]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
Prepare for the possibility of a 2.5.1 release.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
35430378
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
ea0a7676
JD
36Copyright @copyright{} 1988-1993, 1995, 1998-2011 Free Software
37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
35430378 41under the terms of the GNU Free Documentation License,
241ac701 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
35430378 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
35430378 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
35430378
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
35430378 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
35430378 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
35430378 91* Copying:: The GNU General Public License says
f56274a8 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f56274a8
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f56274a8
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f56274a8
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
9913d6e4 106* Invocation:: How to run Bison (to produce the parser implementation).
f56274a8
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
71caec06 112* Bibliography:: Publications cited in this manual.
f56274a8 113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f56274a8
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
128* Locations Overview:: Tracking Locations.
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
35430378 134Writing GLR Parsers
fa7e68c3 135
35430378
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
f56274a8 138* GLR Semantic Actions:: Deferred semantic actions have special concerns.
35430378 139* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 140
bfa74976
RS
141Examples
142
f56274a8
DJ
143* RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145* Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
bfa74976 147* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 148* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
149* Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
151* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
152
153Reverse Polish Notation Calculator
154
f56274a8
DJ
155* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
156* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
157* Rpcalc Lexer:: The lexical analyzer.
158* Rpcalc Main:: The controlling function.
159* Rpcalc Error:: The error reporting function.
160* Rpcalc Generate:: Running Bison on the grammar file.
161* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
162
163Grammar Rules for @code{rpcalc}
164
13863333
AD
165* Rpcalc Input::
166* Rpcalc Line::
167* Rpcalc Expr::
bfa74976 168
342b8b6e
AD
169Location Tracking Calculator: @code{ltcalc}
170
f56274a8
DJ
171* Ltcalc Declarations:: Bison and C declarations for ltcalc.
172* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
173* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 174
bfa74976
RS
175Multi-Function Calculator: @code{mfcalc}
176
f56274a8
DJ
177* Mfcalc Declarations:: Bison declarations for multi-function calculator.
178* Mfcalc Rules:: Grammar rules for the calculator.
179* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
180
181Bison Grammar Files
182
183* Grammar Outline:: Overall layout of the grammar file.
184* Symbols:: Terminal and nonterminal symbols.
185* Rules:: How to write grammar rules.
186* Recursion:: Writing recursive rules.
187* Semantics:: Semantic values and actions.
93dd49ab 188* Locations:: Locations and actions.
bfa74976
RS
189* Declarations:: All kinds of Bison declarations are described here.
190* Multiple Parsers:: Putting more than one Bison parser in one program.
191
192Outline of a Bison Grammar
193
f56274a8 194* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 195* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
196* Bison Declarations:: Syntax and usage of the Bison declarations section.
197* Grammar Rules:: Syntax and usage of the grammar rules section.
198* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
199
200Defining Language Semantics
201
202* Value Type:: Specifying one data type for all semantic values.
203* Multiple Types:: Specifying several alternative data types.
204* Actions:: An action is the semantic definition of a grammar rule.
205* Action Types:: Specifying data types for actions to operate on.
206* Mid-Rule Actions:: Most actions go at the end of a rule.
207 This says when, why and how to use the exceptional
208 action in the middle of a rule.
1f68dca5 209* Named References:: Using named references in actions.
bfa74976 210
93dd49ab
PE
211Tracking Locations
212
213* Location Type:: Specifying a data type for locations.
214* Actions and Locations:: Using locations in actions.
215* Location Default Action:: Defining a general way to compute locations.
216
bfa74976
RS
217Bison Declarations
218
b50d2359 219* Require Decl:: Requiring a Bison version.
bfa74976
RS
220* Token Decl:: Declaring terminal symbols.
221* Precedence Decl:: Declaring terminals with precedence and associativity.
222* Union Decl:: Declaring the set of all semantic value types.
223* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 224* Initial Action Decl:: Code run before parsing starts.
72f889cc 225* Destructor Decl:: Declaring how symbols are freed.
d6328241 226* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
227* Start Decl:: Specifying the start symbol.
228* Pure Decl:: Requesting a reentrant parser.
9987d1b3 229* Push Decl:: Requesting a push parser.
bfa74976 230* Decl Summary:: Table of all Bison declarations.
2f4518a1 231* %define Summary:: Defining variables to adjust Bison's behavior.
8e6f2266 232* %code Summary:: Inserting code into the parser source.
bfa74976
RS
233
234Parser C-Language Interface
235
f56274a8
DJ
236* Parser Function:: How to call @code{yyparse} and what it returns.
237* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
238* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
239* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
240* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
241* Lexical:: You must supply a function @code{yylex}
242 which reads tokens.
243* Error Reporting:: You must supply a function @code{yyerror}.
244* Action Features:: Special features for use in actions.
245* Internationalization:: How to let the parser speak in the user's
246 native language.
bfa74976
RS
247
248The Lexical Analyzer Function @code{yylex}
249
250* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
251* Token Values:: How @code{yylex} must return the semantic value
252 of the token it has read.
253* Token Locations:: How @code{yylex} must return the text location
254 (line number, etc.) of the token, if the
255 actions want that.
256* Pure Calling:: How the calling convention differs in a pure parser
257 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 258
13863333 259The Bison Parser Algorithm
bfa74976 260
742e4900 261* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
262* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
263* Precedence:: Operator precedence works by resolving conflicts.
264* Contextual Precedence:: When an operator's precedence depends on context.
265* Parser States:: The parser is a finite-state-machine with stack.
266* Reduce/Reduce:: When two rules are applicable in the same situation.
5da0355a 267* Mysterious Conflicts:: Conflicts that look unjustified.
6f04ee6c 268* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 269* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 270* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
271
272Operator Precedence
273
274* Why Precedence:: An example showing why precedence is needed.
275* Using Precedence:: How to specify precedence in Bison grammars.
276* Precedence Examples:: How these features are used in the previous example.
277* How Precedence:: How they work.
278
6f04ee6c
JD
279Tuning LR
280
281* LR Table Construction:: Choose a different construction algorithm.
282* Default Reductions:: Disable default reductions.
283* LAC:: Correct lookahead sets in the parser states.
284* Unreachable States:: Keep unreachable parser states for debugging.
285
bfa74976
RS
286Handling Context Dependencies
287
288* Semantic Tokens:: Token parsing can depend on the semantic context.
289* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
290* Tie-in Recovery:: Lexical tie-ins have implications for how
291 error recovery rules must be written.
292
93dd49ab 293Debugging Your Parser
ec3bc396
AD
294
295* Understanding:: Understanding the structure of your parser.
296* Tracing:: Tracing the execution of your parser.
297
bfa74976
RS
298Invoking Bison
299
13863333 300* Bison Options:: All the options described in detail,
c827f760 301 in alphabetical order by short options.
bfa74976 302* Option Cross Key:: Alphabetical list of long options.
93dd49ab 303* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 304
8405b70c 305Parsers Written In Other Languages
12545799
AD
306
307* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 308* Java Parsers:: The interface to generate Java parser classes
12545799
AD
309
310C++ Parsers
311
312* C++ Bison Interface:: Asking for C++ parser generation
313* C++ Semantic Values:: %union vs. C++
314* C++ Location Values:: The position and location classes
315* C++ Parser Interface:: Instantiating and running the parser
316* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 317* A Complete C++ Example:: Demonstrating their use
12545799
AD
318
319A Complete C++ Example
320
321* Calc++ --- C++ Calculator:: The specifications
322* Calc++ Parsing Driver:: An active parsing context
323* Calc++ Parser:: A parser class
324* Calc++ Scanner:: A pure C++ Flex scanner
325* Calc++ Top Level:: Conducting the band
326
8405b70c
PB
327Java Parsers
328
f56274a8
DJ
329* Java Bison Interface:: Asking for Java parser generation
330* Java Semantic Values:: %type and %token vs. Java
331* Java Location Values:: The position and location classes
332* Java Parser Interface:: Instantiating and running the parser
333* Java Scanner Interface:: Specifying the scanner for the parser
334* Java Action Features:: Special features for use in actions
335* Java Differences:: Differences between C/C++ and Java Grammars
336* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 337
d1a1114f
AD
338Frequently Asked Questions
339
f56274a8
DJ
340* Memory Exhausted:: Breaking the Stack Limits
341* How Can I Reset the Parser:: @code{yyparse} Keeps some State
342* Strings are Destroyed:: @code{yylval} Loses Track of Strings
343* Implementing Gotos/Loops:: Control Flow in the Calculator
344* Multiple start-symbols:: Factoring closely related grammars
35430378 345* Secure? Conform?:: Is Bison POSIX safe?
f56274a8
DJ
346* I can't build Bison:: Troubleshooting
347* Where can I find help?:: Troubleshouting
348* Bug Reports:: Troublereporting
349* More Languages:: Parsers in C++, Java, and so on
350* Beta Testing:: Experimenting development versions
351* Mailing Lists:: Meeting other Bison users
d1a1114f 352
f2b5126e
PB
353Copying This Manual
354
f56274a8 355* Copying This Manual:: License for copying this manual.
f2b5126e 356
342b8b6e 357@end detailmenu
bfa74976
RS
358@end menu
359
342b8b6e 360@node Introduction
bfa74976
RS
361@unnumbered Introduction
362@cindex introduction
363
6077da58 364@dfn{Bison} is a general-purpose parser generator that converts an
d89e48b3
JD
365annotated context-free grammar into a deterministic LR or generalized
366LR (GLR) parser employing LALR(1) parser tables. As an experimental
367feature, Bison can also generate IELR(1) or canonical LR(1) parser
368tables. Once you are proficient with Bison, you can use it to develop
369a wide range of language parsers, from those used in simple desk
370calculators to complex programming languages.
371
372Bison is upward compatible with Yacc: all properly-written Yacc
373grammars ought to work with Bison with no change. Anyone familiar
374with Yacc should be able to use Bison with little trouble. You need
375to be fluent in C or C++ programming in order to use Bison or to
376understand this manual. Java is also supported as an experimental
377feature.
378
379We begin with tutorial chapters that explain the basic concepts of
380using Bison and show three explained examples, each building on the
381last. If you don't know Bison or Yacc, start by reading these
382chapters. Reference chapters follow, which describe specific aspects
383of Bison in detail.
bfa74976 384
840341d6
JD
385Bison was written originally by Robert Corbett. Richard Stallman made
386it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
387added multi-character string literals and other features. Since then,
388Bison has grown more robust and evolved many other new features thanks
389to the hard work of a long list of volunteers. For details, see the
390@file{THANKS} and @file{ChangeLog} files included in the Bison
391distribution.
931c7513 392
df1af54c 393This edition corresponds to version @value{VERSION} of Bison.
bfa74976 394
342b8b6e 395@node Conditions
bfa74976
RS
396@unnumbered Conditions for Using Bison
397
193d7c70
PE
398The distribution terms for Bison-generated parsers permit using the
399parsers in nonfree programs. Before Bison version 2.2, these extra
35430378 400permissions applied only when Bison was generating LALR(1)
193d7c70 401parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 402parsers could be used only in programs that were free software.
a31239f1 403
35430378 404The other GNU programming tools, such as the GNU C
c827f760 405compiler, have never
9ecbd125 406had such a requirement. They could always be used for nonfree
a31239f1
RS
407software. The reason Bison was different was not due to a special
408policy decision; it resulted from applying the usual General Public
409License to all of the Bison source code.
410
9913d6e4
JD
411The main output of the Bison utility---the Bison parser implementation
412file---contains a verbatim copy of a sizable piece of Bison, which is
413the code for the parser's implementation. (The actions from your
414grammar are inserted into this implementation at one point, but most
415of the rest of the implementation is not changed.) When we applied
416the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
417the effect was to restrict the use of Bison output to free software.
418
419We didn't change the terms because of sympathy for people who want to
420make software proprietary. @strong{Software should be free.} But we
421concluded that limiting Bison's use to free software was doing little to
422encourage people to make other software free. So we decided to make the
423practical conditions for using Bison match the practical conditions for
35430378 424using the other GNU tools.
bfa74976 425
193d7c70
PE
426This exception applies when Bison is generating code for a parser.
427You can tell whether the exception applies to a Bison output file by
428inspecting the file for text beginning with ``As a special
429exception@dots{}''. The text spells out the exact terms of the
430exception.
262aa8dd 431
f16b0819
PE
432@node Copying
433@unnumbered GNU GENERAL PUBLIC LICENSE
434@include gpl-3.0.texi
bfa74976 435
342b8b6e 436@node Concepts
bfa74976
RS
437@chapter The Concepts of Bison
438
439This chapter introduces many of the basic concepts without which the
440details of Bison will not make sense. If you do not already know how to
441use Bison or Yacc, we suggest you start by reading this chapter carefully.
442
443@menu
f56274a8
DJ
444* Language and Grammar:: Languages and context-free grammars,
445 as mathematical ideas.
446* Grammar in Bison:: How we represent grammars for Bison's sake.
447* Semantic Values:: Each token or syntactic grouping can have
448 a semantic value (the value of an integer,
449 the name of an identifier, etc.).
450* Semantic Actions:: Each rule can have an action containing C code.
451* GLR Parsers:: Writing parsers for general context-free languages.
452* Locations Overview:: Tracking Locations.
453* Bison Parser:: What are Bison's input and output,
454 how is the output used?
455* Stages:: Stages in writing and running Bison grammars.
456* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
457@end menu
458
342b8b6e 459@node Language and Grammar
bfa74976
RS
460@section Languages and Context-Free Grammars
461
bfa74976
RS
462@cindex context-free grammar
463@cindex grammar, context-free
464In order for Bison to parse a language, it must be described by a
465@dfn{context-free grammar}. This means that you specify one or more
466@dfn{syntactic groupings} and give rules for constructing them from their
467parts. For example, in the C language, one kind of grouping is called an
468`expression'. One rule for making an expression might be, ``An expression
469can be made of a minus sign and another expression''. Another would be,
470``An expression can be an integer''. As you can see, rules are often
471recursive, but there must be at least one rule which leads out of the
472recursion.
473
35430378 474@cindex BNF
bfa74976
RS
475@cindex Backus-Naur form
476The most common formal system for presenting such rules for humans to read
35430378 477is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 478order to specify the language Algol 60. Any grammar expressed in
35430378
JD
479BNF is a context-free grammar. The input to Bison is
480essentially machine-readable BNF.
bfa74976 481
6f04ee6c
JD
482@cindex LALR grammars
483@cindex IELR grammars
484@cindex LR grammars
485There are various important subclasses of context-free grammars. Although
486it can handle almost all context-free grammars, Bison is optimized for what
487are called LR(1) grammars. In brief, in these grammars, it must be possible
488to tell how to parse any portion of an input string with just a single token
489of lookahead. For historical reasons, Bison by default is limited by the
490additional restrictions of LALR(1), which is hard to explain simply.
5da0355a
JD
491@xref{Mysterious Conflicts}, for more information on this. As an
492experimental feature, you can escape these additional restrictions by
493requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
494Construction}, to learn how.
bfa74976 495
35430378
JD
496@cindex GLR parsing
497@cindex generalized LR (GLR) parsing
676385e2 498@cindex ambiguous grammars
9d9b8b70 499@cindex nondeterministic parsing
9501dc6e 500
35430378 501Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
502roughly that the next grammar rule to apply at any point in the input is
503uniquely determined by the preceding input and a fixed, finite portion
742e4900 504(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 505grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 506apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 507grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 508lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 509With the proper declarations, Bison is also able to parse these more
35430378
JD
510general context-free grammars, using a technique known as GLR
511parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
512are able to handle any context-free grammar for which the number of
513possible parses of any given string is finite.
676385e2 514
bfa74976
RS
515@cindex symbols (abstract)
516@cindex token
517@cindex syntactic grouping
518@cindex grouping, syntactic
9501dc6e
AD
519In the formal grammatical rules for a language, each kind of syntactic
520unit or grouping is named by a @dfn{symbol}. Those which are built by
521grouping smaller constructs according to grammatical rules are called
bfa74976
RS
522@dfn{nonterminal symbols}; those which can't be subdivided are called
523@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
524corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 525corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
526
527We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
528nonterminal, mean. The tokens of C are identifiers, constants (numeric
529and string), and the various keywords, arithmetic operators and
530punctuation marks. So the terminal symbols of a grammar for C include
531`identifier', `number', `string', plus one symbol for each keyword,
532operator or punctuation mark: `if', `return', `const', `static', `int',
533`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
534(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
535lexicography, not grammar.)
536
537Here is a simple C function subdivided into tokens:
538
9edcd895
AD
539@ifinfo
540@example
541int /* @r{keyword `int'} */
14d4662b 542square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
543 @r{identifier, close-paren} */
544@{ /* @r{open-brace} */
aa08666d
AD
545 return x * x; /* @r{keyword `return', identifier, asterisk,}
546 @r{identifier, semicolon} */
9edcd895
AD
547@} /* @r{close-brace} */
548@end example
549@end ifinfo
550@ifnotinfo
bfa74976
RS
551@example
552int /* @r{keyword `int'} */
14d4662b 553square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 554@{ /* @r{open-brace} */
9edcd895 555 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
556@} /* @r{close-brace} */
557@end example
9edcd895 558@end ifnotinfo
bfa74976
RS
559
560The syntactic groupings of C include the expression, the statement, the
561declaration, and the function definition. These are represented in the
562grammar of C by nonterminal symbols `expression', `statement',
563`declaration' and `function definition'. The full grammar uses dozens of
564additional language constructs, each with its own nonterminal symbol, in
565order to express the meanings of these four. The example above is a
566function definition; it contains one declaration, and one statement. In
567the statement, each @samp{x} is an expression and so is @samp{x * x}.
568
569Each nonterminal symbol must have grammatical rules showing how it is made
570out of simpler constructs. For example, one kind of C statement is the
571@code{return} statement; this would be described with a grammar rule which
572reads informally as follows:
573
574@quotation
575A `statement' can be made of a `return' keyword, an `expression' and a
576`semicolon'.
577@end quotation
578
579@noindent
580There would be many other rules for `statement', one for each kind of
581statement in C.
582
583@cindex start symbol
584One nonterminal symbol must be distinguished as the special one which
585defines a complete utterance in the language. It is called the @dfn{start
586symbol}. In a compiler, this means a complete input program. In the C
587language, the nonterminal symbol `sequence of definitions and declarations'
588plays this role.
589
590For example, @samp{1 + 2} is a valid C expression---a valid part of a C
591program---but it is not valid as an @emph{entire} C program. In the
592context-free grammar of C, this follows from the fact that `expression' is
593not the start symbol.
594
595The Bison parser reads a sequence of tokens as its input, and groups the
596tokens using the grammar rules. If the input is valid, the end result is
597that the entire token sequence reduces to a single grouping whose symbol is
598the grammar's start symbol. If we use a grammar for C, the entire input
599must be a `sequence of definitions and declarations'. If not, the parser
600reports a syntax error.
601
342b8b6e 602@node Grammar in Bison
bfa74976
RS
603@section From Formal Rules to Bison Input
604@cindex Bison grammar
605@cindex grammar, Bison
606@cindex formal grammar
607
608A formal grammar is a mathematical construct. To define the language
609for Bison, you must write a file expressing the grammar in Bison syntax:
610a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
611
612A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 613as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
614in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
615
616The Bison representation for a terminal symbol is also called a @dfn{token
617type}. Token types as well can be represented as C-like identifiers. By
618convention, these identifiers should be upper case to distinguish them from
619nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
620@code{RETURN}. A terminal symbol that stands for a particular keyword in
621the language should be named after that keyword converted to upper case.
622The terminal symbol @code{error} is reserved for error recovery.
931c7513 623@xref{Symbols}.
bfa74976
RS
624
625A terminal symbol can also be represented as a character literal, just like
626a C character constant. You should do this whenever a token is just a
627single character (parenthesis, plus-sign, etc.): use that same character in
628a literal as the terminal symbol for that token.
629
931c7513
RS
630A third way to represent a terminal symbol is with a C string constant
631containing several characters. @xref{Symbols}, for more information.
632
bfa74976
RS
633The grammar rules also have an expression in Bison syntax. For example,
634here is the Bison rule for a C @code{return} statement. The semicolon in
635quotes is a literal character token, representing part of the C syntax for
636the statement; the naked semicolon, and the colon, are Bison punctuation
637used in every rule.
638
639@example
640stmt: RETURN expr ';'
641 ;
642@end example
643
644@noindent
645@xref{Rules, ,Syntax of Grammar Rules}.
646
342b8b6e 647@node Semantic Values
bfa74976
RS
648@section Semantic Values
649@cindex semantic value
650@cindex value, semantic
651
652A formal grammar selects tokens only by their classifications: for example,
653if a rule mentions the terminal symbol `integer constant', it means that
654@emph{any} integer constant is grammatically valid in that position. The
655precise value of the constant is irrelevant to how to parse the input: if
656@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 657grammatical.
bfa74976
RS
658
659But the precise value is very important for what the input means once it is
660parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6613989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
662has both a token type and a @dfn{semantic value}. @xref{Semantics,
663,Defining Language Semantics},
bfa74976
RS
664for details.
665
666The token type is a terminal symbol defined in the grammar, such as
667@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
668you need to know to decide where the token may validly appear and how to
669group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 670except their types.
bfa74976
RS
671
672The semantic value has all the rest of the information about the
673meaning of the token, such as the value of an integer, or the name of an
674identifier. (A token such as @code{','} which is just punctuation doesn't
675need to have any semantic value.)
676
677For example, an input token might be classified as token type
678@code{INTEGER} and have the semantic value 4. Another input token might
679have the same token type @code{INTEGER} but value 3989. When a grammar
680rule says that @code{INTEGER} is allowed, either of these tokens is
681acceptable because each is an @code{INTEGER}. When the parser accepts the
682token, it keeps track of the token's semantic value.
683
684Each grouping can also have a semantic value as well as its nonterminal
685symbol. For example, in a calculator, an expression typically has a
686semantic value that is a number. In a compiler for a programming
687language, an expression typically has a semantic value that is a tree
688structure describing the meaning of the expression.
689
342b8b6e 690@node Semantic Actions
bfa74976
RS
691@section Semantic Actions
692@cindex semantic actions
693@cindex actions, semantic
694
695In order to be useful, a program must do more than parse input; it must
696also produce some output based on the input. In a Bison grammar, a grammar
697rule can have an @dfn{action} made up of C statements. Each time the
698parser recognizes a match for that rule, the action is executed.
699@xref{Actions}.
13863333 700
bfa74976
RS
701Most of the time, the purpose of an action is to compute the semantic value
702of the whole construct from the semantic values of its parts. For example,
703suppose we have a rule which says an expression can be the sum of two
704expressions. When the parser recognizes such a sum, each of the
705subexpressions has a semantic value which describes how it was built up.
706The action for this rule should create a similar sort of value for the
707newly recognized larger expression.
708
709For example, here is a rule that says an expression can be the sum of
710two subexpressions:
711
712@example
713expr: expr '+' expr @{ $$ = $1 + $3; @}
714 ;
715@end example
716
717@noindent
718The action says how to produce the semantic value of the sum expression
719from the values of the two subexpressions.
720
676385e2 721@node GLR Parsers
35430378
JD
722@section Writing GLR Parsers
723@cindex GLR parsing
724@cindex generalized LR (GLR) parsing
676385e2
PH
725@findex %glr-parser
726@cindex conflicts
727@cindex shift/reduce conflicts
fa7e68c3 728@cindex reduce/reduce conflicts
676385e2 729
34a6c2d1 730In some grammars, Bison's deterministic
35430378 731LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
732certain grammar rule at a given point. That is, it may not be able to
733decide (on the basis of the input read so far) which of two possible
734reductions (applications of a grammar rule) applies, or whether to apply
735a reduction or read more of the input and apply a reduction later in the
736input. These are known respectively as @dfn{reduce/reduce} conflicts
737(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
738(@pxref{Shift/Reduce}).
739
35430378 740To use a grammar that is not easily modified to be LR(1), a
9501dc6e 741more general parsing algorithm is sometimes necessary. If you include
676385e2 742@code{%glr-parser} among the Bison declarations in your file
35430378
JD
743(@pxref{Grammar Outline}), the result is a Generalized LR
744(GLR) parser. These parsers handle Bison grammars that
9501dc6e 745contain no unresolved conflicts (i.e., after applying precedence
34a6c2d1 746declarations) identically to deterministic parsers. However, when
9501dc6e 747faced with unresolved shift/reduce and reduce/reduce conflicts,
35430378 748GLR parsers use the simple expedient of doing both,
9501dc6e
AD
749effectively cloning the parser to follow both possibilities. Each of
750the resulting parsers can again split, so that at any given time, there
751can be any number of possible parses being explored. The parsers
676385e2
PH
752proceed in lockstep; that is, all of them consume (shift) a given input
753symbol before any of them proceed to the next. Each of the cloned
754parsers eventually meets one of two possible fates: either it runs into
755a parsing error, in which case it simply vanishes, or it merges with
756another parser, because the two of them have reduced the input to an
757identical set of symbols.
758
759During the time that there are multiple parsers, semantic actions are
760recorded, but not performed. When a parser disappears, its recorded
761semantic actions disappear as well, and are never performed. When a
762reduction makes two parsers identical, causing them to merge, Bison
763records both sets of semantic actions. Whenever the last two parsers
764merge, reverting to the single-parser case, Bison resolves all the
765outstanding actions either by precedences given to the grammar rules
766involved, or by performing both actions, and then calling a designated
767user-defined function on the resulting values to produce an arbitrary
768merged result.
769
fa7e68c3 770@menu
35430378
JD
771* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
772* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
f56274a8 773* GLR Semantic Actions:: Deferred semantic actions have special concerns.
35430378 774* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
775@end menu
776
777@node Simple GLR Parsers
35430378
JD
778@subsection Using GLR on Unambiguous Grammars
779@cindex GLR parsing, unambiguous grammars
780@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
781@findex %glr-parser
782@findex %expect-rr
783@cindex conflicts
784@cindex reduce/reduce conflicts
785@cindex shift/reduce conflicts
786
35430378
JD
787In the simplest cases, you can use the GLR algorithm
788to parse grammars that are unambiguous but fail to be LR(1).
34a6c2d1 789Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
790
791Consider a problem that
792arises in the declaration of enumerated and subrange types in the
793programming language Pascal. Here are some examples:
794
795@example
796type subrange = lo .. hi;
797type enum = (a, b, c);
798@end example
799
800@noindent
801The original language standard allows only numeric
802literals and constant identifiers for the subrange bounds (@samp{lo}
35430378 803and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
80410206) and many other
805Pascal implementations allow arbitrary expressions there. This gives
806rise to the following situation, containing a superfluous pair of
807parentheses:
808
809@example
810type subrange = (a) .. b;
811@end example
812
813@noindent
814Compare this to the following declaration of an enumerated
815type with only one value:
816
817@example
818type enum = (a);
819@end example
820
821@noindent
822(These declarations are contrived, but they are syntactically
823valid, and more-complicated cases can come up in practical programs.)
824
825These two declarations look identical until the @samp{..} token.
35430378 826With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
827possible to decide between the two forms when the identifier
828@samp{a} is parsed. It is, however, desirable
829for a parser to decide this, since in the latter case
830@samp{a} must become a new identifier to represent the enumeration
831value, while in the former case @samp{a} must be evaluated with its
832current meaning, which may be a constant or even a function call.
833
834You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
835to be resolved later, but this typically requires substantial
836contortions in both semantic actions and large parts of the
837grammar, where the parentheses are nested in the recursive rules for
838expressions.
839
840You might think of using the lexer to distinguish between the two
841forms by returning different tokens for currently defined and
842undefined identifiers. But if these declarations occur in a local
843scope, and @samp{a} is defined in an outer scope, then both forms
844are possible---either locally redefining @samp{a}, or using the
845value of @samp{a} from the outer scope. So this approach cannot
846work.
847
e757bb10 848A simple solution to this problem is to declare the parser to
35430378
JD
849use the GLR algorithm.
850When the GLR parser reaches the critical state, it
fa7e68c3
PE
851merely splits into two branches and pursues both syntax rules
852simultaneously. Sooner or later, one of them runs into a parsing
853error. If there is a @samp{..} token before the next
854@samp{;}, the rule for enumerated types fails since it cannot
855accept @samp{..} anywhere; otherwise, the subrange type rule
856fails since it requires a @samp{..} token. So one of the branches
857fails silently, and the other one continues normally, performing
858all the intermediate actions that were postponed during the split.
859
860If the input is syntactically incorrect, both branches fail and the parser
861reports a syntax error as usual.
862
863The effect of all this is that the parser seems to ``guess'' the
864correct branch to take, or in other words, it seems to use more
35430378
JD
865lookahead than the underlying LR(1) algorithm actually allows
866for. In this example, LR(2) would suffice, but also some cases
867that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 868
35430378 869In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
870and the current Bison parser even takes exponential time and space
871for some grammars. In practice, this rarely happens, and for many
872grammars it is possible to prove that it cannot happen.
873The present example contains only one conflict between two
874rules, and the type-declaration context containing the conflict
875cannot be nested. So the number of
876branches that can exist at any time is limited by the constant 2,
877and the parsing time is still linear.
878
879Here is a Bison grammar corresponding to the example above. It
880parses a vastly simplified form of Pascal type declarations.
881
882@example
883%token TYPE DOTDOT ID
884
885@group
886%left '+' '-'
887%left '*' '/'
888@end group
889
890%%
891
892@group
893type_decl : TYPE ID '=' type ';'
894 ;
895@end group
896
897@group
898type : '(' id_list ')'
899 | expr DOTDOT expr
900 ;
901@end group
902
903@group
904id_list : ID
905 | id_list ',' ID
906 ;
907@end group
908
909@group
910expr : '(' expr ')'
911 | expr '+' expr
912 | expr '-' expr
913 | expr '*' expr
914 | expr '/' expr
915 | ID
916 ;
917@end group
918@end example
919
35430378 920When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
921about one reduce/reduce conflict. In the conflicting situation the
922parser chooses one of the alternatives, arbitrarily the one
923declared first. Therefore the following correct input is not
924recognized:
925
926@example
927type t = (a) .. b;
928@end example
929
35430378 930The parser can be turned into a GLR parser, while also telling Bison
9913d6e4
JD
931to be silent about the one known reduce/reduce conflict, by adding
932these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
933@samp{%%}):
934
935@example
936%glr-parser
937%expect-rr 1
938@end example
939
940@noindent
941No change in the grammar itself is required. Now the
942parser recognizes all valid declarations, according to the
943limited syntax above, transparently. In fact, the user does not even
944notice when the parser splits.
945
35430378 946So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
947almost without disadvantages. Even in simple cases like this, however,
948there are at least two potential problems to beware. First, always
35430378
JD
949analyze the conflicts reported by Bison to make sure that GLR
950splitting is only done where it is intended. A GLR parser
f8e1c9e5 951splitting inadvertently may cause problems less obvious than an
35430378 952LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
953conflict. Second, consider interactions with the lexer (@pxref{Semantic
954Tokens}) with great care. Since a split parser consumes tokens without
955performing any actions during the split, the lexer cannot obtain
956information via parser actions. Some cases of lexer interactions can be
35430378 957eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
958lexer to the parser. You must check the remaining cases for
959correctness.
960
961In our example, it would be safe for the lexer to return tokens based on
962their current meanings in some symbol table, because no new symbols are
963defined in the middle of a type declaration. Though it is possible for
964a parser to define the enumeration constants as they are parsed, before
965the type declaration is completed, it actually makes no difference since
966they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
967
968@node Merging GLR Parses
35430378
JD
969@subsection Using GLR to Resolve Ambiguities
970@cindex GLR parsing, ambiguous grammars
971@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
972@findex %dprec
973@findex %merge
974@cindex conflicts
975@cindex reduce/reduce conflicts
976
2a8d363a 977Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
978
979@example
980%@{
38a92d50
PE
981 #include <stdio.h>
982 #define YYSTYPE char const *
983 int yylex (void);
984 void yyerror (char const *);
676385e2
PH
985%@}
986
987%token TYPENAME ID
988
989%right '='
990%left '+'
991
992%glr-parser
993
994%%
995
fae437e8 996prog :
676385e2
PH
997 | prog stmt @{ printf ("\n"); @}
998 ;
999
1000stmt : expr ';' %dprec 1
1001 | decl %dprec 2
1002 ;
1003
2a8d363a 1004expr : ID @{ printf ("%s ", $$); @}
fae437e8 1005 | TYPENAME '(' expr ')'
2a8d363a
AD
1006 @{ printf ("%s <cast> ", $1); @}
1007 | expr '+' expr @{ printf ("+ "); @}
1008 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
1009 ;
1010
fae437e8 1011decl : TYPENAME declarator ';'
2a8d363a 1012 @{ printf ("%s <declare> ", $1); @}
676385e2 1013 | TYPENAME declarator '=' expr ';'
2a8d363a 1014 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1015 ;
1016
2a8d363a 1017declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1018 | '(' declarator ')'
1019 ;
1020@end example
1021
1022@noindent
1023This models a problematic part of the C++ grammar---the ambiguity between
1024certain declarations and statements. For example,
1025
1026@example
1027T (x) = y+z;
1028@end example
1029
1030@noindent
1031parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1032(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1033@samp{x} as an @code{ID}).
676385e2 1034Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1035@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1036time it encounters @code{x} in the example above. Since this is a
35430378 1037GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1038each choice of resolving the reduce/reduce conflict.
1039Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1040however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1041ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1042the other reduces @code{stmt : decl}, after which both parsers are in an
1043identical state: they've seen @samp{prog stmt} and have the same unprocessed
1044input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1045
35430378 1046At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1047grammar of how to choose between the competing parses.
1048In the example above, the two @code{%dprec}
e757bb10 1049declarations specify that Bison is to give precedence
fa7e68c3 1050to the parse that interprets the example as a
676385e2
PH
1051@code{decl}, which implies that @code{x} is a declarator.
1052The parser therefore prints
1053
1054@example
fae437e8 1055"x" y z + T <init-declare>
676385e2
PH
1056@end example
1057
fa7e68c3
PE
1058The @code{%dprec} declarations only come into play when more than one
1059parse survives. Consider a different input string for this parser:
676385e2
PH
1060
1061@example
1062T (x) + y;
1063@end example
1064
1065@noindent
35430378 1066This is another example of using GLR to parse an unambiguous
fa7e68c3 1067construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1068Here, there is no ambiguity (this cannot be parsed as a declaration).
1069However, at the time the Bison parser encounters @code{x}, it does not
1070have enough information to resolve the reduce/reduce conflict (again,
1071between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1072case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1073into two, one assuming that @code{x} is an @code{expr}, and the other
1074assuming @code{x} is a @code{declarator}. The second of these parsers
1075then vanishes when it sees @code{+}, and the parser prints
1076
1077@example
fae437e8 1078x T <cast> y +
676385e2
PH
1079@end example
1080
1081Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1082the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1083actions of the two possible parsers, rather than choosing one over the
1084other. To do so, you could change the declaration of @code{stmt} as
1085follows:
1086
1087@example
1088stmt : expr ';' %merge <stmtMerge>
1089 | decl %merge <stmtMerge>
1090 ;
1091@end example
1092
1093@noindent
676385e2
PH
1094and define the @code{stmtMerge} function as:
1095
1096@example
38a92d50
PE
1097static YYSTYPE
1098stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1099@{
1100 printf ("<OR> ");
1101 return "";
1102@}
1103@end example
1104
1105@noindent
1106with an accompanying forward declaration
1107in the C declarations at the beginning of the file:
1108
1109@example
1110%@{
38a92d50 1111 #define YYSTYPE char const *
676385e2
PH
1112 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1113%@}
1114@end example
1115
1116@noindent
fa7e68c3
PE
1117With these declarations, the resulting parser parses the first example
1118as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1119
1120@example
fae437e8 1121"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1122@end example
1123
fa7e68c3 1124Bison requires that all of the
e757bb10 1125productions that participate in any particular merge have identical
fa7e68c3
PE
1126@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1127and the parser will report an error during any parse that results in
1128the offending merge.
9501dc6e 1129
32c29292
JD
1130@node GLR Semantic Actions
1131@subsection GLR Semantic Actions
1132
1133@cindex deferred semantic actions
1134By definition, a deferred semantic action is not performed at the same time as
1135the associated reduction.
1136This raises caveats for several Bison features you might use in a semantic
35430378 1137action in a GLR parser.
32c29292
JD
1138
1139@vindex yychar
35430378 1140@cindex GLR parsers and @code{yychar}
32c29292 1141@vindex yylval
35430378 1142@cindex GLR parsers and @code{yylval}
32c29292 1143@vindex yylloc
35430378 1144@cindex GLR parsers and @code{yylloc}
32c29292 1145In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1146the lookahead token present at the time of the associated reduction.
32c29292
JD
1147After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1148you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1149lookahead token's semantic value and location, if any.
32c29292
JD
1150In a nondeferred semantic action, you can also modify any of these variables to
1151influence syntax analysis.
742e4900 1152@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1153
1154@findex yyclearin
35430378 1155@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1156In a deferred semantic action, it's too late to influence syntax analysis.
1157In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1158shallow copies of the values they had at the time of the associated reduction.
1159For this reason alone, modifying them is dangerous.
1160Moreover, the result of modifying them is undefined and subject to change with
1161future versions of Bison.
1162For example, if a semantic action might be deferred, you should never write it
1163to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1164memory referenced by @code{yylval}.
1165
1166@findex YYERROR
35430378 1167@cindex GLR parsers and @code{YYERROR}
32c29292 1168Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1169(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1170initiate error recovery.
35430378 1171During deterministic GLR operation, the effect of @code{YYERROR} is
34a6c2d1 1172the same as its effect in a deterministic parser.
32c29292
JD
1173In a deferred semantic action, its effect is undefined.
1174@c The effect is probably a syntax error at the split point.
1175
8710fc41 1176Also, see @ref{Location Default Action, ,Default Action for Locations}, which
35430378 1177describes a special usage of @code{YYLLOC_DEFAULT} in GLR parsers.
8710fc41 1178
fa7e68c3 1179@node Compiler Requirements
35430378 1180@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1181@cindex @code{inline}
35430378 1182@cindex GLR parsers and @code{inline}
fa7e68c3 1183
35430378 1184The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1185later. In addition, they use the @code{inline} keyword, which is not
1186C89, but is C99 and is a common extension in pre-C99 compilers. It is
1187up to the user of these parsers to handle
9501dc6e
AD
1188portability issues. For instance, if using Autoconf and the Autoconf
1189macro @code{AC_C_INLINE}, a mere
1190
1191@example
1192%@{
38a92d50 1193 #include <config.h>
9501dc6e
AD
1194%@}
1195@end example
1196
1197@noindent
1198will suffice. Otherwise, we suggest
1199
1200@example
1201%@{
38a92d50
PE
1202 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1203 #define inline
1204 #endif
9501dc6e
AD
1205%@}
1206@end example
676385e2 1207
342b8b6e 1208@node Locations Overview
847bf1f5
AD
1209@section Locations
1210@cindex location
95923bd6
AD
1211@cindex textual location
1212@cindex location, textual
847bf1f5
AD
1213
1214Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1215and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1216the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1217Bison provides a mechanism for handling these locations.
1218
72d2299c 1219Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1220associated location, but the type of locations is the same for all tokens and
72d2299c 1221groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1222structure for storing locations (@pxref{Locations}, for more details).
1223
1224Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1225set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1226is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1227@code{@@3}.
1228
1229When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1230of its left hand side (@pxref{Actions}). In the same way, another default
1231action is used for locations. However, the action for locations is general
847bf1f5 1232enough for most cases, meaning there is usually no need to describe for each
72d2299c 1233rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1234grouping, the default behavior of the output parser is to take the beginning
1235of the first symbol, and the end of the last symbol.
1236
342b8b6e 1237@node Bison Parser
9913d6e4 1238@section Bison Output: the Parser Implementation File
bfa74976
RS
1239@cindex Bison parser
1240@cindex Bison utility
1241@cindex lexical analyzer, purpose
1242@cindex parser
1243
9913d6e4
JD
1244When you run Bison, you give it a Bison grammar file as input. The
1245most important output is a C source file that implements a parser for
1246the language described by the grammar. This parser is called a
1247@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1248implementation file}. Keep in mind that the Bison utility and the
1249Bison parser are two distinct programs: the Bison utility is a program
1250whose output is the Bison parser implementation file that becomes part
1251of your program.
bfa74976
RS
1252
1253The job of the Bison parser is to group tokens into groupings according to
1254the grammar rules---for example, to build identifiers and operators into
1255expressions. As it does this, it runs the actions for the grammar rules it
1256uses.
1257
704a47c4
AD
1258The tokens come from a function called the @dfn{lexical analyzer} that
1259you must supply in some fashion (such as by writing it in C). The Bison
1260parser calls the lexical analyzer each time it wants a new token. It
1261doesn't know what is ``inside'' the tokens (though their semantic values
1262may reflect this). Typically the lexical analyzer makes the tokens by
1263parsing characters of text, but Bison does not depend on this.
1264@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1265
9913d6e4
JD
1266The Bison parser implementation file is C code which defines a
1267function named @code{yyparse} which implements that grammar. This
1268function does not make a complete C program: you must supply some
1269additional functions. One is the lexical analyzer. Another is an
1270error-reporting function which the parser calls to report an error.
1271In addition, a complete C program must start with a function called
1272@code{main}; you have to provide this, and arrange for it to call
1273@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1274C-Language Interface}.
bfa74976 1275
f7ab6a50 1276Aside from the token type names and the symbols in the actions you
9913d6e4
JD
1277write, all symbols defined in the Bison parser implementation file
1278itself begin with @samp{yy} or @samp{YY}. This includes interface
1279functions such as the lexical analyzer function @code{yylex}, the
1280error reporting function @code{yyerror} and the parser function
1281@code{yyparse} itself. This also includes numerous identifiers used
1282for internal purposes. Therefore, you should avoid using C
1283identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1284file except for the ones defined in this manual. Also, you should
1285avoid using the C identifiers @samp{malloc} and @samp{free} for
1286anything other than their usual meanings.
1287
1288In some cases the Bison parser implementation file includes system
1289headers, and in those cases your code should respect the identifiers
1290reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1291@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1292included as needed to declare memory allocators and related types.
1293@code{<libintl.h>} is included if message translation is in use
1294(@pxref{Internationalization}). Other system headers may be included
1295if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1296,Tracing Your Parser}).
7093d0f5 1297
342b8b6e 1298@node Stages
bfa74976
RS
1299@section Stages in Using Bison
1300@cindex stages in using Bison
1301@cindex using Bison
1302
1303The actual language-design process using Bison, from grammar specification
1304to a working compiler or interpreter, has these parts:
1305
1306@enumerate
1307@item
1308Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1309(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1310in the language, describe the action that is to be taken when an
1311instance of that rule is recognized. The action is described by a
1312sequence of C statements.
bfa74976
RS
1313
1314@item
704a47c4
AD
1315Write a lexical analyzer to process input and pass tokens to the parser.
1316The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1317Lexical Analyzer Function @code{yylex}}). It could also be produced
1318using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1319
1320@item
1321Write a controlling function that calls the Bison-produced parser.
1322
1323@item
1324Write error-reporting routines.
1325@end enumerate
1326
1327To turn this source code as written into a runnable program, you
1328must follow these steps:
1329
1330@enumerate
1331@item
1332Run Bison on the grammar to produce the parser.
1333
1334@item
1335Compile the code output by Bison, as well as any other source files.
1336
1337@item
1338Link the object files to produce the finished product.
1339@end enumerate
1340
342b8b6e 1341@node Grammar Layout
bfa74976
RS
1342@section The Overall Layout of a Bison Grammar
1343@cindex grammar file
1344@cindex file format
1345@cindex format of grammar file
1346@cindex layout of Bison grammar
1347
1348The input file for the Bison utility is a @dfn{Bison grammar file}. The
1349general form of a Bison grammar file is as follows:
1350
1351@example
1352%@{
08e49d20 1353@var{Prologue}
bfa74976
RS
1354%@}
1355
1356@var{Bison declarations}
1357
1358%%
1359@var{Grammar rules}
1360%%
08e49d20 1361@var{Epilogue}
bfa74976
RS
1362@end example
1363
1364@noindent
1365The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1366in every Bison grammar file to separate the sections.
1367
72d2299c 1368The prologue may define types and variables used in the actions. You can
342b8b6e 1369also use preprocessor commands to define macros used there, and use
bfa74976 1370@code{#include} to include header files that do any of these things.
38a92d50
PE
1371You need to declare the lexical analyzer @code{yylex} and the error
1372printer @code{yyerror} here, along with any other global identifiers
1373used by the actions in the grammar rules.
bfa74976
RS
1374
1375The Bison declarations declare the names of the terminal and nonterminal
1376symbols, and may also describe operator precedence and the data types of
1377semantic values of various symbols.
1378
1379The grammar rules define how to construct each nonterminal symbol from its
1380parts.
1381
38a92d50
PE
1382The epilogue can contain any code you want to use. Often the
1383definitions of functions declared in the prologue go here. In a
1384simple program, all the rest of the program can go here.
bfa74976 1385
342b8b6e 1386@node Examples
bfa74976
RS
1387@chapter Examples
1388@cindex simple examples
1389@cindex examples, simple
1390
1391Now we show and explain three sample programs written using Bison: a
1392reverse polish notation calculator, an algebraic (infix) notation
1393calculator, and a multi-function calculator. All three have been tested
1394under BSD Unix 4.3; each produces a usable, though limited, interactive
1395desk-top calculator.
1396
1397These examples are simple, but Bison grammars for real programming
aa08666d
AD
1398languages are written the same way. You can copy these examples into a
1399source file to try them.
bfa74976
RS
1400
1401@menu
f56274a8
DJ
1402* RPN Calc:: Reverse polish notation calculator;
1403 a first example with no operator precedence.
1404* Infix Calc:: Infix (algebraic) notation calculator.
1405 Operator precedence is introduced.
bfa74976 1406* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1407* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
1408* Multi-function Calc:: Calculator with memory and trig functions.
1409 It uses multiple data-types for semantic values.
1410* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1411@end menu
1412
342b8b6e 1413@node RPN Calc
bfa74976
RS
1414@section Reverse Polish Notation Calculator
1415@cindex reverse polish notation
1416@cindex polish notation calculator
1417@cindex @code{rpcalc}
1418@cindex calculator, simple
1419
1420The first example is that of a simple double-precision @dfn{reverse polish
1421notation} calculator (a calculator using postfix operators). This example
1422provides a good starting point, since operator precedence is not an issue.
1423The second example will illustrate how operator precedence is handled.
1424
1425The source code for this calculator is named @file{rpcalc.y}. The
9913d6e4 1426@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1427
1428@menu
f56274a8
DJ
1429* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1430* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1431* Rpcalc Lexer:: The lexical analyzer.
1432* Rpcalc Main:: The controlling function.
1433* Rpcalc Error:: The error reporting function.
1434* Rpcalc Generate:: Running Bison on the grammar file.
1435* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1436@end menu
1437
f56274a8 1438@node Rpcalc Declarations
bfa74976
RS
1439@subsection Declarations for @code{rpcalc}
1440
1441Here are the C and Bison declarations for the reverse polish notation
1442calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1443
1444@example
72d2299c 1445/* Reverse polish notation calculator. */
bfa74976
RS
1446
1447%@{
38a92d50
PE
1448 #define YYSTYPE double
1449 #include <math.h>
1450 int yylex (void);
1451 void yyerror (char const *);
bfa74976
RS
1452%@}
1453
1454%token NUM
1455
72d2299c 1456%% /* Grammar rules and actions follow. */
bfa74976
RS
1457@end example
1458
75f5aaea 1459The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1460preprocessor directives and two forward declarations.
bfa74976
RS
1461
1462The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1463specifying the C data type for semantic values of both tokens and
1464groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1465Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1466don't define it, @code{int} is the default. Because we specify
1467@code{double}, each token and each expression has an associated value,
1468which is a floating point number.
bfa74976
RS
1469
1470The @code{#include} directive is used to declare the exponentiation
1471function @code{pow}.
1472
38a92d50
PE
1473The forward declarations for @code{yylex} and @code{yyerror} are
1474needed because the C language requires that functions be declared
1475before they are used. These functions will be defined in the
1476epilogue, but the parser calls them so they must be declared in the
1477prologue.
1478
704a47c4
AD
1479The second section, Bison declarations, provides information to Bison
1480about the token types (@pxref{Bison Declarations, ,The Bison
1481Declarations Section}). Each terminal symbol that is not a
1482single-character literal must be declared here. (Single-character
bfa74976
RS
1483literals normally don't need to be declared.) In this example, all the
1484arithmetic operators are designated by single-character literals, so the
1485only terminal symbol that needs to be declared is @code{NUM}, the token
1486type for numeric constants.
1487
342b8b6e 1488@node Rpcalc Rules
bfa74976
RS
1489@subsection Grammar Rules for @code{rpcalc}
1490
1491Here are the grammar rules for the reverse polish notation calculator.
1492
1493@example
1494input: /* empty */
1495 | input line
1496;
1497
1498line: '\n'
18b519c0 1499 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1500;
1501
18b519c0
AD
1502exp: NUM @{ $$ = $1; @}
1503 | exp exp '+' @{ $$ = $1 + $2; @}
1504 | exp exp '-' @{ $$ = $1 - $2; @}
1505 | exp exp '*' @{ $$ = $1 * $2; @}
1506 | exp exp '/' @{ $$ = $1 / $2; @}
1507 /* Exponentiation */
1508 | exp exp '^' @{ $$ = pow ($1, $2); @}
1509 /* Unary minus */
1510 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1511;
1512%%
1513@end example
1514
1515The groupings of the rpcalc ``language'' defined here are the expression
1516(given the name @code{exp}), the line of input (@code{line}), and the
1517complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1518symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1519which is read as ``or''. The following sections explain what these rules
1520mean.
1521
1522The semantics of the language is determined by the actions taken when a
1523grouping is recognized. The actions are the C code that appears inside
1524braces. @xref{Actions}.
1525
1526You must specify these actions in C, but Bison provides the means for
1527passing semantic values between the rules. In each action, the
1528pseudo-variable @code{$$} stands for the semantic value for the grouping
1529that the rule is going to construct. Assigning a value to @code{$$} is the
1530main job of most actions. The semantic values of the components of the
1531rule are referred to as @code{$1}, @code{$2}, and so on.
1532
1533@menu
13863333
AD
1534* Rpcalc Input::
1535* Rpcalc Line::
1536* Rpcalc Expr::
bfa74976
RS
1537@end menu
1538
342b8b6e 1539@node Rpcalc Input
bfa74976
RS
1540@subsubsection Explanation of @code{input}
1541
1542Consider the definition of @code{input}:
1543
1544@example
1545input: /* empty */
1546 | input line
1547;
1548@end example
1549
1550This definition reads as follows: ``A complete input is either an empty
1551string, or a complete input followed by an input line''. Notice that
1552``complete input'' is defined in terms of itself. This definition is said
1553to be @dfn{left recursive} since @code{input} appears always as the
1554leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1555
1556The first alternative is empty because there are no symbols between the
1557colon and the first @samp{|}; this means that @code{input} can match an
1558empty string of input (no tokens). We write the rules this way because it
1559is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1560It's conventional to put an empty alternative first and write the comment
1561@samp{/* empty */} in it.
1562
1563The second alternate rule (@code{input line}) handles all nontrivial input.
1564It means, ``After reading any number of lines, read one more line if
1565possible.'' The left recursion makes this rule into a loop. Since the
1566first alternative matches empty input, the loop can be executed zero or
1567more times.
1568
1569The parser function @code{yyparse} continues to process input until a
1570grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1571input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1572
342b8b6e 1573@node Rpcalc Line
bfa74976
RS
1574@subsubsection Explanation of @code{line}
1575
1576Now consider the definition of @code{line}:
1577
1578@example
1579line: '\n'
1580 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1581;
1582@end example
1583
1584The first alternative is a token which is a newline character; this means
1585that rpcalc accepts a blank line (and ignores it, since there is no
1586action). The second alternative is an expression followed by a newline.
1587This is the alternative that makes rpcalc useful. The semantic value of
1588the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1589question is the first symbol in the alternative. The action prints this
1590value, which is the result of the computation the user asked for.
1591
1592This action is unusual because it does not assign a value to @code{$$}. As
1593a consequence, the semantic value associated with the @code{line} is
1594uninitialized (its value will be unpredictable). This would be a bug if
1595that value were ever used, but we don't use it: once rpcalc has printed the
1596value of the user's input line, that value is no longer needed.
1597
342b8b6e 1598@node Rpcalc Expr
bfa74976
RS
1599@subsubsection Explanation of @code{expr}
1600
1601The @code{exp} grouping has several rules, one for each kind of expression.
1602The first rule handles the simplest expressions: those that are just numbers.
1603The second handles an addition-expression, which looks like two expressions
1604followed by a plus-sign. The third handles subtraction, and so on.
1605
1606@example
1607exp: NUM
1608 | exp exp '+' @{ $$ = $1 + $2; @}
1609 | exp exp '-' @{ $$ = $1 - $2; @}
1610 @dots{}
1611 ;
1612@end example
1613
1614We have used @samp{|} to join all the rules for @code{exp}, but we could
1615equally well have written them separately:
1616
1617@example
1618exp: NUM ;
1619exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1620exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1621 @dots{}
1622@end example
1623
1624Most of the rules have actions that compute the value of the expression in
1625terms of the value of its parts. For example, in the rule for addition,
1626@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1627the second one. The third component, @code{'+'}, has no meaningful
1628associated semantic value, but if it had one you could refer to it as
1629@code{$3}. When @code{yyparse} recognizes a sum expression using this
1630rule, the sum of the two subexpressions' values is produced as the value of
1631the entire expression. @xref{Actions}.
1632
1633You don't have to give an action for every rule. When a rule has no
1634action, Bison by default copies the value of @code{$1} into @code{$$}.
1635This is what happens in the first rule (the one that uses @code{NUM}).
1636
1637The formatting shown here is the recommended convention, but Bison does
72d2299c 1638not require it. You can add or change white space as much as you wish.
bfa74976
RS
1639For example, this:
1640
1641@example
99a9344e 1642exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1643@end example
1644
1645@noindent
1646means the same thing as this:
1647
1648@example
1649exp: NUM
1650 | exp exp '+' @{ $$ = $1 + $2; @}
1651 | @dots{}
99a9344e 1652;
bfa74976
RS
1653@end example
1654
1655@noindent
1656The latter, however, is much more readable.
1657
342b8b6e 1658@node Rpcalc Lexer
bfa74976
RS
1659@subsection The @code{rpcalc} Lexical Analyzer
1660@cindex writing a lexical analyzer
1661@cindex lexical analyzer, writing
1662
704a47c4
AD
1663The lexical analyzer's job is low-level parsing: converting characters
1664or sequences of characters into tokens. The Bison parser gets its
1665tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1666Analyzer Function @code{yylex}}.
bfa74976 1667
35430378 1668Only a simple lexical analyzer is needed for the RPN
c827f760 1669calculator. This
bfa74976
RS
1670lexical analyzer skips blanks and tabs, then reads in numbers as
1671@code{double} and returns them as @code{NUM} tokens. Any other character
1672that isn't part of a number is a separate token. Note that the token-code
1673for such a single-character token is the character itself.
1674
1675The return value of the lexical analyzer function is a numeric code which
1676represents a token type. The same text used in Bison rules to stand for
1677this token type is also a C expression for the numeric code for the type.
1678This works in two ways. If the token type is a character literal, then its
e966383b 1679numeric code is that of the character; you can use the same
bfa74976
RS
1680character literal in the lexical analyzer to express the number. If the
1681token type is an identifier, that identifier is defined by Bison as a C
1682macro whose definition is the appropriate number. In this example,
1683therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1684
1964ad8c
AD
1685The semantic value of the token (if it has one) is stored into the
1686global variable @code{yylval}, which is where the Bison parser will look
1687for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f56274a8 1688defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1689,Declarations for @code{rpcalc}}.)
bfa74976 1690
72d2299c
PE
1691A token type code of zero is returned if the end-of-input is encountered.
1692(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1693
1694Here is the code for the lexical analyzer:
1695
1696@example
1697@group
72d2299c 1698/* The lexical analyzer returns a double floating point
e966383b 1699 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1700 of the character read if not a number. It skips all blanks
1701 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1702
1703#include <ctype.h>
1704@end group
1705
1706@group
13863333
AD
1707int
1708yylex (void)
bfa74976
RS
1709@{
1710 int c;
1711
72d2299c 1712 /* Skip white space. */
13863333 1713 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1714 ;
1715@end group
1716@group
72d2299c 1717 /* Process numbers. */
13863333 1718 if (c == '.' || isdigit (c))
bfa74976
RS
1719 @{
1720 ungetc (c, stdin);
1721 scanf ("%lf", &yylval);
1722 return NUM;
1723 @}
1724@end group
1725@group
72d2299c 1726 /* Return end-of-input. */
13863333 1727 if (c == EOF)
bfa74976 1728 return 0;
72d2299c 1729 /* Return a single char. */
13863333 1730 return c;
bfa74976
RS
1731@}
1732@end group
1733@end example
1734
342b8b6e 1735@node Rpcalc Main
bfa74976
RS
1736@subsection The Controlling Function
1737@cindex controlling function
1738@cindex main function in simple example
1739
1740In keeping with the spirit of this example, the controlling function is
1741kept to the bare minimum. The only requirement is that it call
1742@code{yyparse} to start the process of parsing.
1743
1744@example
1745@group
13863333
AD
1746int
1747main (void)
bfa74976 1748@{
13863333 1749 return yyparse ();
bfa74976
RS
1750@}
1751@end group
1752@end example
1753
342b8b6e 1754@node Rpcalc Error
bfa74976
RS
1755@subsection The Error Reporting Routine
1756@cindex error reporting routine
1757
1758When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1759function @code{yyerror} to print an error message (usually but not
6e649e65 1760always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1761@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1762here is the definition we will use:
bfa74976
RS
1763
1764@example
1765@group
1766#include <stdio.h>
1767
38a92d50 1768/* Called by yyparse on error. */
13863333 1769void
38a92d50 1770yyerror (char const *s)
bfa74976 1771@{
4e03e201 1772 fprintf (stderr, "%s\n", s);
bfa74976
RS
1773@}
1774@end group
1775@end example
1776
1777After @code{yyerror} returns, the Bison parser may recover from the error
1778and continue parsing if the grammar contains a suitable error rule
1779(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1780have not written any error rules in this example, so any invalid input will
1781cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1782real calculator, but it is adequate for the first example.
bfa74976 1783
f56274a8 1784@node Rpcalc Generate
bfa74976
RS
1785@subsection Running Bison to Make the Parser
1786@cindex running Bison (introduction)
1787
ceed8467
AD
1788Before running Bison to produce a parser, we need to decide how to
1789arrange all the source code in one or more source files. For such a
9913d6e4
JD
1790simple example, the easiest thing is to put everything in one file,
1791the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1792@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1793(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1794
1795For a large project, you would probably have several source files, and use
1796@code{make} to arrange to recompile them.
1797
9913d6e4
JD
1798With all the source in the grammar file, you use the following command
1799to convert it into a parser implementation file:
bfa74976
RS
1800
1801@example
fa4d969f 1802bison @var{file}.y
bfa74976
RS
1803@end example
1804
1805@noindent
9913d6e4
JD
1806In this example, the grammar file is called @file{rpcalc.y} (for
1807``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1808implementation file named @file{@var{file}.tab.c}, removing the
1809@samp{.y} from the grammar file name. The parser implementation file
1810contains the source code for @code{yyparse}. The additional functions
1811in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1812copied verbatim to the parser implementation file.
bfa74976 1813
342b8b6e 1814@node Rpcalc Compile
9913d6e4 1815@subsection Compiling the Parser Implementation File
bfa74976
RS
1816@cindex compiling the parser
1817
9913d6e4 1818Here is how to compile and run the parser implementation file:
bfa74976
RS
1819
1820@example
1821@group
1822# @r{List files in current directory.}
9edcd895 1823$ @kbd{ls}
bfa74976
RS
1824rpcalc.tab.c rpcalc.y
1825@end group
1826
1827@group
1828# @r{Compile the Bison parser.}
1829# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1830$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1831@end group
1832
1833@group
1834# @r{List files again.}
9edcd895 1835$ @kbd{ls}
bfa74976
RS
1836rpcalc rpcalc.tab.c rpcalc.y
1837@end group
1838@end example
1839
1840The file @file{rpcalc} now contains the executable code. Here is an
1841example session using @code{rpcalc}.
1842
1843@example
9edcd895
AD
1844$ @kbd{rpcalc}
1845@kbd{4 9 +}
bfa74976 184613
9edcd895 1847@kbd{3 7 + 3 4 5 *+-}
bfa74976 1848-13
9edcd895 1849@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 185013
9edcd895 1851@kbd{5 6 / 4 n +}
bfa74976 1852-3.166666667
9edcd895 1853@kbd{3 4 ^} @r{Exponentiation}
bfa74976 185481
9edcd895
AD
1855@kbd{^D} @r{End-of-file indicator}
1856$
bfa74976
RS
1857@end example
1858
342b8b6e 1859@node Infix Calc
bfa74976
RS
1860@section Infix Notation Calculator: @code{calc}
1861@cindex infix notation calculator
1862@cindex @code{calc}
1863@cindex calculator, infix notation
1864
1865We now modify rpcalc to handle infix operators instead of postfix. Infix
1866notation involves the concept of operator precedence and the need for
1867parentheses nested to arbitrary depth. Here is the Bison code for
1868@file{calc.y}, an infix desk-top calculator.
1869
1870@example
38a92d50 1871/* Infix notation calculator. */
bfa74976
RS
1872
1873%@{
38a92d50
PE
1874 #define YYSTYPE double
1875 #include <math.h>
1876 #include <stdio.h>
1877 int yylex (void);
1878 void yyerror (char const *);
bfa74976
RS
1879%@}
1880
38a92d50 1881/* Bison declarations. */
bfa74976
RS
1882%token NUM
1883%left '-' '+'
1884%left '*' '/'
1885%left NEG /* negation--unary minus */
38a92d50 1886%right '^' /* exponentiation */
bfa74976 1887
38a92d50
PE
1888%% /* The grammar follows. */
1889input: /* empty */
bfa74976
RS
1890 | input line
1891;
1892
1893line: '\n'
1894 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1895;
1896
1897exp: NUM @{ $$ = $1; @}
1898 | exp '+' exp @{ $$ = $1 + $3; @}
1899 | exp '-' exp @{ $$ = $1 - $3; @}
1900 | exp '*' exp @{ $$ = $1 * $3; @}
1901 | exp '/' exp @{ $$ = $1 / $3; @}
1902 | '-' exp %prec NEG @{ $$ = -$2; @}
1903 | exp '^' exp @{ $$ = pow ($1, $3); @}
1904 | '(' exp ')' @{ $$ = $2; @}
1905;
1906%%
1907@end example
1908
1909@noindent
ceed8467
AD
1910The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1911same as before.
bfa74976
RS
1912
1913There are two important new features shown in this code.
1914
1915In the second section (Bison declarations), @code{%left} declares token
1916types and says they are left-associative operators. The declarations
1917@code{%left} and @code{%right} (right associativity) take the place of
1918@code{%token} which is used to declare a token type name without
1919associativity. (These tokens are single-character literals, which
1920ordinarily don't need to be declared. We declare them here to specify
1921the associativity.)
1922
1923Operator precedence is determined by the line ordering of the
1924declarations; the higher the line number of the declaration (lower on
1925the page or screen), the higher the precedence. Hence, exponentiation
1926has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1927by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1928Precedence}.
bfa74976 1929
704a47c4
AD
1930The other important new feature is the @code{%prec} in the grammar
1931section for the unary minus operator. The @code{%prec} simply instructs
1932Bison that the rule @samp{| '-' exp} has the same precedence as
1933@code{NEG}---in this case the next-to-highest. @xref{Contextual
1934Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1935
1936Here is a sample run of @file{calc.y}:
1937
1938@need 500
1939@example
9edcd895
AD
1940$ @kbd{calc}
1941@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19426.880952381
9edcd895 1943@kbd{-56 + 2}
bfa74976 1944-54
9edcd895 1945@kbd{3 ^ 2}
bfa74976
RS
19469
1947@end example
1948
342b8b6e 1949@node Simple Error Recovery
bfa74976
RS
1950@section Simple Error Recovery
1951@cindex error recovery, simple
1952
1953Up to this point, this manual has not addressed the issue of @dfn{error
1954recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1955error. All we have handled is error reporting with @code{yyerror}.
1956Recall that by default @code{yyparse} returns after calling
1957@code{yyerror}. This means that an erroneous input line causes the
1958calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1959
1960The Bison language itself includes the reserved word @code{error}, which
1961may be included in the grammar rules. In the example below it has
1962been added to one of the alternatives for @code{line}:
1963
1964@example
1965@group
1966line: '\n'
1967 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1968 | error '\n' @{ yyerrok; @}
1969;
1970@end group
1971@end example
1972
ceed8467 1973This addition to the grammar allows for simple error recovery in the
6e649e65 1974event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1975read, the error will be recognized by the third rule for @code{line},
1976and parsing will continue. (The @code{yyerror} function is still called
1977upon to print its message as well.) The action executes the statement
1978@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1979that error recovery is complete (@pxref{Error Recovery}). Note the
1980difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1981misprint.
bfa74976
RS
1982
1983This form of error recovery deals with syntax errors. There are other
1984kinds of errors; for example, division by zero, which raises an exception
1985signal that is normally fatal. A real calculator program must handle this
1986signal and use @code{longjmp} to return to @code{main} and resume parsing
1987input lines; it would also have to discard the rest of the current line of
1988input. We won't discuss this issue further because it is not specific to
1989Bison programs.
1990
342b8b6e
AD
1991@node Location Tracking Calc
1992@section Location Tracking Calculator: @code{ltcalc}
1993@cindex location tracking calculator
1994@cindex @code{ltcalc}
1995@cindex calculator, location tracking
1996
9edcd895
AD
1997This example extends the infix notation calculator with location
1998tracking. This feature will be used to improve the error messages. For
1999the sake of clarity, this example is a simple integer calculator, since
2000most of the work needed to use locations will be done in the lexical
72d2299c 2001analyzer.
342b8b6e
AD
2002
2003@menu
f56274a8
DJ
2004* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2005* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2006* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2007@end menu
2008
f56274a8 2009@node Ltcalc Declarations
342b8b6e
AD
2010@subsection Declarations for @code{ltcalc}
2011
9edcd895
AD
2012The C and Bison declarations for the location tracking calculator are
2013the same as the declarations for the infix notation calculator.
342b8b6e
AD
2014
2015@example
2016/* Location tracking calculator. */
2017
2018%@{
38a92d50
PE
2019 #define YYSTYPE int
2020 #include <math.h>
2021 int yylex (void);
2022 void yyerror (char const *);
342b8b6e
AD
2023%@}
2024
2025/* Bison declarations. */
2026%token NUM
2027
2028%left '-' '+'
2029%left '*' '/'
2030%left NEG
2031%right '^'
2032
38a92d50 2033%% /* The grammar follows. */
342b8b6e
AD
2034@end example
2035
9edcd895
AD
2036@noindent
2037Note there are no declarations specific to locations. Defining a data
2038type for storing locations is not needed: we will use the type provided
2039by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2040four member structure with the following integer fields:
2041@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2042@code{last_column}. By conventions, and in accordance with the GNU
2043Coding Standards and common practice, the line and column count both
2044start at 1.
342b8b6e
AD
2045
2046@node Ltcalc Rules
2047@subsection Grammar Rules for @code{ltcalc}
2048
9edcd895
AD
2049Whether handling locations or not has no effect on the syntax of your
2050language. Therefore, grammar rules for this example will be very close
2051to those of the previous example: we will only modify them to benefit
2052from the new information.
342b8b6e 2053
9edcd895
AD
2054Here, we will use locations to report divisions by zero, and locate the
2055wrong expressions or subexpressions.
342b8b6e
AD
2056
2057@example
2058@group
2059input : /* empty */
2060 | input line
2061;
2062@end group
2063
2064@group
2065line : '\n'
2066 | exp '\n' @{ printf ("%d\n", $1); @}
2067;
2068@end group
2069
2070@group
2071exp : NUM @{ $$ = $1; @}
2072 | exp '+' exp @{ $$ = $1 + $3; @}
2073 | exp '-' exp @{ $$ = $1 - $3; @}
2074 | exp '*' exp @{ $$ = $1 * $3; @}
2075@end group
342b8b6e 2076@group
9edcd895 2077 | exp '/' exp
342b8b6e
AD
2078 @{
2079 if ($3)
2080 $$ = $1 / $3;
2081 else
2082 @{
2083 $$ = 1;
9edcd895
AD
2084 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2085 @@3.first_line, @@3.first_column,
2086 @@3.last_line, @@3.last_column);
342b8b6e
AD
2087 @}
2088 @}
2089@end group
2090@group
178e123e 2091 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2092 | exp '^' exp @{ $$ = pow ($1, $3); @}
2093 | '(' exp ')' @{ $$ = $2; @}
2094@end group
2095@end example
2096
2097This code shows how to reach locations inside of semantic actions, by
2098using the pseudo-variables @code{@@@var{n}} for rule components, and the
2099pseudo-variable @code{@@$} for groupings.
2100
9edcd895
AD
2101We don't need to assign a value to @code{@@$}: the output parser does it
2102automatically. By default, before executing the C code of each action,
2103@code{@@$} is set to range from the beginning of @code{@@1} to the end
2104of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2105can be redefined (@pxref{Location Default Action, , Default Action for
2106Locations}), and for very specific rules, @code{@@$} can be computed by
2107hand.
342b8b6e
AD
2108
2109@node Ltcalc Lexer
2110@subsection The @code{ltcalc} Lexical Analyzer.
2111
9edcd895 2112Until now, we relied on Bison's defaults to enable location
72d2299c 2113tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2114able to feed the parser with the token locations, as it already does for
2115semantic values.
342b8b6e 2116
9edcd895
AD
2117To this end, we must take into account every single character of the
2118input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2119
2120@example
2121@group
2122int
2123yylex (void)
2124@{
2125 int c;
18b519c0 2126@end group
342b8b6e 2127
18b519c0 2128@group
72d2299c 2129 /* Skip white space. */
342b8b6e
AD
2130 while ((c = getchar ()) == ' ' || c == '\t')
2131 ++yylloc.last_column;
18b519c0 2132@end group
342b8b6e 2133
18b519c0 2134@group
72d2299c 2135 /* Step. */
342b8b6e
AD
2136 yylloc.first_line = yylloc.last_line;
2137 yylloc.first_column = yylloc.last_column;
2138@end group
2139
2140@group
72d2299c 2141 /* Process numbers. */
342b8b6e
AD
2142 if (isdigit (c))
2143 @{
2144 yylval = c - '0';
2145 ++yylloc.last_column;
2146 while (isdigit (c = getchar ()))
2147 @{
2148 ++yylloc.last_column;
2149 yylval = yylval * 10 + c - '0';
2150 @}
2151 ungetc (c, stdin);
2152 return NUM;
2153 @}
2154@end group
2155
72d2299c 2156 /* Return end-of-input. */
342b8b6e
AD
2157 if (c == EOF)
2158 return 0;
2159
72d2299c 2160 /* Return a single char, and update location. */
342b8b6e
AD
2161 if (c == '\n')
2162 @{
2163 ++yylloc.last_line;
2164 yylloc.last_column = 0;
2165 @}
2166 else
2167 ++yylloc.last_column;
2168 return c;
2169@}
2170@end example
2171
9edcd895
AD
2172Basically, the lexical analyzer performs the same processing as before:
2173it skips blanks and tabs, and reads numbers or single-character tokens.
2174In addition, it updates @code{yylloc}, the global variable (of type
2175@code{YYLTYPE}) containing the token's location.
342b8b6e 2176
9edcd895 2177Now, each time this function returns a token, the parser has its number
72d2299c 2178as well as its semantic value, and its location in the text. The last
9edcd895
AD
2179needed change is to initialize @code{yylloc}, for example in the
2180controlling function:
342b8b6e
AD
2181
2182@example
9edcd895 2183@group
342b8b6e
AD
2184int
2185main (void)
2186@{
2187 yylloc.first_line = yylloc.last_line = 1;
2188 yylloc.first_column = yylloc.last_column = 0;
2189 return yyparse ();
2190@}
9edcd895 2191@end group
342b8b6e
AD
2192@end example
2193
9edcd895
AD
2194Remember that computing locations is not a matter of syntax. Every
2195character must be associated to a location update, whether it is in
2196valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2197
2198@node Multi-function Calc
bfa74976
RS
2199@section Multi-Function Calculator: @code{mfcalc}
2200@cindex multi-function calculator
2201@cindex @code{mfcalc}
2202@cindex calculator, multi-function
2203
2204Now that the basics of Bison have been discussed, it is time to move on to
2205a more advanced problem. The above calculators provided only five
2206functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2207be nice to have a calculator that provides other mathematical functions such
2208as @code{sin}, @code{cos}, etc.
2209
2210It is easy to add new operators to the infix calculator as long as they are
2211only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2212back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2213adding a new operator. But we want something more flexible: built-in
2214functions whose syntax has this form:
2215
2216@example
2217@var{function_name} (@var{argument})
2218@end example
2219
2220@noindent
2221At the same time, we will add memory to the calculator, by allowing you
2222to create named variables, store values in them, and use them later.
2223Here is a sample session with the multi-function calculator:
2224
2225@example
9edcd895
AD
2226$ @kbd{mfcalc}
2227@kbd{pi = 3.141592653589}
bfa74976 22283.1415926536
9edcd895 2229@kbd{sin(pi)}
bfa74976 22300.0000000000
9edcd895 2231@kbd{alpha = beta1 = 2.3}
bfa74976 22322.3000000000
9edcd895 2233@kbd{alpha}
bfa74976 22342.3000000000
9edcd895 2235@kbd{ln(alpha)}
bfa74976 22360.8329091229
9edcd895 2237@kbd{exp(ln(beta1))}
bfa74976 22382.3000000000
9edcd895 2239$
bfa74976
RS
2240@end example
2241
2242Note that multiple assignment and nested function calls are permitted.
2243
2244@menu
f56274a8
DJ
2245* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2246* Mfcalc Rules:: Grammar rules for the calculator.
2247* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2248@end menu
2249
f56274a8 2250@node Mfcalc Declarations
bfa74976
RS
2251@subsection Declarations for @code{mfcalc}
2252
2253Here are the C and Bison declarations for the multi-function calculator.
2254
2255@smallexample
18b519c0 2256@group
bfa74976 2257%@{
38a92d50
PE
2258 #include <math.h> /* For math functions, cos(), sin(), etc. */
2259 #include "calc.h" /* Contains definition of `symrec'. */
2260 int yylex (void);
2261 void yyerror (char const *);
bfa74976 2262%@}
18b519c0
AD
2263@end group
2264@group
bfa74976 2265%union @{
38a92d50
PE
2266 double val; /* For returning numbers. */
2267 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2268@}
18b519c0 2269@end group
38a92d50
PE
2270%token <val> NUM /* Simple double precision number. */
2271%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2272%type <val> exp
2273
18b519c0 2274@group
bfa74976
RS
2275%right '='
2276%left '-' '+'
2277%left '*' '/'
38a92d50
PE
2278%left NEG /* negation--unary minus */
2279%right '^' /* exponentiation */
18b519c0 2280@end group
38a92d50 2281%% /* The grammar follows. */
bfa74976
RS
2282@end smallexample
2283
2284The above grammar introduces only two new features of the Bison language.
2285These features allow semantic values to have various data types
2286(@pxref{Multiple Types, ,More Than One Value Type}).
2287
2288The @code{%union} declaration specifies the entire list of possible types;
2289this is instead of defining @code{YYSTYPE}. The allowable types are now
2290double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2291the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2292
2293Since values can now have various types, it is necessary to associate a
2294type with each grammar symbol whose semantic value is used. These symbols
2295are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2296declarations are augmented with information about their data type (placed
2297between angle brackets).
2298
704a47c4
AD
2299The Bison construct @code{%type} is used for declaring nonterminal
2300symbols, just as @code{%token} is used for declaring token types. We
2301have not used @code{%type} before because nonterminal symbols are
2302normally declared implicitly by the rules that define them. But
2303@code{exp} must be declared explicitly so we can specify its value type.
2304@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2305
342b8b6e 2306@node Mfcalc Rules
bfa74976
RS
2307@subsection Grammar Rules for @code{mfcalc}
2308
2309Here are the grammar rules for the multi-function calculator.
2310Most of them are copied directly from @code{calc}; three rules,
2311those which mention @code{VAR} or @code{FNCT}, are new.
2312
2313@smallexample
18b519c0 2314@group
bfa74976
RS
2315input: /* empty */
2316 | input line
2317;
18b519c0 2318@end group
bfa74976 2319
18b519c0 2320@group
bfa74976
RS
2321line:
2322 '\n'
2323 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2324 | error '\n' @{ yyerrok; @}
2325;
18b519c0 2326@end group
bfa74976 2327
18b519c0 2328@group
bfa74976
RS
2329exp: NUM @{ $$ = $1; @}
2330 | VAR @{ $$ = $1->value.var; @}
2331 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2332 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2333 | exp '+' exp @{ $$ = $1 + $3; @}
2334 | exp '-' exp @{ $$ = $1 - $3; @}
2335 | exp '*' exp @{ $$ = $1 * $3; @}
2336 | exp '/' exp @{ $$ = $1 / $3; @}
2337 | '-' exp %prec NEG @{ $$ = -$2; @}
2338 | exp '^' exp @{ $$ = pow ($1, $3); @}
2339 | '(' exp ')' @{ $$ = $2; @}
2340;
18b519c0 2341@end group
38a92d50 2342/* End of grammar. */
bfa74976
RS
2343%%
2344@end smallexample
2345
f56274a8 2346@node Mfcalc Symbol Table
bfa74976
RS
2347@subsection The @code{mfcalc} Symbol Table
2348@cindex symbol table example
2349
2350The multi-function calculator requires a symbol table to keep track of the
2351names and meanings of variables and functions. This doesn't affect the
2352grammar rules (except for the actions) or the Bison declarations, but it
2353requires some additional C functions for support.
2354
2355The symbol table itself consists of a linked list of records. Its
2356definition, which is kept in the header @file{calc.h}, is as follows. It
2357provides for either functions or variables to be placed in the table.
2358
2359@smallexample
2360@group
38a92d50 2361/* Function type. */
32dfccf8 2362typedef double (*func_t) (double);
72f889cc 2363@end group
32dfccf8 2364
72f889cc 2365@group
38a92d50 2366/* Data type for links in the chain of symbols. */
bfa74976
RS
2367struct symrec
2368@{
38a92d50 2369 char *name; /* name of symbol */
bfa74976 2370 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2371 union
2372 @{
38a92d50
PE
2373 double var; /* value of a VAR */
2374 func_t fnctptr; /* value of a FNCT */
bfa74976 2375 @} value;
38a92d50 2376 struct symrec *next; /* link field */
bfa74976
RS
2377@};
2378@end group
2379
2380@group
2381typedef struct symrec symrec;
2382
38a92d50 2383/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2384extern symrec *sym_table;
2385
a730d142 2386symrec *putsym (char const *, int);
38a92d50 2387symrec *getsym (char const *);
bfa74976
RS
2388@end group
2389@end smallexample
2390
2391The new version of @code{main} includes a call to @code{init_table}, a
2392function that initializes the symbol table. Here it is, and
2393@code{init_table} as well:
2394
2395@smallexample
bfa74976
RS
2396#include <stdio.h>
2397
18b519c0 2398@group
38a92d50 2399/* Called by yyparse on error. */
13863333 2400void
38a92d50 2401yyerror (char const *s)
bfa74976
RS
2402@{
2403 printf ("%s\n", s);
2404@}
18b519c0 2405@end group
bfa74976 2406
18b519c0 2407@group
bfa74976
RS
2408struct init
2409@{
38a92d50
PE
2410 char const *fname;
2411 double (*fnct) (double);
bfa74976
RS
2412@};
2413@end group
2414
2415@group
38a92d50 2416struct init const arith_fncts[] =
13863333 2417@{
32dfccf8
AD
2418 "sin", sin,
2419 "cos", cos,
13863333 2420 "atan", atan,
32dfccf8
AD
2421 "ln", log,
2422 "exp", exp,
13863333
AD
2423 "sqrt", sqrt,
2424 0, 0
2425@};
18b519c0 2426@end group
bfa74976 2427
18b519c0 2428@group
bfa74976 2429/* The symbol table: a chain of `struct symrec'. */
38a92d50 2430symrec *sym_table;
bfa74976
RS
2431@end group
2432
2433@group
72d2299c 2434/* Put arithmetic functions in table. */
13863333
AD
2435void
2436init_table (void)
bfa74976
RS
2437@{
2438 int i;
2439 symrec *ptr;
2440 for (i = 0; arith_fncts[i].fname != 0; i++)
2441 @{
2442 ptr = putsym (arith_fncts[i].fname, FNCT);
2443 ptr->value.fnctptr = arith_fncts[i].fnct;
2444 @}
2445@}
2446@end group
38a92d50
PE
2447
2448@group
2449int
2450main (void)
2451@{
2452 init_table ();
2453 return yyparse ();
2454@}
2455@end group
bfa74976
RS
2456@end smallexample
2457
2458By simply editing the initialization list and adding the necessary include
2459files, you can add additional functions to the calculator.
2460
2461Two important functions allow look-up and installation of symbols in the
2462symbol table. The function @code{putsym} is passed a name and the type
2463(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2464linked to the front of the list, and a pointer to the object is returned.
2465The function @code{getsym} is passed the name of the symbol to look up. If
2466found, a pointer to that symbol is returned; otherwise zero is returned.
2467
2468@smallexample
2469symrec *
38a92d50 2470putsym (char const *sym_name, int sym_type)
bfa74976
RS
2471@{
2472 symrec *ptr;
2473 ptr = (symrec *) malloc (sizeof (symrec));
2474 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2475 strcpy (ptr->name,sym_name);
2476 ptr->type = sym_type;
72d2299c 2477 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2478 ptr->next = (struct symrec *)sym_table;
2479 sym_table = ptr;
2480 return ptr;
2481@}
2482
2483symrec *
38a92d50 2484getsym (char const *sym_name)
bfa74976
RS
2485@{
2486 symrec *ptr;
2487 for (ptr = sym_table; ptr != (symrec *) 0;
2488 ptr = (symrec *)ptr->next)
2489 if (strcmp (ptr->name,sym_name) == 0)
2490 return ptr;
2491 return 0;
2492@}
2493@end smallexample
2494
2495The function @code{yylex} must now recognize variables, numeric values, and
2496the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2497characters with a leading letter are recognized as either variables or
bfa74976
RS
2498functions depending on what the symbol table says about them.
2499
2500The string is passed to @code{getsym} for look up in the symbol table. If
2501the name appears in the table, a pointer to its location and its type
2502(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2503already in the table, then it is installed as a @code{VAR} using
2504@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2505returned to @code{yyparse}.
bfa74976
RS
2506
2507No change is needed in the handling of numeric values and arithmetic
2508operators in @code{yylex}.
2509
2510@smallexample
2511@group
2512#include <ctype.h>
18b519c0 2513@end group
13863333 2514
18b519c0 2515@group
13863333
AD
2516int
2517yylex (void)
bfa74976
RS
2518@{
2519 int c;
2520
72d2299c 2521 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2522 while ((c = getchar ()) == ' ' || c == '\t');
2523
2524 if (c == EOF)
2525 return 0;
2526@end group
2527
2528@group
2529 /* Char starts a number => parse the number. */
2530 if (c == '.' || isdigit (c))
2531 @{
2532 ungetc (c, stdin);
2533 scanf ("%lf", &yylval.val);
2534 return NUM;
2535 @}
2536@end group
2537
2538@group
2539 /* Char starts an identifier => read the name. */
2540 if (isalpha (c))
2541 @{
2542 symrec *s;
2543 static char *symbuf = 0;
2544 static int length = 0;
2545 int i;
2546@end group
2547
2548@group
2549 /* Initially make the buffer long enough
2550 for a 40-character symbol name. */
2551 if (length == 0)
2552 length = 40, symbuf = (char *)malloc (length + 1);
2553
2554 i = 0;
2555 do
2556@end group
2557@group
2558 @{
2559 /* If buffer is full, make it bigger. */
2560 if (i == length)
2561 @{
2562 length *= 2;
18b519c0 2563 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2564 @}
2565 /* Add this character to the buffer. */
2566 symbuf[i++] = c;
2567 /* Get another character. */
2568 c = getchar ();
2569 @}
2570@end group
2571@group
72d2299c 2572 while (isalnum (c));
bfa74976
RS
2573
2574 ungetc (c, stdin);
2575 symbuf[i] = '\0';
2576@end group
2577
2578@group
2579 s = getsym (symbuf);
2580 if (s == 0)
2581 s = putsym (symbuf, VAR);
2582 yylval.tptr = s;
2583 return s->type;
2584 @}
2585
2586 /* Any other character is a token by itself. */
2587 return c;
2588@}
2589@end group
2590@end smallexample
2591
72d2299c 2592This program is both powerful and flexible. You may easily add new
704a47c4
AD
2593functions, and it is a simple job to modify this code to install
2594predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2595
342b8b6e 2596@node Exercises
bfa74976
RS
2597@section Exercises
2598@cindex exercises
2599
2600@enumerate
2601@item
2602Add some new functions from @file{math.h} to the initialization list.
2603
2604@item
2605Add another array that contains constants and their values. Then
2606modify @code{init_table} to add these constants to the symbol table.
2607It will be easiest to give the constants type @code{VAR}.
2608
2609@item
2610Make the program report an error if the user refers to an
2611uninitialized variable in any way except to store a value in it.
2612@end enumerate
2613
342b8b6e 2614@node Grammar File
bfa74976
RS
2615@chapter Bison Grammar Files
2616
2617Bison takes as input a context-free grammar specification and produces a
2618C-language function that recognizes correct instances of the grammar.
2619
9913d6e4 2620The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2621@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2622
2623@menu
2624* Grammar Outline:: Overall layout of the grammar file.
2625* Symbols:: Terminal and nonterminal symbols.
2626* Rules:: How to write grammar rules.
2627* Recursion:: Writing recursive rules.
2628* Semantics:: Semantic values and actions.
847bf1f5 2629* Locations:: Locations and actions.
bfa74976
RS
2630* Declarations:: All kinds of Bison declarations are described here.
2631* Multiple Parsers:: Putting more than one Bison parser in one program.
2632@end menu
2633
342b8b6e 2634@node Grammar Outline
bfa74976
RS
2635@section Outline of a Bison Grammar
2636
2637A Bison grammar file has four main sections, shown here with the
2638appropriate delimiters:
2639
2640@example
2641%@{
38a92d50 2642 @var{Prologue}
bfa74976
RS
2643%@}
2644
2645@var{Bison declarations}
2646
2647%%
2648@var{Grammar rules}
2649%%
2650
75f5aaea 2651@var{Epilogue}
bfa74976
RS
2652@end example
2653
2654Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
35430378 2655As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2656continues until end of line.
bfa74976
RS
2657
2658@menu
f56274a8 2659* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2660* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
2661* Bison Declarations:: Syntax and usage of the Bison declarations section.
2662* Grammar Rules:: Syntax and usage of the grammar rules section.
2663* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2664@end menu
2665
38a92d50 2666@node Prologue
75f5aaea
MA
2667@subsection The prologue
2668@cindex declarations section
2669@cindex Prologue
2670@cindex declarations
bfa74976 2671
f8e1c9e5
AD
2672The @var{Prologue} section contains macro definitions and declarations
2673of functions and variables that are used in the actions in the grammar
9913d6e4
JD
2674rules. These are copied to the beginning of the parser implementation
2675file so that they precede the definition of @code{yyparse}. You can
2676use @samp{#include} to get the declarations from a header file. If
2677you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2678@samp{%@}} delimiters that bracket this section.
bfa74976 2679
9c437126 2680The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2681of @samp{%@}} that is outside a comment, a string literal, or a
2682character constant.
2683
c732d2c6
AD
2684You may have more than one @var{Prologue} section, intermixed with the
2685@var{Bison declarations}. This allows you to have C and Bison
2686declarations that refer to each other. For example, the @code{%union}
2687declaration may use types defined in a header file, and you may wish to
2688prototype functions that take arguments of type @code{YYSTYPE}. This
2689can be done with two @var{Prologue} blocks, one before and one after the
2690@code{%union} declaration.
2691
2692@smallexample
2693%@{
aef3da86 2694 #define _GNU_SOURCE
38a92d50
PE
2695 #include <stdio.h>
2696 #include "ptypes.h"
c732d2c6
AD
2697%@}
2698
2699%union @{
779e7ceb 2700 long int n;
c732d2c6
AD
2701 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2702@}
2703
2704%@{
38a92d50
PE
2705 static void print_token_value (FILE *, int, YYSTYPE);
2706 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2707%@}
2708
2709@dots{}
2710@end smallexample
2711
aef3da86
PE
2712When in doubt, it is usually safer to put prologue code before all
2713Bison declarations, rather than after. For example, any definitions
2714of feature test macros like @code{_GNU_SOURCE} or
2715@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2716feature test macros can affect the behavior of Bison-generated
2717@code{#include} directives.
2718
2cbe6b7f
JD
2719@node Prologue Alternatives
2720@subsection Prologue Alternatives
2721@cindex Prologue Alternatives
2722
136a0f76 2723@findex %code
16dc6a9e
JD
2724@findex %code requires
2725@findex %code provides
2726@findex %code top
85894313 2727
2cbe6b7f 2728The functionality of @var{Prologue} sections can often be subtle and
9913d6e4
JD
2729inflexible. As an alternative, Bison provides a @code{%code}
2730directive with an explicit qualifier field, which identifies the
2731purpose of the code and thus the location(s) where Bison should
2732generate it. For C/C++, the qualifier can be omitted for the default
2733location, or it can be one of @code{requires}, @code{provides},
8e6f2266 2734@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2735
2736Look again at the example of the previous section:
2737
2738@smallexample
2739%@{
2740 #define _GNU_SOURCE
2741 #include <stdio.h>
2742 #include "ptypes.h"
2743%@}
2744
2745%union @{
2746 long int n;
2747 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2748@}
2749
2750%@{
2751 static void print_token_value (FILE *, int, YYSTYPE);
2752 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2753%@}
2754
2755@dots{}
2756@end smallexample
2757
2758@noindent
9913d6e4
JD
2759Notice that there are two @var{Prologue} sections here, but there's a
2760subtle distinction between their functionality. For example, if you
2761decide to override Bison's default definition for @code{YYLTYPE}, in
2762which @var{Prologue} section should you write your new definition?
2763You should write it in the first since Bison will insert that code
2764into the parser implementation file @emph{before} the default
2765@code{YYLTYPE} definition. In which @var{Prologue} section should you
2766prototype an internal function, @code{trace_token}, that accepts
2767@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2768prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2769@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2770
2771This distinction in functionality between the two @var{Prologue} sections is
2772established by the appearance of the @code{%union} between them.
a501eca9 2773This behavior raises a few questions.
2cbe6b7f
JD
2774First, why should the position of a @code{%union} affect definitions related to
2775@code{YYLTYPE} and @code{yytokentype}?
2776Second, what if there is no @code{%union}?
2777In that case, the second kind of @var{Prologue} section is not available.
2778This behavior is not intuitive.
2779
8e0a5e9e 2780To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2781@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2782Let's go ahead and add the new @code{YYLTYPE} definition and the
2783@code{trace_token} prototype at the same time:
2784
2785@smallexample
16dc6a9e 2786%code top @{
2cbe6b7f
JD
2787 #define _GNU_SOURCE
2788 #include <stdio.h>
8e0a5e9e
JD
2789
2790 /* WARNING: The following code really belongs
16dc6a9e 2791 * in a `%code requires'; see below. */
8e0a5e9e 2792
2cbe6b7f
JD
2793 #include "ptypes.h"
2794 #define YYLTYPE YYLTYPE
2795 typedef struct YYLTYPE
2796 @{
2797 int first_line;
2798 int first_column;
2799 int last_line;
2800 int last_column;
2801 char *filename;
2802 @} YYLTYPE;
2803@}
2804
2805%union @{
2806 long int n;
2807 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2808@}
2809
2810%code @{
2811 static void print_token_value (FILE *, int, YYSTYPE);
2812 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2813 static void trace_token (enum yytokentype token, YYLTYPE loc);
2814@}
2815
2816@dots{}
2817@end smallexample
2818
2819@noindent
16dc6a9e
JD
2820In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2821functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2822explicit which kind you intend.
2cbe6b7f
JD
2823Moreover, both kinds are always available even in the absence of @code{%union}.
2824
9913d6e4
JD
2825The @code{%code top} block above logically contains two parts. The
2826first two lines before the warning need to appear near the top of the
2827parser implementation file. The first line after the warning is
2828required by @code{YYSTYPE} and thus also needs to appear in the parser
2829implementation file. However, if you've instructed Bison to generate
2830a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2831want that line to appear before the @code{YYSTYPE} definition in that
2832header file as well. The @code{YYLTYPE} definition should also appear
2833in the parser header file to override the default @code{YYLTYPE}
2834definition there.
2cbe6b7f 2835
16dc6a9e 2836In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2837lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2838definitions.
16dc6a9e 2839Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2840
2841@smallexample
16dc6a9e 2842%code top @{
2cbe6b7f
JD
2843 #define _GNU_SOURCE
2844 #include <stdio.h>
2845@}
2846
16dc6a9e 2847%code requires @{
9bc0dd67
JD
2848 #include "ptypes.h"
2849@}
2850%union @{
2851 long int n;
2852 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2853@}
2854
16dc6a9e 2855%code requires @{
2cbe6b7f
JD
2856 #define YYLTYPE YYLTYPE
2857 typedef struct YYLTYPE
2858 @{
2859 int first_line;
2860 int first_column;
2861 int last_line;
2862 int last_column;
2863 char *filename;
2864 @} YYLTYPE;
2865@}
2866
136a0f76 2867%code @{
2cbe6b7f
JD
2868 static void print_token_value (FILE *, int, YYSTYPE);
2869 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2870 static void trace_token (enum yytokentype token, YYLTYPE loc);
2871@}
2872
2873@dots{}
2874@end smallexample
2875
2876@noindent
9913d6e4
JD
2877Now Bison will insert @code{#include "ptypes.h"} and the new
2878@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
2879and @code{YYLTYPE} definitions in both the parser implementation file
2880and the parser header file. (By the same reasoning, @code{%code
2881requires} would also be the appropriate place to write your own
2882definition for @code{YYSTYPE}.)
2883
2884When you are writing dependency code for @code{YYSTYPE} and
2885@code{YYLTYPE}, you should prefer @code{%code requires} over
2886@code{%code top} regardless of whether you instruct Bison to generate
2887a parser header file. When you are writing code that you need Bison
2888to insert only into the parser implementation file and that has no
2889special need to appear at the top of that file, you should prefer the
2890unqualified @code{%code} over @code{%code top}. These practices will
2891make the purpose of each block of your code explicit to Bison and to
2892other developers reading your grammar file. Following these
2893practices, we expect the unqualified @code{%code} and @code{%code
2894requires} to be the most important of the four @var{Prologue}
16dc6a9e 2895alternatives.
a501eca9 2896
9913d6e4
JD
2897At some point while developing your parser, you might decide to
2898provide @code{trace_token} to modules that are external to your
2899parser. Thus, you might wish for Bison to insert the prototype into
2900both the parser header file and the parser implementation file. Since
2901this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 2902@code{YYLTYPE}, it doesn't make sense to move its prototype to a
9913d6e4
JD
2903@code{%code requires}. More importantly, since it depends upon
2904@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
2905sufficient. Instead, move its prototype from the unqualified
2906@code{%code} to a @code{%code provides}:
2cbe6b7f
JD
2907
2908@smallexample
16dc6a9e 2909%code top @{
2cbe6b7f 2910 #define _GNU_SOURCE
136a0f76 2911 #include <stdio.h>
2cbe6b7f 2912@}
136a0f76 2913
16dc6a9e 2914%code requires @{
2cbe6b7f
JD
2915 #include "ptypes.h"
2916@}
2917%union @{
2918 long int n;
2919 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2920@}
2921
16dc6a9e 2922%code requires @{
2cbe6b7f
JD
2923 #define YYLTYPE YYLTYPE
2924 typedef struct YYLTYPE
2925 @{
2926 int first_line;
2927 int first_column;
2928 int last_line;
2929 int last_column;
2930 char *filename;
2931 @} YYLTYPE;
2932@}
2933
16dc6a9e 2934%code provides @{
2cbe6b7f
JD
2935 void trace_token (enum yytokentype token, YYLTYPE loc);
2936@}
2937
2938%code @{
9bc0dd67
JD
2939 static void print_token_value (FILE *, int, YYSTYPE);
2940 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2941@}
9bc0dd67
JD
2942
2943@dots{}
2944@end smallexample
2945
2cbe6b7f 2946@noindent
9913d6e4
JD
2947Bison will insert the @code{trace_token} prototype into both the
2948parser header file and the parser implementation file after the
2949definitions for @code{yytokentype}, @code{YYLTYPE}, and
2950@code{YYSTYPE}.
2951
2952The above examples are careful to write directives in an order that
2953reflects the layout of the generated parser implementation and header
2954files: @code{%code top}, @code{%code requires}, @code{%code provides},
2955and then @code{%code}. While your grammar files may generally be
2956easier to read if you also follow this order, Bison does not require
2957it. Instead, Bison lets you choose an organization that makes sense
2958to you.
2cbe6b7f 2959
a501eca9 2960You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2961In that case, Bison concatenates the contained code in declaration order.
2962This is the only way in which the position of one of these directives within
2963the grammar file affects its functionality.
2964
2965The result of the previous two properties is greater flexibility in how you may
2966organize your grammar file.
2967For example, you may organize semantic-type-related directives by semantic
2968type:
2969
2970@smallexample
16dc6a9e 2971%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2972%union @{ type1 field1; @}
2973%destructor @{ type1_free ($$); @} <field1>
2974%printer @{ type1_print ($$); @} <field1>
2975
16dc6a9e 2976%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2977%union @{ type2 field2; @}
2978%destructor @{ type2_free ($$); @} <field2>
2979%printer @{ type2_print ($$); @} <field2>
2980@end smallexample
2981
2982@noindent
2983You could even place each of the above directive groups in the rules section of
2984the grammar file next to the set of rules that uses the associated semantic
2985type.
61fee93e
JD
2986(In the rules section, you must terminate each of those directives with a
2987semicolon.)
2cbe6b7f
JD
2988And you don't have to worry that some directive (like a @code{%union}) in the
2989definitions section is going to adversely affect their functionality in some
2990counter-intuitive manner just because it comes first.
2991Such an organization is not possible using @var{Prologue} sections.
2992
a501eca9 2993This section has been concerned with explaining the advantages of the four
8e0a5e9e 2994@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2995However, in most cases when using these directives, you shouldn't need to
2996think about all the low-level ordering issues discussed here.
2997Instead, you should simply use these directives to label each block of your
2998code according to its purpose and let Bison handle the ordering.
2999@code{%code} is the most generic label.
16dc6a9e
JD
3000Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3001as needed.
a501eca9 3002
342b8b6e 3003@node Bison Declarations
bfa74976
RS
3004@subsection The Bison Declarations Section
3005@cindex Bison declarations (introduction)
3006@cindex declarations, Bison (introduction)
3007
3008The @var{Bison declarations} section contains declarations that define
3009terminal and nonterminal symbols, specify precedence, and so on.
3010In some simple grammars you may not need any declarations.
3011@xref{Declarations, ,Bison Declarations}.
3012
342b8b6e 3013@node Grammar Rules
bfa74976
RS
3014@subsection The Grammar Rules Section
3015@cindex grammar rules section
3016@cindex rules section for grammar
3017
3018The @dfn{grammar rules} section contains one or more Bison grammar
3019rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3020
3021There must always be at least one grammar rule, and the first
3022@samp{%%} (which precedes the grammar rules) may never be omitted even
3023if it is the first thing in the file.
3024
38a92d50 3025@node Epilogue
75f5aaea 3026@subsection The epilogue
bfa74976 3027@cindex additional C code section
75f5aaea 3028@cindex epilogue
bfa74976
RS
3029@cindex C code, section for additional
3030
9913d6e4
JD
3031The @var{Epilogue} is copied verbatim to the end of the parser
3032implementation file, just as the @var{Prologue} is copied to the
3033beginning. This is the most convenient place to put anything that you
3034want to have in the parser implementation file but which need not come
3035before the definition of @code{yyparse}. For example, the definitions
3036of @code{yylex} and @code{yyerror} often go here. Because C requires
3037functions to be declared before being used, you often need to declare
3038functions like @code{yylex} and @code{yyerror} in the Prologue, even
3039if you define them in the Epilogue. @xref{Interface, ,Parser
3040C-Language Interface}.
bfa74976
RS
3041
3042If the last section is empty, you may omit the @samp{%%} that separates it
3043from the grammar rules.
3044
f8e1c9e5
AD
3045The Bison parser itself contains many macros and identifiers whose names
3046start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3047any such names (except those documented in this manual) in the epilogue
3048of the grammar file.
bfa74976 3049
342b8b6e 3050@node Symbols
bfa74976
RS
3051@section Symbols, Terminal and Nonterminal
3052@cindex nonterminal symbol
3053@cindex terminal symbol
3054@cindex token type
3055@cindex symbol
3056
3057@dfn{Symbols} in Bison grammars represent the grammatical classifications
3058of the language.
3059
3060A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3061class of syntactically equivalent tokens. You use the symbol in grammar
3062rules to mean that a token in that class is allowed. The symbol is
3063represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3064function returns a token type code to indicate what kind of token has
3065been read. You don't need to know what the code value is; you can use
3066the symbol to stand for it.
bfa74976 3067
f8e1c9e5
AD
3068A @dfn{nonterminal symbol} stands for a class of syntactically
3069equivalent groupings. The symbol name is used in writing grammar rules.
3070By convention, it should be all lower case.
bfa74976 3071
eb8c66bb
JD
3072Symbol names can contain letters, underscores, periods, and non-initial
3073digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3074with POSIX Yacc. Periods and dashes make symbol names less convenient to
3075use with named references, which require brackets around such names
3076(@pxref{Named References}). Terminal symbols that contain periods or dashes
3077make little sense: since they are not valid symbols (in most programming
3078languages) they are not exported as token names.
bfa74976 3079
931c7513 3080There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3081
3082@itemize @bullet
3083@item
3084A @dfn{named token type} is written with an identifier, like an
c827f760 3085identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3086such name must be defined with a Bison declaration such as
3087@code{%token}. @xref{Token Decl, ,Token Type Names}.
3088
3089@item
3090@cindex character token
3091@cindex literal token
3092@cindex single-character literal
931c7513
RS
3093A @dfn{character token type} (or @dfn{literal character token}) is
3094written in the grammar using the same syntax used in C for character
3095constants; for example, @code{'+'} is a character token type. A
3096character token type doesn't need to be declared unless you need to
3097specify its semantic value data type (@pxref{Value Type, ,Data Types of
3098Semantic Values}), associativity, or precedence (@pxref{Precedence,
3099,Operator Precedence}).
bfa74976
RS
3100
3101By convention, a character token type is used only to represent a
3102token that consists of that particular character. Thus, the token
3103type @code{'+'} is used to represent the character @samp{+} as a
3104token. Nothing enforces this convention, but if you depart from it,
3105your program will confuse other readers.
3106
3107All the usual escape sequences used in character literals in C can be
3108used in Bison as well, but you must not use the null character as a
72d2299c
PE
3109character literal because its numeric code, zero, signifies
3110end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3111for @code{yylex}}). Also, unlike standard C, trigraphs have no
3112special meaning in Bison character literals, nor is backslash-newline
3113allowed.
931c7513
RS
3114
3115@item
3116@cindex string token
3117@cindex literal string token
9ecbd125 3118@cindex multicharacter literal
931c7513
RS
3119A @dfn{literal string token} is written like a C string constant; for
3120example, @code{"<="} is a literal string token. A literal string token
3121doesn't need to be declared unless you need to specify its semantic
14ded682 3122value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3123(@pxref{Precedence}).
3124
3125You can associate the literal string token with a symbolic name as an
3126alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3127Declarations}). If you don't do that, the lexical analyzer has to
3128retrieve the token number for the literal string token from the
3129@code{yytname} table (@pxref{Calling Convention}).
3130
c827f760 3131@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3132
3133By convention, a literal string token is used only to represent a token
3134that consists of that particular string. Thus, you should use the token
3135type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3136does not enforce this convention, but if you depart from it, people who
931c7513
RS
3137read your program will be confused.
3138
3139All the escape sequences used in string literals in C can be used in
92ac3705
PE
3140Bison as well, except that you must not use a null character within a
3141string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3142meaning in Bison string literals, nor is backslash-newline allowed. A
3143literal string token must contain two or more characters; for a token
3144containing just one character, use a character token (see above).
bfa74976
RS
3145@end itemize
3146
3147How you choose to write a terminal symbol has no effect on its
3148grammatical meaning. That depends only on where it appears in rules and
3149on when the parser function returns that symbol.
3150
72d2299c
PE
3151The value returned by @code{yylex} is always one of the terminal
3152symbols, except that a zero or negative value signifies end-of-input.
3153Whichever way you write the token type in the grammar rules, you write
3154it the same way in the definition of @code{yylex}. The numeric code
3155for a character token type is simply the positive numeric code of the
3156character, so @code{yylex} can use the identical value to generate the
3157requisite code, though you may need to convert it to @code{unsigned
3158char} to avoid sign-extension on hosts where @code{char} is signed.
9913d6e4
JD
3159Each named token type becomes a C macro in the parser implementation
3160file, so @code{yylex} can use the name to stand for the code. (This
3161is why periods don't make sense in terminal symbols.) @xref{Calling
3162Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3163
3164If @code{yylex} is defined in a separate file, you need to arrange for the
3165token-type macro definitions to be available there. Use the @samp{-d}
3166option when you run Bison, so that it will write these macro definitions
3167into a separate header file @file{@var{name}.tab.h} which you can include
3168in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3169
72d2299c 3170If you want to write a grammar that is portable to any Standard C
9d9b8b70 3171host, you must use only nonnull character tokens taken from the basic
c827f760 3172execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3173digits, the 52 lower- and upper-case English letters, and the
3174characters in the following C-language string:
3175
3176@example
3177"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3178@end example
3179
f8e1c9e5
AD
3180The @code{yylex} function and Bison must use a consistent character set
3181and encoding for character tokens. For example, if you run Bison in an
35430378 3182ASCII environment, but then compile and run the resulting
f8e1c9e5 3183program in an environment that uses an incompatible character set like
35430378
JD
3184EBCDIC, the resulting program may not work because the tables
3185generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3186character tokens. It is standard practice for software distributions to
3187contain C source files that were generated by Bison in an
35430378
JD
3188ASCII environment, so installers on platforms that are
3189incompatible with ASCII must rebuild those files before
f8e1c9e5 3190compiling them.
e966383b 3191
bfa74976
RS
3192The symbol @code{error} is a terminal symbol reserved for error recovery
3193(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3194In particular, @code{yylex} should never return this value. The default
3195value of the error token is 256, unless you explicitly assigned 256 to
3196one of your tokens with a @code{%token} declaration.
bfa74976 3197
342b8b6e 3198@node Rules
bfa74976
RS
3199@section Syntax of Grammar Rules
3200@cindex rule syntax
3201@cindex grammar rule syntax
3202@cindex syntax of grammar rules
3203
3204A Bison grammar rule has the following general form:
3205
3206@example
e425e872 3207@group
bfa74976
RS
3208@var{result}: @var{components}@dots{}
3209 ;
e425e872 3210@end group
bfa74976
RS
3211@end example
3212
3213@noindent
9ecbd125 3214where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3215and @var{components} are various terminal and nonterminal symbols that
13863333 3216are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3217
3218For example,
3219
3220@example
3221@group
3222exp: exp '+' exp
3223 ;
3224@end group
3225@end example
3226
3227@noindent
3228says that two groupings of type @code{exp}, with a @samp{+} token in between,
3229can be combined into a larger grouping of type @code{exp}.
3230
72d2299c
PE
3231White space in rules is significant only to separate symbols. You can add
3232extra white space as you wish.
bfa74976
RS
3233
3234Scattered among the components can be @var{actions} that determine
3235the semantics of the rule. An action looks like this:
3236
3237@example
3238@{@var{C statements}@}
3239@end example
3240
3241@noindent
287c78f6
PE
3242@cindex braced code
3243This is an example of @dfn{braced code}, that is, C code surrounded by
3244braces, much like a compound statement in C@. Braced code can contain
3245any sequence of C tokens, so long as its braces are balanced. Bison
3246does not check the braced code for correctness directly; it merely
9913d6e4
JD
3247copies the code to the parser implementation file, where the C
3248compiler can check it.
287c78f6
PE
3249
3250Within braced code, the balanced-brace count is not affected by braces
3251within comments, string literals, or character constants, but it is
3252affected by the C digraphs @samp{<%} and @samp{%>} that represent
3253braces. At the top level braced code must be terminated by @samp{@}}
3254and not by a digraph. Bison does not look for trigraphs, so if braced
3255code uses trigraphs you should ensure that they do not affect the
3256nesting of braces or the boundaries of comments, string literals, or
3257character constants.
3258
bfa74976
RS
3259Usually there is only one action and it follows the components.
3260@xref{Actions}.
3261
3262@findex |
3263Multiple rules for the same @var{result} can be written separately or can
3264be joined with the vertical-bar character @samp{|} as follows:
3265
bfa74976
RS
3266@example
3267@group
3268@var{result}: @var{rule1-components}@dots{}
3269 | @var{rule2-components}@dots{}
3270 @dots{}
3271 ;
3272@end group
3273@end example
bfa74976
RS
3274
3275@noindent
3276They are still considered distinct rules even when joined in this way.
3277
3278If @var{components} in a rule is empty, it means that @var{result} can
3279match the empty string. For example, here is how to define a
3280comma-separated sequence of zero or more @code{exp} groupings:
3281
3282@example
3283@group
3284expseq: /* empty */
3285 | expseq1
3286 ;
3287@end group
3288
3289@group
3290expseq1: exp
3291 | expseq1 ',' exp
3292 ;
3293@end group
3294@end example
3295
3296@noindent
3297It is customary to write a comment @samp{/* empty */} in each rule
3298with no components.
3299
342b8b6e 3300@node Recursion
bfa74976
RS
3301@section Recursive Rules
3302@cindex recursive rule
3303
f8e1c9e5
AD
3304A rule is called @dfn{recursive} when its @var{result} nonterminal
3305appears also on its right hand side. Nearly all Bison grammars need to
3306use recursion, because that is the only way to define a sequence of any
3307number of a particular thing. Consider this recursive definition of a
9ecbd125 3308comma-separated sequence of one or more expressions:
bfa74976
RS
3309
3310@example
3311@group
3312expseq1: exp
3313 | expseq1 ',' exp
3314 ;
3315@end group
3316@end example
3317
3318@cindex left recursion
3319@cindex right recursion
3320@noindent
3321Since the recursive use of @code{expseq1} is the leftmost symbol in the
3322right hand side, we call this @dfn{left recursion}. By contrast, here
3323the same construct is defined using @dfn{right recursion}:
3324
3325@example
3326@group
3327expseq1: exp
3328 | exp ',' expseq1
3329 ;
3330@end group
3331@end example
3332
3333@noindent
ec3bc396
AD
3334Any kind of sequence can be defined using either left recursion or right
3335recursion, but you should always use left recursion, because it can
3336parse a sequence of any number of elements with bounded stack space.
3337Right recursion uses up space on the Bison stack in proportion to the
3338number of elements in the sequence, because all the elements must be
3339shifted onto the stack before the rule can be applied even once.
3340@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3341of this.
bfa74976
RS
3342
3343@cindex mutual recursion
3344@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3345rule does not appear directly on its right hand side, but does appear
3346in rules for other nonterminals which do appear on its right hand
13863333 3347side.
bfa74976
RS
3348
3349For example:
3350
3351@example
3352@group
3353expr: primary
3354 | primary '+' primary
3355 ;
3356@end group
3357
3358@group
3359primary: constant
3360 | '(' expr ')'
3361 ;
3362@end group
3363@end example
3364
3365@noindent
3366defines two mutually-recursive nonterminals, since each refers to the
3367other.
3368
342b8b6e 3369@node Semantics
bfa74976
RS
3370@section Defining Language Semantics
3371@cindex defining language semantics
13863333 3372@cindex language semantics, defining
bfa74976
RS
3373
3374The grammar rules for a language determine only the syntax. The semantics
3375are determined by the semantic values associated with various tokens and
3376groupings, and by the actions taken when various groupings are recognized.
3377
3378For example, the calculator calculates properly because the value
3379associated with each expression is the proper number; it adds properly
3380because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3381the numbers associated with @var{x} and @var{y}.
3382
3383@menu
3384* Value Type:: Specifying one data type for all semantic values.
3385* Multiple Types:: Specifying several alternative data types.
3386* Actions:: An action is the semantic definition of a grammar rule.
3387* Action Types:: Specifying data types for actions to operate on.
3388* Mid-Rule Actions:: Most actions go at the end of a rule.
3389 This says when, why and how to use the exceptional
3390 action in the middle of a rule.
1f68dca5 3391* Named References:: Using named references in actions.
bfa74976
RS
3392@end menu
3393
342b8b6e 3394@node Value Type
bfa74976
RS
3395@subsection Data Types of Semantic Values
3396@cindex semantic value type
3397@cindex value type, semantic
3398@cindex data types of semantic values
3399@cindex default data type
3400
3401In a simple program it may be sufficient to use the same data type for
3402the semantic values of all language constructs. This was true in the
35430378 3403RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3404Notation Calculator}).
bfa74976 3405
ddc8ede1
PE
3406Bison normally uses the type @code{int} for semantic values if your
3407program uses the same data type for all language constructs. To
bfa74976
RS
3408specify some other type, define @code{YYSTYPE} as a macro, like this:
3409
3410@example
3411#define YYSTYPE double
3412@end example
3413
3414@noindent
50cce58e
PE
3415@code{YYSTYPE}'s replacement list should be a type name
3416that does not contain parentheses or square brackets.
342b8b6e 3417This macro definition must go in the prologue of the grammar file
75f5aaea 3418(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3419
342b8b6e 3420@node Multiple Types
bfa74976
RS
3421@subsection More Than One Value Type
3422
3423In most programs, you will need different data types for different kinds
3424of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3425@code{int} or @code{long int}, while a string constant needs type
3426@code{char *}, and an identifier might need a pointer to an entry in the
3427symbol table.
bfa74976
RS
3428
3429To use more than one data type for semantic values in one parser, Bison
3430requires you to do two things:
3431
3432@itemize @bullet
3433@item
ddc8ede1 3434Specify the entire collection of possible data types, either by using the
704a47c4 3435@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3436Value Types}), or by using a @code{typedef} or a @code{#define} to
3437define @code{YYSTYPE} to be a union type whose member names are
3438the type tags.
bfa74976
RS
3439
3440@item
14ded682
AD
3441Choose one of those types for each symbol (terminal or nonterminal) for
3442which semantic values are used. This is done for tokens with the
3443@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3444and for groupings with the @code{%type} Bison declaration (@pxref{Type
3445Decl, ,Nonterminal Symbols}).
bfa74976
RS
3446@end itemize
3447
342b8b6e 3448@node Actions
bfa74976
RS
3449@subsection Actions
3450@cindex action
3451@vindex $$
3452@vindex $@var{n}
1f68dca5
AR
3453@vindex $@var{name}
3454@vindex $[@var{name}]
bfa74976
RS
3455
3456An action accompanies a syntactic rule and contains C code to be executed
3457each time an instance of that rule is recognized. The task of most actions
3458is to compute a semantic value for the grouping built by the rule from the
3459semantic values associated with tokens or smaller groupings.
3460
287c78f6
PE
3461An action consists of braced code containing C statements, and can be
3462placed at any position in the rule;
704a47c4
AD
3463it is executed at that position. Most rules have just one action at the
3464end of the rule, following all the components. Actions in the middle of
3465a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3466Actions, ,Actions in Mid-Rule}).
bfa74976 3467
9913d6e4
JD
3468The C code in an action can refer to the semantic values of the
3469components matched by the rule with the construct @code{$@var{n}},
3470which stands for the value of the @var{n}th component. The semantic
3471value for the grouping being constructed is @code{$$}. In addition,
3472the semantic values of symbols can be accessed with the named
3473references construct @code{$@var{name}} or @code{$[@var{name}]}.
3474Bison translates both of these constructs into expressions of the
3475appropriate type when it copies the actions into the parser
3476implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3477for the current grouping) is translated to a modifiable lvalue, so it
3478can be assigned to.
bfa74976
RS
3479
3480Here is a typical example:
3481
3482@example
3483@group
3484exp: @dots{}
3485 | exp '+' exp
3486 @{ $$ = $1 + $3; @}
3487@end group
3488@end example
3489
1f68dca5
AR
3490Or, in terms of named references:
3491
3492@example
3493@group
3494exp[result]: @dots{}
3495 | exp[left] '+' exp[right]
3496 @{ $result = $left + $right; @}
3497@end group
3498@end example
3499
bfa74976
RS
3500@noindent
3501This rule constructs an @code{exp} from two smaller @code{exp} groupings
3502connected by a plus-sign token. In the action, @code{$1} and @code{$3}
1f68dca5 3503(@code{$left} and @code{$right})
bfa74976
RS
3504refer to the semantic values of the two component @code{exp} groupings,
3505which are the first and third symbols on the right hand side of the rule.
1f68dca5
AR
3506The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3507semantic value of
bfa74976
RS
3508the addition-expression just recognized by the rule. If there were a
3509useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3510referred to as @code{$2}.
bfa74976 3511
1f68dca5
AR
3512@xref{Named References,,Using Named References}, for more information
3513about using the named references construct.
3514
3ded9a63
AD
3515Note that the vertical-bar character @samp{|} is really a rule
3516separator, and actions are attached to a single rule. This is a
3517difference with tools like Flex, for which @samp{|} stands for either
3518``or'', or ``the same action as that of the next rule''. In the
3519following example, the action is triggered only when @samp{b} is found:
3520
3521@example
3522@group
3523a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3524@end group
3525@end example
3526
bfa74976
RS
3527@cindex default action
3528If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3529@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3530becomes the value of the whole rule. Of course, the default action is
3531valid only if the two data types match. There is no meaningful default
3532action for an empty rule; every empty rule must have an explicit action
3533unless the rule's value does not matter.
bfa74976
RS
3534
3535@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3536to tokens and groupings on the stack @emph{before} those that match the
3537current rule. This is a very risky practice, and to use it reliably
3538you must be certain of the context in which the rule is applied. Here
3539is a case in which you can use this reliably:
3540
3541@example
3542@group
3543foo: expr bar '+' expr @{ @dots{} @}
3544 | expr bar '-' expr @{ @dots{} @}
3545 ;
3546@end group
3547
3548@group
3549bar: /* empty */
3550 @{ previous_expr = $0; @}
3551 ;
3552@end group
3553@end example
3554
3555As long as @code{bar} is used only in the fashion shown here, @code{$0}
3556always refers to the @code{expr} which precedes @code{bar} in the
3557definition of @code{foo}.
3558
32c29292 3559@vindex yylval
742e4900 3560It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3561any, from a semantic action.
3562This semantic value is stored in @code{yylval}.
3563@xref{Action Features, ,Special Features for Use in Actions}.
3564
342b8b6e 3565@node Action Types
bfa74976
RS
3566@subsection Data Types of Values in Actions
3567@cindex action data types
3568@cindex data types in actions
3569
3570If you have chosen a single data type for semantic values, the @code{$$}
3571and @code{$@var{n}} constructs always have that data type.
3572
3573If you have used @code{%union} to specify a variety of data types, then you
3574must declare a choice among these types for each terminal or nonterminal
3575symbol that can have a semantic value. Then each time you use @code{$$} or
3576@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3577in the rule. In this example,
bfa74976
RS
3578
3579@example
3580@group
3581exp: @dots{}
3582 | exp '+' exp
3583 @{ $$ = $1 + $3; @}
3584@end group
3585@end example
3586
3587@noindent
3588@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3589have the data type declared for the nonterminal symbol @code{exp}. If
3590@code{$2} were used, it would have the data type declared for the
e0c471a9 3591terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3592
3593Alternatively, you can specify the data type when you refer to the value,
3594by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3595reference. For example, if you have defined types as shown here:
3596
3597@example
3598@group
3599%union @{
3600 int itype;
3601 double dtype;
3602@}
3603@end group
3604@end example
3605
3606@noindent
3607then you can write @code{$<itype>1} to refer to the first subunit of the
3608rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3609
342b8b6e 3610@node Mid-Rule Actions
bfa74976
RS
3611@subsection Actions in Mid-Rule
3612@cindex actions in mid-rule
3613@cindex mid-rule actions
3614
3615Occasionally it is useful to put an action in the middle of a rule.
3616These actions are written just like usual end-of-rule actions, but they
3617are executed before the parser even recognizes the following components.
3618
3619A mid-rule action may refer to the components preceding it using
3620@code{$@var{n}}, but it may not refer to subsequent components because
3621it is run before they are parsed.
3622
3623The mid-rule action itself counts as one of the components of the rule.
3624This makes a difference when there is another action later in the same rule
3625(and usually there is another at the end): you have to count the actions
3626along with the symbols when working out which number @var{n} to use in
3627@code{$@var{n}}.
3628
3629The mid-rule action can also have a semantic value. The action can set
3630its value with an assignment to @code{$$}, and actions later in the rule
3631can refer to the value using @code{$@var{n}}. Since there is no symbol
3632to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3633in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3634specify a data type each time you refer to this value.
bfa74976
RS
3635
3636There is no way to set the value of the entire rule with a mid-rule
3637action, because assignments to @code{$$} do not have that effect. The
3638only way to set the value for the entire rule is with an ordinary action
3639at the end of the rule.
3640
3641Here is an example from a hypothetical compiler, handling a @code{let}
3642statement that looks like @samp{let (@var{variable}) @var{statement}} and
3643serves to create a variable named @var{variable} temporarily for the
3644duration of @var{statement}. To parse this construct, we must put
3645@var{variable} into the symbol table while @var{statement} is parsed, then
3646remove it afterward. Here is how it is done:
3647
3648@example
3649@group
3650stmt: LET '(' var ')'
3651 @{ $<context>$ = push_context ();
3652 declare_variable ($3); @}
3653 stmt @{ $$ = $6;
3654 pop_context ($<context>5); @}
3655@end group
3656@end example
3657
3658@noindent
3659As soon as @samp{let (@var{variable})} has been recognized, the first
3660action is run. It saves a copy of the current semantic context (the
3661list of accessible variables) as its semantic value, using alternative
3662@code{context} in the data-type union. Then it calls
3663@code{declare_variable} to add the new variable to that list. Once the
3664first action is finished, the embedded statement @code{stmt} can be
3665parsed. Note that the mid-rule action is component number 5, so the
3666@samp{stmt} is component number 6.
3667
3668After the embedded statement is parsed, its semantic value becomes the
3669value of the entire @code{let}-statement. Then the semantic value from the
3670earlier action is used to restore the prior list of variables. This
3671removes the temporary @code{let}-variable from the list so that it won't
3672appear to exist while the rest of the program is parsed.
3673
841a7737
JD
3674@findex %destructor
3675@cindex discarded symbols, mid-rule actions
3676@cindex error recovery, mid-rule actions
3677In the above example, if the parser initiates error recovery (@pxref{Error
3678Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3679it might discard the previous semantic context @code{$<context>5} without
3680restoring it.
3681Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3682Discarded Symbols}).
ec5479ce
JD
3683However, Bison currently provides no means to declare a destructor specific to
3684a particular mid-rule action's semantic value.
841a7737
JD
3685
3686One solution is to bury the mid-rule action inside a nonterminal symbol and to
3687declare a destructor for that symbol:
3688
3689@example
3690@group
3691%type <context> let
3692%destructor @{ pop_context ($$); @} let
3693
3694%%
3695
3696stmt: let stmt
3697 @{ $$ = $2;
3698 pop_context ($1); @}
3699 ;
3700
3701let: LET '(' var ')'
3702 @{ $$ = push_context ();
3703 declare_variable ($3); @}
3704 ;
3705
3706@end group
3707@end example
3708
3709@noindent
3710Note that the action is now at the end of its rule.
3711Any mid-rule action can be converted to an end-of-rule action in this way, and
3712this is what Bison actually does to implement mid-rule actions.
3713
bfa74976
RS
3714Taking action before a rule is completely recognized often leads to
3715conflicts since the parser must commit to a parse in order to execute the
3716action. For example, the following two rules, without mid-rule actions,
3717can coexist in a working parser because the parser can shift the open-brace
3718token and look at what follows before deciding whether there is a
3719declaration or not:
3720
3721@example
3722@group
3723compound: '@{' declarations statements '@}'
3724 | '@{' statements '@}'
3725 ;
3726@end group
3727@end example
3728
3729@noindent
3730But when we add a mid-rule action as follows, the rules become nonfunctional:
3731
3732@example
3733@group
3734compound: @{ prepare_for_local_variables (); @}
3735 '@{' declarations statements '@}'
3736@end group
3737@group
3738 | '@{' statements '@}'
3739 ;
3740@end group
3741@end example
3742
3743@noindent
3744Now the parser is forced to decide whether to run the mid-rule action
3745when it has read no farther than the open-brace. In other words, it
3746must commit to using one rule or the other, without sufficient
3747information to do it correctly. (The open-brace token is what is called
742e4900
JD
3748the @dfn{lookahead} token at this time, since the parser is still
3749deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3750
3751You might think that you could correct the problem by putting identical
3752actions into the two rules, like this:
3753
3754@example
3755@group
3756compound: @{ prepare_for_local_variables (); @}
3757 '@{' declarations statements '@}'
3758 | @{ prepare_for_local_variables (); @}
3759 '@{' statements '@}'
3760 ;
3761@end group
3762@end example
3763
3764@noindent
3765But this does not help, because Bison does not realize that the two actions
3766are identical. (Bison never tries to understand the C code in an action.)
3767
3768If the grammar is such that a declaration can be distinguished from a
3769statement by the first token (which is true in C), then one solution which
3770does work is to put the action after the open-brace, like this:
3771
3772@example
3773@group
3774compound: '@{' @{ prepare_for_local_variables (); @}
3775 declarations statements '@}'
3776 | '@{' statements '@}'
3777 ;
3778@end group
3779@end example
3780
3781@noindent
3782Now the first token of the following declaration or statement,
3783which would in any case tell Bison which rule to use, can still do so.
3784
3785Another solution is to bury the action inside a nonterminal symbol which
3786serves as a subroutine:
3787
3788@example
3789@group
3790subroutine: /* empty */
3791 @{ prepare_for_local_variables (); @}
3792 ;
3793
3794@end group
3795
3796@group
3797compound: subroutine
3798 '@{' declarations statements '@}'
3799 | subroutine
3800 '@{' statements '@}'
3801 ;
3802@end group
3803@end example
3804
3805@noindent
3806Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3807deciding which rule for @code{compound} it will eventually use.
bfa74976 3808
1f68dca5
AR
3809@node Named References
3810@subsection Using Named References
3811@cindex named references
3812
3813While every semantic value can be accessed with positional references
3814@code{$@var{n}} and @code{$$}, it's often much more convenient to refer to
3815them by name. First of all, original symbol names may be used as named
3816references. For example:
3817
3818@example
3819@group
3820invocation: op '(' args ')'
3821 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
3822@end group
3823@end example
3824
3825@noindent
3826The positional @code{$$}, @code{@@$}, @code{$n}, and @code{@@n} can be
3827mixed with @code{$name} and @code{@@name} arbitrarily. For example:
3828
3829@example
3830@group
3831invocation: op '(' args ')'
3832 @{ $$ = new_invocation ($op, $args, @@$); @}
3833@end group
3834@end example
3835
3836@noindent
3837However, sometimes regular symbol names are not sufficient due to
3838ambiguities:
3839
3840@example
3841@group
3842exp: exp '/' exp
3843 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
3844
3845exp: exp '/' exp
3846 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
3847
3848exp: exp '/' exp
3849 @{ $$ = $1 / $3; @} // No error.
3850@end group
3851@end example
3852
3853@noindent
3854When ambiguity occurs, explicitly declared names may be used for values and
3855locations. Explicit names are declared as a bracketed name after a symbol
3856appearance in rule definitions. For example:
3857@example
3858@group
3859exp[result]: exp[left] '/' exp[right]
3860 @{ $result = $left / $right; @}
3861@end group
3862@end example
3863
3864@noindent
3865Explicit names may be declared for RHS and for LHS symbols as well. In order
3866to access a semantic value generated by a mid-rule action, an explicit name
3867may also be declared by putting a bracketed name after the closing brace of
3868the mid-rule action code:
3869@example
3870@group
3871exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
3872 @{ $res = $left + $right; @}
3873@end group
3874@end example
3875
3876@noindent
3877
3878In references, in order to specify names containing dots and dashes, an explicit
3879bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
3880@example
3881@group
3882if-stmt: IF '(' expr ')' THEN then.stmt ';'
3883 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
3884@end group
3885@end example
3886
3887It often happens that named references are followed by a dot, dash or other
3888C punctuation marks and operators. By default, Bison will read
3889@code{$name.suffix} as a reference to symbol value @code{$name} followed by
3890@samp{.suffix}, i.e., an access to the @samp{suffix} field of the semantic
3891value. In order to force Bison to recognize @code{name.suffix} in its entirety
3892as the name of a semantic value, bracketed syntax @code{$[name.suffix]}
3893must be used.
3894
3895
342b8b6e 3896@node Locations
847bf1f5
AD
3897@section Tracking Locations
3898@cindex location
95923bd6
AD
3899@cindex textual location
3900@cindex location, textual
847bf1f5
AD
3901
3902Though grammar rules and semantic actions are enough to write a fully
72d2299c 3903functional parser, it can be useful to process some additional information,
3e259915
MA
3904especially symbol locations.
3905
704a47c4
AD
3906The way locations are handled is defined by providing a data type, and
3907actions to take when rules are matched.
847bf1f5
AD
3908
3909@menu
3910* Location Type:: Specifying a data type for locations.
3911* Actions and Locations:: Using locations in actions.
3912* Location Default Action:: Defining a general way to compute locations.
3913@end menu
3914
342b8b6e 3915@node Location Type
847bf1f5
AD
3916@subsection Data Type of Locations
3917@cindex data type of locations
3918@cindex default location type
3919
3920Defining a data type for locations is much simpler than for semantic values,
3921since all tokens and groupings always use the same type.
3922
50cce58e
PE
3923You can specify the type of locations by defining a macro called
3924@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3925defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3926When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3927four members:
3928
3929@example
6273355b 3930typedef struct YYLTYPE
847bf1f5
AD
3931@{
3932 int first_line;
3933 int first_column;
3934 int last_line;
3935 int last_column;
6273355b 3936@} YYLTYPE;
847bf1f5
AD
3937@end example
3938
8fbbeba2
AD
3939When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3940initializes all these fields to 1 for @code{yylloc}. To initialize
3941@code{yylloc} with a custom location type (or to chose a different
3942initialization), use the @code{%initial-action} directive. @xref{Initial
3943Action Decl, , Performing Actions before Parsing}.
cd48d21d 3944
342b8b6e 3945@node Actions and Locations
847bf1f5
AD
3946@subsection Actions and Locations
3947@cindex location actions
3948@cindex actions, location
3949@vindex @@$
3950@vindex @@@var{n}
1f68dca5
AR
3951@vindex @@@var{name}
3952@vindex @@[@var{name}]
847bf1f5
AD
3953
3954Actions are not only useful for defining language semantics, but also for
3955describing the behavior of the output parser with locations.
3956
3957The most obvious way for building locations of syntactic groupings is very
72d2299c 3958similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3959constructs can be used to access the locations of the elements being matched.
3960The location of the @var{n}th component of the right hand side is
3961@code{@@@var{n}}, while the location of the left hand side grouping is
3962@code{@@$}.
3963
1f68dca5
AR
3964In addition, the named references construct @code{@@@var{name}} and
3965@code{@@[@var{name}]} may also be used to address the symbol locations.
3966@xref{Named References,,Using Named References}, for more information
3967about using the named references construct.
3968
3e259915 3969Here is a basic example using the default data type for locations:
847bf1f5
AD
3970
3971@example
3972@group
3973exp: @dots{}
3e259915 3974 | exp '/' exp
847bf1f5 3975 @{
3e259915
MA
3976 @@$.first_column = @@1.first_column;
3977 @@$.first_line = @@1.first_line;
847bf1f5
AD
3978 @@$.last_column = @@3.last_column;
3979 @@$.last_line = @@3.last_line;
3e259915
MA
3980 if ($3)
3981 $$ = $1 / $3;
3982 else
3983 @{
3984 $$ = 1;
4e03e201
AD
3985 fprintf (stderr,
3986 "Division by zero, l%d,c%d-l%d,c%d",
3987 @@3.first_line, @@3.first_column,
3988 @@3.last_line, @@3.last_column);
3e259915 3989 @}
847bf1f5
AD
3990 @}
3991@end group
3992@end example
3993
3e259915 3994As for semantic values, there is a default action for locations that is
72d2299c 3995run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3996beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3997last symbol.
3e259915 3998
72d2299c 3999With this default action, the location tracking can be fully automatic. The
3e259915
MA
4000example above simply rewrites this way:
4001
4002@example
4003@group
4004exp: @dots{}
4005 | exp '/' exp
4006 @{
4007 if ($3)
4008 $$ = $1 / $3;
4009 else
4010 @{
4011 $$ = 1;
4e03e201
AD
4012 fprintf (stderr,
4013 "Division by zero, l%d,c%d-l%d,c%d",
4014 @@3.first_line, @@3.first_column,
4015 @@3.last_line, @@3.last_column);
3e259915
MA
4016 @}
4017 @}
4018@end group
4019@end example
847bf1f5 4020
32c29292 4021@vindex yylloc
742e4900 4022It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4023from a semantic action.
4024This location is stored in @code{yylloc}.
4025@xref{Action Features, ,Special Features for Use in Actions}.
4026
342b8b6e 4027@node Location Default Action
847bf1f5
AD
4028@subsection Default Action for Locations
4029@vindex YYLLOC_DEFAULT
35430378 4030@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4031
72d2299c 4032Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4033locations are much more general than semantic values, there is room in
4034the output parser to redefine the default action to take for each
72d2299c 4035rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4036matched, before the associated action is run. It is also invoked
4037while processing a syntax error, to compute the error's location.
35430378 4038Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4039parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4040of that ambiguity.
847bf1f5 4041
3e259915 4042Most of the time, this macro is general enough to suppress location
79282c6c 4043dedicated code from semantic actions.
847bf1f5 4044
72d2299c 4045The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4046the location of the grouping (the result of the computation). When a
766de5eb 4047rule is matched, the second parameter identifies locations of
96b93a3d 4048all right hand side elements of the rule being matched, and the third
8710fc41 4049parameter is the size of the rule's right hand side.
35430378 4050When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4051right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4052When processing a syntax error, the second parameter identifies locations
4053of the symbols that were discarded during error processing, and the third
96b93a3d 4054parameter is the number of discarded symbols.
847bf1f5 4055
766de5eb 4056By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4057
766de5eb 4058@smallexample
847bf1f5 4059@group
766de5eb
PE
4060# define YYLLOC_DEFAULT(Current, Rhs, N) \
4061 do \
4062 if (N) \
4063 @{ \
4064 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
4065 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
4066 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
4067 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
4068 @} \
4069 else \
4070 @{ \
4071 (Current).first_line = (Current).last_line = \
4072 YYRHSLOC(Rhs, 0).last_line; \
4073 (Current).first_column = (Current).last_column = \
4074 YYRHSLOC(Rhs, 0).last_column; \
4075 @} \
4076 while (0)
847bf1f5 4077@end group
766de5eb 4078@end smallexample
676385e2 4079
766de5eb
PE
4080where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4081in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4082just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4083
3e259915 4084When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4085
3e259915 4086@itemize @bullet
79282c6c 4087@item
72d2299c 4088All arguments are free of side-effects. However, only the first one (the
3e259915 4089result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4090
3e259915 4091@item
766de5eb
PE
4092For consistency with semantic actions, valid indexes within the
4093right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4094valid index, and it refers to the symbol just before the reduction.
4095During error processing @var{n} is always positive.
0ae99356
PE
4096
4097@item
4098Your macro should parenthesize its arguments, if need be, since the
4099actual arguments may not be surrounded by parentheses. Also, your
4100macro should expand to something that can be used as a single
4101statement when it is followed by a semicolon.
3e259915 4102@end itemize
847bf1f5 4103
342b8b6e 4104@node Declarations
bfa74976
RS
4105@section Bison Declarations
4106@cindex declarations, Bison
4107@cindex Bison declarations
4108
4109The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4110used in formulating the grammar and the data types of semantic values.
4111@xref{Symbols}.
4112
4113All token type names (but not single-character literal tokens such as
4114@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4115declared if you need to specify which data type to use for the semantic
4116value (@pxref{Multiple Types, ,More Than One Value Type}).
4117
9913d6e4
JD
4118The first rule in the grammar file also specifies the start symbol, by
4119default. If you want some other symbol to be the start symbol, you
4120must declare it explicitly (@pxref{Language and Grammar, ,Languages
4121and Context-Free Grammars}).
bfa74976
RS
4122
4123@menu
b50d2359 4124* Require Decl:: Requiring a Bison version.
bfa74976
RS
4125* Token Decl:: Declaring terminal symbols.
4126* Precedence Decl:: Declaring terminals with precedence and associativity.
4127* Union Decl:: Declaring the set of all semantic value types.
4128* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4129* Initial Action Decl:: Code run before parsing starts.
72f889cc 4130* Destructor Decl:: Declaring how symbols are freed.
d6328241 4131* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4132* Start Decl:: Specifying the start symbol.
4133* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4134* Push Decl:: Requesting a push parser.
bfa74976 4135* Decl Summary:: Table of all Bison declarations.
2f4518a1 4136* %define Summary:: Defining variables to adjust Bison's behavior.
8e6f2266 4137* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4138@end menu
4139
b50d2359
AD
4140@node Require Decl
4141@subsection Require a Version of Bison
4142@cindex version requirement
4143@cindex requiring a version of Bison
4144@findex %require
4145
4146You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4147the requirement is not met, @command{bison} exits with an error (exit
4148status 63).
b50d2359
AD
4149
4150@example
4151%require "@var{version}"
4152@end example
4153
342b8b6e 4154@node Token Decl
bfa74976
RS
4155@subsection Token Type Names
4156@cindex declaring token type names
4157@cindex token type names, declaring
931c7513 4158@cindex declaring literal string tokens
bfa74976
RS
4159@findex %token
4160
4161The basic way to declare a token type name (terminal symbol) is as follows:
4162
4163@example
4164%token @var{name}
4165@end example
4166
4167Bison will convert this into a @code{#define} directive in
4168the parser, so that the function @code{yylex} (if it is in this file)
4169can use the name @var{name} to stand for this token type's code.
4170
14ded682
AD
4171Alternatively, you can use @code{%left}, @code{%right}, or
4172@code{%nonassoc} instead of @code{%token}, if you wish to specify
4173associativity and precedence. @xref{Precedence Decl, ,Operator
4174Precedence}.
bfa74976
RS
4175
4176You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4177a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4178following the token name:
bfa74976
RS
4179
4180@example
4181%token NUM 300
1452af69 4182%token XNUM 0x12d // a GNU extension
bfa74976
RS
4183@end example
4184
4185@noindent
4186It is generally best, however, to let Bison choose the numeric codes for
4187all token types. Bison will automatically select codes that don't conflict
e966383b 4188with each other or with normal characters.
bfa74976
RS
4189
4190In the event that the stack type is a union, you must augment the
4191@code{%token} or other token declaration to include the data type
704a47c4
AD
4192alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4193Than One Value Type}).
bfa74976
RS
4194
4195For example:
4196
4197@example
4198@group
4199%union @{ /* define stack type */
4200 double val;
4201 symrec *tptr;
4202@}
4203%token <val> NUM /* define token NUM and its type */
4204@end group
4205@end example
4206
931c7513
RS
4207You can associate a literal string token with a token type name by
4208writing the literal string at the end of a @code{%token}
4209declaration which declares the name. For example:
4210
4211@example
4212%token arrow "=>"
4213@end example
4214
4215@noindent
4216For example, a grammar for the C language might specify these names with
4217equivalent literal string tokens:
4218
4219@example
4220%token <operator> OR "||"
4221%token <operator> LE 134 "<="
4222%left OR "<="
4223@end example
4224
4225@noindent
4226Once you equate the literal string and the token name, you can use them
4227interchangeably in further declarations or the grammar rules. The
4228@code{yylex} function can use the token name or the literal string to
4229obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4230Syntax error messages passed to @code{yyerror} from the parser will reference
4231the literal string instead of the token name.
4232
4233The token numbered as 0 corresponds to end of file; the following line
4234allows for nicer error messages referring to ``end of file'' instead
4235of ``$end'':
4236
4237@example
4238%token END 0 "end of file"
4239@end example
931c7513 4240
342b8b6e 4241@node Precedence Decl
bfa74976
RS
4242@subsection Operator Precedence
4243@cindex precedence declarations
4244@cindex declaring operator precedence
4245@cindex operator precedence, declaring
4246
4247Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4248declare a token and specify its precedence and associativity, all at
4249once. These are called @dfn{precedence declarations}.
704a47c4
AD
4250@xref{Precedence, ,Operator Precedence}, for general information on
4251operator precedence.
bfa74976 4252
ab7f29f8 4253The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4254@code{%token}: either
4255
4256@example
4257%left @var{symbols}@dots{}
4258@end example
4259
4260@noindent
4261or
4262
4263@example
4264%left <@var{type}> @var{symbols}@dots{}
4265@end example
4266
4267And indeed any of these declarations serves the purposes of @code{%token}.
4268But in addition, they specify the associativity and relative precedence for
4269all the @var{symbols}:
4270
4271@itemize @bullet
4272@item
4273The associativity of an operator @var{op} determines how repeated uses
4274of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4275@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4276grouping @var{y} with @var{z} first. @code{%left} specifies
4277left-associativity (grouping @var{x} with @var{y} first) and
4278@code{%right} specifies right-associativity (grouping @var{y} with
4279@var{z} first). @code{%nonassoc} specifies no associativity, which
4280means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4281considered a syntax error.
4282
4283@item
4284The precedence of an operator determines how it nests with other operators.
4285All the tokens declared in a single precedence declaration have equal
4286precedence and nest together according to their associativity.
4287When two tokens declared in different precedence declarations associate,
4288the one declared later has the higher precedence and is grouped first.
4289@end itemize
4290
ab7f29f8
JD
4291For backward compatibility, there is a confusing difference between the
4292argument lists of @code{%token} and precedence declarations.
4293Only a @code{%token} can associate a literal string with a token type name.
4294A precedence declaration always interprets a literal string as a reference to a
4295separate token.
4296For example:
4297
4298@example
4299%left OR "<=" // Does not declare an alias.
4300%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4301@end example
4302
342b8b6e 4303@node Union Decl
bfa74976
RS
4304@subsection The Collection of Value Types
4305@cindex declaring value types
4306@cindex value types, declaring
4307@findex %union
4308
287c78f6
PE
4309The @code{%union} declaration specifies the entire collection of
4310possible data types for semantic values. The keyword @code{%union} is
4311followed by braced code containing the same thing that goes inside a
4312@code{union} in C@.
bfa74976
RS
4313
4314For example:
4315
4316@example
4317@group
4318%union @{
4319 double val;
4320 symrec *tptr;
4321@}
4322@end group
4323@end example
4324
4325@noindent
4326This says that the two alternative types are @code{double} and @code{symrec
4327*}. They are given names @code{val} and @code{tptr}; these names are used
4328in the @code{%token} and @code{%type} declarations to pick one of the types
4329for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4330
35430378 4331As an extension to POSIX, a tag is allowed after the
6273355b
PE
4332@code{union}. For example:
4333
4334@example
4335@group
4336%union value @{
4337 double val;
4338 symrec *tptr;
4339@}
4340@end group
4341@end example
4342
d6ca7905 4343@noindent
6273355b
PE
4344specifies the union tag @code{value}, so the corresponding C type is
4345@code{union value}. If you do not specify a tag, it defaults to
4346@code{YYSTYPE}.
4347
35430378 4348As another extension to POSIX, you may specify multiple
d6ca7905
PE
4349@code{%union} declarations; their contents are concatenated. However,
4350only the first @code{%union} declaration can specify a tag.
4351
6273355b 4352Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4353a semicolon after the closing brace.
4354
ddc8ede1
PE
4355Instead of @code{%union}, you can define and use your own union type
4356@code{YYSTYPE} if your grammar contains at least one
4357@samp{<@var{type}>} tag. For example, you can put the following into
4358a header file @file{parser.h}:
4359
4360@example
4361@group
4362union YYSTYPE @{
4363 double val;
4364 symrec *tptr;
4365@};
4366typedef union YYSTYPE YYSTYPE;
4367@end group
4368@end example
4369
4370@noindent
4371and then your grammar can use the following
4372instead of @code{%union}:
4373
4374@example
4375@group
4376%@{
4377#include "parser.h"
4378%@}
4379%type <val> expr
4380%token <tptr> ID
4381@end group
4382@end example
4383
342b8b6e 4384@node Type Decl
bfa74976
RS
4385@subsection Nonterminal Symbols
4386@cindex declaring value types, nonterminals
4387@cindex value types, nonterminals, declaring
4388@findex %type
4389
4390@noindent
4391When you use @code{%union} to specify multiple value types, you must
4392declare the value type of each nonterminal symbol for which values are
4393used. This is done with a @code{%type} declaration, like this:
4394
4395@example
4396%type <@var{type}> @var{nonterminal}@dots{}
4397@end example
4398
4399@noindent
704a47c4
AD
4400Here @var{nonterminal} is the name of a nonterminal symbol, and
4401@var{type} is the name given in the @code{%union} to the alternative
4402that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4403can give any number of nonterminal symbols in the same @code{%type}
4404declaration, if they have the same value type. Use spaces to separate
4405the symbol names.
bfa74976 4406
931c7513
RS
4407You can also declare the value type of a terminal symbol. To do this,
4408use the same @code{<@var{type}>} construction in a declaration for the
4409terminal symbol. All kinds of token declarations allow
4410@code{<@var{type}>}.
4411
18d192f0
AD
4412@node Initial Action Decl
4413@subsection Performing Actions before Parsing
4414@findex %initial-action
4415
4416Sometimes your parser needs to perform some initializations before
4417parsing. The @code{%initial-action} directive allows for such arbitrary
4418code.
4419
4420@deffn {Directive} %initial-action @{ @var{code} @}
4421@findex %initial-action
287c78f6 4422Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4423@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4424@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4425@code{%parse-param}.
18d192f0
AD
4426@end deffn
4427
451364ed
AD
4428For instance, if your locations use a file name, you may use
4429
4430@example
48b16bbc 4431%parse-param @{ char const *file_name @};
451364ed
AD
4432%initial-action
4433@{
4626a15d 4434 @@$.initialize (file_name);
451364ed
AD
4435@};
4436@end example
4437
18d192f0 4438
72f889cc
AD
4439@node Destructor Decl
4440@subsection Freeing Discarded Symbols
4441@cindex freeing discarded symbols
4442@findex %destructor
12e35840 4443@findex <*>
3ebecc24 4444@findex <>
a85284cf
AD
4445During error recovery (@pxref{Error Recovery}), symbols already pushed
4446on the stack and tokens coming from the rest of the file are discarded
4447until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4448or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4449symbols on the stack must be discarded. Even if the parser succeeds, it
4450must discard the start symbol.
258b75ca
PE
4451
4452When discarded symbols convey heap based information, this memory is
4453lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4454in traditional compilers, it is unacceptable for programs like shells or
4455protocol implementations that may parse and execute indefinitely.
258b75ca 4456
a85284cf
AD
4457The @code{%destructor} directive defines code that is called when a
4458symbol is automatically discarded.
72f889cc
AD
4459
4460@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4461@findex %destructor
287c78f6
PE
4462Invoke the braced @var{code} whenever the parser discards one of the
4463@var{symbols}.
4b367315 4464Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4465with the discarded symbol, and @code{@@$} designates its location.
4466The additional parser parameters are also available (@pxref{Parser Function, ,
4467The Parser Function @code{yyparse}}).
ec5479ce 4468
b2a0b7ca
JD
4469When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4470per-symbol @code{%destructor}.
4471You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4472tag among @var{symbols}.
b2a0b7ca 4473In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4474grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4475per-symbol @code{%destructor}.
4476
12e35840 4477Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4478(These default forms are experimental.
4479More user feedback will help to determine whether they should become permanent
4480features.)
3ebecc24 4481You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4482exactly one @code{%destructor} declaration in your grammar file.
4483The parser will invoke the @var{code} associated with one of these whenever it
4484discards any user-defined grammar symbol that has no per-symbol and no per-type
4485@code{%destructor}.
4486The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4487symbol for which you have formally declared a semantic type tag (@code{%type}
4488counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4489The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4490symbol that has no declared semantic type tag.
72f889cc
AD
4491@end deffn
4492
b2a0b7ca 4493@noindent
12e35840 4494For example:
72f889cc
AD
4495
4496@smallexample
ec5479ce
JD
4497%union @{ char *string; @}
4498%token <string> STRING1
4499%token <string> STRING2
4500%type <string> string1
4501%type <string> string2
b2a0b7ca
JD
4502%union @{ char character; @}
4503%token <character> CHR
4504%type <character> chr
12e35840
JD
4505%token TAGLESS
4506
b2a0b7ca 4507%destructor @{ @} <character>
12e35840
JD
4508%destructor @{ free ($$); @} <*>
4509%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4510%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4511@end smallexample
4512
4513@noindent
b2a0b7ca
JD
4514guarantees that, when the parser discards any user-defined symbol that has a
4515semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4516to @code{free} by default.
ec5479ce
JD
4517However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4518prints its line number to @code{stdout}.
4519It performs only the second @code{%destructor} in this case, so it invokes
4520@code{free} only once.
12e35840
JD
4521Finally, the parser merely prints a message whenever it discards any symbol,
4522such as @code{TAGLESS}, that has no semantic type tag.
4523
4524A Bison-generated parser invokes the default @code{%destructor}s only for
4525user-defined as opposed to Bison-defined symbols.
4526For example, the parser will not invoke either kind of default
4527@code{%destructor} for the special Bison-defined symbols @code{$accept},
4528@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4529none of which you can reference in your grammar.
4530It also will not invoke either for the @code{error} token (@pxref{Table of
4531Symbols, ,error}), which is always defined by Bison regardless of whether you
4532reference it in your grammar.
4533However, it may invoke one of them for the end token (token 0) if you
4534redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4535
4536@smallexample
4537%token END 0
4538@end smallexample
4539
12e35840
JD
4540@cindex actions in mid-rule
4541@cindex mid-rule actions
4542Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4543mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4544That is, Bison does not consider a mid-rule to have a semantic value if you do
4545not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4546@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4547rule.
4548However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4549@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4550
3508ce36
JD
4551@ignore
4552@noindent
4553In the future, it may be possible to redefine the @code{error} token as a
4554nonterminal that captures the discarded symbols.
4555In that case, the parser will invoke the default destructor for it as well.
4556@end ignore
4557
e757bb10
AD
4558@sp 1
4559
4560@cindex discarded symbols
4561@dfn{Discarded symbols} are the following:
4562
4563@itemize
4564@item
4565stacked symbols popped during the first phase of error recovery,
4566@item
4567incoming terminals during the second phase of error recovery,
4568@item
742e4900 4569the current lookahead and the entire stack (except the current
9d9b8b70 4570right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4571@item
4572the start symbol, when the parser succeeds.
e757bb10
AD
4573@end itemize
4574
9d9b8b70
PE
4575The parser can @dfn{return immediately} because of an explicit call to
4576@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4577exhaustion.
4578
29553547 4579Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4580error via @code{YYERROR} are not discarded automatically. As a rule
4581of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4582the memory.
e757bb10 4583
342b8b6e 4584@node Expect Decl
bfa74976
RS
4585@subsection Suppressing Conflict Warnings
4586@cindex suppressing conflict warnings
4587@cindex preventing warnings about conflicts
4588@cindex warnings, preventing
4589@cindex conflicts, suppressing warnings of
4590@findex %expect
d6328241 4591@findex %expect-rr
bfa74976
RS
4592
4593Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4594(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4595have harmless shift/reduce conflicts which are resolved in a predictable
4596way and would be difficult to eliminate. It is desirable to suppress
4597the warning about these conflicts unless the number of conflicts
4598changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4599
4600The declaration looks like this:
4601
4602@example
4603%expect @var{n}
4604@end example
4605
035aa4a0
PE
4606Here @var{n} is a decimal integer. The declaration says there should
4607be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4608Bison reports an error if the number of shift/reduce conflicts differs
4609from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4610
34a6c2d1 4611For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4612serious, and should be eliminated entirely. Bison will always report
35430378 4613reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4614parsers, however, both kinds of conflicts are routine; otherwise,
35430378 4615there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4616also possible to specify an expected number of reduce/reduce conflicts
35430378 4617in GLR parsers, using the declaration:
d6328241
PH
4618
4619@example
4620%expect-rr @var{n}
4621@end example
4622
bfa74976
RS
4623In general, using @code{%expect} involves these steps:
4624
4625@itemize @bullet
4626@item
4627Compile your grammar without @code{%expect}. Use the @samp{-v} option
4628to get a verbose list of where the conflicts occur. Bison will also
4629print the number of conflicts.
4630
4631@item
4632Check each of the conflicts to make sure that Bison's default
4633resolution is what you really want. If not, rewrite the grammar and
4634go back to the beginning.
4635
4636@item
4637Add an @code{%expect} declaration, copying the number @var{n} from the
35430378 4638number which Bison printed. With GLR parsers, add an
035aa4a0 4639@code{%expect-rr} declaration as well.
bfa74976
RS
4640@end itemize
4641
cf22447c
JD
4642Now Bison will report an error if you introduce an unexpected conflict,
4643but will keep silent otherwise.
bfa74976 4644
342b8b6e 4645@node Start Decl
bfa74976
RS
4646@subsection The Start-Symbol
4647@cindex declaring the start symbol
4648@cindex start symbol, declaring
4649@cindex default start symbol
4650@findex %start
4651
4652Bison assumes by default that the start symbol for the grammar is the first
4653nonterminal specified in the grammar specification section. The programmer
4654may override this restriction with the @code{%start} declaration as follows:
4655
4656@example
4657%start @var{symbol}
4658@end example
4659
342b8b6e 4660@node Pure Decl
bfa74976
RS
4661@subsection A Pure (Reentrant) Parser
4662@cindex reentrant parser
4663@cindex pure parser
d9df47b6 4664@findex %define api.pure
bfa74976
RS
4665
4666A @dfn{reentrant} program is one which does not alter in the course of
4667execution; in other words, it consists entirely of @dfn{pure} (read-only)
4668code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4669for example, a nonreentrant program may not be safe to call from a signal
4670handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4671program must be called only within interlocks.
4672
70811b85 4673Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4674suitable for most uses, and it permits compatibility with Yacc. (The
4675standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4676statically allocated variables for communication with @code{yylex},
4677including @code{yylval} and @code{yylloc}.)
bfa74976 4678
70811b85 4679Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4680declaration @code{%define api.pure} says that you want the parser to be
70811b85 4681reentrant. It looks like this:
bfa74976
RS
4682
4683@example
d9df47b6 4684%define api.pure
bfa74976
RS
4685@end example
4686
70811b85
RS
4687The result is that the communication variables @code{yylval} and
4688@code{yylloc} become local variables in @code{yyparse}, and a different
4689calling convention is used for the lexical analyzer function
4690@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4691Parsers}, for the details of this. The variable @code{yynerrs}
4692becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4693of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4694Reporting Function @code{yyerror}}). The convention for calling
4695@code{yyparse} itself is unchanged.
4696
4697Whether the parser is pure has nothing to do with the grammar rules.
4698You can generate either a pure parser or a nonreentrant parser from any
4699valid grammar.
bfa74976 4700
9987d1b3
JD
4701@node Push Decl
4702@subsection A Push Parser
4703@cindex push parser
4704@cindex push parser
812775a0 4705@findex %define api.push-pull
9987d1b3 4706
59da312b
JD
4707(The current push parsing interface is experimental and may evolve.
4708More user feedback will help to stabilize it.)
4709
f4101aa6
AD
4710A pull parser is called once and it takes control until all its input
4711is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4712each time a new token is made available.
4713
f4101aa6 4714A push parser is typically useful when the parser is part of a
9987d1b3 4715main event loop in the client's application. This is typically
f4101aa6
AD
4716a requirement of a GUI, when the main event loop needs to be triggered
4717within a certain time period.
9987d1b3 4718
d782395d
JD
4719Normally, Bison generates a pull parser.
4720The following Bison declaration says that you want the parser to be a push
2f4518a1 4721parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
4722
4723@example
f37495f6 4724%define api.push-pull push
9987d1b3
JD
4725@end example
4726
4727In almost all cases, you want to ensure that your push parser is also
4728a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4729time you should create an impure push parser is to have backwards
9987d1b3
JD
4730compatibility with the impure Yacc pull mode interface. Unless you know
4731what you are doing, your declarations should look like this:
4732
4733@example
d9df47b6 4734%define api.pure
f37495f6 4735%define api.push-pull push
9987d1b3
JD
4736@end example
4737
f4101aa6
AD
4738There is a major notable functional difference between the pure push parser
4739and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4740many parser instances, of the same type of parser, in memory at the same time.
4741An impure push parser should only use one parser at a time.
4742
4743When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4744the generated parser. @code{yypstate} is a structure that the generated
4745parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4746function that will create a new parser instance. @code{yypstate_delete}
4747will free the resources associated with the corresponding parser instance.
f4101aa6 4748Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4749token is available to provide the parser. A trivial example
4750of using a pure push parser would look like this:
4751
4752@example
4753int status;
4754yypstate *ps = yypstate_new ();
4755do @{
4756 status = yypush_parse (ps, yylex (), NULL);
4757@} while (status == YYPUSH_MORE);
4758yypstate_delete (ps);
4759@end example
4760
4761If the user decided to use an impure push parser, a few things about
f4101aa6 4762the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4763a global variable instead of a variable in the @code{yypush_parse} function.
4764For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4765changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4766example would thus look like this:
4767
4768@example
4769extern int yychar;
4770int status;
4771yypstate *ps = yypstate_new ();
4772do @{
4773 yychar = yylex ();
4774 status = yypush_parse (ps);
4775@} while (status == YYPUSH_MORE);
4776yypstate_delete (ps);
4777@end example
4778
f4101aa6 4779That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4780for use by the next invocation of the @code{yypush_parse} function.
4781
f4101aa6 4782Bison also supports both the push parser interface along with the pull parser
9987d1b3 4783interface in the same generated parser. In order to get this functionality,
f37495f6
JD
4784you should replace the @code{%define api.push-pull push} declaration with the
4785@code{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4786the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4787and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4788would be used. However, the user should note that it is implemented in the
d782395d
JD
4789generated parser by calling @code{yypull_parse}.
4790This makes the @code{yyparse} function that is generated with the
f37495f6 4791@code{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4792@code{yyparse} function. If the user
4793calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4794stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4795and then @code{yypull_parse} the rest of the input stream. If you would like
4796to switch back and forth between between parsing styles, you would have to
4797write your own @code{yypull_parse} function that knows when to quit looking
4798for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4799like this:
4800
4801@example
4802yypstate *ps = yypstate_new ();
4803yypull_parse (ps); /* Will call the lexer */
4804yypstate_delete (ps);
4805@end example
4806
d9df47b6 4807Adding the @code{%define api.pure} declaration does exactly the same thing to
f37495f6
JD
4808the generated parser with @code{%define api.push-pull both} as it did for
4809@code{%define api.push-pull push}.
9987d1b3 4810
342b8b6e 4811@node Decl Summary
bfa74976
RS
4812@subsection Bison Declaration Summary
4813@cindex Bison declaration summary
4814@cindex declaration summary
4815@cindex summary, Bison declaration
4816
d8988b2f 4817Here is a summary of the declarations used to define a grammar:
bfa74976 4818
18b519c0 4819@deffn {Directive} %union
bfa74976
RS
4820Declare the collection of data types that semantic values may have
4821(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4822@end deffn
bfa74976 4823
18b519c0 4824@deffn {Directive} %token
bfa74976
RS
4825Declare a terminal symbol (token type name) with no precedence
4826or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4827@end deffn
bfa74976 4828
18b519c0 4829@deffn {Directive} %right
bfa74976
RS
4830Declare a terminal symbol (token type name) that is right-associative
4831(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4832@end deffn
bfa74976 4833
18b519c0 4834@deffn {Directive} %left
bfa74976
RS
4835Declare a terminal symbol (token type name) that is left-associative
4836(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4837@end deffn
bfa74976 4838
18b519c0 4839@deffn {Directive} %nonassoc
bfa74976 4840Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4841(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4842Using it in a way that would be associative is a syntax error.
4843@end deffn
4844
91d2c560 4845@ifset defaultprec
39a06c25 4846@deffn {Directive} %default-prec
22fccf95 4847Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4848(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4849@end deffn
91d2c560 4850@end ifset
bfa74976 4851
18b519c0 4852@deffn {Directive} %type
bfa74976
RS
4853Declare the type of semantic values for a nonterminal symbol
4854(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4855@end deffn
bfa74976 4856
18b519c0 4857@deffn {Directive} %start
89cab50d
AD
4858Specify the grammar's start symbol (@pxref{Start Decl, ,The
4859Start-Symbol}).
18b519c0 4860@end deffn
bfa74976 4861
18b519c0 4862@deffn {Directive} %expect
bfa74976
RS
4863Declare the expected number of shift-reduce conflicts
4864(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4865@end deffn
4866
bfa74976 4867
d8988b2f
AD
4868@sp 1
4869@noindent
4870In order to change the behavior of @command{bison}, use the following
4871directives:
4872
148d66d8 4873@deffn {Directive} %code @{@var{code}@}
8e6f2266 4874@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 4875@findex %code
8e6f2266
JD
4876Insert @var{code} verbatim into the output parser source at the
4877default location or at the location specified by @var{qualifier}.
4878@xref{%code Summary}.
148d66d8
JD
4879@end deffn
4880
18b519c0 4881@deffn {Directive} %debug
9913d6e4
JD
4882In the parser implementation file, define the macro @code{YYDEBUG} to
48831 if it is not already defined, so that the debugging facilities are
4884compiled. @xref{Tracing, ,Tracing Your Parser}.
bd5df716 4885@end deffn
d8988b2f 4886
2f4518a1
JD
4887@deffn {Directive} %define @var{variable}
4888@deffnx {Directive} %define @var{variable} @var{value}
4889@deffnx {Directive} %define @var{variable} "@var{value}"
4890Define a variable to adjust Bison's behavior. @xref{%define Summary}.
4891@end deffn
4892
4893@deffn {Directive} %defines
4894Write a parser header file containing macro definitions for the token
4895type names defined in the grammar as well as a few other declarations.
4896If the parser implementation file is named @file{@var{name}.c} then
4897the parser header file is named @file{@var{name}.h}.
4898
4899For C parsers, the parser header file declares @code{YYSTYPE} unless
4900@code{YYSTYPE} is already defined as a macro or you have used a
4901@code{<@var{type}>} tag without using @code{%union}. Therefore, if
4902you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
4903Value Type}) with components that require other definitions, or if you
4904have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
4905Type, ,Data Types of Semantic Values}), you need to arrange for these
4906definitions to be propagated to all modules, e.g., by putting them in
4907a prerequisite header that is included both by your parser and by any
4908other module that needs @code{YYSTYPE}.
4909
4910Unless your parser is pure, the parser header file declares
4911@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
4912(Reentrant) Parser}.
4913
4914If you have also used locations, the parser header file declares
4915@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
4916the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations,
4917,Tracking Locations}.
4918
4919This parser header file is normally essential if you wish to put the
4920definition of @code{yylex} in a separate source file, because
4921@code{yylex} typically needs to be able to refer to the
4922above-mentioned declarations and to the token type codes. @xref{Token
4923Values, ,Semantic Values of Tokens}.
4924
4925@findex %code requires
4926@findex %code provides
4927If you have declared @code{%code requires} or @code{%code provides}, the output
4928header also contains their code.
4929@xref{%code Summary}.
4930@end deffn
4931
4932@deffn {Directive} %defines @var{defines-file}
4933Same as above, but save in the file @var{defines-file}.
4934@end deffn
4935
4936@deffn {Directive} %destructor
4937Specify how the parser should reclaim the memory associated to
4938discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
4939@end deffn
4940
4941@deffn {Directive} %file-prefix "@var{prefix}"
4942Specify a prefix to use for all Bison output file names. The names
4943are chosen as if the grammar file were named @file{@var{prefix}.y}.
4944@end deffn
4945
4946@deffn {Directive} %language "@var{language}"
4947Specify the programming language for the generated parser. Currently
4948supported languages include C, C++, and Java.
4949@var{language} is case-insensitive.
4950
4951This directive is experimental and its effect may be modified in future
4952releases.
4953@end deffn
4954
4955@deffn {Directive} %locations
4956Generate the code processing the locations (@pxref{Action Features,
4957,Special Features for Use in Actions}). This mode is enabled as soon as
4958the grammar uses the special @samp{@@@var{n}} tokens, but if your
4959grammar does not use it, using @samp{%locations} allows for more
4960accurate syntax error messages.
4961@end deffn
4962
4963@deffn {Directive} %name-prefix "@var{prefix}"
4964Rename the external symbols used in the parser so that they start with
4965@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
4966in C parsers
4967is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
4968@code{yylval}, @code{yychar}, @code{yydebug}, and
4969(if locations are used) @code{yylloc}. If you use a push parser,
4970@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
4971@code{yypstate_new} and @code{yypstate_delete} will
4972also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
4973names become @code{c_parse}, @code{c_lex}, and so on.
4974For C++ parsers, see the @code{%define namespace} documentation in this
4975section.
4976@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
4977@end deffn
4978
4979@ifset defaultprec
4980@deffn {Directive} %no-default-prec
4981Do not assign a precedence to rules lacking an explicit @code{%prec}
4982modifier (@pxref{Contextual Precedence, ,Context-Dependent
4983Precedence}).
4984@end deffn
4985@end ifset
4986
4987@deffn {Directive} %no-lines
4988Don't generate any @code{#line} preprocessor commands in the parser
4989implementation file. Ordinarily Bison writes these commands in the
4990parser implementation file so that the C compiler and debuggers will
4991associate errors and object code with your source file (the grammar
4992file). This directive causes them to associate errors with the parser
4993implementation file, treating it as an independent source file in its
4994own right.
4995@end deffn
4996
4997@deffn {Directive} %output "@var{file}"
4998Specify @var{file} for the parser implementation file.
4999@end deffn
5000
5001@deffn {Directive} %pure-parser
5002Deprecated version of @code{%define api.pure} (@pxref{%define
5003Summary,,api.pure}), for which Bison is more careful to warn about
5004unreasonable usage.
5005@end deffn
5006
5007@deffn {Directive} %require "@var{version}"
5008Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5009Require a Version of Bison}.
5010@end deffn
5011
5012@deffn {Directive} %skeleton "@var{file}"
5013Specify the skeleton to use.
5014
5015@c You probably don't need this option unless you are developing Bison.
5016@c You should use @code{%language} if you want to specify the skeleton for a
5017@c different language, because it is clearer and because it will always choose the
5018@c correct skeleton for non-deterministic or push parsers.
5019
5020If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5021file in the Bison installation directory.
5022If it does, @var{file} is an absolute file name or a file name relative to the
5023directory of the grammar file.
5024This is similar to how most shells resolve commands.
5025@end deffn
5026
5027@deffn {Directive} %token-table
5028Generate an array of token names in the parser implementation file.
5029The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5030the name of the token whose internal Bison token code number is
5031@var{i}. The first three elements of @code{yytname} correspond to the
5032predefined tokens @code{"$end"}, @code{"error"}, and
5033@code{"$undefined"}; after these come the symbols defined in the
5034grammar file.
5035
5036The name in the table includes all the characters needed to represent
5037the token in Bison. For single-character literals and literal
5038strings, this includes the surrounding quoting characters and any
5039escape sequences. For example, the Bison single-character literal
5040@code{'+'} corresponds to a three-character name, represented in C as
5041@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5042corresponds to a five-character name, represented in C as
5043@code{"\"\\\\/\""}.
5044
5045When you specify @code{%token-table}, Bison also generates macro
5046definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5047@code{YYNRULES}, and @code{YYNSTATES}:
5048
5049@table @code
5050@item YYNTOKENS
5051The highest token number, plus one.
5052@item YYNNTS
5053The number of nonterminal symbols.
5054@item YYNRULES
5055The number of grammar rules,
5056@item YYNSTATES
5057The number of parser states (@pxref{Parser States}).
5058@end table
5059@end deffn
5060
5061@deffn {Directive} %verbose
5062Write an extra output file containing verbose descriptions of the
5063parser states and what is done for each type of lookahead token in
5064that state. @xref{Understanding, , Understanding Your Parser}, for more
5065information.
5066@end deffn
5067
5068@deffn {Directive} %yacc
5069Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5070including its naming conventions. @xref{Bison Options}, for more.
5071@end deffn
5072
5073
5074@node %define Summary
5075@subsection %define Summary
406dec82
JD
5076
5077There are many features of Bison's behavior that can be controlled by
5078assigning the feature a single value. For historical reasons, some
5079such features are assigned values by dedicated directives, such as
5080@code{%start}, which assigns the start symbol. However, newer such
5081features are associated with variables, which are assigned by the
5082@code{%define} directive:
5083
c1d19e10 5084@deffn {Directive} %define @var{variable}
f37495f6 5085@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5086@deffnx {Directive} %define @var{variable} "@var{value}"
406dec82 5087Define @var{variable} to @var{value}.
9611cfa2 5088
406dec82
JD
5089@var{value} must be placed in quotation marks if it contains any
5090character other than a letter, underscore, period, or non-initial dash
5091or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5092to specifying @code{""}.
9611cfa2 5093
406dec82
JD
5094It is an error if a @var{variable} is defined by @code{%define}
5095multiple times, but see @ref{Bison Options,,-D
5096@var{name}[=@var{value}]}.
5097@end deffn
f37495f6 5098
406dec82
JD
5099The rest of this section summarizes variables and values that
5100@code{%define} accepts.
9611cfa2 5101
406dec82
JD
5102Some @var{variable}s take Boolean values. In this case, Bison will
5103complain if the variable definition does not meet one of the following
5104four conditions:
9611cfa2
JD
5105
5106@enumerate
f37495f6 5107@item @code{@var{value}} is @code{true}
9611cfa2 5108
f37495f6
JD
5109@item @code{@var{value}} is omitted (or @code{""} is specified).
5110This is equivalent to @code{true}.
9611cfa2 5111
f37495f6 5112@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5113
5114@item @var{variable} is never defined.
628be6c9 5115In this case, Bison selects a default value.
9611cfa2 5116@end enumerate
148d66d8 5117
628be6c9
JD
5118What @var{variable}s are accepted, as well as their meanings and default
5119values, depend on the selected target language and/or the parser
5120skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5121Summary,,%skeleton}).
5122Unaccepted @var{variable}s produce an error.
793fbca5
JD
5123Some of the accepted @var{variable}s are:
5124
5125@itemize @bullet
d9df47b6
JD
5126@item api.pure
5127@findex %define api.pure
5128
5129@itemize @bullet
5130@item Language(s): C
5131
5132@item Purpose: Request a pure (reentrant) parser program.
5133@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5134
5135@item Accepted Values: Boolean
5136
f37495f6 5137@item Default Value: @code{false}
d9df47b6
JD
5138@end itemize
5139
812775a0
JD
5140@item api.push-pull
5141@findex %define api.push-pull
793fbca5
JD
5142
5143@itemize @bullet
34a6c2d1 5144@item Language(s): C (deterministic parsers only)
793fbca5 5145
3b1977ea 5146@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5147@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5148(The current push parsing interface is experimental and may evolve.
5149More user feedback will help to stabilize it.)
793fbca5 5150
f37495f6 5151@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5152
f37495f6 5153@item Default Value: @code{pull}
793fbca5
JD
5154@end itemize
5155
232be91a
AD
5156@c ================================================== lr.default-reductions
5157
1d0f55cc 5158@item lr.default-reductions
1d0f55cc 5159@findex %define lr.default-reductions
34a6c2d1
JD
5160
5161@itemize @bullet
5162@item Language(s): all
5163
4c38b19e 5164@item Purpose: Specify the kind of states that are permitted to
6f04ee6c
JD
5165contain default reductions. @xref{Default Reductions}. (The ability to
5166specify where default reductions should be used is experimental. More user
5167feedback will help to stabilize it.)
34a6c2d1 5168
a6e5a280 5169@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
34a6c2d1
JD
5170@item Default Value:
5171@itemize
f37495f6 5172@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
a6e5a280 5173@item @code{most} otherwise.
34a6c2d1
JD
5174@end itemize
5175@end itemize
5176
232be91a
AD
5177@c ============================================ lr.keep-unreachable-states
5178
812775a0
JD
5179@item lr.keep-unreachable-states
5180@findex %define lr.keep-unreachable-states
31984206
JD
5181
5182@itemize @bullet
5183@item Language(s): all
3b1977ea 5184@item Purpose: Request that Bison allow unreachable parser states to
6f04ee6c 5185remain in the parser tables. @xref{Unreachable States}.
31984206 5186@item Accepted Values: Boolean
f37495f6 5187@item Default Value: @code{false}
31984206
JD
5188@end itemize
5189
232be91a
AD
5190@c ================================================== lr.type
5191
34a6c2d1
JD
5192@item lr.type
5193@findex %define lr.type
34a6c2d1
JD
5194
5195@itemize @bullet
5196@item Language(s): all
5197
3b1977ea 5198@item Purpose: Specify the type of parser tables within the
6f04ee6c 5199LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
34a6c2d1
JD
5200More user feedback will help to stabilize it.)
5201
6f04ee6c 5202@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
34a6c2d1 5203
f37495f6 5204@item Default Value: @code{lalr}
34a6c2d1
JD
5205@end itemize
5206
793fbca5
JD
5207@item namespace
5208@findex %define namespace
5209
5210@itemize
5211@item Languages(s): C++
5212
3b1977ea 5213@item Purpose: Specify the namespace for the parser class.
793fbca5
JD
5214For example, if you specify:
5215
5216@smallexample
5217%define namespace "foo::bar"
5218@end smallexample
5219
5220Bison uses @code{foo::bar} verbatim in references such as:
5221
5222@smallexample
5223foo::bar::parser::semantic_type
5224@end smallexample
5225
5226However, to open a namespace, Bison removes any leading @code{::} and then
5227splits on any remaining occurrences:
5228
5229@smallexample
5230namespace foo @{ namespace bar @{
5231 class position;
5232 class location;
5233@} @}
5234@end smallexample
5235
5236@item Accepted Values: Any absolute or relative C++ namespace reference without
5237a trailing @code{"::"}.
5238For example, @code{"foo"} or @code{"::foo::bar"}.
5239
5240@item Default Value: The value specified by @code{%name-prefix}, which defaults
5241to @code{yy}.
5242This usage of @code{%name-prefix} is for backward compatibility and can be
5243confusing since @code{%name-prefix} also specifies the textual prefix for the
5244lexical analyzer function.
5245Thus, if you specify @code{%name-prefix}, it is best to also specify
5246@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
5247lexical analyzer function.
5248For example, if you specify:
5249
5250@smallexample
5251%define namespace "foo"
5252%name-prefix "bar::"
5253@end smallexample
5254
5255The parser namespace is @code{foo} and @code{yylex} is referenced as
5256@code{bar::lex}.
5257@end itemize
4c38b19e
JD
5258
5259@c ================================================== parse.lac
5260@item parse.lac
5261@findex %define parse.lac
4c38b19e
JD
5262
5263@itemize
6f04ee6c 5264@item Languages(s): C (deterministic parsers only)
4c38b19e 5265
35430378 5266@item Purpose: Enable LAC (lookahead correction) to improve
6f04ee6c 5267syntax error handling. @xref{LAC}.
4c38b19e 5268@item Accepted Values: @code{none}, @code{full}
4c38b19e
JD
5269@item Default Value: @code{none}
5270@end itemize
793fbca5
JD
5271@end itemize
5272
d8988b2f 5273
8e6f2266
JD
5274@node %code Summary
5275@subsection %code Summary
8e6f2266 5276@findex %code
8e6f2266 5277@cindex Prologue
406dec82
JD
5278
5279The @code{%code} directive inserts code verbatim into the output
5280parser source at any of a predefined set of locations. It thus serves
5281as a flexible and user-friendly alternative to the traditional Yacc
5282prologue, @code{%@{@var{code}%@}}. This section summarizes the
5283functionality of @code{%code} for the various target languages
5284supported by Bison. For a detailed discussion of how to use
5285@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5286is advantageous to do so, @pxref{Prologue Alternatives}.
5287
5288@deffn {Directive} %code @{@var{code}@}
5289This is the unqualified form of the @code{%code} directive. It
5290inserts @var{code} verbatim at a language-dependent default location
5291in the parser implementation.
5292
8e6f2266 5293For C/C++, the default location is the parser implementation file
406dec82
JD
5294after the usual contents of the parser header file. Thus, the
5295unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
8e6f2266
JD
5296
5297For Java, the default location is inside the parser class.
5298@end deffn
5299
5300@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5301This is the qualified form of the @code{%code} directive.
406dec82
JD
5302@var{qualifier} identifies the purpose of @var{code} and thus the
5303location(s) where Bison should insert it. That is, if you need to
5304specify location-sensitive @var{code} that does not belong at the
5305default location selected by the unqualified @code{%code} form, use
5306this form instead.
5307@end deffn
5308
5309For any particular qualifier or for the unqualified form, if there are
5310multiple occurrences of the @code{%code} directive, Bison concatenates
5311the specified code in the order in which it appears in the grammar
5312file.
8e6f2266 5313
406dec82
JD
5314Not all qualifiers are accepted for all target languages. Unaccepted
5315qualifiers produce an error. Some of the accepted qualifiers are:
8e6f2266
JD
5316
5317@itemize @bullet
5318@item requires
5319@findex %code requires
5320
5321@itemize @bullet
5322@item Language(s): C, C++
5323
5324@item Purpose: This is the best place to write dependency code required for
5325@code{YYSTYPE} and @code{YYLTYPE}.
5326In other words, it's the best place to define types referenced in @code{%union}
5327directives, and it's the best place to override Bison's default @code{YYSTYPE}
5328and @code{YYLTYPE} definitions.
5329
5330@item Location(s): The parser header file and the parser implementation file
5331before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5332definitions.
5333@end itemize
5334
5335@item provides
5336@findex %code provides
5337
5338@itemize @bullet
5339@item Language(s): C, C++
5340
5341@item Purpose: This is the best place to write additional definitions and
5342declarations that should be provided to other modules.
5343
5344@item Location(s): The parser header file and the parser implementation
5345file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5346token definitions.
5347@end itemize
5348
5349@item top
5350@findex %code top
5351
5352@itemize @bullet
5353@item Language(s): C, C++
5354
5355@item Purpose: The unqualified @code{%code} or @code{%code requires}
5356should usually be more appropriate than @code{%code top}. However,
5357occasionally it is necessary to insert code much nearer the top of the
5358parser implementation file. For example:
5359
5360@smallexample
5361%code top @{
5362 #define _GNU_SOURCE
5363 #include <stdio.h>
5364@}
5365@end smallexample
5366
5367@item Location(s): Near the top of the parser implementation file.
5368@end itemize
5369
5370@item imports
5371@findex %code imports
5372
5373@itemize @bullet
5374@item Language(s): Java
5375
5376@item Purpose: This is the best place to write Java import directives.
5377
5378@item Location(s): The parser Java file after any Java package directive and
5379before any class definitions.
5380@end itemize
5381@end itemize
5382
406dec82
JD
5383Though we say the insertion locations are language-dependent, they are
5384technically skeleton-dependent. Writers of non-standard skeletons
5385however should choose their locations consistently with the behavior
5386of the standard Bison skeletons.
8e6f2266 5387
d8988b2f 5388
342b8b6e 5389@node Multiple Parsers
bfa74976
RS
5390@section Multiple Parsers in the Same Program
5391
5392Most programs that use Bison parse only one language and therefore contain
5393only one Bison parser. But what if you want to parse more than one
5394language with the same program? Then you need to avoid a name conflict
5395between different definitions of @code{yyparse}, @code{yylval}, and so on.
5396
5397The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5398(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5399functions and variables of the Bison parser to start with @var{prefix}
5400instead of @samp{yy}. You can use this to give each parser distinct
5401names that do not conflict.
bfa74976
RS
5402
5403The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5404@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5405@code{yychar} and @code{yydebug}. If you use a push parser,
5406@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5407@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5408For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5409@code{clex}, and so on.
bfa74976
RS
5410
5411@strong{All the other variables and macros associated with Bison are not
5412renamed.} These others are not global; there is no conflict if the same
5413name is used in different parsers. For example, @code{YYSTYPE} is not
5414renamed, but defining this in different ways in different parsers causes
5415no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5416
9913d6e4
JD
5417The @samp{-p} option works by adding macro definitions to the
5418beginning of the parser implementation file, defining @code{yyparse}
5419as @code{@var{prefix}parse}, and so on. This effectively substitutes
5420one name for the other in the entire parser implementation file.
bfa74976 5421
342b8b6e 5422@node Interface
bfa74976
RS
5423@chapter Parser C-Language Interface
5424@cindex C-language interface
5425@cindex interface
5426
5427The Bison parser is actually a C function named @code{yyparse}. Here we
5428describe the interface conventions of @code{yyparse} and the other
5429functions that it needs to use.
5430
5431Keep in mind that the parser uses many C identifiers starting with
5432@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5433identifier (aside from those in this manual) in an action or in epilogue
5434in the grammar file, you are likely to run into trouble.
bfa74976
RS
5435
5436@menu
f56274a8
DJ
5437* Parser Function:: How to call @code{yyparse} and what it returns.
5438* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5439* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5440* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5441* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5442* Lexical:: You must supply a function @code{yylex}
5443 which reads tokens.
5444* Error Reporting:: You must supply a function @code{yyerror}.
5445* Action Features:: Special features for use in actions.
5446* Internationalization:: How to let the parser speak in the user's
5447 native language.
bfa74976
RS
5448@end menu
5449
342b8b6e 5450@node Parser Function
bfa74976
RS
5451@section The Parser Function @code{yyparse}
5452@findex yyparse
5453
5454You call the function @code{yyparse} to cause parsing to occur. This
5455function reads tokens, executes actions, and ultimately returns when it
5456encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5457write an action which directs @code{yyparse} to return immediately
5458without reading further.
bfa74976 5459
2a8d363a
AD
5460
5461@deftypefun int yyparse (void)
bfa74976
RS
5462The value returned by @code{yyparse} is 0 if parsing was successful (return
5463is due to end-of-input).
5464
b47dbebe
PE
5465The value is 1 if parsing failed because of invalid input, i.e., input
5466that contains a syntax error or that causes @code{YYABORT} to be
5467invoked.
5468
5469The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5470@end deftypefun
bfa74976
RS
5471
5472In an action, you can cause immediate return from @code{yyparse} by using
5473these macros:
5474
2a8d363a 5475@defmac YYACCEPT
bfa74976
RS
5476@findex YYACCEPT
5477Return immediately with value 0 (to report success).
2a8d363a 5478@end defmac
bfa74976 5479
2a8d363a 5480@defmac YYABORT
bfa74976
RS
5481@findex YYABORT
5482Return immediately with value 1 (to report failure).
2a8d363a
AD
5483@end defmac
5484
5485If you use a reentrant parser, you can optionally pass additional
5486parameter information to it in a reentrant way. To do so, use the
5487declaration @code{%parse-param}:
5488
feeb0eda 5489@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5490@findex %parse-param
287c78f6
PE
5491Declare that an argument declared by the braced-code
5492@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5493The @var{argument-declaration} is used when declaring
feeb0eda
PE
5494functions or prototypes. The last identifier in
5495@var{argument-declaration} must be the argument name.
2a8d363a
AD
5496@end deffn
5497
5498Here's an example. Write this in the parser:
5499
5500@example
feeb0eda
PE
5501%parse-param @{int *nastiness@}
5502%parse-param @{int *randomness@}
2a8d363a
AD
5503@end example
5504
5505@noindent
5506Then call the parser like this:
5507
5508@example
5509@{
5510 int nastiness, randomness;
5511 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5512 value = yyparse (&nastiness, &randomness);
5513 @dots{}
5514@}
5515@end example
5516
5517@noindent
5518In the grammar actions, use expressions like this to refer to the data:
5519
5520@example
5521exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5522@end example
5523
9987d1b3
JD
5524@node Push Parser Function
5525@section The Push Parser Function @code{yypush_parse}
5526@findex yypush_parse
5527
59da312b
JD
5528(The current push parsing interface is experimental and may evolve.
5529More user feedback will help to stabilize it.)
5530
f4101aa6 5531You call the function @code{yypush_parse} to parse a single token. This
f37495f6
JD
5532function is available if either the @code{%define api.push-pull push} or
5533@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5534@xref{Push Decl, ,A Push Parser}.
5535
5536@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5537The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5538following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5539is required to finish parsing the grammar.
5540@end deftypefun
5541
5542@node Pull Parser Function
5543@section The Pull Parser Function @code{yypull_parse}
5544@findex yypull_parse
5545
59da312b
JD
5546(The current push parsing interface is experimental and may evolve.
5547More user feedback will help to stabilize it.)
5548
f4101aa6 5549You call the function @code{yypull_parse} to parse the rest of the input
f37495f6 5550stream. This function is available if the @code{%define api.push-pull both}
f4101aa6 5551declaration is used.
9987d1b3
JD
5552@xref{Push Decl, ,A Push Parser}.
5553
5554@deftypefun int yypull_parse (yypstate *yyps)
5555The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5556@end deftypefun
5557
5558@node Parser Create Function
5559@section The Parser Create Function @code{yystate_new}
5560@findex yypstate_new
5561
59da312b
JD
5562(The current push parsing interface is experimental and may evolve.
5563More user feedback will help to stabilize it.)
5564
f4101aa6 5565You call the function @code{yypstate_new} to create a new parser instance.
f37495f6
JD
5566This function is available if either the @code{%define api.push-pull push} or
5567@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5568@xref{Push Decl, ,A Push Parser}.
5569
5570@deftypefun yypstate *yypstate_new (void)
c781580d 5571The function will return a valid parser instance if there was memory available
333e670c
JD
5572or 0 if no memory was available.
5573In impure mode, it will also return 0 if a parser instance is currently
5574allocated.
9987d1b3
JD
5575@end deftypefun
5576
5577@node Parser Delete Function
5578@section The Parser Delete Function @code{yystate_delete}
5579@findex yypstate_delete
5580
59da312b
JD
5581(The current push parsing interface is experimental and may evolve.
5582More user feedback will help to stabilize it.)
5583
9987d1b3 5584You call the function @code{yypstate_delete} to delete a parser instance.
f37495f6
JD
5585function is available if either the @code{%define api.push-pull push} or
5586@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5587@xref{Push Decl, ,A Push Parser}.
5588
5589@deftypefun void yypstate_delete (yypstate *yyps)
5590This function will reclaim the memory associated with a parser instance.
5591After this call, you should no longer attempt to use the parser instance.
5592@end deftypefun
bfa74976 5593
342b8b6e 5594@node Lexical
bfa74976
RS
5595@section The Lexical Analyzer Function @code{yylex}
5596@findex yylex
5597@cindex lexical analyzer
5598
5599The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5600the input stream and returns them to the parser. Bison does not create
5601this function automatically; you must write it so that @code{yyparse} can
5602call it. The function is sometimes referred to as a lexical scanner.
5603
9913d6e4
JD
5604In simple programs, @code{yylex} is often defined at the end of the
5605Bison grammar file. If @code{yylex} is defined in a separate source
5606file, you need to arrange for the token-type macro definitions to be
5607available there. To do this, use the @samp{-d} option when you run
5608Bison, so that it will write these macro definitions into the separate
5609parser header file, @file{@var{name}.tab.h}, which you can include in
5610the other source files that need it. @xref{Invocation, ,Invoking
5611Bison}.
bfa74976
RS
5612
5613@menu
5614* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
5615* Token Values:: How @code{yylex} must return the semantic value
5616 of the token it has read.
5617* Token Locations:: How @code{yylex} must return the text location
5618 (line number, etc.) of the token, if the
5619 actions want that.
5620* Pure Calling:: How the calling convention differs in a pure parser
5621 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5622@end menu
5623
342b8b6e 5624@node Calling Convention
bfa74976
RS
5625@subsection Calling Convention for @code{yylex}
5626
72d2299c
PE
5627The value that @code{yylex} returns must be the positive numeric code
5628for the type of token it has just found; a zero or negative value
5629signifies end-of-input.
bfa74976
RS
5630
5631When a token is referred to in the grammar rules by a name, that name
9913d6e4
JD
5632in the parser implementation file becomes a C macro whose definition
5633is the proper numeric code for that token type. So @code{yylex} can
5634use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
5635
5636When a token is referred to in the grammar rules by a character literal,
5637the numeric code for that character is also the code for the token type.
72d2299c
PE
5638So @code{yylex} can simply return that character code, possibly converted
5639to @code{unsigned char} to avoid sign-extension. The null character
5640must not be used this way, because its code is zero and that
bfa74976
RS
5641signifies end-of-input.
5642
5643Here is an example showing these things:
5644
5645@example
13863333
AD
5646int
5647yylex (void)
bfa74976
RS
5648@{
5649 @dots{}
72d2299c 5650 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5651 return 0;
5652 @dots{}
5653 if (c == '+' || c == '-')
72d2299c 5654 return c; /* Assume token type for `+' is '+'. */
bfa74976 5655 @dots{}
72d2299c 5656 return INT; /* Return the type of the token. */
bfa74976
RS
5657 @dots{}
5658@}
5659@end example
5660
5661@noindent
5662This interface has been designed so that the output from the @code{lex}
5663utility can be used without change as the definition of @code{yylex}.
5664
931c7513
RS
5665If the grammar uses literal string tokens, there are two ways that
5666@code{yylex} can determine the token type codes for them:
5667
5668@itemize @bullet
5669@item
5670If the grammar defines symbolic token names as aliases for the
5671literal string tokens, @code{yylex} can use these symbolic names like
5672all others. In this case, the use of the literal string tokens in
5673the grammar file has no effect on @code{yylex}.
5674
5675@item
9ecbd125 5676@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5677table. The index of the token in the table is the token type's code.
9ecbd125 5678The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5679double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5680token's characters are escaped as necessary to be suitable as input
5681to Bison.
931c7513 5682
9e0876fb
PE
5683Here's code for looking up a multicharacter token in @code{yytname},
5684assuming that the characters of the token are stored in
5685@code{token_buffer}, and assuming that the token does not contain any
5686characters like @samp{"} that require escaping.
931c7513
RS
5687
5688@smallexample
5689for (i = 0; i < YYNTOKENS; i++)
5690 @{
5691 if (yytname[i] != 0
5692 && yytname[i][0] == '"'
68449b3a
PE
5693 && ! strncmp (yytname[i] + 1, token_buffer,
5694 strlen (token_buffer))
931c7513
RS
5695 && yytname[i][strlen (token_buffer) + 1] == '"'
5696 && yytname[i][strlen (token_buffer) + 2] == 0)
5697 break;
5698 @}
5699@end smallexample
5700
5701The @code{yytname} table is generated only if you use the
8c9a50be 5702@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5703@end itemize
5704
342b8b6e 5705@node Token Values
bfa74976
RS
5706@subsection Semantic Values of Tokens
5707
5708@vindex yylval
9d9b8b70 5709In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5710be stored into the global variable @code{yylval}. When you are using
5711just one data type for semantic values, @code{yylval} has that type.
5712Thus, if the type is @code{int} (the default), you might write this in
5713@code{yylex}:
5714
5715@example
5716@group
5717 @dots{}
72d2299c
PE
5718 yylval = value; /* Put value onto Bison stack. */
5719 return INT; /* Return the type of the token. */
bfa74976
RS
5720 @dots{}
5721@end group
5722@end example
5723
5724When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5725made from the @code{%union} declaration (@pxref{Union Decl, ,The
5726Collection of Value Types}). So when you store a token's value, you
5727must use the proper member of the union. If the @code{%union}
5728declaration looks like this:
bfa74976
RS
5729
5730@example
5731@group
5732%union @{
5733 int intval;
5734 double val;
5735 symrec *tptr;
5736@}
5737@end group
5738@end example
5739
5740@noindent
5741then the code in @code{yylex} might look like this:
5742
5743@example
5744@group
5745 @dots{}
72d2299c
PE
5746 yylval.intval = value; /* Put value onto Bison stack. */
5747 return INT; /* Return the type of the token. */
bfa74976
RS
5748 @dots{}
5749@end group
5750@end example
5751
95923bd6
AD
5752@node Token Locations
5753@subsection Textual Locations of Tokens
bfa74976
RS
5754
5755@vindex yylloc
847bf1f5 5756If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5757Tracking Locations}) in actions to keep track of the textual locations
5758of tokens and groupings, then you must provide this information in
5759@code{yylex}. The function @code{yyparse} expects to find the textual
5760location of a token just parsed in the global variable @code{yylloc}.
5761So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5762
5763By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5764initialize the members that are going to be used by the actions. The
5765four members are called @code{first_line}, @code{first_column},
5766@code{last_line} and @code{last_column}. Note that the use of this
5767feature makes the parser noticeably slower.
bfa74976
RS
5768
5769@tindex YYLTYPE
5770The data type of @code{yylloc} has the name @code{YYLTYPE}.
5771
342b8b6e 5772@node Pure Calling
c656404a 5773@subsection Calling Conventions for Pure Parsers
bfa74976 5774
d9df47b6 5775When you use the Bison declaration @code{%define api.pure} to request a
e425e872
RS
5776pure, reentrant parser, the global communication variables @code{yylval}
5777and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5778Parser}.) In such parsers the two global variables are replaced by
5779pointers passed as arguments to @code{yylex}. You must declare them as
5780shown here, and pass the information back by storing it through those
5781pointers.
bfa74976
RS
5782
5783@example
13863333
AD
5784int
5785yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5786@{
5787 @dots{}
5788 *lvalp = value; /* Put value onto Bison stack. */
5789 return INT; /* Return the type of the token. */
5790 @dots{}
5791@}
5792@end example
5793
5794If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5795textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5796this case, omit the second argument; @code{yylex} will be called with
5797only one argument.
5798
e425e872 5799
2a8d363a
AD
5800If you wish to pass the additional parameter data to @code{yylex}, use
5801@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5802Function}).
e425e872 5803
feeb0eda 5804@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5805@findex %lex-param
287c78f6
PE
5806Declare that the braced-code @var{argument-declaration} is an
5807additional @code{yylex} argument declaration.
2a8d363a 5808@end deffn
e425e872 5809
2a8d363a 5810For instance:
e425e872
RS
5811
5812@example
feeb0eda
PE
5813%parse-param @{int *nastiness@}
5814%lex-param @{int *nastiness@}
5815%parse-param @{int *randomness@}
e425e872
RS
5816@end example
5817
5818@noindent
2a8d363a 5819results in the following signature:
e425e872
RS
5820
5821@example
2a8d363a
AD
5822int yylex (int *nastiness);
5823int yyparse (int *nastiness, int *randomness);
e425e872
RS
5824@end example
5825
d9df47b6 5826If @code{%define api.pure} is added:
c656404a
RS
5827
5828@example
2a8d363a
AD
5829int yylex (YYSTYPE *lvalp, int *nastiness);
5830int yyparse (int *nastiness, int *randomness);
c656404a
RS
5831@end example
5832
2a8d363a 5833@noindent
d9df47b6 5834and finally, if both @code{%define api.pure} and @code{%locations} are used:
c656404a 5835
2a8d363a
AD
5836@example
5837int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5838int yyparse (int *nastiness, int *randomness);
5839@end example
931c7513 5840
342b8b6e 5841@node Error Reporting
bfa74976
RS
5842@section The Error Reporting Function @code{yyerror}
5843@cindex error reporting function
5844@findex yyerror
5845@cindex parse error
5846@cindex syntax error
5847
6e649e65 5848The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 5849whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 5850action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
5851macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
5852in Actions}).
bfa74976
RS
5853
5854The Bison parser expects to report the error by calling an error
5855reporting function named @code{yyerror}, which you must supply. It is
5856called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
5857receives one argument. For a syntax error, the string is normally
5858@w{@code{"syntax error"}}.
bfa74976 5859
2a8d363a 5860@findex %error-verbose
6f04ee6c
JD
5861If you invoke the directive @code{%error-verbose} in the Bison declarations
5862section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
5863Bison provides a more verbose and specific error message string instead of
5864just plain @w{@code{"syntax error"}}. However, that message sometimes
5865contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 5866
1a059451
PE
5867The parser can detect one other kind of error: memory exhaustion. This
5868can happen when the input contains constructions that are very deeply
bfa74976 5869nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
5870parser normally extends its stack automatically up to a very large limit. But
5871if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
5872fashion, except that the argument string is @w{@code{"memory exhausted"}}.
5873
5874In some cases diagnostics like @w{@code{"syntax error"}} are
5875translated automatically from English to some other language before
5876they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
5877
5878The following definition suffices in simple programs:
5879
5880@example
5881@group
13863333 5882void
38a92d50 5883yyerror (char const *s)
bfa74976
RS
5884@{
5885@end group
5886@group
5887 fprintf (stderr, "%s\n", s);
5888@}
5889@end group
5890@end example
5891
5892After @code{yyerror} returns to @code{yyparse}, the latter will attempt
5893error recovery if you have written suitable error recovery grammar rules
5894(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
5895immediately return 1.
5896
93724f13 5897Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 5898an access to the current location.
35430378 5899This is indeed the case for the GLR
2a8d363a 5900parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 5901@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
5902@code{yyerror} are:
5903
5904@example
38a92d50
PE
5905void yyerror (char const *msg); /* Yacc parsers. */
5906void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
5907@end example
5908
feeb0eda 5909If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
5910
5911@example
b317297e
PE
5912void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
5913void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
5914@end example
5915
35430378 5916Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
5917convention for absolutely pure parsers, i.e., when the calling
5918convention of @code{yylex} @emph{and} the calling convention of
d9df47b6
JD
5919@code{%define api.pure} are pure.
5920I.e.:
2a8d363a
AD
5921
5922@example
5923/* Location tracking. */
5924%locations
5925/* Pure yylex. */
d9df47b6 5926%define api.pure
feeb0eda 5927%lex-param @{int *nastiness@}
2a8d363a 5928/* Pure yyparse. */
feeb0eda
PE
5929%parse-param @{int *nastiness@}
5930%parse-param @{int *randomness@}
2a8d363a
AD
5931@end example
5932
5933@noindent
5934results in the following signatures for all the parser kinds:
5935
5936@example
5937int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5938int yyparse (int *nastiness, int *randomness);
93724f13
AD
5939void yyerror (YYLTYPE *locp,
5940 int *nastiness, int *randomness,
38a92d50 5941 char const *msg);
2a8d363a
AD
5942@end example
5943
1c0c3e95 5944@noindent
38a92d50
PE
5945The prototypes are only indications of how the code produced by Bison
5946uses @code{yyerror}. Bison-generated code always ignores the returned
5947value, so @code{yyerror} can return any type, including @code{void}.
5948Also, @code{yyerror} can be a variadic function; that is why the
5949message is always passed last.
5950
5951Traditionally @code{yyerror} returns an @code{int} that is always
5952ignored, but this is purely for historical reasons, and @code{void} is
5953preferable since it more accurately describes the return type for
5954@code{yyerror}.
93724f13 5955
bfa74976
RS
5956@vindex yynerrs
5957The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 5958reported so far. Normally this variable is global; but if you
704a47c4
AD
5959request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
5960then it is a local variable which only the actions can access.
bfa74976 5961
342b8b6e 5962@node Action Features
bfa74976
RS
5963@section Special Features for Use in Actions
5964@cindex summary, action features
5965@cindex action features summary
5966
5967Here is a table of Bison constructs, variables and macros that
5968are useful in actions.
5969
18b519c0 5970@deffn {Variable} $$
bfa74976
RS
5971Acts like a variable that contains the semantic value for the
5972grouping made by the current rule. @xref{Actions}.
18b519c0 5973@end deffn
bfa74976 5974
18b519c0 5975@deffn {Variable} $@var{n}
bfa74976
RS
5976Acts like a variable that contains the semantic value for the
5977@var{n}th component of the current rule. @xref{Actions}.
18b519c0 5978@end deffn
bfa74976 5979
18b519c0 5980@deffn {Variable} $<@var{typealt}>$
bfa74976 5981Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
5982specified by the @code{%union} declaration. @xref{Action Types, ,Data
5983Types of Values in Actions}.
18b519c0 5984@end deffn
bfa74976 5985
18b519c0 5986@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 5987Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 5988union specified by the @code{%union} declaration.
e0c471a9 5989@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 5990@end deffn
bfa74976 5991
18b519c0 5992@deffn {Macro} YYABORT;
bfa74976
RS
5993Return immediately from @code{yyparse}, indicating failure.
5994@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5995@end deffn
bfa74976 5996
18b519c0 5997@deffn {Macro} YYACCEPT;
bfa74976
RS
5998Return immediately from @code{yyparse}, indicating success.
5999@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6000@end deffn
bfa74976 6001
18b519c0 6002@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6003@findex YYBACKUP
6004Unshift a token. This macro is allowed only for rules that reduce
742e4900 6005a single value, and only when there is no lookahead token.
35430378 6006It is also disallowed in GLR parsers.
742e4900 6007It installs a lookahead token with token type @var{token} and
bfa74976
RS
6008semantic value @var{value}; then it discards the value that was
6009going to be reduced by this rule.
6010
6011If the macro is used when it is not valid, such as when there is
742e4900 6012a lookahead token already, then it reports a syntax error with
bfa74976
RS
6013a message @samp{cannot back up} and performs ordinary error
6014recovery.
6015
6016In either case, the rest of the action is not executed.
18b519c0 6017@end deffn
bfa74976 6018
18b519c0 6019@deffn {Macro} YYEMPTY
bfa74976 6020@vindex YYEMPTY
742e4900 6021Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6022@end deffn
bfa74976 6023
32c29292
JD
6024@deffn {Macro} YYEOF
6025@vindex YYEOF
742e4900 6026Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6027stream.
6028@end deffn
6029
18b519c0 6030@deffn {Macro} YYERROR;
bfa74976
RS
6031@findex YYERROR
6032Cause an immediate syntax error. This statement initiates error
6033recovery just as if the parser itself had detected an error; however, it
6034does not call @code{yyerror}, and does not print any message. If you
6035want to print an error message, call @code{yyerror} explicitly before
6036the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6037@end deffn
bfa74976 6038
18b519c0 6039@deffn {Macro} YYRECOVERING
02103984
PE
6040@findex YYRECOVERING
6041The expression @code{YYRECOVERING ()} yields 1 when the parser
6042is recovering from a syntax error, and 0 otherwise.
bfa74976 6043@xref{Error Recovery}.
18b519c0 6044@end deffn
bfa74976 6045
18b519c0 6046@deffn {Variable} yychar
742e4900
JD
6047Variable containing either the lookahead token, or @code{YYEOF} when the
6048lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6049has been performed so the next token is not yet known.
6050Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6051Actions}).
742e4900 6052@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6053@end deffn
bfa74976 6054
18b519c0 6055@deffn {Macro} yyclearin;
742e4900 6056Discard the current lookahead token. This is useful primarily in
32c29292
JD
6057error rules.
6058Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6059Semantic Actions}).
6060@xref{Error Recovery}.
18b519c0 6061@end deffn
bfa74976 6062
18b519c0 6063@deffn {Macro} yyerrok;
bfa74976 6064Resume generating error messages immediately for subsequent syntax
13863333 6065errors. This is useful primarily in error rules.
bfa74976 6066@xref{Error Recovery}.
18b519c0 6067@end deffn
bfa74976 6068
32c29292 6069@deffn {Variable} yylloc
742e4900 6070Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6071to @code{YYEMPTY} or @code{YYEOF}.
6072Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6073Actions}).
6074@xref{Actions and Locations, ,Actions and Locations}.
6075@end deffn
6076
6077@deffn {Variable} yylval
742e4900 6078Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6079not set to @code{YYEMPTY} or @code{YYEOF}.
6080Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6081Actions}).
6082@xref{Actions, ,Actions}.
6083@end deffn
6084
18b519c0 6085@deffn {Value} @@$
847bf1f5 6086@findex @@$
95923bd6 6087Acts like a structure variable containing information on the textual location
847bf1f5
AD
6088of the grouping made by the current rule. @xref{Locations, ,
6089Tracking Locations}.
bfa74976 6090
847bf1f5
AD
6091@c Check if those paragraphs are still useful or not.
6092
6093@c @example
6094@c struct @{
6095@c int first_line, last_line;
6096@c int first_column, last_column;
6097@c @};
6098@c @end example
6099
6100@c Thus, to get the starting line number of the third component, you would
6101@c use @samp{@@3.first_line}.
bfa74976 6102
847bf1f5
AD
6103@c In order for the members of this structure to contain valid information,
6104@c you must make @code{yylex} supply this information about each token.
6105@c If you need only certain members, then @code{yylex} need only fill in
6106@c those members.
bfa74976 6107
847bf1f5 6108@c The use of this feature makes the parser noticeably slower.
18b519c0 6109@end deffn
847bf1f5 6110
18b519c0 6111@deffn {Value} @@@var{n}
847bf1f5 6112@findex @@@var{n}
95923bd6 6113Acts like a structure variable containing information on the textual location
847bf1f5
AD
6114of the @var{n}th component of the current rule. @xref{Locations, ,
6115Tracking Locations}.
18b519c0 6116@end deffn
bfa74976 6117
f7ab6a50
PE
6118@node Internationalization
6119@section Parser Internationalization
6120@cindex internationalization
6121@cindex i18n
6122@cindex NLS
6123@cindex gettext
6124@cindex bison-po
6125
6126A Bison-generated parser can print diagnostics, including error and
6127tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6128also supports outputting diagnostics in the user's native language. To
6129make this work, the user should set the usual environment variables.
6130@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6131For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
35430378 6132set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6133encoding. The exact set of available locales depends on the user's
6134installation.
6135
6136The maintainer of a package that uses a Bison-generated parser enables
6137the internationalization of the parser's output through the following
35430378
JD
6138steps. Here we assume a package that uses GNU Autoconf and
6139GNU Automake.
f7ab6a50
PE
6140
6141@enumerate
6142@item
30757c8c 6143@cindex bison-i18n.m4
35430378 6144Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6145by the package---often called @file{m4}---copy the
6146@file{bison-i18n.m4} file installed by Bison under
6147@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6148For example:
6149
6150@example
6151cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6152@end example
6153
6154@item
30757c8c
PE
6155@findex BISON_I18N
6156@vindex BISON_LOCALEDIR
6157@vindex YYENABLE_NLS
f7ab6a50
PE
6158In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6159invocation, add an invocation of @code{BISON_I18N}. This macro is
6160defined in the file @file{bison-i18n.m4} that you copied earlier. It
6161causes @samp{configure} to find the value of the
30757c8c
PE
6162@code{BISON_LOCALEDIR} variable, and it defines the source-language
6163symbol @code{YYENABLE_NLS} to enable translations in the
6164Bison-generated parser.
f7ab6a50
PE
6165
6166@item
6167In the @code{main} function of your program, designate the directory
6168containing Bison's runtime message catalog, through a call to
6169@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6170For example:
6171
6172@example
6173bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6174@end example
6175
6176Typically this appears after any other call @code{bindtextdomain
6177(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6178@samp{BISON_LOCALEDIR} to be defined as a string through the
6179@file{Makefile}.
6180
6181@item
6182In the @file{Makefile.am} that controls the compilation of the @code{main}
6183function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6184either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6185
6186@example
6187DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6188@end example
6189
6190or:
6191
6192@example
6193AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6194@end example
6195
6196@item
6197Finally, invoke the command @command{autoreconf} to generate the build
6198infrastructure.
6199@end enumerate
6200
bfa74976 6201
342b8b6e 6202@node Algorithm
13863333
AD
6203@chapter The Bison Parser Algorithm
6204@cindex Bison parser algorithm
bfa74976
RS
6205@cindex algorithm of parser
6206@cindex shifting
6207@cindex reduction
6208@cindex parser stack
6209@cindex stack, parser
6210
6211As Bison reads tokens, it pushes them onto a stack along with their
6212semantic values. The stack is called the @dfn{parser stack}. Pushing a
6213token is traditionally called @dfn{shifting}.
6214
6215For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6216@samp{3} to come. The stack will have four elements, one for each token
6217that was shifted.
6218
6219But the stack does not always have an element for each token read. When
6220the last @var{n} tokens and groupings shifted match the components of a
6221grammar rule, they can be combined according to that rule. This is called
6222@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6223single grouping whose symbol is the result (left hand side) of that rule.
6224Running the rule's action is part of the process of reduction, because this
6225is what computes the semantic value of the resulting grouping.
6226
6227For example, if the infix calculator's parser stack contains this:
6228
6229@example
62301 + 5 * 3
6231@end example
6232
6233@noindent
6234and the next input token is a newline character, then the last three
6235elements can be reduced to 15 via the rule:
6236
6237@example
6238expr: expr '*' expr;
6239@end example
6240
6241@noindent
6242Then the stack contains just these three elements:
6243
6244@example
62451 + 15
6246@end example
6247
6248@noindent
6249At this point, another reduction can be made, resulting in the single value
625016. Then the newline token can be shifted.
6251
6252The parser tries, by shifts and reductions, to reduce the entire input down
6253to a single grouping whose symbol is the grammar's start-symbol
6254(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6255
6256This kind of parser is known in the literature as a bottom-up parser.
6257
6258@menu
742e4900 6259* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6260* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6261* Precedence:: Operator precedence works by resolving conflicts.
6262* Contextual Precedence:: When an operator's precedence depends on context.
6263* Parser States:: The parser is a finite-state-machine with stack.
6264* Reduce/Reduce:: When two rules are applicable in the same situation.
5da0355a 6265* Mysterious Conflicts:: Conflicts that look unjustified.
6f04ee6c 6266* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 6267* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6268* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6269@end menu
6270
742e4900
JD
6271@node Lookahead
6272@section Lookahead Tokens
6273@cindex lookahead token
bfa74976
RS
6274
6275The Bison parser does @emph{not} always reduce immediately as soon as the
6276last @var{n} tokens and groupings match a rule. This is because such a
6277simple strategy is inadequate to handle most languages. Instead, when a
6278reduction is possible, the parser sometimes ``looks ahead'' at the next
6279token in order to decide what to do.
6280
6281When a token is read, it is not immediately shifted; first it becomes the
742e4900 6282@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6283perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6284the lookahead token remains off to the side. When no more reductions
6285should take place, the lookahead token is shifted onto the stack. This
bfa74976 6286does not mean that all possible reductions have been done; depending on the
742e4900 6287token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6288application.
6289
742e4900 6290Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6291expressions which contain binary addition operators and postfix unary
6292factorial operators (@samp{!}), and allow parentheses for grouping.
6293
6294@example
6295@group
6296expr: term '+' expr
6297 | term
6298 ;
6299@end group
6300
6301@group
6302term: '(' expr ')'
6303 | term '!'
6304 | NUMBER
6305 ;
6306@end group
6307@end example
6308
6309Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6310should be done? If the following token is @samp{)}, then the first three
6311tokens must be reduced to form an @code{expr}. This is the only valid
6312course, because shifting the @samp{)} would produce a sequence of symbols
6313@w{@code{term ')'}}, and no rule allows this.
6314
6315If the following token is @samp{!}, then it must be shifted immediately so
6316that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6317parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6318@code{expr}. It would then be impossible to shift the @samp{!} because
6319doing so would produce on the stack the sequence of symbols @code{expr
6320'!'}. No rule allows that sequence.
6321
6322@vindex yychar
32c29292
JD
6323@vindex yylval
6324@vindex yylloc
742e4900 6325The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6326Its semantic value and location, if any, are stored in the variables
6327@code{yylval} and @code{yylloc}.
bfa74976
RS
6328@xref{Action Features, ,Special Features for Use in Actions}.
6329
342b8b6e 6330@node Shift/Reduce
bfa74976
RS
6331@section Shift/Reduce Conflicts
6332@cindex conflicts
6333@cindex shift/reduce conflicts
6334@cindex dangling @code{else}
6335@cindex @code{else}, dangling
6336
6337Suppose we are parsing a language which has if-then and if-then-else
6338statements, with a pair of rules like this:
6339
6340@example
6341@group
6342if_stmt:
6343 IF expr THEN stmt
6344 | IF expr THEN stmt ELSE stmt
6345 ;
6346@end group
6347@end example
6348
6349@noindent
6350Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6351terminal symbols for specific keyword tokens.
6352
742e4900 6353When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6354contents of the stack (assuming the input is valid) are just right for
6355reduction by the first rule. But it is also legitimate to shift the
6356@code{ELSE}, because that would lead to eventual reduction by the second
6357rule.
6358
6359This situation, where either a shift or a reduction would be valid, is
6360called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6361these conflicts by choosing to shift, unless otherwise directed by
6362operator precedence declarations. To see the reason for this, let's
6363contrast it with the other alternative.
6364
6365Since the parser prefers to shift the @code{ELSE}, the result is to attach
6366the else-clause to the innermost if-statement, making these two inputs
6367equivalent:
6368
6369@example
6370if x then if y then win (); else lose;
6371
6372if x then do; if y then win (); else lose; end;
6373@end example
6374
6375But if the parser chose to reduce when possible rather than shift, the
6376result would be to attach the else-clause to the outermost if-statement,
6377making these two inputs equivalent:
6378
6379@example
6380if x then if y then win (); else lose;
6381
6382if x then do; if y then win (); end; else lose;
6383@end example
6384
6385The conflict exists because the grammar as written is ambiguous: either
6386parsing of the simple nested if-statement is legitimate. The established
6387convention is that these ambiguities are resolved by attaching the
6388else-clause to the innermost if-statement; this is what Bison accomplishes
6389by choosing to shift rather than reduce. (It would ideally be cleaner to
6390write an unambiguous grammar, but that is very hard to do in this case.)
6391This particular ambiguity was first encountered in the specifications of
6392Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6393
6394To avoid warnings from Bison about predictable, legitimate shift/reduce
cf22447c
JD
6395conflicts, use the @code{%expect @var{n}} declaration.
6396There will be no warning as long as the number of shift/reduce conflicts
6397is exactly @var{n}, and Bison will report an error if there is a
6398different number.
bfa74976
RS
6399@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6400
6401The definition of @code{if_stmt} above is solely to blame for the
6402conflict, but the conflict does not actually appear without additional
9913d6e4
JD
6403rules. Here is a complete Bison grammar file that actually manifests
6404the conflict:
bfa74976
RS
6405
6406@example
6407@group
6408%token IF THEN ELSE variable
6409%%
6410@end group
6411@group
6412stmt: expr
6413 | if_stmt
6414 ;
6415@end group
6416
6417@group
6418if_stmt:
6419 IF expr THEN stmt
6420 | IF expr THEN stmt ELSE stmt
6421 ;
6422@end group
6423
6424expr: variable
6425 ;
6426@end example
6427
342b8b6e 6428@node Precedence
bfa74976
RS
6429@section Operator Precedence
6430@cindex operator precedence
6431@cindex precedence of operators
6432
6433Another situation where shift/reduce conflicts appear is in arithmetic
6434expressions. Here shifting is not always the preferred resolution; the
6435Bison declarations for operator precedence allow you to specify when to
6436shift and when to reduce.
6437
6438@menu
6439* Why Precedence:: An example showing why precedence is needed.
6440* Using Precedence:: How to specify precedence in Bison grammars.
6441* Precedence Examples:: How these features are used in the previous example.
6442* How Precedence:: How they work.
6443@end menu
6444
342b8b6e 6445@node Why Precedence
bfa74976
RS
6446@subsection When Precedence is Needed
6447
6448Consider the following ambiguous grammar fragment (ambiguous because the
6449input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6450
6451@example
6452@group
6453expr: expr '-' expr
6454 | expr '*' expr
6455 | expr '<' expr
6456 | '(' expr ')'
6457 @dots{}
6458 ;
6459@end group
6460@end example
6461
6462@noindent
6463Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6464should it reduce them via the rule for the subtraction operator? It
6465depends on the next token. Of course, if the next token is @samp{)}, we
6466must reduce; shifting is invalid because no single rule can reduce the
6467token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6468the next token is @samp{*} or @samp{<}, we have a choice: either
6469shifting or reduction would allow the parse to complete, but with
6470different results.
6471
6472To decide which one Bison should do, we must consider the results. If
6473the next operator token @var{op} is shifted, then it must be reduced
6474first in order to permit another opportunity to reduce the difference.
6475The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6476hand, if the subtraction is reduced before shifting @var{op}, the result
6477is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6478reduce should depend on the relative precedence of the operators
6479@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6480@samp{<}.
bfa74976
RS
6481
6482@cindex associativity
6483What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6484@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6485operators we prefer the former, which is called @dfn{left association}.
6486The latter alternative, @dfn{right association}, is desirable for
6487assignment operators. The choice of left or right association is a
6488matter of whether the parser chooses to shift or reduce when the stack
742e4900 6489contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6490makes right-associativity.
bfa74976 6491
342b8b6e 6492@node Using Precedence
bfa74976
RS
6493@subsection Specifying Operator Precedence
6494@findex %left
6495@findex %right
6496@findex %nonassoc
6497
6498Bison allows you to specify these choices with the operator precedence
6499declarations @code{%left} and @code{%right}. Each such declaration
6500contains a list of tokens, which are operators whose precedence and
6501associativity is being declared. The @code{%left} declaration makes all
6502those operators left-associative and the @code{%right} declaration makes
6503them right-associative. A third alternative is @code{%nonassoc}, which
6504declares that it is a syntax error to find the same operator twice ``in a
6505row''.
6506
6507The relative precedence of different operators is controlled by the
6508order in which they are declared. The first @code{%left} or
6509@code{%right} declaration in the file declares the operators whose
6510precedence is lowest, the next such declaration declares the operators
6511whose precedence is a little higher, and so on.
6512
342b8b6e 6513@node Precedence Examples
bfa74976
RS
6514@subsection Precedence Examples
6515
6516In our example, we would want the following declarations:
6517
6518@example
6519%left '<'
6520%left '-'
6521%left '*'
6522@end example
6523
6524In a more complete example, which supports other operators as well, we
6525would declare them in groups of equal precedence. For example, @code{'+'} is
6526declared with @code{'-'}:
6527
6528@example
6529%left '<' '>' '=' NE LE GE
6530%left '+' '-'
6531%left '*' '/'
6532@end example
6533
6534@noindent
6535(Here @code{NE} and so on stand for the operators for ``not equal''
6536and so on. We assume that these tokens are more than one character long
6537and therefore are represented by names, not character literals.)
6538
342b8b6e 6539@node How Precedence
bfa74976
RS
6540@subsection How Precedence Works
6541
6542The first effect of the precedence declarations is to assign precedence
6543levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6544precedence levels to certain rules: each rule gets its precedence from
6545the last terminal symbol mentioned in the components. (You can also
6546specify explicitly the precedence of a rule. @xref{Contextual
6547Precedence, ,Context-Dependent Precedence}.)
6548
6549Finally, the resolution of conflicts works by comparing the precedence
742e4900 6550of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6551token's precedence is higher, the choice is to shift. If the rule's
6552precedence is higher, the choice is to reduce. If they have equal
6553precedence, the choice is made based on the associativity of that
6554precedence level. The verbose output file made by @samp{-v}
6555(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6556resolved.
bfa74976
RS
6557
6558Not all rules and not all tokens have precedence. If either the rule or
742e4900 6559the lookahead token has no precedence, then the default is to shift.
bfa74976 6560
342b8b6e 6561@node Contextual Precedence
bfa74976
RS
6562@section Context-Dependent Precedence
6563@cindex context-dependent precedence
6564@cindex unary operator precedence
6565@cindex precedence, context-dependent
6566@cindex precedence, unary operator
6567@findex %prec
6568
6569Often the precedence of an operator depends on the context. This sounds
6570outlandish at first, but it is really very common. For example, a minus
6571sign typically has a very high precedence as a unary operator, and a
6572somewhat lower precedence (lower than multiplication) as a binary operator.
6573
6574The Bison precedence declarations, @code{%left}, @code{%right} and
6575@code{%nonassoc}, can only be used once for a given token; so a token has
6576only one precedence declared in this way. For context-dependent
6577precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6578modifier for rules.
bfa74976
RS
6579
6580The @code{%prec} modifier declares the precedence of a particular rule by
6581specifying a terminal symbol whose precedence should be used for that rule.
6582It's not necessary for that symbol to appear otherwise in the rule. The
6583modifier's syntax is:
6584
6585@example
6586%prec @var{terminal-symbol}
6587@end example
6588
6589@noindent
6590and it is written after the components of the rule. Its effect is to
6591assign the rule the precedence of @var{terminal-symbol}, overriding
6592the precedence that would be deduced for it in the ordinary way. The
6593altered rule precedence then affects how conflicts involving that rule
6594are resolved (@pxref{Precedence, ,Operator Precedence}).
6595
6596Here is how @code{%prec} solves the problem of unary minus. First, declare
6597a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6598are no tokens of this type, but the symbol serves to stand for its
6599precedence:
6600
6601@example
6602@dots{}
6603%left '+' '-'
6604%left '*'
6605%left UMINUS
6606@end example
6607
6608Now the precedence of @code{UMINUS} can be used in specific rules:
6609
6610@example
6611@group
6612exp: @dots{}
6613 | exp '-' exp
6614 @dots{}
6615 | '-' exp %prec UMINUS
6616@end group
6617@end example
6618
91d2c560 6619@ifset defaultprec
39a06c25
PE
6620If you forget to append @code{%prec UMINUS} to the rule for unary
6621minus, Bison silently assumes that minus has its usual precedence.
6622This kind of problem can be tricky to debug, since one typically
6623discovers the mistake only by testing the code.
6624
22fccf95 6625The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6626this kind of problem systematically. It causes rules that lack a
6627@code{%prec} modifier to have no precedence, even if the last terminal
6628symbol mentioned in their components has a declared precedence.
6629
22fccf95 6630If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6631for all rules that participate in precedence conflict resolution.
6632Then you will see any shift/reduce conflict until you tell Bison how
6633to resolve it, either by changing your grammar or by adding an
6634explicit precedence. This will probably add declarations to the
6635grammar, but it helps to protect against incorrect rule precedences.
6636
22fccf95
PE
6637The effect of @code{%no-default-prec;} can be reversed by giving
6638@code{%default-prec;}, which is the default.
91d2c560 6639@end ifset
39a06c25 6640
342b8b6e 6641@node Parser States
bfa74976
RS
6642@section Parser States
6643@cindex finite-state machine
6644@cindex parser state
6645@cindex state (of parser)
6646
6647The function @code{yyparse} is implemented using a finite-state machine.
6648The values pushed on the parser stack are not simply token type codes; they
6649represent the entire sequence of terminal and nonterminal symbols at or
6650near the top of the stack. The current state collects all the information
6651about previous input which is relevant to deciding what to do next.
6652
742e4900
JD
6653Each time a lookahead token is read, the current parser state together
6654with the type of lookahead token are looked up in a table. This table
6655entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6656specifies the new parser state, which is pushed onto the top of the
6657parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6658This means that a certain number of tokens or groupings are taken off
6659the top of the stack, and replaced by one grouping. In other words,
6660that number of states are popped from the stack, and one new state is
6661pushed.
6662
742e4900 6663There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6664is erroneous in the current state. This causes error processing to begin
6665(@pxref{Error Recovery}).
6666
342b8b6e 6667@node Reduce/Reduce
bfa74976
RS
6668@section Reduce/Reduce Conflicts
6669@cindex reduce/reduce conflict
6670@cindex conflicts, reduce/reduce
6671
6672A reduce/reduce conflict occurs if there are two or more rules that apply
6673to the same sequence of input. This usually indicates a serious error
6674in the grammar.
6675
6676For example, here is an erroneous attempt to define a sequence
6677of zero or more @code{word} groupings.
6678
6679@example
6680sequence: /* empty */
6681 @{ printf ("empty sequence\n"); @}
6682 | maybeword
6683 | sequence word
6684 @{ printf ("added word %s\n", $2); @}
6685 ;
6686
6687maybeword: /* empty */
6688 @{ printf ("empty maybeword\n"); @}
6689 | word
6690 @{ printf ("single word %s\n", $1); @}
6691 ;
6692@end example
6693
6694@noindent
6695The error is an ambiguity: there is more than one way to parse a single
6696@code{word} into a @code{sequence}. It could be reduced to a
6697@code{maybeword} and then into a @code{sequence} via the second rule.
6698Alternatively, nothing-at-all could be reduced into a @code{sequence}
6699via the first rule, and this could be combined with the @code{word}
6700using the third rule for @code{sequence}.
6701
6702There is also more than one way to reduce nothing-at-all into a
6703@code{sequence}. This can be done directly via the first rule,
6704or indirectly via @code{maybeword} and then the second rule.
6705
6706You might think that this is a distinction without a difference, because it
6707does not change whether any particular input is valid or not. But it does
6708affect which actions are run. One parsing order runs the second rule's
6709action; the other runs the first rule's action and the third rule's action.
6710In this example, the output of the program changes.
6711
6712Bison resolves a reduce/reduce conflict by choosing to use the rule that
6713appears first in the grammar, but it is very risky to rely on this. Every
6714reduce/reduce conflict must be studied and usually eliminated. Here is the
6715proper way to define @code{sequence}:
6716
6717@example
6718sequence: /* empty */
6719 @{ printf ("empty sequence\n"); @}
6720 | sequence word
6721 @{ printf ("added word %s\n", $2); @}
6722 ;
6723@end example
6724
6725Here is another common error that yields a reduce/reduce conflict:
6726
6727@example
6728sequence: /* empty */
6729 | sequence words
6730 | sequence redirects
6731 ;
6732
6733words: /* empty */
6734 | words word
6735 ;
6736
6737redirects:/* empty */
6738 | redirects redirect
6739 ;
6740@end example
6741
6742@noindent
6743The intention here is to define a sequence which can contain either
6744@code{word} or @code{redirect} groupings. The individual definitions of
6745@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6746three together make a subtle ambiguity: even an empty input can be parsed
6747in infinitely many ways!
6748
6749Consider: nothing-at-all could be a @code{words}. Or it could be two
6750@code{words} in a row, or three, or any number. It could equally well be a
6751@code{redirects}, or two, or any number. Or it could be a @code{words}
6752followed by three @code{redirects} and another @code{words}. And so on.
6753
6754Here are two ways to correct these rules. First, to make it a single level
6755of sequence:
6756
6757@example
6758sequence: /* empty */
6759 | sequence word
6760 | sequence redirect
6761 ;
6762@end example
6763
6764Second, to prevent either a @code{words} or a @code{redirects}
6765from being empty:
6766
6767@example
6768sequence: /* empty */
6769 | sequence words
6770 | sequence redirects
6771 ;
6772
6773words: word
6774 | words word
6775 ;
6776
6777redirects:redirect
6778 | redirects redirect
6779 ;
6780@end example
6781
5da0355a
JD
6782@node Mysterious Conflicts
6783@section Mysterious Conflicts
6f04ee6c 6784@cindex Mysterious Conflicts
bfa74976
RS
6785
6786Sometimes reduce/reduce conflicts can occur that don't look warranted.
6787Here is an example:
6788
6789@example
6790@group
6791%token ID
6792
6793%%
6794def: param_spec return_spec ','
6795 ;
6796param_spec:
6797 type
6798 | name_list ':' type
6799 ;
6800@end group
6801@group
6802return_spec:
6803 type
6804 | name ':' type
6805 ;
6806@end group
6807@group
6808type: ID
6809 ;
6810@end group
6811@group
6812name: ID
6813 ;
6814name_list:
6815 name
6816 | name ',' name_list
6817 ;
6818@end group
6819@end example
6820
6821It would seem that this grammar can be parsed with only a single token
742e4900 6822of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6823a @code{name} if a comma or colon follows, or a @code{type} if another
35430378 6824@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 6825
6f04ee6c
JD
6826@cindex LR
6827@cindex LALR
34a6c2d1 6828However, for historical reasons, Bison cannot by default handle all
35430378 6829LR(1) grammars.
34a6c2d1
JD
6830In this grammar, two contexts, that after an @code{ID} at the beginning
6831of a @code{param_spec} and likewise at the beginning of a
6832@code{return_spec}, are similar enough that Bison assumes they are the
6833same.
6834They appear similar because the same set of rules would be
bfa74976
RS
6835active---the rule for reducing to a @code{name} and that for reducing to
6836a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6837that the rules would require different lookahead tokens in the two
bfa74976
RS
6838contexts, so it makes a single parser state for them both. Combining
6839the two contexts causes a conflict later. In parser terminology, this
35430378 6840occurrence means that the grammar is not LALR(1).
bfa74976 6841
6f04ee6c
JD
6842@cindex IELR
6843@cindex canonical LR
6844For many practical grammars (specifically those that fall into the non-LR(1)
6845class), the limitations of LALR(1) result in difficulties beyond just
6846mysterious reduce/reduce conflicts. The best way to fix all these problems
6847is to select a different parser table construction algorithm. Either
6848IELR(1) or canonical LR(1) would suffice, but the former is more efficient
6849and easier to debug during development. @xref{LR Table Construction}, for
6850details. (Bison's IELR(1) and canonical LR(1) implementations are
6851experimental. More user feedback will help to stabilize them.)
34a6c2d1 6852
35430378 6853If you instead wish to work around LALR(1)'s limitations, you
34a6c2d1
JD
6854can often fix a mysterious conflict by identifying the two parser states
6855that are being confused, and adding something to make them look
6856distinct. In the above example, adding one rule to
bfa74976
RS
6857@code{return_spec} as follows makes the problem go away:
6858
6859@example
6860@group
6861%token BOGUS
6862@dots{}
6863%%
6864@dots{}
6865return_spec:
6866 type
6867 | name ':' type
6868 /* This rule is never used. */
6869 | ID BOGUS
6870 ;
6871@end group
6872@end example
6873
6874This corrects the problem because it introduces the possibility of an
6875additional active rule in the context after the @code{ID} at the beginning of
6876@code{return_spec}. This rule is not active in the corresponding context
6877in a @code{param_spec}, so the two contexts receive distinct parser states.
6878As long as the token @code{BOGUS} is never generated by @code{yylex},
6879the added rule cannot alter the way actual input is parsed.
6880
6881In this particular example, there is another way to solve the problem:
6882rewrite the rule for @code{return_spec} to use @code{ID} directly
6883instead of via @code{name}. This also causes the two confusing
6884contexts to have different sets of active rules, because the one for
6885@code{return_spec} activates the altered rule for @code{return_spec}
6886rather than the one for @code{name}.
6887
6888@example
6889param_spec:
6890 type
6891 | name_list ':' type
6892 ;
6893return_spec:
6894 type
6895 | ID ':' type
6896 ;
6897@end example
6898
35430378 6899For a more detailed exposition of LALR(1) parsers and parser
71caec06 6900generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 6901
6f04ee6c
JD
6902@node Tuning LR
6903@section Tuning LR
6904
6905The default behavior of Bison's LR-based parsers is chosen mostly for
6906historical reasons, but that behavior is often not robust. For example, in
6907the previous section, we discussed the mysterious conflicts that can be
6908produced by LALR(1), Bison's default parser table construction algorithm.
6909Another example is Bison's @code{%error-verbose} directive, which instructs
6910the generated parser to produce verbose syntax error messages, which can
6911sometimes contain incorrect information.
6912
6913In this section, we explore several modern features of Bison that allow you
6914to tune fundamental aspects of the generated LR-based parsers. Some of
6915these features easily eliminate shortcomings like those mentioned above.
6916Others can be helpful purely for understanding your parser.
6917
6918Most of the features discussed in this section are still experimental. More
6919user feedback will help to stabilize them.
6920
6921@menu
6922* LR Table Construction:: Choose a different construction algorithm.
6923* Default Reductions:: Disable default reductions.
6924* LAC:: Correct lookahead sets in the parser states.
6925* Unreachable States:: Keep unreachable parser states for debugging.
6926@end menu
6927
6928@node LR Table Construction
6929@subsection LR Table Construction
6930@cindex Mysterious Conflict
6931@cindex LALR
6932@cindex IELR
6933@cindex canonical LR
6934@findex %define lr.type
6935
6936For historical reasons, Bison constructs LALR(1) parser tables by default.
6937However, LALR does not possess the full language-recognition power of LR.
6938As a result, the behavior of parsers employing LALR parser tables is often
5da0355a 6939mysterious. We presented a simple example of this effect in @ref{Mysterious
6f04ee6c
JD
6940Conflicts}.
6941
6942As we also demonstrated in that example, the traditional approach to
6943eliminating such mysterious behavior is to restructure the grammar.
6944Unfortunately, doing so correctly is often difficult. Moreover, merely
6945discovering that LALR causes mysterious behavior in your parser can be
6946difficult as well.
6947
6948Fortunately, Bison provides an easy way to eliminate the possibility of such
6949mysterious behavior altogether. You simply need to activate a more powerful
6950parser table construction algorithm by using the @code{%define lr.type}
6951directive.
6952
6953@deffn {Directive} {%define lr.type @var{TYPE}}
6954Specify the type of parser tables within the LR(1) family. The accepted
6955values for @var{TYPE} are:
6956
6957@itemize
6958@item @code{lalr} (default)
6959@item @code{ielr}
6960@item @code{canonical-lr}
6961@end itemize
6962
6963(This feature is experimental. More user feedback will help to stabilize
6964it.)
6965@end deffn
6966
6967For example, to activate IELR, you might add the following directive to you
6968grammar file:
6969
6970@example
6971%define lr.type ielr
6972@end example
6973
5da0355a 6974@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
6f04ee6c
JD
6975conflict is then eliminated, so there is no need to invest time in
6976comprehending the conflict or restructuring the grammar to fix it. If,
6977during future development, the grammar evolves such that all mysterious
6978behavior would have disappeared using just LALR, you need not fear that
6979continuing to use IELR will result in unnecessarily large parser tables.
6980That is, IELR generates LALR tables when LALR (using a deterministic parsing
6981algorithm) is sufficient to support the full language-recognition power of
6982LR. Thus, by enabling IELR at the start of grammar development, you can
6983safely and completely eliminate the need to consider LALR's shortcomings.
6984
6985While IELR is almost always preferable, there are circumstances where LALR
6986or the canonical LR parser tables described by Knuth
6987(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
6988relative advantages of each parser table construction algorithm within
6989Bison:
6990
6991@itemize
6992@item LALR
6993
6994There are at least two scenarios where LALR can be worthwhile:
6995
6996@itemize
6997@item GLR without static conflict resolution.
6998
6999@cindex GLR with LALR
7000When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
7001conflicts statically (for example, with @code{%left} or @code{%prec}), then
7002the parser explores all potential parses of any given input. In this case,
7003the choice of parser table construction algorithm is guaranteed not to alter
7004the language accepted by the parser. LALR parser tables are the smallest
7005parser tables Bison can currently construct, so they may then be preferable.
7006Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7007more like a deterministic parser in the syntactic contexts where those
7008conflicts appear, and so either IELR or canonical LR can then be helpful to
7009avoid LALR's mysterious behavior.
7010
7011@item Malformed grammars.
7012
7013Occasionally during development, an especially malformed grammar with a
7014major recurring flaw may severely impede the IELR or canonical LR parser
7015table construction algorithm. LALR can be a quick way to construct parser
7016tables in order to investigate such problems while ignoring the more subtle
7017differences from IELR and canonical LR.
7018@end itemize
7019
7020@item IELR
7021
7022IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7023any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7024always accept exactly the same set of sentences. However, like LALR, IELR
7025merges parser states during parser table construction so that the number of
7026parser states is often an order of magnitude less than for canonical LR.
7027More importantly, because canonical LR's extra parser states may contain
7028duplicate conflicts in the case of non-LR grammars, the number of conflicts
7029for IELR is often an order of magnitude less as well. This effect can
7030significantly reduce the complexity of developing a grammar.
7031
7032@item Canonical LR
7033
7034@cindex delayed syntax error detection
7035@cindex LAC
7036@findex %nonassoc
7037While inefficient, canonical LR parser tables can be an interesting means to
7038explore a grammar because they possess a property that IELR and LALR tables
7039do not. That is, if @code{%nonassoc} is not used and default reductions are
7040left disabled (@pxref{Default Reductions}), then, for every left context of
7041every canonical LR state, the set of tokens accepted by that state is
7042guaranteed to be the exact set of tokens that is syntactically acceptable in
7043that left context. It might then seem that an advantage of canonical LR
7044parsers in production is that, under the above constraints, they are
7045guaranteed to detect a syntax error as soon as possible without performing
7046any unnecessary reductions. However, IELR parsers that use LAC are also
7047able to achieve this behavior without sacrificing @code{%nonassoc} or
7048default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7049@end itemize
7050
7051For a more detailed exposition of the mysterious behavior in LALR parsers
7052and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7053@ref{Bibliography,,Denny 2010 November}.
7054
7055@node Default Reductions
7056@subsection Default Reductions
7057@cindex default reductions
7058@findex %define lr.default-reductions
7059@findex %nonassoc
7060
7061After parser table construction, Bison identifies the reduction with the
7062largest lookahead set in each parser state. To reduce the size of the
7063parser state, traditional Bison behavior is to remove that lookahead set and
7064to assign that reduction to be the default parser action. Such a reduction
7065is known as a @dfn{default reduction}.
7066
7067Default reductions affect more than the size of the parser tables. They
7068also affect the behavior of the parser:
7069
7070@itemize
7071@item Delayed @code{yylex} invocations.
7072
7073@cindex delayed yylex invocations
7074@cindex consistent states
7075@cindex defaulted states
7076A @dfn{consistent state} is a state that has only one possible parser
7077action. If that action is a reduction and is encoded as a default
7078reduction, then that consistent state is called a @dfn{defaulted state}.
7079Upon reaching a defaulted state, a Bison-generated parser does not bother to
7080invoke @code{yylex} to fetch the next token before performing the reduction.
7081In other words, whether default reductions are enabled in consistent states
7082determines how soon a Bison-generated parser invokes @code{yylex} for a
7083token: immediately when it @emph{reaches} that token in the input or when it
7084eventually @emph{needs} that token as a lookahead to determine the next
7085parser action. Traditionally, default reductions are enabled, and so the
7086parser exhibits the latter behavior.
7087
7088The presence of defaulted states is an important consideration when
7089designing @code{yylex} and the grammar file. That is, if the behavior of
7090@code{yylex} can influence or be influenced by the semantic actions
7091associated with the reductions in defaulted states, then the delay of the
7092next @code{yylex} invocation until after those reductions is significant.
7093For example, the semantic actions might pop a scope stack that @code{yylex}
7094uses to determine what token to return. Thus, the delay might be necessary
7095to ensure that @code{yylex} does not look up the next token in a scope that
7096should already be considered closed.
7097
7098@item Delayed syntax error detection.
7099
7100@cindex delayed syntax error detection
7101When the parser fetches a new token by invoking @code{yylex}, it checks
7102whether there is an action for that token in the current parser state. The
7103parser detects a syntax error if and only if either (1) there is no action
7104for that token or (2) the action for that token is the error action (due to
7105the use of @code{%nonassoc}). However, if there is a default reduction in
7106that state (which might or might not be a defaulted state), then it is
7107impossible for condition 1 to exist. That is, all tokens have an action.
7108Thus, the parser sometimes fails to detect the syntax error until it reaches
7109a later state.
7110
7111@cindex LAC
7112@c If there's an infinite loop, default reductions can prevent an incorrect
7113@c sentence from being rejected.
7114While default reductions never cause the parser to accept syntactically
7115incorrect sentences, the delay of syntax error detection can have unexpected
7116effects on the behavior of the parser. However, the delay can be caused
7117anyway by parser state merging and the use of @code{%nonassoc}, and it can
7118be fixed by another Bison feature, LAC. We discuss the effects of delayed
7119syntax error detection and LAC more in the next section (@pxref{LAC}).
7120@end itemize
7121
7122For canonical LR, the only default reduction that Bison enables by default
7123is the accept action, which appears only in the accepting state, which has
7124no other action and is thus a defaulted state. However, the default accept
7125action does not delay any @code{yylex} invocation or syntax error detection
7126because the accept action ends the parse.
7127
7128For LALR and IELR, Bison enables default reductions in nearly all states by
7129default. There are only two exceptions. First, states that have a shift
7130action on the @code{error} token do not have default reductions because
7131delayed syntax error detection could then prevent the @code{error} token
7132from ever being shifted in that state. However, parser state merging can
7133cause the same effect anyway, and LAC fixes it in both cases, so future
7134versions of Bison might drop this exception when LAC is activated. Second,
7135GLR parsers do not record the default reduction as the action on a lookahead
7136token for which there is a conflict. The correct action in this case is to
7137split the parse instead.
7138
7139To adjust which states have default reductions enabled, use the
7140@code{%define lr.default-reductions} directive.
7141
7142@deffn {Directive} {%define lr.default-reductions @var{WHERE}}
7143Specify the kind of states that are permitted to contain default reductions.
7144The accepted values of @var{WHERE} are:
7145@itemize
a6e5a280 7146@item @code{most} (default for LALR and IELR)
6f04ee6c
JD
7147@item @code{consistent}
7148@item @code{accepting} (default for canonical LR)
7149@end itemize
7150
7151(The ability to specify where default reductions are permitted is
7152experimental. More user feedback will help to stabilize it.)
7153@end deffn
7154
6f04ee6c
JD
7155@node LAC
7156@subsection LAC
7157@findex %define parse.lac
7158@cindex LAC
7159@cindex lookahead correction
7160
7161Canonical LR, IELR, and LALR can suffer from a couple of problems upon
7162encountering a syntax error. First, the parser might perform additional
7163parser stack reductions before discovering the syntax error. Such
7164reductions can perform user semantic actions that are unexpected because
7165they are based on an invalid token, and they cause error recovery to begin
7166in a different syntactic context than the one in which the invalid token was
7167encountered. Second, when verbose error messages are enabled (@pxref{Error
7168Reporting}), the expected token list in the syntax error message can both
7169contain invalid tokens and omit valid tokens.
7170
7171The culprits for the above problems are @code{%nonassoc}, default reductions
7172in inconsistent states (@pxref{Default Reductions}), and parser state
7173merging. Because IELR and LALR merge parser states, they suffer the most.
7174Canonical LR can suffer only if @code{%nonassoc} is used or if default
7175reductions are enabled for inconsistent states.
7176
7177LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
7178that solves these problems for canonical LR, IELR, and LALR without
7179sacrificing @code{%nonassoc}, default reductions, or state merging. You can
7180enable LAC with the @code{%define parse.lac} directive.
7181
7182@deffn {Directive} {%define parse.lac @var{VALUE}}
7183Enable LAC to improve syntax error handling.
7184@itemize
7185@item @code{none} (default)
7186@item @code{full}
7187@end itemize
7188(This feature is experimental. More user feedback will help to stabilize
7189it. Moreover, it is currently only available for deterministic parsers in
7190C.)
7191@end deffn
7192
7193Conceptually, the LAC mechanism is straight-forward. Whenever the parser
7194fetches a new token from the scanner so that it can determine the next
7195parser action, it immediately suspends normal parsing and performs an
7196exploratory parse using a temporary copy of the normal parser state stack.
7197During this exploratory parse, the parser does not perform user semantic
7198actions. If the exploratory parse reaches a shift action, normal parsing
7199then resumes on the normal parser stacks. If the exploratory parse reaches
7200an error instead, the parser reports a syntax error. If verbose syntax
7201error messages are enabled, the parser must then discover the list of
7202expected tokens, so it performs a separate exploratory parse for each token
7203in the grammar.
7204
7205There is one subtlety about the use of LAC. That is, when in a consistent
7206parser state with a default reduction, the parser will not attempt to fetch
7207a token from the scanner because no lookahead is needed to determine the
7208next parser action. Thus, whether default reductions are enabled in
7209consistent states (@pxref{Default Reductions}) affects how soon the parser
7210detects a syntax error: immediately when it @emph{reaches} an erroneous
7211token or when it eventually @emph{needs} that token as a lookahead to
7212determine the next parser action. The latter behavior is probably more
7213intuitive, so Bison currently provides no way to achieve the former behavior
7214while default reductions are enabled in consistent states.
7215
7216Thus, when LAC is in use, for some fixed decision of whether to enable
7217default reductions in consistent states, canonical LR and IELR behave almost
7218exactly the same for both syntactically acceptable and syntactically
7219unacceptable input. While LALR still does not support the full
7220language-recognition power of canonical LR and IELR, LAC at least enables
7221LALR's syntax error handling to correctly reflect LALR's
7222language-recognition power.
7223
7224There are a few caveats to consider when using LAC:
7225
7226@itemize
7227@item Infinite parsing loops.
7228
7229IELR plus LAC does have one shortcoming relative to canonical LR. Some
7230parsers generated by Bison can loop infinitely. LAC does not fix infinite
7231parsing loops that occur between encountering a syntax error and detecting
7232it, but enabling canonical LR or disabling default reductions sometimes
7233does.
7234
7235@item Verbose error message limitations.
7236
7237Because of internationalization considerations, Bison-generated parsers
7238limit the size of the expected token list they are willing to report in a
7239verbose syntax error message. If the number of expected tokens exceeds that
7240limit, the list is simply dropped from the message. Enabling LAC can
7241increase the size of the list and thus cause the parser to drop it. Of
7242course, dropping the list is better than reporting an incorrect list.
7243
7244@item Performance.
7245
7246Because LAC requires many parse actions to be performed twice, it can have a
7247performance penalty. However, not all parse actions must be performed
7248twice. Specifically, during a series of default reductions in consistent
7249states and shift actions, the parser never has to initiate an exploratory
7250parse. Moreover, the most time-consuming tasks in a parse are often the
7251file I/O, the lexical analysis performed by the scanner, and the user's
7252semantic actions, but none of these are performed during the exploratory
7253parse. Finally, the base of the temporary stack used during an exploratory
7254parse is a pointer into the normal parser state stack so that the stack is
7255never physically copied. In our experience, the performance penalty of LAC
7256has proven insignificant for practical grammars.
7257@end itemize
7258
56706c61
JD
7259While the LAC algorithm shares techniques that have been recognized in the
7260parser community for years, for the publication that introduces LAC,
7261@pxref{Bibliography,,Denny 2010 May}.
121c4982 7262
6f04ee6c
JD
7263@node Unreachable States
7264@subsection Unreachable States
7265@findex %define lr.keep-unreachable-states
7266@cindex unreachable states
7267
7268If there exists no sequence of transitions from the parser's start state to
7269some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
7270state}. A state can become unreachable during conflict resolution if Bison
7271disables a shift action leading to it from a predecessor state.
7272
7273By default, Bison removes unreachable states from the parser after conflict
7274resolution because they are useless in the generated parser. However,
7275keeping unreachable states is sometimes useful when trying to understand the
7276relationship between the parser and the grammar.
7277
7278@deffn {Directive} {%define lr.keep-unreachable-states @var{VALUE}}
7279Request that Bison allow unreachable states to remain in the parser tables.
7280@var{VALUE} must be a Boolean. The default is @code{false}.
7281@end deffn
7282
7283There are a few caveats to consider:
7284
7285@itemize @bullet
7286@item Missing or extraneous warnings.
7287
7288Unreachable states may contain conflicts and may use rules not used in any
7289other state. Thus, keeping unreachable states may induce warnings that are
7290irrelevant to your parser's behavior, and it may eliminate warnings that are
7291relevant. Of course, the change in warnings may actually be relevant to a
7292parser table analysis that wants to keep unreachable states, so this
7293behavior will likely remain in future Bison releases.
7294
7295@item Other useless states.
7296
7297While Bison is able to remove unreachable states, it is not guaranteed to
7298remove other kinds of useless states. Specifically, when Bison disables
7299reduce actions during conflict resolution, some goto actions may become
7300useless, and thus some additional states may become useless. If Bison were
7301to compute which goto actions were useless and then disable those actions,
7302it could identify such states as unreachable and then remove those states.
7303However, Bison does not compute which goto actions are useless.
7304@end itemize
7305
fae437e8 7306@node Generalized LR Parsing
35430378
JD
7307@section Generalized LR (GLR) Parsing
7308@cindex GLR parsing
7309@cindex generalized LR (GLR) parsing
676385e2 7310@cindex ambiguous grammars
9d9b8b70 7311@cindex nondeterministic parsing
676385e2 7312
fae437e8
AD
7313Bison produces @emph{deterministic} parsers that choose uniquely
7314when to reduce and which reduction to apply
742e4900 7315based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7316As a result, normal Bison handles a proper subset of the family of
7317context-free languages.
fae437e8 7318Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7319sequence of reductions cannot have deterministic parsers in this sense.
7320The same is true of languages that require more than one symbol of
742e4900 7321lookahead, since the parser lacks the information necessary to make a
676385e2 7322decision at the point it must be made in a shift-reduce parser.
5da0355a 7323Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
34a6c2d1 7324there are languages where Bison's default choice of how to
676385e2
PH
7325summarize the input seen so far loses necessary information.
7326
7327When you use the @samp{%glr-parser} declaration in your grammar file,
7328Bison generates a parser that uses a different algorithm, called
35430378 7329Generalized LR (or GLR). A Bison GLR
c827f760 7330parser uses the same basic
676385e2
PH
7331algorithm for parsing as an ordinary Bison parser, but behaves
7332differently in cases where there is a shift-reduce conflict that has not
fae437e8 7333been resolved by precedence rules (@pxref{Precedence}) or a
35430378 7334reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7335situation, it
fae437e8 7336effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7337shift or reduction. These parsers then proceed as usual, consuming
7338tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7339and split further, with the result that instead of a sequence of states,
35430378 7340a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7341
7342In effect, each stack represents a guess as to what the proper parse
7343is. Additional input may indicate that a guess was wrong, in which case
7344the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7345actions generated in each stack are saved, rather than being executed
676385e2 7346immediately. When a stack disappears, its saved semantic actions never
fae437e8 7347get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7348their sets of semantic actions are both saved with the state that
7349results from the reduction. We say that two stacks are equivalent
fae437e8 7350when they both represent the same sequence of states,
676385e2
PH
7351and each pair of corresponding states represents a
7352grammar symbol that produces the same segment of the input token
7353stream.
7354
7355Whenever the parser makes a transition from having multiple
34a6c2d1 7356states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7357algorithm, after resolving and executing the saved-up actions.
7358At this transition, some of the states on the stack will have semantic
7359values that are sets (actually multisets) of possible actions. The
7360parser tries to pick one of the actions by first finding one whose rule
7361has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7362declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7363precedence, but there the same merging function is declared for both
fae437e8 7364rules by the @samp{%merge} declaration,
676385e2
PH
7365Bison resolves and evaluates both and then calls the merge function on
7366the result. Otherwise, it reports an ambiguity.
7367
35430378
JD
7368It is possible to use a data structure for the GLR parsing tree that
7369permits the processing of any LR(1) grammar in linear time (in the
c827f760 7370size of the input), any unambiguous (not necessarily
35430378 7371LR(1)) grammar in
fae437e8 7372quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7373context-free grammar in cubic worst-case time. However, Bison currently
7374uses a simpler data structure that requires time proportional to the
7375length of the input times the maximum number of stacks required for any
9d9b8b70 7376prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7377grammars can require exponential time and space to process. Such badly
7378behaving examples, however, are not generally of practical interest.
9d9b8b70 7379Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7380doubt'' only for a few tokens at a time. Therefore, the current data
35430378 7381structure should generally be adequate. On LR(1) portions of a
34a6c2d1 7382grammar, in particular, it is only slightly slower than with the
35430378 7383deterministic LR(1) Bison parser.
676385e2 7384
71caec06
JD
7385For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
73862000}.
f6481e2f 7387
1a059451
PE
7388@node Memory Management
7389@section Memory Management, and How to Avoid Memory Exhaustion
7390@cindex memory exhaustion
7391@cindex memory management
bfa74976
RS
7392@cindex stack overflow
7393@cindex parser stack overflow
7394@cindex overflow of parser stack
7395
1a059451 7396The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7397not reduced. When this happens, the parser function @code{yyparse}
1a059451 7398calls @code{yyerror} and then returns 2.
bfa74976 7399
c827f760 7400Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7401usually results from using a right recursion instead of a left
7402recursion, @xref{Recursion, ,Recursive Rules}.
7403
bfa74976
RS
7404@vindex YYMAXDEPTH
7405By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7406parser stack can become before memory is exhausted. Define the
bfa74976
RS
7407macro with a value that is an integer. This value is the maximum number
7408of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7409
7410The stack space allowed is not necessarily allocated. If you specify a
1a059451 7411large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7412stack at first, and then makes it bigger by stages as needed. This
7413increasing allocation happens automatically and silently. Therefore,
7414you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7415space for ordinary inputs that do not need much stack.
7416
d7e14fc0
PE
7417However, do not allow @code{YYMAXDEPTH} to be a value so large that
7418arithmetic overflow could occur when calculating the size of the stack
7419space. Also, do not allow @code{YYMAXDEPTH} to be less than
7420@code{YYINITDEPTH}.
7421
bfa74976
RS
7422@cindex default stack limit
7423The default value of @code{YYMAXDEPTH}, if you do not define it, is
742410000.
7425
7426@vindex YYINITDEPTH
7427You can control how much stack is allocated initially by defining the
34a6c2d1
JD
7428macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7429parser in C, this value must be a compile-time constant
d7e14fc0
PE
7430unless you are assuming C99 or some other target language or compiler
7431that allows variable-length arrays. The default is 200.
7432
1a059451 7433Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7434
d1a1114f 7435@c FIXME: C++ output.
c781580d 7436Because of semantic differences between C and C++, the deterministic
34a6c2d1 7437parsers in C produced by Bison cannot grow when compiled
1a059451
PE
7438by C++ compilers. In this precise case (compiling a C parser as C++) you are
7439suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
7440this deficiency in a future release.
d1a1114f 7441
342b8b6e 7442@node Error Recovery
bfa74976
RS
7443@chapter Error Recovery
7444@cindex error recovery
7445@cindex recovery from errors
7446
6e649e65 7447It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7448error. For example, a compiler should recover sufficiently to parse the
7449rest of the input file and check it for errors; a calculator should accept
7450another expression.
7451
7452In a simple interactive command parser where each input is one line, it may
7453be sufficient to allow @code{yyparse} to return 1 on error and have the
7454caller ignore the rest of the input line when that happens (and then call
7455@code{yyparse} again). But this is inadequate for a compiler, because it
7456forgets all the syntactic context leading up to the error. A syntax error
7457deep within a function in the compiler input should not cause the compiler
7458to treat the following line like the beginning of a source file.
7459
7460@findex error
7461You can define how to recover from a syntax error by writing rules to
7462recognize the special token @code{error}. This is a terminal symbol that
7463is always defined (you need not declare it) and reserved for error
7464handling. The Bison parser generates an @code{error} token whenever a
7465syntax error happens; if you have provided a rule to recognize this token
13863333 7466in the current context, the parse can continue.
bfa74976
RS
7467
7468For example:
7469
7470@example
7471stmnts: /* empty string */
7472 | stmnts '\n'
7473 | stmnts exp '\n'
7474 | stmnts error '\n'
7475@end example
7476
7477The fourth rule in this example says that an error followed by a newline
7478makes a valid addition to any @code{stmnts}.
7479
7480What happens if a syntax error occurs in the middle of an @code{exp}? The
7481error recovery rule, interpreted strictly, applies to the precise sequence
7482of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7483the middle of an @code{exp}, there will probably be some additional tokens
7484and subexpressions on the stack after the last @code{stmnts}, and there
7485will be tokens to read before the next newline. So the rule is not
7486applicable in the ordinary way.
7487
7488But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7489the semantic context and part of the input. First it discards states
7490and objects from the stack until it gets back to a state in which the
bfa74976 7491@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7492already parsed are discarded, back to the last complete @code{stmnts}.)
7493At this point the @code{error} token can be shifted. Then, if the old
742e4900 7494lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7495tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7496this example, Bison reads and discards input until the next newline so
7497that the fourth rule can apply. Note that discarded symbols are
7498possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7499Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7500
7501The choice of error rules in the grammar is a choice of strategies for
7502error recovery. A simple and useful strategy is simply to skip the rest of
7503the current input line or current statement if an error is detected:
7504
7505@example
72d2299c 7506stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7507@end example
7508
7509It is also useful to recover to the matching close-delimiter of an
7510opening-delimiter that has already been parsed. Otherwise the
7511close-delimiter will probably appear to be unmatched, and generate another,
7512spurious error message:
7513
7514@example
7515primary: '(' expr ')'
7516 | '(' error ')'
7517 @dots{}
7518 ;
7519@end example
7520
7521Error recovery strategies are necessarily guesses. When they guess wrong,
7522one syntax error often leads to another. In the above example, the error
7523recovery rule guesses that an error is due to bad input within one
7524@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7525middle of a valid @code{stmnt}. After the error recovery rule recovers
7526from the first error, another syntax error will be found straightaway,
7527since the text following the spurious semicolon is also an invalid
7528@code{stmnt}.
7529
7530To prevent an outpouring of error messages, the parser will output no error
7531message for another syntax error that happens shortly after the first; only
7532after three consecutive input tokens have been successfully shifted will
7533error messages resume.
7534
7535Note that rules which accept the @code{error} token may have actions, just
7536as any other rules can.
7537
7538@findex yyerrok
7539You can make error messages resume immediately by using the macro
7540@code{yyerrok} in an action. If you do this in the error rule's action, no
7541error messages will be suppressed. This macro requires no arguments;
7542@samp{yyerrok;} is a valid C statement.
7543
7544@findex yyclearin
742e4900 7545The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7546this is unacceptable, then the macro @code{yyclearin} may be used to clear
7547this token. Write the statement @samp{yyclearin;} in the error rule's
7548action.
32c29292 7549@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7550
6e649e65 7551For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7552called that advances the input stream to some point where parsing should
7553once again commence. The next symbol returned by the lexical scanner is
742e4900 7554probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7555with @samp{yyclearin;}.
7556
7557@vindex YYRECOVERING
02103984
PE
7558The expression @code{YYRECOVERING ()} yields 1 when the parser
7559is recovering from a syntax error, and 0 otherwise.
7560Syntax error diagnostics are suppressed while recovering from a syntax
7561error.
bfa74976 7562
342b8b6e 7563@node Context Dependency
bfa74976
RS
7564@chapter Handling Context Dependencies
7565
7566The Bison paradigm is to parse tokens first, then group them into larger
7567syntactic units. In many languages, the meaning of a token is affected by
7568its context. Although this violates the Bison paradigm, certain techniques
7569(known as @dfn{kludges}) may enable you to write Bison parsers for such
7570languages.
7571
7572@menu
7573* Semantic Tokens:: Token parsing can depend on the semantic context.
7574* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7575* Tie-in Recovery:: Lexical tie-ins have implications for how
7576 error recovery rules must be written.
7577@end menu
7578
7579(Actually, ``kludge'' means any technique that gets its job done but is
7580neither clean nor robust.)
7581
342b8b6e 7582@node Semantic Tokens
bfa74976
RS
7583@section Semantic Info in Token Types
7584
7585The C language has a context dependency: the way an identifier is used
7586depends on what its current meaning is. For example, consider this:
7587
7588@example
7589foo (x);
7590@end example
7591
7592This looks like a function call statement, but if @code{foo} is a typedef
7593name, then this is actually a declaration of @code{x}. How can a Bison
7594parser for C decide how to parse this input?
7595
35430378 7596The method used in GNU C is to have two different token types,
bfa74976
RS
7597@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7598identifier, it looks up the current declaration of the identifier in order
7599to decide which token type to return: @code{TYPENAME} if the identifier is
7600declared as a typedef, @code{IDENTIFIER} otherwise.
7601
7602The grammar rules can then express the context dependency by the choice of
7603token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7604but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7605@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7606is @emph{not} significant, such as in declarations that can shadow a
7607typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7608accepted---there is one rule for each of the two token types.
7609
7610This technique is simple to use if the decision of which kinds of
7611identifiers to allow is made at a place close to where the identifier is
7612parsed. But in C this is not always so: C allows a declaration to
7613redeclare a typedef name provided an explicit type has been specified
7614earlier:
7615
7616@example
3a4f411f
PE
7617typedef int foo, bar;
7618int baz (void)
7619@{
7620 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7621 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7622 return foo (bar);
7623@}
bfa74976
RS
7624@end example
7625
7626Unfortunately, the name being declared is separated from the declaration
7627construct itself by a complicated syntactic structure---the ``declarator''.
7628
9ecbd125 7629As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7630all the nonterminal names changed: once for parsing a declaration in
7631which a typedef name can be redefined, and once for parsing a
7632declaration in which that can't be done. Here is a part of the
7633duplication, with actions omitted for brevity:
bfa74976
RS
7634
7635@example
7636initdcl:
7637 declarator maybeasm '='
7638 init
7639 | declarator maybeasm
7640 ;
7641
7642notype_initdcl:
7643 notype_declarator maybeasm '='
7644 init
7645 | notype_declarator maybeasm
7646 ;
7647@end example
7648
7649@noindent
7650Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7651cannot. The distinction between @code{declarator} and
7652@code{notype_declarator} is the same sort of thing.
7653
7654There is some similarity between this technique and a lexical tie-in
7655(described next), in that information which alters the lexical analysis is
7656changed during parsing by other parts of the program. The difference is
7657here the information is global, and is used for other purposes in the
7658program. A true lexical tie-in has a special-purpose flag controlled by
7659the syntactic context.
7660
342b8b6e 7661@node Lexical Tie-ins
bfa74976
RS
7662@section Lexical Tie-ins
7663@cindex lexical tie-in
7664
7665One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7666which is set by Bison actions, whose purpose is to alter the way tokens are
7667parsed.
7668
7669For example, suppose we have a language vaguely like C, but with a special
7670construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7671an expression in parentheses in which all integers are hexadecimal. In
7672particular, the token @samp{a1b} must be treated as an integer rather than
7673as an identifier if it appears in that context. Here is how you can do it:
7674
7675@example
7676@group
7677%@{
38a92d50
PE
7678 int hexflag;
7679 int yylex (void);
7680 void yyerror (char const *);
bfa74976
RS
7681%@}
7682%%
7683@dots{}
7684@end group
7685@group
7686expr: IDENTIFIER
7687 | constant
7688 | HEX '('
7689 @{ hexflag = 1; @}
7690 expr ')'
7691 @{ hexflag = 0;
7692 $$ = $4; @}
7693 | expr '+' expr
7694 @{ $$ = make_sum ($1, $3); @}
7695 @dots{}
7696 ;
7697@end group
7698
7699@group
7700constant:
7701 INTEGER
7702 | STRING
7703 ;
7704@end group
7705@end example
7706
7707@noindent
7708Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7709it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7710with letters are parsed as integers if possible.
7711
9913d6e4
JD
7712The declaration of @code{hexflag} shown in the prologue of the grammar
7713file is needed to make it accessible to the actions (@pxref{Prologue,
7714,The Prologue}). You must also write the code in @code{yylex} to obey
7715the flag.
bfa74976 7716
342b8b6e 7717@node Tie-in Recovery
bfa74976
RS
7718@section Lexical Tie-ins and Error Recovery
7719
7720Lexical tie-ins make strict demands on any error recovery rules you have.
7721@xref{Error Recovery}.
7722
7723The reason for this is that the purpose of an error recovery rule is to
7724abort the parsing of one construct and resume in some larger construct.
7725For example, in C-like languages, a typical error recovery rule is to skip
7726tokens until the next semicolon, and then start a new statement, like this:
7727
7728@example
7729stmt: expr ';'
7730 | IF '(' expr ')' stmt @{ @dots{} @}
7731 @dots{}
7732 error ';'
7733 @{ hexflag = 0; @}
7734 ;
7735@end example
7736
7737If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7738construct, this error rule will apply, and then the action for the
7739completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7740remain set for the entire rest of the input, or until the next @code{hex}
7741keyword, causing identifiers to be misinterpreted as integers.
7742
7743To avoid this problem the error recovery rule itself clears @code{hexflag}.
7744
7745There may also be an error recovery rule that works within expressions.
7746For example, there could be a rule which applies within parentheses
7747and skips to the close-parenthesis:
7748
7749@example
7750@group
7751expr: @dots{}
7752 | '(' expr ')'
7753 @{ $$ = $2; @}
7754 | '(' error ')'
7755 @dots{}
7756@end group
7757@end example
7758
7759If this rule acts within the @code{hex} construct, it is not going to abort
7760that construct (since it applies to an inner level of parentheses within
7761the construct). Therefore, it should not clear the flag: the rest of
7762the @code{hex} construct should be parsed with the flag still in effect.
7763
7764What if there is an error recovery rule which might abort out of the
7765@code{hex} construct or might not, depending on circumstances? There is no
7766way you can write the action to determine whether a @code{hex} construct is
7767being aborted or not. So if you are using a lexical tie-in, you had better
7768make sure your error recovery rules are not of this kind. Each rule must
7769be such that you can be sure that it always will, or always won't, have to
7770clear the flag.
7771
ec3bc396
AD
7772@c ================================================== Debugging Your Parser
7773
342b8b6e 7774@node Debugging
bfa74976 7775@chapter Debugging Your Parser
ec3bc396
AD
7776
7777Developing a parser can be a challenge, especially if you don't
7778understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7779Algorithm}). Even so, sometimes a detailed description of the automaton
7780can help (@pxref{Understanding, , Understanding Your Parser}), or
7781tracing the execution of the parser can give some insight on why it
7782behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7783
7784@menu
7785* Understanding:: Understanding the structure of your parser.
7786* Tracing:: Tracing the execution of your parser.
7787@end menu
7788
7789@node Understanding
7790@section Understanding Your Parser
7791
7792As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7793Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7794frequent than one would hope), looking at this automaton is required to
7795tune or simply fix a parser. Bison provides two different
35fe0834 7796representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7797
7798The textual file is generated when the options @option{--report} or
7799@option{--verbose} are specified, see @xref{Invocation, , Invoking
7800Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
9913d6e4
JD
7801the parser implementation file name, and adding @samp{.output}
7802instead. Therefore, if the grammar file is @file{foo.y}, then the
7803parser implementation file is called @file{foo.tab.c} by default. As
7804a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
7805
7806The following grammar file, @file{calc.y}, will be used in the sequel:
7807
7808@example
7809%token NUM STR
7810%left '+' '-'
7811%left '*'
7812%%
7813exp: exp '+' exp
7814 | exp '-' exp
7815 | exp '*' exp
7816 | exp '/' exp
7817 | NUM
7818 ;
7819useless: STR;
7820%%
7821@end example
7822
88bce5a2
AD
7823@command{bison} reports:
7824
7825@example
379261b3
JD
7826calc.y: warning: 1 nonterminal useless in grammar
7827calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
7828calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7829calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7830calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7831@end example
7832
7833When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7834creates a file @file{calc.output} with contents detailed below. The
7835order of the output and the exact presentation might vary, but the
7836interpretation is the same.
ec3bc396
AD
7837
7838The first section includes details on conflicts that were solved thanks
7839to precedence and/or associativity:
7840
7841@example
7842Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7843Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7844Conflict in state 8 between rule 2 and token '*' resolved as shift.
7845@exdent @dots{}
7846@end example
7847
7848@noindent
7849The next section lists states that still have conflicts.
7850
7851@example
5a99098d
PE
7852State 8 conflicts: 1 shift/reduce
7853State 9 conflicts: 1 shift/reduce
7854State 10 conflicts: 1 shift/reduce
7855State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7856@end example
7857
7858@noindent
7859@cindex token, useless
7860@cindex useless token
7861@cindex nonterminal, useless
7862@cindex useless nonterminal
7863@cindex rule, useless
7864@cindex useless rule
7865The next section reports useless tokens, nonterminal and rules. Useless
7866nonterminals and rules are removed in order to produce a smaller parser,
7867but useless tokens are preserved, since they might be used by the
d80fb37a 7868scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7869below):
7870
7871@example
d80fb37a 7872Nonterminals useless in grammar:
ec3bc396
AD
7873 useless
7874
d80fb37a 7875Terminals unused in grammar:
ec3bc396
AD
7876 STR
7877
cff03fb2 7878Rules useless in grammar:
ec3bc396
AD
7879#6 useless: STR;
7880@end example
7881
7882@noindent
7883The next section reproduces the exact grammar that Bison used:
7884
7885@example
7886Grammar
7887
7888 Number, Line, Rule
88bce5a2 7889 0 5 $accept -> exp $end
ec3bc396
AD
7890 1 5 exp -> exp '+' exp
7891 2 6 exp -> exp '-' exp
7892 3 7 exp -> exp '*' exp
7893 4 8 exp -> exp '/' exp
7894 5 9 exp -> NUM
7895@end example
7896
7897@noindent
7898and reports the uses of the symbols:
7899
7900@example
7901Terminals, with rules where they appear
7902
88bce5a2 7903$end (0) 0
ec3bc396
AD
7904'*' (42) 3
7905'+' (43) 1
7906'-' (45) 2
7907'/' (47) 4
7908error (256)
7909NUM (258) 5
7910
7911Nonterminals, with rules where they appear
7912
88bce5a2 7913$accept (8)
ec3bc396
AD
7914 on left: 0
7915exp (9)
7916 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7917@end example
7918
7919@noindent
7920@cindex item
7921@cindex pointed rule
7922@cindex rule, pointed
7923Bison then proceeds onto the automaton itself, describing each state
7924with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7925item is a production rule together with a point (marked by @samp{.})
7926that the input cursor.
7927
7928@example
7929state 0
7930
88bce5a2 7931 $accept -> . exp $ (rule 0)
ec3bc396 7932
2a8d363a 7933 NUM shift, and go to state 1
ec3bc396 7934
2a8d363a 7935 exp go to state 2
ec3bc396
AD
7936@end example
7937
7938This reads as follows: ``state 0 corresponds to being at the very
7939beginning of the parsing, in the initial rule, right before the start
7940symbol (here, @code{exp}). When the parser returns to this state right
7941after having reduced a rule that produced an @code{exp}, the control
7942flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7943symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7944the parse stack, and the control flow jumps to state 1. Any other
742e4900 7945lookahead triggers a syntax error.''
ec3bc396
AD
7946
7947@cindex core, item set
7948@cindex item set core
7949@cindex kernel, item set
7950@cindex item set core
7951Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7952report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7953at the beginning of any rule deriving an @code{exp}. By default Bison
7954reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7955you want to see more detail you can invoke @command{bison} with
7956@option{--report=itemset} to list all the items, include those that can
7957be derived:
7958
7959@example
7960state 0
7961
88bce5a2 7962 $accept -> . exp $ (rule 0)
ec3bc396
AD
7963 exp -> . exp '+' exp (rule 1)
7964 exp -> . exp '-' exp (rule 2)
7965 exp -> . exp '*' exp (rule 3)
7966 exp -> . exp '/' exp (rule 4)
7967 exp -> . NUM (rule 5)
7968
7969 NUM shift, and go to state 1
7970
7971 exp go to state 2
7972@end example
7973
7974@noindent
7975In the state 1...
7976
7977@example
7978state 1
7979
7980 exp -> NUM . (rule 5)
7981
2a8d363a 7982 $default reduce using rule 5 (exp)
ec3bc396
AD
7983@end example
7984
7985@noindent
742e4900 7986the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7987(@samp{$default}), the parser will reduce it. If it was coming from
7988state 0, then, after this reduction it will return to state 0, and will
7989jump to state 2 (@samp{exp: go to state 2}).
7990
7991@example
7992state 2
7993
88bce5a2 7994 $accept -> exp . $ (rule 0)
ec3bc396
AD
7995 exp -> exp . '+' exp (rule 1)
7996 exp -> exp . '-' exp (rule 2)
7997 exp -> exp . '*' exp (rule 3)
7998 exp -> exp . '/' exp (rule 4)
7999
2a8d363a
AD
8000 $ shift, and go to state 3
8001 '+' shift, and go to state 4
8002 '-' shift, and go to state 5
8003 '*' shift, and go to state 6
8004 '/' shift, and go to state 7
ec3bc396
AD
8005@end example
8006
8007@noindent
8008In state 2, the automaton can only shift a symbol. For instance,
742e4900 8009because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
8010@samp{+}, it will be shifted on the parse stack, and the automaton
8011control will jump to state 4, corresponding to the item @samp{exp -> exp
8012'+' . exp}. Since there is no default action, any other token than
6e649e65 8013those listed above will trigger a syntax error.
ec3bc396 8014
34a6c2d1 8015@cindex accepting state
ec3bc396
AD
8016The state 3 is named the @dfn{final state}, or the @dfn{accepting
8017state}:
8018
8019@example
8020state 3
8021
88bce5a2 8022 $accept -> exp $ . (rule 0)
ec3bc396 8023
2a8d363a 8024 $default accept
ec3bc396
AD
8025@end example
8026
8027@noindent
8028the initial rule is completed (the start symbol and the end
8029of input were read), the parsing exits successfully.
8030
8031The interpretation of states 4 to 7 is straightforward, and is left to
8032the reader.
8033
8034@example
8035state 4
8036
8037 exp -> exp '+' . exp (rule 1)
8038
2a8d363a 8039 NUM shift, and go to state 1
ec3bc396 8040
2a8d363a 8041 exp go to state 8
ec3bc396
AD
8042
8043state 5
8044
8045 exp -> exp '-' . exp (rule 2)
8046
2a8d363a 8047 NUM shift, and go to state 1
ec3bc396 8048
2a8d363a 8049 exp go to state 9
ec3bc396
AD
8050
8051state 6
8052
8053 exp -> exp '*' . exp (rule 3)
8054
2a8d363a 8055 NUM shift, and go to state 1
ec3bc396 8056
2a8d363a 8057 exp go to state 10
ec3bc396
AD
8058
8059state 7
8060
8061 exp -> exp '/' . exp (rule 4)
8062
2a8d363a 8063 NUM shift, and go to state 1
ec3bc396 8064
2a8d363a 8065 exp go to state 11
ec3bc396
AD
8066@end example
8067
5a99098d
PE
8068As was announced in beginning of the report, @samp{State 8 conflicts:
80691 shift/reduce}:
ec3bc396
AD
8070
8071@example
8072state 8
8073
8074 exp -> exp . '+' exp (rule 1)
8075 exp -> exp '+' exp . (rule 1)
8076 exp -> exp . '-' exp (rule 2)
8077 exp -> exp . '*' exp (rule 3)
8078 exp -> exp . '/' exp (rule 4)
8079
2a8d363a
AD
8080 '*' shift, and go to state 6
8081 '/' shift, and go to state 7
ec3bc396 8082
2a8d363a
AD
8083 '/' [reduce using rule 1 (exp)]
8084 $default reduce using rule 1 (exp)
ec3bc396
AD
8085@end example
8086
742e4900 8087Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8088either shifting (and going to state 7), or reducing rule 1. The
8089conflict means that either the grammar is ambiguous, or the parser lacks
8090information to make the right decision. Indeed the grammar is
8091ambiguous, as, since we did not specify the precedence of @samp{/}, the
8092sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8093NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8094NUM}, which corresponds to reducing rule 1.
8095
34a6c2d1 8096Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
8097arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
8098Shift/Reduce Conflicts}. Discarded actions are reported in between
8099square brackets.
8100
8101Note that all the previous states had a single possible action: either
8102shifting the next token and going to the corresponding state, or
8103reducing a single rule. In the other cases, i.e., when shifting
8104@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8105possible, the lookahead is required to select the action. State 8 is
8106one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8107is shifting, otherwise the action is reducing rule 1. In other words,
8108the first two items, corresponding to rule 1, are not eligible when the
742e4900 8109lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8110precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8111with some set of possible lookahead tokens. When run with
8112@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8113
8114@example
8115state 8
8116
88c78747 8117 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
8118 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
8119 exp -> exp . '-' exp (rule 2)
8120 exp -> exp . '*' exp (rule 3)
8121 exp -> exp . '/' exp (rule 4)
8122
8123 '*' shift, and go to state 6
8124 '/' shift, and go to state 7
8125
8126 '/' [reduce using rule 1 (exp)]
8127 $default reduce using rule 1 (exp)
8128@end example
8129
8130The remaining states are similar:
8131
8132@example
8133state 9
8134
8135 exp -> exp . '+' exp (rule 1)
8136 exp -> exp . '-' exp (rule 2)
8137 exp -> exp '-' exp . (rule 2)
8138 exp -> exp . '*' exp (rule 3)
8139 exp -> exp . '/' exp (rule 4)
8140
2a8d363a
AD
8141 '*' shift, and go to state 6
8142 '/' shift, and go to state 7
ec3bc396 8143
2a8d363a
AD
8144 '/' [reduce using rule 2 (exp)]
8145 $default reduce using rule 2 (exp)
ec3bc396
AD
8146
8147state 10
8148
8149 exp -> exp . '+' exp (rule 1)
8150 exp -> exp . '-' exp (rule 2)
8151 exp -> exp . '*' exp (rule 3)
8152 exp -> exp '*' exp . (rule 3)
8153 exp -> exp . '/' exp (rule 4)
8154
2a8d363a 8155 '/' shift, and go to state 7
ec3bc396 8156
2a8d363a
AD
8157 '/' [reduce using rule 3 (exp)]
8158 $default reduce using rule 3 (exp)
ec3bc396
AD
8159
8160state 11
8161
8162 exp -> exp . '+' exp (rule 1)
8163 exp -> exp . '-' exp (rule 2)
8164 exp -> exp . '*' exp (rule 3)
8165 exp -> exp . '/' exp (rule 4)
8166 exp -> exp '/' exp . (rule 4)
8167
2a8d363a
AD
8168 '+' shift, and go to state 4
8169 '-' shift, and go to state 5
8170 '*' shift, and go to state 6
8171 '/' shift, and go to state 7
ec3bc396 8172
2a8d363a
AD
8173 '+' [reduce using rule 4 (exp)]
8174 '-' [reduce using rule 4 (exp)]
8175 '*' [reduce using rule 4 (exp)]
8176 '/' [reduce using rule 4 (exp)]
8177 $default reduce using rule 4 (exp)
ec3bc396
AD
8178@end example
8179
8180@noindent
fa7e68c3
PE
8181Observe that state 11 contains conflicts not only due to the lack of
8182precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8183@samp{*}, but also because the
ec3bc396
AD
8184associativity of @samp{/} is not specified.
8185
8186
8187@node Tracing
8188@section Tracing Your Parser
bfa74976
RS
8189@findex yydebug
8190@cindex debugging
8191@cindex tracing the parser
8192
8193If a Bison grammar compiles properly but doesn't do what you want when it
8194runs, the @code{yydebug} parser-trace feature can help you figure out why.
8195
3ded9a63
AD
8196There are several means to enable compilation of trace facilities:
8197
8198@table @asis
8199@item the macro @code{YYDEBUG}
8200@findex YYDEBUG
8201Define the macro @code{YYDEBUG} to a nonzero value when you compile the
35430378 8202parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8203@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8204YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8205Prologue}).
8206
8207@item the option @option{-t}, @option{--debug}
8208Use the @samp{-t} option when you run Bison (@pxref{Invocation,
35430378 8209,Invoking Bison}). This is POSIX compliant too.
3ded9a63
AD
8210
8211@item the directive @samp{%debug}
8212@findex %debug
8213Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
8214Declaration Summary}). This is a Bison extension, which will prove
8215useful when Bison will output parsers for languages that don't use a
35430378 8216preprocessor. Unless POSIX and Yacc portability matter to
c827f760 8217you, this is
3ded9a63
AD
8218the preferred solution.
8219@end table
8220
8221We suggest that you always enable the debug option so that debugging is
8222always possible.
bfa74976 8223
02a81e05 8224The trace facility outputs messages with macro calls of the form
e2742e46 8225@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8226@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8227arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8228define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8229and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8230
8231Once you have compiled the program with trace facilities, the way to
8232request a trace is to store a nonzero value in the variable @code{yydebug}.
8233You can do this by making the C code do it (in @code{main}, perhaps), or
8234you can alter the value with a C debugger.
8235
8236Each step taken by the parser when @code{yydebug} is nonzero produces a
8237line or two of trace information, written on @code{stderr}. The trace
8238messages tell you these things:
8239
8240@itemize @bullet
8241@item
8242Each time the parser calls @code{yylex}, what kind of token was read.
8243
8244@item
8245Each time a token is shifted, the depth and complete contents of the
8246state stack (@pxref{Parser States}).
8247
8248@item
8249Each time a rule is reduced, which rule it is, and the complete contents
8250of the state stack afterward.
8251@end itemize
8252
8253To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8254produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8255Bison}). This file shows the meaning of each state in terms of
8256positions in various rules, and also what each state will do with each
8257possible input token. As you read the successive trace messages, you
8258can see that the parser is functioning according to its specification in
8259the listing file. Eventually you will arrive at the place where
8260something undesirable happens, and you will see which parts of the
8261grammar are to blame.
bfa74976 8262
9913d6e4
JD
8263The parser implementation file is a C program and you can use C
8264debuggers on it, but it's not easy to interpret what it is doing. The
8265parser function is a finite-state machine interpreter, and aside from
8266the actions it executes the same code over and over. Only the values
8267of variables show where in the grammar it is working.
bfa74976
RS
8268
8269@findex YYPRINT
8270The debugging information normally gives the token type of each token
8271read, but not its semantic value. You can optionally define a macro
8272named @code{YYPRINT} to provide a way to print the value. If you define
8273@code{YYPRINT}, it should take three arguments. The parser will pass a
8274standard I/O stream, the numeric code for the token type, and the token
8275value (from @code{yylval}).
8276
8277Here is an example of @code{YYPRINT} suitable for the multi-function
f56274a8 8278calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
8279
8280@smallexample
38a92d50
PE
8281%@{
8282 static void print_token_value (FILE *, int, YYSTYPE);
8283 #define YYPRINT(file, type, value) print_token_value (file, type, value)
8284%@}
8285
8286@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8287
8288static void
831d3c99 8289print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8290@{
8291 if (type == VAR)
d3c4e709 8292 fprintf (file, "%s", value.tptr->name);
bfa74976 8293 else if (type == NUM)
d3c4e709 8294 fprintf (file, "%d", value.val);
bfa74976
RS
8295@}
8296@end smallexample
8297
ec3bc396
AD
8298@c ================================================= Invoking Bison
8299
342b8b6e 8300@node Invocation
bfa74976
RS
8301@chapter Invoking Bison
8302@cindex invoking Bison
8303@cindex Bison invocation
8304@cindex options for invoking Bison
8305
8306The usual way to invoke Bison is as follows:
8307
8308@example
8309bison @var{infile}
8310@end example
8311
8312Here @var{infile} is the grammar file name, which usually ends in
9913d6e4
JD
8313@samp{.y}. The parser implementation file's name is made by replacing
8314the @samp{.y} with @samp{.tab.c} and removing any leading directory.
8315Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
8316the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
8317also possible, in case you are writing C++ code instead of C in your
8318grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
8319output files will take an extension like the given one as input
8320(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
8321feature takes effect with all options that manipulate file names like
234a3be3
AD
8322@samp{-o} or @samp{-d}.
8323
8324For example :
8325
8326@example
8327bison -d @var{infile.yxx}
8328@end example
84163231 8329@noindent
72d2299c 8330will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8331
8332@example
b56471a6 8333bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8334@end example
84163231 8335@noindent
234a3be3
AD
8336will produce @file{output.c++} and @file{outfile.h++}.
8337
35430378 8338For compatibility with POSIX, the standard Bison
397ec073
PE
8339distribution also contains a shell script called @command{yacc} that
8340invokes Bison with the @option{-y} option.
8341
bfa74976 8342@menu
13863333 8343* Bison Options:: All the options described in detail,
c827f760 8344 in alphabetical order by short options.
bfa74976 8345* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8346* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8347@end menu
8348
342b8b6e 8349@node Bison Options
bfa74976
RS
8350@section Bison Options
8351
8352Bison supports both traditional single-letter options and mnemonic long
8353option names. Long option names are indicated with @samp{--} instead of
8354@samp{-}. Abbreviations for option names are allowed as long as they
8355are unique. When a long option takes an argument, like
8356@samp{--file-prefix}, connect the option name and the argument with
8357@samp{=}.
8358
8359Here is a list of options that can be used with Bison, alphabetized by
8360short option. It is followed by a cross key alphabetized by long
8361option.
8362
89cab50d
AD
8363@c Please, keep this ordered as in `bison --help'.
8364@noindent
8365Operations modes:
8366@table @option
8367@item -h
8368@itemx --help
8369Print a summary of the command-line options to Bison and exit.
bfa74976 8370
89cab50d
AD
8371@item -V
8372@itemx --version
8373Print the version number of Bison and exit.
bfa74976 8374
f7ab6a50
PE
8375@item --print-localedir
8376Print the name of the directory containing locale-dependent data.
8377
a0de5091
JD
8378@item --print-datadir
8379Print the name of the directory containing skeletons and XSLT.
8380
89cab50d
AD
8381@item -y
8382@itemx --yacc
9913d6e4
JD
8383Act more like the traditional Yacc command. This can cause different
8384diagnostics to be generated, and may change behavior in other minor
8385ways. Most importantly, imitate Yacc's output file name conventions,
8386so that the parser implementation file is called @file{y.tab.c}, and
8387the other outputs are called @file{y.output} and @file{y.tab.h}.
8388Also, if generating a deterministic parser in C, generate
8389@code{#define} statements in addition to an @code{enum} to associate
8390token numbers with token names. Thus, the following shell script can
8391substitute for Yacc, and the Bison distribution contains such a script
8392for compatibility with POSIX:
bfa74976 8393
89cab50d 8394@example
397ec073 8395#! /bin/sh
26e06a21 8396bison -y "$@@"
89cab50d 8397@end example
54662697
PE
8398
8399The @option{-y}/@option{--yacc} option is intended for use with
8400traditional Yacc grammars. If your grammar uses a Bison extension
8401like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8402this option is specified.
8403
ecd1b61c
JD
8404@item -W [@var{category}]
8405@itemx --warnings[=@var{category}]
118d4978
AD
8406Output warnings falling in @var{category}. @var{category} can be one
8407of:
8408@table @code
8409@item midrule-values
8e55b3aa
JD
8410Warn about mid-rule values that are set but not used within any of the actions
8411of the parent rule.
8412For example, warn about unused @code{$2} in:
118d4978
AD
8413
8414@example
8415exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8416@end example
8417
8e55b3aa
JD
8418Also warn about mid-rule values that are used but not set.
8419For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8420
8421@example
8422 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
8423@end example
8424
8425These warnings are not enabled by default since they sometimes prove to
8426be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8427@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 8428
118d4978 8429@item yacc
35430378 8430Incompatibilities with POSIX Yacc.
118d4978 8431
6f8bdce2
JD
8432@item conflicts-sr
8433@itemx conflicts-rr
8434S/R and R/R conflicts. These warnings are enabled by default. However, if
8435the @code{%expect} or @code{%expect-rr} directive is specified, an
8436unexpected number of conflicts is an error, and an expected number of
8437conflicts is not reported, so @option{-W} and @option{--warning} then have
8438no effect on the conflict report.
8439
8ffd7912
JD
8440@item other
8441All warnings not categorized above. These warnings are enabled by default.
8442
8443This category is provided merely for the sake of completeness. Future
8444releases of Bison may move warnings from this category to new, more specific
8445categories.
8446
118d4978 8447@item all
8e55b3aa 8448All the warnings.
118d4978 8449@item none
8e55b3aa 8450Turn off all the warnings.
118d4978 8451@item error
8e55b3aa 8452Treat warnings as errors.
118d4978
AD
8453@end table
8454
8455A category can be turned off by prefixing its name with @samp{no-}. For
cf22447c 8456instance, @option{-Wno-yacc} will hide the warnings about
35430378 8457POSIX Yacc incompatibilities.
89cab50d
AD
8458@end table
8459
8460@noindent
8461Tuning the parser:
8462
8463@table @option
8464@item -t
8465@itemx --debug
9913d6e4
JD
8466In the parser implementation file, define the macro @code{YYDEBUG} to
84671 if it is not already defined, so that the debugging facilities are
8468compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 8469
e14c6831
AD
8470@item -D @var{name}[=@var{value}]
8471@itemx --define=@var{name}[=@var{value}]
c33bc800 8472@itemx -F @var{name}[=@var{value}]
34d41938
JD
8473@itemx --force-define=@var{name}[=@var{value}]
8474Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
2f4518a1 8475(@pxref{%define Summary}) except that Bison processes multiple
34d41938
JD
8476definitions for the same @var{name} as follows:
8477
8478@itemize
8479@item
e3a33f7c
JD
8480Bison quietly ignores all command-line definitions for @var{name} except
8481the last.
34d41938 8482@item
e3a33f7c
JD
8483If that command-line definition is specified by a @code{-D} or
8484@code{--define}, Bison reports an error for any @code{%define}
8485definition for @var{name}.
34d41938 8486@item
e3a33f7c
JD
8487If that command-line definition is specified by a @code{-F} or
8488@code{--force-define} instead, Bison quietly ignores all @code{%define}
8489definitions for @var{name}.
8490@item
8491Otherwise, Bison reports an error if there are multiple @code{%define}
8492definitions for @var{name}.
34d41938
JD
8493@end itemize
8494
8495You should avoid using @code{-F} and @code{--force-define} in your
9913d6e4
JD
8496make files unless you are confident that it is safe to quietly ignore
8497any conflicting @code{%define} that may be added to the grammar file.
e14c6831 8498
0e021770
PE
8499@item -L @var{language}
8500@itemx --language=@var{language}
8501Specify the programming language for the generated parser, as if
8502@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8503Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8504@var{language} is case-insensitive.
0e021770 8505
ed4d67dc
JD
8506This option is experimental and its effect may be modified in future
8507releases.
8508
89cab50d 8509@item --locations
d8988b2f 8510Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8511
8512@item -p @var{prefix}
8513@itemx --name-prefix=@var{prefix}
02975b9a 8514Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8515@xref{Decl Summary}.
bfa74976
RS
8516
8517@item -l
8518@itemx --no-lines
9913d6e4
JD
8519Don't put any @code{#line} preprocessor commands in the parser
8520implementation file. Ordinarily Bison puts them in the parser
8521implementation file so that the C compiler and debuggers will
8522associate errors with your source file, the grammar file. This option
8523causes them to associate errors with the parser implementation file,
8524treating it as an independent source file in its own right.
bfa74976 8525
e6e704dc
JD
8526@item -S @var{file}
8527@itemx --skeleton=@var{file}
a7867f53 8528Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8529(@pxref{Decl Summary, , Bison Declaration Summary}).
8530
ed4d67dc
JD
8531@c You probably don't need this option unless you are developing Bison.
8532@c You should use @option{--language} if you want to specify the skeleton for a
8533@c different language, because it is clearer and because it will always
8534@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8535
a7867f53
JD
8536If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8537file in the Bison installation directory.
8538If it does, @var{file} is an absolute file name or a file name relative to the
8539current working directory.
8540This is similar to how most shells resolve commands.
8541
89cab50d
AD
8542@item -k
8543@itemx --token-table
d8988b2f 8544Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8545@end table
bfa74976 8546
89cab50d
AD
8547@noindent
8548Adjust the output:
bfa74976 8549
89cab50d 8550@table @option
8e55b3aa 8551@item --defines[=@var{file}]
d8988b2f 8552Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8553file containing macro definitions for the token type names defined in
4bfd5e4e 8554the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8555
8e55b3aa
JD
8556@item -d
8557This is the same as @code{--defines} except @code{-d} does not accept a
8558@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8559with other short options.
342b8b6e 8560
89cab50d
AD
8561@item -b @var{file-prefix}
8562@itemx --file-prefix=@var{prefix}
9c437126 8563Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8564for all Bison output file names. @xref{Decl Summary}.
bfa74976 8565
ec3bc396
AD
8566@item -r @var{things}
8567@itemx --report=@var{things}
8568Write an extra output file containing verbose description of the comma
8569separated list of @var{things} among:
8570
8571@table @code
8572@item state
8573Description of the grammar, conflicts (resolved and unresolved), and
34a6c2d1 8574parser's automaton.
ec3bc396 8575
742e4900 8576@item lookahead
ec3bc396 8577Implies @code{state} and augments the description of the automaton with
742e4900 8578each rule's lookahead set.
ec3bc396
AD
8579
8580@item itemset
8581Implies @code{state} and augments the description of the automaton with
8582the full set of items for each state, instead of its core only.
8583@end table
8584
1bb2bd75
JD
8585@item --report-file=@var{file}
8586Specify the @var{file} for the verbose description.
8587
bfa74976
RS
8588@item -v
8589@itemx --verbose
9c437126 8590Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8591file containing verbose descriptions of the grammar and
72d2299c 8592parser. @xref{Decl Summary}.
bfa74976 8593
fa4d969f
PE
8594@item -o @var{file}
8595@itemx --output=@var{file}
9913d6e4 8596Specify the @var{file} for the parser implementation file.
bfa74976 8597
fa4d969f 8598The other output files' names are constructed from @var{file} as
d8988b2f 8599described under the @samp{-v} and @samp{-d} options.
342b8b6e 8600
72183df4 8601@item -g [@var{file}]
8e55b3aa 8602@itemx --graph[=@var{file}]
34a6c2d1 8603Output a graphical representation of the parser's
35fe0834 8604automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
35430378 8605@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
8606@code{@var{file}} is optional.
8607If omitted and the grammar file is @file{foo.y}, the output file will be
8608@file{foo.dot}.
59da312b 8609
72183df4 8610@item -x [@var{file}]
8e55b3aa 8611@itemx --xml[=@var{file}]
34a6c2d1 8612Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8613@code{@var{file}} is optional.
59da312b
JD
8614If omitted and the grammar file is @file{foo.y}, the output file will be
8615@file{foo.xml}.
8616(The current XML schema is experimental and may evolve.
8617More user feedback will help to stabilize it.)
bfa74976
RS
8618@end table
8619
342b8b6e 8620@node Option Cross Key
bfa74976
RS
8621@section Option Cross Key
8622
8623Here is a list of options, alphabetized by long option, to help you find
34d41938 8624the corresponding short option and directive.
bfa74976 8625
34d41938 8626@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
72183df4 8627@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8628@include cross-options.texi
aa08666d 8629@end multitable
bfa74976 8630
93dd49ab
PE
8631@node Yacc Library
8632@section Yacc Library
8633
8634The Yacc library contains default implementations of the
8635@code{yyerror} and @code{main} functions. These default
35430378 8636implementations are normally not useful, but POSIX requires
93dd49ab
PE
8637them. To use the Yacc library, link your program with the
8638@option{-ly} option. Note that Bison's implementation of the Yacc
35430378 8639library is distributed under the terms of the GNU General
93dd49ab
PE
8640Public License (@pxref{Copying}).
8641
8642If you use the Yacc library's @code{yyerror} function, you should
8643declare @code{yyerror} as follows:
8644
8645@example
8646int yyerror (char const *);
8647@end example
8648
8649Bison ignores the @code{int} value returned by this @code{yyerror}.
8650If you use the Yacc library's @code{main} function, your
8651@code{yyparse} function should have the following type signature:
8652
8653@example
8654int yyparse (void);
8655@end example
8656
12545799
AD
8657@c ================================================= C++ Bison
8658
8405b70c
PB
8659@node Other Languages
8660@chapter Parsers Written In Other Languages
12545799
AD
8661
8662@menu
8663* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8664* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8665@end menu
8666
8667@node C++ Parsers
8668@section C++ Parsers
8669
8670@menu
8671* C++ Bison Interface:: Asking for C++ parser generation
8672* C++ Semantic Values:: %union vs. C++
8673* C++ Location Values:: The position and location classes
8674* C++ Parser Interface:: Instantiating and running the parser
8675* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8676* A Complete C++ Example:: Demonstrating their use
12545799
AD
8677@end menu
8678
8679@node C++ Bison Interface
8680@subsection C++ Bison Interface
ed4d67dc 8681@c - %skeleton "lalr1.cc"
12545799
AD
8682@c - Always pure
8683@c - initial action
8684
34a6c2d1 8685The C++ deterministic parser is selected using the skeleton directive,
baacae49
AD
8686@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
8687@option{--skeleton=lalr1.cc}.
e6e704dc 8688@xref{Decl Summary}.
0e021770 8689
793fbca5
JD
8690When run, @command{bison} will create several entities in the @samp{yy}
8691namespace.
8692@findex %define namespace
2f4518a1
JD
8693Use the @samp{%define namespace} directive to change the namespace
8694name, see @ref{%define Summary,,namespace}. The various classes are
8695generated in the following files:
aa08666d 8696
12545799
AD
8697@table @file
8698@item position.hh
8699@itemx location.hh
8700The definition of the classes @code{position} and @code{location},
8701used for location tracking. @xref{C++ Location Values}.
8702
8703@item stack.hh
8704An auxiliary class @code{stack} used by the parser.
8705
fa4d969f
PE
8706@item @var{file}.hh
8707@itemx @var{file}.cc
9913d6e4 8708(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
8709declaration and implementation of the C++ parser class. The basename
8710and extension of these two files follow the same rules as with regular C
8711parsers (@pxref{Invocation}).
12545799 8712
cd8b5791
AD
8713The header is @emph{mandatory}; you must either pass
8714@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8715@samp{%defines} directive.
8716@end table
8717
8718All these files are documented using Doxygen; run @command{doxygen}
8719for a complete and accurate documentation.
8720
8721@node C++ Semantic Values
8722@subsection C++ Semantic Values
8723@c - No objects in unions
178e123e 8724@c - YYSTYPE
12545799
AD
8725@c - Printer and destructor
8726
8727The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8728Collection of Value Types}. In particular it produces a genuine
8729@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
8730within pseudo-unions (similar to Boost variants) might be implemented to
8731alleviate these issues.}, which have a few specific features in C++.
12545799
AD
8732@itemize @minus
8733@item
fb9712a9
AD
8734The type @code{YYSTYPE} is defined but its use is discouraged: rather
8735you should refer to the parser's encapsulated type
8736@code{yy::parser::semantic_type}.
12545799
AD
8737@item
8738Non POD (Plain Old Data) types cannot be used. C++ forbids any
8739instance of classes with constructors in unions: only @emph{pointers}
8740to such objects are allowed.
8741@end itemize
8742
8743Because objects have to be stored via pointers, memory is not
8744reclaimed automatically: using the @code{%destructor} directive is the
8745only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8746Symbols}.
8747
8748
8749@node C++ Location Values
8750@subsection C++ Location Values
8751@c - %locations
8752@c - class Position
8753@c - class Location
16dc6a9e 8754@c - %define filename_type "const symbol::Symbol"
12545799
AD
8755
8756When the directive @code{%locations} is used, the C++ parser supports
8757location tracking, see @ref{Locations, , Locations Overview}. Two
8758auxiliary classes define a @code{position}, a single point in a file,
8759and a @code{location}, a range composed of a pair of
8760@code{position}s (possibly spanning several files).
8761
fa4d969f 8762@deftypemethod {position} {std::string*} file
12545799
AD
8763The name of the file. It will always be handled as a pointer, the
8764parser will never duplicate nor deallocate it. As an experimental
8765feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8766filename_type "@var{type}"}.
12545799
AD
8767@end deftypemethod
8768
8769@deftypemethod {position} {unsigned int} line
8770The line, starting at 1.
8771@end deftypemethod
8772
8773@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8774Advance by @var{height} lines, resetting the column number.
8775@end deftypemethod
8776
8777@deftypemethod {position} {unsigned int} column
8778The column, starting at 0.
8779@end deftypemethod
8780
8781@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8782Advance by @var{width} columns, without changing the line number.
8783@end deftypemethod
8784
8785@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8786@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8787@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8788@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8789Various forms of syntactic sugar for @code{columns}.
8790@end deftypemethod
8791
8792@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8793Report @var{p} on @var{o} like this:
fa4d969f
PE
8794@samp{@var{file}:@var{line}.@var{column}}, or
8795@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8796@end deftypemethod
8797
8798@deftypemethod {location} {position} begin
8799@deftypemethodx {location} {position} end
8800The first, inclusive, position of the range, and the first beyond.
8801@end deftypemethod
8802
8803@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8804@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8805Advance the @code{end} position.
8806@end deftypemethod
8807
8808@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8809@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8810@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8811Various forms of syntactic sugar.
8812@end deftypemethod
8813
8814@deftypemethod {location} {void} step ()
8815Move @code{begin} onto @code{end}.
8816@end deftypemethod
8817
8818
8819@node C++ Parser Interface
8820@subsection C++ Parser Interface
8821@c - define parser_class_name
8822@c - Ctor
8823@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8824@c debug_stream.
8825@c - Reporting errors
8826
8827The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8828declare and define the parser class in the namespace @code{yy}. The
8829class name defaults to @code{parser}, but may be changed using
16dc6a9e 8830@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8831this class is detailed below. It can be extended using the
12545799
AD
8832@code{%parse-param} feature: its semantics is slightly changed since
8833it describes an additional member of the parser class, and an
8834additional argument for its constructor.
8835
baacae49
AD
8836@defcv {Type} {parser} {semantic_type}
8837@defcvx {Type} {parser} {location_type}
12545799 8838The types for semantics value and locations.
8a0adb01 8839@end defcv
12545799 8840
baacae49
AD
8841@defcv {Type} {parser} {token}
8842A structure that contains (only) the definition of the tokens as the
8843@code{yytokentype} enumeration. To refer to the token @code{FOO}, the
8844scanner should use @code{yy::parser::token::FOO}. The scanner can use
8845@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
8846(@pxref{Calc++ Scanner}).
8847@end defcv
8848
12545799
AD
8849@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8850Build a new parser object. There are no arguments by default, unless
8851@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8852@end deftypemethod
8853
8854@deftypemethod {parser} {int} parse ()
8855Run the syntactic analysis, and return 0 on success, 1 otherwise.
8856@end deftypemethod
8857
8858@deftypemethod {parser} {std::ostream&} debug_stream ()
8859@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8860Get or set the stream used for tracing the parsing. It defaults to
8861@code{std::cerr}.
8862@end deftypemethod
8863
8864@deftypemethod {parser} {debug_level_type} debug_level ()
8865@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8866Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8867or nonzero, full tracing.
12545799
AD
8868@end deftypemethod
8869
8870@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
8871The definition for this member function must be supplied by the user:
8872the parser uses it to report a parser error occurring at @var{l},
8873described by @var{m}.
8874@end deftypemethod
8875
8876
8877@node C++ Scanner Interface
8878@subsection C++ Scanner Interface
8879@c - prefix for yylex.
8880@c - Pure interface to yylex
8881@c - %lex-param
8882
8883The parser invokes the scanner by calling @code{yylex}. Contrary to C
8884parsers, C++ parsers are always pure: there is no point in using the
d9df47b6 8885@code{%define api.pure} directive. Therefore the interface is as follows.
12545799 8886
baacae49 8887@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
12545799
AD
8888Return the next token. Its type is the return value, its semantic
8889value and location being @var{yylval} and @var{yylloc}. Invocations of
8890@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8891@end deftypemethod
8892
8893
8894@node A Complete C++ Example
8405b70c 8895@subsection A Complete C++ Example
12545799
AD
8896
8897This section demonstrates the use of a C++ parser with a simple but
8898complete example. This example should be available on your system,
8899ready to compile, in the directory @dfn{../bison/examples/calc++}. It
8900focuses on the use of Bison, therefore the design of the various C++
8901classes is very naive: no accessors, no encapsulation of members etc.
8902We will use a Lex scanner, and more precisely, a Flex scanner, to
8903demonstrate the various interaction. A hand written scanner is
8904actually easier to interface with.
8905
8906@menu
8907* Calc++ --- C++ Calculator:: The specifications
8908* Calc++ Parsing Driver:: An active parsing context
8909* Calc++ Parser:: A parser class
8910* Calc++ Scanner:: A pure C++ Flex scanner
8911* Calc++ Top Level:: Conducting the band
8912@end menu
8913
8914@node Calc++ --- C++ Calculator
8405b70c 8915@subsubsection Calc++ --- C++ Calculator
12545799
AD
8916
8917Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 8918expression, possibly preceded by variable assignments. An
12545799
AD
8919environment containing possibly predefined variables such as
8920@code{one} and @code{two}, is exchanged with the parser. An example
8921of valid input follows.
8922
8923@example
8924three := 3
8925seven := one + two * three
8926seven * seven
8927@end example
8928
8929@node Calc++ Parsing Driver
8405b70c 8930@subsubsection Calc++ Parsing Driver
12545799
AD
8931@c - An env
8932@c - A place to store error messages
8933@c - A place for the result
8934
8935To support a pure interface with the parser (and the scanner) the
8936technique of the ``parsing context'' is convenient: a structure
8937containing all the data to exchange. Since, in addition to simply
8938launch the parsing, there are several auxiliary tasks to execute (open
8939the file for parsing, instantiate the parser etc.), we recommend
8940transforming the simple parsing context structure into a fully blown
8941@dfn{parsing driver} class.
8942
8943The declaration of this driver class, @file{calc++-driver.hh}, is as
8944follows. The first part includes the CPP guard and imports the
fb9712a9
AD
8945required standard library components, and the declaration of the parser
8946class.
12545799 8947
1c59e0a1 8948@comment file: calc++-driver.hh
12545799
AD
8949@example
8950#ifndef CALCXX_DRIVER_HH
8951# define CALCXX_DRIVER_HH
8952# include <string>
8953# include <map>
fb9712a9 8954# include "calc++-parser.hh"
12545799
AD
8955@end example
8956
12545799
AD
8957
8958@noindent
8959Then comes the declaration of the scanning function. Flex expects
8960the signature of @code{yylex} to be defined in the macro
8961@code{YY_DECL}, and the C++ parser expects it to be declared. We can
8962factor both as follows.
1c59e0a1
AD
8963
8964@comment file: calc++-driver.hh
12545799 8965@example
3dc5e96b
PE
8966// Tell Flex the lexer's prototype ...
8967# define YY_DECL \
c095d689
AD
8968 yy::calcxx_parser::token_type \
8969 yylex (yy::calcxx_parser::semantic_type* yylval, \
8970 yy::calcxx_parser::location_type* yylloc, \
8971 calcxx_driver& driver)
12545799
AD
8972// ... and declare it for the parser's sake.
8973YY_DECL;
8974@end example
8975
8976@noindent
8977The @code{calcxx_driver} class is then declared with its most obvious
8978members.
8979
1c59e0a1 8980@comment file: calc++-driver.hh
12545799
AD
8981@example
8982// Conducting the whole scanning and parsing of Calc++.
8983class calcxx_driver
8984@{
8985public:
8986 calcxx_driver ();
8987 virtual ~calcxx_driver ();
8988
8989 std::map<std::string, int> variables;
8990
8991 int result;
8992@end example
8993
8994@noindent
8995To encapsulate the coordination with the Flex scanner, it is useful to
8996have two members function to open and close the scanning phase.
12545799 8997
1c59e0a1 8998@comment file: calc++-driver.hh
12545799
AD
8999@example
9000 // Handling the scanner.
9001 void scan_begin ();
9002 void scan_end ();
9003 bool trace_scanning;
9004@end example
9005
9006@noindent
9007Similarly for the parser itself.
9008
1c59e0a1 9009@comment file: calc++-driver.hh
12545799 9010@example
bb32f4f2
AD
9011 // Run the parser. Return 0 on success.
9012 int parse (const std::string& f);
12545799
AD
9013 std::string file;
9014 bool trace_parsing;
9015@end example
9016
9017@noindent
9018To demonstrate pure handling of parse errors, instead of simply
9019dumping them on the standard error output, we will pass them to the
9020compiler driver using the following two member functions. Finally, we
9021close the class declaration and CPP guard.
9022
1c59e0a1 9023@comment file: calc++-driver.hh
12545799
AD
9024@example
9025 // Error handling.
9026 void error (const yy::location& l, const std::string& m);
9027 void error (const std::string& m);
9028@};
9029#endif // ! CALCXX_DRIVER_HH
9030@end example
9031
9032The implementation of the driver is straightforward. The @code{parse}
9033member function deserves some attention. The @code{error} functions
9034are simple stubs, they should actually register the located error
9035messages and set error state.
9036
1c59e0a1 9037@comment file: calc++-driver.cc
12545799
AD
9038@example
9039#include "calc++-driver.hh"
9040#include "calc++-parser.hh"
9041
9042calcxx_driver::calcxx_driver ()
9043 : trace_scanning (false), trace_parsing (false)
9044@{
9045 variables["one"] = 1;
9046 variables["two"] = 2;
9047@}
9048
9049calcxx_driver::~calcxx_driver ()
9050@{
9051@}
9052
bb32f4f2 9053int
12545799
AD
9054calcxx_driver::parse (const std::string &f)
9055@{
9056 file = f;
9057 scan_begin ();
9058 yy::calcxx_parser parser (*this);
9059 parser.set_debug_level (trace_parsing);
bb32f4f2 9060 int res = parser.parse ();
12545799 9061 scan_end ();
bb32f4f2 9062 return res;
12545799
AD
9063@}
9064
9065void
9066calcxx_driver::error (const yy::location& l, const std::string& m)
9067@{
9068 std::cerr << l << ": " << m << std::endl;
9069@}
9070
9071void
9072calcxx_driver::error (const std::string& m)
9073@{
9074 std::cerr << m << std::endl;
9075@}
9076@end example
9077
9078@node Calc++ Parser
8405b70c 9079@subsubsection Calc++ Parser
12545799 9080
9913d6e4
JD
9081The grammar file @file{calc++-parser.yy} starts by asking for the C++
9082deterministic parser skeleton, the creation of the parser header file,
9083and specifies the name of the parser class. Because the C++ skeleton
9084changed several times, it is safer to require the version you designed
9085the grammar for.
1c59e0a1
AD
9086
9087@comment file: calc++-parser.yy
12545799 9088@example
ed4d67dc 9089%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 9090%require "@value{VERSION}"
12545799 9091%defines
16dc6a9e 9092%define parser_class_name "calcxx_parser"
fb9712a9
AD
9093@end example
9094
9095@noindent
16dc6a9e 9096@findex %code requires
fb9712a9
AD
9097Then come the declarations/inclusions needed to define the
9098@code{%union}. Because the parser uses the parsing driver and
9099reciprocally, both cannot include the header of the other. Because the
9100driver's header needs detailed knowledge about the parser class (in
9101particular its inner types), it is the parser's header which will simply
9102use a forward declaration of the driver.
8e6f2266 9103@xref{%code Summary}.
fb9712a9
AD
9104
9105@comment file: calc++-parser.yy
9106@example
16dc6a9e 9107%code requires @{
12545799 9108# include <string>
fb9712a9 9109class calcxx_driver;
9bc0dd67 9110@}
12545799
AD
9111@end example
9112
9113@noindent
9114The driver is passed by reference to the parser and to the scanner.
9115This provides a simple but effective pure interface, not relying on
9116global variables.
9117
1c59e0a1 9118@comment file: calc++-parser.yy
12545799
AD
9119@example
9120// The parsing context.
9121%parse-param @{ calcxx_driver& driver @}
9122%lex-param @{ calcxx_driver& driver @}
9123@end example
9124
9125@noindent
9126Then we request the location tracking feature, and initialize the
c781580d 9127first location's file name. Afterward new locations are computed
12545799
AD
9128relatively to the previous locations: the file name will be
9129automatically propagated.
9130
1c59e0a1 9131@comment file: calc++-parser.yy
12545799
AD
9132@example
9133%locations
9134%initial-action
9135@{
9136 // Initialize the initial location.
b47dbebe 9137 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
9138@};
9139@end example
9140
9141@noindent
6f04ee6c
JD
9142Use the two following directives to enable parser tracing and verbose error
9143messages. However, verbose error messages can contain incorrect information
9144(@pxref{LAC}).
12545799 9145
1c59e0a1 9146@comment file: calc++-parser.yy
12545799
AD
9147@example
9148%debug
9149%error-verbose
9150@end example
9151
9152@noindent
9153Semantic values cannot use ``real'' objects, but only pointers to
9154them.
9155
1c59e0a1 9156@comment file: calc++-parser.yy
12545799
AD
9157@example
9158// Symbols.
9159%union
9160@{
9161 int ival;
9162 std::string *sval;
9163@};
9164@end example
9165
fb9712a9 9166@noindent
136a0f76
PB
9167@findex %code
9168The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 9169@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
9170
9171@comment file: calc++-parser.yy
9172@example
136a0f76 9173%code @{
fb9712a9 9174# include "calc++-driver.hh"
34f98f46 9175@}
fb9712a9
AD
9176@end example
9177
9178
12545799
AD
9179@noindent
9180The token numbered as 0 corresponds to end of file; the following line
9181allows for nicer error messages referring to ``end of file'' instead
9182of ``$end''. Similarly user friendly named are provided for each
9183symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
9184avoid name clashes.
9185
1c59e0a1 9186@comment file: calc++-parser.yy
12545799 9187@example
fb9712a9
AD
9188%token END 0 "end of file"
9189%token ASSIGN ":="
9190%token <sval> IDENTIFIER "identifier"
9191%token <ival> NUMBER "number"
a8c2e813 9192%type <ival> exp
12545799
AD
9193@end example
9194
9195@noindent
9196To enable memory deallocation during error recovery, use
9197@code{%destructor}.
9198
287c78f6 9199@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 9200@comment file: calc++-parser.yy
12545799
AD
9201@example
9202%printer @{ debug_stream () << *$$; @} "identifier"
9203%destructor @{ delete $$; @} "identifier"
9204
a8c2e813 9205%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
9206@end example
9207
9208@noindent
9209The grammar itself is straightforward.
9210
1c59e0a1 9211@comment file: calc++-parser.yy
12545799
AD
9212@example
9213%%
9214%start unit;
9215unit: assignments exp @{ driver.result = $2; @};
9216
9217assignments: assignments assignment @{@}
9d9b8b70 9218 | /* Nothing. */ @{@};
12545799 9219
3dc5e96b
PE
9220assignment:
9221 "identifier" ":=" exp
9222 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
9223
9224%left '+' '-';
9225%left '*' '/';
9226exp: exp '+' exp @{ $$ = $1 + $3; @}
9227 | exp '-' exp @{ $$ = $1 - $3; @}
9228 | exp '*' exp @{ $$ = $1 * $3; @}
9229 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 9230 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 9231 | "number" @{ $$ = $1; @};
12545799
AD
9232%%
9233@end example
9234
9235@noindent
9236Finally the @code{error} member function registers the errors to the
9237driver.
9238
1c59e0a1 9239@comment file: calc++-parser.yy
12545799
AD
9240@example
9241void
1c59e0a1
AD
9242yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
9243 const std::string& m)
12545799
AD
9244@{
9245 driver.error (l, m);
9246@}
9247@end example
9248
9249@node Calc++ Scanner
8405b70c 9250@subsubsection Calc++ Scanner
12545799
AD
9251
9252The Flex scanner first includes the driver declaration, then the
9253parser's to get the set of defined tokens.
9254
1c59e0a1 9255@comment file: calc++-scanner.ll
12545799
AD
9256@example
9257%@{ /* -*- C++ -*- */
04098407 9258# include <cstdlib>
b10dd689
AD
9259# include <cerrno>
9260# include <climits>
12545799
AD
9261# include <string>
9262# include "calc++-driver.hh"
9263# include "calc++-parser.hh"
eaea13f5
PE
9264
9265/* Work around an incompatibility in flex (at least versions
9266 2.5.31 through 2.5.33): it generates code that does
9267 not conform to C89. See Debian bug 333231
9268 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
9269# undef yywrap
9270# define yywrap() 1
eaea13f5 9271
c095d689
AD
9272/* By default yylex returns int, we use token_type.
9273 Unfortunately yyterminate by default returns 0, which is
9274 not of token_type. */
8c5b881d 9275#define yyterminate() return token::END
12545799
AD
9276%@}
9277@end example
9278
9279@noindent
9280Because there is no @code{#include}-like feature we don't need
9281@code{yywrap}, we don't need @code{unput} either, and we parse an
9282actual file, this is not an interactive session with the user.
9283Finally we enable the scanner tracing features.
9284
1c59e0a1 9285@comment file: calc++-scanner.ll
12545799
AD
9286@example
9287%option noyywrap nounput batch debug
9288@end example
9289
9290@noindent
9291Abbreviations allow for more readable rules.
9292
1c59e0a1 9293@comment file: calc++-scanner.ll
12545799
AD
9294@example
9295id [a-zA-Z][a-zA-Z_0-9]*
9296int [0-9]+
9297blank [ \t]
9298@end example
9299
9300@noindent
9d9b8b70 9301The following paragraph suffices to track locations accurately. Each
12545799
AD
9302time @code{yylex} is invoked, the begin position is moved onto the end
9303position. Then when a pattern is matched, the end position is
9304advanced of its width. In case it matched ends of lines, the end
9305cursor is adjusted, and each time blanks are matched, the begin cursor
9306is moved onto the end cursor to effectively ignore the blanks
9307preceding tokens. Comments would be treated equally.
9308
1c59e0a1 9309@comment file: calc++-scanner.ll
12545799 9310@example
828c373b
AD
9311%@{
9312# define YY_USER_ACTION yylloc->columns (yyleng);
9313%@}
12545799
AD
9314%%
9315%@{
9316 yylloc->step ();
12545799
AD
9317%@}
9318@{blank@}+ yylloc->step ();
9319[\n]+ yylloc->lines (yyleng); yylloc->step ();
9320@end example
9321
9322@noindent
fb9712a9
AD
9323The rules are simple, just note the use of the driver to report errors.
9324It is convenient to use a typedef to shorten
9325@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 9326@code{token::identifier} for instance.
12545799 9327
1c59e0a1 9328@comment file: calc++-scanner.ll
12545799 9329@example
fb9712a9
AD
9330%@{
9331 typedef yy::calcxx_parser::token token;
9332%@}
8c5b881d 9333 /* Convert ints to the actual type of tokens. */
c095d689 9334[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 9335":=" return token::ASSIGN;
04098407
PE
9336@{int@} @{
9337 errno = 0;
9338 long n = strtol (yytext, NULL, 10);
9339 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
9340 driver.error (*yylloc, "integer is out of range");
9341 yylval->ival = n;
fb9712a9 9342 return token::NUMBER;
04098407 9343@}
fb9712a9 9344@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
9345. driver.error (*yylloc, "invalid character");
9346%%
9347@end example
9348
9349@noindent
9350Finally, because the scanner related driver's member function depend
9351on the scanner's data, it is simpler to implement them in this file.
9352
1c59e0a1 9353@comment file: calc++-scanner.ll
12545799
AD
9354@example
9355void
9356calcxx_driver::scan_begin ()
9357@{
9358 yy_flex_debug = trace_scanning;
bb32f4f2
AD
9359 if (file == "-")
9360 yyin = stdin;
9361 else if (!(yyin = fopen (file.c_str (), "r")))
9362 @{
9363 error (std::string ("cannot open ") + file);
9364 exit (1);
9365 @}
12545799
AD
9366@}
9367
9368void
9369calcxx_driver::scan_end ()
9370@{
9371 fclose (yyin);
9372@}
9373@end example
9374
9375@node Calc++ Top Level
8405b70c 9376@subsubsection Calc++ Top Level
12545799
AD
9377
9378The top level file, @file{calc++.cc}, poses no problem.
9379
1c59e0a1 9380@comment file: calc++.cc
12545799
AD
9381@example
9382#include <iostream>
9383#include "calc++-driver.hh"
9384
9385int
fa4d969f 9386main (int argc, char *argv[])
12545799
AD
9387@{
9388 calcxx_driver driver;
9389 for (++argv; argv[0]; ++argv)
9390 if (*argv == std::string ("-p"))
9391 driver.trace_parsing = true;
9392 else if (*argv == std::string ("-s"))
9393 driver.trace_scanning = true;
bb32f4f2
AD
9394 else if (!driver.parse (*argv))
9395 std::cout << driver.result << std::endl;
12545799
AD
9396@}
9397@end example
9398
8405b70c
PB
9399@node Java Parsers
9400@section Java Parsers
9401
9402@menu
f56274a8
DJ
9403* Java Bison Interface:: Asking for Java parser generation
9404* Java Semantic Values:: %type and %token vs. Java
9405* Java Location Values:: The position and location classes
9406* Java Parser Interface:: Instantiating and running the parser
9407* Java Scanner Interface:: Specifying the scanner for the parser
9408* Java Action Features:: Special features for use in actions
9409* Java Differences:: Differences between C/C++ and Java Grammars
9410* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
9411@end menu
9412
9413@node Java Bison Interface
9414@subsection Java Bison Interface
9415@c - %language "Java"
8405b70c 9416
59da312b
JD
9417(The current Java interface is experimental and may evolve.
9418More user feedback will help to stabilize it.)
9419
e254a580
DJ
9420The Java parser skeletons are selected using the @code{%language "Java"}
9421directive or the @option{-L java}/@option{--language=java} option.
8405b70c 9422
e254a580 9423@c FIXME: Documented bug.
9913d6e4
JD
9424When generating a Java parser, @code{bison @var{basename}.y} will
9425create a single Java source file named @file{@var{basename}.java}
9426containing the parser implementation. Using a grammar file without a
9427@file{.y} suffix is currently broken. The basename of the parser
9428implementation file can be changed by the @code{%file-prefix}
9429directive or the @option{-p}/@option{--name-prefix} option. The
9430entire parser implementation file name can be changed by the
9431@code{%output} directive or the @option{-o}/@option{--output} option.
9432The parser implementation file contains a single class for the parser.
8405b70c 9433
e254a580 9434You can create documentation for generated parsers using Javadoc.
8405b70c 9435
e254a580
DJ
9436Contrary to C parsers, Java parsers do not use global variables; the
9437state of the parser is always local to an instance of the parser class.
9438Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
9439and @code{%define api.pure} directives does not do anything when used in
9440Java.
8405b70c 9441
e254a580 9442Push parsers are currently unsupported in Java and @code{%define
812775a0 9443api.push-pull} have no effect.
01b477c6 9444
35430378 9445GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
9446@code{glr-parser} directive.
9447
9448No header file can be generated for Java parsers. Do not use the
9449@code{%defines} directive or the @option{-d}/@option{--defines} options.
9450
9451@c FIXME: Possible code change.
9452Currently, support for debugging and verbose errors are always compiled
9453in. Thus the @code{%debug} and @code{%token-table} directives and the
9454@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
9455options have no effect. This may change in the future to eliminate
9456unused code in the generated parser, so use @code{%debug} and
9457@code{%verbose-error} explicitly if needed. Also, in the future the
9458@code{%token-table} directive might enable a public interface to
9459access the token names and codes.
8405b70c
PB
9460
9461@node Java Semantic Values
9462@subsection Java Semantic Values
9463@c - No %union, specify type in %type/%token.
9464@c - YYSTYPE
9465@c - Printer and destructor
9466
9467There is no @code{%union} directive in Java parsers. Instead, the
9468semantic values' types (class names) should be specified in the
9469@code{%type} or @code{%token} directive:
9470
9471@example
9472%type <Expression> expr assignment_expr term factor
9473%type <Integer> number
9474@end example
9475
9476By default, the semantic stack is declared to have @code{Object} members,
9477which means that the class types you specify can be of any class.
9478To improve the type safety of the parser, you can declare the common
e254a580
DJ
9479superclass of all the semantic values using the @code{%define stype}
9480directive. For example, after the following declaration:
8405b70c
PB
9481
9482@example
e254a580 9483%define stype "ASTNode"
8405b70c
PB
9484@end example
9485
9486@noindent
9487any @code{%type} or @code{%token} specifying a semantic type which
9488is not a subclass of ASTNode, will cause a compile-time error.
9489
e254a580 9490@c FIXME: Documented bug.
8405b70c
PB
9491Types used in the directives may be qualified with a package name.
9492Primitive data types are accepted for Java version 1.5 or later. Note
9493that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
9494Generic types may not be used; this is due to a limitation in the
9495implementation of Bison, and may change in future releases.
8405b70c
PB
9496
9497Java parsers do not support @code{%destructor}, since the language
9498adopts garbage collection. The parser will try to hold references
9499to semantic values for as little time as needed.
9500
9501Java parsers do not support @code{%printer}, as @code{toString()}
9502can be used to print the semantic values. This however may change
9503(in a backwards-compatible way) in future versions of Bison.
9504
9505
9506@node Java Location Values
9507@subsection Java Location Values
9508@c - %locations
9509@c - class Position
9510@c - class Location
9511
9512When the directive @code{%locations} is used, the Java parser
9513supports location tracking, see @ref{Locations, , Locations Overview}.
9514An auxiliary user-defined class defines a @dfn{position}, a single point
9515in a file; Bison itself defines a class representing a @dfn{location},
9516a range composed of a pair of positions (possibly spanning several
9517files). The location class is an inner class of the parser; the name
e254a580 9518is @code{Location} by default, and may also be renamed using
f37495f6 9519@code{%define location_type "@var{class-name}"}.
8405b70c
PB
9520
9521The location class treats the position as a completely opaque value.
9522By default, the class name is @code{Position}, but this can be changed
e254a580
DJ
9523with @code{%define position_type "@var{class-name}"}. This class must
9524be supplied by the user.
8405b70c
PB
9525
9526
e254a580
DJ
9527@deftypeivar {Location} {Position} begin
9528@deftypeivarx {Location} {Position} end
8405b70c 9529The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
9530@end deftypeivar
9531
9532@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c046698e 9533Create a @code{Location} denoting an empty range located at a given point.
e254a580 9534@end deftypeop
8405b70c 9535
e254a580
DJ
9536@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
9537Create a @code{Location} from the endpoints of the range.
9538@end deftypeop
9539
9540@deftypemethod {Location} {String} toString ()
8405b70c
PB
9541Prints the range represented by the location. For this to work
9542properly, the position class should override the @code{equals} and
9543@code{toString} methods appropriately.
9544@end deftypemethod
9545
9546
9547@node Java Parser Interface
9548@subsection Java Parser Interface
9549@c - define parser_class_name
9550@c - Ctor
9551@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9552@c debug_stream.
9553@c - Reporting errors
9554
e254a580
DJ
9555The name of the generated parser class defaults to @code{YYParser}. The
9556@code{YY} prefix may be changed using the @code{%name-prefix} directive
9557or the @option{-p}/@option{--name-prefix} option. Alternatively, use
9558@code{%define parser_class_name "@var{name}"} to give a custom name to
9559the class. The interface of this class is detailed below.
8405b70c 9560
e254a580
DJ
9561By default, the parser class has package visibility. A declaration
9562@code{%define public} will change to public visibility. Remember that,
9563according to the Java language specification, the name of the @file{.java}
9564file should match the name of the class in this case. Similarly, you can
9565use @code{abstract}, @code{final} and @code{strictfp} with the
9566@code{%define} declaration to add other modifiers to the parser class.
9567
9568The Java package name of the parser class can be specified using the
9569@code{%define package} directive. The superclass and the implemented
9570interfaces of the parser class can be specified with the @code{%define
9571extends} and @code{%define implements} directives.
9572
9573The parser class defines an inner class, @code{Location}, that is used
9574for location tracking (see @ref{Java Location Values}), and a inner
9575interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
9576these inner class/interface, and the members described in the interface
9577below, all the other members and fields are preceded with a @code{yy} or
9578@code{YY} prefix to avoid clashes with user code.
9579
9580@c FIXME: The following constants and variables are still undocumented:
9581@c @code{bisonVersion}, @code{bisonSkeleton} and @code{errorVerbose}.
9582
9583The parser class can be extended using the @code{%parse-param}
9584directive. Each occurrence of the directive will add a @code{protected
9585final} field to the parser class, and an argument to its constructor,
9586which initialize them automatically.
9587
9588Token names defined by @code{%token} and the predefined @code{EOF} token
9589name are added as constant fields to the parser class.
9590
9591@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
9592Build a new parser object with embedded @code{%code lexer}. There are
9593no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
9594used.
9595@end deftypeop
9596
9597@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
9598Build a new parser object using the specified scanner. There are no
9599additional parameters unless @code{%parse-param}s are used.
9600
9601If the scanner is defined by @code{%code lexer}, this constructor is
9602declared @code{protected} and is called automatically with a scanner
9603created with the correct @code{%lex-param}s.
9604@end deftypeop
8405b70c
PB
9605
9606@deftypemethod {YYParser} {boolean} parse ()
9607Run the syntactic analysis, and return @code{true} on success,
9608@code{false} otherwise.
9609@end deftypemethod
9610
01b477c6 9611@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9612During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9613from a syntax error.
9614@xref{Error Recovery}.
8405b70c
PB
9615@end deftypemethod
9616
9617@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9618@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9619Get or set the stream used for tracing the parsing. It defaults to
9620@code{System.err}.
9621@end deftypemethod
9622
9623@deftypemethod {YYParser} {int} getDebugLevel ()
9624@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
9625Get or set the tracing level. Currently its value is either 0, no trace,
9626or nonzero, full tracing.
9627@end deftypemethod
9628
8405b70c
PB
9629
9630@node Java Scanner Interface
9631@subsection Java Scanner Interface
01b477c6 9632@c - %code lexer
8405b70c 9633@c - %lex-param
01b477c6 9634@c - Lexer interface
8405b70c 9635
e254a580
DJ
9636There are two possible ways to interface a Bison-generated Java parser
9637with a scanner: the scanner may be defined by @code{%code lexer}, or
9638defined elsewhere. In either case, the scanner has to implement the
9639@code{Lexer} inner interface of the parser class.
9640
9641In the first case, the body of the scanner class is placed in
9642@code{%code lexer} blocks. If you want to pass parameters from the
9643parser constructor to the scanner constructor, specify them with
9644@code{%lex-param}; they are passed before @code{%parse-param}s to the
9645constructor.
01b477c6 9646
59c5ac72 9647In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
9648which is defined within the parser class (e.g., @code{YYParser.Lexer}).
9649The constructor of the parser object will then accept an object
9650implementing the interface; @code{%lex-param} is not used in this
9651case.
9652
9653In both cases, the scanner has to implement the following methods.
9654
e254a580
DJ
9655@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
9656This method is defined by the user to emit an error message. The first
9657parameter is omitted if location tracking is not active. Its type can be
9658changed using @code{%define location_type "@var{class-name}".}
8405b70c
PB
9659@end deftypemethod
9660
e254a580 9661@deftypemethod {Lexer} {int} yylex ()
8405b70c 9662Return the next token. Its type is the return value, its semantic
c781580d 9663value and location are saved and returned by the their methods in the
e254a580
DJ
9664interface.
9665
9666Use @code{%define lex_throws} to specify any uncaught exceptions.
9667Default is @code{java.io.IOException}.
8405b70c
PB
9668@end deftypemethod
9669
9670@deftypemethod {Lexer} {Position} getStartPos ()
9671@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
9672Return respectively the first position of the last token that
9673@code{yylex} returned, and the first position beyond it. These
9674methods are not needed unless location tracking is active.
8405b70c 9675
e254a580 9676The return type can be changed using @code{%define position_type
8405b70c
PB
9677"@var{class-name}".}
9678@end deftypemethod
9679
9680@deftypemethod {Lexer} {Object} getLVal ()
c781580d 9681Return the semantic value of the last token that yylex returned.
8405b70c 9682
e254a580 9683The return type can be changed using @code{%define stype
8405b70c
PB
9684"@var{class-name}".}
9685@end deftypemethod
9686
9687
e254a580
DJ
9688@node Java Action Features
9689@subsection Special Features for Use in Java Actions
9690
9691The following special constructs can be uses in Java actions.
9692Other analogous C action features are currently unavailable for Java.
9693
9694Use @code{%define throws} to specify any uncaught exceptions from parser
9695actions, and initial actions specified by @code{%initial-action}.
9696
9697@defvar $@var{n}
9698The semantic value for the @var{n}th component of the current rule.
9699This may not be assigned to.
9700@xref{Java Semantic Values}.
9701@end defvar
9702
9703@defvar $<@var{typealt}>@var{n}
9704Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9705@xref{Java Semantic Values}.
9706@end defvar
9707
9708@defvar $$
9709The semantic value for the grouping made by the current rule. As a
9710value, this is in the base type (@code{Object} or as specified by
9711@code{%define stype}) as in not cast to the declared subtype because
9712casts are not allowed on the left-hand side of Java assignments.
9713Use an explicit Java cast if the correct subtype is needed.
9714@xref{Java Semantic Values}.
9715@end defvar
9716
9717@defvar $<@var{typealt}>$
9718Same as @code{$$} since Java always allow assigning to the base type.
9719Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9720for setting the value but there is currently no easy way to distinguish
9721these constructs.
9722@xref{Java Semantic Values}.
9723@end defvar
9724
9725@defvar @@@var{n}
9726The location information of the @var{n}th component of the current rule.
9727This may not be assigned to.
9728@xref{Java Location Values}.
9729@end defvar
9730
9731@defvar @@$
9732The location information of the grouping made by the current rule.
9733@xref{Java Location Values}.
9734@end defvar
9735
9736@deffn {Statement} {return YYABORT;}
9737Return immediately from the parser, indicating failure.
9738@xref{Java Parser Interface}.
9739@end deffn
8405b70c 9740
e254a580
DJ
9741@deffn {Statement} {return YYACCEPT;}
9742Return immediately from the parser, indicating success.
9743@xref{Java Parser Interface}.
9744@end deffn
8405b70c 9745
e254a580 9746@deffn {Statement} {return YYERROR;}
c046698e 9747Start error recovery without printing an error message.
e254a580
DJ
9748@xref{Error Recovery}.
9749@end deffn
8405b70c 9750
e254a580
DJ
9751@deftypefn {Function} {boolean} recovering ()
9752Return whether error recovery is being done. In this state, the parser
9753reads token until it reaches a known state, and then restarts normal
9754operation.
9755@xref{Error Recovery}.
9756@end deftypefn
8405b70c 9757
e254a580
DJ
9758@deftypefn {Function} {protected void} yyerror (String msg)
9759@deftypefnx {Function} {protected void} yyerror (Position pos, String msg)
9760@deftypefnx {Function} {protected void} yyerror (Location loc, String msg)
9761Print an error message using the @code{yyerror} method of the scanner
9762instance in use.
9763@end deftypefn
8405b70c 9764
8405b70c 9765
8405b70c
PB
9766@node Java Differences
9767@subsection Differences between C/C++ and Java Grammars
9768
9769The different structure of the Java language forces several differences
9770between C/C++ grammars, and grammars designed for Java parsers. This
29553547 9771section summarizes these differences.
8405b70c
PB
9772
9773@itemize
9774@item
01b477c6 9775Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 9776@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
9777macros. Instead, they should be preceded by @code{return} when they
9778appear in an action. The actual definition of these symbols is
8405b70c
PB
9779opaque to the Bison grammar, and it might change in the future. The
9780only meaningful operation that you can do, is to return them.
e254a580 9781See @pxref{Java Action Features}.
8405b70c
PB
9782
9783Note that of these three symbols, only @code{YYACCEPT} and
9784@code{YYABORT} will cause a return from the @code{yyparse}
9785method@footnote{Java parsers include the actions in a separate
9786method than @code{yyparse} in order to have an intuitive syntax that
9787corresponds to these C macros.}.
9788
e254a580
DJ
9789@item
9790Java lacks unions, so @code{%union} has no effect. Instead, semantic
9791values have a common base type: @code{Object} or as specified by
c781580d 9792@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
9793@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
9794an union. The type of @code{$$}, even with angle brackets, is the base
9795type since Java casts are not allow on the left-hand side of assignments.
9796Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
9797left-hand side of assignments. See @pxref{Java Semantic Values} and
9798@pxref{Java Action Features}.
9799
8405b70c 9800@item
c781580d 9801The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
9802@table @asis
9803@item @code{%code imports}
9804blocks are placed at the beginning of the Java source code. They may
9805include copyright notices. For a @code{package} declarations, it is
9806suggested to use @code{%define package} instead.
8405b70c 9807
01b477c6
PB
9808@item unqualified @code{%code}
9809blocks are placed inside the parser class.
9810
9811@item @code{%code lexer}
9812blocks, if specified, should include the implementation of the
9813scanner. If there is no such block, the scanner can be any class
9814that implements the appropriate interface (see @pxref{Java Scanner
9815Interface}).
29553547 9816@end table
8405b70c
PB
9817
9818Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
9819In particular, @code{%@{ @dots{} %@}} blocks should not be used
9820and may give an error in future versions of Bison.
9821
01b477c6 9822The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
9823be used to define other classes used by the parser @emph{outside}
9824the parser class.
8405b70c
PB
9825@end itemize
9826
e254a580
DJ
9827
9828@node Java Declarations Summary
9829@subsection Java Declarations Summary
9830
9831This summary only include declarations specific to Java or have special
9832meaning when used in a Java parser.
9833
9834@deffn {Directive} {%language "Java"}
9835Generate a Java class for the parser.
9836@end deffn
9837
9838@deffn {Directive} %lex-param @{@var{type} @var{name}@}
9839A parameter for the lexer class defined by @code{%code lexer}
9840@emph{only}, added as parameters to the lexer constructor and the parser
9841constructor that @emph{creates} a lexer. Default is none.
9842@xref{Java Scanner Interface}.
9843@end deffn
9844
9845@deffn {Directive} %name-prefix "@var{prefix}"
9846The prefix of the parser class name @code{@var{prefix}Parser} if
9847@code{%define parser_class_name} is not used. Default is @code{YY}.
9848@xref{Java Bison Interface}.
9849@end deffn
9850
9851@deffn {Directive} %parse-param @{@var{type} @var{name}@}
9852A parameter for the parser class added as parameters to constructor(s)
9853and as fields initialized by the constructor(s). Default is none.
9854@xref{Java Parser Interface}.
9855@end deffn
9856
9857@deffn {Directive} %token <@var{type}> @var{token} @dots{}
9858Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
9859@xref{Java Semantic Values}.
9860@end deffn
9861
9862@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
9863Declare the type of nonterminals. Note that the angle brackets enclose
9864a Java @emph{type}.
9865@xref{Java Semantic Values}.
9866@end deffn
9867
9868@deffn {Directive} %code @{ @var{code} @dots{} @}
9869Code appended to the inside of the parser class.
9870@xref{Java Differences}.
9871@end deffn
9872
9873@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
9874Code inserted just after the @code{package} declaration.
9875@xref{Java Differences}.
9876@end deffn
9877
9878@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
9879Code added to the body of a inner lexer class within the parser class.
9880@xref{Java Scanner Interface}.
9881@end deffn
9882
9883@deffn {Directive} %% @var{code} @dots{}
9884Code (after the second @code{%%}) appended to the end of the file,
9885@emph{outside} the parser class.
9886@xref{Java Differences}.
9887@end deffn
9888
9889@deffn {Directive} %@{ @var{code} @dots{} %@}
9890Not supported. Use @code{%code import} instead.
9891@xref{Java Differences}.
9892@end deffn
9893
9894@deffn {Directive} {%define abstract}
9895Whether the parser class is declared @code{abstract}. Default is false.
9896@xref{Java Bison Interface}.
9897@end deffn
9898
9899@deffn {Directive} {%define extends} "@var{superclass}"
9900The superclass of the parser class. Default is none.
9901@xref{Java Bison Interface}.
9902@end deffn
9903
9904@deffn {Directive} {%define final}
9905Whether the parser class is declared @code{final}. Default is false.
9906@xref{Java Bison Interface}.
9907@end deffn
9908
9909@deffn {Directive} {%define implements} "@var{interfaces}"
9910The implemented interfaces of the parser class, a comma-separated list.
9911Default is none.
9912@xref{Java Bison Interface}.
9913@end deffn
9914
9915@deffn {Directive} {%define lex_throws} "@var{exceptions}"
9916The exceptions thrown by the @code{yylex} method of the lexer, a
9917comma-separated list. Default is @code{java.io.IOException}.
9918@xref{Java Scanner Interface}.
9919@end deffn
9920
9921@deffn {Directive} {%define location_type} "@var{class}"
9922The name of the class used for locations (a range between two
9923positions). This class is generated as an inner class of the parser
9924class by @command{bison}. Default is @code{Location}.
9925@xref{Java Location Values}.
9926@end deffn
9927
9928@deffn {Directive} {%define package} "@var{package}"
9929The package to put the parser class in. Default is none.
9930@xref{Java Bison Interface}.
9931@end deffn
9932
9933@deffn {Directive} {%define parser_class_name} "@var{name}"
9934The name of the parser class. Default is @code{YYParser} or
9935@code{@var{name-prefix}Parser}.
9936@xref{Java Bison Interface}.
9937@end deffn
9938
9939@deffn {Directive} {%define position_type} "@var{class}"
9940The name of the class used for positions. This class must be supplied by
9941the user. Default is @code{Position}.
9942@xref{Java Location Values}.
9943@end deffn
9944
9945@deffn {Directive} {%define public}
9946Whether the parser class is declared @code{public}. Default is false.
9947@xref{Java Bison Interface}.
9948@end deffn
9949
9950@deffn {Directive} {%define stype} "@var{class}"
9951The base type of semantic values. Default is @code{Object}.
9952@xref{Java Semantic Values}.
9953@end deffn
9954
9955@deffn {Directive} {%define strictfp}
9956Whether the parser class is declared @code{strictfp}. Default is false.
9957@xref{Java Bison Interface}.
9958@end deffn
9959
9960@deffn {Directive} {%define throws} "@var{exceptions}"
9961The exceptions thrown by user-supplied parser actions and
9962@code{%initial-action}, a comma-separated list. Default is none.
9963@xref{Java Parser Interface}.
9964@end deffn
9965
9966
12545799 9967@c ================================================= FAQ
d1a1114f
AD
9968
9969@node FAQ
9970@chapter Frequently Asked Questions
9971@cindex frequently asked questions
9972@cindex questions
9973
9974Several questions about Bison come up occasionally. Here some of them
9975are addressed.
9976
9977@menu
55ba27be
AD
9978* Memory Exhausted:: Breaking the Stack Limits
9979* How Can I Reset the Parser:: @code{yyparse} Keeps some State
9980* Strings are Destroyed:: @code{yylval} Loses Track of Strings
9981* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 9982* Multiple start-symbols:: Factoring closely related grammars
35430378 9983* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
9984* I can't build Bison:: Troubleshooting
9985* Where can I find help?:: Troubleshouting
9986* Bug Reports:: Troublereporting
8405b70c 9987* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
9988* Beta Testing:: Experimenting development versions
9989* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
9990@end menu
9991
1a059451
PE
9992@node Memory Exhausted
9993@section Memory Exhausted
d1a1114f
AD
9994
9995@display
1a059451 9996My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
9997message. What can I do?
9998@end display
9999
10000This question is already addressed elsewhere, @xref{Recursion,
10001,Recursive Rules}.
10002
e64fec0a
PE
10003@node How Can I Reset the Parser
10004@section How Can I Reset the Parser
5b066063 10005
0e14ad77
PE
10006The following phenomenon has several symptoms, resulting in the
10007following typical questions:
5b066063
AD
10008
10009@display
10010I invoke @code{yyparse} several times, and on correct input it works
10011properly; but when a parse error is found, all the other calls fail
0e14ad77 10012too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
10013@end display
10014
10015@noindent
10016or
10017
10018@display
0e14ad77 10019My parser includes support for an @samp{#include}-like feature, in
5b066063 10020which case I run @code{yyparse} from @code{yyparse}. This fails
d9df47b6 10021although I did specify @code{%define api.pure}.
5b066063
AD
10022@end display
10023
0e14ad77
PE
10024These problems typically come not from Bison itself, but from
10025Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
10026speed, they might not notice a change of input file. As a
10027demonstration, consider the following source file,
10028@file{first-line.l}:
10029
10030@verbatim
10031%{
10032#include <stdio.h>
10033#include <stdlib.h>
10034%}
10035%%
10036.*\n ECHO; return 1;
10037%%
10038int
0e14ad77 10039yyparse (char const *file)
5b066063
AD
10040{
10041 yyin = fopen (file, "r");
10042 if (!yyin)
10043 exit (2);
fa7e68c3 10044 /* One token only. */
5b066063 10045 yylex ();
0e14ad77 10046 if (fclose (yyin) != 0)
5b066063
AD
10047 exit (3);
10048 return 0;
10049}
10050
10051int
0e14ad77 10052main (void)
5b066063
AD
10053{
10054 yyparse ("input");
10055 yyparse ("input");
10056 return 0;
10057}
10058@end verbatim
10059
10060@noindent
10061If the file @file{input} contains
10062
10063@verbatim
10064input:1: Hello,
10065input:2: World!
10066@end verbatim
10067
10068@noindent
0e14ad77 10069then instead of getting the first line twice, you get:
5b066063
AD
10070
10071@example
10072$ @kbd{flex -ofirst-line.c first-line.l}
10073$ @kbd{gcc -ofirst-line first-line.c -ll}
10074$ @kbd{./first-line}
10075input:1: Hello,
10076input:2: World!
10077@end example
10078
0e14ad77
PE
10079Therefore, whenever you change @code{yyin}, you must tell the
10080Lex-generated scanner to discard its current buffer and switch to the
10081new one. This depends upon your implementation of Lex; see its
10082documentation for more. For Flex, it suffices to call
10083@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
10084Flex-generated scanner needs to read from several input streams to
10085handle features like include files, you might consider using Flex
10086functions like @samp{yy_switch_to_buffer} that manipulate multiple
10087input buffers.
5b066063 10088
b165c324
AD
10089If your Flex-generated scanner uses start conditions (@pxref{Start
10090conditions, , Start conditions, flex, The Flex Manual}), you might
10091also want to reset the scanner's state, i.e., go back to the initial
10092start condition, through a call to @samp{BEGIN (0)}.
10093
fef4cb51
AD
10094@node Strings are Destroyed
10095@section Strings are Destroyed
10096
10097@display
c7e441b4 10098My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
10099them. Instead of reporting @samp{"foo", "bar"}, it reports
10100@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
10101@end display
10102
10103This error is probably the single most frequent ``bug report'' sent to
10104Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 10105of the scanner. Consider the following Lex code:
fef4cb51
AD
10106
10107@verbatim
10108%{
10109#include <stdio.h>
10110char *yylval = NULL;
10111%}
10112%%
10113.* yylval = yytext; return 1;
10114\n /* IGNORE */
10115%%
10116int
10117main ()
10118{
fa7e68c3 10119 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
10120 char *fst = (yylex (), yylval);
10121 char *snd = (yylex (), yylval);
10122 printf ("\"%s\", \"%s\"\n", fst, snd);
10123 return 0;
10124}
10125@end verbatim
10126
10127If you compile and run this code, you get:
10128
10129@example
10130$ @kbd{flex -osplit-lines.c split-lines.l}
10131$ @kbd{gcc -osplit-lines split-lines.c -ll}
10132$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10133"one
10134two", "two"
10135@end example
10136
10137@noindent
10138this is because @code{yytext} is a buffer provided for @emph{reading}
10139in the action, but if you want to keep it, you have to duplicate it
10140(e.g., using @code{strdup}). Note that the output may depend on how
10141your implementation of Lex handles @code{yytext}. For instance, when
10142given the Lex compatibility option @option{-l} (which triggers the
10143option @samp{%array}) Flex generates a different behavior:
10144
10145@example
10146$ @kbd{flex -l -osplit-lines.c split-lines.l}
10147$ @kbd{gcc -osplit-lines split-lines.c -ll}
10148$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10149"two", "two"
10150@end example
10151
10152
2fa09258
AD
10153@node Implementing Gotos/Loops
10154@section Implementing Gotos/Loops
a06ea4aa
AD
10155
10156@display
10157My simple calculator supports variables, assignments, and functions,
2fa09258 10158but how can I implement gotos, or loops?
a06ea4aa
AD
10159@end display
10160
10161Although very pedagogical, the examples included in the document blur
a1c84f45 10162the distinction to make between the parser---whose job is to recover
a06ea4aa 10163the structure of a text and to transmit it to subsequent modules of
a1c84f45 10164the program---and the processing (such as the execution) of this
a06ea4aa
AD
10165structure. This works well with so called straight line programs,
10166i.e., precisely those that have a straightforward execution model:
10167execute simple instructions one after the others.
10168
10169@cindex abstract syntax tree
35430378 10170@cindex AST
a06ea4aa
AD
10171If you want a richer model, you will probably need to use the parser
10172to construct a tree that does represent the structure it has
10173recovered; this tree is usually called the @dfn{abstract syntax tree},
35430378 10174or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
10175traversing it in various ways, will enable treatments such as its
10176execution or its translation, which will result in an interpreter or a
10177compiler.
10178
10179This topic is way beyond the scope of this manual, and the reader is
10180invited to consult the dedicated literature.
10181
10182
ed2e6384
AD
10183@node Multiple start-symbols
10184@section Multiple start-symbols
10185
10186@display
10187I have several closely related grammars, and I would like to share their
10188implementations. In fact, I could use a single grammar but with
10189multiple entry points.
10190@end display
10191
10192Bison does not support multiple start-symbols, but there is a very
10193simple means to simulate them. If @code{foo} and @code{bar} are the two
10194pseudo start-symbols, then introduce two new tokens, say
10195@code{START_FOO} and @code{START_BAR}, and use them as switches from the
10196real start-symbol:
10197
10198@example
10199%token START_FOO START_BAR;
10200%start start;
10201start: START_FOO foo
10202 | START_BAR bar;
10203@end example
10204
10205These tokens prevents the introduction of new conflicts. As far as the
10206parser goes, that is all that is needed.
10207
10208Now the difficult part is ensuring that the scanner will send these
10209tokens first. If your scanner is hand-written, that should be
10210straightforward. If your scanner is generated by Lex, them there is
10211simple means to do it: recall that anything between @samp{%@{ ... %@}}
10212after the first @code{%%} is copied verbatim in the top of the generated
10213@code{yylex} function. Make sure a variable @code{start_token} is
10214available in the scanner (e.g., a global variable or using
10215@code{%lex-param} etc.), and use the following:
10216
10217@example
10218 /* @r{Prologue.} */
10219%%
10220%@{
10221 if (start_token)
10222 @{
10223 int t = start_token;
10224 start_token = 0;
10225 return t;
10226 @}
10227%@}
10228 /* @r{The rules.} */
10229@end example
10230
10231
55ba27be
AD
10232@node Secure? Conform?
10233@section Secure? Conform?
10234
10235@display
10236Is Bison secure? Does it conform to POSIX?
10237@end display
10238
10239If you're looking for a guarantee or certification, we don't provide it.
10240However, Bison is intended to be a reliable program that conforms to the
35430378 10241POSIX specification for Yacc. If you run into problems,
55ba27be
AD
10242please send us a bug report.
10243
10244@node I can't build Bison
10245@section I can't build Bison
10246
10247@display
8c5b881d
PE
10248I can't build Bison because @command{make} complains that
10249@code{msgfmt} is not found.
55ba27be
AD
10250What should I do?
10251@end display
10252
10253Like most GNU packages with internationalization support, that feature
10254is turned on by default. If you have problems building in the @file{po}
10255subdirectory, it indicates that your system's internationalization
10256support is lacking. You can re-configure Bison with
10257@option{--disable-nls} to turn off this support, or you can install GNU
10258gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
10259Bison. See the file @file{ABOUT-NLS} for more information.
10260
10261
10262@node Where can I find help?
10263@section Where can I find help?
10264
10265@display
10266I'm having trouble using Bison. Where can I find help?
10267@end display
10268
10269First, read this fine manual. Beyond that, you can send mail to
10270@email{help-bison@@gnu.org}. This mailing list is intended to be
10271populated with people who are willing to answer questions about using
10272and installing Bison. Please keep in mind that (most of) the people on
10273the list have aspects of their lives which are not related to Bison (!),
10274so you may not receive an answer to your question right away. This can
10275be frustrating, but please try not to honk them off; remember that any
10276help they provide is purely voluntary and out of the kindness of their
10277hearts.
10278
10279@node Bug Reports
10280@section Bug Reports
10281
10282@display
10283I found a bug. What should I include in the bug report?
10284@end display
10285
10286Before you send a bug report, make sure you are using the latest
10287version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
10288mirrors. Be sure to include the version number in your bug report. If
10289the bug is present in the latest version but not in a previous version,
10290try to determine the most recent version which did not contain the bug.
10291
10292If the bug is parser-related, you should include the smallest grammar
10293you can which demonstrates the bug. The grammar file should also be
10294complete (i.e., I should be able to run it through Bison without having
10295to edit or add anything). The smaller and simpler the grammar, the
10296easier it will be to fix the bug.
10297
10298Include information about your compilation environment, including your
10299operating system's name and version and your compiler's name and
10300version. If you have trouble compiling, you should also include a
10301transcript of the build session, starting with the invocation of
10302`configure'. Depending on the nature of the bug, you may be asked to
10303send additional files as well (such as `config.h' or `config.cache').
10304
10305Patches are most welcome, but not required. That is, do not hesitate to
10306send a bug report just because you can not provide a fix.
10307
10308Send bug reports to @email{bug-bison@@gnu.org}.
10309
8405b70c
PB
10310@node More Languages
10311@section More Languages
55ba27be
AD
10312
10313@display
8405b70c 10314Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
10315favorite language here}?
10316@end display
10317
8405b70c 10318C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
10319languages; contributions are welcome.
10320
10321@node Beta Testing
10322@section Beta Testing
10323
10324@display
10325What is involved in being a beta tester?
10326@end display
10327
10328It's not terribly involved. Basically, you would download a test
10329release, compile it, and use it to build and run a parser or two. After
10330that, you would submit either a bug report or a message saying that
10331everything is okay. It is important to report successes as well as
10332failures because test releases eventually become mainstream releases,
10333but only if they are adequately tested. If no one tests, development is
10334essentially halted.
10335
10336Beta testers are particularly needed for operating systems to which the
10337developers do not have easy access. They currently have easy access to
10338recent GNU/Linux and Solaris versions. Reports about other operating
10339systems are especially welcome.
10340
10341@node Mailing Lists
10342@section Mailing Lists
10343
10344@display
10345How do I join the help-bison and bug-bison mailing lists?
10346@end display
10347
10348See @url{http://lists.gnu.org/}.
a06ea4aa 10349
d1a1114f
AD
10350@c ================================================= Table of Symbols
10351
342b8b6e 10352@node Table of Symbols
bfa74976
RS
10353@appendix Bison Symbols
10354@cindex Bison symbols, table of
10355@cindex symbols in Bison, table of
10356
18b519c0 10357@deffn {Variable} @@$
3ded9a63 10358In an action, the location of the left-hand side of the rule.
88bce5a2 10359@xref{Locations, , Locations Overview}.
18b519c0 10360@end deffn
3ded9a63 10361
18b519c0 10362@deffn {Variable} @@@var{n}
3ded9a63
AD
10363In an action, the location of the @var{n}-th symbol of the right-hand
10364side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 10365@end deffn
3ded9a63 10366
1f68dca5
AR
10367@deffn {Variable} @@@var{name}
10368In an action, the location of a symbol addressed by name.
10369@xref{Locations, , Locations Overview}.
10370@end deffn
10371
10372@deffn {Variable} @@[@var{name}]
10373In an action, the location of a symbol addressed by name.
10374@xref{Locations, , Locations Overview}.
10375@end deffn
10376
18b519c0 10377@deffn {Variable} $$
3ded9a63
AD
10378In an action, the semantic value of the left-hand side of the rule.
10379@xref{Actions}.
18b519c0 10380@end deffn
3ded9a63 10381
18b519c0 10382@deffn {Variable} $@var{n}
3ded9a63
AD
10383In an action, the semantic value of the @var{n}-th symbol of the
10384right-hand side of the rule. @xref{Actions}.
18b519c0 10385@end deffn
3ded9a63 10386
1f68dca5
AR
10387@deffn {Variable} $@var{name}
10388In an action, the semantic value of a symbol addressed by name.
10389@xref{Actions}.
10390@end deffn
10391
10392@deffn {Variable} $[@var{name}]
10393In an action, the semantic value of a symbol addressed by name.
10394@xref{Actions}.
10395@end deffn
10396
dd8d9022
AD
10397@deffn {Delimiter} %%
10398Delimiter used to separate the grammar rule section from the
10399Bison declarations section or the epilogue.
10400@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 10401@end deffn
bfa74976 10402
dd8d9022
AD
10403@c Don't insert spaces, or check the DVI output.
10404@deffn {Delimiter} %@{@var{code}%@}
9913d6e4
JD
10405All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
10406to the parser implementation file. Such code forms the prologue of
10407the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 10408Grammar}.
18b519c0 10409@end deffn
bfa74976 10410
dd8d9022
AD
10411@deffn {Construct} /*@dots{}*/
10412Comment delimiters, as in C.
18b519c0 10413@end deffn
bfa74976 10414
dd8d9022
AD
10415@deffn {Delimiter} :
10416Separates a rule's result from its components. @xref{Rules, ,Syntax of
10417Grammar Rules}.
18b519c0 10418@end deffn
bfa74976 10419
dd8d9022
AD
10420@deffn {Delimiter} ;
10421Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10422@end deffn
bfa74976 10423
dd8d9022
AD
10424@deffn {Delimiter} |
10425Separates alternate rules for the same result nonterminal.
10426@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10427@end deffn
bfa74976 10428
12e35840
JD
10429@deffn {Directive} <*>
10430Used to define a default tagged @code{%destructor} or default tagged
10431@code{%printer}.
85894313
JD
10432
10433This feature is experimental.
10434More user feedback will help to determine whether it should become a permanent
10435feature.
10436
12e35840
JD
10437@xref{Destructor Decl, , Freeing Discarded Symbols}.
10438@end deffn
10439
3ebecc24 10440@deffn {Directive} <>
12e35840
JD
10441Used to define a default tagless @code{%destructor} or default tagless
10442@code{%printer}.
85894313
JD
10443
10444This feature is experimental.
10445More user feedback will help to determine whether it should become a permanent
10446feature.
10447
12e35840
JD
10448@xref{Destructor Decl, , Freeing Discarded Symbols}.
10449@end deffn
10450
dd8d9022
AD
10451@deffn {Symbol} $accept
10452The predefined nonterminal whose only rule is @samp{$accept: @var{start}
10453$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
10454Start-Symbol}. It cannot be used in the grammar.
18b519c0 10455@end deffn
bfa74976 10456
136a0f76 10457@deffn {Directive} %code @{@var{code}@}
148d66d8 10458@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
406dec82
JD
10459Insert @var{code} verbatim into the output parser source at the
10460default location or at the location specified by @var{qualifier}.
8e6f2266 10461@xref{%code Summary}.
9bc0dd67 10462@end deffn
9bc0dd67 10463
18b519c0 10464@deffn {Directive} %debug
6deb4447 10465Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 10466@end deffn
6deb4447 10467
91d2c560 10468@ifset defaultprec
22fccf95
PE
10469@deffn {Directive} %default-prec
10470Assign a precedence to rules that lack an explicit @samp{%prec}
10471modifier. @xref{Contextual Precedence, ,Context-Dependent
10472Precedence}.
39a06c25 10473@end deffn
91d2c560 10474@end ifset
39a06c25 10475
6f04ee6c
JD
10476@deffn {Directive} %define @var{variable}
10477@deffnx {Directive} %define @var{variable} @var{value}
10478@deffnx {Directive} %define @var{variable} "@var{value}"
2f4518a1 10479Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
10480@end deffn
10481
18b519c0 10482@deffn {Directive} %defines
9913d6e4
JD
10483Bison declaration to create a parser header file, which is usually
10484meant for the scanner. @xref{Decl Summary}.
18b519c0 10485@end deffn
6deb4447 10486
02975b9a
JD
10487@deffn {Directive} %defines @var{defines-file}
10488Same as above, but save in the file @var{defines-file}.
10489@xref{Decl Summary}.
10490@end deffn
10491
18b519c0 10492@deffn {Directive} %destructor
258b75ca 10493Specify how the parser should reclaim the memory associated to
fa7e68c3 10494discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 10495@end deffn
72f889cc 10496
18b519c0 10497@deffn {Directive} %dprec
676385e2 10498Bison declaration to assign a precedence to a rule that is used at parse
c827f760 10499time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
35430378 10500GLR Parsers}.
18b519c0 10501@end deffn
676385e2 10502
dd8d9022
AD
10503@deffn {Symbol} $end
10504The predefined token marking the end of the token stream. It cannot be
10505used in the grammar.
10506@end deffn
10507
10508@deffn {Symbol} error
10509A token name reserved for error recovery. This token may be used in
10510grammar rules so as to allow the Bison parser to recognize an error in
10511the grammar without halting the process. In effect, a sentence
10512containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
10513token @code{error} becomes the current lookahead token. Actions
10514corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
10515token is reset to the token that originally caused the violation.
10516@xref{Error Recovery}.
18d192f0
AD
10517@end deffn
10518
18b519c0 10519@deffn {Directive} %error-verbose
2a8d363a 10520Bison declaration to request verbose, specific error message strings
6f04ee6c 10521when @code{yyerror} is called. @xref{Error Reporting}.
18b519c0 10522@end deffn
2a8d363a 10523
02975b9a 10524@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 10525Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 10526Summary}.
18b519c0 10527@end deffn
d8988b2f 10528
18b519c0 10529@deffn {Directive} %glr-parser
35430378
JD
10530Bison declaration to produce a GLR parser. @xref{GLR
10531Parsers, ,Writing GLR Parsers}.
18b519c0 10532@end deffn
676385e2 10533
dd8d9022
AD
10534@deffn {Directive} %initial-action
10535Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
10536@end deffn
10537
e6e704dc
JD
10538@deffn {Directive} %language
10539Specify the programming language for the generated parser.
10540@xref{Decl Summary}.
10541@end deffn
10542
18b519c0 10543@deffn {Directive} %left
bfa74976
RS
10544Bison declaration to assign left associativity to token(s).
10545@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10546@end deffn
bfa74976 10547
feeb0eda 10548@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
10549Bison declaration to specifying an additional parameter that
10550@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
10551for Pure Parsers}.
18b519c0 10552@end deffn
2a8d363a 10553
18b519c0 10554@deffn {Directive} %merge
676385e2 10555Bison declaration to assign a merging function to a rule. If there is a
fae437e8 10556reduce/reduce conflict with a rule having the same merging function, the
676385e2 10557function is applied to the two semantic values to get a single result.
35430378 10558@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 10559@end deffn
676385e2 10560
02975b9a 10561@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 10562Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 10563@end deffn
d8988b2f 10564
91d2c560 10565@ifset defaultprec
22fccf95
PE
10566@deffn {Directive} %no-default-prec
10567Do not assign a precedence to rules that lack an explicit @samp{%prec}
10568modifier. @xref{Contextual Precedence, ,Context-Dependent
10569Precedence}.
10570@end deffn
91d2c560 10571@end ifset
22fccf95 10572
18b519c0 10573@deffn {Directive} %no-lines
931c7513 10574Bison declaration to avoid generating @code{#line} directives in the
9913d6e4 10575parser implementation file. @xref{Decl Summary}.
18b519c0 10576@end deffn
931c7513 10577
18b519c0 10578@deffn {Directive} %nonassoc
9d9b8b70 10579Bison declaration to assign nonassociativity to token(s).
bfa74976 10580@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10581@end deffn
bfa74976 10582
02975b9a 10583@deffn {Directive} %output "@var{file}"
9913d6e4
JD
10584Bison declaration to set the name of the parser implementation file.
10585@xref{Decl Summary}.
18b519c0 10586@end deffn
d8988b2f 10587
feeb0eda 10588@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
10589Bison declaration to specifying an additional parameter that
10590@code{yyparse} should accept. @xref{Parser Function,, The Parser
10591Function @code{yyparse}}.
18b519c0 10592@end deffn
2a8d363a 10593
18b519c0 10594@deffn {Directive} %prec
bfa74976
RS
10595Bison declaration to assign a precedence to a specific rule.
10596@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 10597@end deffn
bfa74976 10598
18b519c0 10599@deffn {Directive} %pure-parser
2f4518a1
JD
10600Deprecated version of @code{%define api.pure} (@pxref{%define
10601Summary,,api.pure}), for which Bison is more careful to warn about
10602unreasonable usage.
18b519c0 10603@end deffn
bfa74976 10604
b50d2359 10605@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
10606Require version @var{version} or higher of Bison. @xref{Require Decl, ,
10607Require a Version of Bison}.
b50d2359
AD
10608@end deffn
10609
18b519c0 10610@deffn {Directive} %right
bfa74976
RS
10611Bison declaration to assign right associativity to token(s).
10612@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10613@end deffn
bfa74976 10614
e6e704dc
JD
10615@deffn {Directive} %skeleton
10616Specify the skeleton to use; usually for development.
10617@xref{Decl Summary}.
10618@end deffn
10619
18b519c0 10620@deffn {Directive} %start
704a47c4
AD
10621Bison declaration to specify the start symbol. @xref{Start Decl, ,The
10622Start-Symbol}.
18b519c0 10623@end deffn
bfa74976 10624
18b519c0 10625@deffn {Directive} %token
bfa74976
RS
10626Bison declaration to declare token(s) without specifying precedence.
10627@xref{Token Decl, ,Token Type Names}.
18b519c0 10628@end deffn
bfa74976 10629
18b519c0 10630@deffn {Directive} %token-table
9913d6e4
JD
10631Bison declaration to include a token name table in the parser
10632implementation file. @xref{Decl Summary}.
18b519c0 10633@end deffn
931c7513 10634
18b519c0 10635@deffn {Directive} %type
704a47c4
AD
10636Bison declaration to declare nonterminals. @xref{Type Decl,
10637,Nonterminal Symbols}.
18b519c0 10638@end deffn
bfa74976 10639
dd8d9022
AD
10640@deffn {Symbol} $undefined
10641The predefined token onto which all undefined values returned by
10642@code{yylex} are mapped. It cannot be used in the grammar, rather, use
10643@code{error}.
10644@end deffn
10645
18b519c0 10646@deffn {Directive} %union
bfa74976
RS
10647Bison declaration to specify several possible data types for semantic
10648values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 10649@end deffn
bfa74976 10650
dd8d9022
AD
10651@deffn {Macro} YYABORT
10652Macro to pretend that an unrecoverable syntax error has occurred, by
10653making @code{yyparse} return 1 immediately. The error reporting
10654function @code{yyerror} is not called. @xref{Parser Function, ,The
10655Parser Function @code{yyparse}}.
8405b70c
PB
10656
10657For Java parsers, this functionality is invoked using @code{return YYABORT;}
10658instead.
dd8d9022 10659@end deffn
3ded9a63 10660
dd8d9022
AD
10661@deffn {Macro} YYACCEPT
10662Macro to pretend that a complete utterance of the language has been
10663read, by making @code{yyparse} return 0 immediately.
10664@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
10665
10666For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
10667instead.
dd8d9022 10668@end deffn
bfa74976 10669
dd8d9022 10670@deffn {Macro} YYBACKUP
742e4900 10671Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 10672token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10673@end deffn
bfa74976 10674
dd8d9022 10675@deffn {Variable} yychar
32c29292 10676External integer variable that contains the integer value of the
742e4900 10677lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
10678@code{yyparse}.) Error-recovery rule actions may examine this variable.
10679@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10680@end deffn
bfa74976 10681
dd8d9022
AD
10682@deffn {Variable} yyclearin
10683Macro used in error-recovery rule actions. It clears the previous
742e4900 10684lookahead token. @xref{Error Recovery}.
18b519c0 10685@end deffn
bfa74976 10686
dd8d9022
AD
10687@deffn {Macro} YYDEBUG
10688Macro to define to equip the parser with tracing code. @xref{Tracing,
10689,Tracing Your Parser}.
18b519c0 10690@end deffn
bfa74976 10691
dd8d9022
AD
10692@deffn {Variable} yydebug
10693External integer variable set to zero by default. If @code{yydebug}
10694is given a nonzero value, the parser will output information on input
10695symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 10696@end deffn
bfa74976 10697
dd8d9022
AD
10698@deffn {Macro} yyerrok
10699Macro to cause parser to recover immediately to its normal mode
10700after a syntax error. @xref{Error Recovery}.
10701@end deffn
10702
10703@deffn {Macro} YYERROR
10704Macro to pretend that a syntax error has just been detected: call
10705@code{yyerror} and then perform normal error recovery if possible
10706(@pxref{Error Recovery}), or (if recovery is impossible) make
10707@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
10708
10709For Java parsers, this functionality is invoked using @code{return YYERROR;}
10710instead.
dd8d9022
AD
10711@end deffn
10712
10713@deffn {Function} yyerror
10714User-supplied function to be called by @code{yyparse} on error.
10715@xref{Error Reporting, ,The Error
10716Reporting Function @code{yyerror}}.
10717@end deffn
10718
10719@deffn {Macro} YYERROR_VERBOSE
10720An obsolete macro that you define with @code{#define} in the prologue
10721to request verbose, specific error message strings
10722when @code{yyerror} is called. It doesn't matter what definition you
10723use for @code{YYERROR_VERBOSE}, just whether you define it. Using
6f04ee6c 10724@code{%error-verbose} is preferred. @xref{Error Reporting}.
dd8d9022
AD
10725@end deffn
10726
10727@deffn {Macro} YYINITDEPTH
10728Macro for specifying the initial size of the parser stack.
1a059451 10729@xref{Memory Management}.
dd8d9022
AD
10730@end deffn
10731
10732@deffn {Function} yylex
10733User-supplied lexical analyzer function, called with no arguments to get
10734the next token. @xref{Lexical, ,The Lexical Analyzer Function
10735@code{yylex}}.
10736@end deffn
10737
10738@deffn {Macro} YYLEX_PARAM
10739An obsolete macro for specifying an extra argument (or list of extra
32c29292 10740arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
10741macro is deprecated, and is supported only for Yacc like parsers.
10742@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
10743@end deffn
10744
10745@deffn {Variable} yylloc
10746External variable in which @code{yylex} should place the line and column
10747numbers associated with a token. (In a pure parser, it is a local
10748variable within @code{yyparse}, and its address is passed to
32c29292
JD
10749@code{yylex}.)
10750You can ignore this variable if you don't use the @samp{@@} feature in the
10751grammar actions.
10752@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 10753In semantic actions, it stores the location of the lookahead token.
32c29292 10754@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
10755@end deffn
10756
10757@deffn {Type} YYLTYPE
10758Data type of @code{yylloc}; by default, a structure with four
10759members. @xref{Location Type, , Data Types of Locations}.
10760@end deffn
10761
10762@deffn {Variable} yylval
10763External variable in which @code{yylex} should place the semantic
10764value associated with a token. (In a pure parser, it is a local
10765variable within @code{yyparse}, and its address is passed to
32c29292
JD
10766@code{yylex}.)
10767@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 10768In semantic actions, it stores the semantic value of the lookahead token.
32c29292 10769@xref{Actions, ,Actions}.
dd8d9022
AD
10770@end deffn
10771
10772@deffn {Macro} YYMAXDEPTH
1a059451
PE
10773Macro for specifying the maximum size of the parser stack. @xref{Memory
10774Management}.
dd8d9022
AD
10775@end deffn
10776
10777@deffn {Variable} yynerrs
8a2800e7 10778Global variable which Bison increments each time it reports a syntax error.
f4101aa6 10779(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 10780pure push parser, it is a member of yypstate.)
dd8d9022
AD
10781@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
10782@end deffn
10783
10784@deffn {Function} yyparse
10785The parser function produced by Bison; call this function to start
10786parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
10787@end deffn
10788
9987d1b3 10789@deffn {Function} yypstate_delete
f4101aa6 10790The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 10791call this function to delete the memory associated with a parser.
f4101aa6 10792@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 10793@code{yypstate_delete}}.
59da312b
JD
10794(The current push parsing interface is experimental and may evolve.
10795More user feedback will help to stabilize it.)
9987d1b3
JD
10796@end deffn
10797
10798@deffn {Function} yypstate_new
f4101aa6 10799The function to create a parser instance, produced by Bison in push mode;
9987d1b3 10800call this function to create a new parser.
f4101aa6 10801@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 10802@code{yypstate_new}}.
59da312b
JD
10803(The current push parsing interface is experimental and may evolve.
10804More user feedback will help to stabilize it.)
9987d1b3
JD
10805@end deffn
10806
10807@deffn {Function} yypull_parse
f4101aa6
AD
10808The parser function produced by Bison in push mode; call this function to
10809parse the rest of the input stream.
10810@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 10811@code{yypull_parse}}.
59da312b
JD
10812(The current push parsing interface is experimental and may evolve.
10813More user feedback will help to stabilize it.)
9987d1b3
JD
10814@end deffn
10815
10816@deffn {Function} yypush_parse
f4101aa6
AD
10817The parser function produced by Bison in push mode; call this function to
10818parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 10819@code{yypush_parse}}.
59da312b
JD
10820(The current push parsing interface is experimental and may evolve.
10821More user feedback will help to stabilize it.)
9987d1b3
JD
10822@end deffn
10823
dd8d9022
AD
10824@deffn {Macro} YYPARSE_PARAM
10825An obsolete macro for specifying the name of a parameter that
10826@code{yyparse} should accept. The use of this macro is deprecated, and
10827is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
10828Conventions for Pure Parsers}.
10829@end deffn
10830
10831@deffn {Macro} YYRECOVERING
02103984
PE
10832The expression @code{YYRECOVERING ()} yields 1 when the parser
10833is recovering from a syntax error, and 0 otherwise.
10834@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
10835@end deffn
10836
10837@deffn {Macro} YYSTACK_USE_ALLOCA
34a6c2d1
JD
10838Macro used to control the use of @code{alloca} when the
10839deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
10840the parser will use @code{malloc} to extend its stacks. If defined to
108411, the parser will use @code{alloca}. Values other than 0 and 1 are
10842reserved for future Bison extensions. If not defined,
10843@code{YYSTACK_USE_ALLOCA} defaults to 0.
10844
55289366 10845In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
10846limited stack and with unreliable stack-overflow checking, you should
10847set @code{YYMAXDEPTH} to a value that cannot possibly result in
10848unchecked stack overflow on any of your target hosts when
10849@code{alloca} is called. You can inspect the code that Bison
10850generates in order to determine the proper numeric values. This will
10851require some expertise in low-level implementation details.
dd8d9022
AD
10852@end deffn
10853
10854@deffn {Type} YYSTYPE
10855Data type of semantic values; @code{int} by default.
10856@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 10857@end deffn
bfa74976 10858
342b8b6e 10859@node Glossary
bfa74976
RS
10860@appendix Glossary
10861@cindex glossary
10862
10863@table @asis
6f04ee6c 10864@item Accepting state
34a6c2d1
JD
10865A state whose only action is the accept action.
10866The accepting state is thus a consistent state.
10867@xref{Understanding,,}.
10868
35430378 10869@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
10870Formal method of specifying context-free grammars originally proposed
10871by John Backus, and slightly improved by Peter Naur in his 1960-01-02
10872committee document contributing to what became the Algol 60 report.
10873@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 10874
6f04ee6c
JD
10875@item Consistent state
10876A state containing only one possible action. @xref{Default Reductions}.
34a6c2d1 10877
bfa74976
RS
10878@item Context-free grammars
10879Grammars specified as rules that can be applied regardless of context.
10880Thus, if there is a rule which says that an integer can be used as an
10881expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
10882permitted. @xref{Language and Grammar, ,Languages and Context-Free
10883Grammars}.
bfa74976 10884
6f04ee6c 10885@item Default reduction
620b5727 10886The reduction that a parser should perform if the current parser state
2f4518a1 10887contains no other action for the lookahead token. In permitted parser
6f04ee6c
JD
10888states, Bison declares the reduction with the largest lookahead set to be
10889the default reduction and removes that lookahead set. @xref{Default
10890Reductions}.
10891
10892@item Defaulted state
10893A consistent state with a default reduction. @xref{Default Reductions}.
34a6c2d1 10894
bfa74976
RS
10895@item Dynamic allocation
10896Allocation of memory that occurs during execution, rather than at
10897compile time or on entry to a function.
10898
10899@item Empty string
10900Analogous to the empty set in set theory, the empty string is a
10901character string of length zero.
10902
10903@item Finite-state stack machine
10904A ``machine'' that has discrete states in which it is said to exist at
10905each instant in time. As input to the machine is processed, the
10906machine moves from state to state as specified by the logic of the
10907machine. In the case of the parser, the input is the language being
10908parsed, and the states correspond to various stages in the grammar
c827f760 10909rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 10910
35430378 10911@item Generalized LR (GLR)
676385e2 10912A parsing algorithm that can handle all context-free grammars, including those
35430378 10913that are not LR(1). It resolves situations that Bison's
34a6c2d1 10914deterministic parsing
676385e2
PH
10915algorithm cannot by effectively splitting off multiple parsers, trying all
10916possible parsers, and discarding those that fail in the light of additional
c827f760 10917right context. @xref{Generalized LR Parsing, ,Generalized
35430378 10918LR Parsing}.
676385e2 10919
bfa74976
RS
10920@item Grouping
10921A language construct that is (in general) grammatically divisible;
c827f760 10922for example, `expression' or `declaration' in C@.
bfa74976
RS
10923@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10924
6f04ee6c
JD
10925@item IELR(1) (Inadequacy Elimination LR(1))
10926A minimal LR(1) parser table construction algorithm. That is, given any
2f4518a1 10927context-free grammar, IELR(1) generates parser tables with the full
6f04ee6c
JD
10928language-recognition power of canonical LR(1) but with nearly the same
10929number of parser states as LALR(1). This reduction in parser states is
10930often an order of magnitude. More importantly, because canonical LR(1)'s
10931extra parser states may contain duplicate conflicts in the case of non-LR(1)
10932grammars, the number of conflicts for IELR(1) is often an order of magnitude
10933less as well. This can significantly reduce the complexity of developing a
10934grammar. @xref{LR Table Construction}.
34a6c2d1 10935
bfa74976
RS
10936@item Infix operator
10937An arithmetic operator that is placed between the operands on which it
10938performs some operation.
10939
10940@item Input stream
10941A continuous flow of data between devices or programs.
10942
35430378 10943@item LAC (Lookahead Correction)
4c38b19e 10944A parsing mechanism that fixes the problem of delayed syntax error
6f04ee6c
JD
10945detection, which is caused by LR state merging, default reductions, and the
10946use of @code{%nonassoc}. Delayed syntax error detection results in
10947unexpected semantic actions, initiation of error recovery in the wrong
10948syntactic context, and an incorrect list of expected tokens in a verbose
10949syntax error message. @xref{LAC}.
4c38b19e 10950
bfa74976
RS
10951@item Language construct
10952One of the typical usage schemas of the language. For example, one of
10953the constructs of the C language is the @code{if} statement.
10954@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10955
10956@item Left associativity
10957Operators having left associativity are analyzed from left to right:
10958@samp{a+b+c} first computes @samp{a+b} and then combines with
10959@samp{c}. @xref{Precedence, ,Operator Precedence}.
10960
10961@item Left recursion
89cab50d
AD
10962A rule whose result symbol is also its first component symbol; for
10963example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
10964Rules}.
bfa74976
RS
10965
10966@item Left-to-right parsing
10967Parsing a sentence of a language by analyzing it token by token from
c827f760 10968left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10969
10970@item Lexical analyzer (scanner)
10971A function that reads an input stream and returns tokens one by one.
10972@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
10973
10974@item Lexical tie-in
10975A flag, set by actions in the grammar rules, which alters the way
10976tokens are parsed. @xref{Lexical Tie-ins}.
10977
931c7513 10978@item Literal string token
14ded682 10979A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 10980
742e4900
JD
10981@item Lookahead token
10982A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 10983Tokens}.
bfa74976 10984
35430378 10985@item LALR(1)
bfa74976 10986The class of context-free grammars that Bison (like most other parser
35430378 10987generators) can handle by default; a subset of LR(1).
5da0355a 10988@xref{Mysterious Conflicts}.
bfa74976 10989
35430378 10990@item LR(1)
bfa74976 10991The class of context-free grammars in which at most one token of
742e4900 10992lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
10993
10994@item Nonterminal symbol
10995A grammar symbol standing for a grammatical construct that can
10996be expressed through rules in terms of smaller constructs; in other
10997words, a construct that is not a token. @xref{Symbols}.
10998
bfa74976
RS
10999@item Parser
11000A function that recognizes valid sentences of a language by analyzing
11001the syntax structure of a set of tokens passed to it from a lexical
11002analyzer.
11003
11004@item Postfix operator
11005An arithmetic operator that is placed after the operands upon which it
11006performs some operation.
11007
11008@item Reduction
11009Replacing a string of nonterminals and/or terminals with a single
89cab50d 11010nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 11011Parser Algorithm}.
bfa74976
RS
11012
11013@item Reentrant
11014A reentrant subprogram is a subprogram which can be in invoked any
11015number of times in parallel, without interference between the various
11016invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
11017
11018@item Reverse polish notation
11019A language in which all operators are postfix operators.
11020
11021@item Right recursion
89cab50d
AD
11022A rule whose result symbol is also its last component symbol; for
11023example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
11024Rules}.
bfa74976
RS
11025
11026@item Semantics
11027In computer languages, the semantics are specified by the actions
11028taken for each instance of the language, i.e., the meaning of
11029each statement. @xref{Semantics, ,Defining Language Semantics}.
11030
11031@item Shift
11032A parser is said to shift when it makes the choice of analyzing
11033further input from the stream rather than reducing immediately some
c827f760 11034already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11035
11036@item Single-character literal
11037A single character that is recognized and interpreted as is.
11038@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
11039
11040@item Start symbol
11041The nonterminal symbol that stands for a complete valid utterance in
11042the language being parsed. The start symbol is usually listed as the
13863333 11043first nonterminal symbol in a language specification.
bfa74976
RS
11044@xref{Start Decl, ,The Start-Symbol}.
11045
11046@item Symbol table
11047A data structure where symbol names and associated data are stored
11048during parsing to allow for recognition and use of existing
11049information in repeated uses of a symbol. @xref{Multi-function Calc}.
11050
6e649e65
PE
11051@item Syntax error
11052An error encountered during parsing of an input stream due to invalid
11053syntax. @xref{Error Recovery}.
11054
bfa74976
RS
11055@item Token
11056A basic, grammatically indivisible unit of a language. The symbol
11057that describes a token in the grammar is a terminal symbol.
11058The input of the Bison parser is a stream of tokens which comes from
11059the lexical analyzer. @xref{Symbols}.
11060
11061@item Terminal symbol
89cab50d
AD
11062A grammar symbol that has no rules in the grammar and therefore is
11063grammatically indivisible. The piece of text it represents is a token.
11064@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
6f04ee6c
JD
11065
11066@item Unreachable state
11067A parser state to which there does not exist a sequence of transitions from
11068the parser's start state. A state can become unreachable during conflict
11069resolution. @xref{Unreachable States}.
bfa74976
RS
11070@end table
11071
342b8b6e 11072@node Copying This Manual
f2b5126e 11073@appendix Copying This Manual
f2b5126e
PB
11074@include fdl.texi
11075
71caec06
JD
11076@node Bibliography
11077@unnumbered Bibliography
11078
11079@table @asis
11080@item [Denny 2008]
11081Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
11082for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
110832008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
11084pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
11085
11086@item [Denny 2010 May]
11087Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
11088Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
11089University, Clemson, SC, USA (May 2010).
11090@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
11091
11092@item [Denny 2010 November]
11093Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
11094Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
11095in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
110962010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
11097
11098@item [DeRemer 1982]
11099Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
11100Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
11101Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
11102615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
11103
11104@item [Knuth 1965]
11105Donald E. Knuth, On the Translation of Languages from Left to Right, in
11106@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
11107607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
11108
11109@item [Scott 2000]
11110Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
11111@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
11112London, Department of Computer Science, TR-00-12 (December 2000).
11113@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
11114@end table
11115
342b8b6e 11116@node Index
bfa74976
RS
11117@unnumbered Index
11118
11119@printindex cp
11120
bfa74976 11121@bye
a06ea4aa 11122
232be91a
AD
11123@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
11124@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
11125@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
11126@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
11127@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
11128@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
11129@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
11130@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
11131@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
11132@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
11133@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
11134@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
11135@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
11136@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym enum
11137@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
11138@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
11139@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
11140@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
11141@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
11142@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
11143@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
11144@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
11145@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
11146@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype Lookahead
11147@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
11148@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
11149@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
11150@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
11151@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
4c38b19e 11152@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
232be91a 11153@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs
9913d6e4 11154@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC
232be91a
AD
11155@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
11156@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative
11157@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
11158@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
11159@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
11160@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz
11161@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
9913d6e4 11162@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno
232be91a
AD
11163@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
11164@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
11165@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
11166@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
11167@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc
11168@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
11169@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
11170@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
11171@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
11172@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
840341d6 11173@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett
232be91a 11174@c LocalWords: subdirectory Solaris nonassociativity
f3103c5b
AD
11175
11176@c Local Variables:
11177@c ispell-dictionary: "american"
11178@c fill-column: 76
11179@c End: