
793fbca5 5018
f37495f6 5019@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5020
f37495f6 5021@item Default Value: @code{pull}
793fbca5
JD
5022@end itemize
5023
232be91a
AD
5024@c ================================================== lr.default-reductions
5025
1d0f55cc 5026@item lr.default-reductions
620b5727 5027@cindex default reductions
1d0f55cc 5028@findex %define lr.default-reductions
34a6c2d1
JD
5029@cindex delayed syntax errors
5030@cindex syntax errors delayed
4c38b19e
JD
5031@cindex @acronym{LAC}
5032@findex %nonassoc
34a6c2d1
JD
5033
5034@itemize @bullet
5035@item Language(s): all
5036
4c38b19e 5037@item Purpose: Specify the kind of states that are permitted to
620b5727 5038contain default reductions.
4c38b19e
JD
5039That is, in such a state, Bison selects the reduction with the largest
5040lookahead set to be the default parser action and then removes that
620b5727 5041lookahead set.
4c38b19e
JD
5042(The ability to specify where default reductions should be used is
5043experimental.
34a6c2d1
JD
5044More user feedback will help to stabilize it.)
5045
5046@item Accepted Values:
5047@itemize
f37495f6 5048@item @code{all}.
4c38b19e
JD
5049This is the traditional Bison behavior.
5050The main advantage is a significant decrease in the size of the parser
5051tables.
5052The disadvantage is that, when the generated parser encounters a
5053syntactically unacceptable token, the parser might then perform
5054unnecessary default reductions before it can detect the syntax error.
5055Such delayed syntax error detection is usually inherent in
5056@acronym{LALR} and @acronym{IELR} parser tables anyway due to
5057@acronym{LR} state merging (@pxref{Decl Summary,,lr.type}).
5058Furthermore, the use of @code{%nonassoc} can contribute to delayed
5059syntax error detection even in the case of canonical @acronym{LR}.
5060As an experimental feature, delayed syntax error detection can be
5061overcome in all cases by enabling @acronym{LAC} (@pxref{Decl
5062Summary,,parse.lac}, for details, including a discussion of the effects
5063of delayed syntax error detection).
34a6c2d1 5064
f37495f6 5065@item @code{consistent}.
34a6c2d1
JD
5066@cindex consistent states
5067A consistent state is a state that has only one possible action.
5068If that action is a reduction, then the parser does not need to request
5069a lookahead token from the scanner before performing that action.
4c38b19e
JD
5070However, the parser recognizes the ability to ignore the lookahead token
5071in this way only when such a reduction is encoded as a default
5072reduction.
5073Thus, if default reductions are permitted only in consistent states,
5074then a canonical @acronym{LR} parser that does not employ
5075@code{%nonassoc} detects a syntax error as soon as it @emph{needs} the
5076syntactically unacceptable token from the scanner.
34a6c2d1 5077
f37495f6 5078@item @code{accepting}.
34a6c2d1 5079@cindex accepting state
4c38b19e
JD
5080In the accepting state, the default reduction is actually the accept
5081action.
5082In this case, a canonical @acronym{LR} parser that does not employ
5083@code{%nonassoc} detects a syntax error as soon as it @emph{reaches} the
5084syntactically unacceptable token in the input.
5085That is, it does not perform any extra reductions.
34a6c2d1
JD
5086@end itemize
5087
5088@item Default Value:
5089@itemize
f37495f6
JD
5090@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
5091@item @code{all} otherwise.
34a6c2d1
JD
5092@end itemize
5093@end itemize
5094
232be91a
AD
5095@c ============================================ lr.keep-unreachable-states
5096
812775a0
JD
5097@item lr.keep-unreachable-states
5098@findex %define lr.keep-unreachable-states
31984206
JD
5099
5100@itemize @bullet
5101@item Language(s): all
5102
3b1977ea
JD
5103@item Purpose: Request that Bison allow unreachable parser states to
5104remain in the parser tables.
31984206
JD
5105Bison considers a state to be unreachable if there exists no sequence of
5106transitions from the start state to that state.
5107A state can become unreachable during conflict resolution if Bison disables a
5108shift action leading to it from a predecessor state.
5109Keeping unreachable states is sometimes useful for analysis purposes, but they
5110are useless in the generated parser.
5111
5112@item Accepted Values: Boolean
5113
f37495f6 5114@item Default Value: @code{false}
31984206
JD
5115
5116@item Caveats:
5117
5118@itemize @bullet
cff03fb2
JD
5119
5120@item Unreachable states may contain conflicts and may use rules not used in
5121any other state.
31984206
JD
5122Thus, keeping unreachable states may induce warnings that are irrelevant to
5123your parser's behavior, and it may eliminate warnings that are relevant.
5124Of course, the change in warnings may actually be relevant to a parser table
5125analysis that wants to keep unreachable states, so this behavior will likely
5126remain in future Bison releases.
5127
5128@item While Bison is able to remove unreachable states, it is not guaranteed to
5129remove other kinds of useless states.
5130Specifically, when Bison disables reduce actions during conflict resolution,
5131some goto actions may become useless, and thus some additional states may
5132become useless.
5133If Bison were to compute which goto actions were useless and then disable those
5134actions, it could identify such states as unreachable and then remove those
5135states.
5136However, Bison does not compute which goto actions are useless.
5137@end itemize
5138@end itemize
5139
232be91a
AD
5140@c ================================================== lr.type
5141
34a6c2d1
JD
5142@item lr.type
5143@findex %define lr.type
5144@cindex @acronym{LALR}
5145@cindex @acronym{IELR}
5146@cindex @acronym{LR}
5147
5148@itemize @bullet
5149@item Language(s): all
5150
3b1977ea 5151@item Purpose: Specify the type of parser tables within the
34a6c2d1
JD
5152@acronym{LR}(1) family.
5153(This feature is experimental.
5154More user feedback will help to stabilize it.)
5155
5156@item Accepted Values:
5157@itemize
f37495f6 5158@item @code{lalr}.
34a6c2d1
JD
5159While Bison generates @acronym{LALR} parser tables by default for
5160historical reasons, @acronym{IELR} or canonical @acronym{LR} is almost
5161always preferable for deterministic parsers.
5162The trouble is that @acronym{LALR} parser tables can suffer from
620b5727
JD
5163mysterious conflicts and thus may not accept the full set of sentences
5164that @acronym{IELR} and canonical @acronym{LR} accept.
34a6c2d1
JD
5165@xref{Mystery Conflicts}, for details.
5166However, there are at least two scenarios where @acronym{LALR} may be
5167worthwhile:
5168@itemize
5169@cindex @acronym{GLR} with @acronym{LALR}
5170@item When employing @acronym{GLR} parsers (@pxref{GLR Parsers}), if you
5171do not resolve any conflicts statically (for example, with @code{%left}
5172or @code{%prec}), then the parser explores all potential parses of any
5173given input.
620b5727
JD
5174In this case, the use of @acronym{LALR} parser tables is guaranteed not
5175to alter the language accepted by the parser.
34a6c2d1
JD
5176@acronym{LALR} parser tables are the smallest parser tables Bison can
5177currently generate, so they may be preferable.
3b1977ea
JD
5178Nevertheless, once you begin to resolve conflicts statically,
5179@acronym{GLR} begins to behave more like a deterministic parser, and so
5180@acronym{IELR} and canonical @acronym{LR} can be helpful to avoid
5181@acronym{LALR}'s mysterious behavior.
34a6c2d1
JD
5182
5183@item Occasionally during development, an especially malformed grammar
5184with a major recurring flaw may severely impede the @acronym{IELR} or
5185canonical @acronym{LR} parser table generation algorithm.
5186@acronym{LALR} can be a quick way to generate parser tables in order to
5187investigate such problems while ignoring the more subtle differences
5188from @acronym{IELR} and canonical @acronym{LR}.
5189@end itemize
5190
f37495f6 5191@item @code{ielr}.
34a6c2d1
JD
5192@acronym{IELR} is a minimal @acronym{LR} algorithm.
5193That is, given any grammar (@acronym{LR} or non-@acronym{LR}),
5194@acronym{IELR} and canonical @acronym{LR} always accept exactly the same
5195set of sentences.
5196However, as for @acronym{LALR}, the number of parser states is often an
5197order of magnitude less for @acronym{IELR} than for canonical
5198@acronym{LR}.
5199More importantly, because canonical @acronym{LR}'s extra parser states
5200may contain duplicate conflicts in the case of non-@acronym{LR}
5201grammars, the number of conflicts for @acronym{IELR} is often an order
5202of magnitude less as well.
5203This can significantly reduce the complexity of developing of a grammar.
5204
f37495f6 5205@item @code{canonical-lr}.
34a6c2d1
JD
5206@cindex delayed syntax errors
5207@cindex syntax errors delayed
4c38b19e
JD
5208@cindex @acronym{LAC}
5209@findex %nonassoc
5210While inefficient, canonical @acronym{LR} parser tables can be an
5211interesting means to explore a grammar because they have a property that
5212@acronym{IELR} and @acronym{LALR} tables do not.
5213That is, if @code{%nonassoc} is not used and default reductions are left
5214disabled (@pxref{Decl Summary,,lr.default-reductions}), then, for every
5215left context of every canonical @acronym{LR} state, the set of tokens
5216accepted by that state is guaranteed to be the exact set of tokens that
5217is syntactically acceptable in that left context.
5218It might then seem that an advantage of canonical @acronym{LR} parsers
5219in production is that, under the above constraints, they are guaranteed
5220to detect a syntax error as soon as possible without performing any
5221unnecessary reductions.
5222However, @acronym{IELR} parsers using @acronym{LAC} (@pxref{Decl
5223Summary,,parse.lac}) are also able to achieve this behavior without
5224sacrificing @code{%nonassoc} or default reductions.
34a6c2d1
JD
5225@end itemize
5226
f37495f6 5227@item Default Value: @code{lalr}
34a6c2d1
JD
5228@end itemize
5229
793fbca5
JD
5230@item namespace
5231@findex %define namespace
5232
5233@itemize
5234@item Languages(s): C++
5235
3b1977ea 5236@item Purpose: Specify the namespace for the parser class.
793fbca5
JD
5237For example, if you specify:
5238
5239@smallexample
5240%define namespace "foo::bar"
5241@end smallexample
5242
5243Bison uses @code{foo::bar} verbatim in references such as:
5244
5245@smallexample
5246foo::bar::parser::semantic_type
5247@end smallexample
5248
5249However, to open a namespace, Bison removes any leading @code{::} and then
5250splits on any remaining occurrences:
5251
5252@smallexample
5253namespace foo @{ namespace bar @{
5254 class position;
5255 class location;
5256@} @}
5257@end smallexample
5258
5259@item Accepted Values: Any absolute or relative C++ namespace reference without
5260a trailing @code{"::"}.
5261For example, @code{"foo"} or @code{"::foo::bar"}.
5262
5263@item Default Value: The value specified by @code{%name-prefix}, which defaults
5264to @code{yy}.
5265This usage of @code{%name-prefix} is for backward compatibility and can be
5266confusing since @code{%name-prefix} also specifies the textual prefix for the
5267lexical analyzer function.
5268Thus, if you specify @code{%name-prefix}, it is best to also specify
5269@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
5270lexical analyzer function.
5271For example, if you specify:
5272
5273@smallexample
5274%define namespace "foo"
5275%name-prefix "bar::"
5276@end smallexample
5277
5278The parser namespace is @code{foo} and @code{yylex} is referenced as
5279@code{bar::lex}.
5280@end itemize
4c38b19e
JD
5281
5282@c ================================================== parse.lac
5283@item parse.lac
5284@findex %define parse.lac
5285@cindex @acronym{LAC}
5286@cindex lookahead correction
5287
5288@itemize
5289@item Languages(s): C
5290
5291@item Purpose: Enable @acronym{LAC} (lookahead correction) to improve
5292syntax error handling.
5293
5294Canonical @acronym{LR}, @acronym{IELR}, and @acronym{LALR} can suffer
5295from a couple of problems upon encountering a syntax error. First, the
5296parser might perform additional parser stack reductions before
5297discovering the syntax error. Such reductions perform user semantic
5298actions that are unexpected because they are based on an invalid token,
5299and they cause error recovery to begin in a different syntactic context
5300than the one in which the invalid token was encountered. Second, when
5301verbose error messages are enabled (with @code{%error-verbose} or
5302@code{#define YYERROR_VERBOSE}), the expected token list in the syntax
5303error message can both contain invalid tokens and omit valid tokens.
5304
5305The culprits for the above problems are @code{%nonassoc}, default
5306reductions in inconsistent states, and parser state merging. Thus,
5307@acronym{IELR} and @acronym{LALR} suffer the most. Canonical
5308@acronym{LR} can suffer only if @code{%nonassoc} is used or if default
5309reductions are enabled for inconsistent states.
5310
5311@acronym{LAC} is a new mechanism within the parsing algorithm that
5312completely solves these problems for canonical @acronym{LR},
5313@acronym{IELR}, and @acronym{LALR} without sacrificing @code{%nonassoc},
5314default reductions, or state mering. Conceptually, the mechanism is
5315straight-forward. Whenever the parser fetches a new token from the
5316scanner so that it can determine the next parser action, it immediately
5317suspends normal parsing and performs an exploratory parse using a
5318temporary copy of the normal parser state stack. During this
5319exploratory parse, the parser does not perform user semantic actions.
5320If the exploratory parse reaches a shift action, normal parsing then
5321resumes on the normal parser stacks. If the exploratory parse reaches
5322an error instead, the parser reports a syntax error. If verbose syntax
5323error messages are enabled, the parser must then discover the list of
5324expected tokens, so it performs a separate exploratory parse for each
5325token in the grammar.
5326
5327There is one subtlety about the use of @acronym{LAC}. That is, when in
5328a consistent parser state with a default reduction, the parser will not
5329attempt to fetch a token from the scanner because no lookahead is needed
5330to determine the next parser action. Thus, whether default reductions
5331are enabled in consistent states (@pxref{Decl
5332Summary,,lr.default-reductions}) affects how soon the parser detects a
5333syntax error: when it @emph{reaches} an erroneous token or when it
5334eventually @emph{needs} that token as a lookahead. The latter behavior
5335is probably more intuitive, so Bison currently provides no way to
5336achieve the former behavior while default reductions are fully enabled.
5337
5338Thus, when @acronym{LAC} is in use, for some fixed decision of whether
5339to enable default reductions in consistent states, canonical
5340@acronym{LR} and @acronym{IELR} behave exactly the same for both
5341syntactically acceptable and syntactically unacceptable input. While
5342@acronym{LALR} still does not support the full language-recognition
5343power of canonical @acronym{LR} and @acronym{IELR}, @acronym{LAC} at
5344least enables @acronym{LALR}'s syntax error handling to correctly
5345reflect @acronym{LALR}'s language-recognition power.
5346
5347Because @acronym{LAC} requires many parse actions to be performed twice,
5348it can have a performance penalty. However, not all parse actions must
5349be performed twice. Specifically, during a series of default reductions
5350in consistent states and shift actions, the parser never has to initiate
5351an exploratory parse. Moreover, the most time-consuming tasks in a
5352parse are often the file I/O, the lexical analysis performed by the
5353scanner, and the user's semantic actions, but none of these are
5354performed during the exploratory parse. Finally, the base of the
5355temporary stack used during an exploratory parse is a pointer into the
5356normal parser state stack so that the stack is never physically copied.
5357In our experience, the performance penalty of @acronym{LAC} has proven
5358insignificant for practical grammars.
5359
5360@item Accepted Values: @code{none}, @code{full}
5361
5362@item Default Value: @code{none}
5363@end itemize
793fbca5
JD
5364@end itemize
5365
d782395d
JD
5366@end deffn
5367
18b519c0 5368@deffn {Directive} %defines
4bfd5e4e
PE
5369Write a header file containing macro definitions for the token type
5370names defined in the grammar as well as a few other declarations.
d8988b2f 5371If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 5372is named @file{@var{name}.h}.
d8988b2f 5373
b321737f 5374For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
5375@code{YYSTYPE} is already defined as a macro or you have used a
5376@code{<@var{type}>} tag without using @code{%union}.
5377Therefore, if you are using a @code{%union}
f8e1c9e5
AD
5378(@pxref{Multiple Types, ,More Than One Value Type}) with components that
5379require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 5380or type definition
f8e1c9e5
AD
5381(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
5382arrange for these definitions to be propagated to all modules, e.g., by
5383putting them in a prerequisite header that is included both by your
5384parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
5385
5386Unless your parser is pure, the output header declares @code{yylval}
5387as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
5388Parser}.
5389
5390If you have also used locations, the output header declares
5391@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 5392the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
5393Locations}.
5394
f8e1c9e5
AD
5395This output file is normally essential if you wish to put the definition
5396of @code{yylex} in a separate source file, because @code{yylex}
5397typically needs to be able to refer to the above-mentioned declarations
5398and to the token type codes. @xref{Token Values, ,Semantic Values of
5399Tokens}.
9bc0dd67 5400
16dc6a9e
JD
5401@findex %code requires
5402@findex %code provides
5403If you have declared @code{%code requires} or @code{%code provides}, the output
5404header also contains their code.
148d66d8 5405@xref{Decl Summary, ,%code}.
592d0b1e
PB
5406@end deffn
5407
02975b9a
JD
5408@deffn {Directive} %defines @var{defines-file}
5409Same as above, but save in the file @var{defines-file}.
5410@end deffn
5411
18b519c0 5412@deffn {Directive} %destructor
258b75ca 5413Specify how the parser should reclaim the memory associated to
fa7e68c3 5414discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 5415@end deffn
72f889cc 5416
02975b9a 5417@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
5418Specify a prefix to use for all Bison output file names. The names are
5419chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 5420@end deffn
d8988b2f 5421
e6e704dc 5422@deffn {Directive} %language "@var{language}"
0e021770 5423Specify the programming language for the generated parser. Currently
59da312b 5424supported languages include C, C++, and Java.
e6e704dc 5425@var{language} is case-insensitive.
ed4d67dc
JD
5426
5427This directive is experimental and its effect may be modified in future
5428releases.
0e021770
PE
5429@end deffn
5430
18b519c0 5431@deffn {Directive} %locations
89cab50d
AD
5432Generate the code processing the locations (@pxref{Action Features,
5433,Special Features for Use in Actions}). This mode is enabled as soon as
5434the grammar uses the special @samp{@@@var{n}} tokens, but if your
5435grammar does not use it, using @samp{%locations} allows for more
6e649e65 5436accurate syntax error messages.
18b519c0 5437@end deffn
89cab50d 5438
02975b9a 5439@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5440Rename the external symbols used in the parser so that they start with
5441@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5442in C parsers
d8988b2f 5443is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5444@code{yylval}, @code{yychar}, @code{yydebug}, and
f4101aa6
AD
5445(if locations are used) @code{yylloc}. If you use a push parser,
5446@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5447@code{yypstate_new} and @code{yypstate_delete} will
5448also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5
JD
5449names become @code{c_parse}, @code{c_lex}, and so on.
5450For C++ parsers, see the @code{%define namespace} documentation in this
5451section.
aa08666d 5452@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5453@end deffn
931c7513 5454
91d2c560 5455@ifset defaultprec
22fccf95
PE
5456@deffn {Directive} %no-default-prec
5457Do not assign a precedence to rules lacking an explicit @code{%prec}
5458modifier (@pxref{Contextual Precedence, ,Context-Dependent
5459Precedence}).
5460@end deffn
91d2c560 5461@end ifset
22fccf95 5462
18b519c0 5463@deffn {Directive} %no-lines
931c7513
RS
5464Don't generate any @code{#line} preprocessor commands in the parser
5465file. Ordinarily Bison writes these commands in the parser file so that
5466the C compiler and debuggers will associate errors and object code with
5467your source file (the grammar file). This directive causes them to
5468associate errors with the parser file, treating it an independent source
5469file in its own right.
18b519c0 5470@end deffn
931c7513 5471
02975b9a 5472@deffn {Directive} %output "@var{file}"
fa4d969f 5473Specify @var{file} for the parser file.
18b519c0 5474@end deffn
6deb4447 5475
18b519c0 5476@deffn {Directive} %pure-parser
d9df47b6
JD
5477Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
5478for which Bison is more careful to warn about unreasonable usage.
18b519c0 5479@end deffn
6deb4447 5480
b50d2359 5481@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5482Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5483Require a Version of Bison}.
b50d2359
AD
5484@end deffn
5485
0e021770 5486@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5487Specify the skeleton to use.
5488
ed4d67dc
JD
5489@c You probably don't need this option unless you are developing Bison.
5490@c You should use @code{%language} if you want to specify the skeleton for a
5491@c different language, because it is clearer and because it will always choose the
5492@c correct skeleton for non-deterministic or push parsers.
a7867f53
JD
5493
5494If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5495file in the Bison installation directory.
5496If it does, @var{file} is an absolute file name or a file name relative to the
5497directory of the grammar file.
5498This is similar to how most shells resolve commands.
0e021770
PE
5499@end deffn
5500
18b519c0 5501@deffn {Directive} %token-table
931c7513
RS
5502Generate an array of token names in the parser file. The name of the
5503array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 5504token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
5505three elements of @code{yytname} correspond to the predefined tokens
5506@code{"$end"},
88bce5a2
AD
5507@code{"error"}, and @code{"$undefined"}; after these come the symbols
5508defined in the grammar file.
931c7513 5509
9e0876fb
PE
5510The name in the table includes all the characters needed to represent
5511the token in Bison. For single-character literals and literal
5512strings, this includes the surrounding quoting characters and any
5513escape sequences. For example, the Bison single-character literal
5514@code{'+'} corresponds to a three-character name, represented in C as
5515@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5516corresponds to a five-character name, represented in C as
5517@code{"\"\\\\/\""}.
931c7513 5518
8c9a50be 5519When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5520definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5521@code{YYNRULES}, and @code{YYNSTATES}:
5522
5523@table @code
5524@item YYNTOKENS
5525The highest token number, plus one.
5526@item YYNNTS
9ecbd125 5527The number of nonterminal symbols.
931c7513
RS
5528@item YYNRULES
5529The number of grammar rules,
5530@item YYNSTATES
5531The number of parser states (@pxref{Parser States}).
5532@end table
18b519c0 5533@end deffn
d8988b2f 5534
18b519c0 5535@deffn {Directive} %verbose
d8988b2f 5536Write an extra output file containing verbose descriptions of the
742e4900 5537parser states and what is done for each type of lookahead token in
72d2299c 5538that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5539information.
18b519c0 5540@end deffn
d8988b2f 5541
18b519c0 5542@deffn {Directive} %yacc
d8988b2f
AD
5543Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5544including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5545@end deffn
d8988b2f
AD
5546
5547
342b8b6e 5548@node Multiple Parsers
bfa74976
RS
5549@section Multiple Parsers in the Same Program
5550
5551Most programs that use Bison parse only one language and therefore contain
5552only one Bison parser. But what if you want to parse more than one
5553language with the same program? Then you need to avoid a name conflict
5554between different definitions of @code{yyparse}, @code{yylval}, and so on.
5555
5556The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5557(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5558functions and variables of the Bison parser to start with @var{prefix}
5559instead of @samp{yy}. You can use this to give each parser distinct
5560names that do not conflict.
bfa74976
RS
5561
5562The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5563@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5564@code{yychar} and @code{yydebug}. If you use a push parser,
5565@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5566@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5567For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5568@code{clex}, and so on.
bfa74976
RS
5569
5570@strong{All the other variables and macros associated with Bison are not
5571renamed.} These others are not global; there is no conflict if the same
5572name is used in different parsers. For example, @code{YYSTYPE} is not
5573renamed, but defining this in different ways in different parsers causes
5574no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5575
5576The @samp{-p} option works by adding macro definitions to the beginning
5577of the parser source file, defining @code{yyparse} as
5578@code{@var{prefix}parse}, and so on. This effectively substitutes one
5579name for the other in the entire parser file.
5580
342b8b6e 5581@node Interface
bfa74976
RS
5582@chapter Parser C-Language Interface
5583@cindex C-language interface
5584@cindex interface
5585
5586The Bison parser is actually a C function named @code{yyparse}. Here we
5587describe the interface conventions of @code{yyparse} and the other
5588functions that it needs to use.
5589
5590Keep in mind that the parser uses many C identifiers starting with
5591@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5592identifier (aside from those in this manual) in an action or in epilogue
5593in the grammar file, you are likely to run into trouble.
bfa74976
RS
5594
5595@menu
f56274a8
DJ
5596* Parser Function:: How to call @code{yyparse} and what it returns.
5597* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5598* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5599* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5600* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5601* Lexical:: You must supply a function @code{yylex}
5602 which reads tokens.
5603* Error Reporting:: You must supply a function @code{yyerror}.
5604* Action Features:: Special features for use in actions.
5605* Internationalization:: How to let the parser speak in the user's
5606 native language.
bfa74976
RS
5607@end menu
5608
342b8b6e 5609@node Parser Function
bfa74976
RS
5610@section The Parser Function @code{yyparse}
5611@findex yyparse
5612
5613You call the function @code{yyparse} to cause parsing to occur. This
5614function reads tokens, executes actions, and ultimately returns when it
5615encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5616write an action which directs @code{yyparse} to return immediately
5617without reading further.
bfa74976 5618
2a8d363a
AD
5619
5620@deftypefun int yyparse (void)
bfa74976
RS
5621The value returned by @code{yyparse} is 0 if parsing was successful (return
5622is due to end-of-input).
5623
b47dbebe
PE
5624The value is 1 if parsing failed because of invalid input, i.e., input
5625that contains a syntax error or that causes @code{YYABORT} to be
5626invoked.
5627
5628The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5629@end deftypefun
bfa74976
RS
5630
5631In an action, you can cause immediate return from @code{yyparse} by using
5632these macros:
5633
2a8d363a 5634@defmac YYACCEPT
bfa74976
RS
5635@findex YYACCEPT
5636Return immediately with value 0 (to report success).
2a8d363a 5637@end defmac
bfa74976 5638
2a8d363a 5639@defmac YYABORT
bfa74976
RS
5640@findex YYABORT
5641Return immediately with value 1 (to report failure).
2a8d363a
AD
5642@end defmac
5643
5644If you use a reentrant parser, you can optionally pass additional
5645parameter information to it in a reentrant way. To do so, use the
5646declaration @code{%parse-param}:
5647
feeb0eda 5648@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5649@findex %parse-param
287c78f6
PE
5650Declare that an argument declared by the braced-code
5651@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5652The @var{argument-declaration} is used when declaring
feeb0eda
PE
5653functions or prototypes. The last identifier in
5654@var{argument-declaration} must be the argument name.
2a8d363a
AD
5655@end deffn
5656
5657Here's an example. Write this in the parser:
5658
5659@example
feeb0eda
PE
5660%parse-param @{int *nastiness@}
5661%parse-param @{int *randomness@}
2a8d363a
AD
5662@end example
5663
5664@noindent
5665Then call the parser like this:
5666
5667@example
5668@{
5669 int nastiness, randomness;
5670 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5671 value = yyparse (&nastiness, &randomness);
5672 @dots{}
5673@}
5674@end example
5675
5676@noindent
5677In the grammar actions, use expressions like this to refer to the data:
5678
5679@example
5680exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5681@end example
5682
9987d1b3
JD
5683@node Push Parser Function
5684@section The Push Parser Function @code{yypush_parse}
5685@findex yypush_parse
5686
59da312b
JD
5687(The current push parsing interface is experimental and may evolve.
5688More user feedback will help to stabilize it.)
5689
f4101aa6 5690You call the function @code{yypush_parse} to parse a single token. This
f37495f6
JD
5691function is available if either the @code{%define api.push-pull push} or
5692@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5693@xref{Push Decl, ,A Push Parser}.
5694
5695@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5696The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5697following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5698is required to finish parsing the grammar.
5699@end deftypefun
5700
5701@node Pull Parser Function
5702@section The Pull Parser Function @code{yypull_parse}
5703@findex yypull_parse
5704
59da312b
JD
5705(The current push parsing interface is experimental and may evolve.
5706More user feedback will help to stabilize it.)
5707
f4101aa6 5708You call the function @code{yypull_parse} to parse the rest of the input
f37495f6 5709stream. This function is available if the @code{%define api.push-pull both}
f4101aa6 5710declaration is used.
9987d1b3
JD
5711@xref{Push Decl, ,A Push Parser}.
5712
5713@deftypefun int yypull_parse (yypstate *yyps)
5714The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5715@end deftypefun
5716
5717@node Parser Create Function
5718@section The Parser Create Function @code{yystate_new}
5719@findex yypstate_new
5720
59da312b
JD
5721(The current push parsing interface is experimental and may evolve.
5722More user feedback will help to stabilize it.)
5723
f4101aa6 5724You call the function @code{yypstate_new} to create a new parser instance.
f37495f6
JD
5725This function is available if either the @code{%define api.push-pull push} or
5726@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5727@xref{Push Decl, ,A Push Parser}.
5728
5729@deftypefun yypstate *yypstate_new (void)
c781580d 5730The function will return a valid parser instance if there was memory available
333e670c
JD
5731or 0 if no memory was available.
5732In impure mode, it will also return 0 if a parser instance is currently
5733allocated.
9987d1b3
JD
5734@end deftypefun
5735
5736@node Parser Delete Function
5737@section The Parser Delete Function @code{yystate_delete}
5738@findex yypstate_delete
5739
59da312b
JD
5740(The current push parsing interface is experimental and may evolve.
5741More user feedback will help to stabilize it.)
5742
9987d1b3 5743You call the function @code{yypstate_delete} to delete a parser instance.
f37495f6
JD
5744function is available if either the @code{%define api.push-pull push} or
5745@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5746@xref{Push Decl, ,A Push Parser}.
5747
5748@deftypefun void yypstate_delete (yypstate *yyps)
5749This function will reclaim the memory associated with a parser instance.
5750After this call, you should no longer attempt to use the parser instance.
5751@end deftypefun
bfa74976 5752
342b8b6e 5753@node Lexical
bfa74976
RS
5754@section The Lexical Analyzer Function @code{yylex}
5755@findex yylex
5756@cindex lexical analyzer
5757
5758The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5759the input stream and returns them to the parser. Bison does not create
5760this function automatically; you must write it so that @code{yyparse} can
5761call it. The function is sometimes referred to as a lexical scanner.
5762
5763In simple programs, @code{yylex} is often defined at the end of the Bison
5764grammar file. If @code{yylex} is defined in a separate source file, you
5765need to arrange for the token-type macro definitions to be available there.
5766To do this, use the @samp{-d} option when you run Bison, so that it will
5767write these macro definitions into a separate header file
5768@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 5769that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
5770
5771@menu
5772* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
5773* Token Values:: How @code{yylex} must return the semantic value
5774 of the token it has read.
5775* Token Locations:: How @code{yylex} must return the text location
5776 (line number, etc.) of the token, if the
5777 actions want that.
5778* Pure Calling:: How the calling convention differs in a pure parser
5779 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5780@end menu
5781
342b8b6e 5782@node Calling Convention
bfa74976
RS
5783@subsection Calling Convention for @code{yylex}
5784
72d2299c
PE
5785The value that @code{yylex} returns must be the positive numeric code
5786for the type of token it has just found; a zero or negative value
5787signifies end-of-input.
bfa74976
RS
5788
5789When a token is referred to in the grammar rules by a name, that name
5790in the parser file becomes a C macro whose definition is the proper
5791numeric code for that token type. So @code{yylex} can use the name
5792to indicate that type. @xref{Symbols}.
5793
5794When a token is referred to in the grammar rules by a character literal,
5795the numeric code for that character is also the code for the token type.
72d2299c
PE
5796So @code{yylex} can simply return that character code, possibly converted
5797to @code{unsigned char} to avoid sign-extension. The null character
5798must not be used this way, because its code is zero and that
bfa74976
RS
5799signifies end-of-input.
5800
5801Here is an example showing these things:
5802
5803@example
13863333
AD
5804int
5805yylex (void)
bfa74976
RS
5806@{
5807 @dots{}
72d2299c 5808 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5809 return 0;
5810 @dots{}
5811 if (c == '+' || c == '-')
72d2299c 5812 return c; /* Assume token type for `+' is '+'. */
bfa74976 5813 @dots{}
72d2299c 5814 return INT; /* Return the type of the token. */
bfa74976
RS
5815 @dots{}
5816@}
5817@end example
5818
5819@noindent
5820This interface has been designed so that the output from the @code{lex}
5821utility can be used without change as the definition of @code{yylex}.
5822
931c7513
RS
5823If the grammar uses literal string tokens, there are two ways that
5824@code{yylex} can determine the token type codes for them:
5825
5826@itemize @bullet
5827@item
5828If the grammar defines symbolic token names as aliases for the
5829literal string tokens, @code{yylex} can use these symbolic names like
5830all others. In this case, the use of the literal string tokens in
5831the grammar file has no effect on @code{yylex}.
5832
5833@item
9ecbd125 5834@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5835table. The index of the token in the table is the token type's code.
9ecbd125 5836The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5837double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5838token's characters are escaped as necessary to be suitable as input
5839to Bison.
931c7513 5840
9e0876fb
PE
5841Here's code for looking up a multicharacter token in @code{yytname},
5842assuming that the characters of the token are stored in
5843@code{token_buffer}, and assuming that the token does not contain any
5844characters like @samp{"} that require escaping.
931c7513
RS
5845
5846@smallexample
5847for (i = 0; i < YYNTOKENS; i++)
5848 @{
5849 if (yytname[i] != 0
5850 && yytname[i][0] == '"'
68449b3a
PE
5851 && ! strncmp (yytname[i] + 1, token_buffer,
5852 strlen (token_buffer))
931c7513
RS
5853 && yytname[i][strlen (token_buffer) + 1] == '"'
5854 && yytname[i][strlen (token_buffer) + 2] == 0)
5855 break;
5856 @}
5857@end smallexample
5858
5859The @code{yytname} table is generated only if you use the
8c9a50be 5860@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5861@end itemize
5862
342b8b6e 5863@node Token Values
bfa74976
RS
5864@subsection Semantic Values of Tokens
5865
5866@vindex yylval
9d9b8b70 5867In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5868be stored into the global variable @code{yylval}. When you are using
5869just one data type for semantic values, @code{yylval} has that type.
5870Thus, if the type is @code{int} (the default), you might write this in
5871@code{yylex}:
5872
5873@example
5874@group
5875 @dots{}
72d2299c
PE
5876 yylval = value; /* Put value onto Bison stack. */
5877 return INT; /* Return the type of the token. */
bfa74976
RS
5878 @dots{}
5879@end group
5880@end example
5881
5882When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5883made from the @code{%union} declaration (@pxref{Union Decl, ,The
5884Collection of Value Types}). So when you store a token's value, you
5885must use the proper member of the union. If the @code{%union}
5886declaration looks like this:
bfa74976
RS
5887
5888@example
5889@group
5890%union @{
5891 int intval;
5892 double val;
5893 symrec *tptr;
5894@}
5895@end group
5896@end example
5897
5898@noindent
5899then the code in @code{yylex} might look like this:
5900
5901@example
5902@group
5903 @dots{}
72d2299c
PE
5904 yylval.intval = value; /* Put value onto Bison stack. */
5905 return INT; /* Return the type of the token. */
bfa74976
RS
5906 @dots{}
5907@end group
5908@end example
5909
95923bd6
AD
5910@node Token Locations
5911@subsection Textual Locations of Tokens
bfa74976
RS
5912
5913@vindex yylloc
847bf1f5 5914If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5915Tracking Locations}) in actions to keep track of the textual locations
5916of tokens and groupings, then you must provide this information in
5917@code{yylex}. The function @code{yyparse} expects to find the textual
5918location of a token just parsed in the global variable @code{yylloc}.
5919So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5920
5921By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5922initialize the members that are going to be used by the actions. The
5923four members are called @code{first_line}, @code{first_column},
5924@code{last_line} and @code{last_column}. Note that the use of this
5925feature makes the parser noticeably slower.
bfa74976
RS
5926
5927@tindex YYLTYPE
5928The data type of @code{yylloc} has the name @code{YYLTYPE}.
5929
342b8b6e 5930@node Pure Calling
c656404a 5931@subsection Calling Conventions for Pure Parsers
bfa74976 5932
d9df47b6 5933When you use the Bison declaration @code{%define api.pure} to request a
e425e872
RS
5934pure, reentrant parser, the global communication variables @code{yylval}
5935and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5936Parser}.) In such parsers the two global variables are replaced by
5937pointers passed as arguments to @code{yylex}. You must declare them as
5938shown here, and pass the information back by storing it through those
5939pointers.
bfa74976
RS
5940
5941@example
13863333
AD
5942int
5943yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5944@{
5945 @dots{}
5946 *lvalp = value; /* Put value onto Bison stack. */
5947 return INT; /* Return the type of the token. */
5948 @dots{}
5949@}
5950@end example
5951
5952If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5953textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5954this case, omit the second argument; @code{yylex} will be called with
5955only one argument.
5956
e425e872 5957
2a8d363a
AD
5958If you wish to pass the additional parameter data to @code{yylex}, use
5959@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5960Function}).
e425e872 5961
feeb0eda 5962@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5963@findex %lex-param
287c78f6
PE
5964Declare that the braced-code @var{argument-declaration} is an
5965additional @code{yylex} argument declaration.
2a8d363a 5966@end deffn
e425e872 5967
2a8d363a 5968For instance:
e425e872
RS
5969
5970@example
feeb0eda
PE
5971%parse-param @{int *nastiness@}
5972%lex-param @{int *nastiness@}
5973%parse-param @{int *randomness@}
e425e872
RS
5974@end example
5975
5976@noindent
2a8d363a 5977results in the following signature:
e425e872
RS
5978
5979@example
2a8d363a
AD
5980int yylex (int *nastiness);
5981int yyparse (int *nastiness, int *randomness);
e425e872
RS
5982@end example
5983
d9df47b6 5984If @code{%define api.pure} is added:
c656404a
RS
5985
5986@example
2a8d363a
AD
5987int yylex (YYSTYPE *lvalp, int *nastiness);
5988int yyparse (int *nastiness, int *randomness);
c656404a
RS
5989@end example
5990
2a8d363a 5991@noindent
d9df47b6 5992and finally, if both @code{%define api.pure} and @code{%locations} are used:
c656404a 5993
2a8d363a
AD
5994@example
5995int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5996int yyparse (int *nastiness, int *randomness);
5997@end example
931c7513 5998
342b8b6e 5999@node Error Reporting
bfa74976
RS
6000@section The Error Reporting Function @code{yyerror}
6001@cindex error reporting function
6002@findex yyerror
6003@cindex parse error
6004@cindex syntax error
6005
6e649e65 6006The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 6007whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6008action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6009macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6010in Actions}).
bfa74976
RS
6011
6012The Bison parser expects to report the error by calling an error
6013reporting function named @code{yyerror}, which you must supply. It is
6014called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6015receives one argument. For a syntax error, the string is normally
6016@w{@code{"syntax error"}}.
bfa74976 6017
2a8d363a
AD
6018@findex %error-verbose
6019If you invoke the directive @code{%error-verbose} in the Bison
6020declarations section (@pxref{Bison Declarations, ,The Bison Declarations
6021Section}), then Bison provides a more verbose and specific error message
6e649e65 6022string instead of just plain @w{@code{"syntax error"}}.
bfa74976 6023
1a059451
PE
6024The parser can detect one other kind of error: memory exhaustion. This
6025can happen when the input contains constructions that are very deeply
bfa74976 6026nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6027parser normally extends its stack automatically up to a very large limit. But
6028if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6029fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6030
6031In some cases diagnostics like @w{@code{"syntax error"}} are
6032translated automatically from English to some other language before
6033they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6034
6035The following definition suffices in simple programs:
6036
6037@example
6038@group
13863333 6039void
38a92d50 6040yyerror (char const *s)
bfa74976
RS
6041@{
6042@end group
6043@group
6044 fprintf (stderr, "%s\n", s);
6045@}
6046@end group
6047@end example
6048
6049After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6050error recovery if you have written suitable error recovery grammar rules
6051(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6052immediately return 1.
6053
93724f13 6054Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
6055an access to the current location.
6056This is indeed the case for the @acronym{GLR}
2a8d363a 6057parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6058@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6059@code{yyerror} are:
6060
6061@example
38a92d50
PE
6062void yyerror (char const *msg); /* Yacc parsers. */
6063void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6064@end example
6065
feeb0eda 6066If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6067
6068@example
b317297e
PE
6069void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6070void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6071@end example
6072
fa7e68c3 6073Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6074convention for absolutely pure parsers, i.e., when the calling
6075convention of @code{yylex} @emph{and} the calling convention of
d9df47b6
JD
6076@code{%define api.pure} are pure.
6077I.e.:
2a8d363a
AD
6078
6079@example
6080/* Location tracking. */
6081%locations
6082/* Pure yylex. */
d9df47b6 6083%define api.pure
feeb0eda 6084%lex-param @{int *nastiness@}
2a8d363a 6085/* Pure yyparse. */
feeb0eda
PE
6086%parse-param @{int *nastiness@}
6087%parse-param @{int *randomness@}
2a8d363a
AD
6088@end example
6089
6090@noindent
6091results in the following signatures for all the parser kinds:
6092
6093@example
6094int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6095int yyparse (int *nastiness, int *randomness);
93724f13
AD
6096void yyerror (YYLTYPE *locp,
6097 int *nastiness, int *randomness,
38a92d50 6098 char const *msg);
2a8d363a
AD
6099@end example
6100
1c0c3e95 6101@noindent
38a92d50
PE
6102The prototypes are only indications of how the code produced by Bison
6103uses @code{yyerror}. Bison-generated code always ignores the returned
6104value, so @code{yyerror} can return any type, including @code{void}.
6105Also, @code{yyerror} can be a variadic function; that is why the
6106message is always passed last.
6107
6108Traditionally @code{yyerror} returns an @code{int} that is always
6109ignored, but this is purely for historical reasons, and @code{void} is
6110preferable since it more accurately describes the return type for
6111@code{yyerror}.
93724f13 6112
bfa74976
RS
6113@vindex yynerrs
6114The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6115reported so far. Normally this variable is global; but if you
704a47c4
AD
6116request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6117then it is a local variable which only the actions can access.
bfa74976 6118
342b8b6e 6119@node Action Features
bfa74976
RS
6120@section Special Features for Use in Actions
6121@cindex summary, action features
6122@cindex action features summary
6123
6124Here is a table of Bison constructs, variables and macros that
6125are useful in actions.
6126
18b519c0 6127@deffn {Variable} $$
bfa74976
RS
6128Acts like a variable that contains the semantic value for the
6129grouping made by the current rule. @xref{Actions}.
18b519c0 6130@end deffn
bfa74976 6131
18b519c0 6132@deffn {Variable} $@var{n}
bfa74976
RS
6133Acts like a variable that contains the semantic value for the
6134@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6135@end deffn
bfa74976 6136
18b519c0 6137@deffn {Variable} $<@var{typealt}>$
bfa74976 6138Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6139specified by the @code{%union} declaration. @xref{Action Types, ,Data
6140Types of Values in Actions}.
18b519c0 6141@end deffn
bfa74976 6142
18b519c0 6143@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6144Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6145union specified by the @code{%union} declaration.
e0c471a9 6146@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6147@end deffn
bfa74976 6148
18b519c0 6149@deffn {Macro} YYABORT;
bfa74976
RS
6150Return immediately from @code{yyparse}, indicating failure.
6151@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6152@end deffn
bfa74976 6153
18b519c0 6154@deffn {Macro} YYACCEPT;
bfa74976
RS
6155Return immediately from @code{yyparse}, indicating success.
6156@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6157@end deffn
bfa74976 6158
18b519c0 6159@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6160@findex YYBACKUP
6161Unshift a token. This macro is allowed only for rules that reduce
742e4900 6162a single value, and only when there is no lookahead token.
c827f760 6163It is also disallowed in @acronym{GLR} parsers.
742e4900 6164It installs a lookahead token with token type @var{token} and
bfa74976
RS
6165semantic value @var{value}; then it discards the value that was
6166going to be reduced by this rule.
6167
6168If the macro is used when it is not valid, such as when there is
742e4900 6169a lookahead token already, then it reports a syntax error with
bfa74976
RS
6170a message @samp{cannot back up} and performs ordinary error
6171recovery.
6172
6173In either case, the rest of the action is not executed.
18b519c0 6174@end deffn
bfa74976 6175
18b519c0 6176@deffn {Macro} YYEMPTY
bfa74976 6177@vindex YYEMPTY
742e4900 6178Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6179@end deffn
bfa74976 6180
32c29292
JD
6181@deffn {Macro} YYEOF
6182@vindex YYEOF
742e4900 6183Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6184stream.
6185@end deffn
6186
18b519c0 6187@deffn {Macro} YYERROR;
bfa74976
RS
6188@findex YYERROR
6189Cause an immediate syntax error. This statement initiates error
6190recovery just as if the parser itself had detected an error; however, it
6191does not call @code{yyerror}, and does not print any message. If you
6192want to print an error message, call @code{yyerror} explicitly before
6193the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6194@end deffn
bfa74976 6195
18b519c0 6196@deffn {Macro} YYRECOVERING
02103984
PE
6197@findex YYRECOVERING
6198The expression @code{YYRECOVERING ()} yields 1 when the parser
6199is recovering from a syntax error, and 0 otherwise.
bfa74976 6200@xref{Error Recovery}.
18b519c0 6201@end deffn
bfa74976 6202
18b519c0 6203@deffn {Variable} yychar
742e4900
JD
6204Variable containing either the lookahead token, or @code{YYEOF} when the
6205lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6206has been performed so the next token is not yet known.
6207Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6208Actions}).
742e4900 6209@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6210@end deffn
bfa74976 6211
18b519c0 6212@deffn {Macro} yyclearin;
742e4900 6213Discard the current lookahead token. This is useful primarily in
32c29292
JD
6214error rules.
6215Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6216Semantic Actions}).
6217@xref{Error Recovery}.
18b519c0 6218@end deffn
bfa74976 6219
18b519c0 6220@deffn {Macro} yyerrok;
bfa74976 6221Resume generating error messages immediately for subsequent syntax
13863333 6222errors. This is useful primarily in error rules.
bfa74976 6223@xref{Error Recovery}.
18b519c0 6224@end deffn
bfa74976 6225
32c29292 6226@deffn {Variable} yylloc
742e4900 6227Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6228to @code{YYEMPTY} or @code{YYEOF}.
6229Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6230Actions}).
6231@xref{Actions and Locations, ,Actions and Locations}.
6232@end deffn
6233
6234@deffn {Variable} yylval
742e4900 6235Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6236not set to @code{YYEMPTY} or @code{YYEOF}.
6237Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6238Actions}).
6239@xref{Actions, ,Actions}.
6240@end deffn
6241
18b519c0 6242@deffn {Value} @@$
847bf1f5 6243@findex @@$
95923bd6 6244Acts like a structure variable containing information on the textual location
847bf1f5
AD
6245of the grouping made by the current rule. @xref{Locations, ,
6246Tracking Locations}.
bfa74976 6247
847bf1f5
AD
6248@c Check if those paragraphs are still useful or not.
6249
6250@c @example
6251@c struct @{
6252@c int first_line, last_line;
6253@c int first_column, last_column;
6254@c @};
6255@c @end example
6256
6257@c Thus, to get the starting line number of the third component, you would
6258@c use @samp{@@3.first_line}.
bfa74976 6259
847bf1f5
AD
6260@c In order for the members of this structure to contain valid information,
6261@c you must make @code{yylex} supply this information about each token.
6262@c If you need only certain members, then @code{yylex} need only fill in
6263@c those members.
bfa74976 6264
847bf1f5 6265@c The use of this feature makes the parser noticeably slower.
18b519c0 6266@end deffn
847bf1f5 6267
18b519c0 6268@deffn {Value} @@@var{n}
847bf1f5 6269@findex @@@var{n}
95923bd6 6270Acts like a structure variable containing information on the textual location
847bf1f5
AD
6271of the @var{n}th component of the current rule. @xref{Locations, ,
6272Tracking Locations}.
18b519c0 6273@end deffn
bfa74976 6274
f7ab6a50
PE
6275@node Internationalization
6276@section Parser Internationalization
6277@cindex internationalization
6278@cindex i18n
6279@cindex NLS
6280@cindex gettext
6281@cindex bison-po
6282
6283A Bison-generated parser can print diagnostics, including error and
6284tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6285also supports outputting diagnostics in the user's native language. To
6286make this work, the user should set the usual environment variables.
6287@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6288For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
6289set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
6290encoding. The exact set of available locales depends on the user's
6291installation.
6292
6293The maintainer of a package that uses a Bison-generated parser enables
6294the internationalization of the parser's output through the following
6295steps. Here we assume a package that uses @acronym{GNU} Autoconf and
6296@acronym{GNU} Automake.
6297
6298@enumerate
6299@item
30757c8c 6300@cindex bison-i18n.m4
f7ab6a50
PE
6301Into the directory containing the @acronym{GNU} Autoconf macros used
6302by the package---often called @file{m4}---copy the
6303@file{bison-i18n.m4} file installed by Bison under
6304@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6305For example:
6306
6307@example
6308cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6309@end example
6310
6311@item
30757c8c
PE
6312@findex BISON_I18N
6313@vindex BISON_LOCALEDIR
6314@vindex YYENABLE_NLS
f7ab6a50
PE
6315In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6316invocation, add an invocation of @code{BISON_I18N}. This macro is
6317defined in the file @file{bison-i18n.m4} that you copied earlier. It
6318causes @samp{configure} to find the value of the
30757c8c
PE
6319@code{BISON_LOCALEDIR} variable, and it defines the source-language
6320symbol @code{YYENABLE_NLS} to enable translations in the
6321Bison-generated parser.
f7ab6a50
PE
6322
6323@item
6324In the @code{main} function of your program, designate the directory
6325containing Bison's runtime message catalog, through a call to
6326@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6327For example:
6328
6329@example
6330bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6331@end example
6332
6333Typically this appears after any other call @code{bindtextdomain
6334(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6335@samp{BISON_LOCALEDIR} to be defined as a string through the
6336@file{Makefile}.
6337
6338@item
6339In the @file{Makefile.am} that controls the compilation of the @code{main}
6340function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6341either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6342
6343@example
6344DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6345@end example
6346
6347or:
6348
6349@example
6350AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6351@end example
6352
6353@item
6354Finally, invoke the command @command{autoreconf} to generate the build
6355infrastructure.
6356@end enumerate
6357
bfa74976 6358
342b8b6e 6359@node Algorithm
13863333
AD
6360@chapter The Bison Parser Algorithm
6361@cindex Bison parser algorithm
bfa74976
RS
6362@cindex algorithm of parser
6363@cindex shifting
6364@cindex reduction
6365@cindex parser stack
6366@cindex stack, parser
6367
6368As Bison reads tokens, it pushes them onto a stack along with their
6369semantic values. The stack is called the @dfn{parser stack}. Pushing a
6370token is traditionally called @dfn{shifting}.
6371
6372For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6373@samp{3} to come. The stack will have four elements, one for each token
6374that was shifted.
6375
6376But the stack does not always have an element for each token read. When
6377the last @var{n} tokens and groupings shifted match the components of a
6378grammar rule, they can be combined according to that rule. This is called
6379@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6380single grouping whose symbol is the result (left hand side) of that rule.
6381Running the rule's action is part of the process of reduction, because this
6382is what computes the semantic value of the resulting grouping.
6383
6384For example, if the infix calculator's parser stack contains this:
6385
6386@example
63871 + 5 * 3
6388@end example
6389
6390@noindent
6391and the next input token is a newline character, then the last three
6392elements can be reduced to 15 via the rule:
6393
6394@example
6395expr: expr '*' expr;
6396@end example
6397
6398@noindent
6399Then the stack contains just these three elements:
6400
6401@example
64021 + 15
6403@end example
6404
6405@noindent
6406At this point, another reduction can be made, resulting in the single value
640716. Then the newline token can be shifted.
6408
6409The parser tries, by shifts and reductions, to reduce the entire input down
6410to a single grouping whose symbol is the grammar's start-symbol
6411(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6412
6413This kind of parser is known in the literature as a bottom-up parser.
6414
6415@menu
742e4900 6416* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6417* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6418* Precedence:: Operator precedence works by resolving conflicts.
6419* Contextual Precedence:: When an operator's precedence depends on context.
6420* Parser States:: The parser is a finite-state-machine with stack.
6421* Reduce/Reduce:: When two rules are applicable in the same situation.
f56274a8 6422* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6423* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6424* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6425@end menu
6426
742e4900
JD
6427@node Lookahead
6428@section Lookahead Tokens
6429@cindex lookahead token
bfa74976
RS
6430
6431The Bison parser does @emph{not} always reduce immediately as soon as the
6432last @var{n} tokens and groupings match a rule. This is because such a
6433simple strategy is inadequate to handle most languages. Instead, when a
6434reduction is possible, the parser sometimes ``looks ahead'' at the next
6435token in order to decide what to do.
6436
6437When a token is read, it is not immediately shifted; first it becomes the
742e4900 6438@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6439perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6440the lookahead token remains off to the side. When no more reductions
6441should take place, the lookahead token is shifted onto the stack. This
bfa74976 6442does not mean that all possible reductions have been done; depending on the
742e4900 6443token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6444application.
6445
742e4900 6446Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6447expressions which contain binary addition operators and postfix unary
6448factorial operators (@samp{!}), and allow parentheses for grouping.
6449
6450@example
6451@group
6452expr: term '+' expr
6453 | term
6454 ;
6455@end group
6456
6457@group
6458term: '(' expr ')'
6459 | term '!'
6460 | NUMBER
6461 ;
6462@end group
6463@end example
6464
6465Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6466should be done? If the following token is @samp{)}, then the first three
6467tokens must be reduced to form an @code{expr}. This is the only valid
6468course, because shifting the @samp{)} would produce a sequence of symbols
6469@w{@code{term ')'}}, and no rule allows this.
6470
6471If the following token is @samp{!}, then it must be shifted immediately so
6472that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6473parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6474@code{expr}. It would then be impossible to shift the @samp{!} because
6475doing so would produce on the stack the sequence of symbols @code{expr
6476'!'}. No rule allows that sequence.
6477
6478@vindex yychar
32c29292
JD
6479@vindex yylval
6480@vindex yylloc
742e4900 6481The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6482Its semantic value and location, if any, are stored in the variables
6483@code{yylval} and @code{yylloc}.
bfa74976
RS
6484@xref{Action Features, ,Special Features for Use in Actions}.
6485
342b8b6e 6486@node Shift/Reduce
bfa74976
RS
6487@section Shift/Reduce Conflicts
6488@cindex conflicts
6489@cindex shift/reduce conflicts
6490@cindex dangling @code{else}
6491@cindex @code{else}, dangling
6492
6493Suppose we are parsing a language which has if-then and if-then-else
6494statements, with a pair of rules like this:
6495
6496@example
6497@group
6498if_stmt:
6499 IF expr THEN stmt
6500 | IF expr THEN stmt ELSE stmt
6501 ;
6502@end group
6503@end example
6504
6505@noindent
6506Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6507terminal symbols for specific keyword tokens.
6508
742e4900 6509When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6510contents of the stack (assuming the input is valid) are just right for
6511reduction by the first rule. But it is also legitimate to shift the
6512@code{ELSE}, because that would lead to eventual reduction by the second
6513rule.
6514
6515This situation, where either a shift or a reduction would be valid, is
6516called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6517these conflicts by choosing to shift, unless otherwise directed by
6518operator precedence declarations. To see the reason for this, let's
6519contrast it with the other alternative.
6520
6521Since the parser prefers to shift the @code{ELSE}, the result is to attach
6522the else-clause to the innermost if-statement, making these two inputs
6523equivalent:
6524
6525@example
6526if x then if y then win (); else lose;
6527
6528if x then do; if y then win (); else lose; end;
6529@end example
6530
6531But if the parser chose to reduce when possible rather than shift, the
6532result would be to attach the else-clause to the outermost if-statement,
6533making these two inputs equivalent:
6534
6535@example
6536if x then if y then win (); else lose;
6537
6538if x then do; if y then win (); end; else lose;
6539@end example
6540
6541The conflict exists because the grammar as written is ambiguous: either
6542parsing of the simple nested if-statement is legitimate. The established
6543convention is that these ambiguities are resolved by attaching the
6544else-clause to the innermost if-statement; this is what Bison accomplishes
6545by choosing to shift rather than reduce. (It would ideally be cleaner to
6546write an unambiguous grammar, but that is very hard to do in this case.)
6547This particular ambiguity was first encountered in the specifications of
6548Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6549
6550To avoid warnings from Bison about predictable, legitimate shift/reduce
cf22447c
JD
6551conflicts, use the @code{%expect @var{n}} declaration.
6552There will be no warning as long as the number of shift/reduce conflicts
6553is exactly @var{n}, and Bison will report an error if there is a
6554different number.
bfa74976
RS
6555@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6556
6557The definition of @code{if_stmt} above is solely to blame for the
6558conflict, but the conflict does not actually appear without additional
6559rules. Here is a complete Bison input file that actually manifests the
6560conflict:
6561
6562@example
6563@group
6564%token IF THEN ELSE variable
6565%%
6566@end group
6567@group
6568stmt: expr
6569 | if_stmt
6570 ;
6571@end group
6572
6573@group
6574if_stmt:
6575 IF expr THEN stmt
6576 | IF expr THEN stmt ELSE stmt
6577 ;
6578@end group
6579
6580expr: variable
6581 ;
6582@end example
6583
342b8b6e 6584@node Precedence
bfa74976
RS
6585@section Operator Precedence
6586@cindex operator precedence
6587@cindex precedence of operators
6588
6589Another situation where shift/reduce conflicts appear is in arithmetic
6590expressions. Here shifting is not always the preferred resolution; the
6591Bison declarations for operator precedence allow you to specify when to
6592shift and when to reduce.
6593
6594@menu
6595* Why Precedence:: An example showing why precedence is needed.
6596* Using Precedence:: How to specify precedence in Bison grammars.
6597* Precedence Examples:: How these features are used in the previous example.
6598* How Precedence:: How they work.
6599@end menu
6600
342b8b6e 6601@node Why Precedence
bfa74976
RS
6602@subsection When Precedence is Needed
6603
6604Consider the following ambiguous grammar fragment (ambiguous because the
6605input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6606
6607@example
6608@group
6609expr: expr '-' expr
6610 | expr '*' expr
6611 | expr '<' expr
6612 | '(' expr ')'
6613 @dots{}
6614 ;
6615@end group
6616@end example
6617
6618@noindent
6619Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6620should it reduce them via the rule for the subtraction operator? It
6621depends on the next token. Of course, if the next token is @samp{)}, we
6622must reduce; shifting is invalid because no single rule can reduce the
6623token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6624the next token is @samp{*} or @samp{<}, we have a choice: either
6625shifting or reduction would allow the parse to complete, but with
6626different results.
6627
6628To decide which one Bison should do, we must consider the results. If
6629the next operator token @var{op} is shifted, then it must be reduced
6630first in order to permit another opportunity to reduce the difference.
6631The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6632hand, if the subtraction is reduced before shifting @var{op}, the result
6633is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6634reduce should depend on the relative precedence of the operators
6635@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6636@samp{<}.
bfa74976
RS
6637
6638@cindex associativity
6639What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6640@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6641operators we prefer the former, which is called @dfn{left association}.
6642The latter alternative, @dfn{right association}, is desirable for
6643assignment operators. The choice of left or right association is a
6644matter of whether the parser chooses to shift or reduce when the stack
742e4900 6645contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6646makes right-associativity.
bfa74976 6647
342b8b6e 6648@node Using Precedence
bfa74976
RS
6649@subsection Specifying Operator Precedence
6650@findex %left
6651@findex %right
6652@findex %nonassoc
6653
6654Bison allows you to specify these choices with the operator precedence
6655declarations @code{%left} and @code{%right}. Each such declaration
6656contains a list of tokens, which are operators whose precedence and
6657associativity is being declared. The @code{%left} declaration makes all
6658those operators left-associative and the @code{%right} declaration makes
6659them right-associative. A third alternative is @code{%nonassoc}, which
6660declares that it is a syntax error to find the same operator twice ``in a
6661row''.
6662
6663The relative precedence of different operators is controlled by the
6664order in which they are declared. The first @code{%left} or
6665@code{%right} declaration in the file declares the operators whose
6666precedence is lowest, the next such declaration declares the operators
6667whose precedence is a little higher, and so on.
6668
342b8b6e 6669@node Precedence Examples
bfa74976
RS
6670@subsection Precedence Examples
6671
6672In our example, we would want the following declarations:
6673
6674@example
6675%left '<'
6676%left '-'
6677%left '*'
6678@end example
6679
6680In a more complete example, which supports other operators as well, we
6681would declare them in groups of equal precedence. For example, @code{'+'} is
6682declared with @code{'-'}:
6683
6684@example
6685%left '<' '>' '=' NE LE GE
6686%left '+' '-'
6687%left '*' '/'
6688@end example
6689
6690@noindent
6691(Here @code{NE} and so on stand for the operators for ``not equal''
6692and so on. We assume that these tokens are more than one character long
6693and therefore are represented by names, not character literals.)
6694
342b8b6e 6695@node How Precedence
bfa74976
RS
6696@subsection How Precedence Works
6697
6698The first effect of the precedence declarations is to assign precedence
6699levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6700precedence levels to certain rules: each rule gets its precedence from
6701the last terminal symbol mentioned in the components. (You can also
6702specify explicitly the precedence of a rule. @xref{Contextual
6703Precedence, ,Context-Dependent Precedence}.)
6704
6705Finally, the resolution of conflicts works by comparing the precedence
742e4900 6706of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6707token's precedence is higher, the choice is to shift. If the rule's
6708precedence is higher, the choice is to reduce. If they have equal
6709precedence, the choice is made based on the associativity of that
6710precedence level. The verbose output file made by @samp{-v}
6711(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6712resolved.
bfa74976
RS
6713
6714Not all rules and not all tokens have precedence. If either the rule or
742e4900 6715the lookahead token has no precedence, then the default is to shift.
bfa74976 6716
342b8b6e 6717@node Contextual Precedence
bfa74976
RS
6718@section Context-Dependent Precedence
6719@cindex context-dependent precedence
6720@cindex unary operator precedence
6721@cindex precedence, context-dependent
6722@cindex precedence, unary operator
6723@findex %prec
6724
6725Often the precedence of an operator depends on the context. This sounds
6726outlandish at first, but it is really very common. For example, a minus
6727sign typically has a very high precedence as a unary operator, and a
6728somewhat lower precedence (lower than multiplication) as a binary operator.
6729
6730The Bison precedence declarations, @code{%left}, @code{%right} and
6731@code{%nonassoc}, can only be used once for a given token; so a token has
6732only one precedence declared in this way. For context-dependent
6733precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6734modifier for rules.
bfa74976
RS
6735
6736The @code{%prec} modifier declares the precedence of a particular rule by
6737specifying a terminal symbol whose precedence should be used for that rule.
6738It's not necessary for that symbol to appear otherwise in the rule. The
6739modifier's syntax is:
6740
6741@example
6742%prec @var{terminal-symbol}
6743@end example
6744
6745@noindent
6746and it is written after the components of the rule. Its effect is to
6747assign the rule the precedence of @var{terminal-symbol}, overriding
6748the precedence that would be deduced for it in the ordinary way. The
6749altered rule precedence then affects how conflicts involving that rule
6750are resolved (@pxref{Precedence, ,Operator Precedence}).
6751
6752Here is how @code{%prec} solves the problem of unary minus. First, declare
6753a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6754are no tokens of this type, but the symbol serves to stand for its
6755precedence:
6756
6757@example
6758@dots{}
6759%left '+' '-'
6760%left '*'
6761%left UMINUS
6762@end example
6763
6764Now the precedence of @code{UMINUS} can be used in specific rules:
6765
6766@example
6767@group
6768exp: @dots{}
6769 | exp '-' exp
6770 @dots{}
6771 | '-' exp %prec UMINUS
6772@end group
6773@end example
6774
91d2c560 6775@ifset defaultprec
39a06c25
PE
6776If you forget to append @code{%prec UMINUS} to the rule for unary
6777minus, Bison silently assumes that minus has its usual precedence.
6778This kind of problem can be tricky to debug, since one typically
6779discovers the mistake only by testing the code.
6780
22fccf95 6781The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6782this kind of problem systematically. It causes rules that lack a
6783@code{%prec} modifier to have no precedence, even if the last terminal
6784symbol mentioned in their components has a declared precedence.
6785
22fccf95 6786If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6787for all rules that participate in precedence conflict resolution.
6788Then you will see any shift/reduce conflict until you tell Bison how
6789to resolve it, either by changing your grammar or by adding an
6790explicit precedence. This will probably add declarations to the
6791grammar, but it helps to protect against incorrect rule precedences.
6792
22fccf95
PE
6793The effect of @code{%no-default-prec;} can be reversed by giving
6794@code{%default-prec;}, which is the default.
91d2c560 6795@end ifset
39a06c25 6796
342b8b6e 6797@node Parser States
bfa74976
RS
6798@section Parser States
6799@cindex finite-state machine
6800@cindex parser state
6801@cindex state (of parser)
6802
6803The function @code{yyparse} is implemented using a finite-state machine.
6804The values pushed on the parser stack are not simply token type codes; they
6805represent the entire sequence of terminal and nonterminal symbols at or
6806near the top of the stack. The current state collects all the information
6807about previous input which is relevant to deciding what to do next.
6808
742e4900
JD
6809Each time a lookahead token is read, the current parser state together
6810with the type of lookahead token are looked up in a table. This table
6811entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6812specifies the new parser state, which is pushed onto the top of the
6813parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6814This means that a certain number of tokens or groupings are taken off
6815the top of the stack, and replaced by one grouping. In other words,
6816that number of states are popped from the stack, and one new state is
6817pushed.
6818
742e4900 6819There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6820is erroneous in the current state. This causes error processing to begin
6821(@pxref{Error Recovery}).
6822
342b8b6e 6823@node Reduce/Reduce
bfa74976
RS
6824@section Reduce/Reduce Conflicts
6825@cindex reduce/reduce conflict
6826@cindex conflicts, reduce/reduce
6827
6828A reduce/reduce conflict occurs if there are two or more rules that apply
6829to the same sequence of input. This usually indicates a serious error
6830in the grammar.
6831
6832For example, here is an erroneous attempt to define a sequence
6833of zero or more @code{word} groupings.
6834
6835@example
6836sequence: /* empty */
6837 @{ printf ("empty sequence\n"); @}
6838 | maybeword
6839 | sequence word
6840 @{ printf ("added word %s\n", $2); @}
6841 ;
6842
6843maybeword: /* empty */
6844 @{ printf ("empty maybeword\n"); @}
6845 | word
6846 @{ printf ("single word %s\n", $1); @}
6847 ;
6848@end example
6849
6850@noindent
6851The error is an ambiguity: there is more than one way to parse a single
6852@code{word} into a @code{sequence}. It could be reduced to a
6853@code{maybeword} and then into a @code{sequence} via the second rule.
6854Alternatively, nothing-at-all could be reduced into a @code{sequence}
6855via the first rule, and this could be combined with the @code{word}
6856using the third rule for @code{sequence}.
6857
6858There is also more than one way to reduce nothing-at-all into a
6859@code{sequence}. This can be done directly via the first rule,
6860or indirectly via @code{maybeword} and then the second rule.
6861
6862You might think that this is a distinction without a difference, because it
6863does not change whether any particular input is valid or not. But it does
6864affect which actions are run. One parsing order runs the second rule's
6865action; the other runs the first rule's action and the third rule's action.
6866In this example, the output of the program changes.
6867
6868Bison resolves a reduce/reduce conflict by choosing to use the rule that
6869appears first in the grammar, but it is very risky to rely on this. Every
6870reduce/reduce conflict must be studied and usually eliminated. Here is the
6871proper way to define @code{sequence}:
6872
6873@example
6874sequence: /* empty */
6875 @{ printf ("empty sequence\n"); @}
6876 | sequence word
6877 @{ printf ("added word %s\n", $2); @}
6878 ;
6879@end example
6880
6881Here is another common error that yields a reduce/reduce conflict:
6882
6883@example
6884sequence: /* empty */
6885 | sequence words
6886 | sequence redirects
6887 ;
6888
6889words: /* empty */
6890 | words word
6891 ;
6892
6893redirects:/* empty */
6894 | redirects redirect
6895 ;
6896@end example
6897
6898@noindent
6899The intention here is to define a sequence which can contain either
6900@code{word} or @code{redirect} groupings. The individual definitions of
6901@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6902three together make a subtle ambiguity: even an empty input can be parsed
6903in infinitely many ways!
6904
6905Consider: nothing-at-all could be a @code{words}. Or it could be two
6906@code{words} in a row, or three, or any number. It could equally well be a
6907@code{redirects}, or two, or any number. Or it could be a @code{words}
6908followed by three @code{redirects} and another @code{words}. And so on.
6909
6910Here are two ways to correct these rules. First, to make it a single level
6911of sequence:
6912
6913@example
6914sequence: /* empty */
6915 | sequence word
6916 | sequence redirect
6917 ;
6918@end example
6919
6920Second, to prevent either a @code{words} or a @code{redirects}
6921from being empty:
6922
6923@example
6924sequence: /* empty */
6925 | sequence words
6926 | sequence redirects
6927 ;
6928
6929words: word
6930 | words word
6931 ;
6932
6933redirects:redirect
6934 | redirects redirect
6935 ;
6936@end example
6937
342b8b6e 6938@node Mystery Conflicts
bfa74976
RS
6939@section Mysterious Reduce/Reduce Conflicts
6940
6941Sometimes reduce/reduce conflicts can occur that don't look warranted.
6942Here is an example:
6943
6944@example
6945@group
6946%token ID
6947
6948%%
6949def: param_spec return_spec ','
6950 ;
6951param_spec:
6952 type
6953 | name_list ':' type
6954 ;
6955@end group
6956@group
6957return_spec:
6958 type
6959 | name ':' type
6960 ;
6961@end group
6962@group
6963type: ID
6964 ;
6965@end group
6966@group
6967name: ID
6968 ;
6969name_list:
6970 name
6971 | name ',' name_list
6972 ;
6973@end group
6974@end example
6975
6976It would seem that this grammar can be parsed with only a single token
742e4900 6977of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6978a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 6979@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 6980
c827f760
PE
6981@cindex @acronym{LR}(1)
6982@cindex @acronym{LALR}(1)
34a6c2d1
JD
6983However, for historical reasons, Bison cannot by default handle all
6984@acronym{LR}(1) grammars.
6985In this grammar, two contexts, that after an @code{ID} at the beginning
6986of a @code{param_spec} and likewise at the beginning of a
6987@code{return_spec}, are similar enough that Bison assumes they are the
6988same.
6989They appear similar because the same set of rules would be
bfa74976
RS
6990active---the rule for reducing to a @code{name} and that for reducing to
6991a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6992that the rules would require different lookahead tokens in the two
bfa74976
RS
6993contexts, so it makes a single parser state for them both. Combining
6994the two contexts causes a conflict later. In parser terminology, this
c827f760 6995occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976 6996
34a6c2d1
JD
6997For many practical grammars (specifically those that fall into the
6998non-@acronym{LR}(1) class), the limitations of @acronym{LALR}(1) result in
6999difficulties beyond just mysterious reduce/reduce conflicts.
7000The best way to fix all these problems is to select a different parser
7001table generation algorithm.
7002Either @acronym{IELR}(1) or canonical @acronym{LR}(1) would suffice, but
7003the former is more efficient and easier to debug during development.
7004@xref{Decl Summary,,lr.type}, for details.
7005(Bison's @acronym{IELR}(1) and canonical @acronym{LR}(1) implementations
7006are experimental.
7007More user feedback will help to stabilize them.)
7008
7009If you instead wish to work around @acronym{LALR}(1)'s limitations, you
7010can often fix a mysterious conflict by identifying the two parser states
7011that are being confused, and adding something to make them look
7012distinct. In the above example, adding one rule to
bfa74976
RS
7013@code{return_spec} as follows makes the problem go away:
7014
7015@example
7016@group
7017%token BOGUS
7018@dots{}
7019%%
7020@dots{}
7021return_spec:
7022 type
7023 | name ':' type
7024 /* This rule is never used. */
7025 | ID BOGUS
7026 ;
7027@end group
7028@end example
7029
7030This corrects the problem because it introduces the possibility of an
7031additional active rule in the context after the @code{ID} at the beginning of
7032@code{return_spec}. This rule is not active in the corresponding context
7033in a @code{param_spec}, so the two contexts receive distinct parser states.
7034As long as the token @code{BOGUS} is never generated by @code{yylex},
7035the added rule cannot alter the way actual input is parsed.
7036
7037In this particular example, there is another way to solve the problem:
7038rewrite the rule for @code{return_spec} to use @code{ID} directly
7039instead of via @code{name}. This also causes the two confusing
7040contexts to have different sets of active rules, because the one for
7041@code{return_spec} activates the altered rule for @code{return_spec}
7042rather than the one for @code{name}.
7043
7044@example
7045param_spec:
7046 type
7047 | name_list ':' type
7048 ;
7049return_spec:
7050 type
7051 | ID ':' type
7052 ;
7053@end example
7054
e054b190
PE
7055For a more detailed exposition of @acronym{LALR}(1) parsers and parser
7056generators, please see:
7057Frank DeRemer and Thomas Pennello, Efficient Computation of
7058@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
7059Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
7060pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
7061
fae437e8 7062@node Generalized LR Parsing
c827f760
PE
7063@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
7064@cindex @acronym{GLR} parsing
7065@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 7066@cindex ambiguous grammars
9d9b8b70 7067@cindex nondeterministic parsing
676385e2 7068
fae437e8
AD
7069Bison produces @emph{deterministic} parsers that choose uniquely
7070when to reduce and which reduction to apply
742e4900 7071based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7072As a result, normal Bison handles a proper subset of the family of
7073context-free languages.
fae437e8 7074Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7075sequence of reductions cannot have deterministic parsers in this sense.
7076The same is true of languages that require more than one symbol of
742e4900 7077lookahead, since the parser lacks the information necessary to make a
676385e2 7078decision at the point it must be made in a shift-reduce parser.
fae437e8 7079Finally, as previously mentioned (@pxref{Mystery Conflicts}),
34a6c2d1 7080there are languages where Bison's default choice of how to
676385e2
PH
7081summarize the input seen so far loses necessary information.
7082
7083When you use the @samp{%glr-parser} declaration in your grammar file,
7084Bison generates a parser that uses a different algorithm, called
c827f760
PE
7085Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
7086parser uses the same basic
676385e2
PH
7087algorithm for parsing as an ordinary Bison parser, but behaves
7088differently in cases where there is a shift-reduce conflict that has not
fae437e8 7089been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
7090reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
7091situation, it
fae437e8 7092effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7093shift or reduction. These parsers then proceed as usual, consuming
7094tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7095and split further, with the result that instead of a sequence of states,
c827f760 7096a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
7097
7098In effect, each stack represents a guess as to what the proper parse
7099is. Additional input may indicate that a guess was wrong, in which case
7100the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7101actions generated in each stack are saved, rather than being executed
676385e2 7102immediately. When a stack disappears, its saved semantic actions never
fae437e8 7103get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7104their sets of semantic actions are both saved with the state that
7105results from the reduction. We say that two stacks are equivalent
fae437e8 7106when they both represent the same sequence of states,
676385e2
PH
7107and each pair of corresponding states represents a
7108grammar symbol that produces the same segment of the input token
7109stream.
7110
7111Whenever the parser makes a transition from having multiple
34a6c2d1 7112states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7113algorithm, after resolving and executing the saved-up actions.
7114At this transition, some of the states on the stack will have semantic
7115values that are sets (actually multisets) of possible actions. The
7116parser tries to pick one of the actions by first finding one whose rule
7117has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7118declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7119precedence, but there the same merging function is declared for both
fae437e8 7120rules by the @samp{%merge} declaration,
676385e2
PH
7121Bison resolves and evaluates both and then calls the merge function on
7122the result. Otherwise, it reports an ambiguity.
7123
c827f760 7124It is possible to use a data structure for the @acronym{GLR} parsing tree that
34a6c2d1 7125permits the processing of any @acronym{LR}(1) grammar in linear time (in the
c827f760 7126size of the input), any unambiguous (not necessarily
34a6c2d1 7127@acronym{LR}(1)) grammar in
fae437e8 7128quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7129context-free grammar in cubic worst-case time. However, Bison currently
7130uses a simpler data structure that requires time proportional to the
7131length of the input times the maximum number of stacks required for any
9d9b8b70 7132prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7133grammars can require exponential time and space to process. Such badly
7134behaving examples, however, are not generally of practical interest.
9d9b8b70 7135Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7136doubt'' only for a few tokens at a time. Therefore, the current data
34a6c2d1
JD
7137structure should generally be adequate. On @acronym{LR}(1) portions of a
7138grammar, in particular, it is only slightly slower than with the
7139deterministic @acronym{LR}(1) Bison parser.
676385e2 7140
fa7e68c3 7141For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
7142Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
7143Generalised @acronym{LR} Parsers, Royal Holloway, University of
7144London, Department of Computer Science, TR-00-12,
7145@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
7146(2000-12-24).
7147
1a059451
PE
7148@node Memory Management
7149@section Memory Management, and How to Avoid Memory Exhaustion
7150@cindex memory exhaustion
7151@cindex memory management
bfa74976
RS
7152@cindex stack overflow
7153@cindex parser stack overflow
7154@cindex overflow of parser stack
7155
1a059451 7156The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7157not reduced. When this happens, the parser function @code{yyparse}
1a059451 7158calls @code{yyerror} and then returns 2.
bfa74976 7159
c827f760 7160Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7161usually results from using a right recursion instead of a left
7162recursion, @xref{Recursion, ,Recursive Rules}.
7163
bfa74976
RS
7164@vindex YYMAXDEPTH
7165By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7166parser stack can become before memory is exhausted. Define the
bfa74976
RS
7167macro with a value that is an integer. This value is the maximum number
7168of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7169
7170The stack space allowed is not necessarily allocated. If you specify a
1a059451 7171large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7172stack at first, and then makes it bigger by stages as needed. This
7173increasing allocation happens automatically and silently. Therefore,
7174you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7175space for ordinary inputs that do not need much stack.
7176
d7e14fc0
PE
7177However, do not allow @code{YYMAXDEPTH} to be a value so large that
7178arithmetic overflow could occur when calculating the size of the stack
7179space. Also, do not allow @code{YYMAXDEPTH} to be less than
7180@code{YYINITDEPTH}.
7181
bfa74976
RS
7182@cindex default stack limit
7183The default value of @code{YYMAXDEPTH}, if you do not define it, is
718410000.
7185
7186@vindex YYINITDEPTH
7187You can control how much stack is allocated initially by defining the
34a6c2d1
JD
7188macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7189parser in C, this value must be a compile-time constant
d7e14fc0
PE
7190unless you are assuming C99 or some other target language or compiler
7191that allows variable-length arrays. The default is 200.
7192
1a059451 7193Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7194
d1a1114f 7195@c FIXME: C++ output.
c781580d 7196Because of semantic differences between C and C++, the deterministic
34a6c2d1 7197parsers in C produced by Bison cannot grow when compiled
1a059451
PE
7198by C++ compilers. In this precise case (compiling a C parser as C++) you are
7199suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
7200this deficiency in a future release.
d1a1114f 7201
342b8b6e 7202@node Error Recovery
bfa74976
RS
7203@chapter Error Recovery
7204@cindex error recovery
7205@cindex recovery from errors
7206
6e649e65 7207It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7208error. For example, a compiler should recover sufficiently to parse the
7209rest of the input file and check it for errors; a calculator should accept
7210another expression.
7211
7212In a simple interactive command parser where each input is one line, it may
7213be sufficient to allow @code{yyparse} to return 1 on error and have the
7214caller ignore the rest of the input line when that happens (and then call
7215@code{yyparse} again). But this is inadequate for a compiler, because it
7216forgets all the syntactic context leading up to the error. A syntax error
7217deep within a function in the compiler input should not cause the compiler
7218to treat the following line like the beginning of a source file.
7219
7220@findex error
7221You can define how to recover from a syntax error by writing rules to
7222recognize the special token @code{error}. This is a terminal symbol that
7223is always defined (you need not declare it) and reserved for error
7224handling. The Bison parser generates an @code{error} token whenever a
7225syntax error happens; if you have provided a rule to recognize this token
13863333 7226in the current context, the parse can continue.
bfa74976
RS
7227
7228For example:
7229
7230@example
7231stmnts: /* empty string */
7232 | stmnts '\n'
7233 | stmnts exp '\n'
7234 | stmnts error '\n'
7235@end example
7236
7237The fourth rule in this example says that an error followed by a newline
7238makes a valid addition to any @code{stmnts}.
7239
7240What happens if a syntax error occurs in the middle of an @code{exp}? The
7241error recovery rule, interpreted strictly, applies to the precise sequence
7242of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7243the middle of an @code{exp}, there will probably be some additional tokens
7244and subexpressions on the stack after the last @code{stmnts}, and there
7245will be tokens to read before the next newline. So the rule is not
7246applicable in the ordinary way.
7247
7248But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7249the semantic context and part of the input. First it discards states
7250and objects from the stack until it gets back to a state in which the
bfa74976 7251@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7252already parsed are discarded, back to the last complete @code{stmnts}.)
7253At this point the @code{error} token can be shifted. Then, if the old
742e4900 7254lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7255tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7256this example, Bison reads and discards input until the next newline so
7257that the fourth rule can apply. Note that discarded symbols are
7258possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7259Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7260
7261The choice of error rules in the grammar is a choice of strategies for
7262error recovery. A simple and useful strategy is simply to skip the rest of
7263the current input line or current statement if an error is detected:
7264
7265@example
72d2299c 7266stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7267@end example
7268
7269It is also useful to recover to the matching close-delimiter of an
7270opening-delimiter that has already been parsed. Otherwise the
7271close-delimiter will probably appear to be unmatched, and generate another,
7272spurious error message:
7273
7274@example
7275primary: '(' expr ')'
7276 | '(' error ')'
7277 @dots{}
7278 ;
7279@end example
7280
7281Error recovery strategies are necessarily guesses. When they guess wrong,
7282one syntax error often leads to another. In the above example, the error
7283recovery rule guesses that an error is due to bad input within one
7284@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7285middle of a valid @code{stmnt}. After the error recovery rule recovers
7286from the first error, another syntax error will be found straightaway,
7287since the text following the spurious semicolon is also an invalid
7288@code{stmnt}.
7289
7290To prevent an outpouring of error messages, the parser will output no error
7291message for another syntax error that happens shortly after the first; only
7292after three consecutive input tokens have been successfully shifted will
7293error messages resume.
7294
7295Note that rules which accept the @code{error} token may have actions, just
7296as any other rules can.
7297
7298@findex yyerrok
7299You can make error messages resume immediately by using the macro
7300@code{yyerrok} in an action. If you do this in the error rule's action, no
7301error messages will be suppressed. This macro requires no arguments;
7302@samp{yyerrok;} is a valid C statement.
7303
7304@findex yyclearin
742e4900 7305The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7306this is unacceptable, then the macro @code{yyclearin} may be used to clear
7307this token. Write the statement @samp{yyclearin;} in the error rule's
7308action.
32c29292 7309@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7310
6e649e65 7311For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7312called that advances the input stream to some point where parsing should
7313once again commence. The next symbol returned by the lexical scanner is
742e4900 7314probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7315with @samp{yyclearin;}.
7316
7317@vindex YYRECOVERING
02103984
PE
7318The expression @code{YYRECOVERING ()} yields 1 when the parser
7319is recovering from a syntax error, and 0 otherwise.
7320Syntax error diagnostics are suppressed while recovering from a syntax
7321error.
bfa74976 7322
342b8b6e 7323@node Context Dependency
bfa74976
RS
7324@chapter Handling Context Dependencies
7325
7326The Bison paradigm is to parse tokens first, then group them into larger
7327syntactic units. In many languages, the meaning of a token is affected by
7328its context. Although this violates the Bison paradigm, certain techniques
7329(known as @dfn{kludges}) may enable you to write Bison parsers for such
7330languages.
7331
7332@menu
7333* Semantic Tokens:: Token parsing can depend on the semantic context.
7334* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7335* Tie-in Recovery:: Lexical tie-ins have implications for how
7336 error recovery rules must be written.
7337@end menu
7338
7339(Actually, ``kludge'' means any technique that gets its job done but is
7340neither clean nor robust.)
7341
342b8b6e 7342@node Semantic Tokens
bfa74976
RS
7343@section Semantic Info in Token Types
7344
7345The C language has a context dependency: the way an identifier is used
7346depends on what its current meaning is. For example, consider this:
7347
7348@example
7349foo (x);
7350@end example
7351
7352This looks like a function call statement, but if @code{foo} is a typedef
7353name, then this is actually a declaration of @code{x}. How can a Bison
7354parser for C decide how to parse this input?
7355
c827f760 7356The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
7357@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7358identifier, it looks up the current declaration of the identifier in order
7359to decide which token type to return: @code{TYPENAME} if the identifier is
7360declared as a typedef, @code{IDENTIFIER} otherwise.
7361
7362The grammar rules can then express the context dependency by the choice of
7363token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7364but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7365@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7366is @emph{not} significant, such as in declarations that can shadow a
7367typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7368accepted---there is one rule for each of the two token types.
7369
7370This technique is simple to use if the decision of which kinds of
7371identifiers to allow is made at a place close to where the identifier is
7372parsed. But in C this is not always so: C allows a declaration to
7373redeclare a typedef name provided an explicit type has been specified
7374earlier:
7375
7376@example
3a4f411f
PE
7377typedef int foo, bar;
7378int baz (void)
7379@{
7380 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7381 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7382 return foo (bar);
7383@}
bfa74976
RS
7384@end example
7385
7386Unfortunately, the name being declared is separated from the declaration
7387construct itself by a complicated syntactic structure---the ``declarator''.
7388
9ecbd125 7389As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7390all the nonterminal names changed: once for parsing a declaration in
7391which a typedef name can be redefined, and once for parsing a
7392declaration in which that can't be done. Here is a part of the
7393duplication, with actions omitted for brevity:
bfa74976
RS
7394
7395@example
7396initdcl:
7397 declarator maybeasm '='
7398 init
7399 | declarator maybeasm
7400 ;
7401
7402notype_initdcl:
7403 notype_declarator maybeasm '='
7404 init
7405 | notype_declarator maybeasm
7406 ;
7407@end example
7408
7409@noindent
7410Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7411cannot. The distinction between @code{declarator} and
7412@code{notype_declarator} is the same sort of thing.
7413
7414There is some similarity between this technique and a lexical tie-in
7415(described next), in that information which alters the lexical analysis is
7416changed during parsing by other parts of the program. The difference is
7417here the information is global, and is used for other purposes in the
7418program. A true lexical tie-in has a special-purpose flag controlled by
7419the syntactic context.
7420
342b8b6e 7421@node Lexical Tie-ins
bfa74976
RS
7422@section Lexical Tie-ins
7423@cindex lexical tie-in
7424
7425One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7426which is set by Bison actions, whose purpose is to alter the way tokens are
7427parsed.
7428
7429For example, suppose we have a language vaguely like C, but with a special
7430construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7431an expression in parentheses in which all integers are hexadecimal. In
7432particular, the token @samp{a1b} must be treated as an integer rather than
7433as an identifier if it appears in that context. Here is how you can do it:
7434
7435@example
7436@group
7437%@{
38a92d50
PE
7438 int hexflag;
7439 int yylex (void);
7440 void yyerror (char const *);
bfa74976
RS
7441%@}
7442%%
7443@dots{}
7444@end group
7445@group
7446expr: IDENTIFIER
7447 | constant
7448 | HEX '('
7449 @{ hexflag = 1; @}
7450 expr ')'
7451 @{ hexflag = 0;
7452 $$ = $4; @}
7453 | expr '+' expr
7454 @{ $$ = make_sum ($1, $3); @}
7455 @dots{}
7456 ;
7457@end group
7458
7459@group
7460constant:
7461 INTEGER
7462 | STRING
7463 ;
7464@end group
7465@end example
7466
7467@noindent
7468Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7469it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7470with letters are parsed as integers if possible.
7471
342b8b6e
AD
7472The declaration of @code{hexflag} shown in the prologue of the parser file
7473is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 7474You must also write the code in @code{yylex} to obey the flag.
bfa74976 7475
342b8b6e 7476@node Tie-in Recovery
bfa74976
RS
7477@section Lexical Tie-ins and Error Recovery
7478
7479Lexical tie-ins make strict demands on any error recovery rules you have.
7480@xref{Error Recovery}.
7481
7482The reason for this is that the purpose of an error recovery rule is to
7483abort the parsing of one construct and resume in some larger construct.
7484For example, in C-like languages, a typical error recovery rule is to skip
7485tokens until the next semicolon, and then start a new statement, like this:
7486
7487@example
7488stmt: expr ';'
7489 | IF '(' expr ')' stmt @{ @dots{} @}
7490 @dots{}
7491 error ';'
7492 @{ hexflag = 0; @}
7493 ;
7494@end example
7495
7496If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7497construct, this error rule will apply, and then the action for the
7498completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7499remain set for the entire rest of the input, or until the next @code{hex}
7500keyword, causing identifiers to be misinterpreted as integers.
7501
7502To avoid this problem the error recovery rule itself clears @code{hexflag}.
7503
7504There may also be an error recovery rule that works within expressions.
7505For example, there could be a rule which applies within parentheses
7506and skips to the close-parenthesis:
7507
7508@example
7509@group
7510expr: @dots{}
7511 | '(' expr ')'
7512 @{ $$ = $2; @}
7513 | '(' error ')'
7514 @dots{}
7515@end group
7516@end example
7517
7518If this rule acts within the @code{hex} construct, it is not going to abort
7519that construct (since it applies to an inner level of parentheses within
7520the construct). Therefore, it should not clear the flag: the rest of
7521the @code{hex} construct should be parsed with the flag still in effect.
7522
7523What if there is an error recovery rule which might abort out of the
7524@code{hex} construct or might not, depending on circumstances? There is no
7525way you can write the action to determine whether a @code{hex} construct is
7526being aborted or not. So if you are using a lexical tie-in, you had better
7527make sure your error recovery rules are not of this kind. Each rule must
7528be such that you can be sure that it always will, or always won't, have to
7529clear the flag.
7530
ec3bc396
AD
7531@c ================================================== Debugging Your Parser
7532
342b8b6e 7533@node Debugging
bfa74976 7534@chapter Debugging Your Parser
ec3bc396
AD
7535
7536Developing a parser can be a challenge, especially if you don't
7537understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7538Algorithm}). Even so, sometimes a detailed description of the automaton
7539can help (@pxref{Understanding, , Understanding Your Parser}), or
7540tracing the execution of the parser can give some insight on why it
7541behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7542
7543@menu
7544* Understanding:: Understanding the structure of your parser.
7545* Tracing:: Tracing the execution of your parser.
7546@end menu
7547
7548@node Understanding
7549@section Understanding Your Parser
7550
7551As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7552Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7553frequent than one would hope), looking at this automaton is required to
7554tune or simply fix a parser. Bison provides two different
35fe0834 7555representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7556
7557The textual file is generated when the options @option{--report} or
7558@option{--verbose} are specified, see @xref{Invocation, , Invoking
7559Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
7560the parser output file name, and adding @samp{.output} instead.
7561Therefore, if the input file is @file{foo.y}, then the parser file is
7562called @file{foo.tab.c} by default. As a consequence, the verbose
7563output file is called @file{foo.output}.
7564
7565The following grammar file, @file{calc.y}, will be used in the sequel:
7566
7567@example
7568%token NUM STR
7569%left '+' '-'
7570%left '*'
7571%%
7572exp: exp '+' exp
7573 | exp '-' exp
7574 | exp '*' exp
7575 | exp '/' exp
7576 | NUM
7577 ;
7578useless: STR;
7579%%
7580@end example
7581
88bce5a2
AD
7582@command{bison} reports:
7583
7584@example
379261b3
JD
7585calc.y: warning: 1 nonterminal useless in grammar
7586calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
7587calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7588calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7589calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7590@end example
7591
7592When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7593creates a file @file{calc.output} with contents detailed below. The
7594order of the output and the exact presentation might vary, but the
7595interpretation is the same.
ec3bc396
AD
7596
7597The first section includes details on conflicts that were solved thanks
7598to precedence and/or associativity:
7599
7600@example
7601Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7602Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7603Conflict in state 8 between rule 2 and token '*' resolved as shift.
7604@exdent @dots{}
7605@end example
7606
7607@noindent
7608The next section lists states that still have conflicts.
7609
7610@example
5a99098d
PE
7611State 8 conflicts: 1 shift/reduce
7612State 9 conflicts: 1 shift/reduce
7613State 10 conflicts: 1 shift/reduce
7614State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7615@end example
7616
7617@noindent
7618@cindex token, useless
7619@cindex useless token
7620@cindex nonterminal, useless
7621@cindex useless nonterminal
7622@cindex rule, useless
7623@cindex useless rule
7624The next section reports useless tokens, nonterminal and rules. Useless
7625nonterminals and rules are removed in order to produce a smaller parser,
7626but useless tokens are preserved, since they might be used by the
d80fb37a 7627scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7628below):
7629
7630@example
d80fb37a 7631Nonterminals useless in grammar:
ec3bc396
AD
7632 useless
7633
d80fb37a 7634Terminals unused in grammar:
ec3bc396
AD
7635 STR
7636
cff03fb2 7637Rules useless in grammar:
ec3bc396
AD
7638#6 useless: STR;
7639@end example
7640
7641@noindent
7642The next section reproduces the exact grammar that Bison used:
7643
7644@example
7645Grammar
7646
7647 Number, Line, Rule
88bce5a2 7648 0 5 $accept -> exp $end
ec3bc396
AD
7649 1 5 exp -> exp '+' exp
7650 2 6 exp -> exp '-' exp
7651 3 7 exp -> exp '*' exp
7652 4 8 exp -> exp '/' exp
7653 5 9 exp -> NUM
7654@end example
7655
7656@noindent
7657and reports the uses of the symbols:
7658
7659@example
7660Terminals, with rules where they appear
7661
88bce5a2 7662$end (0) 0
ec3bc396
AD
7663'*' (42) 3
7664'+' (43) 1
7665'-' (45) 2
7666'/' (47) 4
7667error (256)
7668NUM (258) 5
7669
7670Nonterminals, with rules where they appear
7671
88bce5a2 7672$accept (8)
ec3bc396
AD
7673 on left: 0
7674exp (9)
7675 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7676@end example
7677
7678@noindent
7679@cindex item
7680@cindex pointed rule
7681@cindex rule, pointed
7682Bison then proceeds onto the automaton itself, describing each state
7683with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7684item is a production rule together with a point (marked by @samp{.})
7685that the input cursor.
7686
7687@example
7688state 0
7689
88bce5a2 7690 $accept -> . exp $ (rule 0)
ec3bc396 7691
2a8d363a 7692 NUM shift, and go to state 1
ec3bc396 7693
2a8d363a 7694 exp go to state 2
ec3bc396
AD
7695@end example
7696
7697This reads as follows: ``state 0 corresponds to being at the very
7698beginning of the parsing, in the initial rule, right before the start
7699symbol (here, @code{exp}). When the parser returns to this state right
7700after having reduced a rule that produced an @code{exp}, the control
7701flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7702symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7703the parse stack, and the control flow jumps to state 1. Any other
742e4900 7704lookahead triggers a syntax error.''
ec3bc396
AD
7705
7706@cindex core, item set
7707@cindex item set core
7708@cindex kernel, item set
7709@cindex item set core
7710Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7711report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7712at the beginning of any rule deriving an @code{exp}. By default Bison
7713reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7714you want to see more detail you can invoke @command{bison} with
7715@option{--report=itemset} to list all the items, include those that can
7716be derived:
7717
7718@example
7719state 0
7720
88bce5a2 7721 $accept -> . exp $ (rule 0)
ec3bc396
AD
7722 exp -> . exp '+' exp (rule 1)
7723 exp -> . exp '-' exp (rule 2)
7724 exp -> . exp '*' exp (rule 3)
7725 exp -> . exp '/' exp (rule 4)
7726 exp -> . NUM (rule 5)
7727
7728 NUM shift, and go to state 1
7729
7730 exp go to state 2
7731@end example
7732
7733@noindent
7734In the state 1...
7735
7736@example
7737state 1
7738
7739 exp -> NUM . (rule 5)
7740
2a8d363a 7741 $default reduce using rule 5 (exp)
ec3bc396
AD
7742@end example
7743
7744@noindent
742e4900 7745the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7746(@samp{$default}), the parser will reduce it. If it was coming from
7747state 0, then, after this reduction it will return to state 0, and will
7748jump to state 2 (@samp{exp: go to state 2}).
7749
7750@example
7751state 2
7752
88bce5a2 7753 $accept -> exp . $ (rule 0)
ec3bc396
AD
7754 exp -> exp . '+' exp (rule 1)
7755 exp -> exp . '-' exp (rule 2)
7756 exp -> exp . '*' exp (rule 3)
7757 exp -> exp . '/' exp (rule 4)
7758
2a8d363a
AD
7759 $ shift, and go to state 3
7760 '+' shift, and go to state 4
7761 '-' shift, and go to state 5
7762 '*' shift, and go to state 6
7763 '/' shift, and go to state 7
ec3bc396
AD
7764@end example
7765
7766@noindent
7767In state 2, the automaton can only shift a symbol. For instance,
742e4900 7768because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
7769@samp{+}, it will be shifted on the parse stack, and the automaton
7770control will jump to state 4, corresponding to the item @samp{exp -> exp
7771'+' . exp}. Since there is no default action, any other token than
6e649e65 7772those listed above will trigger a syntax error.
ec3bc396 7773
34a6c2d1 7774@cindex accepting state
ec3bc396
AD
7775The state 3 is named the @dfn{final state}, or the @dfn{accepting
7776state}:
7777
7778@example
7779state 3
7780
88bce5a2 7781 $accept -> exp $ . (rule 0)
ec3bc396 7782
2a8d363a 7783 $default accept
ec3bc396
AD
7784@end example
7785
7786@noindent
7787the initial rule is completed (the start symbol and the end
7788of input were read), the parsing exits successfully.
7789
7790The interpretation of states 4 to 7 is straightforward, and is left to
7791the reader.
7792
7793@example
7794state 4
7795
7796 exp -> exp '+' . exp (rule 1)
7797
2a8d363a 7798 NUM shift, and go to state 1
ec3bc396 7799
2a8d363a 7800 exp go to state 8
ec3bc396
AD
7801
7802state 5
7803
7804 exp -> exp '-' . exp (rule 2)
7805
2a8d363a 7806 NUM shift, and go to state 1
ec3bc396 7807
2a8d363a 7808 exp go to state 9
ec3bc396
AD
7809
7810state 6
7811
7812 exp -> exp '*' . exp (rule 3)
7813
2a8d363a 7814 NUM shift, and go to state 1
ec3bc396 7815
2a8d363a 7816 exp go to state 10
ec3bc396
AD
7817
7818state 7
7819
7820 exp -> exp '/' . exp (rule 4)
7821
2a8d363a 7822 NUM shift, and go to state 1
ec3bc396 7823
2a8d363a 7824 exp go to state 11
ec3bc396
AD
7825@end example
7826
5a99098d
PE
7827As was announced in beginning of the report, @samp{State 8 conflicts:
78281 shift/reduce}:
ec3bc396
AD
7829
7830@example
7831state 8
7832
7833 exp -> exp . '+' exp (rule 1)
7834 exp -> exp '+' exp . (rule 1)
7835 exp -> exp . '-' exp (rule 2)
7836 exp -> exp . '*' exp (rule 3)
7837 exp -> exp . '/' exp (rule 4)
7838
2a8d363a
AD
7839 '*' shift, and go to state 6
7840 '/' shift, and go to state 7
ec3bc396 7841
2a8d363a
AD
7842 '/' [reduce using rule 1 (exp)]
7843 $default reduce using rule 1 (exp)
ec3bc396
AD
7844@end example
7845
742e4900 7846Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
7847either shifting (and going to state 7), or reducing rule 1. The
7848conflict means that either the grammar is ambiguous, or the parser lacks
7849information to make the right decision. Indeed the grammar is
7850ambiguous, as, since we did not specify the precedence of @samp{/}, the
7851sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
7852NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
7853NUM}, which corresponds to reducing rule 1.
7854
34a6c2d1 7855Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
7856arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
7857Shift/Reduce Conflicts}. Discarded actions are reported in between
7858square brackets.
7859
7860Note that all the previous states had a single possible action: either
7861shifting the next token and going to the corresponding state, or
7862reducing a single rule. In the other cases, i.e., when shifting
7863@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
7864possible, the lookahead is required to select the action. State 8 is
7865one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
7866is shifting, otherwise the action is reducing rule 1. In other words,
7867the first two items, corresponding to rule 1, are not eligible when the
742e4900 7868lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 7869precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
7870with some set of possible lookahead tokens. When run with
7871@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
7872
7873@example
7874state 8
7875
88c78747 7876 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
7877 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
7878 exp -> exp . '-' exp (rule 2)
7879 exp -> exp . '*' exp (rule 3)
7880 exp -> exp . '/' exp (rule 4)
7881
7882 '*' shift, and go to state 6
7883 '/' shift, and go to state 7
7884
7885 '/' [reduce using rule 1 (exp)]
7886 $default reduce using rule 1 (exp)
7887@end example
7888
7889The remaining states are similar:
7890
7891@example
7892state 9
7893
7894 exp -> exp . '+' exp (rule 1)
7895 exp -> exp . '-' exp (rule 2)
7896 exp -> exp '-' exp . (rule 2)
7897 exp -> exp . '*' exp (rule 3)
7898 exp -> exp . '/' exp (rule 4)
7899
2a8d363a
AD
7900 '*' shift, and go to state 6
7901 '/' shift, and go to state 7
ec3bc396 7902
2a8d363a
AD
7903 '/' [reduce using rule 2 (exp)]
7904 $default reduce using rule 2 (exp)
ec3bc396
AD
7905
7906state 10
7907
7908 exp -> exp . '+' exp (rule 1)
7909 exp -> exp . '-' exp (rule 2)
7910 exp -> exp . '*' exp (rule 3)
7911 exp -> exp '*' exp . (rule 3)
7912 exp -> exp . '/' exp (rule 4)
7913
2a8d363a 7914 '/' shift, and go to state 7
ec3bc396 7915
2a8d363a
AD
7916 '/' [reduce using rule 3 (exp)]
7917 $default reduce using rule 3 (exp)
ec3bc396
AD
7918
7919state 11
7920
7921 exp -> exp . '+' exp (rule 1)
7922 exp -> exp . '-' exp (rule 2)
7923 exp -> exp . '*' exp (rule 3)
7924 exp -> exp . '/' exp (rule 4)
7925 exp -> exp '/' exp . (rule 4)
7926
2a8d363a
AD
7927 '+' shift, and go to state 4
7928 '-' shift, and go to state 5
7929 '*' shift, and go to state 6
7930 '/' shift, and go to state 7
ec3bc396 7931
2a8d363a
AD
7932 '+' [reduce using rule 4 (exp)]
7933 '-' [reduce using rule 4 (exp)]
7934 '*' [reduce using rule 4 (exp)]
7935 '/' [reduce using rule 4 (exp)]
7936 $default reduce using rule 4 (exp)
ec3bc396
AD
7937@end example
7938
7939@noindent
fa7e68c3
PE
7940Observe that state 11 contains conflicts not only due to the lack of
7941precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7942@samp{*}, but also because the
ec3bc396
AD
7943associativity of @samp{/} is not specified.
7944
7945
7946@node Tracing
7947@section Tracing Your Parser
bfa74976
RS
7948@findex yydebug
7949@cindex debugging
7950@cindex tracing the parser
7951
7952If a Bison grammar compiles properly but doesn't do what you want when it
7953runs, the @code{yydebug} parser-trace feature can help you figure out why.
7954
3ded9a63
AD
7955There are several means to enable compilation of trace facilities:
7956
7957@table @asis
7958@item the macro @code{YYDEBUG}
7959@findex YYDEBUG
7960Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 7961parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
7962@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7963YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7964Prologue}).
7965
7966@item the option @option{-t}, @option{--debug}
7967Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 7968,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
7969
7970@item the directive @samp{%debug}
7971@findex %debug
7972Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
7973Declaration Summary}). This is a Bison extension, which will prove
7974useful when Bison will output parsers for languages that don't use a
c827f760
PE
7975preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
7976you, this is
3ded9a63
AD
7977the preferred solution.
7978@end table
7979
7980We suggest that you always enable the debug option so that debugging is
7981always possible.
bfa74976 7982
02a81e05 7983The trace facility outputs messages with macro calls of the form
e2742e46 7984@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 7985@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
7986arguments. If you define @code{YYDEBUG} to a nonzero value but do not
7987define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 7988and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
7989
7990Once you have compiled the program with trace facilities, the way to
7991request a trace is to store a nonzero value in the variable @code{yydebug}.
7992You can do this by making the C code do it (in @code{main}, perhaps), or
7993you can alter the value with a C debugger.
7994
7995Each step taken by the parser when @code{yydebug} is nonzero produces a
7996line or two of trace information, written on @code{stderr}. The trace
7997messages tell you these things:
7998
7999@itemize @bullet
8000@item
8001Each time the parser calls @code{yylex}, what kind of token was read.
8002
8003@item
8004Each time a token is shifted, the depth and complete contents of the
8005state stack (@pxref{Parser States}).
8006
8007@item
8008Each time a rule is reduced, which rule it is, and the complete contents
8009of the state stack afterward.
8010@end itemize
8011
8012To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8013produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8014Bison}). This file shows the meaning of each state in terms of
8015positions in various rules, and also what each state will do with each
8016possible input token. As you read the successive trace messages, you
8017can see that the parser is functioning according to its specification in
8018the listing file. Eventually you will arrive at the place where
8019something undesirable happens, and you will see which parts of the
8020grammar are to blame.
bfa74976
RS
8021
8022The parser file is a C program and you can use C debuggers on it, but it's
8023not easy to interpret what it is doing. The parser function is a
8024finite-state machine interpreter, and aside from the actions it executes
8025the same code over and over. Only the values of variables show where in
8026the grammar it is working.
8027
8028@findex YYPRINT
8029The debugging information normally gives the token type of each token
8030read, but not its semantic value. You can optionally define a macro
8031named @code{YYPRINT} to provide a way to print the value. If you define
8032@code{YYPRINT}, it should take three arguments. The parser will pass a
8033standard I/O stream, the numeric code for the token type, and the token
8034value (from @code{yylval}).
8035
8036Here is an example of @code{YYPRINT} suitable for the multi-function
f56274a8 8037calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
8038
8039@smallexample
38a92d50
PE
8040%@{
8041 static void print_token_value (FILE *, int, YYSTYPE);
8042 #define YYPRINT(file, type, value) print_token_value (file, type, value)
8043%@}
8044
8045@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8046
8047static void
831d3c99 8048print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8049@{
8050 if (type == VAR)
d3c4e709 8051 fprintf (file, "%s", value.tptr->name);
bfa74976 8052 else if (type == NUM)
d3c4e709 8053 fprintf (file, "%d", value.val);
bfa74976
RS
8054@}
8055@end smallexample
8056
ec3bc396
AD
8057@c ================================================= Invoking Bison
8058
342b8b6e 8059@node Invocation
bfa74976
RS
8060@chapter Invoking Bison
8061@cindex invoking Bison
8062@cindex Bison invocation
8063@cindex options for invoking Bison
8064
8065The usual way to invoke Bison is as follows:
8066
8067@example
8068bison @var{infile}
8069@end example
8070
8071Here @var{infile} is the grammar file name, which usually ends in
8072@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
8073with @samp{.tab.c} and removing any leading directory. Thus, the
8074@samp{bison foo.y} file name yields
8075@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
8076@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 8077C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
8078or @file{foo.y++}. Then, the output files will take an extension like
8079the given one as input (respectively @file{foo.tab.cpp} and
8080@file{foo.tab.c++}).
fa4d969f 8081This feature takes effect with all options that manipulate file names like
234a3be3
AD
8082@samp{-o} or @samp{-d}.
8083
8084For example :
8085
8086@example
8087bison -d @var{infile.yxx}
8088@end example
84163231 8089@noindent
72d2299c 8090will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8091
8092@example
b56471a6 8093bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8094@end example
84163231 8095@noindent
234a3be3
AD
8096will produce @file{output.c++} and @file{outfile.h++}.
8097
397ec073
PE
8098For compatibility with @acronym{POSIX}, the standard Bison
8099distribution also contains a shell script called @command{yacc} that
8100invokes Bison with the @option{-y} option.
8101
bfa74976 8102@menu
13863333 8103* Bison Options:: All the options described in detail,
c827f760 8104 in alphabetical order by short options.
bfa74976 8105* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8106* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8107@end menu
8108
342b8b6e 8109@node Bison Options
bfa74976
RS
8110@section Bison Options
8111
8112Bison supports both traditional single-letter options and mnemonic long
8113option names. Long option names are indicated with @samp{--} instead of
8114@samp{-}. Abbreviations for option names are allowed as long as they
8115are unique. When a long option takes an argument, like
8116@samp{--file-prefix}, connect the option name and the argument with
8117@samp{=}.
8118
8119Here is a list of options that can be used with Bison, alphabetized by
8120short option. It is followed by a cross key alphabetized by long
8121option.
8122
89cab50d
AD
8123@c Please, keep this ordered as in `bison --help'.
8124@noindent
8125Operations modes:
8126@table @option
8127@item -h
8128@itemx --help
8129Print a summary of the command-line options to Bison and exit.
bfa74976 8130
89cab50d
AD
8131@item -V
8132@itemx --version
8133Print the version number of Bison and exit.
bfa74976 8134
f7ab6a50
PE
8135@item --print-localedir
8136Print the name of the directory containing locale-dependent data.
8137
a0de5091
JD
8138@item --print-datadir
8139Print the name of the directory containing skeletons and XSLT.
8140
89cab50d
AD
8141@item -y
8142@itemx --yacc
54662697
PE
8143Act more like the traditional Yacc command. This can cause
8144different diagnostics to be generated, and may change behavior in
8145other minor ways. Most importantly, imitate Yacc's output
8146file name conventions, so that the parser output file is called
89cab50d 8147@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e 8148@file{y.tab.h}.
34a6c2d1 8149Also, if generating a deterministic parser in C, generate @code{#define}
b931235e
JD
8150statements in addition to an @code{enum} to associate token numbers with token
8151names.
8152Thus, the following shell script can substitute for Yacc, and the Bison
8153distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 8154
89cab50d 8155@example
397ec073 8156#! /bin/sh
26e06a21 8157bison -y "$@@"
89cab50d 8158@end example
54662697
PE
8159
8160The @option{-y}/@option{--yacc} option is intended for use with
8161traditional Yacc grammars. If your grammar uses a Bison extension
8162like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8163this option is specified.
8164
ecd1b61c
JD
8165@item -W [@var{category}]
8166@itemx --warnings[=@var{category}]
118d4978
AD
8167Output warnings falling in @var{category}. @var{category} can be one
8168of:
8169@table @code
8170@item midrule-values
8e55b3aa
JD
8171Warn about mid-rule values that are set but not used within any of the actions
8172of the parent rule.
8173For example, warn about unused @code{$2} in:
118d4978
AD
8174
8175@example
8176exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8177@end example
8178
8e55b3aa
JD
8179Also warn about mid-rule values that are used but not set.
8180For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8181
8182@example
8183 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
8184@end example
8185
8186These warnings are not enabled by default since they sometimes prove to
8187be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8188@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
8189
8190
8191@item yacc
8192Incompatibilities with @acronym{POSIX} Yacc.
8193
8194@item all
8e55b3aa 8195All the warnings.
118d4978 8196@item none
8e55b3aa 8197Turn off all the warnings.
118d4978 8198@item error
8e55b3aa 8199Treat warnings as errors.
118d4978
AD
8200@end table
8201
8202A category can be turned off by prefixing its name with @samp{no-}. For
cf22447c
JD
8203instance, @option{-Wno-yacc} will hide the warnings about
8204@acronym{POSIX} Yacc incompatibilities.
89cab50d
AD
8205@end table
8206
8207@noindent
8208Tuning the parser:
8209
8210@table @option
8211@item -t
8212@itemx --debug
4947ebdb
PE
8213In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
8214already defined, so that the debugging facilities are compiled.
ec3bc396 8215@xref{Tracing, ,Tracing Your Parser}.
89cab50d 8216
e14c6831
AD
8217@item -D @var{name}[=@var{value}]
8218@itemx --define=@var{name}[=@var{value}]
c33bc800 8219@itemx -F @var{name}[=@var{value}]
34d41938
JD
8220@itemx --force-define=@var{name}[=@var{value}]
8221Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
8222(@pxref{Decl Summary, ,%define}) except that Bison processes multiple
8223definitions for the same @var{name} as follows:
8224
8225@itemize
8226@item
e3a33f7c
JD
8227Bison quietly ignores all command-line definitions for @var{name} except
8228the last.
34d41938 8229@item
e3a33f7c
JD
8230If that command-line definition is specified by a @code{-D} or
8231@code{--define}, Bison reports an error for any @code{%define}
8232definition for @var{name}.
34d41938 8233@item
e3a33f7c
JD
8234If that command-line definition is specified by a @code{-F} or
8235@code{--force-define} instead, Bison quietly ignores all @code{%define}
8236definitions for @var{name}.
8237@item
8238Otherwise, Bison reports an error if there are multiple @code{%define}
8239definitions for @var{name}.
34d41938
JD
8240@end itemize
8241
8242You should avoid using @code{-F} and @code{--force-define} in your
8243makefiles unless you are confident that it is safe to quietly ignore any
8244conflicting @code{%define} that may be added to the grammar file.
e14c6831 8245
0e021770
PE
8246@item -L @var{language}
8247@itemx --language=@var{language}
8248Specify the programming language for the generated parser, as if
8249@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8250Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8251@var{language} is case-insensitive.
0e021770 8252
ed4d67dc
JD
8253This option is experimental and its effect may be modified in future
8254releases.
8255
89cab50d 8256@item --locations
d8988b2f 8257Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8258
8259@item -p @var{prefix}
8260@itemx --name-prefix=@var{prefix}
02975b9a 8261Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8262@xref{Decl Summary}.
bfa74976
RS
8263
8264@item -l
8265@itemx --no-lines
8266Don't put any @code{#line} preprocessor commands in the parser file.
8267Ordinarily Bison puts them in the parser file so that the C compiler
8268and debuggers will associate errors with your source file, the
8269grammar file. This option causes them to associate errors with the
95e742f7 8270parser file, treating it as an independent source file in its own right.
bfa74976 8271
e6e704dc
JD
8272@item -S @var{file}
8273@itemx --skeleton=@var{file}
a7867f53 8274Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8275(@pxref{Decl Summary, , Bison Declaration Summary}).
8276
ed4d67dc
JD
8277@c You probably don't need this option unless you are developing Bison.
8278@c You should use @option{--language} if you want to specify the skeleton for a
8279@c different language, because it is clearer and because it will always
8280@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8281
a7867f53
JD
8282If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8283file in the Bison installation directory.
8284If it does, @var{file} is an absolute file name or a file name relative to the
8285current working directory.
8286This is similar to how most shells resolve commands.
8287
89cab50d
AD
8288@item -k
8289@itemx --token-table
d8988b2f 8290Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8291@end table
bfa74976 8292
89cab50d
AD
8293@noindent
8294Adjust the output:
bfa74976 8295
89cab50d 8296@table @option
8e55b3aa 8297@item --defines[=@var{file}]
d8988b2f 8298Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8299file containing macro definitions for the token type names defined in
4bfd5e4e 8300the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8301
8e55b3aa
JD
8302@item -d
8303This is the same as @code{--defines} except @code{-d} does not accept a
8304@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8305with other short options.
342b8b6e 8306
89cab50d
AD
8307@item -b @var{file-prefix}
8308@itemx --file-prefix=@var{prefix}
9c437126 8309Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8310for all Bison output file names. @xref{Decl Summary}.
bfa74976 8311
ec3bc396
AD
8312@item -r @var{things}
8313@itemx --report=@var{things}
8314Write an extra output file containing verbose description of the comma
8315separated list of @var{things} among:
8316
8317@table @code
8318@item state
8319Description of the grammar, conflicts (resolved and unresolved), and
34a6c2d1 8320parser's automaton.
ec3bc396 8321
742e4900 8322@item lookahead
ec3bc396 8323Implies @code{state} and augments the description of the automaton with
742e4900 8324each rule's lookahead set.
ec3bc396
AD
8325
8326@item itemset
8327Implies @code{state} and augments the description of the automaton with
8328the full set of items for each state, instead of its core only.
8329@end table
8330
1bb2bd75
JD
8331@item --report-file=@var{file}
8332Specify the @var{file} for the verbose description.
8333
bfa74976
RS
8334@item -v
8335@itemx --verbose
9c437126 8336Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8337file containing verbose descriptions of the grammar and
72d2299c 8338parser. @xref{Decl Summary}.
bfa74976 8339
fa4d969f
PE
8340@item -o @var{file}
8341@itemx --output=@var{file}
8342Specify the @var{file} for the parser file.
bfa74976 8343
fa4d969f 8344The other output files' names are constructed from @var{file} as
d8988b2f 8345described under the @samp{-v} and @samp{-d} options.
342b8b6e 8346
72183df4 8347@item -g [@var{file}]
8e55b3aa 8348@itemx --graph[=@var{file}]
34a6c2d1 8349Output a graphical representation of the parser's
35fe0834
PE
8350automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8351@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
8e55b3aa
JD
8352@code{@var{file}} is optional.
8353If omitted and the grammar file is @file{foo.y}, the output file will be
8354@file{foo.dot}.
59da312b 8355
72183df4 8356@item -x [@var{file}]
8e55b3aa 8357@itemx --xml[=@var{file}]
34a6c2d1 8358Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8359@code{@var{file}} is optional.
59da312b
JD
8360If omitted and the grammar file is @file{foo.y}, the output file will be
8361@file{foo.xml}.
8362(The current XML schema is experimental and may evolve.
8363More user feedback will help to stabilize it.)
bfa74976
RS
8364@end table
8365
342b8b6e 8366@node Option Cross Key
bfa74976
RS
8367@section Option Cross Key
8368
8369Here is a list of options, alphabetized by long option, to help you find
34d41938 8370the corresponding short option and directive.
bfa74976 8371
34d41938 8372@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
72183df4 8373@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8374@include cross-options.texi
aa08666d 8375@end multitable
bfa74976 8376
93dd49ab
PE
8377@node Yacc Library
8378@section Yacc Library
8379
8380The Yacc library contains default implementations of the
8381@code{yyerror} and @code{main} functions. These default
8382implementations are normally not useful, but @acronym{POSIX} requires
8383them. To use the Yacc library, link your program with the
8384@option{-ly} option. Note that Bison's implementation of the Yacc
8385library is distributed under the terms of the @acronym{GNU} General
8386Public License (@pxref{Copying}).
8387
8388If you use the Yacc library's @code{yyerror} function, you should
8389declare @code{yyerror} as follows:
8390
8391@example
8392int yyerror (char const *);
8393@end example
8394
8395Bison ignores the @code{int} value returned by this @code{yyerror}.
8396If you use the Yacc library's @code{main} function, your
8397@code{yyparse} function should have the following type signature:
8398
8399@example
8400int yyparse (void);
8401@end example
8402
12545799
AD
8403@c ================================================= C++ Bison
8404
8405b70c
PB
8405@node Other Languages
8406@chapter Parsers Written In Other Languages
12545799
AD
8407
8408@menu
8409* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8410* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8411@end menu
8412
8413@node C++ Parsers
8414@section C++ Parsers
8415
8416@menu
8417* C++ Bison Interface:: Asking for C++ parser generation
8418* C++ Semantic Values:: %union vs. C++
8419* C++ Location Values:: The position and location classes
8420* C++ Parser Interface:: Instantiating and running the parser
8421* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8422* A Complete C++ Example:: Demonstrating their use
12545799
AD
8423@end menu
8424
8425@node C++ Bison Interface
8426@subsection C++ Bison Interface
ed4d67dc 8427@c - %skeleton "lalr1.cc"
12545799
AD
8428@c - Always pure
8429@c - initial action
8430
34a6c2d1 8431The C++ deterministic parser is selected using the skeleton directive,
baacae49
AD
8432@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
8433@option{--skeleton=lalr1.cc}.
e6e704dc 8434@xref{Decl Summary}.
0e021770 8435
793fbca5
JD
8436When run, @command{bison} will create several entities in the @samp{yy}
8437namespace.
8438@findex %define namespace
8439Use the @samp{%define namespace} directive to change the namespace name, see
8440@ref{Decl Summary}.
8441The various classes are generated in the following files:
aa08666d 8442
12545799
AD
8443@table @file
8444@item position.hh
8445@itemx location.hh
8446The definition of the classes @code{position} and @code{location},
8447used for location tracking. @xref{C++ Location Values}.
8448
8449@item stack.hh
8450An auxiliary class @code{stack} used by the parser.
8451
fa4d969f
PE
8452@item @var{file}.hh
8453@itemx @var{file}.cc
cd8b5791
AD
8454(Assuming the extension of the input file was @samp{.yy}.) The
8455declaration and implementation of the C++ parser class. The basename
8456and extension of these two files follow the same rules as with regular C
8457parsers (@pxref{Invocation}).
12545799 8458
cd8b5791
AD
8459The header is @emph{mandatory}; you must either pass
8460@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8461@samp{%defines} directive.
8462@end table
8463
8464All these files are documented using Doxygen; run @command{doxygen}
8465for a complete and accurate documentation.
8466
8467@node C++ Semantic Values
8468@subsection C++ Semantic Values
8469@c - No objects in unions
178e123e 8470@c - YYSTYPE
12545799
AD
8471@c - Printer and destructor
8472
8473The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8474Collection of Value Types}. In particular it produces a genuine
8475@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
8476within pseudo-unions (similar to Boost variants) might be implemented to
8477alleviate these issues.}, which have a few specific features in C++.
12545799
AD
8478@itemize @minus
8479@item
fb9712a9
AD
8480The type @code{YYSTYPE} is defined but its use is discouraged: rather
8481you should refer to the parser's encapsulated type
8482@code{yy::parser::semantic_type}.
12545799
AD
8483@item
8484Non POD (Plain Old Data) types cannot be used. C++ forbids any
8485instance of classes with constructors in unions: only @emph{pointers}
8486to such objects are allowed.
8487@end itemize
8488
8489Because objects have to be stored via pointers, memory is not
8490reclaimed automatically: using the @code{%destructor} directive is the
8491only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8492Symbols}.
8493
8494
8495@node C++ Location Values
8496@subsection C++ Location Values
8497@c - %locations
8498@c - class Position
8499@c - class Location
16dc6a9e 8500@c - %define filename_type "const symbol::Symbol"
12545799
AD
8501
8502When the directive @code{%locations} is used, the C++ parser supports
8503location tracking, see @ref{Locations, , Locations Overview}. Two
8504auxiliary classes define a @code{position}, a single point in a file,
8505and a @code{location}, a range composed of a pair of
8506@code{position}s (possibly spanning several files).
8507
fa4d969f 8508@deftypemethod {position} {std::string*} file
12545799
AD
8509The name of the file. It will always be handled as a pointer, the
8510parser will never duplicate nor deallocate it. As an experimental
8511feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8512filename_type "@var{type}"}.
12545799
AD
8513@end deftypemethod
8514
8515@deftypemethod {position} {unsigned int} line
8516The line, starting at 1.
8517@end deftypemethod
8518
8519@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8520Advance by @var{height} lines, resetting the column number.
8521@end deftypemethod
8522
8523@deftypemethod {position} {unsigned int} column
8524The column, starting at 0.
8525@end deftypemethod
8526
8527@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8528Advance by @var{width} columns, without changing the line number.
8529@end deftypemethod
8530
8531@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8532@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8533@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8534@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8535Various forms of syntactic sugar for @code{columns}.
8536@end deftypemethod
8537
8538@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8539Report @var{p} on @var{o} like this:
fa4d969f
PE
8540@samp{@var{file}:@var{line}.@var{column}}, or
8541@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8542@end deftypemethod
8543
8544@deftypemethod {location} {position} begin
8545@deftypemethodx {location} {position} end
8546The first, inclusive, position of the range, and the first beyond.
8547@end deftypemethod
8548
8549@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8550@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8551Advance the @code{end} position.
8552@end deftypemethod
8553
8554@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8555@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8556@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8557Various forms of syntactic sugar.
8558@end deftypemethod
8559
8560@deftypemethod {location} {void} step ()
8561Move @code{begin} onto @code{end}.
8562@end deftypemethod
8563
8564
8565@node C++ Parser Interface
8566@subsection C++ Parser Interface
8567@c - define parser_class_name
8568@c - Ctor
8569@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8570@c debug_stream.
8571@c - Reporting errors
8572
8573The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8574declare and define the parser class in the namespace @code{yy}. The
8575class name defaults to @code{parser}, but may be changed using
16dc6a9e 8576@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8577this class is detailed below. It can be extended using the
12545799
AD
8578@code{%parse-param} feature: its semantics is slightly changed since
8579it describes an additional member of the parser class, and an
8580additional argument for its constructor.
8581
baacae49
AD
8582@defcv {Type} {parser} {semantic_type}
8583@defcvx {Type} {parser} {location_type}
12545799 8584The types for semantics value and locations.
8a0adb01 8585@end defcv
12545799 8586
baacae49
AD
8587@defcv {Type} {parser} {token}
8588A structure that contains (only) the definition of the tokens as the
8589@code{yytokentype} enumeration. To refer to the token @code{FOO}, the
8590scanner should use @code{yy::parser::token::FOO}. The scanner can use
8591@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
8592(@pxref{Calc++ Scanner}).
8593@end defcv
8594
12545799
AD
8595@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8596Build a new parser object. There are no arguments by default, unless
8597@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8598@end deftypemethod
8599
8600@deftypemethod {parser} {int} parse ()
8601Run the syntactic analysis, and return 0 on success, 1 otherwise.
8602@end deftypemethod
8603
8604@deftypemethod {parser} {std::ostream&} debug_stream ()
8605@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8606Get or set the stream used for tracing the parsing. It defaults to
8607@code{std::cerr}.
8608@end deftypemethod
8609
8610@deftypemethod {parser} {debug_level_type} debug_level ()
8611@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8612Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8613or nonzero, full tracing.
12545799
AD
8614@end deftypemethod
8615
8616@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
8617The definition for this member function must be supplied by the user:
8618the parser uses it to report a parser error occurring at @var{l},
8619described by @var{m}.
8620@end deftypemethod
8621
8622
8623@node C++ Scanner Interface
8624@subsection C++ Scanner Interface
8625@c - prefix for yylex.
8626@c - Pure interface to yylex
8627@c - %lex-param
8628
8629The parser invokes the scanner by calling @code{yylex}. Contrary to C
8630parsers, C++ parsers are always pure: there is no point in using the
d9df47b6 8631@code{%define api.pure} directive. Therefore the interface is as follows.
12545799 8632
baacae49 8633@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
12545799
AD
8634Return the next token. Its type is the return value, its semantic
8635value and location being @var{yylval} and @var{yylloc}. Invocations of
8636@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8637@end deftypemethod
8638
8639
8640@node A Complete C++ Example
8405b70c 8641@subsection A Complete C++ Example
12545799
AD
8642
8643This section demonstrates the use of a C++ parser with a simple but
8644complete example. This example should be available on your system,
8645ready to compile, in the directory @dfn{../bison/examples/calc++}. It
8646focuses on the use of Bison, therefore the design of the various C++
8647classes is very naive: no accessors, no encapsulation of members etc.
8648We will use a Lex scanner, and more precisely, a Flex scanner, to
8649demonstrate the various interaction. A hand written scanner is
8650actually easier to interface with.
8651
8652@menu
8653* Calc++ --- C++ Calculator:: The specifications
8654* Calc++ Parsing Driver:: An active parsing context
8655* Calc++ Parser:: A parser class
8656* Calc++ Scanner:: A pure C++ Flex scanner
8657* Calc++ Top Level:: Conducting the band
8658@end menu
8659
8660@node Calc++ --- C++ Calculator
8405b70c 8661@subsubsection Calc++ --- C++ Calculator
12545799
AD
8662
8663Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 8664expression, possibly preceded by variable assignments. An
12545799
AD
8665environment containing possibly predefined variables such as
8666@code{one} and @code{two}, is exchanged with the parser. An example
8667of valid input follows.
8668
8669@example
8670three := 3
8671seven := one + two * three
8672seven * seven
8673@end example
8674
8675@node Calc++ Parsing Driver
8405b70c 8676@subsubsection Calc++ Parsing Driver
12545799
AD
8677@c - An env
8678@c - A place to store error messages
8679@c - A place for the result
8680
8681To support a pure interface with the parser (and the scanner) the
8682technique of the ``parsing context'' is convenient: a structure
8683containing all the data to exchange. Since, in addition to simply
8684launch the parsing, there are several auxiliary tasks to execute (open
8685the file for parsing, instantiate the parser etc.), we recommend
8686transforming the simple parsing context structure into a fully blown
8687@dfn{parsing driver} class.
8688
8689The declaration of this driver class, @file{calc++-driver.hh}, is as
8690follows. The first part includes the CPP guard and imports the
fb9712a9
AD
8691required standard library components, and the declaration of the parser
8692class.
12545799 8693
1c59e0a1 8694@comment file: calc++-driver.hh
12545799
AD
8695@example
8696#ifndef CALCXX_DRIVER_HH
8697# define CALCXX_DRIVER_HH
8698# include <string>
8699# include <map>
fb9712a9 8700# include "calc++-parser.hh"
12545799
AD
8701@end example
8702
12545799
AD
8703
8704@noindent
8705Then comes the declaration of the scanning function. Flex expects
8706the signature of @code{yylex} to be defined in the macro
8707@code{YY_DECL}, and the C++ parser expects it to be declared. We can
8708factor both as follows.
1c59e0a1
AD
8709
8710@comment file: calc++-driver.hh
12545799 8711@example
3dc5e96b
PE
8712// Tell Flex the lexer's prototype ...
8713# define YY_DECL \
c095d689
AD
8714 yy::calcxx_parser::token_type \
8715 yylex (yy::calcxx_parser::semantic_type* yylval, \
8716 yy::calcxx_parser::location_type* yylloc, \
8717 calcxx_driver& driver)
12545799
AD
8718// ... and declare it for the parser's sake.
8719YY_DECL;
8720@end example
8721
8722@noindent
8723The @code{calcxx_driver} class is then declared with its most obvious
8724members.
8725
1c59e0a1 8726@comment file: calc++-driver.hh
12545799
AD
8727@example
8728// Conducting the whole scanning and parsing of Calc++.
8729class calcxx_driver
8730@{
8731public:
8732 calcxx_driver ();
8733 virtual ~calcxx_driver ();
8734
8735 std::map<std::string, int> variables;
8736
8737 int result;
8738@end example
8739
8740@noindent
8741To encapsulate the coordination with the Flex scanner, it is useful to
8742have two members function to open and close the scanning phase.
12545799 8743
1c59e0a1 8744@comment file: calc++-driver.hh
12545799
AD
8745@example
8746 // Handling the scanner.
8747 void scan_begin ();
8748 void scan_end ();
8749 bool trace_scanning;
8750@end example
8751
8752@noindent
8753Similarly for the parser itself.
8754
1c59e0a1 8755@comment file: calc++-driver.hh
12545799 8756@example
bb32f4f2
AD
8757 // Run the parser. Return 0 on success.
8758 int parse (const std::string& f);
12545799
AD
8759 std::string file;
8760 bool trace_parsing;
8761@end example
8762
8763@noindent
8764To demonstrate pure handling of parse errors, instead of simply
8765dumping them on the standard error output, we will pass them to the
8766compiler driver using the following two member functions. Finally, we
8767close the class declaration and CPP guard.
8768
1c59e0a1 8769@comment file: calc++-driver.hh
12545799
AD
8770@example
8771 // Error handling.
8772 void error (const yy::location& l, const std::string& m);
8773 void error (const std::string& m);
8774@};
8775#endif // ! CALCXX_DRIVER_HH
8776@end example
8777
8778The implementation of the driver is straightforward. The @code{parse}
8779member function deserves some attention. The @code{error} functions
8780are simple stubs, they should actually register the located error
8781messages and set error state.
8782
1c59e0a1 8783@comment file: calc++-driver.cc
12545799
AD
8784@example
8785#include "calc++-driver.hh"
8786#include "calc++-parser.hh"
8787
8788calcxx_driver::calcxx_driver ()
8789 : trace_scanning (false), trace_parsing (false)
8790@{
8791 variables["one"] = 1;
8792 variables["two"] = 2;
8793@}
8794
8795calcxx_driver::~calcxx_driver ()
8796@{
8797@}
8798
bb32f4f2 8799int
12545799
AD
8800calcxx_driver::parse (const std::string &f)
8801@{
8802 file = f;
8803 scan_begin ();
8804 yy::calcxx_parser parser (*this);
8805 parser.set_debug_level (trace_parsing);
bb32f4f2 8806 int res = parser.parse ();
12545799 8807 scan_end ();
bb32f4f2 8808 return res;
12545799
AD
8809@}
8810
8811void
8812calcxx_driver::error (const yy::location& l, const std::string& m)
8813@{
8814 std::cerr << l << ": " << m << std::endl;
8815@}
8816
8817void
8818calcxx_driver::error (const std::string& m)
8819@{
8820 std::cerr << m << std::endl;
8821@}
8822@end example
8823
8824@node Calc++ Parser
8405b70c 8825@subsubsection Calc++ Parser
12545799 8826
b50d2359 8827The parser definition file @file{calc++-parser.yy} starts by asking for
34a6c2d1
JD
8828the C++ deterministic parser skeleton, the creation of the parser header
8829file, and specifies the name of the parser class.
8830Because the C++ skeleton changed several times, it is safer to require
8831the version you designed the grammar for.
1c59e0a1
AD
8832
8833@comment file: calc++-parser.yy
12545799 8834@example
ed4d67dc 8835%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 8836%require "@value{VERSION}"
12545799 8837%defines
16dc6a9e 8838%define parser_class_name "calcxx_parser"
fb9712a9
AD
8839@end example
8840
8841@noindent
16dc6a9e 8842@findex %code requires
fb9712a9
AD
8843Then come the declarations/inclusions needed to define the
8844@code{%union}. Because the parser uses the parsing driver and
8845reciprocally, both cannot include the header of the other. Because the
8846driver's header needs detailed knowledge about the parser class (in
8847particular its inner types), it is the parser's header which will simply
8848use a forward declaration of the driver.
148d66d8 8849@xref{Decl Summary, ,%code}.
fb9712a9
AD
8850
8851@comment file: calc++-parser.yy
8852@example
16dc6a9e 8853%code requires @{
12545799 8854# include <string>
fb9712a9 8855class calcxx_driver;
9bc0dd67 8856@}
12545799
AD
8857@end example
8858
8859@noindent
8860The driver is passed by reference to the parser and to the scanner.
8861This provides a simple but effective pure interface, not relying on
8862global variables.
8863
1c59e0a1 8864@comment file: calc++-parser.yy
12545799
AD
8865@example
8866// The parsing context.
8867%parse-param @{ calcxx_driver& driver @}
8868%lex-param @{ calcxx_driver& driver @}
8869@end example
8870
8871@noindent
8872Then we request the location tracking feature, and initialize the
c781580d 8873first location's file name. Afterward new locations are computed
12545799
AD
8874relatively to the previous locations: the file name will be
8875automatically propagated.
8876
1c59e0a1 8877@comment file: calc++-parser.yy
12545799
AD
8878@example
8879%locations
8880%initial-action
8881@{
8882 // Initialize the initial location.
b47dbebe 8883 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
8884@};
8885@end example
8886
8887@noindent
8888Use the two following directives to enable parser tracing and verbose
8889error messages.
8890
1c59e0a1 8891@comment file: calc++-parser.yy
12545799
AD
8892@example
8893%debug
8894%error-verbose
8895@end example
8896
8897@noindent
8898Semantic values cannot use ``real'' objects, but only pointers to
8899them.
8900
1c59e0a1 8901@comment file: calc++-parser.yy
12545799
AD
8902@example
8903// Symbols.
8904%union
8905@{
8906 int ival;
8907 std::string *sval;
8908@};
8909@end example
8910
fb9712a9 8911@noindent
136a0f76
PB
8912@findex %code
8913The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 8914@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
8915
8916@comment file: calc++-parser.yy
8917@example
136a0f76 8918%code @{
fb9712a9 8919# include "calc++-driver.hh"
34f98f46 8920@}
fb9712a9
AD
8921@end example
8922
8923
12545799
AD
8924@noindent
8925The token numbered as 0 corresponds to end of file; the following line
8926allows for nicer error messages referring to ``end of file'' instead
8927of ``$end''. Similarly user friendly named are provided for each
8928symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
8929avoid name clashes.
8930
1c59e0a1 8931@comment file: calc++-parser.yy
12545799 8932@example
fb9712a9
AD
8933%token END 0 "end of file"
8934%token ASSIGN ":="
8935%token <sval> IDENTIFIER "identifier"
8936%token <ival> NUMBER "number"
a8c2e813 8937%type <ival> exp
12545799
AD
8938@end example
8939
8940@noindent
8941To enable memory deallocation during error recovery, use
8942@code{%destructor}.
8943
287c78f6 8944@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 8945@comment file: calc++-parser.yy
12545799
AD
8946@example
8947%printer @{ debug_stream () << *$$; @} "identifier"
8948%destructor @{ delete $$; @} "identifier"
8949
a8c2e813 8950%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
8951@end example
8952
8953@noindent
8954The grammar itself is straightforward.
8955
1c59e0a1 8956@comment file: calc++-parser.yy
12545799
AD
8957@example
8958%%
8959%start unit;
8960unit: assignments exp @{ driver.result = $2; @};
8961
8962assignments: assignments assignment @{@}
9d9b8b70 8963 | /* Nothing. */ @{@};
12545799 8964
3dc5e96b
PE
8965assignment:
8966 "identifier" ":=" exp
8967 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
8968
8969%left '+' '-';
8970%left '*' '/';
8971exp: exp '+' exp @{ $$ = $1 + $3; @}
8972 | exp '-' exp @{ $$ = $1 - $3; @}
8973 | exp '*' exp @{ $$ = $1 * $3; @}
8974 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 8975 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 8976 | "number" @{ $$ = $1; @};
12545799
AD
8977%%
8978@end example
8979
8980@noindent
8981Finally the @code{error} member function registers the errors to the
8982driver.
8983
1c59e0a1 8984@comment file: calc++-parser.yy
12545799
AD
8985@example
8986void
1c59e0a1
AD
8987yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
8988 const std::string& m)
12545799
AD
8989@{
8990 driver.error (l, m);
8991@}
8992@end example
8993
8994@node Calc++ Scanner
8405b70c 8995@subsubsection Calc++ Scanner
12545799
AD
8996
8997The Flex scanner first includes the driver declaration, then the
8998parser's to get the set of defined tokens.
8999
1c59e0a1 9000@comment file: calc++-scanner.ll
12545799
AD
9001@example
9002%@{ /* -*- C++ -*- */
04098407 9003# include <cstdlib>
b10dd689
AD
9004# include <cerrno>
9005# include <climits>
12545799
AD
9006# include <string>
9007# include "calc++-driver.hh"
9008# include "calc++-parser.hh"
eaea13f5
PE
9009
9010/* Work around an incompatibility in flex (at least versions
9011 2.5.31 through 2.5.33): it generates code that does
9012 not conform to C89. See Debian bug 333231
9013 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
9014# undef yywrap
9015# define yywrap() 1
eaea13f5 9016
c095d689
AD
9017/* By default yylex returns int, we use token_type.
9018 Unfortunately yyterminate by default returns 0, which is
9019 not of token_type. */
8c5b881d 9020#define yyterminate() return token::END
12545799
AD
9021%@}
9022@end example
9023
9024@noindent
9025Because there is no @code{#include}-like feature we don't need
9026@code{yywrap}, we don't need @code{unput} either, and we parse an
9027actual file, this is not an interactive session with the user.
9028Finally we enable the scanner tracing features.
9029
1c59e0a1 9030@comment file: calc++-scanner.ll
12545799
AD
9031@example
9032%option noyywrap nounput batch debug
9033@end example
9034
9035@noindent
9036Abbreviations allow for more readable rules.
9037
1c59e0a1 9038@comment file: calc++-scanner.ll
12545799
AD
9039@example
9040id [a-zA-Z][a-zA-Z_0-9]*
9041int [0-9]+
9042blank [ \t]
9043@end example
9044
9045@noindent
9d9b8b70 9046The following paragraph suffices to track locations accurately. Each
12545799
AD
9047time @code{yylex} is invoked, the begin position is moved onto the end
9048position. Then when a pattern is matched, the end position is
9049advanced of its width. In case it matched ends of lines, the end
9050cursor is adjusted, and each time blanks are matched, the begin cursor
9051is moved onto the end cursor to effectively ignore the blanks
9052preceding tokens. Comments would be treated equally.
9053
1c59e0a1 9054@comment file: calc++-scanner.ll
12545799 9055@example
828c373b
AD
9056%@{
9057# define YY_USER_ACTION yylloc->columns (yyleng);
9058%@}
12545799
AD
9059%%
9060%@{
9061 yylloc->step ();
12545799
AD
9062%@}
9063@{blank@}+ yylloc->step ();
9064[\n]+ yylloc->lines (yyleng); yylloc->step ();
9065@end example
9066
9067@noindent
fb9712a9
AD
9068The rules are simple, just note the use of the driver to report errors.
9069It is convenient to use a typedef to shorten
9070@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 9071@code{token::identifier} for instance.
12545799 9072
1c59e0a1 9073@comment file: calc++-scanner.ll
12545799 9074@example
fb9712a9
AD
9075%@{
9076 typedef yy::calcxx_parser::token token;
9077%@}
8c5b881d 9078 /* Convert ints to the actual type of tokens. */
c095d689 9079[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 9080":=" return token::ASSIGN;
04098407
PE
9081@{int@} @{
9082 errno = 0;
9083 long n = strtol (yytext, NULL, 10);
9084 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
9085 driver.error (*yylloc, "integer is out of range");
9086 yylval->ival = n;
fb9712a9 9087 return token::NUMBER;
04098407 9088@}
fb9712a9 9089@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
9090. driver.error (*yylloc, "invalid character");
9091%%
9092@end example
9093
9094@noindent
9095Finally, because the scanner related driver's member function depend
9096on the scanner's data, it is simpler to implement them in this file.
9097
1c59e0a1 9098@comment file: calc++-scanner.ll
12545799
AD
9099@example
9100void
9101calcxx_driver::scan_begin ()
9102@{
9103 yy_flex_debug = trace_scanning;
bb32f4f2
AD
9104 if (file == "-")
9105 yyin = stdin;
9106 else if (!(yyin = fopen (file.c_str (), "r")))
9107 @{
9108 error (std::string ("cannot open ") + file);
9109 exit (1);
9110 @}
12545799
AD
9111@}
9112
9113void
9114calcxx_driver::scan_end ()
9115@{
9116 fclose (yyin);
9117@}
9118@end example
9119
9120@node Calc++ Top Level
8405b70c 9121@subsubsection Calc++ Top Level
12545799
AD
9122
9123The top level file, @file{calc++.cc}, poses no problem.
9124
1c59e0a1 9125@comment file: calc++.cc
12545799
AD
9126@example
9127#include <iostream>
9128#include "calc++-driver.hh"
9129
9130int
fa4d969f 9131main (int argc, char *argv[])
12545799
AD
9132@{
9133 calcxx_driver driver;
9134 for (++argv; argv[0]; ++argv)
9135 if (*argv == std::string ("-p"))
9136 driver.trace_parsing = true;
9137 else if (*argv == std::string ("-s"))
9138 driver.trace_scanning = true;
bb32f4f2
AD
9139 else if (!driver.parse (*argv))
9140 std::cout << driver.result << std::endl;
12545799
AD
9141@}
9142@end example
9143
8405b70c
PB
9144@node Java Parsers
9145@section Java Parsers
9146
9147@menu
f56274a8
DJ
9148* Java Bison Interface:: Asking for Java parser generation
9149* Java Semantic Values:: %type and %token vs. Java
9150* Java Location Values:: The position and location classes
9151* Java Parser Interface:: Instantiating and running the parser
9152* Java Scanner Interface:: Specifying the scanner for the parser
9153* Java Action Features:: Special features for use in actions
9154* Java Differences:: Differences between C/C++ and Java Grammars
9155* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
9156@end menu
9157
9158@node Java Bison Interface
9159@subsection Java Bison Interface
9160@c - %language "Java"
8405b70c 9161
59da312b
JD
9162(The current Java interface is experimental and may evolve.
9163More user feedback will help to stabilize it.)
9164
e254a580
DJ
9165The Java parser skeletons are selected using the @code{%language "Java"}
9166directive or the @option{-L java}/@option{--language=java} option.
8405b70c 9167
e254a580
DJ
9168@c FIXME: Documented bug.
9169When generating a Java parser, @code{bison @var{basename}.y} will create
9170a single Java source file named @file{@var{basename}.java}. Using an
9171input file without a @file{.y} suffix is currently broken. The basename
9172of the output file can be changed by the @code{%file-prefix} directive
9173or the @option{-p}/@option{--name-prefix} option. The entire output file
9174name can be changed by the @code{%output} directive or the
9175@option{-o}/@option{--output} option. The output file contains a single
9176class for the parser.
8405b70c 9177
e254a580 9178You can create documentation for generated parsers using Javadoc.
8405b70c 9179
e254a580
DJ
9180Contrary to C parsers, Java parsers do not use global variables; the
9181state of the parser is always local to an instance of the parser class.
9182Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
9183and @code{%define api.pure} directives does not do anything when used in
9184Java.
8405b70c 9185
e254a580 9186Push parsers are currently unsupported in Java and @code{%define
812775a0 9187api.push-pull} have no effect.
01b477c6 9188
e254a580
DJ
9189@acronym{GLR} parsers are currently unsupported in Java. Do not use the
9190@code{glr-parser} directive.
9191
9192No header file can be generated for Java parsers. Do not use the
9193@code{%defines} directive or the @option{-d}/@option{--defines} options.
9194
9195@c FIXME: Possible code change.
9196Currently, support for debugging and verbose errors are always compiled
9197in. Thus the @code{%debug} and @code{%token-table} directives and the
9198@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
9199options have no effect. This may change in the future to eliminate
9200unused code in the generated parser, so use @code{%debug} and
9201@code{%verbose-error} explicitly if needed. Also, in the future the
9202@code{%token-table} directive might enable a public interface to
9203access the token names and codes.
8405b70c
PB
9204
9205@node Java Semantic Values
9206@subsection Java Semantic Values
9207@c - No %union, specify type in %type/%token.
9208@c - YYSTYPE
9209@c - Printer and destructor
9210
9211There is no @code{%union} directive in Java parsers. Instead, the
9212semantic values' types (class names) should be specified in the
9213@code{%type} or @code{%token} directive:
9214
9215@example
9216%type <Expression> expr assignment_expr term factor
9217%type <Integer> number
9218@end example
9219
9220By default, the semantic stack is declared to have @code{Object} members,
9221which means that the class types you specify can be of any class.
9222To improve the type safety of the parser, you can declare the common
e254a580
DJ
9223superclass of all the semantic values using the @code{%define stype}
9224directive. For example, after the following declaration:
8405b70c
PB
9225
9226@example
e254a580 9227%define stype "ASTNode"
8405b70c
PB
9228@end example
9229
9230@noindent
9231any @code{%type} or @code{%token} specifying a semantic type which
9232is not a subclass of ASTNode, will cause a compile-time error.
9233
e254a580 9234@c FIXME: Documented bug.
8405b70c
PB
9235Types used in the directives may be qualified with a package name.
9236Primitive data types are accepted for Java version 1.5 or later. Note
9237that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
9238Generic types may not be used; this is due to a limitation in the
9239implementation of Bison, and may change in future releases.
8405b70c
PB
9240
9241Java parsers do not support @code{%destructor}, since the language
9242adopts garbage collection. The parser will try to hold references
9243to semantic values for as little time as needed.
9244
9245Java parsers do not support @code{%printer}, as @code{toString()}
9246can be used to print the semantic values. This however may change
9247(in a backwards-compatible way) in future versions of Bison.
9248
9249
9250@node Java Location Values
9251@subsection Java Location Values
9252@c - %locations
9253@c - class Position
9254@c - class Location
9255
9256When the directive @code{%locations} is used, the Java parser
9257supports location tracking, see @ref{Locations, , Locations Overview}.
9258An auxiliary user-defined class defines a @dfn{position}, a single point
9259in a file; Bison itself defines a class representing a @dfn{location},
9260a range composed of a pair of positions (possibly spanning several
9261files). The location class is an inner class of the parser; the name
e254a580 9262is @code{Location} by default, and may also be renamed using
f37495f6 9263@code{%define location_type "@var{class-name}"}.
8405b70c
PB
9264
9265The location class treats the position as a completely opaque value.
9266By default, the class name is @code{Position}, but this can be changed
e254a580
DJ
9267with @code{%define position_type "@var{class-name}"}. This class must
9268be supplied by the user.
8405b70c
PB
9269
9270
e254a580
DJ
9271@deftypeivar {Location} {Position} begin
9272@deftypeivarx {Location} {Position} end
8405b70c 9273The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
9274@end deftypeivar
9275
9276@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c046698e 9277Create a @code{Location} denoting an empty range located at a given point.
e254a580 9278@end deftypeop
8405b70c 9279
e254a580
DJ
9280@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
9281Create a @code{Location} from the endpoints of the range.
9282@end deftypeop
9283
9284@deftypemethod {Location} {String} toString ()
8405b70c
PB
9285Prints the range represented by the location. For this to work
9286properly, the position class should override the @code{equals} and
9287@code{toString} methods appropriately.
9288@end deftypemethod
9289
9290
9291@node Java Parser Interface
9292@subsection Java Parser Interface
9293@c - define parser_class_name
9294@c - Ctor
9295@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9296@c debug_stream.
9297@c - Reporting errors
9298
e254a580
DJ
9299The name of the generated parser class defaults to @code{YYParser}. The
9300@code{YY} prefix may be changed using the @code{%name-prefix} directive
9301or the @option{-p}/@option{--name-prefix} option. Alternatively, use
9302@code{%define parser_class_name "@var{name}"} to give a custom name to
9303the class. The interface of this class is detailed below.
8405b70c 9304
e254a580
DJ
9305By default, the parser class has package visibility. A declaration
9306@code{%define public} will change to public visibility. Remember that,
9307according to the Java language specification, the name of the @file{.java}
9308file should match the name of the class in this case. Similarly, you can
9309use @code{abstract}, @code{final} and @code{strictfp} with the
9310@code{%define} declaration to add other modifiers to the parser class.
9311
9312The Java package name of the parser class can be specified using the
9313@code{%define package} directive. The superclass and the implemented
9314interfaces of the parser class can be specified with the @code{%define
9315extends} and @code{%define implements} directives.
9316
9317The parser class defines an inner class, @code{Location}, that is used
9318for location tracking (see @ref{Java Location Values}), and a inner
9319interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
9320these inner class/interface, and the members described in the interface
9321below, all the other members and fields are preceded with a @code{yy} or
9322@code{YY} prefix to avoid clashes with user code.
9323
9324@c FIXME: The following constants and variables are still undocumented:
9325@c @code{bisonVersion}, @code{bisonSkeleton} and @code{errorVerbose}.
9326
9327The parser class can be extended using the @code{%parse-param}
9328directive. Each occurrence of the directive will add a @code{protected
9329final} field to the parser class, and an argument to its constructor,
9330which initialize them automatically.
9331
9332Token names defined by @code{%token} and the predefined @code{EOF} token
9333name are added as constant fields to the parser class.
9334
9335@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
9336Build a new parser object with embedded @code{%code lexer}. There are
9337no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
9338used.
9339@end deftypeop
9340
9341@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
9342Build a new parser object using the specified scanner. There are no
9343additional parameters unless @code{%parse-param}s are used.
9344
9345If the scanner is defined by @code{%code lexer}, this constructor is
9346declared @code{protected} and is called automatically with a scanner
9347created with the correct @code{%lex-param}s.
9348@end deftypeop
8405b70c
PB
9349
9350@deftypemethod {YYParser} {boolean} parse ()
9351Run the syntactic analysis, and return @code{true} on success,
9352@code{false} otherwise.
9353@end deftypemethod
9354
01b477c6 9355@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9356During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9357from a syntax error.
9358@xref{Error Recovery}.
8405b70c
PB
9359@end deftypemethod
9360
9361@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9362@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9363Get or set the stream used for tracing the parsing. It defaults to
9364@code{System.err}.
9365@end deftypemethod
9366
9367@deftypemethod {YYParser} {int} getDebugLevel ()
9368@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
9369Get or set the tracing level. Currently its value is either 0, no trace,
9370or nonzero, full tracing.
9371@end deftypemethod
9372
8405b70c
PB
9373
9374@node Java Scanner Interface
9375@subsection Java Scanner Interface
01b477c6 9376@c - %code lexer
8405b70c 9377@c - %lex-param
01b477c6 9378@c - Lexer interface
8405b70c 9379
e254a580
DJ
9380There are two possible ways to interface a Bison-generated Java parser
9381with a scanner: the scanner may be defined by @code{%code lexer}, or
9382defined elsewhere. In either case, the scanner has to implement the
9383@code{Lexer} inner interface of the parser class.
9384
9385In the first case, the body of the scanner class is placed in
9386@code{%code lexer} blocks. If you want to pass parameters from the
9387parser constructor to the scanner constructor, specify them with
9388@code{%lex-param}; they are passed before @code{%parse-param}s to the
9389constructor.
01b477c6 9390
59c5ac72 9391In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
9392which is defined within the parser class (e.g., @code{YYParser.Lexer}).
9393The constructor of the parser object will then accept an object
9394implementing the interface; @code{%lex-param} is not used in this
9395case.
9396
9397In both cases, the scanner has to implement the following methods.
9398
e254a580
DJ
9399@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
9400This method is defined by the user to emit an error message. The first
9401parameter is omitted if location tracking is not active. Its type can be
9402changed using @code{%define location_type "@var{class-name}".}
8405b70c
PB
9403@end deftypemethod
9404
e254a580 9405@deftypemethod {Lexer} {int} yylex ()
8405b70c 9406Return the next token. Its type is the return value, its semantic
c781580d 9407value and location are saved and returned by the their methods in the
e254a580
DJ
9408interface.
9409
9410Use @code{%define lex_throws} to specify any uncaught exceptions.
9411Default is @code{java.io.IOException}.
8405b70c
PB
9412@end deftypemethod
9413
9414@deftypemethod {Lexer} {Position} getStartPos ()
9415@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
9416Return respectively the first position of the last token that
9417@code{yylex} returned, and the first position beyond it. These
9418methods are not needed unless location tracking is active.
8405b70c 9419
e254a580 9420The return type can be changed using @code{%define position_type
8405b70c
PB
9421"@var{class-name}".}
9422@end deftypemethod
9423
9424@deftypemethod {Lexer} {Object} getLVal ()
c781580d 9425Return the semantic value of the last token that yylex returned.
8405b70c 9426
e254a580 9427The return type can be changed using @code{%define stype
8405b70c
PB
9428"@var{class-name}".}
9429@end deftypemethod
9430
9431
e254a580
DJ
9432@node Java Action Features
9433@subsection Special Features for Use in Java Actions
9434
9435The following special constructs can be uses in Java actions.
9436Other analogous C action features are currently unavailable for Java.
9437
9438Use @code{%define throws} to specify any uncaught exceptions from parser
9439actions, and initial actions specified by @code{%initial-action}.
9440
9441@defvar $@var{n}
9442The semantic value for the @var{n}th component of the current rule.
9443This may not be assigned to.
9444@xref{Java Semantic Values}.
9445@end defvar
9446
9447@defvar $<@var{typealt}>@var{n}
9448Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9449@xref{Java Semantic Values}.
9450@end defvar
9451
9452@defvar $$
9453The semantic value for the grouping made by the current rule. As a
9454value, this is in the base type (@code{Object} or as specified by
9455@code{%define stype}) as in not cast to the declared subtype because
9456casts are not allowed on the left-hand side of Java assignments.
9457Use an explicit Java cast if the correct subtype is needed.
9458@xref{Java Semantic Values}.
9459@end defvar
9460
9461@defvar $<@var{typealt}>$
9462Same as @code{$$} since Java always allow assigning to the base type.
9463Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9464for setting the value but there is currently no easy way to distinguish
9465these constructs.
9466@xref{Java Semantic Values}.
9467@end defvar
9468
9469@defvar @@@var{n}
9470The location information of the @var{n}th component of the current rule.
9471This may not be assigned to.
9472@xref{Java Location Values}.
9473@end defvar
9474
9475@defvar @@$
9476The location information of the grouping made by the current rule.
9477@xref{Java Location Values}.
9478@end defvar
9479
9480@deffn {Statement} {return YYABORT;}
9481Return immediately from the parser, indicating failure.
9482@xref{Java Parser Interface}.
9483@end deffn
8405b70c 9484
e254a580
DJ
9485@deffn {Statement} {return YYACCEPT;}
9486Return immediately from the parser, indicating success.
9487@xref{Java Parser Interface}.
9488@end deffn
8405b70c 9489
e254a580 9490@deffn {Statement} {return YYERROR;}
c046698e 9491Start error recovery without printing an error message.
e254a580
DJ
9492@xref{Error Recovery}.
9493@end deffn
8405b70c 9494
e254a580
DJ
9495@deftypefn {Function} {boolean} recovering ()
9496Return whether error recovery is being done. In this state, the parser
9497reads token until it reaches a known state, and then restarts normal
9498operation.
9499@xref{Error Recovery}.
9500@end deftypefn
8405b70c 9501
e254a580
DJ
9502@deftypefn {Function} {protected void} yyerror (String msg)
9503@deftypefnx {Function} {protected void} yyerror (Position pos, String msg)
9504@deftypefnx {Function} {protected void} yyerror (Location loc, String msg)
9505Print an error message using the @code{yyerror} method of the scanner
9506instance in use.
9507@end deftypefn
8405b70c 9508
8405b70c 9509
8405b70c
PB
9510@node Java Differences
9511@subsection Differences between C/C++ and Java Grammars
9512
9513The different structure of the Java language forces several differences
9514between C/C++ grammars, and grammars designed for Java parsers. This
29553547 9515section summarizes these differences.
8405b70c
PB
9516
9517@itemize
9518@item
01b477c6 9519Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 9520@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
9521macros. Instead, they should be preceded by @code{return} when they
9522appear in an action. The actual definition of these symbols is
8405b70c
PB
9523opaque to the Bison grammar, and it might change in the future. The
9524only meaningful operation that you can do, is to return them.
e254a580 9525See @pxref{Java Action Features}.
8405b70c
PB
9526
9527Note that of these three symbols, only @code{YYACCEPT} and
9528@code{YYABORT} will cause a return from the @code{yyparse}
9529method@footnote{Java parsers include the actions in a separate
9530method than @code{yyparse} in order to have an intuitive syntax that
9531corresponds to these C macros.}.
9532
e254a580
DJ
9533@item
9534Java lacks unions, so @code{%union} has no effect. Instead, semantic
9535values have a common base type: @code{Object} or as specified by
c781580d 9536@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
9537@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
9538an union. The type of @code{$$}, even with angle brackets, is the base
9539type since Java casts are not allow on the left-hand side of assignments.
9540Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
9541left-hand side of assignments. See @pxref{Java Semantic Values} and
9542@pxref{Java Action Features}.
9543
8405b70c 9544@item
c781580d 9545The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
9546@table @asis
9547@item @code{%code imports}
9548blocks are placed at the beginning of the Java source code. They may
9549include copyright notices. For a @code{package} declarations, it is
9550suggested to use @code{%define package} instead.
8405b70c 9551
01b477c6
PB
9552@item unqualified @code{%code}
9553blocks are placed inside the parser class.
9554
9555@item @code{%code lexer}
9556blocks, if specified, should include the implementation of the
9557scanner. If there is no such block, the scanner can be any class
9558that implements the appropriate interface (see @pxref{Java Scanner
9559Interface}).
29553547 9560@end table
8405b70c
PB
9561
9562Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
9563In particular, @code{%@{ @dots{} %@}} blocks should not be used
9564and may give an error in future versions of Bison.
9565
01b477c6 9566The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
9567be used to define other classes used by the parser @emph{outside}
9568the parser class.
8405b70c
PB
9569@end itemize
9570
e254a580
DJ
9571
9572@node Java Declarations Summary
9573@subsection Java Declarations Summary
9574
9575This summary only include declarations specific to Java or have special
9576meaning when used in a Java parser.
9577
9578@deffn {Directive} {%language "Java"}
9579Generate a Java class for the parser.
9580@end deffn
9581
9582@deffn {Directive} %lex-param @{@var{type} @var{name}@}
9583A parameter for the lexer class defined by @code{%code lexer}
9584@emph{only}, added as parameters to the lexer constructor and the parser
9585constructor that @emph{creates} a lexer. Default is none.
9586@xref{Java Scanner Interface}.
9587@end deffn
9588
9589@deffn {Directive} %name-prefix "@var{prefix}"
9590The prefix of the parser class name @code{@var{prefix}Parser} if
9591@code{%define parser_class_name} is not used. Default is @code{YY}.
9592@xref{Java Bison Interface}.
9593@end deffn
9594
9595@deffn {Directive} %parse-param @{@var{type} @var{name}@}
9596A parameter for the parser class added as parameters to constructor(s)
9597and as fields initialized by the constructor(s). Default is none.
9598@xref{Java Parser Interface}.
9599@end deffn
9600
9601@deffn {Directive} %token <@var{type}> @var{token} @dots{}
9602Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
9603@xref{Java Semantic Values}.
9604@end deffn
9605
9606@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
9607Declare the type of nonterminals. Note that the angle brackets enclose
9608a Java @emph{type}.
9609@xref{Java Semantic Values}.
9610@end deffn
9611
9612@deffn {Directive} %code @{ @var{code} @dots{} @}
9613Code appended to the inside of the parser class.
9614@xref{Java Differences}.
9615@end deffn
9616
9617@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
9618Code inserted just after the @code{package} declaration.
9619@xref{Java Differences}.
9620@end deffn
9621
9622@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
9623Code added to the body of a inner lexer class within the parser class.
9624@xref{Java Scanner Interface}.
9625@end deffn
9626
9627@deffn {Directive} %% @var{code} @dots{}
9628Code (after the second @code{%%}) appended to the end of the file,
9629@emph{outside} the parser class.
9630@xref{Java Differences}.
9631@end deffn
9632
9633@deffn {Directive} %@{ @var{code} @dots{} %@}
9634Not supported. Use @code{%code import} instead.
9635@xref{Java Differences}.
9636@end deffn
9637
9638@deffn {Directive} {%define abstract}
9639Whether the parser class is declared @code{abstract}. Default is false.
9640@xref{Java Bison Interface}.
9641@end deffn
9642
9643@deffn {Directive} {%define extends} "@var{superclass}"
9644The superclass of the parser class. Default is none.
9645@xref{Java Bison Interface}.
9646@end deffn
9647
9648@deffn {Directive} {%define final}
9649Whether the parser class is declared @code{final}. Default is false.
9650@xref{Java Bison Interface}.
9651@end deffn
9652
9653@deffn {Directive} {%define implements} "@var{interfaces}"
9654The implemented interfaces of the parser class, a comma-separated list.
9655Default is none.
9656@xref{Java Bison Interface}.
9657@end deffn
9658
9659@deffn {Directive} {%define lex_throws} "@var{exceptions}"
9660The exceptions thrown by the @code{yylex} method of the lexer, a
9661comma-separated list. Default is @code{java.io.IOException}.
9662@xref{Java Scanner Interface}.
9663@end deffn
9664
9665@deffn {Directive} {%define location_type} "@var{class}"
9666The name of the class used for locations (a range between two
9667positions). This class is generated as an inner class of the parser
9668class by @command{bison}. Default is @code{Location}.
9669@xref{Java Location Values}.
9670@end deffn
9671
9672@deffn {Directive} {%define package} "@var{package}"
9673The package to put the parser class in. Default is none.
9674@xref{Java Bison Interface}.
9675@end deffn
9676
9677@deffn {Directive} {%define parser_class_name} "@var{name}"
9678The name of the parser class. Default is @code{YYParser} or
9679@code{@var{name-prefix}Parser}.
9680@xref{Java Bison Interface}.
9681@end deffn
9682
9683@deffn {Directive} {%define position_type} "@var{class}"
9684The name of the class used for positions. This class must be supplied by
9685the user. Default is @code{Position}.
9686@xref{Java Location Values}.
9687@end deffn
9688
9689@deffn {Directive} {%define public}
9690Whether the parser class is declared @code{public}. Default is false.
9691@xref{Java Bison Interface}.
9692@end deffn
9693
9694@deffn {Directive} {%define stype} "@var{class}"
9695The base type of semantic values. Default is @code{Object}.
9696@xref{Java Semantic Values}.
9697@end deffn
9698
9699@deffn {Directive} {%define strictfp}
9700Whether the parser class is declared @code{strictfp}. Default is false.
9701@xref{Java Bison Interface}.
9702@end deffn
9703
9704@deffn {Directive} {%define throws} "@var{exceptions}"
9705The exceptions thrown by user-supplied parser actions and
9706@code{%initial-action}, a comma-separated list. Default is none.
9707@xref{Java Parser Interface}.
9708@end deffn
9709
9710
12545799 9711@c ================================================= FAQ
d1a1114f
AD
9712
9713@node FAQ
9714@chapter Frequently Asked Questions
9715@cindex frequently asked questions
9716@cindex questions
9717
9718Several questions about Bison come up occasionally. Here some of them
9719are addressed.
9720
9721@menu
55ba27be
AD
9722* Memory Exhausted:: Breaking the Stack Limits
9723* How Can I Reset the Parser:: @code{yyparse} Keeps some State
9724* Strings are Destroyed:: @code{yylval} Loses Track of Strings
9725* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 9726* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
9727* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
9728* I can't build Bison:: Troubleshooting
9729* Where can I find help?:: Troubleshouting
9730* Bug Reports:: Troublereporting
8405b70c 9731* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
9732* Beta Testing:: Experimenting development versions
9733* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
9734@end menu
9735
1a059451
PE
9736@node Memory Exhausted
9737@section Memory Exhausted
d1a1114f
AD
9738
9739@display
1a059451 9740My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
9741message. What can I do?
9742@end display
9743
9744This question is already addressed elsewhere, @xref{Recursion,
9745,Recursive Rules}.
9746
e64fec0a
PE
9747@node How Can I Reset the Parser
9748@section How Can I Reset the Parser
5b066063 9749
0e14ad77
PE
9750The following phenomenon has several symptoms, resulting in the
9751following typical questions:
5b066063
AD
9752
9753@display
9754I invoke @code{yyparse} several times, and on correct input it works
9755properly; but when a parse error is found, all the other calls fail
0e14ad77 9756too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
9757@end display
9758
9759@noindent
9760or
9761
9762@display
0e14ad77 9763My parser includes support for an @samp{#include}-like feature, in
5b066063 9764which case I run @code{yyparse} from @code{yyparse}. This fails
d9df47b6 9765although I did specify @code{%define api.pure}.
5b066063
AD
9766@end display
9767
0e14ad77
PE
9768These problems typically come not from Bison itself, but from
9769Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
9770speed, they might not notice a change of input file. As a
9771demonstration, consider the following source file,
9772@file{first-line.l}:
9773
9774@verbatim
9775%{
9776#include <stdio.h>
9777#include <stdlib.h>
9778%}
9779%%
9780.*\n ECHO; return 1;
9781%%
9782int
0e14ad77 9783yyparse (char const *file)
5b066063
AD
9784{
9785 yyin = fopen (file, "r");
9786 if (!yyin)
9787 exit (2);
fa7e68c3 9788 /* One token only. */
5b066063 9789 yylex ();
0e14ad77 9790 if (fclose (yyin) != 0)
5b066063
AD
9791 exit (3);
9792 return 0;
9793}
9794
9795int
0e14ad77 9796main (void)
5b066063
AD
9797{
9798 yyparse ("input");
9799 yyparse ("input");
9800 return 0;
9801}
9802@end verbatim
9803
9804@noindent
9805If the file @file{input} contains
9806
9807@verbatim
9808input:1: Hello,
9809input:2: World!
9810@end verbatim
9811
9812@noindent
0e14ad77 9813then instead of getting the first line twice, you get:
5b066063
AD
9814
9815@example
9816$ @kbd{flex -ofirst-line.c first-line.l}
9817$ @kbd{gcc -ofirst-line first-line.c -ll}
9818$ @kbd{./first-line}
9819input:1: Hello,
9820input:2: World!
9821@end example
9822
0e14ad77
PE
9823Therefore, whenever you change @code{yyin}, you must tell the
9824Lex-generated scanner to discard its current buffer and switch to the
9825new one. This depends upon your implementation of Lex; see its
9826documentation for more. For Flex, it suffices to call
9827@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
9828Flex-generated scanner needs to read from several input streams to
9829handle features like include files, you might consider using Flex
9830functions like @samp{yy_switch_to_buffer} that manipulate multiple
9831input buffers.
5b066063 9832
b165c324
AD
9833If your Flex-generated scanner uses start conditions (@pxref{Start
9834conditions, , Start conditions, flex, The Flex Manual}), you might
9835also want to reset the scanner's state, i.e., go back to the initial
9836start condition, through a call to @samp{BEGIN (0)}.
9837
fef4cb51
AD
9838@node Strings are Destroyed
9839@section Strings are Destroyed
9840
9841@display
c7e441b4 9842My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
9843them. Instead of reporting @samp{"foo", "bar"}, it reports
9844@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
9845@end display
9846
9847This error is probably the single most frequent ``bug report'' sent to
9848Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 9849of the scanner. Consider the following Lex code:
fef4cb51
AD
9850
9851@verbatim
9852%{
9853#include <stdio.h>
9854char *yylval = NULL;
9855%}
9856%%
9857.* yylval = yytext; return 1;
9858\n /* IGNORE */
9859%%
9860int
9861main ()
9862{
fa7e68c3 9863 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
9864 char *fst = (yylex (), yylval);
9865 char *snd = (yylex (), yylval);
9866 printf ("\"%s\", \"%s\"\n", fst, snd);
9867 return 0;
9868}
9869@end verbatim
9870
9871If you compile and run this code, you get:
9872
9873@example
9874$ @kbd{flex -osplit-lines.c split-lines.l}
9875$ @kbd{gcc -osplit-lines split-lines.c -ll}
9876$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9877"one
9878two", "two"
9879@end example
9880
9881@noindent
9882this is because @code{yytext} is a buffer provided for @emph{reading}
9883in the action, but if you want to keep it, you have to duplicate it
9884(e.g., using @code{strdup}). Note that the output may depend on how
9885your implementation of Lex handles @code{yytext}. For instance, when
9886given the Lex compatibility option @option{-l} (which triggers the
9887option @samp{%array}) Flex generates a different behavior:
9888
9889@example
9890$ @kbd{flex -l -osplit-lines.c split-lines.l}
9891$ @kbd{gcc -osplit-lines split-lines.c -ll}
9892$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9893"two", "two"
9894@end example
9895
9896
2fa09258
AD
9897@node Implementing Gotos/Loops
9898@section Implementing Gotos/Loops
a06ea4aa
AD
9899
9900@display
9901My simple calculator supports variables, assignments, and functions,
2fa09258 9902but how can I implement gotos, or loops?
a06ea4aa
AD
9903@end display
9904
9905Although very pedagogical, the examples included in the document blur
a1c84f45 9906the distinction to make between the parser---whose job is to recover
a06ea4aa 9907the structure of a text and to transmit it to subsequent modules of
a1c84f45 9908the program---and the processing (such as the execution) of this
a06ea4aa
AD
9909structure. This works well with so called straight line programs,
9910i.e., precisely those that have a straightforward execution model:
9911execute simple instructions one after the others.
9912
9913@cindex abstract syntax tree
9914@cindex @acronym{AST}
9915If you want a richer model, you will probably need to use the parser
9916to construct a tree that does represent the structure it has
9917recovered; this tree is usually called the @dfn{abstract syntax tree},
9918or @dfn{@acronym{AST}} for short. Then, walking through this tree,
9919traversing it in various ways, will enable treatments such as its
9920execution or its translation, which will result in an interpreter or a
9921compiler.
9922
9923This topic is way beyond the scope of this manual, and the reader is
9924invited to consult the dedicated literature.
9925
9926
ed2e6384
AD
9927@node Multiple start-symbols
9928@section Multiple start-symbols
9929
9930@display
9931I have several closely related grammars, and I would like to share their
9932implementations. In fact, I could use a single grammar but with
9933multiple entry points.
9934@end display
9935
9936Bison does not support multiple start-symbols, but there is a very
9937simple means to simulate them. If @code{foo} and @code{bar} are the two
9938pseudo start-symbols, then introduce two new tokens, say
9939@code{START_FOO} and @code{START_BAR}, and use them as switches from the
9940real start-symbol:
9941
9942@example
9943%token START_FOO START_BAR;
9944%start start;
9945start: START_FOO foo
9946 | START_BAR bar;
9947@end example
9948
9949These tokens prevents the introduction of new conflicts. As far as the
9950parser goes, that is all that is needed.
9951
9952Now the difficult part is ensuring that the scanner will send these
9953tokens first. If your scanner is hand-written, that should be
9954straightforward. If your scanner is generated by Lex, them there is
9955simple means to do it: recall that anything between @samp{%@{ ... %@}}
9956after the first @code{%%} is copied verbatim in the top of the generated
9957@code{yylex} function. Make sure a variable @code{start_token} is
9958available in the scanner (e.g., a global variable or using
9959@code{%lex-param} etc.), and use the following:
9960
9961@example
9962 /* @r{Prologue.} */
9963%%
9964%@{
9965 if (start_token)
9966 @{
9967 int t = start_token;
9968 start_token = 0;
9969 return t;
9970 @}
9971%@}
9972 /* @r{The rules.} */
9973@end example
9974
9975
55ba27be
AD
9976@node Secure? Conform?
9977@section Secure? Conform?
9978
9979@display
9980Is Bison secure? Does it conform to POSIX?
9981@end display
9982
9983If you're looking for a guarantee or certification, we don't provide it.
9984However, Bison is intended to be a reliable program that conforms to the
9985@acronym{POSIX} specification for Yacc. If you run into problems,
9986please send us a bug report.
9987
9988@node I can't build Bison
9989@section I can't build Bison
9990
9991@display
8c5b881d
PE
9992I can't build Bison because @command{make} complains that
9993@code{msgfmt} is not found.
55ba27be
AD
9994What should I do?
9995@end display
9996
9997Like most GNU packages with internationalization support, that feature
9998is turned on by default. If you have problems building in the @file{po}
9999subdirectory, it indicates that your system's internationalization
10000support is lacking. You can re-configure Bison with
10001@option{--disable-nls} to turn off this support, or you can install GNU
10002gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
10003Bison. See the file @file{ABOUT-NLS} for more information.
10004
10005
10006@node Where can I find help?
10007@section Where can I find help?
10008
10009@display
10010I'm having trouble using Bison. Where can I find help?
10011@end display
10012
10013First, read this fine manual. Beyond that, you can send mail to
10014@email{help-bison@@gnu.org}. This mailing list is intended to be
10015populated with people who are willing to answer questions about using
10016and installing Bison. Please keep in mind that (most of) the people on
10017the list have aspects of their lives which are not related to Bison (!),
10018so you may not receive an answer to your question right away. This can
10019be frustrating, but please try not to honk them off; remember that any
10020help they provide is purely voluntary and out of the kindness of their
10021hearts.
10022
10023@node Bug Reports
10024@section Bug Reports
10025
10026@display
10027I found a bug. What should I include in the bug report?
10028@end display
10029
10030Before you send a bug report, make sure you are using the latest
10031version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
10032mirrors. Be sure to include the version number in your bug report. If
10033the bug is present in the latest version but not in a previous version,
10034try to determine the most recent version which did not contain the bug.
10035
10036If the bug is parser-related, you should include the smallest grammar
10037you can which demonstrates the bug. The grammar file should also be
10038complete (i.e., I should be able to run it through Bison without having
10039to edit or add anything). The smaller and simpler the grammar, the
10040easier it will be to fix the bug.
10041
10042Include information about your compilation environment, including your
10043operating system's name and version and your compiler's name and
10044version. If you have trouble compiling, you should also include a
10045transcript of the build session, starting with the invocation of
10046`configure'. Depending on the nature of the bug, you may be asked to
10047send additional files as well (such as `config.h' or `config.cache').
10048
10049Patches are most welcome, but not required. That is, do not hesitate to
10050send a bug report just because you can not provide a fix.
10051
10052Send bug reports to @email{bug-bison@@gnu.org}.
10053
8405b70c
PB
10054@node More Languages
10055@section More Languages
55ba27be
AD
10056
10057@display
8405b70c 10058Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
10059favorite language here}?
10060@end display
10061
8405b70c 10062C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
10063languages; contributions are welcome.
10064
10065@node Beta Testing
10066@section Beta Testing
10067
10068@display
10069What is involved in being a beta tester?
10070@end display
10071
10072It's not terribly involved. Basically, you would download a test
10073release, compile it, and use it to build and run a parser or two. After
10074that, you would submit either a bug report or a message saying that
10075everything is okay. It is important to report successes as well as
10076failures because test releases eventually become mainstream releases,
10077but only if they are adequately tested. If no one tests, development is
10078essentially halted.
10079
10080Beta testers are particularly needed for operating systems to which the
10081developers do not have easy access. They currently have easy access to
10082recent GNU/Linux and Solaris versions. Reports about other operating
10083systems are especially welcome.
10084
10085@node Mailing Lists
10086@section Mailing Lists
10087
10088@display
10089How do I join the help-bison and bug-bison mailing lists?
10090@end display
10091
10092See @url{http://lists.gnu.org/}.
a06ea4aa 10093
d1a1114f
AD
10094@c ================================================= Table of Symbols
10095
342b8b6e 10096@node Table of Symbols
bfa74976
RS
10097@appendix Bison Symbols
10098@cindex Bison symbols, table of
10099@cindex symbols in Bison, table of
10100
18b519c0 10101@deffn {Variable} @@$
3ded9a63 10102In an action, the location of the left-hand side of the rule.
88bce5a2 10103@xref{Locations, , Locations Overview}.
18b519c0 10104@end deffn
3ded9a63 10105
18b519c0 10106@deffn {Variable} @@@var{n}
3ded9a63
AD
10107In an action, the location of the @var{n}-th symbol of the right-hand
10108side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 10109@end deffn
3ded9a63 10110
1f68dca5
AR
10111@deffn {Variable} @@@var{name}
10112In an action, the location of a symbol addressed by name.
10113@xref{Locations, , Locations Overview}.
10114@end deffn
10115
10116@deffn {Variable} @@[@var{name}]
10117In an action, the location of a symbol addressed by name.
10118@xref{Locations, , Locations Overview}.
10119@end deffn
10120
18b519c0 10121@deffn {Variable} $$
3ded9a63
AD
10122In an action, the semantic value of the left-hand side of the rule.
10123@xref{Actions}.
18b519c0 10124@end deffn
3ded9a63 10125
18b519c0 10126@deffn {Variable} $@var{n}
3ded9a63
AD
10127In an action, the semantic value of the @var{n}-th symbol of the
10128right-hand side of the rule. @xref{Actions}.
18b519c0 10129@end deffn
3ded9a63 10130
1f68dca5
AR
10131@deffn {Variable} $@var{name}
10132In an action, the semantic value of a symbol addressed by name.
10133@xref{Actions}.
10134@end deffn
10135
10136@deffn {Variable} $[@var{name}]
10137In an action, the semantic value of a symbol addressed by name.
10138@xref{Actions}.
10139@end deffn
10140
dd8d9022
AD
10141@deffn {Delimiter} %%
10142Delimiter used to separate the grammar rule section from the
10143Bison declarations section or the epilogue.
10144@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 10145@end deffn
bfa74976 10146
dd8d9022
AD
10147@c Don't insert spaces, or check the DVI output.
10148@deffn {Delimiter} %@{@var{code}%@}
10149All code listed between @samp{%@{} and @samp{%@}} is copied directly to
10150the output file uninterpreted. Such code forms the prologue of the input
10151file. @xref{Grammar Outline, ,Outline of a Bison
10152Grammar}.
18b519c0 10153@end deffn
bfa74976 10154
dd8d9022
AD
10155@deffn {Construct} /*@dots{}*/
10156Comment delimiters, as in C.
18b519c0 10157@end deffn
bfa74976 10158
dd8d9022
AD
10159@deffn {Delimiter} :
10160Separates a rule's result from its components. @xref{Rules, ,Syntax of
10161Grammar Rules}.
18b519c0 10162@end deffn
bfa74976 10163
dd8d9022
AD
10164@deffn {Delimiter} ;
10165Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10166@end deffn
bfa74976 10167
dd8d9022
AD
10168@deffn {Delimiter} |
10169Separates alternate rules for the same result nonterminal.
10170@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10171@end deffn
bfa74976 10172
12e35840
JD
10173@deffn {Directive} <*>
10174Used to define a default tagged @code{%destructor} or default tagged
10175@code{%printer}.
85894313
JD
10176
10177This feature is experimental.
10178More user feedback will help to determine whether it should become a permanent
10179feature.
10180
12e35840
JD
10181@xref{Destructor Decl, , Freeing Discarded Symbols}.
10182@end deffn
10183
3ebecc24 10184@deffn {Directive} <>
12e35840
JD
10185Used to define a default tagless @code{%destructor} or default tagless
10186@code{%printer}.
85894313
JD
10187
10188This feature is experimental.
10189More user feedback will help to determine whether it should become a permanent
10190feature.
10191
12e35840
JD
10192@xref{Destructor Decl, , Freeing Discarded Symbols}.
10193@end deffn
10194
dd8d9022
AD
10195@deffn {Symbol} $accept
10196The predefined nonterminal whose only rule is @samp{$accept: @var{start}
10197$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
10198Start-Symbol}. It cannot be used in the grammar.
18b519c0 10199@end deffn
bfa74976 10200
136a0f76 10201@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
10202@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
10203Insert @var{code} verbatim into output parser source.
10204@xref{Decl Summary,,%code}.
9bc0dd67 10205@end deffn
9bc0dd67 10206
18b519c0 10207@deffn {Directive} %debug
6deb4447 10208Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 10209@end deffn
6deb4447 10210
91d2c560 10211@ifset defaultprec
22fccf95
PE
10212@deffn {Directive} %default-prec
10213Assign a precedence to rules that lack an explicit @samp{%prec}
10214modifier. @xref{Contextual Precedence, ,Context-Dependent
10215Precedence}.
39a06c25 10216@end deffn
91d2c560 10217@end ifset
39a06c25 10218
148d66d8
JD
10219@deffn {Directive} %define @var{define-variable}
10220@deffnx {Directive} %define @var{define-variable} @var{value}
f37495f6 10221@deffnx {Directive} %define @var{define-variable} "@var{value}"
148d66d8
JD
10222Define a variable to adjust Bison's behavior.
10223@xref{Decl Summary,,%define}.
10224@end deffn
10225
18b519c0 10226@deffn {Directive} %defines
6deb4447
AD
10227Bison declaration to create a header file meant for the scanner.
10228@xref{Decl Summary}.
18b519c0 10229@end deffn
6deb4447 10230
02975b9a
JD
10231@deffn {Directive} %defines @var{defines-file}
10232Same as above, but save in the file @var{defines-file}.
10233@xref{Decl Summary}.
10234@end deffn
10235
18b519c0 10236@deffn {Directive} %destructor
258b75ca 10237Specify how the parser should reclaim the memory associated to
fa7e68c3 10238discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 10239@end deffn
72f889cc 10240
18b519c0 10241@deffn {Directive} %dprec
676385e2 10242Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
10243time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
10244@acronym{GLR} Parsers}.
18b519c0 10245@end deffn
676385e2 10246
dd8d9022
AD
10247@deffn {Symbol} $end
10248The predefined token marking the end of the token stream. It cannot be
10249used in the grammar.
10250@end deffn
10251
10252@deffn {Symbol} error
10253A token name reserved for error recovery. This token may be used in
10254grammar rules so as to allow the Bison parser to recognize an error in
10255the grammar without halting the process. In effect, a sentence
10256containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
10257token @code{error} becomes the current lookahead token. Actions
10258corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
10259token is reset to the token that originally caused the violation.
10260@xref{Error Recovery}.
18d192f0
AD
10261@end deffn
10262
18b519c0 10263@deffn {Directive} %error-verbose
2a8d363a
AD
10264Bison declaration to request verbose, specific error message strings
10265when @code{yyerror} is called.
18b519c0 10266@end deffn
2a8d363a 10267
02975b9a 10268@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 10269Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 10270Summary}.
18b519c0 10271@end deffn
d8988b2f 10272
18b519c0 10273@deffn {Directive} %glr-parser
c827f760
PE
10274Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
10275Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10276@end deffn
676385e2 10277
dd8d9022
AD
10278@deffn {Directive} %initial-action
10279Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
10280@end deffn
10281
e6e704dc
JD
10282@deffn {Directive} %language
10283Specify the programming language for the generated parser.
10284@xref{Decl Summary}.
10285@end deffn
10286
18b519c0 10287@deffn {Directive} %left
bfa74976
RS
10288Bison declaration to assign left associativity to token(s).
10289@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10290@end deffn
bfa74976 10291
feeb0eda 10292@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
10293Bison declaration to specifying an additional parameter that
10294@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
10295for Pure Parsers}.
18b519c0 10296@end deffn
2a8d363a 10297
18b519c0 10298@deffn {Directive} %merge
676385e2 10299Bison declaration to assign a merging function to a rule. If there is a
fae437e8 10300reduce/reduce conflict with a rule having the same merging function, the
676385e2 10301function is applied to the two semantic values to get a single result.
c827f760 10302@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10303@end deffn
676385e2 10304
02975b9a 10305@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 10306Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 10307@end deffn
d8988b2f 10308
91d2c560 10309@ifset defaultprec
22fccf95
PE
10310@deffn {Directive} %no-default-prec
10311Do not assign a precedence to rules that lack an explicit @samp{%prec}
10312modifier. @xref{Contextual Precedence, ,Context-Dependent
10313Precedence}.
10314@end deffn
91d2c560 10315@end ifset
22fccf95 10316
18b519c0 10317@deffn {Directive} %no-lines
931c7513
RS
10318Bison declaration to avoid generating @code{#line} directives in the
10319parser file. @xref{Decl Summary}.
18b519c0 10320@end deffn
931c7513 10321
18b519c0 10322@deffn {Directive} %nonassoc
9d9b8b70 10323Bison declaration to assign nonassociativity to token(s).
bfa74976 10324@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10325@end deffn
bfa74976 10326
02975b9a 10327@deffn {Directive} %output "@var{file}"
72d2299c 10328Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 10329Summary}.
18b519c0 10330@end deffn
d8988b2f 10331
feeb0eda 10332@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
10333Bison declaration to specifying an additional parameter that
10334@code{yyparse} should accept. @xref{Parser Function,, The Parser
10335Function @code{yyparse}}.
18b519c0 10336@end deffn
2a8d363a 10337
18b519c0 10338@deffn {Directive} %prec
bfa74976
RS
10339Bison declaration to assign a precedence to a specific rule.
10340@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 10341@end deffn
bfa74976 10342
18b519c0 10343@deffn {Directive} %pure-parser
d9df47b6
JD
10344Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
10345for which Bison is more careful to warn about unreasonable usage.
18b519c0 10346@end deffn
bfa74976 10347
b50d2359 10348@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
10349Require version @var{version} or higher of Bison. @xref{Require Decl, ,
10350Require a Version of Bison}.
b50d2359
AD
10351@end deffn
10352
18b519c0 10353@deffn {Directive} %right
bfa74976
RS
10354Bison declaration to assign right associativity to token(s).
10355@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10356@end deffn
bfa74976 10357
e6e704dc
JD
10358@deffn {Directive} %skeleton
10359Specify the skeleton to use; usually for development.
10360@xref{Decl Summary}.
10361@end deffn
10362
18b519c0 10363@deffn {Directive} %start
704a47c4
AD
10364Bison declaration to specify the start symbol. @xref{Start Decl, ,The
10365Start-Symbol}.
18b519c0 10366@end deffn
bfa74976 10367
18b519c0 10368@deffn {Directive} %token
bfa74976
RS
10369Bison declaration to declare token(s) without specifying precedence.
10370@xref{Token Decl, ,Token Type Names}.
18b519c0 10371@end deffn
bfa74976 10372
18b519c0 10373@deffn {Directive} %token-table
931c7513
RS
10374Bison declaration to include a token name table in the parser file.
10375@xref{Decl Summary}.
18b519c0 10376@end deffn
931c7513 10377
18b519c0 10378@deffn {Directive} %type
704a47c4
AD
10379Bison declaration to declare nonterminals. @xref{Type Decl,
10380,Nonterminal Symbols}.
18b519c0 10381@end deffn
bfa74976 10382
dd8d9022
AD
10383@deffn {Symbol} $undefined
10384The predefined token onto which all undefined values returned by
10385@code{yylex} are mapped. It cannot be used in the grammar, rather, use
10386@code{error}.
10387@end deffn
10388
18b519c0 10389@deffn {Directive} %union
bfa74976
RS
10390Bison declaration to specify several possible data types for semantic
10391values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 10392@end deffn
bfa74976 10393
dd8d9022
AD
10394@deffn {Macro} YYABORT
10395Macro to pretend that an unrecoverable syntax error has occurred, by
10396making @code{yyparse} return 1 immediately. The error reporting
10397function @code{yyerror} is not called. @xref{Parser Function, ,The
10398Parser Function @code{yyparse}}.
8405b70c
PB
10399
10400For Java parsers, this functionality is invoked using @code{return YYABORT;}
10401instead.
dd8d9022 10402@end deffn
3ded9a63 10403
dd8d9022
AD
10404@deffn {Macro} YYACCEPT
10405Macro to pretend that a complete utterance of the language has been
10406read, by making @code{yyparse} return 0 immediately.
10407@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
10408
10409For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
10410instead.
dd8d9022 10411@end deffn
bfa74976 10412
dd8d9022 10413@deffn {Macro} YYBACKUP
742e4900 10414Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 10415token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10416@end deffn
bfa74976 10417
dd8d9022 10418@deffn {Variable} yychar
32c29292 10419External integer variable that contains the integer value of the
742e4900 10420lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
10421@code{yyparse}.) Error-recovery rule actions may examine this variable.
10422@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10423@end deffn
bfa74976 10424
dd8d9022
AD
10425@deffn {Variable} yyclearin
10426Macro used in error-recovery rule actions. It clears the previous
742e4900 10427lookahead token. @xref{Error Recovery}.
18b519c0 10428@end deffn
bfa74976 10429
dd8d9022
AD
10430@deffn {Macro} YYDEBUG
10431Macro to define to equip the parser with tracing code. @xref{Tracing,
10432,Tracing Your Parser}.
18b519c0 10433@end deffn
bfa74976 10434
dd8d9022
AD
10435@deffn {Variable} yydebug
10436External integer variable set to zero by default. If @code{yydebug}
10437is given a nonzero value, the parser will output information on input
10438symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 10439@end deffn
bfa74976 10440
dd8d9022
AD
10441@deffn {Macro} yyerrok
10442Macro to cause parser to recover immediately to its normal mode
10443after a syntax error. @xref{Error Recovery}.
10444@end deffn
10445
10446@deffn {Macro} YYERROR
10447Macro to pretend that a syntax error has just been detected: call
10448@code{yyerror} and then perform normal error recovery if possible
10449(@pxref{Error Recovery}), or (if recovery is impossible) make
10450@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
10451
10452For Java parsers, this functionality is invoked using @code{return YYERROR;}
10453instead.
dd8d9022
AD
10454@end deffn
10455
10456@deffn {Function} yyerror
10457User-supplied function to be called by @code{yyparse} on error.
10458@xref{Error Reporting, ,The Error
10459Reporting Function @code{yyerror}}.
10460@end deffn
10461
10462@deffn {Macro} YYERROR_VERBOSE
10463An obsolete macro that you define with @code{#define} in the prologue
10464to request verbose, specific error message strings
10465when @code{yyerror} is called. It doesn't matter what definition you
10466use for @code{YYERROR_VERBOSE}, just whether you define it. Using
10467@code{%error-verbose} is preferred.
10468@end deffn
10469
10470@deffn {Macro} YYINITDEPTH
10471Macro for specifying the initial size of the parser stack.
1a059451 10472@xref{Memory Management}.
dd8d9022
AD
10473@end deffn
10474
10475@deffn {Function} yylex
10476User-supplied lexical analyzer function, called with no arguments to get
10477the next token. @xref{Lexical, ,The Lexical Analyzer Function
10478@code{yylex}}.
10479@end deffn
10480
10481@deffn {Macro} YYLEX_PARAM
10482An obsolete macro for specifying an extra argument (or list of extra
32c29292 10483arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
10484macro is deprecated, and is supported only for Yacc like parsers.
10485@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
10486@end deffn
10487
10488@deffn {Variable} yylloc
10489External variable in which @code{yylex} should place the line and column
10490numbers associated with a token. (In a pure parser, it is a local
10491variable within @code{yyparse}, and its address is passed to
32c29292
JD
10492@code{yylex}.)
10493You can ignore this variable if you don't use the @samp{@@} feature in the
10494grammar actions.
10495@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 10496In semantic actions, it stores the location of the lookahead token.
32c29292 10497@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
10498@end deffn
10499
10500@deffn {Type} YYLTYPE
10501Data type of @code{yylloc}; by default, a structure with four
10502members. @xref{Location Type, , Data Types of Locations}.
10503@end deffn
10504
10505@deffn {Variable} yylval
10506External variable in which @code{yylex} should place the semantic
10507value associated with a token. (In a pure parser, it is a local
10508variable within @code{yyparse}, and its address is passed to
32c29292
JD
10509@code{yylex}.)
10510@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 10511In semantic actions, it stores the semantic value of the lookahead token.
32c29292 10512@xref{Actions, ,Actions}.
dd8d9022
AD
10513@end deffn
10514
10515@deffn {Macro} YYMAXDEPTH
1a059451
PE
10516Macro for specifying the maximum size of the parser stack. @xref{Memory
10517Management}.
dd8d9022
AD
10518@end deffn
10519
10520@deffn {Variable} yynerrs
8a2800e7 10521Global variable which Bison increments each time it reports a syntax error.
f4101aa6 10522(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 10523pure push parser, it is a member of yypstate.)
dd8d9022
AD
10524@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
10525@end deffn
10526
10527@deffn {Function} yyparse
10528The parser function produced by Bison; call this function to start
10529parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
10530@end deffn
10531
9987d1b3 10532@deffn {Function} yypstate_delete
f4101aa6 10533The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 10534call this function to delete the memory associated with a parser.
f4101aa6 10535@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 10536@code{yypstate_delete}}.
59da312b
JD
10537(The current push parsing interface is experimental and may evolve.
10538More user feedback will help to stabilize it.)
9987d1b3
JD
10539@end deffn
10540
10541@deffn {Function} yypstate_new
f4101aa6 10542The function to create a parser instance, produced by Bison in push mode;
9987d1b3 10543call this function to create a new parser.
f4101aa6 10544@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 10545@code{yypstate_new}}.
59da312b
JD
10546(The current push parsing interface is experimental and may evolve.
10547More user feedback will help to stabilize it.)
9987d1b3
JD
10548@end deffn
10549
10550@deffn {Function} yypull_parse
f4101aa6
AD
10551The parser function produced by Bison in push mode; call this function to
10552parse the rest of the input stream.
10553@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 10554@code{yypull_parse}}.
59da312b
JD
10555(The current push parsing interface is experimental and may evolve.
10556More user feedback will help to stabilize it.)
9987d1b3
JD
10557@end deffn
10558
10559@deffn {Function} yypush_parse
f4101aa6
AD
10560The parser function produced by Bison in push mode; call this function to
10561parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 10562@code{yypush_parse}}.
59da312b
JD
10563(The current push parsing interface is experimental and may evolve.
10564More user feedback will help to stabilize it.)
9987d1b3
JD
10565@end deffn
10566
dd8d9022
AD
10567@deffn {Macro} YYPARSE_PARAM
10568An obsolete macro for specifying the name of a parameter that
10569@code{yyparse} should accept. The use of this macro is deprecated, and
10570is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
10571Conventions for Pure Parsers}.
10572@end deffn
10573
10574@deffn {Macro} YYRECOVERING
02103984
PE
10575The expression @code{YYRECOVERING ()} yields 1 when the parser
10576is recovering from a syntax error, and 0 otherwise.
10577@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
10578@end deffn
10579
10580@deffn {Macro} YYSTACK_USE_ALLOCA
34a6c2d1
JD
10581Macro used to control the use of @code{alloca} when the
10582deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
10583the parser will use @code{malloc} to extend its stacks. If defined to
105841, the parser will use @code{alloca}. Values other than 0 and 1 are
10585reserved for future Bison extensions. If not defined,
10586@code{YYSTACK_USE_ALLOCA} defaults to 0.
10587
55289366 10588In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
10589limited stack and with unreliable stack-overflow checking, you should
10590set @code{YYMAXDEPTH} to a value that cannot possibly result in
10591unchecked stack overflow on any of your target hosts when
10592@code{alloca} is called. You can inspect the code that Bison
10593generates in order to determine the proper numeric values. This will
10594require some expertise in low-level implementation details.
dd8d9022
AD
10595@end deffn
10596
10597@deffn {Type} YYSTYPE
10598Data type of semantic values; @code{int} by default.
10599@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 10600@end deffn
bfa74976 10601
342b8b6e 10602@node Glossary
bfa74976
RS
10603@appendix Glossary
10604@cindex glossary
10605
10606@table @asis
34a6c2d1
JD
10607@item Accepting State
10608A state whose only action is the accept action.
10609The accepting state is thus a consistent state.
10610@xref{Understanding,,}.
10611
c827f760
PE
10612@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
10613Formal method of specifying context-free grammars originally proposed
10614by John Backus, and slightly improved by Peter Naur in his 1960-01-02
10615committee document contributing to what became the Algol 60 report.
10616@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 10617
34a6c2d1
JD
10618@item Consistent State
10619A state containing only one possible action.
1d0f55cc 10620@xref{Decl Summary,,lr.default-reductions}.
34a6c2d1 10621
bfa74976
RS
10622@item Context-free grammars
10623Grammars specified as rules that can be applied regardless of context.
10624Thus, if there is a rule which says that an integer can be used as an
10625expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
10626permitted. @xref{Language and Grammar, ,Languages and Context-Free
10627Grammars}.
bfa74976 10628
620b5727
JD
10629@item Default Reduction
10630The reduction that a parser should perform if the current parser state
34a6c2d1 10631contains no other action for the lookahead token.
620b5727
JD
10632In permitted parser states, Bison declares the reduction with the
10633largest lookahead set to be the default reduction and removes that
10634lookahead set.
1d0f55cc 10635@xref{Decl Summary,,lr.default-reductions}.
34a6c2d1 10636
bfa74976
RS
10637@item Dynamic allocation
10638Allocation of memory that occurs during execution, rather than at
10639compile time or on entry to a function.
10640
10641@item Empty string
10642Analogous to the empty set in set theory, the empty string is a
10643character string of length zero.
10644
10645@item Finite-state stack machine
10646A ``machine'' that has discrete states in which it is said to exist at
10647each instant in time. As input to the machine is processed, the
10648machine moves from state to state as specified by the logic of the
10649machine. In the case of the parser, the input is the language being
10650parsed, and the states correspond to various stages in the grammar
c827f760 10651rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 10652
c827f760 10653@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 10654A parsing algorithm that can handle all context-free grammars, including those
34a6c2d1
JD
10655that are not @acronym{LR}(1). It resolves situations that Bison's
10656deterministic parsing
676385e2
PH
10657algorithm cannot by effectively splitting off multiple parsers, trying all
10658possible parsers, and discarding those that fail in the light of additional
c827f760
PE
10659right context. @xref{Generalized LR Parsing, ,Generalized
10660@acronym{LR} Parsing}.
676385e2 10661
bfa74976
RS
10662@item Grouping
10663A language construct that is (in general) grammatically divisible;
c827f760 10664for example, `expression' or `declaration' in C@.
bfa74976
RS
10665@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10666
34a6c2d1
JD
10667@item @acronym{IELR}(1)
10668A minimal @acronym{LR}(1) parser table generation algorithm.
10669That is, given any context-free grammar, @acronym{IELR}(1) generates
10670parser tables with the full language recognition power of canonical
10671@acronym{LR}(1) but with nearly the same number of parser states as
10672@acronym{LALR}(1).
10673This reduction in parser states is often an order of magnitude.
10674More importantly, because canonical @acronym{LR}(1)'s extra parser
10675states may contain duplicate conflicts in the case of
10676non-@acronym{LR}(1) grammars, the number of conflicts for
10677@acronym{IELR}(1) is often an order of magnitude less as well.
10678This can significantly reduce the complexity of developing of a grammar.
10679@xref{Decl Summary,,lr.type}.
10680
bfa74976
RS
10681@item Infix operator
10682An arithmetic operator that is placed between the operands on which it
10683performs some operation.
10684
10685@item Input stream
10686A continuous flow of data between devices or programs.
10687
4c38b19e
JD
10688@item @acronym{LAC} (Lookahead Correction)
10689A parsing mechanism that fixes the problem of delayed syntax error
10690detection, which is caused by LR state merging, default reductions, and
10691the use of @code{%nonassoc}. Delayed syntax error detection results in
10692unexpected semantic actions, initiation of error recovery in the wrong
10693syntactic context, and an incorrect list of expected tokens in a verbose
10694syntax error message. @xref{Decl Summary,,parse.lac}.
10695
bfa74976
RS
10696@item Language construct
10697One of the typical usage schemas of the language. For example, one of
10698the constructs of the C language is the @code{if} statement.
10699@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10700
10701@item Left associativity
10702Operators having left associativity are analyzed from left to right:
10703@samp{a+b+c} first computes @samp{a+b} and then combines with
10704@samp{c}. @xref{Precedence, ,Operator Precedence}.
10705
10706@item Left recursion
89cab50d
AD
10707A rule whose result symbol is also its first component symbol; for
10708example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
10709Rules}.
bfa74976
RS
10710
10711@item Left-to-right parsing
10712Parsing a sentence of a language by analyzing it token by token from
c827f760 10713left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10714
10715@item Lexical analyzer (scanner)
10716A function that reads an input stream and returns tokens one by one.
10717@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
10718
10719@item Lexical tie-in
10720A flag, set by actions in the grammar rules, which alters the way
10721tokens are parsed. @xref{Lexical Tie-ins}.
10722
931c7513 10723@item Literal string token
14ded682 10724A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 10725
742e4900
JD
10726@item Lookahead token
10727A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 10728Tokens}.
bfa74976 10729
c827f760 10730@item @acronym{LALR}(1)
bfa74976 10731The class of context-free grammars that Bison (like most other parser
34a6c2d1
JD
10732generators) can handle by default; a subset of @acronym{LR}(1).
10733@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 10734
c827f760 10735@item @acronym{LR}(1)
bfa74976 10736The class of context-free grammars in which at most one token of
742e4900 10737lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
10738
10739@item Nonterminal symbol
10740A grammar symbol standing for a grammatical construct that can
10741be expressed through rules in terms of smaller constructs; in other
10742words, a construct that is not a token. @xref{Symbols}.
10743
bfa74976
RS
10744@item Parser
10745A function that recognizes valid sentences of a language by analyzing
10746the syntax structure of a set of tokens passed to it from a lexical
10747analyzer.
10748
10749@item Postfix operator
10750An arithmetic operator that is placed after the operands upon which it
10751performs some operation.
10752
10753@item Reduction
10754Replacing a string of nonterminals and/or terminals with a single
89cab50d 10755nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 10756Parser Algorithm}.
bfa74976
RS
10757
10758@item Reentrant
10759A reentrant subprogram is a subprogram which can be in invoked any
10760number of times in parallel, without interference between the various
10761invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
10762
10763@item Reverse polish notation
10764A language in which all operators are postfix operators.
10765
10766@item Right recursion
89cab50d
AD
10767A rule whose result symbol is also its last component symbol; for
10768example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
10769Rules}.
bfa74976
RS
10770
10771@item Semantics
10772In computer languages, the semantics are specified by the actions
10773taken for each instance of the language, i.e., the meaning of
10774each statement. @xref{Semantics, ,Defining Language Semantics}.
10775
10776@item Shift
10777A parser is said to shift when it makes the choice of analyzing
10778further input from the stream rather than reducing immediately some
c827f760 10779already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10780
10781@item Single-character literal
10782A single character that is recognized and interpreted as is.
10783@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
10784
10785@item Start symbol
10786The nonterminal symbol that stands for a complete valid utterance in
10787the language being parsed. The start symbol is usually listed as the
13863333 10788first nonterminal symbol in a language specification.
bfa74976
RS
10789@xref{Start Decl, ,The Start-Symbol}.
10790
10791@item Symbol table
10792A data structure where symbol names and associated data are stored
10793during parsing to allow for recognition and use of existing
10794information in repeated uses of a symbol. @xref{Multi-function Calc}.
10795
6e649e65
PE
10796@item Syntax error
10797An error encountered during parsing of an input stream due to invalid
10798syntax. @xref{Error Recovery}.
10799
bfa74976
RS
10800@item Token
10801A basic, grammatically indivisible unit of a language. The symbol
10802that describes a token in the grammar is a terminal symbol.
10803The input of the Bison parser is a stream of tokens which comes from
10804the lexical analyzer. @xref{Symbols}.
10805
10806@item Terminal symbol
89cab50d
AD
10807A grammar symbol that has no rules in the grammar and therefore is
10808grammatically indivisible. The piece of text it represents is a token.
10809@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
10810@end table
10811
342b8b6e 10812@node Copying This Manual
f2b5126e 10813@appendix Copying This Manual
f2b5126e
PB
10814@include fdl.texi
10815
342b8b6e 10816@node Index
bfa74976
RS
10817@unnumbered Index
10818
10819@printindex cp
10820
bfa74976 10821@bye
a06ea4aa 10822
8fbbeba2
AD
10823@c Local Variables:
10824@c fill-column: 76
10825@c End:
10826
232be91a
AD
10827@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
10828@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
10829@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
10830@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
10831@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
10832@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
10833@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
10834@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
10835@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
10836@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
10837@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
10838@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
10839@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
10840@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym enum
10841@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
10842@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
10843@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
10844@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
10845@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
10846@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
10847@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
10848@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
10849@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
10850@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype Lookahead
10851@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
10852@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
10853@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
10854@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
10855@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
4c38b19e 10856@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
232be91a
AD
10857@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs
10858@c LocalWords: yytokentype filename destructor multicharacter nonnull EBCDIC
10859@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
10860@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative
10861@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
10862@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
10863@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
10864@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz
10865@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
10866@c LocalWords: makefiles Graphviz multitable headitem hh basename Doxygen fno
10867@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
10868@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
10869@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
10870@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
10871@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc
10872@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
10873@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
10874@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
10875@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
10876@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
41d35e54 10877@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt
232be91a 10878@c LocalWords: subdirectory Solaris nonassociativity