]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
doc: document experimental features better.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
35430378
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
ea0a7676
JD
36Copyright @copyright{} 1988-1993, 1995, 1998-2011 Free Software
37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
35430378 41under the terms of the GNU Free Documentation License,
241ac701 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
35430378 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
35430378 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
35430378
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
35430378 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
35430378 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
35430378 91* Copying:: The GNU General Public License says
f56274a8 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f56274a8
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f56274a8
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f56274a8
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
106* Invocation:: How to run Bison (to produce the parser source file).
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
112* Index:: Cross-references to the text.
bfa74976 113
93dd49ab
PE
114@detailmenu
115 --- The Detailed Node Listing ---
bfa74976
RS
116
117The Concepts of Bison
118
f56274a8
DJ
119* Language and Grammar:: Languages and context-free grammars,
120 as mathematical ideas.
121* Grammar in Bison:: How we represent grammars for Bison's sake.
122* Semantic Values:: Each token or syntactic grouping can have
123 a semantic value (the value of an integer,
124 the name of an identifier, etc.).
125* Semantic Actions:: Each rule can have an action containing C code.
126* GLR Parsers:: Writing parsers for general context-free languages.
127* Locations Overview:: Tracking Locations.
128* Bison Parser:: What are Bison's input and output,
129 how is the output used?
130* Stages:: Stages in writing and running Bison grammars.
131* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 132
35430378 133Writing GLR Parsers
fa7e68c3 134
35430378
JD
135* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
136* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
f56274a8 137* GLR Semantic Actions:: Deferred semantic actions have special concerns.
35430378 138* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 139
bfa74976
RS
140Examples
141
f56274a8
DJ
142* RPN Calc:: Reverse polish notation calculator;
143 a first example with no operator precedence.
144* Infix Calc:: Infix (algebraic) notation calculator.
145 Operator precedence is introduced.
bfa74976 146* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 147* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
148* Multi-function Calc:: Calculator with memory and trig functions.
149 It uses multiple data-types for semantic values.
150* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
151
152Reverse Polish Notation Calculator
153
f56274a8
DJ
154* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
155* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
156* Rpcalc Lexer:: The lexical analyzer.
157* Rpcalc Main:: The controlling function.
158* Rpcalc Error:: The error reporting function.
159* Rpcalc Generate:: Running Bison on the grammar file.
160* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
161
162Grammar Rules for @code{rpcalc}
163
13863333
AD
164* Rpcalc Input::
165* Rpcalc Line::
166* Rpcalc Expr::
bfa74976 167
342b8b6e
AD
168Location Tracking Calculator: @code{ltcalc}
169
f56274a8
DJ
170* Ltcalc Declarations:: Bison and C declarations for ltcalc.
171* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
172* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 173
bfa74976
RS
174Multi-Function Calculator: @code{mfcalc}
175
f56274a8
DJ
176* Mfcalc Declarations:: Bison declarations for multi-function calculator.
177* Mfcalc Rules:: Grammar rules for the calculator.
178* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
179
180Bison Grammar Files
181
182* Grammar Outline:: Overall layout of the grammar file.
183* Symbols:: Terminal and nonterminal symbols.
184* Rules:: How to write grammar rules.
185* Recursion:: Writing recursive rules.
186* Semantics:: Semantic values and actions.
93dd49ab 187* Locations:: Locations and actions.
bfa74976
RS
188* Declarations:: All kinds of Bison declarations are described here.
189* Multiple Parsers:: Putting more than one Bison parser in one program.
190
191Outline of a Bison Grammar
192
f56274a8 193* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 194* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
195* Bison Declarations:: Syntax and usage of the Bison declarations section.
196* Grammar Rules:: Syntax and usage of the grammar rules section.
197* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
198
199Defining Language Semantics
200
201* Value Type:: Specifying one data type for all semantic values.
202* Multiple Types:: Specifying several alternative data types.
203* Actions:: An action is the semantic definition of a grammar rule.
204* Action Types:: Specifying data types for actions to operate on.
205* Mid-Rule Actions:: Most actions go at the end of a rule.
206 This says when, why and how to use the exceptional
207 action in the middle of a rule.
1f68dca5 208* Named References:: Using named references in actions.
bfa74976 209
93dd49ab
PE
210Tracking Locations
211
212* Location Type:: Specifying a data type for locations.
213* Actions and Locations:: Using locations in actions.
214* Location Default Action:: Defining a general way to compute locations.
215
bfa74976
RS
216Bison Declarations
217
b50d2359 218* Require Decl:: Requiring a Bison version.
bfa74976
RS
219* Token Decl:: Declaring terminal symbols.
220* Precedence Decl:: Declaring terminals with precedence and associativity.
221* Union Decl:: Declaring the set of all semantic value types.
222* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 223* Initial Action Decl:: Code run before parsing starts.
72f889cc 224* Destructor Decl:: Declaring how symbols are freed.
d6328241 225* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
226* Start Decl:: Specifying the start symbol.
227* Pure Decl:: Requesting a reentrant parser.
9987d1b3 228* Push Decl:: Requesting a push parser.
bfa74976
RS
229* Decl Summary:: Table of all Bison declarations.
230
231Parser C-Language Interface
232
f56274a8
DJ
233* Parser Function:: How to call @code{yyparse} and what it returns.
234* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
235* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
236* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
237* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
238* Lexical:: You must supply a function @code{yylex}
239 which reads tokens.
240* Error Reporting:: You must supply a function @code{yyerror}.
241* Action Features:: Special features for use in actions.
242* Internationalization:: How to let the parser speak in the user's
243 native language.
bfa74976
RS
244
245The Lexical Analyzer Function @code{yylex}
246
247* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
248* Token Values:: How @code{yylex} must return the semantic value
249 of the token it has read.
250* Token Locations:: How @code{yylex} must return the text location
251 (line number, etc.) of the token, if the
252 actions want that.
253* Pure Calling:: How the calling convention differs in a pure parser
254 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 255
13863333 256The Bison Parser Algorithm
bfa74976 257
742e4900 258* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
259* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
260* Precedence:: Operator precedence works by resolving conflicts.
261* Contextual Precedence:: When an operator's precedence depends on context.
262* Parser States:: The parser is a finite-state-machine with stack.
263* Reduce/Reduce:: When two rules are applicable in the same situation.
f56274a8 264* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 265* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 266* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
267
268Operator Precedence
269
270* Why Precedence:: An example showing why precedence is needed.
271* Using Precedence:: How to specify precedence in Bison grammars.
272* Precedence Examples:: How these features are used in the previous example.
273* How Precedence:: How they work.
274
275Handling Context Dependencies
276
277* Semantic Tokens:: Token parsing can depend on the semantic context.
278* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
279* Tie-in Recovery:: Lexical tie-ins have implications for how
280 error recovery rules must be written.
281
93dd49ab 282Debugging Your Parser
ec3bc396
AD
283
284* Understanding:: Understanding the structure of your parser.
285* Tracing:: Tracing the execution of your parser.
286
bfa74976
RS
287Invoking Bison
288
13863333 289* Bison Options:: All the options described in detail,
c827f760 290 in alphabetical order by short options.
bfa74976 291* Option Cross Key:: Alphabetical list of long options.
93dd49ab 292* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 293
8405b70c 294Parsers Written In Other Languages
12545799
AD
295
296* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 297* Java Parsers:: The interface to generate Java parser classes
12545799
AD
298
299C++ Parsers
300
301* C++ Bison Interface:: Asking for C++ parser generation
302* C++ Semantic Values:: %union vs. C++
303* C++ Location Values:: The position and location classes
304* C++ Parser Interface:: Instantiating and running the parser
305* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 306* A Complete C++ Example:: Demonstrating their use
12545799
AD
307
308A Complete C++ Example
309
310* Calc++ --- C++ Calculator:: The specifications
311* Calc++ Parsing Driver:: An active parsing context
312* Calc++ Parser:: A parser class
313* Calc++ Scanner:: A pure C++ Flex scanner
314* Calc++ Top Level:: Conducting the band
315
8405b70c
PB
316Java Parsers
317
f56274a8
DJ
318* Java Bison Interface:: Asking for Java parser generation
319* Java Semantic Values:: %type and %token vs. Java
320* Java Location Values:: The position and location classes
321* Java Parser Interface:: Instantiating and running the parser
322* Java Scanner Interface:: Specifying the scanner for the parser
323* Java Action Features:: Special features for use in actions
324* Java Differences:: Differences between C/C++ and Java Grammars
325* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 326
d1a1114f
AD
327Frequently Asked Questions
328
f56274a8
DJ
329* Memory Exhausted:: Breaking the Stack Limits
330* How Can I Reset the Parser:: @code{yyparse} Keeps some State
331* Strings are Destroyed:: @code{yylval} Loses Track of Strings
332* Implementing Gotos/Loops:: Control Flow in the Calculator
333* Multiple start-symbols:: Factoring closely related grammars
35430378 334* Secure? Conform?:: Is Bison POSIX safe?
f56274a8
DJ
335* I can't build Bison:: Troubleshooting
336* Where can I find help?:: Troubleshouting
337* Bug Reports:: Troublereporting
338* More Languages:: Parsers in C++, Java, and so on
339* Beta Testing:: Experimenting development versions
340* Mailing Lists:: Meeting other Bison users
d1a1114f 341
f2b5126e
PB
342Copying This Manual
343
f56274a8 344* Copying This Manual:: License for copying this manual.
f2b5126e 345
342b8b6e 346@end detailmenu
bfa74976
RS
347@end menu
348
342b8b6e 349@node Introduction
bfa74976
RS
350@unnumbered Introduction
351@cindex introduction
352
6077da58 353@dfn{Bison} is a general-purpose parser generator that converts an
d89e48b3
JD
354annotated context-free grammar into a deterministic LR or generalized
355LR (GLR) parser employing LALR(1) parser tables. As an experimental
356feature, Bison can also generate IELR(1) or canonical LR(1) parser
357tables. Once you are proficient with Bison, you can use it to develop
358a wide range of language parsers, from those used in simple desk
359calculators to complex programming languages.
360
361Bison is upward compatible with Yacc: all properly-written Yacc
362grammars ought to work with Bison with no change. Anyone familiar
363with Yacc should be able to use Bison with little trouble. You need
364to be fluent in C or C++ programming in order to use Bison or to
365understand this manual. Java is also supported as an experimental
366feature.
367
368We begin with tutorial chapters that explain the basic concepts of
369using Bison and show three explained examples, each building on the
370last. If you don't know Bison or Yacc, start by reading these
371chapters. Reference chapters follow, which describe specific aspects
372of Bison in detail.
bfa74976 373
931c7513
RS
374Bison was written primarily by Robert Corbett; Richard Stallman made it
375Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 376multi-character string literals and other features.
931c7513 377
df1af54c 378This edition corresponds to version @value{VERSION} of Bison.
bfa74976 379
342b8b6e 380@node Conditions
bfa74976
RS
381@unnumbered Conditions for Using Bison
382
193d7c70
PE
383The distribution terms for Bison-generated parsers permit using the
384parsers in nonfree programs. Before Bison version 2.2, these extra
35430378 385permissions applied only when Bison was generating LALR(1)
193d7c70 386parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 387parsers could be used only in programs that were free software.
a31239f1 388
35430378 389The other GNU programming tools, such as the GNU C
c827f760 390compiler, have never
9ecbd125 391had such a requirement. They could always be used for nonfree
a31239f1
RS
392software. The reason Bison was different was not due to a special
393policy decision; it resulted from applying the usual General Public
394License to all of the Bison source code.
395
396The output of the Bison utility---the Bison parser file---contains a
397verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
398parser's implementation. (The actions from your grammar are inserted
399into this implementation at one point, but most of the rest of the
35430378 400implementation is not changed.) When we applied the GPL
193d7c70 401terms to the skeleton code for the parser's implementation,
a31239f1
RS
402the effect was to restrict the use of Bison output to free software.
403
404We didn't change the terms because of sympathy for people who want to
405make software proprietary. @strong{Software should be free.} But we
406concluded that limiting Bison's use to free software was doing little to
407encourage people to make other software free. So we decided to make the
408practical conditions for using Bison match the practical conditions for
35430378 409using the other GNU tools.
bfa74976 410
193d7c70
PE
411This exception applies when Bison is generating code for a parser.
412You can tell whether the exception applies to a Bison output file by
413inspecting the file for text beginning with ``As a special
414exception@dots{}''. The text spells out the exact terms of the
415exception.
262aa8dd 416
f16b0819
PE
417@node Copying
418@unnumbered GNU GENERAL PUBLIC LICENSE
419@include gpl-3.0.texi
bfa74976 420
342b8b6e 421@node Concepts
bfa74976
RS
422@chapter The Concepts of Bison
423
424This chapter introduces many of the basic concepts without which the
425details of Bison will not make sense. If you do not already know how to
426use Bison or Yacc, we suggest you start by reading this chapter carefully.
427
428@menu
f56274a8
DJ
429* Language and Grammar:: Languages and context-free grammars,
430 as mathematical ideas.
431* Grammar in Bison:: How we represent grammars for Bison's sake.
432* Semantic Values:: Each token or syntactic grouping can have
433 a semantic value (the value of an integer,
434 the name of an identifier, etc.).
435* Semantic Actions:: Each rule can have an action containing C code.
436* GLR Parsers:: Writing parsers for general context-free languages.
437* Locations Overview:: Tracking Locations.
438* Bison Parser:: What are Bison's input and output,
439 how is the output used?
440* Stages:: Stages in writing and running Bison grammars.
441* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
442@end menu
443
342b8b6e 444@node Language and Grammar
bfa74976
RS
445@section Languages and Context-Free Grammars
446
bfa74976
RS
447@cindex context-free grammar
448@cindex grammar, context-free
449In order for Bison to parse a language, it must be described by a
450@dfn{context-free grammar}. This means that you specify one or more
451@dfn{syntactic groupings} and give rules for constructing them from their
452parts. For example, in the C language, one kind of grouping is called an
453`expression'. One rule for making an expression might be, ``An expression
454can be made of a minus sign and another expression''. Another would be,
455``An expression can be an integer''. As you can see, rules are often
456recursive, but there must be at least one rule which leads out of the
457recursion.
458
35430378 459@cindex BNF
bfa74976
RS
460@cindex Backus-Naur form
461The most common formal system for presenting such rules for humans to read
35430378 462is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 463order to specify the language Algol 60. Any grammar expressed in
35430378
JD
464BNF is a context-free grammar. The input to Bison is
465essentially machine-readable BNF.
bfa74976 466
35430378
JD
467@cindex LALR(1) grammars
468@cindex IELR(1) grammars
469@cindex LR(1) grammars
34a6c2d1
JD
470There are various important subclasses of context-free grammars.
471Although it can handle almost all context-free grammars, Bison is
35430378 472optimized for what are called LR(1) grammars.
34a6c2d1
JD
473In brief, in these grammars, it must be possible to tell how to parse
474any portion of an input string with just a single token of lookahead.
475For historical reasons, Bison by default is limited by the additional
35430378 476restrictions of LALR(1), which is hard to explain simply.
c827f760
PE
477@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
478more information on this.
3b1977ea 479As an experimental feature, you can escape these additional restrictions by
35430378 480requesting IELR(1) or canonical LR(1) parser tables.
34a6c2d1 481@xref{Decl Summary,,lr.type}, to learn how.
bfa74976 482
35430378
JD
483@cindex GLR parsing
484@cindex generalized LR (GLR) parsing
676385e2 485@cindex ambiguous grammars
9d9b8b70 486@cindex nondeterministic parsing
9501dc6e 487
35430378 488Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
489roughly that the next grammar rule to apply at any point in the input is
490uniquely determined by the preceding input and a fixed, finite portion
742e4900 491(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 492grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 493apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 494grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 495lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 496With the proper declarations, Bison is also able to parse these more
35430378
JD
497general context-free grammars, using a technique known as GLR
498parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
499are able to handle any context-free grammar for which the number of
500possible parses of any given string is finite.
676385e2 501
bfa74976
RS
502@cindex symbols (abstract)
503@cindex token
504@cindex syntactic grouping
505@cindex grouping, syntactic
9501dc6e
AD
506In the formal grammatical rules for a language, each kind of syntactic
507unit or grouping is named by a @dfn{symbol}. Those which are built by
508grouping smaller constructs according to grammatical rules are called
bfa74976
RS
509@dfn{nonterminal symbols}; those which can't be subdivided are called
510@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
511corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 512corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
513
514We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
515nonterminal, mean. The tokens of C are identifiers, constants (numeric
516and string), and the various keywords, arithmetic operators and
517punctuation marks. So the terminal symbols of a grammar for C include
518`identifier', `number', `string', plus one symbol for each keyword,
519operator or punctuation mark: `if', `return', `const', `static', `int',
520`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
521(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
522lexicography, not grammar.)
523
524Here is a simple C function subdivided into tokens:
525
9edcd895
AD
526@ifinfo
527@example
528int /* @r{keyword `int'} */
14d4662b 529square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
530 @r{identifier, close-paren} */
531@{ /* @r{open-brace} */
aa08666d
AD
532 return x * x; /* @r{keyword `return', identifier, asterisk,}
533 @r{identifier, semicolon} */
9edcd895
AD
534@} /* @r{close-brace} */
535@end example
536@end ifinfo
537@ifnotinfo
bfa74976
RS
538@example
539int /* @r{keyword `int'} */
14d4662b 540square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 541@{ /* @r{open-brace} */
9edcd895 542 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
543@} /* @r{close-brace} */
544@end example
9edcd895 545@end ifnotinfo
bfa74976
RS
546
547The syntactic groupings of C include the expression, the statement, the
548declaration, and the function definition. These are represented in the
549grammar of C by nonterminal symbols `expression', `statement',
550`declaration' and `function definition'. The full grammar uses dozens of
551additional language constructs, each with its own nonterminal symbol, in
552order to express the meanings of these four. The example above is a
553function definition; it contains one declaration, and one statement. In
554the statement, each @samp{x} is an expression and so is @samp{x * x}.
555
556Each nonterminal symbol must have grammatical rules showing how it is made
557out of simpler constructs. For example, one kind of C statement is the
558@code{return} statement; this would be described with a grammar rule which
559reads informally as follows:
560
561@quotation
562A `statement' can be made of a `return' keyword, an `expression' and a
563`semicolon'.
564@end quotation
565
566@noindent
567There would be many other rules for `statement', one for each kind of
568statement in C.
569
570@cindex start symbol
571One nonterminal symbol must be distinguished as the special one which
572defines a complete utterance in the language. It is called the @dfn{start
573symbol}. In a compiler, this means a complete input program. In the C
574language, the nonterminal symbol `sequence of definitions and declarations'
575plays this role.
576
577For example, @samp{1 + 2} is a valid C expression---a valid part of a C
578program---but it is not valid as an @emph{entire} C program. In the
579context-free grammar of C, this follows from the fact that `expression' is
580not the start symbol.
581
582The Bison parser reads a sequence of tokens as its input, and groups the
583tokens using the grammar rules. If the input is valid, the end result is
584that the entire token sequence reduces to a single grouping whose symbol is
585the grammar's start symbol. If we use a grammar for C, the entire input
586must be a `sequence of definitions and declarations'. If not, the parser
587reports a syntax error.
588
342b8b6e 589@node Grammar in Bison
bfa74976
RS
590@section From Formal Rules to Bison Input
591@cindex Bison grammar
592@cindex grammar, Bison
593@cindex formal grammar
594
595A formal grammar is a mathematical construct. To define the language
596for Bison, you must write a file expressing the grammar in Bison syntax:
597a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
598
599A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 600as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
601in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
602
603The Bison representation for a terminal symbol is also called a @dfn{token
604type}. Token types as well can be represented as C-like identifiers. By
605convention, these identifiers should be upper case to distinguish them from
606nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
607@code{RETURN}. A terminal symbol that stands for a particular keyword in
608the language should be named after that keyword converted to upper case.
609The terminal symbol @code{error} is reserved for error recovery.
931c7513 610@xref{Symbols}.
bfa74976
RS
611
612A terminal symbol can also be represented as a character literal, just like
613a C character constant. You should do this whenever a token is just a
614single character (parenthesis, plus-sign, etc.): use that same character in
615a literal as the terminal symbol for that token.
616
931c7513
RS
617A third way to represent a terminal symbol is with a C string constant
618containing several characters. @xref{Symbols}, for more information.
619
bfa74976
RS
620The grammar rules also have an expression in Bison syntax. For example,
621here is the Bison rule for a C @code{return} statement. The semicolon in
622quotes is a literal character token, representing part of the C syntax for
623the statement; the naked semicolon, and the colon, are Bison punctuation
624used in every rule.
625
626@example
627stmt: RETURN expr ';'
628 ;
629@end example
630
631@noindent
632@xref{Rules, ,Syntax of Grammar Rules}.
633
342b8b6e 634@node Semantic Values
bfa74976
RS
635@section Semantic Values
636@cindex semantic value
637@cindex value, semantic
638
639A formal grammar selects tokens only by their classifications: for example,
640if a rule mentions the terminal symbol `integer constant', it means that
641@emph{any} integer constant is grammatically valid in that position. The
642precise value of the constant is irrelevant to how to parse the input: if
643@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 644grammatical.
bfa74976
RS
645
646But the precise value is very important for what the input means once it is
647parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6483989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
649has both a token type and a @dfn{semantic value}. @xref{Semantics,
650,Defining Language Semantics},
bfa74976
RS
651for details.
652
653The token type is a terminal symbol defined in the grammar, such as
654@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
655you need to know to decide where the token may validly appear and how to
656group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 657except their types.
bfa74976
RS
658
659The semantic value has all the rest of the information about the
660meaning of the token, such as the value of an integer, or the name of an
661identifier. (A token such as @code{','} which is just punctuation doesn't
662need to have any semantic value.)
663
664For example, an input token might be classified as token type
665@code{INTEGER} and have the semantic value 4. Another input token might
666have the same token type @code{INTEGER} but value 3989. When a grammar
667rule says that @code{INTEGER} is allowed, either of these tokens is
668acceptable because each is an @code{INTEGER}. When the parser accepts the
669token, it keeps track of the token's semantic value.
670
671Each grouping can also have a semantic value as well as its nonterminal
672symbol. For example, in a calculator, an expression typically has a
673semantic value that is a number. In a compiler for a programming
674language, an expression typically has a semantic value that is a tree
675structure describing the meaning of the expression.
676
342b8b6e 677@node Semantic Actions
bfa74976
RS
678@section Semantic Actions
679@cindex semantic actions
680@cindex actions, semantic
681
682In order to be useful, a program must do more than parse input; it must
683also produce some output based on the input. In a Bison grammar, a grammar
684rule can have an @dfn{action} made up of C statements. Each time the
685parser recognizes a match for that rule, the action is executed.
686@xref{Actions}.
13863333 687
bfa74976
RS
688Most of the time, the purpose of an action is to compute the semantic value
689of the whole construct from the semantic values of its parts. For example,
690suppose we have a rule which says an expression can be the sum of two
691expressions. When the parser recognizes such a sum, each of the
692subexpressions has a semantic value which describes how it was built up.
693The action for this rule should create a similar sort of value for the
694newly recognized larger expression.
695
696For example, here is a rule that says an expression can be the sum of
697two subexpressions:
698
699@example
700expr: expr '+' expr @{ $$ = $1 + $3; @}
701 ;
702@end example
703
704@noindent
705The action says how to produce the semantic value of the sum expression
706from the values of the two subexpressions.
707
676385e2 708@node GLR Parsers
35430378
JD
709@section Writing GLR Parsers
710@cindex GLR parsing
711@cindex generalized LR (GLR) parsing
676385e2
PH
712@findex %glr-parser
713@cindex conflicts
714@cindex shift/reduce conflicts
fa7e68c3 715@cindex reduce/reduce conflicts
676385e2 716
34a6c2d1 717In some grammars, Bison's deterministic
35430378 718LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
719certain grammar rule at a given point. That is, it may not be able to
720decide (on the basis of the input read so far) which of two possible
721reductions (applications of a grammar rule) applies, or whether to apply
722a reduction or read more of the input and apply a reduction later in the
723input. These are known respectively as @dfn{reduce/reduce} conflicts
724(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
725(@pxref{Shift/Reduce}).
726
35430378 727To use a grammar that is not easily modified to be LR(1), a
9501dc6e 728more general parsing algorithm is sometimes necessary. If you include
676385e2 729@code{%glr-parser} among the Bison declarations in your file
35430378
JD
730(@pxref{Grammar Outline}), the result is a Generalized LR
731(GLR) parser. These parsers handle Bison grammars that
9501dc6e 732contain no unresolved conflicts (i.e., after applying precedence
34a6c2d1 733declarations) identically to deterministic parsers. However, when
9501dc6e 734faced with unresolved shift/reduce and reduce/reduce conflicts,
35430378 735GLR parsers use the simple expedient of doing both,
9501dc6e
AD
736effectively cloning the parser to follow both possibilities. Each of
737the resulting parsers can again split, so that at any given time, there
738can be any number of possible parses being explored. The parsers
676385e2
PH
739proceed in lockstep; that is, all of them consume (shift) a given input
740symbol before any of them proceed to the next. Each of the cloned
741parsers eventually meets one of two possible fates: either it runs into
742a parsing error, in which case it simply vanishes, or it merges with
743another parser, because the two of them have reduced the input to an
744identical set of symbols.
745
746During the time that there are multiple parsers, semantic actions are
747recorded, but not performed. When a parser disappears, its recorded
748semantic actions disappear as well, and are never performed. When a
749reduction makes two parsers identical, causing them to merge, Bison
750records both sets of semantic actions. Whenever the last two parsers
751merge, reverting to the single-parser case, Bison resolves all the
752outstanding actions either by precedences given to the grammar rules
753involved, or by performing both actions, and then calling a designated
754user-defined function on the resulting values to produce an arbitrary
755merged result.
756
fa7e68c3 757@menu
35430378
JD
758* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
759* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
f56274a8 760* GLR Semantic Actions:: Deferred semantic actions have special concerns.
35430378 761* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
762@end menu
763
764@node Simple GLR Parsers
35430378
JD
765@subsection Using GLR on Unambiguous Grammars
766@cindex GLR parsing, unambiguous grammars
767@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
768@findex %glr-parser
769@findex %expect-rr
770@cindex conflicts
771@cindex reduce/reduce conflicts
772@cindex shift/reduce conflicts
773
35430378
JD
774In the simplest cases, you can use the GLR algorithm
775to parse grammars that are unambiguous but fail to be LR(1).
34a6c2d1 776Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
777
778Consider a problem that
779arises in the declaration of enumerated and subrange types in the
780programming language Pascal. Here are some examples:
781
782@example
783type subrange = lo .. hi;
784type enum = (a, b, c);
785@end example
786
787@noindent
788The original language standard allows only numeric
789literals and constant identifiers for the subrange bounds (@samp{lo}
35430378 790and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
79110206) and many other
792Pascal implementations allow arbitrary expressions there. This gives
793rise to the following situation, containing a superfluous pair of
794parentheses:
795
796@example
797type subrange = (a) .. b;
798@end example
799
800@noindent
801Compare this to the following declaration of an enumerated
802type with only one value:
803
804@example
805type enum = (a);
806@end example
807
808@noindent
809(These declarations are contrived, but they are syntactically
810valid, and more-complicated cases can come up in practical programs.)
811
812These two declarations look identical until the @samp{..} token.
35430378 813With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
814possible to decide between the two forms when the identifier
815@samp{a} is parsed. It is, however, desirable
816for a parser to decide this, since in the latter case
817@samp{a} must become a new identifier to represent the enumeration
818value, while in the former case @samp{a} must be evaluated with its
819current meaning, which may be a constant or even a function call.
820
821You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
822to be resolved later, but this typically requires substantial
823contortions in both semantic actions and large parts of the
824grammar, where the parentheses are nested in the recursive rules for
825expressions.
826
827You might think of using the lexer to distinguish between the two
828forms by returning different tokens for currently defined and
829undefined identifiers. But if these declarations occur in a local
830scope, and @samp{a} is defined in an outer scope, then both forms
831are possible---either locally redefining @samp{a}, or using the
832value of @samp{a} from the outer scope. So this approach cannot
833work.
834
e757bb10 835A simple solution to this problem is to declare the parser to
35430378
JD
836use the GLR algorithm.
837When the GLR parser reaches the critical state, it
fa7e68c3
PE
838merely splits into two branches and pursues both syntax rules
839simultaneously. Sooner or later, one of them runs into a parsing
840error. If there is a @samp{..} token before the next
841@samp{;}, the rule for enumerated types fails since it cannot
842accept @samp{..} anywhere; otherwise, the subrange type rule
843fails since it requires a @samp{..} token. So one of the branches
844fails silently, and the other one continues normally, performing
845all the intermediate actions that were postponed during the split.
846
847If the input is syntactically incorrect, both branches fail and the parser
848reports a syntax error as usual.
849
850The effect of all this is that the parser seems to ``guess'' the
851correct branch to take, or in other words, it seems to use more
35430378
JD
852lookahead than the underlying LR(1) algorithm actually allows
853for. In this example, LR(2) would suffice, but also some cases
854that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 855
35430378 856In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
857and the current Bison parser even takes exponential time and space
858for some grammars. In practice, this rarely happens, and for many
859grammars it is possible to prove that it cannot happen.
860The present example contains only one conflict between two
861rules, and the type-declaration context containing the conflict
862cannot be nested. So the number of
863branches that can exist at any time is limited by the constant 2,
864and the parsing time is still linear.
865
866Here is a Bison grammar corresponding to the example above. It
867parses a vastly simplified form of Pascal type declarations.
868
869@example
870%token TYPE DOTDOT ID
871
872@group
873%left '+' '-'
874%left '*' '/'
875@end group
876
877%%
878
879@group
880type_decl : TYPE ID '=' type ';'
881 ;
882@end group
883
884@group
885type : '(' id_list ')'
886 | expr DOTDOT expr
887 ;
888@end group
889
890@group
891id_list : ID
892 | id_list ',' ID
893 ;
894@end group
895
896@group
897expr : '(' expr ')'
898 | expr '+' expr
899 | expr '-' expr
900 | expr '*' expr
901 | expr '/' expr
902 | ID
903 ;
904@end group
905@end example
906
35430378 907When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
908about one reduce/reduce conflict. In the conflicting situation the
909parser chooses one of the alternatives, arbitrarily the one
910declared first. Therefore the following correct input is not
911recognized:
912
913@example
914type t = (a) .. b;
915@end example
916
35430378 917The parser can be turned into a GLR parser, while also telling Bison
fa7e68c3 918to be silent about the one known reduce/reduce conflict, by
e757bb10 919adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
920@samp{%%}):
921
922@example
923%glr-parser
924%expect-rr 1
925@end example
926
927@noindent
928No change in the grammar itself is required. Now the
929parser recognizes all valid declarations, according to the
930limited syntax above, transparently. In fact, the user does not even
931notice when the parser splits.
932
35430378 933So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
934almost without disadvantages. Even in simple cases like this, however,
935there are at least two potential problems to beware. First, always
35430378
JD
936analyze the conflicts reported by Bison to make sure that GLR
937splitting is only done where it is intended. A GLR parser
f8e1c9e5 938splitting inadvertently may cause problems less obvious than an
35430378 939LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
940conflict. Second, consider interactions with the lexer (@pxref{Semantic
941Tokens}) with great care. Since a split parser consumes tokens without
942performing any actions during the split, the lexer cannot obtain
943information via parser actions. Some cases of lexer interactions can be
35430378 944eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
945lexer to the parser. You must check the remaining cases for
946correctness.
947
948In our example, it would be safe for the lexer to return tokens based on
949their current meanings in some symbol table, because no new symbols are
950defined in the middle of a type declaration. Though it is possible for
951a parser to define the enumeration constants as they are parsed, before
952the type declaration is completed, it actually makes no difference since
953they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
954
955@node Merging GLR Parses
35430378
JD
956@subsection Using GLR to Resolve Ambiguities
957@cindex GLR parsing, ambiguous grammars
958@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
959@findex %dprec
960@findex %merge
961@cindex conflicts
962@cindex reduce/reduce conflicts
963
2a8d363a 964Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
965
966@example
967%@{
38a92d50
PE
968 #include <stdio.h>
969 #define YYSTYPE char const *
970 int yylex (void);
971 void yyerror (char const *);
676385e2
PH
972%@}
973
974%token TYPENAME ID
975
976%right '='
977%left '+'
978
979%glr-parser
980
981%%
982
fae437e8 983prog :
676385e2
PH
984 | prog stmt @{ printf ("\n"); @}
985 ;
986
987stmt : expr ';' %dprec 1
988 | decl %dprec 2
989 ;
990
2a8d363a 991expr : ID @{ printf ("%s ", $$); @}
fae437e8 992 | TYPENAME '(' expr ')'
2a8d363a
AD
993 @{ printf ("%s <cast> ", $1); @}
994 | expr '+' expr @{ printf ("+ "); @}
995 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
996 ;
997
fae437e8 998decl : TYPENAME declarator ';'
2a8d363a 999 @{ printf ("%s <declare> ", $1); @}
676385e2 1000 | TYPENAME declarator '=' expr ';'
2a8d363a 1001 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1002 ;
1003
2a8d363a 1004declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1005 | '(' declarator ')'
1006 ;
1007@end example
1008
1009@noindent
1010This models a problematic part of the C++ grammar---the ambiguity between
1011certain declarations and statements. For example,
1012
1013@example
1014T (x) = y+z;
1015@end example
1016
1017@noindent
1018parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1019(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1020@samp{x} as an @code{ID}).
676385e2 1021Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1022@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1023time it encounters @code{x} in the example above. Since this is a
35430378 1024GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1025each choice of resolving the reduce/reduce conflict.
1026Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1027however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1028ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1029the other reduces @code{stmt : decl}, after which both parsers are in an
1030identical state: they've seen @samp{prog stmt} and have the same unprocessed
1031input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1032
35430378 1033At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1034grammar of how to choose between the competing parses.
1035In the example above, the two @code{%dprec}
e757bb10 1036declarations specify that Bison is to give precedence
fa7e68c3 1037to the parse that interprets the example as a
676385e2
PH
1038@code{decl}, which implies that @code{x} is a declarator.
1039The parser therefore prints
1040
1041@example
fae437e8 1042"x" y z + T <init-declare>
676385e2
PH
1043@end example
1044
fa7e68c3
PE
1045The @code{%dprec} declarations only come into play when more than one
1046parse survives. Consider a different input string for this parser:
676385e2
PH
1047
1048@example
1049T (x) + y;
1050@end example
1051
1052@noindent
35430378 1053This is another example of using GLR to parse an unambiguous
fa7e68c3 1054construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1055Here, there is no ambiguity (this cannot be parsed as a declaration).
1056However, at the time the Bison parser encounters @code{x}, it does not
1057have enough information to resolve the reduce/reduce conflict (again,
1058between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1059case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1060into two, one assuming that @code{x} is an @code{expr}, and the other
1061assuming @code{x} is a @code{declarator}. The second of these parsers
1062then vanishes when it sees @code{+}, and the parser prints
1063
1064@example
fae437e8 1065x T <cast> y +
676385e2
PH
1066@end example
1067
1068Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1069the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1070actions of the two possible parsers, rather than choosing one over the
1071other. To do so, you could change the declaration of @code{stmt} as
1072follows:
1073
1074@example
1075stmt : expr ';' %merge <stmtMerge>
1076 | decl %merge <stmtMerge>
1077 ;
1078@end example
1079
1080@noindent
676385e2
PH
1081and define the @code{stmtMerge} function as:
1082
1083@example
38a92d50
PE
1084static YYSTYPE
1085stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1086@{
1087 printf ("<OR> ");
1088 return "";
1089@}
1090@end example
1091
1092@noindent
1093with an accompanying forward declaration
1094in the C declarations at the beginning of the file:
1095
1096@example
1097%@{
38a92d50 1098 #define YYSTYPE char const *
676385e2
PH
1099 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1100%@}
1101@end example
1102
1103@noindent
fa7e68c3
PE
1104With these declarations, the resulting parser parses the first example
1105as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1106
1107@example
fae437e8 1108"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1109@end example
1110
fa7e68c3 1111Bison requires that all of the
e757bb10 1112productions that participate in any particular merge have identical
fa7e68c3
PE
1113@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1114and the parser will report an error during any parse that results in
1115the offending merge.
9501dc6e 1116
32c29292
JD
1117@node GLR Semantic Actions
1118@subsection GLR Semantic Actions
1119
1120@cindex deferred semantic actions
1121By definition, a deferred semantic action is not performed at the same time as
1122the associated reduction.
1123This raises caveats for several Bison features you might use in a semantic
35430378 1124action in a GLR parser.
32c29292
JD
1125
1126@vindex yychar
35430378 1127@cindex GLR parsers and @code{yychar}
32c29292 1128@vindex yylval
35430378 1129@cindex GLR parsers and @code{yylval}
32c29292 1130@vindex yylloc
35430378 1131@cindex GLR parsers and @code{yylloc}
32c29292 1132In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1133the lookahead token present at the time of the associated reduction.
32c29292
JD
1134After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1135you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1136lookahead token's semantic value and location, if any.
32c29292
JD
1137In a nondeferred semantic action, you can also modify any of these variables to
1138influence syntax analysis.
742e4900 1139@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1140
1141@findex yyclearin
35430378 1142@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1143In a deferred semantic action, it's too late to influence syntax analysis.
1144In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1145shallow copies of the values they had at the time of the associated reduction.
1146For this reason alone, modifying them is dangerous.
1147Moreover, the result of modifying them is undefined and subject to change with
1148future versions of Bison.
1149For example, if a semantic action might be deferred, you should never write it
1150to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1151memory referenced by @code{yylval}.
1152
1153@findex YYERROR
35430378 1154@cindex GLR parsers and @code{YYERROR}
32c29292 1155Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1156(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1157initiate error recovery.
35430378 1158During deterministic GLR operation, the effect of @code{YYERROR} is
34a6c2d1 1159the same as its effect in a deterministic parser.
32c29292
JD
1160In a deferred semantic action, its effect is undefined.
1161@c The effect is probably a syntax error at the split point.
1162
8710fc41 1163Also, see @ref{Location Default Action, ,Default Action for Locations}, which
35430378 1164describes a special usage of @code{YYLLOC_DEFAULT} in GLR parsers.
8710fc41 1165
fa7e68c3 1166@node Compiler Requirements
35430378 1167@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1168@cindex @code{inline}
35430378 1169@cindex GLR parsers and @code{inline}
fa7e68c3 1170
35430378 1171The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1172later. In addition, they use the @code{inline} keyword, which is not
1173C89, but is C99 and is a common extension in pre-C99 compilers. It is
1174up to the user of these parsers to handle
9501dc6e
AD
1175portability issues. For instance, if using Autoconf and the Autoconf
1176macro @code{AC_C_INLINE}, a mere
1177
1178@example
1179%@{
38a92d50 1180 #include <config.h>
9501dc6e
AD
1181%@}
1182@end example
1183
1184@noindent
1185will suffice. Otherwise, we suggest
1186
1187@example
1188%@{
38a92d50
PE
1189 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1190 #define inline
1191 #endif
9501dc6e
AD
1192%@}
1193@end example
676385e2 1194
342b8b6e 1195@node Locations Overview
847bf1f5
AD
1196@section Locations
1197@cindex location
95923bd6
AD
1198@cindex textual location
1199@cindex location, textual
847bf1f5
AD
1200
1201Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1202and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1203the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1204Bison provides a mechanism for handling these locations.
1205
72d2299c 1206Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1207associated location, but the type of locations is the same for all tokens and
72d2299c 1208groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1209structure for storing locations (@pxref{Locations}, for more details).
1210
1211Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1212set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1213is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1214@code{@@3}.
1215
1216When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1217of its left hand side (@pxref{Actions}). In the same way, another default
1218action is used for locations. However, the action for locations is general
847bf1f5 1219enough for most cases, meaning there is usually no need to describe for each
72d2299c 1220rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1221grouping, the default behavior of the output parser is to take the beginning
1222of the first symbol, and the end of the last symbol.
1223
342b8b6e 1224@node Bison Parser
bfa74976
RS
1225@section Bison Output: the Parser File
1226@cindex Bison parser
1227@cindex Bison utility
1228@cindex lexical analyzer, purpose
1229@cindex parser
1230
1231When you run Bison, you give it a Bison grammar file as input. The output
1232is a C source file that parses the language described by the grammar.
1233This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1234utility and the Bison parser are two distinct programs: the Bison utility
1235is a program whose output is the Bison parser that becomes part of your
1236program.
1237
1238The job of the Bison parser is to group tokens into groupings according to
1239the grammar rules---for example, to build identifiers and operators into
1240expressions. As it does this, it runs the actions for the grammar rules it
1241uses.
1242
704a47c4
AD
1243The tokens come from a function called the @dfn{lexical analyzer} that
1244you must supply in some fashion (such as by writing it in C). The Bison
1245parser calls the lexical analyzer each time it wants a new token. It
1246doesn't know what is ``inside'' the tokens (though their semantic values
1247may reflect this). Typically the lexical analyzer makes the tokens by
1248parsing characters of text, but Bison does not depend on this.
1249@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1250
1251The Bison parser file is C code which defines a function named
1252@code{yyparse} which implements that grammar. This function does not make
1253a complete C program: you must supply some additional functions. One is
1254the lexical analyzer. Another is an error-reporting function which the
1255parser calls to report an error. In addition, a complete C program must
1256start with a function called @code{main}; you have to provide this, and
1257arrange for it to call @code{yyparse} or the parser will never run.
1258@xref{Interface, ,Parser C-Language Interface}.
1259
f7ab6a50 1260Aside from the token type names and the symbols in the actions you
7093d0f5 1261write, all symbols defined in the Bison parser file itself
bfa74976
RS
1262begin with @samp{yy} or @samp{YY}. This includes interface functions
1263such as the lexical analyzer function @code{yylex}, the error reporting
1264function @code{yyerror} and the parser function @code{yyparse} itself.
1265This also includes numerous identifiers used for internal purposes.
1266Therefore, you should avoid using C identifiers starting with @samp{yy}
1267or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1268this manual. Also, you should avoid using the C identifiers
1269@samp{malloc} and @samp{free} for anything other than their usual
1270meanings.
bfa74976 1271
7093d0f5
AD
1272In some cases the Bison parser file includes system headers, and in
1273those cases your code should respect the identifiers reserved by those
35430378 1274headers. On some non-GNU hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1275@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1276declare memory allocators and related types. @code{<libintl.h>} is
1277included if message translation is in use
1278(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1279be included if you define @code{YYDEBUG} to a nonzero value
1280(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1281
342b8b6e 1282@node Stages
bfa74976
RS
1283@section Stages in Using Bison
1284@cindex stages in using Bison
1285@cindex using Bison
1286
1287The actual language-design process using Bison, from grammar specification
1288to a working compiler or interpreter, has these parts:
1289
1290@enumerate
1291@item
1292Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1293(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1294in the language, describe the action that is to be taken when an
1295instance of that rule is recognized. The action is described by a
1296sequence of C statements.
bfa74976
RS
1297
1298@item
704a47c4
AD
1299Write a lexical analyzer to process input and pass tokens to the parser.
1300The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1301Lexical Analyzer Function @code{yylex}}). It could also be produced
1302using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1303
1304@item
1305Write a controlling function that calls the Bison-produced parser.
1306
1307@item
1308Write error-reporting routines.
1309@end enumerate
1310
1311To turn this source code as written into a runnable program, you
1312must follow these steps:
1313
1314@enumerate
1315@item
1316Run Bison on the grammar to produce the parser.
1317
1318@item
1319Compile the code output by Bison, as well as any other source files.
1320
1321@item
1322Link the object files to produce the finished product.
1323@end enumerate
1324
342b8b6e 1325@node Grammar Layout
bfa74976
RS
1326@section The Overall Layout of a Bison Grammar
1327@cindex grammar file
1328@cindex file format
1329@cindex format of grammar file
1330@cindex layout of Bison grammar
1331
1332The input file for the Bison utility is a @dfn{Bison grammar file}. The
1333general form of a Bison grammar file is as follows:
1334
1335@example
1336%@{
08e49d20 1337@var{Prologue}
bfa74976
RS
1338%@}
1339
1340@var{Bison declarations}
1341
1342%%
1343@var{Grammar rules}
1344%%
08e49d20 1345@var{Epilogue}
bfa74976
RS
1346@end example
1347
1348@noindent
1349The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1350in every Bison grammar file to separate the sections.
1351
72d2299c 1352The prologue may define types and variables used in the actions. You can
342b8b6e 1353also use preprocessor commands to define macros used there, and use
bfa74976 1354@code{#include} to include header files that do any of these things.
38a92d50
PE
1355You need to declare the lexical analyzer @code{yylex} and the error
1356printer @code{yyerror} here, along with any other global identifiers
1357used by the actions in the grammar rules.
bfa74976
RS
1358
1359The Bison declarations declare the names of the terminal and nonterminal
1360symbols, and may also describe operator precedence and the data types of
1361semantic values of various symbols.
1362
1363The grammar rules define how to construct each nonterminal symbol from its
1364parts.
1365
38a92d50
PE
1366The epilogue can contain any code you want to use. Often the
1367definitions of functions declared in the prologue go here. In a
1368simple program, all the rest of the program can go here.
bfa74976 1369
342b8b6e 1370@node Examples
bfa74976
RS
1371@chapter Examples
1372@cindex simple examples
1373@cindex examples, simple
1374
1375Now we show and explain three sample programs written using Bison: a
1376reverse polish notation calculator, an algebraic (infix) notation
1377calculator, and a multi-function calculator. All three have been tested
1378under BSD Unix 4.3; each produces a usable, though limited, interactive
1379desk-top calculator.
1380
1381These examples are simple, but Bison grammars for real programming
aa08666d
AD
1382languages are written the same way. You can copy these examples into a
1383source file to try them.
bfa74976
RS
1384
1385@menu
f56274a8
DJ
1386* RPN Calc:: Reverse polish notation calculator;
1387 a first example with no operator precedence.
1388* Infix Calc:: Infix (algebraic) notation calculator.
1389 Operator precedence is introduced.
bfa74976 1390* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1391* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
1392* Multi-function Calc:: Calculator with memory and trig functions.
1393 It uses multiple data-types for semantic values.
1394* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1395@end menu
1396
342b8b6e 1397@node RPN Calc
bfa74976
RS
1398@section Reverse Polish Notation Calculator
1399@cindex reverse polish notation
1400@cindex polish notation calculator
1401@cindex @code{rpcalc}
1402@cindex calculator, simple
1403
1404The first example is that of a simple double-precision @dfn{reverse polish
1405notation} calculator (a calculator using postfix operators). This example
1406provides a good starting point, since operator precedence is not an issue.
1407The second example will illustrate how operator precedence is handled.
1408
1409The source code for this calculator is named @file{rpcalc.y}. The
1410@samp{.y} extension is a convention used for Bison input files.
1411
1412@menu
f56274a8
DJ
1413* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1414* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1415* Rpcalc Lexer:: The lexical analyzer.
1416* Rpcalc Main:: The controlling function.
1417* Rpcalc Error:: The error reporting function.
1418* Rpcalc Generate:: Running Bison on the grammar file.
1419* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1420@end menu
1421
f56274a8 1422@node Rpcalc Declarations
bfa74976
RS
1423@subsection Declarations for @code{rpcalc}
1424
1425Here are the C and Bison declarations for the reverse polish notation
1426calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1427
1428@example
72d2299c 1429/* Reverse polish notation calculator. */
bfa74976
RS
1430
1431%@{
38a92d50
PE
1432 #define YYSTYPE double
1433 #include <math.h>
1434 int yylex (void);
1435 void yyerror (char const *);
bfa74976
RS
1436%@}
1437
1438%token NUM
1439
72d2299c 1440%% /* Grammar rules and actions follow. */
bfa74976
RS
1441@end example
1442
75f5aaea 1443The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1444preprocessor directives and two forward declarations.
bfa74976
RS
1445
1446The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1447specifying the C data type for semantic values of both tokens and
1448groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1449Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1450don't define it, @code{int} is the default. Because we specify
1451@code{double}, each token and each expression has an associated value,
1452which is a floating point number.
bfa74976
RS
1453
1454The @code{#include} directive is used to declare the exponentiation
1455function @code{pow}.
1456
38a92d50
PE
1457The forward declarations for @code{yylex} and @code{yyerror} are
1458needed because the C language requires that functions be declared
1459before they are used. These functions will be defined in the
1460epilogue, but the parser calls them so they must be declared in the
1461prologue.
1462
704a47c4
AD
1463The second section, Bison declarations, provides information to Bison
1464about the token types (@pxref{Bison Declarations, ,The Bison
1465Declarations Section}). Each terminal symbol that is not a
1466single-character literal must be declared here. (Single-character
bfa74976
RS
1467literals normally don't need to be declared.) In this example, all the
1468arithmetic operators are designated by single-character literals, so the
1469only terminal symbol that needs to be declared is @code{NUM}, the token
1470type for numeric constants.
1471
342b8b6e 1472@node Rpcalc Rules
bfa74976
RS
1473@subsection Grammar Rules for @code{rpcalc}
1474
1475Here are the grammar rules for the reverse polish notation calculator.
1476
1477@example
1478input: /* empty */
1479 | input line
1480;
1481
1482line: '\n'
18b519c0 1483 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1484;
1485
18b519c0
AD
1486exp: NUM @{ $$ = $1; @}
1487 | exp exp '+' @{ $$ = $1 + $2; @}
1488 | exp exp '-' @{ $$ = $1 - $2; @}
1489 | exp exp '*' @{ $$ = $1 * $2; @}
1490 | exp exp '/' @{ $$ = $1 / $2; @}
1491 /* Exponentiation */
1492 | exp exp '^' @{ $$ = pow ($1, $2); @}
1493 /* Unary minus */
1494 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1495;
1496%%
1497@end example
1498
1499The groupings of the rpcalc ``language'' defined here are the expression
1500(given the name @code{exp}), the line of input (@code{line}), and the
1501complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1502symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1503which is read as ``or''. The following sections explain what these rules
1504mean.
1505
1506The semantics of the language is determined by the actions taken when a
1507grouping is recognized. The actions are the C code that appears inside
1508braces. @xref{Actions}.
1509
1510You must specify these actions in C, but Bison provides the means for
1511passing semantic values between the rules. In each action, the
1512pseudo-variable @code{$$} stands for the semantic value for the grouping
1513that the rule is going to construct. Assigning a value to @code{$$} is the
1514main job of most actions. The semantic values of the components of the
1515rule are referred to as @code{$1}, @code{$2}, and so on.
1516
1517@menu
13863333
AD
1518* Rpcalc Input::
1519* Rpcalc Line::
1520* Rpcalc Expr::
bfa74976
RS
1521@end menu
1522
342b8b6e 1523@node Rpcalc Input
bfa74976
RS
1524@subsubsection Explanation of @code{input}
1525
1526Consider the definition of @code{input}:
1527
1528@example
1529input: /* empty */
1530 | input line
1531;
1532@end example
1533
1534This definition reads as follows: ``A complete input is either an empty
1535string, or a complete input followed by an input line''. Notice that
1536``complete input'' is defined in terms of itself. This definition is said
1537to be @dfn{left recursive} since @code{input} appears always as the
1538leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1539
1540The first alternative is empty because there are no symbols between the
1541colon and the first @samp{|}; this means that @code{input} can match an
1542empty string of input (no tokens). We write the rules this way because it
1543is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1544It's conventional to put an empty alternative first and write the comment
1545@samp{/* empty */} in it.
1546
1547The second alternate rule (@code{input line}) handles all nontrivial input.
1548It means, ``After reading any number of lines, read one more line if
1549possible.'' The left recursion makes this rule into a loop. Since the
1550first alternative matches empty input, the loop can be executed zero or
1551more times.
1552
1553The parser function @code{yyparse} continues to process input until a
1554grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1555input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1556
342b8b6e 1557@node Rpcalc Line
bfa74976
RS
1558@subsubsection Explanation of @code{line}
1559
1560Now consider the definition of @code{line}:
1561
1562@example
1563line: '\n'
1564 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1565;
1566@end example
1567
1568The first alternative is a token which is a newline character; this means
1569that rpcalc accepts a blank line (and ignores it, since there is no
1570action). The second alternative is an expression followed by a newline.
1571This is the alternative that makes rpcalc useful. The semantic value of
1572the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1573question is the first symbol in the alternative. The action prints this
1574value, which is the result of the computation the user asked for.
1575
1576This action is unusual because it does not assign a value to @code{$$}. As
1577a consequence, the semantic value associated with the @code{line} is
1578uninitialized (its value will be unpredictable). This would be a bug if
1579that value were ever used, but we don't use it: once rpcalc has printed the
1580value of the user's input line, that value is no longer needed.
1581
342b8b6e 1582@node Rpcalc Expr
bfa74976
RS
1583@subsubsection Explanation of @code{expr}
1584
1585The @code{exp} grouping has several rules, one for each kind of expression.
1586The first rule handles the simplest expressions: those that are just numbers.
1587The second handles an addition-expression, which looks like two expressions
1588followed by a plus-sign. The third handles subtraction, and so on.
1589
1590@example
1591exp: NUM
1592 | exp exp '+' @{ $$ = $1 + $2; @}
1593 | exp exp '-' @{ $$ = $1 - $2; @}
1594 @dots{}
1595 ;
1596@end example
1597
1598We have used @samp{|} to join all the rules for @code{exp}, but we could
1599equally well have written them separately:
1600
1601@example
1602exp: NUM ;
1603exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1604exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1605 @dots{}
1606@end example
1607
1608Most of the rules have actions that compute the value of the expression in
1609terms of the value of its parts. For example, in the rule for addition,
1610@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1611the second one. The third component, @code{'+'}, has no meaningful
1612associated semantic value, but if it had one you could refer to it as
1613@code{$3}. When @code{yyparse} recognizes a sum expression using this
1614rule, the sum of the two subexpressions' values is produced as the value of
1615the entire expression. @xref{Actions}.
1616
1617You don't have to give an action for every rule. When a rule has no
1618action, Bison by default copies the value of @code{$1} into @code{$$}.
1619This is what happens in the first rule (the one that uses @code{NUM}).
1620
1621The formatting shown here is the recommended convention, but Bison does
72d2299c 1622not require it. You can add or change white space as much as you wish.
bfa74976
RS
1623For example, this:
1624
1625@example
99a9344e 1626exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1627@end example
1628
1629@noindent
1630means the same thing as this:
1631
1632@example
1633exp: NUM
1634 | exp exp '+' @{ $$ = $1 + $2; @}
1635 | @dots{}
99a9344e 1636;
bfa74976
RS
1637@end example
1638
1639@noindent
1640The latter, however, is much more readable.
1641
342b8b6e 1642@node Rpcalc Lexer
bfa74976
RS
1643@subsection The @code{rpcalc} Lexical Analyzer
1644@cindex writing a lexical analyzer
1645@cindex lexical analyzer, writing
1646
704a47c4
AD
1647The lexical analyzer's job is low-level parsing: converting characters
1648or sequences of characters into tokens. The Bison parser gets its
1649tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1650Analyzer Function @code{yylex}}.
bfa74976 1651
35430378 1652Only a simple lexical analyzer is needed for the RPN
c827f760 1653calculator. This
bfa74976
RS
1654lexical analyzer skips blanks and tabs, then reads in numbers as
1655@code{double} and returns them as @code{NUM} tokens. Any other character
1656that isn't part of a number is a separate token. Note that the token-code
1657for such a single-character token is the character itself.
1658
1659The return value of the lexical analyzer function is a numeric code which
1660represents a token type. The same text used in Bison rules to stand for
1661this token type is also a C expression for the numeric code for the type.
1662This works in two ways. If the token type is a character literal, then its
e966383b 1663numeric code is that of the character; you can use the same
bfa74976
RS
1664character literal in the lexical analyzer to express the number. If the
1665token type is an identifier, that identifier is defined by Bison as a C
1666macro whose definition is the appropriate number. In this example,
1667therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1668
1964ad8c
AD
1669The semantic value of the token (if it has one) is stored into the
1670global variable @code{yylval}, which is where the Bison parser will look
1671for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f56274a8 1672defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1673,Declarations for @code{rpcalc}}.)
bfa74976 1674
72d2299c
PE
1675A token type code of zero is returned if the end-of-input is encountered.
1676(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1677
1678Here is the code for the lexical analyzer:
1679
1680@example
1681@group
72d2299c 1682/* The lexical analyzer returns a double floating point
e966383b 1683 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1684 of the character read if not a number. It skips all blanks
1685 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1686
1687#include <ctype.h>
1688@end group
1689
1690@group
13863333
AD
1691int
1692yylex (void)
bfa74976
RS
1693@{
1694 int c;
1695
72d2299c 1696 /* Skip white space. */
13863333 1697 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1698 ;
1699@end group
1700@group
72d2299c 1701 /* Process numbers. */
13863333 1702 if (c == '.' || isdigit (c))
bfa74976
RS
1703 @{
1704 ungetc (c, stdin);
1705 scanf ("%lf", &yylval);
1706 return NUM;
1707 @}
1708@end group
1709@group
72d2299c 1710 /* Return end-of-input. */
13863333 1711 if (c == EOF)
bfa74976 1712 return 0;
72d2299c 1713 /* Return a single char. */
13863333 1714 return c;
bfa74976
RS
1715@}
1716@end group
1717@end example
1718
342b8b6e 1719@node Rpcalc Main
bfa74976
RS
1720@subsection The Controlling Function
1721@cindex controlling function
1722@cindex main function in simple example
1723
1724In keeping with the spirit of this example, the controlling function is
1725kept to the bare minimum. The only requirement is that it call
1726@code{yyparse} to start the process of parsing.
1727
1728@example
1729@group
13863333
AD
1730int
1731main (void)
bfa74976 1732@{
13863333 1733 return yyparse ();
bfa74976
RS
1734@}
1735@end group
1736@end example
1737
342b8b6e 1738@node Rpcalc Error
bfa74976
RS
1739@subsection The Error Reporting Routine
1740@cindex error reporting routine
1741
1742When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1743function @code{yyerror} to print an error message (usually but not
6e649e65 1744always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1745@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1746here is the definition we will use:
bfa74976
RS
1747
1748@example
1749@group
1750#include <stdio.h>
1751
38a92d50 1752/* Called by yyparse on error. */
13863333 1753void
38a92d50 1754yyerror (char const *s)
bfa74976 1755@{
4e03e201 1756 fprintf (stderr, "%s\n", s);
bfa74976
RS
1757@}
1758@end group
1759@end example
1760
1761After @code{yyerror} returns, the Bison parser may recover from the error
1762and continue parsing if the grammar contains a suitable error rule
1763(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1764have not written any error rules in this example, so any invalid input will
1765cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1766real calculator, but it is adequate for the first example.
bfa74976 1767
f56274a8 1768@node Rpcalc Generate
bfa74976
RS
1769@subsection Running Bison to Make the Parser
1770@cindex running Bison (introduction)
1771
ceed8467
AD
1772Before running Bison to produce a parser, we need to decide how to
1773arrange all the source code in one or more source files. For such a
1774simple example, the easiest thing is to put everything in one file. The
1775definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1776end, in the epilogue of the file
75f5aaea 1777(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1778
1779For a large project, you would probably have several source files, and use
1780@code{make} to arrange to recompile them.
1781
1782With all the source in a single file, you use the following command to
1783convert it into a parser file:
1784
1785@example
fa4d969f 1786bison @var{file}.y
bfa74976
RS
1787@end example
1788
1789@noindent
1790In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1791@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1792removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1793Bison contains the source code for @code{yyparse}. The additional
1794functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1795are copied verbatim to the output.
1796
342b8b6e 1797@node Rpcalc Compile
bfa74976
RS
1798@subsection Compiling the Parser File
1799@cindex compiling the parser
1800
1801Here is how to compile and run the parser file:
1802
1803@example
1804@group
1805# @r{List files in current directory.}
9edcd895 1806$ @kbd{ls}
bfa74976
RS
1807rpcalc.tab.c rpcalc.y
1808@end group
1809
1810@group
1811# @r{Compile the Bison parser.}
1812# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1813$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1814@end group
1815
1816@group
1817# @r{List files again.}
9edcd895 1818$ @kbd{ls}
bfa74976
RS
1819rpcalc rpcalc.tab.c rpcalc.y
1820@end group
1821@end example
1822
1823The file @file{rpcalc} now contains the executable code. Here is an
1824example session using @code{rpcalc}.
1825
1826@example
9edcd895
AD
1827$ @kbd{rpcalc}
1828@kbd{4 9 +}
bfa74976 182913
9edcd895 1830@kbd{3 7 + 3 4 5 *+-}
bfa74976 1831-13
9edcd895 1832@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 183313
9edcd895 1834@kbd{5 6 / 4 n +}
bfa74976 1835-3.166666667
9edcd895 1836@kbd{3 4 ^} @r{Exponentiation}
bfa74976 183781
9edcd895
AD
1838@kbd{^D} @r{End-of-file indicator}
1839$
bfa74976
RS
1840@end example
1841
342b8b6e 1842@node Infix Calc
bfa74976
RS
1843@section Infix Notation Calculator: @code{calc}
1844@cindex infix notation calculator
1845@cindex @code{calc}
1846@cindex calculator, infix notation
1847
1848We now modify rpcalc to handle infix operators instead of postfix. Infix
1849notation involves the concept of operator precedence and the need for
1850parentheses nested to arbitrary depth. Here is the Bison code for
1851@file{calc.y}, an infix desk-top calculator.
1852
1853@example
38a92d50 1854/* Infix notation calculator. */
bfa74976
RS
1855
1856%@{
38a92d50
PE
1857 #define YYSTYPE double
1858 #include <math.h>
1859 #include <stdio.h>
1860 int yylex (void);
1861 void yyerror (char const *);
bfa74976
RS
1862%@}
1863
38a92d50 1864/* Bison declarations. */
bfa74976
RS
1865%token NUM
1866%left '-' '+'
1867%left '*' '/'
1868%left NEG /* negation--unary minus */
38a92d50 1869%right '^' /* exponentiation */
bfa74976 1870
38a92d50
PE
1871%% /* The grammar follows. */
1872input: /* empty */
bfa74976
RS
1873 | input line
1874;
1875
1876line: '\n'
1877 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1878;
1879
1880exp: NUM @{ $$ = $1; @}
1881 | exp '+' exp @{ $$ = $1 + $3; @}
1882 | exp '-' exp @{ $$ = $1 - $3; @}
1883 | exp '*' exp @{ $$ = $1 * $3; @}
1884 | exp '/' exp @{ $$ = $1 / $3; @}
1885 | '-' exp %prec NEG @{ $$ = -$2; @}
1886 | exp '^' exp @{ $$ = pow ($1, $3); @}
1887 | '(' exp ')' @{ $$ = $2; @}
1888;
1889%%
1890@end example
1891
1892@noindent
ceed8467
AD
1893The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1894same as before.
bfa74976
RS
1895
1896There are two important new features shown in this code.
1897
1898In the second section (Bison declarations), @code{%left} declares token
1899types and says they are left-associative operators. The declarations
1900@code{%left} and @code{%right} (right associativity) take the place of
1901@code{%token} which is used to declare a token type name without
1902associativity. (These tokens are single-character literals, which
1903ordinarily don't need to be declared. We declare them here to specify
1904the associativity.)
1905
1906Operator precedence is determined by the line ordering of the
1907declarations; the higher the line number of the declaration (lower on
1908the page or screen), the higher the precedence. Hence, exponentiation
1909has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1910by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1911Precedence}.
bfa74976 1912
704a47c4
AD
1913The other important new feature is the @code{%prec} in the grammar
1914section for the unary minus operator. The @code{%prec} simply instructs
1915Bison that the rule @samp{| '-' exp} has the same precedence as
1916@code{NEG}---in this case the next-to-highest. @xref{Contextual
1917Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1918
1919Here is a sample run of @file{calc.y}:
1920
1921@need 500
1922@example
9edcd895
AD
1923$ @kbd{calc}
1924@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19256.880952381
9edcd895 1926@kbd{-56 + 2}
bfa74976 1927-54
9edcd895 1928@kbd{3 ^ 2}
bfa74976
RS
19299
1930@end example
1931
342b8b6e 1932@node Simple Error Recovery
bfa74976
RS
1933@section Simple Error Recovery
1934@cindex error recovery, simple
1935
1936Up to this point, this manual has not addressed the issue of @dfn{error
1937recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1938error. All we have handled is error reporting with @code{yyerror}.
1939Recall that by default @code{yyparse} returns after calling
1940@code{yyerror}. This means that an erroneous input line causes the
1941calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1942
1943The Bison language itself includes the reserved word @code{error}, which
1944may be included in the grammar rules. In the example below it has
1945been added to one of the alternatives for @code{line}:
1946
1947@example
1948@group
1949line: '\n'
1950 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1951 | error '\n' @{ yyerrok; @}
1952;
1953@end group
1954@end example
1955
ceed8467 1956This addition to the grammar allows for simple error recovery in the
6e649e65 1957event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1958read, the error will be recognized by the third rule for @code{line},
1959and parsing will continue. (The @code{yyerror} function is still called
1960upon to print its message as well.) The action executes the statement
1961@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1962that error recovery is complete (@pxref{Error Recovery}). Note the
1963difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1964misprint.
bfa74976
RS
1965
1966This form of error recovery deals with syntax errors. There are other
1967kinds of errors; for example, division by zero, which raises an exception
1968signal that is normally fatal. A real calculator program must handle this
1969signal and use @code{longjmp} to return to @code{main} and resume parsing
1970input lines; it would also have to discard the rest of the current line of
1971input. We won't discuss this issue further because it is not specific to
1972Bison programs.
1973
342b8b6e
AD
1974@node Location Tracking Calc
1975@section Location Tracking Calculator: @code{ltcalc}
1976@cindex location tracking calculator
1977@cindex @code{ltcalc}
1978@cindex calculator, location tracking
1979
9edcd895
AD
1980This example extends the infix notation calculator with location
1981tracking. This feature will be used to improve the error messages. For
1982the sake of clarity, this example is a simple integer calculator, since
1983most of the work needed to use locations will be done in the lexical
72d2299c 1984analyzer.
342b8b6e
AD
1985
1986@menu
f56274a8
DJ
1987* Ltcalc Declarations:: Bison and C declarations for ltcalc.
1988* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
1989* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
1990@end menu
1991
f56274a8 1992@node Ltcalc Declarations
342b8b6e
AD
1993@subsection Declarations for @code{ltcalc}
1994
9edcd895
AD
1995The C and Bison declarations for the location tracking calculator are
1996the same as the declarations for the infix notation calculator.
342b8b6e
AD
1997
1998@example
1999/* Location tracking calculator. */
2000
2001%@{
38a92d50
PE
2002 #define YYSTYPE int
2003 #include <math.h>
2004 int yylex (void);
2005 void yyerror (char const *);
342b8b6e
AD
2006%@}
2007
2008/* Bison declarations. */
2009%token NUM
2010
2011%left '-' '+'
2012%left '*' '/'
2013%left NEG
2014%right '^'
2015
38a92d50 2016%% /* The grammar follows. */
342b8b6e
AD
2017@end example
2018
9edcd895
AD
2019@noindent
2020Note there are no declarations specific to locations. Defining a data
2021type for storing locations is not needed: we will use the type provided
2022by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2023four member structure with the following integer fields:
2024@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2025@code{last_column}. By conventions, and in accordance with the GNU
2026Coding Standards and common practice, the line and column count both
2027start at 1.
342b8b6e
AD
2028
2029@node Ltcalc Rules
2030@subsection Grammar Rules for @code{ltcalc}
2031
9edcd895
AD
2032Whether handling locations or not has no effect on the syntax of your
2033language. Therefore, grammar rules for this example will be very close
2034to those of the previous example: we will only modify them to benefit
2035from the new information.
342b8b6e 2036
9edcd895
AD
2037Here, we will use locations to report divisions by zero, and locate the
2038wrong expressions or subexpressions.
342b8b6e
AD
2039
2040@example
2041@group
2042input : /* empty */
2043 | input line
2044;
2045@end group
2046
2047@group
2048line : '\n'
2049 | exp '\n' @{ printf ("%d\n", $1); @}
2050;
2051@end group
2052
2053@group
2054exp : NUM @{ $$ = $1; @}
2055 | exp '+' exp @{ $$ = $1 + $3; @}
2056 | exp '-' exp @{ $$ = $1 - $3; @}
2057 | exp '*' exp @{ $$ = $1 * $3; @}
2058@end group
342b8b6e 2059@group
9edcd895 2060 | exp '/' exp
342b8b6e
AD
2061 @{
2062 if ($3)
2063 $$ = $1 / $3;
2064 else
2065 @{
2066 $$ = 1;
9edcd895
AD
2067 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2068 @@3.first_line, @@3.first_column,
2069 @@3.last_line, @@3.last_column);
342b8b6e
AD
2070 @}
2071 @}
2072@end group
2073@group
178e123e 2074 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2075 | exp '^' exp @{ $$ = pow ($1, $3); @}
2076 | '(' exp ')' @{ $$ = $2; @}
2077@end group
2078@end example
2079
2080This code shows how to reach locations inside of semantic actions, by
2081using the pseudo-variables @code{@@@var{n}} for rule components, and the
2082pseudo-variable @code{@@$} for groupings.
2083
9edcd895
AD
2084We don't need to assign a value to @code{@@$}: the output parser does it
2085automatically. By default, before executing the C code of each action,
2086@code{@@$} is set to range from the beginning of @code{@@1} to the end
2087of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2088can be redefined (@pxref{Location Default Action, , Default Action for
2089Locations}), and for very specific rules, @code{@@$} can be computed by
2090hand.
342b8b6e
AD
2091
2092@node Ltcalc Lexer
2093@subsection The @code{ltcalc} Lexical Analyzer.
2094
9edcd895 2095Until now, we relied on Bison's defaults to enable location
72d2299c 2096tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2097able to feed the parser with the token locations, as it already does for
2098semantic values.
342b8b6e 2099
9edcd895
AD
2100To this end, we must take into account every single character of the
2101input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2102
2103@example
2104@group
2105int
2106yylex (void)
2107@{
2108 int c;
18b519c0 2109@end group
342b8b6e 2110
18b519c0 2111@group
72d2299c 2112 /* Skip white space. */
342b8b6e
AD
2113 while ((c = getchar ()) == ' ' || c == '\t')
2114 ++yylloc.last_column;
18b519c0 2115@end group
342b8b6e 2116
18b519c0 2117@group
72d2299c 2118 /* Step. */
342b8b6e
AD
2119 yylloc.first_line = yylloc.last_line;
2120 yylloc.first_column = yylloc.last_column;
2121@end group
2122
2123@group
72d2299c 2124 /* Process numbers. */
342b8b6e
AD
2125 if (isdigit (c))
2126 @{
2127 yylval = c - '0';
2128 ++yylloc.last_column;
2129 while (isdigit (c = getchar ()))
2130 @{
2131 ++yylloc.last_column;
2132 yylval = yylval * 10 + c - '0';
2133 @}
2134 ungetc (c, stdin);
2135 return NUM;
2136 @}
2137@end group
2138
72d2299c 2139 /* Return end-of-input. */
342b8b6e
AD
2140 if (c == EOF)
2141 return 0;
2142
72d2299c 2143 /* Return a single char, and update location. */
342b8b6e
AD
2144 if (c == '\n')
2145 @{
2146 ++yylloc.last_line;
2147 yylloc.last_column = 0;
2148 @}
2149 else
2150 ++yylloc.last_column;
2151 return c;
2152@}
2153@end example
2154
9edcd895
AD
2155Basically, the lexical analyzer performs the same processing as before:
2156it skips blanks and tabs, and reads numbers or single-character tokens.
2157In addition, it updates @code{yylloc}, the global variable (of type
2158@code{YYLTYPE}) containing the token's location.
342b8b6e 2159
9edcd895 2160Now, each time this function returns a token, the parser has its number
72d2299c 2161as well as its semantic value, and its location in the text. The last
9edcd895
AD
2162needed change is to initialize @code{yylloc}, for example in the
2163controlling function:
342b8b6e
AD
2164
2165@example
9edcd895 2166@group
342b8b6e
AD
2167int
2168main (void)
2169@{
2170 yylloc.first_line = yylloc.last_line = 1;
2171 yylloc.first_column = yylloc.last_column = 0;
2172 return yyparse ();
2173@}
9edcd895 2174@end group
342b8b6e
AD
2175@end example
2176
9edcd895
AD
2177Remember that computing locations is not a matter of syntax. Every
2178character must be associated to a location update, whether it is in
2179valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2180
2181@node Multi-function Calc
bfa74976
RS
2182@section Multi-Function Calculator: @code{mfcalc}
2183@cindex multi-function calculator
2184@cindex @code{mfcalc}
2185@cindex calculator, multi-function
2186
2187Now that the basics of Bison have been discussed, it is time to move on to
2188a more advanced problem. The above calculators provided only five
2189functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2190be nice to have a calculator that provides other mathematical functions such
2191as @code{sin}, @code{cos}, etc.
2192
2193It is easy to add new operators to the infix calculator as long as they are
2194only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2195back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2196adding a new operator. But we want something more flexible: built-in
2197functions whose syntax has this form:
2198
2199@example
2200@var{function_name} (@var{argument})
2201@end example
2202
2203@noindent
2204At the same time, we will add memory to the calculator, by allowing you
2205to create named variables, store values in them, and use them later.
2206Here is a sample session with the multi-function calculator:
2207
2208@example
9edcd895
AD
2209$ @kbd{mfcalc}
2210@kbd{pi = 3.141592653589}
bfa74976 22113.1415926536
9edcd895 2212@kbd{sin(pi)}
bfa74976 22130.0000000000
9edcd895 2214@kbd{alpha = beta1 = 2.3}
bfa74976 22152.3000000000
9edcd895 2216@kbd{alpha}
bfa74976 22172.3000000000
9edcd895 2218@kbd{ln(alpha)}
bfa74976 22190.8329091229
9edcd895 2220@kbd{exp(ln(beta1))}
bfa74976 22212.3000000000
9edcd895 2222$
bfa74976
RS
2223@end example
2224
2225Note that multiple assignment and nested function calls are permitted.
2226
2227@menu
f56274a8
DJ
2228* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2229* Mfcalc Rules:: Grammar rules for the calculator.
2230* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2231@end menu
2232
f56274a8 2233@node Mfcalc Declarations
bfa74976
RS
2234@subsection Declarations for @code{mfcalc}
2235
2236Here are the C and Bison declarations for the multi-function calculator.
2237
2238@smallexample
18b519c0 2239@group
bfa74976 2240%@{
38a92d50
PE
2241 #include <math.h> /* For math functions, cos(), sin(), etc. */
2242 #include "calc.h" /* Contains definition of `symrec'. */
2243 int yylex (void);
2244 void yyerror (char const *);
bfa74976 2245%@}
18b519c0
AD
2246@end group
2247@group
bfa74976 2248%union @{
38a92d50
PE
2249 double val; /* For returning numbers. */
2250 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2251@}
18b519c0 2252@end group
38a92d50
PE
2253%token <val> NUM /* Simple double precision number. */
2254%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2255%type <val> exp
2256
18b519c0 2257@group
bfa74976
RS
2258%right '='
2259%left '-' '+'
2260%left '*' '/'
38a92d50
PE
2261%left NEG /* negation--unary minus */
2262%right '^' /* exponentiation */
18b519c0 2263@end group
38a92d50 2264%% /* The grammar follows. */
bfa74976
RS
2265@end smallexample
2266
2267The above grammar introduces only two new features of the Bison language.
2268These features allow semantic values to have various data types
2269(@pxref{Multiple Types, ,More Than One Value Type}).
2270
2271The @code{%union} declaration specifies the entire list of possible types;
2272this is instead of defining @code{YYSTYPE}. The allowable types are now
2273double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2274the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2275
2276Since values can now have various types, it is necessary to associate a
2277type with each grammar symbol whose semantic value is used. These symbols
2278are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2279declarations are augmented with information about their data type (placed
2280between angle brackets).
2281
704a47c4
AD
2282The Bison construct @code{%type} is used for declaring nonterminal
2283symbols, just as @code{%token} is used for declaring token types. We
2284have not used @code{%type} before because nonterminal symbols are
2285normally declared implicitly by the rules that define them. But
2286@code{exp} must be declared explicitly so we can specify its value type.
2287@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2288
342b8b6e 2289@node Mfcalc Rules
bfa74976
RS
2290@subsection Grammar Rules for @code{mfcalc}
2291
2292Here are the grammar rules for the multi-function calculator.
2293Most of them are copied directly from @code{calc}; three rules,
2294those which mention @code{VAR} or @code{FNCT}, are new.
2295
2296@smallexample
18b519c0 2297@group
bfa74976
RS
2298input: /* empty */
2299 | input line
2300;
18b519c0 2301@end group
bfa74976 2302
18b519c0 2303@group
bfa74976
RS
2304line:
2305 '\n'
2306 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2307 | error '\n' @{ yyerrok; @}
2308;
18b519c0 2309@end group
bfa74976 2310
18b519c0 2311@group
bfa74976
RS
2312exp: NUM @{ $$ = $1; @}
2313 | VAR @{ $$ = $1->value.var; @}
2314 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2315 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2316 | exp '+' exp @{ $$ = $1 + $3; @}
2317 | exp '-' exp @{ $$ = $1 - $3; @}
2318 | exp '*' exp @{ $$ = $1 * $3; @}
2319 | exp '/' exp @{ $$ = $1 / $3; @}
2320 | '-' exp %prec NEG @{ $$ = -$2; @}
2321 | exp '^' exp @{ $$ = pow ($1, $3); @}
2322 | '(' exp ')' @{ $$ = $2; @}
2323;
18b519c0 2324@end group
38a92d50 2325/* End of grammar. */
bfa74976
RS
2326%%
2327@end smallexample
2328
f56274a8 2329@node Mfcalc Symbol Table
bfa74976
RS
2330@subsection The @code{mfcalc} Symbol Table
2331@cindex symbol table example
2332
2333The multi-function calculator requires a symbol table to keep track of the
2334names and meanings of variables and functions. This doesn't affect the
2335grammar rules (except for the actions) or the Bison declarations, but it
2336requires some additional C functions for support.
2337
2338The symbol table itself consists of a linked list of records. Its
2339definition, which is kept in the header @file{calc.h}, is as follows. It
2340provides for either functions or variables to be placed in the table.
2341
2342@smallexample
2343@group
38a92d50 2344/* Function type. */
32dfccf8 2345typedef double (*func_t) (double);
72f889cc 2346@end group
32dfccf8 2347
72f889cc 2348@group
38a92d50 2349/* Data type for links in the chain of symbols. */
bfa74976
RS
2350struct symrec
2351@{
38a92d50 2352 char *name; /* name of symbol */
bfa74976 2353 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2354 union
2355 @{
38a92d50
PE
2356 double var; /* value of a VAR */
2357 func_t fnctptr; /* value of a FNCT */
bfa74976 2358 @} value;
38a92d50 2359 struct symrec *next; /* link field */
bfa74976
RS
2360@};
2361@end group
2362
2363@group
2364typedef struct symrec symrec;
2365
38a92d50 2366/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2367extern symrec *sym_table;
2368
a730d142 2369symrec *putsym (char const *, int);
38a92d50 2370symrec *getsym (char const *);
bfa74976
RS
2371@end group
2372@end smallexample
2373
2374The new version of @code{main} includes a call to @code{init_table}, a
2375function that initializes the symbol table. Here it is, and
2376@code{init_table} as well:
2377
2378@smallexample
bfa74976
RS
2379#include <stdio.h>
2380
18b519c0 2381@group
38a92d50 2382/* Called by yyparse on error. */
13863333 2383void
38a92d50 2384yyerror (char const *s)
bfa74976
RS
2385@{
2386 printf ("%s\n", s);
2387@}
18b519c0 2388@end group
bfa74976 2389
18b519c0 2390@group
bfa74976
RS
2391struct init
2392@{
38a92d50
PE
2393 char const *fname;
2394 double (*fnct) (double);
bfa74976
RS
2395@};
2396@end group
2397
2398@group
38a92d50 2399struct init const arith_fncts[] =
13863333 2400@{
32dfccf8
AD
2401 "sin", sin,
2402 "cos", cos,
13863333 2403 "atan", atan,
32dfccf8
AD
2404 "ln", log,
2405 "exp", exp,
13863333
AD
2406 "sqrt", sqrt,
2407 0, 0
2408@};
18b519c0 2409@end group
bfa74976 2410
18b519c0 2411@group
bfa74976 2412/* The symbol table: a chain of `struct symrec'. */
38a92d50 2413symrec *sym_table;
bfa74976
RS
2414@end group
2415
2416@group
72d2299c 2417/* Put arithmetic functions in table. */
13863333
AD
2418void
2419init_table (void)
bfa74976
RS
2420@{
2421 int i;
2422 symrec *ptr;
2423 for (i = 0; arith_fncts[i].fname != 0; i++)
2424 @{
2425 ptr = putsym (arith_fncts[i].fname, FNCT);
2426 ptr->value.fnctptr = arith_fncts[i].fnct;
2427 @}
2428@}
2429@end group
38a92d50
PE
2430
2431@group
2432int
2433main (void)
2434@{
2435 init_table ();
2436 return yyparse ();
2437@}
2438@end group
bfa74976
RS
2439@end smallexample
2440
2441By simply editing the initialization list and adding the necessary include
2442files, you can add additional functions to the calculator.
2443
2444Two important functions allow look-up and installation of symbols in the
2445symbol table. The function @code{putsym} is passed a name and the type
2446(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2447linked to the front of the list, and a pointer to the object is returned.
2448The function @code{getsym} is passed the name of the symbol to look up. If
2449found, a pointer to that symbol is returned; otherwise zero is returned.
2450
2451@smallexample
2452symrec *
38a92d50 2453putsym (char const *sym_name, int sym_type)
bfa74976
RS
2454@{
2455 symrec *ptr;
2456 ptr = (symrec *) malloc (sizeof (symrec));
2457 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2458 strcpy (ptr->name,sym_name);
2459 ptr->type = sym_type;
72d2299c 2460 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2461 ptr->next = (struct symrec *)sym_table;
2462 sym_table = ptr;
2463 return ptr;
2464@}
2465
2466symrec *
38a92d50 2467getsym (char const *sym_name)
bfa74976
RS
2468@{
2469 symrec *ptr;
2470 for (ptr = sym_table; ptr != (symrec *) 0;
2471 ptr = (symrec *)ptr->next)
2472 if (strcmp (ptr->name,sym_name) == 0)
2473 return ptr;
2474 return 0;
2475@}
2476@end smallexample
2477
2478The function @code{yylex} must now recognize variables, numeric values, and
2479the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2480characters with a leading letter are recognized as either variables or
bfa74976
RS
2481functions depending on what the symbol table says about them.
2482
2483The string is passed to @code{getsym} for look up in the symbol table. If
2484the name appears in the table, a pointer to its location and its type
2485(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2486already in the table, then it is installed as a @code{VAR} using
2487@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2488returned to @code{yyparse}.
bfa74976
RS
2489
2490No change is needed in the handling of numeric values and arithmetic
2491operators in @code{yylex}.
2492
2493@smallexample
2494@group
2495#include <ctype.h>
18b519c0 2496@end group
13863333 2497
18b519c0 2498@group
13863333
AD
2499int
2500yylex (void)
bfa74976
RS
2501@{
2502 int c;
2503
72d2299c 2504 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2505 while ((c = getchar ()) == ' ' || c == '\t');
2506
2507 if (c == EOF)
2508 return 0;
2509@end group
2510
2511@group
2512 /* Char starts a number => parse the number. */
2513 if (c == '.' || isdigit (c))
2514 @{
2515 ungetc (c, stdin);
2516 scanf ("%lf", &yylval.val);
2517 return NUM;
2518 @}
2519@end group
2520
2521@group
2522 /* Char starts an identifier => read the name. */
2523 if (isalpha (c))
2524 @{
2525 symrec *s;
2526 static char *symbuf = 0;
2527 static int length = 0;
2528 int i;
2529@end group
2530
2531@group
2532 /* Initially make the buffer long enough
2533 for a 40-character symbol name. */
2534 if (length == 0)
2535 length = 40, symbuf = (char *)malloc (length + 1);
2536
2537 i = 0;
2538 do
2539@end group
2540@group
2541 @{
2542 /* If buffer is full, make it bigger. */
2543 if (i == length)
2544 @{
2545 length *= 2;
18b519c0 2546 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2547 @}
2548 /* Add this character to the buffer. */
2549 symbuf[i++] = c;
2550 /* Get another character. */
2551 c = getchar ();
2552 @}
2553@end group
2554@group
72d2299c 2555 while (isalnum (c));
bfa74976
RS
2556
2557 ungetc (c, stdin);
2558 symbuf[i] = '\0';
2559@end group
2560
2561@group
2562 s = getsym (symbuf);
2563 if (s == 0)
2564 s = putsym (symbuf, VAR);
2565 yylval.tptr = s;
2566 return s->type;
2567 @}
2568
2569 /* Any other character is a token by itself. */
2570 return c;
2571@}
2572@end group
2573@end smallexample
2574
72d2299c 2575This program is both powerful and flexible. You may easily add new
704a47c4
AD
2576functions, and it is a simple job to modify this code to install
2577predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2578
342b8b6e 2579@node Exercises
bfa74976
RS
2580@section Exercises
2581@cindex exercises
2582
2583@enumerate
2584@item
2585Add some new functions from @file{math.h} to the initialization list.
2586
2587@item
2588Add another array that contains constants and their values. Then
2589modify @code{init_table} to add these constants to the symbol table.
2590It will be easiest to give the constants type @code{VAR}.
2591
2592@item
2593Make the program report an error if the user refers to an
2594uninitialized variable in any way except to store a value in it.
2595@end enumerate
2596
342b8b6e 2597@node Grammar File
bfa74976
RS
2598@chapter Bison Grammar Files
2599
2600Bison takes as input a context-free grammar specification and produces a
2601C-language function that recognizes correct instances of the grammar.
2602
2603The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2604@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2605
2606@menu
2607* Grammar Outline:: Overall layout of the grammar file.
2608* Symbols:: Terminal and nonterminal symbols.
2609* Rules:: How to write grammar rules.
2610* Recursion:: Writing recursive rules.
2611* Semantics:: Semantic values and actions.
847bf1f5 2612* Locations:: Locations and actions.
bfa74976
RS
2613* Declarations:: All kinds of Bison declarations are described here.
2614* Multiple Parsers:: Putting more than one Bison parser in one program.
2615@end menu
2616
342b8b6e 2617@node Grammar Outline
bfa74976
RS
2618@section Outline of a Bison Grammar
2619
2620A Bison grammar file has four main sections, shown here with the
2621appropriate delimiters:
2622
2623@example
2624%@{
38a92d50 2625 @var{Prologue}
bfa74976
RS
2626%@}
2627
2628@var{Bison declarations}
2629
2630%%
2631@var{Grammar rules}
2632%%
2633
75f5aaea 2634@var{Epilogue}
bfa74976
RS
2635@end example
2636
2637Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
35430378 2638As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2639continues until end of line.
bfa74976
RS
2640
2641@menu
f56274a8 2642* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2643* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
2644* Bison Declarations:: Syntax and usage of the Bison declarations section.
2645* Grammar Rules:: Syntax and usage of the grammar rules section.
2646* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2647@end menu
2648
38a92d50 2649@node Prologue
75f5aaea
MA
2650@subsection The prologue
2651@cindex declarations section
2652@cindex Prologue
2653@cindex declarations
bfa74976 2654
f8e1c9e5
AD
2655The @var{Prologue} section contains macro definitions and declarations
2656of functions and variables that are used in the actions in the grammar
2657rules. These are copied to the beginning of the parser file so that
2658they precede the definition of @code{yyparse}. You can use
2659@samp{#include} to get the declarations from a header file. If you
2660don't need any C declarations, you may omit the @samp{%@{} and
2661@samp{%@}} delimiters that bracket this section.
bfa74976 2662
9c437126 2663The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2664of @samp{%@}} that is outside a comment, a string literal, or a
2665character constant.
2666
c732d2c6
AD
2667You may have more than one @var{Prologue} section, intermixed with the
2668@var{Bison declarations}. This allows you to have C and Bison
2669declarations that refer to each other. For example, the @code{%union}
2670declaration may use types defined in a header file, and you may wish to
2671prototype functions that take arguments of type @code{YYSTYPE}. This
2672can be done with two @var{Prologue} blocks, one before and one after the
2673@code{%union} declaration.
2674
2675@smallexample
2676%@{
aef3da86 2677 #define _GNU_SOURCE
38a92d50
PE
2678 #include <stdio.h>
2679 #include "ptypes.h"
c732d2c6
AD
2680%@}
2681
2682%union @{
779e7ceb 2683 long int n;
c732d2c6
AD
2684 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2685@}
2686
2687%@{
38a92d50
PE
2688 static void print_token_value (FILE *, int, YYSTYPE);
2689 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2690%@}
2691
2692@dots{}
2693@end smallexample
2694
aef3da86
PE
2695When in doubt, it is usually safer to put prologue code before all
2696Bison declarations, rather than after. For example, any definitions
2697of feature test macros like @code{_GNU_SOURCE} or
2698@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2699feature test macros can affect the behavior of Bison-generated
2700@code{#include} directives.
2701
2cbe6b7f
JD
2702@node Prologue Alternatives
2703@subsection Prologue Alternatives
2704@cindex Prologue Alternatives
2705
136a0f76 2706@findex %code
16dc6a9e
JD
2707@findex %code requires
2708@findex %code provides
2709@findex %code top
85894313 2710
2cbe6b7f
JD
2711The functionality of @var{Prologue} sections can often be subtle and
2712inflexible.
8e0a5e9e
JD
2713As an alternative, Bison provides a %code directive with an explicit qualifier
2714field, which identifies the purpose of the code and thus the location(s) where
2715Bison should generate it.
2716For C/C++, the qualifier can be omitted for the default location, or it can be
8405b70c 2717one of @code{requires}, @code{provides}, @code{top}.
148d66d8 2718@xref{Decl Summary,,%code}.
2cbe6b7f
JD
2719
2720Look again at the example of the previous section:
2721
2722@smallexample
2723%@{
2724 #define _GNU_SOURCE
2725 #include <stdio.h>
2726 #include "ptypes.h"
2727%@}
2728
2729%union @{
2730 long int n;
2731 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2732@}
2733
2734%@{
2735 static void print_token_value (FILE *, int, YYSTYPE);
2736 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2737%@}
2738
2739@dots{}
2740@end smallexample
2741
2742@noindent
2743Notice that there are two @var{Prologue} sections here, but there's a subtle
2744distinction between their functionality.
2745For example, if you decide to override Bison's default definition for
2746@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2747definition?
2748You should write it in the first since Bison will insert that code into the
8e0a5e9e 2749parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2750In which @var{Prologue} section should you prototype an internal function,
2751@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2752arguments?
2753You should prototype it in the second since Bison will insert that code
2754@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2755
2756This distinction in functionality between the two @var{Prologue} sections is
2757established by the appearance of the @code{%union} between them.
a501eca9 2758This behavior raises a few questions.
2cbe6b7f
JD
2759First, why should the position of a @code{%union} affect definitions related to
2760@code{YYLTYPE} and @code{yytokentype}?
2761Second, what if there is no @code{%union}?
2762In that case, the second kind of @var{Prologue} section is not available.
2763This behavior is not intuitive.
2764
8e0a5e9e 2765To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2766@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2767Let's go ahead and add the new @code{YYLTYPE} definition and the
2768@code{trace_token} prototype at the same time:
2769
2770@smallexample
16dc6a9e 2771%code top @{
2cbe6b7f
JD
2772 #define _GNU_SOURCE
2773 #include <stdio.h>
8e0a5e9e
JD
2774
2775 /* WARNING: The following code really belongs
16dc6a9e 2776 * in a `%code requires'; see below. */
8e0a5e9e 2777
2cbe6b7f
JD
2778 #include "ptypes.h"
2779 #define YYLTYPE YYLTYPE
2780 typedef struct YYLTYPE
2781 @{
2782 int first_line;
2783 int first_column;
2784 int last_line;
2785 int last_column;
2786 char *filename;
2787 @} YYLTYPE;
2788@}
2789
2790%union @{
2791 long int n;
2792 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2793@}
2794
2795%code @{
2796 static void print_token_value (FILE *, int, YYSTYPE);
2797 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2798 static void trace_token (enum yytokentype token, YYLTYPE loc);
2799@}
2800
2801@dots{}
2802@end smallexample
2803
2804@noindent
16dc6a9e
JD
2805In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2806functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2807explicit which kind you intend.
2cbe6b7f
JD
2808Moreover, both kinds are always available even in the absence of @code{%union}.
2809
16dc6a9e 2810The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2811The first two lines before the warning need to appear near the top of the
2812parser source code file.
2813The first line after the warning is required by @code{YYSTYPE} and thus also
2814needs to appear in the parser source code file.
2cbe6b7f 2815However, if you've instructed Bison to generate a parser header file
148d66d8
JD
2816(@pxref{Decl Summary, ,%defines}), you probably want that line to appear before
2817the @code{YYSTYPE} definition in that header file as well.
8e0a5e9e 2818The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2819override the default @code{YYLTYPE} definition there.
2820
16dc6a9e 2821In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2822lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2823definitions.
16dc6a9e 2824Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2825
2826@smallexample
16dc6a9e 2827%code top @{
2cbe6b7f
JD
2828 #define _GNU_SOURCE
2829 #include <stdio.h>
2830@}
2831
16dc6a9e 2832%code requires @{
9bc0dd67
JD
2833 #include "ptypes.h"
2834@}
2835%union @{
2836 long int n;
2837 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2838@}
2839
16dc6a9e 2840%code requires @{
2cbe6b7f
JD
2841 #define YYLTYPE YYLTYPE
2842 typedef struct YYLTYPE
2843 @{
2844 int first_line;
2845 int first_column;
2846 int last_line;
2847 int last_column;
2848 char *filename;
2849 @} YYLTYPE;
2850@}
2851
136a0f76 2852%code @{
2cbe6b7f
JD
2853 static void print_token_value (FILE *, int, YYSTYPE);
2854 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2855 static void trace_token (enum yytokentype token, YYLTYPE loc);
2856@}
2857
2858@dots{}
2859@end smallexample
2860
2861@noindent
2862Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2863definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2864definitions in both the parser source code file and the parser header file.
16dc6a9e 2865(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2866place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2867
a501eca9 2868When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2869should prefer @code{%code requires} over @code{%code top} regardless of whether
2870you instruct Bison to generate a parser header file.
a501eca9 2871When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2872source code file and that has no special need to appear at the top of that
16dc6a9e 2873file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2874These practices will make the purpose of each block of your code explicit to
2875Bison and to other developers reading your grammar file.
8e0a5e9e 2876Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2877@code{%code requires} to be the most important of the four @var{Prologue}
2878alternatives.
a501eca9 2879
2cbe6b7f
JD
2880At some point while developing your parser, you might decide to provide
2881@code{trace_token} to modules that are external to your parser.
2882Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2883header file and the parser source code file.
2884Since this function is not a dependency required by @code{YYSTYPE} or
2885@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2886@code{%code requires}.
2cbe6b7f 2887More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2888@code{%code requires} is not sufficient.
8e0a5e9e 2889Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2890@code{%code provides}:
2cbe6b7f
JD
2891
2892@smallexample
16dc6a9e 2893%code top @{
2cbe6b7f 2894 #define _GNU_SOURCE
136a0f76 2895 #include <stdio.h>
2cbe6b7f 2896@}
136a0f76 2897
16dc6a9e 2898%code requires @{
2cbe6b7f
JD
2899 #include "ptypes.h"
2900@}
2901%union @{
2902 long int n;
2903 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2904@}
2905
16dc6a9e 2906%code requires @{
2cbe6b7f
JD
2907 #define YYLTYPE YYLTYPE
2908 typedef struct YYLTYPE
2909 @{
2910 int first_line;
2911 int first_column;
2912 int last_line;
2913 int last_column;
2914 char *filename;
2915 @} YYLTYPE;
2916@}
2917
16dc6a9e 2918%code provides @{
2cbe6b7f
JD
2919 void trace_token (enum yytokentype token, YYLTYPE loc);
2920@}
2921
2922%code @{
9bc0dd67
JD
2923 static void print_token_value (FILE *, int, YYSTYPE);
2924 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2925@}
9bc0dd67
JD
2926
2927@dots{}
2928@end smallexample
2929
2cbe6b7f
JD
2930@noindent
2931Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
2932file and the parser source code file after the definitions for
2933@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
2934
2935The above examples are careful to write directives in an order that reflects
8e0a5e9e 2936the layout of the generated parser source code and header files:
16dc6a9e 2937@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 2938@code{%code}.
a501eca9 2939While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
2940this order, Bison does not require it.
2941Instead, Bison lets you choose an organization that makes sense to you.
2942
a501eca9 2943You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2944In that case, Bison concatenates the contained code in declaration order.
2945This is the only way in which the position of one of these directives within
2946the grammar file affects its functionality.
2947
2948The result of the previous two properties is greater flexibility in how you may
2949organize your grammar file.
2950For example, you may organize semantic-type-related directives by semantic
2951type:
2952
2953@smallexample
16dc6a9e 2954%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2955%union @{ type1 field1; @}
2956%destructor @{ type1_free ($$); @} <field1>
2957%printer @{ type1_print ($$); @} <field1>
2958
16dc6a9e 2959%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2960%union @{ type2 field2; @}
2961%destructor @{ type2_free ($$); @} <field2>
2962%printer @{ type2_print ($$); @} <field2>
2963@end smallexample
2964
2965@noindent
2966You could even place each of the above directive groups in the rules section of
2967the grammar file next to the set of rules that uses the associated semantic
2968type.
61fee93e
JD
2969(In the rules section, you must terminate each of those directives with a
2970semicolon.)
2cbe6b7f
JD
2971And you don't have to worry that some directive (like a @code{%union}) in the
2972definitions section is going to adversely affect their functionality in some
2973counter-intuitive manner just because it comes first.
2974Such an organization is not possible using @var{Prologue} sections.
2975
a501eca9 2976This section has been concerned with explaining the advantages of the four
8e0a5e9e 2977@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2978However, in most cases when using these directives, you shouldn't need to
2979think about all the low-level ordering issues discussed here.
2980Instead, you should simply use these directives to label each block of your
2981code according to its purpose and let Bison handle the ordering.
2982@code{%code} is the most generic label.
16dc6a9e
JD
2983Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
2984as needed.
a501eca9 2985
342b8b6e 2986@node Bison Declarations
bfa74976
RS
2987@subsection The Bison Declarations Section
2988@cindex Bison declarations (introduction)
2989@cindex declarations, Bison (introduction)
2990
2991The @var{Bison declarations} section contains declarations that define
2992terminal and nonterminal symbols, specify precedence, and so on.
2993In some simple grammars you may not need any declarations.
2994@xref{Declarations, ,Bison Declarations}.
2995
342b8b6e 2996@node Grammar Rules
bfa74976
RS
2997@subsection The Grammar Rules Section
2998@cindex grammar rules section
2999@cindex rules section for grammar
3000
3001The @dfn{grammar rules} section contains one or more Bison grammar
3002rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3003
3004There must always be at least one grammar rule, and the first
3005@samp{%%} (which precedes the grammar rules) may never be omitted even
3006if it is the first thing in the file.
3007
38a92d50 3008@node Epilogue
75f5aaea 3009@subsection The epilogue
bfa74976 3010@cindex additional C code section
75f5aaea 3011@cindex epilogue
bfa74976
RS
3012@cindex C code, section for additional
3013
08e49d20
PE
3014The @var{Epilogue} is copied verbatim to the end of the parser file, just as
3015the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
3016place to put anything that you want to have in the parser file but which need
3017not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
3018definitions of @code{yylex} and @code{yyerror} often go here. Because
3019C requires functions to be declared before being used, you often need
3020to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 3021even if you define them in the Epilogue.
75f5aaea 3022@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3023
3024If the last section is empty, you may omit the @samp{%%} that separates it
3025from the grammar rules.
3026
f8e1c9e5
AD
3027The Bison parser itself contains many macros and identifiers whose names
3028start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3029any such names (except those documented in this manual) in the epilogue
3030of the grammar file.
bfa74976 3031
342b8b6e 3032@node Symbols
bfa74976
RS
3033@section Symbols, Terminal and Nonterminal
3034@cindex nonterminal symbol
3035@cindex terminal symbol
3036@cindex token type
3037@cindex symbol
3038
3039@dfn{Symbols} in Bison grammars represent the grammatical classifications
3040of the language.
3041
3042A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3043class of syntactically equivalent tokens. You use the symbol in grammar
3044rules to mean that a token in that class is allowed. The symbol is
3045represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3046function returns a token type code to indicate what kind of token has
3047been read. You don't need to know what the code value is; you can use
3048the symbol to stand for it.
bfa74976 3049
f8e1c9e5
AD
3050A @dfn{nonterminal symbol} stands for a class of syntactically
3051equivalent groupings. The symbol name is used in writing grammar rules.
3052By convention, it should be all lower case.
bfa74976 3053
eb8c66bb
JD
3054Symbol names can contain letters, underscores, periods, and non-initial
3055digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3056with POSIX Yacc. Periods and dashes make symbol names less convenient to
3057use with named references, which require brackets around such names
3058(@pxref{Named References}). Terminal symbols that contain periods or dashes
3059make little sense: since they are not valid symbols (in most programming
3060languages) they are not exported as token names.
bfa74976 3061
931c7513 3062There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3063
3064@itemize @bullet
3065@item
3066A @dfn{named token type} is written with an identifier, like an
c827f760 3067identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3068such name must be defined with a Bison declaration such as
3069@code{%token}. @xref{Token Decl, ,Token Type Names}.
3070
3071@item
3072@cindex character token
3073@cindex literal token
3074@cindex single-character literal
931c7513
RS
3075A @dfn{character token type} (or @dfn{literal character token}) is
3076written in the grammar using the same syntax used in C for character
3077constants; for example, @code{'+'} is a character token type. A
3078character token type doesn't need to be declared unless you need to
3079specify its semantic value data type (@pxref{Value Type, ,Data Types of
3080Semantic Values}), associativity, or precedence (@pxref{Precedence,
3081,Operator Precedence}).
bfa74976
RS
3082
3083By convention, a character token type is used only to represent a
3084token that consists of that particular character. Thus, the token
3085type @code{'+'} is used to represent the character @samp{+} as a
3086token. Nothing enforces this convention, but if you depart from it,
3087your program will confuse other readers.
3088
3089All the usual escape sequences used in character literals in C can be
3090used in Bison as well, but you must not use the null character as a
72d2299c
PE
3091character literal because its numeric code, zero, signifies
3092end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3093for @code{yylex}}). Also, unlike standard C, trigraphs have no
3094special meaning in Bison character literals, nor is backslash-newline
3095allowed.
931c7513
RS
3096
3097@item
3098@cindex string token
3099@cindex literal string token
9ecbd125 3100@cindex multicharacter literal
931c7513
RS
3101A @dfn{literal string token} is written like a C string constant; for
3102example, @code{"<="} is a literal string token. A literal string token
3103doesn't need to be declared unless you need to specify its semantic
14ded682 3104value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3105(@pxref{Precedence}).
3106
3107You can associate the literal string token with a symbolic name as an
3108alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3109Declarations}). If you don't do that, the lexical analyzer has to
3110retrieve the token number for the literal string token from the
3111@code{yytname} table (@pxref{Calling Convention}).
3112
c827f760 3113@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3114
3115By convention, a literal string token is used only to represent a token
3116that consists of that particular string. Thus, you should use the token
3117type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3118does not enforce this convention, but if you depart from it, people who
931c7513
RS
3119read your program will be confused.
3120
3121All the escape sequences used in string literals in C can be used in
92ac3705
PE
3122Bison as well, except that you must not use a null character within a
3123string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3124meaning in Bison string literals, nor is backslash-newline allowed. A
3125literal string token must contain two or more characters; for a token
3126containing just one character, use a character token (see above).
bfa74976
RS
3127@end itemize
3128
3129How you choose to write a terminal symbol has no effect on its
3130grammatical meaning. That depends only on where it appears in rules and
3131on when the parser function returns that symbol.
3132
72d2299c
PE
3133The value returned by @code{yylex} is always one of the terminal
3134symbols, except that a zero or negative value signifies end-of-input.
3135Whichever way you write the token type in the grammar rules, you write
3136it the same way in the definition of @code{yylex}. The numeric code
3137for a character token type is simply the positive numeric code of the
3138character, so @code{yylex} can use the identical value to generate the
3139requisite code, though you may need to convert it to @code{unsigned
3140char} to avoid sign-extension on hosts where @code{char} is signed.
3141Each named token type becomes a C macro in
bfa74976 3142the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3143(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3144@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3145
3146If @code{yylex} is defined in a separate file, you need to arrange for the
3147token-type macro definitions to be available there. Use the @samp{-d}
3148option when you run Bison, so that it will write these macro definitions
3149into a separate header file @file{@var{name}.tab.h} which you can include
3150in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3151
72d2299c 3152If you want to write a grammar that is portable to any Standard C
9d9b8b70 3153host, you must use only nonnull character tokens taken from the basic
c827f760 3154execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3155digits, the 52 lower- and upper-case English letters, and the
3156characters in the following C-language string:
3157
3158@example
3159"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3160@end example
3161
f8e1c9e5
AD
3162The @code{yylex} function and Bison must use a consistent character set
3163and encoding for character tokens. For example, if you run Bison in an
35430378 3164ASCII environment, but then compile and run the resulting
f8e1c9e5 3165program in an environment that uses an incompatible character set like
35430378
JD
3166EBCDIC, the resulting program may not work because the tables
3167generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3168character tokens. It is standard practice for software distributions to
3169contain C source files that were generated by Bison in an
35430378
JD
3170ASCII environment, so installers on platforms that are
3171incompatible with ASCII must rebuild those files before
f8e1c9e5 3172compiling them.
e966383b 3173
bfa74976
RS
3174The symbol @code{error} is a terminal symbol reserved for error recovery
3175(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3176In particular, @code{yylex} should never return this value. The default
3177value of the error token is 256, unless you explicitly assigned 256 to
3178one of your tokens with a @code{%token} declaration.
bfa74976 3179
342b8b6e 3180@node Rules
bfa74976
RS
3181@section Syntax of Grammar Rules
3182@cindex rule syntax
3183@cindex grammar rule syntax
3184@cindex syntax of grammar rules
3185
3186A Bison grammar rule has the following general form:
3187
3188@example
e425e872 3189@group
bfa74976
RS
3190@var{result}: @var{components}@dots{}
3191 ;
e425e872 3192@end group
bfa74976
RS
3193@end example
3194
3195@noindent
9ecbd125 3196where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3197and @var{components} are various terminal and nonterminal symbols that
13863333 3198are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3199
3200For example,
3201
3202@example
3203@group
3204exp: exp '+' exp
3205 ;
3206@end group
3207@end example
3208
3209@noindent
3210says that two groupings of type @code{exp}, with a @samp{+} token in between,
3211can be combined into a larger grouping of type @code{exp}.
3212
72d2299c
PE
3213White space in rules is significant only to separate symbols. You can add
3214extra white space as you wish.
bfa74976
RS
3215
3216Scattered among the components can be @var{actions} that determine
3217the semantics of the rule. An action looks like this:
3218
3219@example
3220@{@var{C statements}@}
3221@end example
3222
3223@noindent
287c78f6
PE
3224@cindex braced code
3225This is an example of @dfn{braced code}, that is, C code surrounded by
3226braces, much like a compound statement in C@. Braced code can contain
3227any sequence of C tokens, so long as its braces are balanced. Bison
3228does not check the braced code for correctness directly; it merely
3229copies the code to the output file, where the C compiler can check it.
3230
3231Within braced code, the balanced-brace count is not affected by braces
3232within comments, string literals, or character constants, but it is
3233affected by the C digraphs @samp{<%} and @samp{%>} that represent
3234braces. At the top level braced code must be terminated by @samp{@}}
3235and not by a digraph. Bison does not look for trigraphs, so if braced
3236code uses trigraphs you should ensure that they do not affect the
3237nesting of braces or the boundaries of comments, string literals, or
3238character constants.
3239
bfa74976
RS
3240Usually there is only one action and it follows the components.
3241@xref{Actions}.
3242
3243@findex |
3244Multiple rules for the same @var{result} can be written separately or can
3245be joined with the vertical-bar character @samp{|} as follows:
3246
bfa74976
RS
3247@example
3248@group
3249@var{result}: @var{rule1-components}@dots{}
3250 | @var{rule2-components}@dots{}
3251 @dots{}
3252 ;
3253@end group
3254@end example
bfa74976
RS
3255
3256@noindent
3257They are still considered distinct rules even when joined in this way.
3258
3259If @var{components} in a rule is empty, it means that @var{result} can
3260match the empty string. For example, here is how to define a
3261comma-separated sequence of zero or more @code{exp} groupings:
3262
3263@example
3264@group
3265expseq: /* empty */
3266 | expseq1
3267 ;
3268@end group
3269
3270@group
3271expseq1: exp
3272 | expseq1 ',' exp
3273 ;
3274@end group
3275@end example
3276
3277@noindent
3278It is customary to write a comment @samp{/* empty */} in each rule
3279with no components.
3280
342b8b6e 3281@node Recursion
bfa74976
RS
3282@section Recursive Rules
3283@cindex recursive rule
3284
f8e1c9e5
AD
3285A rule is called @dfn{recursive} when its @var{result} nonterminal
3286appears also on its right hand side. Nearly all Bison grammars need to
3287use recursion, because that is the only way to define a sequence of any
3288number of a particular thing. Consider this recursive definition of a
9ecbd125 3289comma-separated sequence of one or more expressions:
bfa74976
RS
3290
3291@example
3292@group
3293expseq1: exp
3294 | expseq1 ',' exp
3295 ;
3296@end group
3297@end example
3298
3299@cindex left recursion
3300@cindex right recursion
3301@noindent
3302Since the recursive use of @code{expseq1} is the leftmost symbol in the
3303right hand side, we call this @dfn{left recursion}. By contrast, here
3304the same construct is defined using @dfn{right recursion}:
3305
3306@example
3307@group
3308expseq1: exp
3309 | exp ',' expseq1
3310 ;
3311@end group
3312@end example
3313
3314@noindent
ec3bc396
AD
3315Any kind of sequence can be defined using either left recursion or right
3316recursion, but you should always use left recursion, because it can
3317parse a sequence of any number of elements with bounded stack space.
3318Right recursion uses up space on the Bison stack in proportion to the
3319number of elements in the sequence, because all the elements must be
3320shifted onto the stack before the rule can be applied even once.
3321@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3322of this.
bfa74976
RS
3323
3324@cindex mutual recursion
3325@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3326rule does not appear directly on its right hand side, but does appear
3327in rules for other nonterminals which do appear on its right hand
13863333 3328side.
bfa74976
RS
3329
3330For example:
3331
3332@example
3333@group
3334expr: primary
3335 | primary '+' primary
3336 ;
3337@end group
3338
3339@group
3340primary: constant
3341 | '(' expr ')'
3342 ;
3343@end group
3344@end example
3345
3346@noindent
3347defines two mutually-recursive nonterminals, since each refers to the
3348other.
3349
342b8b6e 3350@node Semantics
bfa74976
RS
3351@section Defining Language Semantics
3352@cindex defining language semantics
13863333 3353@cindex language semantics, defining
bfa74976
RS
3354
3355The grammar rules for a language determine only the syntax. The semantics
3356are determined by the semantic values associated with various tokens and
3357groupings, and by the actions taken when various groupings are recognized.
3358
3359For example, the calculator calculates properly because the value
3360associated with each expression is the proper number; it adds properly
3361because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3362the numbers associated with @var{x} and @var{y}.
3363
3364@menu
3365* Value Type:: Specifying one data type for all semantic values.
3366* Multiple Types:: Specifying several alternative data types.
3367* Actions:: An action is the semantic definition of a grammar rule.
3368* Action Types:: Specifying data types for actions to operate on.
3369* Mid-Rule Actions:: Most actions go at the end of a rule.
3370 This says when, why and how to use the exceptional
3371 action in the middle of a rule.
1f68dca5 3372* Named References:: Using named references in actions.
bfa74976
RS
3373@end menu
3374
342b8b6e 3375@node Value Type
bfa74976
RS
3376@subsection Data Types of Semantic Values
3377@cindex semantic value type
3378@cindex value type, semantic
3379@cindex data types of semantic values
3380@cindex default data type
3381
3382In a simple program it may be sufficient to use the same data type for
3383the semantic values of all language constructs. This was true in the
35430378 3384RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3385Notation Calculator}).
bfa74976 3386
ddc8ede1
PE
3387Bison normally uses the type @code{int} for semantic values if your
3388program uses the same data type for all language constructs. To
bfa74976
RS
3389specify some other type, define @code{YYSTYPE} as a macro, like this:
3390
3391@example
3392#define YYSTYPE double
3393@end example
3394
3395@noindent
50cce58e
PE
3396@code{YYSTYPE}'s replacement list should be a type name
3397that does not contain parentheses or square brackets.
342b8b6e 3398This macro definition must go in the prologue of the grammar file
75f5aaea 3399(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3400
342b8b6e 3401@node Multiple Types
bfa74976
RS
3402@subsection More Than One Value Type
3403
3404In most programs, you will need different data types for different kinds
3405of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3406@code{int} or @code{long int}, while a string constant needs type
3407@code{char *}, and an identifier might need a pointer to an entry in the
3408symbol table.
bfa74976
RS
3409
3410To use more than one data type for semantic values in one parser, Bison
3411requires you to do two things:
3412
3413@itemize @bullet
3414@item
ddc8ede1 3415Specify the entire collection of possible data types, either by using the
704a47c4 3416@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3417Value Types}), or by using a @code{typedef} or a @code{#define} to
3418define @code{YYSTYPE} to be a union type whose member names are
3419the type tags.
bfa74976
RS
3420
3421@item
14ded682
AD
3422Choose one of those types for each symbol (terminal or nonterminal) for
3423which semantic values are used. This is done for tokens with the
3424@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3425and for groupings with the @code{%type} Bison declaration (@pxref{Type
3426Decl, ,Nonterminal Symbols}).
bfa74976
RS
3427@end itemize
3428
342b8b6e 3429@node Actions
bfa74976
RS
3430@subsection Actions
3431@cindex action
3432@vindex $$
3433@vindex $@var{n}
1f68dca5
AR
3434@vindex $@var{name}
3435@vindex $[@var{name}]
bfa74976
RS
3436
3437An action accompanies a syntactic rule and contains C code to be executed
3438each time an instance of that rule is recognized. The task of most actions
3439is to compute a semantic value for the grouping built by the rule from the
3440semantic values associated with tokens or smaller groupings.
3441
287c78f6
PE
3442An action consists of braced code containing C statements, and can be
3443placed at any position in the rule;
704a47c4
AD
3444it is executed at that position. Most rules have just one action at the
3445end of the rule, following all the components. Actions in the middle of
3446a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3447Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3448
3449The C code in an action can refer to the semantic values of the components
3450matched by the rule with the construct @code{$@var{n}}, which stands for
3451the value of the @var{n}th component. The semantic value for the grouping
1f68dca5
AR
3452being constructed is @code{$$}. In addition, the semantic values of
3453symbols can be accessed with the named references construct
3454@code{$@var{name}} or @code{$[@var{name}]}. Bison translates both of these
0cc3da3a 3455constructs into expressions of the appropriate type when it copies the
1f68dca5
AR
3456actions into the parser file. @code{$$} (or @code{$@var{name}}, when it
3457stands for the current grouping) is translated to a modifiable
0cc3da3a 3458lvalue, so it can be assigned to.
bfa74976
RS
3459
3460Here is a typical example:
3461
3462@example
3463@group
3464exp: @dots{}
3465 | exp '+' exp
3466 @{ $$ = $1 + $3; @}
3467@end group
3468@end example
3469
1f68dca5
AR
3470Or, in terms of named references:
3471
3472@example
3473@group
3474exp[result]: @dots{}
3475 | exp[left] '+' exp[right]
3476 @{ $result = $left + $right; @}
3477@end group
3478@end example
3479
bfa74976
RS
3480@noindent
3481This rule constructs an @code{exp} from two smaller @code{exp} groupings
3482connected by a plus-sign token. In the action, @code{$1} and @code{$3}
1f68dca5 3483(@code{$left} and @code{$right})
bfa74976
RS
3484refer to the semantic values of the two component @code{exp} groupings,
3485which are the first and third symbols on the right hand side of the rule.
1f68dca5
AR
3486The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3487semantic value of
bfa74976
RS
3488the addition-expression just recognized by the rule. If there were a
3489useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3490referred to as @code{$2}.
bfa74976 3491
1f68dca5
AR
3492@xref{Named References,,Using Named References}, for more information
3493about using the named references construct.
3494
3ded9a63
AD
3495Note that the vertical-bar character @samp{|} is really a rule
3496separator, and actions are attached to a single rule. This is a
3497difference with tools like Flex, for which @samp{|} stands for either
3498``or'', or ``the same action as that of the next rule''. In the
3499following example, the action is triggered only when @samp{b} is found:
3500
3501@example
3502@group
3503a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3504@end group
3505@end example
3506
bfa74976
RS
3507@cindex default action
3508If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3509@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3510becomes the value of the whole rule. Of course, the default action is
3511valid only if the two data types match. There is no meaningful default
3512action for an empty rule; every empty rule must have an explicit action
3513unless the rule's value does not matter.
bfa74976
RS
3514
3515@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3516to tokens and groupings on the stack @emph{before} those that match the
3517current rule. This is a very risky practice, and to use it reliably
3518you must be certain of the context in which the rule is applied. Here
3519is a case in which you can use this reliably:
3520
3521@example
3522@group
3523foo: expr bar '+' expr @{ @dots{} @}
3524 | expr bar '-' expr @{ @dots{} @}
3525 ;
3526@end group
3527
3528@group
3529bar: /* empty */
3530 @{ previous_expr = $0; @}
3531 ;
3532@end group
3533@end example
3534
3535As long as @code{bar} is used only in the fashion shown here, @code{$0}
3536always refers to the @code{expr} which precedes @code{bar} in the
3537definition of @code{foo}.
3538
32c29292 3539@vindex yylval
742e4900 3540It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3541any, from a semantic action.
3542This semantic value is stored in @code{yylval}.
3543@xref{Action Features, ,Special Features for Use in Actions}.
3544
342b8b6e 3545@node Action Types
bfa74976
RS
3546@subsection Data Types of Values in Actions
3547@cindex action data types
3548@cindex data types in actions
3549
3550If you have chosen a single data type for semantic values, the @code{$$}
3551and @code{$@var{n}} constructs always have that data type.
3552
3553If you have used @code{%union} to specify a variety of data types, then you
3554must declare a choice among these types for each terminal or nonterminal
3555symbol that can have a semantic value. Then each time you use @code{$$} or
3556@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3557in the rule. In this example,
bfa74976
RS
3558
3559@example
3560@group
3561exp: @dots{}
3562 | exp '+' exp
3563 @{ $$ = $1 + $3; @}
3564@end group
3565@end example
3566
3567@noindent
3568@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3569have the data type declared for the nonterminal symbol @code{exp}. If
3570@code{$2} were used, it would have the data type declared for the
e0c471a9 3571terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3572
3573Alternatively, you can specify the data type when you refer to the value,
3574by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3575reference. For example, if you have defined types as shown here:
3576
3577@example
3578@group
3579%union @{
3580 int itype;
3581 double dtype;
3582@}
3583@end group
3584@end example
3585
3586@noindent
3587then you can write @code{$<itype>1} to refer to the first subunit of the
3588rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3589
342b8b6e 3590@node Mid-Rule Actions
bfa74976
RS
3591@subsection Actions in Mid-Rule
3592@cindex actions in mid-rule
3593@cindex mid-rule actions
3594
3595Occasionally it is useful to put an action in the middle of a rule.
3596These actions are written just like usual end-of-rule actions, but they
3597are executed before the parser even recognizes the following components.
3598
3599A mid-rule action may refer to the components preceding it using
3600@code{$@var{n}}, but it may not refer to subsequent components because
3601it is run before they are parsed.
3602
3603The mid-rule action itself counts as one of the components of the rule.
3604This makes a difference when there is another action later in the same rule
3605(and usually there is another at the end): you have to count the actions
3606along with the symbols when working out which number @var{n} to use in
3607@code{$@var{n}}.
3608
3609The mid-rule action can also have a semantic value. The action can set
3610its value with an assignment to @code{$$}, and actions later in the rule
3611can refer to the value using @code{$@var{n}}. Since there is no symbol
3612to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3613in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3614specify a data type each time you refer to this value.
bfa74976
RS
3615
3616There is no way to set the value of the entire rule with a mid-rule
3617action, because assignments to @code{$$} do not have that effect. The
3618only way to set the value for the entire rule is with an ordinary action
3619at the end of the rule.
3620
3621Here is an example from a hypothetical compiler, handling a @code{let}
3622statement that looks like @samp{let (@var{variable}) @var{statement}} and
3623serves to create a variable named @var{variable} temporarily for the
3624duration of @var{statement}. To parse this construct, we must put
3625@var{variable} into the symbol table while @var{statement} is parsed, then
3626remove it afterward. Here is how it is done:
3627
3628@example
3629@group
3630stmt: LET '(' var ')'
3631 @{ $<context>$ = push_context ();
3632 declare_variable ($3); @}
3633 stmt @{ $$ = $6;
3634 pop_context ($<context>5); @}
3635@end group
3636@end example
3637
3638@noindent
3639As soon as @samp{let (@var{variable})} has been recognized, the first
3640action is run. It saves a copy of the current semantic context (the
3641list of accessible variables) as its semantic value, using alternative
3642@code{context} in the data-type union. Then it calls
3643@code{declare_variable} to add the new variable to that list. Once the
3644first action is finished, the embedded statement @code{stmt} can be
3645parsed. Note that the mid-rule action is component number 5, so the
3646@samp{stmt} is component number 6.
3647
3648After the embedded statement is parsed, its semantic value becomes the
3649value of the entire @code{let}-statement. Then the semantic value from the
3650earlier action is used to restore the prior list of variables. This
3651removes the temporary @code{let}-variable from the list so that it won't
3652appear to exist while the rest of the program is parsed.
3653
841a7737
JD
3654@findex %destructor
3655@cindex discarded symbols, mid-rule actions
3656@cindex error recovery, mid-rule actions
3657In the above example, if the parser initiates error recovery (@pxref{Error
3658Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3659it might discard the previous semantic context @code{$<context>5} without
3660restoring it.
3661Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3662Discarded Symbols}).
ec5479ce
JD
3663However, Bison currently provides no means to declare a destructor specific to
3664a particular mid-rule action's semantic value.
841a7737
JD
3665
3666One solution is to bury the mid-rule action inside a nonterminal symbol and to
3667declare a destructor for that symbol:
3668
3669@example
3670@group
3671%type <context> let
3672%destructor @{ pop_context ($$); @} let
3673
3674%%
3675
3676stmt: let stmt
3677 @{ $$ = $2;
3678 pop_context ($1); @}
3679 ;
3680
3681let: LET '(' var ')'
3682 @{ $$ = push_context ();
3683 declare_variable ($3); @}
3684 ;
3685
3686@end group
3687@end example
3688
3689@noindent
3690Note that the action is now at the end of its rule.
3691Any mid-rule action can be converted to an end-of-rule action in this way, and
3692this is what Bison actually does to implement mid-rule actions.
3693
bfa74976
RS
3694Taking action before a rule is completely recognized often leads to
3695conflicts since the parser must commit to a parse in order to execute the
3696action. For example, the following two rules, without mid-rule actions,
3697can coexist in a working parser because the parser can shift the open-brace
3698token and look at what follows before deciding whether there is a
3699declaration or not:
3700
3701@example
3702@group
3703compound: '@{' declarations statements '@}'
3704 | '@{' statements '@}'
3705 ;
3706@end group
3707@end example
3708
3709@noindent
3710But when we add a mid-rule action as follows, the rules become nonfunctional:
3711
3712@example
3713@group
3714compound: @{ prepare_for_local_variables (); @}
3715 '@{' declarations statements '@}'
3716@end group
3717@group
3718 | '@{' statements '@}'
3719 ;
3720@end group
3721@end example
3722
3723@noindent
3724Now the parser is forced to decide whether to run the mid-rule action
3725when it has read no farther than the open-brace. In other words, it
3726must commit to using one rule or the other, without sufficient
3727information to do it correctly. (The open-brace token is what is called
742e4900
JD
3728the @dfn{lookahead} token at this time, since the parser is still
3729deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3730
3731You might think that you could correct the problem by putting identical
3732actions into the two rules, like this:
3733
3734@example
3735@group
3736compound: @{ prepare_for_local_variables (); @}
3737 '@{' declarations statements '@}'
3738 | @{ prepare_for_local_variables (); @}
3739 '@{' statements '@}'
3740 ;
3741@end group
3742@end example
3743
3744@noindent
3745But this does not help, because Bison does not realize that the two actions
3746are identical. (Bison never tries to understand the C code in an action.)
3747
3748If the grammar is such that a declaration can be distinguished from a
3749statement by the first token (which is true in C), then one solution which
3750does work is to put the action after the open-brace, like this:
3751
3752@example
3753@group
3754compound: '@{' @{ prepare_for_local_variables (); @}
3755 declarations statements '@}'
3756 | '@{' statements '@}'
3757 ;
3758@end group
3759@end example
3760
3761@noindent
3762Now the first token of the following declaration or statement,
3763which would in any case tell Bison which rule to use, can still do so.
3764
3765Another solution is to bury the action inside a nonterminal symbol which
3766serves as a subroutine:
3767
3768@example
3769@group
3770subroutine: /* empty */
3771 @{ prepare_for_local_variables (); @}
3772 ;
3773
3774@end group
3775
3776@group
3777compound: subroutine
3778 '@{' declarations statements '@}'
3779 | subroutine
3780 '@{' statements '@}'
3781 ;
3782@end group
3783@end example
3784
3785@noindent
3786Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3787deciding which rule for @code{compound} it will eventually use.
bfa74976 3788
1f68dca5
AR
3789@node Named References
3790@subsection Using Named References
3791@cindex named references
3792
3793While every semantic value can be accessed with positional references
3794@code{$@var{n}} and @code{$$}, it's often much more convenient to refer to
3795them by name. First of all, original symbol names may be used as named
3796references. For example:
3797
3798@example
3799@group
3800invocation: op '(' args ')'
3801 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
3802@end group
3803@end example
3804
3805@noindent
3806The positional @code{$$}, @code{@@$}, @code{$n}, and @code{@@n} can be
3807mixed with @code{$name} and @code{@@name} arbitrarily. For example:
3808
3809@example
3810@group
3811invocation: op '(' args ')'
3812 @{ $$ = new_invocation ($op, $args, @@$); @}
3813@end group
3814@end example
3815
3816@noindent
3817However, sometimes regular symbol names are not sufficient due to
3818ambiguities:
3819
3820@example
3821@group
3822exp: exp '/' exp
3823 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
3824
3825exp: exp '/' exp
3826 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
3827
3828exp: exp '/' exp
3829 @{ $$ = $1 / $3; @} // No error.
3830@end group
3831@end example
3832
3833@noindent
3834When ambiguity occurs, explicitly declared names may be used for values and
3835locations. Explicit names are declared as a bracketed name after a symbol
3836appearance in rule definitions. For example:
3837@example
3838@group
3839exp[result]: exp[left] '/' exp[right]
3840 @{ $result = $left / $right; @}
3841@end group
3842@end example
3843
3844@noindent
3845Explicit names may be declared for RHS and for LHS symbols as well. In order
3846to access a semantic value generated by a mid-rule action, an explicit name
3847may also be declared by putting a bracketed name after the closing brace of
3848the mid-rule action code:
3849@example
3850@group
3851exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
3852 @{ $res = $left + $right; @}
3853@end group
3854@end example
3855
3856@noindent
3857
3858In references, in order to specify names containing dots and dashes, an explicit
3859bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
3860@example
3861@group
3862if-stmt: IF '(' expr ')' THEN then.stmt ';'
3863 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
3864@end group
3865@end example
3866
3867It often happens that named references are followed by a dot, dash or other
3868C punctuation marks and operators. By default, Bison will read
3869@code{$name.suffix} as a reference to symbol value @code{$name} followed by
3870@samp{.suffix}, i.e., an access to the @samp{suffix} field of the semantic
3871value. In order to force Bison to recognize @code{name.suffix} in its entirety
3872as the name of a semantic value, bracketed syntax @code{$[name.suffix]}
3873must be used.
3874
3875
342b8b6e 3876@node Locations
847bf1f5
AD
3877@section Tracking Locations
3878@cindex location
95923bd6
AD
3879@cindex textual location
3880@cindex location, textual
847bf1f5
AD
3881
3882Though grammar rules and semantic actions are enough to write a fully
72d2299c 3883functional parser, it can be useful to process some additional information,
3e259915
MA
3884especially symbol locations.
3885
704a47c4
AD
3886The way locations are handled is defined by providing a data type, and
3887actions to take when rules are matched.
847bf1f5
AD
3888
3889@menu
3890* Location Type:: Specifying a data type for locations.
3891* Actions and Locations:: Using locations in actions.
3892* Location Default Action:: Defining a general way to compute locations.
3893@end menu
3894
342b8b6e 3895@node Location Type
847bf1f5
AD
3896@subsection Data Type of Locations
3897@cindex data type of locations
3898@cindex default location type
3899
3900Defining a data type for locations is much simpler than for semantic values,
3901since all tokens and groupings always use the same type.
3902
50cce58e
PE
3903You can specify the type of locations by defining a macro called
3904@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3905defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3906When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3907four members:
3908
3909@example
6273355b 3910typedef struct YYLTYPE
847bf1f5
AD
3911@{
3912 int first_line;
3913 int first_column;
3914 int last_line;
3915 int last_column;
6273355b 3916@} YYLTYPE;
847bf1f5
AD
3917@end example
3918
8fbbeba2
AD
3919When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3920initializes all these fields to 1 for @code{yylloc}. To initialize
3921@code{yylloc} with a custom location type (or to chose a different
3922initialization), use the @code{%initial-action} directive. @xref{Initial
3923Action Decl, , Performing Actions before Parsing}.
cd48d21d 3924
342b8b6e 3925@node Actions and Locations
847bf1f5
AD
3926@subsection Actions and Locations
3927@cindex location actions
3928@cindex actions, location
3929@vindex @@$
3930@vindex @@@var{n}
1f68dca5
AR
3931@vindex @@@var{name}
3932@vindex @@[@var{name}]
847bf1f5
AD
3933
3934Actions are not only useful for defining language semantics, but also for
3935describing the behavior of the output parser with locations.
3936
3937The most obvious way for building locations of syntactic groupings is very
72d2299c 3938similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3939constructs can be used to access the locations of the elements being matched.
3940The location of the @var{n}th component of the right hand side is
3941@code{@@@var{n}}, while the location of the left hand side grouping is
3942@code{@@$}.
3943
1f68dca5
AR
3944In addition, the named references construct @code{@@@var{name}} and
3945@code{@@[@var{name}]} may also be used to address the symbol locations.
3946@xref{Named References,,Using Named References}, for more information
3947about using the named references construct.
3948
3e259915 3949Here is a basic example using the default data type for locations:
847bf1f5
AD
3950
3951@example
3952@group
3953exp: @dots{}
3e259915 3954 | exp '/' exp
847bf1f5 3955 @{
3e259915
MA
3956 @@$.first_column = @@1.first_column;
3957 @@$.first_line = @@1.first_line;
847bf1f5
AD
3958 @@$.last_column = @@3.last_column;
3959 @@$.last_line = @@3.last_line;
3e259915
MA
3960 if ($3)
3961 $$ = $1 / $3;
3962 else
3963 @{
3964 $$ = 1;
4e03e201
AD
3965 fprintf (stderr,
3966 "Division by zero, l%d,c%d-l%d,c%d",
3967 @@3.first_line, @@3.first_column,
3968 @@3.last_line, @@3.last_column);
3e259915 3969 @}
847bf1f5
AD
3970 @}
3971@end group
3972@end example
3973
3e259915 3974As for semantic values, there is a default action for locations that is
72d2299c 3975run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3976beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3977last symbol.
3e259915 3978
72d2299c 3979With this default action, the location tracking can be fully automatic. The
3e259915
MA
3980example above simply rewrites this way:
3981
3982@example
3983@group
3984exp: @dots{}
3985 | exp '/' exp
3986 @{
3987 if ($3)
3988 $$ = $1 / $3;
3989 else
3990 @{
3991 $$ = 1;
4e03e201
AD
3992 fprintf (stderr,
3993 "Division by zero, l%d,c%d-l%d,c%d",
3994 @@3.first_line, @@3.first_column,
3995 @@3.last_line, @@3.last_column);
3e259915
MA
3996 @}
3997 @}
3998@end group
3999@end example
847bf1f5 4000
32c29292 4001@vindex yylloc
742e4900 4002It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4003from a semantic action.
4004This location is stored in @code{yylloc}.
4005@xref{Action Features, ,Special Features for Use in Actions}.
4006
342b8b6e 4007@node Location Default Action
847bf1f5
AD
4008@subsection Default Action for Locations
4009@vindex YYLLOC_DEFAULT
35430378 4010@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4011
72d2299c 4012Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4013locations are much more general than semantic values, there is room in
4014the output parser to redefine the default action to take for each
72d2299c 4015rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4016matched, before the associated action is run. It is also invoked
4017while processing a syntax error, to compute the error's location.
35430378 4018Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4019parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4020of that ambiguity.
847bf1f5 4021
3e259915 4022Most of the time, this macro is general enough to suppress location
79282c6c 4023dedicated code from semantic actions.
847bf1f5 4024
72d2299c 4025The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4026the location of the grouping (the result of the computation). When a
766de5eb 4027rule is matched, the second parameter identifies locations of
96b93a3d 4028all right hand side elements of the rule being matched, and the third
8710fc41 4029parameter is the size of the rule's right hand side.
35430378 4030When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4031right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4032When processing a syntax error, the second parameter identifies locations
4033of the symbols that were discarded during error processing, and the third
96b93a3d 4034parameter is the number of discarded symbols.
847bf1f5 4035
766de5eb 4036By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4037
766de5eb 4038@smallexample
847bf1f5 4039@group
766de5eb
PE
4040# define YYLLOC_DEFAULT(Current, Rhs, N) \
4041 do \
4042 if (N) \
4043 @{ \
4044 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
4045 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
4046 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
4047 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
4048 @} \
4049 else \
4050 @{ \
4051 (Current).first_line = (Current).last_line = \
4052 YYRHSLOC(Rhs, 0).last_line; \
4053 (Current).first_column = (Current).last_column = \
4054 YYRHSLOC(Rhs, 0).last_column; \
4055 @} \
4056 while (0)
847bf1f5 4057@end group
766de5eb 4058@end smallexample
676385e2 4059
766de5eb
PE
4060where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4061in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4062just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4063
3e259915 4064When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4065
3e259915 4066@itemize @bullet
79282c6c 4067@item
72d2299c 4068All arguments are free of side-effects. However, only the first one (the
3e259915 4069result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4070
3e259915 4071@item
766de5eb
PE
4072For consistency with semantic actions, valid indexes within the
4073right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4074valid index, and it refers to the symbol just before the reduction.
4075During error processing @var{n} is always positive.
0ae99356
PE
4076
4077@item
4078Your macro should parenthesize its arguments, if need be, since the
4079actual arguments may not be surrounded by parentheses. Also, your
4080macro should expand to something that can be used as a single
4081statement when it is followed by a semicolon.
3e259915 4082@end itemize
847bf1f5 4083
342b8b6e 4084@node Declarations
bfa74976
RS
4085@section Bison Declarations
4086@cindex declarations, Bison
4087@cindex Bison declarations
4088
4089The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4090used in formulating the grammar and the data types of semantic values.
4091@xref{Symbols}.
4092
4093All token type names (but not single-character literal tokens such as
4094@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4095declared if you need to specify which data type to use for the semantic
4096value (@pxref{Multiple Types, ,More Than One Value Type}).
4097
4098The first rule in the file also specifies the start symbol, by default.
4099If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
4100it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
4101Grammars}).
bfa74976
RS
4102
4103@menu
b50d2359 4104* Require Decl:: Requiring a Bison version.
bfa74976
RS
4105* Token Decl:: Declaring terminal symbols.
4106* Precedence Decl:: Declaring terminals with precedence and associativity.
4107* Union Decl:: Declaring the set of all semantic value types.
4108* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4109* Initial Action Decl:: Code run before parsing starts.
72f889cc 4110* Destructor Decl:: Declaring how symbols are freed.
d6328241 4111* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4112* Start Decl:: Specifying the start symbol.
4113* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4114* Push Decl:: Requesting a push parser.
bfa74976
RS
4115* Decl Summary:: Table of all Bison declarations.
4116@end menu
4117
b50d2359
AD
4118@node Require Decl
4119@subsection Require a Version of Bison
4120@cindex version requirement
4121@cindex requiring a version of Bison
4122@findex %require
4123
4124You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4125the requirement is not met, @command{bison} exits with an error (exit
4126status 63).
b50d2359
AD
4127
4128@example
4129%require "@var{version}"
4130@end example
4131
342b8b6e 4132@node Token Decl
bfa74976
RS
4133@subsection Token Type Names
4134@cindex declaring token type names
4135@cindex token type names, declaring
931c7513 4136@cindex declaring literal string tokens
bfa74976
RS
4137@findex %token
4138
4139The basic way to declare a token type name (terminal symbol) is as follows:
4140
4141@example
4142%token @var{name}
4143@end example
4144
4145Bison will convert this into a @code{#define} directive in
4146the parser, so that the function @code{yylex} (if it is in this file)
4147can use the name @var{name} to stand for this token type's code.
4148
14ded682
AD
4149Alternatively, you can use @code{%left}, @code{%right}, or
4150@code{%nonassoc} instead of @code{%token}, if you wish to specify
4151associativity and precedence. @xref{Precedence Decl, ,Operator
4152Precedence}.
bfa74976
RS
4153
4154You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4155a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4156following the token name:
bfa74976
RS
4157
4158@example
4159%token NUM 300
1452af69 4160%token XNUM 0x12d // a GNU extension
bfa74976
RS
4161@end example
4162
4163@noindent
4164It is generally best, however, to let Bison choose the numeric codes for
4165all token types. Bison will automatically select codes that don't conflict
e966383b 4166with each other or with normal characters.
bfa74976
RS
4167
4168In the event that the stack type is a union, you must augment the
4169@code{%token} or other token declaration to include the data type
704a47c4
AD
4170alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4171Than One Value Type}).
bfa74976
RS
4172
4173For example:
4174
4175@example
4176@group
4177%union @{ /* define stack type */
4178 double val;
4179 symrec *tptr;
4180@}
4181%token <val> NUM /* define token NUM and its type */
4182@end group
4183@end example
4184
931c7513
RS
4185You can associate a literal string token with a token type name by
4186writing the literal string at the end of a @code{%token}
4187declaration which declares the name. For example:
4188
4189@example
4190%token arrow "=>"
4191@end example
4192
4193@noindent
4194For example, a grammar for the C language might specify these names with
4195equivalent literal string tokens:
4196
4197@example
4198%token <operator> OR "||"
4199%token <operator> LE 134 "<="
4200%left OR "<="
4201@end example
4202
4203@noindent
4204Once you equate the literal string and the token name, you can use them
4205interchangeably in further declarations or the grammar rules. The
4206@code{yylex} function can use the token name or the literal string to
4207obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4208Syntax error messages passed to @code{yyerror} from the parser will reference
4209the literal string instead of the token name.
4210
4211The token numbered as 0 corresponds to end of file; the following line
4212allows for nicer error messages referring to ``end of file'' instead
4213of ``$end'':
4214
4215@example
4216%token END 0 "end of file"
4217@end example
931c7513 4218
342b8b6e 4219@node Precedence Decl
bfa74976
RS
4220@subsection Operator Precedence
4221@cindex precedence declarations
4222@cindex declaring operator precedence
4223@cindex operator precedence, declaring
4224
4225Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4226declare a token and specify its precedence and associativity, all at
4227once. These are called @dfn{precedence declarations}.
704a47c4
AD
4228@xref{Precedence, ,Operator Precedence}, for general information on
4229operator precedence.
bfa74976 4230
ab7f29f8 4231The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4232@code{%token}: either
4233
4234@example
4235%left @var{symbols}@dots{}
4236@end example
4237
4238@noindent
4239or
4240
4241@example
4242%left <@var{type}> @var{symbols}@dots{}
4243@end example
4244
4245And indeed any of these declarations serves the purposes of @code{%token}.
4246But in addition, they specify the associativity and relative precedence for
4247all the @var{symbols}:
4248
4249@itemize @bullet
4250@item
4251The associativity of an operator @var{op} determines how repeated uses
4252of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4253@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4254grouping @var{y} with @var{z} first. @code{%left} specifies
4255left-associativity (grouping @var{x} with @var{y} first) and
4256@code{%right} specifies right-associativity (grouping @var{y} with
4257@var{z} first). @code{%nonassoc} specifies no associativity, which
4258means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4259considered a syntax error.
4260
4261@item
4262The precedence of an operator determines how it nests with other operators.
4263All the tokens declared in a single precedence declaration have equal
4264precedence and nest together according to their associativity.
4265When two tokens declared in different precedence declarations associate,
4266the one declared later has the higher precedence and is grouped first.
4267@end itemize
4268
ab7f29f8
JD
4269For backward compatibility, there is a confusing difference between the
4270argument lists of @code{%token} and precedence declarations.
4271Only a @code{%token} can associate a literal string with a token type name.
4272A precedence declaration always interprets a literal string as a reference to a
4273separate token.
4274For example:
4275
4276@example
4277%left OR "<=" // Does not declare an alias.
4278%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4279@end example
4280
342b8b6e 4281@node Union Decl
bfa74976
RS
4282@subsection The Collection of Value Types
4283@cindex declaring value types
4284@cindex value types, declaring
4285@findex %union
4286
287c78f6
PE
4287The @code{%union} declaration specifies the entire collection of
4288possible data types for semantic values. The keyword @code{%union} is
4289followed by braced code containing the same thing that goes inside a
4290@code{union} in C@.
bfa74976
RS
4291
4292For example:
4293
4294@example
4295@group
4296%union @{
4297 double val;
4298 symrec *tptr;
4299@}
4300@end group
4301@end example
4302
4303@noindent
4304This says that the two alternative types are @code{double} and @code{symrec
4305*}. They are given names @code{val} and @code{tptr}; these names are used
4306in the @code{%token} and @code{%type} declarations to pick one of the types
4307for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4308
35430378 4309As an extension to POSIX, a tag is allowed after the
6273355b
PE
4310@code{union}. For example:
4311
4312@example
4313@group
4314%union value @{
4315 double val;
4316 symrec *tptr;
4317@}
4318@end group
4319@end example
4320
d6ca7905 4321@noindent
6273355b
PE
4322specifies the union tag @code{value}, so the corresponding C type is
4323@code{union value}. If you do not specify a tag, it defaults to
4324@code{YYSTYPE}.
4325
35430378 4326As another extension to POSIX, you may specify multiple
d6ca7905
PE
4327@code{%union} declarations; their contents are concatenated. However,
4328only the first @code{%union} declaration can specify a tag.
4329
6273355b 4330Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4331a semicolon after the closing brace.
4332
ddc8ede1
PE
4333Instead of @code{%union}, you can define and use your own union type
4334@code{YYSTYPE} if your grammar contains at least one
4335@samp{<@var{type}>} tag. For example, you can put the following into
4336a header file @file{parser.h}:
4337
4338@example
4339@group
4340union YYSTYPE @{
4341 double val;
4342 symrec *tptr;
4343@};
4344typedef union YYSTYPE YYSTYPE;
4345@end group
4346@end example
4347
4348@noindent
4349and then your grammar can use the following
4350instead of @code{%union}:
4351
4352@example
4353@group
4354%@{
4355#include "parser.h"
4356%@}
4357%type <val> expr
4358%token <tptr> ID
4359@end group
4360@end example
4361
342b8b6e 4362@node Type Decl
bfa74976
RS
4363@subsection Nonterminal Symbols
4364@cindex declaring value types, nonterminals
4365@cindex value types, nonterminals, declaring
4366@findex %type
4367
4368@noindent
4369When you use @code{%union} to specify multiple value types, you must
4370declare the value type of each nonterminal symbol for which values are
4371used. This is done with a @code{%type} declaration, like this:
4372
4373@example
4374%type <@var{type}> @var{nonterminal}@dots{}
4375@end example
4376
4377@noindent
704a47c4
AD
4378Here @var{nonterminal} is the name of a nonterminal symbol, and
4379@var{type} is the name given in the @code{%union} to the alternative
4380that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4381can give any number of nonterminal symbols in the same @code{%type}
4382declaration, if they have the same value type. Use spaces to separate
4383the symbol names.
bfa74976 4384
931c7513
RS
4385You can also declare the value type of a terminal symbol. To do this,
4386use the same @code{<@var{type}>} construction in a declaration for the
4387terminal symbol. All kinds of token declarations allow
4388@code{<@var{type}>}.
4389
18d192f0
AD
4390@node Initial Action Decl
4391@subsection Performing Actions before Parsing
4392@findex %initial-action
4393
4394Sometimes your parser needs to perform some initializations before
4395parsing. The @code{%initial-action} directive allows for such arbitrary
4396code.
4397
4398@deffn {Directive} %initial-action @{ @var{code} @}
4399@findex %initial-action
287c78f6 4400Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4401@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4402@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4403@code{%parse-param}.
18d192f0
AD
4404@end deffn
4405
451364ed
AD
4406For instance, if your locations use a file name, you may use
4407
4408@example
48b16bbc 4409%parse-param @{ char const *file_name @};
451364ed
AD
4410%initial-action
4411@{
4626a15d 4412 @@$.initialize (file_name);
451364ed
AD
4413@};
4414@end example
4415
18d192f0 4416
72f889cc
AD
4417@node Destructor Decl
4418@subsection Freeing Discarded Symbols
4419@cindex freeing discarded symbols
4420@findex %destructor
12e35840 4421@findex <*>
3ebecc24 4422@findex <>
a85284cf
AD
4423During error recovery (@pxref{Error Recovery}), symbols already pushed
4424on the stack and tokens coming from the rest of the file are discarded
4425until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4426or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4427symbols on the stack must be discarded. Even if the parser succeeds, it
4428must discard the start symbol.
258b75ca
PE
4429
4430When discarded symbols convey heap based information, this memory is
4431lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4432in traditional compilers, it is unacceptable for programs like shells or
4433protocol implementations that may parse and execute indefinitely.
258b75ca 4434
a85284cf
AD
4435The @code{%destructor} directive defines code that is called when a
4436symbol is automatically discarded.
72f889cc
AD
4437
4438@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4439@findex %destructor
287c78f6
PE
4440Invoke the braced @var{code} whenever the parser discards one of the
4441@var{symbols}.
4b367315 4442Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4443with the discarded symbol, and @code{@@$} designates its location.
4444The additional parser parameters are also available (@pxref{Parser Function, ,
4445The Parser Function @code{yyparse}}).
ec5479ce 4446
b2a0b7ca
JD
4447When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4448per-symbol @code{%destructor}.
4449You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4450tag among @var{symbols}.
b2a0b7ca 4451In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4452grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4453per-symbol @code{%destructor}.
4454
12e35840 4455Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4456(These default forms are experimental.
4457More user feedback will help to determine whether they should become permanent
4458features.)
3ebecc24 4459You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4460exactly one @code{%destructor} declaration in your grammar file.
4461The parser will invoke the @var{code} associated with one of these whenever it
4462discards any user-defined grammar symbol that has no per-symbol and no per-type
4463@code{%destructor}.
4464The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4465symbol for which you have formally declared a semantic type tag (@code{%type}
4466counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4467The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4468symbol that has no declared semantic type tag.
72f889cc
AD
4469@end deffn
4470
b2a0b7ca 4471@noindent
12e35840 4472For example:
72f889cc
AD
4473
4474@smallexample
ec5479ce
JD
4475%union @{ char *string; @}
4476%token <string> STRING1
4477%token <string> STRING2
4478%type <string> string1
4479%type <string> string2
b2a0b7ca
JD
4480%union @{ char character; @}
4481%token <character> CHR
4482%type <character> chr
12e35840
JD
4483%token TAGLESS
4484
b2a0b7ca 4485%destructor @{ @} <character>
12e35840
JD
4486%destructor @{ free ($$); @} <*>
4487%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4488%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4489@end smallexample
4490
4491@noindent
b2a0b7ca
JD
4492guarantees that, when the parser discards any user-defined symbol that has a
4493semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4494to @code{free} by default.
ec5479ce
JD
4495However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4496prints its line number to @code{stdout}.
4497It performs only the second @code{%destructor} in this case, so it invokes
4498@code{free} only once.
12e35840
JD
4499Finally, the parser merely prints a message whenever it discards any symbol,
4500such as @code{TAGLESS}, that has no semantic type tag.
4501
4502A Bison-generated parser invokes the default @code{%destructor}s only for
4503user-defined as opposed to Bison-defined symbols.
4504For example, the parser will not invoke either kind of default
4505@code{%destructor} for the special Bison-defined symbols @code{$accept},
4506@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4507none of which you can reference in your grammar.
4508It also will not invoke either for the @code{error} token (@pxref{Table of
4509Symbols, ,error}), which is always defined by Bison regardless of whether you
4510reference it in your grammar.
4511However, it may invoke one of them for the end token (token 0) if you
4512redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4513
4514@smallexample
4515%token END 0
4516@end smallexample
4517
12e35840
JD
4518@cindex actions in mid-rule
4519@cindex mid-rule actions
4520Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4521mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4522That is, Bison does not consider a mid-rule to have a semantic value if you do
4523not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4524@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4525rule.
4526However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4527@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4528
3508ce36
JD
4529@ignore
4530@noindent
4531In the future, it may be possible to redefine the @code{error} token as a
4532nonterminal that captures the discarded symbols.
4533In that case, the parser will invoke the default destructor for it as well.
4534@end ignore
4535
e757bb10
AD
4536@sp 1
4537
4538@cindex discarded symbols
4539@dfn{Discarded symbols} are the following:
4540
4541@itemize
4542@item
4543stacked symbols popped during the first phase of error recovery,
4544@item
4545incoming terminals during the second phase of error recovery,
4546@item
742e4900 4547the current lookahead and the entire stack (except the current
9d9b8b70 4548right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4549@item
4550the start symbol, when the parser succeeds.
e757bb10
AD
4551@end itemize
4552
9d9b8b70
PE
4553The parser can @dfn{return immediately} because of an explicit call to
4554@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4555exhaustion.
4556
29553547 4557Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4558error via @code{YYERROR} are not discarded automatically. As a rule
4559of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4560the memory.
e757bb10 4561
342b8b6e 4562@node Expect Decl
bfa74976
RS
4563@subsection Suppressing Conflict Warnings
4564@cindex suppressing conflict warnings
4565@cindex preventing warnings about conflicts
4566@cindex warnings, preventing
4567@cindex conflicts, suppressing warnings of
4568@findex %expect
d6328241 4569@findex %expect-rr
bfa74976
RS
4570
4571Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4572(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4573have harmless shift/reduce conflicts which are resolved in a predictable
4574way and would be difficult to eliminate. It is desirable to suppress
4575the warning about these conflicts unless the number of conflicts
4576changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4577
4578The declaration looks like this:
4579
4580@example
4581%expect @var{n}
4582@end example
4583
035aa4a0
PE
4584Here @var{n} is a decimal integer. The declaration says there should
4585be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4586Bison reports an error if the number of shift/reduce conflicts differs
4587from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4588
34a6c2d1 4589For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4590serious, and should be eliminated entirely. Bison will always report
35430378 4591reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4592parsers, however, both kinds of conflicts are routine; otherwise,
35430378 4593there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4594also possible to specify an expected number of reduce/reduce conflicts
35430378 4595in GLR parsers, using the declaration:
d6328241
PH
4596
4597@example
4598%expect-rr @var{n}
4599@end example
4600
bfa74976
RS
4601In general, using @code{%expect} involves these steps:
4602
4603@itemize @bullet
4604@item
4605Compile your grammar without @code{%expect}. Use the @samp{-v} option
4606to get a verbose list of where the conflicts occur. Bison will also
4607print the number of conflicts.
4608
4609@item
4610Check each of the conflicts to make sure that Bison's default
4611resolution is what you really want. If not, rewrite the grammar and
4612go back to the beginning.
4613
4614@item
4615Add an @code{%expect} declaration, copying the number @var{n} from the
35430378 4616number which Bison printed. With GLR parsers, add an
035aa4a0 4617@code{%expect-rr} declaration as well.
bfa74976
RS
4618@end itemize
4619
cf22447c
JD
4620Now Bison will report an error if you introduce an unexpected conflict,
4621but will keep silent otherwise.
bfa74976 4622
342b8b6e 4623@node Start Decl
bfa74976
RS
4624@subsection The Start-Symbol
4625@cindex declaring the start symbol
4626@cindex start symbol, declaring
4627@cindex default start symbol
4628@findex %start
4629
4630Bison assumes by default that the start symbol for the grammar is the first
4631nonterminal specified in the grammar specification section. The programmer
4632may override this restriction with the @code{%start} declaration as follows:
4633
4634@example
4635%start @var{symbol}
4636@end example
4637
342b8b6e 4638@node Pure Decl
bfa74976
RS
4639@subsection A Pure (Reentrant) Parser
4640@cindex reentrant parser
4641@cindex pure parser
d9df47b6 4642@findex %define api.pure
bfa74976
RS
4643
4644A @dfn{reentrant} program is one which does not alter in the course of
4645execution; in other words, it consists entirely of @dfn{pure} (read-only)
4646code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4647for example, a nonreentrant program may not be safe to call from a signal
4648handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4649program must be called only within interlocks.
4650
70811b85 4651Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4652suitable for most uses, and it permits compatibility with Yacc. (The
4653standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4654statically allocated variables for communication with @code{yylex},
4655including @code{yylval} and @code{yylloc}.)
bfa74976 4656
70811b85 4657Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4658declaration @code{%define api.pure} says that you want the parser to be
70811b85 4659reentrant. It looks like this:
bfa74976
RS
4660
4661@example
d9df47b6 4662%define api.pure
bfa74976
RS
4663@end example
4664
70811b85
RS
4665The result is that the communication variables @code{yylval} and
4666@code{yylloc} become local variables in @code{yyparse}, and a different
4667calling convention is used for the lexical analyzer function
4668@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4669Parsers}, for the details of this. The variable @code{yynerrs}
4670becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4671of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4672Reporting Function @code{yyerror}}). The convention for calling
4673@code{yyparse} itself is unchanged.
4674
4675Whether the parser is pure has nothing to do with the grammar rules.
4676You can generate either a pure parser or a nonreentrant parser from any
4677valid grammar.
bfa74976 4678
9987d1b3
JD
4679@node Push Decl
4680@subsection A Push Parser
4681@cindex push parser
4682@cindex push parser
812775a0 4683@findex %define api.push-pull
9987d1b3 4684
59da312b
JD
4685(The current push parsing interface is experimental and may evolve.
4686More user feedback will help to stabilize it.)
4687
f4101aa6
AD
4688A pull parser is called once and it takes control until all its input
4689is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4690each time a new token is made available.
4691
f4101aa6 4692A push parser is typically useful when the parser is part of a
9987d1b3 4693main event loop in the client's application. This is typically
f4101aa6
AD
4694a requirement of a GUI, when the main event loop needs to be triggered
4695within a certain time period.
9987d1b3 4696
d782395d
JD
4697Normally, Bison generates a pull parser.
4698The following Bison declaration says that you want the parser to be a push
812775a0 4699parser (@pxref{Decl Summary,,%define api.push-pull}):
9987d1b3
JD
4700
4701@example
f37495f6 4702%define api.push-pull push
9987d1b3
JD
4703@end example
4704
4705In almost all cases, you want to ensure that your push parser is also
4706a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4707time you should create an impure push parser is to have backwards
9987d1b3
JD
4708compatibility with the impure Yacc pull mode interface. Unless you know
4709what you are doing, your declarations should look like this:
4710
4711@example
d9df47b6 4712%define api.pure
f37495f6 4713%define api.push-pull push
9987d1b3
JD
4714@end example
4715
f4101aa6
AD
4716There is a major notable functional difference between the pure push parser
4717and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4718many parser instances, of the same type of parser, in memory at the same time.
4719An impure push parser should only use one parser at a time.
4720
4721When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4722the generated parser. @code{yypstate} is a structure that the generated
4723parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4724function that will create a new parser instance. @code{yypstate_delete}
4725will free the resources associated with the corresponding parser instance.
f4101aa6 4726Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4727token is available to provide the parser. A trivial example
4728of using a pure push parser would look like this:
4729
4730@example
4731int status;
4732yypstate *ps = yypstate_new ();
4733do @{
4734 status = yypush_parse (ps, yylex (), NULL);
4735@} while (status == YYPUSH_MORE);
4736yypstate_delete (ps);
4737@end example
4738
4739If the user decided to use an impure push parser, a few things about
f4101aa6 4740the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4741a global variable instead of a variable in the @code{yypush_parse} function.
4742For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4743changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4744example would thus look like this:
4745
4746@example
4747extern int yychar;
4748int status;
4749yypstate *ps = yypstate_new ();
4750do @{
4751 yychar = yylex ();
4752 status = yypush_parse (ps);
4753@} while (status == YYPUSH_MORE);
4754yypstate_delete (ps);
4755@end example
4756
f4101aa6 4757That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4758for use by the next invocation of the @code{yypush_parse} function.
4759
f4101aa6 4760Bison also supports both the push parser interface along with the pull parser
9987d1b3 4761interface in the same generated parser. In order to get this functionality,
f37495f6
JD
4762you should replace the @code{%define api.push-pull push} declaration with the
4763@code{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4764the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4765and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4766would be used. However, the user should note that it is implemented in the
d782395d
JD
4767generated parser by calling @code{yypull_parse}.
4768This makes the @code{yyparse} function that is generated with the
f37495f6 4769@code{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4770@code{yyparse} function. If the user
4771calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4772stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4773and then @code{yypull_parse} the rest of the input stream. If you would like
4774to switch back and forth between between parsing styles, you would have to
4775write your own @code{yypull_parse} function that knows when to quit looking
4776for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4777like this:
4778
4779@example
4780yypstate *ps = yypstate_new ();
4781yypull_parse (ps); /* Will call the lexer */
4782yypstate_delete (ps);
4783@end example
4784
d9df47b6 4785Adding the @code{%define api.pure} declaration does exactly the same thing to
f37495f6
JD
4786the generated parser with @code{%define api.push-pull both} as it did for
4787@code{%define api.push-pull push}.
9987d1b3 4788
342b8b6e 4789@node Decl Summary
bfa74976
RS
4790@subsection Bison Declaration Summary
4791@cindex Bison declaration summary
4792@cindex declaration summary
4793@cindex summary, Bison declaration
4794
d8988b2f 4795Here is a summary of the declarations used to define a grammar:
bfa74976 4796
18b519c0 4797@deffn {Directive} %union
bfa74976
RS
4798Declare the collection of data types that semantic values may have
4799(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4800@end deffn
bfa74976 4801
18b519c0 4802@deffn {Directive} %token
bfa74976
RS
4803Declare a terminal symbol (token type name) with no precedence
4804or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4805@end deffn
bfa74976 4806
18b519c0 4807@deffn {Directive} %right
bfa74976
RS
4808Declare a terminal symbol (token type name) that is right-associative
4809(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4810@end deffn
bfa74976 4811
18b519c0 4812@deffn {Directive} %left
bfa74976
RS
4813Declare a terminal symbol (token type name) that is left-associative
4814(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4815@end deffn
bfa74976 4816
18b519c0 4817@deffn {Directive} %nonassoc
bfa74976 4818Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4819(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4820Using it in a way that would be associative is a syntax error.
4821@end deffn
4822
91d2c560 4823@ifset defaultprec
39a06c25 4824@deffn {Directive} %default-prec
22fccf95 4825Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4826(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4827@end deffn
91d2c560 4828@end ifset
bfa74976 4829
18b519c0 4830@deffn {Directive} %type
bfa74976
RS
4831Declare the type of semantic values for a nonterminal symbol
4832(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4833@end deffn
bfa74976 4834
18b519c0 4835@deffn {Directive} %start
89cab50d
AD
4836Specify the grammar's start symbol (@pxref{Start Decl, ,The
4837Start-Symbol}).
18b519c0 4838@end deffn
bfa74976 4839
18b519c0 4840@deffn {Directive} %expect
bfa74976
RS
4841Declare the expected number of shift-reduce conflicts
4842(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4843@end deffn
4844
bfa74976 4845
d8988b2f
AD
4846@sp 1
4847@noindent
4848In order to change the behavior of @command{bison}, use the following
4849directives:
4850
148d66d8
JD
4851@deffn {Directive} %code @{@var{code}@}
4852@findex %code
4853This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4854It inserts @var{code} verbatim at a language-dependent default location in the
4855output@footnote{The default location is actually skeleton-dependent;
4856 writers of non-standard skeletons however should choose the default location
4857 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4858
4859@cindex Prologue
8405b70c 4860For C/C++, the default location is the parser source code
148d66d8
JD
4861file after the usual contents of the parser header file.
4862Thus, @code{%code} replaces the traditional Yacc prologue,
4863@code{%@{@var{code}%@}}, for most purposes.
4864For a detailed discussion, see @ref{Prologue Alternatives}.
4865
8405b70c 4866For Java, the default location is inside the parser class.
148d66d8
JD
4867@end deffn
4868
4869@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4870This is the qualified form of the @code{%code} directive.
4871If you need to specify location-sensitive verbatim @var{code} that does not
4872belong at the default location selected by the unqualified @code{%code} form,
4873use this form instead.
4874
4875@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4876where Bison should generate it.
628be6c9
JD
4877Not all @var{qualifier}s are accepted for all target languages.
4878Unaccepted @var{qualifier}s produce an error.
4879Some of the accepted @var{qualifier}s are:
148d66d8
JD
4880
4881@itemize @bullet
148d66d8 4882@item requires
793fbca5 4883@findex %code requires
148d66d8
JD
4884
4885@itemize @bullet
4886@item Language(s): C, C++
4887
4888@item Purpose: This is the best place to write dependency code required for
4889@code{YYSTYPE} and @code{YYLTYPE}.
4890In other words, it's the best place to define types referenced in @code{%union}
4891directives, and it's the best place to override Bison's default @code{YYSTYPE}
4892and @code{YYLTYPE} definitions.
4893
4894@item Location(s): The parser header file and the parser source code file
4895before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
4896@end itemize
4897
4898@item provides
4899@findex %code provides
4900
4901@itemize @bullet
4902@item Language(s): C, C++
4903
4904@item Purpose: This is the best place to write additional definitions and
4905declarations that should be provided to other modules.
4906
4907@item Location(s): The parser header file and the parser source code file after
4908the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
4909@end itemize
4910
4911@item top
4912@findex %code top
4913
4914@itemize @bullet
4915@item Language(s): C, C++
4916
4917@item Purpose: The unqualified @code{%code} or @code{%code requires} should
4918usually be more appropriate than @code{%code top}.
4919However, occasionally it is necessary to insert code much nearer the top of the
4920parser source code file.
4921For example:
4922
4923@smallexample
4924%code top @{
4925 #define _GNU_SOURCE
4926 #include <stdio.h>
4927@}
4928@end smallexample
4929
4930@item Location(s): Near the top of the parser source code file.
4931@end itemize
8405b70c 4932
148d66d8
JD
4933@item imports
4934@findex %code imports
4935
4936@itemize @bullet
4937@item Language(s): Java
4938
4939@item Purpose: This is the best place to write Java import directives.
4940
4941@item Location(s): The parser Java file after any Java package directive and
4942before any class definitions.
4943@end itemize
148d66d8
JD
4944@end itemize
4945
148d66d8
JD
4946@cindex Prologue
4947For a detailed discussion of how to use @code{%code} in place of the
4948traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
4949@end deffn
4950
18b519c0 4951@deffn {Directive} %debug
4947ebdb
PE
4952In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4953already defined, so that the debugging facilities are compiled.
ec3bc396 4954@xref{Tracing, ,Tracing Your Parser}.
bd5df716 4955@end deffn
d8988b2f 4956
c1d19e10 4957@deffn {Directive} %define @var{variable}
f37495f6 4958@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 4959@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2 4960Define a variable to adjust Bison's behavior.
9611cfa2 4961
e3a33f7c 4962It is an error if a @var{variable} is defined by @code{%define} multiple
c33bc800 4963times, but see @ref{Bison Options,,-D @var{name}[=@var{value}]}.
9611cfa2 4964
eb8c66bb
JD
4965@var{value} must be placed in quotation marks if it contains any character
4966other than a letter, underscore, period, or non-initial dash or digit.
f37495f6
JD
4967
4968Omitting @code{"@var{value}"} entirely is always equivalent to specifying
9611cfa2
JD
4969@code{""}.
4970
628be6c9 4971Some @var{variable}s take Boolean values.
9611cfa2
JD
4972In this case, Bison will complain if the variable definition does not meet one
4973of the following four conditions:
4974
4975@enumerate
f37495f6 4976@item @code{@var{value}} is @code{true}
9611cfa2 4977
f37495f6
JD
4978@item @code{@var{value}} is omitted (or @code{""} is specified).
4979This is equivalent to @code{true}.
9611cfa2 4980
f37495f6 4981@item @code{@var{value}} is @code{false}.
9611cfa2
JD
4982
4983@item @var{variable} is never defined.
628be6c9 4984In this case, Bison selects a default value.
9611cfa2 4985@end enumerate
148d66d8 4986
628be6c9
JD
4987What @var{variable}s are accepted, as well as their meanings and default
4988values, depend on the selected target language and/or the parser
4989skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
4990Summary,,%skeleton}).
4991Unaccepted @var{variable}s produce an error.
793fbca5
JD
4992Some of the accepted @var{variable}s are:
4993
4994@itemize @bullet
d9df47b6
JD
4995@item api.pure
4996@findex %define api.pure
4997
4998@itemize @bullet
4999@item Language(s): C
5000
5001@item Purpose: Request a pure (reentrant) parser program.
5002@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5003
5004@item Accepted Values: Boolean
5005
f37495f6 5006@item Default Value: @code{false}
d9df47b6
JD
5007@end itemize
5008
812775a0
JD
5009@item api.push-pull
5010@findex %define api.push-pull
793fbca5
JD
5011
5012@itemize @bullet
34a6c2d1 5013@item Language(s): C (deterministic parsers only)
793fbca5 5014
3b1977ea 5015@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5016@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5017(The current push parsing interface is experimental and may evolve.
5018More user feedback will help to stabilize it.)
793fbca5 5019
f37495f6 5020@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5021
f37495f6 5022@item Default Value: @code{pull}
793fbca5
JD
5023@end itemize
5024
232be91a
AD
5025@c ================================================== lr.default-reductions
5026
1d0f55cc 5027@item lr.default-reductions
620b5727 5028@cindex default reductions
1d0f55cc 5029@findex %define lr.default-reductions
34a6c2d1
JD
5030@cindex delayed syntax errors
5031@cindex syntax errors delayed
35430378 5032@cindex LAC
4c38b19e 5033@findex %nonassoc
34a6c2d1
JD
5034
5035@itemize @bullet
5036@item Language(s): all
5037
4c38b19e 5038@item Purpose: Specify the kind of states that are permitted to
620b5727 5039contain default reductions.
4c38b19e
JD
5040That is, in such a state, Bison selects the reduction with the largest
5041lookahead set to be the default parser action and then removes that
620b5727 5042lookahead set.
4c38b19e
JD
5043(The ability to specify where default reductions should be used is
5044experimental.
34a6c2d1
JD
5045More user feedback will help to stabilize it.)
5046
5047@item Accepted Values:
5048@itemize
f37495f6 5049@item @code{all}.
4c38b19e
JD
5050This is the traditional Bison behavior.
5051The main advantage is a significant decrease in the size of the parser
5052tables.
5053The disadvantage is that, when the generated parser encounters a
5054syntactically unacceptable token, the parser might then perform
5055unnecessary default reductions before it can detect the syntax error.
5056Such delayed syntax error detection is usually inherent in
35430378
JD
5057LALR and IELR parser tables anyway due to
5058LR state merging (@pxref{Decl Summary,,lr.type}).
4c38b19e 5059Furthermore, the use of @code{%nonassoc} can contribute to delayed
35430378 5060syntax error detection even in the case of canonical LR.
4c38b19e 5061As an experimental feature, delayed syntax error detection can be
35430378 5062overcome in all cases by enabling LAC (@pxref{Decl
4c38b19e
JD
5063Summary,,parse.lac}, for details, including a discussion of the effects
5064of delayed syntax error detection).
34a6c2d1 5065
f37495f6 5066@item @code{consistent}.
34a6c2d1
JD
5067@cindex consistent states
5068A consistent state is a state that has only one possible action.
5069If that action is a reduction, then the parser does not need to request
5070a lookahead token from the scanner before performing that action.
4c38b19e
JD
5071However, the parser recognizes the ability to ignore the lookahead token
5072in this way only when such a reduction is encoded as a default
5073reduction.
5074Thus, if default reductions are permitted only in consistent states,
35430378 5075then a canonical LR parser that does not employ
4c38b19e
JD
5076@code{%nonassoc} detects a syntax error as soon as it @emph{needs} the
5077syntactically unacceptable token from the scanner.
34a6c2d1 5078
f37495f6 5079@item @code{accepting}.
34a6c2d1 5080@cindex accepting state
4c38b19e
JD
5081In the accepting state, the default reduction is actually the accept
5082action.
35430378 5083In this case, a canonical LR parser that does not employ
4c38b19e
JD
5084@code{%nonassoc} detects a syntax error as soon as it @emph{reaches} the
5085syntactically unacceptable token in the input.
5086That is, it does not perform any extra reductions.
34a6c2d1
JD
5087@end itemize
5088
5089@item Default Value:
5090@itemize
f37495f6
JD
5091@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
5092@item @code{all} otherwise.
34a6c2d1
JD
5093@end itemize
5094@end itemize
5095
232be91a
AD
5096@c ============================================ lr.keep-unreachable-states
5097
812775a0
JD
5098@item lr.keep-unreachable-states
5099@findex %define lr.keep-unreachable-states
31984206
JD
5100
5101@itemize @bullet
5102@item Language(s): all
5103
3b1977ea
JD
5104@item Purpose: Request that Bison allow unreachable parser states to
5105remain in the parser tables.
31984206
JD
5106Bison considers a state to be unreachable if there exists no sequence of
5107transitions from the start state to that state.
5108A state can become unreachable during conflict resolution if Bison disables a
5109shift action leading to it from a predecessor state.
5110Keeping unreachable states is sometimes useful for analysis purposes, but they
5111are useless in the generated parser.
5112
5113@item Accepted Values: Boolean
5114
f37495f6 5115@item Default Value: @code{false}
31984206
JD
5116
5117@item Caveats:
5118
5119@itemize @bullet
cff03fb2
JD
5120
5121@item Unreachable states may contain conflicts and may use rules not used in
5122any other state.
31984206
JD
5123Thus, keeping unreachable states may induce warnings that are irrelevant to
5124your parser's behavior, and it may eliminate warnings that are relevant.
5125Of course, the change in warnings may actually be relevant to a parser table
5126analysis that wants to keep unreachable states, so this behavior will likely
5127remain in future Bison releases.
5128
5129@item While Bison is able to remove unreachable states, it is not guaranteed to
5130remove other kinds of useless states.
5131Specifically, when Bison disables reduce actions during conflict resolution,
5132some goto actions may become useless, and thus some additional states may
5133become useless.
5134If Bison were to compute which goto actions were useless and then disable those
5135actions, it could identify such states as unreachable and then remove those
5136states.
5137However, Bison does not compute which goto actions are useless.
5138@end itemize
5139@end itemize
5140
232be91a
AD
5141@c ================================================== lr.type
5142
34a6c2d1
JD
5143@item lr.type
5144@findex %define lr.type
35430378
JD
5145@cindex LALR
5146@cindex IELR
5147@cindex LR
34a6c2d1
JD
5148
5149@itemize @bullet
5150@item Language(s): all
5151
3b1977ea 5152@item Purpose: Specify the type of parser tables within the
35430378 5153LR(1) family.
34a6c2d1
JD
5154(This feature is experimental.
5155More user feedback will help to stabilize it.)
5156
5157@item Accepted Values:
5158@itemize
f37495f6 5159@item @code{lalr}.
35430378
JD
5160While Bison generates LALR parser tables by default for
5161historical reasons, IELR or canonical LR is almost
34a6c2d1 5162always preferable for deterministic parsers.
35430378 5163The trouble is that LALR parser tables can suffer from
620b5727 5164mysterious conflicts and thus may not accept the full set of sentences
35430378 5165that IELR and canonical LR accept.
34a6c2d1 5166@xref{Mystery Conflicts}, for details.
35430378 5167However, there are at least two scenarios where LALR may be
34a6c2d1
JD
5168worthwhile:
5169@itemize
35430378
JD
5170@cindex GLR with LALR
5171@item When employing GLR parsers (@pxref{GLR Parsers}), if you
34a6c2d1
JD
5172do not resolve any conflicts statically (for example, with @code{%left}
5173or @code{%prec}), then the parser explores all potential parses of any
5174given input.
35430378 5175In this case, the use of LALR parser tables is guaranteed not
620b5727 5176to alter the language accepted by the parser.
35430378 5177LALR parser tables are the smallest parser tables Bison can
34a6c2d1 5178currently generate, so they may be preferable.
3b1977ea 5179Nevertheless, once you begin to resolve conflicts statically,
35430378
JD
5180GLR begins to behave more like a deterministic parser, and so
5181IELR and canonical LR can be helpful to avoid
5182LALR's mysterious behavior.
34a6c2d1
JD
5183
5184@item Occasionally during development, an especially malformed grammar
35430378
JD
5185with a major recurring flaw may severely impede the IELR or
5186canonical LR parser table generation algorithm.
5187LALR can be a quick way to generate parser tables in order to
34a6c2d1 5188investigate such problems while ignoring the more subtle differences
35430378 5189from IELR and canonical LR.
34a6c2d1
JD
5190@end itemize
5191
f37495f6 5192@item @code{ielr}.
35430378
JD
5193IELR is a minimal LR algorithm.
5194That is, given any grammar (LR or non-LR),
5195IELR and canonical LR always accept exactly the same
34a6c2d1 5196set of sentences.
35430378
JD
5197However, as for LALR, the number of parser states is often an
5198order of magnitude less for IELR than for canonical
5199LR.
5200More importantly, because canonical LR's extra parser states
5201may contain duplicate conflicts in the case of non-LR
5202grammars, the number of conflicts for IELR is often an order
34a6c2d1
JD
5203of magnitude less as well.
5204This can significantly reduce the complexity of developing of a grammar.
5205
f37495f6 5206@item @code{canonical-lr}.
34a6c2d1
JD
5207@cindex delayed syntax errors
5208@cindex syntax errors delayed
35430378 5209@cindex LAC
4c38b19e 5210@findex %nonassoc
35430378 5211While inefficient, canonical LR parser tables can be an
4c38b19e 5212interesting means to explore a grammar because they have a property that
35430378 5213IELR and LALR tables do not.
4c38b19e
JD
5214That is, if @code{%nonassoc} is not used and default reductions are left
5215disabled (@pxref{Decl Summary,,lr.default-reductions}), then, for every
35430378 5216left context of every canonical LR state, the set of tokens
4c38b19e
JD
5217accepted by that state is guaranteed to be the exact set of tokens that
5218is syntactically acceptable in that left context.
35430378 5219It might then seem that an advantage of canonical LR parsers
4c38b19e
JD
5220in production is that, under the above constraints, they are guaranteed
5221to detect a syntax error as soon as possible without performing any
5222unnecessary reductions.
35430378 5223However, IELR parsers using LAC (@pxref{Decl
4c38b19e
JD
5224Summary,,parse.lac}) are also able to achieve this behavior without
5225sacrificing @code{%nonassoc} or default reductions.
34a6c2d1
JD
5226@end itemize
5227
f37495f6 5228@item Default Value: @code{lalr}
34a6c2d1
JD
5229@end itemize
5230
793fbca5
JD
5231@item namespace
5232@findex %define namespace
5233
5234@itemize
5235@item Languages(s): C++
5236
3b1977ea 5237@item Purpose: Specify the namespace for the parser class.
793fbca5
JD
5238For example, if you specify:
5239
5240@smallexample
5241%define namespace "foo::bar"
5242@end smallexample
5243
5244Bison uses @code{foo::bar} verbatim in references such as:
5245
5246@smallexample
5247foo::bar::parser::semantic_type
5248@end smallexample
5249
5250However, to open a namespace, Bison removes any leading @code{::} and then
5251splits on any remaining occurrences:
5252
5253@smallexample
5254namespace foo @{ namespace bar @{
5255 class position;
5256 class location;
5257@} @}
5258@end smallexample
5259
5260@item Accepted Values: Any absolute or relative C++ namespace reference without
5261a trailing @code{"::"}.
5262For example, @code{"foo"} or @code{"::foo::bar"}.
5263
5264@item Default Value: The value specified by @code{%name-prefix}, which defaults
5265to @code{yy}.
5266This usage of @code{%name-prefix} is for backward compatibility and can be
5267confusing since @code{%name-prefix} also specifies the textual prefix for the
5268lexical analyzer function.
5269Thus, if you specify @code{%name-prefix}, it is best to also specify
5270@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
5271lexical analyzer function.
5272For example, if you specify:
5273
5274@smallexample
5275%define namespace "foo"
5276%name-prefix "bar::"
5277@end smallexample
5278
5279The parser namespace is @code{foo} and @code{yylex} is referenced as
5280@code{bar::lex}.
5281@end itemize
4c38b19e
JD
5282
5283@c ================================================== parse.lac
5284@item parse.lac
5285@findex %define parse.lac
35430378 5286@cindex LAC
4c38b19e
JD
5287@cindex lookahead correction
5288
5289@itemize
5290@item Languages(s): C
5291
35430378 5292@item Purpose: Enable LAC (lookahead correction) to improve
4c38b19e
JD
5293syntax error handling.
5294
35430378 5295Canonical LR, IELR, and LALR can suffer
4c38b19e
JD
5296from a couple of problems upon encountering a syntax error. First, the
5297parser might perform additional parser stack reductions before
5298discovering the syntax error. Such reductions perform user semantic
5299actions that are unexpected because they are based on an invalid token,
5300and they cause error recovery to begin in a different syntactic context
5301than the one in which the invalid token was encountered. Second, when
5302verbose error messages are enabled (with @code{%error-verbose} or
5303@code{#define YYERROR_VERBOSE}), the expected token list in the syntax
5304error message can both contain invalid tokens and omit valid tokens.
5305
5306The culprits for the above problems are @code{%nonassoc}, default
5307reductions in inconsistent states, and parser state merging. Thus,
35430378
JD
5308IELR and LALR suffer the most. Canonical
5309LR can suffer only if @code{%nonassoc} is used or if default
4c38b19e
JD
5310reductions are enabled for inconsistent states.
5311
35430378
JD
5312LAC is a new mechanism within the parsing algorithm that
5313completely solves these problems for canonical LR,
5314IELR, and LALR without sacrificing @code{%nonassoc},
4c38b19e
JD
5315default reductions, or state mering. Conceptually, the mechanism is
5316straight-forward. Whenever the parser fetches a new token from the
5317scanner so that it can determine the next parser action, it immediately
5318suspends normal parsing and performs an exploratory parse using a
5319temporary copy of the normal parser state stack. During this
5320exploratory parse, the parser does not perform user semantic actions.
5321If the exploratory parse reaches a shift action, normal parsing then
5322resumes on the normal parser stacks. If the exploratory parse reaches
5323an error instead, the parser reports a syntax error. If verbose syntax
5324error messages are enabled, the parser must then discover the list of
5325expected tokens, so it performs a separate exploratory parse for each
5326token in the grammar.
5327
35430378 5328There is one subtlety about the use of LAC. That is, when in
4c38b19e
JD
5329a consistent parser state with a default reduction, the parser will not
5330attempt to fetch a token from the scanner because no lookahead is needed
5331to determine the next parser action. Thus, whether default reductions
5332are enabled in consistent states (@pxref{Decl
5333Summary,,lr.default-reductions}) affects how soon the parser detects a
5334syntax error: when it @emph{reaches} an erroneous token or when it
5335eventually @emph{needs} that token as a lookahead. The latter behavior
5336is probably more intuitive, so Bison currently provides no way to
5337achieve the former behavior while default reductions are fully enabled.
5338
35430378 5339Thus, when LAC is in use, for some fixed decision of whether
4c38b19e 5340to enable default reductions in consistent states, canonical
35430378 5341LR and IELR behave exactly the same for both
4c38b19e 5342syntactically acceptable and syntactically unacceptable input. While
35430378
JD
5343LALR still does not support the full language-recognition
5344power of canonical LR and IELR, LAC at
5345least enables LALR's syntax error handling to correctly
5346reflect LALR's language-recognition power.
4c38b19e 5347
35430378 5348Because LAC requires many parse actions to be performed twice,
4c38b19e
JD
5349it can have a performance penalty. However, not all parse actions must
5350be performed twice. Specifically, during a series of default reductions
5351in consistent states and shift actions, the parser never has to initiate
5352an exploratory parse. Moreover, the most time-consuming tasks in a
5353parse are often the file I/O, the lexical analysis performed by the
5354scanner, and the user's semantic actions, but none of these are
5355performed during the exploratory parse. Finally, the base of the
5356temporary stack used during an exploratory parse is a pointer into the
5357normal parser state stack so that the stack is never physically copied.
35430378 5358In our experience, the performance penalty of LAC has proven
4c38b19e
JD
5359insignificant for practical grammars.
5360
5361@item Accepted Values: @code{none}, @code{full}
5362
5363@item Default Value: @code{none}
5364@end itemize
793fbca5
JD
5365@end itemize
5366
d782395d
JD
5367@end deffn
5368
18b519c0 5369@deffn {Directive} %defines
4bfd5e4e
PE
5370Write a header file containing macro definitions for the token type
5371names defined in the grammar as well as a few other declarations.
d8988b2f 5372If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 5373is named @file{@var{name}.h}.
d8988b2f 5374
b321737f 5375For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
5376@code{YYSTYPE} is already defined as a macro or you have used a
5377@code{<@var{type}>} tag without using @code{%union}.
5378Therefore, if you are using a @code{%union}
f8e1c9e5
AD
5379(@pxref{Multiple Types, ,More Than One Value Type}) with components that
5380require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 5381or type definition
f8e1c9e5
AD
5382(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
5383arrange for these definitions to be propagated to all modules, e.g., by
5384putting them in a prerequisite header that is included both by your
5385parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
5386
5387Unless your parser is pure, the output header declares @code{yylval}
5388as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
5389Parser}.
5390
5391If you have also used locations, the output header declares
5392@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 5393the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
5394Locations}.
5395
f8e1c9e5
AD
5396This output file is normally essential if you wish to put the definition
5397of @code{yylex} in a separate source file, because @code{yylex}
5398typically needs to be able to refer to the above-mentioned declarations
5399and to the token type codes. @xref{Token Values, ,Semantic Values of
5400Tokens}.
9bc0dd67 5401
16dc6a9e
JD
5402@findex %code requires
5403@findex %code provides
5404If you have declared @code{%code requires} or @code{%code provides}, the output
5405header also contains their code.
148d66d8 5406@xref{Decl Summary, ,%code}.
592d0b1e
PB
5407@end deffn
5408
02975b9a
JD
5409@deffn {Directive} %defines @var{defines-file}
5410Same as above, but save in the file @var{defines-file}.
5411@end deffn
5412
18b519c0 5413@deffn {Directive} %destructor
258b75ca 5414Specify how the parser should reclaim the memory associated to
fa7e68c3 5415discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 5416@end deffn
72f889cc 5417
02975b9a 5418@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
5419Specify a prefix to use for all Bison output file names. The names are
5420chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 5421@end deffn
d8988b2f 5422
e6e704dc 5423@deffn {Directive} %language "@var{language}"
0e021770 5424Specify the programming language for the generated parser. Currently
59da312b 5425supported languages include C, C++, and Java.
e6e704dc 5426@var{language} is case-insensitive.
ed4d67dc
JD
5427
5428This directive is experimental and its effect may be modified in future
5429releases.
0e021770
PE
5430@end deffn
5431
18b519c0 5432@deffn {Directive} %locations
89cab50d
AD
5433Generate the code processing the locations (@pxref{Action Features,
5434,Special Features for Use in Actions}). This mode is enabled as soon as
5435the grammar uses the special @samp{@@@var{n}} tokens, but if your
5436grammar does not use it, using @samp{%locations} allows for more
6e649e65 5437accurate syntax error messages.
18b519c0 5438@end deffn
89cab50d 5439
02975b9a 5440@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5441Rename the external symbols used in the parser so that they start with
5442@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5443in C parsers
d8988b2f 5444is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5445@code{yylval}, @code{yychar}, @code{yydebug}, and
f4101aa6
AD
5446(if locations are used) @code{yylloc}. If you use a push parser,
5447@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5448@code{yypstate_new} and @code{yypstate_delete} will
5449also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5
JD
5450names become @code{c_parse}, @code{c_lex}, and so on.
5451For C++ parsers, see the @code{%define namespace} documentation in this
5452section.
aa08666d 5453@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5454@end deffn
931c7513 5455
91d2c560 5456@ifset defaultprec
22fccf95
PE
5457@deffn {Directive} %no-default-prec
5458Do not assign a precedence to rules lacking an explicit @code{%prec}
5459modifier (@pxref{Contextual Precedence, ,Context-Dependent
5460Precedence}).
5461@end deffn
91d2c560 5462@end ifset
22fccf95 5463
18b519c0 5464@deffn {Directive} %no-lines
931c7513
RS
5465Don't generate any @code{#line} preprocessor commands in the parser
5466file. Ordinarily Bison writes these commands in the parser file so that
5467the C compiler and debuggers will associate errors and object code with
5468your source file (the grammar file). This directive causes them to
5469associate errors with the parser file, treating it an independent source
5470file in its own right.
18b519c0 5471@end deffn
931c7513 5472
02975b9a 5473@deffn {Directive} %output "@var{file}"
fa4d969f 5474Specify @var{file} for the parser file.
18b519c0 5475@end deffn
6deb4447 5476
18b519c0 5477@deffn {Directive} %pure-parser
d9df47b6
JD
5478Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
5479for which Bison is more careful to warn about unreasonable usage.
18b519c0 5480@end deffn
6deb4447 5481
b50d2359 5482@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5483Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5484Require a Version of Bison}.
b50d2359
AD
5485@end deffn
5486
0e021770 5487@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5488Specify the skeleton to use.
5489
ed4d67dc
JD
5490@c You probably don't need this option unless you are developing Bison.
5491@c You should use @code{%language} if you want to specify the skeleton for a
5492@c different language, because it is clearer and because it will always choose the
5493@c correct skeleton for non-deterministic or push parsers.
a7867f53
JD
5494
5495If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5496file in the Bison installation directory.
5497If it does, @var{file} is an absolute file name or a file name relative to the
5498directory of the grammar file.
5499This is similar to how most shells resolve commands.
0e021770
PE
5500@end deffn
5501
18b519c0 5502@deffn {Directive} %token-table
931c7513
RS
5503Generate an array of token names in the parser file. The name of the
5504array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 5505token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
5506three elements of @code{yytname} correspond to the predefined tokens
5507@code{"$end"},
88bce5a2
AD
5508@code{"error"}, and @code{"$undefined"}; after these come the symbols
5509defined in the grammar file.
931c7513 5510
9e0876fb
PE
5511The name in the table includes all the characters needed to represent
5512the token in Bison. For single-character literals and literal
5513strings, this includes the surrounding quoting characters and any
5514escape sequences. For example, the Bison single-character literal
5515@code{'+'} corresponds to a three-character name, represented in C as
5516@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5517corresponds to a five-character name, represented in C as
5518@code{"\"\\\\/\""}.
931c7513 5519
8c9a50be 5520When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5521definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5522@code{YYNRULES}, and @code{YYNSTATES}:
5523
5524@table @code
5525@item YYNTOKENS
5526The highest token number, plus one.
5527@item YYNNTS
9ecbd125 5528The number of nonterminal symbols.
931c7513
RS
5529@item YYNRULES
5530The number of grammar rules,
5531@item YYNSTATES
5532The number of parser states (@pxref{Parser States}).
5533@end table
18b519c0 5534@end deffn
d8988b2f 5535
18b519c0 5536@deffn {Directive} %verbose
d8988b2f 5537Write an extra output file containing verbose descriptions of the
742e4900 5538parser states and what is done for each type of lookahead token in
72d2299c 5539that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5540information.
18b519c0 5541@end deffn
d8988b2f 5542
18b519c0 5543@deffn {Directive} %yacc
d8988b2f
AD
5544Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5545including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5546@end deffn
d8988b2f
AD
5547
5548
342b8b6e 5549@node Multiple Parsers
bfa74976
RS
5550@section Multiple Parsers in the Same Program
5551
5552Most programs that use Bison parse only one language and therefore contain
5553only one Bison parser. But what if you want to parse more than one
5554language with the same program? Then you need to avoid a name conflict
5555between different definitions of @code{yyparse}, @code{yylval}, and so on.
5556
5557The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5558(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5559functions and variables of the Bison parser to start with @var{prefix}
5560instead of @samp{yy}. You can use this to give each parser distinct
5561names that do not conflict.
bfa74976
RS
5562
5563The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5564@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5565@code{yychar} and @code{yydebug}. If you use a push parser,
5566@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5567@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5568For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5569@code{clex}, and so on.
bfa74976
RS
5570
5571@strong{All the other variables and macros associated with Bison are not
5572renamed.} These others are not global; there is no conflict if the same
5573name is used in different parsers. For example, @code{YYSTYPE} is not
5574renamed, but defining this in different ways in different parsers causes
5575no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5576
5577The @samp{-p} option works by adding macro definitions to the beginning
5578of the parser source file, defining @code{yyparse} as
5579@code{@var{prefix}parse}, and so on. This effectively substitutes one
5580name for the other in the entire parser file.
5581
342b8b6e 5582@node Interface
bfa74976
RS
5583@chapter Parser C-Language Interface
5584@cindex C-language interface
5585@cindex interface
5586
5587The Bison parser is actually a C function named @code{yyparse}. Here we
5588describe the interface conventions of @code{yyparse} and the other
5589functions that it needs to use.
5590
5591Keep in mind that the parser uses many C identifiers starting with
5592@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5593identifier (aside from those in this manual) in an action or in epilogue
5594in the grammar file, you are likely to run into trouble.
bfa74976
RS
5595
5596@menu
f56274a8
DJ
5597* Parser Function:: How to call @code{yyparse} and what it returns.
5598* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5599* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5600* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5601* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5602* Lexical:: You must supply a function @code{yylex}
5603 which reads tokens.
5604* Error Reporting:: You must supply a function @code{yyerror}.
5605* Action Features:: Special features for use in actions.
5606* Internationalization:: How to let the parser speak in the user's
5607 native language.
bfa74976
RS
5608@end menu
5609
342b8b6e 5610@node Parser Function
bfa74976
RS
5611@section The Parser Function @code{yyparse}
5612@findex yyparse
5613
5614You call the function @code{yyparse} to cause parsing to occur. This
5615function reads tokens, executes actions, and ultimately returns when it
5616encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5617write an action which directs @code{yyparse} to return immediately
5618without reading further.
bfa74976 5619
2a8d363a
AD
5620
5621@deftypefun int yyparse (void)
bfa74976
RS
5622The value returned by @code{yyparse} is 0 if parsing was successful (return
5623is due to end-of-input).
5624
b47dbebe
PE
5625The value is 1 if parsing failed because of invalid input, i.e., input
5626that contains a syntax error or that causes @code{YYABORT} to be
5627invoked.
5628
5629The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5630@end deftypefun
bfa74976
RS
5631
5632In an action, you can cause immediate return from @code{yyparse} by using
5633these macros:
5634
2a8d363a 5635@defmac YYACCEPT
bfa74976
RS
5636@findex YYACCEPT
5637Return immediately with value 0 (to report success).
2a8d363a 5638@end defmac
bfa74976 5639
2a8d363a 5640@defmac YYABORT
bfa74976
RS
5641@findex YYABORT
5642Return immediately with value 1 (to report failure).
2a8d363a
AD
5643@end defmac
5644
5645If you use a reentrant parser, you can optionally pass additional
5646parameter information to it in a reentrant way. To do so, use the
5647declaration @code{%parse-param}:
5648
feeb0eda 5649@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5650@findex %parse-param
287c78f6
PE
5651Declare that an argument declared by the braced-code
5652@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5653The @var{argument-declaration} is used when declaring
feeb0eda
PE
5654functions or prototypes. The last identifier in
5655@var{argument-declaration} must be the argument name.
2a8d363a
AD
5656@end deffn
5657
5658Here's an example. Write this in the parser:
5659
5660@example
feeb0eda
PE
5661%parse-param @{int *nastiness@}
5662%parse-param @{int *randomness@}
2a8d363a
AD
5663@end example
5664
5665@noindent
5666Then call the parser like this:
5667
5668@example
5669@{
5670 int nastiness, randomness;
5671 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5672 value = yyparse (&nastiness, &randomness);
5673 @dots{}
5674@}
5675@end example
5676
5677@noindent
5678In the grammar actions, use expressions like this to refer to the data:
5679
5680@example
5681exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5682@end example
5683
9987d1b3
JD
5684@node Push Parser Function
5685@section The Push Parser Function @code{yypush_parse}
5686@findex yypush_parse
5687
59da312b
JD
5688(The current push parsing interface is experimental and may evolve.
5689More user feedback will help to stabilize it.)
5690
f4101aa6 5691You call the function @code{yypush_parse} to parse a single token. This
f37495f6
JD
5692function is available if either the @code{%define api.push-pull push} or
5693@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5694@xref{Push Decl, ,A Push Parser}.
5695
5696@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5697The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5698following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5699is required to finish parsing the grammar.
5700@end deftypefun
5701
5702@node Pull Parser Function
5703@section The Pull Parser Function @code{yypull_parse}
5704@findex yypull_parse
5705
59da312b
JD
5706(The current push parsing interface is experimental and may evolve.
5707More user feedback will help to stabilize it.)
5708
f4101aa6 5709You call the function @code{yypull_parse} to parse the rest of the input
f37495f6 5710stream. This function is available if the @code{%define api.push-pull both}
f4101aa6 5711declaration is used.
9987d1b3
JD
5712@xref{Push Decl, ,A Push Parser}.
5713
5714@deftypefun int yypull_parse (yypstate *yyps)
5715The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5716@end deftypefun
5717
5718@node Parser Create Function
5719@section The Parser Create Function @code{yystate_new}
5720@findex yypstate_new
5721
59da312b
JD
5722(The current push parsing interface is experimental and may evolve.
5723More user feedback will help to stabilize it.)
5724
f4101aa6 5725You call the function @code{yypstate_new} to create a new parser instance.
f37495f6
JD
5726This function is available if either the @code{%define api.push-pull push} or
5727@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5728@xref{Push Decl, ,A Push Parser}.
5729
5730@deftypefun yypstate *yypstate_new (void)
c781580d 5731The function will return a valid parser instance if there was memory available
333e670c
JD
5732or 0 if no memory was available.
5733In impure mode, it will also return 0 if a parser instance is currently
5734allocated.
9987d1b3
JD
5735@end deftypefun
5736
5737@node Parser Delete Function
5738@section The Parser Delete Function @code{yystate_delete}
5739@findex yypstate_delete
5740
59da312b
JD
5741(The current push parsing interface is experimental and may evolve.
5742More user feedback will help to stabilize it.)
5743
9987d1b3 5744You call the function @code{yypstate_delete} to delete a parser instance.
f37495f6
JD
5745function is available if either the @code{%define api.push-pull push} or
5746@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5747@xref{Push Decl, ,A Push Parser}.
5748
5749@deftypefun void yypstate_delete (yypstate *yyps)
5750This function will reclaim the memory associated with a parser instance.
5751After this call, you should no longer attempt to use the parser instance.
5752@end deftypefun
bfa74976 5753
342b8b6e 5754@node Lexical
bfa74976
RS
5755@section The Lexical Analyzer Function @code{yylex}
5756@findex yylex
5757@cindex lexical analyzer
5758
5759The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5760the input stream and returns them to the parser. Bison does not create
5761this function automatically; you must write it so that @code{yyparse} can
5762call it. The function is sometimes referred to as a lexical scanner.
5763
5764In simple programs, @code{yylex} is often defined at the end of the Bison
5765grammar file. If @code{yylex} is defined in a separate source file, you
5766need to arrange for the token-type macro definitions to be available there.
5767To do this, use the @samp{-d} option when you run Bison, so that it will
5768write these macro definitions into a separate header file
5769@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 5770that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
5771
5772@menu
5773* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
5774* Token Values:: How @code{yylex} must return the semantic value
5775 of the token it has read.
5776* Token Locations:: How @code{yylex} must return the text location
5777 (line number, etc.) of the token, if the
5778 actions want that.
5779* Pure Calling:: How the calling convention differs in a pure parser
5780 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5781@end menu
5782
342b8b6e 5783@node Calling Convention
bfa74976
RS
5784@subsection Calling Convention for @code{yylex}
5785
72d2299c
PE
5786The value that @code{yylex} returns must be the positive numeric code
5787for the type of token it has just found; a zero or negative value
5788signifies end-of-input.
bfa74976
RS
5789
5790When a token is referred to in the grammar rules by a name, that name
5791in the parser file becomes a C macro whose definition is the proper
5792numeric code for that token type. So @code{yylex} can use the name
5793to indicate that type. @xref{Symbols}.
5794
5795When a token is referred to in the grammar rules by a character literal,
5796the numeric code for that character is also the code for the token type.
72d2299c
PE
5797So @code{yylex} can simply return that character code, possibly converted
5798to @code{unsigned char} to avoid sign-extension. The null character
5799must not be used this way, because its code is zero and that
bfa74976
RS
5800signifies end-of-input.
5801
5802Here is an example showing these things:
5803
5804@example
13863333
AD
5805int
5806yylex (void)
bfa74976
RS
5807@{
5808 @dots{}
72d2299c 5809 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5810 return 0;
5811 @dots{}
5812 if (c == '+' || c == '-')
72d2299c 5813 return c; /* Assume token type for `+' is '+'. */
bfa74976 5814 @dots{}
72d2299c 5815 return INT; /* Return the type of the token. */
bfa74976
RS
5816 @dots{}
5817@}
5818@end example
5819
5820@noindent
5821This interface has been designed so that the output from the @code{lex}
5822utility can be used without change as the definition of @code{yylex}.
5823
931c7513
RS
5824If the grammar uses literal string tokens, there are two ways that
5825@code{yylex} can determine the token type codes for them:
5826
5827@itemize @bullet
5828@item
5829If the grammar defines symbolic token names as aliases for the
5830literal string tokens, @code{yylex} can use these symbolic names like
5831all others. In this case, the use of the literal string tokens in
5832the grammar file has no effect on @code{yylex}.
5833
5834@item
9ecbd125 5835@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5836table. The index of the token in the table is the token type's code.
9ecbd125 5837The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5838double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5839token's characters are escaped as necessary to be suitable as input
5840to Bison.
931c7513 5841
9e0876fb
PE
5842Here's code for looking up a multicharacter token in @code{yytname},
5843assuming that the characters of the token are stored in
5844@code{token_buffer}, and assuming that the token does not contain any
5845characters like @samp{"} that require escaping.
931c7513
RS
5846
5847@smallexample
5848for (i = 0; i < YYNTOKENS; i++)
5849 @{
5850 if (yytname[i] != 0
5851 && yytname[i][0] == '"'
68449b3a
PE
5852 && ! strncmp (yytname[i] + 1, token_buffer,
5853 strlen (token_buffer))
931c7513
RS
5854 && yytname[i][strlen (token_buffer) + 1] == '"'
5855 && yytname[i][strlen (token_buffer) + 2] == 0)
5856 break;
5857 @}
5858@end smallexample
5859
5860The @code{yytname} table is generated only if you use the
8c9a50be 5861@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5862@end itemize
5863
342b8b6e 5864@node Token Values
bfa74976
RS
5865@subsection Semantic Values of Tokens
5866
5867@vindex yylval
9d9b8b70 5868In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5869be stored into the global variable @code{yylval}. When you are using
5870just one data type for semantic values, @code{yylval} has that type.
5871Thus, if the type is @code{int} (the default), you might write this in
5872@code{yylex}:
5873
5874@example
5875@group
5876 @dots{}
72d2299c
PE
5877 yylval = value; /* Put value onto Bison stack. */
5878 return INT; /* Return the type of the token. */
bfa74976
RS
5879 @dots{}
5880@end group
5881@end example
5882
5883When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5884made from the @code{%union} declaration (@pxref{Union Decl, ,The
5885Collection of Value Types}). So when you store a token's value, you
5886must use the proper member of the union. If the @code{%union}
5887declaration looks like this:
bfa74976
RS
5888
5889@example
5890@group
5891%union @{
5892 int intval;
5893 double val;
5894 symrec *tptr;
5895@}
5896@end group
5897@end example
5898
5899@noindent
5900then the code in @code{yylex} might look like this:
5901
5902@example
5903@group
5904 @dots{}
72d2299c
PE
5905 yylval.intval = value; /* Put value onto Bison stack. */
5906 return INT; /* Return the type of the token. */
bfa74976
RS
5907 @dots{}
5908@end group
5909@end example
5910
95923bd6
AD
5911@node Token Locations
5912@subsection Textual Locations of Tokens
bfa74976
RS
5913
5914@vindex yylloc
847bf1f5 5915If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5916Tracking Locations}) in actions to keep track of the textual locations
5917of tokens and groupings, then you must provide this information in
5918@code{yylex}. The function @code{yyparse} expects to find the textual
5919location of a token just parsed in the global variable @code{yylloc}.
5920So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5921
5922By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5923initialize the members that are going to be used by the actions. The
5924four members are called @code{first_line}, @code{first_column},
5925@code{last_line} and @code{last_column}. Note that the use of this
5926feature makes the parser noticeably slower.
bfa74976
RS
5927
5928@tindex YYLTYPE
5929The data type of @code{yylloc} has the name @code{YYLTYPE}.
5930
342b8b6e 5931@node Pure Calling
c656404a 5932@subsection Calling Conventions for Pure Parsers
bfa74976 5933
d9df47b6 5934When you use the Bison declaration @code{%define api.pure} to request a
e425e872
RS
5935pure, reentrant parser, the global communication variables @code{yylval}
5936and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5937Parser}.) In such parsers the two global variables are replaced by
5938pointers passed as arguments to @code{yylex}. You must declare them as
5939shown here, and pass the information back by storing it through those
5940pointers.
bfa74976
RS
5941
5942@example
13863333
AD
5943int
5944yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5945@{
5946 @dots{}
5947 *lvalp = value; /* Put value onto Bison stack. */
5948 return INT; /* Return the type of the token. */
5949 @dots{}
5950@}
5951@end example
5952
5953If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5954textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5955this case, omit the second argument; @code{yylex} will be called with
5956only one argument.
5957
e425e872 5958
2a8d363a
AD
5959If you wish to pass the additional parameter data to @code{yylex}, use
5960@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5961Function}).
e425e872 5962
feeb0eda 5963@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5964@findex %lex-param
287c78f6
PE
5965Declare that the braced-code @var{argument-declaration} is an
5966additional @code{yylex} argument declaration.
2a8d363a 5967@end deffn
e425e872 5968
2a8d363a 5969For instance:
e425e872
RS
5970
5971@example
feeb0eda
PE
5972%parse-param @{int *nastiness@}
5973%lex-param @{int *nastiness@}
5974%parse-param @{int *randomness@}
e425e872
RS
5975@end example
5976
5977@noindent
2a8d363a 5978results in the following signature:
e425e872
RS
5979
5980@example
2a8d363a
AD
5981int yylex (int *nastiness);
5982int yyparse (int *nastiness, int *randomness);
e425e872
RS
5983@end example
5984
d9df47b6 5985If @code{%define api.pure} is added:
c656404a
RS
5986
5987@example
2a8d363a
AD
5988int yylex (YYSTYPE *lvalp, int *nastiness);
5989int yyparse (int *nastiness, int *randomness);
c656404a
RS
5990@end example
5991
2a8d363a 5992@noindent
d9df47b6 5993and finally, if both @code{%define api.pure} and @code{%locations} are used:
c656404a 5994
2a8d363a
AD
5995@example
5996int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5997int yyparse (int *nastiness, int *randomness);
5998@end example
931c7513 5999
342b8b6e 6000@node Error Reporting
bfa74976
RS
6001@section The Error Reporting Function @code{yyerror}
6002@cindex error reporting function
6003@findex yyerror
6004@cindex parse error
6005@cindex syntax error
6006
6e649e65 6007The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 6008whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6009action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6010macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6011in Actions}).
bfa74976
RS
6012
6013The Bison parser expects to report the error by calling an error
6014reporting function named @code{yyerror}, which you must supply. It is
6015called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6016receives one argument. For a syntax error, the string is normally
6017@w{@code{"syntax error"}}.
bfa74976 6018
2a8d363a
AD
6019@findex %error-verbose
6020If you invoke the directive @code{%error-verbose} in the Bison
6021declarations section (@pxref{Bison Declarations, ,The Bison Declarations
6022Section}), then Bison provides a more verbose and specific error message
6e649e65 6023string instead of just plain @w{@code{"syntax error"}}.
bfa74976 6024
1a059451
PE
6025The parser can detect one other kind of error: memory exhaustion. This
6026can happen when the input contains constructions that are very deeply
bfa74976 6027nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6028parser normally extends its stack automatically up to a very large limit. But
6029if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6030fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6031
6032In some cases diagnostics like @w{@code{"syntax error"}} are
6033translated automatically from English to some other language before
6034they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6035
6036The following definition suffices in simple programs:
6037
6038@example
6039@group
13863333 6040void
38a92d50 6041yyerror (char const *s)
bfa74976
RS
6042@{
6043@end group
6044@group
6045 fprintf (stderr, "%s\n", s);
6046@}
6047@end group
6048@end example
6049
6050After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6051error recovery if you have written suitable error recovery grammar rules
6052(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6053immediately return 1.
6054
93724f13 6055Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 6056an access to the current location.
35430378 6057This is indeed the case for the GLR
2a8d363a 6058parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6059@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6060@code{yyerror} are:
6061
6062@example
38a92d50
PE
6063void yyerror (char const *msg); /* Yacc parsers. */
6064void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6065@end example
6066
feeb0eda 6067If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6068
6069@example
b317297e
PE
6070void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6071void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6072@end example
6073
35430378 6074Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6075convention for absolutely pure parsers, i.e., when the calling
6076convention of @code{yylex} @emph{and} the calling convention of
d9df47b6
JD
6077@code{%define api.pure} are pure.
6078I.e.:
2a8d363a
AD
6079
6080@example
6081/* Location tracking. */
6082%locations
6083/* Pure yylex. */
d9df47b6 6084%define api.pure
feeb0eda 6085%lex-param @{int *nastiness@}
2a8d363a 6086/* Pure yyparse. */
feeb0eda
PE
6087%parse-param @{int *nastiness@}
6088%parse-param @{int *randomness@}
2a8d363a
AD
6089@end example
6090
6091@noindent
6092results in the following signatures for all the parser kinds:
6093
6094@example
6095int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6096int yyparse (int *nastiness, int *randomness);
93724f13
AD
6097void yyerror (YYLTYPE *locp,
6098 int *nastiness, int *randomness,
38a92d50 6099 char const *msg);
2a8d363a
AD
6100@end example
6101
1c0c3e95 6102@noindent
38a92d50
PE
6103The prototypes are only indications of how the code produced by Bison
6104uses @code{yyerror}. Bison-generated code always ignores the returned
6105value, so @code{yyerror} can return any type, including @code{void}.
6106Also, @code{yyerror} can be a variadic function; that is why the
6107message is always passed last.
6108
6109Traditionally @code{yyerror} returns an @code{int} that is always
6110ignored, but this is purely for historical reasons, and @code{void} is
6111preferable since it more accurately describes the return type for
6112@code{yyerror}.
93724f13 6113
bfa74976
RS
6114@vindex yynerrs
6115The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6116reported so far. Normally this variable is global; but if you
704a47c4
AD
6117request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6118then it is a local variable which only the actions can access.
bfa74976 6119
342b8b6e 6120@node Action Features
bfa74976
RS
6121@section Special Features for Use in Actions
6122@cindex summary, action features
6123@cindex action features summary
6124
6125Here is a table of Bison constructs, variables and macros that
6126are useful in actions.
6127
18b519c0 6128@deffn {Variable} $$
bfa74976
RS
6129Acts like a variable that contains the semantic value for the
6130grouping made by the current rule. @xref{Actions}.
18b519c0 6131@end deffn
bfa74976 6132
18b519c0 6133@deffn {Variable} $@var{n}
bfa74976
RS
6134Acts like a variable that contains the semantic value for the
6135@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6136@end deffn
bfa74976 6137
18b519c0 6138@deffn {Variable} $<@var{typealt}>$
bfa74976 6139Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6140specified by the @code{%union} declaration. @xref{Action Types, ,Data
6141Types of Values in Actions}.
18b519c0 6142@end deffn
bfa74976 6143
18b519c0 6144@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6145Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6146union specified by the @code{%union} declaration.
e0c471a9 6147@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6148@end deffn
bfa74976 6149
18b519c0 6150@deffn {Macro} YYABORT;
bfa74976
RS
6151Return immediately from @code{yyparse}, indicating failure.
6152@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6153@end deffn
bfa74976 6154
18b519c0 6155@deffn {Macro} YYACCEPT;
bfa74976
RS
6156Return immediately from @code{yyparse}, indicating success.
6157@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6158@end deffn
bfa74976 6159
18b519c0 6160@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6161@findex YYBACKUP
6162Unshift a token. This macro is allowed only for rules that reduce
742e4900 6163a single value, and only when there is no lookahead token.
35430378 6164It is also disallowed in GLR parsers.
742e4900 6165It installs a lookahead token with token type @var{token} and
bfa74976
RS
6166semantic value @var{value}; then it discards the value that was
6167going to be reduced by this rule.
6168
6169If the macro is used when it is not valid, such as when there is
742e4900 6170a lookahead token already, then it reports a syntax error with
bfa74976
RS
6171a message @samp{cannot back up} and performs ordinary error
6172recovery.
6173
6174In either case, the rest of the action is not executed.
18b519c0 6175@end deffn
bfa74976 6176
18b519c0 6177@deffn {Macro} YYEMPTY
bfa74976 6178@vindex YYEMPTY
742e4900 6179Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6180@end deffn
bfa74976 6181
32c29292
JD
6182@deffn {Macro} YYEOF
6183@vindex YYEOF
742e4900 6184Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6185stream.
6186@end deffn
6187
18b519c0 6188@deffn {Macro} YYERROR;
bfa74976
RS
6189@findex YYERROR
6190Cause an immediate syntax error. This statement initiates error
6191recovery just as if the parser itself had detected an error; however, it
6192does not call @code{yyerror}, and does not print any message. If you
6193want to print an error message, call @code{yyerror} explicitly before
6194the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6195@end deffn
bfa74976 6196
18b519c0 6197@deffn {Macro} YYRECOVERING
02103984
PE
6198@findex YYRECOVERING
6199The expression @code{YYRECOVERING ()} yields 1 when the parser
6200is recovering from a syntax error, and 0 otherwise.
bfa74976 6201@xref{Error Recovery}.
18b519c0 6202@end deffn
bfa74976 6203
18b519c0 6204@deffn {Variable} yychar
742e4900
JD
6205Variable containing either the lookahead token, or @code{YYEOF} when the
6206lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6207has been performed so the next token is not yet known.
6208Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6209Actions}).
742e4900 6210@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6211@end deffn
bfa74976 6212
18b519c0 6213@deffn {Macro} yyclearin;
742e4900 6214Discard the current lookahead token. This is useful primarily in
32c29292
JD
6215error rules.
6216Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6217Semantic Actions}).
6218@xref{Error Recovery}.
18b519c0 6219@end deffn
bfa74976 6220
18b519c0 6221@deffn {Macro} yyerrok;
bfa74976 6222Resume generating error messages immediately for subsequent syntax
13863333 6223errors. This is useful primarily in error rules.
bfa74976 6224@xref{Error Recovery}.
18b519c0 6225@end deffn
bfa74976 6226
32c29292 6227@deffn {Variable} yylloc
742e4900 6228Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6229to @code{YYEMPTY} or @code{YYEOF}.
6230Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6231Actions}).
6232@xref{Actions and Locations, ,Actions and Locations}.
6233@end deffn
6234
6235@deffn {Variable} yylval
742e4900 6236Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6237not set to @code{YYEMPTY} or @code{YYEOF}.
6238Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6239Actions}).
6240@xref{Actions, ,Actions}.
6241@end deffn
6242
18b519c0 6243@deffn {Value} @@$
847bf1f5 6244@findex @@$
95923bd6 6245Acts like a structure variable containing information on the textual location
847bf1f5
AD
6246of the grouping made by the current rule. @xref{Locations, ,
6247Tracking Locations}.
bfa74976 6248
847bf1f5
AD
6249@c Check if those paragraphs are still useful or not.
6250
6251@c @example
6252@c struct @{
6253@c int first_line, last_line;
6254@c int first_column, last_column;
6255@c @};
6256@c @end example
6257
6258@c Thus, to get the starting line number of the third component, you would
6259@c use @samp{@@3.first_line}.
bfa74976 6260
847bf1f5
AD
6261@c In order for the members of this structure to contain valid information,
6262@c you must make @code{yylex} supply this information about each token.
6263@c If you need only certain members, then @code{yylex} need only fill in
6264@c those members.
bfa74976 6265
847bf1f5 6266@c The use of this feature makes the parser noticeably slower.
18b519c0 6267@end deffn
847bf1f5 6268
18b519c0 6269@deffn {Value} @@@var{n}
847bf1f5 6270@findex @@@var{n}
95923bd6 6271Acts like a structure variable containing information on the textual location
847bf1f5
AD
6272of the @var{n}th component of the current rule. @xref{Locations, ,
6273Tracking Locations}.
18b519c0 6274@end deffn
bfa74976 6275
f7ab6a50
PE
6276@node Internationalization
6277@section Parser Internationalization
6278@cindex internationalization
6279@cindex i18n
6280@cindex NLS
6281@cindex gettext
6282@cindex bison-po
6283
6284A Bison-generated parser can print diagnostics, including error and
6285tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6286also supports outputting diagnostics in the user's native language. To
6287make this work, the user should set the usual environment variables.
6288@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6289For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
35430378 6290set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6291encoding. The exact set of available locales depends on the user's
6292installation.
6293
6294The maintainer of a package that uses a Bison-generated parser enables
6295the internationalization of the parser's output through the following
35430378
JD
6296steps. Here we assume a package that uses GNU Autoconf and
6297GNU Automake.
f7ab6a50
PE
6298
6299@enumerate
6300@item
30757c8c 6301@cindex bison-i18n.m4
35430378 6302Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6303by the package---often called @file{m4}---copy the
6304@file{bison-i18n.m4} file installed by Bison under
6305@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6306For example:
6307
6308@example
6309cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6310@end example
6311
6312@item
30757c8c
PE
6313@findex BISON_I18N
6314@vindex BISON_LOCALEDIR
6315@vindex YYENABLE_NLS
f7ab6a50
PE
6316In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6317invocation, add an invocation of @code{BISON_I18N}. This macro is
6318defined in the file @file{bison-i18n.m4} that you copied earlier. It
6319causes @samp{configure} to find the value of the
30757c8c
PE
6320@code{BISON_LOCALEDIR} variable, and it defines the source-language
6321symbol @code{YYENABLE_NLS} to enable translations in the
6322Bison-generated parser.
f7ab6a50
PE
6323
6324@item
6325In the @code{main} function of your program, designate the directory
6326containing Bison's runtime message catalog, through a call to
6327@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6328For example:
6329
6330@example
6331bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6332@end example
6333
6334Typically this appears after any other call @code{bindtextdomain
6335(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6336@samp{BISON_LOCALEDIR} to be defined as a string through the
6337@file{Makefile}.
6338
6339@item
6340In the @file{Makefile.am} that controls the compilation of the @code{main}
6341function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6342either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6343
6344@example
6345DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6346@end example
6347
6348or:
6349
6350@example
6351AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6352@end example
6353
6354@item
6355Finally, invoke the command @command{autoreconf} to generate the build
6356infrastructure.
6357@end enumerate
6358
bfa74976 6359
342b8b6e 6360@node Algorithm
13863333
AD
6361@chapter The Bison Parser Algorithm
6362@cindex Bison parser algorithm
bfa74976
RS
6363@cindex algorithm of parser
6364@cindex shifting
6365@cindex reduction
6366@cindex parser stack
6367@cindex stack, parser
6368
6369As Bison reads tokens, it pushes them onto a stack along with their
6370semantic values. The stack is called the @dfn{parser stack}. Pushing a
6371token is traditionally called @dfn{shifting}.
6372
6373For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6374@samp{3} to come. The stack will have four elements, one for each token
6375that was shifted.
6376
6377But the stack does not always have an element for each token read. When
6378the last @var{n} tokens and groupings shifted match the components of a
6379grammar rule, they can be combined according to that rule. This is called
6380@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6381single grouping whose symbol is the result (left hand side) of that rule.
6382Running the rule's action is part of the process of reduction, because this
6383is what computes the semantic value of the resulting grouping.
6384
6385For example, if the infix calculator's parser stack contains this:
6386
6387@example
63881 + 5 * 3
6389@end example
6390
6391@noindent
6392and the next input token is a newline character, then the last three
6393elements can be reduced to 15 via the rule:
6394
6395@example
6396expr: expr '*' expr;
6397@end example
6398
6399@noindent
6400Then the stack contains just these three elements:
6401
6402@example
64031 + 15
6404@end example
6405
6406@noindent
6407At this point, another reduction can be made, resulting in the single value
640816. Then the newline token can be shifted.
6409
6410The parser tries, by shifts and reductions, to reduce the entire input down
6411to a single grouping whose symbol is the grammar's start-symbol
6412(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6413
6414This kind of parser is known in the literature as a bottom-up parser.
6415
6416@menu
742e4900 6417* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6418* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6419* Precedence:: Operator precedence works by resolving conflicts.
6420* Contextual Precedence:: When an operator's precedence depends on context.
6421* Parser States:: The parser is a finite-state-machine with stack.
6422* Reduce/Reduce:: When two rules are applicable in the same situation.
f56274a8 6423* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6424* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6425* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6426@end menu
6427
742e4900
JD
6428@node Lookahead
6429@section Lookahead Tokens
6430@cindex lookahead token
bfa74976
RS
6431
6432The Bison parser does @emph{not} always reduce immediately as soon as the
6433last @var{n} tokens and groupings match a rule. This is because such a
6434simple strategy is inadequate to handle most languages. Instead, when a
6435reduction is possible, the parser sometimes ``looks ahead'' at the next
6436token in order to decide what to do.
6437
6438When a token is read, it is not immediately shifted; first it becomes the
742e4900 6439@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6440perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6441the lookahead token remains off to the side. When no more reductions
6442should take place, the lookahead token is shifted onto the stack. This
bfa74976 6443does not mean that all possible reductions have been done; depending on the
742e4900 6444token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6445application.
6446
742e4900 6447Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6448expressions which contain binary addition operators and postfix unary
6449factorial operators (@samp{!}), and allow parentheses for grouping.
6450
6451@example
6452@group
6453expr: term '+' expr
6454 | term
6455 ;
6456@end group
6457
6458@group
6459term: '(' expr ')'
6460 | term '!'
6461 | NUMBER
6462 ;
6463@end group
6464@end example
6465
6466Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6467should be done? If the following token is @samp{)}, then the first three
6468tokens must be reduced to form an @code{expr}. This is the only valid
6469course, because shifting the @samp{)} would produce a sequence of symbols
6470@w{@code{term ')'}}, and no rule allows this.
6471
6472If the following token is @samp{!}, then it must be shifted immediately so
6473that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6474parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6475@code{expr}. It would then be impossible to shift the @samp{!} because
6476doing so would produce on the stack the sequence of symbols @code{expr
6477'!'}. No rule allows that sequence.
6478
6479@vindex yychar
32c29292
JD
6480@vindex yylval
6481@vindex yylloc
742e4900 6482The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6483Its semantic value and location, if any, are stored in the variables
6484@code{yylval} and @code{yylloc}.
bfa74976
RS
6485@xref{Action Features, ,Special Features for Use in Actions}.
6486
342b8b6e 6487@node Shift/Reduce
bfa74976
RS
6488@section Shift/Reduce Conflicts
6489@cindex conflicts
6490@cindex shift/reduce conflicts
6491@cindex dangling @code{else}
6492@cindex @code{else}, dangling
6493
6494Suppose we are parsing a language which has if-then and if-then-else
6495statements, with a pair of rules like this:
6496
6497@example
6498@group
6499if_stmt:
6500 IF expr THEN stmt
6501 | IF expr THEN stmt ELSE stmt
6502 ;
6503@end group
6504@end example
6505
6506@noindent
6507Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6508terminal symbols for specific keyword tokens.
6509
742e4900 6510When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6511contents of the stack (assuming the input is valid) are just right for
6512reduction by the first rule. But it is also legitimate to shift the
6513@code{ELSE}, because that would lead to eventual reduction by the second
6514rule.
6515
6516This situation, where either a shift or a reduction would be valid, is
6517called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6518these conflicts by choosing to shift, unless otherwise directed by
6519operator precedence declarations. To see the reason for this, let's
6520contrast it with the other alternative.
6521
6522Since the parser prefers to shift the @code{ELSE}, the result is to attach
6523the else-clause to the innermost if-statement, making these two inputs
6524equivalent:
6525
6526@example
6527if x then if y then win (); else lose;
6528
6529if x then do; if y then win (); else lose; end;
6530@end example
6531
6532But if the parser chose to reduce when possible rather than shift, the
6533result would be to attach the else-clause to the outermost if-statement,
6534making these two inputs equivalent:
6535
6536@example
6537if x then if y then win (); else lose;
6538
6539if x then do; if y then win (); end; else lose;
6540@end example
6541
6542The conflict exists because the grammar as written is ambiguous: either
6543parsing of the simple nested if-statement is legitimate. The established
6544convention is that these ambiguities are resolved by attaching the
6545else-clause to the innermost if-statement; this is what Bison accomplishes
6546by choosing to shift rather than reduce. (It would ideally be cleaner to
6547write an unambiguous grammar, but that is very hard to do in this case.)
6548This particular ambiguity was first encountered in the specifications of
6549Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6550
6551To avoid warnings from Bison about predictable, legitimate shift/reduce
cf22447c
JD
6552conflicts, use the @code{%expect @var{n}} declaration.
6553There will be no warning as long as the number of shift/reduce conflicts
6554is exactly @var{n}, and Bison will report an error if there is a
6555different number.
bfa74976
RS
6556@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6557
6558The definition of @code{if_stmt} above is solely to blame for the
6559conflict, but the conflict does not actually appear without additional
6560rules. Here is a complete Bison input file that actually manifests the
6561conflict:
6562
6563@example
6564@group
6565%token IF THEN ELSE variable
6566%%
6567@end group
6568@group
6569stmt: expr
6570 | if_stmt
6571 ;
6572@end group
6573
6574@group
6575if_stmt:
6576 IF expr THEN stmt
6577 | IF expr THEN stmt ELSE stmt
6578 ;
6579@end group
6580
6581expr: variable
6582 ;
6583@end example
6584
342b8b6e 6585@node Precedence
bfa74976
RS
6586@section Operator Precedence
6587@cindex operator precedence
6588@cindex precedence of operators
6589
6590Another situation where shift/reduce conflicts appear is in arithmetic
6591expressions. Here shifting is not always the preferred resolution; the
6592Bison declarations for operator precedence allow you to specify when to
6593shift and when to reduce.
6594
6595@menu
6596* Why Precedence:: An example showing why precedence is needed.
6597* Using Precedence:: How to specify precedence in Bison grammars.
6598* Precedence Examples:: How these features are used in the previous example.
6599* How Precedence:: How they work.
6600@end menu
6601
342b8b6e 6602@node Why Precedence
bfa74976
RS
6603@subsection When Precedence is Needed
6604
6605Consider the following ambiguous grammar fragment (ambiguous because the
6606input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6607
6608@example
6609@group
6610expr: expr '-' expr
6611 | expr '*' expr
6612 | expr '<' expr
6613 | '(' expr ')'
6614 @dots{}
6615 ;
6616@end group
6617@end example
6618
6619@noindent
6620Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6621should it reduce them via the rule for the subtraction operator? It
6622depends on the next token. Of course, if the next token is @samp{)}, we
6623must reduce; shifting is invalid because no single rule can reduce the
6624token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6625the next token is @samp{*} or @samp{<}, we have a choice: either
6626shifting or reduction would allow the parse to complete, but with
6627different results.
6628
6629To decide which one Bison should do, we must consider the results. If
6630the next operator token @var{op} is shifted, then it must be reduced
6631first in order to permit another opportunity to reduce the difference.
6632The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6633hand, if the subtraction is reduced before shifting @var{op}, the result
6634is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6635reduce should depend on the relative precedence of the operators
6636@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6637@samp{<}.
bfa74976
RS
6638
6639@cindex associativity
6640What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6641@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6642operators we prefer the former, which is called @dfn{left association}.
6643The latter alternative, @dfn{right association}, is desirable for
6644assignment operators. The choice of left or right association is a
6645matter of whether the parser chooses to shift or reduce when the stack
742e4900 6646contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6647makes right-associativity.
bfa74976 6648
342b8b6e 6649@node Using Precedence
bfa74976
RS
6650@subsection Specifying Operator Precedence
6651@findex %left
6652@findex %right
6653@findex %nonassoc
6654
6655Bison allows you to specify these choices with the operator precedence
6656declarations @code{%left} and @code{%right}. Each such declaration
6657contains a list of tokens, which are operators whose precedence and
6658associativity is being declared. The @code{%left} declaration makes all
6659those operators left-associative and the @code{%right} declaration makes
6660them right-associative. A third alternative is @code{%nonassoc}, which
6661declares that it is a syntax error to find the same operator twice ``in a
6662row''.
6663
6664The relative precedence of different operators is controlled by the
6665order in which they are declared. The first @code{%left} or
6666@code{%right} declaration in the file declares the operators whose
6667precedence is lowest, the next such declaration declares the operators
6668whose precedence is a little higher, and so on.
6669
342b8b6e 6670@node Precedence Examples
bfa74976
RS
6671@subsection Precedence Examples
6672
6673In our example, we would want the following declarations:
6674
6675@example
6676%left '<'
6677%left '-'
6678%left '*'
6679@end example
6680
6681In a more complete example, which supports other operators as well, we
6682would declare them in groups of equal precedence. For example, @code{'+'} is
6683declared with @code{'-'}:
6684
6685@example
6686%left '<' '>' '=' NE LE GE
6687%left '+' '-'
6688%left '*' '/'
6689@end example
6690
6691@noindent
6692(Here @code{NE} and so on stand for the operators for ``not equal''
6693and so on. We assume that these tokens are more than one character long
6694and therefore are represented by names, not character literals.)
6695
342b8b6e 6696@node How Precedence
bfa74976
RS
6697@subsection How Precedence Works
6698
6699The first effect of the precedence declarations is to assign precedence
6700levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6701precedence levels to certain rules: each rule gets its precedence from
6702the last terminal symbol mentioned in the components. (You can also
6703specify explicitly the precedence of a rule. @xref{Contextual
6704Precedence, ,Context-Dependent Precedence}.)
6705
6706Finally, the resolution of conflicts works by comparing the precedence
742e4900 6707of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6708token's precedence is higher, the choice is to shift. If the rule's
6709precedence is higher, the choice is to reduce. If they have equal
6710precedence, the choice is made based on the associativity of that
6711precedence level. The verbose output file made by @samp{-v}
6712(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6713resolved.
bfa74976
RS
6714
6715Not all rules and not all tokens have precedence. If either the rule or
742e4900 6716the lookahead token has no precedence, then the default is to shift.
bfa74976 6717
342b8b6e 6718@node Contextual Precedence
bfa74976
RS
6719@section Context-Dependent Precedence
6720@cindex context-dependent precedence
6721@cindex unary operator precedence
6722@cindex precedence, context-dependent
6723@cindex precedence, unary operator
6724@findex %prec
6725
6726Often the precedence of an operator depends on the context. This sounds
6727outlandish at first, but it is really very common. For example, a minus
6728sign typically has a very high precedence as a unary operator, and a
6729somewhat lower precedence (lower than multiplication) as a binary operator.
6730
6731The Bison precedence declarations, @code{%left}, @code{%right} and
6732@code{%nonassoc}, can only be used once for a given token; so a token has
6733only one precedence declared in this way. For context-dependent
6734precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6735modifier for rules.
bfa74976
RS
6736
6737The @code{%prec} modifier declares the precedence of a particular rule by
6738specifying a terminal symbol whose precedence should be used for that rule.
6739It's not necessary for that symbol to appear otherwise in the rule. The
6740modifier's syntax is:
6741
6742@example
6743%prec @var{terminal-symbol}
6744@end example
6745
6746@noindent
6747and it is written after the components of the rule. Its effect is to
6748assign the rule the precedence of @var{terminal-symbol}, overriding
6749the precedence that would be deduced for it in the ordinary way. The
6750altered rule precedence then affects how conflicts involving that rule
6751are resolved (@pxref{Precedence, ,Operator Precedence}).
6752
6753Here is how @code{%prec} solves the problem of unary minus. First, declare
6754a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6755are no tokens of this type, but the symbol serves to stand for its
6756precedence:
6757
6758@example
6759@dots{}
6760%left '+' '-'
6761%left '*'
6762%left UMINUS
6763@end example
6764
6765Now the precedence of @code{UMINUS} can be used in specific rules:
6766
6767@example
6768@group
6769exp: @dots{}
6770 | exp '-' exp
6771 @dots{}
6772 | '-' exp %prec UMINUS
6773@end group
6774@end example
6775
91d2c560 6776@ifset defaultprec
39a06c25
PE
6777If you forget to append @code{%prec UMINUS} to the rule for unary
6778minus, Bison silently assumes that minus has its usual precedence.
6779This kind of problem can be tricky to debug, since one typically
6780discovers the mistake only by testing the code.
6781
22fccf95 6782The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6783this kind of problem systematically. It causes rules that lack a
6784@code{%prec} modifier to have no precedence, even if the last terminal
6785symbol mentioned in their components has a declared precedence.
6786
22fccf95 6787If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6788for all rules that participate in precedence conflict resolution.
6789Then you will see any shift/reduce conflict until you tell Bison how
6790to resolve it, either by changing your grammar or by adding an
6791explicit precedence. This will probably add declarations to the
6792grammar, but it helps to protect against incorrect rule precedences.
6793
22fccf95
PE
6794The effect of @code{%no-default-prec;} can be reversed by giving
6795@code{%default-prec;}, which is the default.
91d2c560 6796@end ifset
39a06c25 6797
342b8b6e 6798@node Parser States
bfa74976
RS
6799@section Parser States
6800@cindex finite-state machine
6801@cindex parser state
6802@cindex state (of parser)
6803
6804The function @code{yyparse} is implemented using a finite-state machine.
6805The values pushed on the parser stack are not simply token type codes; they
6806represent the entire sequence of terminal and nonterminal symbols at or
6807near the top of the stack. The current state collects all the information
6808about previous input which is relevant to deciding what to do next.
6809
742e4900
JD
6810Each time a lookahead token is read, the current parser state together
6811with the type of lookahead token are looked up in a table. This table
6812entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6813specifies the new parser state, which is pushed onto the top of the
6814parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6815This means that a certain number of tokens or groupings are taken off
6816the top of the stack, and replaced by one grouping. In other words,
6817that number of states are popped from the stack, and one new state is
6818pushed.
6819
742e4900 6820There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6821is erroneous in the current state. This causes error processing to begin
6822(@pxref{Error Recovery}).
6823
342b8b6e 6824@node Reduce/Reduce
bfa74976
RS
6825@section Reduce/Reduce Conflicts
6826@cindex reduce/reduce conflict
6827@cindex conflicts, reduce/reduce
6828
6829A reduce/reduce conflict occurs if there are two or more rules that apply
6830to the same sequence of input. This usually indicates a serious error
6831in the grammar.
6832
6833For example, here is an erroneous attempt to define a sequence
6834of zero or more @code{word} groupings.
6835
6836@example
6837sequence: /* empty */
6838 @{ printf ("empty sequence\n"); @}
6839 | maybeword
6840 | sequence word
6841 @{ printf ("added word %s\n", $2); @}
6842 ;
6843
6844maybeword: /* empty */
6845 @{ printf ("empty maybeword\n"); @}
6846 | word
6847 @{ printf ("single word %s\n", $1); @}
6848 ;
6849@end example
6850
6851@noindent
6852The error is an ambiguity: there is more than one way to parse a single
6853@code{word} into a @code{sequence}. It could be reduced to a
6854@code{maybeword} and then into a @code{sequence} via the second rule.
6855Alternatively, nothing-at-all could be reduced into a @code{sequence}
6856via the first rule, and this could be combined with the @code{word}
6857using the third rule for @code{sequence}.
6858
6859There is also more than one way to reduce nothing-at-all into a
6860@code{sequence}. This can be done directly via the first rule,
6861or indirectly via @code{maybeword} and then the second rule.
6862
6863You might think that this is a distinction without a difference, because it
6864does not change whether any particular input is valid or not. But it does
6865affect which actions are run. One parsing order runs the second rule's
6866action; the other runs the first rule's action and the third rule's action.
6867In this example, the output of the program changes.
6868
6869Bison resolves a reduce/reduce conflict by choosing to use the rule that
6870appears first in the grammar, but it is very risky to rely on this. Every
6871reduce/reduce conflict must be studied and usually eliminated. Here is the
6872proper way to define @code{sequence}:
6873
6874@example
6875sequence: /* empty */
6876 @{ printf ("empty sequence\n"); @}
6877 | sequence word
6878 @{ printf ("added word %s\n", $2); @}
6879 ;
6880@end example
6881
6882Here is another common error that yields a reduce/reduce conflict:
6883
6884@example
6885sequence: /* empty */
6886 | sequence words
6887 | sequence redirects
6888 ;
6889
6890words: /* empty */
6891 | words word
6892 ;
6893
6894redirects:/* empty */
6895 | redirects redirect
6896 ;
6897@end example
6898
6899@noindent
6900The intention here is to define a sequence which can contain either
6901@code{word} or @code{redirect} groupings. The individual definitions of
6902@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6903three together make a subtle ambiguity: even an empty input can be parsed
6904in infinitely many ways!
6905
6906Consider: nothing-at-all could be a @code{words}. Or it could be two
6907@code{words} in a row, or three, or any number. It could equally well be a
6908@code{redirects}, or two, or any number. Or it could be a @code{words}
6909followed by three @code{redirects} and another @code{words}. And so on.
6910
6911Here are two ways to correct these rules. First, to make it a single level
6912of sequence:
6913
6914@example
6915sequence: /* empty */
6916 | sequence word
6917 | sequence redirect
6918 ;
6919@end example
6920
6921Second, to prevent either a @code{words} or a @code{redirects}
6922from being empty:
6923
6924@example
6925sequence: /* empty */
6926 | sequence words
6927 | sequence redirects
6928 ;
6929
6930words: word
6931 | words word
6932 ;
6933
6934redirects:redirect
6935 | redirects redirect
6936 ;
6937@end example
6938
342b8b6e 6939@node Mystery Conflicts
bfa74976
RS
6940@section Mysterious Reduce/Reduce Conflicts
6941
6942Sometimes reduce/reduce conflicts can occur that don't look warranted.
6943Here is an example:
6944
6945@example
6946@group
6947%token ID
6948
6949%%
6950def: param_spec return_spec ','
6951 ;
6952param_spec:
6953 type
6954 | name_list ':' type
6955 ;
6956@end group
6957@group
6958return_spec:
6959 type
6960 | name ':' type
6961 ;
6962@end group
6963@group
6964type: ID
6965 ;
6966@end group
6967@group
6968name: ID
6969 ;
6970name_list:
6971 name
6972 | name ',' name_list
6973 ;
6974@end group
6975@end example
6976
6977It would seem that this grammar can be parsed with only a single token
742e4900 6978of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6979a @code{name} if a comma or colon follows, or a @code{type} if another
35430378 6980@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 6981
35430378
JD
6982@cindex LR(1)
6983@cindex LALR(1)
34a6c2d1 6984However, for historical reasons, Bison cannot by default handle all
35430378 6985LR(1) grammars.
34a6c2d1
JD
6986In this grammar, two contexts, that after an @code{ID} at the beginning
6987of a @code{param_spec} and likewise at the beginning of a
6988@code{return_spec}, are similar enough that Bison assumes they are the
6989same.
6990They appear similar because the same set of rules would be
bfa74976
RS
6991active---the rule for reducing to a @code{name} and that for reducing to
6992a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6993that the rules would require different lookahead tokens in the two
bfa74976
RS
6994contexts, so it makes a single parser state for them both. Combining
6995the two contexts causes a conflict later. In parser terminology, this
35430378 6996occurrence means that the grammar is not LALR(1).
bfa74976 6997
34a6c2d1 6998For many practical grammars (specifically those that fall into the
35430378 6999non-LR(1) class), the limitations of LALR(1) result in
34a6c2d1
JD
7000difficulties beyond just mysterious reduce/reduce conflicts.
7001The best way to fix all these problems is to select a different parser
7002table generation algorithm.
35430378 7003Either IELR(1) or canonical LR(1) would suffice, but
34a6c2d1
JD
7004the former is more efficient and easier to debug during development.
7005@xref{Decl Summary,,lr.type}, for details.
35430378 7006(Bison's IELR(1) and canonical LR(1) implementations
34a6c2d1
JD
7007are experimental.
7008More user feedback will help to stabilize them.)
7009
35430378 7010If you instead wish to work around LALR(1)'s limitations, you
34a6c2d1
JD
7011can often fix a mysterious conflict by identifying the two parser states
7012that are being confused, and adding something to make them look
7013distinct. In the above example, adding one rule to
bfa74976
RS
7014@code{return_spec} as follows makes the problem go away:
7015
7016@example
7017@group
7018%token BOGUS
7019@dots{}
7020%%
7021@dots{}
7022return_spec:
7023 type
7024 | name ':' type
7025 /* This rule is never used. */
7026 | ID BOGUS
7027 ;
7028@end group
7029@end example
7030
7031This corrects the problem because it introduces the possibility of an
7032additional active rule in the context after the @code{ID} at the beginning of
7033@code{return_spec}. This rule is not active in the corresponding context
7034in a @code{param_spec}, so the two contexts receive distinct parser states.
7035As long as the token @code{BOGUS} is never generated by @code{yylex},
7036the added rule cannot alter the way actual input is parsed.
7037
7038In this particular example, there is another way to solve the problem:
7039rewrite the rule for @code{return_spec} to use @code{ID} directly
7040instead of via @code{name}. This also causes the two confusing
7041contexts to have different sets of active rules, because the one for
7042@code{return_spec} activates the altered rule for @code{return_spec}
7043rather than the one for @code{name}.
7044
7045@example
7046param_spec:
7047 type
7048 | name_list ':' type
7049 ;
7050return_spec:
7051 type
7052 | ID ':' type
7053 ;
7054@end example
7055
35430378 7056For a more detailed exposition of LALR(1) parsers and parser
e054b190
PE
7057generators, please see:
7058Frank DeRemer and Thomas Pennello, Efficient Computation of
35430378 7059LALR(1) Look-Ahead Sets, @cite{ACM Transactions on
e054b190
PE
7060Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
7061pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
7062
fae437e8 7063@node Generalized LR Parsing
35430378
JD
7064@section Generalized LR (GLR) Parsing
7065@cindex GLR parsing
7066@cindex generalized LR (GLR) parsing
676385e2 7067@cindex ambiguous grammars
9d9b8b70 7068@cindex nondeterministic parsing
676385e2 7069
fae437e8
AD
7070Bison produces @emph{deterministic} parsers that choose uniquely
7071when to reduce and which reduction to apply
742e4900 7072based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7073As a result, normal Bison handles a proper subset of the family of
7074context-free languages.
fae437e8 7075Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7076sequence of reductions cannot have deterministic parsers in this sense.
7077The same is true of languages that require more than one symbol of
742e4900 7078lookahead, since the parser lacks the information necessary to make a
676385e2 7079decision at the point it must be made in a shift-reduce parser.
fae437e8 7080Finally, as previously mentioned (@pxref{Mystery Conflicts}),
34a6c2d1 7081there are languages where Bison's default choice of how to
676385e2
PH
7082summarize the input seen so far loses necessary information.
7083
7084When you use the @samp{%glr-parser} declaration in your grammar file,
7085Bison generates a parser that uses a different algorithm, called
35430378 7086Generalized LR (or GLR). A Bison GLR
c827f760 7087parser uses the same basic
676385e2
PH
7088algorithm for parsing as an ordinary Bison parser, but behaves
7089differently in cases where there is a shift-reduce conflict that has not
fae437e8 7090been resolved by precedence rules (@pxref{Precedence}) or a
35430378 7091reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7092situation, it
fae437e8 7093effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7094shift or reduction. These parsers then proceed as usual, consuming
7095tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7096and split further, with the result that instead of a sequence of states,
35430378 7097a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7098
7099In effect, each stack represents a guess as to what the proper parse
7100is. Additional input may indicate that a guess was wrong, in which case
7101the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7102actions generated in each stack are saved, rather than being executed
676385e2 7103immediately. When a stack disappears, its saved semantic actions never
fae437e8 7104get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7105their sets of semantic actions are both saved with the state that
7106results from the reduction. We say that two stacks are equivalent
fae437e8 7107when they both represent the same sequence of states,
676385e2
PH
7108and each pair of corresponding states represents a
7109grammar symbol that produces the same segment of the input token
7110stream.
7111
7112Whenever the parser makes a transition from having multiple
34a6c2d1 7113states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7114algorithm, after resolving and executing the saved-up actions.
7115At this transition, some of the states on the stack will have semantic
7116values that are sets (actually multisets) of possible actions. The
7117parser tries to pick one of the actions by first finding one whose rule
7118has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7119declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7120precedence, but there the same merging function is declared for both
fae437e8 7121rules by the @samp{%merge} declaration,
676385e2
PH
7122Bison resolves and evaluates both and then calls the merge function on
7123the result. Otherwise, it reports an ambiguity.
7124
35430378
JD
7125It is possible to use a data structure for the GLR parsing tree that
7126permits the processing of any LR(1) grammar in linear time (in the
c827f760 7127size of the input), any unambiguous (not necessarily
35430378 7128LR(1)) grammar in
fae437e8 7129quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7130context-free grammar in cubic worst-case time. However, Bison currently
7131uses a simpler data structure that requires time proportional to the
7132length of the input times the maximum number of stacks required for any
9d9b8b70 7133prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7134grammars can require exponential time and space to process. Such badly
7135behaving examples, however, are not generally of practical interest.
9d9b8b70 7136Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7137doubt'' only for a few tokens at a time. Therefore, the current data
35430378 7138structure should generally be adequate. On LR(1) portions of a
34a6c2d1 7139grammar, in particular, it is only slightly slower than with the
35430378 7140deterministic LR(1) Bison parser.
676385e2 7141
35430378 7142For a more detailed exposition of GLR parsers, please see: Elizabeth
f6481e2f 7143Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
35430378 7144Generalised LR Parsers, Royal Holloway, University of
f6481e2f
PE
7145London, Department of Computer Science, TR-00-12,
7146@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
7147(2000-12-24).
7148
1a059451
PE
7149@node Memory Management
7150@section Memory Management, and How to Avoid Memory Exhaustion
7151@cindex memory exhaustion
7152@cindex memory management
bfa74976
RS
7153@cindex stack overflow
7154@cindex parser stack overflow
7155@cindex overflow of parser stack
7156
1a059451 7157The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7158not reduced. When this happens, the parser function @code{yyparse}
1a059451 7159calls @code{yyerror} and then returns 2.
bfa74976 7160
c827f760 7161Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7162usually results from using a right recursion instead of a left
7163recursion, @xref{Recursion, ,Recursive Rules}.
7164
bfa74976
RS
7165@vindex YYMAXDEPTH
7166By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7167parser stack can become before memory is exhausted. Define the
bfa74976
RS
7168macro with a value that is an integer. This value is the maximum number
7169of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7170
7171The stack space allowed is not necessarily allocated. If you specify a
1a059451 7172large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7173stack at first, and then makes it bigger by stages as needed. This
7174increasing allocation happens automatically and silently. Therefore,
7175you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7176space for ordinary inputs that do not need much stack.
7177
d7e14fc0
PE
7178However, do not allow @code{YYMAXDEPTH} to be a value so large that
7179arithmetic overflow could occur when calculating the size of the stack
7180space. Also, do not allow @code{YYMAXDEPTH} to be less than
7181@code{YYINITDEPTH}.
7182
bfa74976
RS
7183@cindex default stack limit
7184The default value of @code{YYMAXDEPTH}, if you do not define it, is
718510000.
7186
7187@vindex YYINITDEPTH
7188You can control how much stack is allocated initially by defining the
34a6c2d1
JD
7189macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7190parser in C, this value must be a compile-time constant
d7e14fc0
PE
7191unless you are assuming C99 or some other target language or compiler
7192that allows variable-length arrays. The default is 200.
7193
1a059451 7194Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7195
d1a1114f 7196@c FIXME: C++ output.
c781580d 7197Because of semantic differences between C and C++, the deterministic
34a6c2d1 7198parsers in C produced by Bison cannot grow when compiled
1a059451
PE
7199by C++ compilers. In this precise case (compiling a C parser as C++) you are
7200suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
7201this deficiency in a future release.
d1a1114f 7202
342b8b6e 7203@node Error Recovery
bfa74976
RS
7204@chapter Error Recovery
7205@cindex error recovery
7206@cindex recovery from errors
7207
6e649e65 7208It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7209error. For example, a compiler should recover sufficiently to parse the
7210rest of the input file and check it for errors; a calculator should accept
7211another expression.
7212
7213In a simple interactive command parser where each input is one line, it may
7214be sufficient to allow @code{yyparse} to return 1 on error and have the
7215caller ignore the rest of the input line when that happens (and then call
7216@code{yyparse} again). But this is inadequate for a compiler, because it
7217forgets all the syntactic context leading up to the error. A syntax error
7218deep within a function in the compiler input should not cause the compiler
7219to treat the following line like the beginning of a source file.
7220
7221@findex error
7222You can define how to recover from a syntax error by writing rules to
7223recognize the special token @code{error}. This is a terminal symbol that
7224is always defined (you need not declare it) and reserved for error
7225handling. The Bison parser generates an @code{error} token whenever a
7226syntax error happens; if you have provided a rule to recognize this token
13863333 7227in the current context, the parse can continue.
bfa74976
RS
7228
7229For example:
7230
7231@example
7232stmnts: /* empty string */
7233 | stmnts '\n'
7234 | stmnts exp '\n'
7235 | stmnts error '\n'
7236@end example
7237
7238The fourth rule in this example says that an error followed by a newline
7239makes a valid addition to any @code{stmnts}.
7240
7241What happens if a syntax error occurs in the middle of an @code{exp}? The
7242error recovery rule, interpreted strictly, applies to the precise sequence
7243of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7244the middle of an @code{exp}, there will probably be some additional tokens
7245and subexpressions on the stack after the last @code{stmnts}, and there
7246will be tokens to read before the next newline. So the rule is not
7247applicable in the ordinary way.
7248
7249But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7250the semantic context and part of the input. First it discards states
7251and objects from the stack until it gets back to a state in which the
bfa74976 7252@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7253already parsed are discarded, back to the last complete @code{stmnts}.)
7254At this point the @code{error} token can be shifted. Then, if the old
742e4900 7255lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7256tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7257this example, Bison reads and discards input until the next newline so
7258that the fourth rule can apply. Note that discarded symbols are
7259possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7260Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7261
7262The choice of error rules in the grammar is a choice of strategies for
7263error recovery. A simple and useful strategy is simply to skip the rest of
7264the current input line or current statement if an error is detected:
7265
7266@example
72d2299c 7267stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7268@end example
7269
7270It is also useful to recover to the matching close-delimiter of an
7271opening-delimiter that has already been parsed. Otherwise the
7272close-delimiter will probably appear to be unmatched, and generate another,
7273spurious error message:
7274
7275@example
7276primary: '(' expr ')'
7277 | '(' error ')'
7278 @dots{}
7279 ;
7280@end example
7281
7282Error recovery strategies are necessarily guesses. When they guess wrong,
7283one syntax error often leads to another. In the above example, the error
7284recovery rule guesses that an error is due to bad input within one
7285@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7286middle of a valid @code{stmnt}. After the error recovery rule recovers
7287from the first error, another syntax error will be found straightaway,
7288since the text following the spurious semicolon is also an invalid
7289@code{stmnt}.
7290
7291To prevent an outpouring of error messages, the parser will output no error
7292message for another syntax error that happens shortly after the first; only
7293after three consecutive input tokens have been successfully shifted will
7294error messages resume.
7295
7296Note that rules which accept the @code{error} token may have actions, just
7297as any other rules can.
7298
7299@findex yyerrok
7300You can make error messages resume immediately by using the macro
7301@code{yyerrok} in an action. If you do this in the error rule's action, no
7302error messages will be suppressed. This macro requires no arguments;
7303@samp{yyerrok;} is a valid C statement.
7304
7305@findex yyclearin
742e4900 7306The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7307this is unacceptable, then the macro @code{yyclearin} may be used to clear
7308this token. Write the statement @samp{yyclearin;} in the error rule's
7309action.
32c29292 7310@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7311
6e649e65 7312For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7313called that advances the input stream to some point where parsing should
7314once again commence. The next symbol returned by the lexical scanner is
742e4900 7315probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7316with @samp{yyclearin;}.
7317
7318@vindex YYRECOVERING
02103984
PE
7319The expression @code{YYRECOVERING ()} yields 1 when the parser
7320is recovering from a syntax error, and 0 otherwise.
7321Syntax error diagnostics are suppressed while recovering from a syntax
7322error.
bfa74976 7323
342b8b6e 7324@node Context Dependency
bfa74976
RS
7325@chapter Handling Context Dependencies
7326
7327The Bison paradigm is to parse tokens first, then group them into larger
7328syntactic units. In many languages, the meaning of a token is affected by
7329its context. Although this violates the Bison paradigm, certain techniques
7330(known as @dfn{kludges}) may enable you to write Bison parsers for such
7331languages.
7332
7333@menu
7334* Semantic Tokens:: Token parsing can depend on the semantic context.
7335* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7336* Tie-in Recovery:: Lexical tie-ins have implications for how
7337 error recovery rules must be written.
7338@end menu
7339
7340(Actually, ``kludge'' means any technique that gets its job done but is
7341neither clean nor robust.)
7342
342b8b6e 7343@node Semantic Tokens
bfa74976
RS
7344@section Semantic Info in Token Types
7345
7346The C language has a context dependency: the way an identifier is used
7347depends on what its current meaning is. For example, consider this:
7348
7349@example
7350foo (x);
7351@end example
7352
7353This looks like a function call statement, but if @code{foo} is a typedef
7354name, then this is actually a declaration of @code{x}. How can a Bison
7355parser for C decide how to parse this input?
7356
35430378 7357The method used in GNU C is to have two different token types,
bfa74976
RS
7358@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7359identifier, it looks up the current declaration of the identifier in order
7360to decide which token type to return: @code{TYPENAME} if the identifier is
7361declared as a typedef, @code{IDENTIFIER} otherwise.
7362
7363The grammar rules can then express the context dependency by the choice of
7364token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7365but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7366@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7367is @emph{not} significant, such as in declarations that can shadow a
7368typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7369accepted---there is one rule for each of the two token types.
7370
7371This technique is simple to use if the decision of which kinds of
7372identifiers to allow is made at a place close to where the identifier is
7373parsed. But in C this is not always so: C allows a declaration to
7374redeclare a typedef name provided an explicit type has been specified
7375earlier:
7376
7377@example
3a4f411f
PE
7378typedef int foo, bar;
7379int baz (void)
7380@{
7381 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7382 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7383 return foo (bar);
7384@}
bfa74976
RS
7385@end example
7386
7387Unfortunately, the name being declared is separated from the declaration
7388construct itself by a complicated syntactic structure---the ``declarator''.
7389
9ecbd125 7390As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7391all the nonterminal names changed: once for parsing a declaration in
7392which a typedef name can be redefined, and once for parsing a
7393declaration in which that can't be done. Here is a part of the
7394duplication, with actions omitted for brevity:
bfa74976
RS
7395
7396@example
7397initdcl:
7398 declarator maybeasm '='
7399 init
7400 | declarator maybeasm
7401 ;
7402
7403notype_initdcl:
7404 notype_declarator maybeasm '='
7405 init
7406 | notype_declarator maybeasm
7407 ;
7408@end example
7409
7410@noindent
7411Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7412cannot. The distinction between @code{declarator} and
7413@code{notype_declarator} is the same sort of thing.
7414
7415There is some similarity between this technique and a lexical tie-in
7416(described next), in that information which alters the lexical analysis is
7417changed during parsing by other parts of the program. The difference is
7418here the information is global, and is used for other purposes in the
7419program. A true lexical tie-in has a special-purpose flag controlled by
7420the syntactic context.
7421
342b8b6e 7422@node Lexical Tie-ins
bfa74976
RS
7423@section Lexical Tie-ins
7424@cindex lexical tie-in
7425
7426One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7427which is set by Bison actions, whose purpose is to alter the way tokens are
7428parsed.
7429
7430For example, suppose we have a language vaguely like C, but with a special
7431construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7432an expression in parentheses in which all integers are hexadecimal. In
7433particular, the token @samp{a1b} must be treated as an integer rather than
7434as an identifier if it appears in that context. Here is how you can do it:
7435
7436@example
7437@group
7438%@{
38a92d50
PE
7439 int hexflag;
7440 int yylex (void);
7441 void yyerror (char const *);
bfa74976
RS
7442%@}
7443%%
7444@dots{}
7445@end group
7446@group
7447expr: IDENTIFIER
7448 | constant
7449 | HEX '('
7450 @{ hexflag = 1; @}
7451 expr ')'
7452 @{ hexflag = 0;
7453 $$ = $4; @}
7454 | expr '+' expr
7455 @{ $$ = make_sum ($1, $3); @}
7456 @dots{}
7457 ;
7458@end group
7459
7460@group
7461constant:
7462 INTEGER
7463 | STRING
7464 ;
7465@end group
7466@end example
7467
7468@noindent
7469Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7470it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7471with letters are parsed as integers if possible.
7472
342b8b6e
AD
7473The declaration of @code{hexflag} shown in the prologue of the parser file
7474is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 7475You must also write the code in @code{yylex} to obey the flag.
bfa74976 7476
342b8b6e 7477@node Tie-in Recovery
bfa74976
RS
7478@section Lexical Tie-ins and Error Recovery
7479
7480Lexical tie-ins make strict demands on any error recovery rules you have.
7481@xref{Error Recovery}.
7482
7483The reason for this is that the purpose of an error recovery rule is to
7484abort the parsing of one construct and resume in some larger construct.
7485For example, in C-like languages, a typical error recovery rule is to skip
7486tokens until the next semicolon, and then start a new statement, like this:
7487
7488@example
7489stmt: expr ';'
7490 | IF '(' expr ')' stmt @{ @dots{} @}
7491 @dots{}
7492 error ';'
7493 @{ hexflag = 0; @}
7494 ;
7495@end example
7496
7497If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7498construct, this error rule will apply, and then the action for the
7499completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7500remain set for the entire rest of the input, or until the next @code{hex}
7501keyword, causing identifiers to be misinterpreted as integers.
7502
7503To avoid this problem the error recovery rule itself clears @code{hexflag}.
7504
7505There may also be an error recovery rule that works within expressions.
7506For example, there could be a rule which applies within parentheses
7507and skips to the close-parenthesis:
7508
7509@example
7510@group
7511expr: @dots{}
7512 | '(' expr ')'
7513 @{ $$ = $2; @}
7514 | '(' error ')'
7515 @dots{}
7516@end group
7517@end example
7518
7519If this rule acts within the @code{hex} construct, it is not going to abort
7520that construct (since it applies to an inner level of parentheses within
7521the construct). Therefore, it should not clear the flag: the rest of
7522the @code{hex} construct should be parsed with the flag still in effect.
7523
7524What if there is an error recovery rule which might abort out of the
7525@code{hex} construct or might not, depending on circumstances? There is no
7526way you can write the action to determine whether a @code{hex} construct is
7527being aborted or not. So if you are using a lexical tie-in, you had better
7528make sure your error recovery rules are not of this kind. Each rule must
7529be such that you can be sure that it always will, or always won't, have to
7530clear the flag.
7531
ec3bc396
AD
7532@c ================================================== Debugging Your Parser
7533
342b8b6e 7534@node Debugging
bfa74976 7535@chapter Debugging Your Parser
ec3bc396
AD
7536
7537Developing a parser can be a challenge, especially if you don't
7538understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7539Algorithm}). Even so, sometimes a detailed description of the automaton
7540can help (@pxref{Understanding, , Understanding Your Parser}), or
7541tracing the execution of the parser can give some insight on why it
7542behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7543
7544@menu
7545* Understanding:: Understanding the structure of your parser.
7546* Tracing:: Tracing the execution of your parser.
7547@end menu
7548
7549@node Understanding
7550@section Understanding Your Parser
7551
7552As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7553Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7554frequent than one would hope), looking at this automaton is required to
7555tune or simply fix a parser. Bison provides two different
35fe0834 7556representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7557
7558The textual file is generated when the options @option{--report} or
7559@option{--verbose} are specified, see @xref{Invocation, , Invoking
7560Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
7561the parser output file name, and adding @samp{.output} instead.
7562Therefore, if the input file is @file{foo.y}, then the parser file is
7563called @file{foo.tab.c} by default. As a consequence, the verbose
7564output file is called @file{foo.output}.
7565
7566The following grammar file, @file{calc.y}, will be used in the sequel:
7567
7568@example
7569%token NUM STR
7570%left '+' '-'
7571%left '*'
7572%%
7573exp: exp '+' exp
7574 | exp '-' exp
7575 | exp '*' exp
7576 | exp '/' exp
7577 | NUM
7578 ;
7579useless: STR;
7580%%
7581@end example
7582
88bce5a2
AD
7583@command{bison} reports:
7584
7585@example
379261b3
JD
7586calc.y: warning: 1 nonterminal useless in grammar
7587calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
7588calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7589calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7590calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7591@end example
7592
7593When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7594creates a file @file{calc.output} with contents detailed below. The
7595order of the output and the exact presentation might vary, but the
7596interpretation is the same.
ec3bc396
AD
7597
7598The first section includes details on conflicts that were solved thanks
7599to precedence and/or associativity:
7600
7601@example
7602Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7603Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7604Conflict in state 8 between rule 2 and token '*' resolved as shift.
7605@exdent @dots{}
7606@end example
7607
7608@noindent
7609The next section lists states that still have conflicts.
7610
7611@example
5a99098d
PE
7612State 8 conflicts: 1 shift/reduce
7613State 9 conflicts: 1 shift/reduce
7614State 10 conflicts: 1 shift/reduce
7615State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7616@end example
7617
7618@noindent
7619@cindex token, useless
7620@cindex useless token
7621@cindex nonterminal, useless
7622@cindex useless nonterminal
7623@cindex rule, useless
7624@cindex useless rule
7625The next section reports useless tokens, nonterminal and rules. Useless
7626nonterminals and rules are removed in order to produce a smaller parser,
7627but useless tokens are preserved, since they might be used by the
d80fb37a 7628scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7629below):
7630
7631@example
d80fb37a 7632Nonterminals useless in grammar:
ec3bc396
AD
7633 useless
7634
d80fb37a 7635Terminals unused in grammar:
ec3bc396
AD
7636 STR
7637
cff03fb2 7638Rules useless in grammar:
ec3bc396
AD
7639#6 useless: STR;
7640@end example
7641
7642@noindent
7643The next section reproduces the exact grammar that Bison used:
7644
7645@example
7646Grammar
7647
7648 Number, Line, Rule
88bce5a2 7649 0 5 $accept -> exp $end
ec3bc396
AD
7650 1 5 exp -> exp '+' exp
7651 2 6 exp -> exp '-' exp
7652 3 7 exp -> exp '*' exp
7653 4 8 exp -> exp '/' exp
7654 5 9 exp -> NUM
7655@end example
7656
7657@noindent
7658and reports the uses of the symbols:
7659
7660@example
7661Terminals, with rules where they appear
7662
88bce5a2 7663$end (0) 0
ec3bc396
AD
7664'*' (42) 3
7665'+' (43) 1
7666'-' (45) 2
7667'/' (47) 4
7668error (256)
7669NUM (258) 5
7670
7671Nonterminals, with rules where they appear
7672
88bce5a2 7673$accept (8)
ec3bc396
AD
7674 on left: 0
7675exp (9)
7676 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7677@end example
7678
7679@noindent
7680@cindex item
7681@cindex pointed rule
7682@cindex rule, pointed
7683Bison then proceeds onto the automaton itself, describing each state
7684with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7685item is a production rule together with a point (marked by @samp{.})
7686that the input cursor.
7687
7688@example
7689state 0
7690
88bce5a2 7691 $accept -> . exp $ (rule 0)
ec3bc396 7692
2a8d363a 7693 NUM shift, and go to state 1
ec3bc396 7694
2a8d363a 7695 exp go to state 2
ec3bc396
AD
7696@end example
7697
7698This reads as follows: ``state 0 corresponds to being at the very
7699beginning of the parsing, in the initial rule, right before the start
7700symbol (here, @code{exp}). When the parser returns to this state right
7701after having reduced a rule that produced an @code{exp}, the control
7702flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7703symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7704the parse stack, and the control flow jumps to state 1. Any other
742e4900 7705lookahead triggers a syntax error.''
ec3bc396
AD
7706
7707@cindex core, item set
7708@cindex item set core
7709@cindex kernel, item set
7710@cindex item set core
7711Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7712report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7713at the beginning of any rule deriving an @code{exp}. By default Bison
7714reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7715you want to see more detail you can invoke @command{bison} with
7716@option{--report=itemset} to list all the items, include those that can
7717be derived:
7718
7719@example
7720state 0
7721
88bce5a2 7722 $accept -> . exp $ (rule 0)
ec3bc396
AD
7723 exp -> . exp '+' exp (rule 1)
7724 exp -> . exp '-' exp (rule 2)
7725 exp -> . exp '*' exp (rule 3)
7726 exp -> . exp '/' exp (rule 4)
7727 exp -> . NUM (rule 5)
7728
7729 NUM shift, and go to state 1
7730
7731 exp go to state 2
7732@end example
7733
7734@noindent
7735In the state 1...
7736
7737@example
7738state 1
7739
7740 exp -> NUM . (rule 5)
7741
2a8d363a 7742 $default reduce using rule 5 (exp)
ec3bc396
AD
7743@end example
7744
7745@noindent
742e4900 7746the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7747(@samp{$default}), the parser will reduce it. If it was coming from
7748state 0, then, after this reduction it will return to state 0, and will
7749jump to state 2 (@samp{exp: go to state 2}).
7750
7751@example
7752state 2
7753
88bce5a2 7754 $accept -> exp . $ (rule 0)
ec3bc396
AD
7755 exp -> exp . '+' exp (rule 1)
7756 exp -> exp . '-' exp (rule 2)
7757 exp -> exp . '*' exp (rule 3)
7758 exp -> exp . '/' exp (rule 4)
7759
2a8d363a
AD
7760 $ shift, and go to state 3
7761 '+' shift, and go to state 4
7762 '-' shift, and go to state 5
7763 '*' shift, and go to state 6
7764 '/' shift, and go to state 7
ec3bc396
AD
7765@end example
7766
7767@noindent
7768In state 2, the automaton can only shift a symbol. For instance,
742e4900 7769because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
7770@samp{+}, it will be shifted on the parse stack, and the automaton
7771control will jump to state 4, corresponding to the item @samp{exp -> exp
7772'+' . exp}. Since there is no default action, any other token than
6e649e65 7773those listed above will trigger a syntax error.
ec3bc396 7774
34a6c2d1 7775@cindex accepting state
ec3bc396
AD
7776The state 3 is named the @dfn{final state}, or the @dfn{accepting
7777state}:
7778
7779@example
7780state 3
7781
88bce5a2 7782 $accept -> exp $ . (rule 0)
ec3bc396 7783
2a8d363a 7784 $default accept
ec3bc396
AD
7785@end example
7786
7787@noindent
7788the initial rule is completed (the start symbol and the end
7789of input were read), the parsing exits successfully.
7790
7791The interpretation of states 4 to 7 is straightforward, and is left to
7792the reader.
7793
7794@example
7795state 4
7796
7797 exp -> exp '+' . exp (rule 1)
7798
2a8d363a 7799 NUM shift, and go to state 1
ec3bc396 7800
2a8d363a 7801 exp go to state 8
ec3bc396
AD
7802
7803state 5
7804
7805 exp -> exp '-' . exp (rule 2)
7806
2a8d363a 7807 NUM shift, and go to state 1
ec3bc396 7808
2a8d363a 7809 exp go to state 9
ec3bc396
AD
7810
7811state 6
7812
7813 exp -> exp '*' . exp (rule 3)
7814
2a8d363a 7815 NUM shift, and go to state 1
ec3bc396 7816
2a8d363a 7817 exp go to state 10
ec3bc396
AD
7818
7819state 7
7820
7821 exp -> exp '/' . exp (rule 4)
7822
2a8d363a 7823 NUM shift, and go to state 1
ec3bc396 7824
2a8d363a 7825 exp go to state 11
ec3bc396
AD
7826@end example
7827
5a99098d
PE
7828As was announced in beginning of the report, @samp{State 8 conflicts:
78291 shift/reduce}:
ec3bc396
AD
7830
7831@example
7832state 8
7833
7834 exp -> exp . '+' exp (rule 1)
7835 exp -> exp '+' exp . (rule 1)
7836 exp -> exp . '-' exp (rule 2)
7837 exp -> exp . '*' exp (rule 3)
7838 exp -> exp . '/' exp (rule 4)
7839
2a8d363a
AD
7840 '*' shift, and go to state 6
7841 '/' shift, and go to state 7
ec3bc396 7842
2a8d363a
AD
7843 '/' [reduce using rule 1 (exp)]
7844 $default reduce using rule 1 (exp)
ec3bc396
AD
7845@end example
7846
742e4900 7847Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
7848either shifting (and going to state 7), or reducing rule 1. The
7849conflict means that either the grammar is ambiguous, or the parser lacks
7850information to make the right decision. Indeed the grammar is
7851ambiguous, as, since we did not specify the precedence of @samp{/}, the
7852sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
7853NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
7854NUM}, which corresponds to reducing rule 1.
7855
34a6c2d1 7856Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
7857arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
7858Shift/Reduce Conflicts}. Discarded actions are reported in between
7859square brackets.
7860
7861Note that all the previous states had a single possible action: either
7862shifting the next token and going to the corresponding state, or
7863reducing a single rule. In the other cases, i.e., when shifting
7864@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
7865possible, the lookahead is required to select the action. State 8 is
7866one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
7867is shifting, otherwise the action is reducing rule 1. In other words,
7868the first two items, corresponding to rule 1, are not eligible when the
742e4900 7869lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 7870precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
7871with some set of possible lookahead tokens. When run with
7872@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
7873
7874@example
7875state 8
7876
88c78747 7877 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
7878 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
7879 exp -> exp . '-' exp (rule 2)
7880 exp -> exp . '*' exp (rule 3)
7881 exp -> exp . '/' exp (rule 4)
7882
7883 '*' shift, and go to state 6
7884 '/' shift, and go to state 7
7885
7886 '/' [reduce using rule 1 (exp)]
7887 $default reduce using rule 1 (exp)
7888@end example
7889
7890The remaining states are similar:
7891
7892@example
7893state 9
7894
7895 exp -> exp . '+' exp (rule 1)
7896 exp -> exp . '-' exp (rule 2)
7897 exp -> exp '-' exp . (rule 2)
7898 exp -> exp . '*' exp (rule 3)
7899 exp -> exp . '/' exp (rule 4)
7900
2a8d363a
AD
7901 '*' shift, and go to state 6
7902 '/' shift, and go to state 7
ec3bc396 7903
2a8d363a
AD
7904 '/' [reduce using rule 2 (exp)]
7905 $default reduce using rule 2 (exp)
ec3bc396
AD
7906
7907state 10
7908
7909 exp -> exp . '+' exp (rule 1)
7910 exp -> exp . '-' exp (rule 2)
7911 exp -> exp . '*' exp (rule 3)
7912 exp -> exp '*' exp . (rule 3)
7913 exp -> exp . '/' exp (rule 4)
7914
2a8d363a 7915 '/' shift, and go to state 7
ec3bc396 7916
2a8d363a
AD
7917 '/' [reduce using rule 3 (exp)]
7918 $default reduce using rule 3 (exp)
ec3bc396
AD
7919
7920state 11
7921
7922 exp -> exp . '+' exp (rule 1)
7923 exp -> exp . '-' exp (rule 2)
7924 exp -> exp . '*' exp (rule 3)
7925 exp -> exp . '/' exp (rule 4)
7926 exp -> exp '/' exp . (rule 4)
7927
2a8d363a
AD
7928 '+' shift, and go to state 4
7929 '-' shift, and go to state 5
7930 '*' shift, and go to state 6
7931 '/' shift, and go to state 7
ec3bc396 7932
2a8d363a
AD
7933 '+' [reduce using rule 4 (exp)]
7934 '-' [reduce using rule 4 (exp)]
7935 '*' [reduce using rule 4 (exp)]
7936 '/' [reduce using rule 4 (exp)]
7937 $default reduce using rule 4 (exp)
ec3bc396
AD
7938@end example
7939
7940@noindent
fa7e68c3
PE
7941Observe that state 11 contains conflicts not only due to the lack of
7942precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7943@samp{*}, but also because the
ec3bc396
AD
7944associativity of @samp{/} is not specified.
7945
7946
7947@node Tracing
7948@section Tracing Your Parser
bfa74976
RS
7949@findex yydebug
7950@cindex debugging
7951@cindex tracing the parser
7952
7953If a Bison grammar compiles properly but doesn't do what you want when it
7954runs, the @code{yydebug} parser-trace feature can help you figure out why.
7955
3ded9a63
AD
7956There are several means to enable compilation of trace facilities:
7957
7958@table @asis
7959@item the macro @code{YYDEBUG}
7960@findex YYDEBUG
7961Define the macro @code{YYDEBUG} to a nonzero value when you compile the
35430378 7962parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
7963@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7964YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7965Prologue}).
7966
7967@item the option @option{-t}, @option{--debug}
7968Use the @samp{-t} option when you run Bison (@pxref{Invocation,
35430378 7969,Invoking Bison}). This is POSIX compliant too.
3ded9a63
AD
7970
7971@item the directive @samp{%debug}
7972@findex %debug
7973Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
7974Declaration Summary}). This is a Bison extension, which will prove
7975useful when Bison will output parsers for languages that don't use a
35430378 7976preprocessor. Unless POSIX and Yacc portability matter to
c827f760 7977you, this is
3ded9a63
AD
7978the preferred solution.
7979@end table
7980
7981We suggest that you always enable the debug option so that debugging is
7982always possible.
bfa74976 7983
02a81e05 7984The trace facility outputs messages with macro calls of the form
e2742e46 7985@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 7986@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
7987arguments. If you define @code{YYDEBUG} to a nonzero value but do not
7988define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 7989and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
7990
7991Once you have compiled the program with trace facilities, the way to
7992request a trace is to store a nonzero value in the variable @code{yydebug}.
7993You can do this by making the C code do it (in @code{main}, perhaps), or
7994you can alter the value with a C debugger.
7995
7996Each step taken by the parser when @code{yydebug} is nonzero produces a
7997line or two of trace information, written on @code{stderr}. The trace
7998messages tell you these things:
7999
8000@itemize @bullet
8001@item
8002Each time the parser calls @code{yylex}, what kind of token was read.
8003
8004@item
8005Each time a token is shifted, the depth and complete contents of the
8006state stack (@pxref{Parser States}).
8007
8008@item
8009Each time a rule is reduced, which rule it is, and the complete contents
8010of the state stack afterward.
8011@end itemize
8012
8013To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8014produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8015Bison}). This file shows the meaning of each state in terms of
8016positions in various rules, and also what each state will do with each
8017possible input token. As you read the successive trace messages, you
8018can see that the parser is functioning according to its specification in
8019the listing file. Eventually you will arrive at the place where
8020something undesirable happens, and you will see which parts of the
8021grammar are to blame.
bfa74976
RS
8022
8023The parser file is a C program and you can use C debuggers on it, but it's
8024not easy to interpret what it is doing. The parser function is a
8025finite-state machine interpreter, and aside from the actions it executes
8026the same code over and over. Only the values of variables show where in
8027the grammar it is working.
8028
8029@findex YYPRINT
8030The debugging information normally gives the token type of each token
8031read, but not its semantic value. You can optionally define a macro
8032named @code{YYPRINT} to provide a way to print the value. If you define
8033@code{YYPRINT}, it should take three arguments. The parser will pass a
8034standard I/O stream, the numeric code for the token type, and the token
8035value (from @code{yylval}).
8036
8037Here is an example of @code{YYPRINT} suitable for the multi-function
f56274a8 8038calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
8039
8040@smallexample
38a92d50
PE
8041%@{
8042 static void print_token_value (FILE *, int, YYSTYPE);
8043 #define YYPRINT(file, type, value) print_token_value (file, type, value)
8044%@}
8045
8046@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8047
8048static void
831d3c99 8049print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8050@{
8051 if (type == VAR)
d3c4e709 8052 fprintf (file, "%s", value.tptr->name);
bfa74976 8053 else if (type == NUM)
d3c4e709 8054 fprintf (file, "%d", value.val);
bfa74976
RS
8055@}
8056@end smallexample
8057
ec3bc396
AD
8058@c ================================================= Invoking Bison
8059
342b8b6e 8060@node Invocation
bfa74976
RS
8061@chapter Invoking Bison
8062@cindex invoking Bison
8063@cindex Bison invocation
8064@cindex options for invoking Bison
8065
8066The usual way to invoke Bison is as follows:
8067
8068@example
8069bison @var{infile}
8070@end example
8071
8072Here @var{infile} is the grammar file name, which usually ends in
8073@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
8074with @samp{.tab.c} and removing any leading directory. Thus, the
8075@samp{bison foo.y} file name yields
8076@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
8077@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 8078C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
8079or @file{foo.y++}. Then, the output files will take an extension like
8080the given one as input (respectively @file{foo.tab.cpp} and
8081@file{foo.tab.c++}).
fa4d969f 8082This feature takes effect with all options that manipulate file names like
234a3be3
AD
8083@samp{-o} or @samp{-d}.
8084
8085For example :
8086
8087@example
8088bison -d @var{infile.yxx}
8089@end example
84163231 8090@noindent
72d2299c 8091will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8092
8093@example
b56471a6 8094bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8095@end example
84163231 8096@noindent
234a3be3
AD
8097will produce @file{output.c++} and @file{outfile.h++}.
8098
35430378 8099For compatibility with POSIX, the standard Bison
397ec073
PE
8100distribution also contains a shell script called @command{yacc} that
8101invokes Bison with the @option{-y} option.
8102
bfa74976 8103@menu
13863333 8104* Bison Options:: All the options described in detail,
c827f760 8105 in alphabetical order by short options.
bfa74976 8106* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8107* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8108@end menu
8109
342b8b6e 8110@node Bison Options
bfa74976
RS
8111@section Bison Options
8112
8113Bison supports both traditional single-letter options and mnemonic long
8114option names. Long option names are indicated with @samp{--} instead of
8115@samp{-}. Abbreviations for option names are allowed as long as they
8116are unique. When a long option takes an argument, like
8117@samp{--file-prefix}, connect the option name and the argument with
8118@samp{=}.
8119
8120Here is a list of options that can be used with Bison, alphabetized by
8121short option. It is followed by a cross key alphabetized by long
8122option.
8123
89cab50d
AD
8124@c Please, keep this ordered as in `bison --help'.
8125@noindent
8126Operations modes:
8127@table @option
8128@item -h
8129@itemx --help
8130Print a summary of the command-line options to Bison and exit.
bfa74976 8131
89cab50d
AD
8132@item -V
8133@itemx --version
8134Print the version number of Bison and exit.
bfa74976 8135
f7ab6a50
PE
8136@item --print-localedir
8137Print the name of the directory containing locale-dependent data.
8138
a0de5091
JD
8139@item --print-datadir
8140Print the name of the directory containing skeletons and XSLT.
8141
89cab50d
AD
8142@item -y
8143@itemx --yacc
54662697
PE
8144Act more like the traditional Yacc command. This can cause
8145different diagnostics to be generated, and may change behavior in
8146other minor ways. Most importantly, imitate Yacc's output
8147file name conventions, so that the parser output file is called
89cab50d 8148@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e 8149@file{y.tab.h}.
34a6c2d1 8150Also, if generating a deterministic parser in C, generate @code{#define}
b931235e
JD
8151statements in addition to an @code{enum} to associate token numbers with token
8152names.
8153Thus, the following shell script can substitute for Yacc, and the Bison
35430378 8154distribution contains such a script for compatibility with POSIX:
bfa74976 8155
89cab50d 8156@example
397ec073 8157#! /bin/sh
26e06a21 8158bison -y "$@@"
89cab50d 8159@end example
54662697
PE
8160
8161The @option{-y}/@option{--yacc} option is intended for use with
8162traditional Yacc grammars. If your grammar uses a Bison extension
8163like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8164this option is specified.
8165
ecd1b61c
JD
8166@item -W [@var{category}]
8167@itemx --warnings[=@var{category}]
118d4978
AD
8168Output warnings falling in @var{category}. @var{category} can be one
8169of:
8170@table @code
8171@item midrule-values
8e55b3aa
JD
8172Warn about mid-rule values that are set but not used within any of the actions
8173of the parent rule.
8174For example, warn about unused @code{$2} in:
118d4978
AD
8175
8176@example
8177exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8178@end example
8179
8e55b3aa
JD
8180Also warn about mid-rule values that are used but not set.
8181For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8182
8183@example
8184 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
8185@end example
8186
8187These warnings are not enabled by default since they sometimes prove to
8188be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8189@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
8190
8191
8192@item yacc
35430378 8193Incompatibilities with POSIX Yacc.
118d4978
AD
8194
8195@item all
8e55b3aa 8196All the warnings.
118d4978 8197@item none
8e55b3aa 8198Turn off all the warnings.
118d4978 8199@item error
8e55b3aa 8200Treat warnings as errors.
118d4978
AD
8201@end table
8202
8203A category can be turned off by prefixing its name with @samp{no-}. For
cf22447c 8204instance, @option{-Wno-yacc} will hide the warnings about
35430378 8205POSIX Yacc incompatibilities.
89cab50d
AD
8206@end table
8207
8208@noindent
8209Tuning the parser:
8210
8211@table @option
8212@item -t
8213@itemx --debug
4947ebdb
PE
8214In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
8215already defined, so that the debugging facilities are compiled.
ec3bc396 8216@xref{Tracing, ,Tracing Your Parser}.
89cab50d 8217
e14c6831
AD
8218@item -D @var{name}[=@var{value}]
8219@itemx --define=@var{name}[=@var{value}]
c33bc800 8220@itemx -F @var{name}[=@var{value}]
34d41938
JD
8221@itemx --force-define=@var{name}[=@var{value}]
8222Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
8223(@pxref{Decl Summary, ,%define}) except that Bison processes multiple
8224definitions for the same @var{name} as follows:
8225
8226@itemize
8227@item
e3a33f7c
JD
8228Bison quietly ignores all command-line definitions for @var{name} except
8229the last.
34d41938 8230@item
e3a33f7c
JD
8231If that command-line definition is specified by a @code{-D} or
8232@code{--define}, Bison reports an error for any @code{%define}
8233definition for @var{name}.
34d41938 8234@item
e3a33f7c
JD
8235If that command-line definition is specified by a @code{-F} or
8236@code{--force-define} instead, Bison quietly ignores all @code{%define}
8237definitions for @var{name}.
8238@item
8239Otherwise, Bison reports an error if there are multiple @code{%define}
8240definitions for @var{name}.
34d41938
JD
8241@end itemize
8242
8243You should avoid using @code{-F} and @code{--force-define} in your
8244makefiles unless you are confident that it is safe to quietly ignore any
8245conflicting @code{%define} that may be added to the grammar file.
e14c6831 8246
0e021770
PE
8247@item -L @var{language}
8248@itemx --language=@var{language}
8249Specify the programming language for the generated parser, as if
8250@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8251Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8252@var{language} is case-insensitive.
0e021770 8253
ed4d67dc
JD
8254This option is experimental and its effect may be modified in future
8255releases.
8256
89cab50d 8257@item --locations
d8988b2f 8258Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8259
8260@item -p @var{prefix}
8261@itemx --name-prefix=@var{prefix}
02975b9a 8262Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8263@xref{Decl Summary}.
bfa74976
RS
8264
8265@item -l
8266@itemx --no-lines
8267Don't put any @code{#line} preprocessor commands in the parser file.
8268Ordinarily Bison puts them in the parser file so that the C compiler
8269and debuggers will associate errors with your source file, the
8270grammar file. This option causes them to associate errors with the
95e742f7 8271parser file, treating it as an independent source file in its own right.
bfa74976 8272
e6e704dc
JD
8273@item -S @var{file}
8274@itemx --skeleton=@var{file}
a7867f53 8275Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8276(@pxref{Decl Summary, , Bison Declaration Summary}).
8277
ed4d67dc
JD
8278@c You probably don't need this option unless you are developing Bison.
8279@c You should use @option{--language} if you want to specify the skeleton for a
8280@c different language, because it is clearer and because it will always
8281@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8282
a7867f53
JD
8283If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8284file in the Bison installation directory.
8285If it does, @var{file} is an absolute file name or a file name relative to the
8286current working directory.
8287This is similar to how most shells resolve commands.
8288
89cab50d
AD
8289@item -k
8290@itemx --token-table
d8988b2f 8291Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8292@end table
bfa74976 8293
89cab50d
AD
8294@noindent
8295Adjust the output:
bfa74976 8296
89cab50d 8297@table @option
8e55b3aa 8298@item --defines[=@var{file}]
d8988b2f 8299Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8300file containing macro definitions for the token type names defined in
4bfd5e4e 8301the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8302
8e55b3aa
JD
8303@item -d
8304This is the same as @code{--defines} except @code{-d} does not accept a
8305@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8306with other short options.
342b8b6e 8307
89cab50d
AD
8308@item -b @var{file-prefix}
8309@itemx --file-prefix=@var{prefix}
9c437126 8310Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8311for all Bison output file names. @xref{Decl Summary}.
bfa74976 8312
ec3bc396
AD
8313@item -r @var{things}
8314@itemx --report=@var{things}
8315Write an extra output file containing verbose description of the comma
8316separated list of @var{things} among:
8317
8318@table @code
8319@item state
8320Description of the grammar, conflicts (resolved and unresolved), and
34a6c2d1 8321parser's automaton.
ec3bc396 8322
742e4900 8323@item lookahead
ec3bc396 8324Implies @code{state} and augments the description of the automaton with
742e4900 8325each rule's lookahead set.
ec3bc396
AD
8326
8327@item itemset
8328Implies @code{state} and augments the description of the automaton with
8329the full set of items for each state, instead of its core only.
8330@end table
8331
1bb2bd75
JD
8332@item --report-file=@var{file}
8333Specify the @var{file} for the verbose description.
8334
bfa74976
RS
8335@item -v
8336@itemx --verbose
9c437126 8337Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8338file containing verbose descriptions of the grammar and
72d2299c 8339parser. @xref{Decl Summary}.
bfa74976 8340
fa4d969f
PE
8341@item -o @var{file}
8342@itemx --output=@var{file}
8343Specify the @var{file} for the parser file.
bfa74976 8344
fa4d969f 8345The other output files' names are constructed from @var{file} as
d8988b2f 8346described under the @samp{-v} and @samp{-d} options.
342b8b6e 8347
72183df4 8348@item -g [@var{file}]
8e55b3aa 8349@itemx --graph[=@var{file}]
34a6c2d1 8350Output a graphical representation of the parser's
35fe0834 8351automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
35430378 8352@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
8353@code{@var{file}} is optional.
8354If omitted and the grammar file is @file{foo.y}, the output file will be
8355@file{foo.dot}.
59da312b 8356
72183df4 8357@item -x [@var{file}]
8e55b3aa 8358@itemx --xml[=@var{file}]
34a6c2d1 8359Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8360@code{@var{file}} is optional.
59da312b
JD
8361If omitted and the grammar file is @file{foo.y}, the output file will be
8362@file{foo.xml}.
8363(The current XML schema is experimental and may evolve.
8364More user feedback will help to stabilize it.)
bfa74976
RS
8365@end table
8366
342b8b6e 8367@node Option Cross Key
bfa74976
RS
8368@section Option Cross Key
8369
8370Here is a list of options, alphabetized by long option, to help you find
34d41938 8371the corresponding short option and directive.
bfa74976 8372
34d41938 8373@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
72183df4 8374@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8375@include cross-options.texi
aa08666d 8376@end multitable
bfa74976 8377
93dd49ab
PE
8378@node Yacc Library
8379@section Yacc Library
8380
8381The Yacc library contains default implementations of the
8382@code{yyerror} and @code{main} functions. These default
35430378 8383implementations are normally not useful, but POSIX requires
93dd49ab
PE
8384them. To use the Yacc library, link your program with the
8385@option{-ly} option. Note that Bison's implementation of the Yacc
35430378 8386library is distributed under the terms of the GNU General
93dd49ab
PE
8387Public License (@pxref{Copying}).
8388
8389If you use the Yacc library's @code{yyerror} function, you should
8390declare @code{yyerror} as follows:
8391
8392@example
8393int yyerror (char const *);
8394@end example
8395
8396Bison ignores the @code{int} value returned by this @code{yyerror}.
8397If you use the Yacc library's @code{main} function, your
8398@code{yyparse} function should have the following type signature:
8399
8400@example
8401int yyparse (void);
8402@end example
8403
12545799
AD
8404@c ================================================= C++ Bison
8405
8405b70c
PB
8406@node Other Languages
8407@chapter Parsers Written In Other Languages
12545799
AD
8408
8409@menu
8410* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8411* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8412@end menu
8413
8414@node C++ Parsers
8415@section C++ Parsers
8416
8417@menu
8418* C++ Bison Interface:: Asking for C++ parser generation
8419* C++ Semantic Values:: %union vs. C++
8420* C++ Location Values:: The position and location classes
8421* C++ Parser Interface:: Instantiating and running the parser
8422* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8423* A Complete C++ Example:: Demonstrating their use
12545799
AD
8424@end menu
8425
8426@node C++ Bison Interface
8427@subsection C++ Bison Interface
ed4d67dc 8428@c - %skeleton "lalr1.cc"
12545799
AD
8429@c - Always pure
8430@c - initial action
8431
34a6c2d1 8432The C++ deterministic parser is selected using the skeleton directive,
baacae49
AD
8433@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
8434@option{--skeleton=lalr1.cc}.
e6e704dc 8435@xref{Decl Summary}.
0e021770 8436
793fbca5
JD
8437When run, @command{bison} will create several entities in the @samp{yy}
8438namespace.
8439@findex %define namespace
8440Use the @samp{%define namespace} directive to change the namespace name, see
8441@ref{Decl Summary}.
8442The various classes are generated in the following files:
aa08666d 8443
12545799
AD
8444@table @file
8445@item position.hh
8446@itemx location.hh
8447The definition of the classes @code{position} and @code{location},
8448used for location tracking. @xref{C++ Location Values}.
8449
8450@item stack.hh
8451An auxiliary class @code{stack} used by the parser.
8452
fa4d969f
PE
8453@item @var{file}.hh
8454@itemx @var{file}.cc
cd8b5791
AD
8455(Assuming the extension of the input file was @samp{.yy}.) The
8456declaration and implementation of the C++ parser class. The basename
8457and extension of these two files follow the same rules as with regular C
8458parsers (@pxref{Invocation}).
12545799 8459
cd8b5791
AD
8460The header is @emph{mandatory}; you must either pass
8461@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8462@samp{%defines} directive.
8463@end table
8464
8465All these files are documented using Doxygen; run @command{doxygen}
8466for a complete and accurate documentation.
8467
8468@node C++ Semantic Values
8469@subsection C++ Semantic Values
8470@c - No objects in unions
178e123e 8471@c - YYSTYPE
12545799
AD
8472@c - Printer and destructor
8473
8474The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8475Collection of Value Types}. In particular it produces a genuine
8476@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
8477within pseudo-unions (similar to Boost variants) might be implemented to
8478alleviate these issues.}, which have a few specific features in C++.
12545799
AD
8479@itemize @minus
8480@item
fb9712a9
AD
8481The type @code{YYSTYPE} is defined but its use is discouraged: rather
8482you should refer to the parser's encapsulated type
8483@code{yy::parser::semantic_type}.
12545799
AD
8484@item
8485Non POD (Plain Old Data) types cannot be used. C++ forbids any
8486instance of classes with constructors in unions: only @emph{pointers}
8487to such objects are allowed.
8488@end itemize
8489
8490Because objects have to be stored via pointers, memory is not
8491reclaimed automatically: using the @code{%destructor} directive is the
8492only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8493Symbols}.
8494
8495
8496@node C++ Location Values
8497@subsection C++ Location Values
8498@c - %locations
8499@c - class Position
8500@c - class Location
16dc6a9e 8501@c - %define filename_type "const symbol::Symbol"
12545799
AD
8502
8503When the directive @code{%locations} is used, the C++ parser supports
8504location tracking, see @ref{Locations, , Locations Overview}. Two
8505auxiliary classes define a @code{position}, a single point in a file,
8506and a @code{location}, a range composed of a pair of
8507@code{position}s (possibly spanning several files).
8508
fa4d969f 8509@deftypemethod {position} {std::string*} file
12545799
AD
8510The name of the file. It will always be handled as a pointer, the
8511parser will never duplicate nor deallocate it. As an experimental
8512feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8513filename_type "@var{type}"}.
12545799
AD
8514@end deftypemethod
8515
8516@deftypemethod {position} {unsigned int} line
8517The line, starting at 1.
8518@end deftypemethod
8519
8520@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8521Advance by @var{height} lines, resetting the column number.
8522@end deftypemethod
8523
8524@deftypemethod {position} {unsigned int} column
8525The column, starting at 0.
8526@end deftypemethod
8527
8528@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8529Advance by @var{width} columns, without changing the line number.
8530@end deftypemethod
8531
8532@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8533@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8534@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8535@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8536Various forms of syntactic sugar for @code{columns}.
8537@end deftypemethod
8538
8539@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8540Report @var{p} on @var{o} like this:
fa4d969f
PE
8541@samp{@var{file}:@var{line}.@var{column}}, or
8542@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8543@end deftypemethod
8544
8545@deftypemethod {location} {position} begin
8546@deftypemethodx {location} {position} end
8547The first, inclusive, position of the range, and the first beyond.
8548@end deftypemethod
8549
8550@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8551@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8552Advance the @code{end} position.
8553@end deftypemethod
8554
8555@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8556@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8557@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8558Various forms of syntactic sugar.
8559@end deftypemethod
8560
8561@deftypemethod {location} {void} step ()
8562Move @code{begin} onto @code{end}.
8563@end deftypemethod
8564
8565
8566@node C++ Parser Interface
8567@subsection C++ Parser Interface
8568@c - define parser_class_name
8569@c - Ctor
8570@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8571@c debug_stream.
8572@c - Reporting errors
8573
8574The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8575declare and define the parser class in the namespace @code{yy}. The
8576class name defaults to @code{parser}, but may be changed using
16dc6a9e 8577@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8578this class is detailed below. It can be extended using the
12545799
AD
8579@code{%parse-param} feature: its semantics is slightly changed since
8580it describes an additional member of the parser class, and an
8581additional argument for its constructor.
8582
baacae49
AD
8583@defcv {Type} {parser} {semantic_type}
8584@defcvx {Type} {parser} {location_type}
12545799 8585The types for semantics value and locations.
8a0adb01 8586@end defcv
12545799 8587
baacae49
AD
8588@defcv {Type} {parser} {token}
8589A structure that contains (only) the definition of the tokens as the
8590@code{yytokentype} enumeration. To refer to the token @code{FOO}, the
8591scanner should use @code{yy::parser::token::FOO}. The scanner can use
8592@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
8593(@pxref{Calc++ Scanner}).
8594@end defcv
8595
12545799
AD
8596@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8597Build a new parser object. There are no arguments by default, unless
8598@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8599@end deftypemethod
8600
8601@deftypemethod {parser} {int} parse ()
8602Run the syntactic analysis, and return 0 on success, 1 otherwise.
8603@end deftypemethod
8604
8605@deftypemethod {parser} {std::ostream&} debug_stream ()
8606@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8607Get or set the stream used for tracing the parsing. It defaults to
8608@code{std::cerr}.
8609@end deftypemethod
8610
8611@deftypemethod {parser} {debug_level_type} debug_level ()
8612@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8613Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8614or nonzero, full tracing.
12545799
AD
8615@end deftypemethod
8616
8617@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
8618The definition for this member function must be supplied by the user:
8619the parser uses it to report a parser error occurring at @var{l},
8620described by @var{m}.
8621@end deftypemethod
8622
8623
8624@node C++ Scanner Interface
8625@subsection C++ Scanner Interface
8626@c - prefix for yylex.
8627@c - Pure interface to yylex
8628@c - %lex-param
8629
8630The parser invokes the scanner by calling @code{yylex}. Contrary to C
8631parsers, C++ parsers are always pure: there is no point in using the
d9df47b6 8632@code{%define api.pure} directive. Therefore the interface is as follows.
12545799 8633
baacae49 8634@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
12545799
AD
8635Return the next token. Its type is the return value, its semantic
8636value and location being @var{yylval} and @var{yylloc}. Invocations of
8637@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8638@end deftypemethod
8639
8640
8641@node A Complete C++ Example
8405b70c 8642@subsection A Complete C++ Example
12545799
AD
8643
8644This section demonstrates the use of a C++ parser with a simple but
8645complete example. This example should be available on your system,
8646ready to compile, in the directory @dfn{../bison/examples/calc++}. It
8647focuses on the use of Bison, therefore the design of the various C++
8648classes is very naive: no accessors, no encapsulation of members etc.
8649We will use a Lex scanner, and more precisely, a Flex scanner, to
8650demonstrate the various interaction. A hand written scanner is
8651actually easier to interface with.
8652
8653@menu
8654* Calc++ --- C++ Calculator:: The specifications
8655* Calc++ Parsing Driver:: An active parsing context
8656* Calc++ Parser:: A parser class
8657* Calc++ Scanner:: A pure C++ Flex scanner
8658* Calc++ Top Level:: Conducting the band
8659@end menu
8660
8661@node Calc++ --- C++ Calculator
8405b70c 8662@subsubsection Calc++ --- C++ Calculator
12545799
AD
8663
8664Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 8665expression, possibly preceded by variable assignments. An
12545799
AD
8666environment containing possibly predefined variables such as
8667@code{one} and @code{two}, is exchanged with the parser. An example
8668of valid input follows.
8669
8670@example
8671three := 3
8672seven := one + two * three
8673seven * seven
8674@end example
8675
8676@node Calc++ Parsing Driver
8405b70c 8677@subsubsection Calc++ Parsing Driver
12545799
AD
8678@c - An env
8679@c - A place to store error messages
8680@c - A place for the result
8681
8682To support a pure interface with the parser (and the scanner) the
8683technique of the ``parsing context'' is convenient: a structure
8684containing all the data to exchange. Since, in addition to simply
8685launch the parsing, there are several auxiliary tasks to execute (open
8686the file for parsing, instantiate the parser etc.), we recommend
8687transforming the simple parsing context structure into a fully blown
8688@dfn{parsing driver} class.
8689
8690The declaration of this driver class, @file{calc++-driver.hh}, is as
8691follows. The first part includes the CPP guard and imports the
fb9712a9
AD
8692required standard library components, and the declaration of the parser
8693class.
12545799 8694
1c59e0a1 8695@comment file: calc++-driver.hh
12545799
AD
8696@example
8697#ifndef CALCXX_DRIVER_HH
8698# define CALCXX_DRIVER_HH
8699# include <string>
8700# include <map>
fb9712a9 8701# include "calc++-parser.hh"
12545799
AD
8702@end example
8703
12545799
AD
8704
8705@noindent
8706Then comes the declaration of the scanning function. Flex expects
8707the signature of @code{yylex} to be defined in the macro
8708@code{YY_DECL}, and the C++ parser expects it to be declared. We can
8709factor both as follows.
1c59e0a1
AD
8710
8711@comment file: calc++-driver.hh
12545799 8712@example
3dc5e96b
PE
8713// Tell Flex the lexer's prototype ...
8714# define YY_DECL \
c095d689
AD
8715 yy::calcxx_parser::token_type \
8716 yylex (yy::calcxx_parser::semantic_type* yylval, \
8717 yy::calcxx_parser::location_type* yylloc, \
8718 calcxx_driver& driver)
12545799
AD
8719// ... and declare it for the parser's sake.
8720YY_DECL;
8721@end example
8722
8723@noindent
8724The @code{calcxx_driver} class is then declared with its most obvious
8725members.
8726
1c59e0a1 8727@comment file: calc++-driver.hh
12545799
AD
8728@example
8729// Conducting the whole scanning and parsing of Calc++.
8730class calcxx_driver
8731@{
8732public:
8733 calcxx_driver ();
8734 virtual ~calcxx_driver ();
8735
8736 std::map<std::string, int> variables;
8737
8738 int result;
8739@end example
8740
8741@noindent
8742To encapsulate the coordination with the Flex scanner, it is useful to
8743have two members function to open and close the scanning phase.
12545799 8744
1c59e0a1 8745@comment file: calc++-driver.hh
12545799
AD
8746@example
8747 // Handling the scanner.
8748 void scan_begin ();
8749 void scan_end ();
8750 bool trace_scanning;
8751@end example
8752
8753@noindent
8754Similarly for the parser itself.
8755
1c59e0a1 8756@comment file: calc++-driver.hh
12545799 8757@example
bb32f4f2
AD
8758 // Run the parser. Return 0 on success.
8759 int parse (const std::string& f);
12545799
AD
8760 std::string file;
8761 bool trace_parsing;
8762@end example
8763
8764@noindent
8765To demonstrate pure handling of parse errors, instead of simply
8766dumping them on the standard error output, we will pass them to the
8767compiler driver using the following two member functions. Finally, we
8768close the class declaration and CPP guard.
8769
1c59e0a1 8770@comment file: calc++-driver.hh
12545799
AD
8771@example
8772 // Error handling.
8773 void error (const yy::location& l, const std::string& m);
8774 void error (const std::string& m);
8775@};
8776#endif // ! CALCXX_DRIVER_HH
8777@end example
8778
8779The implementation of the driver is straightforward. The @code{parse}
8780member function deserves some attention. The @code{error} functions
8781are simple stubs, they should actually register the located error
8782messages and set error state.
8783
1c59e0a1 8784@comment file: calc++-driver.cc
12545799
AD
8785@example
8786#include "calc++-driver.hh"
8787#include "calc++-parser.hh"
8788
8789calcxx_driver::calcxx_driver ()
8790 : trace_scanning (false), trace_parsing (false)
8791@{
8792 variables["one"] = 1;
8793 variables["two"] = 2;
8794@}
8795
8796calcxx_driver::~calcxx_driver ()
8797@{
8798@}
8799
bb32f4f2 8800int
12545799
AD
8801calcxx_driver::parse (const std::string &f)
8802@{
8803 file = f;
8804 scan_begin ();
8805 yy::calcxx_parser parser (*this);
8806 parser.set_debug_level (trace_parsing);
bb32f4f2 8807 int res = parser.parse ();
12545799 8808 scan_end ();
bb32f4f2 8809 return res;
12545799
AD
8810@}
8811
8812void
8813calcxx_driver::error (const yy::location& l, const std::string& m)
8814@{
8815 std::cerr << l << ": " << m << std::endl;
8816@}
8817
8818void
8819calcxx_driver::error (const std::string& m)
8820@{
8821 std::cerr << m << std::endl;
8822@}
8823@end example
8824
8825@node Calc++ Parser
8405b70c 8826@subsubsection Calc++ Parser
12545799 8827
b50d2359 8828The parser definition file @file{calc++-parser.yy} starts by asking for
34a6c2d1
JD
8829the C++ deterministic parser skeleton, the creation of the parser header
8830file, and specifies the name of the parser class.
8831Because the C++ skeleton changed several times, it is safer to require
8832the version you designed the grammar for.
1c59e0a1
AD
8833
8834@comment file: calc++-parser.yy
12545799 8835@example
ed4d67dc 8836%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 8837%require "@value{VERSION}"
12545799 8838%defines
16dc6a9e 8839%define parser_class_name "calcxx_parser"
fb9712a9
AD
8840@end example
8841
8842@noindent
16dc6a9e 8843@findex %code requires
fb9712a9
AD
8844Then come the declarations/inclusions needed to define the
8845@code{%union}. Because the parser uses the parsing driver and
8846reciprocally, both cannot include the header of the other. Because the
8847driver's header needs detailed knowledge about the parser class (in
8848particular its inner types), it is the parser's header which will simply
8849use a forward declaration of the driver.
148d66d8 8850@xref{Decl Summary, ,%code}.
fb9712a9
AD
8851
8852@comment file: calc++-parser.yy
8853@example
16dc6a9e 8854%code requires @{
12545799 8855# include <string>
fb9712a9 8856class calcxx_driver;
9bc0dd67 8857@}
12545799
AD
8858@end example
8859
8860@noindent
8861The driver is passed by reference to the parser and to the scanner.
8862This provides a simple but effective pure interface, not relying on
8863global variables.
8864
1c59e0a1 8865@comment file: calc++-parser.yy
12545799
AD
8866@example
8867// The parsing context.
8868%parse-param @{ calcxx_driver& driver @}
8869%lex-param @{ calcxx_driver& driver @}
8870@end example
8871
8872@noindent
8873Then we request the location tracking feature, and initialize the
c781580d 8874first location's file name. Afterward new locations are computed
12545799
AD
8875relatively to the previous locations: the file name will be
8876automatically propagated.
8877
1c59e0a1 8878@comment file: calc++-parser.yy
12545799
AD
8879@example
8880%locations
8881%initial-action
8882@{
8883 // Initialize the initial location.
b47dbebe 8884 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
8885@};
8886@end example
8887
8888@noindent
8889Use the two following directives to enable parser tracing and verbose
8890error messages.
8891
1c59e0a1 8892@comment file: calc++-parser.yy
12545799
AD
8893@example
8894%debug
8895%error-verbose
8896@end example
8897
8898@noindent
8899Semantic values cannot use ``real'' objects, but only pointers to
8900them.
8901
1c59e0a1 8902@comment file: calc++-parser.yy
12545799
AD
8903@example
8904// Symbols.
8905%union
8906@{
8907 int ival;
8908 std::string *sval;
8909@};
8910@end example
8911
fb9712a9 8912@noindent
136a0f76
PB
8913@findex %code
8914The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 8915@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
8916
8917@comment file: calc++-parser.yy
8918@example
136a0f76 8919%code @{
fb9712a9 8920# include "calc++-driver.hh"
34f98f46 8921@}
fb9712a9
AD
8922@end example
8923
8924
12545799
AD
8925@noindent
8926The token numbered as 0 corresponds to end of file; the following line
8927allows for nicer error messages referring to ``end of file'' instead
8928of ``$end''. Similarly user friendly named are provided for each
8929symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
8930avoid name clashes.
8931
1c59e0a1 8932@comment file: calc++-parser.yy
12545799 8933@example
fb9712a9
AD
8934%token END 0 "end of file"
8935%token ASSIGN ":="
8936%token <sval> IDENTIFIER "identifier"
8937%token <ival> NUMBER "number"
a8c2e813 8938%type <ival> exp
12545799
AD
8939@end example
8940
8941@noindent
8942To enable memory deallocation during error recovery, use
8943@code{%destructor}.
8944
287c78f6 8945@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 8946@comment file: calc++-parser.yy
12545799
AD
8947@example
8948%printer @{ debug_stream () << *$$; @} "identifier"
8949%destructor @{ delete $$; @} "identifier"
8950
a8c2e813 8951%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
8952@end example
8953
8954@noindent
8955The grammar itself is straightforward.
8956
1c59e0a1 8957@comment file: calc++-parser.yy
12545799
AD
8958@example
8959%%
8960%start unit;
8961unit: assignments exp @{ driver.result = $2; @};
8962
8963assignments: assignments assignment @{@}
9d9b8b70 8964 | /* Nothing. */ @{@};
12545799 8965
3dc5e96b
PE
8966assignment:
8967 "identifier" ":=" exp
8968 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
8969
8970%left '+' '-';
8971%left '*' '/';
8972exp: exp '+' exp @{ $$ = $1 + $3; @}
8973 | exp '-' exp @{ $$ = $1 - $3; @}
8974 | exp '*' exp @{ $$ = $1 * $3; @}
8975 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 8976 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 8977 | "number" @{ $$ = $1; @};
12545799
AD
8978%%
8979@end example
8980
8981@noindent
8982Finally the @code{error} member function registers the errors to the
8983driver.
8984
1c59e0a1 8985@comment file: calc++-parser.yy
12545799
AD
8986@example
8987void
1c59e0a1
AD
8988yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
8989 const std::string& m)
12545799
AD
8990@{
8991 driver.error (l, m);
8992@}
8993@end example
8994
8995@node Calc++ Scanner
8405b70c 8996@subsubsection Calc++ Scanner
12545799
AD
8997
8998The Flex scanner first includes the driver declaration, then the
8999parser's to get the set of defined tokens.
9000
1c59e0a1 9001@comment file: calc++-scanner.ll
12545799
AD
9002@example
9003%@{ /* -*- C++ -*- */
04098407 9004# include <cstdlib>
b10dd689
AD
9005# include <cerrno>
9006# include <climits>
12545799
AD
9007# include <string>
9008# include "calc++-driver.hh"
9009# include "calc++-parser.hh"
eaea13f5
PE
9010
9011/* Work around an incompatibility in flex (at least versions
9012 2.5.31 through 2.5.33): it generates code that does
9013 not conform to C89. See Debian bug 333231
9014 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
9015# undef yywrap
9016# define yywrap() 1
eaea13f5 9017
c095d689
AD
9018/* By default yylex returns int, we use token_type.
9019 Unfortunately yyterminate by default returns 0, which is
9020 not of token_type. */
8c5b881d 9021#define yyterminate() return token::END
12545799
AD
9022%@}
9023@end example
9024
9025@noindent
9026Because there is no @code{#include}-like feature we don't need
9027@code{yywrap}, we don't need @code{unput} either, and we parse an
9028actual file, this is not an interactive session with the user.
9029Finally we enable the scanner tracing features.
9030
1c59e0a1 9031@comment file: calc++-scanner.ll
12545799
AD
9032@example
9033%option noyywrap nounput batch debug
9034@end example
9035
9036@noindent
9037Abbreviations allow for more readable rules.
9038
1c59e0a1 9039@comment file: calc++-scanner.ll
12545799
AD
9040@example
9041id [a-zA-Z][a-zA-Z_0-9]*
9042int [0-9]+
9043blank [ \t]
9044@end example
9045
9046@noindent
9d9b8b70 9047The following paragraph suffices to track locations accurately. Each
12545799
AD
9048time @code{yylex} is invoked, the begin position is moved onto the end
9049position. Then when a pattern is matched, the end position is
9050advanced of its width. In case it matched ends of lines, the end
9051cursor is adjusted, and each time blanks are matched, the begin cursor
9052is moved onto the end cursor to effectively ignore the blanks
9053preceding tokens. Comments would be treated equally.
9054
1c59e0a1 9055@comment file: calc++-scanner.ll
12545799 9056@example
828c373b
AD
9057%@{
9058# define YY_USER_ACTION yylloc->columns (yyleng);
9059%@}
12545799
AD
9060%%
9061%@{
9062 yylloc->step ();
12545799
AD
9063%@}
9064@{blank@}+ yylloc->step ();
9065[\n]+ yylloc->lines (yyleng); yylloc->step ();
9066@end example
9067
9068@noindent
fb9712a9
AD
9069The rules are simple, just note the use of the driver to report errors.
9070It is convenient to use a typedef to shorten
9071@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 9072@code{token::identifier} for instance.
12545799 9073
1c59e0a1 9074@comment file: calc++-scanner.ll
12545799 9075@example
fb9712a9
AD
9076%@{
9077 typedef yy::calcxx_parser::token token;
9078%@}
8c5b881d 9079 /* Convert ints to the actual type of tokens. */
c095d689 9080[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 9081":=" return token::ASSIGN;
04098407
PE
9082@{int@} @{
9083 errno = 0;
9084 long n = strtol (yytext, NULL, 10);
9085 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
9086 driver.error (*yylloc, "integer is out of range");
9087 yylval->ival = n;
fb9712a9 9088 return token::NUMBER;
04098407 9089@}
fb9712a9 9090@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
9091. driver.error (*yylloc, "invalid character");
9092%%
9093@end example
9094
9095@noindent
9096Finally, because the scanner related driver's member function depend
9097on the scanner's data, it is simpler to implement them in this file.
9098
1c59e0a1 9099@comment file: calc++-scanner.ll
12545799
AD
9100@example
9101void
9102calcxx_driver::scan_begin ()
9103@{
9104 yy_flex_debug = trace_scanning;
bb32f4f2
AD
9105 if (file == "-")
9106 yyin = stdin;
9107 else if (!(yyin = fopen (file.c_str (), "r")))
9108 @{
9109 error (std::string ("cannot open ") + file);
9110 exit (1);
9111 @}
12545799
AD
9112@}
9113
9114void
9115calcxx_driver::scan_end ()
9116@{
9117 fclose (yyin);
9118@}
9119@end example
9120
9121@node Calc++ Top Level
8405b70c 9122@subsubsection Calc++ Top Level
12545799
AD
9123
9124The top level file, @file{calc++.cc}, poses no problem.
9125
1c59e0a1 9126@comment file: calc++.cc
12545799
AD
9127@example
9128#include <iostream>
9129#include "calc++-driver.hh"
9130
9131int
fa4d969f 9132main (int argc, char *argv[])
12545799
AD
9133@{
9134 calcxx_driver driver;
9135 for (++argv; argv[0]; ++argv)
9136 if (*argv == std::string ("-p"))
9137 driver.trace_parsing = true;
9138 else if (*argv == std::string ("-s"))
9139 driver.trace_scanning = true;
bb32f4f2
AD
9140 else if (!driver.parse (*argv))
9141 std::cout << driver.result << std::endl;
12545799
AD
9142@}
9143@end example
9144
8405b70c
PB
9145@node Java Parsers
9146@section Java Parsers
9147
9148@menu
f56274a8
DJ
9149* Java Bison Interface:: Asking for Java parser generation
9150* Java Semantic Values:: %type and %token vs. Java
9151* Java Location Values:: The position and location classes
9152* Java Parser Interface:: Instantiating and running the parser
9153* Java Scanner Interface:: Specifying the scanner for the parser
9154* Java Action Features:: Special features for use in actions
9155* Java Differences:: Differences between C/C++ and Java Grammars
9156* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
9157@end menu
9158
9159@node Java Bison Interface
9160@subsection Java Bison Interface
9161@c - %language "Java"
8405b70c 9162
59da312b
JD
9163(The current Java interface is experimental and may evolve.
9164More user feedback will help to stabilize it.)
9165
e254a580
DJ
9166The Java parser skeletons are selected using the @code{%language "Java"}
9167directive or the @option{-L java}/@option{--language=java} option.
8405b70c 9168
e254a580
DJ
9169@c FIXME: Documented bug.
9170When generating a Java parser, @code{bison @var{basename}.y} will create
9171a single Java source file named @file{@var{basename}.java}. Using an
9172input file without a @file{.y} suffix is currently broken. The basename
9173of the output file can be changed by the @code{%file-prefix} directive
9174or the @option{-p}/@option{--name-prefix} option. The entire output file
9175name can be changed by the @code{%output} directive or the
9176@option{-o}/@option{--output} option. The output file contains a single
9177class for the parser.
8405b70c 9178
e254a580 9179You can create documentation for generated parsers using Javadoc.
8405b70c 9180
e254a580
DJ
9181Contrary to C parsers, Java parsers do not use global variables; the
9182state of the parser is always local to an instance of the parser class.
9183Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
9184and @code{%define api.pure} directives does not do anything when used in
9185Java.
8405b70c 9186
e254a580 9187Push parsers are currently unsupported in Java and @code{%define
812775a0 9188api.push-pull} have no effect.
01b477c6 9189
35430378 9190GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
9191@code{glr-parser} directive.
9192
9193No header file can be generated for Java parsers. Do not use the
9194@code{%defines} directive or the @option{-d}/@option{--defines} options.
9195
9196@c FIXME: Possible code change.
9197Currently, support for debugging and verbose errors are always compiled
9198in. Thus the @code{%debug} and @code{%token-table} directives and the
9199@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
9200options have no effect. This may change in the future to eliminate
9201unused code in the generated parser, so use @code{%debug} and
9202@code{%verbose-error} explicitly if needed. Also, in the future the
9203@code{%token-table} directive might enable a public interface to
9204access the token names and codes.
8405b70c
PB
9205
9206@node Java Semantic Values
9207@subsection Java Semantic Values
9208@c - No %union, specify type in %type/%token.
9209@c - YYSTYPE
9210@c - Printer and destructor
9211
9212There is no @code{%union} directive in Java parsers. Instead, the
9213semantic values' types (class names) should be specified in the
9214@code{%type} or @code{%token} directive:
9215
9216@example
9217%type <Expression> expr assignment_expr term factor
9218%type <Integer> number
9219@end example
9220
9221By default, the semantic stack is declared to have @code{Object} members,
9222which means that the class types you specify can be of any class.
9223To improve the type safety of the parser, you can declare the common
e254a580
DJ
9224superclass of all the semantic values using the @code{%define stype}
9225directive. For example, after the following declaration:
8405b70c
PB
9226
9227@example
e254a580 9228%define stype "ASTNode"
8405b70c
PB
9229@end example
9230
9231@noindent
9232any @code{%type} or @code{%token} specifying a semantic type which
9233is not a subclass of ASTNode, will cause a compile-time error.
9234
e254a580 9235@c FIXME: Documented bug.
8405b70c
PB
9236Types used in the directives may be qualified with a package name.
9237Primitive data types are accepted for Java version 1.5 or later. Note
9238that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
9239Generic types may not be used; this is due to a limitation in the
9240implementation of Bison, and may change in future releases.
8405b70c
PB
9241
9242Java parsers do not support @code{%destructor}, since the language
9243adopts garbage collection. The parser will try to hold references
9244to semantic values for as little time as needed.
9245
9246Java parsers do not support @code{%printer}, as @code{toString()}
9247can be used to print the semantic values. This however may change
9248(in a backwards-compatible way) in future versions of Bison.
9249
9250
9251@node Java Location Values
9252@subsection Java Location Values
9253@c - %locations
9254@c - class Position
9255@c - class Location
9256
9257When the directive @code{%locations} is used, the Java parser
9258supports location tracking, see @ref{Locations, , Locations Overview}.
9259An auxiliary user-defined class defines a @dfn{position}, a single point
9260in a file; Bison itself defines a class representing a @dfn{location},
9261a range composed of a pair of positions (possibly spanning several
9262files). The location class is an inner class of the parser; the name
e254a580 9263is @code{Location} by default, and may also be renamed using
f37495f6 9264@code{%define location_type "@var{class-name}"}.
8405b70c
PB
9265
9266The location class treats the position as a completely opaque value.
9267By default, the class name is @code{Position}, but this can be changed
e254a580
DJ
9268with @code{%define position_type "@var{class-name}"}. This class must
9269be supplied by the user.
8405b70c
PB
9270
9271
e254a580
DJ
9272@deftypeivar {Location} {Position} begin
9273@deftypeivarx {Location} {Position} end
8405b70c 9274The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
9275@end deftypeivar
9276
9277@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c046698e 9278Create a @code{Location} denoting an empty range located at a given point.
e254a580 9279@end deftypeop
8405b70c 9280
e254a580
DJ
9281@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
9282Create a @code{Location} from the endpoints of the range.
9283@end deftypeop
9284
9285@deftypemethod {Location} {String} toString ()
8405b70c
PB
9286Prints the range represented by the location. For this to work
9287properly, the position class should override the @code{equals} and
9288@code{toString} methods appropriately.
9289@end deftypemethod
9290
9291
9292@node Java Parser Interface
9293@subsection Java Parser Interface
9294@c - define parser_class_name
9295@c - Ctor
9296@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9297@c debug_stream.
9298@c - Reporting errors
9299
e254a580
DJ
9300The name of the generated parser class defaults to @code{YYParser}. The
9301@code{YY} prefix may be changed using the @code{%name-prefix} directive
9302or the @option{-p}/@option{--name-prefix} option. Alternatively, use
9303@code{%define parser_class_name "@var{name}"} to give a custom name to
9304the class. The interface of this class is detailed below.
8405b70c 9305
e254a580
DJ
9306By default, the parser class has package visibility. A declaration
9307@code{%define public} will change to public visibility. Remember that,
9308according to the Java language specification, the name of the @file{.java}
9309file should match the name of the class in this case. Similarly, you can
9310use @code{abstract}, @code{final} and @code{strictfp} with the
9311@code{%define} declaration to add other modifiers to the parser class.
9312
9313The Java package name of the parser class can be specified using the
9314@code{%define package} directive. The superclass and the implemented
9315interfaces of the parser class can be specified with the @code{%define
9316extends} and @code{%define implements} directives.
9317
9318The parser class defines an inner class, @code{Location}, that is used
9319for location tracking (see @ref{Java Location Values}), and a inner
9320interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
9321these inner class/interface, and the members described in the interface
9322below, all the other members and fields are preceded with a @code{yy} or
9323@code{YY} prefix to avoid clashes with user code.
9324
9325@c FIXME: The following constants and variables are still undocumented:
9326@c @code{bisonVersion}, @code{bisonSkeleton} and @code{errorVerbose}.
9327
9328The parser class can be extended using the @code{%parse-param}
9329directive. Each occurrence of the directive will add a @code{protected
9330final} field to the parser class, and an argument to its constructor,
9331which initialize them automatically.
9332
9333Token names defined by @code{%token} and the predefined @code{EOF} token
9334name are added as constant fields to the parser class.
9335
9336@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
9337Build a new parser object with embedded @code{%code lexer}. There are
9338no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
9339used.
9340@end deftypeop
9341
9342@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
9343Build a new parser object using the specified scanner. There are no
9344additional parameters unless @code{%parse-param}s are used.
9345
9346If the scanner is defined by @code{%code lexer}, this constructor is
9347declared @code{protected} and is called automatically with a scanner
9348created with the correct @code{%lex-param}s.
9349@end deftypeop
8405b70c
PB
9350
9351@deftypemethod {YYParser} {boolean} parse ()
9352Run the syntactic analysis, and return @code{true} on success,
9353@code{false} otherwise.
9354@end deftypemethod
9355
01b477c6 9356@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9357During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9358from a syntax error.
9359@xref{Error Recovery}.
8405b70c
PB
9360@end deftypemethod
9361
9362@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9363@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9364Get or set the stream used for tracing the parsing. It defaults to
9365@code{System.err}.
9366@end deftypemethod
9367
9368@deftypemethod {YYParser} {int} getDebugLevel ()
9369@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
9370Get or set the tracing level. Currently its value is either 0, no trace,
9371or nonzero, full tracing.
9372@end deftypemethod
9373
8405b70c
PB
9374
9375@node Java Scanner Interface
9376@subsection Java Scanner Interface
01b477c6 9377@c - %code lexer
8405b70c 9378@c - %lex-param
01b477c6 9379@c - Lexer interface
8405b70c 9380
e254a580
DJ
9381There are two possible ways to interface a Bison-generated Java parser
9382with a scanner: the scanner may be defined by @code{%code lexer}, or
9383defined elsewhere. In either case, the scanner has to implement the
9384@code{Lexer} inner interface of the parser class.
9385
9386In the first case, the body of the scanner class is placed in
9387@code{%code lexer} blocks. If you want to pass parameters from the
9388parser constructor to the scanner constructor, specify them with
9389@code{%lex-param}; they are passed before @code{%parse-param}s to the
9390constructor.
01b477c6 9391
59c5ac72 9392In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
9393which is defined within the parser class (e.g., @code{YYParser.Lexer}).
9394The constructor of the parser object will then accept an object
9395implementing the interface; @code{%lex-param} is not used in this
9396case.
9397
9398In both cases, the scanner has to implement the following methods.
9399
e254a580
DJ
9400@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
9401This method is defined by the user to emit an error message. The first
9402parameter is omitted if location tracking is not active. Its type can be
9403changed using @code{%define location_type "@var{class-name}".}
8405b70c
PB
9404@end deftypemethod
9405
e254a580 9406@deftypemethod {Lexer} {int} yylex ()
8405b70c 9407Return the next token. Its type is the return value, its semantic
c781580d 9408value and location are saved and returned by the their methods in the
e254a580
DJ
9409interface.
9410
9411Use @code{%define lex_throws} to specify any uncaught exceptions.
9412Default is @code{java.io.IOException}.
8405b70c
PB
9413@end deftypemethod
9414
9415@deftypemethod {Lexer} {Position} getStartPos ()
9416@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
9417Return respectively the first position of the last token that
9418@code{yylex} returned, and the first position beyond it. These
9419methods are not needed unless location tracking is active.
8405b70c 9420
e254a580 9421The return type can be changed using @code{%define position_type
8405b70c
PB
9422"@var{class-name}".}
9423@end deftypemethod
9424
9425@deftypemethod {Lexer} {Object} getLVal ()
c781580d 9426Return the semantic value of the last token that yylex returned.
8405b70c 9427
e254a580 9428The return type can be changed using @code{%define stype
8405b70c
PB
9429"@var{class-name}".}
9430@end deftypemethod
9431
9432
e254a580
DJ
9433@node Java Action Features
9434@subsection Special Features for Use in Java Actions
9435
9436The following special constructs can be uses in Java actions.
9437Other analogous C action features are currently unavailable for Java.
9438
9439Use @code{%define throws} to specify any uncaught exceptions from parser
9440actions, and initial actions specified by @code{%initial-action}.
9441
9442@defvar $@var{n}
9443The semantic value for the @var{n}th component of the current rule.
9444This may not be assigned to.
9445@xref{Java Semantic Values}.
9446@end defvar
9447
9448@defvar $<@var{typealt}>@var{n}
9449Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9450@xref{Java Semantic Values}.
9451@end defvar
9452
9453@defvar $$
9454The semantic value for the grouping made by the current rule. As a
9455value, this is in the base type (@code{Object} or as specified by
9456@code{%define stype}) as in not cast to the declared subtype because
9457casts are not allowed on the left-hand side of Java assignments.
9458Use an explicit Java cast if the correct subtype is needed.
9459@xref{Java Semantic Values}.
9460@end defvar
9461
9462@defvar $<@var{typealt}>$
9463Same as @code{$$} since Java always allow assigning to the base type.
9464Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9465for setting the value but there is currently no easy way to distinguish
9466these constructs.
9467@xref{Java Semantic Values}.
9468@end defvar
9469
9470@defvar @@@var{n}
9471The location information of the @var{n}th component of the current rule.
9472This may not be assigned to.
9473@xref{Java Location Values}.
9474@end defvar
9475
9476@defvar @@$
9477The location information of the grouping made by the current rule.
9478@xref{Java Location Values}.
9479@end defvar
9480
9481@deffn {Statement} {return YYABORT;}
9482Return immediately from the parser, indicating failure.
9483@xref{Java Parser Interface}.
9484@end deffn
8405b70c 9485
e254a580
DJ
9486@deffn {Statement} {return YYACCEPT;}
9487Return immediately from the parser, indicating success.
9488@xref{Java Parser Interface}.
9489@end deffn
8405b70c 9490
e254a580 9491@deffn {Statement} {return YYERROR;}
c046698e 9492Start error recovery without printing an error message.
e254a580
DJ
9493@xref{Error Recovery}.
9494@end deffn
8405b70c 9495
e254a580
DJ
9496@deftypefn {Function} {boolean} recovering ()
9497Return whether error recovery is being done. In this state, the parser
9498reads token until it reaches a known state, and then restarts normal
9499operation.
9500@xref{Error Recovery}.
9501@end deftypefn
8405b70c 9502
e254a580
DJ
9503@deftypefn {Function} {protected void} yyerror (String msg)
9504@deftypefnx {Function} {protected void} yyerror (Position pos, String msg)
9505@deftypefnx {Function} {protected void} yyerror (Location loc, String msg)
9506Print an error message using the @code{yyerror} method of the scanner
9507instance in use.
9508@end deftypefn
8405b70c 9509
8405b70c 9510
8405b70c
PB
9511@node Java Differences
9512@subsection Differences between C/C++ and Java Grammars
9513
9514The different structure of the Java language forces several differences
9515between C/C++ grammars, and grammars designed for Java parsers. This
29553547 9516section summarizes these differences.
8405b70c
PB
9517
9518@itemize
9519@item
01b477c6 9520Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 9521@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
9522macros. Instead, they should be preceded by @code{return} when they
9523appear in an action. The actual definition of these symbols is
8405b70c
PB
9524opaque to the Bison grammar, and it might change in the future. The
9525only meaningful operation that you can do, is to return them.
e254a580 9526See @pxref{Java Action Features}.
8405b70c
PB
9527
9528Note that of these three symbols, only @code{YYACCEPT} and
9529@code{YYABORT} will cause a return from the @code{yyparse}
9530method@footnote{Java parsers include the actions in a separate
9531method than @code{yyparse} in order to have an intuitive syntax that
9532corresponds to these C macros.}.
9533
e254a580
DJ
9534@item
9535Java lacks unions, so @code{%union} has no effect. Instead, semantic
9536values have a common base type: @code{Object} or as specified by
c781580d 9537@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
9538@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
9539an union. The type of @code{$$}, even with angle brackets, is the base
9540type since Java casts are not allow on the left-hand side of assignments.
9541Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
9542left-hand side of assignments. See @pxref{Java Semantic Values} and
9543@pxref{Java Action Features}.
9544
8405b70c 9545@item
c781580d 9546The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
9547@table @asis
9548@item @code{%code imports}
9549blocks are placed at the beginning of the Java source code. They may
9550include copyright notices. For a @code{package} declarations, it is
9551suggested to use @code{%define package} instead.
8405b70c 9552
01b477c6
PB
9553@item unqualified @code{%code}
9554blocks are placed inside the parser class.
9555
9556@item @code{%code lexer}
9557blocks, if specified, should include the implementation of the
9558scanner. If there is no such block, the scanner can be any class
9559that implements the appropriate interface (see @pxref{Java Scanner
9560Interface}).
29553547 9561@end table
8405b70c
PB
9562
9563Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
9564In particular, @code{%@{ @dots{} %@}} blocks should not be used
9565and may give an error in future versions of Bison.
9566
01b477c6 9567The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
9568be used to define other classes used by the parser @emph{outside}
9569the parser class.
8405b70c
PB
9570@end itemize
9571
e254a580
DJ
9572
9573@node Java Declarations Summary
9574@subsection Java Declarations Summary
9575
9576This summary only include declarations specific to Java or have special
9577meaning when used in a Java parser.
9578
9579@deffn {Directive} {%language "Java"}
9580Generate a Java class for the parser.
9581@end deffn
9582
9583@deffn {Directive} %lex-param @{@var{type} @var{name}@}
9584A parameter for the lexer class defined by @code{%code lexer}
9585@emph{only}, added as parameters to the lexer constructor and the parser
9586constructor that @emph{creates} a lexer. Default is none.
9587@xref{Java Scanner Interface}.
9588@end deffn
9589
9590@deffn {Directive} %name-prefix "@var{prefix}"
9591The prefix of the parser class name @code{@var{prefix}Parser} if
9592@code{%define parser_class_name} is not used. Default is @code{YY}.
9593@xref{Java Bison Interface}.
9594@end deffn
9595
9596@deffn {Directive} %parse-param @{@var{type} @var{name}@}
9597A parameter for the parser class added as parameters to constructor(s)
9598and as fields initialized by the constructor(s). Default is none.
9599@xref{Java Parser Interface}.
9600@end deffn
9601
9602@deffn {Directive} %token <@var{type}> @var{token} @dots{}
9603Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
9604@xref{Java Semantic Values}.
9605@end deffn
9606
9607@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
9608Declare the type of nonterminals. Note that the angle brackets enclose
9609a Java @emph{type}.
9610@xref{Java Semantic Values}.
9611@end deffn
9612
9613@deffn {Directive} %code @{ @var{code} @dots{} @}
9614Code appended to the inside of the parser class.
9615@xref{Java Differences}.
9616@end deffn
9617
9618@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
9619Code inserted just after the @code{package} declaration.
9620@xref{Java Differences}.
9621@end deffn
9622
9623@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
9624Code added to the body of a inner lexer class within the parser class.
9625@xref{Java Scanner Interface}.
9626@end deffn
9627
9628@deffn {Directive} %% @var{code} @dots{}
9629Code (after the second @code{%%}) appended to the end of the file,
9630@emph{outside} the parser class.
9631@xref{Java Differences}.
9632@end deffn
9633
9634@deffn {Directive} %@{ @var{code} @dots{} %@}
9635Not supported. Use @code{%code import} instead.
9636@xref{Java Differences}.
9637@end deffn
9638
9639@deffn {Directive} {%define abstract}
9640Whether the parser class is declared @code{abstract}. Default is false.
9641@xref{Java Bison Interface}.
9642@end deffn
9643
9644@deffn {Directive} {%define extends} "@var{superclass}"
9645The superclass of the parser class. Default is none.
9646@xref{Java Bison Interface}.
9647@end deffn
9648
9649@deffn {Directive} {%define final}
9650Whether the parser class is declared @code{final}. Default is false.
9651@xref{Java Bison Interface}.
9652@end deffn
9653
9654@deffn {Directive} {%define implements} "@var{interfaces}"
9655The implemented interfaces of the parser class, a comma-separated list.
9656Default is none.
9657@xref{Java Bison Interface}.
9658@end deffn
9659
9660@deffn {Directive} {%define lex_throws} "@var{exceptions}"
9661The exceptions thrown by the @code{yylex} method of the lexer, a
9662comma-separated list. Default is @code{java.io.IOException}.
9663@xref{Java Scanner Interface}.
9664@end deffn
9665
9666@deffn {Directive} {%define location_type} "@var{class}"
9667The name of the class used for locations (a range between two
9668positions). This class is generated as an inner class of the parser
9669class by @command{bison}. Default is @code{Location}.
9670@xref{Java Location Values}.
9671@end deffn
9672
9673@deffn {Directive} {%define package} "@var{package}"
9674The package to put the parser class in. Default is none.
9675@xref{Java Bison Interface}.
9676@end deffn
9677
9678@deffn {Directive} {%define parser_class_name} "@var{name}"
9679The name of the parser class. Default is @code{YYParser} or
9680@code{@var{name-prefix}Parser}.
9681@xref{Java Bison Interface}.
9682@end deffn
9683
9684@deffn {Directive} {%define position_type} "@var{class}"
9685The name of the class used for positions. This class must be supplied by
9686the user. Default is @code{Position}.
9687@xref{Java Location Values}.
9688@end deffn
9689
9690@deffn {Directive} {%define public}
9691Whether the parser class is declared @code{public}. Default is false.
9692@xref{Java Bison Interface}.
9693@end deffn
9694
9695@deffn {Directive} {%define stype} "@var{class}"
9696The base type of semantic values. Default is @code{Object}.
9697@xref{Java Semantic Values}.
9698@end deffn
9699
9700@deffn {Directive} {%define strictfp}
9701Whether the parser class is declared @code{strictfp}. Default is false.
9702@xref{Java Bison Interface}.
9703@end deffn
9704
9705@deffn {Directive} {%define throws} "@var{exceptions}"
9706The exceptions thrown by user-supplied parser actions and
9707@code{%initial-action}, a comma-separated list. Default is none.
9708@xref{Java Parser Interface}.
9709@end deffn
9710
9711
12545799 9712@c ================================================= FAQ
d1a1114f
AD
9713
9714@node FAQ
9715@chapter Frequently Asked Questions
9716@cindex frequently asked questions
9717@cindex questions
9718
9719Several questions about Bison come up occasionally. Here some of them
9720are addressed.
9721
9722@menu
55ba27be
AD
9723* Memory Exhausted:: Breaking the Stack Limits
9724* How Can I Reset the Parser:: @code{yyparse} Keeps some State
9725* Strings are Destroyed:: @code{yylval} Loses Track of Strings
9726* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 9727* Multiple start-symbols:: Factoring closely related grammars
35430378 9728* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
9729* I can't build Bison:: Troubleshooting
9730* Where can I find help?:: Troubleshouting
9731* Bug Reports:: Troublereporting
8405b70c 9732* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
9733* Beta Testing:: Experimenting development versions
9734* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
9735@end menu
9736
1a059451
PE
9737@node Memory Exhausted
9738@section Memory Exhausted
d1a1114f
AD
9739
9740@display
1a059451 9741My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
9742message. What can I do?
9743@end display
9744
9745This question is already addressed elsewhere, @xref{Recursion,
9746,Recursive Rules}.
9747
e64fec0a
PE
9748@node How Can I Reset the Parser
9749@section How Can I Reset the Parser
5b066063 9750
0e14ad77
PE
9751The following phenomenon has several symptoms, resulting in the
9752following typical questions:
5b066063
AD
9753
9754@display
9755I invoke @code{yyparse} several times, and on correct input it works
9756properly; but when a parse error is found, all the other calls fail
0e14ad77 9757too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
9758@end display
9759
9760@noindent
9761or
9762
9763@display
0e14ad77 9764My parser includes support for an @samp{#include}-like feature, in
5b066063 9765which case I run @code{yyparse} from @code{yyparse}. This fails
d9df47b6 9766although I did specify @code{%define api.pure}.
5b066063
AD
9767@end display
9768
0e14ad77
PE
9769These problems typically come not from Bison itself, but from
9770Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
9771speed, they might not notice a change of input file. As a
9772demonstration, consider the following source file,
9773@file{first-line.l}:
9774
9775@verbatim
9776%{
9777#include <stdio.h>
9778#include <stdlib.h>
9779%}
9780%%
9781.*\n ECHO; return 1;
9782%%
9783int
0e14ad77 9784yyparse (char const *file)
5b066063
AD
9785{
9786 yyin = fopen (file, "r");
9787 if (!yyin)
9788 exit (2);
fa7e68c3 9789 /* One token only. */
5b066063 9790 yylex ();
0e14ad77 9791 if (fclose (yyin) != 0)
5b066063
AD
9792 exit (3);
9793 return 0;
9794}
9795
9796int
0e14ad77 9797main (void)
5b066063
AD
9798{
9799 yyparse ("input");
9800 yyparse ("input");
9801 return 0;
9802}
9803@end verbatim
9804
9805@noindent
9806If the file @file{input} contains
9807
9808@verbatim
9809input:1: Hello,
9810input:2: World!
9811@end verbatim
9812
9813@noindent
0e14ad77 9814then instead of getting the first line twice, you get:
5b066063
AD
9815
9816@example
9817$ @kbd{flex -ofirst-line.c first-line.l}
9818$ @kbd{gcc -ofirst-line first-line.c -ll}
9819$ @kbd{./first-line}
9820input:1: Hello,
9821input:2: World!
9822@end example
9823
0e14ad77
PE
9824Therefore, whenever you change @code{yyin}, you must tell the
9825Lex-generated scanner to discard its current buffer and switch to the
9826new one. This depends upon your implementation of Lex; see its
9827documentation for more. For Flex, it suffices to call
9828@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
9829Flex-generated scanner needs to read from several input streams to
9830handle features like include files, you might consider using Flex
9831functions like @samp{yy_switch_to_buffer} that manipulate multiple
9832input buffers.
5b066063 9833
b165c324
AD
9834If your Flex-generated scanner uses start conditions (@pxref{Start
9835conditions, , Start conditions, flex, The Flex Manual}), you might
9836also want to reset the scanner's state, i.e., go back to the initial
9837start condition, through a call to @samp{BEGIN (0)}.
9838
fef4cb51
AD
9839@node Strings are Destroyed
9840@section Strings are Destroyed
9841
9842@display
c7e441b4 9843My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
9844them. Instead of reporting @samp{"foo", "bar"}, it reports
9845@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
9846@end display
9847
9848This error is probably the single most frequent ``bug report'' sent to
9849Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 9850of the scanner. Consider the following Lex code:
fef4cb51
AD
9851
9852@verbatim
9853%{
9854#include <stdio.h>
9855char *yylval = NULL;
9856%}
9857%%
9858.* yylval = yytext; return 1;
9859\n /* IGNORE */
9860%%
9861int
9862main ()
9863{
fa7e68c3 9864 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
9865 char *fst = (yylex (), yylval);
9866 char *snd = (yylex (), yylval);
9867 printf ("\"%s\", \"%s\"\n", fst, snd);
9868 return 0;
9869}
9870@end verbatim
9871
9872If you compile and run this code, you get:
9873
9874@example
9875$ @kbd{flex -osplit-lines.c split-lines.l}
9876$ @kbd{gcc -osplit-lines split-lines.c -ll}
9877$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9878"one
9879two", "two"
9880@end example
9881
9882@noindent
9883this is because @code{yytext} is a buffer provided for @emph{reading}
9884in the action, but if you want to keep it, you have to duplicate it
9885(e.g., using @code{strdup}). Note that the output may depend on how
9886your implementation of Lex handles @code{yytext}. For instance, when
9887given the Lex compatibility option @option{-l} (which triggers the
9888option @samp{%array}) Flex generates a different behavior:
9889
9890@example
9891$ @kbd{flex -l -osplit-lines.c split-lines.l}
9892$ @kbd{gcc -osplit-lines split-lines.c -ll}
9893$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9894"two", "two"
9895@end example
9896
9897
2fa09258
AD
9898@node Implementing Gotos/Loops
9899@section Implementing Gotos/Loops
a06ea4aa
AD
9900
9901@display
9902My simple calculator supports variables, assignments, and functions,
2fa09258 9903but how can I implement gotos, or loops?
a06ea4aa
AD
9904@end display
9905
9906Although very pedagogical, the examples included in the document blur
a1c84f45 9907the distinction to make between the parser---whose job is to recover
a06ea4aa 9908the structure of a text and to transmit it to subsequent modules of
a1c84f45 9909the program---and the processing (such as the execution) of this
a06ea4aa
AD
9910structure. This works well with so called straight line programs,
9911i.e., precisely those that have a straightforward execution model:
9912execute simple instructions one after the others.
9913
9914@cindex abstract syntax tree
35430378 9915@cindex AST
a06ea4aa
AD
9916If you want a richer model, you will probably need to use the parser
9917to construct a tree that does represent the structure it has
9918recovered; this tree is usually called the @dfn{abstract syntax tree},
35430378 9919or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
9920traversing it in various ways, will enable treatments such as its
9921execution or its translation, which will result in an interpreter or a
9922compiler.
9923
9924This topic is way beyond the scope of this manual, and the reader is
9925invited to consult the dedicated literature.
9926
9927
ed2e6384
AD
9928@node Multiple start-symbols
9929@section Multiple start-symbols
9930
9931@display
9932I have several closely related grammars, and I would like to share their
9933implementations. In fact, I could use a single grammar but with
9934multiple entry points.
9935@end display
9936
9937Bison does not support multiple start-symbols, but there is a very
9938simple means to simulate them. If @code{foo} and @code{bar} are the two
9939pseudo start-symbols, then introduce two new tokens, say
9940@code{START_FOO} and @code{START_BAR}, and use them as switches from the
9941real start-symbol:
9942
9943@example
9944%token START_FOO START_BAR;
9945%start start;
9946start: START_FOO foo
9947 | START_BAR bar;
9948@end example
9949
9950These tokens prevents the introduction of new conflicts. As far as the
9951parser goes, that is all that is needed.
9952
9953Now the difficult part is ensuring that the scanner will send these
9954tokens first. If your scanner is hand-written, that should be
9955straightforward. If your scanner is generated by Lex, them there is
9956simple means to do it: recall that anything between @samp{%@{ ... %@}}
9957after the first @code{%%} is copied verbatim in the top of the generated
9958@code{yylex} function. Make sure a variable @code{start_token} is
9959available in the scanner (e.g., a global variable or using
9960@code{%lex-param} etc.), and use the following:
9961
9962@example
9963 /* @r{Prologue.} */
9964%%
9965%@{
9966 if (start_token)
9967 @{
9968 int t = start_token;
9969 start_token = 0;
9970 return t;
9971 @}
9972%@}
9973 /* @r{The rules.} */
9974@end example
9975
9976
55ba27be
AD
9977@node Secure? Conform?
9978@section Secure? Conform?
9979
9980@display
9981Is Bison secure? Does it conform to POSIX?
9982@end display
9983
9984If you're looking for a guarantee or certification, we don't provide it.
9985However, Bison is intended to be a reliable program that conforms to the
35430378 9986POSIX specification for Yacc. If you run into problems,
55ba27be
AD
9987please send us a bug report.
9988
9989@node I can't build Bison
9990@section I can't build Bison
9991
9992@display
8c5b881d
PE
9993I can't build Bison because @command{make} complains that
9994@code{msgfmt} is not found.
55ba27be
AD
9995What should I do?
9996@end display
9997
9998Like most GNU packages with internationalization support, that feature
9999is turned on by default. If you have problems building in the @file{po}
10000subdirectory, it indicates that your system's internationalization
10001support is lacking. You can re-configure Bison with
10002@option{--disable-nls} to turn off this support, or you can install GNU
10003gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
10004Bison. See the file @file{ABOUT-NLS} for more information.
10005
10006
10007@node Where can I find help?
10008@section Where can I find help?
10009
10010@display
10011I'm having trouble using Bison. Where can I find help?
10012@end display
10013
10014First, read this fine manual. Beyond that, you can send mail to
10015@email{help-bison@@gnu.org}. This mailing list is intended to be
10016populated with people who are willing to answer questions about using
10017and installing Bison. Please keep in mind that (most of) the people on
10018the list have aspects of their lives which are not related to Bison (!),
10019so you may not receive an answer to your question right away. This can
10020be frustrating, but please try not to honk them off; remember that any
10021help they provide is purely voluntary and out of the kindness of their
10022hearts.
10023
10024@node Bug Reports
10025@section Bug Reports
10026
10027@display
10028I found a bug. What should I include in the bug report?
10029@end display
10030
10031Before you send a bug report, make sure you are using the latest
10032version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
10033mirrors. Be sure to include the version number in your bug report. If
10034the bug is present in the latest version but not in a previous version,
10035try to determine the most recent version which did not contain the bug.
10036
10037If the bug is parser-related, you should include the smallest grammar
10038you can which demonstrates the bug. The grammar file should also be
10039complete (i.e., I should be able to run it through Bison without having
10040to edit or add anything). The smaller and simpler the grammar, the
10041easier it will be to fix the bug.
10042
10043Include information about your compilation environment, including your
10044operating system's name and version and your compiler's name and
10045version. If you have trouble compiling, you should also include a
10046transcript of the build session, starting with the invocation of
10047`configure'. Depending on the nature of the bug, you may be asked to
10048send additional files as well (such as `config.h' or `config.cache').
10049
10050Patches are most welcome, but not required. That is, do not hesitate to
10051send a bug report just because you can not provide a fix.
10052
10053Send bug reports to @email{bug-bison@@gnu.org}.
10054
8405b70c
PB
10055@node More Languages
10056@section More Languages
55ba27be
AD
10057
10058@display
8405b70c 10059Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
10060favorite language here}?
10061@end display
10062
8405b70c 10063C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
10064languages; contributions are welcome.
10065
10066@node Beta Testing
10067@section Beta Testing
10068
10069@display
10070What is involved in being a beta tester?
10071@end display
10072
10073It's not terribly involved. Basically, you would download a test
10074release, compile it, and use it to build and run a parser or two. After
10075that, you would submit either a bug report or a message saying that
10076everything is okay. It is important to report successes as well as
10077failures because test releases eventually become mainstream releases,
10078but only if they are adequately tested. If no one tests, development is
10079essentially halted.
10080
10081Beta testers are particularly needed for operating systems to which the
10082developers do not have easy access. They currently have easy access to
10083recent GNU/Linux and Solaris versions. Reports about other operating
10084systems are especially welcome.
10085
10086@node Mailing Lists
10087@section Mailing Lists
10088
10089@display
10090How do I join the help-bison and bug-bison mailing lists?
10091@end display
10092
10093See @url{http://lists.gnu.org/}.
a06ea4aa 10094
d1a1114f
AD
10095@c ================================================= Table of Symbols
10096
342b8b6e 10097@node Table of Symbols
bfa74976
RS
10098@appendix Bison Symbols
10099@cindex Bison symbols, table of
10100@cindex symbols in Bison, table of
10101
18b519c0 10102@deffn {Variable} @@$
3ded9a63 10103In an action, the location of the left-hand side of the rule.
88bce5a2 10104@xref{Locations, , Locations Overview}.
18b519c0 10105@end deffn
3ded9a63 10106
18b519c0 10107@deffn {Variable} @@@var{n}
3ded9a63
AD
10108In an action, the location of the @var{n}-th symbol of the right-hand
10109side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 10110@end deffn
3ded9a63 10111
1f68dca5
AR
10112@deffn {Variable} @@@var{name}
10113In an action, the location of a symbol addressed by name.
10114@xref{Locations, , Locations Overview}.
10115@end deffn
10116
10117@deffn {Variable} @@[@var{name}]
10118In an action, the location of a symbol addressed by name.
10119@xref{Locations, , Locations Overview}.
10120@end deffn
10121
18b519c0 10122@deffn {Variable} $$
3ded9a63
AD
10123In an action, the semantic value of the left-hand side of the rule.
10124@xref{Actions}.
18b519c0 10125@end deffn
3ded9a63 10126
18b519c0 10127@deffn {Variable} $@var{n}
3ded9a63
AD
10128In an action, the semantic value of the @var{n}-th symbol of the
10129right-hand side of the rule. @xref{Actions}.
18b519c0 10130@end deffn
3ded9a63 10131
1f68dca5
AR
10132@deffn {Variable} $@var{name}
10133In an action, the semantic value of a symbol addressed by name.
10134@xref{Actions}.
10135@end deffn
10136
10137@deffn {Variable} $[@var{name}]
10138In an action, the semantic value of a symbol addressed by name.
10139@xref{Actions}.
10140@end deffn
10141
dd8d9022
AD
10142@deffn {Delimiter} %%
10143Delimiter used to separate the grammar rule section from the
10144Bison declarations section or the epilogue.
10145@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 10146@end deffn
bfa74976 10147
dd8d9022
AD
10148@c Don't insert spaces, or check the DVI output.
10149@deffn {Delimiter} %@{@var{code}%@}
10150All code listed between @samp{%@{} and @samp{%@}} is copied directly to
10151the output file uninterpreted. Such code forms the prologue of the input
10152file. @xref{Grammar Outline, ,Outline of a Bison
10153Grammar}.
18b519c0 10154@end deffn
bfa74976 10155
dd8d9022
AD
10156@deffn {Construct} /*@dots{}*/
10157Comment delimiters, as in C.
18b519c0 10158@end deffn
bfa74976 10159
dd8d9022
AD
10160@deffn {Delimiter} :
10161Separates a rule's result from its components. @xref{Rules, ,Syntax of
10162Grammar Rules}.
18b519c0 10163@end deffn
bfa74976 10164
dd8d9022
AD
10165@deffn {Delimiter} ;
10166Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10167@end deffn
bfa74976 10168
dd8d9022
AD
10169@deffn {Delimiter} |
10170Separates alternate rules for the same result nonterminal.
10171@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10172@end deffn
bfa74976 10173
12e35840
JD
10174@deffn {Directive} <*>
10175Used to define a default tagged @code{%destructor} or default tagged
10176@code{%printer}.
85894313
JD
10177
10178This feature is experimental.
10179More user feedback will help to determine whether it should become a permanent
10180feature.
10181
12e35840
JD
10182@xref{Destructor Decl, , Freeing Discarded Symbols}.
10183@end deffn
10184
3ebecc24 10185@deffn {Directive} <>
12e35840
JD
10186Used to define a default tagless @code{%destructor} or default tagless
10187@code{%printer}.
85894313
JD
10188
10189This feature is experimental.
10190More user feedback will help to determine whether it should become a permanent
10191feature.
10192
12e35840
JD
10193@xref{Destructor Decl, , Freeing Discarded Symbols}.
10194@end deffn
10195
dd8d9022
AD
10196@deffn {Symbol} $accept
10197The predefined nonterminal whose only rule is @samp{$accept: @var{start}
10198$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
10199Start-Symbol}. It cannot be used in the grammar.
18b519c0 10200@end deffn
bfa74976 10201
136a0f76 10202@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
10203@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
10204Insert @var{code} verbatim into output parser source.
10205@xref{Decl Summary,,%code}.
9bc0dd67 10206@end deffn
9bc0dd67 10207
18b519c0 10208@deffn {Directive} %debug
6deb4447 10209Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 10210@end deffn
6deb4447 10211
91d2c560 10212@ifset defaultprec
22fccf95
PE
10213@deffn {Directive} %default-prec
10214Assign a precedence to rules that lack an explicit @samp{%prec}
10215modifier. @xref{Contextual Precedence, ,Context-Dependent
10216Precedence}.
39a06c25 10217@end deffn
91d2c560 10218@end ifset
39a06c25 10219
148d66d8
JD
10220@deffn {Directive} %define @var{define-variable}
10221@deffnx {Directive} %define @var{define-variable} @var{value}
f37495f6 10222@deffnx {Directive} %define @var{define-variable} "@var{value}"
148d66d8
JD
10223Define a variable to adjust Bison's behavior.
10224@xref{Decl Summary,,%define}.
10225@end deffn
10226
18b519c0 10227@deffn {Directive} %defines
6deb4447
AD
10228Bison declaration to create a header file meant for the scanner.
10229@xref{Decl Summary}.
18b519c0 10230@end deffn
6deb4447 10231
02975b9a
JD
10232@deffn {Directive} %defines @var{defines-file}
10233Same as above, but save in the file @var{defines-file}.
10234@xref{Decl Summary}.
10235@end deffn
10236
18b519c0 10237@deffn {Directive} %destructor
258b75ca 10238Specify how the parser should reclaim the memory associated to
fa7e68c3 10239discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 10240@end deffn
72f889cc 10241
18b519c0 10242@deffn {Directive} %dprec
676385e2 10243Bison declaration to assign a precedence to a rule that is used at parse
c827f760 10244time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
35430378 10245GLR Parsers}.
18b519c0 10246@end deffn
676385e2 10247
dd8d9022
AD
10248@deffn {Symbol} $end
10249The predefined token marking the end of the token stream. It cannot be
10250used in the grammar.
10251@end deffn
10252
10253@deffn {Symbol} error
10254A token name reserved for error recovery. This token may be used in
10255grammar rules so as to allow the Bison parser to recognize an error in
10256the grammar without halting the process. In effect, a sentence
10257containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
10258token @code{error} becomes the current lookahead token. Actions
10259corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
10260token is reset to the token that originally caused the violation.
10261@xref{Error Recovery}.
18d192f0
AD
10262@end deffn
10263
18b519c0 10264@deffn {Directive} %error-verbose
2a8d363a
AD
10265Bison declaration to request verbose, specific error message strings
10266when @code{yyerror} is called.
18b519c0 10267@end deffn
2a8d363a 10268
02975b9a 10269@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 10270Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 10271Summary}.
18b519c0 10272@end deffn
d8988b2f 10273
18b519c0 10274@deffn {Directive} %glr-parser
35430378
JD
10275Bison declaration to produce a GLR parser. @xref{GLR
10276Parsers, ,Writing GLR Parsers}.
18b519c0 10277@end deffn
676385e2 10278
dd8d9022
AD
10279@deffn {Directive} %initial-action
10280Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
10281@end deffn
10282
e6e704dc
JD
10283@deffn {Directive} %language
10284Specify the programming language for the generated parser.
10285@xref{Decl Summary}.
10286@end deffn
10287
18b519c0 10288@deffn {Directive} %left
bfa74976
RS
10289Bison declaration to assign left associativity to token(s).
10290@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10291@end deffn
bfa74976 10292
feeb0eda 10293@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
10294Bison declaration to specifying an additional parameter that
10295@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
10296for Pure Parsers}.
18b519c0 10297@end deffn
2a8d363a 10298
18b519c0 10299@deffn {Directive} %merge
676385e2 10300Bison declaration to assign a merging function to a rule. If there is a
fae437e8 10301reduce/reduce conflict with a rule having the same merging function, the
676385e2 10302function is applied to the two semantic values to get a single result.
35430378 10303@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 10304@end deffn
676385e2 10305
02975b9a 10306@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 10307Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 10308@end deffn
d8988b2f 10309
91d2c560 10310@ifset defaultprec
22fccf95
PE
10311@deffn {Directive} %no-default-prec
10312Do not assign a precedence to rules that lack an explicit @samp{%prec}
10313modifier. @xref{Contextual Precedence, ,Context-Dependent
10314Precedence}.
10315@end deffn
91d2c560 10316@end ifset
22fccf95 10317
18b519c0 10318@deffn {Directive} %no-lines
931c7513
RS
10319Bison declaration to avoid generating @code{#line} directives in the
10320parser file. @xref{Decl Summary}.
18b519c0 10321@end deffn
931c7513 10322
18b519c0 10323@deffn {Directive} %nonassoc
9d9b8b70 10324Bison declaration to assign nonassociativity to token(s).
bfa74976 10325@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10326@end deffn
bfa74976 10327
02975b9a 10328@deffn {Directive} %output "@var{file}"
72d2299c 10329Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 10330Summary}.
18b519c0 10331@end deffn
d8988b2f 10332
feeb0eda 10333@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
10334Bison declaration to specifying an additional parameter that
10335@code{yyparse} should accept. @xref{Parser Function,, The Parser
10336Function @code{yyparse}}.
18b519c0 10337@end deffn
2a8d363a 10338
18b519c0 10339@deffn {Directive} %prec
bfa74976
RS
10340Bison declaration to assign a precedence to a specific rule.
10341@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 10342@end deffn
bfa74976 10343
18b519c0 10344@deffn {Directive} %pure-parser
d9df47b6
JD
10345Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
10346for which Bison is more careful to warn about unreasonable usage.
18b519c0 10347@end deffn
bfa74976 10348
b50d2359 10349@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
10350Require version @var{version} or higher of Bison. @xref{Require Decl, ,
10351Require a Version of Bison}.
b50d2359
AD
10352@end deffn
10353
18b519c0 10354@deffn {Directive} %right
bfa74976
RS
10355Bison declaration to assign right associativity to token(s).
10356@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10357@end deffn
bfa74976 10358
e6e704dc
JD
10359@deffn {Directive} %skeleton
10360Specify the skeleton to use; usually for development.
10361@xref{Decl Summary}.
10362@end deffn
10363
18b519c0 10364@deffn {Directive} %start
704a47c4
AD
10365Bison declaration to specify the start symbol. @xref{Start Decl, ,The
10366Start-Symbol}.
18b519c0 10367@end deffn
bfa74976 10368
18b519c0 10369@deffn {Directive} %token
bfa74976
RS
10370Bison declaration to declare token(s) without specifying precedence.
10371@xref{Token Decl, ,Token Type Names}.
18b519c0 10372@end deffn
bfa74976 10373
18b519c0 10374@deffn {Directive} %token-table
931c7513
RS
10375Bison declaration to include a token name table in the parser file.
10376@xref{Decl Summary}.
18b519c0 10377@end deffn
931c7513 10378
18b519c0 10379@deffn {Directive} %type
704a47c4
AD
10380Bison declaration to declare nonterminals. @xref{Type Decl,
10381,Nonterminal Symbols}.
18b519c0 10382@end deffn
bfa74976 10383
dd8d9022
AD
10384@deffn {Symbol} $undefined
10385The predefined token onto which all undefined values returned by
10386@code{yylex} are mapped. It cannot be used in the grammar, rather, use
10387@code{error}.
10388@end deffn
10389
18b519c0 10390@deffn {Directive} %union
bfa74976
RS
10391Bison declaration to specify several possible data types for semantic
10392values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 10393@end deffn
bfa74976 10394
dd8d9022
AD
10395@deffn {Macro} YYABORT
10396Macro to pretend that an unrecoverable syntax error has occurred, by
10397making @code{yyparse} return 1 immediately. The error reporting
10398function @code{yyerror} is not called. @xref{Parser Function, ,The
10399Parser Function @code{yyparse}}.
8405b70c
PB
10400
10401For Java parsers, this functionality is invoked using @code{return YYABORT;}
10402instead.
dd8d9022 10403@end deffn
3ded9a63 10404
dd8d9022
AD
10405@deffn {Macro} YYACCEPT
10406Macro to pretend that a complete utterance of the language has been
10407read, by making @code{yyparse} return 0 immediately.
10408@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
10409
10410For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
10411instead.
dd8d9022 10412@end deffn
bfa74976 10413
dd8d9022 10414@deffn {Macro} YYBACKUP
742e4900 10415Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 10416token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10417@end deffn
bfa74976 10418
dd8d9022 10419@deffn {Variable} yychar
32c29292 10420External integer variable that contains the integer value of the
742e4900 10421lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
10422@code{yyparse}.) Error-recovery rule actions may examine this variable.
10423@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10424@end deffn
bfa74976 10425
dd8d9022
AD
10426@deffn {Variable} yyclearin
10427Macro used in error-recovery rule actions. It clears the previous
742e4900 10428lookahead token. @xref{Error Recovery}.
18b519c0 10429@end deffn
bfa74976 10430
dd8d9022
AD
10431@deffn {Macro} YYDEBUG
10432Macro to define to equip the parser with tracing code. @xref{Tracing,
10433,Tracing Your Parser}.
18b519c0 10434@end deffn
bfa74976 10435
dd8d9022
AD
10436@deffn {Variable} yydebug
10437External integer variable set to zero by default. If @code{yydebug}
10438is given a nonzero value, the parser will output information on input
10439symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 10440@end deffn
bfa74976 10441
dd8d9022
AD
10442@deffn {Macro} yyerrok
10443Macro to cause parser to recover immediately to its normal mode
10444after a syntax error. @xref{Error Recovery}.
10445@end deffn
10446
10447@deffn {Macro} YYERROR
10448Macro to pretend that a syntax error has just been detected: call
10449@code{yyerror} and then perform normal error recovery if possible
10450(@pxref{Error Recovery}), or (if recovery is impossible) make
10451@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
10452
10453For Java parsers, this functionality is invoked using @code{return YYERROR;}
10454instead.
dd8d9022
AD
10455@end deffn
10456
10457@deffn {Function} yyerror
10458User-supplied function to be called by @code{yyparse} on error.
10459@xref{Error Reporting, ,The Error
10460Reporting Function @code{yyerror}}.
10461@end deffn
10462
10463@deffn {Macro} YYERROR_VERBOSE
10464An obsolete macro that you define with @code{#define} in the prologue
10465to request verbose, specific error message strings
10466when @code{yyerror} is called. It doesn't matter what definition you
10467use for @code{YYERROR_VERBOSE}, just whether you define it. Using
10468@code{%error-verbose} is preferred.
10469@end deffn
10470
10471@deffn {Macro} YYINITDEPTH
10472Macro for specifying the initial size of the parser stack.
1a059451 10473@xref{Memory Management}.
dd8d9022
AD
10474@end deffn
10475
10476@deffn {Function} yylex
10477User-supplied lexical analyzer function, called with no arguments to get
10478the next token. @xref{Lexical, ,The Lexical Analyzer Function
10479@code{yylex}}.
10480@end deffn
10481
10482@deffn {Macro} YYLEX_PARAM
10483An obsolete macro for specifying an extra argument (or list of extra
32c29292 10484arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
10485macro is deprecated, and is supported only for Yacc like parsers.
10486@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
10487@end deffn
10488
10489@deffn {Variable} yylloc
10490External variable in which @code{yylex} should place the line and column
10491numbers associated with a token. (In a pure parser, it is a local
10492variable within @code{yyparse}, and its address is passed to
32c29292
JD
10493@code{yylex}.)
10494You can ignore this variable if you don't use the @samp{@@} feature in the
10495grammar actions.
10496@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 10497In semantic actions, it stores the location of the lookahead token.
32c29292 10498@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
10499@end deffn
10500
10501@deffn {Type} YYLTYPE
10502Data type of @code{yylloc}; by default, a structure with four
10503members. @xref{Location Type, , Data Types of Locations}.
10504@end deffn
10505
10506@deffn {Variable} yylval
10507External variable in which @code{yylex} should place the semantic
10508value associated with a token. (In a pure parser, it is a local
10509variable within @code{yyparse}, and its address is passed to
32c29292
JD
10510@code{yylex}.)
10511@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 10512In semantic actions, it stores the semantic value of the lookahead token.
32c29292 10513@xref{Actions, ,Actions}.
dd8d9022
AD
10514@end deffn
10515
10516@deffn {Macro} YYMAXDEPTH
1a059451
PE
10517Macro for specifying the maximum size of the parser stack. @xref{Memory
10518Management}.
dd8d9022
AD
10519@end deffn
10520
10521@deffn {Variable} yynerrs
8a2800e7 10522Global variable which Bison increments each time it reports a syntax error.
f4101aa6 10523(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 10524pure push parser, it is a member of yypstate.)
dd8d9022
AD
10525@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
10526@end deffn
10527
10528@deffn {Function} yyparse
10529The parser function produced by Bison; call this function to start
10530parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
10531@end deffn
10532
9987d1b3 10533@deffn {Function} yypstate_delete
f4101aa6 10534The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 10535call this function to delete the memory associated with a parser.
f4101aa6 10536@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 10537@code{yypstate_delete}}.
59da312b
JD
10538(The current push parsing interface is experimental and may evolve.
10539More user feedback will help to stabilize it.)
9987d1b3
JD
10540@end deffn
10541
10542@deffn {Function} yypstate_new
f4101aa6 10543The function to create a parser instance, produced by Bison in push mode;
9987d1b3 10544call this function to create a new parser.
f4101aa6 10545@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 10546@code{yypstate_new}}.
59da312b
JD
10547(The current push parsing interface is experimental and may evolve.
10548More user feedback will help to stabilize it.)
9987d1b3
JD
10549@end deffn
10550
10551@deffn {Function} yypull_parse
f4101aa6
AD
10552The parser function produced by Bison in push mode; call this function to
10553parse the rest of the input stream.
10554@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 10555@code{yypull_parse}}.
59da312b
JD
10556(The current push parsing interface is experimental and may evolve.
10557More user feedback will help to stabilize it.)
9987d1b3
JD
10558@end deffn
10559
10560@deffn {Function} yypush_parse
f4101aa6
AD
10561The parser function produced by Bison in push mode; call this function to
10562parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 10563@code{yypush_parse}}.
59da312b
JD
10564(The current push parsing interface is experimental and may evolve.
10565More user feedback will help to stabilize it.)
9987d1b3
JD
10566@end deffn
10567
dd8d9022
AD
10568@deffn {Macro} YYPARSE_PARAM
10569An obsolete macro for specifying the name of a parameter that
10570@code{yyparse} should accept. The use of this macro is deprecated, and
10571is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
10572Conventions for Pure Parsers}.
10573@end deffn
10574
10575@deffn {Macro} YYRECOVERING
02103984
PE
10576The expression @code{YYRECOVERING ()} yields 1 when the parser
10577is recovering from a syntax error, and 0 otherwise.
10578@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
10579@end deffn
10580
10581@deffn {Macro} YYSTACK_USE_ALLOCA
34a6c2d1
JD
10582Macro used to control the use of @code{alloca} when the
10583deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
10584the parser will use @code{malloc} to extend its stacks. If defined to
105851, the parser will use @code{alloca}. Values other than 0 and 1 are
10586reserved for future Bison extensions. If not defined,
10587@code{YYSTACK_USE_ALLOCA} defaults to 0.
10588
55289366 10589In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
10590limited stack and with unreliable stack-overflow checking, you should
10591set @code{YYMAXDEPTH} to a value that cannot possibly result in
10592unchecked stack overflow on any of your target hosts when
10593@code{alloca} is called. You can inspect the code that Bison
10594generates in order to determine the proper numeric values. This will
10595require some expertise in low-level implementation details.
dd8d9022
AD
10596@end deffn
10597
10598@deffn {Type} YYSTYPE
10599Data type of semantic values; @code{int} by default.
10600@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 10601@end deffn
bfa74976 10602
342b8b6e 10603@node Glossary
bfa74976
RS
10604@appendix Glossary
10605@cindex glossary
10606
10607@table @asis
34a6c2d1
JD
10608@item Accepting State
10609A state whose only action is the accept action.
10610The accepting state is thus a consistent state.
10611@xref{Understanding,,}.
10612
35430378 10613@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
10614Formal method of specifying context-free grammars originally proposed
10615by John Backus, and slightly improved by Peter Naur in his 1960-01-02
10616committee document contributing to what became the Algol 60 report.
10617@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 10618
34a6c2d1
JD
10619@item Consistent State
10620A state containing only one possible action.
1d0f55cc 10621@xref{Decl Summary,,lr.default-reductions}.
34a6c2d1 10622
bfa74976
RS
10623@item Context-free grammars
10624Grammars specified as rules that can be applied regardless of context.
10625Thus, if there is a rule which says that an integer can be used as an
10626expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
10627permitted. @xref{Language and Grammar, ,Languages and Context-Free
10628Grammars}.
bfa74976 10629
620b5727
JD
10630@item Default Reduction
10631The reduction that a parser should perform if the current parser state
34a6c2d1 10632contains no other action for the lookahead token.
620b5727
JD
10633In permitted parser states, Bison declares the reduction with the
10634largest lookahead set to be the default reduction and removes that
10635lookahead set.
1d0f55cc 10636@xref{Decl Summary,,lr.default-reductions}.
34a6c2d1 10637
bfa74976
RS
10638@item Dynamic allocation
10639Allocation of memory that occurs during execution, rather than at
10640compile time or on entry to a function.
10641
10642@item Empty string
10643Analogous to the empty set in set theory, the empty string is a
10644character string of length zero.
10645
10646@item Finite-state stack machine
10647A ``machine'' that has discrete states in which it is said to exist at
10648each instant in time. As input to the machine is processed, the
10649machine moves from state to state as specified by the logic of the
10650machine. In the case of the parser, the input is the language being
10651parsed, and the states correspond to various stages in the grammar
c827f760 10652rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 10653
35430378 10654@item Generalized LR (GLR)
676385e2 10655A parsing algorithm that can handle all context-free grammars, including those
35430378 10656that are not LR(1). It resolves situations that Bison's
34a6c2d1 10657deterministic parsing
676385e2
PH
10658algorithm cannot by effectively splitting off multiple parsers, trying all
10659possible parsers, and discarding those that fail in the light of additional
c827f760 10660right context. @xref{Generalized LR Parsing, ,Generalized
35430378 10661LR Parsing}.
676385e2 10662
bfa74976
RS
10663@item Grouping
10664A language construct that is (in general) grammatically divisible;
c827f760 10665for example, `expression' or `declaration' in C@.
bfa74976
RS
10666@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10667
35430378
JD
10668@item IELR(1)
10669A minimal LR(1) parser table generation algorithm.
10670That is, given any context-free grammar, IELR(1) generates
34a6c2d1 10671parser tables with the full language recognition power of canonical
35430378
JD
10672LR(1) but with nearly the same number of parser states as
10673LALR(1).
34a6c2d1 10674This reduction in parser states is often an order of magnitude.
35430378 10675More importantly, because canonical LR(1)'s extra parser
34a6c2d1 10676states may contain duplicate conflicts in the case of
35430378
JD
10677non-LR(1) grammars, the number of conflicts for
10678IELR(1) is often an order of magnitude less as well.
34a6c2d1
JD
10679This can significantly reduce the complexity of developing of a grammar.
10680@xref{Decl Summary,,lr.type}.
10681
bfa74976
RS
10682@item Infix operator
10683An arithmetic operator that is placed between the operands on which it
10684performs some operation.
10685
10686@item Input stream
10687A continuous flow of data between devices or programs.
10688
35430378 10689@item LAC (Lookahead Correction)
4c38b19e
JD
10690A parsing mechanism that fixes the problem of delayed syntax error
10691detection, which is caused by LR state merging, default reductions, and
10692the use of @code{%nonassoc}. Delayed syntax error detection results in
10693unexpected semantic actions, initiation of error recovery in the wrong
10694syntactic context, and an incorrect list of expected tokens in a verbose
10695syntax error message. @xref{Decl Summary,,parse.lac}.
10696
bfa74976
RS
10697@item Language construct
10698One of the typical usage schemas of the language. For example, one of
10699the constructs of the C language is the @code{if} statement.
10700@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10701
10702@item Left associativity
10703Operators having left associativity are analyzed from left to right:
10704@samp{a+b+c} first computes @samp{a+b} and then combines with
10705@samp{c}. @xref{Precedence, ,Operator Precedence}.
10706
10707@item Left recursion
89cab50d
AD
10708A rule whose result symbol is also its first component symbol; for
10709example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
10710Rules}.
bfa74976
RS
10711
10712@item Left-to-right parsing
10713Parsing a sentence of a language by analyzing it token by token from
c827f760 10714left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10715
10716@item Lexical analyzer (scanner)
10717A function that reads an input stream and returns tokens one by one.
10718@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
10719
10720@item Lexical tie-in
10721A flag, set by actions in the grammar rules, which alters the way
10722tokens are parsed. @xref{Lexical Tie-ins}.
10723
931c7513 10724@item Literal string token
14ded682 10725A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 10726
742e4900
JD
10727@item Lookahead token
10728A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 10729Tokens}.
bfa74976 10730
35430378 10731@item LALR(1)
bfa74976 10732The class of context-free grammars that Bison (like most other parser
35430378 10733generators) can handle by default; a subset of LR(1).
34a6c2d1 10734@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 10735
35430378 10736@item LR(1)
bfa74976 10737The class of context-free grammars in which at most one token of
742e4900 10738lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
10739
10740@item Nonterminal symbol
10741A grammar symbol standing for a grammatical construct that can
10742be expressed through rules in terms of smaller constructs; in other
10743words, a construct that is not a token. @xref{Symbols}.
10744
bfa74976
RS
10745@item Parser
10746A function that recognizes valid sentences of a language by analyzing
10747the syntax structure of a set of tokens passed to it from a lexical
10748analyzer.
10749
10750@item Postfix operator
10751An arithmetic operator that is placed after the operands upon which it
10752performs some operation.
10753
10754@item Reduction
10755Replacing a string of nonterminals and/or terminals with a single
89cab50d 10756nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 10757Parser Algorithm}.
bfa74976
RS
10758
10759@item Reentrant
10760A reentrant subprogram is a subprogram which can be in invoked any
10761number of times in parallel, without interference between the various
10762invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
10763
10764@item Reverse polish notation
10765A language in which all operators are postfix operators.
10766
10767@item Right recursion
89cab50d
AD
10768A rule whose result symbol is also its last component symbol; for
10769example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
10770Rules}.
bfa74976
RS
10771
10772@item Semantics
10773In computer languages, the semantics are specified by the actions
10774taken for each instance of the language, i.e., the meaning of
10775each statement. @xref{Semantics, ,Defining Language Semantics}.
10776
10777@item Shift
10778A parser is said to shift when it makes the choice of analyzing
10779further input from the stream rather than reducing immediately some
c827f760 10780already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10781
10782@item Single-character literal
10783A single character that is recognized and interpreted as is.
10784@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
10785
10786@item Start symbol
10787The nonterminal symbol that stands for a complete valid utterance in
10788the language being parsed. The start symbol is usually listed as the
13863333 10789first nonterminal symbol in a language specification.
bfa74976
RS
10790@xref{Start Decl, ,The Start-Symbol}.
10791
10792@item Symbol table
10793A data structure where symbol names and associated data are stored
10794during parsing to allow for recognition and use of existing
10795information in repeated uses of a symbol. @xref{Multi-function Calc}.
10796
6e649e65
PE
10797@item Syntax error
10798An error encountered during parsing of an input stream due to invalid
10799syntax. @xref{Error Recovery}.
10800
bfa74976
RS
10801@item Token
10802A basic, grammatically indivisible unit of a language. The symbol
10803that describes a token in the grammar is a terminal symbol.
10804The input of the Bison parser is a stream of tokens which comes from
10805the lexical analyzer. @xref{Symbols}.
10806
10807@item Terminal symbol
89cab50d
AD
10808A grammar symbol that has no rules in the grammar and therefore is
10809grammatically indivisible. The piece of text it represents is a token.
10810@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
10811@end table
10812
342b8b6e 10813@node Copying This Manual
f2b5126e 10814@appendix Copying This Manual
f2b5126e
PB
10815@include fdl.texi
10816
342b8b6e 10817@node Index
bfa74976
RS
10818@unnumbered Index
10819
10820@printindex cp
10821
bfa74976 10822@bye
a06ea4aa 10823
8fbbeba2
AD
10824@c Local Variables:
10825@c fill-column: 76
10826@c End:
10827
232be91a
AD
10828@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
10829@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
10830@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
10831@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
10832@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
10833@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
10834@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
10835@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
10836@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
10837@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
10838@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
10839@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
10840@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
10841@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym enum
10842@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
10843@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
10844@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
10845@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
10846@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
10847@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
10848@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
10849@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
10850@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
10851@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype Lookahead
10852@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
10853@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
10854@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
10855@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
10856@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
4c38b19e 10857@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
232be91a
AD
10858@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs
10859@c LocalWords: yytokentype filename destructor multicharacter nonnull EBCDIC
10860@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
10861@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative
10862@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
10863@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
10864@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
10865@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz
10866@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
10867@c LocalWords: makefiles Graphviz multitable headitem hh basename Doxygen fno
10868@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
10869@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
10870@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
10871@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
10872@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc
10873@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
10874@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
10875@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
10876@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
10877@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
41d35e54 10878@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt
232be91a 10879@c LocalWords: subdirectory Solaris nonassociativity