]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
doc: discuss named references after locations.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
35430378
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
ea0a7676
JD
36Copyright @copyright{} 1988-1993, 1995, 1998-2011 Free Software
37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
35430378 41under the terms of the GNU Free Documentation License,
241ac701 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
35430378 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
35430378 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
35430378
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
35430378 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
35430378 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
35430378 91* Copying:: The GNU General Public License says
f56274a8 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f56274a8
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f56274a8
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f56274a8
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
9913d6e4 106* Invocation:: How to run Bison (to produce the parser implementation).
f56274a8
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
71caec06 112* Bibliography:: Publications cited in this manual.
f56274a8 113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f56274a8
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
128* Locations Overview:: Tracking Locations.
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
35430378 134Writing GLR Parsers
fa7e68c3 135
35430378
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
f56274a8 138* GLR Semantic Actions:: Deferred semantic actions have special concerns.
35430378 139* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 140
bfa74976
RS
141Examples
142
f56274a8
DJ
143* RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145* Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
bfa74976 147* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 148* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
149* Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
151* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
152
153Reverse Polish Notation Calculator
154
f56274a8
DJ
155* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
156* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
157* Rpcalc Lexer:: The lexical analyzer.
158* Rpcalc Main:: The controlling function.
159* Rpcalc Error:: The error reporting function.
160* Rpcalc Generate:: Running Bison on the grammar file.
161* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
162
163Grammar Rules for @code{rpcalc}
164
13863333
AD
165* Rpcalc Input::
166* Rpcalc Line::
167* Rpcalc Expr::
bfa74976 168
342b8b6e
AD
169Location Tracking Calculator: @code{ltcalc}
170
f56274a8
DJ
171* Ltcalc Declarations:: Bison and C declarations for ltcalc.
172* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
173* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 174
bfa74976
RS
175Multi-Function Calculator: @code{mfcalc}
176
f56274a8
DJ
177* Mfcalc Declarations:: Bison declarations for multi-function calculator.
178* Mfcalc Rules:: Grammar rules for the calculator.
179* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
180
181Bison Grammar Files
182
183* Grammar Outline:: Overall layout of the grammar file.
184* Symbols:: Terminal and nonterminal symbols.
185* Rules:: How to write grammar rules.
186* Recursion:: Writing recursive rules.
187* Semantics:: Semantic values and actions.
93dd49ab 188* Locations:: Locations and actions.
908c8647 189* Named References:: Using named references in actions.
bfa74976
RS
190* Declarations:: All kinds of Bison declarations are described here.
191* Multiple Parsers:: Putting more than one Bison parser in one program.
192
193Outline of a Bison Grammar
194
f56274a8 195* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 196* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
197* Bison Declarations:: Syntax and usage of the Bison declarations section.
198* Grammar Rules:: Syntax and usage of the grammar rules section.
199* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
200
201Defining Language Semantics
202
203* Value Type:: Specifying one data type for all semantic values.
204* Multiple Types:: Specifying several alternative data types.
205* Actions:: An action is the semantic definition of a grammar rule.
206* Action Types:: Specifying data types for actions to operate on.
207* Mid-Rule Actions:: Most actions go at the end of a rule.
208 This says when, why and how to use the exceptional
209 action in the middle of a rule.
210
93dd49ab
PE
211Tracking Locations
212
213* Location Type:: Specifying a data type for locations.
214* Actions and Locations:: Using locations in actions.
215* Location Default Action:: Defining a general way to compute locations.
216
bfa74976
RS
217Bison Declarations
218
b50d2359 219* Require Decl:: Requiring a Bison version.
bfa74976
RS
220* Token Decl:: Declaring terminal symbols.
221* Precedence Decl:: Declaring terminals with precedence and associativity.
222* Union Decl:: Declaring the set of all semantic value types.
223* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 224* Initial Action Decl:: Code run before parsing starts.
72f889cc 225* Destructor Decl:: Declaring how symbols are freed.
d6328241 226* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
227* Start Decl:: Specifying the start symbol.
228* Pure Decl:: Requesting a reentrant parser.
9987d1b3 229* Push Decl:: Requesting a push parser.
bfa74976 230* Decl Summary:: Table of all Bison declarations.
2f4518a1 231* %define Summary:: Defining variables to adjust Bison's behavior.
8e6f2266 232* %code Summary:: Inserting code into the parser source.
bfa74976
RS
233
234Parser C-Language Interface
235
f56274a8
DJ
236* Parser Function:: How to call @code{yyparse} and what it returns.
237* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
238* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
239* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
240* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
241* Lexical:: You must supply a function @code{yylex}
242 which reads tokens.
243* Error Reporting:: You must supply a function @code{yyerror}.
244* Action Features:: Special features for use in actions.
245* Internationalization:: How to let the parser speak in the user's
246 native language.
bfa74976
RS
247
248The Lexical Analyzer Function @code{yylex}
249
250* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
251* Token Values:: How @code{yylex} must return the semantic value
252 of the token it has read.
253* Token Locations:: How @code{yylex} must return the text location
254 (line number, etc.) of the token, if the
255 actions want that.
256* Pure Calling:: How the calling convention differs in a pure parser
257 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 258
13863333 259The Bison Parser Algorithm
bfa74976 260
742e4900 261* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
262* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
263* Precedence:: Operator precedence works by resolving conflicts.
264* Contextual Precedence:: When an operator's precedence depends on context.
265* Parser States:: The parser is a finite-state-machine with stack.
266* Reduce/Reduce:: When two rules are applicable in the same situation.
5da0355a 267* Mysterious Conflicts:: Conflicts that look unjustified.
6f04ee6c 268* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 269* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 270* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
271
272Operator Precedence
273
274* Why Precedence:: An example showing why precedence is needed.
275* Using Precedence:: How to specify precedence in Bison grammars.
276* Precedence Examples:: How these features are used in the previous example.
277* How Precedence:: How they work.
278
6f04ee6c
JD
279Tuning LR
280
281* LR Table Construction:: Choose a different construction algorithm.
282* Default Reductions:: Disable default reductions.
283* LAC:: Correct lookahead sets in the parser states.
284* Unreachable States:: Keep unreachable parser states for debugging.
285
bfa74976
RS
286Handling Context Dependencies
287
288* Semantic Tokens:: Token parsing can depend on the semantic context.
289* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
290* Tie-in Recovery:: Lexical tie-ins have implications for how
291 error recovery rules must be written.
292
93dd49ab 293Debugging Your Parser
ec3bc396
AD
294
295* Understanding:: Understanding the structure of your parser.
296* Tracing:: Tracing the execution of your parser.
297
bfa74976
RS
298Invoking Bison
299
13863333 300* Bison Options:: All the options described in detail,
c827f760 301 in alphabetical order by short options.
bfa74976 302* Option Cross Key:: Alphabetical list of long options.
93dd49ab 303* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 304
8405b70c 305Parsers Written In Other Languages
12545799
AD
306
307* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 308* Java Parsers:: The interface to generate Java parser classes
12545799
AD
309
310C++ Parsers
311
312* C++ Bison Interface:: Asking for C++ parser generation
313* C++ Semantic Values:: %union vs. C++
314* C++ Location Values:: The position and location classes
315* C++ Parser Interface:: Instantiating and running the parser
316* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 317* A Complete C++ Example:: Demonstrating their use
12545799
AD
318
319A Complete C++ Example
320
321* Calc++ --- C++ Calculator:: The specifications
322* Calc++ Parsing Driver:: An active parsing context
323* Calc++ Parser:: A parser class
324* Calc++ Scanner:: A pure C++ Flex scanner
325* Calc++ Top Level:: Conducting the band
326
8405b70c
PB
327Java Parsers
328
f56274a8
DJ
329* Java Bison Interface:: Asking for Java parser generation
330* Java Semantic Values:: %type and %token vs. Java
331* Java Location Values:: The position and location classes
332* Java Parser Interface:: Instantiating and running the parser
333* Java Scanner Interface:: Specifying the scanner for the parser
334* Java Action Features:: Special features for use in actions
335* Java Differences:: Differences between C/C++ and Java Grammars
336* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 337
d1a1114f
AD
338Frequently Asked Questions
339
f56274a8
DJ
340* Memory Exhausted:: Breaking the Stack Limits
341* How Can I Reset the Parser:: @code{yyparse} Keeps some State
342* Strings are Destroyed:: @code{yylval} Loses Track of Strings
343* Implementing Gotos/Loops:: Control Flow in the Calculator
344* Multiple start-symbols:: Factoring closely related grammars
35430378 345* Secure? Conform?:: Is Bison POSIX safe?
f56274a8
DJ
346* I can't build Bison:: Troubleshooting
347* Where can I find help?:: Troubleshouting
348* Bug Reports:: Troublereporting
349* More Languages:: Parsers in C++, Java, and so on
350* Beta Testing:: Experimenting development versions
351* Mailing Lists:: Meeting other Bison users
d1a1114f 352
f2b5126e
PB
353Copying This Manual
354
f56274a8 355* Copying This Manual:: License for copying this manual.
f2b5126e 356
342b8b6e 357@end detailmenu
bfa74976
RS
358@end menu
359
342b8b6e 360@node Introduction
bfa74976
RS
361@unnumbered Introduction
362@cindex introduction
363
6077da58 364@dfn{Bison} is a general-purpose parser generator that converts an
d89e48b3
JD
365annotated context-free grammar into a deterministic LR or generalized
366LR (GLR) parser employing LALR(1) parser tables. As an experimental
367feature, Bison can also generate IELR(1) or canonical LR(1) parser
368tables. Once you are proficient with Bison, you can use it to develop
369a wide range of language parsers, from those used in simple desk
370calculators to complex programming languages.
371
372Bison is upward compatible with Yacc: all properly-written Yacc
373grammars ought to work with Bison with no change. Anyone familiar
374with Yacc should be able to use Bison with little trouble. You need
375to be fluent in C or C++ programming in order to use Bison or to
376understand this manual. Java is also supported as an experimental
377feature.
378
379We begin with tutorial chapters that explain the basic concepts of
380using Bison and show three explained examples, each building on the
381last. If you don't know Bison or Yacc, start by reading these
382chapters. Reference chapters follow, which describe specific aspects
383of Bison in detail.
bfa74976 384
840341d6
JD
385Bison was written originally by Robert Corbett. Richard Stallman made
386it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
387added multi-character string literals and other features. Since then,
388Bison has grown more robust and evolved many other new features thanks
389to the hard work of a long list of volunteers. For details, see the
390@file{THANKS} and @file{ChangeLog} files included in the Bison
391distribution.
931c7513 392
df1af54c 393This edition corresponds to version @value{VERSION} of Bison.
bfa74976 394
342b8b6e 395@node Conditions
bfa74976
RS
396@unnumbered Conditions for Using Bison
397
193d7c70
PE
398The distribution terms for Bison-generated parsers permit using the
399parsers in nonfree programs. Before Bison version 2.2, these extra
35430378 400permissions applied only when Bison was generating LALR(1)
193d7c70 401parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 402parsers could be used only in programs that were free software.
a31239f1 403
35430378 404The other GNU programming tools, such as the GNU C
c827f760 405compiler, have never
9ecbd125 406had such a requirement. They could always be used for nonfree
a31239f1
RS
407software. The reason Bison was different was not due to a special
408policy decision; it resulted from applying the usual General Public
409License to all of the Bison source code.
410
9913d6e4
JD
411The main output of the Bison utility---the Bison parser implementation
412file---contains a verbatim copy of a sizable piece of Bison, which is
413the code for the parser's implementation. (The actions from your
414grammar are inserted into this implementation at one point, but most
415of the rest of the implementation is not changed.) When we applied
416the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
417the effect was to restrict the use of Bison output to free software.
418
419We didn't change the terms because of sympathy for people who want to
420make software proprietary. @strong{Software should be free.} But we
421concluded that limiting Bison's use to free software was doing little to
422encourage people to make other software free. So we decided to make the
423practical conditions for using Bison match the practical conditions for
35430378 424using the other GNU tools.
bfa74976 425
193d7c70
PE
426This exception applies when Bison is generating code for a parser.
427You can tell whether the exception applies to a Bison output file by
428inspecting the file for text beginning with ``As a special
429exception@dots{}''. The text spells out the exact terms of the
430exception.
262aa8dd 431
f16b0819
PE
432@node Copying
433@unnumbered GNU GENERAL PUBLIC LICENSE
434@include gpl-3.0.texi
bfa74976 435
342b8b6e 436@node Concepts
bfa74976
RS
437@chapter The Concepts of Bison
438
439This chapter introduces many of the basic concepts without which the
440details of Bison will not make sense. If you do not already know how to
441use Bison or Yacc, we suggest you start by reading this chapter carefully.
442
443@menu
f56274a8
DJ
444* Language and Grammar:: Languages and context-free grammars,
445 as mathematical ideas.
446* Grammar in Bison:: How we represent grammars for Bison's sake.
447* Semantic Values:: Each token or syntactic grouping can have
448 a semantic value (the value of an integer,
449 the name of an identifier, etc.).
450* Semantic Actions:: Each rule can have an action containing C code.
451* GLR Parsers:: Writing parsers for general context-free languages.
452* Locations Overview:: Tracking Locations.
453* Bison Parser:: What are Bison's input and output,
454 how is the output used?
455* Stages:: Stages in writing and running Bison grammars.
456* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
457@end menu
458
342b8b6e 459@node Language and Grammar
bfa74976
RS
460@section Languages and Context-Free Grammars
461
bfa74976
RS
462@cindex context-free grammar
463@cindex grammar, context-free
464In order for Bison to parse a language, it must be described by a
465@dfn{context-free grammar}. This means that you specify one or more
466@dfn{syntactic groupings} and give rules for constructing them from their
467parts. For example, in the C language, one kind of grouping is called an
468`expression'. One rule for making an expression might be, ``An expression
469can be made of a minus sign and another expression''. Another would be,
470``An expression can be an integer''. As you can see, rules are often
471recursive, but there must be at least one rule which leads out of the
472recursion.
473
35430378 474@cindex BNF
bfa74976
RS
475@cindex Backus-Naur form
476The most common formal system for presenting such rules for humans to read
35430378 477is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 478order to specify the language Algol 60. Any grammar expressed in
35430378
JD
479BNF is a context-free grammar. The input to Bison is
480essentially machine-readable BNF.
bfa74976 481
6f04ee6c
JD
482@cindex LALR grammars
483@cindex IELR grammars
484@cindex LR grammars
485There are various important subclasses of context-free grammars. Although
486it can handle almost all context-free grammars, Bison is optimized for what
487are called LR(1) grammars. In brief, in these grammars, it must be possible
488to tell how to parse any portion of an input string with just a single token
489of lookahead. For historical reasons, Bison by default is limited by the
490additional restrictions of LALR(1), which is hard to explain simply.
5da0355a
JD
491@xref{Mysterious Conflicts}, for more information on this. As an
492experimental feature, you can escape these additional restrictions by
493requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
494Construction}, to learn how.
bfa74976 495
35430378
JD
496@cindex GLR parsing
497@cindex generalized LR (GLR) parsing
676385e2 498@cindex ambiguous grammars
9d9b8b70 499@cindex nondeterministic parsing
9501dc6e 500
35430378 501Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
502roughly that the next grammar rule to apply at any point in the input is
503uniquely determined by the preceding input and a fixed, finite portion
742e4900 504(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 505grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 506apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 507grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 508lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 509With the proper declarations, Bison is also able to parse these more
35430378
JD
510general context-free grammars, using a technique known as GLR
511parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
512are able to handle any context-free grammar for which the number of
513possible parses of any given string is finite.
676385e2 514
bfa74976
RS
515@cindex symbols (abstract)
516@cindex token
517@cindex syntactic grouping
518@cindex grouping, syntactic
9501dc6e
AD
519In the formal grammatical rules for a language, each kind of syntactic
520unit or grouping is named by a @dfn{symbol}. Those which are built by
521grouping smaller constructs according to grammatical rules are called
bfa74976
RS
522@dfn{nonterminal symbols}; those which can't be subdivided are called
523@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
524corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 525corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
526
527We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
528nonterminal, mean. The tokens of C are identifiers, constants (numeric
529and string), and the various keywords, arithmetic operators and
530punctuation marks. So the terminal symbols of a grammar for C include
531`identifier', `number', `string', plus one symbol for each keyword,
532operator or punctuation mark: `if', `return', `const', `static', `int',
533`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
534(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
535lexicography, not grammar.)
536
537Here is a simple C function subdivided into tokens:
538
9edcd895
AD
539@ifinfo
540@example
541int /* @r{keyword `int'} */
14d4662b 542square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
543 @r{identifier, close-paren} */
544@{ /* @r{open-brace} */
aa08666d
AD
545 return x * x; /* @r{keyword `return', identifier, asterisk,}
546 @r{identifier, semicolon} */
9edcd895
AD
547@} /* @r{close-brace} */
548@end example
549@end ifinfo
550@ifnotinfo
bfa74976
RS
551@example
552int /* @r{keyword `int'} */
14d4662b 553square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 554@{ /* @r{open-brace} */
9edcd895 555 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
556@} /* @r{close-brace} */
557@end example
9edcd895 558@end ifnotinfo
bfa74976
RS
559
560The syntactic groupings of C include the expression, the statement, the
561declaration, and the function definition. These are represented in the
562grammar of C by nonterminal symbols `expression', `statement',
563`declaration' and `function definition'. The full grammar uses dozens of
564additional language constructs, each with its own nonterminal symbol, in
565order to express the meanings of these four. The example above is a
566function definition; it contains one declaration, and one statement. In
567the statement, each @samp{x} is an expression and so is @samp{x * x}.
568
569Each nonterminal symbol must have grammatical rules showing how it is made
570out of simpler constructs. For example, one kind of C statement is the
571@code{return} statement; this would be described with a grammar rule which
572reads informally as follows:
573
574@quotation
575A `statement' can be made of a `return' keyword, an `expression' and a
576`semicolon'.
577@end quotation
578
579@noindent
580There would be many other rules for `statement', one for each kind of
581statement in C.
582
583@cindex start symbol
584One nonterminal symbol must be distinguished as the special one which
585defines a complete utterance in the language. It is called the @dfn{start
586symbol}. In a compiler, this means a complete input program. In the C
587language, the nonterminal symbol `sequence of definitions and declarations'
588plays this role.
589
590For example, @samp{1 + 2} is a valid C expression---a valid part of a C
591program---but it is not valid as an @emph{entire} C program. In the
592context-free grammar of C, this follows from the fact that `expression' is
593not the start symbol.
594
595The Bison parser reads a sequence of tokens as its input, and groups the
596tokens using the grammar rules. If the input is valid, the end result is
597that the entire token sequence reduces to a single grouping whose symbol is
598the grammar's start symbol. If we use a grammar for C, the entire input
599must be a `sequence of definitions and declarations'. If not, the parser
600reports a syntax error.
601
342b8b6e 602@node Grammar in Bison
bfa74976
RS
603@section From Formal Rules to Bison Input
604@cindex Bison grammar
605@cindex grammar, Bison
606@cindex formal grammar
607
608A formal grammar is a mathematical construct. To define the language
609for Bison, you must write a file expressing the grammar in Bison syntax:
610a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
611
612A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 613as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
614in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
615
616The Bison representation for a terminal symbol is also called a @dfn{token
617type}. Token types as well can be represented as C-like identifiers. By
618convention, these identifiers should be upper case to distinguish them from
619nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
620@code{RETURN}. A terminal symbol that stands for a particular keyword in
621the language should be named after that keyword converted to upper case.
622The terminal symbol @code{error} is reserved for error recovery.
931c7513 623@xref{Symbols}.
bfa74976
RS
624
625A terminal symbol can also be represented as a character literal, just like
626a C character constant. You should do this whenever a token is just a
627single character (parenthesis, plus-sign, etc.): use that same character in
628a literal as the terminal symbol for that token.
629
931c7513
RS
630A third way to represent a terminal symbol is with a C string constant
631containing several characters. @xref{Symbols}, for more information.
632
bfa74976
RS
633The grammar rules also have an expression in Bison syntax. For example,
634here is the Bison rule for a C @code{return} statement. The semicolon in
635quotes is a literal character token, representing part of the C syntax for
636the statement; the naked semicolon, and the colon, are Bison punctuation
637used in every rule.
638
639@example
640stmt: RETURN expr ';'
641 ;
642@end example
643
644@noindent
645@xref{Rules, ,Syntax of Grammar Rules}.
646
342b8b6e 647@node Semantic Values
bfa74976
RS
648@section Semantic Values
649@cindex semantic value
650@cindex value, semantic
651
652A formal grammar selects tokens only by their classifications: for example,
653if a rule mentions the terminal symbol `integer constant', it means that
654@emph{any} integer constant is grammatically valid in that position. The
655precise value of the constant is irrelevant to how to parse the input: if
656@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 657grammatical.
bfa74976
RS
658
659But the precise value is very important for what the input means once it is
660parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6613989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
662has both a token type and a @dfn{semantic value}. @xref{Semantics,
663,Defining Language Semantics},
bfa74976
RS
664for details.
665
666The token type is a terminal symbol defined in the grammar, such as
667@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
668you need to know to decide where the token may validly appear and how to
669group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 670except their types.
bfa74976
RS
671
672The semantic value has all the rest of the information about the
673meaning of the token, such as the value of an integer, or the name of an
674identifier. (A token such as @code{','} which is just punctuation doesn't
675need to have any semantic value.)
676
677For example, an input token might be classified as token type
678@code{INTEGER} and have the semantic value 4. Another input token might
679have the same token type @code{INTEGER} but value 3989. When a grammar
680rule says that @code{INTEGER} is allowed, either of these tokens is
681acceptable because each is an @code{INTEGER}. When the parser accepts the
682token, it keeps track of the token's semantic value.
683
684Each grouping can also have a semantic value as well as its nonterminal
685symbol. For example, in a calculator, an expression typically has a
686semantic value that is a number. In a compiler for a programming
687language, an expression typically has a semantic value that is a tree
688structure describing the meaning of the expression.
689
342b8b6e 690@node Semantic Actions
bfa74976
RS
691@section Semantic Actions
692@cindex semantic actions
693@cindex actions, semantic
694
695In order to be useful, a program must do more than parse input; it must
696also produce some output based on the input. In a Bison grammar, a grammar
697rule can have an @dfn{action} made up of C statements. Each time the
698parser recognizes a match for that rule, the action is executed.
699@xref{Actions}.
13863333 700
bfa74976
RS
701Most of the time, the purpose of an action is to compute the semantic value
702of the whole construct from the semantic values of its parts. For example,
703suppose we have a rule which says an expression can be the sum of two
704expressions. When the parser recognizes such a sum, each of the
705subexpressions has a semantic value which describes how it was built up.
706The action for this rule should create a similar sort of value for the
707newly recognized larger expression.
708
709For example, here is a rule that says an expression can be the sum of
710two subexpressions:
711
712@example
713expr: expr '+' expr @{ $$ = $1 + $3; @}
714 ;
715@end example
716
717@noindent
718The action says how to produce the semantic value of the sum expression
719from the values of the two subexpressions.
720
676385e2 721@node GLR Parsers
35430378
JD
722@section Writing GLR Parsers
723@cindex GLR parsing
724@cindex generalized LR (GLR) parsing
676385e2
PH
725@findex %glr-parser
726@cindex conflicts
727@cindex shift/reduce conflicts
fa7e68c3 728@cindex reduce/reduce conflicts
676385e2 729
34a6c2d1 730In some grammars, Bison's deterministic
35430378 731LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
732certain grammar rule at a given point. That is, it may not be able to
733decide (on the basis of the input read so far) which of two possible
734reductions (applications of a grammar rule) applies, or whether to apply
735a reduction or read more of the input and apply a reduction later in the
736input. These are known respectively as @dfn{reduce/reduce} conflicts
737(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
738(@pxref{Shift/Reduce}).
739
35430378 740To use a grammar that is not easily modified to be LR(1), a
9501dc6e 741more general parsing algorithm is sometimes necessary. If you include
676385e2 742@code{%glr-parser} among the Bison declarations in your file
35430378
JD
743(@pxref{Grammar Outline}), the result is a Generalized LR
744(GLR) parser. These parsers handle Bison grammars that
9501dc6e 745contain no unresolved conflicts (i.e., after applying precedence
34a6c2d1 746declarations) identically to deterministic parsers. However, when
9501dc6e 747faced with unresolved shift/reduce and reduce/reduce conflicts,
35430378 748GLR parsers use the simple expedient of doing both,
9501dc6e
AD
749effectively cloning the parser to follow both possibilities. Each of
750the resulting parsers can again split, so that at any given time, there
751can be any number of possible parses being explored. The parsers
676385e2
PH
752proceed in lockstep; that is, all of them consume (shift) a given input
753symbol before any of them proceed to the next. Each of the cloned
754parsers eventually meets one of two possible fates: either it runs into
755a parsing error, in which case it simply vanishes, or it merges with
756another parser, because the two of them have reduced the input to an
757identical set of symbols.
758
759During the time that there are multiple parsers, semantic actions are
760recorded, but not performed. When a parser disappears, its recorded
761semantic actions disappear as well, and are never performed. When a
762reduction makes two parsers identical, causing them to merge, Bison
763records both sets of semantic actions. Whenever the last two parsers
764merge, reverting to the single-parser case, Bison resolves all the
765outstanding actions either by precedences given to the grammar rules
766involved, or by performing both actions, and then calling a designated
767user-defined function on the resulting values to produce an arbitrary
768merged result.
769
fa7e68c3 770@menu
35430378
JD
771* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
772* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
f56274a8 773* GLR Semantic Actions:: Deferred semantic actions have special concerns.
35430378 774* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
775@end menu
776
777@node Simple GLR Parsers
35430378
JD
778@subsection Using GLR on Unambiguous Grammars
779@cindex GLR parsing, unambiguous grammars
780@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
781@findex %glr-parser
782@findex %expect-rr
783@cindex conflicts
784@cindex reduce/reduce conflicts
785@cindex shift/reduce conflicts
786
35430378
JD
787In the simplest cases, you can use the GLR algorithm
788to parse grammars that are unambiguous but fail to be LR(1).
34a6c2d1 789Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
790
791Consider a problem that
792arises in the declaration of enumerated and subrange types in the
793programming language Pascal. Here are some examples:
794
795@example
796type subrange = lo .. hi;
797type enum = (a, b, c);
798@end example
799
800@noindent
801The original language standard allows only numeric
802literals and constant identifiers for the subrange bounds (@samp{lo}
35430378 803and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
80410206) and many other
805Pascal implementations allow arbitrary expressions there. This gives
806rise to the following situation, containing a superfluous pair of
807parentheses:
808
809@example
810type subrange = (a) .. b;
811@end example
812
813@noindent
814Compare this to the following declaration of an enumerated
815type with only one value:
816
817@example
818type enum = (a);
819@end example
820
821@noindent
822(These declarations are contrived, but they are syntactically
823valid, and more-complicated cases can come up in practical programs.)
824
825These two declarations look identical until the @samp{..} token.
35430378 826With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
827possible to decide between the two forms when the identifier
828@samp{a} is parsed. It is, however, desirable
829for a parser to decide this, since in the latter case
830@samp{a} must become a new identifier to represent the enumeration
831value, while in the former case @samp{a} must be evaluated with its
832current meaning, which may be a constant or even a function call.
833
834You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
835to be resolved later, but this typically requires substantial
836contortions in both semantic actions and large parts of the
837grammar, where the parentheses are nested in the recursive rules for
838expressions.
839
840You might think of using the lexer to distinguish between the two
841forms by returning different tokens for currently defined and
842undefined identifiers. But if these declarations occur in a local
843scope, and @samp{a} is defined in an outer scope, then both forms
844are possible---either locally redefining @samp{a}, or using the
845value of @samp{a} from the outer scope. So this approach cannot
846work.
847
e757bb10 848A simple solution to this problem is to declare the parser to
35430378
JD
849use the GLR algorithm.
850When the GLR parser reaches the critical state, it
fa7e68c3
PE
851merely splits into two branches and pursues both syntax rules
852simultaneously. Sooner or later, one of them runs into a parsing
853error. If there is a @samp{..} token before the next
854@samp{;}, the rule for enumerated types fails since it cannot
855accept @samp{..} anywhere; otherwise, the subrange type rule
856fails since it requires a @samp{..} token. So one of the branches
857fails silently, and the other one continues normally, performing
858all the intermediate actions that were postponed during the split.
859
860If the input is syntactically incorrect, both branches fail and the parser
861reports a syntax error as usual.
862
863The effect of all this is that the parser seems to ``guess'' the
864correct branch to take, or in other words, it seems to use more
35430378
JD
865lookahead than the underlying LR(1) algorithm actually allows
866for. In this example, LR(2) would suffice, but also some cases
867that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 868
35430378 869In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
870and the current Bison parser even takes exponential time and space
871for some grammars. In practice, this rarely happens, and for many
872grammars it is possible to prove that it cannot happen.
873The present example contains only one conflict between two
874rules, and the type-declaration context containing the conflict
875cannot be nested. So the number of
876branches that can exist at any time is limited by the constant 2,
877and the parsing time is still linear.
878
879Here is a Bison grammar corresponding to the example above. It
880parses a vastly simplified form of Pascal type declarations.
881
882@example
883%token TYPE DOTDOT ID
884
885@group
886%left '+' '-'
887%left '*' '/'
888@end group
889
890%%
891
892@group
893type_decl : TYPE ID '=' type ';'
894 ;
895@end group
896
897@group
898type : '(' id_list ')'
899 | expr DOTDOT expr
900 ;
901@end group
902
903@group
904id_list : ID
905 | id_list ',' ID
906 ;
907@end group
908
909@group
910expr : '(' expr ')'
911 | expr '+' expr
912 | expr '-' expr
913 | expr '*' expr
914 | expr '/' expr
915 | ID
916 ;
917@end group
918@end example
919
35430378 920When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
921about one reduce/reduce conflict. In the conflicting situation the
922parser chooses one of the alternatives, arbitrarily the one
923declared first. Therefore the following correct input is not
924recognized:
925
926@example
927type t = (a) .. b;
928@end example
929
35430378 930The parser can be turned into a GLR parser, while also telling Bison
9913d6e4
JD
931to be silent about the one known reduce/reduce conflict, by adding
932these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
933@samp{%%}):
934
935@example
936%glr-parser
937%expect-rr 1
938@end example
939
940@noindent
941No change in the grammar itself is required. Now the
942parser recognizes all valid declarations, according to the
943limited syntax above, transparently. In fact, the user does not even
944notice when the parser splits.
945
35430378 946So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
947almost without disadvantages. Even in simple cases like this, however,
948there are at least two potential problems to beware. First, always
35430378
JD
949analyze the conflicts reported by Bison to make sure that GLR
950splitting is only done where it is intended. A GLR parser
f8e1c9e5 951splitting inadvertently may cause problems less obvious than an
35430378 952LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
953conflict. Second, consider interactions with the lexer (@pxref{Semantic
954Tokens}) with great care. Since a split parser consumes tokens without
955performing any actions during the split, the lexer cannot obtain
956information via parser actions. Some cases of lexer interactions can be
35430378 957eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
958lexer to the parser. You must check the remaining cases for
959correctness.
960
961In our example, it would be safe for the lexer to return tokens based on
962their current meanings in some symbol table, because no new symbols are
963defined in the middle of a type declaration. Though it is possible for
964a parser to define the enumeration constants as they are parsed, before
965the type declaration is completed, it actually makes no difference since
966they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
967
968@node Merging GLR Parses
35430378
JD
969@subsection Using GLR to Resolve Ambiguities
970@cindex GLR parsing, ambiguous grammars
971@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
972@findex %dprec
973@findex %merge
974@cindex conflicts
975@cindex reduce/reduce conflicts
976
2a8d363a 977Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
978
979@example
980%@{
38a92d50
PE
981 #include <stdio.h>
982 #define YYSTYPE char const *
983 int yylex (void);
984 void yyerror (char const *);
676385e2
PH
985%@}
986
987%token TYPENAME ID
988
989%right '='
990%left '+'
991
992%glr-parser
993
994%%
995
fae437e8 996prog :
676385e2
PH
997 | prog stmt @{ printf ("\n"); @}
998 ;
999
1000stmt : expr ';' %dprec 1
1001 | decl %dprec 2
1002 ;
1003
2a8d363a 1004expr : ID @{ printf ("%s ", $$); @}
fae437e8 1005 | TYPENAME '(' expr ')'
2a8d363a
AD
1006 @{ printf ("%s <cast> ", $1); @}
1007 | expr '+' expr @{ printf ("+ "); @}
1008 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
1009 ;
1010
fae437e8 1011decl : TYPENAME declarator ';'
2a8d363a 1012 @{ printf ("%s <declare> ", $1); @}
676385e2 1013 | TYPENAME declarator '=' expr ';'
2a8d363a 1014 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1015 ;
1016
2a8d363a 1017declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1018 | '(' declarator ')'
1019 ;
1020@end example
1021
1022@noindent
1023This models a problematic part of the C++ grammar---the ambiguity between
1024certain declarations and statements. For example,
1025
1026@example
1027T (x) = y+z;
1028@end example
1029
1030@noindent
1031parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1032(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1033@samp{x} as an @code{ID}).
676385e2 1034Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1035@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1036time it encounters @code{x} in the example above. Since this is a
35430378 1037GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1038each choice of resolving the reduce/reduce conflict.
1039Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1040however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1041ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1042the other reduces @code{stmt : decl}, after which both parsers are in an
1043identical state: they've seen @samp{prog stmt} and have the same unprocessed
1044input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1045
35430378 1046At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1047grammar of how to choose between the competing parses.
1048In the example above, the two @code{%dprec}
e757bb10 1049declarations specify that Bison is to give precedence
fa7e68c3 1050to the parse that interprets the example as a
676385e2
PH
1051@code{decl}, which implies that @code{x} is a declarator.
1052The parser therefore prints
1053
1054@example
fae437e8 1055"x" y z + T <init-declare>
676385e2
PH
1056@end example
1057
fa7e68c3
PE
1058The @code{%dprec} declarations only come into play when more than one
1059parse survives. Consider a different input string for this parser:
676385e2
PH
1060
1061@example
1062T (x) + y;
1063@end example
1064
1065@noindent
35430378 1066This is another example of using GLR to parse an unambiguous
fa7e68c3 1067construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1068Here, there is no ambiguity (this cannot be parsed as a declaration).
1069However, at the time the Bison parser encounters @code{x}, it does not
1070have enough information to resolve the reduce/reduce conflict (again,
1071between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1072case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1073into two, one assuming that @code{x} is an @code{expr}, and the other
1074assuming @code{x} is a @code{declarator}. The second of these parsers
1075then vanishes when it sees @code{+}, and the parser prints
1076
1077@example
fae437e8 1078x T <cast> y +
676385e2
PH
1079@end example
1080
1081Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1082the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1083actions of the two possible parsers, rather than choosing one over the
1084other. To do so, you could change the declaration of @code{stmt} as
1085follows:
1086
1087@example
1088stmt : expr ';' %merge <stmtMerge>
1089 | decl %merge <stmtMerge>
1090 ;
1091@end example
1092
1093@noindent
676385e2
PH
1094and define the @code{stmtMerge} function as:
1095
1096@example
38a92d50
PE
1097static YYSTYPE
1098stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1099@{
1100 printf ("<OR> ");
1101 return "";
1102@}
1103@end example
1104
1105@noindent
1106with an accompanying forward declaration
1107in the C declarations at the beginning of the file:
1108
1109@example
1110%@{
38a92d50 1111 #define YYSTYPE char const *
676385e2
PH
1112 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1113%@}
1114@end example
1115
1116@noindent
fa7e68c3
PE
1117With these declarations, the resulting parser parses the first example
1118as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1119
1120@example
fae437e8 1121"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1122@end example
1123
fa7e68c3 1124Bison requires that all of the
e757bb10 1125productions that participate in any particular merge have identical
fa7e68c3
PE
1126@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1127and the parser will report an error during any parse that results in
1128the offending merge.
9501dc6e 1129
32c29292
JD
1130@node GLR Semantic Actions
1131@subsection GLR Semantic Actions
1132
1133@cindex deferred semantic actions
1134By definition, a deferred semantic action is not performed at the same time as
1135the associated reduction.
1136This raises caveats for several Bison features you might use in a semantic
35430378 1137action in a GLR parser.
32c29292
JD
1138
1139@vindex yychar
35430378 1140@cindex GLR parsers and @code{yychar}
32c29292 1141@vindex yylval
35430378 1142@cindex GLR parsers and @code{yylval}
32c29292 1143@vindex yylloc
35430378 1144@cindex GLR parsers and @code{yylloc}
32c29292 1145In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1146the lookahead token present at the time of the associated reduction.
32c29292
JD
1147After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1148you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1149lookahead token's semantic value and location, if any.
32c29292
JD
1150In a nondeferred semantic action, you can also modify any of these variables to
1151influence syntax analysis.
742e4900 1152@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1153
1154@findex yyclearin
35430378 1155@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1156In a deferred semantic action, it's too late to influence syntax analysis.
1157In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1158shallow copies of the values they had at the time of the associated reduction.
1159For this reason alone, modifying them is dangerous.
1160Moreover, the result of modifying them is undefined and subject to change with
1161future versions of Bison.
1162For example, if a semantic action might be deferred, you should never write it
1163to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1164memory referenced by @code{yylval}.
1165
1166@findex YYERROR
35430378 1167@cindex GLR parsers and @code{YYERROR}
32c29292 1168Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1169(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1170initiate error recovery.
35430378 1171During deterministic GLR operation, the effect of @code{YYERROR} is
34a6c2d1 1172the same as its effect in a deterministic parser.
32c29292
JD
1173In a deferred semantic action, its effect is undefined.
1174@c The effect is probably a syntax error at the split point.
1175
8710fc41 1176Also, see @ref{Location Default Action, ,Default Action for Locations}, which
35430378 1177describes a special usage of @code{YYLLOC_DEFAULT} in GLR parsers.
8710fc41 1178
fa7e68c3 1179@node Compiler Requirements
35430378 1180@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1181@cindex @code{inline}
35430378 1182@cindex GLR parsers and @code{inline}
fa7e68c3 1183
35430378 1184The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1185later. In addition, they use the @code{inline} keyword, which is not
1186C89, but is C99 and is a common extension in pre-C99 compilers. It is
1187up to the user of these parsers to handle
9501dc6e
AD
1188portability issues. For instance, if using Autoconf and the Autoconf
1189macro @code{AC_C_INLINE}, a mere
1190
1191@example
1192%@{
38a92d50 1193 #include <config.h>
9501dc6e
AD
1194%@}
1195@end example
1196
1197@noindent
1198will suffice. Otherwise, we suggest
1199
1200@example
1201%@{
38a92d50
PE
1202 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1203 #define inline
1204 #endif
9501dc6e
AD
1205%@}
1206@end example
676385e2 1207
342b8b6e 1208@node Locations Overview
847bf1f5
AD
1209@section Locations
1210@cindex location
95923bd6
AD
1211@cindex textual location
1212@cindex location, textual
847bf1f5
AD
1213
1214Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1215and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1216the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1217Bison provides a mechanism for handling these locations.
1218
72d2299c 1219Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1220associated location, but the type of locations is the same for all tokens and
72d2299c 1221groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1222structure for storing locations (@pxref{Locations}, for more details).
1223
1224Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1225set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1226is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1227@code{@@3}.
1228
1229When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1230of its left hand side (@pxref{Actions}). In the same way, another default
1231action is used for locations. However, the action for locations is general
847bf1f5 1232enough for most cases, meaning there is usually no need to describe for each
72d2299c 1233rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1234grouping, the default behavior of the output parser is to take the beginning
1235of the first symbol, and the end of the last symbol.
1236
342b8b6e 1237@node Bison Parser
9913d6e4 1238@section Bison Output: the Parser Implementation File
bfa74976
RS
1239@cindex Bison parser
1240@cindex Bison utility
1241@cindex lexical analyzer, purpose
1242@cindex parser
1243
9913d6e4
JD
1244When you run Bison, you give it a Bison grammar file as input. The
1245most important output is a C source file that implements a parser for
1246the language described by the grammar. This parser is called a
1247@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1248implementation file}. Keep in mind that the Bison utility and the
1249Bison parser are two distinct programs: the Bison utility is a program
1250whose output is the Bison parser implementation file that becomes part
1251of your program.
bfa74976
RS
1252
1253The job of the Bison parser is to group tokens into groupings according to
1254the grammar rules---for example, to build identifiers and operators into
1255expressions. As it does this, it runs the actions for the grammar rules it
1256uses.
1257
704a47c4
AD
1258The tokens come from a function called the @dfn{lexical analyzer} that
1259you must supply in some fashion (such as by writing it in C). The Bison
1260parser calls the lexical analyzer each time it wants a new token. It
1261doesn't know what is ``inside'' the tokens (though their semantic values
1262may reflect this). Typically the lexical analyzer makes the tokens by
1263parsing characters of text, but Bison does not depend on this.
1264@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1265
9913d6e4
JD
1266The Bison parser implementation file is C code which defines a
1267function named @code{yyparse} which implements that grammar. This
1268function does not make a complete C program: you must supply some
1269additional functions. One is the lexical analyzer. Another is an
1270error-reporting function which the parser calls to report an error.
1271In addition, a complete C program must start with a function called
1272@code{main}; you have to provide this, and arrange for it to call
1273@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1274C-Language Interface}.
bfa74976 1275
f7ab6a50 1276Aside from the token type names and the symbols in the actions you
9913d6e4
JD
1277write, all symbols defined in the Bison parser implementation file
1278itself begin with @samp{yy} or @samp{YY}. This includes interface
1279functions such as the lexical analyzer function @code{yylex}, the
1280error reporting function @code{yyerror} and the parser function
1281@code{yyparse} itself. This also includes numerous identifiers used
1282for internal purposes. Therefore, you should avoid using C
1283identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1284file except for the ones defined in this manual. Also, you should
1285avoid using the C identifiers @samp{malloc} and @samp{free} for
1286anything other than their usual meanings.
1287
1288In some cases the Bison parser implementation file includes system
1289headers, and in those cases your code should respect the identifiers
1290reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1291@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1292included as needed to declare memory allocators and related types.
1293@code{<libintl.h>} is included if message translation is in use
1294(@pxref{Internationalization}). Other system headers may be included
1295if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1296,Tracing Your Parser}).
7093d0f5 1297
342b8b6e 1298@node Stages
bfa74976
RS
1299@section Stages in Using Bison
1300@cindex stages in using Bison
1301@cindex using Bison
1302
1303The actual language-design process using Bison, from grammar specification
1304to a working compiler or interpreter, has these parts:
1305
1306@enumerate
1307@item
1308Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1309(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1310in the language, describe the action that is to be taken when an
1311instance of that rule is recognized. The action is described by a
1312sequence of C statements.
bfa74976
RS
1313
1314@item
704a47c4
AD
1315Write a lexical analyzer to process input and pass tokens to the parser.
1316The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1317Lexical Analyzer Function @code{yylex}}). It could also be produced
1318using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1319
1320@item
1321Write a controlling function that calls the Bison-produced parser.
1322
1323@item
1324Write error-reporting routines.
1325@end enumerate
1326
1327To turn this source code as written into a runnable program, you
1328must follow these steps:
1329
1330@enumerate
1331@item
1332Run Bison on the grammar to produce the parser.
1333
1334@item
1335Compile the code output by Bison, as well as any other source files.
1336
1337@item
1338Link the object files to produce the finished product.
1339@end enumerate
1340
342b8b6e 1341@node Grammar Layout
bfa74976
RS
1342@section The Overall Layout of a Bison Grammar
1343@cindex grammar file
1344@cindex file format
1345@cindex format of grammar file
1346@cindex layout of Bison grammar
1347
1348The input file for the Bison utility is a @dfn{Bison grammar file}. The
1349general form of a Bison grammar file is as follows:
1350
1351@example
1352%@{
08e49d20 1353@var{Prologue}
bfa74976
RS
1354%@}
1355
1356@var{Bison declarations}
1357
1358%%
1359@var{Grammar rules}
1360%%
08e49d20 1361@var{Epilogue}
bfa74976
RS
1362@end example
1363
1364@noindent
1365The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1366in every Bison grammar file to separate the sections.
1367
72d2299c 1368The prologue may define types and variables used in the actions. You can
342b8b6e 1369also use preprocessor commands to define macros used there, and use
bfa74976 1370@code{#include} to include header files that do any of these things.
38a92d50
PE
1371You need to declare the lexical analyzer @code{yylex} and the error
1372printer @code{yyerror} here, along with any other global identifiers
1373used by the actions in the grammar rules.
bfa74976
RS
1374
1375The Bison declarations declare the names of the terminal and nonterminal
1376symbols, and may also describe operator precedence and the data types of
1377semantic values of various symbols.
1378
1379The grammar rules define how to construct each nonterminal symbol from its
1380parts.
1381
38a92d50
PE
1382The epilogue can contain any code you want to use. Often the
1383definitions of functions declared in the prologue go here. In a
1384simple program, all the rest of the program can go here.
bfa74976 1385
342b8b6e 1386@node Examples
bfa74976
RS
1387@chapter Examples
1388@cindex simple examples
1389@cindex examples, simple
1390
1391Now we show and explain three sample programs written using Bison: a
1392reverse polish notation calculator, an algebraic (infix) notation
1393calculator, and a multi-function calculator. All three have been tested
1394under BSD Unix 4.3; each produces a usable, though limited, interactive
1395desk-top calculator.
1396
1397These examples are simple, but Bison grammars for real programming
aa08666d
AD
1398languages are written the same way. You can copy these examples into a
1399source file to try them.
bfa74976
RS
1400
1401@menu
f56274a8
DJ
1402* RPN Calc:: Reverse polish notation calculator;
1403 a first example with no operator precedence.
1404* Infix Calc:: Infix (algebraic) notation calculator.
1405 Operator precedence is introduced.
bfa74976 1406* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1407* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
1408* Multi-function Calc:: Calculator with memory and trig functions.
1409 It uses multiple data-types for semantic values.
1410* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1411@end menu
1412
342b8b6e 1413@node RPN Calc
bfa74976
RS
1414@section Reverse Polish Notation Calculator
1415@cindex reverse polish notation
1416@cindex polish notation calculator
1417@cindex @code{rpcalc}
1418@cindex calculator, simple
1419
1420The first example is that of a simple double-precision @dfn{reverse polish
1421notation} calculator (a calculator using postfix operators). This example
1422provides a good starting point, since operator precedence is not an issue.
1423The second example will illustrate how operator precedence is handled.
1424
1425The source code for this calculator is named @file{rpcalc.y}. The
9913d6e4 1426@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1427
1428@menu
f56274a8
DJ
1429* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1430* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1431* Rpcalc Lexer:: The lexical analyzer.
1432* Rpcalc Main:: The controlling function.
1433* Rpcalc Error:: The error reporting function.
1434* Rpcalc Generate:: Running Bison on the grammar file.
1435* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1436@end menu
1437
f56274a8 1438@node Rpcalc Declarations
bfa74976
RS
1439@subsection Declarations for @code{rpcalc}
1440
1441Here are the C and Bison declarations for the reverse polish notation
1442calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1443
1444@example
72d2299c 1445/* Reverse polish notation calculator. */
bfa74976
RS
1446
1447%@{
38a92d50
PE
1448 #define YYSTYPE double
1449 #include <math.h>
1450 int yylex (void);
1451 void yyerror (char const *);
bfa74976
RS
1452%@}
1453
1454%token NUM
1455
72d2299c 1456%% /* Grammar rules and actions follow. */
bfa74976
RS
1457@end example
1458
75f5aaea 1459The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1460preprocessor directives and two forward declarations.
bfa74976
RS
1461
1462The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1463specifying the C data type for semantic values of both tokens and
1464groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1465Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1466don't define it, @code{int} is the default. Because we specify
1467@code{double}, each token and each expression has an associated value,
1468which is a floating point number.
bfa74976
RS
1469
1470The @code{#include} directive is used to declare the exponentiation
1471function @code{pow}.
1472
38a92d50
PE
1473The forward declarations for @code{yylex} and @code{yyerror} are
1474needed because the C language requires that functions be declared
1475before they are used. These functions will be defined in the
1476epilogue, but the parser calls them so they must be declared in the
1477prologue.
1478
704a47c4
AD
1479The second section, Bison declarations, provides information to Bison
1480about the token types (@pxref{Bison Declarations, ,The Bison
1481Declarations Section}). Each terminal symbol that is not a
1482single-character literal must be declared here. (Single-character
bfa74976
RS
1483literals normally don't need to be declared.) In this example, all the
1484arithmetic operators are designated by single-character literals, so the
1485only terminal symbol that needs to be declared is @code{NUM}, the token
1486type for numeric constants.
1487
342b8b6e 1488@node Rpcalc Rules
bfa74976
RS
1489@subsection Grammar Rules for @code{rpcalc}
1490
1491Here are the grammar rules for the reverse polish notation calculator.
1492
1493@example
1494input: /* empty */
1495 | input line
1496;
1497
1498line: '\n'
18b519c0 1499 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1500;
1501
18b519c0
AD
1502exp: NUM @{ $$ = $1; @}
1503 | exp exp '+' @{ $$ = $1 + $2; @}
1504 | exp exp '-' @{ $$ = $1 - $2; @}
1505 | exp exp '*' @{ $$ = $1 * $2; @}
1506 | exp exp '/' @{ $$ = $1 / $2; @}
1507 /* Exponentiation */
1508 | exp exp '^' @{ $$ = pow ($1, $2); @}
1509 /* Unary minus */
1510 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1511;
1512%%
1513@end example
1514
1515The groupings of the rpcalc ``language'' defined here are the expression
1516(given the name @code{exp}), the line of input (@code{line}), and the
1517complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1518symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1519which is read as ``or''. The following sections explain what these rules
1520mean.
1521
1522The semantics of the language is determined by the actions taken when a
1523grouping is recognized. The actions are the C code that appears inside
1524braces. @xref{Actions}.
1525
1526You must specify these actions in C, but Bison provides the means for
1527passing semantic values between the rules. In each action, the
1528pseudo-variable @code{$$} stands for the semantic value for the grouping
1529that the rule is going to construct. Assigning a value to @code{$$} is the
1530main job of most actions. The semantic values of the components of the
1531rule are referred to as @code{$1}, @code{$2}, and so on.
1532
1533@menu
13863333
AD
1534* Rpcalc Input::
1535* Rpcalc Line::
1536* Rpcalc Expr::
bfa74976
RS
1537@end menu
1538
342b8b6e 1539@node Rpcalc Input
bfa74976
RS
1540@subsubsection Explanation of @code{input}
1541
1542Consider the definition of @code{input}:
1543
1544@example
1545input: /* empty */
1546 | input line
1547;
1548@end example
1549
1550This definition reads as follows: ``A complete input is either an empty
1551string, or a complete input followed by an input line''. Notice that
1552``complete input'' is defined in terms of itself. This definition is said
1553to be @dfn{left recursive} since @code{input} appears always as the
1554leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1555
1556The first alternative is empty because there are no symbols between the
1557colon and the first @samp{|}; this means that @code{input} can match an
1558empty string of input (no tokens). We write the rules this way because it
1559is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1560It's conventional to put an empty alternative first and write the comment
1561@samp{/* empty */} in it.
1562
1563The second alternate rule (@code{input line}) handles all nontrivial input.
1564It means, ``After reading any number of lines, read one more line if
1565possible.'' The left recursion makes this rule into a loop. Since the
1566first alternative matches empty input, the loop can be executed zero or
1567more times.
1568
1569The parser function @code{yyparse} continues to process input until a
1570grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1571input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1572
342b8b6e 1573@node Rpcalc Line
bfa74976
RS
1574@subsubsection Explanation of @code{line}
1575
1576Now consider the definition of @code{line}:
1577
1578@example
1579line: '\n'
1580 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1581;
1582@end example
1583
1584The first alternative is a token which is a newline character; this means
1585that rpcalc accepts a blank line (and ignores it, since there is no
1586action). The second alternative is an expression followed by a newline.
1587This is the alternative that makes rpcalc useful. The semantic value of
1588the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1589question is the first symbol in the alternative. The action prints this
1590value, which is the result of the computation the user asked for.
1591
1592This action is unusual because it does not assign a value to @code{$$}. As
1593a consequence, the semantic value associated with the @code{line} is
1594uninitialized (its value will be unpredictable). This would be a bug if
1595that value were ever used, but we don't use it: once rpcalc has printed the
1596value of the user's input line, that value is no longer needed.
1597
342b8b6e 1598@node Rpcalc Expr
bfa74976
RS
1599@subsubsection Explanation of @code{expr}
1600
1601The @code{exp} grouping has several rules, one for each kind of expression.
1602The first rule handles the simplest expressions: those that are just numbers.
1603The second handles an addition-expression, which looks like two expressions
1604followed by a plus-sign. The third handles subtraction, and so on.
1605
1606@example
1607exp: NUM
1608 | exp exp '+' @{ $$ = $1 + $2; @}
1609 | exp exp '-' @{ $$ = $1 - $2; @}
1610 @dots{}
1611 ;
1612@end example
1613
1614We have used @samp{|} to join all the rules for @code{exp}, but we could
1615equally well have written them separately:
1616
1617@example
1618exp: NUM ;
1619exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1620exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1621 @dots{}
1622@end example
1623
1624Most of the rules have actions that compute the value of the expression in
1625terms of the value of its parts. For example, in the rule for addition,
1626@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1627the second one. The third component, @code{'+'}, has no meaningful
1628associated semantic value, but if it had one you could refer to it as
1629@code{$3}. When @code{yyparse} recognizes a sum expression using this
1630rule, the sum of the two subexpressions' values is produced as the value of
1631the entire expression. @xref{Actions}.
1632
1633You don't have to give an action for every rule. When a rule has no
1634action, Bison by default copies the value of @code{$1} into @code{$$}.
1635This is what happens in the first rule (the one that uses @code{NUM}).
1636
1637The formatting shown here is the recommended convention, but Bison does
72d2299c 1638not require it. You can add or change white space as much as you wish.
bfa74976
RS
1639For example, this:
1640
1641@example
99a9344e 1642exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1643@end example
1644
1645@noindent
1646means the same thing as this:
1647
1648@example
1649exp: NUM
1650 | exp exp '+' @{ $$ = $1 + $2; @}
1651 | @dots{}
99a9344e 1652;
bfa74976
RS
1653@end example
1654
1655@noindent
1656The latter, however, is much more readable.
1657
342b8b6e 1658@node Rpcalc Lexer
bfa74976
RS
1659@subsection The @code{rpcalc} Lexical Analyzer
1660@cindex writing a lexical analyzer
1661@cindex lexical analyzer, writing
1662
704a47c4
AD
1663The lexical analyzer's job is low-level parsing: converting characters
1664or sequences of characters into tokens. The Bison parser gets its
1665tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1666Analyzer Function @code{yylex}}.
bfa74976 1667
35430378 1668Only a simple lexical analyzer is needed for the RPN
c827f760 1669calculator. This
bfa74976
RS
1670lexical analyzer skips blanks and tabs, then reads in numbers as
1671@code{double} and returns them as @code{NUM} tokens. Any other character
1672that isn't part of a number is a separate token. Note that the token-code
1673for such a single-character token is the character itself.
1674
1675The return value of the lexical analyzer function is a numeric code which
1676represents a token type. The same text used in Bison rules to stand for
1677this token type is also a C expression for the numeric code for the type.
1678This works in two ways. If the token type is a character literal, then its
e966383b 1679numeric code is that of the character; you can use the same
bfa74976
RS
1680character literal in the lexical analyzer to express the number. If the
1681token type is an identifier, that identifier is defined by Bison as a C
1682macro whose definition is the appropriate number. In this example,
1683therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1684
1964ad8c
AD
1685The semantic value of the token (if it has one) is stored into the
1686global variable @code{yylval}, which is where the Bison parser will look
1687for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f56274a8 1688defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1689,Declarations for @code{rpcalc}}.)
bfa74976 1690
72d2299c
PE
1691A token type code of zero is returned if the end-of-input is encountered.
1692(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1693
1694Here is the code for the lexical analyzer:
1695
1696@example
1697@group
72d2299c 1698/* The lexical analyzer returns a double floating point
e966383b 1699 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1700 of the character read if not a number. It skips all blanks
1701 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1702
1703#include <ctype.h>
1704@end group
1705
1706@group
13863333
AD
1707int
1708yylex (void)
bfa74976
RS
1709@{
1710 int c;
1711
72d2299c 1712 /* Skip white space. */
13863333 1713 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1714 ;
1715@end group
1716@group
72d2299c 1717 /* Process numbers. */
13863333 1718 if (c == '.' || isdigit (c))
bfa74976
RS
1719 @{
1720 ungetc (c, stdin);
1721 scanf ("%lf", &yylval);
1722 return NUM;
1723 @}
1724@end group
1725@group
72d2299c 1726 /* Return end-of-input. */
13863333 1727 if (c == EOF)
bfa74976 1728 return 0;
72d2299c 1729 /* Return a single char. */
13863333 1730 return c;
bfa74976
RS
1731@}
1732@end group
1733@end example
1734
342b8b6e 1735@node Rpcalc Main
bfa74976
RS
1736@subsection The Controlling Function
1737@cindex controlling function
1738@cindex main function in simple example
1739
1740In keeping with the spirit of this example, the controlling function is
1741kept to the bare minimum. The only requirement is that it call
1742@code{yyparse} to start the process of parsing.
1743
1744@example
1745@group
13863333
AD
1746int
1747main (void)
bfa74976 1748@{
13863333 1749 return yyparse ();
bfa74976
RS
1750@}
1751@end group
1752@end example
1753
342b8b6e 1754@node Rpcalc Error
bfa74976
RS
1755@subsection The Error Reporting Routine
1756@cindex error reporting routine
1757
1758When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1759function @code{yyerror} to print an error message (usually but not
6e649e65 1760always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1761@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1762here is the definition we will use:
bfa74976
RS
1763
1764@example
1765@group
1766#include <stdio.h>
1767
38a92d50 1768/* Called by yyparse on error. */
13863333 1769void
38a92d50 1770yyerror (char const *s)
bfa74976 1771@{
4e03e201 1772 fprintf (stderr, "%s\n", s);
bfa74976
RS
1773@}
1774@end group
1775@end example
1776
1777After @code{yyerror} returns, the Bison parser may recover from the error
1778and continue parsing if the grammar contains a suitable error rule
1779(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1780have not written any error rules in this example, so any invalid input will
1781cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1782real calculator, but it is adequate for the first example.
bfa74976 1783
f56274a8 1784@node Rpcalc Generate
bfa74976
RS
1785@subsection Running Bison to Make the Parser
1786@cindex running Bison (introduction)
1787
ceed8467
AD
1788Before running Bison to produce a parser, we need to decide how to
1789arrange all the source code in one or more source files. For such a
9913d6e4
JD
1790simple example, the easiest thing is to put everything in one file,
1791the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1792@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1793(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1794
1795For a large project, you would probably have several source files, and use
1796@code{make} to arrange to recompile them.
1797
9913d6e4
JD
1798With all the source in the grammar file, you use the following command
1799to convert it into a parser implementation file:
bfa74976
RS
1800
1801@example
fa4d969f 1802bison @var{file}.y
bfa74976
RS
1803@end example
1804
1805@noindent
9913d6e4
JD
1806In this example, the grammar file is called @file{rpcalc.y} (for
1807``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1808implementation file named @file{@var{file}.tab.c}, removing the
1809@samp{.y} from the grammar file name. The parser implementation file
1810contains the source code for @code{yyparse}. The additional functions
1811in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1812copied verbatim to the parser implementation file.
bfa74976 1813
342b8b6e 1814@node Rpcalc Compile
9913d6e4 1815@subsection Compiling the Parser Implementation File
bfa74976
RS
1816@cindex compiling the parser
1817
9913d6e4 1818Here is how to compile and run the parser implementation file:
bfa74976
RS
1819
1820@example
1821@group
1822# @r{List files in current directory.}
9edcd895 1823$ @kbd{ls}
bfa74976
RS
1824rpcalc.tab.c rpcalc.y
1825@end group
1826
1827@group
1828# @r{Compile the Bison parser.}
1829# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1830$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1831@end group
1832
1833@group
1834# @r{List files again.}
9edcd895 1835$ @kbd{ls}
bfa74976
RS
1836rpcalc rpcalc.tab.c rpcalc.y
1837@end group
1838@end example
1839
1840The file @file{rpcalc} now contains the executable code. Here is an
1841example session using @code{rpcalc}.
1842
1843@example
9edcd895
AD
1844$ @kbd{rpcalc}
1845@kbd{4 9 +}
bfa74976 184613
9edcd895 1847@kbd{3 7 + 3 4 5 *+-}
bfa74976 1848-13
9edcd895 1849@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 185013
9edcd895 1851@kbd{5 6 / 4 n +}
bfa74976 1852-3.166666667
9edcd895 1853@kbd{3 4 ^} @r{Exponentiation}
bfa74976 185481
9edcd895
AD
1855@kbd{^D} @r{End-of-file indicator}
1856$
bfa74976
RS
1857@end example
1858
342b8b6e 1859@node Infix Calc
bfa74976
RS
1860@section Infix Notation Calculator: @code{calc}
1861@cindex infix notation calculator
1862@cindex @code{calc}
1863@cindex calculator, infix notation
1864
1865We now modify rpcalc to handle infix operators instead of postfix. Infix
1866notation involves the concept of operator precedence and the need for
1867parentheses nested to arbitrary depth. Here is the Bison code for
1868@file{calc.y}, an infix desk-top calculator.
1869
1870@example
38a92d50 1871/* Infix notation calculator. */
bfa74976
RS
1872
1873%@{
38a92d50
PE
1874 #define YYSTYPE double
1875 #include <math.h>
1876 #include <stdio.h>
1877 int yylex (void);
1878 void yyerror (char const *);
bfa74976
RS
1879%@}
1880
38a92d50 1881/* Bison declarations. */
bfa74976
RS
1882%token NUM
1883%left '-' '+'
1884%left '*' '/'
1885%left NEG /* negation--unary minus */
38a92d50 1886%right '^' /* exponentiation */
bfa74976 1887
38a92d50
PE
1888%% /* The grammar follows. */
1889input: /* empty */
bfa74976
RS
1890 | input line
1891;
1892
1893line: '\n'
1894 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1895;
1896
1897exp: NUM @{ $$ = $1; @}
1898 | exp '+' exp @{ $$ = $1 + $3; @}
1899 | exp '-' exp @{ $$ = $1 - $3; @}
1900 | exp '*' exp @{ $$ = $1 * $3; @}
1901 | exp '/' exp @{ $$ = $1 / $3; @}
1902 | '-' exp %prec NEG @{ $$ = -$2; @}
1903 | exp '^' exp @{ $$ = pow ($1, $3); @}
1904 | '(' exp ')' @{ $$ = $2; @}
1905;
1906%%
1907@end example
1908
1909@noindent
ceed8467
AD
1910The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1911same as before.
bfa74976
RS
1912
1913There are two important new features shown in this code.
1914
1915In the second section (Bison declarations), @code{%left} declares token
1916types and says they are left-associative operators. The declarations
1917@code{%left} and @code{%right} (right associativity) take the place of
1918@code{%token} which is used to declare a token type name without
1919associativity. (These tokens are single-character literals, which
1920ordinarily don't need to be declared. We declare them here to specify
1921the associativity.)
1922
1923Operator precedence is determined by the line ordering of the
1924declarations; the higher the line number of the declaration (lower on
1925the page or screen), the higher the precedence. Hence, exponentiation
1926has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1927by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1928Precedence}.
bfa74976 1929
704a47c4
AD
1930The other important new feature is the @code{%prec} in the grammar
1931section for the unary minus operator. The @code{%prec} simply instructs
1932Bison that the rule @samp{| '-' exp} has the same precedence as
1933@code{NEG}---in this case the next-to-highest. @xref{Contextual
1934Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1935
1936Here is a sample run of @file{calc.y}:
1937
1938@need 500
1939@example
9edcd895
AD
1940$ @kbd{calc}
1941@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19426.880952381
9edcd895 1943@kbd{-56 + 2}
bfa74976 1944-54
9edcd895 1945@kbd{3 ^ 2}
bfa74976
RS
19469
1947@end example
1948
342b8b6e 1949@node Simple Error Recovery
bfa74976
RS
1950@section Simple Error Recovery
1951@cindex error recovery, simple
1952
1953Up to this point, this manual has not addressed the issue of @dfn{error
1954recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1955error. All we have handled is error reporting with @code{yyerror}.
1956Recall that by default @code{yyparse} returns after calling
1957@code{yyerror}. This means that an erroneous input line causes the
1958calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1959
1960The Bison language itself includes the reserved word @code{error}, which
1961may be included in the grammar rules. In the example below it has
1962been added to one of the alternatives for @code{line}:
1963
1964@example
1965@group
1966line: '\n'
1967 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1968 | error '\n' @{ yyerrok; @}
1969;
1970@end group
1971@end example
1972
ceed8467 1973This addition to the grammar allows for simple error recovery in the
6e649e65 1974event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1975read, the error will be recognized by the third rule for @code{line},
1976and parsing will continue. (The @code{yyerror} function is still called
1977upon to print its message as well.) The action executes the statement
1978@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1979that error recovery is complete (@pxref{Error Recovery}). Note the
1980difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1981misprint.
bfa74976
RS
1982
1983This form of error recovery deals with syntax errors. There are other
1984kinds of errors; for example, division by zero, which raises an exception
1985signal that is normally fatal. A real calculator program must handle this
1986signal and use @code{longjmp} to return to @code{main} and resume parsing
1987input lines; it would also have to discard the rest of the current line of
1988input. We won't discuss this issue further because it is not specific to
1989Bison programs.
1990
342b8b6e
AD
1991@node Location Tracking Calc
1992@section Location Tracking Calculator: @code{ltcalc}
1993@cindex location tracking calculator
1994@cindex @code{ltcalc}
1995@cindex calculator, location tracking
1996
9edcd895
AD
1997This example extends the infix notation calculator with location
1998tracking. This feature will be used to improve the error messages. For
1999the sake of clarity, this example is a simple integer calculator, since
2000most of the work needed to use locations will be done in the lexical
72d2299c 2001analyzer.
342b8b6e
AD
2002
2003@menu
f56274a8
DJ
2004* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2005* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2006* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2007@end menu
2008
f56274a8 2009@node Ltcalc Declarations
342b8b6e
AD
2010@subsection Declarations for @code{ltcalc}
2011
9edcd895
AD
2012The C and Bison declarations for the location tracking calculator are
2013the same as the declarations for the infix notation calculator.
342b8b6e
AD
2014
2015@example
2016/* Location tracking calculator. */
2017
2018%@{
38a92d50
PE
2019 #define YYSTYPE int
2020 #include <math.h>
2021 int yylex (void);
2022 void yyerror (char const *);
342b8b6e
AD
2023%@}
2024
2025/* Bison declarations. */
2026%token NUM
2027
2028%left '-' '+'
2029%left '*' '/'
2030%left NEG
2031%right '^'
2032
38a92d50 2033%% /* The grammar follows. */
342b8b6e
AD
2034@end example
2035
9edcd895
AD
2036@noindent
2037Note there are no declarations specific to locations. Defining a data
2038type for storing locations is not needed: we will use the type provided
2039by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2040four member structure with the following integer fields:
2041@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2042@code{last_column}. By conventions, and in accordance with the GNU
2043Coding Standards and common practice, the line and column count both
2044start at 1.
342b8b6e
AD
2045
2046@node Ltcalc Rules
2047@subsection Grammar Rules for @code{ltcalc}
2048
9edcd895
AD
2049Whether handling locations or not has no effect on the syntax of your
2050language. Therefore, grammar rules for this example will be very close
2051to those of the previous example: we will only modify them to benefit
2052from the new information.
342b8b6e 2053
9edcd895
AD
2054Here, we will use locations to report divisions by zero, and locate the
2055wrong expressions or subexpressions.
342b8b6e
AD
2056
2057@example
2058@group
2059input : /* empty */
2060 | input line
2061;
2062@end group
2063
2064@group
2065line : '\n'
2066 | exp '\n' @{ printf ("%d\n", $1); @}
2067;
2068@end group
2069
2070@group
2071exp : NUM @{ $$ = $1; @}
2072 | exp '+' exp @{ $$ = $1 + $3; @}
2073 | exp '-' exp @{ $$ = $1 - $3; @}
2074 | exp '*' exp @{ $$ = $1 * $3; @}
2075@end group
342b8b6e 2076@group
9edcd895 2077 | exp '/' exp
342b8b6e
AD
2078 @{
2079 if ($3)
2080 $$ = $1 / $3;
2081 else
2082 @{
2083 $$ = 1;
9edcd895
AD
2084 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2085 @@3.first_line, @@3.first_column,
2086 @@3.last_line, @@3.last_column);
342b8b6e
AD
2087 @}
2088 @}
2089@end group
2090@group
178e123e 2091 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2092 | exp '^' exp @{ $$ = pow ($1, $3); @}
2093 | '(' exp ')' @{ $$ = $2; @}
2094@end group
2095@end example
2096
2097This code shows how to reach locations inside of semantic actions, by
2098using the pseudo-variables @code{@@@var{n}} for rule components, and the
2099pseudo-variable @code{@@$} for groupings.
2100
9edcd895
AD
2101We don't need to assign a value to @code{@@$}: the output parser does it
2102automatically. By default, before executing the C code of each action,
2103@code{@@$} is set to range from the beginning of @code{@@1} to the end
2104of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2105can be redefined (@pxref{Location Default Action, , Default Action for
2106Locations}), and for very specific rules, @code{@@$} can be computed by
2107hand.
342b8b6e
AD
2108
2109@node Ltcalc Lexer
2110@subsection The @code{ltcalc} Lexical Analyzer.
2111
9edcd895 2112Until now, we relied on Bison's defaults to enable location
72d2299c 2113tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2114able to feed the parser with the token locations, as it already does for
2115semantic values.
342b8b6e 2116
9edcd895
AD
2117To this end, we must take into account every single character of the
2118input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2119
2120@example
2121@group
2122int
2123yylex (void)
2124@{
2125 int c;
18b519c0 2126@end group
342b8b6e 2127
18b519c0 2128@group
72d2299c 2129 /* Skip white space. */
342b8b6e
AD
2130 while ((c = getchar ()) == ' ' || c == '\t')
2131 ++yylloc.last_column;
18b519c0 2132@end group
342b8b6e 2133
18b519c0 2134@group
72d2299c 2135 /* Step. */
342b8b6e
AD
2136 yylloc.first_line = yylloc.last_line;
2137 yylloc.first_column = yylloc.last_column;
2138@end group
2139
2140@group
72d2299c 2141 /* Process numbers. */
342b8b6e
AD
2142 if (isdigit (c))
2143 @{
2144 yylval = c - '0';
2145 ++yylloc.last_column;
2146 while (isdigit (c = getchar ()))
2147 @{
2148 ++yylloc.last_column;
2149 yylval = yylval * 10 + c - '0';
2150 @}
2151 ungetc (c, stdin);
2152 return NUM;
2153 @}
2154@end group
2155
72d2299c 2156 /* Return end-of-input. */
342b8b6e
AD
2157 if (c == EOF)
2158 return 0;
2159
72d2299c 2160 /* Return a single char, and update location. */
342b8b6e
AD
2161 if (c == '\n')
2162 @{
2163 ++yylloc.last_line;
2164 yylloc.last_column = 0;
2165 @}
2166 else
2167 ++yylloc.last_column;
2168 return c;
2169@}
2170@end example
2171
9edcd895
AD
2172Basically, the lexical analyzer performs the same processing as before:
2173it skips blanks and tabs, and reads numbers or single-character tokens.
2174In addition, it updates @code{yylloc}, the global variable (of type
2175@code{YYLTYPE}) containing the token's location.
342b8b6e 2176
9edcd895 2177Now, each time this function returns a token, the parser has its number
72d2299c 2178as well as its semantic value, and its location in the text. The last
9edcd895
AD
2179needed change is to initialize @code{yylloc}, for example in the
2180controlling function:
342b8b6e
AD
2181
2182@example
9edcd895 2183@group
342b8b6e
AD
2184int
2185main (void)
2186@{
2187 yylloc.first_line = yylloc.last_line = 1;
2188 yylloc.first_column = yylloc.last_column = 0;
2189 return yyparse ();
2190@}
9edcd895 2191@end group
342b8b6e
AD
2192@end example
2193
9edcd895
AD
2194Remember that computing locations is not a matter of syntax. Every
2195character must be associated to a location update, whether it is in
2196valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2197
2198@node Multi-function Calc
bfa74976
RS
2199@section Multi-Function Calculator: @code{mfcalc}
2200@cindex multi-function calculator
2201@cindex @code{mfcalc}
2202@cindex calculator, multi-function
2203
2204Now that the basics of Bison have been discussed, it is time to move on to
2205a more advanced problem. The above calculators provided only five
2206functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2207be nice to have a calculator that provides other mathematical functions such
2208as @code{sin}, @code{cos}, etc.
2209
2210It is easy to add new operators to the infix calculator as long as they are
2211only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2212back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2213adding a new operator. But we want something more flexible: built-in
2214functions whose syntax has this form:
2215
2216@example
2217@var{function_name} (@var{argument})
2218@end example
2219
2220@noindent
2221At the same time, we will add memory to the calculator, by allowing you
2222to create named variables, store values in them, and use them later.
2223Here is a sample session with the multi-function calculator:
2224
2225@example
9edcd895
AD
2226$ @kbd{mfcalc}
2227@kbd{pi = 3.141592653589}
bfa74976 22283.1415926536
9edcd895 2229@kbd{sin(pi)}
bfa74976 22300.0000000000
9edcd895 2231@kbd{alpha = beta1 = 2.3}
bfa74976 22322.3000000000
9edcd895 2233@kbd{alpha}
bfa74976 22342.3000000000
9edcd895 2235@kbd{ln(alpha)}
bfa74976 22360.8329091229
9edcd895 2237@kbd{exp(ln(beta1))}
bfa74976 22382.3000000000
9edcd895 2239$
bfa74976
RS
2240@end example
2241
2242Note that multiple assignment and nested function calls are permitted.
2243
2244@menu
f56274a8
DJ
2245* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2246* Mfcalc Rules:: Grammar rules for the calculator.
2247* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2248@end menu
2249
f56274a8 2250@node Mfcalc Declarations
bfa74976
RS
2251@subsection Declarations for @code{mfcalc}
2252
2253Here are the C and Bison declarations for the multi-function calculator.
2254
2255@smallexample
18b519c0 2256@group
bfa74976 2257%@{
38a92d50
PE
2258 #include <math.h> /* For math functions, cos(), sin(), etc. */
2259 #include "calc.h" /* Contains definition of `symrec'. */
2260 int yylex (void);
2261 void yyerror (char const *);
bfa74976 2262%@}
18b519c0
AD
2263@end group
2264@group
bfa74976 2265%union @{
38a92d50
PE
2266 double val; /* For returning numbers. */
2267 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2268@}
18b519c0 2269@end group
38a92d50
PE
2270%token <val> NUM /* Simple double precision number. */
2271%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2272%type <val> exp
2273
18b519c0 2274@group
bfa74976
RS
2275%right '='
2276%left '-' '+'
2277%left '*' '/'
38a92d50
PE
2278%left NEG /* negation--unary minus */
2279%right '^' /* exponentiation */
18b519c0 2280@end group
38a92d50 2281%% /* The grammar follows. */
bfa74976
RS
2282@end smallexample
2283
2284The above grammar introduces only two new features of the Bison language.
2285These features allow semantic values to have various data types
2286(@pxref{Multiple Types, ,More Than One Value Type}).
2287
2288The @code{%union} declaration specifies the entire list of possible types;
2289this is instead of defining @code{YYSTYPE}. The allowable types are now
2290double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2291the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2292
2293Since values can now have various types, it is necessary to associate a
2294type with each grammar symbol whose semantic value is used. These symbols
2295are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2296declarations are augmented with information about their data type (placed
2297between angle brackets).
2298
704a47c4
AD
2299The Bison construct @code{%type} is used for declaring nonterminal
2300symbols, just as @code{%token} is used for declaring token types. We
2301have not used @code{%type} before because nonterminal symbols are
2302normally declared implicitly by the rules that define them. But
2303@code{exp} must be declared explicitly so we can specify its value type.
2304@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2305
342b8b6e 2306@node Mfcalc Rules
bfa74976
RS
2307@subsection Grammar Rules for @code{mfcalc}
2308
2309Here are the grammar rules for the multi-function calculator.
2310Most of them are copied directly from @code{calc}; three rules,
2311those which mention @code{VAR} or @code{FNCT}, are new.
2312
2313@smallexample
18b519c0 2314@group
bfa74976
RS
2315input: /* empty */
2316 | input line
2317;
18b519c0 2318@end group
bfa74976 2319
18b519c0 2320@group
bfa74976
RS
2321line:
2322 '\n'
2323 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2324 | error '\n' @{ yyerrok; @}
2325;
18b519c0 2326@end group
bfa74976 2327
18b519c0 2328@group
bfa74976
RS
2329exp: NUM @{ $$ = $1; @}
2330 | VAR @{ $$ = $1->value.var; @}
2331 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2332 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2333 | exp '+' exp @{ $$ = $1 + $3; @}
2334 | exp '-' exp @{ $$ = $1 - $3; @}
2335 | exp '*' exp @{ $$ = $1 * $3; @}
2336 | exp '/' exp @{ $$ = $1 / $3; @}
2337 | '-' exp %prec NEG @{ $$ = -$2; @}
2338 | exp '^' exp @{ $$ = pow ($1, $3); @}
2339 | '(' exp ')' @{ $$ = $2; @}
2340;
18b519c0 2341@end group
38a92d50 2342/* End of grammar. */
bfa74976
RS
2343%%
2344@end smallexample
2345
f56274a8 2346@node Mfcalc Symbol Table
bfa74976
RS
2347@subsection The @code{mfcalc} Symbol Table
2348@cindex symbol table example
2349
2350The multi-function calculator requires a symbol table to keep track of the
2351names and meanings of variables and functions. This doesn't affect the
2352grammar rules (except for the actions) or the Bison declarations, but it
2353requires some additional C functions for support.
2354
2355The symbol table itself consists of a linked list of records. Its
2356definition, which is kept in the header @file{calc.h}, is as follows. It
2357provides for either functions or variables to be placed in the table.
2358
2359@smallexample
2360@group
38a92d50 2361/* Function type. */
32dfccf8 2362typedef double (*func_t) (double);
72f889cc 2363@end group
32dfccf8 2364
72f889cc 2365@group
38a92d50 2366/* Data type for links in the chain of symbols. */
bfa74976
RS
2367struct symrec
2368@{
38a92d50 2369 char *name; /* name of symbol */
bfa74976 2370 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2371 union
2372 @{
38a92d50
PE
2373 double var; /* value of a VAR */
2374 func_t fnctptr; /* value of a FNCT */
bfa74976 2375 @} value;
38a92d50 2376 struct symrec *next; /* link field */
bfa74976
RS
2377@};
2378@end group
2379
2380@group
2381typedef struct symrec symrec;
2382
38a92d50 2383/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2384extern symrec *sym_table;
2385
a730d142 2386symrec *putsym (char const *, int);
38a92d50 2387symrec *getsym (char const *);
bfa74976
RS
2388@end group
2389@end smallexample
2390
2391The new version of @code{main} includes a call to @code{init_table}, a
2392function that initializes the symbol table. Here it is, and
2393@code{init_table} as well:
2394
2395@smallexample
bfa74976
RS
2396#include <stdio.h>
2397
18b519c0 2398@group
38a92d50 2399/* Called by yyparse on error. */
13863333 2400void
38a92d50 2401yyerror (char const *s)
bfa74976
RS
2402@{
2403 printf ("%s\n", s);
2404@}
18b519c0 2405@end group
bfa74976 2406
18b519c0 2407@group
bfa74976
RS
2408struct init
2409@{
38a92d50
PE
2410 char const *fname;
2411 double (*fnct) (double);
bfa74976
RS
2412@};
2413@end group
2414
2415@group
38a92d50 2416struct init const arith_fncts[] =
13863333 2417@{
32dfccf8
AD
2418 "sin", sin,
2419 "cos", cos,
13863333 2420 "atan", atan,
32dfccf8
AD
2421 "ln", log,
2422 "exp", exp,
13863333
AD
2423 "sqrt", sqrt,
2424 0, 0
2425@};
18b519c0 2426@end group
bfa74976 2427
18b519c0 2428@group
bfa74976 2429/* The symbol table: a chain of `struct symrec'. */
38a92d50 2430symrec *sym_table;
bfa74976
RS
2431@end group
2432
2433@group
72d2299c 2434/* Put arithmetic functions in table. */
13863333
AD
2435void
2436init_table (void)
bfa74976
RS
2437@{
2438 int i;
2439 symrec *ptr;
2440 for (i = 0; arith_fncts[i].fname != 0; i++)
2441 @{
2442 ptr = putsym (arith_fncts[i].fname, FNCT);
2443 ptr->value.fnctptr = arith_fncts[i].fnct;
2444 @}
2445@}
2446@end group
38a92d50
PE
2447
2448@group
2449int
2450main (void)
2451@{
2452 init_table ();
2453 return yyparse ();
2454@}
2455@end group
bfa74976
RS
2456@end smallexample
2457
2458By simply editing the initialization list and adding the necessary include
2459files, you can add additional functions to the calculator.
2460
2461Two important functions allow look-up and installation of symbols in the
2462symbol table. The function @code{putsym} is passed a name and the type
2463(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2464linked to the front of the list, and a pointer to the object is returned.
2465The function @code{getsym} is passed the name of the symbol to look up. If
2466found, a pointer to that symbol is returned; otherwise zero is returned.
2467
2468@smallexample
2469symrec *
38a92d50 2470putsym (char const *sym_name, int sym_type)
bfa74976
RS
2471@{
2472 symrec *ptr;
2473 ptr = (symrec *) malloc (sizeof (symrec));
2474 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2475 strcpy (ptr->name,sym_name);
2476 ptr->type = sym_type;
72d2299c 2477 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2478 ptr->next = (struct symrec *)sym_table;
2479 sym_table = ptr;
2480 return ptr;
2481@}
2482
2483symrec *
38a92d50 2484getsym (char const *sym_name)
bfa74976
RS
2485@{
2486 symrec *ptr;
2487 for (ptr = sym_table; ptr != (symrec *) 0;
2488 ptr = (symrec *)ptr->next)
2489 if (strcmp (ptr->name,sym_name) == 0)
2490 return ptr;
2491 return 0;
2492@}
2493@end smallexample
2494
2495The function @code{yylex} must now recognize variables, numeric values, and
2496the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2497characters with a leading letter are recognized as either variables or
bfa74976
RS
2498functions depending on what the symbol table says about them.
2499
2500The string is passed to @code{getsym} for look up in the symbol table. If
2501the name appears in the table, a pointer to its location and its type
2502(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2503already in the table, then it is installed as a @code{VAR} using
2504@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2505returned to @code{yyparse}.
bfa74976
RS
2506
2507No change is needed in the handling of numeric values and arithmetic
2508operators in @code{yylex}.
2509
2510@smallexample
2511@group
2512#include <ctype.h>
18b519c0 2513@end group
13863333 2514
18b519c0 2515@group
13863333
AD
2516int
2517yylex (void)
bfa74976
RS
2518@{
2519 int c;
2520
72d2299c 2521 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2522 while ((c = getchar ()) == ' ' || c == '\t');
2523
2524 if (c == EOF)
2525 return 0;
2526@end group
2527
2528@group
2529 /* Char starts a number => parse the number. */
2530 if (c == '.' || isdigit (c))
2531 @{
2532 ungetc (c, stdin);
2533 scanf ("%lf", &yylval.val);
2534 return NUM;
2535 @}
2536@end group
2537
2538@group
2539 /* Char starts an identifier => read the name. */
2540 if (isalpha (c))
2541 @{
2542 symrec *s;
2543 static char *symbuf = 0;
2544 static int length = 0;
2545 int i;
2546@end group
2547
2548@group
2549 /* Initially make the buffer long enough
2550 for a 40-character symbol name. */
2551 if (length == 0)
2552 length = 40, symbuf = (char *)malloc (length + 1);
2553
2554 i = 0;
2555 do
2556@end group
2557@group
2558 @{
2559 /* If buffer is full, make it bigger. */
2560 if (i == length)
2561 @{
2562 length *= 2;
18b519c0 2563 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2564 @}
2565 /* Add this character to the buffer. */
2566 symbuf[i++] = c;
2567 /* Get another character. */
2568 c = getchar ();
2569 @}
2570@end group
2571@group
72d2299c 2572 while (isalnum (c));
bfa74976
RS
2573
2574 ungetc (c, stdin);
2575 symbuf[i] = '\0';
2576@end group
2577
2578@group
2579 s = getsym (symbuf);
2580 if (s == 0)
2581 s = putsym (symbuf, VAR);
2582 yylval.tptr = s;
2583 return s->type;
2584 @}
2585
2586 /* Any other character is a token by itself. */
2587 return c;
2588@}
2589@end group
2590@end smallexample
2591
72d2299c 2592This program is both powerful and flexible. You may easily add new
704a47c4
AD
2593functions, and it is a simple job to modify this code to install
2594predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2595
342b8b6e 2596@node Exercises
bfa74976
RS
2597@section Exercises
2598@cindex exercises
2599
2600@enumerate
2601@item
2602Add some new functions from @file{math.h} to the initialization list.
2603
2604@item
2605Add another array that contains constants and their values. Then
2606modify @code{init_table} to add these constants to the symbol table.
2607It will be easiest to give the constants type @code{VAR}.
2608
2609@item
2610Make the program report an error if the user refers to an
2611uninitialized variable in any way except to store a value in it.
2612@end enumerate
2613
342b8b6e 2614@node Grammar File
bfa74976
RS
2615@chapter Bison Grammar Files
2616
2617Bison takes as input a context-free grammar specification and produces a
2618C-language function that recognizes correct instances of the grammar.
2619
9913d6e4 2620The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2621@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2622
2623@menu
2624* Grammar Outline:: Overall layout of the grammar file.
2625* Symbols:: Terminal and nonterminal symbols.
2626* Rules:: How to write grammar rules.
2627* Recursion:: Writing recursive rules.
2628* Semantics:: Semantic values and actions.
847bf1f5 2629* Locations:: Locations and actions.
908c8647 2630* Named References:: Using named references in actions.
bfa74976
RS
2631* Declarations:: All kinds of Bison declarations are described here.
2632* Multiple Parsers:: Putting more than one Bison parser in one program.
2633@end menu
2634
342b8b6e 2635@node Grammar Outline
bfa74976
RS
2636@section Outline of a Bison Grammar
2637
2638A Bison grammar file has four main sections, shown here with the
2639appropriate delimiters:
2640
2641@example
2642%@{
38a92d50 2643 @var{Prologue}
bfa74976
RS
2644%@}
2645
2646@var{Bison declarations}
2647
2648%%
2649@var{Grammar rules}
2650%%
2651
75f5aaea 2652@var{Epilogue}
bfa74976
RS
2653@end example
2654
2655Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
35430378 2656As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2657continues until end of line.
bfa74976
RS
2658
2659@menu
f56274a8 2660* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2661* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
2662* Bison Declarations:: Syntax and usage of the Bison declarations section.
2663* Grammar Rules:: Syntax and usage of the grammar rules section.
2664* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2665@end menu
2666
38a92d50 2667@node Prologue
75f5aaea
MA
2668@subsection The prologue
2669@cindex declarations section
2670@cindex Prologue
2671@cindex declarations
bfa74976 2672
f8e1c9e5
AD
2673The @var{Prologue} section contains macro definitions and declarations
2674of functions and variables that are used in the actions in the grammar
9913d6e4
JD
2675rules. These are copied to the beginning of the parser implementation
2676file so that they precede the definition of @code{yyparse}. You can
2677use @samp{#include} to get the declarations from a header file. If
2678you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2679@samp{%@}} delimiters that bracket this section.
bfa74976 2680
9c437126 2681The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2682of @samp{%@}} that is outside a comment, a string literal, or a
2683character constant.
2684
c732d2c6
AD
2685You may have more than one @var{Prologue} section, intermixed with the
2686@var{Bison declarations}. This allows you to have C and Bison
2687declarations that refer to each other. For example, the @code{%union}
2688declaration may use types defined in a header file, and you may wish to
2689prototype functions that take arguments of type @code{YYSTYPE}. This
2690can be done with two @var{Prologue} blocks, one before and one after the
2691@code{%union} declaration.
2692
2693@smallexample
2694%@{
aef3da86 2695 #define _GNU_SOURCE
38a92d50
PE
2696 #include <stdio.h>
2697 #include "ptypes.h"
c732d2c6
AD
2698%@}
2699
2700%union @{
779e7ceb 2701 long int n;
c732d2c6
AD
2702 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2703@}
2704
2705%@{
38a92d50
PE
2706 static void print_token_value (FILE *, int, YYSTYPE);
2707 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2708%@}
2709
2710@dots{}
2711@end smallexample
2712
aef3da86
PE
2713When in doubt, it is usually safer to put prologue code before all
2714Bison declarations, rather than after. For example, any definitions
2715of feature test macros like @code{_GNU_SOURCE} or
2716@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2717feature test macros can affect the behavior of Bison-generated
2718@code{#include} directives.
2719
2cbe6b7f
JD
2720@node Prologue Alternatives
2721@subsection Prologue Alternatives
2722@cindex Prologue Alternatives
2723
136a0f76 2724@findex %code
16dc6a9e
JD
2725@findex %code requires
2726@findex %code provides
2727@findex %code top
85894313 2728
2cbe6b7f 2729The functionality of @var{Prologue} sections can often be subtle and
9913d6e4
JD
2730inflexible. As an alternative, Bison provides a @code{%code}
2731directive with an explicit qualifier field, which identifies the
2732purpose of the code and thus the location(s) where Bison should
2733generate it. For C/C++, the qualifier can be omitted for the default
2734location, or it can be one of @code{requires}, @code{provides},
8e6f2266 2735@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2736
2737Look again at the example of the previous section:
2738
2739@smallexample
2740%@{
2741 #define _GNU_SOURCE
2742 #include <stdio.h>
2743 #include "ptypes.h"
2744%@}
2745
2746%union @{
2747 long int n;
2748 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2749@}
2750
2751%@{
2752 static void print_token_value (FILE *, int, YYSTYPE);
2753 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2754%@}
2755
2756@dots{}
2757@end smallexample
2758
2759@noindent
9913d6e4
JD
2760Notice that there are two @var{Prologue} sections here, but there's a
2761subtle distinction between their functionality. For example, if you
2762decide to override Bison's default definition for @code{YYLTYPE}, in
2763which @var{Prologue} section should you write your new definition?
2764You should write it in the first since Bison will insert that code
2765into the parser implementation file @emph{before} the default
2766@code{YYLTYPE} definition. In which @var{Prologue} section should you
2767prototype an internal function, @code{trace_token}, that accepts
2768@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2769prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2770@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2771
2772This distinction in functionality between the two @var{Prologue} sections is
2773established by the appearance of the @code{%union} between them.
a501eca9 2774This behavior raises a few questions.
2cbe6b7f
JD
2775First, why should the position of a @code{%union} affect definitions related to
2776@code{YYLTYPE} and @code{yytokentype}?
2777Second, what if there is no @code{%union}?
2778In that case, the second kind of @var{Prologue} section is not available.
2779This behavior is not intuitive.
2780
8e0a5e9e 2781To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2782@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2783Let's go ahead and add the new @code{YYLTYPE} definition and the
2784@code{trace_token} prototype at the same time:
2785
2786@smallexample
16dc6a9e 2787%code top @{
2cbe6b7f
JD
2788 #define _GNU_SOURCE
2789 #include <stdio.h>
8e0a5e9e
JD
2790
2791 /* WARNING: The following code really belongs
16dc6a9e 2792 * in a `%code requires'; see below. */
8e0a5e9e 2793
2cbe6b7f
JD
2794 #include "ptypes.h"
2795 #define YYLTYPE YYLTYPE
2796 typedef struct YYLTYPE
2797 @{
2798 int first_line;
2799 int first_column;
2800 int last_line;
2801 int last_column;
2802 char *filename;
2803 @} YYLTYPE;
2804@}
2805
2806%union @{
2807 long int n;
2808 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2809@}
2810
2811%code @{
2812 static void print_token_value (FILE *, int, YYSTYPE);
2813 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2814 static void trace_token (enum yytokentype token, YYLTYPE loc);
2815@}
2816
2817@dots{}
2818@end smallexample
2819
2820@noindent
16dc6a9e
JD
2821In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2822functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2823explicit which kind you intend.
2cbe6b7f
JD
2824Moreover, both kinds are always available even in the absence of @code{%union}.
2825
9913d6e4
JD
2826The @code{%code top} block above logically contains two parts. The
2827first two lines before the warning need to appear near the top of the
2828parser implementation file. The first line after the warning is
2829required by @code{YYSTYPE} and thus also needs to appear in the parser
2830implementation file. However, if you've instructed Bison to generate
2831a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2832want that line to appear before the @code{YYSTYPE} definition in that
2833header file as well. The @code{YYLTYPE} definition should also appear
2834in the parser header file to override the default @code{YYLTYPE}
2835definition there.
2cbe6b7f 2836
16dc6a9e 2837In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2838lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2839definitions.
16dc6a9e 2840Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2841
2842@smallexample
16dc6a9e 2843%code top @{
2cbe6b7f
JD
2844 #define _GNU_SOURCE
2845 #include <stdio.h>
2846@}
2847
16dc6a9e 2848%code requires @{
9bc0dd67
JD
2849 #include "ptypes.h"
2850@}
2851%union @{
2852 long int n;
2853 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2854@}
2855
16dc6a9e 2856%code requires @{
2cbe6b7f
JD
2857 #define YYLTYPE YYLTYPE
2858 typedef struct YYLTYPE
2859 @{
2860 int first_line;
2861 int first_column;
2862 int last_line;
2863 int last_column;
2864 char *filename;
2865 @} YYLTYPE;
2866@}
2867
136a0f76 2868%code @{
2cbe6b7f
JD
2869 static void print_token_value (FILE *, int, YYSTYPE);
2870 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2871 static void trace_token (enum yytokentype token, YYLTYPE loc);
2872@}
2873
2874@dots{}
2875@end smallexample
2876
2877@noindent
9913d6e4
JD
2878Now Bison will insert @code{#include "ptypes.h"} and the new
2879@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
2880and @code{YYLTYPE} definitions in both the parser implementation file
2881and the parser header file. (By the same reasoning, @code{%code
2882requires} would also be the appropriate place to write your own
2883definition for @code{YYSTYPE}.)
2884
2885When you are writing dependency code for @code{YYSTYPE} and
2886@code{YYLTYPE}, you should prefer @code{%code requires} over
2887@code{%code top} regardless of whether you instruct Bison to generate
2888a parser header file. When you are writing code that you need Bison
2889to insert only into the parser implementation file and that has no
2890special need to appear at the top of that file, you should prefer the
2891unqualified @code{%code} over @code{%code top}. These practices will
2892make the purpose of each block of your code explicit to Bison and to
2893other developers reading your grammar file. Following these
2894practices, we expect the unqualified @code{%code} and @code{%code
2895requires} to be the most important of the four @var{Prologue}
16dc6a9e 2896alternatives.
a501eca9 2897
9913d6e4
JD
2898At some point while developing your parser, you might decide to
2899provide @code{trace_token} to modules that are external to your
2900parser. Thus, you might wish for Bison to insert the prototype into
2901both the parser header file and the parser implementation file. Since
2902this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 2903@code{YYLTYPE}, it doesn't make sense to move its prototype to a
9913d6e4
JD
2904@code{%code requires}. More importantly, since it depends upon
2905@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
2906sufficient. Instead, move its prototype from the unqualified
2907@code{%code} to a @code{%code provides}:
2cbe6b7f
JD
2908
2909@smallexample
16dc6a9e 2910%code top @{
2cbe6b7f 2911 #define _GNU_SOURCE
136a0f76 2912 #include <stdio.h>
2cbe6b7f 2913@}
136a0f76 2914
16dc6a9e 2915%code requires @{
2cbe6b7f
JD
2916 #include "ptypes.h"
2917@}
2918%union @{
2919 long int n;
2920 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2921@}
2922
16dc6a9e 2923%code requires @{
2cbe6b7f
JD
2924 #define YYLTYPE YYLTYPE
2925 typedef struct YYLTYPE
2926 @{
2927 int first_line;
2928 int first_column;
2929 int last_line;
2930 int last_column;
2931 char *filename;
2932 @} YYLTYPE;
2933@}
2934
16dc6a9e 2935%code provides @{
2cbe6b7f
JD
2936 void trace_token (enum yytokentype token, YYLTYPE loc);
2937@}
2938
2939%code @{
9bc0dd67
JD
2940 static void print_token_value (FILE *, int, YYSTYPE);
2941 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2942@}
9bc0dd67
JD
2943
2944@dots{}
2945@end smallexample
2946
2cbe6b7f 2947@noindent
9913d6e4
JD
2948Bison will insert the @code{trace_token} prototype into both the
2949parser header file and the parser implementation file after the
2950definitions for @code{yytokentype}, @code{YYLTYPE}, and
2951@code{YYSTYPE}.
2952
2953The above examples are careful to write directives in an order that
2954reflects the layout of the generated parser implementation and header
2955files: @code{%code top}, @code{%code requires}, @code{%code provides},
2956and then @code{%code}. While your grammar files may generally be
2957easier to read if you also follow this order, Bison does not require
2958it. Instead, Bison lets you choose an organization that makes sense
2959to you.
2cbe6b7f 2960
a501eca9 2961You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2962In that case, Bison concatenates the contained code in declaration order.
2963This is the only way in which the position of one of these directives within
2964the grammar file affects its functionality.
2965
2966The result of the previous two properties is greater flexibility in how you may
2967organize your grammar file.
2968For example, you may organize semantic-type-related directives by semantic
2969type:
2970
2971@smallexample
16dc6a9e 2972%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2973%union @{ type1 field1; @}
2974%destructor @{ type1_free ($$); @} <field1>
2975%printer @{ type1_print ($$); @} <field1>
2976
16dc6a9e 2977%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2978%union @{ type2 field2; @}
2979%destructor @{ type2_free ($$); @} <field2>
2980%printer @{ type2_print ($$); @} <field2>
2981@end smallexample
2982
2983@noindent
2984You could even place each of the above directive groups in the rules section of
2985the grammar file next to the set of rules that uses the associated semantic
2986type.
61fee93e
JD
2987(In the rules section, you must terminate each of those directives with a
2988semicolon.)
2cbe6b7f
JD
2989And you don't have to worry that some directive (like a @code{%union}) in the
2990definitions section is going to adversely affect their functionality in some
2991counter-intuitive manner just because it comes first.
2992Such an organization is not possible using @var{Prologue} sections.
2993
a501eca9 2994This section has been concerned with explaining the advantages of the four
8e0a5e9e 2995@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2996However, in most cases when using these directives, you shouldn't need to
2997think about all the low-level ordering issues discussed here.
2998Instead, you should simply use these directives to label each block of your
2999code according to its purpose and let Bison handle the ordering.
3000@code{%code} is the most generic label.
16dc6a9e
JD
3001Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3002as needed.
a501eca9 3003
342b8b6e 3004@node Bison Declarations
bfa74976
RS
3005@subsection The Bison Declarations Section
3006@cindex Bison declarations (introduction)
3007@cindex declarations, Bison (introduction)
3008
3009The @var{Bison declarations} section contains declarations that define
3010terminal and nonterminal symbols, specify precedence, and so on.
3011In some simple grammars you may not need any declarations.
3012@xref{Declarations, ,Bison Declarations}.
3013
342b8b6e 3014@node Grammar Rules
bfa74976
RS
3015@subsection The Grammar Rules Section
3016@cindex grammar rules section
3017@cindex rules section for grammar
3018
3019The @dfn{grammar rules} section contains one or more Bison grammar
3020rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3021
3022There must always be at least one grammar rule, and the first
3023@samp{%%} (which precedes the grammar rules) may never be omitted even
3024if it is the first thing in the file.
3025
38a92d50 3026@node Epilogue
75f5aaea 3027@subsection The epilogue
bfa74976 3028@cindex additional C code section
75f5aaea 3029@cindex epilogue
bfa74976
RS
3030@cindex C code, section for additional
3031
9913d6e4
JD
3032The @var{Epilogue} is copied verbatim to the end of the parser
3033implementation file, just as the @var{Prologue} is copied to the
3034beginning. This is the most convenient place to put anything that you
3035want to have in the parser implementation file but which need not come
3036before the definition of @code{yyparse}. For example, the definitions
3037of @code{yylex} and @code{yyerror} often go here. Because C requires
3038functions to be declared before being used, you often need to declare
3039functions like @code{yylex} and @code{yyerror} in the Prologue, even
3040if you define them in the Epilogue. @xref{Interface, ,Parser
3041C-Language Interface}.
bfa74976
RS
3042
3043If the last section is empty, you may omit the @samp{%%} that separates it
3044from the grammar rules.
3045
f8e1c9e5
AD
3046The Bison parser itself contains many macros and identifiers whose names
3047start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3048any such names (except those documented in this manual) in the epilogue
3049of the grammar file.
bfa74976 3050
342b8b6e 3051@node Symbols
bfa74976
RS
3052@section Symbols, Terminal and Nonterminal
3053@cindex nonterminal symbol
3054@cindex terminal symbol
3055@cindex token type
3056@cindex symbol
3057
3058@dfn{Symbols} in Bison grammars represent the grammatical classifications
3059of the language.
3060
3061A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3062class of syntactically equivalent tokens. You use the symbol in grammar
3063rules to mean that a token in that class is allowed. The symbol is
3064represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3065function returns a token type code to indicate what kind of token has
3066been read. You don't need to know what the code value is; you can use
3067the symbol to stand for it.
bfa74976 3068
f8e1c9e5
AD
3069A @dfn{nonterminal symbol} stands for a class of syntactically
3070equivalent groupings. The symbol name is used in writing grammar rules.
3071By convention, it should be all lower case.
bfa74976 3072
eb8c66bb
JD
3073Symbol names can contain letters, underscores, periods, and non-initial
3074digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3075with POSIX Yacc. Periods and dashes make symbol names less convenient to
3076use with named references, which require brackets around such names
3077(@pxref{Named References}). Terminal symbols that contain periods or dashes
3078make little sense: since they are not valid symbols (in most programming
3079languages) they are not exported as token names.
bfa74976 3080
931c7513 3081There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3082
3083@itemize @bullet
3084@item
3085A @dfn{named token type} is written with an identifier, like an
c827f760 3086identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3087such name must be defined with a Bison declaration such as
3088@code{%token}. @xref{Token Decl, ,Token Type Names}.
3089
3090@item
3091@cindex character token
3092@cindex literal token
3093@cindex single-character literal
931c7513
RS
3094A @dfn{character token type} (or @dfn{literal character token}) is
3095written in the grammar using the same syntax used in C for character
3096constants; for example, @code{'+'} is a character token type. A
3097character token type doesn't need to be declared unless you need to
3098specify its semantic value data type (@pxref{Value Type, ,Data Types of
3099Semantic Values}), associativity, or precedence (@pxref{Precedence,
3100,Operator Precedence}).
bfa74976
RS
3101
3102By convention, a character token type is used only to represent a
3103token that consists of that particular character. Thus, the token
3104type @code{'+'} is used to represent the character @samp{+} as a
3105token. Nothing enforces this convention, but if you depart from it,
3106your program will confuse other readers.
3107
3108All the usual escape sequences used in character literals in C can be
3109used in Bison as well, but you must not use the null character as a
72d2299c
PE
3110character literal because its numeric code, zero, signifies
3111end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3112for @code{yylex}}). Also, unlike standard C, trigraphs have no
3113special meaning in Bison character literals, nor is backslash-newline
3114allowed.
931c7513
RS
3115
3116@item
3117@cindex string token
3118@cindex literal string token
9ecbd125 3119@cindex multicharacter literal
931c7513
RS
3120A @dfn{literal string token} is written like a C string constant; for
3121example, @code{"<="} is a literal string token. A literal string token
3122doesn't need to be declared unless you need to specify its semantic
14ded682 3123value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3124(@pxref{Precedence}).
3125
3126You can associate the literal string token with a symbolic name as an
3127alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3128Declarations}). If you don't do that, the lexical analyzer has to
3129retrieve the token number for the literal string token from the
3130@code{yytname} table (@pxref{Calling Convention}).
3131
c827f760 3132@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3133
3134By convention, a literal string token is used only to represent a token
3135that consists of that particular string. Thus, you should use the token
3136type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3137does not enforce this convention, but if you depart from it, people who
931c7513
RS
3138read your program will be confused.
3139
3140All the escape sequences used in string literals in C can be used in
92ac3705
PE
3141Bison as well, except that you must not use a null character within a
3142string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3143meaning in Bison string literals, nor is backslash-newline allowed. A
3144literal string token must contain two or more characters; for a token
3145containing just one character, use a character token (see above).
bfa74976
RS
3146@end itemize
3147
3148How you choose to write a terminal symbol has no effect on its
3149grammatical meaning. That depends only on where it appears in rules and
3150on when the parser function returns that symbol.
3151
72d2299c
PE
3152The value returned by @code{yylex} is always one of the terminal
3153symbols, except that a zero or negative value signifies end-of-input.
3154Whichever way you write the token type in the grammar rules, you write
3155it the same way in the definition of @code{yylex}. The numeric code
3156for a character token type is simply the positive numeric code of the
3157character, so @code{yylex} can use the identical value to generate the
3158requisite code, though you may need to convert it to @code{unsigned
3159char} to avoid sign-extension on hosts where @code{char} is signed.
9913d6e4
JD
3160Each named token type becomes a C macro in the parser implementation
3161file, so @code{yylex} can use the name to stand for the code. (This
3162is why periods don't make sense in terminal symbols.) @xref{Calling
3163Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3164
3165If @code{yylex} is defined in a separate file, you need to arrange for the
3166token-type macro definitions to be available there. Use the @samp{-d}
3167option when you run Bison, so that it will write these macro definitions
3168into a separate header file @file{@var{name}.tab.h} which you can include
3169in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3170
72d2299c 3171If you want to write a grammar that is portable to any Standard C
9d9b8b70 3172host, you must use only nonnull character tokens taken from the basic
c827f760 3173execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3174digits, the 52 lower- and upper-case English letters, and the
3175characters in the following C-language string:
3176
3177@example
3178"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3179@end example
3180
f8e1c9e5
AD
3181The @code{yylex} function and Bison must use a consistent character set
3182and encoding for character tokens. For example, if you run Bison in an
35430378 3183ASCII environment, but then compile and run the resulting
f8e1c9e5 3184program in an environment that uses an incompatible character set like
35430378
JD
3185EBCDIC, the resulting program may not work because the tables
3186generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3187character tokens. It is standard practice for software distributions to
3188contain C source files that were generated by Bison in an
35430378
JD
3189ASCII environment, so installers on platforms that are
3190incompatible with ASCII must rebuild those files before
f8e1c9e5 3191compiling them.
e966383b 3192
bfa74976
RS
3193The symbol @code{error} is a terminal symbol reserved for error recovery
3194(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3195In particular, @code{yylex} should never return this value. The default
3196value of the error token is 256, unless you explicitly assigned 256 to
3197one of your tokens with a @code{%token} declaration.
bfa74976 3198
342b8b6e 3199@node Rules
bfa74976
RS
3200@section Syntax of Grammar Rules
3201@cindex rule syntax
3202@cindex grammar rule syntax
3203@cindex syntax of grammar rules
3204
3205A Bison grammar rule has the following general form:
3206
3207@example
e425e872 3208@group
bfa74976
RS
3209@var{result}: @var{components}@dots{}
3210 ;
e425e872 3211@end group
bfa74976
RS
3212@end example
3213
3214@noindent
9ecbd125 3215where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3216and @var{components} are various terminal and nonterminal symbols that
13863333 3217are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3218
3219For example,
3220
3221@example
3222@group
3223exp: exp '+' exp
3224 ;
3225@end group
3226@end example
3227
3228@noindent
3229says that two groupings of type @code{exp}, with a @samp{+} token in between,
3230can be combined into a larger grouping of type @code{exp}.
3231
72d2299c
PE
3232White space in rules is significant only to separate symbols. You can add
3233extra white space as you wish.
bfa74976
RS
3234
3235Scattered among the components can be @var{actions} that determine
3236the semantics of the rule. An action looks like this:
3237
3238@example
3239@{@var{C statements}@}
3240@end example
3241
3242@noindent
287c78f6
PE
3243@cindex braced code
3244This is an example of @dfn{braced code}, that is, C code surrounded by
3245braces, much like a compound statement in C@. Braced code can contain
3246any sequence of C tokens, so long as its braces are balanced. Bison
3247does not check the braced code for correctness directly; it merely
9913d6e4
JD
3248copies the code to the parser implementation file, where the C
3249compiler can check it.
287c78f6
PE
3250
3251Within braced code, the balanced-brace count is not affected by braces
3252within comments, string literals, or character constants, but it is
3253affected by the C digraphs @samp{<%} and @samp{%>} that represent
3254braces. At the top level braced code must be terminated by @samp{@}}
3255and not by a digraph. Bison does not look for trigraphs, so if braced
3256code uses trigraphs you should ensure that they do not affect the
3257nesting of braces or the boundaries of comments, string literals, or
3258character constants.
3259
bfa74976
RS
3260Usually there is only one action and it follows the components.
3261@xref{Actions}.
3262
3263@findex |
3264Multiple rules for the same @var{result} can be written separately or can
3265be joined with the vertical-bar character @samp{|} as follows:
3266
bfa74976
RS
3267@example
3268@group
3269@var{result}: @var{rule1-components}@dots{}
3270 | @var{rule2-components}@dots{}
3271 @dots{}
3272 ;
3273@end group
3274@end example
bfa74976
RS
3275
3276@noindent
3277They are still considered distinct rules even when joined in this way.
3278
3279If @var{components} in a rule is empty, it means that @var{result} can
3280match the empty string. For example, here is how to define a
3281comma-separated sequence of zero or more @code{exp} groupings:
3282
3283@example
3284@group
3285expseq: /* empty */
3286 | expseq1
3287 ;
3288@end group
3289
3290@group
3291expseq1: exp
3292 | expseq1 ',' exp
3293 ;
3294@end group
3295@end example
3296
3297@noindent
3298It is customary to write a comment @samp{/* empty */} in each rule
3299with no components.
3300
342b8b6e 3301@node Recursion
bfa74976
RS
3302@section Recursive Rules
3303@cindex recursive rule
3304
f8e1c9e5
AD
3305A rule is called @dfn{recursive} when its @var{result} nonterminal
3306appears also on its right hand side. Nearly all Bison grammars need to
3307use recursion, because that is the only way to define a sequence of any
3308number of a particular thing. Consider this recursive definition of a
9ecbd125 3309comma-separated sequence of one or more expressions:
bfa74976
RS
3310
3311@example
3312@group
3313expseq1: exp
3314 | expseq1 ',' exp
3315 ;
3316@end group
3317@end example
3318
3319@cindex left recursion
3320@cindex right recursion
3321@noindent
3322Since the recursive use of @code{expseq1} is the leftmost symbol in the
3323right hand side, we call this @dfn{left recursion}. By contrast, here
3324the same construct is defined using @dfn{right recursion}:
3325
3326@example
3327@group
3328expseq1: exp
3329 | exp ',' expseq1
3330 ;
3331@end group
3332@end example
3333
3334@noindent
ec3bc396
AD
3335Any kind of sequence can be defined using either left recursion or right
3336recursion, but you should always use left recursion, because it can
3337parse a sequence of any number of elements with bounded stack space.
3338Right recursion uses up space on the Bison stack in proportion to the
3339number of elements in the sequence, because all the elements must be
3340shifted onto the stack before the rule can be applied even once.
3341@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3342of this.
bfa74976
RS
3343
3344@cindex mutual recursion
3345@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3346rule does not appear directly on its right hand side, but does appear
3347in rules for other nonterminals which do appear on its right hand
13863333 3348side.
bfa74976
RS
3349
3350For example:
3351
3352@example
3353@group
3354expr: primary
3355 | primary '+' primary
3356 ;
3357@end group
3358
3359@group
3360primary: constant
3361 | '(' expr ')'
3362 ;
3363@end group
3364@end example
3365
3366@noindent
3367defines two mutually-recursive nonterminals, since each refers to the
3368other.
3369
342b8b6e 3370@node Semantics
bfa74976
RS
3371@section Defining Language Semantics
3372@cindex defining language semantics
13863333 3373@cindex language semantics, defining
bfa74976
RS
3374
3375The grammar rules for a language determine only the syntax. The semantics
3376are determined by the semantic values associated with various tokens and
3377groupings, and by the actions taken when various groupings are recognized.
3378
3379For example, the calculator calculates properly because the value
3380associated with each expression is the proper number; it adds properly
3381because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3382the numbers associated with @var{x} and @var{y}.
3383
3384@menu
3385* Value Type:: Specifying one data type for all semantic values.
3386* Multiple Types:: Specifying several alternative data types.
3387* Actions:: An action is the semantic definition of a grammar rule.
3388* Action Types:: Specifying data types for actions to operate on.
3389* Mid-Rule Actions:: Most actions go at the end of a rule.
3390 This says when, why and how to use the exceptional
3391 action in the middle of a rule.
3392@end menu
3393
342b8b6e 3394@node Value Type
bfa74976
RS
3395@subsection Data Types of Semantic Values
3396@cindex semantic value type
3397@cindex value type, semantic
3398@cindex data types of semantic values
3399@cindex default data type
3400
3401In a simple program it may be sufficient to use the same data type for
3402the semantic values of all language constructs. This was true in the
35430378 3403RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3404Notation Calculator}).
bfa74976 3405
ddc8ede1
PE
3406Bison normally uses the type @code{int} for semantic values if your
3407program uses the same data type for all language constructs. To
bfa74976
RS
3408specify some other type, define @code{YYSTYPE} as a macro, like this:
3409
3410@example
3411#define YYSTYPE double
3412@end example
3413
3414@noindent
50cce58e
PE
3415@code{YYSTYPE}'s replacement list should be a type name
3416that does not contain parentheses or square brackets.
342b8b6e 3417This macro definition must go in the prologue of the grammar file
75f5aaea 3418(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3419
342b8b6e 3420@node Multiple Types
bfa74976
RS
3421@subsection More Than One Value Type
3422
3423In most programs, you will need different data types for different kinds
3424of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3425@code{int} or @code{long int}, while a string constant needs type
3426@code{char *}, and an identifier might need a pointer to an entry in the
3427symbol table.
bfa74976
RS
3428
3429To use more than one data type for semantic values in one parser, Bison
3430requires you to do two things:
3431
3432@itemize @bullet
3433@item
ddc8ede1 3434Specify the entire collection of possible data types, either by using the
704a47c4 3435@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3436Value Types}), or by using a @code{typedef} or a @code{#define} to
3437define @code{YYSTYPE} to be a union type whose member names are
3438the type tags.
bfa74976
RS
3439
3440@item
14ded682
AD
3441Choose one of those types for each symbol (terminal or nonterminal) for
3442which semantic values are used. This is done for tokens with the
3443@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3444and for groupings with the @code{%type} Bison declaration (@pxref{Type
3445Decl, ,Nonterminal Symbols}).
bfa74976
RS
3446@end itemize
3447
342b8b6e 3448@node Actions
bfa74976
RS
3449@subsection Actions
3450@cindex action
3451@vindex $$
3452@vindex $@var{n}
1f68dca5
AR
3453@vindex $@var{name}
3454@vindex $[@var{name}]
bfa74976
RS
3455
3456An action accompanies a syntactic rule and contains C code to be executed
3457each time an instance of that rule is recognized. The task of most actions
3458is to compute a semantic value for the grouping built by the rule from the
3459semantic values associated with tokens or smaller groupings.
3460
287c78f6
PE
3461An action consists of braced code containing C statements, and can be
3462placed at any position in the rule;
704a47c4
AD
3463it is executed at that position. Most rules have just one action at the
3464end of the rule, following all the components. Actions in the middle of
3465a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3466Actions, ,Actions in Mid-Rule}).
bfa74976 3467
9913d6e4
JD
3468The C code in an action can refer to the semantic values of the
3469components matched by the rule with the construct @code{$@var{n}},
3470which stands for the value of the @var{n}th component. The semantic
3471value for the grouping being constructed is @code{$$}. In addition,
3472the semantic values of symbols can be accessed with the named
3473references construct @code{$@var{name}} or @code{$[@var{name}]}.
3474Bison translates both of these constructs into expressions of the
3475appropriate type when it copies the actions into the parser
3476implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3477for the current grouping) is translated to a modifiable lvalue, so it
3478can be assigned to.
bfa74976
RS
3479
3480Here is a typical example:
3481
3482@example
3483@group
3484exp: @dots{}
3485 | exp '+' exp
3486 @{ $$ = $1 + $3; @}
3487@end group
3488@end example
3489
1f68dca5
AR
3490Or, in terms of named references:
3491
3492@example
3493@group
3494exp[result]: @dots{}
3495 | exp[left] '+' exp[right]
3496 @{ $result = $left + $right; @}
3497@end group
3498@end example
3499
bfa74976
RS
3500@noindent
3501This rule constructs an @code{exp} from two smaller @code{exp} groupings
3502connected by a plus-sign token. In the action, @code{$1} and @code{$3}
1f68dca5 3503(@code{$left} and @code{$right})
bfa74976
RS
3504refer to the semantic values of the two component @code{exp} groupings,
3505which are the first and third symbols on the right hand side of the rule.
1f68dca5
AR
3506The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3507semantic value of
bfa74976
RS
3508the addition-expression just recognized by the rule. If there were a
3509useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3510referred to as @code{$2}.
bfa74976 3511
1f68dca5
AR
3512@xref{Named References,,Using Named References}, for more information
3513about using the named references construct.
3514
3ded9a63
AD
3515Note that the vertical-bar character @samp{|} is really a rule
3516separator, and actions are attached to a single rule. This is a
3517difference with tools like Flex, for which @samp{|} stands for either
3518``or'', or ``the same action as that of the next rule''. In the
3519following example, the action is triggered only when @samp{b} is found:
3520
3521@example
3522@group
3523a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3524@end group
3525@end example
3526
bfa74976
RS
3527@cindex default action
3528If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3529@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3530becomes the value of the whole rule. Of course, the default action is
3531valid only if the two data types match. There is no meaningful default
3532action for an empty rule; every empty rule must have an explicit action
3533unless the rule's value does not matter.
bfa74976
RS
3534
3535@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3536to tokens and groupings on the stack @emph{before} those that match the
3537current rule. This is a very risky practice, and to use it reliably
3538you must be certain of the context in which the rule is applied. Here
3539is a case in which you can use this reliably:
3540
3541@example
3542@group
3543foo: expr bar '+' expr @{ @dots{} @}
3544 | expr bar '-' expr @{ @dots{} @}
3545 ;
3546@end group
3547
3548@group
3549bar: /* empty */
3550 @{ previous_expr = $0; @}
3551 ;
3552@end group
3553@end example
3554
3555As long as @code{bar} is used only in the fashion shown here, @code{$0}
3556always refers to the @code{expr} which precedes @code{bar} in the
3557definition of @code{foo}.
3558
32c29292 3559@vindex yylval
742e4900 3560It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3561any, from a semantic action.
3562This semantic value is stored in @code{yylval}.
3563@xref{Action Features, ,Special Features for Use in Actions}.
3564
342b8b6e 3565@node Action Types
bfa74976
RS
3566@subsection Data Types of Values in Actions
3567@cindex action data types
3568@cindex data types in actions
3569
3570If you have chosen a single data type for semantic values, the @code{$$}
3571and @code{$@var{n}} constructs always have that data type.
3572
3573If you have used @code{%union} to specify a variety of data types, then you
3574must declare a choice among these types for each terminal or nonterminal
3575symbol that can have a semantic value. Then each time you use @code{$$} or
3576@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3577in the rule. In this example,
bfa74976
RS
3578
3579@example
3580@group
3581exp: @dots{}
3582 | exp '+' exp
3583 @{ $$ = $1 + $3; @}
3584@end group
3585@end example
3586
3587@noindent
3588@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3589have the data type declared for the nonterminal symbol @code{exp}. If
3590@code{$2} were used, it would have the data type declared for the
e0c471a9 3591terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3592
3593Alternatively, you can specify the data type when you refer to the value,
3594by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3595reference. For example, if you have defined types as shown here:
3596
3597@example
3598@group
3599%union @{
3600 int itype;
3601 double dtype;
3602@}
3603@end group
3604@end example
3605
3606@noindent
3607then you can write @code{$<itype>1} to refer to the first subunit of the
3608rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3609
342b8b6e 3610@node Mid-Rule Actions
bfa74976
RS
3611@subsection Actions in Mid-Rule
3612@cindex actions in mid-rule
3613@cindex mid-rule actions
3614
3615Occasionally it is useful to put an action in the middle of a rule.
3616These actions are written just like usual end-of-rule actions, but they
3617are executed before the parser even recognizes the following components.
3618
3619A mid-rule action may refer to the components preceding it using
3620@code{$@var{n}}, but it may not refer to subsequent components because
3621it is run before they are parsed.
3622
3623The mid-rule action itself counts as one of the components of the rule.
3624This makes a difference when there is another action later in the same rule
3625(and usually there is another at the end): you have to count the actions
3626along with the symbols when working out which number @var{n} to use in
3627@code{$@var{n}}.
3628
3629The mid-rule action can also have a semantic value. The action can set
3630its value with an assignment to @code{$$}, and actions later in the rule
3631can refer to the value using @code{$@var{n}}. Since there is no symbol
3632to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3633in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3634specify a data type each time you refer to this value.
bfa74976
RS
3635
3636There is no way to set the value of the entire rule with a mid-rule
3637action, because assignments to @code{$$} do not have that effect. The
3638only way to set the value for the entire rule is with an ordinary action
3639at the end of the rule.
3640
3641Here is an example from a hypothetical compiler, handling a @code{let}
3642statement that looks like @samp{let (@var{variable}) @var{statement}} and
3643serves to create a variable named @var{variable} temporarily for the
3644duration of @var{statement}. To parse this construct, we must put
3645@var{variable} into the symbol table while @var{statement} is parsed, then
3646remove it afterward. Here is how it is done:
3647
3648@example
3649@group
3650stmt: LET '(' var ')'
3651 @{ $<context>$ = push_context ();
3652 declare_variable ($3); @}
3653 stmt @{ $$ = $6;
3654 pop_context ($<context>5); @}
3655@end group
3656@end example
3657
3658@noindent
3659As soon as @samp{let (@var{variable})} has been recognized, the first
3660action is run. It saves a copy of the current semantic context (the
3661list of accessible variables) as its semantic value, using alternative
3662@code{context} in the data-type union. Then it calls
3663@code{declare_variable} to add the new variable to that list. Once the
3664first action is finished, the embedded statement @code{stmt} can be
3665parsed. Note that the mid-rule action is component number 5, so the
3666@samp{stmt} is component number 6.
3667
3668After the embedded statement is parsed, its semantic value becomes the
3669value of the entire @code{let}-statement. Then the semantic value from the
3670earlier action is used to restore the prior list of variables. This
3671removes the temporary @code{let}-variable from the list so that it won't
3672appear to exist while the rest of the program is parsed.
3673
841a7737
JD
3674@findex %destructor
3675@cindex discarded symbols, mid-rule actions
3676@cindex error recovery, mid-rule actions
3677In the above example, if the parser initiates error recovery (@pxref{Error
3678Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3679it might discard the previous semantic context @code{$<context>5} without
3680restoring it.
3681Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3682Discarded Symbols}).
ec5479ce
JD
3683However, Bison currently provides no means to declare a destructor specific to
3684a particular mid-rule action's semantic value.
841a7737
JD
3685
3686One solution is to bury the mid-rule action inside a nonterminal symbol and to
3687declare a destructor for that symbol:
3688
3689@example
3690@group
3691%type <context> let
3692%destructor @{ pop_context ($$); @} let
3693
3694%%
3695
3696stmt: let stmt
3697 @{ $$ = $2;
3698 pop_context ($1); @}
3699 ;
3700
3701let: LET '(' var ')'
3702 @{ $$ = push_context ();
3703 declare_variable ($3); @}
3704 ;
3705
3706@end group
3707@end example
3708
3709@noindent
3710Note that the action is now at the end of its rule.
3711Any mid-rule action can be converted to an end-of-rule action in this way, and
3712this is what Bison actually does to implement mid-rule actions.
3713
bfa74976
RS
3714Taking action before a rule is completely recognized often leads to
3715conflicts since the parser must commit to a parse in order to execute the
3716action. For example, the following two rules, without mid-rule actions,
3717can coexist in a working parser because the parser can shift the open-brace
3718token and look at what follows before deciding whether there is a
3719declaration or not:
3720
3721@example
3722@group
3723compound: '@{' declarations statements '@}'
3724 | '@{' statements '@}'
3725 ;
3726@end group
3727@end example
3728
3729@noindent
3730But when we add a mid-rule action as follows, the rules become nonfunctional:
3731
3732@example
3733@group
3734compound: @{ prepare_for_local_variables (); @}
3735 '@{' declarations statements '@}'
3736@end group
3737@group
3738 | '@{' statements '@}'
3739 ;
3740@end group
3741@end example
3742
3743@noindent
3744Now the parser is forced to decide whether to run the mid-rule action
3745when it has read no farther than the open-brace. In other words, it
3746must commit to using one rule or the other, without sufficient
3747information to do it correctly. (The open-brace token is what is called
742e4900
JD
3748the @dfn{lookahead} token at this time, since the parser is still
3749deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3750
3751You might think that you could correct the problem by putting identical
3752actions into the two rules, like this:
3753
3754@example
3755@group
3756compound: @{ prepare_for_local_variables (); @}
3757 '@{' declarations statements '@}'
3758 | @{ prepare_for_local_variables (); @}
3759 '@{' statements '@}'
3760 ;
3761@end group
3762@end example
3763
3764@noindent
3765But this does not help, because Bison does not realize that the two actions
3766are identical. (Bison never tries to understand the C code in an action.)
3767
3768If the grammar is such that a declaration can be distinguished from a
3769statement by the first token (which is true in C), then one solution which
3770does work is to put the action after the open-brace, like this:
3771
3772@example
3773@group
3774compound: '@{' @{ prepare_for_local_variables (); @}
3775 declarations statements '@}'
3776 | '@{' statements '@}'
3777 ;
3778@end group
3779@end example
3780
3781@noindent
3782Now the first token of the following declaration or statement,
3783which would in any case tell Bison which rule to use, can still do so.
3784
3785Another solution is to bury the action inside a nonterminal symbol which
3786serves as a subroutine:
3787
3788@example
3789@group
3790subroutine: /* empty */
3791 @{ prepare_for_local_variables (); @}
3792 ;
3793
3794@end group
3795
3796@group
3797compound: subroutine
3798 '@{' declarations statements '@}'
3799 | subroutine
3800 '@{' statements '@}'
3801 ;
3802@end group
3803@end example
3804
3805@noindent
3806Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3807deciding which rule for @code{compound} it will eventually use.
bfa74976 3808
342b8b6e 3809@node Locations
847bf1f5
AD
3810@section Tracking Locations
3811@cindex location
95923bd6
AD
3812@cindex textual location
3813@cindex location, textual
847bf1f5
AD
3814
3815Though grammar rules and semantic actions are enough to write a fully
72d2299c 3816functional parser, it can be useful to process some additional information,
3e259915
MA
3817especially symbol locations.
3818
704a47c4
AD
3819The way locations are handled is defined by providing a data type, and
3820actions to take when rules are matched.
847bf1f5
AD
3821
3822@menu
3823* Location Type:: Specifying a data type for locations.
3824* Actions and Locations:: Using locations in actions.
3825* Location Default Action:: Defining a general way to compute locations.
3826@end menu
3827
342b8b6e 3828@node Location Type
847bf1f5
AD
3829@subsection Data Type of Locations
3830@cindex data type of locations
3831@cindex default location type
3832
3833Defining a data type for locations is much simpler than for semantic values,
3834since all tokens and groupings always use the same type.
3835
50cce58e
PE
3836You can specify the type of locations by defining a macro called
3837@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3838defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3839When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3840four members:
3841
3842@example
6273355b 3843typedef struct YYLTYPE
847bf1f5
AD
3844@{
3845 int first_line;
3846 int first_column;
3847 int last_line;
3848 int last_column;
6273355b 3849@} YYLTYPE;
847bf1f5
AD
3850@end example
3851
8fbbeba2
AD
3852When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3853initializes all these fields to 1 for @code{yylloc}. To initialize
3854@code{yylloc} with a custom location type (or to chose a different
3855initialization), use the @code{%initial-action} directive. @xref{Initial
3856Action Decl, , Performing Actions before Parsing}.
cd48d21d 3857
342b8b6e 3858@node Actions and Locations
847bf1f5
AD
3859@subsection Actions and Locations
3860@cindex location actions
3861@cindex actions, location
3862@vindex @@$
3863@vindex @@@var{n}
1f68dca5
AR
3864@vindex @@@var{name}
3865@vindex @@[@var{name}]
847bf1f5
AD
3866
3867Actions are not only useful for defining language semantics, but also for
3868describing the behavior of the output parser with locations.
3869
3870The most obvious way for building locations of syntactic groupings is very
72d2299c 3871similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3872constructs can be used to access the locations of the elements being matched.
3873The location of the @var{n}th component of the right hand side is
3874@code{@@@var{n}}, while the location of the left hand side grouping is
3875@code{@@$}.
3876
1f68dca5
AR
3877In addition, the named references construct @code{@@@var{name}} and
3878@code{@@[@var{name}]} may also be used to address the symbol locations.
3879@xref{Named References,,Using Named References}, for more information
3880about using the named references construct.
3881
3e259915 3882Here is a basic example using the default data type for locations:
847bf1f5
AD
3883
3884@example
3885@group
3886exp: @dots{}
3e259915 3887 | exp '/' exp
847bf1f5 3888 @{
3e259915
MA
3889 @@$.first_column = @@1.first_column;
3890 @@$.first_line = @@1.first_line;
847bf1f5
AD
3891 @@$.last_column = @@3.last_column;
3892 @@$.last_line = @@3.last_line;
3e259915
MA
3893 if ($3)
3894 $$ = $1 / $3;
3895 else
3896 @{
3897 $$ = 1;
4e03e201
AD
3898 fprintf (stderr,
3899 "Division by zero, l%d,c%d-l%d,c%d",
3900 @@3.first_line, @@3.first_column,
3901 @@3.last_line, @@3.last_column);
3e259915 3902 @}
847bf1f5
AD
3903 @}
3904@end group
3905@end example
3906
3e259915 3907As for semantic values, there is a default action for locations that is
72d2299c 3908run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3909beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3910last symbol.
3e259915 3911
72d2299c 3912With this default action, the location tracking can be fully automatic. The
3e259915
MA
3913example above simply rewrites this way:
3914
3915@example
3916@group
3917exp: @dots{}
3918 | exp '/' exp
3919 @{
3920 if ($3)
3921 $$ = $1 / $3;
3922 else
3923 @{
3924 $$ = 1;
4e03e201
AD
3925 fprintf (stderr,
3926 "Division by zero, l%d,c%d-l%d,c%d",
3927 @@3.first_line, @@3.first_column,
3928 @@3.last_line, @@3.last_column);
3e259915
MA
3929 @}
3930 @}
3931@end group
3932@end example
847bf1f5 3933
32c29292 3934@vindex yylloc
742e4900 3935It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3936from a semantic action.
3937This location is stored in @code{yylloc}.
3938@xref{Action Features, ,Special Features for Use in Actions}.
3939
342b8b6e 3940@node Location Default Action
847bf1f5
AD
3941@subsection Default Action for Locations
3942@vindex YYLLOC_DEFAULT
35430378 3943@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3944
72d2299c 3945Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3946locations are much more general than semantic values, there is room in
3947the output parser to redefine the default action to take for each
72d2299c 3948rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3949matched, before the associated action is run. It is also invoked
3950while processing a syntax error, to compute the error's location.
35430378 3951Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
3952parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3953of that ambiguity.
847bf1f5 3954
3e259915 3955Most of the time, this macro is general enough to suppress location
79282c6c 3956dedicated code from semantic actions.
847bf1f5 3957
72d2299c 3958The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3959the location of the grouping (the result of the computation). When a
766de5eb 3960rule is matched, the second parameter identifies locations of
96b93a3d 3961all right hand side elements of the rule being matched, and the third
8710fc41 3962parameter is the size of the rule's right hand side.
35430378 3963When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
3964right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3965When processing a syntax error, the second parameter identifies locations
3966of the symbols that were discarded during error processing, and the third
96b93a3d 3967parameter is the number of discarded symbols.
847bf1f5 3968
766de5eb 3969By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3970
766de5eb 3971@smallexample
847bf1f5 3972@group
766de5eb
PE
3973# define YYLLOC_DEFAULT(Current, Rhs, N) \
3974 do \
3975 if (N) \
3976 @{ \
3977 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3978 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3979 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3980 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3981 @} \
3982 else \
3983 @{ \
3984 (Current).first_line = (Current).last_line = \
3985 YYRHSLOC(Rhs, 0).last_line; \
3986 (Current).first_column = (Current).last_column = \
3987 YYRHSLOC(Rhs, 0).last_column; \
3988 @} \
3989 while (0)
847bf1f5 3990@end group
766de5eb 3991@end smallexample
676385e2 3992
766de5eb
PE
3993where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3994in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3995just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3996
3e259915 3997When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3998
3e259915 3999@itemize @bullet
79282c6c 4000@item
72d2299c 4001All arguments are free of side-effects. However, only the first one (the
3e259915 4002result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4003
3e259915 4004@item
766de5eb
PE
4005For consistency with semantic actions, valid indexes within the
4006right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4007valid index, and it refers to the symbol just before the reduction.
4008During error processing @var{n} is always positive.
0ae99356
PE
4009
4010@item
4011Your macro should parenthesize its arguments, if need be, since the
4012actual arguments may not be surrounded by parentheses. Also, your
4013macro should expand to something that can be used as a single
4014statement when it is followed by a semicolon.
3e259915 4015@end itemize
847bf1f5 4016
908c8647
JD
4017@node Named References
4018@section Using Named References
4019@cindex named references
4020
4021While every semantic value can be accessed with positional references
4022@code{$@var{n}} and @code{$$}, it's often much more convenient to refer to
4023them by name. First of all, original symbol names may be used as named
4024references. For example:
4025
4026@example
4027@group
4028invocation: op '(' args ')'
4029 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4030@end group
4031@end example
4032
4033@noindent
4034The positional @code{$$}, @code{@@$}, @code{$n}, and @code{@@n} can be
4035mixed with @code{$name} and @code{@@name} arbitrarily. For example:
4036
4037@example
4038@group
4039invocation: op '(' args ')'
4040 @{ $$ = new_invocation ($op, $args, @@$); @}
4041@end group
4042@end example
4043
4044@noindent
4045However, sometimes regular symbol names are not sufficient due to
4046ambiguities:
4047
4048@example
4049@group
4050exp: exp '/' exp
4051 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4052
4053exp: exp '/' exp
4054 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4055
4056exp: exp '/' exp
4057 @{ $$ = $1 / $3; @} // No error.
4058@end group
4059@end example
4060
4061@noindent
4062When ambiguity occurs, explicitly declared names may be used for values and
4063locations. Explicit names are declared as a bracketed name after a symbol
4064appearance in rule definitions. For example:
4065@example
4066@group
4067exp[result]: exp[left] '/' exp[right]
4068 @{ $result = $left / $right; @}
4069@end group
4070@end example
4071
4072@noindent
4073Explicit names may be declared for RHS and for LHS symbols as well. In order
4074to access a semantic value generated by a mid-rule action, an explicit name
4075may also be declared by putting a bracketed name after the closing brace of
4076the mid-rule action code:
4077@example
4078@group
4079exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4080 @{ $res = $left + $right; @}
4081@end group
4082@end example
4083
4084@noindent
4085
4086In references, in order to specify names containing dots and dashes, an explicit
4087bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4088@example
4089@group
4090if-stmt: IF '(' expr ')' THEN then.stmt ';'
4091 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4092@end group
4093@end example
4094
4095It often happens that named references are followed by a dot, dash or other
4096C punctuation marks and operators. By default, Bison will read
4097@code{$name.suffix} as a reference to symbol value @code{$name} followed by
4098@samp{.suffix}, i.e., an access to the @samp{suffix} field of the semantic
4099value. In order to force Bison to recognize @code{name.suffix} in its entirety
4100as the name of a semantic value, bracketed syntax @code{$[name.suffix]}
4101must be used.
4102
342b8b6e 4103@node Declarations
bfa74976
RS
4104@section Bison Declarations
4105@cindex declarations, Bison
4106@cindex Bison declarations
4107
4108The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4109used in formulating the grammar and the data types of semantic values.
4110@xref{Symbols}.
4111
4112All token type names (but not single-character literal tokens such as
4113@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4114declared if you need to specify which data type to use for the semantic
4115value (@pxref{Multiple Types, ,More Than One Value Type}).
4116
9913d6e4
JD
4117The first rule in the grammar file also specifies the start symbol, by
4118default. If you want some other symbol to be the start symbol, you
4119must declare it explicitly (@pxref{Language and Grammar, ,Languages
4120and Context-Free Grammars}).
bfa74976
RS
4121
4122@menu
b50d2359 4123* Require Decl:: Requiring a Bison version.
bfa74976
RS
4124* Token Decl:: Declaring terminal symbols.
4125* Precedence Decl:: Declaring terminals with precedence and associativity.
4126* Union Decl:: Declaring the set of all semantic value types.
4127* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4128* Initial Action Decl:: Code run before parsing starts.
72f889cc 4129* Destructor Decl:: Declaring how symbols are freed.
d6328241 4130* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4131* Start Decl:: Specifying the start symbol.
4132* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4133* Push Decl:: Requesting a push parser.
bfa74976 4134* Decl Summary:: Table of all Bison declarations.
2f4518a1 4135* %define Summary:: Defining variables to adjust Bison's behavior.
8e6f2266 4136* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4137@end menu
4138
b50d2359
AD
4139@node Require Decl
4140@subsection Require a Version of Bison
4141@cindex version requirement
4142@cindex requiring a version of Bison
4143@findex %require
4144
4145You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4146the requirement is not met, @command{bison} exits with an error (exit
4147status 63).
b50d2359
AD
4148
4149@example
4150%require "@var{version}"
4151@end example
4152
342b8b6e 4153@node Token Decl
bfa74976
RS
4154@subsection Token Type Names
4155@cindex declaring token type names
4156@cindex token type names, declaring
931c7513 4157@cindex declaring literal string tokens
bfa74976
RS
4158@findex %token
4159
4160The basic way to declare a token type name (terminal symbol) is as follows:
4161
4162@example
4163%token @var{name}
4164@end example
4165
4166Bison will convert this into a @code{#define} directive in
4167the parser, so that the function @code{yylex} (if it is in this file)
4168can use the name @var{name} to stand for this token type's code.
4169
14ded682
AD
4170Alternatively, you can use @code{%left}, @code{%right}, or
4171@code{%nonassoc} instead of @code{%token}, if you wish to specify
4172associativity and precedence. @xref{Precedence Decl, ,Operator
4173Precedence}.
bfa74976
RS
4174
4175You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4176a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4177following the token name:
bfa74976
RS
4178
4179@example
4180%token NUM 300
1452af69 4181%token XNUM 0x12d // a GNU extension
bfa74976
RS
4182@end example
4183
4184@noindent
4185It is generally best, however, to let Bison choose the numeric codes for
4186all token types. Bison will automatically select codes that don't conflict
e966383b 4187with each other or with normal characters.
bfa74976
RS
4188
4189In the event that the stack type is a union, you must augment the
4190@code{%token} or other token declaration to include the data type
704a47c4
AD
4191alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4192Than One Value Type}).
bfa74976
RS
4193
4194For example:
4195
4196@example
4197@group
4198%union @{ /* define stack type */
4199 double val;
4200 symrec *tptr;
4201@}
4202%token <val> NUM /* define token NUM and its type */
4203@end group
4204@end example
4205
931c7513
RS
4206You can associate a literal string token with a token type name by
4207writing the literal string at the end of a @code{%token}
4208declaration which declares the name. For example:
4209
4210@example
4211%token arrow "=>"
4212@end example
4213
4214@noindent
4215For example, a grammar for the C language might specify these names with
4216equivalent literal string tokens:
4217
4218@example
4219%token <operator> OR "||"
4220%token <operator> LE 134 "<="
4221%left OR "<="
4222@end example
4223
4224@noindent
4225Once you equate the literal string and the token name, you can use them
4226interchangeably in further declarations or the grammar rules. The
4227@code{yylex} function can use the token name or the literal string to
4228obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4229Syntax error messages passed to @code{yyerror} from the parser will reference
4230the literal string instead of the token name.
4231
4232The token numbered as 0 corresponds to end of file; the following line
4233allows for nicer error messages referring to ``end of file'' instead
4234of ``$end'':
4235
4236@example
4237%token END 0 "end of file"
4238@end example
931c7513 4239
342b8b6e 4240@node Precedence Decl
bfa74976
RS
4241@subsection Operator Precedence
4242@cindex precedence declarations
4243@cindex declaring operator precedence
4244@cindex operator precedence, declaring
4245
4246Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4247declare a token and specify its precedence and associativity, all at
4248once. These are called @dfn{precedence declarations}.
704a47c4
AD
4249@xref{Precedence, ,Operator Precedence}, for general information on
4250operator precedence.
bfa74976 4251
ab7f29f8 4252The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4253@code{%token}: either
4254
4255@example
4256%left @var{symbols}@dots{}
4257@end example
4258
4259@noindent
4260or
4261
4262@example
4263%left <@var{type}> @var{symbols}@dots{}
4264@end example
4265
4266And indeed any of these declarations serves the purposes of @code{%token}.
4267But in addition, they specify the associativity and relative precedence for
4268all the @var{symbols}:
4269
4270@itemize @bullet
4271@item
4272The associativity of an operator @var{op} determines how repeated uses
4273of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4274@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4275grouping @var{y} with @var{z} first. @code{%left} specifies
4276left-associativity (grouping @var{x} with @var{y} first) and
4277@code{%right} specifies right-associativity (grouping @var{y} with
4278@var{z} first). @code{%nonassoc} specifies no associativity, which
4279means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4280considered a syntax error.
4281
4282@item
4283The precedence of an operator determines how it nests with other operators.
4284All the tokens declared in a single precedence declaration have equal
4285precedence and nest together according to their associativity.
4286When two tokens declared in different precedence declarations associate,
4287the one declared later has the higher precedence and is grouped first.
4288@end itemize
4289
ab7f29f8
JD
4290For backward compatibility, there is a confusing difference between the
4291argument lists of @code{%token} and precedence declarations.
4292Only a @code{%token} can associate a literal string with a token type name.
4293A precedence declaration always interprets a literal string as a reference to a
4294separate token.
4295For example:
4296
4297@example
4298%left OR "<=" // Does not declare an alias.
4299%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4300@end example
4301
342b8b6e 4302@node Union Decl
bfa74976
RS
4303@subsection The Collection of Value Types
4304@cindex declaring value types
4305@cindex value types, declaring
4306@findex %union
4307
287c78f6
PE
4308The @code{%union} declaration specifies the entire collection of
4309possible data types for semantic values. The keyword @code{%union} is
4310followed by braced code containing the same thing that goes inside a
4311@code{union} in C@.
bfa74976
RS
4312
4313For example:
4314
4315@example
4316@group
4317%union @{
4318 double val;
4319 symrec *tptr;
4320@}
4321@end group
4322@end example
4323
4324@noindent
4325This says that the two alternative types are @code{double} and @code{symrec
4326*}. They are given names @code{val} and @code{tptr}; these names are used
4327in the @code{%token} and @code{%type} declarations to pick one of the types
4328for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4329
35430378 4330As an extension to POSIX, a tag is allowed after the
6273355b
PE
4331@code{union}. For example:
4332
4333@example
4334@group
4335%union value @{
4336 double val;
4337 symrec *tptr;
4338@}
4339@end group
4340@end example
4341
d6ca7905 4342@noindent
6273355b
PE
4343specifies the union tag @code{value}, so the corresponding C type is
4344@code{union value}. If you do not specify a tag, it defaults to
4345@code{YYSTYPE}.
4346
35430378 4347As another extension to POSIX, you may specify multiple
d6ca7905
PE
4348@code{%union} declarations; their contents are concatenated. However,
4349only the first @code{%union} declaration can specify a tag.
4350
6273355b 4351Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4352a semicolon after the closing brace.
4353
ddc8ede1
PE
4354Instead of @code{%union}, you can define and use your own union type
4355@code{YYSTYPE} if your grammar contains at least one
4356@samp{<@var{type}>} tag. For example, you can put the following into
4357a header file @file{parser.h}:
4358
4359@example
4360@group
4361union YYSTYPE @{
4362 double val;
4363 symrec *tptr;
4364@};
4365typedef union YYSTYPE YYSTYPE;
4366@end group
4367@end example
4368
4369@noindent
4370and then your grammar can use the following
4371instead of @code{%union}:
4372
4373@example
4374@group
4375%@{
4376#include "parser.h"
4377%@}
4378%type <val> expr
4379%token <tptr> ID
4380@end group
4381@end example
4382
342b8b6e 4383@node Type Decl
bfa74976
RS
4384@subsection Nonterminal Symbols
4385@cindex declaring value types, nonterminals
4386@cindex value types, nonterminals, declaring
4387@findex %type
4388
4389@noindent
4390When you use @code{%union} to specify multiple value types, you must
4391declare the value type of each nonterminal symbol for which values are
4392used. This is done with a @code{%type} declaration, like this:
4393
4394@example
4395%type <@var{type}> @var{nonterminal}@dots{}
4396@end example
4397
4398@noindent
704a47c4
AD
4399Here @var{nonterminal} is the name of a nonterminal symbol, and
4400@var{type} is the name given in the @code{%union} to the alternative
4401that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4402can give any number of nonterminal symbols in the same @code{%type}
4403declaration, if they have the same value type. Use spaces to separate
4404the symbol names.
bfa74976 4405
931c7513
RS
4406You can also declare the value type of a terminal symbol. To do this,
4407use the same @code{<@var{type}>} construction in a declaration for the
4408terminal symbol. All kinds of token declarations allow
4409@code{<@var{type}>}.
4410
18d192f0
AD
4411@node Initial Action Decl
4412@subsection Performing Actions before Parsing
4413@findex %initial-action
4414
4415Sometimes your parser needs to perform some initializations before
4416parsing. The @code{%initial-action} directive allows for such arbitrary
4417code.
4418
4419@deffn {Directive} %initial-action @{ @var{code} @}
4420@findex %initial-action
287c78f6 4421Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4422@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4423@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4424@code{%parse-param}.
18d192f0
AD
4425@end deffn
4426
451364ed
AD
4427For instance, if your locations use a file name, you may use
4428
4429@example
48b16bbc 4430%parse-param @{ char const *file_name @};
451364ed
AD
4431%initial-action
4432@{
4626a15d 4433 @@$.initialize (file_name);
451364ed
AD
4434@};
4435@end example
4436
18d192f0 4437
72f889cc
AD
4438@node Destructor Decl
4439@subsection Freeing Discarded Symbols
4440@cindex freeing discarded symbols
4441@findex %destructor
12e35840 4442@findex <*>
3ebecc24 4443@findex <>
a85284cf
AD
4444During error recovery (@pxref{Error Recovery}), symbols already pushed
4445on the stack and tokens coming from the rest of the file are discarded
4446until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4447or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4448symbols on the stack must be discarded. Even if the parser succeeds, it
4449must discard the start symbol.
258b75ca
PE
4450
4451When discarded symbols convey heap based information, this memory is
4452lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4453in traditional compilers, it is unacceptable for programs like shells or
4454protocol implementations that may parse and execute indefinitely.
258b75ca 4455
a85284cf
AD
4456The @code{%destructor} directive defines code that is called when a
4457symbol is automatically discarded.
72f889cc
AD
4458
4459@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4460@findex %destructor
287c78f6
PE
4461Invoke the braced @var{code} whenever the parser discards one of the
4462@var{symbols}.
4b367315 4463Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4464with the discarded symbol, and @code{@@$} designates its location.
4465The additional parser parameters are also available (@pxref{Parser Function, ,
4466The Parser Function @code{yyparse}}).
ec5479ce 4467
b2a0b7ca
JD
4468When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4469per-symbol @code{%destructor}.
4470You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4471tag among @var{symbols}.
b2a0b7ca 4472In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4473grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4474per-symbol @code{%destructor}.
4475
12e35840 4476Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4477(These default forms are experimental.
4478More user feedback will help to determine whether they should become permanent
4479features.)
3ebecc24 4480You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4481exactly one @code{%destructor} declaration in your grammar file.
4482The parser will invoke the @var{code} associated with one of these whenever it
4483discards any user-defined grammar symbol that has no per-symbol and no per-type
4484@code{%destructor}.
4485The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4486symbol for which you have formally declared a semantic type tag (@code{%type}
4487counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4488The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4489symbol that has no declared semantic type tag.
72f889cc
AD
4490@end deffn
4491
b2a0b7ca 4492@noindent
12e35840 4493For example:
72f889cc
AD
4494
4495@smallexample
ec5479ce
JD
4496%union @{ char *string; @}
4497%token <string> STRING1
4498%token <string> STRING2
4499%type <string> string1
4500%type <string> string2
b2a0b7ca
JD
4501%union @{ char character; @}
4502%token <character> CHR
4503%type <character> chr
12e35840
JD
4504%token TAGLESS
4505
b2a0b7ca 4506%destructor @{ @} <character>
12e35840
JD
4507%destructor @{ free ($$); @} <*>
4508%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4509%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4510@end smallexample
4511
4512@noindent
b2a0b7ca
JD
4513guarantees that, when the parser discards any user-defined symbol that has a
4514semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4515to @code{free} by default.
ec5479ce
JD
4516However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4517prints its line number to @code{stdout}.
4518It performs only the second @code{%destructor} in this case, so it invokes
4519@code{free} only once.
12e35840
JD
4520Finally, the parser merely prints a message whenever it discards any symbol,
4521such as @code{TAGLESS}, that has no semantic type tag.
4522
4523A Bison-generated parser invokes the default @code{%destructor}s only for
4524user-defined as opposed to Bison-defined symbols.
4525For example, the parser will not invoke either kind of default
4526@code{%destructor} for the special Bison-defined symbols @code{$accept},
4527@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4528none of which you can reference in your grammar.
4529It also will not invoke either for the @code{error} token (@pxref{Table of
4530Symbols, ,error}), which is always defined by Bison regardless of whether you
4531reference it in your grammar.
4532However, it may invoke one of them for the end token (token 0) if you
4533redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4534
4535@smallexample
4536%token END 0
4537@end smallexample
4538
12e35840
JD
4539@cindex actions in mid-rule
4540@cindex mid-rule actions
4541Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4542mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4543That is, Bison does not consider a mid-rule to have a semantic value if you do
4544not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4545@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4546rule.
4547However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4548@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4549
3508ce36
JD
4550@ignore
4551@noindent
4552In the future, it may be possible to redefine the @code{error} token as a
4553nonterminal that captures the discarded symbols.
4554In that case, the parser will invoke the default destructor for it as well.
4555@end ignore
4556
e757bb10
AD
4557@sp 1
4558
4559@cindex discarded symbols
4560@dfn{Discarded symbols} are the following:
4561
4562@itemize
4563@item
4564stacked symbols popped during the first phase of error recovery,
4565@item
4566incoming terminals during the second phase of error recovery,
4567@item
742e4900 4568the current lookahead and the entire stack (except the current
9d9b8b70 4569right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4570@item
4571the start symbol, when the parser succeeds.
e757bb10
AD
4572@end itemize
4573
9d9b8b70
PE
4574The parser can @dfn{return immediately} because of an explicit call to
4575@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4576exhaustion.
4577
29553547 4578Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4579error via @code{YYERROR} are not discarded automatically. As a rule
4580of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4581the memory.
e757bb10 4582
342b8b6e 4583@node Expect Decl
bfa74976
RS
4584@subsection Suppressing Conflict Warnings
4585@cindex suppressing conflict warnings
4586@cindex preventing warnings about conflicts
4587@cindex warnings, preventing
4588@cindex conflicts, suppressing warnings of
4589@findex %expect
d6328241 4590@findex %expect-rr
bfa74976
RS
4591
4592Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4593(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4594have harmless shift/reduce conflicts which are resolved in a predictable
4595way and would be difficult to eliminate. It is desirable to suppress
4596the warning about these conflicts unless the number of conflicts
4597changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4598
4599The declaration looks like this:
4600
4601@example
4602%expect @var{n}
4603@end example
4604
035aa4a0
PE
4605Here @var{n} is a decimal integer. The declaration says there should
4606be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4607Bison reports an error if the number of shift/reduce conflicts differs
4608from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4609
34a6c2d1 4610For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4611serious, and should be eliminated entirely. Bison will always report
35430378 4612reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4613parsers, however, both kinds of conflicts are routine; otherwise,
35430378 4614there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4615also possible to specify an expected number of reduce/reduce conflicts
35430378 4616in GLR parsers, using the declaration:
d6328241
PH
4617
4618@example
4619%expect-rr @var{n}
4620@end example
4621
bfa74976
RS
4622In general, using @code{%expect} involves these steps:
4623
4624@itemize @bullet
4625@item
4626Compile your grammar without @code{%expect}. Use the @samp{-v} option
4627to get a verbose list of where the conflicts occur. Bison will also
4628print the number of conflicts.
4629
4630@item
4631Check each of the conflicts to make sure that Bison's default
4632resolution is what you really want. If not, rewrite the grammar and
4633go back to the beginning.
4634
4635@item
4636Add an @code{%expect} declaration, copying the number @var{n} from the
35430378 4637number which Bison printed. With GLR parsers, add an
035aa4a0 4638@code{%expect-rr} declaration as well.
bfa74976
RS
4639@end itemize
4640
cf22447c
JD
4641Now Bison will report an error if you introduce an unexpected conflict,
4642but will keep silent otherwise.
bfa74976 4643
342b8b6e 4644@node Start Decl
bfa74976
RS
4645@subsection The Start-Symbol
4646@cindex declaring the start symbol
4647@cindex start symbol, declaring
4648@cindex default start symbol
4649@findex %start
4650
4651Bison assumes by default that the start symbol for the grammar is the first
4652nonterminal specified in the grammar specification section. The programmer
4653may override this restriction with the @code{%start} declaration as follows:
4654
4655@example
4656%start @var{symbol}
4657@end example
4658
342b8b6e 4659@node Pure Decl
bfa74976
RS
4660@subsection A Pure (Reentrant) Parser
4661@cindex reentrant parser
4662@cindex pure parser
d9df47b6 4663@findex %define api.pure
bfa74976
RS
4664
4665A @dfn{reentrant} program is one which does not alter in the course of
4666execution; in other words, it consists entirely of @dfn{pure} (read-only)
4667code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4668for example, a nonreentrant program may not be safe to call from a signal
4669handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4670program must be called only within interlocks.
4671
70811b85 4672Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4673suitable for most uses, and it permits compatibility with Yacc. (The
4674standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4675statically allocated variables for communication with @code{yylex},
4676including @code{yylval} and @code{yylloc}.)
bfa74976 4677
70811b85 4678Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4679declaration @code{%define api.pure} says that you want the parser to be
70811b85 4680reentrant. It looks like this:
bfa74976
RS
4681
4682@example
d9df47b6 4683%define api.pure
bfa74976
RS
4684@end example
4685
70811b85
RS
4686The result is that the communication variables @code{yylval} and
4687@code{yylloc} become local variables in @code{yyparse}, and a different
4688calling convention is used for the lexical analyzer function
4689@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4690Parsers}, for the details of this. The variable @code{yynerrs}
4691becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4692of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4693Reporting Function @code{yyerror}}). The convention for calling
4694@code{yyparse} itself is unchanged.
4695
4696Whether the parser is pure has nothing to do with the grammar rules.
4697You can generate either a pure parser or a nonreentrant parser from any
4698valid grammar.
bfa74976 4699
9987d1b3
JD
4700@node Push Decl
4701@subsection A Push Parser
4702@cindex push parser
4703@cindex push parser
812775a0 4704@findex %define api.push-pull
9987d1b3 4705
59da312b
JD
4706(The current push parsing interface is experimental and may evolve.
4707More user feedback will help to stabilize it.)
4708
f4101aa6
AD
4709A pull parser is called once and it takes control until all its input
4710is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4711each time a new token is made available.
4712
f4101aa6 4713A push parser is typically useful when the parser is part of a
9987d1b3 4714main event loop in the client's application. This is typically
f4101aa6
AD
4715a requirement of a GUI, when the main event loop needs to be triggered
4716within a certain time period.
9987d1b3 4717
d782395d
JD
4718Normally, Bison generates a pull parser.
4719The following Bison declaration says that you want the parser to be a push
2f4518a1 4720parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
4721
4722@example
f37495f6 4723%define api.push-pull push
9987d1b3
JD
4724@end example
4725
4726In almost all cases, you want to ensure that your push parser is also
4727a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4728time you should create an impure push parser is to have backwards
9987d1b3
JD
4729compatibility with the impure Yacc pull mode interface. Unless you know
4730what you are doing, your declarations should look like this:
4731
4732@example
d9df47b6 4733%define api.pure
f37495f6 4734%define api.push-pull push
9987d1b3
JD
4735@end example
4736
f4101aa6
AD
4737There is a major notable functional difference between the pure push parser
4738and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4739many parser instances, of the same type of parser, in memory at the same time.
4740An impure push parser should only use one parser at a time.
4741
4742When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4743the generated parser. @code{yypstate} is a structure that the generated
4744parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4745function that will create a new parser instance. @code{yypstate_delete}
4746will free the resources associated with the corresponding parser instance.
f4101aa6 4747Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4748token is available to provide the parser. A trivial example
4749of using a pure push parser would look like this:
4750
4751@example
4752int status;
4753yypstate *ps = yypstate_new ();
4754do @{
4755 status = yypush_parse (ps, yylex (), NULL);
4756@} while (status == YYPUSH_MORE);
4757yypstate_delete (ps);
4758@end example
4759
4760If the user decided to use an impure push parser, a few things about
f4101aa6 4761the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4762a global variable instead of a variable in the @code{yypush_parse} function.
4763For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4764changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4765example would thus look like this:
4766
4767@example
4768extern int yychar;
4769int status;
4770yypstate *ps = yypstate_new ();
4771do @{
4772 yychar = yylex ();
4773 status = yypush_parse (ps);
4774@} while (status == YYPUSH_MORE);
4775yypstate_delete (ps);
4776@end example
4777
f4101aa6 4778That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4779for use by the next invocation of the @code{yypush_parse} function.
4780
f4101aa6 4781Bison also supports both the push parser interface along with the pull parser
9987d1b3 4782interface in the same generated parser. In order to get this functionality,
f37495f6
JD
4783you should replace the @code{%define api.push-pull push} declaration with the
4784@code{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4785the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4786and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4787would be used. However, the user should note that it is implemented in the
d782395d
JD
4788generated parser by calling @code{yypull_parse}.
4789This makes the @code{yyparse} function that is generated with the
f37495f6 4790@code{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4791@code{yyparse} function. If the user
4792calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4793stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4794and then @code{yypull_parse} the rest of the input stream. If you would like
4795to switch back and forth between between parsing styles, you would have to
4796write your own @code{yypull_parse} function that knows when to quit looking
4797for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4798like this:
4799
4800@example
4801yypstate *ps = yypstate_new ();
4802yypull_parse (ps); /* Will call the lexer */
4803yypstate_delete (ps);
4804@end example
4805
d9df47b6 4806Adding the @code{%define api.pure} declaration does exactly the same thing to
f37495f6
JD
4807the generated parser with @code{%define api.push-pull both} as it did for
4808@code{%define api.push-pull push}.
9987d1b3 4809
342b8b6e 4810@node Decl Summary
bfa74976
RS
4811@subsection Bison Declaration Summary
4812@cindex Bison declaration summary
4813@cindex declaration summary
4814@cindex summary, Bison declaration
4815
d8988b2f 4816Here is a summary of the declarations used to define a grammar:
bfa74976 4817
18b519c0 4818@deffn {Directive} %union
bfa74976
RS
4819Declare the collection of data types that semantic values may have
4820(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4821@end deffn
bfa74976 4822
18b519c0 4823@deffn {Directive} %token
bfa74976
RS
4824Declare a terminal symbol (token type name) with no precedence
4825or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4826@end deffn
bfa74976 4827
18b519c0 4828@deffn {Directive} %right
bfa74976
RS
4829Declare a terminal symbol (token type name) that is right-associative
4830(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4831@end deffn
bfa74976 4832
18b519c0 4833@deffn {Directive} %left
bfa74976
RS
4834Declare a terminal symbol (token type name) that is left-associative
4835(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4836@end deffn
bfa74976 4837
18b519c0 4838@deffn {Directive} %nonassoc
bfa74976 4839Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4840(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4841Using it in a way that would be associative is a syntax error.
4842@end deffn
4843
91d2c560 4844@ifset defaultprec
39a06c25 4845@deffn {Directive} %default-prec
22fccf95 4846Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4847(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4848@end deffn
91d2c560 4849@end ifset
bfa74976 4850
18b519c0 4851@deffn {Directive} %type
bfa74976
RS
4852Declare the type of semantic values for a nonterminal symbol
4853(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4854@end deffn
bfa74976 4855
18b519c0 4856@deffn {Directive} %start
89cab50d
AD
4857Specify the grammar's start symbol (@pxref{Start Decl, ,The
4858Start-Symbol}).
18b519c0 4859@end deffn
bfa74976 4860
18b519c0 4861@deffn {Directive} %expect
bfa74976
RS
4862Declare the expected number of shift-reduce conflicts
4863(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4864@end deffn
4865
bfa74976 4866
d8988b2f
AD
4867@sp 1
4868@noindent
4869In order to change the behavior of @command{bison}, use the following
4870directives:
4871
148d66d8 4872@deffn {Directive} %code @{@var{code}@}
8e6f2266 4873@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 4874@findex %code
8e6f2266
JD
4875Insert @var{code} verbatim into the output parser source at the
4876default location or at the location specified by @var{qualifier}.
4877@xref{%code Summary}.
148d66d8
JD
4878@end deffn
4879
18b519c0 4880@deffn {Directive} %debug
9913d6e4
JD
4881In the parser implementation file, define the macro @code{YYDEBUG} to
48821 if it is not already defined, so that the debugging facilities are
4883compiled. @xref{Tracing, ,Tracing Your Parser}.
bd5df716 4884@end deffn
d8988b2f 4885
2f4518a1
JD
4886@deffn {Directive} %define @var{variable}
4887@deffnx {Directive} %define @var{variable} @var{value}
4888@deffnx {Directive} %define @var{variable} "@var{value}"
4889Define a variable to adjust Bison's behavior. @xref{%define Summary}.
4890@end deffn
4891
4892@deffn {Directive} %defines
4893Write a parser header file containing macro definitions for the token
4894type names defined in the grammar as well as a few other declarations.
4895If the parser implementation file is named @file{@var{name}.c} then
4896the parser header file is named @file{@var{name}.h}.
4897
4898For C parsers, the parser header file declares @code{YYSTYPE} unless
4899@code{YYSTYPE} is already defined as a macro or you have used a
4900@code{<@var{type}>} tag without using @code{%union}. Therefore, if
4901you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
4902Value Type}) with components that require other definitions, or if you
4903have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
4904Type, ,Data Types of Semantic Values}), you need to arrange for these
4905definitions to be propagated to all modules, e.g., by putting them in
4906a prerequisite header that is included both by your parser and by any
4907other module that needs @code{YYSTYPE}.
4908
4909Unless your parser is pure, the parser header file declares
4910@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
4911(Reentrant) Parser}.
4912
4913If you have also used locations, the parser header file declares
4914@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
4915the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations,
4916,Tracking Locations}.
4917
4918This parser header file is normally essential if you wish to put the
4919definition of @code{yylex} in a separate source file, because
4920@code{yylex} typically needs to be able to refer to the
4921above-mentioned declarations and to the token type codes. @xref{Token
4922Values, ,Semantic Values of Tokens}.
4923
4924@findex %code requires
4925@findex %code provides
4926If you have declared @code{%code requires} or @code{%code provides}, the output
4927header also contains their code.
4928@xref{%code Summary}.
4929@end deffn
4930
4931@deffn {Directive} %defines @var{defines-file}
4932Same as above, but save in the file @var{defines-file}.
4933@end deffn
4934
4935@deffn {Directive} %destructor
4936Specify how the parser should reclaim the memory associated to
4937discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
4938@end deffn
4939
4940@deffn {Directive} %file-prefix "@var{prefix}"
4941Specify a prefix to use for all Bison output file names. The names
4942are chosen as if the grammar file were named @file{@var{prefix}.y}.
4943@end deffn
4944
4945@deffn {Directive} %language "@var{language}"
4946Specify the programming language for the generated parser. Currently
4947supported languages include C, C++, and Java.
4948@var{language} is case-insensitive.
4949
4950This directive is experimental and its effect may be modified in future
4951releases.
4952@end deffn
4953
4954@deffn {Directive} %locations
4955Generate the code processing the locations (@pxref{Action Features,
4956,Special Features for Use in Actions}). This mode is enabled as soon as
4957the grammar uses the special @samp{@@@var{n}} tokens, but if your
4958grammar does not use it, using @samp{%locations} allows for more
4959accurate syntax error messages.
4960@end deffn
4961
4962@deffn {Directive} %name-prefix "@var{prefix}"
4963Rename the external symbols used in the parser so that they start with
4964@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
4965in C parsers
4966is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
4967@code{yylval}, @code{yychar}, @code{yydebug}, and
4968(if locations are used) @code{yylloc}. If you use a push parser,
4969@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
4970@code{yypstate_new} and @code{yypstate_delete} will
4971also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
4972names become @code{c_parse}, @code{c_lex}, and so on.
4973For C++ parsers, see the @code{%define namespace} documentation in this
4974section.
4975@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
4976@end deffn
4977
4978@ifset defaultprec
4979@deffn {Directive} %no-default-prec
4980Do not assign a precedence to rules lacking an explicit @code{%prec}
4981modifier (@pxref{Contextual Precedence, ,Context-Dependent
4982Precedence}).
4983@end deffn
4984@end ifset
4985
4986@deffn {Directive} %no-lines
4987Don't generate any @code{#line} preprocessor commands in the parser
4988implementation file. Ordinarily Bison writes these commands in the
4989parser implementation file so that the C compiler and debuggers will
4990associate errors and object code with your source file (the grammar
4991file). This directive causes them to associate errors with the parser
4992implementation file, treating it as an independent source file in its
4993own right.
4994@end deffn
4995
4996@deffn {Directive} %output "@var{file}"
4997Specify @var{file} for the parser implementation file.
4998@end deffn
4999
5000@deffn {Directive} %pure-parser
5001Deprecated version of @code{%define api.pure} (@pxref{%define
5002Summary,,api.pure}), for which Bison is more careful to warn about
5003unreasonable usage.
5004@end deffn
5005
5006@deffn {Directive} %require "@var{version}"
5007Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5008Require a Version of Bison}.
5009@end deffn
5010
5011@deffn {Directive} %skeleton "@var{file}"
5012Specify the skeleton to use.
5013
5014@c You probably don't need this option unless you are developing Bison.
5015@c You should use @code{%language} if you want to specify the skeleton for a
5016@c different language, because it is clearer and because it will always choose the
5017@c correct skeleton for non-deterministic or push parsers.
5018
5019If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5020file in the Bison installation directory.
5021If it does, @var{file} is an absolute file name or a file name relative to the
5022directory of the grammar file.
5023This is similar to how most shells resolve commands.
5024@end deffn
5025
5026@deffn {Directive} %token-table
5027Generate an array of token names in the parser implementation file.
5028The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5029the name of the token whose internal Bison token code number is
5030@var{i}. The first three elements of @code{yytname} correspond to the
5031predefined tokens @code{"$end"}, @code{"error"}, and
5032@code{"$undefined"}; after these come the symbols defined in the
5033grammar file.
5034
5035The name in the table includes all the characters needed to represent
5036the token in Bison. For single-character literals and literal
5037strings, this includes the surrounding quoting characters and any
5038escape sequences. For example, the Bison single-character literal
5039@code{'+'} corresponds to a three-character name, represented in C as
5040@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5041corresponds to a five-character name, represented in C as
5042@code{"\"\\\\/\""}.
5043
5044When you specify @code{%token-table}, Bison also generates macro
5045definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5046@code{YYNRULES}, and @code{YYNSTATES}:
5047
5048@table @code
5049@item YYNTOKENS
5050The highest token number, plus one.
5051@item YYNNTS
5052The number of nonterminal symbols.
5053@item YYNRULES
5054The number of grammar rules,
5055@item YYNSTATES
5056The number of parser states (@pxref{Parser States}).
5057@end table
5058@end deffn
5059
5060@deffn {Directive} %verbose
5061Write an extra output file containing verbose descriptions of the
5062parser states and what is done for each type of lookahead token in
5063that state. @xref{Understanding, , Understanding Your Parser}, for more
5064information.
5065@end deffn
5066
5067@deffn {Directive} %yacc
5068Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5069including its naming conventions. @xref{Bison Options}, for more.
5070@end deffn
5071
5072
5073@node %define Summary
5074@subsection %define Summary
406dec82
JD
5075
5076There are many features of Bison's behavior that can be controlled by
5077assigning the feature a single value. For historical reasons, some
5078such features are assigned values by dedicated directives, such as
5079@code{%start}, which assigns the start symbol. However, newer such
5080features are associated with variables, which are assigned by the
5081@code{%define} directive:
5082
c1d19e10 5083@deffn {Directive} %define @var{variable}
f37495f6 5084@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5085@deffnx {Directive} %define @var{variable} "@var{value}"
406dec82 5086Define @var{variable} to @var{value}.
9611cfa2 5087
406dec82
JD
5088@var{value} must be placed in quotation marks if it contains any
5089character other than a letter, underscore, period, or non-initial dash
5090or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5091to specifying @code{""}.
9611cfa2 5092
406dec82
JD
5093It is an error if a @var{variable} is defined by @code{%define}
5094multiple times, but see @ref{Bison Options,,-D
5095@var{name}[=@var{value}]}.
5096@end deffn
f37495f6 5097
406dec82
JD
5098The rest of this section summarizes variables and values that
5099@code{%define} accepts.
9611cfa2 5100
406dec82
JD
5101Some @var{variable}s take Boolean values. In this case, Bison will
5102complain if the variable definition does not meet one of the following
5103four conditions:
9611cfa2
JD
5104
5105@enumerate
f37495f6 5106@item @code{@var{value}} is @code{true}
9611cfa2 5107
f37495f6
JD
5108@item @code{@var{value}} is omitted (or @code{""} is specified).
5109This is equivalent to @code{true}.
9611cfa2 5110
f37495f6 5111@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5112
5113@item @var{variable} is never defined.
628be6c9 5114In this case, Bison selects a default value.
9611cfa2 5115@end enumerate
148d66d8 5116
628be6c9
JD
5117What @var{variable}s are accepted, as well as their meanings and default
5118values, depend on the selected target language and/or the parser
5119skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5120Summary,,%skeleton}).
5121Unaccepted @var{variable}s produce an error.
793fbca5
JD
5122Some of the accepted @var{variable}s are:
5123
5124@itemize @bullet
d9df47b6
JD
5125@item api.pure
5126@findex %define api.pure
5127
5128@itemize @bullet
5129@item Language(s): C
5130
5131@item Purpose: Request a pure (reentrant) parser program.
5132@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5133
5134@item Accepted Values: Boolean
5135
f37495f6 5136@item Default Value: @code{false}
d9df47b6
JD
5137@end itemize
5138
812775a0
JD
5139@item api.push-pull
5140@findex %define api.push-pull
793fbca5
JD
5141
5142@itemize @bullet
34a6c2d1 5143@item Language(s): C (deterministic parsers only)
793fbca5 5144
3b1977ea 5145@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5146@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5147(The current push parsing interface is experimental and may evolve.
5148More user feedback will help to stabilize it.)
793fbca5 5149
f37495f6 5150@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5151
f37495f6 5152@item Default Value: @code{pull}
793fbca5
JD
5153@end itemize
5154
232be91a
AD
5155@c ================================================== lr.default-reductions
5156
1d0f55cc 5157@item lr.default-reductions
1d0f55cc 5158@findex %define lr.default-reductions
34a6c2d1
JD
5159
5160@itemize @bullet
5161@item Language(s): all
5162
4c38b19e 5163@item Purpose: Specify the kind of states that are permitted to
6f04ee6c
JD
5164contain default reductions. @xref{Default Reductions}. (The ability to
5165specify where default reductions should be used is experimental. More user
5166feedback will help to stabilize it.)
34a6c2d1 5167
a6e5a280 5168@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
34a6c2d1
JD
5169@item Default Value:
5170@itemize
f37495f6 5171@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
a6e5a280 5172@item @code{most} otherwise.
34a6c2d1
JD
5173@end itemize
5174@end itemize
5175
232be91a
AD
5176@c ============================================ lr.keep-unreachable-states
5177
812775a0
JD
5178@item lr.keep-unreachable-states
5179@findex %define lr.keep-unreachable-states
31984206
JD
5180
5181@itemize @bullet
5182@item Language(s): all
3b1977ea 5183@item Purpose: Request that Bison allow unreachable parser states to
6f04ee6c 5184remain in the parser tables. @xref{Unreachable States}.
31984206 5185@item Accepted Values: Boolean
f37495f6 5186@item Default Value: @code{false}
31984206
JD
5187@end itemize
5188
232be91a
AD
5189@c ================================================== lr.type
5190
34a6c2d1
JD
5191@item lr.type
5192@findex %define lr.type
34a6c2d1
JD
5193
5194@itemize @bullet
5195@item Language(s): all
5196
3b1977ea 5197@item Purpose: Specify the type of parser tables within the
6f04ee6c 5198LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
34a6c2d1
JD
5199More user feedback will help to stabilize it.)
5200
6f04ee6c 5201@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
34a6c2d1 5202
f37495f6 5203@item Default Value: @code{lalr}
34a6c2d1
JD
5204@end itemize
5205
793fbca5
JD
5206@item namespace
5207@findex %define namespace
5208
5209@itemize
5210@item Languages(s): C++
5211
3b1977ea 5212@item Purpose: Specify the namespace for the parser class.
793fbca5
JD
5213For example, if you specify:
5214
5215@smallexample
5216%define namespace "foo::bar"
5217@end smallexample
5218
5219Bison uses @code{foo::bar} verbatim in references such as:
5220
5221@smallexample
5222foo::bar::parser::semantic_type
5223@end smallexample
5224
5225However, to open a namespace, Bison removes any leading @code{::} and then
5226splits on any remaining occurrences:
5227
5228@smallexample
5229namespace foo @{ namespace bar @{
5230 class position;
5231 class location;
5232@} @}
5233@end smallexample
5234
5235@item Accepted Values: Any absolute or relative C++ namespace reference without
5236a trailing @code{"::"}.
5237For example, @code{"foo"} or @code{"::foo::bar"}.
5238
5239@item Default Value: The value specified by @code{%name-prefix}, which defaults
5240to @code{yy}.
5241This usage of @code{%name-prefix} is for backward compatibility and can be
5242confusing since @code{%name-prefix} also specifies the textual prefix for the
5243lexical analyzer function.
5244Thus, if you specify @code{%name-prefix}, it is best to also specify
5245@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
5246lexical analyzer function.
5247For example, if you specify:
5248
5249@smallexample
5250%define namespace "foo"
5251%name-prefix "bar::"
5252@end smallexample
5253
5254The parser namespace is @code{foo} and @code{yylex} is referenced as
5255@code{bar::lex}.
5256@end itemize
4c38b19e
JD
5257
5258@c ================================================== parse.lac
5259@item parse.lac
5260@findex %define parse.lac
4c38b19e
JD
5261
5262@itemize
6f04ee6c 5263@item Languages(s): C (deterministic parsers only)
4c38b19e 5264
35430378 5265@item Purpose: Enable LAC (lookahead correction) to improve
6f04ee6c 5266syntax error handling. @xref{LAC}.
4c38b19e 5267@item Accepted Values: @code{none}, @code{full}
4c38b19e
JD
5268@item Default Value: @code{none}
5269@end itemize
793fbca5
JD
5270@end itemize
5271
d8988b2f 5272
8e6f2266
JD
5273@node %code Summary
5274@subsection %code Summary
8e6f2266 5275@findex %code
8e6f2266 5276@cindex Prologue
406dec82
JD
5277
5278The @code{%code} directive inserts code verbatim into the output
5279parser source at any of a predefined set of locations. It thus serves
5280as a flexible and user-friendly alternative to the traditional Yacc
5281prologue, @code{%@{@var{code}%@}}. This section summarizes the
5282functionality of @code{%code} for the various target languages
5283supported by Bison. For a detailed discussion of how to use
5284@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5285is advantageous to do so, @pxref{Prologue Alternatives}.
5286
5287@deffn {Directive} %code @{@var{code}@}
5288This is the unqualified form of the @code{%code} directive. It
5289inserts @var{code} verbatim at a language-dependent default location
5290in the parser implementation.
5291
8e6f2266 5292For C/C++, the default location is the parser implementation file
406dec82
JD
5293after the usual contents of the parser header file. Thus, the
5294unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
8e6f2266
JD
5295
5296For Java, the default location is inside the parser class.
5297@end deffn
5298
5299@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5300This is the qualified form of the @code{%code} directive.
406dec82
JD
5301@var{qualifier} identifies the purpose of @var{code} and thus the
5302location(s) where Bison should insert it. That is, if you need to
5303specify location-sensitive @var{code} that does not belong at the
5304default location selected by the unqualified @code{%code} form, use
5305this form instead.
5306@end deffn
5307
5308For any particular qualifier or for the unqualified form, if there are
5309multiple occurrences of the @code{%code} directive, Bison concatenates
5310the specified code in the order in which it appears in the grammar
5311file.
8e6f2266 5312
406dec82
JD
5313Not all qualifiers are accepted for all target languages. Unaccepted
5314qualifiers produce an error. Some of the accepted qualifiers are:
8e6f2266
JD
5315
5316@itemize @bullet
5317@item requires
5318@findex %code requires
5319
5320@itemize @bullet
5321@item Language(s): C, C++
5322
5323@item Purpose: This is the best place to write dependency code required for
5324@code{YYSTYPE} and @code{YYLTYPE}.
5325In other words, it's the best place to define types referenced in @code{%union}
5326directives, and it's the best place to override Bison's default @code{YYSTYPE}
5327and @code{YYLTYPE} definitions.
5328
5329@item Location(s): The parser header file and the parser implementation file
5330before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5331definitions.
5332@end itemize
5333
5334@item provides
5335@findex %code provides
5336
5337@itemize @bullet
5338@item Language(s): C, C++
5339
5340@item Purpose: This is the best place to write additional definitions and
5341declarations that should be provided to other modules.
5342
5343@item Location(s): The parser header file and the parser implementation
5344file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5345token definitions.
5346@end itemize
5347
5348@item top
5349@findex %code top
5350
5351@itemize @bullet
5352@item Language(s): C, C++
5353
5354@item Purpose: The unqualified @code{%code} or @code{%code requires}
5355should usually be more appropriate than @code{%code top}. However,
5356occasionally it is necessary to insert code much nearer the top of the
5357parser implementation file. For example:
5358
5359@smallexample
5360%code top @{
5361 #define _GNU_SOURCE
5362 #include <stdio.h>
5363@}
5364@end smallexample
5365
5366@item Location(s): Near the top of the parser implementation file.
5367@end itemize
5368
5369@item imports
5370@findex %code imports
5371
5372@itemize @bullet
5373@item Language(s): Java
5374
5375@item Purpose: This is the best place to write Java import directives.
5376
5377@item Location(s): The parser Java file after any Java package directive and
5378before any class definitions.
5379@end itemize
5380@end itemize
5381
406dec82
JD
5382Though we say the insertion locations are language-dependent, they are
5383technically skeleton-dependent. Writers of non-standard skeletons
5384however should choose their locations consistently with the behavior
5385of the standard Bison skeletons.
8e6f2266 5386
d8988b2f 5387
342b8b6e 5388@node Multiple Parsers
bfa74976
RS
5389@section Multiple Parsers in the Same Program
5390
5391Most programs that use Bison parse only one language and therefore contain
5392only one Bison parser. But what if you want to parse more than one
5393language with the same program? Then you need to avoid a name conflict
5394between different definitions of @code{yyparse}, @code{yylval}, and so on.
5395
5396The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5397(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5398functions and variables of the Bison parser to start with @var{prefix}
5399instead of @samp{yy}. You can use this to give each parser distinct
5400names that do not conflict.
bfa74976
RS
5401
5402The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5403@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5404@code{yychar} and @code{yydebug}. If you use a push parser,
5405@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5406@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5407For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5408@code{clex}, and so on.
bfa74976
RS
5409
5410@strong{All the other variables and macros associated with Bison are not
5411renamed.} These others are not global; there is no conflict if the same
5412name is used in different parsers. For example, @code{YYSTYPE} is not
5413renamed, but defining this in different ways in different parsers causes
5414no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5415
9913d6e4
JD
5416The @samp{-p} option works by adding macro definitions to the
5417beginning of the parser implementation file, defining @code{yyparse}
5418as @code{@var{prefix}parse}, and so on. This effectively substitutes
5419one name for the other in the entire parser implementation file.
bfa74976 5420
342b8b6e 5421@node Interface
bfa74976
RS
5422@chapter Parser C-Language Interface
5423@cindex C-language interface
5424@cindex interface
5425
5426The Bison parser is actually a C function named @code{yyparse}. Here we
5427describe the interface conventions of @code{yyparse} and the other
5428functions that it needs to use.
5429
5430Keep in mind that the parser uses many C identifiers starting with
5431@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5432identifier (aside from those in this manual) in an action or in epilogue
5433in the grammar file, you are likely to run into trouble.
bfa74976
RS
5434
5435@menu
f56274a8
DJ
5436* Parser Function:: How to call @code{yyparse} and what it returns.
5437* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5438* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5439* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5440* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5441* Lexical:: You must supply a function @code{yylex}
5442 which reads tokens.
5443* Error Reporting:: You must supply a function @code{yyerror}.
5444* Action Features:: Special features for use in actions.
5445* Internationalization:: How to let the parser speak in the user's
5446 native language.
bfa74976
RS
5447@end menu
5448
342b8b6e 5449@node Parser Function
bfa74976
RS
5450@section The Parser Function @code{yyparse}
5451@findex yyparse
5452
5453You call the function @code{yyparse} to cause parsing to occur. This
5454function reads tokens, executes actions, and ultimately returns when it
5455encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5456write an action which directs @code{yyparse} to return immediately
5457without reading further.
bfa74976 5458
2a8d363a
AD
5459
5460@deftypefun int yyparse (void)
bfa74976
RS
5461The value returned by @code{yyparse} is 0 if parsing was successful (return
5462is due to end-of-input).
5463
b47dbebe
PE
5464The value is 1 if parsing failed because of invalid input, i.e., input
5465that contains a syntax error or that causes @code{YYABORT} to be
5466invoked.
5467
5468The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5469@end deftypefun
bfa74976
RS
5470
5471In an action, you can cause immediate return from @code{yyparse} by using
5472these macros:
5473
2a8d363a 5474@defmac YYACCEPT
bfa74976
RS
5475@findex YYACCEPT
5476Return immediately with value 0 (to report success).
2a8d363a 5477@end defmac
bfa74976 5478
2a8d363a 5479@defmac YYABORT
bfa74976
RS
5480@findex YYABORT
5481Return immediately with value 1 (to report failure).
2a8d363a
AD
5482@end defmac
5483
5484If you use a reentrant parser, you can optionally pass additional
5485parameter information to it in a reentrant way. To do so, use the
5486declaration @code{%parse-param}:
5487
feeb0eda 5488@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5489@findex %parse-param
287c78f6
PE
5490Declare that an argument declared by the braced-code
5491@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5492The @var{argument-declaration} is used when declaring
feeb0eda
PE
5493functions or prototypes. The last identifier in
5494@var{argument-declaration} must be the argument name.
2a8d363a
AD
5495@end deffn
5496
5497Here's an example. Write this in the parser:
5498
5499@example
feeb0eda
PE
5500%parse-param @{int *nastiness@}
5501%parse-param @{int *randomness@}
2a8d363a
AD
5502@end example
5503
5504@noindent
5505Then call the parser like this:
5506
5507@example
5508@{
5509 int nastiness, randomness;
5510 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5511 value = yyparse (&nastiness, &randomness);
5512 @dots{}
5513@}
5514@end example
5515
5516@noindent
5517In the grammar actions, use expressions like this to refer to the data:
5518
5519@example
5520exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5521@end example
5522
9987d1b3
JD
5523@node Push Parser Function
5524@section The Push Parser Function @code{yypush_parse}
5525@findex yypush_parse
5526
59da312b
JD
5527(The current push parsing interface is experimental and may evolve.
5528More user feedback will help to stabilize it.)
5529
f4101aa6 5530You call the function @code{yypush_parse} to parse a single token. This
f37495f6
JD
5531function is available if either the @code{%define api.push-pull push} or
5532@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5533@xref{Push Decl, ,A Push Parser}.
5534
5535@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5536The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5537following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5538is required to finish parsing the grammar.
5539@end deftypefun
5540
5541@node Pull Parser Function
5542@section The Pull Parser Function @code{yypull_parse}
5543@findex yypull_parse
5544
59da312b
JD
5545(The current push parsing interface is experimental and may evolve.
5546More user feedback will help to stabilize it.)
5547
f4101aa6 5548You call the function @code{yypull_parse} to parse the rest of the input
f37495f6 5549stream. This function is available if the @code{%define api.push-pull both}
f4101aa6 5550declaration is used.
9987d1b3
JD
5551@xref{Push Decl, ,A Push Parser}.
5552
5553@deftypefun int yypull_parse (yypstate *yyps)
5554The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5555@end deftypefun
5556
5557@node Parser Create Function
5558@section The Parser Create Function @code{yystate_new}
5559@findex yypstate_new
5560
59da312b
JD
5561(The current push parsing interface is experimental and may evolve.
5562More user feedback will help to stabilize it.)
5563
f4101aa6 5564You call the function @code{yypstate_new} to create a new parser instance.
f37495f6
JD
5565This function is available if either the @code{%define api.push-pull push} or
5566@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5567@xref{Push Decl, ,A Push Parser}.
5568
5569@deftypefun yypstate *yypstate_new (void)
c781580d 5570The function will return a valid parser instance if there was memory available
333e670c
JD
5571or 0 if no memory was available.
5572In impure mode, it will also return 0 if a parser instance is currently
5573allocated.
9987d1b3
JD
5574@end deftypefun
5575
5576@node Parser Delete Function
5577@section The Parser Delete Function @code{yystate_delete}
5578@findex yypstate_delete
5579
59da312b
JD
5580(The current push parsing interface is experimental and may evolve.
5581More user feedback will help to stabilize it.)
5582
9987d1b3 5583You call the function @code{yypstate_delete} to delete a parser instance.
f37495f6
JD
5584function is available if either the @code{%define api.push-pull push} or
5585@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5586@xref{Push Decl, ,A Push Parser}.
5587
5588@deftypefun void yypstate_delete (yypstate *yyps)
5589This function will reclaim the memory associated with a parser instance.
5590After this call, you should no longer attempt to use the parser instance.
5591@end deftypefun
bfa74976 5592
342b8b6e 5593@node Lexical
bfa74976
RS
5594@section The Lexical Analyzer Function @code{yylex}
5595@findex yylex
5596@cindex lexical analyzer
5597
5598The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5599the input stream and returns them to the parser. Bison does not create
5600this function automatically; you must write it so that @code{yyparse} can
5601call it. The function is sometimes referred to as a lexical scanner.
5602
9913d6e4
JD
5603In simple programs, @code{yylex} is often defined at the end of the
5604Bison grammar file. If @code{yylex} is defined in a separate source
5605file, you need to arrange for the token-type macro definitions to be
5606available there. To do this, use the @samp{-d} option when you run
5607Bison, so that it will write these macro definitions into the separate
5608parser header file, @file{@var{name}.tab.h}, which you can include in
5609the other source files that need it. @xref{Invocation, ,Invoking
5610Bison}.
bfa74976
RS
5611
5612@menu
5613* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
5614* Token Values:: How @code{yylex} must return the semantic value
5615 of the token it has read.
5616* Token Locations:: How @code{yylex} must return the text location
5617 (line number, etc.) of the token, if the
5618 actions want that.
5619* Pure Calling:: How the calling convention differs in a pure parser
5620 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5621@end menu
5622
342b8b6e 5623@node Calling Convention
bfa74976
RS
5624@subsection Calling Convention for @code{yylex}
5625
72d2299c
PE
5626The value that @code{yylex} returns must be the positive numeric code
5627for the type of token it has just found; a zero or negative value
5628signifies end-of-input.
bfa74976
RS
5629
5630When a token is referred to in the grammar rules by a name, that name
9913d6e4
JD
5631in the parser implementation file becomes a C macro whose definition
5632is the proper numeric code for that token type. So @code{yylex} can
5633use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
5634
5635When a token is referred to in the grammar rules by a character literal,
5636the numeric code for that character is also the code for the token type.
72d2299c
PE
5637So @code{yylex} can simply return that character code, possibly converted
5638to @code{unsigned char} to avoid sign-extension. The null character
5639must not be used this way, because its code is zero and that
bfa74976
RS
5640signifies end-of-input.
5641
5642Here is an example showing these things:
5643
5644@example
13863333
AD
5645int
5646yylex (void)
bfa74976
RS
5647@{
5648 @dots{}
72d2299c 5649 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5650 return 0;
5651 @dots{}
5652 if (c == '+' || c == '-')
72d2299c 5653 return c; /* Assume token type for `+' is '+'. */
bfa74976 5654 @dots{}
72d2299c 5655 return INT; /* Return the type of the token. */
bfa74976
RS
5656 @dots{}
5657@}
5658@end example
5659
5660@noindent
5661This interface has been designed so that the output from the @code{lex}
5662utility can be used without change as the definition of @code{yylex}.
5663
931c7513
RS
5664If the grammar uses literal string tokens, there are two ways that
5665@code{yylex} can determine the token type codes for them:
5666
5667@itemize @bullet
5668@item
5669If the grammar defines symbolic token names as aliases for the
5670literal string tokens, @code{yylex} can use these symbolic names like
5671all others. In this case, the use of the literal string tokens in
5672the grammar file has no effect on @code{yylex}.
5673
5674@item
9ecbd125 5675@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5676table. The index of the token in the table is the token type's code.
9ecbd125 5677The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5678double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5679token's characters are escaped as necessary to be suitable as input
5680to Bison.
931c7513 5681
9e0876fb
PE
5682Here's code for looking up a multicharacter token in @code{yytname},
5683assuming that the characters of the token are stored in
5684@code{token_buffer}, and assuming that the token does not contain any
5685characters like @samp{"} that require escaping.
931c7513
RS
5686
5687@smallexample
5688for (i = 0; i < YYNTOKENS; i++)
5689 @{
5690 if (yytname[i] != 0
5691 && yytname[i][0] == '"'
68449b3a
PE
5692 && ! strncmp (yytname[i] + 1, token_buffer,
5693 strlen (token_buffer))
931c7513
RS
5694 && yytname[i][strlen (token_buffer) + 1] == '"'
5695 && yytname[i][strlen (token_buffer) + 2] == 0)
5696 break;
5697 @}
5698@end smallexample
5699
5700The @code{yytname} table is generated only if you use the
8c9a50be 5701@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5702@end itemize
5703
342b8b6e 5704@node Token Values
bfa74976
RS
5705@subsection Semantic Values of Tokens
5706
5707@vindex yylval
9d9b8b70 5708In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5709be stored into the global variable @code{yylval}. When you are using
5710just one data type for semantic values, @code{yylval} has that type.
5711Thus, if the type is @code{int} (the default), you might write this in
5712@code{yylex}:
5713
5714@example
5715@group
5716 @dots{}
72d2299c
PE
5717 yylval = value; /* Put value onto Bison stack. */
5718 return INT; /* Return the type of the token. */
bfa74976
RS
5719 @dots{}
5720@end group
5721@end example
5722
5723When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5724made from the @code{%union} declaration (@pxref{Union Decl, ,The
5725Collection of Value Types}). So when you store a token's value, you
5726must use the proper member of the union. If the @code{%union}
5727declaration looks like this:
bfa74976
RS
5728
5729@example
5730@group
5731%union @{
5732 int intval;
5733 double val;
5734 symrec *tptr;
5735@}
5736@end group
5737@end example
5738
5739@noindent
5740then the code in @code{yylex} might look like this:
5741
5742@example
5743@group
5744 @dots{}
72d2299c
PE
5745 yylval.intval = value; /* Put value onto Bison stack. */
5746 return INT; /* Return the type of the token. */
bfa74976
RS
5747 @dots{}
5748@end group
5749@end example
5750
95923bd6
AD
5751@node Token Locations
5752@subsection Textual Locations of Tokens
bfa74976
RS
5753
5754@vindex yylloc
847bf1f5 5755If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5756Tracking Locations}) in actions to keep track of the textual locations
5757of tokens and groupings, then you must provide this information in
5758@code{yylex}. The function @code{yyparse} expects to find the textual
5759location of a token just parsed in the global variable @code{yylloc}.
5760So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5761
5762By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5763initialize the members that are going to be used by the actions. The
5764four members are called @code{first_line}, @code{first_column},
5765@code{last_line} and @code{last_column}. Note that the use of this
5766feature makes the parser noticeably slower.
bfa74976
RS
5767
5768@tindex YYLTYPE
5769The data type of @code{yylloc} has the name @code{YYLTYPE}.
5770
342b8b6e 5771@node Pure Calling
c656404a 5772@subsection Calling Conventions for Pure Parsers
bfa74976 5773
d9df47b6 5774When you use the Bison declaration @code{%define api.pure} to request a
e425e872
RS
5775pure, reentrant parser, the global communication variables @code{yylval}
5776and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5777Parser}.) In such parsers the two global variables are replaced by
5778pointers passed as arguments to @code{yylex}. You must declare them as
5779shown here, and pass the information back by storing it through those
5780pointers.
bfa74976
RS
5781
5782@example
13863333
AD
5783int
5784yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5785@{
5786 @dots{}
5787 *lvalp = value; /* Put value onto Bison stack. */
5788 return INT; /* Return the type of the token. */
5789 @dots{}
5790@}
5791@end example
5792
5793If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5794textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5795this case, omit the second argument; @code{yylex} will be called with
5796only one argument.
5797
e425e872 5798
2a8d363a
AD
5799If you wish to pass the additional parameter data to @code{yylex}, use
5800@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5801Function}).
e425e872 5802
feeb0eda 5803@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5804@findex %lex-param
287c78f6
PE
5805Declare that the braced-code @var{argument-declaration} is an
5806additional @code{yylex} argument declaration.
2a8d363a 5807@end deffn
e425e872 5808
2a8d363a 5809For instance:
e425e872
RS
5810
5811@example
feeb0eda
PE
5812%parse-param @{int *nastiness@}
5813%lex-param @{int *nastiness@}
5814%parse-param @{int *randomness@}
e425e872
RS
5815@end example
5816
5817@noindent
2a8d363a 5818results in the following signature:
e425e872
RS
5819
5820@example
2a8d363a
AD
5821int yylex (int *nastiness);
5822int yyparse (int *nastiness, int *randomness);
e425e872
RS
5823@end example
5824
d9df47b6 5825If @code{%define api.pure} is added:
c656404a
RS
5826
5827@example
2a8d363a
AD
5828int yylex (YYSTYPE *lvalp, int *nastiness);
5829int yyparse (int *nastiness, int *randomness);
c656404a
RS
5830@end example
5831
2a8d363a 5832@noindent
d9df47b6 5833and finally, if both @code{%define api.pure} and @code{%locations} are used:
c656404a 5834
2a8d363a
AD
5835@example
5836int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5837int yyparse (int *nastiness, int *randomness);
5838@end example
931c7513 5839
342b8b6e 5840@node Error Reporting
bfa74976
RS
5841@section The Error Reporting Function @code{yyerror}
5842@cindex error reporting function
5843@findex yyerror
5844@cindex parse error
5845@cindex syntax error
5846
6e649e65 5847The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 5848whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 5849action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
5850macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
5851in Actions}).
bfa74976
RS
5852
5853The Bison parser expects to report the error by calling an error
5854reporting function named @code{yyerror}, which you must supply. It is
5855called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
5856receives one argument. For a syntax error, the string is normally
5857@w{@code{"syntax error"}}.
bfa74976 5858
2a8d363a 5859@findex %error-verbose
6f04ee6c
JD
5860If you invoke the directive @code{%error-verbose} in the Bison declarations
5861section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
5862Bison provides a more verbose and specific error message string instead of
5863just plain @w{@code{"syntax error"}}. However, that message sometimes
5864contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 5865
1a059451
PE
5866The parser can detect one other kind of error: memory exhaustion. This
5867can happen when the input contains constructions that are very deeply
bfa74976 5868nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
5869parser normally extends its stack automatically up to a very large limit. But
5870if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
5871fashion, except that the argument string is @w{@code{"memory exhausted"}}.
5872
5873In some cases diagnostics like @w{@code{"syntax error"}} are
5874translated automatically from English to some other language before
5875they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
5876
5877The following definition suffices in simple programs:
5878
5879@example
5880@group
13863333 5881void
38a92d50 5882yyerror (char const *s)
bfa74976
RS
5883@{
5884@end group
5885@group
5886 fprintf (stderr, "%s\n", s);
5887@}
5888@end group
5889@end example
5890
5891After @code{yyerror} returns to @code{yyparse}, the latter will attempt
5892error recovery if you have written suitable error recovery grammar rules
5893(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
5894immediately return 1.
5895
93724f13 5896Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 5897an access to the current location.
35430378 5898This is indeed the case for the GLR
2a8d363a 5899parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 5900@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
5901@code{yyerror} are:
5902
5903@example
38a92d50
PE
5904void yyerror (char const *msg); /* Yacc parsers. */
5905void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
5906@end example
5907
feeb0eda 5908If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
5909
5910@example
b317297e
PE
5911void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
5912void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
5913@end example
5914
35430378 5915Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
5916convention for absolutely pure parsers, i.e., when the calling
5917convention of @code{yylex} @emph{and} the calling convention of
d9df47b6
JD
5918@code{%define api.pure} are pure.
5919I.e.:
2a8d363a
AD
5920
5921@example
5922/* Location tracking. */
5923%locations
5924/* Pure yylex. */
d9df47b6 5925%define api.pure
feeb0eda 5926%lex-param @{int *nastiness@}
2a8d363a 5927/* Pure yyparse. */
feeb0eda
PE
5928%parse-param @{int *nastiness@}
5929%parse-param @{int *randomness@}
2a8d363a
AD
5930@end example
5931
5932@noindent
5933results in the following signatures for all the parser kinds:
5934
5935@example
5936int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5937int yyparse (int *nastiness, int *randomness);
93724f13
AD
5938void yyerror (YYLTYPE *locp,
5939 int *nastiness, int *randomness,
38a92d50 5940 char const *msg);
2a8d363a
AD
5941@end example
5942
1c0c3e95 5943@noindent
38a92d50
PE
5944The prototypes are only indications of how the code produced by Bison
5945uses @code{yyerror}. Bison-generated code always ignores the returned
5946value, so @code{yyerror} can return any type, including @code{void}.
5947Also, @code{yyerror} can be a variadic function; that is why the
5948message is always passed last.
5949
5950Traditionally @code{yyerror} returns an @code{int} that is always
5951ignored, but this is purely for historical reasons, and @code{void} is
5952preferable since it more accurately describes the return type for
5953@code{yyerror}.
93724f13 5954
bfa74976
RS
5955@vindex yynerrs
5956The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 5957reported so far. Normally this variable is global; but if you
704a47c4
AD
5958request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
5959then it is a local variable which only the actions can access.
bfa74976 5960
342b8b6e 5961@node Action Features
bfa74976
RS
5962@section Special Features for Use in Actions
5963@cindex summary, action features
5964@cindex action features summary
5965
5966Here is a table of Bison constructs, variables and macros that
5967are useful in actions.
5968
18b519c0 5969@deffn {Variable} $$
bfa74976
RS
5970Acts like a variable that contains the semantic value for the
5971grouping made by the current rule. @xref{Actions}.
18b519c0 5972@end deffn
bfa74976 5973
18b519c0 5974@deffn {Variable} $@var{n}
bfa74976
RS
5975Acts like a variable that contains the semantic value for the
5976@var{n}th component of the current rule. @xref{Actions}.
18b519c0 5977@end deffn
bfa74976 5978
18b519c0 5979@deffn {Variable} $<@var{typealt}>$
bfa74976 5980Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
5981specified by the @code{%union} declaration. @xref{Action Types, ,Data
5982Types of Values in Actions}.
18b519c0 5983@end deffn
bfa74976 5984
18b519c0 5985@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 5986Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 5987union specified by the @code{%union} declaration.
e0c471a9 5988@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 5989@end deffn
bfa74976 5990
18b519c0 5991@deffn {Macro} YYABORT;
bfa74976
RS
5992Return immediately from @code{yyparse}, indicating failure.
5993@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5994@end deffn
bfa74976 5995
18b519c0 5996@deffn {Macro} YYACCEPT;
bfa74976
RS
5997Return immediately from @code{yyparse}, indicating success.
5998@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5999@end deffn
bfa74976 6000
18b519c0 6001@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6002@findex YYBACKUP
6003Unshift a token. This macro is allowed only for rules that reduce
742e4900 6004a single value, and only when there is no lookahead token.
35430378 6005It is also disallowed in GLR parsers.
742e4900 6006It installs a lookahead token with token type @var{token} and
bfa74976
RS
6007semantic value @var{value}; then it discards the value that was
6008going to be reduced by this rule.
6009
6010If the macro is used when it is not valid, such as when there is
742e4900 6011a lookahead token already, then it reports a syntax error with
bfa74976
RS
6012a message @samp{cannot back up} and performs ordinary error
6013recovery.
6014
6015In either case, the rest of the action is not executed.
18b519c0 6016@end deffn
bfa74976 6017
18b519c0 6018@deffn {Macro} YYEMPTY
bfa74976 6019@vindex YYEMPTY
742e4900 6020Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6021@end deffn
bfa74976 6022
32c29292
JD
6023@deffn {Macro} YYEOF
6024@vindex YYEOF
742e4900 6025Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6026stream.
6027@end deffn
6028
18b519c0 6029@deffn {Macro} YYERROR;
bfa74976
RS
6030@findex YYERROR
6031Cause an immediate syntax error. This statement initiates error
6032recovery just as if the parser itself had detected an error; however, it
6033does not call @code{yyerror}, and does not print any message. If you
6034want to print an error message, call @code{yyerror} explicitly before
6035the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6036@end deffn
bfa74976 6037
18b519c0 6038@deffn {Macro} YYRECOVERING
02103984
PE
6039@findex YYRECOVERING
6040The expression @code{YYRECOVERING ()} yields 1 when the parser
6041is recovering from a syntax error, and 0 otherwise.
bfa74976 6042@xref{Error Recovery}.
18b519c0 6043@end deffn
bfa74976 6044
18b519c0 6045@deffn {Variable} yychar
742e4900
JD
6046Variable containing either the lookahead token, or @code{YYEOF} when the
6047lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6048has been performed so the next token is not yet known.
6049Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6050Actions}).
742e4900 6051@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6052@end deffn
bfa74976 6053
18b519c0 6054@deffn {Macro} yyclearin;
742e4900 6055Discard the current lookahead token. This is useful primarily in
32c29292
JD
6056error rules.
6057Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6058Semantic Actions}).
6059@xref{Error Recovery}.
18b519c0 6060@end deffn
bfa74976 6061
18b519c0 6062@deffn {Macro} yyerrok;
bfa74976 6063Resume generating error messages immediately for subsequent syntax
13863333 6064errors. This is useful primarily in error rules.
bfa74976 6065@xref{Error Recovery}.
18b519c0 6066@end deffn
bfa74976 6067
32c29292 6068@deffn {Variable} yylloc
742e4900 6069Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6070to @code{YYEMPTY} or @code{YYEOF}.
6071Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6072Actions}).
6073@xref{Actions and Locations, ,Actions and Locations}.
6074@end deffn
6075
6076@deffn {Variable} yylval
742e4900 6077Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6078not set to @code{YYEMPTY} or @code{YYEOF}.
6079Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6080Actions}).
6081@xref{Actions, ,Actions}.
6082@end deffn
6083
18b519c0 6084@deffn {Value} @@$
847bf1f5 6085@findex @@$
95923bd6 6086Acts like a structure variable containing information on the textual location
847bf1f5
AD
6087of the grouping made by the current rule. @xref{Locations, ,
6088Tracking Locations}.
bfa74976 6089
847bf1f5
AD
6090@c Check if those paragraphs are still useful or not.
6091
6092@c @example
6093@c struct @{
6094@c int first_line, last_line;
6095@c int first_column, last_column;
6096@c @};
6097@c @end example
6098
6099@c Thus, to get the starting line number of the third component, you would
6100@c use @samp{@@3.first_line}.
bfa74976 6101
847bf1f5
AD
6102@c In order for the members of this structure to contain valid information,
6103@c you must make @code{yylex} supply this information about each token.
6104@c If you need only certain members, then @code{yylex} need only fill in
6105@c those members.
bfa74976 6106
847bf1f5 6107@c The use of this feature makes the parser noticeably slower.
18b519c0 6108@end deffn
847bf1f5 6109
18b519c0 6110@deffn {Value} @@@var{n}
847bf1f5 6111@findex @@@var{n}
95923bd6 6112Acts like a structure variable containing information on the textual location
847bf1f5
AD
6113of the @var{n}th component of the current rule. @xref{Locations, ,
6114Tracking Locations}.
18b519c0 6115@end deffn
bfa74976 6116
f7ab6a50
PE
6117@node Internationalization
6118@section Parser Internationalization
6119@cindex internationalization
6120@cindex i18n
6121@cindex NLS
6122@cindex gettext
6123@cindex bison-po
6124
6125A Bison-generated parser can print diagnostics, including error and
6126tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6127also supports outputting diagnostics in the user's native language. To
6128make this work, the user should set the usual environment variables.
6129@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6130For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
35430378 6131set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6132encoding. The exact set of available locales depends on the user's
6133installation.
6134
6135The maintainer of a package that uses a Bison-generated parser enables
6136the internationalization of the parser's output through the following
35430378
JD
6137steps. Here we assume a package that uses GNU Autoconf and
6138GNU Automake.
f7ab6a50
PE
6139
6140@enumerate
6141@item
30757c8c 6142@cindex bison-i18n.m4
35430378 6143Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6144by the package---often called @file{m4}---copy the
6145@file{bison-i18n.m4} file installed by Bison under
6146@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6147For example:
6148
6149@example
6150cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6151@end example
6152
6153@item
30757c8c
PE
6154@findex BISON_I18N
6155@vindex BISON_LOCALEDIR
6156@vindex YYENABLE_NLS
f7ab6a50
PE
6157In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6158invocation, add an invocation of @code{BISON_I18N}. This macro is
6159defined in the file @file{bison-i18n.m4} that you copied earlier. It
6160causes @samp{configure} to find the value of the
30757c8c
PE
6161@code{BISON_LOCALEDIR} variable, and it defines the source-language
6162symbol @code{YYENABLE_NLS} to enable translations in the
6163Bison-generated parser.
f7ab6a50
PE
6164
6165@item
6166In the @code{main} function of your program, designate the directory
6167containing Bison's runtime message catalog, through a call to
6168@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6169For example:
6170
6171@example
6172bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6173@end example
6174
6175Typically this appears after any other call @code{bindtextdomain
6176(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6177@samp{BISON_LOCALEDIR} to be defined as a string through the
6178@file{Makefile}.
6179
6180@item
6181In the @file{Makefile.am} that controls the compilation of the @code{main}
6182function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6183either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6184
6185@example
6186DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6187@end example
6188
6189or:
6190
6191@example
6192AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6193@end example
6194
6195@item
6196Finally, invoke the command @command{autoreconf} to generate the build
6197infrastructure.
6198@end enumerate
6199
bfa74976 6200
342b8b6e 6201@node Algorithm
13863333
AD
6202@chapter The Bison Parser Algorithm
6203@cindex Bison parser algorithm
bfa74976
RS
6204@cindex algorithm of parser
6205@cindex shifting
6206@cindex reduction
6207@cindex parser stack
6208@cindex stack, parser
6209
6210As Bison reads tokens, it pushes them onto a stack along with their
6211semantic values. The stack is called the @dfn{parser stack}. Pushing a
6212token is traditionally called @dfn{shifting}.
6213
6214For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6215@samp{3} to come. The stack will have four elements, one for each token
6216that was shifted.
6217
6218But the stack does not always have an element for each token read. When
6219the last @var{n} tokens and groupings shifted match the components of a
6220grammar rule, they can be combined according to that rule. This is called
6221@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6222single grouping whose symbol is the result (left hand side) of that rule.
6223Running the rule's action is part of the process of reduction, because this
6224is what computes the semantic value of the resulting grouping.
6225
6226For example, if the infix calculator's parser stack contains this:
6227
6228@example
62291 + 5 * 3
6230@end example
6231
6232@noindent
6233and the next input token is a newline character, then the last three
6234elements can be reduced to 15 via the rule:
6235
6236@example
6237expr: expr '*' expr;
6238@end example
6239
6240@noindent
6241Then the stack contains just these three elements:
6242
6243@example
62441 + 15
6245@end example
6246
6247@noindent
6248At this point, another reduction can be made, resulting in the single value
624916. Then the newline token can be shifted.
6250
6251The parser tries, by shifts and reductions, to reduce the entire input down
6252to a single grouping whose symbol is the grammar's start-symbol
6253(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6254
6255This kind of parser is known in the literature as a bottom-up parser.
6256
6257@menu
742e4900 6258* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6259* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6260* Precedence:: Operator precedence works by resolving conflicts.
6261* Contextual Precedence:: When an operator's precedence depends on context.
6262* Parser States:: The parser is a finite-state-machine with stack.
6263* Reduce/Reduce:: When two rules are applicable in the same situation.
5da0355a 6264* Mysterious Conflicts:: Conflicts that look unjustified.
6f04ee6c 6265* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 6266* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6267* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6268@end menu
6269
742e4900
JD
6270@node Lookahead
6271@section Lookahead Tokens
6272@cindex lookahead token
bfa74976
RS
6273
6274The Bison parser does @emph{not} always reduce immediately as soon as the
6275last @var{n} tokens and groupings match a rule. This is because such a
6276simple strategy is inadequate to handle most languages. Instead, when a
6277reduction is possible, the parser sometimes ``looks ahead'' at the next
6278token in order to decide what to do.
6279
6280When a token is read, it is not immediately shifted; first it becomes the
742e4900 6281@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6282perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6283the lookahead token remains off to the side. When no more reductions
6284should take place, the lookahead token is shifted onto the stack. This
bfa74976 6285does not mean that all possible reductions have been done; depending on the
742e4900 6286token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6287application.
6288
742e4900 6289Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6290expressions which contain binary addition operators and postfix unary
6291factorial operators (@samp{!}), and allow parentheses for grouping.
6292
6293@example
6294@group
6295expr: term '+' expr
6296 | term
6297 ;
6298@end group
6299
6300@group
6301term: '(' expr ')'
6302 | term '!'
6303 | NUMBER
6304 ;
6305@end group
6306@end example
6307
6308Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6309should be done? If the following token is @samp{)}, then the first three
6310tokens must be reduced to form an @code{expr}. This is the only valid
6311course, because shifting the @samp{)} would produce a sequence of symbols
6312@w{@code{term ')'}}, and no rule allows this.
6313
6314If the following token is @samp{!}, then it must be shifted immediately so
6315that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6316parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6317@code{expr}. It would then be impossible to shift the @samp{!} because
6318doing so would produce on the stack the sequence of symbols @code{expr
6319'!'}. No rule allows that sequence.
6320
6321@vindex yychar
32c29292
JD
6322@vindex yylval
6323@vindex yylloc
742e4900 6324The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6325Its semantic value and location, if any, are stored in the variables
6326@code{yylval} and @code{yylloc}.
bfa74976
RS
6327@xref{Action Features, ,Special Features for Use in Actions}.
6328
342b8b6e 6329@node Shift/Reduce
bfa74976
RS
6330@section Shift/Reduce Conflicts
6331@cindex conflicts
6332@cindex shift/reduce conflicts
6333@cindex dangling @code{else}
6334@cindex @code{else}, dangling
6335
6336Suppose we are parsing a language which has if-then and if-then-else
6337statements, with a pair of rules like this:
6338
6339@example
6340@group
6341if_stmt:
6342 IF expr THEN stmt
6343 | IF expr THEN stmt ELSE stmt
6344 ;
6345@end group
6346@end example
6347
6348@noindent
6349Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6350terminal symbols for specific keyword tokens.
6351
742e4900 6352When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6353contents of the stack (assuming the input is valid) are just right for
6354reduction by the first rule. But it is also legitimate to shift the
6355@code{ELSE}, because that would lead to eventual reduction by the second
6356rule.
6357
6358This situation, where either a shift or a reduction would be valid, is
6359called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6360these conflicts by choosing to shift, unless otherwise directed by
6361operator precedence declarations. To see the reason for this, let's
6362contrast it with the other alternative.
6363
6364Since the parser prefers to shift the @code{ELSE}, the result is to attach
6365the else-clause to the innermost if-statement, making these two inputs
6366equivalent:
6367
6368@example
6369if x then if y then win (); else lose;
6370
6371if x then do; if y then win (); else lose; end;
6372@end example
6373
6374But if the parser chose to reduce when possible rather than shift, the
6375result would be to attach the else-clause to the outermost if-statement,
6376making these two inputs equivalent:
6377
6378@example
6379if x then if y then win (); else lose;
6380
6381if x then do; if y then win (); end; else lose;
6382@end example
6383
6384The conflict exists because the grammar as written is ambiguous: either
6385parsing of the simple nested if-statement is legitimate. The established
6386convention is that these ambiguities are resolved by attaching the
6387else-clause to the innermost if-statement; this is what Bison accomplishes
6388by choosing to shift rather than reduce. (It would ideally be cleaner to
6389write an unambiguous grammar, but that is very hard to do in this case.)
6390This particular ambiguity was first encountered in the specifications of
6391Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6392
6393To avoid warnings from Bison about predictable, legitimate shift/reduce
cf22447c
JD
6394conflicts, use the @code{%expect @var{n}} declaration.
6395There will be no warning as long as the number of shift/reduce conflicts
6396is exactly @var{n}, and Bison will report an error if there is a
6397different number.
bfa74976
RS
6398@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6399
6400The definition of @code{if_stmt} above is solely to blame for the
6401conflict, but the conflict does not actually appear without additional
9913d6e4
JD
6402rules. Here is a complete Bison grammar file that actually manifests
6403the conflict:
bfa74976
RS
6404
6405@example
6406@group
6407%token IF THEN ELSE variable
6408%%
6409@end group
6410@group
6411stmt: expr
6412 | if_stmt
6413 ;
6414@end group
6415
6416@group
6417if_stmt:
6418 IF expr THEN stmt
6419 | IF expr THEN stmt ELSE stmt
6420 ;
6421@end group
6422
6423expr: variable
6424 ;
6425@end example
6426
342b8b6e 6427@node Precedence
bfa74976
RS
6428@section Operator Precedence
6429@cindex operator precedence
6430@cindex precedence of operators
6431
6432Another situation where shift/reduce conflicts appear is in arithmetic
6433expressions. Here shifting is not always the preferred resolution; the
6434Bison declarations for operator precedence allow you to specify when to
6435shift and when to reduce.
6436
6437@menu
6438* Why Precedence:: An example showing why precedence is needed.
6439* Using Precedence:: How to specify precedence in Bison grammars.
6440* Precedence Examples:: How these features are used in the previous example.
6441* How Precedence:: How they work.
6442@end menu
6443
342b8b6e 6444@node Why Precedence
bfa74976
RS
6445@subsection When Precedence is Needed
6446
6447Consider the following ambiguous grammar fragment (ambiguous because the
6448input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6449
6450@example
6451@group
6452expr: expr '-' expr
6453 | expr '*' expr
6454 | expr '<' expr
6455 | '(' expr ')'
6456 @dots{}
6457 ;
6458@end group
6459@end example
6460
6461@noindent
6462Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6463should it reduce them via the rule for the subtraction operator? It
6464depends on the next token. Of course, if the next token is @samp{)}, we
6465must reduce; shifting is invalid because no single rule can reduce the
6466token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6467the next token is @samp{*} or @samp{<}, we have a choice: either
6468shifting or reduction would allow the parse to complete, but with
6469different results.
6470
6471To decide which one Bison should do, we must consider the results. If
6472the next operator token @var{op} is shifted, then it must be reduced
6473first in order to permit another opportunity to reduce the difference.
6474The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6475hand, if the subtraction is reduced before shifting @var{op}, the result
6476is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6477reduce should depend on the relative precedence of the operators
6478@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6479@samp{<}.
bfa74976
RS
6480
6481@cindex associativity
6482What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6483@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6484operators we prefer the former, which is called @dfn{left association}.
6485The latter alternative, @dfn{right association}, is desirable for
6486assignment operators. The choice of left or right association is a
6487matter of whether the parser chooses to shift or reduce when the stack
742e4900 6488contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6489makes right-associativity.
bfa74976 6490
342b8b6e 6491@node Using Precedence
bfa74976
RS
6492@subsection Specifying Operator Precedence
6493@findex %left
6494@findex %right
6495@findex %nonassoc
6496
6497Bison allows you to specify these choices with the operator precedence
6498declarations @code{%left} and @code{%right}. Each such declaration
6499contains a list of tokens, which are operators whose precedence and
6500associativity is being declared. The @code{%left} declaration makes all
6501those operators left-associative and the @code{%right} declaration makes
6502them right-associative. A third alternative is @code{%nonassoc}, which
6503declares that it is a syntax error to find the same operator twice ``in a
6504row''.
6505
6506The relative precedence of different operators is controlled by the
6507order in which they are declared. The first @code{%left} or
6508@code{%right} declaration in the file declares the operators whose
6509precedence is lowest, the next such declaration declares the operators
6510whose precedence is a little higher, and so on.
6511
342b8b6e 6512@node Precedence Examples
bfa74976
RS
6513@subsection Precedence Examples
6514
6515In our example, we would want the following declarations:
6516
6517@example
6518%left '<'
6519%left '-'
6520%left '*'
6521@end example
6522
6523In a more complete example, which supports other operators as well, we
6524would declare them in groups of equal precedence. For example, @code{'+'} is
6525declared with @code{'-'}:
6526
6527@example
6528%left '<' '>' '=' NE LE GE
6529%left '+' '-'
6530%left '*' '/'
6531@end example
6532
6533@noindent
6534(Here @code{NE} and so on stand for the operators for ``not equal''
6535and so on. We assume that these tokens are more than one character long
6536and therefore are represented by names, not character literals.)
6537
342b8b6e 6538@node How Precedence
bfa74976
RS
6539@subsection How Precedence Works
6540
6541The first effect of the precedence declarations is to assign precedence
6542levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6543precedence levels to certain rules: each rule gets its precedence from
6544the last terminal symbol mentioned in the components. (You can also
6545specify explicitly the precedence of a rule. @xref{Contextual
6546Precedence, ,Context-Dependent Precedence}.)
6547
6548Finally, the resolution of conflicts works by comparing the precedence
742e4900 6549of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6550token's precedence is higher, the choice is to shift. If the rule's
6551precedence is higher, the choice is to reduce. If they have equal
6552precedence, the choice is made based on the associativity of that
6553precedence level. The verbose output file made by @samp{-v}
6554(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6555resolved.
bfa74976
RS
6556
6557Not all rules and not all tokens have precedence. If either the rule or
742e4900 6558the lookahead token has no precedence, then the default is to shift.
bfa74976 6559
342b8b6e 6560@node Contextual Precedence
bfa74976
RS
6561@section Context-Dependent Precedence
6562@cindex context-dependent precedence
6563@cindex unary operator precedence
6564@cindex precedence, context-dependent
6565@cindex precedence, unary operator
6566@findex %prec
6567
6568Often the precedence of an operator depends on the context. This sounds
6569outlandish at first, but it is really very common. For example, a minus
6570sign typically has a very high precedence as a unary operator, and a
6571somewhat lower precedence (lower than multiplication) as a binary operator.
6572
6573The Bison precedence declarations, @code{%left}, @code{%right} and
6574@code{%nonassoc}, can only be used once for a given token; so a token has
6575only one precedence declared in this way. For context-dependent
6576precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6577modifier for rules.
bfa74976
RS
6578
6579The @code{%prec} modifier declares the precedence of a particular rule by
6580specifying a terminal symbol whose precedence should be used for that rule.
6581It's not necessary for that symbol to appear otherwise in the rule. The
6582modifier's syntax is:
6583
6584@example
6585%prec @var{terminal-symbol}
6586@end example
6587
6588@noindent
6589and it is written after the components of the rule. Its effect is to
6590assign the rule the precedence of @var{terminal-symbol}, overriding
6591the precedence that would be deduced for it in the ordinary way. The
6592altered rule precedence then affects how conflicts involving that rule
6593are resolved (@pxref{Precedence, ,Operator Precedence}).
6594
6595Here is how @code{%prec} solves the problem of unary minus. First, declare
6596a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6597are no tokens of this type, but the symbol serves to stand for its
6598precedence:
6599
6600@example
6601@dots{}
6602%left '+' '-'
6603%left '*'
6604%left UMINUS
6605@end example
6606
6607Now the precedence of @code{UMINUS} can be used in specific rules:
6608
6609@example
6610@group
6611exp: @dots{}
6612 | exp '-' exp
6613 @dots{}
6614 | '-' exp %prec UMINUS
6615@end group
6616@end example
6617
91d2c560 6618@ifset defaultprec
39a06c25
PE
6619If you forget to append @code{%prec UMINUS} to the rule for unary
6620minus, Bison silently assumes that minus has its usual precedence.
6621This kind of problem can be tricky to debug, since one typically
6622discovers the mistake only by testing the code.
6623
22fccf95 6624The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6625this kind of problem systematically. It causes rules that lack a
6626@code{%prec} modifier to have no precedence, even if the last terminal
6627symbol mentioned in their components has a declared precedence.
6628
22fccf95 6629If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6630for all rules that participate in precedence conflict resolution.
6631Then you will see any shift/reduce conflict until you tell Bison how
6632to resolve it, either by changing your grammar or by adding an
6633explicit precedence. This will probably add declarations to the
6634grammar, but it helps to protect against incorrect rule precedences.
6635
22fccf95
PE
6636The effect of @code{%no-default-prec;} can be reversed by giving
6637@code{%default-prec;}, which is the default.
91d2c560 6638@end ifset
39a06c25 6639
342b8b6e 6640@node Parser States
bfa74976
RS
6641@section Parser States
6642@cindex finite-state machine
6643@cindex parser state
6644@cindex state (of parser)
6645
6646The function @code{yyparse} is implemented using a finite-state machine.
6647The values pushed on the parser stack are not simply token type codes; they
6648represent the entire sequence of terminal and nonterminal symbols at or
6649near the top of the stack. The current state collects all the information
6650about previous input which is relevant to deciding what to do next.
6651
742e4900
JD
6652Each time a lookahead token is read, the current parser state together
6653with the type of lookahead token are looked up in a table. This table
6654entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6655specifies the new parser state, which is pushed onto the top of the
6656parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6657This means that a certain number of tokens or groupings are taken off
6658the top of the stack, and replaced by one grouping. In other words,
6659that number of states are popped from the stack, and one new state is
6660pushed.
6661
742e4900 6662There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6663is erroneous in the current state. This causes error processing to begin
6664(@pxref{Error Recovery}).
6665
342b8b6e 6666@node Reduce/Reduce
bfa74976
RS
6667@section Reduce/Reduce Conflicts
6668@cindex reduce/reduce conflict
6669@cindex conflicts, reduce/reduce
6670
6671A reduce/reduce conflict occurs if there are two or more rules that apply
6672to the same sequence of input. This usually indicates a serious error
6673in the grammar.
6674
6675For example, here is an erroneous attempt to define a sequence
6676of zero or more @code{word} groupings.
6677
6678@example
6679sequence: /* empty */
6680 @{ printf ("empty sequence\n"); @}
6681 | maybeword
6682 | sequence word
6683 @{ printf ("added word %s\n", $2); @}
6684 ;
6685
6686maybeword: /* empty */
6687 @{ printf ("empty maybeword\n"); @}
6688 | word
6689 @{ printf ("single word %s\n", $1); @}
6690 ;
6691@end example
6692
6693@noindent
6694The error is an ambiguity: there is more than one way to parse a single
6695@code{word} into a @code{sequence}. It could be reduced to a
6696@code{maybeword} and then into a @code{sequence} via the second rule.
6697Alternatively, nothing-at-all could be reduced into a @code{sequence}
6698via the first rule, and this could be combined with the @code{word}
6699using the third rule for @code{sequence}.
6700
6701There is also more than one way to reduce nothing-at-all into a
6702@code{sequence}. This can be done directly via the first rule,
6703or indirectly via @code{maybeword} and then the second rule.
6704
6705You might think that this is a distinction without a difference, because it
6706does not change whether any particular input is valid or not. But it does
6707affect which actions are run. One parsing order runs the second rule's
6708action; the other runs the first rule's action and the third rule's action.
6709In this example, the output of the program changes.
6710
6711Bison resolves a reduce/reduce conflict by choosing to use the rule that
6712appears first in the grammar, but it is very risky to rely on this. Every
6713reduce/reduce conflict must be studied and usually eliminated. Here is the
6714proper way to define @code{sequence}:
6715
6716@example
6717sequence: /* empty */
6718 @{ printf ("empty sequence\n"); @}
6719 | sequence word
6720 @{ printf ("added word %s\n", $2); @}
6721 ;
6722@end example
6723
6724Here is another common error that yields a reduce/reduce conflict:
6725
6726@example
6727sequence: /* empty */
6728 | sequence words
6729 | sequence redirects
6730 ;
6731
6732words: /* empty */
6733 | words word
6734 ;
6735
6736redirects:/* empty */
6737 | redirects redirect
6738 ;
6739@end example
6740
6741@noindent
6742The intention here is to define a sequence which can contain either
6743@code{word} or @code{redirect} groupings. The individual definitions of
6744@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6745three together make a subtle ambiguity: even an empty input can be parsed
6746in infinitely many ways!
6747
6748Consider: nothing-at-all could be a @code{words}. Or it could be two
6749@code{words} in a row, or three, or any number. It could equally well be a
6750@code{redirects}, or two, or any number. Or it could be a @code{words}
6751followed by three @code{redirects} and another @code{words}. And so on.
6752
6753Here are two ways to correct these rules. First, to make it a single level
6754of sequence:
6755
6756@example
6757sequence: /* empty */
6758 | sequence word
6759 | sequence redirect
6760 ;
6761@end example
6762
6763Second, to prevent either a @code{words} or a @code{redirects}
6764from being empty:
6765
6766@example
6767sequence: /* empty */
6768 | sequence words
6769 | sequence redirects
6770 ;
6771
6772words: word
6773 | words word
6774 ;
6775
6776redirects:redirect
6777 | redirects redirect
6778 ;
6779@end example
6780
5da0355a
JD
6781@node Mysterious Conflicts
6782@section Mysterious Conflicts
6f04ee6c 6783@cindex Mysterious Conflicts
bfa74976
RS
6784
6785Sometimes reduce/reduce conflicts can occur that don't look warranted.
6786Here is an example:
6787
6788@example
6789@group
6790%token ID
6791
6792%%
6793def: param_spec return_spec ','
6794 ;
6795param_spec:
6796 type
6797 | name_list ':' type
6798 ;
6799@end group
6800@group
6801return_spec:
6802 type
6803 | name ':' type
6804 ;
6805@end group
6806@group
6807type: ID
6808 ;
6809@end group
6810@group
6811name: ID
6812 ;
6813name_list:
6814 name
6815 | name ',' name_list
6816 ;
6817@end group
6818@end example
6819
6820It would seem that this grammar can be parsed with only a single token
742e4900 6821of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6822a @code{name} if a comma or colon follows, or a @code{type} if another
35430378 6823@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 6824
6f04ee6c
JD
6825@cindex LR
6826@cindex LALR
34a6c2d1 6827However, for historical reasons, Bison cannot by default handle all
35430378 6828LR(1) grammars.
34a6c2d1
JD
6829In this grammar, two contexts, that after an @code{ID} at the beginning
6830of a @code{param_spec} and likewise at the beginning of a
6831@code{return_spec}, are similar enough that Bison assumes they are the
6832same.
6833They appear similar because the same set of rules would be
bfa74976
RS
6834active---the rule for reducing to a @code{name} and that for reducing to
6835a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6836that the rules would require different lookahead tokens in the two
bfa74976
RS
6837contexts, so it makes a single parser state for them both. Combining
6838the two contexts causes a conflict later. In parser terminology, this
35430378 6839occurrence means that the grammar is not LALR(1).
bfa74976 6840
6f04ee6c
JD
6841@cindex IELR
6842@cindex canonical LR
6843For many practical grammars (specifically those that fall into the non-LR(1)
6844class), the limitations of LALR(1) result in difficulties beyond just
6845mysterious reduce/reduce conflicts. The best way to fix all these problems
6846is to select a different parser table construction algorithm. Either
6847IELR(1) or canonical LR(1) would suffice, but the former is more efficient
6848and easier to debug during development. @xref{LR Table Construction}, for
6849details. (Bison's IELR(1) and canonical LR(1) implementations are
6850experimental. More user feedback will help to stabilize them.)
34a6c2d1 6851
35430378 6852If you instead wish to work around LALR(1)'s limitations, you
34a6c2d1
JD
6853can often fix a mysterious conflict by identifying the two parser states
6854that are being confused, and adding something to make them look
6855distinct. In the above example, adding one rule to
bfa74976
RS
6856@code{return_spec} as follows makes the problem go away:
6857
6858@example
6859@group
6860%token BOGUS
6861@dots{}
6862%%
6863@dots{}
6864return_spec:
6865 type
6866 | name ':' type
6867 /* This rule is never used. */
6868 | ID BOGUS
6869 ;
6870@end group
6871@end example
6872
6873This corrects the problem because it introduces the possibility of an
6874additional active rule in the context after the @code{ID} at the beginning of
6875@code{return_spec}. This rule is not active in the corresponding context
6876in a @code{param_spec}, so the two contexts receive distinct parser states.
6877As long as the token @code{BOGUS} is never generated by @code{yylex},
6878the added rule cannot alter the way actual input is parsed.
6879
6880In this particular example, there is another way to solve the problem:
6881rewrite the rule for @code{return_spec} to use @code{ID} directly
6882instead of via @code{name}. This also causes the two confusing
6883contexts to have different sets of active rules, because the one for
6884@code{return_spec} activates the altered rule for @code{return_spec}
6885rather than the one for @code{name}.
6886
6887@example
6888param_spec:
6889 type
6890 | name_list ':' type
6891 ;
6892return_spec:
6893 type
6894 | ID ':' type
6895 ;
6896@end example
6897
35430378 6898For a more detailed exposition of LALR(1) parsers and parser
71caec06 6899generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 6900
6f04ee6c
JD
6901@node Tuning LR
6902@section Tuning LR
6903
6904The default behavior of Bison's LR-based parsers is chosen mostly for
6905historical reasons, but that behavior is often not robust. For example, in
6906the previous section, we discussed the mysterious conflicts that can be
6907produced by LALR(1), Bison's default parser table construction algorithm.
6908Another example is Bison's @code{%error-verbose} directive, which instructs
6909the generated parser to produce verbose syntax error messages, which can
6910sometimes contain incorrect information.
6911
6912In this section, we explore several modern features of Bison that allow you
6913to tune fundamental aspects of the generated LR-based parsers. Some of
6914these features easily eliminate shortcomings like those mentioned above.
6915Others can be helpful purely for understanding your parser.
6916
6917Most of the features discussed in this section are still experimental. More
6918user feedback will help to stabilize them.
6919
6920@menu
6921* LR Table Construction:: Choose a different construction algorithm.
6922* Default Reductions:: Disable default reductions.
6923* LAC:: Correct lookahead sets in the parser states.
6924* Unreachable States:: Keep unreachable parser states for debugging.
6925@end menu
6926
6927@node LR Table Construction
6928@subsection LR Table Construction
6929@cindex Mysterious Conflict
6930@cindex LALR
6931@cindex IELR
6932@cindex canonical LR
6933@findex %define lr.type
6934
6935For historical reasons, Bison constructs LALR(1) parser tables by default.
6936However, LALR does not possess the full language-recognition power of LR.
6937As a result, the behavior of parsers employing LALR parser tables is often
5da0355a 6938mysterious. We presented a simple example of this effect in @ref{Mysterious
6f04ee6c
JD
6939Conflicts}.
6940
6941As we also demonstrated in that example, the traditional approach to
6942eliminating such mysterious behavior is to restructure the grammar.
6943Unfortunately, doing so correctly is often difficult. Moreover, merely
6944discovering that LALR causes mysterious behavior in your parser can be
6945difficult as well.
6946
6947Fortunately, Bison provides an easy way to eliminate the possibility of such
6948mysterious behavior altogether. You simply need to activate a more powerful
6949parser table construction algorithm by using the @code{%define lr.type}
6950directive.
6951
6952@deffn {Directive} {%define lr.type @var{TYPE}}
6953Specify the type of parser tables within the LR(1) family. The accepted
6954values for @var{TYPE} are:
6955
6956@itemize
6957@item @code{lalr} (default)
6958@item @code{ielr}
6959@item @code{canonical-lr}
6960@end itemize
6961
6962(This feature is experimental. More user feedback will help to stabilize
6963it.)
6964@end deffn
6965
6966For example, to activate IELR, you might add the following directive to you
6967grammar file:
6968
6969@example
6970%define lr.type ielr
6971@end example
6972
5da0355a 6973@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
6f04ee6c
JD
6974conflict is then eliminated, so there is no need to invest time in
6975comprehending the conflict or restructuring the grammar to fix it. If,
6976during future development, the grammar evolves such that all mysterious
6977behavior would have disappeared using just LALR, you need not fear that
6978continuing to use IELR will result in unnecessarily large parser tables.
6979That is, IELR generates LALR tables when LALR (using a deterministic parsing
6980algorithm) is sufficient to support the full language-recognition power of
6981LR. Thus, by enabling IELR at the start of grammar development, you can
6982safely and completely eliminate the need to consider LALR's shortcomings.
6983
6984While IELR is almost always preferable, there are circumstances where LALR
6985or the canonical LR parser tables described by Knuth
6986(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
6987relative advantages of each parser table construction algorithm within
6988Bison:
6989
6990@itemize
6991@item LALR
6992
6993There are at least two scenarios where LALR can be worthwhile:
6994
6995@itemize
6996@item GLR without static conflict resolution.
6997
6998@cindex GLR with LALR
6999When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
7000conflicts statically (for example, with @code{%left} or @code{%prec}), then
7001the parser explores all potential parses of any given input. In this case,
7002the choice of parser table construction algorithm is guaranteed not to alter
7003the language accepted by the parser. LALR parser tables are the smallest
7004parser tables Bison can currently construct, so they may then be preferable.
7005Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7006more like a deterministic parser in the syntactic contexts where those
7007conflicts appear, and so either IELR or canonical LR can then be helpful to
7008avoid LALR's mysterious behavior.
7009
7010@item Malformed grammars.
7011
7012Occasionally during development, an especially malformed grammar with a
7013major recurring flaw may severely impede the IELR or canonical LR parser
7014table construction algorithm. LALR can be a quick way to construct parser
7015tables in order to investigate such problems while ignoring the more subtle
7016differences from IELR and canonical LR.
7017@end itemize
7018
7019@item IELR
7020
7021IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7022any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7023always accept exactly the same set of sentences. However, like LALR, IELR
7024merges parser states during parser table construction so that the number of
7025parser states is often an order of magnitude less than for canonical LR.
7026More importantly, because canonical LR's extra parser states may contain
7027duplicate conflicts in the case of non-LR grammars, the number of conflicts
7028for IELR is often an order of magnitude less as well. This effect can
7029significantly reduce the complexity of developing a grammar.
7030
7031@item Canonical LR
7032
7033@cindex delayed syntax error detection
7034@cindex LAC
7035@findex %nonassoc
7036While inefficient, canonical LR parser tables can be an interesting means to
7037explore a grammar because they possess a property that IELR and LALR tables
7038do not. That is, if @code{%nonassoc} is not used and default reductions are
7039left disabled (@pxref{Default Reductions}), then, for every left context of
7040every canonical LR state, the set of tokens accepted by that state is
7041guaranteed to be the exact set of tokens that is syntactically acceptable in
7042that left context. It might then seem that an advantage of canonical LR
7043parsers in production is that, under the above constraints, they are
7044guaranteed to detect a syntax error as soon as possible without performing
7045any unnecessary reductions. However, IELR parsers that use LAC are also
7046able to achieve this behavior without sacrificing @code{%nonassoc} or
7047default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7048@end itemize
7049
7050For a more detailed exposition of the mysterious behavior in LALR parsers
7051and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7052@ref{Bibliography,,Denny 2010 November}.
7053
7054@node Default Reductions
7055@subsection Default Reductions
7056@cindex default reductions
7057@findex %define lr.default-reductions
7058@findex %nonassoc
7059
7060After parser table construction, Bison identifies the reduction with the
7061largest lookahead set in each parser state. To reduce the size of the
7062parser state, traditional Bison behavior is to remove that lookahead set and
7063to assign that reduction to be the default parser action. Such a reduction
7064is known as a @dfn{default reduction}.
7065
7066Default reductions affect more than the size of the parser tables. They
7067also affect the behavior of the parser:
7068
7069@itemize
7070@item Delayed @code{yylex} invocations.
7071
7072@cindex delayed yylex invocations
7073@cindex consistent states
7074@cindex defaulted states
7075A @dfn{consistent state} is a state that has only one possible parser
7076action. If that action is a reduction and is encoded as a default
7077reduction, then that consistent state is called a @dfn{defaulted state}.
7078Upon reaching a defaulted state, a Bison-generated parser does not bother to
7079invoke @code{yylex} to fetch the next token before performing the reduction.
7080In other words, whether default reductions are enabled in consistent states
7081determines how soon a Bison-generated parser invokes @code{yylex} for a
7082token: immediately when it @emph{reaches} that token in the input or when it
7083eventually @emph{needs} that token as a lookahead to determine the next
7084parser action. Traditionally, default reductions are enabled, and so the
7085parser exhibits the latter behavior.
7086
7087The presence of defaulted states is an important consideration when
7088designing @code{yylex} and the grammar file. That is, if the behavior of
7089@code{yylex} can influence or be influenced by the semantic actions
7090associated with the reductions in defaulted states, then the delay of the
7091next @code{yylex} invocation until after those reductions is significant.
7092For example, the semantic actions might pop a scope stack that @code{yylex}
7093uses to determine what token to return. Thus, the delay might be necessary
7094to ensure that @code{yylex} does not look up the next token in a scope that
7095should already be considered closed.
7096
7097@item Delayed syntax error detection.
7098
7099@cindex delayed syntax error detection
7100When the parser fetches a new token by invoking @code{yylex}, it checks
7101whether there is an action for that token in the current parser state. The
7102parser detects a syntax error if and only if either (1) there is no action
7103for that token or (2) the action for that token is the error action (due to
7104the use of @code{%nonassoc}). However, if there is a default reduction in
7105that state (which might or might not be a defaulted state), then it is
7106impossible for condition 1 to exist. That is, all tokens have an action.
7107Thus, the parser sometimes fails to detect the syntax error until it reaches
7108a later state.
7109
7110@cindex LAC
7111@c If there's an infinite loop, default reductions can prevent an incorrect
7112@c sentence from being rejected.
7113While default reductions never cause the parser to accept syntactically
7114incorrect sentences, the delay of syntax error detection can have unexpected
7115effects on the behavior of the parser. However, the delay can be caused
7116anyway by parser state merging and the use of @code{%nonassoc}, and it can
7117be fixed by another Bison feature, LAC. We discuss the effects of delayed
7118syntax error detection and LAC more in the next section (@pxref{LAC}).
7119@end itemize
7120
7121For canonical LR, the only default reduction that Bison enables by default
7122is the accept action, which appears only in the accepting state, which has
7123no other action and is thus a defaulted state. However, the default accept
7124action does not delay any @code{yylex} invocation or syntax error detection
7125because the accept action ends the parse.
7126
7127For LALR and IELR, Bison enables default reductions in nearly all states by
7128default. There are only two exceptions. First, states that have a shift
7129action on the @code{error} token do not have default reductions because
7130delayed syntax error detection could then prevent the @code{error} token
7131from ever being shifted in that state. However, parser state merging can
7132cause the same effect anyway, and LAC fixes it in both cases, so future
7133versions of Bison might drop this exception when LAC is activated. Second,
7134GLR parsers do not record the default reduction as the action on a lookahead
7135token for which there is a conflict. The correct action in this case is to
7136split the parse instead.
7137
7138To adjust which states have default reductions enabled, use the
7139@code{%define lr.default-reductions} directive.
7140
7141@deffn {Directive} {%define lr.default-reductions @var{WHERE}}
7142Specify the kind of states that are permitted to contain default reductions.
7143The accepted values of @var{WHERE} are:
7144@itemize
a6e5a280 7145@item @code{most} (default for LALR and IELR)
6f04ee6c
JD
7146@item @code{consistent}
7147@item @code{accepting} (default for canonical LR)
7148@end itemize
7149
7150(The ability to specify where default reductions are permitted is
7151experimental. More user feedback will help to stabilize it.)
7152@end deffn
7153
6f04ee6c
JD
7154@node LAC
7155@subsection LAC
7156@findex %define parse.lac
7157@cindex LAC
7158@cindex lookahead correction
7159
7160Canonical LR, IELR, and LALR can suffer from a couple of problems upon
7161encountering a syntax error. First, the parser might perform additional
7162parser stack reductions before discovering the syntax error. Such
7163reductions can perform user semantic actions that are unexpected because
7164they are based on an invalid token, and they cause error recovery to begin
7165in a different syntactic context than the one in which the invalid token was
7166encountered. Second, when verbose error messages are enabled (@pxref{Error
7167Reporting}), the expected token list in the syntax error message can both
7168contain invalid tokens and omit valid tokens.
7169
7170The culprits for the above problems are @code{%nonassoc}, default reductions
7171in inconsistent states (@pxref{Default Reductions}), and parser state
7172merging. Because IELR and LALR merge parser states, they suffer the most.
7173Canonical LR can suffer only if @code{%nonassoc} is used or if default
7174reductions are enabled for inconsistent states.
7175
7176LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
7177that solves these problems for canonical LR, IELR, and LALR without
7178sacrificing @code{%nonassoc}, default reductions, or state merging. You can
7179enable LAC with the @code{%define parse.lac} directive.
7180
7181@deffn {Directive} {%define parse.lac @var{VALUE}}
7182Enable LAC to improve syntax error handling.
7183@itemize
7184@item @code{none} (default)
7185@item @code{full}
7186@end itemize
7187(This feature is experimental. More user feedback will help to stabilize
7188it. Moreover, it is currently only available for deterministic parsers in
7189C.)
7190@end deffn
7191
7192Conceptually, the LAC mechanism is straight-forward. Whenever the parser
7193fetches a new token from the scanner so that it can determine the next
7194parser action, it immediately suspends normal parsing and performs an
7195exploratory parse using a temporary copy of the normal parser state stack.
7196During this exploratory parse, the parser does not perform user semantic
7197actions. If the exploratory parse reaches a shift action, normal parsing
7198then resumes on the normal parser stacks. If the exploratory parse reaches
7199an error instead, the parser reports a syntax error. If verbose syntax
7200error messages are enabled, the parser must then discover the list of
7201expected tokens, so it performs a separate exploratory parse for each token
7202in the grammar.
7203
7204There is one subtlety about the use of LAC. That is, when in a consistent
7205parser state with a default reduction, the parser will not attempt to fetch
7206a token from the scanner because no lookahead is needed to determine the
7207next parser action. Thus, whether default reductions are enabled in
7208consistent states (@pxref{Default Reductions}) affects how soon the parser
7209detects a syntax error: immediately when it @emph{reaches} an erroneous
7210token or when it eventually @emph{needs} that token as a lookahead to
7211determine the next parser action. The latter behavior is probably more
7212intuitive, so Bison currently provides no way to achieve the former behavior
7213while default reductions are enabled in consistent states.
7214
7215Thus, when LAC is in use, for some fixed decision of whether to enable
7216default reductions in consistent states, canonical LR and IELR behave almost
7217exactly the same for both syntactically acceptable and syntactically
7218unacceptable input. While LALR still does not support the full
7219language-recognition power of canonical LR and IELR, LAC at least enables
7220LALR's syntax error handling to correctly reflect LALR's
7221language-recognition power.
7222
7223There are a few caveats to consider when using LAC:
7224
7225@itemize
7226@item Infinite parsing loops.
7227
7228IELR plus LAC does have one shortcoming relative to canonical LR. Some
7229parsers generated by Bison can loop infinitely. LAC does not fix infinite
7230parsing loops that occur between encountering a syntax error and detecting
7231it, but enabling canonical LR or disabling default reductions sometimes
7232does.
7233
7234@item Verbose error message limitations.
7235
7236Because of internationalization considerations, Bison-generated parsers
7237limit the size of the expected token list they are willing to report in a
7238verbose syntax error message. If the number of expected tokens exceeds that
7239limit, the list is simply dropped from the message. Enabling LAC can
7240increase the size of the list and thus cause the parser to drop it. Of
7241course, dropping the list is better than reporting an incorrect list.
7242
7243@item Performance.
7244
7245Because LAC requires many parse actions to be performed twice, it can have a
7246performance penalty. However, not all parse actions must be performed
7247twice. Specifically, during a series of default reductions in consistent
7248states and shift actions, the parser never has to initiate an exploratory
7249parse. Moreover, the most time-consuming tasks in a parse are often the
7250file I/O, the lexical analysis performed by the scanner, and the user's
7251semantic actions, but none of these are performed during the exploratory
7252parse. Finally, the base of the temporary stack used during an exploratory
7253parse is a pointer into the normal parser state stack so that the stack is
7254never physically copied. In our experience, the performance penalty of LAC
7255has proven insignificant for practical grammars.
7256@end itemize
7257
56706c61
JD
7258While the LAC algorithm shares techniques that have been recognized in the
7259parser community for years, for the publication that introduces LAC,
7260@pxref{Bibliography,,Denny 2010 May}.
121c4982 7261
6f04ee6c
JD
7262@node Unreachable States
7263@subsection Unreachable States
7264@findex %define lr.keep-unreachable-states
7265@cindex unreachable states
7266
7267If there exists no sequence of transitions from the parser's start state to
7268some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
7269state}. A state can become unreachable during conflict resolution if Bison
7270disables a shift action leading to it from a predecessor state.
7271
7272By default, Bison removes unreachable states from the parser after conflict
7273resolution because they are useless in the generated parser. However,
7274keeping unreachable states is sometimes useful when trying to understand the
7275relationship between the parser and the grammar.
7276
7277@deffn {Directive} {%define lr.keep-unreachable-states @var{VALUE}}
7278Request that Bison allow unreachable states to remain in the parser tables.
7279@var{VALUE} must be a Boolean. The default is @code{false}.
7280@end deffn
7281
7282There are a few caveats to consider:
7283
7284@itemize @bullet
7285@item Missing or extraneous warnings.
7286
7287Unreachable states may contain conflicts and may use rules not used in any
7288other state. Thus, keeping unreachable states may induce warnings that are
7289irrelevant to your parser's behavior, and it may eliminate warnings that are
7290relevant. Of course, the change in warnings may actually be relevant to a
7291parser table analysis that wants to keep unreachable states, so this
7292behavior will likely remain in future Bison releases.
7293
7294@item Other useless states.
7295
7296While Bison is able to remove unreachable states, it is not guaranteed to
7297remove other kinds of useless states. Specifically, when Bison disables
7298reduce actions during conflict resolution, some goto actions may become
7299useless, and thus some additional states may become useless. If Bison were
7300to compute which goto actions were useless and then disable those actions,
7301it could identify such states as unreachable and then remove those states.
7302However, Bison does not compute which goto actions are useless.
7303@end itemize
7304
fae437e8 7305@node Generalized LR Parsing
35430378
JD
7306@section Generalized LR (GLR) Parsing
7307@cindex GLR parsing
7308@cindex generalized LR (GLR) parsing
676385e2 7309@cindex ambiguous grammars
9d9b8b70 7310@cindex nondeterministic parsing
676385e2 7311
fae437e8
AD
7312Bison produces @emph{deterministic} parsers that choose uniquely
7313when to reduce and which reduction to apply
742e4900 7314based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7315As a result, normal Bison handles a proper subset of the family of
7316context-free languages.
fae437e8 7317Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7318sequence of reductions cannot have deterministic parsers in this sense.
7319The same is true of languages that require more than one symbol of
742e4900 7320lookahead, since the parser lacks the information necessary to make a
676385e2 7321decision at the point it must be made in a shift-reduce parser.
5da0355a 7322Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
34a6c2d1 7323there are languages where Bison's default choice of how to
676385e2
PH
7324summarize the input seen so far loses necessary information.
7325
7326When you use the @samp{%glr-parser} declaration in your grammar file,
7327Bison generates a parser that uses a different algorithm, called
35430378 7328Generalized LR (or GLR). A Bison GLR
c827f760 7329parser uses the same basic
676385e2
PH
7330algorithm for parsing as an ordinary Bison parser, but behaves
7331differently in cases where there is a shift-reduce conflict that has not
fae437e8 7332been resolved by precedence rules (@pxref{Precedence}) or a
35430378 7333reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7334situation, it
fae437e8 7335effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7336shift or reduction. These parsers then proceed as usual, consuming
7337tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7338and split further, with the result that instead of a sequence of states,
35430378 7339a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7340
7341In effect, each stack represents a guess as to what the proper parse
7342is. Additional input may indicate that a guess was wrong, in which case
7343the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7344actions generated in each stack are saved, rather than being executed
676385e2 7345immediately. When a stack disappears, its saved semantic actions never
fae437e8 7346get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7347their sets of semantic actions are both saved with the state that
7348results from the reduction. We say that two stacks are equivalent
fae437e8 7349when they both represent the same sequence of states,
676385e2
PH
7350and each pair of corresponding states represents a
7351grammar symbol that produces the same segment of the input token
7352stream.
7353
7354Whenever the parser makes a transition from having multiple
34a6c2d1 7355states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7356algorithm, after resolving and executing the saved-up actions.
7357At this transition, some of the states on the stack will have semantic
7358values that are sets (actually multisets) of possible actions. The
7359parser tries to pick one of the actions by first finding one whose rule
7360has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7361declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7362precedence, but there the same merging function is declared for both
fae437e8 7363rules by the @samp{%merge} declaration,
676385e2
PH
7364Bison resolves and evaluates both and then calls the merge function on
7365the result. Otherwise, it reports an ambiguity.
7366
35430378
JD
7367It is possible to use a data structure for the GLR parsing tree that
7368permits the processing of any LR(1) grammar in linear time (in the
c827f760 7369size of the input), any unambiguous (not necessarily
35430378 7370LR(1)) grammar in
fae437e8 7371quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7372context-free grammar in cubic worst-case time. However, Bison currently
7373uses a simpler data structure that requires time proportional to the
7374length of the input times the maximum number of stacks required for any
9d9b8b70 7375prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7376grammars can require exponential time and space to process. Such badly
7377behaving examples, however, are not generally of practical interest.
9d9b8b70 7378Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7379doubt'' only for a few tokens at a time. Therefore, the current data
35430378 7380structure should generally be adequate. On LR(1) portions of a
34a6c2d1 7381grammar, in particular, it is only slightly slower than with the
35430378 7382deterministic LR(1) Bison parser.
676385e2 7383
71caec06
JD
7384For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
73852000}.
f6481e2f 7386
1a059451
PE
7387@node Memory Management
7388@section Memory Management, and How to Avoid Memory Exhaustion
7389@cindex memory exhaustion
7390@cindex memory management
bfa74976
RS
7391@cindex stack overflow
7392@cindex parser stack overflow
7393@cindex overflow of parser stack
7394
1a059451 7395The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7396not reduced. When this happens, the parser function @code{yyparse}
1a059451 7397calls @code{yyerror} and then returns 2.
bfa74976 7398
c827f760 7399Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7400usually results from using a right recursion instead of a left
7401recursion, @xref{Recursion, ,Recursive Rules}.
7402
bfa74976
RS
7403@vindex YYMAXDEPTH
7404By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7405parser stack can become before memory is exhausted. Define the
bfa74976
RS
7406macro with a value that is an integer. This value is the maximum number
7407of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7408
7409The stack space allowed is not necessarily allocated. If you specify a
1a059451 7410large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7411stack at first, and then makes it bigger by stages as needed. This
7412increasing allocation happens automatically and silently. Therefore,
7413you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7414space for ordinary inputs that do not need much stack.
7415
d7e14fc0
PE
7416However, do not allow @code{YYMAXDEPTH} to be a value so large that
7417arithmetic overflow could occur when calculating the size of the stack
7418space. Also, do not allow @code{YYMAXDEPTH} to be less than
7419@code{YYINITDEPTH}.
7420
bfa74976
RS
7421@cindex default stack limit
7422The default value of @code{YYMAXDEPTH}, if you do not define it, is
742310000.
7424
7425@vindex YYINITDEPTH
7426You can control how much stack is allocated initially by defining the
34a6c2d1
JD
7427macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7428parser in C, this value must be a compile-time constant
d7e14fc0
PE
7429unless you are assuming C99 or some other target language or compiler
7430that allows variable-length arrays. The default is 200.
7431
1a059451 7432Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7433
d1a1114f 7434@c FIXME: C++ output.
c781580d 7435Because of semantic differences between C and C++, the deterministic
34a6c2d1 7436parsers in C produced by Bison cannot grow when compiled
1a059451
PE
7437by C++ compilers. In this precise case (compiling a C parser as C++) you are
7438suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
7439this deficiency in a future release.
d1a1114f 7440
342b8b6e 7441@node Error Recovery
bfa74976
RS
7442@chapter Error Recovery
7443@cindex error recovery
7444@cindex recovery from errors
7445
6e649e65 7446It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7447error. For example, a compiler should recover sufficiently to parse the
7448rest of the input file and check it for errors; a calculator should accept
7449another expression.
7450
7451In a simple interactive command parser where each input is one line, it may
7452be sufficient to allow @code{yyparse} to return 1 on error and have the
7453caller ignore the rest of the input line when that happens (and then call
7454@code{yyparse} again). But this is inadequate for a compiler, because it
7455forgets all the syntactic context leading up to the error. A syntax error
7456deep within a function in the compiler input should not cause the compiler
7457to treat the following line like the beginning of a source file.
7458
7459@findex error
7460You can define how to recover from a syntax error by writing rules to
7461recognize the special token @code{error}. This is a terminal symbol that
7462is always defined (you need not declare it) and reserved for error
7463handling. The Bison parser generates an @code{error} token whenever a
7464syntax error happens; if you have provided a rule to recognize this token
13863333 7465in the current context, the parse can continue.
bfa74976
RS
7466
7467For example:
7468
7469@example
7470stmnts: /* empty string */
7471 | stmnts '\n'
7472 | stmnts exp '\n'
7473 | stmnts error '\n'
7474@end example
7475
7476The fourth rule in this example says that an error followed by a newline
7477makes a valid addition to any @code{stmnts}.
7478
7479What happens if a syntax error occurs in the middle of an @code{exp}? The
7480error recovery rule, interpreted strictly, applies to the precise sequence
7481of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7482the middle of an @code{exp}, there will probably be some additional tokens
7483and subexpressions on the stack after the last @code{stmnts}, and there
7484will be tokens to read before the next newline. So the rule is not
7485applicable in the ordinary way.
7486
7487But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7488the semantic context and part of the input. First it discards states
7489and objects from the stack until it gets back to a state in which the
bfa74976 7490@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7491already parsed are discarded, back to the last complete @code{stmnts}.)
7492At this point the @code{error} token can be shifted. Then, if the old
742e4900 7493lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7494tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7495this example, Bison reads and discards input until the next newline so
7496that the fourth rule can apply. Note that discarded symbols are
7497possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7498Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7499
7500The choice of error rules in the grammar is a choice of strategies for
7501error recovery. A simple and useful strategy is simply to skip the rest of
7502the current input line or current statement if an error is detected:
7503
7504@example
72d2299c 7505stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7506@end example
7507
7508It is also useful to recover to the matching close-delimiter of an
7509opening-delimiter that has already been parsed. Otherwise the
7510close-delimiter will probably appear to be unmatched, and generate another,
7511spurious error message:
7512
7513@example
7514primary: '(' expr ')'
7515 | '(' error ')'
7516 @dots{}
7517 ;
7518@end example
7519
7520Error recovery strategies are necessarily guesses. When they guess wrong,
7521one syntax error often leads to another. In the above example, the error
7522recovery rule guesses that an error is due to bad input within one
7523@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7524middle of a valid @code{stmnt}. After the error recovery rule recovers
7525from the first error, another syntax error will be found straightaway,
7526since the text following the spurious semicolon is also an invalid
7527@code{stmnt}.
7528
7529To prevent an outpouring of error messages, the parser will output no error
7530message for another syntax error that happens shortly after the first; only
7531after three consecutive input tokens have been successfully shifted will
7532error messages resume.
7533
7534Note that rules which accept the @code{error} token may have actions, just
7535as any other rules can.
7536
7537@findex yyerrok
7538You can make error messages resume immediately by using the macro
7539@code{yyerrok} in an action. If you do this in the error rule's action, no
7540error messages will be suppressed. This macro requires no arguments;
7541@samp{yyerrok;} is a valid C statement.
7542
7543@findex yyclearin
742e4900 7544The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7545this is unacceptable, then the macro @code{yyclearin} may be used to clear
7546this token. Write the statement @samp{yyclearin;} in the error rule's
7547action.
32c29292 7548@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7549
6e649e65 7550For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7551called that advances the input stream to some point where parsing should
7552once again commence. The next symbol returned by the lexical scanner is
742e4900 7553probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7554with @samp{yyclearin;}.
7555
7556@vindex YYRECOVERING
02103984
PE
7557The expression @code{YYRECOVERING ()} yields 1 when the parser
7558is recovering from a syntax error, and 0 otherwise.
7559Syntax error diagnostics are suppressed while recovering from a syntax
7560error.
bfa74976 7561
342b8b6e 7562@node Context Dependency
bfa74976
RS
7563@chapter Handling Context Dependencies
7564
7565The Bison paradigm is to parse tokens first, then group them into larger
7566syntactic units. In many languages, the meaning of a token is affected by
7567its context. Although this violates the Bison paradigm, certain techniques
7568(known as @dfn{kludges}) may enable you to write Bison parsers for such
7569languages.
7570
7571@menu
7572* Semantic Tokens:: Token parsing can depend on the semantic context.
7573* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7574* Tie-in Recovery:: Lexical tie-ins have implications for how
7575 error recovery rules must be written.
7576@end menu
7577
7578(Actually, ``kludge'' means any technique that gets its job done but is
7579neither clean nor robust.)
7580
342b8b6e 7581@node Semantic Tokens
bfa74976
RS
7582@section Semantic Info in Token Types
7583
7584The C language has a context dependency: the way an identifier is used
7585depends on what its current meaning is. For example, consider this:
7586
7587@example
7588foo (x);
7589@end example
7590
7591This looks like a function call statement, but if @code{foo} is a typedef
7592name, then this is actually a declaration of @code{x}. How can a Bison
7593parser for C decide how to parse this input?
7594
35430378 7595The method used in GNU C is to have two different token types,
bfa74976
RS
7596@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7597identifier, it looks up the current declaration of the identifier in order
7598to decide which token type to return: @code{TYPENAME} if the identifier is
7599declared as a typedef, @code{IDENTIFIER} otherwise.
7600
7601The grammar rules can then express the context dependency by the choice of
7602token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7603but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7604@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7605is @emph{not} significant, such as in declarations that can shadow a
7606typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7607accepted---there is one rule for each of the two token types.
7608
7609This technique is simple to use if the decision of which kinds of
7610identifiers to allow is made at a place close to where the identifier is
7611parsed. But in C this is not always so: C allows a declaration to
7612redeclare a typedef name provided an explicit type has been specified
7613earlier:
7614
7615@example
3a4f411f
PE
7616typedef int foo, bar;
7617int baz (void)
7618@{
7619 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7620 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7621 return foo (bar);
7622@}
bfa74976
RS
7623@end example
7624
7625Unfortunately, the name being declared is separated from the declaration
7626construct itself by a complicated syntactic structure---the ``declarator''.
7627
9ecbd125 7628As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7629all the nonterminal names changed: once for parsing a declaration in
7630which a typedef name can be redefined, and once for parsing a
7631declaration in which that can't be done. Here is a part of the
7632duplication, with actions omitted for brevity:
bfa74976
RS
7633
7634@example
7635initdcl:
7636 declarator maybeasm '='
7637 init
7638 | declarator maybeasm
7639 ;
7640
7641notype_initdcl:
7642 notype_declarator maybeasm '='
7643 init
7644 | notype_declarator maybeasm
7645 ;
7646@end example
7647
7648@noindent
7649Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7650cannot. The distinction between @code{declarator} and
7651@code{notype_declarator} is the same sort of thing.
7652
7653There is some similarity between this technique and a lexical tie-in
7654(described next), in that information which alters the lexical analysis is
7655changed during parsing by other parts of the program. The difference is
7656here the information is global, and is used for other purposes in the
7657program. A true lexical tie-in has a special-purpose flag controlled by
7658the syntactic context.
7659
342b8b6e 7660@node Lexical Tie-ins
bfa74976
RS
7661@section Lexical Tie-ins
7662@cindex lexical tie-in
7663
7664One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7665which is set by Bison actions, whose purpose is to alter the way tokens are
7666parsed.
7667
7668For example, suppose we have a language vaguely like C, but with a special
7669construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7670an expression in parentheses in which all integers are hexadecimal. In
7671particular, the token @samp{a1b} must be treated as an integer rather than
7672as an identifier if it appears in that context. Here is how you can do it:
7673
7674@example
7675@group
7676%@{
38a92d50
PE
7677 int hexflag;
7678 int yylex (void);
7679 void yyerror (char const *);
bfa74976
RS
7680%@}
7681%%
7682@dots{}
7683@end group
7684@group
7685expr: IDENTIFIER
7686 | constant
7687 | HEX '('
7688 @{ hexflag = 1; @}
7689 expr ')'
7690 @{ hexflag = 0;
7691 $$ = $4; @}
7692 | expr '+' expr
7693 @{ $$ = make_sum ($1, $3); @}
7694 @dots{}
7695 ;
7696@end group
7697
7698@group
7699constant:
7700 INTEGER
7701 | STRING
7702 ;
7703@end group
7704@end example
7705
7706@noindent
7707Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7708it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7709with letters are parsed as integers if possible.
7710
9913d6e4
JD
7711The declaration of @code{hexflag} shown in the prologue of the grammar
7712file is needed to make it accessible to the actions (@pxref{Prologue,
7713,The Prologue}). You must also write the code in @code{yylex} to obey
7714the flag.
bfa74976 7715
342b8b6e 7716@node Tie-in Recovery
bfa74976
RS
7717@section Lexical Tie-ins and Error Recovery
7718
7719Lexical tie-ins make strict demands on any error recovery rules you have.
7720@xref{Error Recovery}.
7721
7722The reason for this is that the purpose of an error recovery rule is to
7723abort the parsing of one construct and resume in some larger construct.
7724For example, in C-like languages, a typical error recovery rule is to skip
7725tokens until the next semicolon, and then start a new statement, like this:
7726
7727@example
7728stmt: expr ';'
7729 | IF '(' expr ')' stmt @{ @dots{} @}
7730 @dots{}
7731 error ';'
7732 @{ hexflag = 0; @}
7733 ;
7734@end example
7735
7736If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7737construct, this error rule will apply, and then the action for the
7738completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7739remain set for the entire rest of the input, or until the next @code{hex}
7740keyword, causing identifiers to be misinterpreted as integers.
7741
7742To avoid this problem the error recovery rule itself clears @code{hexflag}.
7743
7744There may also be an error recovery rule that works within expressions.
7745For example, there could be a rule which applies within parentheses
7746and skips to the close-parenthesis:
7747
7748@example
7749@group
7750expr: @dots{}
7751 | '(' expr ')'
7752 @{ $$ = $2; @}
7753 | '(' error ')'
7754 @dots{}
7755@end group
7756@end example
7757
7758If this rule acts within the @code{hex} construct, it is not going to abort
7759that construct (since it applies to an inner level of parentheses within
7760the construct). Therefore, it should not clear the flag: the rest of
7761the @code{hex} construct should be parsed with the flag still in effect.
7762
7763What if there is an error recovery rule which might abort out of the
7764@code{hex} construct or might not, depending on circumstances? There is no
7765way you can write the action to determine whether a @code{hex} construct is
7766being aborted or not. So if you are using a lexical tie-in, you had better
7767make sure your error recovery rules are not of this kind. Each rule must
7768be such that you can be sure that it always will, or always won't, have to
7769clear the flag.
7770
ec3bc396
AD
7771@c ================================================== Debugging Your Parser
7772
342b8b6e 7773@node Debugging
bfa74976 7774@chapter Debugging Your Parser
ec3bc396
AD
7775
7776Developing a parser can be a challenge, especially if you don't
7777understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7778Algorithm}). Even so, sometimes a detailed description of the automaton
7779can help (@pxref{Understanding, , Understanding Your Parser}), or
7780tracing the execution of the parser can give some insight on why it
7781behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7782
7783@menu
7784* Understanding:: Understanding the structure of your parser.
7785* Tracing:: Tracing the execution of your parser.
7786@end menu
7787
7788@node Understanding
7789@section Understanding Your Parser
7790
7791As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7792Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7793frequent than one would hope), looking at this automaton is required to
7794tune or simply fix a parser. Bison provides two different
35fe0834 7795representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7796
7797The textual file is generated when the options @option{--report} or
7798@option{--verbose} are specified, see @xref{Invocation, , Invoking
7799Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
9913d6e4
JD
7800the parser implementation file name, and adding @samp{.output}
7801instead. Therefore, if the grammar file is @file{foo.y}, then the
7802parser implementation file is called @file{foo.tab.c} by default. As
7803a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
7804
7805The following grammar file, @file{calc.y}, will be used in the sequel:
7806
7807@example
7808%token NUM STR
7809%left '+' '-'
7810%left '*'
7811%%
7812exp: exp '+' exp
7813 | exp '-' exp
7814 | exp '*' exp
7815 | exp '/' exp
7816 | NUM
7817 ;
7818useless: STR;
7819%%
7820@end example
7821
88bce5a2
AD
7822@command{bison} reports:
7823
7824@example
379261b3
JD
7825calc.y: warning: 1 nonterminal useless in grammar
7826calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
7827calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7828calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7829calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7830@end example
7831
7832When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7833creates a file @file{calc.output} with contents detailed below. The
7834order of the output and the exact presentation might vary, but the
7835interpretation is the same.
ec3bc396
AD
7836
7837The first section includes details on conflicts that were solved thanks
7838to precedence and/or associativity:
7839
7840@example
7841Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7842Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7843Conflict in state 8 between rule 2 and token '*' resolved as shift.
7844@exdent @dots{}
7845@end example
7846
7847@noindent
7848The next section lists states that still have conflicts.
7849
7850@example
5a99098d
PE
7851State 8 conflicts: 1 shift/reduce
7852State 9 conflicts: 1 shift/reduce
7853State 10 conflicts: 1 shift/reduce
7854State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7855@end example
7856
7857@noindent
7858@cindex token, useless
7859@cindex useless token
7860@cindex nonterminal, useless
7861@cindex useless nonterminal
7862@cindex rule, useless
7863@cindex useless rule
7864The next section reports useless tokens, nonterminal and rules. Useless
7865nonterminals and rules are removed in order to produce a smaller parser,
7866but useless tokens are preserved, since they might be used by the
d80fb37a 7867scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7868below):
7869
7870@example
d80fb37a 7871Nonterminals useless in grammar:
ec3bc396
AD
7872 useless
7873
d80fb37a 7874Terminals unused in grammar:
ec3bc396
AD
7875 STR
7876
cff03fb2 7877Rules useless in grammar:
ec3bc396
AD
7878#6 useless: STR;
7879@end example
7880
7881@noindent
7882The next section reproduces the exact grammar that Bison used:
7883
7884@example
7885Grammar
7886
7887 Number, Line, Rule
88bce5a2 7888 0 5 $accept -> exp $end
ec3bc396
AD
7889 1 5 exp -> exp '+' exp
7890 2 6 exp -> exp '-' exp
7891 3 7 exp -> exp '*' exp
7892 4 8 exp -> exp '/' exp
7893 5 9 exp -> NUM
7894@end example
7895
7896@noindent
7897and reports the uses of the symbols:
7898
7899@example
7900Terminals, with rules where they appear
7901
88bce5a2 7902$end (0) 0
ec3bc396
AD
7903'*' (42) 3
7904'+' (43) 1
7905'-' (45) 2
7906'/' (47) 4
7907error (256)
7908NUM (258) 5
7909
7910Nonterminals, with rules where they appear
7911
88bce5a2 7912$accept (8)
ec3bc396
AD
7913 on left: 0
7914exp (9)
7915 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7916@end example
7917
7918@noindent
7919@cindex item
7920@cindex pointed rule
7921@cindex rule, pointed
7922Bison then proceeds onto the automaton itself, describing each state
7923with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7924item is a production rule together with a point (marked by @samp{.})
7925that the input cursor.
7926
7927@example
7928state 0
7929
88bce5a2 7930 $accept -> . exp $ (rule 0)
ec3bc396 7931
2a8d363a 7932 NUM shift, and go to state 1
ec3bc396 7933
2a8d363a 7934 exp go to state 2
ec3bc396
AD
7935@end example
7936
7937This reads as follows: ``state 0 corresponds to being at the very
7938beginning of the parsing, in the initial rule, right before the start
7939symbol (here, @code{exp}). When the parser returns to this state right
7940after having reduced a rule that produced an @code{exp}, the control
7941flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7942symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7943the parse stack, and the control flow jumps to state 1. Any other
742e4900 7944lookahead triggers a syntax error.''
ec3bc396
AD
7945
7946@cindex core, item set
7947@cindex item set core
7948@cindex kernel, item set
7949@cindex item set core
7950Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7951report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7952at the beginning of any rule deriving an @code{exp}. By default Bison
7953reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7954you want to see more detail you can invoke @command{bison} with
7955@option{--report=itemset} to list all the items, include those that can
7956be derived:
7957
7958@example
7959state 0
7960
88bce5a2 7961 $accept -> . exp $ (rule 0)
ec3bc396
AD
7962 exp -> . exp '+' exp (rule 1)
7963 exp -> . exp '-' exp (rule 2)
7964 exp -> . exp '*' exp (rule 3)
7965 exp -> . exp '/' exp (rule 4)
7966 exp -> . NUM (rule 5)
7967
7968 NUM shift, and go to state 1
7969
7970 exp go to state 2
7971@end example
7972
7973@noindent
7974In the state 1...
7975
7976@example
7977state 1
7978
7979 exp -> NUM . (rule 5)
7980
2a8d363a 7981 $default reduce using rule 5 (exp)
ec3bc396
AD
7982@end example
7983
7984@noindent
742e4900 7985the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7986(@samp{$default}), the parser will reduce it. If it was coming from
7987state 0, then, after this reduction it will return to state 0, and will
7988jump to state 2 (@samp{exp: go to state 2}).
7989
7990@example
7991state 2
7992
88bce5a2 7993 $accept -> exp . $ (rule 0)
ec3bc396
AD
7994 exp -> exp . '+' exp (rule 1)
7995 exp -> exp . '-' exp (rule 2)
7996 exp -> exp . '*' exp (rule 3)
7997 exp -> exp . '/' exp (rule 4)
7998
2a8d363a
AD
7999 $ shift, and go to state 3
8000 '+' shift, and go to state 4
8001 '-' shift, and go to state 5
8002 '*' shift, and go to state 6
8003 '/' shift, and go to state 7
ec3bc396
AD
8004@end example
8005
8006@noindent
8007In state 2, the automaton can only shift a symbol. For instance,
742e4900 8008because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
8009@samp{+}, it will be shifted on the parse stack, and the automaton
8010control will jump to state 4, corresponding to the item @samp{exp -> exp
8011'+' . exp}. Since there is no default action, any other token than
6e649e65 8012those listed above will trigger a syntax error.
ec3bc396 8013
34a6c2d1 8014@cindex accepting state
ec3bc396
AD
8015The state 3 is named the @dfn{final state}, or the @dfn{accepting
8016state}:
8017
8018@example
8019state 3
8020
88bce5a2 8021 $accept -> exp $ . (rule 0)
ec3bc396 8022
2a8d363a 8023 $default accept
ec3bc396
AD
8024@end example
8025
8026@noindent
8027the initial rule is completed (the start symbol and the end
8028of input were read), the parsing exits successfully.
8029
8030The interpretation of states 4 to 7 is straightforward, and is left to
8031the reader.
8032
8033@example
8034state 4
8035
8036 exp -> exp '+' . exp (rule 1)
8037
2a8d363a 8038 NUM shift, and go to state 1
ec3bc396 8039
2a8d363a 8040 exp go to state 8
ec3bc396
AD
8041
8042state 5
8043
8044 exp -> exp '-' . exp (rule 2)
8045
2a8d363a 8046 NUM shift, and go to state 1
ec3bc396 8047
2a8d363a 8048 exp go to state 9
ec3bc396
AD
8049
8050state 6
8051
8052 exp -> exp '*' . exp (rule 3)
8053
2a8d363a 8054 NUM shift, and go to state 1
ec3bc396 8055
2a8d363a 8056 exp go to state 10
ec3bc396
AD
8057
8058state 7
8059
8060 exp -> exp '/' . exp (rule 4)
8061
2a8d363a 8062 NUM shift, and go to state 1
ec3bc396 8063
2a8d363a 8064 exp go to state 11
ec3bc396
AD
8065@end example
8066
5a99098d
PE
8067As was announced in beginning of the report, @samp{State 8 conflicts:
80681 shift/reduce}:
ec3bc396
AD
8069
8070@example
8071state 8
8072
8073 exp -> exp . '+' exp (rule 1)
8074 exp -> exp '+' exp . (rule 1)
8075 exp -> exp . '-' exp (rule 2)
8076 exp -> exp . '*' exp (rule 3)
8077 exp -> exp . '/' exp (rule 4)
8078
2a8d363a
AD
8079 '*' shift, and go to state 6
8080 '/' shift, and go to state 7
ec3bc396 8081
2a8d363a
AD
8082 '/' [reduce using rule 1 (exp)]
8083 $default reduce using rule 1 (exp)
ec3bc396
AD
8084@end example
8085
742e4900 8086Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8087either shifting (and going to state 7), or reducing rule 1. The
8088conflict means that either the grammar is ambiguous, or the parser lacks
8089information to make the right decision. Indeed the grammar is
8090ambiguous, as, since we did not specify the precedence of @samp{/}, the
8091sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8092NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8093NUM}, which corresponds to reducing rule 1.
8094
34a6c2d1 8095Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
8096arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
8097Shift/Reduce Conflicts}. Discarded actions are reported in between
8098square brackets.
8099
8100Note that all the previous states had a single possible action: either
8101shifting the next token and going to the corresponding state, or
8102reducing a single rule. In the other cases, i.e., when shifting
8103@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8104possible, the lookahead is required to select the action. State 8 is
8105one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8106is shifting, otherwise the action is reducing rule 1. In other words,
8107the first two items, corresponding to rule 1, are not eligible when the
742e4900 8108lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8109precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8110with some set of possible lookahead tokens. When run with
8111@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8112
8113@example
8114state 8
8115
88c78747 8116 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
8117 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
8118 exp -> exp . '-' exp (rule 2)
8119 exp -> exp . '*' exp (rule 3)
8120 exp -> exp . '/' exp (rule 4)
8121
8122 '*' shift, and go to state 6
8123 '/' shift, and go to state 7
8124
8125 '/' [reduce using rule 1 (exp)]
8126 $default reduce using rule 1 (exp)
8127@end example
8128
8129The remaining states are similar:
8130
8131@example
8132state 9
8133
8134 exp -> exp . '+' exp (rule 1)
8135 exp -> exp . '-' exp (rule 2)
8136 exp -> exp '-' exp . (rule 2)
8137 exp -> exp . '*' exp (rule 3)
8138 exp -> exp . '/' exp (rule 4)
8139
2a8d363a
AD
8140 '*' shift, and go to state 6
8141 '/' shift, and go to state 7
ec3bc396 8142
2a8d363a
AD
8143 '/' [reduce using rule 2 (exp)]
8144 $default reduce using rule 2 (exp)
ec3bc396
AD
8145
8146state 10
8147
8148 exp -> exp . '+' exp (rule 1)
8149 exp -> exp . '-' exp (rule 2)
8150 exp -> exp . '*' exp (rule 3)
8151 exp -> exp '*' exp . (rule 3)
8152 exp -> exp . '/' exp (rule 4)
8153
2a8d363a 8154 '/' shift, and go to state 7
ec3bc396 8155
2a8d363a
AD
8156 '/' [reduce using rule 3 (exp)]
8157 $default reduce using rule 3 (exp)
ec3bc396
AD
8158
8159state 11
8160
8161 exp -> exp . '+' exp (rule 1)
8162 exp -> exp . '-' exp (rule 2)
8163 exp -> exp . '*' exp (rule 3)
8164 exp -> exp . '/' exp (rule 4)
8165 exp -> exp '/' exp . (rule 4)
8166
2a8d363a
AD
8167 '+' shift, and go to state 4
8168 '-' shift, and go to state 5
8169 '*' shift, and go to state 6
8170 '/' shift, and go to state 7
ec3bc396 8171
2a8d363a
AD
8172 '+' [reduce using rule 4 (exp)]
8173 '-' [reduce using rule 4 (exp)]
8174 '*' [reduce using rule 4 (exp)]
8175 '/' [reduce using rule 4 (exp)]
8176 $default reduce using rule 4 (exp)
ec3bc396
AD
8177@end example
8178
8179@noindent
fa7e68c3
PE
8180Observe that state 11 contains conflicts not only due to the lack of
8181precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8182@samp{*}, but also because the
ec3bc396
AD
8183associativity of @samp{/} is not specified.
8184
8185
8186@node Tracing
8187@section Tracing Your Parser
bfa74976
RS
8188@findex yydebug
8189@cindex debugging
8190@cindex tracing the parser
8191
8192If a Bison grammar compiles properly but doesn't do what you want when it
8193runs, the @code{yydebug} parser-trace feature can help you figure out why.
8194
3ded9a63
AD
8195There are several means to enable compilation of trace facilities:
8196
8197@table @asis
8198@item the macro @code{YYDEBUG}
8199@findex YYDEBUG
8200Define the macro @code{YYDEBUG} to a nonzero value when you compile the
35430378 8201parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8202@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8203YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8204Prologue}).
8205
8206@item the option @option{-t}, @option{--debug}
8207Use the @samp{-t} option when you run Bison (@pxref{Invocation,
35430378 8208,Invoking Bison}). This is POSIX compliant too.
3ded9a63
AD
8209
8210@item the directive @samp{%debug}
8211@findex %debug
8212Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
8213Declaration Summary}). This is a Bison extension, which will prove
8214useful when Bison will output parsers for languages that don't use a
35430378 8215preprocessor. Unless POSIX and Yacc portability matter to
c827f760 8216you, this is
3ded9a63
AD
8217the preferred solution.
8218@end table
8219
8220We suggest that you always enable the debug option so that debugging is
8221always possible.
bfa74976 8222
02a81e05 8223The trace facility outputs messages with macro calls of the form
e2742e46 8224@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8225@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8226arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8227define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8228and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8229
8230Once you have compiled the program with trace facilities, the way to
8231request a trace is to store a nonzero value in the variable @code{yydebug}.
8232You can do this by making the C code do it (in @code{main}, perhaps), or
8233you can alter the value with a C debugger.
8234
8235Each step taken by the parser when @code{yydebug} is nonzero produces a
8236line or two of trace information, written on @code{stderr}. The trace
8237messages tell you these things:
8238
8239@itemize @bullet
8240@item
8241Each time the parser calls @code{yylex}, what kind of token was read.
8242
8243@item
8244Each time a token is shifted, the depth and complete contents of the
8245state stack (@pxref{Parser States}).
8246
8247@item
8248Each time a rule is reduced, which rule it is, and the complete contents
8249of the state stack afterward.
8250@end itemize
8251
8252To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8253produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8254Bison}). This file shows the meaning of each state in terms of
8255positions in various rules, and also what each state will do with each
8256possible input token. As you read the successive trace messages, you
8257can see that the parser is functioning according to its specification in
8258the listing file. Eventually you will arrive at the place where
8259something undesirable happens, and you will see which parts of the
8260grammar are to blame.
bfa74976 8261
9913d6e4
JD
8262The parser implementation file is a C program and you can use C
8263debuggers on it, but it's not easy to interpret what it is doing. The
8264parser function is a finite-state machine interpreter, and aside from
8265the actions it executes the same code over and over. Only the values
8266of variables show where in the grammar it is working.
bfa74976
RS
8267
8268@findex YYPRINT
8269The debugging information normally gives the token type of each token
8270read, but not its semantic value. You can optionally define a macro
8271named @code{YYPRINT} to provide a way to print the value. If you define
8272@code{YYPRINT}, it should take three arguments. The parser will pass a
8273standard I/O stream, the numeric code for the token type, and the token
8274value (from @code{yylval}).
8275
8276Here is an example of @code{YYPRINT} suitable for the multi-function
f56274a8 8277calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
8278
8279@smallexample
38a92d50
PE
8280%@{
8281 static void print_token_value (FILE *, int, YYSTYPE);
8282 #define YYPRINT(file, type, value) print_token_value (file, type, value)
8283%@}
8284
8285@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8286
8287static void
831d3c99 8288print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8289@{
8290 if (type == VAR)
d3c4e709 8291 fprintf (file, "%s", value.tptr->name);
bfa74976 8292 else if (type == NUM)
d3c4e709 8293 fprintf (file, "%d", value.val);
bfa74976
RS
8294@}
8295@end smallexample
8296
ec3bc396
AD
8297@c ================================================= Invoking Bison
8298
342b8b6e 8299@node Invocation
bfa74976
RS
8300@chapter Invoking Bison
8301@cindex invoking Bison
8302@cindex Bison invocation
8303@cindex options for invoking Bison
8304
8305The usual way to invoke Bison is as follows:
8306
8307@example
8308bison @var{infile}
8309@end example
8310
8311Here @var{infile} is the grammar file name, which usually ends in
9913d6e4
JD
8312@samp{.y}. The parser implementation file's name is made by replacing
8313the @samp{.y} with @samp{.tab.c} and removing any leading directory.
8314Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
8315the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
8316also possible, in case you are writing C++ code instead of C in your
8317grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
8318output files will take an extension like the given one as input
8319(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
8320feature takes effect with all options that manipulate file names like
234a3be3
AD
8321@samp{-o} or @samp{-d}.
8322
8323For example :
8324
8325@example
8326bison -d @var{infile.yxx}
8327@end example
84163231 8328@noindent
72d2299c 8329will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8330
8331@example
b56471a6 8332bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8333@end example
84163231 8334@noindent
234a3be3
AD
8335will produce @file{output.c++} and @file{outfile.h++}.
8336
35430378 8337For compatibility with POSIX, the standard Bison
397ec073
PE
8338distribution also contains a shell script called @command{yacc} that
8339invokes Bison with the @option{-y} option.
8340
bfa74976 8341@menu
13863333 8342* Bison Options:: All the options described in detail,
c827f760 8343 in alphabetical order by short options.
bfa74976 8344* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8345* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8346@end menu
8347
342b8b6e 8348@node Bison Options
bfa74976
RS
8349@section Bison Options
8350
8351Bison supports both traditional single-letter options and mnemonic long
8352option names. Long option names are indicated with @samp{--} instead of
8353@samp{-}. Abbreviations for option names are allowed as long as they
8354are unique. When a long option takes an argument, like
8355@samp{--file-prefix}, connect the option name and the argument with
8356@samp{=}.
8357
8358Here is a list of options that can be used with Bison, alphabetized by
8359short option. It is followed by a cross key alphabetized by long
8360option.
8361
89cab50d
AD
8362@c Please, keep this ordered as in `bison --help'.
8363@noindent
8364Operations modes:
8365@table @option
8366@item -h
8367@itemx --help
8368Print a summary of the command-line options to Bison and exit.
bfa74976 8369
89cab50d
AD
8370@item -V
8371@itemx --version
8372Print the version number of Bison and exit.
bfa74976 8373
f7ab6a50
PE
8374@item --print-localedir
8375Print the name of the directory containing locale-dependent data.
8376
a0de5091
JD
8377@item --print-datadir
8378Print the name of the directory containing skeletons and XSLT.
8379
89cab50d
AD
8380@item -y
8381@itemx --yacc
9913d6e4
JD
8382Act more like the traditional Yacc command. This can cause different
8383diagnostics to be generated, and may change behavior in other minor
8384ways. Most importantly, imitate Yacc's output file name conventions,
8385so that the parser implementation file is called @file{y.tab.c}, and
8386the other outputs are called @file{y.output} and @file{y.tab.h}.
8387Also, if generating a deterministic parser in C, generate
8388@code{#define} statements in addition to an @code{enum} to associate
8389token numbers with token names. Thus, the following shell script can
8390substitute for Yacc, and the Bison distribution contains such a script
8391for compatibility with POSIX:
bfa74976 8392
89cab50d 8393@example
397ec073 8394#! /bin/sh
26e06a21 8395bison -y "$@@"
89cab50d 8396@end example
54662697
PE
8397
8398The @option{-y}/@option{--yacc} option is intended for use with
8399traditional Yacc grammars. If your grammar uses a Bison extension
8400like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8401this option is specified.
8402
ecd1b61c
JD
8403@item -W [@var{category}]
8404@itemx --warnings[=@var{category}]
118d4978
AD
8405Output warnings falling in @var{category}. @var{category} can be one
8406of:
8407@table @code
8408@item midrule-values
8e55b3aa
JD
8409Warn about mid-rule values that are set but not used within any of the actions
8410of the parent rule.
8411For example, warn about unused @code{$2} in:
118d4978
AD
8412
8413@example
8414exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8415@end example
8416
8e55b3aa
JD
8417Also warn about mid-rule values that are used but not set.
8418For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8419
8420@example
8421 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
8422@end example
8423
8424These warnings are not enabled by default since they sometimes prove to
8425be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8426@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 8427
118d4978 8428@item yacc
35430378 8429Incompatibilities with POSIX Yacc.
118d4978 8430
6f8bdce2
JD
8431@item conflicts-sr
8432@itemx conflicts-rr
8433S/R and R/R conflicts. These warnings are enabled by default. However, if
8434the @code{%expect} or @code{%expect-rr} directive is specified, an
8435unexpected number of conflicts is an error, and an expected number of
8436conflicts is not reported, so @option{-W} and @option{--warning} then have
8437no effect on the conflict report.
8438
8ffd7912
JD
8439@item other
8440All warnings not categorized above. These warnings are enabled by default.
8441
8442This category is provided merely for the sake of completeness. Future
8443releases of Bison may move warnings from this category to new, more specific
8444categories.
8445
118d4978 8446@item all
8e55b3aa 8447All the warnings.
118d4978 8448@item none
8e55b3aa 8449Turn off all the warnings.
118d4978 8450@item error
8e55b3aa 8451Treat warnings as errors.
118d4978
AD
8452@end table
8453
8454A category can be turned off by prefixing its name with @samp{no-}. For
cf22447c 8455instance, @option{-Wno-yacc} will hide the warnings about
35430378 8456POSIX Yacc incompatibilities.
89cab50d
AD
8457@end table
8458
8459@noindent
8460Tuning the parser:
8461
8462@table @option
8463@item -t
8464@itemx --debug
9913d6e4
JD
8465In the parser implementation file, define the macro @code{YYDEBUG} to
84661 if it is not already defined, so that the debugging facilities are
8467compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 8468
e14c6831
AD
8469@item -D @var{name}[=@var{value}]
8470@itemx --define=@var{name}[=@var{value}]
c33bc800 8471@itemx -F @var{name}[=@var{value}]
34d41938
JD
8472@itemx --force-define=@var{name}[=@var{value}]
8473Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
2f4518a1 8474(@pxref{%define Summary}) except that Bison processes multiple
34d41938
JD
8475definitions for the same @var{name} as follows:
8476
8477@itemize
8478@item
e3a33f7c
JD
8479Bison quietly ignores all command-line definitions for @var{name} except
8480the last.
34d41938 8481@item
e3a33f7c
JD
8482If that command-line definition is specified by a @code{-D} or
8483@code{--define}, Bison reports an error for any @code{%define}
8484definition for @var{name}.
34d41938 8485@item
e3a33f7c
JD
8486If that command-line definition is specified by a @code{-F} or
8487@code{--force-define} instead, Bison quietly ignores all @code{%define}
8488definitions for @var{name}.
8489@item
8490Otherwise, Bison reports an error if there are multiple @code{%define}
8491definitions for @var{name}.
34d41938
JD
8492@end itemize
8493
8494You should avoid using @code{-F} and @code{--force-define} in your
9913d6e4
JD
8495make files unless you are confident that it is safe to quietly ignore
8496any conflicting @code{%define} that may be added to the grammar file.
e14c6831 8497
0e021770
PE
8498@item -L @var{language}
8499@itemx --language=@var{language}
8500Specify the programming language for the generated parser, as if
8501@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8502Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8503@var{language} is case-insensitive.
0e021770 8504
ed4d67dc
JD
8505This option is experimental and its effect may be modified in future
8506releases.
8507
89cab50d 8508@item --locations
d8988b2f 8509Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8510
8511@item -p @var{prefix}
8512@itemx --name-prefix=@var{prefix}
02975b9a 8513Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8514@xref{Decl Summary}.
bfa74976
RS
8515
8516@item -l
8517@itemx --no-lines
9913d6e4
JD
8518Don't put any @code{#line} preprocessor commands in the parser
8519implementation file. Ordinarily Bison puts them in the parser
8520implementation file so that the C compiler and debuggers will
8521associate errors with your source file, the grammar file. This option
8522causes them to associate errors with the parser implementation file,
8523treating it as an independent source file in its own right.
bfa74976 8524
e6e704dc
JD
8525@item -S @var{file}
8526@itemx --skeleton=@var{file}
a7867f53 8527Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8528(@pxref{Decl Summary, , Bison Declaration Summary}).
8529
ed4d67dc
JD
8530@c You probably don't need this option unless you are developing Bison.
8531@c You should use @option{--language} if you want to specify the skeleton for a
8532@c different language, because it is clearer and because it will always
8533@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8534
a7867f53
JD
8535If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8536file in the Bison installation directory.
8537If it does, @var{file} is an absolute file name or a file name relative to the
8538current working directory.
8539This is similar to how most shells resolve commands.
8540
89cab50d
AD
8541@item -k
8542@itemx --token-table
d8988b2f 8543Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8544@end table
bfa74976 8545
89cab50d
AD
8546@noindent
8547Adjust the output:
bfa74976 8548
89cab50d 8549@table @option
8e55b3aa 8550@item --defines[=@var{file}]
d8988b2f 8551Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8552file containing macro definitions for the token type names defined in
4bfd5e4e 8553the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8554
8e55b3aa
JD
8555@item -d
8556This is the same as @code{--defines} except @code{-d} does not accept a
8557@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8558with other short options.
342b8b6e 8559
89cab50d
AD
8560@item -b @var{file-prefix}
8561@itemx --file-prefix=@var{prefix}
9c437126 8562Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8563for all Bison output file names. @xref{Decl Summary}.
bfa74976 8564
ec3bc396
AD
8565@item -r @var{things}
8566@itemx --report=@var{things}
8567Write an extra output file containing verbose description of the comma
8568separated list of @var{things} among:
8569
8570@table @code
8571@item state
8572Description of the grammar, conflicts (resolved and unresolved), and
34a6c2d1 8573parser's automaton.
ec3bc396 8574
742e4900 8575@item lookahead
ec3bc396 8576Implies @code{state} and augments the description of the automaton with
742e4900 8577each rule's lookahead set.
ec3bc396
AD
8578
8579@item itemset
8580Implies @code{state} and augments the description of the automaton with
8581the full set of items for each state, instead of its core only.
8582@end table
8583
1bb2bd75
JD
8584@item --report-file=@var{file}
8585Specify the @var{file} for the verbose description.
8586
bfa74976
RS
8587@item -v
8588@itemx --verbose
9c437126 8589Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8590file containing verbose descriptions of the grammar and
72d2299c 8591parser. @xref{Decl Summary}.
bfa74976 8592
fa4d969f
PE
8593@item -o @var{file}
8594@itemx --output=@var{file}
9913d6e4 8595Specify the @var{file} for the parser implementation file.
bfa74976 8596
fa4d969f 8597The other output files' names are constructed from @var{file} as
d8988b2f 8598described under the @samp{-v} and @samp{-d} options.
342b8b6e 8599
72183df4 8600@item -g [@var{file}]
8e55b3aa 8601@itemx --graph[=@var{file}]
34a6c2d1 8602Output a graphical representation of the parser's
35fe0834 8603automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
35430378 8604@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
8605@code{@var{file}} is optional.
8606If omitted and the grammar file is @file{foo.y}, the output file will be
8607@file{foo.dot}.
59da312b 8608
72183df4 8609@item -x [@var{file}]
8e55b3aa 8610@itemx --xml[=@var{file}]
34a6c2d1 8611Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8612@code{@var{file}} is optional.
59da312b
JD
8613If omitted and the grammar file is @file{foo.y}, the output file will be
8614@file{foo.xml}.
8615(The current XML schema is experimental and may evolve.
8616More user feedback will help to stabilize it.)
bfa74976
RS
8617@end table
8618
342b8b6e 8619@node Option Cross Key
bfa74976
RS
8620@section Option Cross Key
8621
8622Here is a list of options, alphabetized by long option, to help you find
34d41938 8623the corresponding short option and directive.
bfa74976 8624
34d41938 8625@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
72183df4 8626@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8627@include cross-options.texi
aa08666d 8628@end multitable
bfa74976 8629
93dd49ab
PE
8630@node Yacc Library
8631@section Yacc Library
8632
8633The Yacc library contains default implementations of the
8634@code{yyerror} and @code{main} functions. These default
35430378 8635implementations are normally not useful, but POSIX requires
93dd49ab
PE
8636them. To use the Yacc library, link your program with the
8637@option{-ly} option. Note that Bison's implementation of the Yacc
35430378 8638library is distributed under the terms of the GNU General
93dd49ab
PE
8639Public License (@pxref{Copying}).
8640
8641If you use the Yacc library's @code{yyerror} function, you should
8642declare @code{yyerror} as follows:
8643
8644@example
8645int yyerror (char const *);
8646@end example
8647
8648Bison ignores the @code{int} value returned by this @code{yyerror}.
8649If you use the Yacc library's @code{main} function, your
8650@code{yyparse} function should have the following type signature:
8651
8652@example
8653int yyparse (void);
8654@end example
8655
12545799
AD
8656@c ================================================= C++ Bison
8657
8405b70c
PB
8658@node Other Languages
8659@chapter Parsers Written In Other Languages
12545799
AD
8660
8661@menu
8662* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8663* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8664@end menu
8665
8666@node C++ Parsers
8667@section C++ Parsers
8668
8669@menu
8670* C++ Bison Interface:: Asking for C++ parser generation
8671* C++ Semantic Values:: %union vs. C++
8672* C++ Location Values:: The position and location classes
8673* C++ Parser Interface:: Instantiating and running the parser
8674* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8675* A Complete C++ Example:: Demonstrating their use
12545799
AD
8676@end menu
8677
8678@node C++ Bison Interface
8679@subsection C++ Bison Interface
ed4d67dc 8680@c - %skeleton "lalr1.cc"
12545799
AD
8681@c - Always pure
8682@c - initial action
8683
34a6c2d1 8684The C++ deterministic parser is selected using the skeleton directive,
baacae49
AD
8685@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
8686@option{--skeleton=lalr1.cc}.
e6e704dc 8687@xref{Decl Summary}.
0e021770 8688
793fbca5
JD
8689When run, @command{bison} will create several entities in the @samp{yy}
8690namespace.
8691@findex %define namespace
2f4518a1
JD
8692Use the @samp{%define namespace} directive to change the namespace
8693name, see @ref{%define Summary,,namespace}. The various classes are
8694generated in the following files:
aa08666d 8695
12545799
AD
8696@table @file
8697@item position.hh
8698@itemx location.hh
8699The definition of the classes @code{position} and @code{location},
8700used for location tracking. @xref{C++ Location Values}.
8701
8702@item stack.hh
8703An auxiliary class @code{stack} used by the parser.
8704
fa4d969f
PE
8705@item @var{file}.hh
8706@itemx @var{file}.cc
9913d6e4 8707(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
8708declaration and implementation of the C++ parser class. The basename
8709and extension of these two files follow the same rules as with regular C
8710parsers (@pxref{Invocation}).
12545799 8711
cd8b5791
AD
8712The header is @emph{mandatory}; you must either pass
8713@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8714@samp{%defines} directive.
8715@end table
8716
8717All these files are documented using Doxygen; run @command{doxygen}
8718for a complete and accurate documentation.
8719
8720@node C++ Semantic Values
8721@subsection C++ Semantic Values
8722@c - No objects in unions
178e123e 8723@c - YYSTYPE
12545799
AD
8724@c - Printer and destructor
8725
8726The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8727Collection of Value Types}. In particular it produces a genuine
8728@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
8729within pseudo-unions (similar to Boost variants) might be implemented to
8730alleviate these issues.}, which have a few specific features in C++.
12545799
AD
8731@itemize @minus
8732@item
fb9712a9
AD
8733The type @code{YYSTYPE} is defined but its use is discouraged: rather
8734you should refer to the parser's encapsulated type
8735@code{yy::parser::semantic_type}.
12545799
AD
8736@item
8737Non POD (Plain Old Data) types cannot be used. C++ forbids any
8738instance of classes with constructors in unions: only @emph{pointers}
8739to such objects are allowed.
8740@end itemize
8741
8742Because objects have to be stored via pointers, memory is not
8743reclaimed automatically: using the @code{%destructor} directive is the
8744only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8745Symbols}.
8746
8747
8748@node C++ Location Values
8749@subsection C++ Location Values
8750@c - %locations
8751@c - class Position
8752@c - class Location
16dc6a9e 8753@c - %define filename_type "const symbol::Symbol"
12545799
AD
8754
8755When the directive @code{%locations} is used, the C++ parser supports
8756location tracking, see @ref{Locations, , Locations Overview}. Two
8757auxiliary classes define a @code{position}, a single point in a file,
8758and a @code{location}, a range composed of a pair of
8759@code{position}s (possibly spanning several files).
8760
fa4d969f 8761@deftypemethod {position} {std::string*} file
12545799
AD
8762The name of the file. It will always be handled as a pointer, the
8763parser will never duplicate nor deallocate it. As an experimental
8764feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8765filename_type "@var{type}"}.
12545799
AD
8766@end deftypemethod
8767
8768@deftypemethod {position} {unsigned int} line
8769The line, starting at 1.
8770@end deftypemethod
8771
8772@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8773Advance by @var{height} lines, resetting the column number.
8774@end deftypemethod
8775
8776@deftypemethod {position} {unsigned int} column
8777The column, starting at 0.
8778@end deftypemethod
8779
8780@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8781Advance by @var{width} columns, without changing the line number.
8782@end deftypemethod
8783
8784@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8785@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8786@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8787@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8788Various forms of syntactic sugar for @code{columns}.
8789@end deftypemethod
8790
8791@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8792Report @var{p} on @var{o} like this:
fa4d969f
PE
8793@samp{@var{file}:@var{line}.@var{column}}, or
8794@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8795@end deftypemethod
8796
8797@deftypemethod {location} {position} begin
8798@deftypemethodx {location} {position} end
8799The first, inclusive, position of the range, and the first beyond.
8800@end deftypemethod
8801
8802@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8803@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8804Advance the @code{end} position.
8805@end deftypemethod
8806
8807@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8808@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8809@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8810Various forms of syntactic sugar.
8811@end deftypemethod
8812
8813@deftypemethod {location} {void} step ()
8814Move @code{begin} onto @code{end}.
8815@end deftypemethod
8816
8817
8818@node C++ Parser Interface
8819@subsection C++ Parser Interface
8820@c - define parser_class_name
8821@c - Ctor
8822@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8823@c debug_stream.
8824@c - Reporting errors
8825
8826The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8827declare and define the parser class in the namespace @code{yy}. The
8828class name defaults to @code{parser}, but may be changed using
16dc6a9e 8829@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8830this class is detailed below. It can be extended using the
12545799
AD
8831@code{%parse-param} feature: its semantics is slightly changed since
8832it describes an additional member of the parser class, and an
8833additional argument for its constructor.
8834
baacae49
AD
8835@defcv {Type} {parser} {semantic_type}
8836@defcvx {Type} {parser} {location_type}
12545799 8837The types for semantics value and locations.
8a0adb01 8838@end defcv
12545799 8839
baacae49
AD
8840@defcv {Type} {parser} {token}
8841A structure that contains (only) the definition of the tokens as the
8842@code{yytokentype} enumeration. To refer to the token @code{FOO}, the
8843scanner should use @code{yy::parser::token::FOO}. The scanner can use
8844@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
8845(@pxref{Calc++ Scanner}).
8846@end defcv
8847
12545799
AD
8848@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8849Build a new parser object. There are no arguments by default, unless
8850@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8851@end deftypemethod
8852
8853@deftypemethod {parser} {int} parse ()
8854Run the syntactic analysis, and return 0 on success, 1 otherwise.
8855@end deftypemethod
8856
8857@deftypemethod {parser} {std::ostream&} debug_stream ()
8858@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8859Get or set the stream used for tracing the parsing. It defaults to
8860@code{std::cerr}.
8861@end deftypemethod
8862
8863@deftypemethod {parser} {debug_level_type} debug_level ()
8864@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8865Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8866or nonzero, full tracing.
12545799
AD
8867@end deftypemethod
8868
8869@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
8870The definition for this member function must be supplied by the user:
8871the parser uses it to report a parser error occurring at @var{l},
8872described by @var{m}.
8873@end deftypemethod
8874
8875
8876@node C++ Scanner Interface
8877@subsection C++ Scanner Interface
8878@c - prefix for yylex.
8879@c - Pure interface to yylex
8880@c - %lex-param
8881
8882The parser invokes the scanner by calling @code{yylex}. Contrary to C
8883parsers, C++ parsers are always pure: there is no point in using the
d9df47b6 8884@code{%define api.pure} directive. Therefore the interface is as follows.
12545799 8885
baacae49 8886@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
12545799
AD
8887Return the next token. Its type is the return value, its semantic
8888value and location being @var{yylval} and @var{yylloc}. Invocations of
8889@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8890@end deftypemethod
8891
8892
8893@node A Complete C++ Example
8405b70c 8894@subsection A Complete C++ Example
12545799
AD
8895
8896This section demonstrates the use of a C++ parser with a simple but
8897complete example. This example should be available on your system,
8898ready to compile, in the directory @dfn{../bison/examples/calc++}. It
8899focuses on the use of Bison, therefore the design of the various C++
8900classes is very naive: no accessors, no encapsulation of members etc.
8901We will use a Lex scanner, and more precisely, a Flex scanner, to
8902demonstrate the various interaction. A hand written scanner is
8903actually easier to interface with.
8904
8905@menu
8906* Calc++ --- C++ Calculator:: The specifications
8907* Calc++ Parsing Driver:: An active parsing context
8908* Calc++ Parser:: A parser class
8909* Calc++ Scanner:: A pure C++ Flex scanner
8910* Calc++ Top Level:: Conducting the band
8911@end menu
8912
8913@node Calc++ --- C++ Calculator
8405b70c 8914@subsubsection Calc++ --- C++ Calculator
12545799
AD
8915
8916Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 8917expression, possibly preceded by variable assignments. An
12545799
AD
8918environment containing possibly predefined variables such as
8919@code{one} and @code{two}, is exchanged with the parser. An example
8920of valid input follows.
8921
8922@example
8923three := 3
8924seven := one + two * three
8925seven * seven
8926@end example
8927
8928@node Calc++ Parsing Driver
8405b70c 8929@subsubsection Calc++ Parsing Driver
12545799
AD
8930@c - An env
8931@c - A place to store error messages
8932@c - A place for the result
8933
8934To support a pure interface with the parser (and the scanner) the
8935technique of the ``parsing context'' is convenient: a structure
8936containing all the data to exchange. Since, in addition to simply
8937launch the parsing, there are several auxiliary tasks to execute (open
8938the file for parsing, instantiate the parser etc.), we recommend
8939transforming the simple parsing context structure into a fully blown
8940@dfn{parsing driver} class.
8941
8942The declaration of this driver class, @file{calc++-driver.hh}, is as
8943follows. The first part includes the CPP guard and imports the
fb9712a9
AD
8944required standard library components, and the declaration of the parser
8945class.
12545799 8946
1c59e0a1 8947@comment file: calc++-driver.hh
12545799
AD
8948@example
8949#ifndef CALCXX_DRIVER_HH
8950# define CALCXX_DRIVER_HH
8951# include <string>
8952# include <map>
fb9712a9 8953# include "calc++-parser.hh"
12545799
AD
8954@end example
8955
12545799
AD
8956
8957@noindent
8958Then comes the declaration of the scanning function. Flex expects
8959the signature of @code{yylex} to be defined in the macro
8960@code{YY_DECL}, and the C++ parser expects it to be declared. We can
8961factor both as follows.
1c59e0a1
AD
8962
8963@comment file: calc++-driver.hh
12545799 8964@example
3dc5e96b
PE
8965// Tell Flex the lexer's prototype ...
8966# define YY_DECL \
c095d689
AD
8967 yy::calcxx_parser::token_type \
8968 yylex (yy::calcxx_parser::semantic_type* yylval, \
8969 yy::calcxx_parser::location_type* yylloc, \
8970 calcxx_driver& driver)
12545799
AD
8971// ... and declare it for the parser's sake.
8972YY_DECL;
8973@end example
8974
8975@noindent
8976The @code{calcxx_driver} class is then declared with its most obvious
8977members.
8978
1c59e0a1 8979@comment file: calc++-driver.hh
12545799
AD
8980@example
8981// Conducting the whole scanning and parsing of Calc++.
8982class calcxx_driver
8983@{
8984public:
8985 calcxx_driver ();
8986 virtual ~calcxx_driver ();
8987
8988 std::map<std::string, int> variables;
8989
8990 int result;
8991@end example
8992
8993@noindent
8994To encapsulate the coordination with the Flex scanner, it is useful to
8995have two members function to open and close the scanning phase.
12545799 8996
1c59e0a1 8997@comment file: calc++-driver.hh
12545799
AD
8998@example
8999 // Handling the scanner.
9000 void scan_begin ();
9001 void scan_end ();
9002 bool trace_scanning;
9003@end example
9004
9005@noindent
9006Similarly for the parser itself.
9007
1c59e0a1 9008@comment file: calc++-driver.hh
12545799 9009@example
bb32f4f2
AD
9010 // Run the parser. Return 0 on success.
9011 int parse (const std::string& f);
12545799
AD
9012 std::string file;
9013 bool trace_parsing;
9014@end example
9015
9016@noindent
9017To demonstrate pure handling of parse errors, instead of simply
9018dumping them on the standard error output, we will pass them to the
9019compiler driver using the following two member functions. Finally, we
9020close the class declaration and CPP guard.
9021
1c59e0a1 9022@comment file: calc++-driver.hh
12545799
AD
9023@example
9024 // Error handling.
9025 void error (const yy::location& l, const std::string& m);
9026 void error (const std::string& m);
9027@};
9028#endif // ! CALCXX_DRIVER_HH
9029@end example
9030
9031The implementation of the driver is straightforward. The @code{parse}
9032member function deserves some attention. The @code{error} functions
9033are simple stubs, they should actually register the located error
9034messages and set error state.
9035
1c59e0a1 9036@comment file: calc++-driver.cc
12545799
AD
9037@example
9038#include "calc++-driver.hh"
9039#include "calc++-parser.hh"
9040
9041calcxx_driver::calcxx_driver ()
9042 : trace_scanning (false), trace_parsing (false)
9043@{
9044 variables["one"] = 1;
9045 variables["two"] = 2;
9046@}
9047
9048calcxx_driver::~calcxx_driver ()
9049@{
9050@}
9051
bb32f4f2 9052int
12545799
AD
9053calcxx_driver::parse (const std::string &f)
9054@{
9055 file = f;
9056 scan_begin ();
9057 yy::calcxx_parser parser (*this);
9058 parser.set_debug_level (trace_parsing);
bb32f4f2 9059 int res = parser.parse ();
12545799 9060 scan_end ();
bb32f4f2 9061 return res;
12545799
AD
9062@}
9063
9064void
9065calcxx_driver::error (const yy::location& l, const std::string& m)
9066@{
9067 std::cerr << l << ": " << m << std::endl;
9068@}
9069
9070void
9071calcxx_driver::error (const std::string& m)
9072@{
9073 std::cerr << m << std::endl;
9074@}
9075@end example
9076
9077@node Calc++ Parser
8405b70c 9078@subsubsection Calc++ Parser
12545799 9079
9913d6e4
JD
9080The grammar file @file{calc++-parser.yy} starts by asking for the C++
9081deterministic parser skeleton, the creation of the parser header file,
9082and specifies the name of the parser class. Because the C++ skeleton
9083changed several times, it is safer to require the version you designed
9084the grammar for.
1c59e0a1
AD
9085
9086@comment file: calc++-parser.yy
12545799 9087@example
ed4d67dc 9088%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 9089%require "@value{VERSION}"
12545799 9090%defines
16dc6a9e 9091%define parser_class_name "calcxx_parser"
fb9712a9
AD
9092@end example
9093
9094@noindent
16dc6a9e 9095@findex %code requires
fb9712a9
AD
9096Then come the declarations/inclusions needed to define the
9097@code{%union}. Because the parser uses the parsing driver and
9098reciprocally, both cannot include the header of the other. Because the
9099driver's header needs detailed knowledge about the parser class (in
9100particular its inner types), it is the parser's header which will simply
9101use a forward declaration of the driver.
8e6f2266 9102@xref{%code Summary}.
fb9712a9
AD
9103
9104@comment file: calc++-parser.yy
9105@example
16dc6a9e 9106%code requires @{
12545799 9107# include <string>
fb9712a9 9108class calcxx_driver;
9bc0dd67 9109@}
12545799
AD
9110@end example
9111
9112@noindent
9113The driver is passed by reference to the parser and to the scanner.
9114This provides a simple but effective pure interface, not relying on
9115global variables.
9116
1c59e0a1 9117@comment file: calc++-parser.yy
12545799
AD
9118@example
9119// The parsing context.
9120%parse-param @{ calcxx_driver& driver @}
9121%lex-param @{ calcxx_driver& driver @}
9122@end example
9123
9124@noindent
9125Then we request the location tracking feature, and initialize the
c781580d 9126first location's file name. Afterward new locations are computed
12545799
AD
9127relatively to the previous locations: the file name will be
9128automatically propagated.
9129
1c59e0a1 9130@comment file: calc++-parser.yy
12545799
AD
9131@example
9132%locations
9133%initial-action
9134@{
9135 // Initialize the initial location.
b47dbebe 9136 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
9137@};
9138@end example
9139
9140@noindent
6f04ee6c
JD
9141Use the two following directives to enable parser tracing and verbose error
9142messages. However, verbose error messages can contain incorrect information
9143(@pxref{LAC}).
12545799 9144
1c59e0a1 9145@comment file: calc++-parser.yy
12545799
AD
9146@example
9147%debug
9148%error-verbose
9149@end example
9150
9151@noindent
9152Semantic values cannot use ``real'' objects, but only pointers to
9153them.
9154
1c59e0a1 9155@comment file: calc++-parser.yy
12545799
AD
9156@example
9157// Symbols.
9158%union
9159@{
9160 int ival;
9161 std::string *sval;
9162@};
9163@end example
9164
fb9712a9 9165@noindent
136a0f76
PB
9166@findex %code
9167The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 9168@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
9169
9170@comment file: calc++-parser.yy
9171@example
136a0f76 9172%code @{
fb9712a9 9173# include "calc++-driver.hh"
34f98f46 9174@}
fb9712a9
AD
9175@end example
9176
9177
12545799
AD
9178@noindent
9179The token numbered as 0 corresponds to end of file; the following line
9180allows for nicer error messages referring to ``end of file'' instead
9181of ``$end''. Similarly user friendly named are provided for each
9182symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
9183avoid name clashes.
9184
1c59e0a1 9185@comment file: calc++-parser.yy
12545799 9186@example
fb9712a9
AD
9187%token END 0 "end of file"
9188%token ASSIGN ":="
9189%token <sval> IDENTIFIER "identifier"
9190%token <ival> NUMBER "number"
a8c2e813 9191%type <ival> exp
12545799
AD
9192@end example
9193
9194@noindent
9195To enable memory deallocation during error recovery, use
9196@code{%destructor}.
9197
287c78f6 9198@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 9199@comment file: calc++-parser.yy
12545799
AD
9200@example
9201%printer @{ debug_stream () << *$$; @} "identifier"
9202%destructor @{ delete $$; @} "identifier"
9203
a8c2e813 9204%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
9205@end example
9206
9207@noindent
9208The grammar itself is straightforward.
9209
1c59e0a1 9210@comment file: calc++-parser.yy
12545799
AD
9211@example
9212%%
9213%start unit;
9214unit: assignments exp @{ driver.result = $2; @};
9215
9216assignments: assignments assignment @{@}
9d9b8b70 9217 | /* Nothing. */ @{@};
12545799 9218
3dc5e96b
PE
9219assignment:
9220 "identifier" ":=" exp
9221 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
9222
9223%left '+' '-';
9224%left '*' '/';
9225exp: exp '+' exp @{ $$ = $1 + $3; @}
9226 | exp '-' exp @{ $$ = $1 - $3; @}
9227 | exp '*' exp @{ $$ = $1 * $3; @}
9228 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 9229 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 9230 | "number" @{ $$ = $1; @};
12545799
AD
9231%%
9232@end example
9233
9234@noindent
9235Finally the @code{error} member function registers the errors to the
9236driver.
9237
1c59e0a1 9238@comment file: calc++-parser.yy
12545799
AD
9239@example
9240void
1c59e0a1
AD
9241yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
9242 const std::string& m)
12545799
AD
9243@{
9244 driver.error (l, m);
9245@}
9246@end example
9247
9248@node Calc++ Scanner
8405b70c 9249@subsubsection Calc++ Scanner
12545799
AD
9250
9251The Flex scanner first includes the driver declaration, then the
9252parser's to get the set of defined tokens.
9253
1c59e0a1 9254@comment file: calc++-scanner.ll
12545799
AD
9255@example
9256%@{ /* -*- C++ -*- */
04098407 9257# include <cstdlib>
b10dd689
AD
9258# include <cerrno>
9259# include <climits>
12545799
AD
9260# include <string>
9261# include "calc++-driver.hh"
9262# include "calc++-parser.hh"
eaea13f5
PE
9263
9264/* Work around an incompatibility in flex (at least versions
9265 2.5.31 through 2.5.33): it generates code that does
9266 not conform to C89. See Debian bug 333231
9267 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
9268# undef yywrap
9269# define yywrap() 1
eaea13f5 9270
c095d689
AD
9271/* By default yylex returns int, we use token_type.
9272 Unfortunately yyterminate by default returns 0, which is
9273 not of token_type. */
8c5b881d 9274#define yyterminate() return token::END
12545799
AD
9275%@}
9276@end example
9277
9278@noindent
9279Because there is no @code{#include}-like feature we don't need
9280@code{yywrap}, we don't need @code{unput} either, and we parse an
9281actual file, this is not an interactive session with the user.
9282Finally we enable the scanner tracing features.
9283
1c59e0a1 9284@comment file: calc++-scanner.ll
12545799
AD
9285@example
9286%option noyywrap nounput batch debug
9287@end example
9288
9289@noindent
9290Abbreviations allow for more readable rules.
9291
1c59e0a1 9292@comment file: calc++-scanner.ll
12545799
AD
9293@example
9294id [a-zA-Z][a-zA-Z_0-9]*
9295int [0-9]+
9296blank [ \t]
9297@end example
9298
9299@noindent
9d9b8b70 9300The following paragraph suffices to track locations accurately. Each
12545799
AD
9301time @code{yylex} is invoked, the begin position is moved onto the end
9302position. Then when a pattern is matched, the end position is
9303advanced of its width. In case it matched ends of lines, the end
9304cursor is adjusted, and each time blanks are matched, the begin cursor
9305is moved onto the end cursor to effectively ignore the blanks
9306preceding tokens. Comments would be treated equally.
9307
1c59e0a1 9308@comment file: calc++-scanner.ll
12545799 9309@example
828c373b
AD
9310%@{
9311# define YY_USER_ACTION yylloc->columns (yyleng);
9312%@}
12545799
AD
9313%%
9314%@{
9315 yylloc->step ();
12545799
AD
9316%@}
9317@{blank@}+ yylloc->step ();
9318[\n]+ yylloc->lines (yyleng); yylloc->step ();
9319@end example
9320
9321@noindent
fb9712a9
AD
9322The rules are simple, just note the use of the driver to report errors.
9323It is convenient to use a typedef to shorten
9324@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 9325@code{token::identifier} for instance.
12545799 9326
1c59e0a1 9327@comment file: calc++-scanner.ll
12545799 9328@example
fb9712a9
AD
9329%@{
9330 typedef yy::calcxx_parser::token token;
9331%@}
8c5b881d 9332 /* Convert ints to the actual type of tokens. */
c095d689 9333[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 9334":=" return token::ASSIGN;
04098407
PE
9335@{int@} @{
9336 errno = 0;
9337 long n = strtol (yytext, NULL, 10);
9338 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
9339 driver.error (*yylloc, "integer is out of range");
9340 yylval->ival = n;
fb9712a9 9341 return token::NUMBER;
04098407 9342@}
fb9712a9 9343@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
9344. driver.error (*yylloc, "invalid character");
9345%%
9346@end example
9347
9348@noindent
9349Finally, because the scanner related driver's member function depend
9350on the scanner's data, it is simpler to implement them in this file.
9351
1c59e0a1 9352@comment file: calc++-scanner.ll
12545799
AD
9353@example
9354void
9355calcxx_driver::scan_begin ()
9356@{
9357 yy_flex_debug = trace_scanning;
bb32f4f2
AD
9358 if (file == "-")
9359 yyin = stdin;
9360 else if (!(yyin = fopen (file.c_str (), "r")))
9361 @{
9362 error (std::string ("cannot open ") + file);
9363 exit (1);
9364 @}
12545799
AD
9365@}
9366
9367void
9368calcxx_driver::scan_end ()
9369@{
9370 fclose (yyin);
9371@}
9372@end example
9373
9374@node Calc++ Top Level
8405b70c 9375@subsubsection Calc++ Top Level
12545799
AD
9376
9377The top level file, @file{calc++.cc}, poses no problem.
9378
1c59e0a1 9379@comment file: calc++.cc
12545799
AD
9380@example
9381#include <iostream>
9382#include "calc++-driver.hh"
9383
9384int
fa4d969f 9385main (int argc, char *argv[])
12545799
AD
9386@{
9387 calcxx_driver driver;
9388 for (++argv; argv[0]; ++argv)
9389 if (*argv == std::string ("-p"))
9390 driver.trace_parsing = true;
9391 else if (*argv == std::string ("-s"))
9392 driver.trace_scanning = true;
bb32f4f2
AD
9393 else if (!driver.parse (*argv))
9394 std::cout << driver.result << std::endl;
12545799
AD
9395@}
9396@end example
9397
8405b70c
PB
9398@node Java Parsers
9399@section Java Parsers
9400
9401@menu
f56274a8
DJ
9402* Java Bison Interface:: Asking for Java parser generation
9403* Java Semantic Values:: %type and %token vs. Java
9404* Java Location Values:: The position and location classes
9405* Java Parser Interface:: Instantiating and running the parser
9406* Java Scanner Interface:: Specifying the scanner for the parser
9407* Java Action Features:: Special features for use in actions
9408* Java Differences:: Differences between C/C++ and Java Grammars
9409* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
9410@end menu
9411
9412@node Java Bison Interface
9413@subsection Java Bison Interface
9414@c - %language "Java"
8405b70c 9415
59da312b
JD
9416(The current Java interface is experimental and may evolve.
9417More user feedback will help to stabilize it.)
9418
e254a580
DJ
9419The Java parser skeletons are selected using the @code{%language "Java"}
9420directive or the @option{-L java}/@option{--language=java} option.
8405b70c 9421
e254a580 9422@c FIXME: Documented bug.
9913d6e4
JD
9423When generating a Java parser, @code{bison @var{basename}.y} will
9424create a single Java source file named @file{@var{basename}.java}
9425containing the parser implementation. Using a grammar file without a
9426@file{.y} suffix is currently broken. The basename of the parser
9427implementation file can be changed by the @code{%file-prefix}
9428directive or the @option{-p}/@option{--name-prefix} option. The
9429entire parser implementation file name can be changed by the
9430@code{%output} directive or the @option{-o}/@option{--output} option.
9431The parser implementation file contains a single class for the parser.
8405b70c 9432
e254a580 9433You can create documentation for generated parsers using Javadoc.
8405b70c 9434
e254a580
DJ
9435Contrary to C parsers, Java parsers do not use global variables; the
9436state of the parser is always local to an instance of the parser class.
9437Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
9438and @code{%define api.pure} directives does not do anything when used in
9439Java.
8405b70c 9440
e254a580 9441Push parsers are currently unsupported in Java and @code{%define
812775a0 9442api.push-pull} have no effect.
01b477c6 9443
35430378 9444GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
9445@code{glr-parser} directive.
9446
9447No header file can be generated for Java parsers. Do not use the
9448@code{%defines} directive or the @option{-d}/@option{--defines} options.
9449
9450@c FIXME: Possible code change.
9451Currently, support for debugging and verbose errors are always compiled
9452in. Thus the @code{%debug} and @code{%token-table} directives and the
9453@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
9454options have no effect. This may change in the future to eliminate
9455unused code in the generated parser, so use @code{%debug} and
9456@code{%verbose-error} explicitly if needed. Also, in the future the
9457@code{%token-table} directive might enable a public interface to
9458access the token names and codes.
8405b70c
PB
9459
9460@node Java Semantic Values
9461@subsection Java Semantic Values
9462@c - No %union, specify type in %type/%token.
9463@c - YYSTYPE
9464@c - Printer and destructor
9465
9466There is no @code{%union} directive in Java parsers. Instead, the
9467semantic values' types (class names) should be specified in the
9468@code{%type} or @code{%token} directive:
9469
9470@example
9471%type <Expression> expr assignment_expr term factor
9472%type <Integer> number
9473@end example
9474
9475By default, the semantic stack is declared to have @code{Object} members,
9476which means that the class types you specify can be of any class.
9477To improve the type safety of the parser, you can declare the common
e254a580
DJ
9478superclass of all the semantic values using the @code{%define stype}
9479directive. For example, after the following declaration:
8405b70c
PB
9480
9481@example
e254a580 9482%define stype "ASTNode"
8405b70c
PB
9483@end example
9484
9485@noindent
9486any @code{%type} or @code{%token} specifying a semantic type which
9487is not a subclass of ASTNode, will cause a compile-time error.
9488
e254a580 9489@c FIXME: Documented bug.
8405b70c
PB
9490Types used in the directives may be qualified with a package name.
9491Primitive data types are accepted for Java version 1.5 or later. Note
9492that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
9493Generic types may not be used; this is due to a limitation in the
9494implementation of Bison, and may change in future releases.
8405b70c
PB
9495
9496Java parsers do not support @code{%destructor}, since the language
9497adopts garbage collection. The parser will try to hold references
9498to semantic values for as little time as needed.
9499
9500Java parsers do not support @code{%printer}, as @code{toString()}
9501can be used to print the semantic values. This however may change
9502(in a backwards-compatible way) in future versions of Bison.
9503
9504
9505@node Java Location Values
9506@subsection Java Location Values
9507@c - %locations
9508@c - class Position
9509@c - class Location
9510
9511When the directive @code{%locations} is used, the Java parser
9512supports location tracking, see @ref{Locations, , Locations Overview}.
9513An auxiliary user-defined class defines a @dfn{position}, a single point
9514in a file; Bison itself defines a class representing a @dfn{location},
9515a range composed of a pair of positions (possibly spanning several
9516files). The location class is an inner class of the parser; the name
e254a580 9517is @code{Location} by default, and may also be renamed using
f37495f6 9518@code{%define location_type "@var{class-name}"}.
8405b70c
PB
9519
9520The location class treats the position as a completely opaque value.
9521By default, the class name is @code{Position}, but this can be changed
e254a580
DJ
9522with @code{%define position_type "@var{class-name}"}. This class must
9523be supplied by the user.
8405b70c
PB
9524
9525
e254a580
DJ
9526@deftypeivar {Location} {Position} begin
9527@deftypeivarx {Location} {Position} end
8405b70c 9528The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
9529@end deftypeivar
9530
9531@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c046698e 9532Create a @code{Location} denoting an empty range located at a given point.
e254a580 9533@end deftypeop
8405b70c 9534
e254a580
DJ
9535@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
9536Create a @code{Location} from the endpoints of the range.
9537@end deftypeop
9538
9539@deftypemethod {Location} {String} toString ()
8405b70c
PB
9540Prints the range represented by the location. For this to work
9541properly, the position class should override the @code{equals} and
9542@code{toString} methods appropriately.
9543@end deftypemethod
9544
9545
9546@node Java Parser Interface
9547@subsection Java Parser Interface
9548@c - define parser_class_name
9549@c - Ctor
9550@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9551@c debug_stream.
9552@c - Reporting errors
9553
e254a580
DJ
9554The name of the generated parser class defaults to @code{YYParser}. The
9555@code{YY} prefix may be changed using the @code{%name-prefix} directive
9556or the @option{-p}/@option{--name-prefix} option. Alternatively, use
9557@code{%define parser_class_name "@var{name}"} to give a custom name to
9558the class. The interface of this class is detailed below.
8405b70c 9559
e254a580
DJ
9560By default, the parser class has package visibility. A declaration
9561@code{%define public} will change to public visibility. Remember that,
9562according to the Java language specification, the name of the @file{.java}
9563file should match the name of the class in this case. Similarly, you can
9564use @code{abstract}, @code{final} and @code{strictfp} with the
9565@code{%define} declaration to add other modifiers to the parser class.
9566
9567The Java package name of the parser class can be specified using the
9568@code{%define package} directive. The superclass and the implemented
9569interfaces of the parser class can be specified with the @code{%define
9570extends} and @code{%define implements} directives.
9571
9572The parser class defines an inner class, @code{Location}, that is used
9573for location tracking (see @ref{Java Location Values}), and a inner
9574interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
9575these inner class/interface, and the members described in the interface
9576below, all the other members and fields are preceded with a @code{yy} or
9577@code{YY} prefix to avoid clashes with user code.
9578
9579@c FIXME: The following constants and variables are still undocumented:
9580@c @code{bisonVersion}, @code{bisonSkeleton} and @code{errorVerbose}.
9581
9582The parser class can be extended using the @code{%parse-param}
9583directive. Each occurrence of the directive will add a @code{protected
9584final} field to the parser class, and an argument to its constructor,
9585which initialize them automatically.
9586
9587Token names defined by @code{%token} and the predefined @code{EOF} token
9588name are added as constant fields to the parser class.
9589
9590@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
9591Build a new parser object with embedded @code{%code lexer}. There are
9592no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
9593used.
9594@end deftypeop
9595
9596@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
9597Build a new parser object using the specified scanner. There are no
9598additional parameters unless @code{%parse-param}s are used.
9599
9600If the scanner is defined by @code{%code lexer}, this constructor is
9601declared @code{protected} and is called automatically with a scanner
9602created with the correct @code{%lex-param}s.
9603@end deftypeop
8405b70c
PB
9604
9605@deftypemethod {YYParser} {boolean} parse ()
9606Run the syntactic analysis, and return @code{true} on success,
9607@code{false} otherwise.
9608@end deftypemethod
9609
01b477c6 9610@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9611During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9612from a syntax error.
9613@xref{Error Recovery}.
8405b70c
PB
9614@end deftypemethod
9615
9616@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9617@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9618Get or set the stream used for tracing the parsing. It defaults to
9619@code{System.err}.
9620@end deftypemethod
9621
9622@deftypemethod {YYParser} {int} getDebugLevel ()
9623@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
9624Get or set the tracing level. Currently its value is either 0, no trace,
9625or nonzero, full tracing.
9626@end deftypemethod
9627
8405b70c
PB
9628
9629@node Java Scanner Interface
9630@subsection Java Scanner Interface
01b477c6 9631@c - %code lexer
8405b70c 9632@c - %lex-param
01b477c6 9633@c - Lexer interface
8405b70c 9634
e254a580
DJ
9635There are two possible ways to interface a Bison-generated Java parser
9636with a scanner: the scanner may be defined by @code{%code lexer}, or
9637defined elsewhere. In either case, the scanner has to implement the
9638@code{Lexer} inner interface of the parser class.
9639
9640In the first case, the body of the scanner class is placed in
9641@code{%code lexer} blocks. If you want to pass parameters from the
9642parser constructor to the scanner constructor, specify them with
9643@code{%lex-param}; they are passed before @code{%parse-param}s to the
9644constructor.
01b477c6 9645
59c5ac72 9646In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
9647which is defined within the parser class (e.g., @code{YYParser.Lexer}).
9648The constructor of the parser object will then accept an object
9649implementing the interface; @code{%lex-param} is not used in this
9650case.
9651
9652In both cases, the scanner has to implement the following methods.
9653
e254a580
DJ
9654@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
9655This method is defined by the user to emit an error message. The first
9656parameter is omitted if location tracking is not active. Its type can be
9657changed using @code{%define location_type "@var{class-name}".}
8405b70c
PB
9658@end deftypemethod
9659
e254a580 9660@deftypemethod {Lexer} {int} yylex ()
8405b70c 9661Return the next token. Its type is the return value, its semantic
c781580d 9662value and location are saved and returned by the their methods in the
e254a580
DJ
9663interface.
9664
9665Use @code{%define lex_throws} to specify any uncaught exceptions.
9666Default is @code{java.io.IOException}.
8405b70c
PB
9667@end deftypemethod
9668
9669@deftypemethod {Lexer} {Position} getStartPos ()
9670@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
9671Return respectively the first position of the last token that
9672@code{yylex} returned, and the first position beyond it. These
9673methods are not needed unless location tracking is active.
8405b70c 9674
e254a580 9675The return type can be changed using @code{%define position_type
8405b70c
PB
9676"@var{class-name}".}
9677@end deftypemethod
9678
9679@deftypemethod {Lexer} {Object} getLVal ()
c781580d 9680Return the semantic value of the last token that yylex returned.
8405b70c 9681
e254a580 9682The return type can be changed using @code{%define stype
8405b70c
PB
9683"@var{class-name}".}
9684@end deftypemethod
9685
9686
e254a580
DJ
9687@node Java Action Features
9688@subsection Special Features for Use in Java Actions
9689
9690The following special constructs can be uses in Java actions.
9691Other analogous C action features are currently unavailable for Java.
9692
9693Use @code{%define throws} to specify any uncaught exceptions from parser
9694actions, and initial actions specified by @code{%initial-action}.
9695
9696@defvar $@var{n}
9697The semantic value for the @var{n}th component of the current rule.
9698This may not be assigned to.
9699@xref{Java Semantic Values}.
9700@end defvar
9701
9702@defvar $<@var{typealt}>@var{n}
9703Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9704@xref{Java Semantic Values}.
9705@end defvar
9706
9707@defvar $$
9708The semantic value for the grouping made by the current rule. As a
9709value, this is in the base type (@code{Object} or as specified by
9710@code{%define stype}) as in not cast to the declared subtype because
9711casts are not allowed on the left-hand side of Java assignments.
9712Use an explicit Java cast if the correct subtype is needed.
9713@xref{Java Semantic Values}.
9714@end defvar
9715
9716@defvar $<@var{typealt}>$
9717Same as @code{$$} since Java always allow assigning to the base type.
9718Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9719for setting the value but there is currently no easy way to distinguish
9720these constructs.
9721@xref{Java Semantic Values}.
9722@end defvar
9723
9724@defvar @@@var{n}
9725The location information of the @var{n}th component of the current rule.
9726This may not be assigned to.
9727@xref{Java Location Values}.
9728@end defvar
9729
9730@defvar @@$
9731The location information of the grouping made by the current rule.
9732@xref{Java Location Values}.
9733@end defvar
9734
9735@deffn {Statement} {return YYABORT;}
9736Return immediately from the parser, indicating failure.
9737@xref{Java Parser Interface}.
9738@end deffn
8405b70c 9739
e254a580
DJ
9740@deffn {Statement} {return YYACCEPT;}
9741Return immediately from the parser, indicating success.
9742@xref{Java Parser Interface}.
9743@end deffn
8405b70c 9744
e254a580 9745@deffn {Statement} {return YYERROR;}
c046698e 9746Start error recovery without printing an error message.
e254a580
DJ
9747@xref{Error Recovery}.
9748@end deffn
8405b70c 9749
e254a580
DJ
9750@deftypefn {Function} {boolean} recovering ()
9751Return whether error recovery is being done. In this state, the parser
9752reads token until it reaches a known state, and then restarts normal
9753operation.
9754@xref{Error Recovery}.
9755@end deftypefn
8405b70c 9756
e254a580
DJ
9757@deftypefn {Function} {protected void} yyerror (String msg)
9758@deftypefnx {Function} {protected void} yyerror (Position pos, String msg)
9759@deftypefnx {Function} {protected void} yyerror (Location loc, String msg)
9760Print an error message using the @code{yyerror} method of the scanner
9761instance in use.
9762@end deftypefn
8405b70c 9763
8405b70c 9764
8405b70c
PB
9765@node Java Differences
9766@subsection Differences between C/C++ and Java Grammars
9767
9768The different structure of the Java language forces several differences
9769between C/C++ grammars, and grammars designed for Java parsers. This
29553547 9770section summarizes these differences.
8405b70c
PB
9771
9772@itemize
9773@item
01b477c6 9774Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 9775@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
9776macros. Instead, they should be preceded by @code{return} when they
9777appear in an action. The actual definition of these symbols is
8405b70c
PB
9778opaque to the Bison grammar, and it might change in the future. The
9779only meaningful operation that you can do, is to return them.
e254a580 9780See @pxref{Java Action Features}.
8405b70c
PB
9781
9782Note that of these three symbols, only @code{YYACCEPT} and
9783@code{YYABORT} will cause a return from the @code{yyparse}
9784method@footnote{Java parsers include the actions in a separate
9785method than @code{yyparse} in order to have an intuitive syntax that
9786corresponds to these C macros.}.
9787
e254a580
DJ
9788@item
9789Java lacks unions, so @code{%union} has no effect. Instead, semantic
9790values have a common base type: @code{Object} or as specified by
c781580d 9791@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
9792@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
9793an union. The type of @code{$$}, even with angle brackets, is the base
9794type since Java casts are not allow on the left-hand side of assignments.
9795Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
9796left-hand side of assignments. See @pxref{Java Semantic Values} and
9797@pxref{Java Action Features}.
9798
8405b70c 9799@item
c781580d 9800The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
9801@table @asis
9802@item @code{%code imports}
9803blocks are placed at the beginning of the Java source code. They may
9804include copyright notices. For a @code{package} declarations, it is
9805suggested to use @code{%define package} instead.
8405b70c 9806
01b477c6
PB
9807@item unqualified @code{%code}
9808blocks are placed inside the parser class.
9809
9810@item @code{%code lexer}
9811blocks, if specified, should include the implementation of the
9812scanner. If there is no such block, the scanner can be any class
9813that implements the appropriate interface (see @pxref{Java Scanner
9814Interface}).
29553547 9815@end table
8405b70c
PB
9816
9817Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
9818In particular, @code{%@{ @dots{} %@}} blocks should not be used
9819and may give an error in future versions of Bison.
9820
01b477c6 9821The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
9822be used to define other classes used by the parser @emph{outside}
9823the parser class.
8405b70c
PB
9824@end itemize
9825
e254a580
DJ
9826
9827@node Java Declarations Summary
9828@subsection Java Declarations Summary
9829
9830This summary only include declarations specific to Java or have special
9831meaning when used in a Java parser.
9832
9833@deffn {Directive} {%language "Java"}
9834Generate a Java class for the parser.
9835@end deffn
9836
9837@deffn {Directive} %lex-param @{@var{type} @var{name}@}
9838A parameter for the lexer class defined by @code{%code lexer}
9839@emph{only}, added as parameters to the lexer constructor and the parser
9840constructor that @emph{creates} a lexer. Default is none.
9841@xref{Java Scanner Interface}.
9842@end deffn
9843
9844@deffn {Directive} %name-prefix "@var{prefix}"
9845The prefix of the parser class name @code{@var{prefix}Parser} if
9846@code{%define parser_class_name} is not used. Default is @code{YY}.
9847@xref{Java Bison Interface}.
9848@end deffn
9849
9850@deffn {Directive} %parse-param @{@var{type} @var{name}@}
9851A parameter for the parser class added as parameters to constructor(s)
9852and as fields initialized by the constructor(s). Default is none.
9853@xref{Java Parser Interface}.
9854@end deffn
9855
9856@deffn {Directive} %token <@var{type}> @var{token} @dots{}
9857Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
9858@xref{Java Semantic Values}.
9859@end deffn
9860
9861@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
9862Declare the type of nonterminals. Note that the angle brackets enclose
9863a Java @emph{type}.
9864@xref{Java Semantic Values}.
9865@end deffn
9866
9867@deffn {Directive} %code @{ @var{code} @dots{} @}
9868Code appended to the inside of the parser class.
9869@xref{Java Differences}.
9870@end deffn
9871
9872@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
9873Code inserted just after the @code{package} declaration.
9874@xref{Java Differences}.
9875@end deffn
9876
9877@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
9878Code added to the body of a inner lexer class within the parser class.
9879@xref{Java Scanner Interface}.
9880@end deffn
9881
9882@deffn {Directive} %% @var{code} @dots{}
9883Code (after the second @code{%%}) appended to the end of the file,
9884@emph{outside} the parser class.
9885@xref{Java Differences}.
9886@end deffn
9887
9888@deffn {Directive} %@{ @var{code} @dots{} %@}
9889Not supported. Use @code{%code import} instead.
9890@xref{Java Differences}.
9891@end deffn
9892
9893@deffn {Directive} {%define abstract}
9894Whether the parser class is declared @code{abstract}. Default is false.
9895@xref{Java Bison Interface}.
9896@end deffn
9897
9898@deffn {Directive} {%define extends} "@var{superclass}"
9899The superclass of the parser class. Default is none.
9900@xref{Java Bison Interface}.
9901@end deffn
9902
9903@deffn {Directive} {%define final}
9904Whether the parser class is declared @code{final}. Default is false.
9905@xref{Java Bison Interface}.
9906@end deffn
9907
9908@deffn {Directive} {%define implements} "@var{interfaces}"
9909The implemented interfaces of the parser class, a comma-separated list.
9910Default is none.
9911@xref{Java Bison Interface}.
9912@end deffn
9913
9914@deffn {Directive} {%define lex_throws} "@var{exceptions}"
9915The exceptions thrown by the @code{yylex} method of the lexer, a
9916comma-separated list. Default is @code{java.io.IOException}.
9917@xref{Java Scanner Interface}.
9918@end deffn
9919
9920@deffn {Directive} {%define location_type} "@var{class}"
9921The name of the class used for locations (a range between two
9922positions). This class is generated as an inner class of the parser
9923class by @command{bison}. Default is @code{Location}.
9924@xref{Java Location Values}.
9925@end deffn
9926
9927@deffn {Directive} {%define package} "@var{package}"
9928The package to put the parser class in. Default is none.
9929@xref{Java Bison Interface}.
9930@end deffn
9931
9932@deffn {Directive} {%define parser_class_name} "@var{name}"
9933The name of the parser class. Default is @code{YYParser} or
9934@code{@var{name-prefix}Parser}.
9935@xref{Java Bison Interface}.
9936@end deffn
9937
9938@deffn {Directive} {%define position_type} "@var{class}"
9939The name of the class used for positions. This class must be supplied by
9940the user. Default is @code{Position}.
9941@xref{Java Location Values}.
9942@end deffn
9943
9944@deffn {Directive} {%define public}
9945Whether the parser class is declared @code{public}. Default is false.
9946@xref{Java Bison Interface}.
9947@end deffn
9948
9949@deffn {Directive} {%define stype} "@var{class}"
9950The base type of semantic values. Default is @code{Object}.
9951@xref{Java Semantic Values}.
9952@end deffn
9953
9954@deffn {Directive} {%define strictfp}
9955Whether the parser class is declared @code{strictfp}. Default is false.
9956@xref{Java Bison Interface}.
9957@end deffn
9958
9959@deffn {Directive} {%define throws} "@var{exceptions}"
9960The exceptions thrown by user-supplied parser actions and
9961@code{%initial-action}, a comma-separated list. Default is none.
9962@xref{Java Parser Interface}.
9963@end deffn
9964
9965
12545799 9966@c ================================================= FAQ
d1a1114f
AD
9967
9968@node FAQ
9969@chapter Frequently Asked Questions
9970@cindex frequently asked questions
9971@cindex questions
9972
9973Several questions about Bison come up occasionally. Here some of them
9974are addressed.
9975
9976@menu
55ba27be
AD
9977* Memory Exhausted:: Breaking the Stack Limits
9978* How Can I Reset the Parser:: @code{yyparse} Keeps some State
9979* Strings are Destroyed:: @code{yylval} Loses Track of Strings
9980* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 9981* Multiple start-symbols:: Factoring closely related grammars
35430378 9982* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
9983* I can't build Bison:: Troubleshooting
9984* Where can I find help?:: Troubleshouting
9985* Bug Reports:: Troublereporting
8405b70c 9986* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
9987* Beta Testing:: Experimenting development versions
9988* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
9989@end menu
9990
1a059451
PE
9991@node Memory Exhausted
9992@section Memory Exhausted
d1a1114f
AD
9993
9994@display
1a059451 9995My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
9996message. What can I do?
9997@end display
9998
9999This question is already addressed elsewhere, @xref{Recursion,
10000,Recursive Rules}.
10001
e64fec0a
PE
10002@node How Can I Reset the Parser
10003@section How Can I Reset the Parser
5b066063 10004
0e14ad77
PE
10005The following phenomenon has several symptoms, resulting in the
10006following typical questions:
5b066063
AD
10007
10008@display
10009I invoke @code{yyparse} several times, and on correct input it works
10010properly; but when a parse error is found, all the other calls fail
0e14ad77 10011too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
10012@end display
10013
10014@noindent
10015or
10016
10017@display
0e14ad77 10018My parser includes support for an @samp{#include}-like feature, in
5b066063 10019which case I run @code{yyparse} from @code{yyparse}. This fails
d9df47b6 10020although I did specify @code{%define api.pure}.
5b066063
AD
10021@end display
10022
0e14ad77
PE
10023These problems typically come not from Bison itself, but from
10024Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
10025speed, they might not notice a change of input file. As a
10026demonstration, consider the following source file,
10027@file{first-line.l}:
10028
10029@verbatim
10030%{
10031#include <stdio.h>
10032#include <stdlib.h>
10033%}
10034%%
10035.*\n ECHO; return 1;
10036%%
10037int
0e14ad77 10038yyparse (char const *file)
5b066063
AD
10039{
10040 yyin = fopen (file, "r");
10041 if (!yyin)
10042 exit (2);
fa7e68c3 10043 /* One token only. */
5b066063 10044 yylex ();
0e14ad77 10045 if (fclose (yyin) != 0)
5b066063
AD
10046 exit (3);
10047 return 0;
10048}
10049
10050int
0e14ad77 10051main (void)
5b066063
AD
10052{
10053 yyparse ("input");
10054 yyparse ("input");
10055 return 0;
10056}
10057@end verbatim
10058
10059@noindent
10060If the file @file{input} contains
10061
10062@verbatim
10063input:1: Hello,
10064input:2: World!
10065@end verbatim
10066
10067@noindent
0e14ad77 10068then instead of getting the first line twice, you get:
5b066063
AD
10069
10070@example
10071$ @kbd{flex -ofirst-line.c first-line.l}
10072$ @kbd{gcc -ofirst-line first-line.c -ll}
10073$ @kbd{./first-line}
10074input:1: Hello,
10075input:2: World!
10076@end example
10077
0e14ad77
PE
10078Therefore, whenever you change @code{yyin}, you must tell the
10079Lex-generated scanner to discard its current buffer and switch to the
10080new one. This depends upon your implementation of Lex; see its
10081documentation for more. For Flex, it suffices to call
10082@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
10083Flex-generated scanner needs to read from several input streams to
10084handle features like include files, you might consider using Flex
10085functions like @samp{yy_switch_to_buffer} that manipulate multiple
10086input buffers.
5b066063 10087
b165c324
AD
10088If your Flex-generated scanner uses start conditions (@pxref{Start
10089conditions, , Start conditions, flex, The Flex Manual}), you might
10090also want to reset the scanner's state, i.e., go back to the initial
10091start condition, through a call to @samp{BEGIN (0)}.
10092
fef4cb51
AD
10093@node Strings are Destroyed
10094@section Strings are Destroyed
10095
10096@display
c7e441b4 10097My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
10098them. Instead of reporting @samp{"foo", "bar"}, it reports
10099@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
10100@end display
10101
10102This error is probably the single most frequent ``bug report'' sent to
10103Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 10104of the scanner. Consider the following Lex code:
fef4cb51
AD
10105
10106@verbatim
10107%{
10108#include <stdio.h>
10109char *yylval = NULL;
10110%}
10111%%
10112.* yylval = yytext; return 1;
10113\n /* IGNORE */
10114%%
10115int
10116main ()
10117{
fa7e68c3 10118 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
10119 char *fst = (yylex (), yylval);
10120 char *snd = (yylex (), yylval);
10121 printf ("\"%s\", \"%s\"\n", fst, snd);
10122 return 0;
10123}
10124@end verbatim
10125
10126If you compile and run this code, you get:
10127
10128@example
10129$ @kbd{flex -osplit-lines.c split-lines.l}
10130$ @kbd{gcc -osplit-lines split-lines.c -ll}
10131$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10132"one
10133two", "two"
10134@end example
10135
10136@noindent
10137this is because @code{yytext} is a buffer provided for @emph{reading}
10138in the action, but if you want to keep it, you have to duplicate it
10139(e.g., using @code{strdup}). Note that the output may depend on how
10140your implementation of Lex handles @code{yytext}. For instance, when
10141given the Lex compatibility option @option{-l} (which triggers the
10142option @samp{%array}) Flex generates a different behavior:
10143
10144@example
10145$ @kbd{flex -l -osplit-lines.c split-lines.l}
10146$ @kbd{gcc -osplit-lines split-lines.c -ll}
10147$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10148"two", "two"
10149@end example
10150
10151
2fa09258
AD
10152@node Implementing Gotos/Loops
10153@section Implementing Gotos/Loops
a06ea4aa
AD
10154
10155@display
10156My simple calculator supports variables, assignments, and functions,
2fa09258 10157but how can I implement gotos, or loops?
a06ea4aa
AD
10158@end display
10159
10160Although very pedagogical, the examples included in the document blur
a1c84f45 10161the distinction to make between the parser---whose job is to recover
a06ea4aa 10162the structure of a text and to transmit it to subsequent modules of
a1c84f45 10163the program---and the processing (such as the execution) of this
a06ea4aa
AD
10164structure. This works well with so called straight line programs,
10165i.e., precisely those that have a straightforward execution model:
10166execute simple instructions one after the others.
10167
10168@cindex abstract syntax tree
35430378 10169@cindex AST
a06ea4aa
AD
10170If you want a richer model, you will probably need to use the parser
10171to construct a tree that does represent the structure it has
10172recovered; this tree is usually called the @dfn{abstract syntax tree},
35430378 10173or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
10174traversing it in various ways, will enable treatments such as its
10175execution or its translation, which will result in an interpreter or a
10176compiler.
10177
10178This topic is way beyond the scope of this manual, and the reader is
10179invited to consult the dedicated literature.
10180
10181
ed2e6384
AD
10182@node Multiple start-symbols
10183@section Multiple start-symbols
10184
10185@display
10186I have several closely related grammars, and I would like to share their
10187implementations. In fact, I could use a single grammar but with
10188multiple entry points.
10189@end display
10190
10191Bison does not support multiple start-symbols, but there is a very
10192simple means to simulate them. If @code{foo} and @code{bar} are the two
10193pseudo start-symbols, then introduce two new tokens, say
10194@code{START_FOO} and @code{START_BAR}, and use them as switches from the
10195real start-symbol:
10196
10197@example
10198%token START_FOO START_BAR;
10199%start start;
10200start: START_FOO foo
10201 | START_BAR bar;
10202@end example
10203
10204These tokens prevents the introduction of new conflicts. As far as the
10205parser goes, that is all that is needed.
10206
10207Now the difficult part is ensuring that the scanner will send these
10208tokens first. If your scanner is hand-written, that should be
10209straightforward. If your scanner is generated by Lex, them there is
10210simple means to do it: recall that anything between @samp{%@{ ... %@}}
10211after the first @code{%%} is copied verbatim in the top of the generated
10212@code{yylex} function. Make sure a variable @code{start_token} is
10213available in the scanner (e.g., a global variable or using
10214@code{%lex-param} etc.), and use the following:
10215
10216@example
10217 /* @r{Prologue.} */
10218%%
10219%@{
10220 if (start_token)
10221 @{
10222 int t = start_token;
10223 start_token = 0;
10224 return t;
10225 @}
10226%@}
10227 /* @r{The rules.} */
10228@end example
10229
10230
55ba27be
AD
10231@node Secure? Conform?
10232@section Secure? Conform?
10233
10234@display
10235Is Bison secure? Does it conform to POSIX?
10236@end display
10237
10238If you're looking for a guarantee or certification, we don't provide it.
10239However, Bison is intended to be a reliable program that conforms to the
35430378 10240POSIX specification for Yacc. If you run into problems,
55ba27be
AD
10241please send us a bug report.
10242
10243@node I can't build Bison
10244@section I can't build Bison
10245
10246@display
8c5b881d
PE
10247I can't build Bison because @command{make} complains that
10248@code{msgfmt} is not found.
55ba27be
AD
10249What should I do?
10250@end display
10251
10252Like most GNU packages with internationalization support, that feature
10253is turned on by default. If you have problems building in the @file{po}
10254subdirectory, it indicates that your system's internationalization
10255support is lacking. You can re-configure Bison with
10256@option{--disable-nls} to turn off this support, or you can install GNU
10257gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
10258Bison. See the file @file{ABOUT-NLS} for more information.
10259
10260
10261@node Where can I find help?
10262@section Where can I find help?
10263
10264@display
10265I'm having trouble using Bison. Where can I find help?
10266@end display
10267
10268First, read this fine manual. Beyond that, you can send mail to
10269@email{help-bison@@gnu.org}. This mailing list is intended to be
10270populated with people who are willing to answer questions about using
10271and installing Bison. Please keep in mind that (most of) the people on
10272the list have aspects of their lives which are not related to Bison (!),
10273so you may not receive an answer to your question right away. This can
10274be frustrating, but please try not to honk them off; remember that any
10275help they provide is purely voluntary and out of the kindness of their
10276hearts.
10277
10278@node Bug Reports
10279@section Bug Reports
10280
10281@display
10282I found a bug. What should I include in the bug report?
10283@end display
10284
10285Before you send a bug report, make sure you are using the latest
10286version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
10287mirrors. Be sure to include the version number in your bug report. If
10288the bug is present in the latest version but not in a previous version,
10289try to determine the most recent version which did not contain the bug.
10290
10291If the bug is parser-related, you should include the smallest grammar
10292you can which demonstrates the bug. The grammar file should also be
10293complete (i.e., I should be able to run it through Bison without having
10294to edit or add anything). The smaller and simpler the grammar, the
10295easier it will be to fix the bug.
10296
10297Include information about your compilation environment, including your
10298operating system's name and version and your compiler's name and
10299version. If you have trouble compiling, you should also include a
10300transcript of the build session, starting with the invocation of
10301`configure'. Depending on the nature of the bug, you may be asked to
10302send additional files as well (such as `config.h' or `config.cache').
10303
10304Patches are most welcome, but not required. That is, do not hesitate to
10305send a bug report just because you can not provide a fix.
10306
10307Send bug reports to @email{bug-bison@@gnu.org}.
10308
8405b70c
PB
10309@node More Languages
10310@section More Languages
55ba27be
AD
10311
10312@display
8405b70c 10313Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
10314favorite language here}?
10315@end display
10316
8405b70c 10317C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
10318languages; contributions are welcome.
10319
10320@node Beta Testing
10321@section Beta Testing
10322
10323@display
10324What is involved in being a beta tester?
10325@end display
10326
10327It's not terribly involved. Basically, you would download a test
10328release, compile it, and use it to build and run a parser or two. After
10329that, you would submit either a bug report or a message saying that
10330everything is okay. It is important to report successes as well as
10331failures because test releases eventually become mainstream releases,
10332but only if they are adequately tested. If no one tests, development is
10333essentially halted.
10334
10335Beta testers are particularly needed for operating systems to which the
10336developers do not have easy access. They currently have easy access to
10337recent GNU/Linux and Solaris versions. Reports about other operating
10338systems are especially welcome.
10339
10340@node Mailing Lists
10341@section Mailing Lists
10342
10343@display
10344How do I join the help-bison and bug-bison mailing lists?
10345@end display
10346
10347See @url{http://lists.gnu.org/}.
a06ea4aa 10348
d1a1114f
AD
10349@c ================================================= Table of Symbols
10350
342b8b6e 10351@node Table of Symbols
bfa74976
RS
10352@appendix Bison Symbols
10353@cindex Bison symbols, table of
10354@cindex symbols in Bison, table of
10355
18b519c0 10356@deffn {Variable} @@$
3ded9a63 10357In an action, the location of the left-hand side of the rule.
88bce5a2 10358@xref{Locations, , Locations Overview}.
18b519c0 10359@end deffn
3ded9a63 10360
18b519c0 10361@deffn {Variable} @@@var{n}
3ded9a63
AD
10362In an action, the location of the @var{n}-th symbol of the right-hand
10363side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 10364@end deffn
3ded9a63 10365
1f68dca5
AR
10366@deffn {Variable} @@@var{name}
10367In an action, the location of a symbol addressed by name.
10368@xref{Locations, , Locations Overview}.
10369@end deffn
10370
10371@deffn {Variable} @@[@var{name}]
10372In an action, the location of a symbol addressed by name.
10373@xref{Locations, , Locations Overview}.
10374@end deffn
10375
18b519c0 10376@deffn {Variable} $$
3ded9a63
AD
10377In an action, the semantic value of the left-hand side of the rule.
10378@xref{Actions}.
18b519c0 10379@end deffn
3ded9a63 10380
18b519c0 10381@deffn {Variable} $@var{n}
3ded9a63
AD
10382In an action, the semantic value of the @var{n}-th symbol of the
10383right-hand side of the rule. @xref{Actions}.
18b519c0 10384@end deffn
3ded9a63 10385
1f68dca5
AR
10386@deffn {Variable} $@var{name}
10387In an action, the semantic value of a symbol addressed by name.
10388@xref{Actions}.
10389@end deffn
10390
10391@deffn {Variable} $[@var{name}]
10392In an action, the semantic value of a symbol addressed by name.
10393@xref{Actions}.
10394@end deffn
10395
dd8d9022
AD
10396@deffn {Delimiter} %%
10397Delimiter used to separate the grammar rule section from the
10398Bison declarations section or the epilogue.
10399@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 10400@end deffn
bfa74976 10401
dd8d9022
AD
10402@c Don't insert spaces, or check the DVI output.
10403@deffn {Delimiter} %@{@var{code}%@}
9913d6e4
JD
10404All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
10405to the parser implementation file. Such code forms the prologue of
10406the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 10407Grammar}.
18b519c0 10408@end deffn
bfa74976 10409
dd8d9022
AD
10410@deffn {Construct} /*@dots{}*/
10411Comment delimiters, as in C.
18b519c0 10412@end deffn
bfa74976 10413
dd8d9022
AD
10414@deffn {Delimiter} :
10415Separates a rule's result from its components. @xref{Rules, ,Syntax of
10416Grammar Rules}.
18b519c0 10417@end deffn
bfa74976 10418
dd8d9022
AD
10419@deffn {Delimiter} ;
10420Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10421@end deffn
bfa74976 10422
dd8d9022
AD
10423@deffn {Delimiter} |
10424Separates alternate rules for the same result nonterminal.
10425@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10426@end deffn
bfa74976 10427
12e35840
JD
10428@deffn {Directive} <*>
10429Used to define a default tagged @code{%destructor} or default tagged
10430@code{%printer}.
85894313
JD
10431
10432This feature is experimental.
10433More user feedback will help to determine whether it should become a permanent
10434feature.
10435
12e35840
JD
10436@xref{Destructor Decl, , Freeing Discarded Symbols}.
10437@end deffn
10438
3ebecc24 10439@deffn {Directive} <>
12e35840
JD
10440Used to define a default tagless @code{%destructor} or default tagless
10441@code{%printer}.
85894313
JD
10442
10443This feature is experimental.
10444More user feedback will help to determine whether it should become a permanent
10445feature.
10446
12e35840
JD
10447@xref{Destructor Decl, , Freeing Discarded Symbols}.
10448@end deffn
10449
dd8d9022
AD
10450@deffn {Symbol} $accept
10451The predefined nonterminal whose only rule is @samp{$accept: @var{start}
10452$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
10453Start-Symbol}. It cannot be used in the grammar.
18b519c0 10454@end deffn
bfa74976 10455
136a0f76 10456@deffn {Directive} %code @{@var{code}@}
148d66d8 10457@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
406dec82
JD
10458Insert @var{code} verbatim into the output parser source at the
10459default location or at the location specified by @var{qualifier}.
8e6f2266 10460@xref{%code Summary}.
9bc0dd67 10461@end deffn
9bc0dd67 10462
18b519c0 10463@deffn {Directive} %debug
6deb4447 10464Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 10465@end deffn
6deb4447 10466
91d2c560 10467@ifset defaultprec
22fccf95
PE
10468@deffn {Directive} %default-prec
10469Assign a precedence to rules that lack an explicit @samp{%prec}
10470modifier. @xref{Contextual Precedence, ,Context-Dependent
10471Precedence}.
39a06c25 10472@end deffn
91d2c560 10473@end ifset
39a06c25 10474
6f04ee6c
JD
10475@deffn {Directive} %define @var{variable}
10476@deffnx {Directive} %define @var{variable} @var{value}
10477@deffnx {Directive} %define @var{variable} "@var{value}"
2f4518a1 10478Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
10479@end deffn
10480
18b519c0 10481@deffn {Directive} %defines
9913d6e4
JD
10482Bison declaration to create a parser header file, which is usually
10483meant for the scanner. @xref{Decl Summary}.
18b519c0 10484@end deffn
6deb4447 10485
02975b9a
JD
10486@deffn {Directive} %defines @var{defines-file}
10487Same as above, but save in the file @var{defines-file}.
10488@xref{Decl Summary}.
10489@end deffn
10490
18b519c0 10491@deffn {Directive} %destructor
258b75ca 10492Specify how the parser should reclaim the memory associated to
fa7e68c3 10493discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 10494@end deffn
72f889cc 10495
18b519c0 10496@deffn {Directive} %dprec
676385e2 10497Bison declaration to assign a precedence to a rule that is used at parse
c827f760 10498time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
35430378 10499GLR Parsers}.
18b519c0 10500@end deffn
676385e2 10501
dd8d9022
AD
10502@deffn {Symbol} $end
10503The predefined token marking the end of the token stream. It cannot be
10504used in the grammar.
10505@end deffn
10506
10507@deffn {Symbol} error
10508A token name reserved for error recovery. This token may be used in
10509grammar rules so as to allow the Bison parser to recognize an error in
10510the grammar without halting the process. In effect, a sentence
10511containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
10512token @code{error} becomes the current lookahead token. Actions
10513corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
10514token is reset to the token that originally caused the violation.
10515@xref{Error Recovery}.
18d192f0
AD
10516@end deffn
10517
18b519c0 10518@deffn {Directive} %error-verbose
2a8d363a 10519Bison declaration to request verbose, specific error message strings
6f04ee6c 10520when @code{yyerror} is called. @xref{Error Reporting}.
18b519c0 10521@end deffn
2a8d363a 10522
02975b9a 10523@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 10524Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 10525Summary}.
18b519c0 10526@end deffn
d8988b2f 10527
18b519c0 10528@deffn {Directive} %glr-parser
35430378
JD
10529Bison declaration to produce a GLR parser. @xref{GLR
10530Parsers, ,Writing GLR Parsers}.
18b519c0 10531@end deffn
676385e2 10532
dd8d9022
AD
10533@deffn {Directive} %initial-action
10534Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
10535@end deffn
10536
e6e704dc
JD
10537@deffn {Directive} %language
10538Specify the programming language for the generated parser.
10539@xref{Decl Summary}.
10540@end deffn
10541
18b519c0 10542@deffn {Directive} %left
bfa74976
RS
10543Bison declaration to assign left associativity to token(s).
10544@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10545@end deffn
bfa74976 10546
feeb0eda 10547@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
10548Bison declaration to specifying an additional parameter that
10549@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
10550for Pure Parsers}.
18b519c0 10551@end deffn
2a8d363a 10552
18b519c0 10553@deffn {Directive} %merge
676385e2 10554Bison declaration to assign a merging function to a rule. If there is a
fae437e8 10555reduce/reduce conflict with a rule having the same merging function, the
676385e2 10556function is applied to the two semantic values to get a single result.
35430378 10557@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 10558@end deffn
676385e2 10559
02975b9a 10560@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 10561Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 10562@end deffn
d8988b2f 10563
91d2c560 10564@ifset defaultprec
22fccf95
PE
10565@deffn {Directive} %no-default-prec
10566Do not assign a precedence to rules that lack an explicit @samp{%prec}
10567modifier. @xref{Contextual Precedence, ,Context-Dependent
10568Precedence}.
10569@end deffn
91d2c560 10570@end ifset
22fccf95 10571
18b519c0 10572@deffn {Directive} %no-lines
931c7513 10573Bison declaration to avoid generating @code{#line} directives in the
9913d6e4 10574parser implementation file. @xref{Decl Summary}.
18b519c0 10575@end deffn
931c7513 10576
18b519c0 10577@deffn {Directive} %nonassoc
9d9b8b70 10578Bison declaration to assign nonassociativity to token(s).
bfa74976 10579@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10580@end deffn
bfa74976 10581
02975b9a 10582@deffn {Directive} %output "@var{file}"
9913d6e4
JD
10583Bison declaration to set the name of the parser implementation file.
10584@xref{Decl Summary}.
18b519c0 10585@end deffn
d8988b2f 10586
feeb0eda 10587@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
10588Bison declaration to specifying an additional parameter that
10589@code{yyparse} should accept. @xref{Parser Function,, The Parser
10590Function @code{yyparse}}.
18b519c0 10591@end deffn
2a8d363a 10592
18b519c0 10593@deffn {Directive} %prec
bfa74976
RS
10594Bison declaration to assign a precedence to a specific rule.
10595@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 10596@end deffn
bfa74976 10597
18b519c0 10598@deffn {Directive} %pure-parser
2f4518a1
JD
10599Deprecated version of @code{%define api.pure} (@pxref{%define
10600Summary,,api.pure}), for which Bison is more careful to warn about
10601unreasonable usage.
18b519c0 10602@end deffn
bfa74976 10603
b50d2359 10604@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
10605Require version @var{version} or higher of Bison. @xref{Require Decl, ,
10606Require a Version of Bison}.
b50d2359
AD
10607@end deffn
10608
18b519c0 10609@deffn {Directive} %right
bfa74976
RS
10610Bison declaration to assign right associativity to token(s).
10611@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10612@end deffn
bfa74976 10613
e6e704dc
JD
10614@deffn {Directive} %skeleton
10615Specify the skeleton to use; usually for development.
10616@xref{Decl Summary}.
10617@end deffn
10618
18b519c0 10619@deffn {Directive} %start
704a47c4
AD
10620Bison declaration to specify the start symbol. @xref{Start Decl, ,The
10621Start-Symbol}.
18b519c0 10622@end deffn
bfa74976 10623
18b519c0 10624@deffn {Directive} %token
bfa74976
RS
10625Bison declaration to declare token(s) without specifying precedence.
10626@xref{Token Decl, ,Token Type Names}.
18b519c0 10627@end deffn
bfa74976 10628
18b519c0 10629@deffn {Directive} %token-table
9913d6e4
JD
10630Bison declaration to include a token name table in the parser
10631implementation file. @xref{Decl Summary}.
18b519c0 10632@end deffn
931c7513 10633
18b519c0 10634@deffn {Directive} %type
704a47c4
AD
10635Bison declaration to declare nonterminals. @xref{Type Decl,
10636,Nonterminal Symbols}.
18b519c0 10637@end deffn
bfa74976 10638
dd8d9022
AD
10639@deffn {Symbol} $undefined
10640The predefined token onto which all undefined values returned by
10641@code{yylex} are mapped. It cannot be used in the grammar, rather, use
10642@code{error}.
10643@end deffn
10644
18b519c0 10645@deffn {Directive} %union
bfa74976
RS
10646Bison declaration to specify several possible data types for semantic
10647values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 10648@end deffn
bfa74976 10649
dd8d9022
AD
10650@deffn {Macro} YYABORT
10651Macro to pretend that an unrecoverable syntax error has occurred, by
10652making @code{yyparse} return 1 immediately. The error reporting
10653function @code{yyerror} is not called. @xref{Parser Function, ,The
10654Parser Function @code{yyparse}}.
8405b70c
PB
10655
10656For Java parsers, this functionality is invoked using @code{return YYABORT;}
10657instead.
dd8d9022 10658@end deffn
3ded9a63 10659
dd8d9022
AD
10660@deffn {Macro} YYACCEPT
10661Macro to pretend that a complete utterance of the language has been
10662read, by making @code{yyparse} return 0 immediately.
10663@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
10664
10665For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
10666instead.
dd8d9022 10667@end deffn
bfa74976 10668
dd8d9022 10669@deffn {Macro} YYBACKUP
742e4900 10670Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 10671token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10672@end deffn
bfa74976 10673
dd8d9022 10674@deffn {Variable} yychar
32c29292 10675External integer variable that contains the integer value of the
742e4900 10676lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
10677@code{yyparse}.) Error-recovery rule actions may examine this variable.
10678@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10679@end deffn
bfa74976 10680
dd8d9022
AD
10681@deffn {Variable} yyclearin
10682Macro used in error-recovery rule actions. It clears the previous
742e4900 10683lookahead token. @xref{Error Recovery}.
18b519c0 10684@end deffn
bfa74976 10685
dd8d9022
AD
10686@deffn {Macro} YYDEBUG
10687Macro to define to equip the parser with tracing code. @xref{Tracing,
10688,Tracing Your Parser}.
18b519c0 10689@end deffn
bfa74976 10690
dd8d9022
AD
10691@deffn {Variable} yydebug
10692External integer variable set to zero by default. If @code{yydebug}
10693is given a nonzero value, the parser will output information on input
10694symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 10695@end deffn
bfa74976 10696
dd8d9022
AD
10697@deffn {Macro} yyerrok
10698Macro to cause parser to recover immediately to its normal mode
10699after a syntax error. @xref{Error Recovery}.
10700@end deffn
10701
10702@deffn {Macro} YYERROR
10703Macro to pretend that a syntax error has just been detected: call
10704@code{yyerror} and then perform normal error recovery if possible
10705(@pxref{Error Recovery}), or (if recovery is impossible) make
10706@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
10707
10708For Java parsers, this functionality is invoked using @code{return YYERROR;}
10709instead.
dd8d9022
AD
10710@end deffn
10711
10712@deffn {Function} yyerror
10713User-supplied function to be called by @code{yyparse} on error.
10714@xref{Error Reporting, ,The Error
10715Reporting Function @code{yyerror}}.
10716@end deffn
10717
10718@deffn {Macro} YYERROR_VERBOSE
10719An obsolete macro that you define with @code{#define} in the prologue
10720to request verbose, specific error message strings
10721when @code{yyerror} is called. It doesn't matter what definition you
10722use for @code{YYERROR_VERBOSE}, just whether you define it. Using
6f04ee6c 10723@code{%error-verbose} is preferred. @xref{Error Reporting}.
dd8d9022
AD
10724@end deffn
10725
10726@deffn {Macro} YYINITDEPTH
10727Macro for specifying the initial size of the parser stack.
1a059451 10728@xref{Memory Management}.
dd8d9022
AD
10729@end deffn
10730
10731@deffn {Function} yylex
10732User-supplied lexical analyzer function, called with no arguments to get
10733the next token. @xref{Lexical, ,The Lexical Analyzer Function
10734@code{yylex}}.
10735@end deffn
10736
10737@deffn {Macro} YYLEX_PARAM
10738An obsolete macro for specifying an extra argument (or list of extra
32c29292 10739arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
10740macro is deprecated, and is supported only for Yacc like parsers.
10741@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
10742@end deffn
10743
10744@deffn {Variable} yylloc
10745External variable in which @code{yylex} should place the line and column
10746numbers associated with a token. (In a pure parser, it is a local
10747variable within @code{yyparse}, and its address is passed to
32c29292
JD
10748@code{yylex}.)
10749You can ignore this variable if you don't use the @samp{@@} feature in the
10750grammar actions.
10751@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 10752In semantic actions, it stores the location of the lookahead token.
32c29292 10753@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
10754@end deffn
10755
10756@deffn {Type} YYLTYPE
10757Data type of @code{yylloc}; by default, a structure with four
10758members. @xref{Location Type, , Data Types of Locations}.
10759@end deffn
10760
10761@deffn {Variable} yylval
10762External variable in which @code{yylex} should place the semantic
10763value associated with a token. (In a pure parser, it is a local
10764variable within @code{yyparse}, and its address is passed to
32c29292
JD
10765@code{yylex}.)
10766@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 10767In semantic actions, it stores the semantic value of the lookahead token.
32c29292 10768@xref{Actions, ,Actions}.
dd8d9022
AD
10769@end deffn
10770
10771@deffn {Macro} YYMAXDEPTH
1a059451
PE
10772Macro for specifying the maximum size of the parser stack. @xref{Memory
10773Management}.
dd8d9022
AD
10774@end deffn
10775
10776@deffn {Variable} yynerrs
8a2800e7 10777Global variable which Bison increments each time it reports a syntax error.
f4101aa6 10778(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 10779pure push parser, it is a member of yypstate.)
dd8d9022
AD
10780@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
10781@end deffn
10782
10783@deffn {Function} yyparse
10784The parser function produced by Bison; call this function to start
10785parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
10786@end deffn
10787
9987d1b3 10788@deffn {Function} yypstate_delete
f4101aa6 10789The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 10790call this function to delete the memory associated with a parser.
f4101aa6 10791@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 10792@code{yypstate_delete}}.
59da312b
JD
10793(The current push parsing interface is experimental and may evolve.
10794More user feedback will help to stabilize it.)
9987d1b3
JD
10795@end deffn
10796
10797@deffn {Function} yypstate_new
f4101aa6 10798The function to create a parser instance, produced by Bison in push mode;
9987d1b3 10799call this function to create a new parser.
f4101aa6 10800@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 10801@code{yypstate_new}}.
59da312b
JD
10802(The current push parsing interface is experimental and may evolve.
10803More user feedback will help to stabilize it.)
9987d1b3
JD
10804@end deffn
10805
10806@deffn {Function} yypull_parse
f4101aa6
AD
10807The parser function produced by Bison in push mode; call this function to
10808parse the rest of the input stream.
10809@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 10810@code{yypull_parse}}.
59da312b
JD
10811(The current push parsing interface is experimental and may evolve.
10812More user feedback will help to stabilize it.)
9987d1b3
JD
10813@end deffn
10814
10815@deffn {Function} yypush_parse
f4101aa6
AD
10816The parser function produced by Bison in push mode; call this function to
10817parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 10818@code{yypush_parse}}.
59da312b
JD
10819(The current push parsing interface is experimental and may evolve.
10820More user feedback will help to stabilize it.)
9987d1b3
JD
10821@end deffn
10822
dd8d9022
AD
10823@deffn {Macro} YYPARSE_PARAM
10824An obsolete macro for specifying the name of a parameter that
10825@code{yyparse} should accept. The use of this macro is deprecated, and
10826is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
10827Conventions for Pure Parsers}.
10828@end deffn
10829
10830@deffn {Macro} YYRECOVERING
02103984
PE
10831The expression @code{YYRECOVERING ()} yields 1 when the parser
10832is recovering from a syntax error, and 0 otherwise.
10833@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
10834@end deffn
10835
10836@deffn {Macro} YYSTACK_USE_ALLOCA
34a6c2d1
JD
10837Macro used to control the use of @code{alloca} when the
10838deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
10839the parser will use @code{malloc} to extend its stacks. If defined to
108401, the parser will use @code{alloca}. Values other than 0 and 1 are
10841reserved for future Bison extensions. If not defined,
10842@code{YYSTACK_USE_ALLOCA} defaults to 0.
10843
55289366 10844In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
10845limited stack and with unreliable stack-overflow checking, you should
10846set @code{YYMAXDEPTH} to a value that cannot possibly result in
10847unchecked stack overflow on any of your target hosts when
10848@code{alloca} is called. You can inspect the code that Bison
10849generates in order to determine the proper numeric values. This will
10850require some expertise in low-level implementation details.
dd8d9022
AD
10851@end deffn
10852
10853@deffn {Type} YYSTYPE
10854Data type of semantic values; @code{int} by default.
10855@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 10856@end deffn
bfa74976 10857
342b8b6e 10858@node Glossary
bfa74976
RS
10859@appendix Glossary
10860@cindex glossary
10861
10862@table @asis
6f04ee6c 10863@item Accepting state
34a6c2d1
JD
10864A state whose only action is the accept action.
10865The accepting state is thus a consistent state.
10866@xref{Understanding,,}.
10867
35430378 10868@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
10869Formal method of specifying context-free grammars originally proposed
10870by John Backus, and slightly improved by Peter Naur in his 1960-01-02
10871committee document contributing to what became the Algol 60 report.
10872@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 10873
6f04ee6c
JD
10874@item Consistent state
10875A state containing only one possible action. @xref{Default Reductions}.
34a6c2d1 10876
bfa74976
RS
10877@item Context-free grammars
10878Grammars specified as rules that can be applied regardless of context.
10879Thus, if there is a rule which says that an integer can be used as an
10880expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
10881permitted. @xref{Language and Grammar, ,Languages and Context-Free
10882Grammars}.
bfa74976 10883
6f04ee6c 10884@item Default reduction
620b5727 10885The reduction that a parser should perform if the current parser state
2f4518a1 10886contains no other action for the lookahead token. In permitted parser
6f04ee6c
JD
10887states, Bison declares the reduction with the largest lookahead set to be
10888the default reduction and removes that lookahead set. @xref{Default
10889Reductions}.
10890
10891@item Defaulted state
10892A consistent state with a default reduction. @xref{Default Reductions}.
34a6c2d1 10893
bfa74976
RS
10894@item Dynamic allocation
10895Allocation of memory that occurs during execution, rather than at
10896compile time or on entry to a function.
10897
10898@item Empty string
10899Analogous to the empty set in set theory, the empty string is a
10900character string of length zero.
10901
10902@item Finite-state stack machine
10903A ``machine'' that has discrete states in which it is said to exist at
10904each instant in time. As input to the machine is processed, the
10905machine moves from state to state as specified by the logic of the
10906machine. In the case of the parser, the input is the language being
10907parsed, and the states correspond to various stages in the grammar
c827f760 10908rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 10909
35430378 10910@item Generalized LR (GLR)
676385e2 10911A parsing algorithm that can handle all context-free grammars, including those
35430378 10912that are not LR(1). It resolves situations that Bison's
34a6c2d1 10913deterministic parsing
676385e2
PH
10914algorithm cannot by effectively splitting off multiple parsers, trying all
10915possible parsers, and discarding those that fail in the light of additional
c827f760 10916right context. @xref{Generalized LR Parsing, ,Generalized
35430378 10917LR Parsing}.
676385e2 10918
bfa74976
RS
10919@item Grouping
10920A language construct that is (in general) grammatically divisible;
c827f760 10921for example, `expression' or `declaration' in C@.
bfa74976
RS
10922@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10923
6f04ee6c
JD
10924@item IELR(1) (Inadequacy Elimination LR(1))
10925A minimal LR(1) parser table construction algorithm. That is, given any
2f4518a1 10926context-free grammar, IELR(1) generates parser tables with the full
6f04ee6c
JD
10927language-recognition power of canonical LR(1) but with nearly the same
10928number of parser states as LALR(1). This reduction in parser states is
10929often an order of magnitude. More importantly, because canonical LR(1)'s
10930extra parser states may contain duplicate conflicts in the case of non-LR(1)
10931grammars, the number of conflicts for IELR(1) is often an order of magnitude
10932less as well. This can significantly reduce the complexity of developing a
10933grammar. @xref{LR Table Construction}.
34a6c2d1 10934
bfa74976
RS
10935@item Infix operator
10936An arithmetic operator that is placed between the operands on which it
10937performs some operation.
10938
10939@item Input stream
10940A continuous flow of data between devices or programs.
10941
35430378 10942@item LAC (Lookahead Correction)
4c38b19e 10943A parsing mechanism that fixes the problem of delayed syntax error
6f04ee6c
JD
10944detection, which is caused by LR state merging, default reductions, and the
10945use of @code{%nonassoc}. Delayed syntax error detection results in
10946unexpected semantic actions, initiation of error recovery in the wrong
10947syntactic context, and an incorrect list of expected tokens in a verbose
10948syntax error message. @xref{LAC}.
4c38b19e 10949
bfa74976
RS
10950@item Language construct
10951One of the typical usage schemas of the language. For example, one of
10952the constructs of the C language is the @code{if} statement.
10953@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10954
10955@item Left associativity
10956Operators having left associativity are analyzed from left to right:
10957@samp{a+b+c} first computes @samp{a+b} and then combines with
10958@samp{c}. @xref{Precedence, ,Operator Precedence}.
10959
10960@item Left recursion
89cab50d
AD
10961A rule whose result symbol is also its first component symbol; for
10962example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
10963Rules}.
bfa74976
RS
10964
10965@item Left-to-right parsing
10966Parsing a sentence of a language by analyzing it token by token from
c827f760 10967left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10968
10969@item Lexical analyzer (scanner)
10970A function that reads an input stream and returns tokens one by one.
10971@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
10972
10973@item Lexical tie-in
10974A flag, set by actions in the grammar rules, which alters the way
10975tokens are parsed. @xref{Lexical Tie-ins}.
10976
931c7513 10977@item Literal string token
14ded682 10978A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 10979
742e4900
JD
10980@item Lookahead token
10981A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 10982Tokens}.
bfa74976 10983
35430378 10984@item LALR(1)
bfa74976 10985The class of context-free grammars that Bison (like most other parser
35430378 10986generators) can handle by default; a subset of LR(1).
5da0355a 10987@xref{Mysterious Conflicts}.
bfa74976 10988
35430378 10989@item LR(1)
bfa74976 10990The class of context-free grammars in which at most one token of
742e4900 10991lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
10992
10993@item Nonterminal symbol
10994A grammar symbol standing for a grammatical construct that can
10995be expressed through rules in terms of smaller constructs; in other
10996words, a construct that is not a token. @xref{Symbols}.
10997
bfa74976
RS
10998@item Parser
10999A function that recognizes valid sentences of a language by analyzing
11000the syntax structure of a set of tokens passed to it from a lexical
11001analyzer.
11002
11003@item Postfix operator
11004An arithmetic operator that is placed after the operands upon which it
11005performs some operation.
11006
11007@item Reduction
11008Replacing a string of nonterminals and/or terminals with a single
89cab50d 11009nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 11010Parser Algorithm}.
bfa74976
RS
11011
11012@item Reentrant
11013A reentrant subprogram is a subprogram which can be in invoked any
11014number of times in parallel, without interference between the various
11015invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
11016
11017@item Reverse polish notation
11018A language in which all operators are postfix operators.
11019
11020@item Right recursion
89cab50d
AD
11021A rule whose result symbol is also its last component symbol; for
11022example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
11023Rules}.
bfa74976
RS
11024
11025@item Semantics
11026In computer languages, the semantics are specified by the actions
11027taken for each instance of the language, i.e., the meaning of
11028each statement. @xref{Semantics, ,Defining Language Semantics}.
11029
11030@item Shift
11031A parser is said to shift when it makes the choice of analyzing
11032further input from the stream rather than reducing immediately some
c827f760 11033already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11034
11035@item Single-character literal
11036A single character that is recognized and interpreted as is.
11037@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
11038
11039@item Start symbol
11040The nonterminal symbol that stands for a complete valid utterance in
11041the language being parsed. The start symbol is usually listed as the
13863333 11042first nonterminal symbol in a language specification.
bfa74976
RS
11043@xref{Start Decl, ,The Start-Symbol}.
11044
11045@item Symbol table
11046A data structure where symbol names and associated data are stored
11047during parsing to allow for recognition and use of existing
11048information in repeated uses of a symbol. @xref{Multi-function Calc}.
11049
6e649e65
PE
11050@item Syntax error
11051An error encountered during parsing of an input stream due to invalid
11052syntax. @xref{Error Recovery}.
11053
bfa74976
RS
11054@item Token
11055A basic, grammatically indivisible unit of a language. The symbol
11056that describes a token in the grammar is a terminal symbol.
11057The input of the Bison parser is a stream of tokens which comes from
11058the lexical analyzer. @xref{Symbols}.
11059
11060@item Terminal symbol
89cab50d
AD
11061A grammar symbol that has no rules in the grammar and therefore is
11062grammatically indivisible. The piece of text it represents is a token.
11063@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
6f04ee6c
JD
11064
11065@item Unreachable state
11066A parser state to which there does not exist a sequence of transitions from
11067the parser's start state. A state can become unreachable during conflict
11068resolution. @xref{Unreachable States}.
bfa74976
RS
11069@end table
11070
342b8b6e 11071@node Copying This Manual
f2b5126e 11072@appendix Copying This Manual
f2b5126e
PB
11073@include fdl.texi
11074
71caec06
JD
11075@node Bibliography
11076@unnumbered Bibliography
11077
11078@table @asis
11079@item [Denny 2008]
11080Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
11081for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
110822008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
11083pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
11084
11085@item [Denny 2010 May]
11086Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
11087Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
11088University, Clemson, SC, USA (May 2010).
11089@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
11090
11091@item [Denny 2010 November]
11092Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
11093Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
11094in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
110952010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
11096
11097@item [DeRemer 1982]
11098Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
11099Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
11100Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
11101615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
11102
11103@item [Knuth 1965]
11104Donald E. Knuth, On the Translation of Languages from Left to Right, in
11105@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
11106607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
11107
11108@item [Scott 2000]
11109Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
11110@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
11111London, Department of Computer Science, TR-00-12 (December 2000).
11112@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
11113@end table
11114
342b8b6e 11115@node Index
bfa74976
RS
11116@unnumbered Index
11117
11118@printindex cp
11119
bfa74976 11120@bye
a06ea4aa 11121
232be91a
AD
11122@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
11123@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
11124@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
11125@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
11126@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
11127@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
11128@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
11129@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
11130@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
11131@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
11132@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
11133@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
11134@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
11135@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym enum
11136@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
11137@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
11138@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
11139@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
11140@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
11141@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
11142@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
11143@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
11144@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
11145@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype Lookahead
11146@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
11147@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
11148@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
11149@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
11150@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
4c38b19e 11151@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
232be91a 11152@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs
9913d6e4 11153@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC
232be91a
AD
11154@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
11155@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative
11156@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
11157@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
11158@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
11159@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz
11160@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
9913d6e4 11161@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno
232be91a
AD
11162@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
11163@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
11164@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
11165@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
11166@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc
11167@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
11168@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
11169@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
11170@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
11171@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
840341d6 11172@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett
232be91a 11173@c LocalWords: subdirectory Solaris nonassociativity
f3103c5b
AD
11174
11175@c Local Variables:
11176@c ispell-dictionary: "american"
11177@c fill-column: 76
11178@c End: