]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
doc: add bibliography to manual.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
35430378
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
ea0a7676
JD
36Copyright @copyright{} 1988-1993, 1995, 1998-2011 Free Software
37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
35430378 41under the terms of the GNU Free Documentation License,
241ac701 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
35430378 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
35430378 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
35430378
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
35430378 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
35430378 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
35430378 91* Copying:: The GNU General Public License says
f56274a8 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f56274a8
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f56274a8
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f56274a8
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
9913d6e4 106* Invocation:: How to run Bison (to produce the parser implementation).
f56274a8
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
71caec06 112* Bibliography:: Publications cited in this manual.
f56274a8 113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f56274a8
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
128* Locations Overview:: Tracking Locations.
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
35430378 134Writing GLR Parsers
fa7e68c3 135
35430378
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
f56274a8 138* GLR Semantic Actions:: Deferred semantic actions have special concerns.
35430378 139* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 140
bfa74976
RS
141Examples
142
f56274a8
DJ
143* RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145* Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
bfa74976 147* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 148* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
149* Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
151* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
152
153Reverse Polish Notation Calculator
154
f56274a8
DJ
155* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
156* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
157* Rpcalc Lexer:: The lexical analyzer.
158* Rpcalc Main:: The controlling function.
159* Rpcalc Error:: The error reporting function.
160* Rpcalc Generate:: Running Bison on the grammar file.
161* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
162
163Grammar Rules for @code{rpcalc}
164
13863333
AD
165* Rpcalc Input::
166* Rpcalc Line::
167* Rpcalc Expr::
bfa74976 168
342b8b6e
AD
169Location Tracking Calculator: @code{ltcalc}
170
f56274a8
DJ
171* Ltcalc Declarations:: Bison and C declarations for ltcalc.
172* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
173* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 174
bfa74976
RS
175Multi-Function Calculator: @code{mfcalc}
176
f56274a8
DJ
177* Mfcalc Declarations:: Bison declarations for multi-function calculator.
178* Mfcalc Rules:: Grammar rules for the calculator.
179* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
180
181Bison Grammar Files
182
183* Grammar Outline:: Overall layout of the grammar file.
184* Symbols:: Terminal and nonterminal symbols.
185* Rules:: How to write grammar rules.
186* Recursion:: Writing recursive rules.
187* Semantics:: Semantic values and actions.
93dd49ab 188* Locations:: Locations and actions.
bfa74976
RS
189* Declarations:: All kinds of Bison declarations are described here.
190* Multiple Parsers:: Putting more than one Bison parser in one program.
191
192Outline of a Bison Grammar
193
f56274a8 194* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 195* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
196* Bison Declarations:: Syntax and usage of the Bison declarations section.
197* Grammar Rules:: Syntax and usage of the grammar rules section.
198* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
199
200Defining Language Semantics
201
202* Value Type:: Specifying one data type for all semantic values.
203* Multiple Types:: Specifying several alternative data types.
204* Actions:: An action is the semantic definition of a grammar rule.
205* Action Types:: Specifying data types for actions to operate on.
206* Mid-Rule Actions:: Most actions go at the end of a rule.
207 This says when, why and how to use the exceptional
208 action in the middle of a rule.
1f68dca5 209* Named References:: Using named references in actions.
bfa74976 210
93dd49ab
PE
211Tracking Locations
212
213* Location Type:: Specifying a data type for locations.
214* Actions and Locations:: Using locations in actions.
215* Location Default Action:: Defining a general way to compute locations.
216
bfa74976
RS
217Bison Declarations
218
b50d2359 219* Require Decl:: Requiring a Bison version.
bfa74976
RS
220* Token Decl:: Declaring terminal symbols.
221* Precedence Decl:: Declaring terminals with precedence and associativity.
222* Union Decl:: Declaring the set of all semantic value types.
223* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 224* Initial Action Decl:: Code run before parsing starts.
72f889cc 225* Destructor Decl:: Declaring how symbols are freed.
d6328241 226* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
227* Start Decl:: Specifying the start symbol.
228* Pure Decl:: Requesting a reentrant parser.
9987d1b3 229* Push Decl:: Requesting a push parser.
bfa74976 230* Decl Summary:: Table of all Bison declarations.
2f4518a1 231* %define Summary:: Defining variables to adjust Bison's behavior.
8e6f2266 232* %code Summary:: Inserting code into the parser source.
bfa74976
RS
233
234Parser C-Language Interface
235
f56274a8
DJ
236* Parser Function:: How to call @code{yyparse} and what it returns.
237* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
238* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
239* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
240* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
241* Lexical:: You must supply a function @code{yylex}
242 which reads tokens.
243* Error Reporting:: You must supply a function @code{yyerror}.
244* Action Features:: Special features for use in actions.
245* Internationalization:: How to let the parser speak in the user's
246 native language.
bfa74976
RS
247
248The Lexical Analyzer Function @code{yylex}
249
250* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
251* Token Values:: How @code{yylex} must return the semantic value
252 of the token it has read.
253* Token Locations:: How @code{yylex} must return the text location
254 (line number, etc.) of the token, if the
255 actions want that.
256* Pure Calling:: How the calling convention differs in a pure parser
257 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 258
13863333 259The Bison Parser Algorithm
bfa74976 260
742e4900 261* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
262* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
263* Precedence:: Operator precedence works by resolving conflicts.
264* Contextual Precedence:: When an operator's precedence depends on context.
265* Parser States:: The parser is a finite-state-machine with stack.
266* Reduce/Reduce:: When two rules are applicable in the same situation.
f56274a8 267* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 268* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 269* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
270
271Operator Precedence
272
273* Why Precedence:: An example showing why precedence is needed.
274* Using Precedence:: How to specify precedence in Bison grammars.
275* Precedence Examples:: How these features are used in the previous example.
276* How Precedence:: How they work.
277
278Handling Context Dependencies
279
280* Semantic Tokens:: Token parsing can depend on the semantic context.
281* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
282* Tie-in Recovery:: Lexical tie-ins have implications for how
283 error recovery rules must be written.
284
93dd49ab 285Debugging Your Parser
ec3bc396
AD
286
287* Understanding:: Understanding the structure of your parser.
288* Tracing:: Tracing the execution of your parser.
289
bfa74976
RS
290Invoking Bison
291
13863333 292* Bison Options:: All the options described in detail,
c827f760 293 in alphabetical order by short options.
bfa74976 294* Option Cross Key:: Alphabetical list of long options.
93dd49ab 295* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 296
8405b70c 297Parsers Written In Other Languages
12545799
AD
298
299* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 300* Java Parsers:: The interface to generate Java parser classes
12545799
AD
301
302C++ Parsers
303
304* C++ Bison Interface:: Asking for C++ parser generation
305* C++ Semantic Values:: %union vs. C++
306* C++ Location Values:: The position and location classes
307* C++ Parser Interface:: Instantiating and running the parser
308* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 309* A Complete C++ Example:: Demonstrating their use
12545799
AD
310
311A Complete C++ Example
312
313* Calc++ --- C++ Calculator:: The specifications
314* Calc++ Parsing Driver:: An active parsing context
315* Calc++ Parser:: A parser class
316* Calc++ Scanner:: A pure C++ Flex scanner
317* Calc++ Top Level:: Conducting the band
318
8405b70c
PB
319Java Parsers
320
f56274a8
DJ
321* Java Bison Interface:: Asking for Java parser generation
322* Java Semantic Values:: %type and %token vs. Java
323* Java Location Values:: The position and location classes
324* Java Parser Interface:: Instantiating and running the parser
325* Java Scanner Interface:: Specifying the scanner for the parser
326* Java Action Features:: Special features for use in actions
327* Java Differences:: Differences between C/C++ and Java Grammars
328* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 329
d1a1114f
AD
330Frequently Asked Questions
331
f56274a8
DJ
332* Memory Exhausted:: Breaking the Stack Limits
333* How Can I Reset the Parser:: @code{yyparse} Keeps some State
334* Strings are Destroyed:: @code{yylval} Loses Track of Strings
335* Implementing Gotos/Loops:: Control Flow in the Calculator
336* Multiple start-symbols:: Factoring closely related grammars
35430378 337* Secure? Conform?:: Is Bison POSIX safe?
f56274a8
DJ
338* I can't build Bison:: Troubleshooting
339* Where can I find help?:: Troubleshouting
340* Bug Reports:: Troublereporting
341* More Languages:: Parsers in C++, Java, and so on
342* Beta Testing:: Experimenting development versions
343* Mailing Lists:: Meeting other Bison users
d1a1114f 344
f2b5126e
PB
345Copying This Manual
346
f56274a8 347* Copying This Manual:: License for copying this manual.
f2b5126e 348
342b8b6e 349@end detailmenu
bfa74976
RS
350@end menu
351
342b8b6e 352@node Introduction
bfa74976
RS
353@unnumbered Introduction
354@cindex introduction
355
6077da58 356@dfn{Bison} is a general-purpose parser generator that converts an
d89e48b3
JD
357annotated context-free grammar into a deterministic LR or generalized
358LR (GLR) parser employing LALR(1) parser tables. As an experimental
359feature, Bison can also generate IELR(1) or canonical LR(1) parser
360tables. Once you are proficient with Bison, you can use it to develop
361a wide range of language parsers, from those used in simple desk
362calculators to complex programming languages.
363
364Bison is upward compatible with Yacc: all properly-written Yacc
365grammars ought to work with Bison with no change. Anyone familiar
366with Yacc should be able to use Bison with little trouble. You need
367to be fluent in C or C++ programming in order to use Bison or to
368understand this manual. Java is also supported as an experimental
369feature.
370
371We begin with tutorial chapters that explain the basic concepts of
372using Bison and show three explained examples, each building on the
373last. If you don't know Bison or Yacc, start by reading these
374chapters. Reference chapters follow, which describe specific aspects
375of Bison in detail.
bfa74976 376
840341d6
JD
377Bison was written originally by Robert Corbett. Richard Stallman made
378it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
379added multi-character string literals and other features. Since then,
380Bison has grown more robust and evolved many other new features thanks
381to the hard work of a long list of volunteers. For details, see the
382@file{THANKS} and @file{ChangeLog} files included in the Bison
383distribution.
931c7513 384
df1af54c 385This edition corresponds to version @value{VERSION} of Bison.
bfa74976 386
342b8b6e 387@node Conditions
bfa74976
RS
388@unnumbered Conditions for Using Bison
389
193d7c70
PE
390The distribution terms for Bison-generated parsers permit using the
391parsers in nonfree programs. Before Bison version 2.2, these extra
35430378 392permissions applied only when Bison was generating LALR(1)
193d7c70 393parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 394parsers could be used only in programs that were free software.
a31239f1 395
35430378 396The other GNU programming tools, such as the GNU C
c827f760 397compiler, have never
9ecbd125 398had such a requirement. They could always be used for nonfree
a31239f1
RS
399software. The reason Bison was different was not due to a special
400policy decision; it resulted from applying the usual General Public
401License to all of the Bison source code.
402
9913d6e4
JD
403The main output of the Bison utility---the Bison parser implementation
404file---contains a verbatim copy of a sizable piece of Bison, which is
405the code for the parser's implementation. (The actions from your
406grammar are inserted into this implementation at one point, but most
407of the rest of the implementation is not changed.) When we applied
408the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
409the effect was to restrict the use of Bison output to free software.
410
411We didn't change the terms because of sympathy for people who want to
412make software proprietary. @strong{Software should be free.} But we
413concluded that limiting Bison's use to free software was doing little to
414encourage people to make other software free. So we decided to make the
415practical conditions for using Bison match the practical conditions for
35430378 416using the other GNU tools.
bfa74976 417
193d7c70
PE
418This exception applies when Bison is generating code for a parser.
419You can tell whether the exception applies to a Bison output file by
420inspecting the file for text beginning with ``As a special
421exception@dots{}''. The text spells out the exact terms of the
422exception.
262aa8dd 423
f16b0819
PE
424@node Copying
425@unnumbered GNU GENERAL PUBLIC LICENSE
426@include gpl-3.0.texi
bfa74976 427
342b8b6e 428@node Concepts
bfa74976
RS
429@chapter The Concepts of Bison
430
431This chapter introduces many of the basic concepts without which the
432details of Bison will not make sense. If you do not already know how to
433use Bison or Yacc, we suggest you start by reading this chapter carefully.
434
435@menu
f56274a8
DJ
436* Language and Grammar:: Languages and context-free grammars,
437 as mathematical ideas.
438* Grammar in Bison:: How we represent grammars for Bison's sake.
439* Semantic Values:: Each token or syntactic grouping can have
440 a semantic value (the value of an integer,
441 the name of an identifier, etc.).
442* Semantic Actions:: Each rule can have an action containing C code.
443* GLR Parsers:: Writing parsers for general context-free languages.
444* Locations Overview:: Tracking Locations.
445* Bison Parser:: What are Bison's input and output,
446 how is the output used?
447* Stages:: Stages in writing and running Bison grammars.
448* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
449@end menu
450
342b8b6e 451@node Language and Grammar
bfa74976
RS
452@section Languages and Context-Free Grammars
453
bfa74976
RS
454@cindex context-free grammar
455@cindex grammar, context-free
456In order for Bison to parse a language, it must be described by a
457@dfn{context-free grammar}. This means that you specify one or more
458@dfn{syntactic groupings} and give rules for constructing them from their
459parts. For example, in the C language, one kind of grouping is called an
460`expression'. One rule for making an expression might be, ``An expression
461can be made of a minus sign and another expression''. Another would be,
462``An expression can be an integer''. As you can see, rules are often
463recursive, but there must be at least one rule which leads out of the
464recursion.
465
35430378 466@cindex BNF
bfa74976
RS
467@cindex Backus-Naur form
468The most common formal system for presenting such rules for humans to read
35430378 469is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 470order to specify the language Algol 60. Any grammar expressed in
35430378
JD
471BNF is a context-free grammar. The input to Bison is
472essentially machine-readable BNF.
bfa74976 473
35430378
JD
474@cindex LALR(1) grammars
475@cindex IELR(1) grammars
476@cindex LR(1) grammars
34a6c2d1
JD
477There are various important subclasses of context-free grammars.
478Although it can handle almost all context-free grammars, Bison is
35430378 479optimized for what are called LR(1) grammars.
34a6c2d1
JD
480In brief, in these grammars, it must be possible to tell how to parse
481any portion of an input string with just a single token of lookahead.
482For historical reasons, Bison by default is limited by the additional
35430378 483restrictions of LALR(1), which is hard to explain simply.
c827f760
PE
484@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
485more information on this.
3b1977ea 486As an experimental feature, you can escape these additional restrictions by
35430378 487requesting IELR(1) or canonical LR(1) parser tables.
2f4518a1 488@xref{%define Summary,,lr.type}, to learn how.
bfa74976 489
35430378
JD
490@cindex GLR parsing
491@cindex generalized LR (GLR) parsing
676385e2 492@cindex ambiguous grammars
9d9b8b70 493@cindex nondeterministic parsing
9501dc6e 494
35430378 495Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
496roughly that the next grammar rule to apply at any point in the input is
497uniquely determined by the preceding input and a fixed, finite portion
742e4900 498(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 499grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 500apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 501grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 502lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 503With the proper declarations, Bison is also able to parse these more
35430378
JD
504general context-free grammars, using a technique known as GLR
505parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
506are able to handle any context-free grammar for which the number of
507possible parses of any given string is finite.
676385e2 508
bfa74976
RS
509@cindex symbols (abstract)
510@cindex token
511@cindex syntactic grouping
512@cindex grouping, syntactic
9501dc6e
AD
513In the formal grammatical rules for a language, each kind of syntactic
514unit or grouping is named by a @dfn{symbol}. Those which are built by
515grouping smaller constructs according to grammatical rules are called
bfa74976
RS
516@dfn{nonterminal symbols}; those which can't be subdivided are called
517@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
518corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 519corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
520
521We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
522nonterminal, mean. The tokens of C are identifiers, constants (numeric
523and string), and the various keywords, arithmetic operators and
524punctuation marks. So the terminal symbols of a grammar for C include
525`identifier', `number', `string', plus one symbol for each keyword,
526operator or punctuation mark: `if', `return', `const', `static', `int',
527`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
528(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
529lexicography, not grammar.)
530
531Here is a simple C function subdivided into tokens:
532
9edcd895
AD
533@ifinfo
534@example
535int /* @r{keyword `int'} */
14d4662b 536square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
537 @r{identifier, close-paren} */
538@{ /* @r{open-brace} */
aa08666d
AD
539 return x * x; /* @r{keyword `return', identifier, asterisk,}
540 @r{identifier, semicolon} */
9edcd895
AD
541@} /* @r{close-brace} */
542@end example
543@end ifinfo
544@ifnotinfo
bfa74976
RS
545@example
546int /* @r{keyword `int'} */
14d4662b 547square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 548@{ /* @r{open-brace} */
9edcd895 549 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
550@} /* @r{close-brace} */
551@end example
9edcd895 552@end ifnotinfo
bfa74976
RS
553
554The syntactic groupings of C include the expression, the statement, the
555declaration, and the function definition. These are represented in the
556grammar of C by nonterminal symbols `expression', `statement',
557`declaration' and `function definition'. The full grammar uses dozens of
558additional language constructs, each with its own nonterminal symbol, in
559order to express the meanings of these four. The example above is a
560function definition; it contains one declaration, and one statement. In
561the statement, each @samp{x} is an expression and so is @samp{x * x}.
562
563Each nonterminal symbol must have grammatical rules showing how it is made
564out of simpler constructs. For example, one kind of C statement is the
565@code{return} statement; this would be described with a grammar rule which
566reads informally as follows:
567
568@quotation
569A `statement' can be made of a `return' keyword, an `expression' and a
570`semicolon'.
571@end quotation
572
573@noindent
574There would be many other rules for `statement', one for each kind of
575statement in C.
576
577@cindex start symbol
578One nonterminal symbol must be distinguished as the special one which
579defines a complete utterance in the language. It is called the @dfn{start
580symbol}. In a compiler, this means a complete input program. In the C
581language, the nonterminal symbol `sequence of definitions and declarations'
582plays this role.
583
584For example, @samp{1 + 2} is a valid C expression---a valid part of a C
585program---but it is not valid as an @emph{entire} C program. In the
586context-free grammar of C, this follows from the fact that `expression' is
587not the start symbol.
588
589The Bison parser reads a sequence of tokens as its input, and groups the
590tokens using the grammar rules. If the input is valid, the end result is
591that the entire token sequence reduces to a single grouping whose symbol is
592the grammar's start symbol. If we use a grammar for C, the entire input
593must be a `sequence of definitions and declarations'. If not, the parser
594reports a syntax error.
595
342b8b6e 596@node Grammar in Bison
bfa74976
RS
597@section From Formal Rules to Bison Input
598@cindex Bison grammar
599@cindex grammar, Bison
600@cindex formal grammar
601
602A formal grammar is a mathematical construct. To define the language
603for Bison, you must write a file expressing the grammar in Bison syntax:
604a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
605
606A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 607as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
608in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
609
610The Bison representation for a terminal symbol is also called a @dfn{token
611type}. Token types as well can be represented as C-like identifiers. By
612convention, these identifiers should be upper case to distinguish them from
613nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
614@code{RETURN}. A terminal symbol that stands for a particular keyword in
615the language should be named after that keyword converted to upper case.
616The terminal symbol @code{error} is reserved for error recovery.
931c7513 617@xref{Symbols}.
bfa74976
RS
618
619A terminal symbol can also be represented as a character literal, just like
620a C character constant. You should do this whenever a token is just a
621single character (parenthesis, plus-sign, etc.): use that same character in
622a literal as the terminal symbol for that token.
623
931c7513
RS
624A third way to represent a terminal symbol is with a C string constant
625containing several characters. @xref{Symbols}, for more information.
626
bfa74976
RS
627The grammar rules also have an expression in Bison syntax. For example,
628here is the Bison rule for a C @code{return} statement. The semicolon in
629quotes is a literal character token, representing part of the C syntax for
630the statement; the naked semicolon, and the colon, are Bison punctuation
631used in every rule.
632
633@example
634stmt: RETURN expr ';'
635 ;
636@end example
637
638@noindent
639@xref{Rules, ,Syntax of Grammar Rules}.
640
342b8b6e 641@node Semantic Values
bfa74976
RS
642@section Semantic Values
643@cindex semantic value
644@cindex value, semantic
645
646A formal grammar selects tokens only by their classifications: for example,
647if a rule mentions the terminal symbol `integer constant', it means that
648@emph{any} integer constant is grammatically valid in that position. The
649precise value of the constant is irrelevant to how to parse the input: if
650@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 651grammatical.
bfa74976
RS
652
653But the precise value is very important for what the input means once it is
654parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6553989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
656has both a token type and a @dfn{semantic value}. @xref{Semantics,
657,Defining Language Semantics},
bfa74976
RS
658for details.
659
660The token type is a terminal symbol defined in the grammar, such as
661@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
662you need to know to decide where the token may validly appear and how to
663group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 664except their types.
bfa74976
RS
665
666The semantic value has all the rest of the information about the
667meaning of the token, such as the value of an integer, or the name of an
668identifier. (A token such as @code{','} which is just punctuation doesn't
669need to have any semantic value.)
670
671For example, an input token might be classified as token type
672@code{INTEGER} and have the semantic value 4. Another input token might
673have the same token type @code{INTEGER} but value 3989. When a grammar
674rule says that @code{INTEGER} is allowed, either of these tokens is
675acceptable because each is an @code{INTEGER}. When the parser accepts the
676token, it keeps track of the token's semantic value.
677
678Each grouping can also have a semantic value as well as its nonterminal
679symbol. For example, in a calculator, an expression typically has a
680semantic value that is a number. In a compiler for a programming
681language, an expression typically has a semantic value that is a tree
682structure describing the meaning of the expression.
683
342b8b6e 684@node Semantic Actions
bfa74976
RS
685@section Semantic Actions
686@cindex semantic actions
687@cindex actions, semantic
688
689In order to be useful, a program must do more than parse input; it must
690also produce some output based on the input. In a Bison grammar, a grammar
691rule can have an @dfn{action} made up of C statements. Each time the
692parser recognizes a match for that rule, the action is executed.
693@xref{Actions}.
13863333 694
bfa74976
RS
695Most of the time, the purpose of an action is to compute the semantic value
696of the whole construct from the semantic values of its parts. For example,
697suppose we have a rule which says an expression can be the sum of two
698expressions. When the parser recognizes such a sum, each of the
699subexpressions has a semantic value which describes how it was built up.
700The action for this rule should create a similar sort of value for the
701newly recognized larger expression.
702
703For example, here is a rule that says an expression can be the sum of
704two subexpressions:
705
706@example
707expr: expr '+' expr @{ $$ = $1 + $3; @}
708 ;
709@end example
710
711@noindent
712The action says how to produce the semantic value of the sum expression
713from the values of the two subexpressions.
714
676385e2 715@node GLR Parsers
35430378
JD
716@section Writing GLR Parsers
717@cindex GLR parsing
718@cindex generalized LR (GLR) parsing
676385e2
PH
719@findex %glr-parser
720@cindex conflicts
721@cindex shift/reduce conflicts
fa7e68c3 722@cindex reduce/reduce conflicts
676385e2 723
34a6c2d1 724In some grammars, Bison's deterministic
35430378 725LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
726certain grammar rule at a given point. That is, it may not be able to
727decide (on the basis of the input read so far) which of two possible
728reductions (applications of a grammar rule) applies, or whether to apply
729a reduction or read more of the input and apply a reduction later in the
730input. These are known respectively as @dfn{reduce/reduce} conflicts
731(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
732(@pxref{Shift/Reduce}).
733
35430378 734To use a grammar that is not easily modified to be LR(1), a
9501dc6e 735more general parsing algorithm is sometimes necessary. If you include
676385e2 736@code{%glr-parser} among the Bison declarations in your file
35430378
JD
737(@pxref{Grammar Outline}), the result is a Generalized LR
738(GLR) parser. These parsers handle Bison grammars that
9501dc6e 739contain no unresolved conflicts (i.e., after applying precedence
34a6c2d1 740declarations) identically to deterministic parsers. However, when
9501dc6e 741faced with unresolved shift/reduce and reduce/reduce conflicts,
35430378 742GLR parsers use the simple expedient of doing both,
9501dc6e
AD
743effectively cloning the parser to follow both possibilities. Each of
744the resulting parsers can again split, so that at any given time, there
745can be any number of possible parses being explored. The parsers
676385e2
PH
746proceed in lockstep; that is, all of them consume (shift) a given input
747symbol before any of them proceed to the next. Each of the cloned
748parsers eventually meets one of two possible fates: either it runs into
749a parsing error, in which case it simply vanishes, or it merges with
750another parser, because the two of them have reduced the input to an
751identical set of symbols.
752
753During the time that there are multiple parsers, semantic actions are
754recorded, but not performed. When a parser disappears, its recorded
755semantic actions disappear as well, and are never performed. When a
756reduction makes two parsers identical, causing them to merge, Bison
757records both sets of semantic actions. Whenever the last two parsers
758merge, reverting to the single-parser case, Bison resolves all the
759outstanding actions either by precedences given to the grammar rules
760involved, or by performing both actions, and then calling a designated
761user-defined function on the resulting values to produce an arbitrary
762merged result.
763
fa7e68c3 764@menu
35430378
JD
765* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
766* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
f56274a8 767* GLR Semantic Actions:: Deferred semantic actions have special concerns.
35430378 768* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
769@end menu
770
771@node Simple GLR Parsers
35430378
JD
772@subsection Using GLR on Unambiguous Grammars
773@cindex GLR parsing, unambiguous grammars
774@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
775@findex %glr-parser
776@findex %expect-rr
777@cindex conflicts
778@cindex reduce/reduce conflicts
779@cindex shift/reduce conflicts
780
35430378
JD
781In the simplest cases, you can use the GLR algorithm
782to parse grammars that are unambiguous but fail to be LR(1).
34a6c2d1 783Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
784
785Consider a problem that
786arises in the declaration of enumerated and subrange types in the
787programming language Pascal. Here are some examples:
788
789@example
790type subrange = lo .. hi;
791type enum = (a, b, c);
792@end example
793
794@noindent
795The original language standard allows only numeric
796literals and constant identifiers for the subrange bounds (@samp{lo}
35430378 797and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
79810206) and many other
799Pascal implementations allow arbitrary expressions there. This gives
800rise to the following situation, containing a superfluous pair of
801parentheses:
802
803@example
804type subrange = (a) .. b;
805@end example
806
807@noindent
808Compare this to the following declaration of an enumerated
809type with only one value:
810
811@example
812type enum = (a);
813@end example
814
815@noindent
816(These declarations are contrived, but they are syntactically
817valid, and more-complicated cases can come up in practical programs.)
818
819These two declarations look identical until the @samp{..} token.
35430378 820With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
821possible to decide between the two forms when the identifier
822@samp{a} is parsed. It is, however, desirable
823for a parser to decide this, since in the latter case
824@samp{a} must become a new identifier to represent the enumeration
825value, while in the former case @samp{a} must be evaluated with its
826current meaning, which may be a constant or even a function call.
827
828You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
829to be resolved later, but this typically requires substantial
830contortions in both semantic actions and large parts of the
831grammar, where the parentheses are nested in the recursive rules for
832expressions.
833
834You might think of using the lexer to distinguish between the two
835forms by returning different tokens for currently defined and
836undefined identifiers. But if these declarations occur in a local
837scope, and @samp{a} is defined in an outer scope, then both forms
838are possible---either locally redefining @samp{a}, or using the
839value of @samp{a} from the outer scope. So this approach cannot
840work.
841
e757bb10 842A simple solution to this problem is to declare the parser to
35430378
JD
843use the GLR algorithm.
844When the GLR parser reaches the critical state, it
fa7e68c3
PE
845merely splits into two branches and pursues both syntax rules
846simultaneously. Sooner or later, one of them runs into a parsing
847error. If there is a @samp{..} token before the next
848@samp{;}, the rule for enumerated types fails since it cannot
849accept @samp{..} anywhere; otherwise, the subrange type rule
850fails since it requires a @samp{..} token. So one of the branches
851fails silently, and the other one continues normally, performing
852all the intermediate actions that were postponed during the split.
853
854If the input is syntactically incorrect, both branches fail and the parser
855reports a syntax error as usual.
856
857The effect of all this is that the parser seems to ``guess'' the
858correct branch to take, or in other words, it seems to use more
35430378
JD
859lookahead than the underlying LR(1) algorithm actually allows
860for. In this example, LR(2) would suffice, but also some cases
861that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 862
35430378 863In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
864and the current Bison parser even takes exponential time and space
865for some grammars. In practice, this rarely happens, and for many
866grammars it is possible to prove that it cannot happen.
867The present example contains only one conflict between two
868rules, and the type-declaration context containing the conflict
869cannot be nested. So the number of
870branches that can exist at any time is limited by the constant 2,
871and the parsing time is still linear.
872
873Here is a Bison grammar corresponding to the example above. It
874parses a vastly simplified form of Pascal type declarations.
875
876@example
877%token TYPE DOTDOT ID
878
879@group
880%left '+' '-'
881%left '*' '/'
882@end group
883
884%%
885
886@group
887type_decl : TYPE ID '=' type ';'
888 ;
889@end group
890
891@group
892type : '(' id_list ')'
893 | expr DOTDOT expr
894 ;
895@end group
896
897@group
898id_list : ID
899 | id_list ',' ID
900 ;
901@end group
902
903@group
904expr : '(' expr ')'
905 | expr '+' expr
906 | expr '-' expr
907 | expr '*' expr
908 | expr '/' expr
909 | ID
910 ;
911@end group
912@end example
913
35430378 914When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
915about one reduce/reduce conflict. In the conflicting situation the
916parser chooses one of the alternatives, arbitrarily the one
917declared first. Therefore the following correct input is not
918recognized:
919
920@example
921type t = (a) .. b;
922@end example
923
35430378 924The parser can be turned into a GLR parser, while also telling Bison
9913d6e4
JD
925to be silent about the one known reduce/reduce conflict, by adding
926these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
927@samp{%%}):
928
929@example
930%glr-parser
931%expect-rr 1
932@end example
933
934@noindent
935No change in the grammar itself is required. Now the
936parser recognizes all valid declarations, according to the
937limited syntax above, transparently. In fact, the user does not even
938notice when the parser splits.
939
35430378 940So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
941almost without disadvantages. Even in simple cases like this, however,
942there are at least two potential problems to beware. First, always
35430378
JD
943analyze the conflicts reported by Bison to make sure that GLR
944splitting is only done where it is intended. A GLR parser
f8e1c9e5 945splitting inadvertently may cause problems less obvious than an
35430378 946LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
947conflict. Second, consider interactions with the lexer (@pxref{Semantic
948Tokens}) with great care. Since a split parser consumes tokens without
949performing any actions during the split, the lexer cannot obtain
950information via parser actions. Some cases of lexer interactions can be
35430378 951eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
952lexer to the parser. You must check the remaining cases for
953correctness.
954
955In our example, it would be safe for the lexer to return tokens based on
956their current meanings in some symbol table, because no new symbols are
957defined in the middle of a type declaration. Though it is possible for
958a parser to define the enumeration constants as they are parsed, before
959the type declaration is completed, it actually makes no difference since
960they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
961
962@node Merging GLR Parses
35430378
JD
963@subsection Using GLR to Resolve Ambiguities
964@cindex GLR parsing, ambiguous grammars
965@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
966@findex %dprec
967@findex %merge
968@cindex conflicts
969@cindex reduce/reduce conflicts
970
2a8d363a 971Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
972
973@example
974%@{
38a92d50
PE
975 #include <stdio.h>
976 #define YYSTYPE char const *
977 int yylex (void);
978 void yyerror (char const *);
676385e2
PH
979%@}
980
981%token TYPENAME ID
982
983%right '='
984%left '+'
985
986%glr-parser
987
988%%
989
fae437e8 990prog :
676385e2
PH
991 | prog stmt @{ printf ("\n"); @}
992 ;
993
994stmt : expr ';' %dprec 1
995 | decl %dprec 2
996 ;
997
2a8d363a 998expr : ID @{ printf ("%s ", $$); @}
fae437e8 999 | TYPENAME '(' expr ')'
2a8d363a
AD
1000 @{ printf ("%s <cast> ", $1); @}
1001 | expr '+' expr @{ printf ("+ "); @}
1002 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
1003 ;
1004
fae437e8 1005decl : TYPENAME declarator ';'
2a8d363a 1006 @{ printf ("%s <declare> ", $1); @}
676385e2 1007 | TYPENAME declarator '=' expr ';'
2a8d363a 1008 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1009 ;
1010
2a8d363a 1011declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1012 | '(' declarator ')'
1013 ;
1014@end example
1015
1016@noindent
1017This models a problematic part of the C++ grammar---the ambiguity between
1018certain declarations and statements. For example,
1019
1020@example
1021T (x) = y+z;
1022@end example
1023
1024@noindent
1025parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1026(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1027@samp{x} as an @code{ID}).
676385e2 1028Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1029@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1030time it encounters @code{x} in the example above. Since this is a
35430378 1031GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1032each choice of resolving the reduce/reduce conflict.
1033Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1034however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1035ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1036the other reduces @code{stmt : decl}, after which both parsers are in an
1037identical state: they've seen @samp{prog stmt} and have the same unprocessed
1038input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1039
35430378 1040At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1041grammar of how to choose between the competing parses.
1042In the example above, the two @code{%dprec}
e757bb10 1043declarations specify that Bison is to give precedence
fa7e68c3 1044to the parse that interprets the example as a
676385e2
PH
1045@code{decl}, which implies that @code{x} is a declarator.
1046The parser therefore prints
1047
1048@example
fae437e8 1049"x" y z + T <init-declare>
676385e2
PH
1050@end example
1051
fa7e68c3
PE
1052The @code{%dprec} declarations only come into play when more than one
1053parse survives. Consider a different input string for this parser:
676385e2
PH
1054
1055@example
1056T (x) + y;
1057@end example
1058
1059@noindent
35430378 1060This is another example of using GLR to parse an unambiguous
fa7e68c3 1061construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1062Here, there is no ambiguity (this cannot be parsed as a declaration).
1063However, at the time the Bison parser encounters @code{x}, it does not
1064have enough information to resolve the reduce/reduce conflict (again,
1065between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1066case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1067into two, one assuming that @code{x} is an @code{expr}, and the other
1068assuming @code{x} is a @code{declarator}. The second of these parsers
1069then vanishes when it sees @code{+}, and the parser prints
1070
1071@example
fae437e8 1072x T <cast> y +
676385e2
PH
1073@end example
1074
1075Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1076the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1077actions of the two possible parsers, rather than choosing one over the
1078other. To do so, you could change the declaration of @code{stmt} as
1079follows:
1080
1081@example
1082stmt : expr ';' %merge <stmtMerge>
1083 | decl %merge <stmtMerge>
1084 ;
1085@end example
1086
1087@noindent
676385e2
PH
1088and define the @code{stmtMerge} function as:
1089
1090@example
38a92d50
PE
1091static YYSTYPE
1092stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1093@{
1094 printf ("<OR> ");
1095 return "";
1096@}
1097@end example
1098
1099@noindent
1100with an accompanying forward declaration
1101in the C declarations at the beginning of the file:
1102
1103@example
1104%@{
38a92d50 1105 #define YYSTYPE char const *
676385e2
PH
1106 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1107%@}
1108@end example
1109
1110@noindent
fa7e68c3
PE
1111With these declarations, the resulting parser parses the first example
1112as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1113
1114@example
fae437e8 1115"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1116@end example
1117
fa7e68c3 1118Bison requires that all of the
e757bb10 1119productions that participate in any particular merge have identical
fa7e68c3
PE
1120@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1121and the parser will report an error during any parse that results in
1122the offending merge.
9501dc6e 1123
32c29292
JD
1124@node GLR Semantic Actions
1125@subsection GLR Semantic Actions
1126
1127@cindex deferred semantic actions
1128By definition, a deferred semantic action is not performed at the same time as
1129the associated reduction.
1130This raises caveats for several Bison features you might use in a semantic
35430378 1131action in a GLR parser.
32c29292
JD
1132
1133@vindex yychar
35430378 1134@cindex GLR parsers and @code{yychar}
32c29292 1135@vindex yylval
35430378 1136@cindex GLR parsers and @code{yylval}
32c29292 1137@vindex yylloc
35430378 1138@cindex GLR parsers and @code{yylloc}
32c29292 1139In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1140the lookahead token present at the time of the associated reduction.
32c29292
JD
1141After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1142you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1143lookahead token's semantic value and location, if any.
32c29292
JD
1144In a nondeferred semantic action, you can also modify any of these variables to
1145influence syntax analysis.
742e4900 1146@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1147
1148@findex yyclearin
35430378 1149@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1150In a deferred semantic action, it's too late to influence syntax analysis.
1151In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1152shallow copies of the values they had at the time of the associated reduction.
1153For this reason alone, modifying them is dangerous.
1154Moreover, the result of modifying them is undefined and subject to change with
1155future versions of Bison.
1156For example, if a semantic action might be deferred, you should never write it
1157to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1158memory referenced by @code{yylval}.
1159
1160@findex YYERROR
35430378 1161@cindex GLR parsers and @code{YYERROR}
32c29292 1162Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1163(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1164initiate error recovery.
35430378 1165During deterministic GLR operation, the effect of @code{YYERROR} is
34a6c2d1 1166the same as its effect in a deterministic parser.
32c29292
JD
1167In a deferred semantic action, its effect is undefined.
1168@c The effect is probably a syntax error at the split point.
1169
8710fc41 1170Also, see @ref{Location Default Action, ,Default Action for Locations}, which
35430378 1171describes a special usage of @code{YYLLOC_DEFAULT} in GLR parsers.
8710fc41 1172
fa7e68c3 1173@node Compiler Requirements
35430378 1174@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1175@cindex @code{inline}
35430378 1176@cindex GLR parsers and @code{inline}
fa7e68c3 1177
35430378 1178The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1179later. In addition, they use the @code{inline} keyword, which is not
1180C89, but is C99 and is a common extension in pre-C99 compilers. It is
1181up to the user of these parsers to handle
9501dc6e
AD
1182portability issues. For instance, if using Autoconf and the Autoconf
1183macro @code{AC_C_INLINE}, a mere
1184
1185@example
1186%@{
38a92d50 1187 #include <config.h>
9501dc6e
AD
1188%@}
1189@end example
1190
1191@noindent
1192will suffice. Otherwise, we suggest
1193
1194@example
1195%@{
38a92d50
PE
1196 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1197 #define inline
1198 #endif
9501dc6e
AD
1199%@}
1200@end example
676385e2 1201
342b8b6e 1202@node Locations Overview
847bf1f5
AD
1203@section Locations
1204@cindex location
95923bd6
AD
1205@cindex textual location
1206@cindex location, textual
847bf1f5
AD
1207
1208Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1209and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1210the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1211Bison provides a mechanism for handling these locations.
1212
72d2299c 1213Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1214associated location, but the type of locations is the same for all tokens and
72d2299c 1215groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1216structure for storing locations (@pxref{Locations}, for more details).
1217
1218Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1219set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1220is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1221@code{@@3}.
1222
1223When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1224of its left hand side (@pxref{Actions}). In the same way, another default
1225action is used for locations. However, the action for locations is general
847bf1f5 1226enough for most cases, meaning there is usually no need to describe for each
72d2299c 1227rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1228grouping, the default behavior of the output parser is to take the beginning
1229of the first symbol, and the end of the last symbol.
1230
342b8b6e 1231@node Bison Parser
9913d6e4 1232@section Bison Output: the Parser Implementation File
bfa74976
RS
1233@cindex Bison parser
1234@cindex Bison utility
1235@cindex lexical analyzer, purpose
1236@cindex parser
1237
9913d6e4
JD
1238When you run Bison, you give it a Bison grammar file as input. The
1239most important output is a C source file that implements a parser for
1240the language described by the grammar. This parser is called a
1241@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1242implementation file}. Keep in mind that the Bison utility and the
1243Bison parser are two distinct programs: the Bison utility is a program
1244whose output is the Bison parser implementation file that becomes part
1245of your program.
bfa74976
RS
1246
1247The job of the Bison parser is to group tokens into groupings according to
1248the grammar rules---for example, to build identifiers and operators into
1249expressions. As it does this, it runs the actions for the grammar rules it
1250uses.
1251
704a47c4
AD
1252The tokens come from a function called the @dfn{lexical analyzer} that
1253you must supply in some fashion (such as by writing it in C). The Bison
1254parser calls the lexical analyzer each time it wants a new token. It
1255doesn't know what is ``inside'' the tokens (though their semantic values
1256may reflect this). Typically the lexical analyzer makes the tokens by
1257parsing characters of text, but Bison does not depend on this.
1258@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1259
9913d6e4
JD
1260The Bison parser implementation file is C code which defines a
1261function named @code{yyparse} which implements that grammar. This
1262function does not make a complete C program: you must supply some
1263additional functions. One is the lexical analyzer. Another is an
1264error-reporting function which the parser calls to report an error.
1265In addition, a complete C program must start with a function called
1266@code{main}; you have to provide this, and arrange for it to call
1267@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1268C-Language Interface}.
bfa74976 1269
f7ab6a50 1270Aside from the token type names and the symbols in the actions you
9913d6e4
JD
1271write, all symbols defined in the Bison parser implementation file
1272itself begin with @samp{yy} or @samp{YY}. This includes interface
1273functions such as the lexical analyzer function @code{yylex}, the
1274error reporting function @code{yyerror} and the parser function
1275@code{yyparse} itself. This also includes numerous identifiers used
1276for internal purposes. Therefore, you should avoid using C
1277identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1278file except for the ones defined in this manual. Also, you should
1279avoid using the C identifiers @samp{malloc} and @samp{free} for
1280anything other than their usual meanings.
1281
1282In some cases the Bison parser implementation file includes system
1283headers, and in those cases your code should respect the identifiers
1284reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1285@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1286included as needed to declare memory allocators and related types.
1287@code{<libintl.h>} is included if message translation is in use
1288(@pxref{Internationalization}). Other system headers may be included
1289if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1290,Tracing Your Parser}).
7093d0f5 1291
342b8b6e 1292@node Stages
bfa74976
RS
1293@section Stages in Using Bison
1294@cindex stages in using Bison
1295@cindex using Bison
1296
1297The actual language-design process using Bison, from grammar specification
1298to a working compiler or interpreter, has these parts:
1299
1300@enumerate
1301@item
1302Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1303(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1304in the language, describe the action that is to be taken when an
1305instance of that rule is recognized. The action is described by a
1306sequence of C statements.
bfa74976
RS
1307
1308@item
704a47c4
AD
1309Write a lexical analyzer to process input and pass tokens to the parser.
1310The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1311Lexical Analyzer Function @code{yylex}}). It could also be produced
1312using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1313
1314@item
1315Write a controlling function that calls the Bison-produced parser.
1316
1317@item
1318Write error-reporting routines.
1319@end enumerate
1320
1321To turn this source code as written into a runnable program, you
1322must follow these steps:
1323
1324@enumerate
1325@item
1326Run Bison on the grammar to produce the parser.
1327
1328@item
1329Compile the code output by Bison, as well as any other source files.
1330
1331@item
1332Link the object files to produce the finished product.
1333@end enumerate
1334
342b8b6e 1335@node Grammar Layout
bfa74976
RS
1336@section The Overall Layout of a Bison Grammar
1337@cindex grammar file
1338@cindex file format
1339@cindex format of grammar file
1340@cindex layout of Bison grammar
1341
1342The input file for the Bison utility is a @dfn{Bison grammar file}. The
1343general form of a Bison grammar file is as follows:
1344
1345@example
1346%@{
08e49d20 1347@var{Prologue}
bfa74976
RS
1348%@}
1349
1350@var{Bison declarations}
1351
1352%%
1353@var{Grammar rules}
1354%%
08e49d20 1355@var{Epilogue}
bfa74976
RS
1356@end example
1357
1358@noindent
1359The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1360in every Bison grammar file to separate the sections.
1361
72d2299c 1362The prologue may define types and variables used in the actions. You can
342b8b6e 1363also use preprocessor commands to define macros used there, and use
bfa74976 1364@code{#include} to include header files that do any of these things.
38a92d50
PE
1365You need to declare the lexical analyzer @code{yylex} and the error
1366printer @code{yyerror} here, along with any other global identifiers
1367used by the actions in the grammar rules.
bfa74976
RS
1368
1369The Bison declarations declare the names of the terminal and nonterminal
1370symbols, and may also describe operator precedence and the data types of
1371semantic values of various symbols.
1372
1373The grammar rules define how to construct each nonterminal symbol from its
1374parts.
1375
38a92d50
PE
1376The epilogue can contain any code you want to use. Often the
1377definitions of functions declared in the prologue go here. In a
1378simple program, all the rest of the program can go here.
bfa74976 1379
342b8b6e 1380@node Examples
bfa74976
RS
1381@chapter Examples
1382@cindex simple examples
1383@cindex examples, simple
1384
1385Now we show and explain three sample programs written using Bison: a
1386reverse polish notation calculator, an algebraic (infix) notation
1387calculator, and a multi-function calculator. All three have been tested
1388under BSD Unix 4.3; each produces a usable, though limited, interactive
1389desk-top calculator.
1390
1391These examples are simple, but Bison grammars for real programming
aa08666d
AD
1392languages are written the same way. You can copy these examples into a
1393source file to try them.
bfa74976
RS
1394
1395@menu
f56274a8
DJ
1396* RPN Calc:: Reverse polish notation calculator;
1397 a first example with no operator precedence.
1398* Infix Calc:: Infix (algebraic) notation calculator.
1399 Operator precedence is introduced.
bfa74976 1400* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1401* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
1402* Multi-function Calc:: Calculator with memory and trig functions.
1403 It uses multiple data-types for semantic values.
1404* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1405@end menu
1406
342b8b6e 1407@node RPN Calc
bfa74976
RS
1408@section Reverse Polish Notation Calculator
1409@cindex reverse polish notation
1410@cindex polish notation calculator
1411@cindex @code{rpcalc}
1412@cindex calculator, simple
1413
1414The first example is that of a simple double-precision @dfn{reverse polish
1415notation} calculator (a calculator using postfix operators). This example
1416provides a good starting point, since operator precedence is not an issue.
1417The second example will illustrate how operator precedence is handled.
1418
1419The source code for this calculator is named @file{rpcalc.y}. The
9913d6e4 1420@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1421
1422@menu
f56274a8
DJ
1423* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1424* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1425* Rpcalc Lexer:: The lexical analyzer.
1426* Rpcalc Main:: The controlling function.
1427* Rpcalc Error:: The error reporting function.
1428* Rpcalc Generate:: Running Bison on the grammar file.
1429* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1430@end menu
1431
f56274a8 1432@node Rpcalc Declarations
bfa74976
RS
1433@subsection Declarations for @code{rpcalc}
1434
1435Here are the C and Bison declarations for the reverse polish notation
1436calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1437
1438@example
72d2299c 1439/* Reverse polish notation calculator. */
bfa74976
RS
1440
1441%@{
38a92d50
PE
1442 #define YYSTYPE double
1443 #include <math.h>
1444 int yylex (void);
1445 void yyerror (char const *);
bfa74976
RS
1446%@}
1447
1448%token NUM
1449
72d2299c 1450%% /* Grammar rules and actions follow. */
bfa74976
RS
1451@end example
1452
75f5aaea 1453The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1454preprocessor directives and two forward declarations.
bfa74976
RS
1455
1456The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1457specifying the C data type for semantic values of both tokens and
1458groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1459Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1460don't define it, @code{int} is the default. Because we specify
1461@code{double}, each token and each expression has an associated value,
1462which is a floating point number.
bfa74976
RS
1463
1464The @code{#include} directive is used to declare the exponentiation
1465function @code{pow}.
1466
38a92d50
PE
1467The forward declarations for @code{yylex} and @code{yyerror} are
1468needed because the C language requires that functions be declared
1469before they are used. These functions will be defined in the
1470epilogue, but the parser calls them so they must be declared in the
1471prologue.
1472
704a47c4
AD
1473The second section, Bison declarations, provides information to Bison
1474about the token types (@pxref{Bison Declarations, ,The Bison
1475Declarations Section}). Each terminal symbol that is not a
1476single-character literal must be declared here. (Single-character
bfa74976
RS
1477literals normally don't need to be declared.) In this example, all the
1478arithmetic operators are designated by single-character literals, so the
1479only terminal symbol that needs to be declared is @code{NUM}, the token
1480type for numeric constants.
1481
342b8b6e 1482@node Rpcalc Rules
bfa74976
RS
1483@subsection Grammar Rules for @code{rpcalc}
1484
1485Here are the grammar rules for the reverse polish notation calculator.
1486
1487@example
1488input: /* empty */
1489 | input line
1490;
1491
1492line: '\n'
18b519c0 1493 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1494;
1495
18b519c0
AD
1496exp: NUM @{ $$ = $1; @}
1497 | exp exp '+' @{ $$ = $1 + $2; @}
1498 | exp exp '-' @{ $$ = $1 - $2; @}
1499 | exp exp '*' @{ $$ = $1 * $2; @}
1500 | exp exp '/' @{ $$ = $1 / $2; @}
1501 /* Exponentiation */
1502 | exp exp '^' @{ $$ = pow ($1, $2); @}
1503 /* Unary minus */
1504 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1505;
1506%%
1507@end example
1508
1509The groupings of the rpcalc ``language'' defined here are the expression
1510(given the name @code{exp}), the line of input (@code{line}), and the
1511complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1512symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1513which is read as ``or''. The following sections explain what these rules
1514mean.
1515
1516The semantics of the language is determined by the actions taken when a
1517grouping is recognized. The actions are the C code that appears inside
1518braces. @xref{Actions}.
1519
1520You must specify these actions in C, but Bison provides the means for
1521passing semantic values between the rules. In each action, the
1522pseudo-variable @code{$$} stands for the semantic value for the grouping
1523that the rule is going to construct. Assigning a value to @code{$$} is the
1524main job of most actions. The semantic values of the components of the
1525rule are referred to as @code{$1}, @code{$2}, and so on.
1526
1527@menu
13863333
AD
1528* Rpcalc Input::
1529* Rpcalc Line::
1530* Rpcalc Expr::
bfa74976
RS
1531@end menu
1532
342b8b6e 1533@node Rpcalc Input
bfa74976
RS
1534@subsubsection Explanation of @code{input}
1535
1536Consider the definition of @code{input}:
1537
1538@example
1539input: /* empty */
1540 | input line
1541;
1542@end example
1543
1544This definition reads as follows: ``A complete input is either an empty
1545string, or a complete input followed by an input line''. Notice that
1546``complete input'' is defined in terms of itself. This definition is said
1547to be @dfn{left recursive} since @code{input} appears always as the
1548leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1549
1550The first alternative is empty because there are no symbols between the
1551colon and the first @samp{|}; this means that @code{input} can match an
1552empty string of input (no tokens). We write the rules this way because it
1553is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1554It's conventional to put an empty alternative first and write the comment
1555@samp{/* empty */} in it.
1556
1557The second alternate rule (@code{input line}) handles all nontrivial input.
1558It means, ``After reading any number of lines, read one more line if
1559possible.'' The left recursion makes this rule into a loop. Since the
1560first alternative matches empty input, the loop can be executed zero or
1561more times.
1562
1563The parser function @code{yyparse} continues to process input until a
1564grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1565input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1566
342b8b6e 1567@node Rpcalc Line
bfa74976
RS
1568@subsubsection Explanation of @code{line}
1569
1570Now consider the definition of @code{line}:
1571
1572@example
1573line: '\n'
1574 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1575;
1576@end example
1577
1578The first alternative is a token which is a newline character; this means
1579that rpcalc accepts a blank line (and ignores it, since there is no
1580action). The second alternative is an expression followed by a newline.
1581This is the alternative that makes rpcalc useful. The semantic value of
1582the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1583question is the first symbol in the alternative. The action prints this
1584value, which is the result of the computation the user asked for.
1585
1586This action is unusual because it does not assign a value to @code{$$}. As
1587a consequence, the semantic value associated with the @code{line} is
1588uninitialized (its value will be unpredictable). This would be a bug if
1589that value were ever used, but we don't use it: once rpcalc has printed the
1590value of the user's input line, that value is no longer needed.
1591
342b8b6e 1592@node Rpcalc Expr
bfa74976
RS
1593@subsubsection Explanation of @code{expr}
1594
1595The @code{exp} grouping has several rules, one for each kind of expression.
1596The first rule handles the simplest expressions: those that are just numbers.
1597The second handles an addition-expression, which looks like two expressions
1598followed by a plus-sign. The third handles subtraction, and so on.
1599
1600@example
1601exp: NUM
1602 | exp exp '+' @{ $$ = $1 + $2; @}
1603 | exp exp '-' @{ $$ = $1 - $2; @}
1604 @dots{}
1605 ;
1606@end example
1607
1608We have used @samp{|} to join all the rules for @code{exp}, but we could
1609equally well have written them separately:
1610
1611@example
1612exp: NUM ;
1613exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1614exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1615 @dots{}
1616@end example
1617
1618Most of the rules have actions that compute the value of the expression in
1619terms of the value of its parts. For example, in the rule for addition,
1620@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1621the second one. The third component, @code{'+'}, has no meaningful
1622associated semantic value, but if it had one you could refer to it as
1623@code{$3}. When @code{yyparse} recognizes a sum expression using this
1624rule, the sum of the two subexpressions' values is produced as the value of
1625the entire expression. @xref{Actions}.
1626
1627You don't have to give an action for every rule. When a rule has no
1628action, Bison by default copies the value of @code{$1} into @code{$$}.
1629This is what happens in the first rule (the one that uses @code{NUM}).
1630
1631The formatting shown here is the recommended convention, but Bison does
72d2299c 1632not require it. You can add or change white space as much as you wish.
bfa74976
RS
1633For example, this:
1634
1635@example
99a9344e 1636exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1637@end example
1638
1639@noindent
1640means the same thing as this:
1641
1642@example
1643exp: NUM
1644 | exp exp '+' @{ $$ = $1 + $2; @}
1645 | @dots{}
99a9344e 1646;
bfa74976
RS
1647@end example
1648
1649@noindent
1650The latter, however, is much more readable.
1651
342b8b6e 1652@node Rpcalc Lexer
bfa74976
RS
1653@subsection The @code{rpcalc} Lexical Analyzer
1654@cindex writing a lexical analyzer
1655@cindex lexical analyzer, writing
1656
704a47c4
AD
1657The lexical analyzer's job is low-level parsing: converting characters
1658or sequences of characters into tokens. The Bison parser gets its
1659tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1660Analyzer Function @code{yylex}}.
bfa74976 1661
35430378 1662Only a simple lexical analyzer is needed for the RPN
c827f760 1663calculator. This
bfa74976
RS
1664lexical analyzer skips blanks and tabs, then reads in numbers as
1665@code{double} and returns them as @code{NUM} tokens. Any other character
1666that isn't part of a number is a separate token. Note that the token-code
1667for such a single-character token is the character itself.
1668
1669The return value of the lexical analyzer function is a numeric code which
1670represents a token type. The same text used in Bison rules to stand for
1671this token type is also a C expression for the numeric code for the type.
1672This works in two ways. If the token type is a character literal, then its
e966383b 1673numeric code is that of the character; you can use the same
bfa74976
RS
1674character literal in the lexical analyzer to express the number. If the
1675token type is an identifier, that identifier is defined by Bison as a C
1676macro whose definition is the appropriate number. In this example,
1677therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1678
1964ad8c
AD
1679The semantic value of the token (if it has one) is stored into the
1680global variable @code{yylval}, which is where the Bison parser will look
1681for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f56274a8 1682defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1683,Declarations for @code{rpcalc}}.)
bfa74976 1684
72d2299c
PE
1685A token type code of zero is returned if the end-of-input is encountered.
1686(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1687
1688Here is the code for the lexical analyzer:
1689
1690@example
1691@group
72d2299c 1692/* The lexical analyzer returns a double floating point
e966383b 1693 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1694 of the character read if not a number. It skips all blanks
1695 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1696
1697#include <ctype.h>
1698@end group
1699
1700@group
13863333
AD
1701int
1702yylex (void)
bfa74976
RS
1703@{
1704 int c;
1705
72d2299c 1706 /* Skip white space. */
13863333 1707 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1708 ;
1709@end group
1710@group
72d2299c 1711 /* Process numbers. */
13863333 1712 if (c == '.' || isdigit (c))
bfa74976
RS
1713 @{
1714 ungetc (c, stdin);
1715 scanf ("%lf", &yylval);
1716 return NUM;
1717 @}
1718@end group
1719@group
72d2299c 1720 /* Return end-of-input. */
13863333 1721 if (c == EOF)
bfa74976 1722 return 0;
72d2299c 1723 /* Return a single char. */
13863333 1724 return c;
bfa74976
RS
1725@}
1726@end group
1727@end example
1728
342b8b6e 1729@node Rpcalc Main
bfa74976
RS
1730@subsection The Controlling Function
1731@cindex controlling function
1732@cindex main function in simple example
1733
1734In keeping with the spirit of this example, the controlling function is
1735kept to the bare minimum. The only requirement is that it call
1736@code{yyparse} to start the process of parsing.
1737
1738@example
1739@group
13863333
AD
1740int
1741main (void)
bfa74976 1742@{
13863333 1743 return yyparse ();
bfa74976
RS
1744@}
1745@end group
1746@end example
1747
342b8b6e 1748@node Rpcalc Error
bfa74976
RS
1749@subsection The Error Reporting Routine
1750@cindex error reporting routine
1751
1752When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1753function @code{yyerror} to print an error message (usually but not
6e649e65 1754always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1755@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1756here is the definition we will use:
bfa74976
RS
1757
1758@example
1759@group
1760#include <stdio.h>
1761
38a92d50 1762/* Called by yyparse on error. */
13863333 1763void
38a92d50 1764yyerror (char const *s)
bfa74976 1765@{
4e03e201 1766 fprintf (stderr, "%s\n", s);
bfa74976
RS
1767@}
1768@end group
1769@end example
1770
1771After @code{yyerror} returns, the Bison parser may recover from the error
1772and continue parsing if the grammar contains a suitable error rule
1773(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1774have not written any error rules in this example, so any invalid input will
1775cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1776real calculator, but it is adequate for the first example.
bfa74976 1777
f56274a8 1778@node Rpcalc Generate
bfa74976
RS
1779@subsection Running Bison to Make the Parser
1780@cindex running Bison (introduction)
1781
ceed8467
AD
1782Before running Bison to produce a parser, we need to decide how to
1783arrange all the source code in one or more source files. For such a
9913d6e4
JD
1784simple example, the easiest thing is to put everything in one file,
1785the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1786@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1787(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1788
1789For a large project, you would probably have several source files, and use
1790@code{make} to arrange to recompile them.
1791
9913d6e4
JD
1792With all the source in the grammar file, you use the following command
1793to convert it into a parser implementation file:
bfa74976
RS
1794
1795@example
fa4d969f 1796bison @var{file}.y
bfa74976
RS
1797@end example
1798
1799@noindent
9913d6e4
JD
1800In this example, the grammar file is called @file{rpcalc.y} (for
1801``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1802implementation file named @file{@var{file}.tab.c}, removing the
1803@samp{.y} from the grammar file name. The parser implementation file
1804contains the source code for @code{yyparse}. The additional functions
1805in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1806copied verbatim to the parser implementation file.
bfa74976 1807
342b8b6e 1808@node Rpcalc Compile
9913d6e4 1809@subsection Compiling the Parser Implementation File
bfa74976
RS
1810@cindex compiling the parser
1811
9913d6e4 1812Here is how to compile and run the parser implementation file:
bfa74976
RS
1813
1814@example
1815@group
1816# @r{List files in current directory.}
9edcd895 1817$ @kbd{ls}
bfa74976
RS
1818rpcalc.tab.c rpcalc.y
1819@end group
1820
1821@group
1822# @r{Compile the Bison parser.}
1823# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1824$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1825@end group
1826
1827@group
1828# @r{List files again.}
9edcd895 1829$ @kbd{ls}
bfa74976
RS
1830rpcalc rpcalc.tab.c rpcalc.y
1831@end group
1832@end example
1833
1834The file @file{rpcalc} now contains the executable code. Here is an
1835example session using @code{rpcalc}.
1836
1837@example
9edcd895
AD
1838$ @kbd{rpcalc}
1839@kbd{4 9 +}
bfa74976 184013
9edcd895 1841@kbd{3 7 + 3 4 5 *+-}
bfa74976 1842-13
9edcd895 1843@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 184413
9edcd895 1845@kbd{5 6 / 4 n +}
bfa74976 1846-3.166666667
9edcd895 1847@kbd{3 4 ^} @r{Exponentiation}
bfa74976 184881
9edcd895
AD
1849@kbd{^D} @r{End-of-file indicator}
1850$
bfa74976
RS
1851@end example
1852
342b8b6e 1853@node Infix Calc
bfa74976
RS
1854@section Infix Notation Calculator: @code{calc}
1855@cindex infix notation calculator
1856@cindex @code{calc}
1857@cindex calculator, infix notation
1858
1859We now modify rpcalc to handle infix operators instead of postfix. Infix
1860notation involves the concept of operator precedence and the need for
1861parentheses nested to arbitrary depth. Here is the Bison code for
1862@file{calc.y}, an infix desk-top calculator.
1863
1864@example
38a92d50 1865/* Infix notation calculator. */
bfa74976
RS
1866
1867%@{
38a92d50
PE
1868 #define YYSTYPE double
1869 #include <math.h>
1870 #include <stdio.h>
1871 int yylex (void);
1872 void yyerror (char const *);
bfa74976
RS
1873%@}
1874
38a92d50 1875/* Bison declarations. */
bfa74976
RS
1876%token NUM
1877%left '-' '+'
1878%left '*' '/'
1879%left NEG /* negation--unary minus */
38a92d50 1880%right '^' /* exponentiation */
bfa74976 1881
38a92d50
PE
1882%% /* The grammar follows. */
1883input: /* empty */
bfa74976
RS
1884 | input line
1885;
1886
1887line: '\n'
1888 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1889;
1890
1891exp: NUM @{ $$ = $1; @}
1892 | exp '+' exp @{ $$ = $1 + $3; @}
1893 | exp '-' exp @{ $$ = $1 - $3; @}
1894 | exp '*' exp @{ $$ = $1 * $3; @}
1895 | exp '/' exp @{ $$ = $1 / $3; @}
1896 | '-' exp %prec NEG @{ $$ = -$2; @}
1897 | exp '^' exp @{ $$ = pow ($1, $3); @}
1898 | '(' exp ')' @{ $$ = $2; @}
1899;
1900%%
1901@end example
1902
1903@noindent
ceed8467
AD
1904The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1905same as before.
bfa74976
RS
1906
1907There are two important new features shown in this code.
1908
1909In the second section (Bison declarations), @code{%left} declares token
1910types and says they are left-associative operators. The declarations
1911@code{%left} and @code{%right} (right associativity) take the place of
1912@code{%token} which is used to declare a token type name without
1913associativity. (These tokens are single-character literals, which
1914ordinarily don't need to be declared. We declare them here to specify
1915the associativity.)
1916
1917Operator precedence is determined by the line ordering of the
1918declarations; the higher the line number of the declaration (lower on
1919the page or screen), the higher the precedence. Hence, exponentiation
1920has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1921by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1922Precedence}.
bfa74976 1923
704a47c4
AD
1924The other important new feature is the @code{%prec} in the grammar
1925section for the unary minus operator. The @code{%prec} simply instructs
1926Bison that the rule @samp{| '-' exp} has the same precedence as
1927@code{NEG}---in this case the next-to-highest. @xref{Contextual
1928Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1929
1930Here is a sample run of @file{calc.y}:
1931
1932@need 500
1933@example
9edcd895
AD
1934$ @kbd{calc}
1935@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19366.880952381
9edcd895 1937@kbd{-56 + 2}
bfa74976 1938-54
9edcd895 1939@kbd{3 ^ 2}
bfa74976
RS
19409
1941@end example
1942
342b8b6e 1943@node Simple Error Recovery
bfa74976
RS
1944@section Simple Error Recovery
1945@cindex error recovery, simple
1946
1947Up to this point, this manual has not addressed the issue of @dfn{error
1948recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1949error. All we have handled is error reporting with @code{yyerror}.
1950Recall that by default @code{yyparse} returns after calling
1951@code{yyerror}. This means that an erroneous input line causes the
1952calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1953
1954The Bison language itself includes the reserved word @code{error}, which
1955may be included in the grammar rules. In the example below it has
1956been added to one of the alternatives for @code{line}:
1957
1958@example
1959@group
1960line: '\n'
1961 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1962 | error '\n' @{ yyerrok; @}
1963;
1964@end group
1965@end example
1966
ceed8467 1967This addition to the grammar allows for simple error recovery in the
6e649e65 1968event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1969read, the error will be recognized by the third rule for @code{line},
1970and parsing will continue. (The @code{yyerror} function is still called
1971upon to print its message as well.) The action executes the statement
1972@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1973that error recovery is complete (@pxref{Error Recovery}). Note the
1974difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1975misprint.
bfa74976
RS
1976
1977This form of error recovery deals with syntax errors. There are other
1978kinds of errors; for example, division by zero, which raises an exception
1979signal that is normally fatal. A real calculator program must handle this
1980signal and use @code{longjmp} to return to @code{main} and resume parsing
1981input lines; it would also have to discard the rest of the current line of
1982input. We won't discuss this issue further because it is not specific to
1983Bison programs.
1984
342b8b6e
AD
1985@node Location Tracking Calc
1986@section Location Tracking Calculator: @code{ltcalc}
1987@cindex location tracking calculator
1988@cindex @code{ltcalc}
1989@cindex calculator, location tracking
1990
9edcd895
AD
1991This example extends the infix notation calculator with location
1992tracking. This feature will be used to improve the error messages. For
1993the sake of clarity, this example is a simple integer calculator, since
1994most of the work needed to use locations will be done in the lexical
72d2299c 1995analyzer.
342b8b6e
AD
1996
1997@menu
f56274a8
DJ
1998* Ltcalc Declarations:: Bison and C declarations for ltcalc.
1999* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2000* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2001@end menu
2002
f56274a8 2003@node Ltcalc Declarations
342b8b6e
AD
2004@subsection Declarations for @code{ltcalc}
2005
9edcd895
AD
2006The C and Bison declarations for the location tracking calculator are
2007the same as the declarations for the infix notation calculator.
342b8b6e
AD
2008
2009@example
2010/* Location tracking calculator. */
2011
2012%@{
38a92d50
PE
2013 #define YYSTYPE int
2014 #include <math.h>
2015 int yylex (void);
2016 void yyerror (char const *);
342b8b6e
AD
2017%@}
2018
2019/* Bison declarations. */
2020%token NUM
2021
2022%left '-' '+'
2023%left '*' '/'
2024%left NEG
2025%right '^'
2026
38a92d50 2027%% /* The grammar follows. */
342b8b6e
AD
2028@end example
2029
9edcd895
AD
2030@noindent
2031Note there are no declarations specific to locations. Defining a data
2032type for storing locations is not needed: we will use the type provided
2033by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2034four member structure with the following integer fields:
2035@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2036@code{last_column}. By conventions, and in accordance with the GNU
2037Coding Standards and common practice, the line and column count both
2038start at 1.
342b8b6e
AD
2039
2040@node Ltcalc Rules
2041@subsection Grammar Rules for @code{ltcalc}
2042
9edcd895
AD
2043Whether handling locations or not has no effect on the syntax of your
2044language. Therefore, grammar rules for this example will be very close
2045to those of the previous example: we will only modify them to benefit
2046from the new information.
342b8b6e 2047
9edcd895
AD
2048Here, we will use locations to report divisions by zero, and locate the
2049wrong expressions or subexpressions.
342b8b6e
AD
2050
2051@example
2052@group
2053input : /* empty */
2054 | input line
2055;
2056@end group
2057
2058@group
2059line : '\n'
2060 | exp '\n' @{ printf ("%d\n", $1); @}
2061;
2062@end group
2063
2064@group
2065exp : NUM @{ $$ = $1; @}
2066 | exp '+' exp @{ $$ = $1 + $3; @}
2067 | exp '-' exp @{ $$ = $1 - $3; @}
2068 | exp '*' exp @{ $$ = $1 * $3; @}
2069@end group
342b8b6e 2070@group
9edcd895 2071 | exp '/' exp
342b8b6e
AD
2072 @{
2073 if ($3)
2074 $$ = $1 / $3;
2075 else
2076 @{
2077 $$ = 1;
9edcd895
AD
2078 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2079 @@3.first_line, @@3.first_column,
2080 @@3.last_line, @@3.last_column);
342b8b6e
AD
2081 @}
2082 @}
2083@end group
2084@group
178e123e 2085 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2086 | exp '^' exp @{ $$ = pow ($1, $3); @}
2087 | '(' exp ')' @{ $$ = $2; @}
2088@end group
2089@end example
2090
2091This code shows how to reach locations inside of semantic actions, by
2092using the pseudo-variables @code{@@@var{n}} for rule components, and the
2093pseudo-variable @code{@@$} for groupings.
2094
9edcd895
AD
2095We don't need to assign a value to @code{@@$}: the output parser does it
2096automatically. By default, before executing the C code of each action,
2097@code{@@$} is set to range from the beginning of @code{@@1} to the end
2098of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2099can be redefined (@pxref{Location Default Action, , Default Action for
2100Locations}), and for very specific rules, @code{@@$} can be computed by
2101hand.
342b8b6e
AD
2102
2103@node Ltcalc Lexer
2104@subsection The @code{ltcalc} Lexical Analyzer.
2105
9edcd895 2106Until now, we relied on Bison's defaults to enable location
72d2299c 2107tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2108able to feed the parser with the token locations, as it already does for
2109semantic values.
342b8b6e 2110
9edcd895
AD
2111To this end, we must take into account every single character of the
2112input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2113
2114@example
2115@group
2116int
2117yylex (void)
2118@{
2119 int c;
18b519c0 2120@end group
342b8b6e 2121
18b519c0 2122@group
72d2299c 2123 /* Skip white space. */
342b8b6e
AD
2124 while ((c = getchar ()) == ' ' || c == '\t')
2125 ++yylloc.last_column;
18b519c0 2126@end group
342b8b6e 2127
18b519c0 2128@group
72d2299c 2129 /* Step. */
342b8b6e
AD
2130 yylloc.first_line = yylloc.last_line;
2131 yylloc.first_column = yylloc.last_column;
2132@end group
2133
2134@group
72d2299c 2135 /* Process numbers. */
342b8b6e
AD
2136 if (isdigit (c))
2137 @{
2138 yylval = c - '0';
2139 ++yylloc.last_column;
2140 while (isdigit (c = getchar ()))
2141 @{
2142 ++yylloc.last_column;
2143 yylval = yylval * 10 + c - '0';
2144 @}
2145 ungetc (c, stdin);
2146 return NUM;
2147 @}
2148@end group
2149
72d2299c 2150 /* Return end-of-input. */
342b8b6e
AD
2151 if (c == EOF)
2152 return 0;
2153
72d2299c 2154 /* Return a single char, and update location. */
342b8b6e
AD
2155 if (c == '\n')
2156 @{
2157 ++yylloc.last_line;
2158 yylloc.last_column = 0;
2159 @}
2160 else
2161 ++yylloc.last_column;
2162 return c;
2163@}
2164@end example
2165
9edcd895
AD
2166Basically, the lexical analyzer performs the same processing as before:
2167it skips blanks and tabs, and reads numbers or single-character tokens.
2168In addition, it updates @code{yylloc}, the global variable (of type
2169@code{YYLTYPE}) containing the token's location.
342b8b6e 2170
9edcd895 2171Now, each time this function returns a token, the parser has its number
72d2299c 2172as well as its semantic value, and its location in the text. The last
9edcd895
AD
2173needed change is to initialize @code{yylloc}, for example in the
2174controlling function:
342b8b6e
AD
2175
2176@example
9edcd895 2177@group
342b8b6e
AD
2178int
2179main (void)
2180@{
2181 yylloc.first_line = yylloc.last_line = 1;
2182 yylloc.first_column = yylloc.last_column = 0;
2183 return yyparse ();
2184@}
9edcd895 2185@end group
342b8b6e
AD
2186@end example
2187
9edcd895
AD
2188Remember that computing locations is not a matter of syntax. Every
2189character must be associated to a location update, whether it is in
2190valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2191
2192@node Multi-function Calc
bfa74976
RS
2193@section Multi-Function Calculator: @code{mfcalc}
2194@cindex multi-function calculator
2195@cindex @code{mfcalc}
2196@cindex calculator, multi-function
2197
2198Now that the basics of Bison have been discussed, it is time to move on to
2199a more advanced problem. The above calculators provided only five
2200functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2201be nice to have a calculator that provides other mathematical functions such
2202as @code{sin}, @code{cos}, etc.
2203
2204It is easy to add new operators to the infix calculator as long as they are
2205only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2206back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2207adding a new operator. But we want something more flexible: built-in
2208functions whose syntax has this form:
2209
2210@example
2211@var{function_name} (@var{argument})
2212@end example
2213
2214@noindent
2215At the same time, we will add memory to the calculator, by allowing you
2216to create named variables, store values in them, and use them later.
2217Here is a sample session with the multi-function calculator:
2218
2219@example
9edcd895
AD
2220$ @kbd{mfcalc}
2221@kbd{pi = 3.141592653589}
bfa74976 22223.1415926536
9edcd895 2223@kbd{sin(pi)}
bfa74976 22240.0000000000
9edcd895 2225@kbd{alpha = beta1 = 2.3}
bfa74976 22262.3000000000
9edcd895 2227@kbd{alpha}
bfa74976 22282.3000000000
9edcd895 2229@kbd{ln(alpha)}
bfa74976 22300.8329091229
9edcd895 2231@kbd{exp(ln(beta1))}
bfa74976 22322.3000000000
9edcd895 2233$
bfa74976
RS
2234@end example
2235
2236Note that multiple assignment and nested function calls are permitted.
2237
2238@menu
f56274a8
DJ
2239* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2240* Mfcalc Rules:: Grammar rules for the calculator.
2241* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2242@end menu
2243
f56274a8 2244@node Mfcalc Declarations
bfa74976
RS
2245@subsection Declarations for @code{mfcalc}
2246
2247Here are the C and Bison declarations for the multi-function calculator.
2248
2249@smallexample
18b519c0 2250@group
bfa74976 2251%@{
38a92d50
PE
2252 #include <math.h> /* For math functions, cos(), sin(), etc. */
2253 #include "calc.h" /* Contains definition of `symrec'. */
2254 int yylex (void);
2255 void yyerror (char const *);
bfa74976 2256%@}
18b519c0
AD
2257@end group
2258@group
bfa74976 2259%union @{
38a92d50
PE
2260 double val; /* For returning numbers. */
2261 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2262@}
18b519c0 2263@end group
38a92d50
PE
2264%token <val> NUM /* Simple double precision number. */
2265%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2266%type <val> exp
2267
18b519c0 2268@group
bfa74976
RS
2269%right '='
2270%left '-' '+'
2271%left '*' '/'
38a92d50
PE
2272%left NEG /* negation--unary minus */
2273%right '^' /* exponentiation */
18b519c0 2274@end group
38a92d50 2275%% /* The grammar follows. */
bfa74976
RS
2276@end smallexample
2277
2278The above grammar introduces only two new features of the Bison language.
2279These features allow semantic values to have various data types
2280(@pxref{Multiple Types, ,More Than One Value Type}).
2281
2282The @code{%union} declaration specifies the entire list of possible types;
2283this is instead of defining @code{YYSTYPE}. The allowable types are now
2284double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2285the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2286
2287Since values can now have various types, it is necessary to associate a
2288type with each grammar symbol whose semantic value is used. These symbols
2289are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2290declarations are augmented with information about their data type (placed
2291between angle brackets).
2292
704a47c4
AD
2293The Bison construct @code{%type} is used for declaring nonterminal
2294symbols, just as @code{%token} is used for declaring token types. We
2295have not used @code{%type} before because nonterminal symbols are
2296normally declared implicitly by the rules that define them. But
2297@code{exp} must be declared explicitly so we can specify its value type.
2298@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2299
342b8b6e 2300@node Mfcalc Rules
bfa74976
RS
2301@subsection Grammar Rules for @code{mfcalc}
2302
2303Here are the grammar rules for the multi-function calculator.
2304Most of them are copied directly from @code{calc}; three rules,
2305those which mention @code{VAR} or @code{FNCT}, are new.
2306
2307@smallexample
18b519c0 2308@group
bfa74976
RS
2309input: /* empty */
2310 | input line
2311;
18b519c0 2312@end group
bfa74976 2313
18b519c0 2314@group
bfa74976
RS
2315line:
2316 '\n'
2317 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2318 | error '\n' @{ yyerrok; @}
2319;
18b519c0 2320@end group
bfa74976 2321
18b519c0 2322@group
bfa74976
RS
2323exp: NUM @{ $$ = $1; @}
2324 | VAR @{ $$ = $1->value.var; @}
2325 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2326 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2327 | exp '+' exp @{ $$ = $1 + $3; @}
2328 | exp '-' exp @{ $$ = $1 - $3; @}
2329 | exp '*' exp @{ $$ = $1 * $3; @}
2330 | exp '/' exp @{ $$ = $1 / $3; @}
2331 | '-' exp %prec NEG @{ $$ = -$2; @}
2332 | exp '^' exp @{ $$ = pow ($1, $3); @}
2333 | '(' exp ')' @{ $$ = $2; @}
2334;
18b519c0 2335@end group
38a92d50 2336/* End of grammar. */
bfa74976
RS
2337%%
2338@end smallexample
2339
f56274a8 2340@node Mfcalc Symbol Table
bfa74976
RS
2341@subsection The @code{mfcalc} Symbol Table
2342@cindex symbol table example
2343
2344The multi-function calculator requires a symbol table to keep track of the
2345names and meanings of variables and functions. This doesn't affect the
2346grammar rules (except for the actions) or the Bison declarations, but it
2347requires some additional C functions for support.
2348
2349The symbol table itself consists of a linked list of records. Its
2350definition, which is kept in the header @file{calc.h}, is as follows. It
2351provides for either functions or variables to be placed in the table.
2352
2353@smallexample
2354@group
38a92d50 2355/* Function type. */
32dfccf8 2356typedef double (*func_t) (double);
72f889cc 2357@end group
32dfccf8 2358
72f889cc 2359@group
38a92d50 2360/* Data type for links in the chain of symbols. */
bfa74976
RS
2361struct symrec
2362@{
38a92d50 2363 char *name; /* name of symbol */
bfa74976 2364 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2365 union
2366 @{
38a92d50
PE
2367 double var; /* value of a VAR */
2368 func_t fnctptr; /* value of a FNCT */
bfa74976 2369 @} value;
38a92d50 2370 struct symrec *next; /* link field */
bfa74976
RS
2371@};
2372@end group
2373
2374@group
2375typedef struct symrec symrec;
2376
38a92d50 2377/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2378extern symrec *sym_table;
2379
a730d142 2380symrec *putsym (char const *, int);
38a92d50 2381symrec *getsym (char const *);
bfa74976
RS
2382@end group
2383@end smallexample
2384
2385The new version of @code{main} includes a call to @code{init_table}, a
2386function that initializes the symbol table. Here it is, and
2387@code{init_table} as well:
2388
2389@smallexample
bfa74976
RS
2390#include <stdio.h>
2391
18b519c0 2392@group
38a92d50 2393/* Called by yyparse on error. */
13863333 2394void
38a92d50 2395yyerror (char const *s)
bfa74976
RS
2396@{
2397 printf ("%s\n", s);
2398@}
18b519c0 2399@end group
bfa74976 2400
18b519c0 2401@group
bfa74976
RS
2402struct init
2403@{
38a92d50
PE
2404 char const *fname;
2405 double (*fnct) (double);
bfa74976
RS
2406@};
2407@end group
2408
2409@group
38a92d50 2410struct init const arith_fncts[] =
13863333 2411@{
32dfccf8
AD
2412 "sin", sin,
2413 "cos", cos,
13863333 2414 "atan", atan,
32dfccf8
AD
2415 "ln", log,
2416 "exp", exp,
13863333
AD
2417 "sqrt", sqrt,
2418 0, 0
2419@};
18b519c0 2420@end group
bfa74976 2421
18b519c0 2422@group
bfa74976 2423/* The symbol table: a chain of `struct symrec'. */
38a92d50 2424symrec *sym_table;
bfa74976
RS
2425@end group
2426
2427@group
72d2299c 2428/* Put arithmetic functions in table. */
13863333
AD
2429void
2430init_table (void)
bfa74976
RS
2431@{
2432 int i;
2433 symrec *ptr;
2434 for (i = 0; arith_fncts[i].fname != 0; i++)
2435 @{
2436 ptr = putsym (arith_fncts[i].fname, FNCT);
2437 ptr->value.fnctptr = arith_fncts[i].fnct;
2438 @}
2439@}
2440@end group
38a92d50
PE
2441
2442@group
2443int
2444main (void)
2445@{
2446 init_table ();
2447 return yyparse ();
2448@}
2449@end group
bfa74976
RS
2450@end smallexample
2451
2452By simply editing the initialization list and adding the necessary include
2453files, you can add additional functions to the calculator.
2454
2455Two important functions allow look-up and installation of symbols in the
2456symbol table. The function @code{putsym} is passed a name and the type
2457(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2458linked to the front of the list, and a pointer to the object is returned.
2459The function @code{getsym} is passed the name of the symbol to look up. If
2460found, a pointer to that symbol is returned; otherwise zero is returned.
2461
2462@smallexample
2463symrec *
38a92d50 2464putsym (char const *sym_name, int sym_type)
bfa74976
RS
2465@{
2466 symrec *ptr;
2467 ptr = (symrec *) malloc (sizeof (symrec));
2468 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2469 strcpy (ptr->name,sym_name);
2470 ptr->type = sym_type;
72d2299c 2471 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2472 ptr->next = (struct symrec *)sym_table;
2473 sym_table = ptr;
2474 return ptr;
2475@}
2476
2477symrec *
38a92d50 2478getsym (char const *sym_name)
bfa74976
RS
2479@{
2480 symrec *ptr;
2481 for (ptr = sym_table; ptr != (symrec *) 0;
2482 ptr = (symrec *)ptr->next)
2483 if (strcmp (ptr->name,sym_name) == 0)
2484 return ptr;
2485 return 0;
2486@}
2487@end smallexample
2488
2489The function @code{yylex} must now recognize variables, numeric values, and
2490the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2491characters with a leading letter are recognized as either variables or
bfa74976
RS
2492functions depending on what the symbol table says about them.
2493
2494The string is passed to @code{getsym} for look up in the symbol table. If
2495the name appears in the table, a pointer to its location and its type
2496(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2497already in the table, then it is installed as a @code{VAR} using
2498@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2499returned to @code{yyparse}.
bfa74976
RS
2500
2501No change is needed in the handling of numeric values and arithmetic
2502operators in @code{yylex}.
2503
2504@smallexample
2505@group
2506#include <ctype.h>
18b519c0 2507@end group
13863333 2508
18b519c0 2509@group
13863333
AD
2510int
2511yylex (void)
bfa74976
RS
2512@{
2513 int c;
2514
72d2299c 2515 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2516 while ((c = getchar ()) == ' ' || c == '\t');
2517
2518 if (c == EOF)
2519 return 0;
2520@end group
2521
2522@group
2523 /* Char starts a number => parse the number. */
2524 if (c == '.' || isdigit (c))
2525 @{
2526 ungetc (c, stdin);
2527 scanf ("%lf", &yylval.val);
2528 return NUM;
2529 @}
2530@end group
2531
2532@group
2533 /* Char starts an identifier => read the name. */
2534 if (isalpha (c))
2535 @{
2536 symrec *s;
2537 static char *symbuf = 0;
2538 static int length = 0;
2539 int i;
2540@end group
2541
2542@group
2543 /* Initially make the buffer long enough
2544 for a 40-character symbol name. */
2545 if (length == 0)
2546 length = 40, symbuf = (char *)malloc (length + 1);
2547
2548 i = 0;
2549 do
2550@end group
2551@group
2552 @{
2553 /* If buffer is full, make it bigger. */
2554 if (i == length)
2555 @{
2556 length *= 2;
18b519c0 2557 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2558 @}
2559 /* Add this character to the buffer. */
2560 symbuf[i++] = c;
2561 /* Get another character. */
2562 c = getchar ();
2563 @}
2564@end group
2565@group
72d2299c 2566 while (isalnum (c));
bfa74976
RS
2567
2568 ungetc (c, stdin);
2569 symbuf[i] = '\0';
2570@end group
2571
2572@group
2573 s = getsym (symbuf);
2574 if (s == 0)
2575 s = putsym (symbuf, VAR);
2576 yylval.tptr = s;
2577 return s->type;
2578 @}
2579
2580 /* Any other character is a token by itself. */
2581 return c;
2582@}
2583@end group
2584@end smallexample
2585
72d2299c 2586This program is both powerful and flexible. You may easily add new
704a47c4
AD
2587functions, and it is a simple job to modify this code to install
2588predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2589
342b8b6e 2590@node Exercises
bfa74976
RS
2591@section Exercises
2592@cindex exercises
2593
2594@enumerate
2595@item
2596Add some new functions from @file{math.h} to the initialization list.
2597
2598@item
2599Add another array that contains constants and their values. Then
2600modify @code{init_table} to add these constants to the symbol table.
2601It will be easiest to give the constants type @code{VAR}.
2602
2603@item
2604Make the program report an error if the user refers to an
2605uninitialized variable in any way except to store a value in it.
2606@end enumerate
2607
342b8b6e 2608@node Grammar File
bfa74976
RS
2609@chapter Bison Grammar Files
2610
2611Bison takes as input a context-free grammar specification and produces a
2612C-language function that recognizes correct instances of the grammar.
2613
9913d6e4 2614The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2615@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2616
2617@menu
2618* Grammar Outline:: Overall layout of the grammar file.
2619* Symbols:: Terminal and nonterminal symbols.
2620* Rules:: How to write grammar rules.
2621* Recursion:: Writing recursive rules.
2622* Semantics:: Semantic values and actions.
847bf1f5 2623* Locations:: Locations and actions.
bfa74976
RS
2624* Declarations:: All kinds of Bison declarations are described here.
2625* Multiple Parsers:: Putting more than one Bison parser in one program.
2626@end menu
2627
342b8b6e 2628@node Grammar Outline
bfa74976
RS
2629@section Outline of a Bison Grammar
2630
2631A Bison grammar file has four main sections, shown here with the
2632appropriate delimiters:
2633
2634@example
2635%@{
38a92d50 2636 @var{Prologue}
bfa74976
RS
2637%@}
2638
2639@var{Bison declarations}
2640
2641%%
2642@var{Grammar rules}
2643%%
2644
75f5aaea 2645@var{Epilogue}
bfa74976
RS
2646@end example
2647
2648Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
35430378 2649As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2650continues until end of line.
bfa74976
RS
2651
2652@menu
f56274a8 2653* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2654* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
2655* Bison Declarations:: Syntax and usage of the Bison declarations section.
2656* Grammar Rules:: Syntax and usage of the grammar rules section.
2657* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2658@end menu
2659
38a92d50 2660@node Prologue
75f5aaea
MA
2661@subsection The prologue
2662@cindex declarations section
2663@cindex Prologue
2664@cindex declarations
bfa74976 2665
f8e1c9e5
AD
2666The @var{Prologue} section contains macro definitions and declarations
2667of functions and variables that are used in the actions in the grammar
9913d6e4
JD
2668rules. These are copied to the beginning of the parser implementation
2669file so that they precede the definition of @code{yyparse}. You can
2670use @samp{#include} to get the declarations from a header file. If
2671you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2672@samp{%@}} delimiters that bracket this section.
bfa74976 2673
9c437126 2674The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2675of @samp{%@}} that is outside a comment, a string literal, or a
2676character constant.
2677
c732d2c6
AD
2678You may have more than one @var{Prologue} section, intermixed with the
2679@var{Bison declarations}. This allows you to have C and Bison
2680declarations that refer to each other. For example, the @code{%union}
2681declaration may use types defined in a header file, and you may wish to
2682prototype functions that take arguments of type @code{YYSTYPE}. This
2683can be done with two @var{Prologue} blocks, one before and one after the
2684@code{%union} declaration.
2685
2686@smallexample
2687%@{
aef3da86 2688 #define _GNU_SOURCE
38a92d50
PE
2689 #include <stdio.h>
2690 #include "ptypes.h"
c732d2c6
AD
2691%@}
2692
2693%union @{
779e7ceb 2694 long int n;
c732d2c6
AD
2695 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2696@}
2697
2698%@{
38a92d50
PE
2699 static void print_token_value (FILE *, int, YYSTYPE);
2700 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2701%@}
2702
2703@dots{}
2704@end smallexample
2705
aef3da86
PE
2706When in doubt, it is usually safer to put prologue code before all
2707Bison declarations, rather than after. For example, any definitions
2708of feature test macros like @code{_GNU_SOURCE} or
2709@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2710feature test macros can affect the behavior of Bison-generated
2711@code{#include} directives.
2712
2cbe6b7f
JD
2713@node Prologue Alternatives
2714@subsection Prologue Alternatives
2715@cindex Prologue Alternatives
2716
136a0f76 2717@findex %code
16dc6a9e
JD
2718@findex %code requires
2719@findex %code provides
2720@findex %code top
85894313 2721
2cbe6b7f 2722The functionality of @var{Prologue} sections can often be subtle and
9913d6e4
JD
2723inflexible. As an alternative, Bison provides a @code{%code}
2724directive with an explicit qualifier field, which identifies the
2725purpose of the code and thus the location(s) where Bison should
2726generate it. For C/C++, the qualifier can be omitted for the default
2727location, or it can be one of @code{requires}, @code{provides},
8e6f2266 2728@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2729
2730Look again at the example of the previous section:
2731
2732@smallexample
2733%@{
2734 #define _GNU_SOURCE
2735 #include <stdio.h>
2736 #include "ptypes.h"
2737%@}
2738
2739%union @{
2740 long int n;
2741 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2742@}
2743
2744%@{
2745 static void print_token_value (FILE *, int, YYSTYPE);
2746 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2747%@}
2748
2749@dots{}
2750@end smallexample
2751
2752@noindent
9913d6e4
JD
2753Notice that there are two @var{Prologue} sections here, but there's a
2754subtle distinction between their functionality. For example, if you
2755decide to override Bison's default definition for @code{YYLTYPE}, in
2756which @var{Prologue} section should you write your new definition?
2757You should write it in the first since Bison will insert that code
2758into the parser implementation file @emph{before} the default
2759@code{YYLTYPE} definition. In which @var{Prologue} section should you
2760prototype an internal function, @code{trace_token}, that accepts
2761@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2762prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2763@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2764
2765This distinction in functionality between the two @var{Prologue} sections is
2766established by the appearance of the @code{%union} between them.
a501eca9 2767This behavior raises a few questions.
2cbe6b7f
JD
2768First, why should the position of a @code{%union} affect definitions related to
2769@code{YYLTYPE} and @code{yytokentype}?
2770Second, what if there is no @code{%union}?
2771In that case, the second kind of @var{Prologue} section is not available.
2772This behavior is not intuitive.
2773
8e0a5e9e 2774To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2775@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2776Let's go ahead and add the new @code{YYLTYPE} definition and the
2777@code{trace_token} prototype at the same time:
2778
2779@smallexample
16dc6a9e 2780%code top @{
2cbe6b7f
JD
2781 #define _GNU_SOURCE
2782 #include <stdio.h>
8e0a5e9e
JD
2783
2784 /* WARNING: The following code really belongs
16dc6a9e 2785 * in a `%code requires'; see below. */
8e0a5e9e 2786
2cbe6b7f
JD
2787 #include "ptypes.h"
2788 #define YYLTYPE YYLTYPE
2789 typedef struct YYLTYPE
2790 @{
2791 int first_line;
2792 int first_column;
2793 int last_line;
2794 int last_column;
2795 char *filename;
2796 @} YYLTYPE;
2797@}
2798
2799%union @{
2800 long int n;
2801 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2802@}
2803
2804%code @{
2805 static void print_token_value (FILE *, int, YYSTYPE);
2806 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2807 static void trace_token (enum yytokentype token, YYLTYPE loc);
2808@}
2809
2810@dots{}
2811@end smallexample
2812
2813@noindent
16dc6a9e
JD
2814In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2815functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2816explicit which kind you intend.
2cbe6b7f
JD
2817Moreover, both kinds are always available even in the absence of @code{%union}.
2818
9913d6e4
JD
2819The @code{%code top} block above logically contains two parts. The
2820first two lines before the warning need to appear near the top of the
2821parser implementation file. The first line after the warning is
2822required by @code{YYSTYPE} and thus also needs to appear in the parser
2823implementation file. However, if you've instructed Bison to generate
2824a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2825want that line to appear before the @code{YYSTYPE} definition in that
2826header file as well. The @code{YYLTYPE} definition should also appear
2827in the parser header file to override the default @code{YYLTYPE}
2828definition there.
2cbe6b7f 2829
16dc6a9e 2830In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2831lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2832definitions.
16dc6a9e 2833Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2834
2835@smallexample
16dc6a9e 2836%code top @{
2cbe6b7f
JD
2837 #define _GNU_SOURCE
2838 #include <stdio.h>
2839@}
2840
16dc6a9e 2841%code requires @{
9bc0dd67
JD
2842 #include "ptypes.h"
2843@}
2844%union @{
2845 long int n;
2846 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2847@}
2848
16dc6a9e 2849%code requires @{
2cbe6b7f
JD
2850 #define YYLTYPE YYLTYPE
2851 typedef struct YYLTYPE
2852 @{
2853 int first_line;
2854 int first_column;
2855 int last_line;
2856 int last_column;
2857 char *filename;
2858 @} YYLTYPE;
2859@}
2860
136a0f76 2861%code @{
2cbe6b7f
JD
2862 static void print_token_value (FILE *, int, YYSTYPE);
2863 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2864 static void trace_token (enum yytokentype token, YYLTYPE loc);
2865@}
2866
2867@dots{}
2868@end smallexample
2869
2870@noindent
9913d6e4
JD
2871Now Bison will insert @code{#include "ptypes.h"} and the new
2872@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
2873and @code{YYLTYPE} definitions in both the parser implementation file
2874and the parser header file. (By the same reasoning, @code{%code
2875requires} would also be the appropriate place to write your own
2876definition for @code{YYSTYPE}.)
2877
2878When you are writing dependency code for @code{YYSTYPE} and
2879@code{YYLTYPE}, you should prefer @code{%code requires} over
2880@code{%code top} regardless of whether you instruct Bison to generate
2881a parser header file. When you are writing code that you need Bison
2882to insert only into the parser implementation file and that has no
2883special need to appear at the top of that file, you should prefer the
2884unqualified @code{%code} over @code{%code top}. These practices will
2885make the purpose of each block of your code explicit to Bison and to
2886other developers reading your grammar file. Following these
2887practices, we expect the unqualified @code{%code} and @code{%code
2888requires} to be the most important of the four @var{Prologue}
16dc6a9e 2889alternatives.
a501eca9 2890
9913d6e4
JD
2891At some point while developing your parser, you might decide to
2892provide @code{trace_token} to modules that are external to your
2893parser. Thus, you might wish for Bison to insert the prototype into
2894both the parser header file and the parser implementation file. Since
2895this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 2896@code{YYLTYPE}, it doesn't make sense to move its prototype to a
9913d6e4
JD
2897@code{%code requires}. More importantly, since it depends upon
2898@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
2899sufficient. Instead, move its prototype from the unqualified
2900@code{%code} to a @code{%code provides}:
2cbe6b7f
JD
2901
2902@smallexample
16dc6a9e 2903%code top @{
2cbe6b7f 2904 #define _GNU_SOURCE
136a0f76 2905 #include <stdio.h>
2cbe6b7f 2906@}
136a0f76 2907
16dc6a9e 2908%code requires @{
2cbe6b7f
JD
2909 #include "ptypes.h"
2910@}
2911%union @{
2912 long int n;
2913 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2914@}
2915
16dc6a9e 2916%code requires @{
2cbe6b7f
JD
2917 #define YYLTYPE YYLTYPE
2918 typedef struct YYLTYPE
2919 @{
2920 int first_line;
2921 int first_column;
2922 int last_line;
2923 int last_column;
2924 char *filename;
2925 @} YYLTYPE;
2926@}
2927
16dc6a9e 2928%code provides @{
2cbe6b7f
JD
2929 void trace_token (enum yytokentype token, YYLTYPE loc);
2930@}
2931
2932%code @{
9bc0dd67
JD
2933 static void print_token_value (FILE *, int, YYSTYPE);
2934 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2935@}
9bc0dd67
JD
2936
2937@dots{}
2938@end smallexample
2939
2cbe6b7f 2940@noindent
9913d6e4
JD
2941Bison will insert the @code{trace_token} prototype into both the
2942parser header file and the parser implementation file after the
2943definitions for @code{yytokentype}, @code{YYLTYPE}, and
2944@code{YYSTYPE}.
2945
2946The above examples are careful to write directives in an order that
2947reflects the layout of the generated parser implementation and header
2948files: @code{%code top}, @code{%code requires}, @code{%code provides},
2949and then @code{%code}. While your grammar files may generally be
2950easier to read if you also follow this order, Bison does not require
2951it. Instead, Bison lets you choose an organization that makes sense
2952to you.
2cbe6b7f 2953
a501eca9 2954You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2955In that case, Bison concatenates the contained code in declaration order.
2956This is the only way in which the position of one of these directives within
2957the grammar file affects its functionality.
2958
2959The result of the previous two properties is greater flexibility in how you may
2960organize your grammar file.
2961For example, you may organize semantic-type-related directives by semantic
2962type:
2963
2964@smallexample
16dc6a9e 2965%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2966%union @{ type1 field1; @}
2967%destructor @{ type1_free ($$); @} <field1>
2968%printer @{ type1_print ($$); @} <field1>
2969
16dc6a9e 2970%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2971%union @{ type2 field2; @}
2972%destructor @{ type2_free ($$); @} <field2>
2973%printer @{ type2_print ($$); @} <field2>
2974@end smallexample
2975
2976@noindent
2977You could even place each of the above directive groups in the rules section of
2978the grammar file next to the set of rules that uses the associated semantic
2979type.
61fee93e
JD
2980(In the rules section, you must terminate each of those directives with a
2981semicolon.)
2cbe6b7f
JD
2982And you don't have to worry that some directive (like a @code{%union}) in the
2983definitions section is going to adversely affect their functionality in some
2984counter-intuitive manner just because it comes first.
2985Such an organization is not possible using @var{Prologue} sections.
2986
a501eca9 2987This section has been concerned with explaining the advantages of the four
8e0a5e9e 2988@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2989However, in most cases when using these directives, you shouldn't need to
2990think about all the low-level ordering issues discussed here.
2991Instead, you should simply use these directives to label each block of your
2992code according to its purpose and let Bison handle the ordering.
2993@code{%code} is the most generic label.
16dc6a9e
JD
2994Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
2995as needed.
a501eca9 2996
342b8b6e 2997@node Bison Declarations
bfa74976
RS
2998@subsection The Bison Declarations Section
2999@cindex Bison declarations (introduction)
3000@cindex declarations, Bison (introduction)
3001
3002The @var{Bison declarations} section contains declarations that define
3003terminal and nonterminal symbols, specify precedence, and so on.
3004In some simple grammars you may not need any declarations.
3005@xref{Declarations, ,Bison Declarations}.
3006
342b8b6e 3007@node Grammar Rules
bfa74976
RS
3008@subsection The Grammar Rules Section
3009@cindex grammar rules section
3010@cindex rules section for grammar
3011
3012The @dfn{grammar rules} section contains one or more Bison grammar
3013rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3014
3015There must always be at least one grammar rule, and the first
3016@samp{%%} (which precedes the grammar rules) may never be omitted even
3017if it is the first thing in the file.
3018
38a92d50 3019@node Epilogue
75f5aaea 3020@subsection The epilogue
bfa74976 3021@cindex additional C code section
75f5aaea 3022@cindex epilogue
bfa74976
RS
3023@cindex C code, section for additional
3024
9913d6e4
JD
3025The @var{Epilogue} is copied verbatim to the end of the parser
3026implementation file, just as the @var{Prologue} is copied to the
3027beginning. This is the most convenient place to put anything that you
3028want to have in the parser implementation file but which need not come
3029before the definition of @code{yyparse}. For example, the definitions
3030of @code{yylex} and @code{yyerror} often go here. Because C requires
3031functions to be declared before being used, you often need to declare
3032functions like @code{yylex} and @code{yyerror} in the Prologue, even
3033if you define them in the Epilogue. @xref{Interface, ,Parser
3034C-Language Interface}.
bfa74976
RS
3035
3036If the last section is empty, you may omit the @samp{%%} that separates it
3037from the grammar rules.
3038
f8e1c9e5
AD
3039The Bison parser itself contains many macros and identifiers whose names
3040start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3041any such names (except those documented in this manual) in the epilogue
3042of the grammar file.
bfa74976 3043
342b8b6e 3044@node Symbols
bfa74976
RS
3045@section Symbols, Terminal and Nonterminal
3046@cindex nonterminal symbol
3047@cindex terminal symbol
3048@cindex token type
3049@cindex symbol
3050
3051@dfn{Symbols} in Bison grammars represent the grammatical classifications
3052of the language.
3053
3054A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3055class of syntactically equivalent tokens. You use the symbol in grammar
3056rules to mean that a token in that class is allowed. The symbol is
3057represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3058function returns a token type code to indicate what kind of token has
3059been read. You don't need to know what the code value is; you can use
3060the symbol to stand for it.
bfa74976 3061
f8e1c9e5
AD
3062A @dfn{nonterminal symbol} stands for a class of syntactically
3063equivalent groupings. The symbol name is used in writing grammar rules.
3064By convention, it should be all lower case.
bfa74976 3065
eb8c66bb
JD
3066Symbol names can contain letters, underscores, periods, and non-initial
3067digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3068with POSIX Yacc. Periods and dashes make symbol names less convenient to
3069use with named references, which require brackets around such names
3070(@pxref{Named References}). Terminal symbols that contain periods or dashes
3071make little sense: since they are not valid symbols (in most programming
3072languages) they are not exported as token names.
bfa74976 3073
931c7513 3074There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3075
3076@itemize @bullet
3077@item
3078A @dfn{named token type} is written with an identifier, like an
c827f760 3079identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3080such name must be defined with a Bison declaration such as
3081@code{%token}. @xref{Token Decl, ,Token Type Names}.
3082
3083@item
3084@cindex character token
3085@cindex literal token
3086@cindex single-character literal
931c7513
RS
3087A @dfn{character token type} (or @dfn{literal character token}) is
3088written in the grammar using the same syntax used in C for character
3089constants; for example, @code{'+'} is a character token type. A
3090character token type doesn't need to be declared unless you need to
3091specify its semantic value data type (@pxref{Value Type, ,Data Types of
3092Semantic Values}), associativity, or precedence (@pxref{Precedence,
3093,Operator Precedence}).
bfa74976
RS
3094
3095By convention, a character token type is used only to represent a
3096token that consists of that particular character. Thus, the token
3097type @code{'+'} is used to represent the character @samp{+} as a
3098token. Nothing enforces this convention, but if you depart from it,
3099your program will confuse other readers.
3100
3101All the usual escape sequences used in character literals in C can be
3102used in Bison as well, but you must not use the null character as a
72d2299c
PE
3103character literal because its numeric code, zero, signifies
3104end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3105for @code{yylex}}). Also, unlike standard C, trigraphs have no
3106special meaning in Bison character literals, nor is backslash-newline
3107allowed.
931c7513
RS
3108
3109@item
3110@cindex string token
3111@cindex literal string token
9ecbd125 3112@cindex multicharacter literal
931c7513
RS
3113A @dfn{literal string token} is written like a C string constant; for
3114example, @code{"<="} is a literal string token. A literal string token
3115doesn't need to be declared unless you need to specify its semantic
14ded682 3116value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3117(@pxref{Precedence}).
3118
3119You can associate the literal string token with a symbolic name as an
3120alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3121Declarations}). If you don't do that, the lexical analyzer has to
3122retrieve the token number for the literal string token from the
3123@code{yytname} table (@pxref{Calling Convention}).
3124
c827f760 3125@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3126
3127By convention, a literal string token is used only to represent a token
3128that consists of that particular string. Thus, you should use the token
3129type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3130does not enforce this convention, but if you depart from it, people who
931c7513
RS
3131read your program will be confused.
3132
3133All the escape sequences used in string literals in C can be used in
92ac3705
PE
3134Bison as well, except that you must not use a null character within a
3135string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3136meaning in Bison string literals, nor is backslash-newline allowed. A
3137literal string token must contain two or more characters; for a token
3138containing just one character, use a character token (see above).
bfa74976
RS
3139@end itemize
3140
3141How you choose to write a terminal symbol has no effect on its
3142grammatical meaning. That depends only on where it appears in rules and
3143on when the parser function returns that symbol.
3144
72d2299c
PE
3145The value returned by @code{yylex} is always one of the terminal
3146symbols, except that a zero or negative value signifies end-of-input.
3147Whichever way you write the token type in the grammar rules, you write
3148it the same way in the definition of @code{yylex}. The numeric code
3149for a character token type is simply the positive numeric code of the
3150character, so @code{yylex} can use the identical value to generate the
3151requisite code, though you may need to convert it to @code{unsigned
3152char} to avoid sign-extension on hosts where @code{char} is signed.
9913d6e4
JD
3153Each named token type becomes a C macro in the parser implementation
3154file, so @code{yylex} can use the name to stand for the code. (This
3155is why periods don't make sense in terminal symbols.) @xref{Calling
3156Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3157
3158If @code{yylex} is defined in a separate file, you need to arrange for the
3159token-type macro definitions to be available there. Use the @samp{-d}
3160option when you run Bison, so that it will write these macro definitions
3161into a separate header file @file{@var{name}.tab.h} which you can include
3162in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3163
72d2299c 3164If you want to write a grammar that is portable to any Standard C
9d9b8b70 3165host, you must use only nonnull character tokens taken from the basic
c827f760 3166execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3167digits, the 52 lower- and upper-case English letters, and the
3168characters in the following C-language string:
3169
3170@example
3171"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3172@end example
3173
f8e1c9e5
AD
3174The @code{yylex} function and Bison must use a consistent character set
3175and encoding for character tokens. For example, if you run Bison in an
35430378 3176ASCII environment, but then compile and run the resulting
f8e1c9e5 3177program in an environment that uses an incompatible character set like
35430378
JD
3178EBCDIC, the resulting program may not work because the tables
3179generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3180character tokens. It is standard practice for software distributions to
3181contain C source files that were generated by Bison in an
35430378
JD
3182ASCII environment, so installers on platforms that are
3183incompatible with ASCII must rebuild those files before
f8e1c9e5 3184compiling them.
e966383b 3185
bfa74976
RS
3186The symbol @code{error} is a terminal symbol reserved for error recovery
3187(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3188In particular, @code{yylex} should never return this value. The default
3189value of the error token is 256, unless you explicitly assigned 256 to
3190one of your tokens with a @code{%token} declaration.
bfa74976 3191
342b8b6e 3192@node Rules
bfa74976
RS
3193@section Syntax of Grammar Rules
3194@cindex rule syntax
3195@cindex grammar rule syntax
3196@cindex syntax of grammar rules
3197
3198A Bison grammar rule has the following general form:
3199
3200@example
e425e872 3201@group
bfa74976
RS
3202@var{result}: @var{components}@dots{}
3203 ;
e425e872 3204@end group
bfa74976
RS
3205@end example
3206
3207@noindent
9ecbd125 3208where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3209and @var{components} are various terminal and nonterminal symbols that
13863333 3210are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3211
3212For example,
3213
3214@example
3215@group
3216exp: exp '+' exp
3217 ;
3218@end group
3219@end example
3220
3221@noindent
3222says that two groupings of type @code{exp}, with a @samp{+} token in between,
3223can be combined into a larger grouping of type @code{exp}.
3224
72d2299c
PE
3225White space in rules is significant only to separate symbols. You can add
3226extra white space as you wish.
bfa74976
RS
3227
3228Scattered among the components can be @var{actions} that determine
3229the semantics of the rule. An action looks like this:
3230
3231@example
3232@{@var{C statements}@}
3233@end example
3234
3235@noindent
287c78f6
PE
3236@cindex braced code
3237This is an example of @dfn{braced code}, that is, C code surrounded by
3238braces, much like a compound statement in C@. Braced code can contain
3239any sequence of C tokens, so long as its braces are balanced. Bison
3240does not check the braced code for correctness directly; it merely
9913d6e4
JD
3241copies the code to the parser implementation file, where the C
3242compiler can check it.
287c78f6
PE
3243
3244Within braced code, the balanced-brace count is not affected by braces
3245within comments, string literals, or character constants, but it is
3246affected by the C digraphs @samp{<%} and @samp{%>} that represent
3247braces. At the top level braced code must be terminated by @samp{@}}
3248and not by a digraph. Bison does not look for trigraphs, so if braced
3249code uses trigraphs you should ensure that they do not affect the
3250nesting of braces or the boundaries of comments, string literals, or
3251character constants.
3252
bfa74976
RS
3253Usually there is only one action and it follows the components.
3254@xref{Actions}.
3255
3256@findex |
3257Multiple rules for the same @var{result} can be written separately or can
3258be joined with the vertical-bar character @samp{|} as follows:
3259
bfa74976
RS
3260@example
3261@group
3262@var{result}: @var{rule1-components}@dots{}
3263 | @var{rule2-components}@dots{}
3264 @dots{}
3265 ;
3266@end group
3267@end example
bfa74976
RS
3268
3269@noindent
3270They are still considered distinct rules even when joined in this way.
3271
3272If @var{components} in a rule is empty, it means that @var{result} can
3273match the empty string. For example, here is how to define a
3274comma-separated sequence of zero or more @code{exp} groupings:
3275
3276@example
3277@group
3278expseq: /* empty */
3279 | expseq1
3280 ;
3281@end group
3282
3283@group
3284expseq1: exp
3285 | expseq1 ',' exp
3286 ;
3287@end group
3288@end example
3289
3290@noindent
3291It is customary to write a comment @samp{/* empty */} in each rule
3292with no components.
3293
342b8b6e 3294@node Recursion
bfa74976
RS
3295@section Recursive Rules
3296@cindex recursive rule
3297
f8e1c9e5
AD
3298A rule is called @dfn{recursive} when its @var{result} nonterminal
3299appears also on its right hand side. Nearly all Bison grammars need to
3300use recursion, because that is the only way to define a sequence of any
3301number of a particular thing. Consider this recursive definition of a
9ecbd125 3302comma-separated sequence of one or more expressions:
bfa74976
RS
3303
3304@example
3305@group
3306expseq1: exp
3307 | expseq1 ',' exp
3308 ;
3309@end group
3310@end example
3311
3312@cindex left recursion
3313@cindex right recursion
3314@noindent
3315Since the recursive use of @code{expseq1} is the leftmost symbol in the
3316right hand side, we call this @dfn{left recursion}. By contrast, here
3317the same construct is defined using @dfn{right recursion}:
3318
3319@example
3320@group
3321expseq1: exp
3322 | exp ',' expseq1
3323 ;
3324@end group
3325@end example
3326
3327@noindent
ec3bc396
AD
3328Any kind of sequence can be defined using either left recursion or right
3329recursion, but you should always use left recursion, because it can
3330parse a sequence of any number of elements with bounded stack space.
3331Right recursion uses up space on the Bison stack in proportion to the
3332number of elements in the sequence, because all the elements must be
3333shifted onto the stack before the rule can be applied even once.
3334@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3335of this.
bfa74976
RS
3336
3337@cindex mutual recursion
3338@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3339rule does not appear directly on its right hand side, but does appear
3340in rules for other nonterminals which do appear on its right hand
13863333 3341side.
bfa74976
RS
3342
3343For example:
3344
3345@example
3346@group
3347expr: primary
3348 | primary '+' primary
3349 ;
3350@end group
3351
3352@group
3353primary: constant
3354 | '(' expr ')'
3355 ;
3356@end group
3357@end example
3358
3359@noindent
3360defines two mutually-recursive nonterminals, since each refers to the
3361other.
3362
342b8b6e 3363@node Semantics
bfa74976
RS
3364@section Defining Language Semantics
3365@cindex defining language semantics
13863333 3366@cindex language semantics, defining
bfa74976
RS
3367
3368The grammar rules for a language determine only the syntax. The semantics
3369are determined by the semantic values associated with various tokens and
3370groupings, and by the actions taken when various groupings are recognized.
3371
3372For example, the calculator calculates properly because the value
3373associated with each expression is the proper number; it adds properly
3374because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3375the numbers associated with @var{x} and @var{y}.
3376
3377@menu
3378* Value Type:: Specifying one data type for all semantic values.
3379* Multiple Types:: Specifying several alternative data types.
3380* Actions:: An action is the semantic definition of a grammar rule.
3381* Action Types:: Specifying data types for actions to operate on.
3382* Mid-Rule Actions:: Most actions go at the end of a rule.
3383 This says when, why and how to use the exceptional
3384 action in the middle of a rule.
1f68dca5 3385* Named References:: Using named references in actions.
bfa74976
RS
3386@end menu
3387
342b8b6e 3388@node Value Type
bfa74976
RS
3389@subsection Data Types of Semantic Values
3390@cindex semantic value type
3391@cindex value type, semantic
3392@cindex data types of semantic values
3393@cindex default data type
3394
3395In a simple program it may be sufficient to use the same data type for
3396the semantic values of all language constructs. This was true in the
35430378 3397RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3398Notation Calculator}).
bfa74976 3399
ddc8ede1
PE
3400Bison normally uses the type @code{int} for semantic values if your
3401program uses the same data type for all language constructs. To
bfa74976
RS
3402specify some other type, define @code{YYSTYPE} as a macro, like this:
3403
3404@example
3405#define YYSTYPE double
3406@end example
3407
3408@noindent
50cce58e
PE
3409@code{YYSTYPE}'s replacement list should be a type name
3410that does not contain parentheses or square brackets.
342b8b6e 3411This macro definition must go in the prologue of the grammar file
75f5aaea 3412(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3413
342b8b6e 3414@node Multiple Types
bfa74976
RS
3415@subsection More Than One Value Type
3416
3417In most programs, you will need different data types for different kinds
3418of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3419@code{int} or @code{long int}, while a string constant needs type
3420@code{char *}, and an identifier might need a pointer to an entry in the
3421symbol table.
bfa74976
RS
3422
3423To use more than one data type for semantic values in one parser, Bison
3424requires you to do two things:
3425
3426@itemize @bullet
3427@item
ddc8ede1 3428Specify the entire collection of possible data types, either by using the
704a47c4 3429@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3430Value Types}), or by using a @code{typedef} or a @code{#define} to
3431define @code{YYSTYPE} to be a union type whose member names are
3432the type tags.
bfa74976
RS
3433
3434@item
14ded682
AD
3435Choose one of those types for each symbol (terminal or nonterminal) for
3436which semantic values are used. This is done for tokens with the
3437@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3438and for groupings with the @code{%type} Bison declaration (@pxref{Type
3439Decl, ,Nonterminal Symbols}).
bfa74976
RS
3440@end itemize
3441
342b8b6e 3442@node Actions
bfa74976
RS
3443@subsection Actions
3444@cindex action
3445@vindex $$
3446@vindex $@var{n}
1f68dca5
AR
3447@vindex $@var{name}
3448@vindex $[@var{name}]
bfa74976
RS
3449
3450An action accompanies a syntactic rule and contains C code to be executed
3451each time an instance of that rule is recognized. The task of most actions
3452is to compute a semantic value for the grouping built by the rule from the
3453semantic values associated with tokens or smaller groupings.
3454
287c78f6
PE
3455An action consists of braced code containing C statements, and can be
3456placed at any position in the rule;
704a47c4
AD
3457it is executed at that position. Most rules have just one action at the
3458end of the rule, following all the components. Actions in the middle of
3459a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3460Actions, ,Actions in Mid-Rule}).
bfa74976 3461
9913d6e4
JD
3462The C code in an action can refer to the semantic values of the
3463components matched by the rule with the construct @code{$@var{n}},
3464which stands for the value of the @var{n}th component. The semantic
3465value for the grouping being constructed is @code{$$}. In addition,
3466the semantic values of symbols can be accessed with the named
3467references construct @code{$@var{name}} or @code{$[@var{name}]}.
3468Bison translates both of these constructs into expressions of the
3469appropriate type when it copies the actions into the parser
3470implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3471for the current grouping) is translated to a modifiable lvalue, so it
3472can be assigned to.
bfa74976
RS
3473
3474Here is a typical example:
3475
3476@example
3477@group
3478exp: @dots{}
3479 | exp '+' exp
3480 @{ $$ = $1 + $3; @}
3481@end group
3482@end example
3483
1f68dca5
AR
3484Or, in terms of named references:
3485
3486@example
3487@group
3488exp[result]: @dots{}
3489 | exp[left] '+' exp[right]
3490 @{ $result = $left + $right; @}
3491@end group
3492@end example
3493
bfa74976
RS
3494@noindent
3495This rule constructs an @code{exp} from two smaller @code{exp} groupings
3496connected by a plus-sign token. In the action, @code{$1} and @code{$3}
1f68dca5 3497(@code{$left} and @code{$right})
bfa74976
RS
3498refer to the semantic values of the two component @code{exp} groupings,
3499which are the first and third symbols on the right hand side of the rule.
1f68dca5
AR
3500The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3501semantic value of
bfa74976
RS
3502the addition-expression just recognized by the rule. If there were a
3503useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3504referred to as @code{$2}.
bfa74976 3505
1f68dca5
AR
3506@xref{Named References,,Using Named References}, for more information
3507about using the named references construct.
3508
3ded9a63
AD
3509Note that the vertical-bar character @samp{|} is really a rule
3510separator, and actions are attached to a single rule. This is a
3511difference with tools like Flex, for which @samp{|} stands for either
3512``or'', or ``the same action as that of the next rule''. In the
3513following example, the action is triggered only when @samp{b} is found:
3514
3515@example
3516@group
3517a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3518@end group
3519@end example
3520
bfa74976
RS
3521@cindex default action
3522If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3523@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3524becomes the value of the whole rule. Of course, the default action is
3525valid only if the two data types match. There is no meaningful default
3526action for an empty rule; every empty rule must have an explicit action
3527unless the rule's value does not matter.
bfa74976
RS
3528
3529@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3530to tokens and groupings on the stack @emph{before} those that match the
3531current rule. This is a very risky practice, and to use it reliably
3532you must be certain of the context in which the rule is applied. Here
3533is a case in which you can use this reliably:
3534
3535@example
3536@group
3537foo: expr bar '+' expr @{ @dots{} @}
3538 | expr bar '-' expr @{ @dots{} @}
3539 ;
3540@end group
3541
3542@group
3543bar: /* empty */
3544 @{ previous_expr = $0; @}
3545 ;
3546@end group
3547@end example
3548
3549As long as @code{bar} is used only in the fashion shown here, @code{$0}
3550always refers to the @code{expr} which precedes @code{bar} in the
3551definition of @code{foo}.
3552
32c29292 3553@vindex yylval
742e4900 3554It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3555any, from a semantic action.
3556This semantic value is stored in @code{yylval}.
3557@xref{Action Features, ,Special Features for Use in Actions}.
3558
342b8b6e 3559@node Action Types
bfa74976
RS
3560@subsection Data Types of Values in Actions
3561@cindex action data types
3562@cindex data types in actions
3563
3564If you have chosen a single data type for semantic values, the @code{$$}
3565and @code{$@var{n}} constructs always have that data type.
3566
3567If you have used @code{%union} to specify a variety of data types, then you
3568must declare a choice among these types for each terminal or nonterminal
3569symbol that can have a semantic value. Then each time you use @code{$$} or
3570@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3571in the rule. In this example,
bfa74976
RS
3572
3573@example
3574@group
3575exp: @dots{}
3576 | exp '+' exp
3577 @{ $$ = $1 + $3; @}
3578@end group
3579@end example
3580
3581@noindent
3582@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3583have the data type declared for the nonterminal symbol @code{exp}. If
3584@code{$2} were used, it would have the data type declared for the
e0c471a9 3585terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3586
3587Alternatively, you can specify the data type when you refer to the value,
3588by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3589reference. For example, if you have defined types as shown here:
3590
3591@example
3592@group
3593%union @{
3594 int itype;
3595 double dtype;
3596@}
3597@end group
3598@end example
3599
3600@noindent
3601then you can write @code{$<itype>1} to refer to the first subunit of the
3602rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3603
342b8b6e 3604@node Mid-Rule Actions
bfa74976
RS
3605@subsection Actions in Mid-Rule
3606@cindex actions in mid-rule
3607@cindex mid-rule actions
3608
3609Occasionally it is useful to put an action in the middle of a rule.
3610These actions are written just like usual end-of-rule actions, but they
3611are executed before the parser even recognizes the following components.
3612
3613A mid-rule action may refer to the components preceding it using
3614@code{$@var{n}}, but it may not refer to subsequent components because
3615it is run before they are parsed.
3616
3617The mid-rule action itself counts as one of the components of the rule.
3618This makes a difference when there is another action later in the same rule
3619(and usually there is another at the end): you have to count the actions
3620along with the symbols when working out which number @var{n} to use in
3621@code{$@var{n}}.
3622
3623The mid-rule action can also have a semantic value. The action can set
3624its value with an assignment to @code{$$}, and actions later in the rule
3625can refer to the value using @code{$@var{n}}. Since there is no symbol
3626to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3627in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3628specify a data type each time you refer to this value.
bfa74976
RS
3629
3630There is no way to set the value of the entire rule with a mid-rule
3631action, because assignments to @code{$$} do not have that effect. The
3632only way to set the value for the entire rule is with an ordinary action
3633at the end of the rule.
3634
3635Here is an example from a hypothetical compiler, handling a @code{let}
3636statement that looks like @samp{let (@var{variable}) @var{statement}} and
3637serves to create a variable named @var{variable} temporarily for the
3638duration of @var{statement}. To parse this construct, we must put
3639@var{variable} into the symbol table while @var{statement} is parsed, then
3640remove it afterward. Here is how it is done:
3641
3642@example
3643@group
3644stmt: LET '(' var ')'
3645 @{ $<context>$ = push_context ();
3646 declare_variable ($3); @}
3647 stmt @{ $$ = $6;
3648 pop_context ($<context>5); @}
3649@end group
3650@end example
3651
3652@noindent
3653As soon as @samp{let (@var{variable})} has been recognized, the first
3654action is run. It saves a copy of the current semantic context (the
3655list of accessible variables) as its semantic value, using alternative
3656@code{context} in the data-type union. Then it calls
3657@code{declare_variable} to add the new variable to that list. Once the
3658first action is finished, the embedded statement @code{stmt} can be
3659parsed. Note that the mid-rule action is component number 5, so the
3660@samp{stmt} is component number 6.
3661
3662After the embedded statement is parsed, its semantic value becomes the
3663value of the entire @code{let}-statement. Then the semantic value from the
3664earlier action is used to restore the prior list of variables. This
3665removes the temporary @code{let}-variable from the list so that it won't
3666appear to exist while the rest of the program is parsed.
3667
841a7737
JD
3668@findex %destructor
3669@cindex discarded symbols, mid-rule actions
3670@cindex error recovery, mid-rule actions
3671In the above example, if the parser initiates error recovery (@pxref{Error
3672Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3673it might discard the previous semantic context @code{$<context>5} without
3674restoring it.
3675Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3676Discarded Symbols}).
ec5479ce
JD
3677However, Bison currently provides no means to declare a destructor specific to
3678a particular mid-rule action's semantic value.
841a7737
JD
3679
3680One solution is to bury the mid-rule action inside a nonterminal symbol and to
3681declare a destructor for that symbol:
3682
3683@example
3684@group
3685%type <context> let
3686%destructor @{ pop_context ($$); @} let
3687
3688%%
3689
3690stmt: let stmt
3691 @{ $$ = $2;
3692 pop_context ($1); @}
3693 ;
3694
3695let: LET '(' var ')'
3696 @{ $$ = push_context ();
3697 declare_variable ($3); @}
3698 ;
3699
3700@end group
3701@end example
3702
3703@noindent
3704Note that the action is now at the end of its rule.
3705Any mid-rule action can be converted to an end-of-rule action in this way, and
3706this is what Bison actually does to implement mid-rule actions.
3707
bfa74976
RS
3708Taking action before a rule is completely recognized often leads to
3709conflicts since the parser must commit to a parse in order to execute the
3710action. For example, the following two rules, without mid-rule actions,
3711can coexist in a working parser because the parser can shift the open-brace
3712token and look at what follows before deciding whether there is a
3713declaration or not:
3714
3715@example
3716@group
3717compound: '@{' declarations statements '@}'
3718 | '@{' statements '@}'
3719 ;
3720@end group
3721@end example
3722
3723@noindent
3724But when we add a mid-rule action as follows, the rules become nonfunctional:
3725
3726@example
3727@group
3728compound: @{ prepare_for_local_variables (); @}
3729 '@{' declarations statements '@}'
3730@end group
3731@group
3732 | '@{' statements '@}'
3733 ;
3734@end group
3735@end example
3736
3737@noindent
3738Now the parser is forced to decide whether to run the mid-rule action
3739when it has read no farther than the open-brace. In other words, it
3740must commit to using one rule or the other, without sufficient
3741information to do it correctly. (The open-brace token is what is called
742e4900
JD
3742the @dfn{lookahead} token at this time, since the parser is still
3743deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3744
3745You might think that you could correct the problem by putting identical
3746actions into the two rules, like this:
3747
3748@example
3749@group
3750compound: @{ prepare_for_local_variables (); @}
3751 '@{' declarations statements '@}'
3752 | @{ prepare_for_local_variables (); @}
3753 '@{' statements '@}'
3754 ;
3755@end group
3756@end example
3757
3758@noindent
3759But this does not help, because Bison does not realize that the two actions
3760are identical. (Bison never tries to understand the C code in an action.)
3761
3762If the grammar is such that a declaration can be distinguished from a
3763statement by the first token (which is true in C), then one solution which
3764does work is to put the action after the open-brace, like this:
3765
3766@example
3767@group
3768compound: '@{' @{ prepare_for_local_variables (); @}
3769 declarations statements '@}'
3770 | '@{' statements '@}'
3771 ;
3772@end group
3773@end example
3774
3775@noindent
3776Now the first token of the following declaration or statement,
3777which would in any case tell Bison which rule to use, can still do so.
3778
3779Another solution is to bury the action inside a nonterminal symbol which
3780serves as a subroutine:
3781
3782@example
3783@group
3784subroutine: /* empty */
3785 @{ prepare_for_local_variables (); @}
3786 ;
3787
3788@end group
3789
3790@group
3791compound: subroutine
3792 '@{' declarations statements '@}'
3793 | subroutine
3794 '@{' statements '@}'
3795 ;
3796@end group
3797@end example
3798
3799@noindent
3800Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3801deciding which rule for @code{compound} it will eventually use.
bfa74976 3802
1f68dca5
AR
3803@node Named References
3804@subsection Using Named References
3805@cindex named references
3806
3807While every semantic value can be accessed with positional references
3808@code{$@var{n}} and @code{$$}, it's often much more convenient to refer to
3809them by name. First of all, original symbol names may be used as named
3810references. For example:
3811
3812@example
3813@group
3814invocation: op '(' args ')'
3815 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
3816@end group
3817@end example
3818
3819@noindent
3820The positional @code{$$}, @code{@@$}, @code{$n}, and @code{@@n} can be
3821mixed with @code{$name} and @code{@@name} arbitrarily. For example:
3822
3823@example
3824@group
3825invocation: op '(' args ')'
3826 @{ $$ = new_invocation ($op, $args, @@$); @}
3827@end group
3828@end example
3829
3830@noindent
3831However, sometimes regular symbol names are not sufficient due to
3832ambiguities:
3833
3834@example
3835@group
3836exp: exp '/' exp
3837 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
3838
3839exp: exp '/' exp
3840 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
3841
3842exp: exp '/' exp
3843 @{ $$ = $1 / $3; @} // No error.
3844@end group
3845@end example
3846
3847@noindent
3848When ambiguity occurs, explicitly declared names may be used for values and
3849locations. Explicit names are declared as a bracketed name after a symbol
3850appearance in rule definitions. For example:
3851@example
3852@group
3853exp[result]: exp[left] '/' exp[right]
3854 @{ $result = $left / $right; @}
3855@end group
3856@end example
3857
3858@noindent
3859Explicit names may be declared for RHS and for LHS symbols as well. In order
3860to access a semantic value generated by a mid-rule action, an explicit name
3861may also be declared by putting a bracketed name after the closing brace of
3862the mid-rule action code:
3863@example
3864@group
3865exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
3866 @{ $res = $left + $right; @}
3867@end group
3868@end example
3869
3870@noindent
3871
3872In references, in order to specify names containing dots and dashes, an explicit
3873bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
3874@example
3875@group
3876if-stmt: IF '(' expr ')' THEN then.stmt ';'
3877 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
3878@end group
3879@end example
3880
3881It often happens that named references are followed by a dot, dash or other
3882C punctuation marks and operators. By default, Bison will read
3883@code{$name.suffix} as a reference to symbol value @code{$name} followed by
3884@samp{.suffix}, i.e., an access to the @samp{suffix} field of the semantic
3885value. In order to force Bison to recognize @code{name.suffix} in its entirety
3886as the name of a semantic value, bracketed syntax @code{$[name.suffix]}
3887must be used.
3888
3889
342b8b6e 3890@node Locations
847bf1f5
AD
3891@section Tracking Locations
3892@cindex location
95923bd6
AD
3893@cindex textual location
3894@cindex location, textual
847bf1f5
AD
3895
3896Though grammar rules and semantic actions are enough to write a fully
72d2299c 3897functional parser, it can be useful to process some additional information,
3e259915
MA
3898especially symbol locations.
3899
704a47c4
AD
3900The way locations are handled is defined by providing a data type, and
3901actions to take when rules are matched.
847bf1f5
AD
3902
3903@menu
3904* Location Type:: Specifying a data type for locations.
3905* Actions and Locations:: Using locations in actions.
3906* Location Default Action:: Defining a general way to compute locations.
3907@end menu
3908
342b8b6e 3909@node Location Type
847bf1f5
AD
3910@subsection Data Type of Locations
3911@cindex data type of locations
3912@cindex default location type
3913
3914Defining a data type for locations is much simpler than for semantic values,
3915since all tokens and groupings always use the same type.
3916
50cce58e
PE
3917You can specify the type of locations by defining a macro called
3918@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3919defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3920When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3921four members:
3922
3923@example
6273355b 3924typedef struct YYLTYPE
847bf1f5
AD
3925@{
3926 int first_line;
3927 int first_column;
3928 int last_line;
3929 int last_column;
6273355b 3930@} YYLTYPE;
847bf1f5
AD
3931@end example
3932
8fbbeba2
AD
3933When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3934initializes all these fields to 1 for @code{yylloc}. To initialize
3935@code{yylloc} with a custom location type (or to chose a different
3936initialization), use the @code{%initial-action} directive. @xref{Initial
3937Action Decl, , Performing Actions before Parsing}.
cd48d21d 3938
342b8b6e 3939@node Actions and Locations
847bf1f5
AD
3940@subsection Actions and Locations
3941@cindex location actions
3942@cindex actions, location
3943@vindex @@$
3944@vindex @@@var{n}
1f68dca5
AR
3945@vindex @@@var{name}
3946@vindex @@[@var{name}]
847bf1f5
AD
3947
3948Actions are not only useful for defining language semantics, but also for
3949describing the behavior of the output parser with locations.
3950
3951The most obvious way for building locations of syntactic groupings is very
72d2299c 3952similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3953constructs can be used to access the locations of the elements being matched.
3954The location of the @var{n}th component of the right hand side is
3955@code{@@@var{n}}, while the location of the left hand side grouping is
3956@code{@@$}.
3957
1f68dca5
AR
3958In addition, the named references construct @code{@@@var{name}} and
3959@code{@@[@var{name}]} may also be used to address the symbol locations.
3960@xref{Named References,,Using Named References}, for more information
3961about using the named references construct.
3962
3e259915 3963Here is a basic example using the default data type for locations:
847bf1f5
AD
3964
3965@example
3966@group
3967exp: @dots{}
3e259915 3968 | exp '/' exp
847bf1f5 3969 @{
3e259915
MA
3970 @@$.first_column = @@1.first_column;
3971 @@$.first_line = @@1.first_line;
847bf1f5
AD
3972 @@$.last_column = @@3.last_column;
3973 @@$.last_line = @@3.last_line;
3e259915
MA
3974 if ($3)
3975 $$ = $1 / $3;
3976 else
3977 @{
3978 $$ = 1;
4e03e201
AD
3979 fprintf (stderr,
3980 "Division by zero, l%d,c%d-l%d,c%d",
3981 @@3.first_line, @@3.first_column,
3982 @@3.last_line, @@3.last_column);
3e259915 3983 @}
847bf1f5
AD
3984 @}
3985@end group
3986@end example
3987
3e259915 3988As for semantic values, there is a default action for locations that is
72d2299c 3989run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3990beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3991last symbol.
3e259915 3992
72d2299c 3993With this default action, the location tracking can be fully automatic. The
3e259915
MA
3994example above simply rewrites this way:
3995
3996@example
3997@group
3998exp: @dots{}
3999 | exp '/' exp
4000 @{
4001 if ($3)
4002 $$ = $1 / $3;
4003 else
4004 @{
4005 $$ = 1;
4e03e201
AD
4006 fprintf (stderr,
4007 "Division by zero, l%d,c%d-l%d,c%d",
4008 @@3.first_line, @@3.first_column,
4009 @@3.last_line, @@3.last_column);
3e259915
MA
4010 @}
4011 @}
4012@end group
4013@end example
847bf1f5 4014
32c29292 4015@vindex yylloc
742e4900 4016It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4017from a semantic action.
4018This location is stored in @code{yylloc}.
4019@xref{Action Features, ,Special Features for Use in Actions}.
4020
342b8b6e 4021@node Location Default Action
847bf1f5
AD
4022@subsection Default Action for Locations
4023@vindex YYLLOC_DEFAULT
35430378 4024@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4025
72d2299c 4026Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4027locations are much more general than semantic values, there is room in
4028the output parser to redefine the default action to take for each
72d2299c 4029rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4030matched, before the associated action is run. It is also invoked
4031while processing a syntax error, to compute the error's location.
35430378 4032Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4033parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4034of that ambiguity.
847bf1f5 4035
3e259915 4036Most of the time, this macro is general enough to suppress location
79282c6c 4037dedicated code from semantic actions.
847bf1f5 4038
72d2299c 4039The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4040the location of the grouping (the result of the computation). When a
766de5eb 4041rule is matched, the second parameter identifies locations of
96b93a3d 4042all right hand side elements of the rule being matched, and the third
8710fc41 4043parameter is the size of the rule's right hand side.
35430378 4044When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4045right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4046When processing a syntax error, the second parameter identifies locations
4047of the symbols that were discarded during error processing, and the third
96b93a3d 4048parameter is the number of discarded symbols.
847bf1f5 4049
766de5eb 4050By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4051
766de5eb 4052@smallexample
847bf1f5 4053@group
766de5eb
PE
4054# define YYLLOC_DEFAULT(Current, Rhs, N) \
4055 do \
4056 if (N) \
4057 @{ \
4058 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
4059 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
4060 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
4061 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
4062 @} \
4063 else \
4064 @{ \
4065 (Current).first_line = (Current).last_line = \
4066 YYRHSLOC(Rhs, 0).last_line; \
4067 (Current).first_column = (Current).last_column = \
4068 YYRHSLOC(Rhs, 0).last_column; \
4069 @} \
4070 while (0)
847bf1f5 4071@end group
766de5eb 4072@end smallexample
676385e2 4073
766de5eb
PE
4074where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4075in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4076just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4077
3e259915 4078When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4079
3e259915 4080@itemize @bullet
79282c6c 4081@item
72d2299c 4082All arguments are free of side-effects. However, only the first one (the
3e259915 4083result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4084
3e259915 4085@item
766de5eb
PE
4086For consistency with semantic actions, valid indexes within the
4087right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4088valid index, and it refers to the symbol just before the reduction.
4089During error processing @var{n} is always positive.
0ae99356
PE
4090
4091@item
4092Your macro should parenthesize its arguments, if need be, since the
4093actual arguments may not be surrounded by parentheses. Also, your
4094macro should expand to something that can be used as a single
4095statement when it is followed by a semicolon.
3e259915 4096@end itemize
847bf1f5 4097
342b8b6e 4098@node Declarations
bfa74976
RS
4099@section Bison Declarations
4100@cindex declarations, Bison
4101@cindex Bison declarations
4102
4103The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4104used in formulating the grammar and the data types of semantic values.
4105@xref{Symbols}.
4106
4107All token type names (but not single-character literal tokens such as
4108@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4109declared if you need to specify which data type to use for the semantic
4110value (@pxref{Multiple Types, ,More Than One Value Type}).
4111
9913d6e4
JD
4112The first rule in the grammar file also specifies the start symbol, by
4113default. If you want some other symbol to be the start symbol, you
4114must declare it explicitly (@pxref{Language and Grammar, ,Languages
4115and Context-Free Grammars}).
bfa74976
RS
4116
4117@menu
b50d2359 4118* Require Decl:: Requiring a Bison version.
bfa74976
RS
4119* Token Decl:: Declaring terminal symbols.
4120* Precedence Decl:: Declaring terminals with precedence and associativity.
4121* Union Decl:: Declaring the set of all semantic value types.
4122* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4123* Initial Action Decl:: Code run before parsing starts.
72f889cc 4124* Destructor Decl:: Declaring how symbols are freed.
d6328241 4125* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4126* Start Decl:: Specifying the start symbol.
4127* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4128* Push Decl:: Requesting a push parser.
bfa74976 4129* Decl Summary:: Table of all Bison declarations.
2f4518a1 4130* %define Summary:: Defining variables to adjust Bison's behavior.
8e6f2266 4131* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4132@end menu
4133
b50d2359
AD
4134@node Require Decl
4135@subsection Require a Version of Bison
4136@cindex version requirement
4137@cindex requiring a version of Bison
4138@findex %require
4139
4140You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4141the requirement is not met, @command{bison} exits with an error (exit
4142status 63).
b50d2359
AD
4143
4144@example
4145%require "@var{version}"
4146@end example
4147
342b8b6e 4148@node Token Decl
bfa74976
RS
4149@subsection Token Type Names
4150@cindex declaring token type names
4151@cindex token type names, declaring
931c7513 4152@cindex declaring literal string tokens
bfa74976
RS
4153@findex %token
4154
4155The basic way to declare a token type name (terminal symbol) is as follows:
4156
4157@example
4158%token @var{name}
4159@end example
4160
4161Bison will convert this into a @code{#define} directive in
4162the parser, so that the function @code{yylex} (if it is in this file)
4163can use the name @var{name} to stand for this token type's code.
4164
14ded682
AD
4165Alternatively, you can use @code{%left}, @code{%right}, or
4166@code{%nonassoc} instead of @code{%token}, if you wish to specify
4167associativity and precedence. @xref{Precedence Decl, ,Operator
4168Precedence}.
bfa74976
RS
4169
4170You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4171a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4172following the token name:
bfa74976
RS
4173
4174@example
4175%token NUM 300
1452af69 4176%token XNUM 0x12d // a GNU extension
bfa74976
RS
4177@end example
4178
4179@noindent
4180It is generally best, however, to let Bison choose the numeric codes for
4181all token types. Bison will automatically select codes that don't conflict
e966383b 4182with each other or with normal characters.
bfa74976
RS
4183
4184In the event that the stack type is a union, you must augment the
4185@code{%token} or other token declaration to include the data type
704a47c4
AD
4186alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4187Than One Value Type}).
bfa74976
RS
4188
4189For example:
4190
4191@example
4192@group
4193%union @{ /* define stack type */
4194 double val;
4195 symrec *tptr;
4196@}
4197%token <val> NUM /* define token NUM and its type */
4198@end group
4199@end example
4200
931c7513
RS
4201You can associate a literal string token with a token type name by
4202writing the literal string at the end of a @code{%token}
4203declaration which declares the name. For example:
4204
4205@example
4206%token arrow "=>"
4207@end example
4208
4209@noindent
4210For example, a grammar for the C language might specify these names with
4211equivalent literal string tokens:
4212
4213@example
4214%token <operator> OR "||"
4215%token <operator> LE 134 "<="
4216%left OR "<="
4217@end example
4218
4219@noindent
4220Once you equate the literal string and the token name, you can use them
4221interchangeably in further declarations or the grammar rules. The
4222@code{yylex} function can use the token name or the literal string to
4223obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4224Syntax error messages passed to @code{yyerror} from the parser will reference
4225the literal string instead of the token name.
4226
4227The token numbered as 0 corresponds to end of file; the following line
4228allows for nicer error messages referring to ``end of file'' instead
4229of ``$end'':
4230
4231@example
4232%token END 0 "end of file"
4233@end example
931c7513 4234
342b8b6e 4235@node Precedence Decl
bfa74976
RS
4236@subsection Operator Precedence
4237@cindex precedence declarations
4238@cindex declaring operator precedence
4239@cindex operator precedence, declaring
4240
4241Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4242declare a token and specify its precedence and associativity, all at
4243once. These are called @dfn{precedence declarations}.
704a47c4
AD
4244@xref{Precedence, ,Operator Precedence}, for general information on
4245operator precedence.
bfa74976 4246
ab7f29f8 4247The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4248@code{%token}: either
4249
4250@example
4251%left @var{symbols}@dots{}
4252@end example
4253
4254@noindent
4255or
4256
4257@example
4258%left <@var{type}> @var{symbols}@dots{}
4259@end example
4260
4261And indeed any of these declarations serves the purposes of @code{%token}.
4262But in addition, they specify the associativity and relative precedence for
4263all the @var{symbols}:
4264
4265@itemize @bullet
4266@item
4267The associativity of an operator @var{op} determines how repeated uses
4268of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4269@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4270grouping @var{y} with @var{z} first. @code{%left} specifies
4271left-associativity (grouping @var{x} with @var{y} first) and
4272@code{%right} specifies right-associativity (grouping @var{y} with
4273@var{z} first). @code{%nonassoc} specifies no associativity, which
4274means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4275considered a syntax error.
4276
4277@item
4278The precedence of an operator determines how it nests with other operators.
4279All the tokens declared in a single precedence declaration have equal
4280precedence and nest together according to their associativity.
4281When two tokens declared in different precedence declarations associate,
4282the one declared later has the higher precedence and is grouped first.
4283@end itemize
4284
ab7f29f8
JD
4285For backward compatibility, there is a confusing difference between the
4286argument lists of @code{%token} and precedence declarations.
4287Only a @code{%token} can associate a literal string with a token type name.
4288A precedence declaration always interprets a literal string as a reference to a
4289separate token.
4290For example:
4291
4292@example
4293%left OR "<=" // Does not declare an alias.
4294%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4295@end example
4296
342b8b6e 4297@node Union Decl
bfa74976
RS
4298@subsection The Collection of Value Types
4299@cindex declaring value types
4300@cindex value types, declaring
4301@findex %union
4302
287c78f6
PE
4303The @code{%union} declaration specifies the entire collection of
4304possible data types for semantic values. The keyword @code{%union} is
4305followed by braced code containing the same thing that goes inside a
4306@code{union} in C@.
bfa74976
RS
4307
4308For example:
4309
4310@example
4311@group
4312%union @{
4313 double val;
4314 symrec *tptr;
4315@}
4316@end group
4317@end example
4318
4319@noindent
4320This says that the two alternative types are @code{double} and @code{symrec
4321*}. They are given names @code{val} and @code{tptr}; these names are used
4322in the @code{%token} and @code{%type} declarations to pick one of the types
4323for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4324
35430378 4325As an extension to POSIX, a tag is allowed after the
6273355b
PE
4326@code{union}. For example:
4327
4328@example
4329@group
4330%union value @{
4331 double val;
4332 symrec *tptr;
4333@}
4334@end group
4335@end example
4336
d6ca7905 4337@noindent
6273355b
PE
4338specifies the union tag @code{value}, so the corresponding C type is
4339@code{union value}. If you do not specify a tag, it defaults to
4340@code{YYSTYPE}.
4341
35430378 4342As another extension to POSIX, you may specify multiple
d6ca7905
PE
4343@code{%union} declarations; their contents are concatenated. However,
4344only the first @code{%union} declaration can specify a tag.
4345
6273355b 4346Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4347a semicolon after the closing brace.
4348
ddc8ede1
PE
4349Instead of @code{%union}, you can define and use your own union type
4350@code{YYSTYPE} if your grammar contains at least one
4351@samp{<@var{type}>} tag. For example, you can put the following into
4352a header file @file{parser.h}:
4353
4354@example
4355@group
4356union YYSTYPE @{
4357 double val;
4358 symrec *tptr;
4359@};
4360typedef union YYSTYPE YYSTYPE;
4361@end group
4362@end example
4363
4364@noindent
4365and then your grammar can use the following
4366instead of @code{%union}:
4367
4368@example
4369@group
4370%@{
4371#include "parser.h"
4372%@}
4373%type <val> expr
4374%token <tptr> ID
4375@end group
4376@end example
4377
342b8b6e 4378@node Type Decl
bfa74976
RS
4379@subsection Nonterminal Symbols
4380@cindex declaring value types, nonterminals
4381@cindex value types, nonterminals, declaring
4382@findex %type
4383
4384@noindent
4385When you use @code{%union} to specify multiple value types, you must
4386declare the value type of each nonterminal symbol for which values are
4387used. This is done with a @code{%type} declaration, like this:
4388
4389@example
4390%type <@var{type}> @var{nonterminal}@dots{}
4391@end example
4392
4393@noindent
704a47c4
AD
4394Here @var{nonterminal} is the name of a nonterminal symbol, and
4395@var{type} is the name given in the @code{%union} to the alternative
4396that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4397can give any number of nonterminal symbols in the same @code{%type}
4398declaration, if they have the same value type. Use spaces to separate
4399the symbol names.
bfa74976 4400
931c7513
RS
4401You can also declare the value type of a terminal symbol. To do this,
4402use the same @code{<@var{type}>} construction in a declaration for the
4403terminal symbol. All kinds of token declarations allow
4404@code{<@var{type}>}.
4405
18d192f0
AD
4406@node Initial Action Decl
4407@subsection Performing Actions before Parsing
4408@findex %initial-action
4409
4410Sometimes your parser needs to perform some initializations before
4411parsing. The @code{%initial-action} directive allows for such arbitrary
4412code.
4413
4414@deffn {Directive} %initial-action @{ @var{code} @}
4415@findex %initial-action
287c78f6 4416Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4417@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4418@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4419@code{%parse-param}.
18d192f0
AD
4420@end deffn
4421
451364ed
AD
4422For instance, if your locations use a file name, you may use
4423
4424@example
48b16bbc 4425%parse-param @{ char const *file_name @};
451364ed
AD
4426%initial-action
4427@{
4626a15d 4428 @@$.initialize (file_name);
451364ed
AD
4429@};
4430@end example
4431
18d192f0 4432
72f889cc
AD
4433@node Destructor Decl
4434@subsection Freeing Discarded Symbols
4435@cindex freeing discarded symbols
4436@findex %destructor
12e35840 4437@findex <*>
3ebecc24 4438@findex <>
a85284cf
AD
4439During error recovery (@pxref{Error Recovery}), symbols already pushed
4440on the stack and tokens coming from the rest of the file are discarded
4441until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4442or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4443symbols on the stack must be discarded. Even if the parser succeeds, it
4444must discard the start symbol.
258b75ca
PE
4445
4446When discarded symbols convey heap based information, this memory is
4447lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4448in traditional compilers, it is unacceptable for programs like shells or
4449protocol implementations that may parse and execute indefinitely.
258b75ca 4450
a85284cf
AD
4451The @code{%destructor} directive defines code that is called when a
4452symbol is automatically discarded.
72f889cc
AD
4453
4454@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4455@findex %destructor
287c78f6
PE
4456Invoke the braced @var{code} whenever the parser discards one of the
4457@var{symbols}.
4b367315 4458Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4459with the discarded symbol, and @code{@@$} designates its location.
4460The additional parser parameters are also available (@pxref{Parser Function, ,
4461The Parser Function @code{yyparse}}).
ec5479ce 4462
b2a0b7ca
JD
4463When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4464per-symbol @code{%destructor}.
4465You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4466tag among @var{symbols}.
b2a0b7ca 4467In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4468grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4469per-symbol @code{%destructor}.
4470
12e35840 4471Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4472(These default forms are experimental.
4473More user feedback will help to determine whether they should become permanent
4474features.)
3ebecc24 4475You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4476exactly one @code{%destructor} declaration in your grammar file.
4477The parser will invoke the @var{code} associated with one of these whenever it
4478discards any user-defined grammar symbol that has no per-symbol and no per-type
4479@code{%destructor}.
4480The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4481symbol for which you have formally declared a semantic type tag (@code{%type}
4482counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4483The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4484symbol that has no declared semantic type tag.
72f889cc
AD
4485@end deffn
4486
b2a0b7ca 4487@noindent
12e35840 4488For example:
72f889cc
AD
4489
4490@smallexample
ec5479ce
JD
4491%union @{ char *string; @}
4492%token <string> STRING1
4493%token <string> STRING2
4494%type <string> string1
4495%type <string> string2
b2a0b7ca
JD
4496%union @{ char character; @}
4497%token <character> CHR
4498%type <character> chr
12e35840
JD
4499%token TAGLESS
4500
b2a0b7ca 4501%destructor @{ @} <character>
12e35840
JD
4502%destructor @{ free ($$); @} <*>
4503%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4504%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4505@end smallexample
4506
4507@noindent
b2a0b7ca
JD
4508guarantees that, when the parser discards any user-defined symbol that has a
4509semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4510to @code{free} by default.
ec5479ce
JD
4511However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4512prints its line number to @code{stdout}.
4513It performs only the second @code{%destructor} in this case, so it invokes
4514@code{free} only once.
12e35840
JD
4515Finally, the parser merely prints a message whenever it discards any symbol,
4516such as @code{TAGLESS}, that has no semantic type tag.
4517
4518A Bison-generated parser invokes the default @code{%destructor}s only for
4519user-defined as opposed to Bison-defined symbols.
4520For example, the parser will not invoke either kind of default
4521@code{%destructor} for the special Bison-defined symbols @code{$accept},
4522@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4523none of which you can reference in your grammar.
4524It also will not invoke either for the @code{error} token (@pxref{Table of
4525Symbols, ,error}), which is always defined by Bison regardless of whether you
4526reference it in your grammar.
4527However, it may invoke one of them for the end token (token 0) if you
4528redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4529
4530@smallexample
4531%token END 0
4532@end smallexample
4533
12e35840
JD
4534@cindex actions in mid-rule
4535@cindex mid-rule actions
4536Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4537mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4538That is, Bison does not consider a mid-rule to have a semantic value if you do
4539not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4540@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4541rule.
4542However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4543@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4544
3508ce36
JD
4545@ignore
4546@noindent
4547In the future, it may be possible to redefine the @code{error} token as a
4548nonterminal that captures the discarded symbols.
4549In that case, the parser will invoke the default destructor for it as well.
4550@end ignore
4551
e757bb10
AD
4552@sp 1
4553
4554@cindex discarded symbols
4555@dfn{Discarded symbols} are the following:
4556
4557@itemize
4558@item
4559stacked symbols popped during the first phase of error recovery,
4560@item
4561incoming terminals during the second phase of error recovery,
4562@item
742e4900 4563the current lookahead and the entire stack (except the current
9d9b8b70 4564right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4565@item
4566the start symbol, when the parser succeeds.
e757bb10
AD
4567@end itemize
4568
9d9b8b70
PE
4569The parser can @dfn{return immediately} because of an explicit call to
4570@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4571exhaustion.
4572
29553547 4573Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4574error via @code{YYERROR} are not discarded automatically. As a rule
4575of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4576the memory.
e757bb10 4577
342b8b6e 4578@node Expect Decl
bfa74976
RS
4579@subsection Suppressing Conflict Warnings
4580@cindex suppressing conflict warnings
4581@cindex preventing warnings about conflicts
4582@cindex warnings, preventing
4583@cindex conflicts, suppressing warnings of
4584@findex %expect
d6328241 4585@findex %expect-rr
bfa74976
RS
4586
4587Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4588(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4589have harmless shift/reduce conflicts which are resolved in a predictable
4590way and would be difficult to eliminate. It is desirable to suppress
4591the warning about these conflicts unless the number of conflicts
4592changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4593
4594The declaration looks like this:
4595
4596@example
4597%expect @var{n}
4598@end example
4599
035aa4a0
PE
4600Here @var{n} is a decimal integer. The declaration says there should
4601be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4602Bison reports an error if the number of shift/reduce conflicts differs
4603from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4604
34a6c2d1 4605For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4606serious, and should be eliminated entirely. Bison will always report
35430378 4607reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4608parsers, however, both kinds of conflicts are routine; otherwise,
35430378 4609there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4610also possible to specify an expected number of reduce/reduce conflicts
35430378 4611in GLR parsers, using the declaration:
d6328241
PH
4612
4613@example
4614%expect-rr @var{n}
4615@end example
4616
bfa74976
RS
4617In general, using @code{%expect} involves these steps:
4618
4619@itemize @bullet
4620@item
4621Compile your grammar without @code{%expect}. Use the @samp{-v} option
4622to get a verbose list of where the conflicts occur. Bison will also
4623print the number of conflicts.
4624
4625@item
4626Check each of the conflicts to make sure that Bison's default
4627resolution is what you really want. If not, rewrite the grammar and
4628go back to the beginning.
4629
4630@item
4631Add an @code{%expect} declaration, copying the number @var{n} from the
35430378 4632number which Bison printed. With GLR parsers, add an
035aa4a0 4633@code{%expect-rr} declaration as well.
bfa74976
RS
4634@end itemize
4635
cf22447c
JD
4636Now Bison will report an error if you introduce an unexpected conflict,
4637but will keep silent otherwise.
bfa74976 4638
342b8b6e 4639@node Start Decl
bfa74976
RS
4640@subsection The Start-Symbol
4641@cindex declaring the start symbol
4642@cindex start symbol, declaring
4643@cindex default start symbol
4644@findex %start
4645
4646Bison assumes by default that the start symbol for the grammar is the first
4647nonterminal specified in the grammar specification section. The programmer
4648may override this restriction with the @code{%start} declaration as follows:
4649
4650@example
4651%start @var{symbol}
4652@end example
4653
342b8b6e 4654@node Pure Decl
bfa74976
RS
4655@subsection A Pure (Reentrant) Parser
4656@cindex reentrant parser
4657@cindex pure parser
d9df47b6 4658@findex %define api.pure
bfa74976
RS
4659
4660A @dfn{reentrant} program is one which does not alter in the course of
4661execution; in other words, it consists entirely of @dfn{pure} (read-only)
4662code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4663for example, a nonreentrant program may not be safe to call from a signal
4664handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4665program must be called only within interlocks.
4666
70811b85 4667Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4668suitable for most uses, and it permits compatibility with Yacc. (The
4669standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4670statically allocated variables for communication with @code{yylex},
4671including @code{yylval} and @code{yylloc}.)
bfa74976 4672
70811b85 4673Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4674declaration @code{%define api.pure} says that you want the parser to be
70811b85 4675reentrant. It looks like this:
bfa74976
RS
4676
4677@example
d9df47b6 4678%define api.pure
bfa74976
RS
4679@end example
4680
70811b85
RS
4681The result is that the communication variables @code{yylval} and
4682@code{yylloc} become local variables in @code{yyparse}, and a different
4683calling convention is used for the lexical analyzer function
4684@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4685Parsers}, for the details of this. The variable @code{yynerrs}
4686becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4687of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4688Reporting Function @code{yyerror}}). The convention for calling
4689@code{yyparse} itself is unchanged.
4690
4691Whether the parser is pure has nothing to do with the grammar rules.
4692You can generate either a pure parser or a nonreentrant parser from any
4693valid grammar.
bfa74976 4694
9987d1b3
JD
4695@node Push Decl
4696@subsection A Push Parser
4697@cindex push parser
4698@cindex push parser
812775a0 4699@findex %define api.push-pull
9987d1b3 4700
59da312b
JD
4701(The current push parsing interface is experimental and may evolve.
4702More user feedback will help to stabilize it.)
4703
f4101aa6
AD
4704A pull parser is called once and it takes control until all its input
4705is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4706each time a new token is made available.
4707
f4101aa6 4708A push parser is typically useful when the parser is part of a
9987d1b3 4709main event loop in the client's application. This is typically
f4101aa6
AD
4710a requirement of a GUI, when the main event loop needs to be triggered
4711within a certain time period.
9987d1b3 4712
d782395d
JD
4713Normally, Bison generates a pull parser.
4714The following Bison declaration says that you want the parser to be a push
2f4518a1 4715parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
4716
4717@example
f37495f6 4718%define api.push-pull push
9987d1b3
JD
4719@end example
4720
4721In almost all cases, you want to ensure that your push parser is also
4722a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4723time you should create an impure push parser is to have backwards
9987d1b3
JD
4724compatibility with the impure Yacc pull mode interface. Unless you know
4725what you are doing, your declarations should look like this:
4726
4727@example
d9df47b6 4728%define api.pure
f37495f6 4729%define api.push-pull push
9987d1b3
JD
4730@end example
4731
f4101aa6
AD
4732There is a major notable functional difference between the pure push parser
4733and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4734many parser instances, of the same type of parser, in memory at the same time.
4735An impure push parser should only use one parser at a time.
4736
4737When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4738the generated parser. @code{yypstate} is a structure that the generated
4739parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4740function that will create a new parser instance. @code{yypstate_delete}
4741will free the resources associated with the corresponding parser instance.
f4101aa6 4742Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4743token is available to provide the parser. A trivial example
4744of using a pure push parser would look like this:
4745
4746@example
4747int status;
4748yypstate *ps = yypstate_new ();
4749do @{
4750 status = yypush_parse (ps, yylex (), NULL);
4751@} while (status == YYPUSH_MORE);
4752yypstate_delete (ps);
4753@end example
4754
4755If the user decided to use an impure push parser, a few things about
f4101aa6 4756the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4757a global variable instead of a variable in the @code{yypush_parse} function.
4758For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4759changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4760example would thus look like this:
4761
4762@example
4763extern int yychar;
4764int status;
4765yypstate *ps = yypstate_new ();
4766do @{
4767 yychar = yylex ();
4768 status = yypush_parse (ps);
4769@} while (status == YYPUSH_MORE);
4770yypstate_delete (ps);
4771@end example
4772
f4101aa6 4773That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4774for use by the next invocation of the @code{yypush_parse} function.
4775
f4101aa6 4776Bison also supports both the push parser interface along with the pull parser
9987d1b3 4777interface in the same generated parser. In order to get this functionality,
f37495f6
JD
4778you should replace the @code{%define api.push-pull push} declaration with the
4779@code{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4780the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4781and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4782would be used. However, the user should note that it is implemented in the
d782395d
JD
4783generated parser by calling @code{yypull_parse}.
4784This makes the @code{yyparse} function that is generated with the
f37495f6 4785@code{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4786@code{yyparse} function. If the user
4787calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4788stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4789and then @code{yypull_parse} the rest of the input stream. If you would like
4790to switch back and forth between between parsing styles, you would have to
4791write your own @code{yypull_parse} function that knows when to quit looking
4792for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4793like this:
4794
4795@example
4796yypstate *ps = yypstate_new ();
4797yypull_parse (ps); /* Will call the lexer */
4798yypstate_delete (ps);
4799@end example
4800
d9df47b6 4801Adding the @code{%define api.pure} declaration does exactly the same thing to
f37495f6
JD
4802the generated parser with @code{%define api.push-pull both} as it did for
4803@code{%define api.push-pull push}.
9987d1b3 4804
342b8b6e 4805@node Decl Summary
bfa74976
RS
4806@subsection Bison Declaration Summary
4807@cindex Bison declaration summary
4808@cindex declaration summary
4809@cindex summary, Bison declaration
4810
d8988b2f 4811Here is a summary of the declarations used to define a grammar:
bfa74976 4812
18b519c0 4813@deffn {Directive} %union
bfa74976
RS
4814Declare the collection of data types that semantic values may have
4815(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4816@end deffn
bfa74976 4817
18b519c0 4818@deffn {Directive} %token
bfa74976
RS
4819Declare a terminal symbol (token type name) with no precedence
4820or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4821@end deffn
bfa74976 4822
18b519c0 4823@deffn {Directive} %right
bfa74976
RS
4824Declare a terminal symbol (token type name) that is right-associative
4825(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4826@end deffn
bfa74976 4827
18b519c0 4828@deffn {Directive} %left
bfa74976
RS
4829Declare a terminal symbol (token type name) that is left-associative
4830(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4831@end deffn
bfa74976 4832
18b519c0 4833@deffn {Directive} %nonassoc
bfa74976 4834Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4835(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4836Using it in a way that would be associative is a syntax error.
4837@end deffn
4838
91d2c560 4839@ifset defaultprec
39a06c25 4840@deffn {Directive} %default-prec
22fccf95 4841Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4842(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4843@end deffn
91d2c560 4844@end ifset
bfa74976 4845
18b519c0 4846@deffn {Directive} %type
bfa74976
RS
4847Declare the type of semantic values for a nonterminal symbol
4848(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4849@end deffn
bfa74976 4850
18b519c0 4851@deffn {Directive} %start
89cab50d
AD
4852Specify the grammar's start symbol (@pxref{Start Decl, ,The
4853Start-Symbol}).
18b519c0 4854@end deffn
bfa74976 4855
18b519c0 4856@deffn {Directive} %expect
bfa74976
RS
4857Declare the expected number of shift-reduce conflicts
4858(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4859@end deffn
4860
bfa74976 4861
d8988b2f
AD
4862@sp 1
4863@noindent
4864In order to change the behavior of @command{bison}, use the following
4865directives:
4866
148d66d8 4867@deffn {Directive} %code @{@var{code}@}
8e6f2266 4868@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 4869@findex %code
8e6f2266
JD
4870Insert @var{code} verbatim into the output parser source at the
4871default location or at the location specified by @var{qualifier}.
4872@xref{%code Summary}.
148d66d8
JD
4873@end deffn
4874
18b519c0 4875@deffn {Directive} %debug
9913d6e4
JD
4876In the parser implementation file, define the macro @code{YYDEBUG} to
48771 if it is not already defined, so that the debugging facilities are
4878compiled. @xref{Tracing, ,Tracing Your Parser}.
bd5df716 4879@end deffn
d8988b2f 4880
2f4518a1
JD
4881@deffn {Directive} %define @var{variable}
4882@deffnx {Directive} %define @var{variable} @var{value}
4883@deffnx {Directive} %define @var{variable} "@var{value}"
4884Define a variable to adjust Bison's behavior. @xref{%define Summary}.
4885@end deffn
4886
4887@deffn {Directive} %defines
4888Write a parser header file containing macro definitions for the token
4889type names defined in the grammar as well as a few other declarations.
4890If the parser implementation file is named @file{@var{name}.c} then
4891the parser header file is named @file{@var{name}.h}.
4892
4893For C parsers, the parser header file declares @code{YYSTYPE} unless
4894@code{YYSTYPE} is already defined as a macro or you have used a
4895@code{<@var{type}>} tag without using @code{%union}. Therefore, if
4896you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
4897Value Type}) with components that require other definitions, or if you
4898have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
4899Type, ,Data Types of Semantic Values}), you need to arrange for these
4900definitions to be propagated to all modules, e.g., by putting them in
4901a prerequisite header that is included both by your parser and by any
4902other module that needs @code{YYSTYPE}.
4903
4904Unless your parser is pure, the parser header file declares
4905@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
4906(Reentrant) Parser}.
4907
4908If you have also used locations, the parser header file declares
4909@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
4910the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations,
4911,Tracking Locations}.
4912
4913This parser header file is normally essential if you wish to put the
4914definition of @code{yylex} in a separate source file, because
4915@code{yylex} typically needs to be able to refer to the
4916above-mentioned declarations and to the token type codes. @xref{Token
4917Values, ,Semantic Values of Tokens}.
4918
4919@findex %code requires
4920@findex %code provides
4921If you have declared @code{%code requires} or @code{%code provides}, the output
4922header also contains their code.
4923@xref{%code Summary}.
4924@end deffn
4925
4926@deffn {Directive} %defines @var{defines-file}
4927Same as above, but save in the file @var{defines-file}.
4928@end deffn
4929
4930@deffn {Directive} %destructor
4931Specify how the parser should reclaim the memory associated to
4932discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
4933@end deffn
4934
4935@deffn {Directive} %file-prefix "@var{prefix}"
4936Specify a prefix to use for all Bison output file names. The names
4937are chosen as if the grammar file were named @file{@var{prefix}.y}.
4938@end deffn
4939
4940@deffn {Directive} %language "@var{language}"
4941Specify the programming language for the generated parser. Currently
4942supported languages include C, C++, and Java.
4943@var{language} is case-insensitive.
4944
4945This directive is experimental and its effect may be modified in future
4946releases.
4947@end deffn
4948
4949@deffn {Directive} %locations
4950Generate the code processing the locations (@pxref{Action Features,
4951,Special Features for Use in Actions}). This mode is enabled as soon as
4952the grammar uses the special @samp{@@@var{n}} tokens, but if your
4953grammar does not use it, using @samp{%locations} allows for more
4954accurate syntax error messages.
4955@end deffn
4956
4957@deffn {Directive} %name-prefix "@var{prefix}"
4958Rename the external symbols used in the parser so that they start with
4959@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
4960in C parsers
4961is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
4962@code{yylval}, @code{yychar}, @code{yydebug}, and
4963(if locations are used) @code{yylloc}. If you use a push parser,
4964@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
4965@code{yypstate_new} and @code{yypstate_delete} will
4966also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
4967names become @code{c_parse}, @code{c_lex}, and so on.
4968For C++ parsers, see the @code{%define namespace} documentation in this
4969section.
4970@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
4971@end deffn
4972
4973@ifset defaultprec
4974@deffn {Directive} %no-default-prec
4975Do not assign a precedence to rules lacking an explicit @code{%prec}
4976modifier (@pxref{Contextual Precedence, ,Context-Dependent
4977Precedence}).
4978@end deffn
4979@end ifset
4980
4981@deffn {Directive} %no-lines
4982Don't generate any @code{#line} preprocessor commands in the parser
4983implementation file. Ordinarily Bison writes these commands in the
4984parser implementation file so that the C compiler and debuggers will
4985associate errors and object code with your source file (the grammar
4986file). This directive causes them to associate errors with the parser
4987implementation file, treating it as an independent source file in its
4988own right.
4989@end deffn
4990
4991@deffn {Directive} %output "@var{file}"
4992Specify @var{file} for the parser implementation file.
4993@end deffn
4994
4995@deffn {Directive} %pure-parser
4996Deprecated version of @code{%define api.pure} (@pxref{%define
4997Summary,,api.pure}), for which Bison is more careful to warn about
4998unreasonable usage.
4999@end deffn
5000
5001@deffn {Directive} %require "@var{version}"
5002Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5003Require a Version of Bison}.
5004@end deffn
5005
5006@deffn {Directive} %skeleton "@var{file}"
5007Specify the skeleton to use.
5008
5009@c You probably don't need this option unless you are developing Bison.
5010@c You should use @code{%language} if you want to specify the skeleton for a
5011@c different language, because it is clearer and because it will always choose the
5012@c correct skeleton for non-deterministic or push parsers.
5013
5014If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5015file in the Bison installation directory.
5016If it does, @var{file} is an absolute file name or a file name relative to the
5017directory of the grammar file.
5018This is similar to how most shells resolve commands.
5019@end deffn
5020
5021@deffn {Directive} %token-table
5022Generate an array of token names in the parser implementation file.
5023The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5024the name of the token whose internal Bison token code number is
5025@var{i}. The first three elements of @code{yytname} correspond to the
5026predefined tokens @code{"$end"}, @code{"error"}, and
5027@code{"$undefined"}; after these come the symbols defined in the
5028grammar file.
5029
5030The name in the table includes all the characters needed to represent
5031the token in Bison. For single-character literals and literal
5032strings, this includes the surrounding quoting characters and any
5033escape sequences. For example, the Bison single-character literal
5034@code{'+'} corresponds to a three-character name, represented in C as
5035@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5036corresponds to a five-character name, represented in C as
5037@code{"\"\\\\/\""}.
5038
5039When you specify @code{%token-table}, Bison also generates macro
5040definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5041@code{YYNRULES}, and @code{YYNSTATES}:
5042
5043@table @code
5044@item YYNTOKENS
5045The highest token number, plus one.
5046@item YYNNTS
5047The number of nonterminal symbols.
5048@item YYNRULES
5049The number of grammar rules,
5050@item YYNSTATES
5051The number of parser states (@pxref{Parser States}).
5052@end table
5053@end deffn
5054
5055@deffn {Directive} %verbose
5056Write an extra output file containing verbose descriptions of the
5057parser states and what is done for each type of lookahead token in
5058that state. @xref{Understanding, , Understanding Your Parser}, for more
5059information.
5060@end deffn
5061
5062@deffn {Directive} %yacc
5063Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5064including its naming conventions. @xref{Bison Options}, for more.
5065@end deffn
5066
5067
5068@node %define Summary
5069@subsection %define Summary
406dec82
JD
5070
5071There are many features of Bison's behavior that can be controlled by
5072assigning the feature a single value. For historical reasons, some
5073such features are assigned values by dedicated directives, such as
5074@code{%start}, which assigns the start symbol. However, newer such
5075features are associated with variables, which are assigned by the
5076@code{%define} directive:
5077
c1d19e10 5078@deffn {Directive} %define @var{variable}
f37495f6 5079@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5080@deffnx {Directive} %define @var{variable} "@var{value}"
406dec82 5081Define @var{variable} to @var{value}.
9611cfa2 5082
406dec82
JD
5083@var{value} must be placed in quotation marks if it contains any
5084character other than a letter, underscore, period, or non-initial dash
5085or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5086to specifying @code{""}.
9611cfa2 5087
406dec82
JD
5088It is an error if a @var{variable} is defined by @code{%define}
5089multiple times, but see @ref{Bison Options,,-D
5090@var{name}[=@var{value}]}.
5091@end deffn
f37495f6 5092
406dec82
JD
5093The rest of this section summarizes variables and values that
5094@code{%define} accepts.
9611cfa2 5095
406dec82
JD
5096Some @var{variable}s take Boolean values. In this case, Bison will
5097complain if the variable definition does not meet one of the following
5098four conditions:
9611cfa2
JD
5099
5100@enumerate
f37495f6 5101@item @code{@var{value}} is @code{true}
9611cfa2 5102
f37495f6
JD
5103@item @code{@var{value}} is omitted (or @code{""} is specified).
5104This is equivalent to @code{true}.
9611cfa2 5105
f37495f6 5106@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5107
5108@item @var{variable} is never defined.
628be6c9 5109In this case, Bison selects a default value.
9611cfa2 5110@end enumerate
148d66d8 5111
628be6c9
JD
5112What @var{variable}s are accepted, as well as their meanings and default
5113values, depend on the selected target language and/or the parser
5114skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5115Summary,,%skeleton}).
5116Unaccepted @var{variable}s produce an error.
793fbca5
JD
5117Some of the accepted @var{variable}s are:
5118
5119@itemize @bullet
d9df47b6
JD
5120@item api.pure
5121@findex %define api.pure
5122
5123@itemize @bullet
5124@item Language(s): C
5125
5126@item Purpose: Request a pure (reentrant) parser program.
5127@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5128
5129@item Accepted Values: Boolean
5130
f37495f6 5131@item Default Value: @code{false}
d9df47b6
JD
5132@end itemize
5133
812775a0
JD
5134@item api.push-pull
5135@findex %define api.push-pull
793fbca5
JD
5136
5137@itemize @bullet
34a6c2d1 5138@item Language(s): C (deterministic parsers only)
793fbca5 5139
3b1977ea 5140@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5141@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5142(The current push parsing interface is experimental and may evolve.
5143More user feedback will help to stabilize it.)
793fbca5 5144
f37495f6 5145@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5146
f37495f6 5147@item Default Value: @code{pull}
793fbca5
JD
5148@end itemize
5149
232be91a
AD
5150@c ================================================== lr.default-reductions
5151
1d0f55cc 5152@item lr.default-reductions
620b5727 5153@cindex default reductions
1d0f55cc 5154@findex %define lr.default-reductions
34a6c2d1
JD
5155@cindex delayed syntax errors
5156@cindex syntax errors delayed
35430378 5157@cindex LAC
4c38b19e 5158@findex %nonassoc
34a6c2d1
JD
5159
5160@itemize @bullet
5161@item Language(s): all
5162
4c38b19e 5163@item Purpose: Specify the kind of states that are permitted to
620b5727 5164contain default reductions.
4c38b19e
JD
5165That is, in such a state, Bison selects the reduction with the largest
5166lookahead set to be the default parser action and then removes that
620b5727 5167lookahead set.
4c38b19e
JD
5168(The ability to specify where default reductions should be used is
5169experimental.
34a6c2d1
JD
5170More user feedback will help to stabilize it.)
5171
5172@item Accepted Values:
5173@itemize
f37495f6 5174@item @code{all}.
2f4518a1
JD
5175This is the traditional Bison behavior. The main advantage is a
5176significant decrease in the size of the parser tables. The
5177disadvantage is that, when the generated parser encounters a
4c38b19e
JD
5178syntactically unacceptable token, the parser might then perform
5179unnecessary default reductions before it can detect the syntax error.
2f4518a1
JD
5180Such delayed syntax error detection is usually inherent in LALR and
5181IELR parser tables anyway due to LR state merging (@pxref{%define
5182Summary,,lr.type}). Furthermore, the use of @code{%nonassoc} can
5183contribute to delayed syntax error detection even in the case of
5184canonical LR. As an experimental feature, delayed syntax error
5185detection can be overcome in all cases by enabling LAC (@pxref{%define
5186Summary,,parse.lac}, for details, including a discussion of the
5187effects of delayed syntax error detection).
34a6c2d1 5188
f37495f6 5189@item @code{consistent}.
34a6c2d1
JD
5190@cindex consistent states
5191A consistent state is a state that has only one possible action.
5192If that action is a reduction, then the parser does not need to request
5193a lookahead token from the scanner before performing that action.
4c38b19e
JD
5194However, the parser recognizes the ability to ignore the lookahead token
5195in this way only when such a reduction is encoded as a default
5196reduction.
5197Thus, if default reductions are permitted only in consistent states,
35430378 5198then a canonical LR parser that does not employ
4c38b19e
JD
5199@code{%nonassoc} detects a syntax error as soon as it @emph{needs} the
5200syntactically unacceptable token from the scanner.
34a6c2d1 5201
f37495f6 5202@item @code{accepting}.
34a6c2d1 5203@cindex accepting state
4c38b19e
JD
5204In the accepting state, the default reduction is actually the accept
5205action.
35430378 5206In this case, a canonical LR parser that does not employ
4c38b19e
JD
5207@code{%nonassoc} detects a syntax error as soon as it @emph{reaches} the
5208syntactically unacceptable token in the input.
5209That is, it does not perform any extra reductions.
34a6c2d1
JD
5210@end itemize
5211
5212@item Default Value:
5213@itemize
f37495f6
JD
5214@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
5215@item @code{all} otherwise.
34a6c2d1
JD
5216@end itemize
5217@end itemize
5218
232be91a
AD
5219@c ============================================ lr.keep-unreachable-states
5220
812775a0
JD
5221@item lr.keep-unreachable-states
5222@findex %define lr.keep-unreachable-states
31984206
JD
5223
5224@itemize @bullet
5225@item Language(s): all
5226
3b1977ea
JD
5227@item Purpose: Request that Bison allow unreachable parser states to
5228remain in the parser tables.
31984206
JD
5229Bison considers a state to be unreachable if there exists no sequence of
5230transitions from the start state to that state.
5231A state can become unreachable during conflict resolution if Bison disables a
5232shift action leading to it from a predecessor state.
5233Keeping unreachable states is sometimes useful for analysis purposes, but they
5234are useless in the generated parser.
5235
5236@item Accepted Values: Boolean
5237
f37495f6 5238@item Default Value: @code{false}
31984206
JD
5239
5240@item Caveats:
5241
5242@itemize @bullet
cff03fb2
JD
5243
5244@item Unreachable states may contain conflicts and may use rules not used in
5245any other state.
31984206
JD
5246Thus, keeping unreachable states may induce warnings that are irrelevant to
5247your parser's behavior, and it may eliminate warnings that are relevant.
5248Of course, the change in warnings may actually be relevant to a parser table
5249analysis that wants to keep unreachable states, so this behavior will likely
5250remain in future Bison releases.
5251
5252@item While Bison is able to remove unreachable states, it is not guaranteed to
5253remove other kinds of useless states.
5254Specifically, when Bison disables reduce actions during conflict resolution,
5255some goto actions may become useless, and thus some additional states may
5256become useless.
5257If Bison were to compute which goto actions were useless and then disable those
5258actions, it could identify such states as unreachable and then remove those
5259states.
5260However, Bison does not compute which goto actions are useless.
5261@end itemize
5262@end itemize
5263
232be91a
AD
5264@c ================================================== lr.type
5265
34a6c2d1
JD
5266@item lr.type
5267@findex %define lr.type
35430378
JD
5268@cindex LALR
5269@cindex IELR
5270@cindex LR
34a6c2d1
JD
5271
5272@itemize @bullet
5273@item Language(s): all
5274
3b1977ea 5275@item Purpose: Specify the type of parser tables within the
35430378 5276LR(1) family.
34a6c2d1
JD
5277(This feature is experimental.
5278More user feedback will help to stabilize it.)
5279
5280@item Accepted Values:
5281@itemize
f37495f6 5282@item @code{lalr}.
35430378
JD
5283While Bison generates LALR parser tables by default for
5284historical reasons, IELR or canonical LR is almost
34a6c2d1 5285always preferable for deterministic parsers.
35430378 5286The trouble is that LALR parser tables can suffer from
620b5727 5287mysterious conflicts and thus may not accept the full set of sentences
35430378 5288that IELR and canonical LR accept.
34a6c2d1 5289@xref{Mystery Conflicts}, for details.
35430378 5290However, there are at least two scenarios where LALR may be
34a6c2d1
JD
5291worthwhile:
5292@itemize
35430378
JD
5293@cindex GLR with LALR
5294@item When employing GLR parsers (@pxref{GLR Parsers}), if you
34a6c2d1
JD
5295do not resolve any conflicts statically (for example, with @code{%left}
5296or @code{%prec}), then the parser explores all potential parses of any
5297given input.
35430378 5298In this case, the use of LALR parser tables is guaranteed not
620b5727 5299to alter the language accepted by the parser.
35430378 5300LALR parser tables are the smallest parser tables Bison can
34a6c2d1 5301currently generate, so they may be preferable.
3b1977ea 5302Nevertheless, once you begin to resolve conflicts statically,
35430378
JD
5303GLR begins to behave more like a deterministic parser, and so
5304IELR and canonical LR can be helpful to avoid
5305LALR's mysterious behavior.
34a6c2d1
JD
5306
5307@item Occasionally during development, an especially malformed grammar
35430378
JD
5308with a major recurring flaw may severely impede the IELR or
5309canonical LR parser table generation algorithm.
5310LALR can be a quick way to generate parser tables in order to
34a6c2d1 5311investigate such problems while ignoring the more subtle differences
35430378 5312from IELR and canonical LR.
34a6c2d1
JD
5313@end itemize
5314
f37495f6 5315@item @code{ielr}.
35430378
JD
5316IELR is a minimal LR algorithm.
5317That is, given any grammar (LR or non-LR),
5318IELR and canonical LR always accept exactly the same
34a6c2d1 5319set of sentences.
35430378
JD
5320However, as for LALR, the number of parser states is often an
5321order of magnitude less for IELR than for canonical
5322LR.
5323More importantly, because canonical LR's extra parser states
5324may contain duplicate conflicts in the case of non-LR
5325grammars, the number of conflicts for IELR is often an order
34a6c2d1
JD
5326of magnitude less as well.
5327This can significantly reduce the complexity of developing of a grammar.
5328
f37495f6 5329@item @code{canonical-lr}.
34a6c2d1
JD
5330@cindex delayed syntax errors
5331@cindex syntax errors delayed
35430378 5332@cindex LAC
4c38b19e 5333@findex %nonassoc
2f4518a1
JD
5334While inefficient, canonical LR parser tables can be an interesting
5335means to explore a grammar because they have a property that IELR and
5336LALR tables do not. That is, if @code{%nonassoc} is not used and
5337default reductions are left disabled (@pxref{%define
5338Summary,,lr.default-reductions}), then, for every left context of
5339every canonical LR state, the set of tokens accepted by that state is
5340guaranteed to be the exact set of tokens that is syntactically
5341acceptable in that left context. It might then seem that an advantage
5342of canonical LR parsers in production is that, under the above
5343constraints, they are guaranteed to detect a syntax error as soon as
5344possible without performing any unnecessary reductions. However, IELR
5345parsers using LAC (@pxref{%define Summary,,parse.lac}) are also able
5346to achieve this behavior without sacrificing @code{%nonassoc} or
5347default reductions.
34a6c2d1
JD
5348@end itemize
5349
f37495f6 5350@item Default Value: @code{lalr}
34a6c2d1
JD
5351@end itemize
5352
793fbca5
JD
5353@item namespace
5354@findex %define namespace
5355
5356@itemize
5357@item Languages(s): C++
5358
3b1977ea 5359@item Purpose: Specify the namespace for the parser class.
793fbca5
JD
5360For example, if you specify:
5361
5362@smallexample
5363%define namespace "foo::bar"
5364@end smallexample
5365
5366Bison uses @code{foo::bar} verbatim in references such as:
5367
5368@smallexample
5369foo::bar::parser::semantic_type
5370@end smallexample
5371
5372However, to open a namespace, Bison removes any leading @code{::} and then
5373splits on any remaining occurrences:
5374
5375@smallexample
5376namespace foo @{ namespace bar @{
5377 class position;
5378 class location;
5379@} @}
5380@end smallexample
5381
5382@item Accepted Values: Any absolute or relative C++ namespace reference without
5383a trailing @code{"::"}.
5384For example, @code{"foo"} or @code{"::foo::bar"}.
5385
5386@item Default Value: The value specified by @code{%name-prefix}, which defaults
5387to @code{yy}.
5388This usage of @code{%name-prefix} is for backward compatibility and can be
5389confusing since @code{%name-prefix} also specifies the textual prefix for the
5390lexical analyzer function.
5391Thus, if you specify @code{%name-prefix}, it is best to also specify
5392@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
5393lexical analyzer function.
5394For example, if you specify:
5395
5396@smallexample
5397%define namespace "foo"
5398%name-prefix "bar::"
5399@end smallexample
5400
5401The parser namespace is @code{foo} and @code{yylex} is referenced as
5402@code{bar::lex}.
5403@end itemize
4c38b19e
JD
5404
5405@c ================================================== parse.lac
5406@item parse.lac
5407@findex %define parse.lac
35430378 5408@cindex LAC
4c38b19e
JD
5409@cindex lookahead correction
5410
5411@itemize
5412@item Languages(s): C
5413
35430378 5414@item Purpose: Enable LAC (lookahead correction) to improve
4c38b19e
JD
5415syntax error handling.
5416
35430378 5417Canonical LR, IELR, and LALR can suffer
4c38b19e
JD
5418from a couple of problems upon encountering a syntax error. First, the
5419parser might perform additional parser stack reductions before
5420discovering the syntax error. Such reductions perform user semantic
5421actions that are unexpected because they are based on an invalid token,
5422and they cause error recovery to begin in a different syntactic context
5423than the one in which the invalid token was encountered. Second, when
5424verbose error messages are enabled (with @code{%error-verbose} or
5425@code{#define YYERROR_VERBOSE}), the expected token list in the syntax
5426error message can both contain invalid tokens and omit valid tokens.
5427
5428The culprits for the above problems are @code{%nonassoc}, default
5429reductions in inconsistent states, and parser state merging. Thus,
35430378
JD
5430IELR and LALR suffer the most. Canonical
5431LR can suffer only if @code{%nonassoc} is used or if default
4c38b19e
JD
5432reductions are enabled for inconsistent states.
5433
35430378
JD
5434LAC is a new mechanism within the parsing algorithm that
5435completely solves these problems for canonical LR,
5436IELR, and LALR without sacrificing @code{%nonassoc},
4c38b19e
JD
5437default reductions, or state mering. Conceptually, the mechanism is
5438straight-forward. Whenever the parser fetches a new token from the
5439scanner so that it can determine the next parser action, it immediately
5440suspends normal parsing and performs an exploratory parse using a
5441temporary copy of the normal parser state stack. During this
5442exploratory parse, the parser does not perform user semantic actions.
5443If the exploratory parse reaches a shift action, normal parsing then
5444resumes on the normal parser stacks. If the exploratory parse reaches
5445an error instead, the parser reports a syntax error. If verbose syntax
5446error messages are enabled, the parser must then discover the list of
5447expected tokens, so it performs a separate exploratory parse for each
5448token in the grammar.
5449
2f4518a1
JD
5450There is one subtlety about the use of LAC. That is, when in a
5451consistent parser state with a default reduction, the parser will not
5452attempt to fetch a token from the scanner because no lookahead is
5453needed to determine the next parser action. Thus, whether default
5454reductions are enabled in consistent states (@pxref{%define
4c38b19e
JD
5455Summary,,lr.default-reductions}) affects how soon the parser detects a
5456syntax error: when it @emph{reaches} an erroneous token or when it
2f4518a1
JD
5457eventually @emph{needs} that token as a lookahead. The latter
5458behavior is probably more intuitive, so Bison currently provides no
5459way to achieve the former behavior while default reductions are fully
5460enabled.
4c38b19e 5461
35430378 5462Thus, when LAC is in use, for some fixed decision of whether
4c38b19e 5463to enable default reductions in consistent states, canonical
35430378 5464LR and IELR behave exactly the same for both
4c38b19e 5465syntactically acceptable and syntactically unacceptable input. While
35430378
JD
5466LALR still does not support the full language-recognition
5467power of canonical LR and IELR, LAC at
5468least enables LALR's syntax error handling to correctly
5469reflect LALR's language-recognition power.
4c38b19e 5470
35430378 5471Because LAC requires many parse actions to be performed twice,
4c38b19e
JD
5472it can have a performance penalty. However, not all parse actions must
5473be performed twice. Specifically, during a series of default reductions
5474in consistent states and shift actions, the parser never has to initiate
5475an exploratory parse. Moreover, the most time-consuming tasks in a
5476parse are often the file I/O, the lexical analysis performed by the
5477scanner, and the user's semantic actions, but none of these are
5478performed during the exploratory parse. Finally, the base of the
5479temporary stack used during an exploratory parse is a pointer into the
5480normal parser state stack so that the stack is never physically copied.
35430378 5481In our experience, the performance penalty of LAC has proven
4c38b19e
JD
5482insignificant for practical grammars.
5483
5484@item Accepted Values: @code{none}, @code{full}
5485
5486@item Default Value: @code{none}
5487@end itemize
793fbca5
JD
5488@end itemize
5489
d8988b2f 5490
8e6f2266
JD
5491@node %code Summary
5492@subsection %code Summary
8e6f2266 5493@findex %code
8e6f2266 5494@cindex Prologue
406dec82
JD
5495
5496The @code{%code} directive inserts code verbatim into the output
5497parser source at any of a predefined set of locations. It thus serves
5498as a flexible and user-friendly alternative to the traditional Yacc
5499prologue, @code{%@{@var{code}%@}}. This section summarizes the
5500functionality of @code{%code} for the various target languages
5501supported by Bison. For a detailed discussion of how to use
5502@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5503is advantageous to do so, @pxref{Prologue Alternatives}.
5504
5505@deffn {Directive} %code @{@var{code}@}
5506This is the unqualified form of the @code{%code} directive. It
5507inserts @var{code} verbatim at a language-dependent default location
5508in the parser implementation.
5509
8e6f2266 5510For C/C++, the default location is the parser implementation file
406dec82
JD
5511after the usual contents of the parser header file. Thus, the
5512unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
8e6f2266
JD
5513
5514For Java, the default location is inside the parser class.
5515@end deffn
5516
5517@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5518This is the qualified form of the @code{%code} directive.
406dec82
JD
5519@var{qualifier} identifies the purpose of @var{code} and thus the
5520location(s) where Bison should insert it. That is, if you need to
5521specify location-sensitive @var{code} that does not belong at the
5522default location selected by the unqualified @code{%code} form, use
5523this form instead.
5524@end deffn
5525
5526For any particular qualifier or for the unqualified form, if there are
5527multiple occurrences of the @code{%code} directive, Bison concatenates
5528the specified code in the order in which it appears in the grammar
5529file.
8e6f2266 5530
406dec82
JD
5531Not all qualifiers are accepted for all target languages. Unaccepted
5532qualifiers produce an error. Some of the accepted qualifiers are:
8e6f2266
JD
5533
5534@itemize @bullet
5535@item requires
5536@findex %code requires
5537
5538@itemize @bullet
5539@item Language(s): C, C++
5540
5541@item Purpose: This is the best place to write dependency code required for
5542@code{YYSTYPE} and @code{YYLTYPE}.
5543In other words, it's the best place to define types referenced in @code{%union}
5544directives, and it's the best place to override Bison's default @code{YYSTYPE}
5545and @code{YYLTYPE} definitions.
5546
5547@item Location(s): The parser header file and the parser implementation file
5548before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5549definitions.
5550@end itemize
5551
5552@item provides
5553@findex %code provides
5554
5555@itemize @bullet
5556@item Language(s): C, C++
5557
5558@item Purpose: This is the best place to write additional definitions and
5559declarations that should be provided to other modules.
5560
5561@item Location(s): The parser header file and the parser implementation
5562file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5563token definitions.
5564@end itemize
5565
5566@item top
5567@findex %code top
5568
5569@itemize @bullet
5570@item Language(s): C, C++
5571
5572@item Purpose: The unqualified @code{%code} or @code{%code requires}
5573should usually be more appropriate than @code{%code top}. However,
5574occasionally it is necessary to insert code much nearer the top of the
5575parser implementation file. For example:
5576
5577@smallexample
5578%code top @{
5579 #define _GNU_SOURCE
5580 #include <stdio.h>
5581@}
5582@end smallexample
5583
5584@item Location(s): Near the top of the parser implementation file.
5585@end itemize
5586
5587@item imports
5588@findex %code imports
5589
5590@itemize @bullet
5591@item Language(s): Java
5592
5593@item Purpose: This is the best place to write Java import directives.
5594
5595@item Location(s): The parser Java file after any Java package directive and
5596before any class definitions.
5597@end itemize
5598@end itemize
5599
406dec82
JD
5600Though we say the insertion locations are language-dependent, they are
5601technically skeleton-dependent. Writers of non-standard skeletons
5602however should choose their locations consistently with the behavior
5603of the standard Bison skeletons.
8e6f2266 5604
d8988b2f 5605
342b8b6e 5606@node Multiple Parsers
bfa74976
RS
5607@section Multiple Parsers in the Same Program
5608
5609Most programs that use Bison parse only one language and therefore contain
5610only one Bison parser. But what if you want to parse more than one
5611language with the same program? Then you need to avoid a name conflict
5612between different definitions of @code{yyparse}, @code{yylval}, and so on.
5613
5614The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5615(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5616functions and variables of the Bison parser to start with @var{prefix}
5617instead of @samp{yy}. You can use this to give each parser distinct
5618names that do not conflict.
bfa74976
RS
5619
5620The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5621@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5622@code{yychar} and @code{yydebug}. If you use a push parser,
5623@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5624@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5625For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5626@code{clex}, and so on.
bfa74976
RS
5627
5628@strong{All the other variables and macros associated with Bison are not
5629renamed.} These others are not global; there is no conflict if the same
5630name is used in different parsers. For example, @code{YYSTYPE} is not
5631renamed, but defining this in different ways in different parsers causes
5632no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5633
9913d6e4
JD
5634The @samp{-p} option works by adding macro definitions to the
5635beginning of the parser implementation file, defining @code{yyparse}
5636as @code{@var{prefix}parse}, and so on. This effectively substitutes
5637one name for the other in the entire parser implementation file.
bfa74976 5638
342b8b6e 5639@node Interface
bfa74976
RS
5640@chapter Parser C-Language Interface
5641@cindex C-language interface
5642@cindex interface
5643
5644The Bison parser is actually a C function named @code{yyparse}. Here we
5645describe the interface conventions of @code{yyparse} and the other
5646functions that it needs to use.
5647
5648Keep in mind that the parser uses many C identifiers starting with
5649@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5650identifier (aside from those in this manual) in an action or in epilogue
5651in the grammar file, you are likely to run into trouble.
bfa74976
RS
5652
5653@menu
f56274a8
DJ
5654* Parser Function:: How to call @code{yyparse} and what it returns.
5655* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5656* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5657* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5658* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5659* Lexical:: You must supply a function @code{yylex}
5660 which reads tokens.
5661* Error Reporting:: You must supply a function @code{yyerror}.
5662* Action Features:: Special features for use in actions.
5663* Internationalization:: How to let the parser speak in the user's
5664 native language.
bfa74976
RS
5665@end menu
5666
342b8b6e 5667@node Parser Function
bfa74976
RS
5668@section The Parser Function @code{yyparse}
5669@findex yyparse
5670
5671You call the function @code{yyparse} to cause parsing to occur. This
5672function reads tokens, executes actions, and ultimately returns when it
5673encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5674write an action which directs @code{yyparse} to return immediately
5675without reading further.
bfa74976 5676
2a8d363a
AD
5677
5678@deftypefun int yyparse (void)
bfa74976
RS
5679The value returned by @code{yyparse} is 0 if parsing was successful (return
5680is due to end-of-input).
5681
b47dbebe
PE
5682The value is 1 if parsing failed because of invalid input, i.e., input
5683that contains a syntax error or that causes @code{YYABORT} to be
5684invoked.
5685
5686The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5687@end deftypefun
bfa74976
RS
5688
5689In an action, you can cause immediate return from @code{yyparse} by using
5690these macros:
5691
2a8d363a 5692@defmac YYACCEPT
bfa74976
RS
5693@findex YYACCEPT
5694Return immediately with value 0 (to report success).
2a8d363a 5695@end defmac
bfa74976 5696
2a8d363a 5697@defmac YYABORT
bfa74976
RS
5698@findex YYABORT
5699Return immediately with value 1 (to report failure).
2a8d363a
AD
5700@end defmac
5701
5702If you use a reentrant parser, you can optionally pass additional
5703parameter information to it in a reentrant way. To do so, use the
5704declaration @code{%parse-param}:
5705
feeb0eda 5706@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5707@findex %parse-param
287c78f6
PE
5708Declare that an argument declared by the braced-code
5709@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5710The @var{argument-declaration} is used when declaring
feeb0eda
PE
5711functions or prototypes. The last identifier in
5712@var{argument-declaration} must be the argument name.
2a8d363a
AD
5713@end deffn
5714
5715Here's an example. Write this in the parser:
5716
5717@example
feeb0eda
PE
5718%parse-param @{int *nastiness@}
5719%parse-param @{int *randomness@}
2a8d363a
AD
5720@end example
5721
5722@noindent
5723Then call the parser like this:
5724
5725@example
5726@{
5727 int nastiness, randomness;
5728 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5729 value = yyparse (&nastiness, &randomness);
5730 @dots{}
5731@}
5732@end example
5733
5734@noindent
5735In the grammar actions, use expressions like this to refer to the data:
5736
5737@example
5738exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5739@end example
5740
9987d1b3
JD
5741@node Push Parser Function
5742@section The Push Parser Function @code{yypush_parse}
5743@findex yypush_parse
5744
59da312b
JD
5745(The current push parsing interface is experimental and may evolve.
5746More user feedback will help to stabilize it.)
5747
f4101aa6 5748You call the function @code{yypush_parse} to parse a single token. This
f37495f6
JD
5749function is available if either the @code{%define api.push-pull push} or
5750@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5751@xref{Push Decl, ,A Push Parser}.
5752
5753@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5754The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5755following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5756is required to finish parsing the grammar.
5757@end deftypefun
5758
5759@node Pull Parser Function
5760@section The Pull Parser Function @code{yypull_parse}
5761@findex yypull_parse
5762
59da312b
JD
5763(The current push parsing interface is experimental and may evolve.
5764More user feedback will help to stabilize it.)
5765
f4101aa6 5766You call the function @code{yypull_parse} to parse the rest of the input
f37495f6 5767stream. This function is available if the @code{%define api.push-pull both}
f4101aa6 5768declaration is used.
9987d1b3
JD
5769@xref{Push Decl, ,A Push Parser}.
5770
5771@deftypefun int yypull_parse (yypstate *yyps)
5772The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5773@end deftypefun
5774
5775@node Parser Create Function
5776@section The Parser Create Function @code{yystate_new}
5777@findex yypstate_new
5778
59da312b
JD
5779(The current push parsing interface is experimental and may evolve.
5780More user feedback will help to stabilize it.)
5781
f4101aa6 5782You call the function @code{yypstate_new} to create a new parser instance.
f37495f6
JD
5783This function is available if either the @code{%define api.push-pull push} or
5784@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5785@xref{Push Decl, ,A Push Parser}.
5786
5787@deftypefun yypstate *yypstate_new (void)
c781580d 5788The function will return a valid parser instance if there was memory available
333e670c
JD
5789or 0 if no memory was available.
5790In impure mode, it will also return 0 if a parser instance is currently
5791allocated.
9987d1b3
JD
5792@end deftypefun
5793
5794@node Parser Delete Function
5795@section The Parser Delete Function @code{yystate_delete}
5796@findex yypstate_delete
5797
59da312b
JD
5798(The current push parsing interface is experimental and may evolve.
5799More user feedback will help to stabilize it.)
5800
9987d1b3 5801You call the function @code{yypstate_delete} to delete a parser instance.
f37495f6
JD
5802function is available if either the @code{%define api.push-pull push} or
5803@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5804@xref{Push Decl, ,A Push Parser}.
5805
5806@deftypefun void yypstate_delete (yypstate *yyps)
5807This function will reclaim the memory associated with a parser instance.
5808After this call, you should no longer attempt to use the parser instance.
5809@end deftypefun
bfa74976 5810
342b8b6e 5811@node Lexical
bfa74976
RS
5812@section The Lexical Analyzer Function @code{yylex}
5813@findex yylex
5814@cindex lexical analyzer
5815
5816The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5817the input stream and returns them to the parser. Bison does not create
5818this function automatically; you must write it so that @code{yyparse} can
5819call it. The function is sometimes referred to as a lexical scanner.
5820
9913d6e4
JD
5821In simple programs, @code{yylex} is often defined at the end of the
5822Bison grammar file. If @code{yylex} is defined in a separate source
5823file, you need to arrange for the token-type macro definitions to be
5824available there. To do this, use the @samp{-d} option when you run
5825Bison, so that it will write these macro definitions into the separate
5826parser header file, @file{@var{name}.tab.h}, which you can include in
5827the other source files that need it. @xref{Invocation, ,Invoking
5828Bison}.
bfa74976
RS
5829
5830@menu
5831* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
5832* Token Values:: How @code{yylex} must return the semantic value
5833 of the token it has read.
5834* Token Locations:: How @code{yylex} must return the text location
5835 (line number, etc.) of the token, if the
5836 actions want that.
5837* Pure Calling:: How the calling convention differs in a pure parser
5838 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5839@end menu
5840
342b8b6e 5841@node Calling Convention
bfa74976
RS
5842@subsection Calling Convention for @code{yylex}
5843
72d2299c
PE
5844The value that @code{yylex} returns must be the positive numeric code
5845for the type of token it has just found; a zero or negative value
5846signifies end-of-input.
bfa74976
RS
5847
5848When a token is referred to in the grammar rules by a name, that name
9913d6e4
JD
5849in the parser implementation file becomes a C macro whose definition
5850is the proper numeric code for that token type. So @code{yylex} can
5851use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
5852
5853When a token is referred to in the grammar rules by a character literal,
5854the numeric code for that character is also the code for the token type.
72d2299c
PE
5855So @code{yylex} can simply return that character code, possibly converted
5856to @code{unsigned char} to avoid sign-extension. The null character
5857must not be used this way, because its code is zero and that
bfa74976
RS
5858signifies end-of-input.
5859
5860Here is an example showing these things:
5861
5862@example
13863333
AD
5863int
5864yylex (void)
bfa74976
RS
5865@{
5866 @dots{}
72d2299c 5867 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5868 return 0;
5869 @dots{}
5870 if (c == '+' || c == '-')
72d2299c 5871 return c; /* Assume token type for `+' is '+'. */
bfa74976 5872 @dots{}
72d2299c 5873 return INT; /* Return the type of the token. */
bfa74976
RS
5874 @dots{}
5875@}
5876@end example
5877
5878@noindent
5879This interface has been designed so that the output from the @code{lex}
5880utility can be used without change as the definition of @code{yylex}.
5881
931c7513
RS
5882If the grammar uses literal string tokens, there are two ways that
5883@code{yylex} can determine the token type codes for them:
5884
5885@itemize @bullet
5886@item
5887If the grammar defines symbolic token names as aliases for the
5888literal string tokens, @code{yylex} can use these symbolic names like
5889all others. In this case, the use of the literal string tokens in
5890the grammar file has no effect on @code{yylex}.
5891
5892@item
9ecbd125 5893@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5894table. The index of the token in the table is the token type's code.
9ecbd125 5895The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5896double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5897token's characters are escaped as necessary to be suitable as input
5898to Bison.
931c7513 5899
9e0876fb
PE
5900Here's code for looking up a multicharacter token in @code{yytname},
5901assuming that the characters of the token are stored in
5902@code{token_buffer}, and assuming that the token does not contain any
5903characters like @samp{"} that require escaping.
931c7513
RS
5904
5905@smallexample
5906for (i = 0; i < YYNTOKENS; i++)
5907 @{
5908 if (yytname[i] != 0
5909 && yytname[i][0] == '"'
68449b3a
PE
5910 && ! strncmp (yytname[i] + 1, token_buffer,
5911 strlen (token_buffer))
931c7513
RS
5912 && yytname[i][strlen (token_buffer) + 1] == '"'
5913 && yytname[i][strlen (token_buffer) + 2] == 0)
5914 break;
5915 @}
5916@end smallexample
5917
5918The @code{yytname} table is generated only if you use the
8c9a50be 5919@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5920@end itemize
5921
342b8b6e 5922@node Token Values
bfa74976
RS
5923@subsection Semantic Values of Tokens
5924
5925@vindex yylval
9d9b8b70 5926In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5927be stored into the global variable @code{yylval}. When you are using
5928just one data type for semantic values, @code{yylval} has that type.
5929Thus, if the type is @code{int} (the default), you might write this in
5930@code{yylex}:
5931
5932@example
5933@group
5934 @dots{}
72d2299c
PE
5935 yylval = value; /* Put value onto Bison stack. */
5936 return INT; /* Return the type of the token. */
bfa74976
RS
5937 @dots{}
5938@end group
5939@end example
5940
5941When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5942made from the @code{%union} declaration (@pxref{Union Decl, ,The
5943Collection of Value Types}). So when you store a token's value, you
5944must use the proper member of the union. If the @code{%union}
5945declaration looks like this:
bfa74976
RS
5946
5947@example
5948@group
5949%union @{
5950 int intval;
5951 double val;
5952 symrec *tptr;
5953@}
5954@end group
5955@end example
5956
5957@noindent
5958then the code in @code{yylex} might look like this:
5959
5960@example
5961@group
5962 @dots{}
72d2299c
PE
5963 yylval.intval = value; /* Put value onto Bison stack. */
5964 return INT; /* Return the type of the token. */
bfa74976
RS
5965 @dots{}
5966@end group
5967@end example
5968
95923bd6
AD
5969@node Token Locations
5970@subsection Textual Locations of Tokens
bfa74976
RS
5971
5972@vindex yylloc
847bf1f5 5973If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5974Tracking Locations}) in actions to keep track of the textual locations
5975of tokens and groupings, then you must provide this information in
5976@code{yylex}. The function @code{yyparse} expects to find the textual
5977location of a token just parsed in the global variable @code{yylloc}.
5978So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5979
5980By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5981initialize the members that are going to be used by the actions. The
5982four members are called @code{first_line}, @code{first_column},
5983@code{last_line} and @code{last_column}. Note that the use of this
5984feature makes the parser noticeably slower.
bfa74976
RS
5985
5986@tindex YYLTYPE
5987The data type of @code{yylloc} has the name @code{YYLTYPE}.
5988
342b8b6e 5989@node Pure Calling
c656404a 5990@subsection Calling Conventions for Pure Parsers
bfa74976 5991
d9df47b6 5992When you use the Bison declaration @code{%define api.pure} to request a
e425e872
RS
5993pure, reentrant parser, the global communication variables @code{yylval}
5994and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5995Parser}.) In such parsers the two global variables are replaced by
5996pointers passed as arguments to @code{yylex}. You must declare them as
5997shown here, and pass the information back by storing it through those
5998pointers.
bfa74976
RS
5999
6000@example
13863333
AD
6001int
6002yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6003@{
6004 @dots{}
6005 *lvalp = value; /* Put value onto Bison stack. */
6006 return INT; /* Return the type of the token. */
6007 @dots{}
6008@}
6009@end example
6010
6011If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6012textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6013this case, omit the second argument; @code{yylex} will be called with
6014only one argument.
6015
e425e872 6016
2a8d363a
AD
6017If you wish to pass the additional parameter data to @code{yylex}, use
6018@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
6019Function}).
e425e872 6020
feeb0eda 6021@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 6022@findex %lex-param
287c78f6
PE
6023Declare that the braced-code @var{argument-declaration} is an
6024additional @code{yylex} argument declaration.
2a8d363a 6025@end deffn
e425e872 6026
2a8d363a 6027For instance:
e425e872
RS
6028
6029@example
feeb0eda
PE
6030%parse-param @{int *nastiness@}
6031%lex-param @{int *nastiness@}
6032%parse-param @{int *randomness@}
e425e872
RS
6033@end example
6034
6035@noindent
2a8d363a 6036results in the following signature:
e425e872
RS
6037
6038@example
2a8d363a
AD
6039int yylex (int *nastiness);
6040int yyparse (int *nastiness, int *randomness);
e425e872
RS
6041@end example
6042
d9df47b6 6043If @code{%define api.pure} is added:
c656404a
RS
6044
6045@example
2a8d363a
AD
6046int yylex (YYSTYPE *lvalp, int *nastiness);
6047int yyparse (int *nastiness, int *randomness);
c656404a
RS
6048@end example
6049
2a8d363a 6050@noindent
d9df47b6 6051and finally, if both @code{%define api.pure} and @code{%locations} are used:
c656404a 6052
2a8d363a
AD
6053@example
6054int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6055int yyparse (int *nastiness, int *randomness);
6056@end example
931c7513 6057
342b8b6e 6058@node Error Reporting
bfa74976
RS
6059@section The Error Reporting Function @code{yyerror}
6060@cindex error reporting function
6061@findex yyerror
6062@cindex parse error
6063@cindex syntax error
6064
6e649e65 6065The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 6066whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6067action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6068macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6069in Actions}).
bfa74976
RS
6070
6071The Bison parser expects to report the error by calling an error
6072reporting function named @code{yyerror}, which you must supply. It is
6073called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6074receives one argument. For a syntax error, the string is normally
6075@w{@code{"syntax error"}}.
bfa74976 6076
2a8d363a
AD
6077@findex %error-verbose
6078If you invoke the directive @code{%error-verbose} in the Bison
6079declarations section (@pxref{Bison Declarations, ,The Bison Declarations
6080Section}), then Bison provides a more verbose and specific error message
6e649e65 6081string instead of just plain @w{@code{"syntax error"}}.
bfa74976 6082
1a059451
PE
6083The parser can detect one other kind of error: memory exhaustion. This
6084can happen when the input contains constructions that are very deeply
bfa74976 6085nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6086parser normally extends its stack automatically up to a very large limit. But
6087if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6088fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6089
6090In some cases diagnostics like @w{@code{"syntax error"}} are
6091translated automatically from English to some other language before
6092they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6093
6094The following definition suffices in simple programs:
6095
6096@example
6097@group
13863333 6098void
38a92d50 6099yyerror (char const *s)
bfa74976
RS
6100@{
6101@end group
6102@group
6103 fprintf (stderr, "%s\n", s);
6104@}
6105@end group
6106@end example
6107
6108After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6109error recovery if you have written suitable error recovery grammar rules
6110(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6111immediately return 1.
6112
93724f13 6113Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 6114an access to the current location.
35430378 6115This is indeed the case for the GLR
2a8d363a 6116parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6117@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6118@code{yyerror} are:
6119
6120@example
38a92d50
PE
6121void yyerror (char const *msg); /* Yacc parsers. */
6122void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6123@end example
6124
feeb0eda 6125If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6126
6127@example
b317297e
PE
6128void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6129void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6130@end example
6131
35430378 6132Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6133convention for absolutely pure parsers, i.e., when the calling
6134convention of @code{yylex} @emph{and} the calling convention of
d9df47b6
JD
6135@code{%define api.pure} are pure.
6136I.e.:
2a8d363a
AD
6137
6138@example
6139/* Location tracking. */
6140%locations
6141/* Pure yylex. */
d9df47b6 6142%define api.pure
feeb0eda 6143%lex-param @{int *nastiness@}
2a8d363a 6144/* Pure yyparse. */
feeb0eda
PE
6145%parse-param @{int *nastiness@}
6146%parse-param @{int *randomness@}
2a8d363a
AD
6147@end example
6148
6149@noindent
6150results in the following signatures for all the parser kinds:
6151
6152@example
6153int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6154int yyparse (int *nastiness, int *randomness);
93724f13
AD
6155void yyerror (YYLTYPE *locp,
6156 int *nastiness, int *randomness,
38a92d50 6157 char const *msg);
2a8d363a
AD
6158@end example
6159
1c0c3e95 6160@noindent
38a92d50
PE
6161The prototypes are only indications of how the code produced by Bison
6162uses @code{yyerror}. Bison-generated code always ignores the returned
6163value, so @code{yyerror} can return any type, including @code{void}.
6164Also, @code{yyerror} can be a variadic function; that is why the
6165message is always passed last.
6166
6167Traditionally @code{yyerror} returns an @code{int} that is always
6168ignored, but this is purely for historical reasons, and @code{void} is
6169preferable since it more accurately describes the return type for
6170@code{yyerror}.
93724f13 6171
bfa74976
RS
6172@vindex yynerrs
6173The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6174reported so far. Normally this variable is global; but if you
704a47c4
AD
6175request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6176then it is a local variable which only the actions can access.
bfa74976 6177
342b8b6e 6178@node Action Features
bfa74976
RS
6179@section Special Features for Use in Actions
6180@cindex summary, action features
6181@cindex action features summary
6182
6183Here is a table of Bison constructs, variables and macros that
6184are useful in actions.
6185
18b519c0 6186@deffn {Variable} $$
bfa74976
RS
6187Acts like a variable that contains the semantic value for the
6188grouping made by the current rule. @xref{Actions}.
18b519c0 6189@end deffn
bfa74976 6190
18b519c0 6191@deffn {Variable} $@var{n}
bfa74976
RS
6192Acts like a variable that contains the semantic value for the
6193@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6194@end deffn
bfa74976 6195
18b519c0 6196@deffn {Variable} $<@var{typealt}>$
bfa74976 6197Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6198specified by the @code{%union} declaration. @xref{Action Types, ,Data
6199Types of Values in Actions}.
18b519c0 6200@end deffn
bfa74976 6201
18b519c0 6202@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6203Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6204union specified by the @code{%union} declaration.
e0c471a9 6205@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6206@end deffn
bfa74976 6207
18b519c0 6208@deffn {Macro} YYABORT;
bfa74976
RS
6209Return immediately from @code{yyparse}, indicating failure.
6210@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6211@end deffn
bfa74976 6212
18b519c0 6213@deffn {Macro} YYACCEPT;
bfa74976
RS
6214Return immediately from @code{yyparse}, indicating success.
6215@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6216@end deffn
bfa74976 6217
18b519c0 6218@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6219@findex YYBACKUP
6220Unshift a token. This macro is allowed only for rules that reduce
742e4900 6221a single value, and only when there is no lookahead token.
35430378 6222It is also disallowed in GLR parsers.
742e4900 6223It installs a lookahead token with token type @var{token} and
bfa74976
RS
6224semantic value @var{value}; then it discards the value that was
6225going to be reduced by this rule.
6226
6227If the macro is used when it is not valid, such as when there is
742e4900 6228a lookahead token already, then it reports a syntax error with
bfa74976
RS
6229a message @samp{cannot back up} and performs ordinary error
6230recovery.
6231
6232In either case, the rest of the action is not executed.
18b519c0 6233@end deffn
bfa74976 6234
18b519c0 6235@deffn {Macro} YYEMPTY
bfa74976 6236@vindex YYEMPTY
742e4900 6237Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6238@end deffn
bfa74976 6239
32c29292
JD
6240@deffn {Macro} YYEOF
6241@vindex YYEOF
742e4900 6242Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6243stream.
6244@end deffn
6245
18b519c0 6246@deffn {Macro} YYERROR;
bfa74976
RS
6247@findex YYERROR
6248Cause an immediate syntax error. This statement initiates error
6249recovery just as if the parser itself had detected an error; however, it
6250does not call @code{yyerror}, and does not print any message. If you
6251want to print an error message, call @code{yyerror} explicitly before
6252the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6253@end deffn
bfa74976 6254
18b519c0 6255@deffn {Macro} YYRECOVERING
02103984
PE
6256@findex YYRECOVERING
6257The expression @code{YYRECOVERING ()} yields 1 when the parser
6258is recovering from a syntax error, and 0 otherwise.
bfa74976 6259@xref{Error Recovery}.
18b519c0 6260@end deffn
bfa74976 6261
18b519c0 6262@deffn {Variable} yychar
742e4900
JD
6263Variable containing either the lookahead token, or @code{YYEOF} when the
6264lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6265has been performed so the next token is not yet known.
6266Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6267Actions}).
742e4900 6268@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6269@end deffn
bfa74976 6270
18b519c0 6271@deffn {Macro} yyclearin;
742e4900 6272Discard the current lookahead token. This is useful primarily in
32c29292
JD
6273error rules.
6274Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6275Semantic Actions}).
6276@xref{Error Recovery}.
18b519c0 6277@end deffn
bfa74976 6278
18b519c0 6279@deffn {Macro} yyerrok;
bfa74976 6280Resume generating error messages immediately for subsequent syntax
13863333 6281errors. This is useful primarily in error rules.
bfa74976 6282@xref{Error Recovery}.
18b519c0 6283@end deffn
bfa74976 6284
32c29292 6285@deffn {Variable} yylloc
742e4900 6286Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6287to @code{YYEMPTY} or @code{YYEOF}.
6288Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6289Actions}).
6290@xref{Actions and Locations, ,Actions and Locations}.
6291@end deffn
6292
6293@deffn {Variable} yylval
742e4900 6294Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6295not set to @code{YYEMPTY} or @code{YYEOF}.
6296Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6297Actions}).
6298@xref{Actions, ,Actions}.
6299@end deffn
6300
18b519c0 6301@deffn {Value} @@$
847bf1f5 6302@findex @@$
95923bd6 6303Acts like a structure variable containing information on the textual location
847bf1f5
AD
6304of the grouping made by the current rule. @xref{Locations, ,
6305Tracking Locations}.
bfa74976 6306
847bf1f5
AD
6307@c Check if those paragraphs are still useful or not.
6308
6309@c @example
6310@c struct @{
6311@c int first_line, last_line;
6312@c int first_column, last_column;
6313@c @};
6314@c @end example
6315
6316@c Thus, to get the starting line number of the third component, you would
6317@c use @samp{@@3.first_line}.
bfa74976 6318
847bf1f5
AD
6319@c In order for the members of this structure to contain valid information,
6320@c you must make @code{yylex} supply this information about each token.
6321@c If you need only certain members, then @code{yylex} need only fill in
6322@c those members.
bfa74976 6323
847bf1f5 6324@c The use of this feature makes the parser noticeably slower.
18b519c0 6325@end deffn
847bf1f5 6326
18b519c0 6327@deffn {Value} @@@var{n}
847bf1f5 6328@findex @@@var{n}
95923bd6 6329Acts like a structure variable containing information on the textual location
847bf1f5
AD
6330of the @var{n}th component of the current rule. @xref{Locations, ,
6331Tracking Locations}.
18b519c0 6332@end deffn
bfa74976 6333
f7ab6a50
PE
6334@node Internationalization
6335@section Parser Internationalization
6336@cindex internationalization
6337@cindex i18n
6338@cindex NLS
6339@cindex gettext
6340@cindex bison-po
6341
6342A Bison-generated parser can print diagnostics, including error and
6343tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6344also supports outputting diagnostics in the user's native language. To
6345make this work, the user should set the usual environment variables.
6346@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6347For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
35430378 6348set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6349encoding. The exact set of available locales depends on the user's
6350installation.
6351
6352The maintainer of a package that uses a Bison-generated parser enables
6353the internationalization of the parser's output through the following
35430378
JD
6354steps. Here we assume a package that uses GNU Autoconf and
6355GNU Automake.
f7ab6a50
PE
6356
6357@enumerate
6358@item
30757c8c 6359@cindex bison-i18n.m4
35430378 6360Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6361by the package---often called @file{m4}---copy the
6362@file{bison-i18n.m4} file installed by Bison under
6363@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6364For example:
6365
6366@example
6367cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6368@end example
6369
6370@item
30757c8c
PE
6371@findex BISON_I18N
6372@vindex BISON_LOCALEDIR
6373@vindex YYENABLE_NLS
f7ab6a50
PE
6374In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6375invocation, add an invocation of @code{BISON_I18N}. This macro is
6376defined in the file @file{bison-i18n.m4} that you copied earlier. It
6377causes @samp{configure} to find the value of the
30757c8c
PE
6378@code{BISON_LOCALEDIR} variable, and it defines the source-language
6379symbol @code{YYENABLE_NLS} to enable translations in the
6380Bison-generated parser.
f7ab6a50
PE
6381
6382@item
6383In the @code{main} function of your program, designate the directory
6384containing Bison's runtime message catalog, through a call to
6385@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6386For example:
6387
6388@example
6389bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6390@end example
6391
6392Typically this appears after any other call @code{bindtextdomain
6393(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6394@samp{BISON_LOCALEDIR} to be defined as a string through the
6395@file{Makefile}.
6396
6397@item
6398In the @file{Makefile.am} that controls the compilation of the @code{main}
6399function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6400either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6401
6402@example
6403DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6404@end example
6405
6406or:
6407
6408@example
6409AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6410@end example
6411
6412@item
6413Finally, invoke the command @command{autoreconf} to generate the build
6414infrastructure.
6415@end enumerate
6416
bfa74976 6417
342b8b6e 6418@node Algorithm
13863333
AD
6419@chapter The Bison Parser Algorithm
6420@cindex Bison parser algorithm
bfa74976
RS
6421@cindex algorithm of parser
6422@cindex shifting
6423@cindex reduction
6424@cindex parser stack
6425@cindex stack, parser
6426
6427As Bison reads tokens, it pushes them onto a stack along with their
6428semantic values. The stack is called the @dfn{parser stack}. Pushing a
6429token is traditionally called @dfn{shifting}.
6430
6431For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6432@samp{3} to come. The stack will have four elements, one for each token
6433that was shifted.
6434
6435But the stack does not always have an element for each token read. When
6436the last @var{n} tokens and groupings shifted match the components of a
6437grammar rule, they can be combined according to that rule. This is called
6438@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6439single grouping whose symbol is the result (left hand side) of that rule.
6440Running the rule's action is part of the process of reduction, because this
6441is what computes the semantic value of the resulting grouping.
6442
6443For example, if the infix calculator's parser stack contains this:
6444
6445@example
64461 + 5 * 3
6447@end example
6448
6449@noindent
6450and the next input token is a newline character, then the last three
6451elements can be reduced to 15 via the rule:
6452
6453@example
6454expr: expr '*' expr;
6455@end example
6456
6457@noindent
6458Then the stack contains just these three elements:
6459
6460@example
64611 + 15
6462@end example
6463
6464@noindent
6465At this point, another reduction can be made, resulting in the single value
646616. Then the newline token can be shifted.
6467
6468The parser tries, by shifts and reductions, to reduce the entire input down
6469to a single grouping whose symbol is the grammar's start-symbol
6470(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6471
6472This kind of parser is known in the literature as a bottom-up parser.
6473
6474@menu
742e4900 6475* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6476* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6477* Precedence:: Operator precedence works by resolving conflicts.
6478* Contextual Precedence:: When an operator's precedence depends on context.
6479* Parser States:: The parser is a finite-state-machine with stack.
6480* Reduce/Reduce:: When two rules are applicable in the same situation.
f56274a8 6481* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6482* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6483* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6484@end menu
6485
742e4900
JD
6486@node Lookahead
6487@section Lookahead Tokens
6488@cindex lookahead token
bfa74976
RS
6489
6490The Bison parser does @emph{not} always reduce immediately as soon as the
6491last @var{n} tokens and groupings match a rule. This is because such a
6492simple strategy is inadequate to handle most languages. Instead, when a
6493reduction is possible, the parser sometimes ``looks ahead'' at the next
6494token in order to decide what to do.
6495
6496When a token is read, it is not immediately shifted; first it becomes the
742e4900 6497@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6498perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6499the lookahead token remains off to the side. When no more reductions
6500should take place, the lookahead token is shifted onto the stack. This
bfa74976 6501does not mean that all possible reductions have been done; depending on the
742e4900 6502token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6503application.
6504
742e4900 6505Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6506expressions which contain binary addition operators and postfix unary
6507factorial operators (@samp{!}), and allow parentheses for grouping.
6508
6509@example
6510@group
6511expr: term '+' expr
6512 | term
6513 ;
6514@end group
6515
6516@group
6517term: '(' expr ')'
6518 | term '!'
6519 | NUMBER
6520 ;
6521@end group
6522@end example
6523
6524Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6525should be done? If the following token is @samp{)}, then the first three
6526tokens must be reduced to form an @code{expr}. This is the only valid
6527course, because shifting the @samp{)} would produce a sequence of symbols
6528@w{@code{term ')'}}, and no rule allows this.
6529
6530If the following token is @samp{!}, then it must be shifted immediately so
6531that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6532parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6533@code{expr}. It would then be impossible to shift the @samp{!} because
6534doing so would produce on the stack the sequence of symbols @code{expr
6535'!'}. No rule allows that sequence.
6536
6537@vindex yychar
32c29292
JD
6538@vindex yylval
6539@vindex yylloc
742e4900 6540The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6541Its semantic value and location, if any, are stored in the variables
6542@code{yylval} and @code{yylloc}.
bfa74976
RS
6543@xref{Action Features, ,Special Features for Use in Actions}.
6544
342b8b6e 6545@node Shift/Reduce
bfa74976
RS
6546@section Shift/Reduce Conflicts
6547@cindex conflicts
6548@cindex shift/reduce conflicts
6549@cindex dangling @code{else}
6550@cindex @code{else}, dangling
6551
6552Suppose we are parsing a language which has if-then and if-then-else
6553statements, with a pair of rules like this:
6554
6555@example
6556@group
6557if_stmt:
6558 IF expr THEN stmt
6559 | IF expr THEN stmt ELSE stmt
6560 ;
6561@end group
6562@end example
6563
6564@noindent
6565Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6566terminal symbols for specific keyword tokens.
6567
742e4900 6568When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6569contents of the stack (assuming the input is valid) are just right for
6570reduction by the first rule. But it is also legitimate to shift the
6571@code{ELSE}, because that would lead to eventual reduction by the second
6572rule.
6573
6574This situation, where either a shift or a reduction would be valid, is
6575called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6576these conflicts by choosing to shift, unless otherwise directed by
6577operator precedence declarations. To see the reason for this, let's
6578contrast it with the other alternative.
6579
6580Since the parser prefers to shift the @code{ELSE}, the result is to attach
6581the else-clause to the innermost if-statement, making these two inputs
6582equivalent:
6583
6584@example
6585if x then if y then win (); else lose;
6586
6587if x then do; if y then win (); else lose; end;
6588@end example
6589
6590But if the parser chose to reduce when possible rather than shift, the
6591result would be to attach the else-clause to the outermost if-statement,
6592making these two inputs equivalent:
6593
6594@example
6595if x then if y then win (); else lose;
6596
6597if x then do; if y then win (); end; else lose;
6598@end example
6599
6600The conflict exists because the grammar as written is ambiguous: either
6601parsing of the simple nested if-statement is legitimate. The established
6602convention is that these ambiguities are resolved by attaching the
6603else-clause to the innermost if-statement; this is what Bison accomplishes
6604by choosing to shift rather than reduce. (It would ideally be cleaner to
6605write an unambiguous grammar, but that is very hard to do in this case.)
6606This particular ambiguity was first encountered in the specifications of
6607Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6608
6609To avoid warnings from Bison about predictable, legitimate shift/reduce
cf22447c
JD
6610conflicts, use the @code{%expect @var{n}} declaration.
6611There will be no warning as long as the number of shift/reduce conflicts
6612is exactly @var{n}, and Bison will report an error if there is a
6613different number.
bfa74976
RS
6614@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6615
6616The definition of @code{if_stmt} above is solely to blame for the
6617conflict, but the conflict does not actually appear without additional
9913d6e4
JD
6618rules. Here is a complete Bison grammar file that actually manifests
6619the conflict:
bfa74976
RS
6620
6621@example
6622@group
6623%token IF THEN ELSE variable
6624%%
6625@end group
6626@group
6627stmt: expr
6628 | if_stmt
6629 ;
6630@end group
6631
6632@group
6633if_stmt:
6634 IF expr THEN stmt
6635 | IF expr THEN stmt ELSE stmt
6636 ;
6637@end group
6638
6639expr: variable
6640 ;
6641@end example
6642
342b8b6e 6643@node Precedence
bfa74976
RS
6644@section Operator Precedence
6645@cindex operator precedence
6646@cindex precedence of operators
6647
6648Another situation where shift/reduce conflicts appear is in arithmetic
6649expressions. Here shifting is not always the preferred resolution; the
6650Bison declarations for operator precedence allow you to specify when to
6651shift and when to reduce.
6652
6653@menu
6654* Why Precedence:: An example showing why precedence is needed.
6655* Using Precedence:: How to specify precedence in Bison grammars.
6656* Precedence Examples:: How these features are used in the previous example.
6657* How Precedence:: How they work.
6658@end menu
6659
342b8b6e 6660@node Why Precedence
bfa74976
RS
6661@subsection When Precedence is Needed
6662
6663Consider the following ambiguous grammar fragment (ambiguous because the
6664input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6665
6666@example
6667@group
6668expr: expr '-' expr
6669 | expr '*' expr
6670 | expr '<' expr
6671 | '(' expr ')'
6672 @dots{}
6673 ;
6674@end group
6675@end example
6676
6677@noindent
6678Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6679should it reduce them via the rule for the subtraction operator? It
6680depends on the next token. Of course, if the next token is @samp{)}, we
6681must reduce; shifting is invalid because no single rule can reduce the
6682token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6683the next token is @samp{*} or @samp{<}, we have a choice: either
6684shifting or reduction would allow the parse to complete, but with
6685different results.
6686
6687To decide which one Bison should do, we must consider the results. If
6688the next operator token @var{op} is shifted, then it must be reduced
6689first in order to permit another opportunity to reduce the difference.
6690The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6691hand, if the subtraction is reduced before shifting @var{op}, the result
6692is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6693reduce should depend on the relative precedence of the operators
6694@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6695@samp{<}.
bfa74976
RS
6696
6697@cindex associativity
6698What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6699@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6700operators we prefer the former, which is called @dfn{left association}.
6701The latter alternative, @dfn{right association}, is desirable for
6702assignment operators. The choice of left or right association is a
6703matter of whether the parser chooses to shift or reduce when the stack
742e4900 6704contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6705makes right-associativity.
bfa74976 6706
342b8b6e 6707@node Using Precedence
bfa74976
RS
6708@subsection Specifying Operator Precedence
6709@findex %left
6710@findex %right
6711@findex %nonassoc
6712
6713Bison allows you to specify these choices with the operator precedence
6714declarations @code{%left} and @code{%right}. Each such declaration
6715contains a list of tokens, which are operators whose precedence and
6716associativity is being declared. The @code{%left} declaration makes all
6717those operators left-associative and the @code{%right} declaration makes
6718them right-associative. A third alternative is @code{%nonassoc}, which
6719declares that it is a syntax error to find the same operator twice ``in a
6720row''.
6721
6722The relative precedence of different operators is controlled by the
6723order in which they are declared. The first @code{%left} or
6724@code{%right} declaration in the file declares the operators whose
6725precedence is lowest, the next such declaration declares the operators
6726whose precedence is a little higher, and so on.
6727
342b8b6e 6728@node Precedence Examples
bfa74976
RS
6729@subsection Precedence Examples
6730
6731In our example, we would want the following declarations:
6732
6733@example
6734%left '<'
6735%left '-'
6736%left '*'
6737@end example
6738
6739In a more complete example, which supports other operators as well, we
6740would declare them in groups of equal precedence. For example, @code{'+'} is
6741declared with @code{'-'}:
6742
6743@example
6744%left '<' '>' '=' NE LE GE
6745%left '+' '-'
6746%left '*' '/'
6747@end example
6748
6749@noindent
6750(Here @code{NE} and so on stand for the operators for ``not equal''
6751and so on. We assume that these tokens are more than one character long
6752and therefore are represented by names, not character literals.)
6753
342b8b6e 6754@node How Precedence
bfa74976
RS
6755@subsection How Precedence Works
6756
6757The first effect of the precedence declarations is to assign precedence
6758levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6759precedence levels to certain rules: each rule gets its precedence from
6760the last terminal symbol mentioned in the components. (You can also
6761specify explicitly the precedence of a rule. @xref{Contextual
6762Precedence, ,Context-Dependent Precedence}.)
6763
6764Finally, the resolution of conflicts works by comparing the precedence
742e4900 6765of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6766token's precedence is higher, the choice is to shift. If the rule's
6767precedence is higher, the choice is to reduce. If they have equal
6768precedence, the choice is made based on the associativity of that
6769precedence level. The verbose output file made by @samp{-v}
6770(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6771resolved.
bfa74976
RS
6772
6773Not all rules and not all tokens have precedence. If either the rule or
742e4900 6774the lookahead token has no precedence, then the default is to shift.
bfa74976 6775
342b8b6e 6776@node Contextual Precedence
bfa74976
RS
6777@section Context-Dependent Precedence
6778@cindex context-dependent precedence
6779@cindex unary operator precedence
6780@cindex precedence, context-dependent
6781@cindex precedence, unary operator
6782@findex %prec
6783
6784Often the precedence of an operator depends on the context. This sounds
6785outlandish at first, but it is really very common. For example, a minus
6786sign typically has a very high precedence as a unary operator, and a
6787somewhat lower precedence (lower than multiplication) as a binary operator.
6788
6789The Bison precedence declarations, @code{%left}, @code{%right} and
6790@code{%nonassoc}, can only be used once for a given token; so a token has
6791only one precedence declared in this way. For context-dependent
6792precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6793modifier for rules.
bfa74976
RS
6794
6795The @code{%prec} modifier declares the precedence of a particular rule by
6796specifying a terminal symbol whose precedence should be used for that rule.
6797It's not necessary for that symbol to appear otherwise in the rule. The
6798modifier's syntax is:
6799
6800@example
6801%prec @var{terminal-symbol}
6802@end example
6803
6804@noindent
6805and it is written after the components of the rule. Its effect is to
6806assign the rule the precedence of @var{terminal-symbol}, overriding
6807the precedence that would be deduced for it in the ordinary way. The
6808altered rule precedence then affects how conflicts involving that rule
6809are resolved (@pxref{Precedence, ,Operator Precedence}).
6810
6811Here is how @code{%prec} solves the problem of unary minus. First, declare
6812a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6813are no tokens of this type, but the symbol serves to stand for its
6814precedence:
6815
6816@example
6817@dots{}
6818%left '+' '-'
6819%left '*'
6820%left UMINUS
6821@end example
6822
6823Now the precedence of @code{UMINUS} can be used in specific rules:
6824
6825@example
6826@group
6827exp: @dots{}
6828 | exp '-' exp
6829 @dots{}
6830 | '-' exp %prec UMINUS
6831@end group
6832@end example
6833
91d2c560 6834@ifset defaultprec
39a06c25
PE
6835If you forget to append @code{%prec UMINUS} to the rule for unary
6836minus, Bison silently assumes that minus has its usual precedence.
6837This kind of problem can be tricky to debug, since one typically
6838discovers the mistake only by testing the code.
6839
22fccf95 6840The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6841this kind of problem systematically. It causes rules that lack a
6842@code{%prec} modifier to have no precedence, even if the last terminal
6843symbol mentioned in their components has a declared precedence.
6844
22fccf95 6845If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6846for all rules that participate in precedence conflict resolution.
6847Then you will see any shift/reduce conflict until you tell Bison how
6848to resolve it, either by changing your grammar or by adding an
6849explicit precedence. This will probably add declarations to the
6850grammar, but it helps to protect against incorrect rule precedences.
6851
22fccf95
PE
6852The effect of @code{%no-default-prec;} can be reversed by giving
6853@code{%default-prec;}, which is the default.
91d2c560 6854@end ifset
39a06c25 6855
342b8b6e 6856@node Parser States
bfa74976
RS
6857@section Parser States
6858@cindex finite-state machine
6859@cindex parser state
6860@cindex state (of parser)
6861
6862The function @code{yyparse} is implemented using a finite-state machine.
6863The values pushed on the parser stack are not simply token type codes; they
6864represent the entire sequence of terminal and nonterminal symbols at or
6865near the top of the stack. The current state collects all the information
6866about previous input which is relevant to deciding what to do next.
6867
742e4900
JD
6868Each time a lookahead token is read, the current parser state together
6869with the type of lookahead token are looked up in a table. This table
6870entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6871specifies the new parser state, which is pushed onto the top of the
6872parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6873This means that a certain number of tokens or groupings are taken off
6874the top of the stack, and replaced by one grouping. In other words,
6875that number of states are popped from the stack, and one new state is
6876pushed.
6877
742e4900 6878There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6879is erroneous in the current state. This causes error processing to begin
6880(@pxref{Error Recovery}).
6881
342b8b6e 6882@node Reduce/Reduce
bfa74976
RS
6883@section Reduce/Reduce Conflicts
6884@cindex reduce/reduce conflict
6885@cindex conflicts, reduce/reduce
6886
6887A reduce/reduce conflict occurs if there are two or more rules that apply
6888to the same sequence of input. This usually indicates a serious error
6889in the grammar.
6890
6891For example, here is an erroneous attempt to define a sequence
6892of zero or more @code{word} groupings.
6893
6894@example
6895sequence: /* empty */
6896 @{ printf ("empty sequence\n"); @}
6897 | maybeword
6898 | sequence word
6899 @{ printf ("added word %s\n", $2); @}
6900 ;
6901
6902maybeword: /* empty */
6903 @{ printf ("empty maybeword\n"); @}
6904 | word
6905 @{ printf ("single word %s\n", $1); @}
6906 ;
6907@end example
6908
6909@noindent
6910The error is an ambiguity: there is more than one way to parse a single
6911@code{word} into a @code{sequence}. It could be reduced to a
6912@code{maybeword} and then into a @code{sequence} via the second rule.
6913Alternatively, nothing-at-all could be reduced into a @code{sequence}
6914via the first rule, and this could be combined with the @code{word}
6915using the third rule for @code{sequence}.
6916
6917There is also more than one way to reduce nothing-at-all into a
6918@code{sequence}. This can be done directly via the first rule,
6919or indirectly via @code{maybeword} and then the second rule.
6920
6921You might think that this is a distinction without a difference, because it
6922does not change whether any particular input is valid or not. But it does
6923affect which actions are run. One parsing order runs the second rule's
6924action; the other runs the first rule's action and the third rule's action.
6925In this example, the output of the program changes.
6926
6927Bison resolves a reduce/reduce conflict by choosing to use the rule that
6928appears first in the grammar, but it is very risky to rely on this. Every
6929reduce/reduce conflict must be studied and usually eliminated. Here is the
6930proper way to define @code{sequence}:
6931
6932@example
6933sequence: /* empty */
6934 @{ printf ("empty sequence\n"); @}
6935 | sequence word
6936 @{ printf ("added word %s\n", $2); @}
6937 ;
6938@end example
6939
6940Here is another common error that yields a reduce/reduce conflict:
6941
6942@example
6943sequence: /* empty */
6944 | sequence words
6945 | sequence redirects
6946 ;
6947
6948words: /* empty */
6949 | words word
6950 ;
6951
6952redirects:/* empty */
6953 | redirects redirect
6954 ;
6955@end example
6956
6957@noindent
6958The intention here is to define a sequence which can contain either
6959@code{word} or @code{redirect} groupings. The individual definitions of
6960@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6961three together make a subtle ambiguity: even an empty input can be parsed
6962in infinitely many ways!
6963
6964Consider: nothing-at-all could be a @code{words}. Or it could be two
6965@code{words} in a row, or three, or any number. It could equally well be a
6966@code{redirects}, or two, or any number. Or it could be a @code{words}
6967followed by three @code{redirects} and another @code{words}. And so on.
6968
6969Here are two ways to correct these rules. First, to make it a single level
6970of sequence:
6971
6972@example
6973sequence: /* empty */
6974 | sequence word
6975 | sequence redirect
6976 ;
6977@end example
6978
6979Second, to prevent either a @code{words} or a @code{redirects}
6980from being empty:
6981
6982@example
6983sequence: /* empty */
6984 | sequence words
6985 | sequence redirects
6986 ;
6987
6988words: word
6989 | words word
6990 ;
6991
6992redirects:redirect
6993 | redirects redirect
6994 ;
6995@end example
6996
342b8b6e 6997@node Mystery Conflicts
bfa74976
RS
6998@section Mysterious Reduce/Reduce Conflicts
6999
7000Sometimes reduce/reduce conflicts can occur that don't look warranted.
7001Here is an example:
7002
7003@example
7004@group
7005%token ID
7006
7007%%
7008def: param_spec return_spec ','
7009 ;
7010param_spec:
7011 type
7012 | name_list ':' type
7013 ;
7014@end group
7015@group
7016return_spec:
7017 type
7018 | name ':' type
7019 ;
7020@end group
7021@group
7022type: ID
7023 ;
7024@end group
7025@group
7026name: ID
7027 ;
7028name_list:
7029 name
7030 | name ',' name_list
7031 ;
7032@end group
7033@end example
7034
7035It would seem that this grammar can be parsed with only a single token
742e4900 7036of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 7037a @code{name} if a comma or colon follows, or a @code{type} if another
35430378 7038@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 7039
35430378
JD
7040@cindex LR(1)
7041@cindex LALR(1)
34a6c2d1 7042However, for historical reasons, Bison cannot by default handle all
35430378 7043LR(1) grammars.
34a6c2d1
JD
7044In this grammar, two contexts, that after an @code{ID} at the beginning
7045of a @code{param_spec} and likewise at the beginning of a
7046@code{return_spec}, are similar enough that Bison assumes they are the
7047same.
7048They appear similar because the same set of rules would be
bfa74976
RS
7049active---the rule for reducing to a @code{name} and that for reducing to
7050a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7051that the rules would require different lookahead tokens in the two
bfa74976
RS
7052contexts, so it makes a single parser state for them both. Combining
7053the two contexts causes a conflict later. In parser terminology, this
35430378 7054occurrence means that the grammar is not LALR(1).
bfa74976 7055
34a6c2d1 7056For many practical grammars (specifically those that fall into the
2f4518a1
JD
7057non-LR(1) class), the limitations of LALR(1) result in difficulties
7058beyond just mysterious reduce/reduce conflicts. The best way to fix
7059all these problems is to select a different parser table generation
7060algorithm. Either IELR(1) or canonical LR(1) would suffice, but the
7061former is more efficient and easier to debug during development.
7062@xref{%define Summary,,lr.type}, for details. (Bison's IELR(1) and
7063canonical LR(1) implementations are experimental. More user feedback
7064will help to stabilize them.)
34a6c2d1 7065
35430378 7066If you instead wish to work around LALR(1)'s limitations, you
34a6c2d1
JD
7067can often fix a mysterious conflict by identifying the two parser states
7068that are being confused, and adding something to make them look
7069distinct. In the above example, adding one rule to
bfa74976
RS
7070@code{return_spec} as follows makes the problem go away:
7071
7072@example
7073@group
7074%token BOGUS
7075@dots{}
7076%%
7077@dots{}
7078return_spec:
7079 type
7080 | name ':' type
7081 /* This rule is never used. */
7082 | ID BOGUS
7083 ;
7084@end group
7085@end example
7086
7087This corrects the problem because it introduces the possibility of an
7088additional active rule in the context after the @code{ID} at the beginning of
7089@code{return_spec}. This rule is not active in the corresponding context
7090in a @code{param_spec}, so the two contexts receive distinct parser states.
7091As long as the token @code{BOGUS} is never generated by @code{yylex},
7092the added rule cannot alter the way actual input is parsed.
7093
7094In this particular example, there is another way to solve the problem:
7095rewrite the rule for @code{return_spec} to use @code{ID} directly
7096instead of via @code{name}. This also causes the two confusing
7097contexts to have different sets of active rules, because the one for
7098@code{return_spec} activates the altered rule for @code{return_spec}
7099rather than the one for @code{name}.
7100
7101@example
7102param_spec:
7103 type
7104 | name_list ':' type
7105 ;
7106return_spec:
7107 type
7108 | ID ':' type
7109 ;
7110@end example
7111
35430378 7112For a more detailed exposition of LALR(1) parsers and parser
71caec06 7113generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7114
fae437e8 7115@node Generalized LR Parsing
35430378
JD
7116@section Generalized LR (GLR) Parsing
7117@cindex GLR parsing
7118@cindex generalized LR (GLR) parsing
676385e2 7119@cindex ambiguous grammars
9d9b8b70 7120@cindex nondeterministic parsing
676385e2 7121
fae437e8
AD
7122Bison produces @emph{deterministic} parsers that choose uniquely
7123when to reduce and which reduction to apply
742e4900 7124based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7125As a result, normal Bison handles a proper subset of the family of
7126context-free languages.
fae437e8 7127Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7128sequence of reductions cannot have deterministic parsers in this sense.
7129The same is true of languages that require more than one symbol of
742e4900 7130lookahead, since the parser lacks the information necessary to make a
676385e2 7131decision at the point it must be made in a shift-reduce parser.
fae437e8 7132Finally, as previously mentioned (@pxref{Mystery Conflicts}),
34a6c2d1 7133there are languages where Bison's default choice of how to
676385e2
PH
7134summarize the input seen so far loses necessary information.
7135
7136When you use the @samp{%glr-parser} declaration in your grammar file,
7137Bison generates a parser that uses a different algorithm, called
35430378 7138Generalized LR (or GLR). A Bison GLR
c827f760 7139parser uses the same basic
676385e2
PH
7140algorithm for parsing as an ordinary Bison parser, but behaves
7141differently in cases where there is a shift-reduce conflict that has not
fae437e8 7142been resolved by precedence rules (@pxref{Precedence}) or a
35430378 7143reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7144situation, it
fae437e8 7145effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7146shift or reduction. These parsers then proceed as usual, consuming
7147tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7148and split further, with the result that instead of a sequence of states,
35430378 7149a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7150
7151In effect, each stack represents a guess as to what the proper parse
7152is. Additional input may indicate that a guess was wrong, in which case
7153the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7154actions generated in each stack are saved, rather than being executed
676385e2 7155immediately. When a stack disappears, its saved semantic actions never
fae437e8 7156get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7157their sets of semantic actions are both saved with the state that
7158results from the reduction. We say that two stacks are equivalent
fae437e8 7159when they both represent the same sequence of states,
676385e2
PH
7160and each pair of corresponding states represents a
7161grammar symbol that produces the same segment of the input token
7162stream.
7163
7164Whenever the parser makes a transition from having multiple
34a6c2d1 7165states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7166algorithm, after resolving and executing the saved-up actions.
7167At this transition, some of the states on the stack will have semantic
7168values that are sets (actually multisets) of possible actions. The
7169parser tries to pick one of the actions by first finding one whose rule
7170has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7171declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7172precedence, but there the same merging function is declared for both
fae437e8 7173rules by the @samp{%merge} declaration,
676385e2
PH
7174Bison resolves and evaluates both and then calls the merge function on
7175the result. Otherwise, it reports an ambiguity.
7176
35430378
JD
7177It is possible to use a data structure for the GLR parsing tree that
7178permits the processing of any LR(1) grammar in linear time (in the
c827f760 7179size of the input), any unambiguous (not necessarily
35430378 7180LR(1)) grammar in
fae437e8 7181quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7182context-free grammar in cubic worst-case time. However, Bison currently
7183uses a simpler data structure that requires time proportional to the
7184length of the input times the maximum number of stacks required for any
9d9b8b70 7185prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7186grammars can require exponential time and space to process. Such badly
7187behaving examples, however, are not generally of practical interest.
9d9b8b70 7188Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7189doubt'' only for a few tokens at a time. Therefore, the current data
35430378 7190structure should generally be adequate. On LR(1) portions of a
34a6c2d1 7191grammar, in particular, it is only slightly slower than with the
35430378 7192deterministic LR(1) Bison parser.
676385e2 7193
71caec06
JD
7194For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
71952000}.
f6481e2f 7196
1a059451
PE
7197@node Memory Management
7198@section Memory Management, and How to Avoid Memory Exhaustion
7199@cindex memory exhaustion
7200@cindex memory management
bfa74976
RS
7201@cindex stack overflow
7202@cindex parser stack overflow
7203@cindex overflow of parser stack
7204
1a059451 7205The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7206not reduced. When this happens, the parser function @code{yyparse}
1a059451 7207calls @code{yyerror} and then returns 2.
bfa74976 7208
c827f760 7209Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7210usually results from using a right recursion instead of a left
7211recursion, @xref{Recursion, ,Recursive Rules}.
7212
bfa74976
RS
7213@vindex YYMAXDEPTH
7214By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7215parser stack can become before memory is exhausted. Define the
bfa74976
RS
7216macro with a value that is an integer. This value is the maximum number
7217of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7218
7219The stack space allowed is not necessarily allocated. If you specify a
1a059451 7220large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7221stack at first, and then makes it bigger by stages as needed. This
7222increasing allocation happens automatically and silently. Therefore,
7223you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7224space for ordinary inputs that do not need much stack.
7225
d7e14fc0
PE
7226However, do not allow @code{YYMAXDEPTH} to be a value so large that
7227arithmetic overflow could occur when calculating the size of the stack
7228space. Also, do not allow @code{YYMAXDEPTH} to be less than
7229@code{YYINITDEPTH}.
7230
bfa74976
RS
7231@cindex default stack limit
7232The default value of @code{YYMAXDEPTH}, if you do not define it, is
723310000.
7234
7235@vindex YYINITDEPTH
7236You can control how much stack is allocated initially by defining the
34a6c2d1
JD
7237macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7238parser in C, this value must be a compile-time constant
d7e14fc0
PE
7239unless you are assuming C99 or some other target language or compiler
7240that allows variable-length arrays. The default is 200.
7241
1a059451 7242Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7243
d1a1114f 7244@c FIXME: C++ output.
c781580d 7245Because of semantic differences between C and C++, the deterministic
34a6c2d1 7246parsers in C produced by Bison cannot grow when compiled
1a059451
PE
7247by C++ compilers. In this precise case (compiling a C parser as C++) you are
7248suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
7249this deficiency in a future release.
d1a1114f 7250
342b8b6e 7251@node Error Recovery
bfa74976
RS
7252@chapter Error Recovery
7253@cindex error recovery
7254@cindex recovery from errors
7255
6e649e65 7256It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7257error. For example, a compiler should recover sufficiently to parse the
7258rest of the input file and check it for errors; a calculator should accept
7259another expression.
7260
7261In a simple interactive command parser where each input is one line, it may
7262be sufficient to allow @code{yyparse} to return 1 on error and have the
7263caller ignore the rest of the input line when that happens (and then call
7264@code{yyparse} again). But this is inadequate for a compiler, because it
7265forgets all the syntactic context leading up to the error. A syntax error
7266deep within a function in the compiler input should not cause the compiler
7267to treat the following line like the beginning of a source file.
7268
7269@findex error
7270You can define how to recover from a syntax error by writing rules to
7271recognize the special token @code{error}. This is a terminal symbol that
7272is always defined (you need not declare it) and reserved for error
7273handling. The Bison parser generates an @code{error} token whenever a
7274syntax error happens; if you have provided a rule to recognize this token
13863333 7275in the current context, the parse can continue.
bfa74976
RS
7276
7277For example:
7278
7279@example
7280stmnts: /* empty string */
7281 | stmnts '\n'
7282 | stmnts exp '\n'
7283 | stmnts error '\n'
7284@end example
7285
7286The fourth rule in this example says that an error followed by a newline
7287makes a valid addition to any @code{stmnts}.
7288
7289What happens if a syntax error occurs in the middle of an @code{exp}? The
7290error recovery rule, interpreted strictly, applies to the precise sequence
7291of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7292the middle of an @code{exp}, there will probably be some additional tokens
7293and subexpressions on the stack after the last @code{stmnts}, and there
7294will be tokens to read before the next newline. So the rule is not
7295applicable in the ordinary way.
7296
7297But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7298the semantic context and part of the input. First it discards states
7299and objects from the stack until it gets back to a state in which the
bfa74976 7300@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7301already parsed are discarded, back to the last complete @code{stmnts}.)
7302At this point the @code{error} token can be shifted. Then, if the old
742e4900 7303lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7304tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7305this example, Bison reads and discards input until the next newline so
7306that the fourth rule can apply. Note that discarded symbols are
7307possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7308Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7309
7310The choice of error rules in the grammar is a choice of strategies for
7311error recovery. A simple and useful strategy is simply to skip the rest of
7312the current input line or current statement if an error is detected:
7313
7314@example
72d2299c 7315stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7316@end example
7317
7318It is also useful to recover to the matching close-delimiter of an
7319opening-delimiter that has already been parsed. Otherwise the
7320close-delimiter will probably appear to be unmatched, and generate another,
7321spurious error message:
7322
7323@example
7324primary: '(' expr ')'
7325 | '(' error ')'
7326 @dots{}
7327 ;
7328@end example
7329
7330Error recovery strategies are necessarily guesses. When they guess wrong,
7331one syntax error often leads to another. In the above example, the error
7332recovery rule guesses that an error is due to bad input within one
7333@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7334middle of a valid @code{stmnt}. After the error recovery rule recovers
7335from the first error, another syntax error will be found straightaway,
7336since the text following the spurious semicolon is also an invalid
7337@code{stmnt}.
7338
7339To prevent an outpouring of error messages, the parser will output no error
7340message for another syntax error that happens shortly after the first; only
7341after three consecutive input tokens have been successfully shifted will
7342error messages resume.
7343
7344Note that rules which accept the @code{error} token may have actions, just
7345as any other rules can.
7346
7347@findex yyerrok
7348You can make error messages resume immediately by using the macro
7349@code{yyerrok} in an action. If you do this in the error rule's action, no
7350error messages will be suppressed. This macro requires no arguments;
7351@samp{yyerrok;} is a valid C statement.
7352
7353@findex yyclearin
742e4900 7354The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7355this is unacceptable, then the macro @code{yyclearin} may be used to clear
7356this token. Write the statement @samp{yyclearin;} in the error rule's
7357action.
32c29292 7358@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7359
6e649e65 7360For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7361called that advances the input stream to some point where parsing should
7362once again commence. The next symbol returned by the lexical scanner is
742e4900 7363probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7364with @samp{yyclearin;}.
7365
7366@vindex YYRECOVERING
02103984
PE
7367The expression @code{YYRECOVERING ()} yields 1 when the parser
7368is recovering from a syntax error, and 0 otherwise.
7369Syntax error diagnostics are suppressed while recovering from a syntax
7370error.
bfa74976 7371
342b8b6e 7372@node Context Dependency
bfa74976
RS
7373@chapter Handling Context Dependencies
7374
7375The Bison paradigm is to parse tokens first, then group them into larger
7376syntactic units. In many languages, the meaning of a token is affected by
7377its context. Although this violates the Bison paradigm, certain techniques
7378(known as @dfn{kludges}) may enable you to write Bison parsers for such
7379languages.
7380
7381@menu
7382* Semantic Tokens:: Token parsing can depend on the semantic context.
7383* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7384* Tie-in Recovery:: Lexical tie-ins have implications for how
7385 error recovery rules must be written.
7386@end menu
7387
7388(Actually, ``kludge'' means any technique that gets its job done but is
7389neither clean nor robust.)
7390
342b8b6e 7391@node Semantic Tokens
bfa74976
RS
7392@section Semantic Info in Token Types
7393
7394The C language has a context dependency: the way an identifier is used
7395depends on what its current meaning is. For example, consider this:
7396
7397@example
7398foo (x);
7399@end example
7400
7401This looks like a function call statement, but if @code{foo} is a typedef
7402name, then this is actually a declaration of @code{x}. How can a Bison
7403parser for C decide how to parse this input?
7404
35430378 7405The method used in GNU C is to have two different token types,
bfa74976
RS
7406@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7407identifier, it looks up the current declaration of the identifier in order
7408to decide which token type to return: @code{TYPENAME} if the identifier is
7409declared as a typedef, @code{IDENTIFIER} otherwise.
7410
7411The grammar rules can then express the context dependency by the choice of
7412token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7413but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7414@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7415is @emph{not} significant, such as in declarations that can shadow a
7416typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7417accepted---there is one rule for each of the two token types.
7418
7419This technique is simple to use if the decision of which kinds of
7420identifiers to allow is made at a place close to where the identifier is
7421parsed. But in C this is not always so: C allows a declaration to
7422redeclare a typedef name provided an explicit type has been specified
7423earlier:
7424
7425@example
3a4f411f
PE
7426typedef int foo, bar;
7427int baz (void)
7428@{
7429 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7430 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7431 return foo (bar);
7432@}
bfa74976
RS
7433@end example
7434
7435Unfortunately, the name being declared is separated from the declaration
7436construct itself by a complicated syntactic structure---the ``declarator''.
7437
9ecbd125 7438As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7439all the nonterminal names changed: once for parsing a declaration in
7440which a typedef name can be redefined, and once for parsing a
7441declaration in which that can't be done. Here is a part of the
7442duplication, with actions omitted for brevity:
bfa74976
RS
7443
7444@example
7445initdcl:
7446 declarator maybeasm '='
7447 init
7448 | declarator maybeasm
7449 ;
7450
7451notype_initdcl:
7452 notype_declarator maybeasm '='
7453 init
7454 | notype_declarator maybeasm
7455 ;
7456@end example
7457
7458@noindent
7459Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7460cannot. The distinction between @code{declarator} and
7461@code{notype_declarator} is the same sort of thing.
7462
7463There is some similarity between this technique and a lexical tie-in
7464(described next), in that information which alters the lexical analysis is
7465changed during parsing by other parts of the program. The difference is
7466here the information is global, and is used for other purposes in the
7467program. A true lexical tie-in has a special-purpose flag controlled by
7468the syntactic context.
7469
342b8b6e 7470@node Lexical Tie-ins
bfa74976
RS
7471@section Lexical Tie-ins
7472@cindex lexical tie-in
7473
7474One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7475which is set by Bison actions, whose purpose is to alter the way tokens are
7476parsed.
7477
7478For example, suppose we have a language vaguely like C, but with a special
7479construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7480an expression in parentheses in which all integers are hexadecimal. In
7481particular, the token @samp{a1b} must be treated as an integer rather than
7482as an identifier if it appears in that context. Here is how you can do it:
7483
7484@example
7485@group
7486%@{
38a92d50
PE
7487 int hexflag;
7488 int yylex (void);
7489 void yyerror (char const *);
bfa74976
RS
7490%@}
7491%%
7492@dots{}
7493@end group
7494@group
7495expr: IDENTIFIER
7496 | constant
7497 | HEX '('
7498 @{ hexflag = 1; @}
7499 expr ')'
7500 @{ hexflag = 0;
7501 $$ = $4; @}
7502 | expr '+' expr
7503 @{ $$ = make_sum ($1, $3); @}
7504 @dots{}
7505 ;
7506@end group
7507
7508@group
7509constant:
7510 INTEGER
7511 | STRING
7512 ;
7513@end group
7514@end example
7515
7516@noindent
7517Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7518it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7519with letters are parsed as integers if possible.
7520
9913d6e4
JD
7521The declaration of @code{hexflag} shown in the prologue of the grammar
7522file is needed to make it accessible to the actions (@pxref{Prologue,
7523,The Prologue}). You must also write the code in @code{yylex} to obey
7524the flag.
bfa74976 7525
342b8b6e 7526@node Tie-in Recovery
bfa74976
RS
7527@section Lexical Tie-ins and Error Recovery
7528
7529Lexical tie-ins make strict demands on any error recovery rules you have.
7530@xref{Error Recovery}.
7531
7532The reason for this is that the purpose of an error recovery rule is to
7533abort the parsing of one construct and resume in some larger construct.
7534For example, in C-like languages, a typical error recovery rule is to skip
7535tokens until the next semicolon, and then start a new statement, like this:
7536
7537@example
7538stmt: expr ';'
7539 | IF '(' expr ')' stmt @{ @dots{} @}
7540 @dots{}
7541 error ';'
7542 @{ hexflag = 0; @}
7543 ;
7544@end example
7545
7546If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7547construct, this error rule will apply, and then the action for the
7548completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7549remain set for the entire rest of the input, or until the next @code{hex}
7550keyword, causing identifiers to be misinterpreted as integers.
7551
7552To avoid this problem the error recovery rule itself clears @code{hexflag}.
7553
7554There may also be an error recovery rule that works within expressions.
7555For example, there could be a rule which applies within parentheses
7556and skips to the close-parenthesis:
7557
7558@example
7559@group
7560expr: @dots{}
7561 | '(' expr ')'
7562 @{ $$ = $2; @}
7563 | '(' error ')'
7564 @dots{}
7565@end group
7566@end example
7567
7568If this rule acts within the @code{hex} construct, it is not going to abort
7569that construct (since it applies to an inner level of parentheses within
7570the construct). Therefore, it should not clear the flag: the rest of
7571the @code{hex} construct should be parsed with the flag still in effect.
7572
7573What if there is an error recovery rule which might abort out of the
7574@code{hex} construct or might not, depending on circumstances? There is no
7575way you can write the action to determine whether a @code{hex} construct is
7576being aborted or not. So if you are using a lexical tie-in, you had better
7577make sure your error recovery rules are not of this kind. Each rule must
7578be such that you can be sure that it always will, or always won't, have to
7579clear the flag.
7580
ec3bc396
AD
7581@c ================================================== Debugging Your Parser
7582
342b8b6e 7583@node Debugging
bfa74976 7584@chapter Debugging Your Parser
ec3bc396
AD
7585
7586Developing a parser can be a challenge, especially if you don't
7587understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7588Algorithm}). Even so, sometimes a detailed description of the automaton
7589can help (@pxref{Understanding, , Understanding Your Parser}), or
7590tracing the execution of the parser can give some insight on why it
7591behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7592
7593@menu
7594* Understanding:: Understanding the structure of your parser.
7595* Tracing:: Tracing the execution of your parser.
7596@end menu
7597
7598@node Understanding
7599@section Understanding Your Parser
7600
7601As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7602Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7603frequent than one would hope), looking at this automaton is required to
7604tune or simply fix a parser. Bison provides two different
35fe0834 7605representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7606
7607The textual file is generated when the options @option{--report} or
7608@option{--verbose} are specified, see @xref{Invocation, , Invoking
7609Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
9913d6e4
JD
7610the parser implementation file name, and adding @samp{.output}
7611instead. Therefore, if the grammar file is @file{foo.y}, then the
7612parser implementation file is called @file{foo.tab.c} by default. As
7613a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
7614
7615The following grammar file, @file{calc.y}, will be used in the sequel:
7616
7617@example
7618%token NUM STR
7619%left '+' '-'
7620%left '*'
7621%%
7622exp: exp '+' exp
7623 | exp '-' exp
7624 | exp '*' exp
7625 | exp '/' exp
7626 | NUM
7627 ;
7628useless: STR;
7629%%
7630@end example
7631
88bce5a2
AD
7632@command{bison} reports:
7633
7634@example
379261b3
JD
7635calc.y: warning: 1 nonterminal useless in grammar
7636calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
7637calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7638calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7639calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7640@end example
7641
7642When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7643creates a file @file{calc.output} with contents detailed below. The
7644order of the output and the exact presentation might vary, but the
7645interpretation is the same.
ec3bc396
AD
7646
7647The first section includes details on conflicts that were solved thanks
7648to precedence and/or associativity:
7649
7650@example
7651Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7652Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7653Conflict in state 8 between rule 2 and token '*' resolved as shift.
7654@exdent @dots{}
7655@end example
7656
7657@noindent
7658The next section lists states that still have conflicts.
7659
7660@example
5a99098d
PE
7661State 8 conflicts: 1 shift/reduce
7662State 9 conflicts: 1 shift/reduce
7663State 10 conflicts: 1 shift/reduce
7664State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7665@end example
7666
7667@noindent
7668@cindex token, useless
7669@cindex useless token
7670@cindex nonterminal, useless
7671@cindex useless nonterminal
7672@cindex rule, useless
7673@cindex useless rule
7674The next section reports useless tokens, nonterminal and rules. Useless
7675nonterminals and rules are removed in order to produce a smaller parser,
7676but useless tokens are preserved, since they might be used by the
d80fb37a 7677scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7678below):
7679
7680@example
d80fb37a 7681Nonterminals useless in grammar:
ec3bc396
AD
7682 useless
7683
d80fb37a 7684Terminals unused in grammar:
ec3bc396
AD
7685 STR
7686
cff03fb2 7687Rules useless in grammar:
ec3bc396
AD
7688#6 useless: STR;
7689@end example
7690
7691@noindent
7692The next section reproduces the exact grammar that Bison used:
7693
7694@example
7695Grammar
7696
7697 Number, Line, Rule
88bce5a2 7698 0 5 $accept -> exp $end
ec3bc396
AD
7699 1 5 exp -> exp '+' exp
7700 2 6 exp -> exp '-' exp
7701 3 7 exp -> exp '*' exp
7702 4 8 exp -> exp '/' exp
7703 5 9 exp -> NUM
7704@end example
7705
7706@noindent
7707and reports the uses of the symbols:
7708
7709@example
7710Terminals, with rules where they appear
7711
88bce5a2 7712$end (0) 0
ec3bc396
AD
7713'*' (42) 3
7714'+' (43) 1
7715'-' (45) 2
7716'/' (47) 4
7717error (256)
7718NUM (258) 5
7719
7720Nonterminals, with rules where they appear
7721
88bce5a2 7722$accept (8)
ec3bc396
AD
7723 on left: 0
7724exp (9)
7725 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7726@end example
7727
7728@noindent
7729@cindex item
7730@cindex pointed rule
7731@cindex rule, pointed
7732Bison then proceeds onto the automaton itself, describing each state
7733with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7734item is a production rule together with a point (marked by @samp{.})
7735that the input cursor.
7736
7737@example
7738state 0
7739
88bce5a2 7740 $accept -> . exp $ (rule 0)
ec3bc396 7741
2a8d363a 7742 NUM shift, and go to state 1
ec3bc396 7743
2a8d363a 7744 exp go to state 2
ec3bc396
AD
7745@end example
7746
7747This reads as follows: ``state 0 corresponds to being at the very
7748beginning of the parsing, in the initial rule, right before the start
7749symbol (here, @code{exp}). When the parser returns to this state right
7750after having reduced a rule that produced an @code{exp}, the control
7751flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7752symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7753the parse stack, and the control flow jumps to state 1. Any other
742e4900 7754lookahead triggers a syntax error.''
ec3bc396
AD
7755
7756@cindex core, item set
7757@cindex item set core
7758@cindex kernel, item set
7759@cindex item set core
7760Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7761report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7762at the beginning of any rule deriving an @code{exp}. By default Bison
7763reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7764you want to see more detail you can invoke @command{bison} with
7765@option{--report=itemset} to list all the items, include those that can
7766be derived:
7767
7768@example
7769state 0
7770
88bce5a2 7771 $accept -> . exp $ (rule 0)
ec3bc396
AD
7772 exp -> . exp '+' exp (rule 1)
7773 exp -> . exp '-' exp (rule 2)
7774 exp -> . exp '*' exp (rule 3)
7775 exp -> . exp '/' exp (rule 4)
7776 exp -> . NUM (rule 5)
7777
7778 NUM shift, and go to state 1
7779
7780 exp go to state 2
7781@end example
7782
7783@noindent
7784In the state 1...
7785
7786@example
7787state 1
7788
7789 exp -> NUM . (rule 5)
7790
2a8d363a 7791 $default reduce using rule 5 (exp)
ec3bc396
AD
7792@end example
7793
7794@noindent
742e4900 7795the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7796(@samp{$default}), the parser will reduce it. If it was coming from
7797state 0, then, after this reduction it will return to state 0, and will
7798jump to state 2 (@samp{exp: go to state 2}).
7799
7800@example
7801state 2
7802
88bce5a2 7803 $accept -> exp . $ (rule 0)
ec3bc396
AD
7804 exp -> exp . '+' exp (rule 1)
7805 exp -> exp . '-' exp (rule 2)
7806 exp -> exp . '*' exp (rule 3)
7807 exp -> exp . '/' exp (rule 4)
7808
2a8d363a
AD
7809 $ shift, and go to state 3
7810 '+' shift, and go to state 4
7811 '-' shift, and go to state 5
7812 '*' shift, and go to state 6
7813 '/' shift, and go to state 7
ec3bc396
AD
7814@end example
7815
7816@noindent
7817In state 2, the automaton can only shift a symbol. For instance,
742e4900 7818because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
7819@samp{+}, it will be shifted on the parse stack, and the automaton
7820control will jump to state 4, corresponding to the item @samp{exp -> exp
7821'+' . exp}. Since there is no default action, any other token than
6e649e65 7822those listed above will trigger a syntax error.
ec3bc396 7823
34a6c2d1 7824@cindex accepting state
ec3bc396
AD
7825The state 3 is named the @dfn{final state}, or the @dfn{accepting
7826state}:
7827
7828@example
7829state 3
7830
88bce5a2 7831 $accept -> exp $ . (rule 0)
ec3bc396 7832
2a8d363a 7833 $default accept
ec3bc396
AD
7834@end example
7835
7836@noindent
7837the initial rule is completed (the start symbol and the end
7838of input were read), the parsing exits successfully.
7839
7840The interpretation of states 4 to 7 is straightforward, and is left to
7841the reader.
7842
7843@example
7844state 4
7845
7846 exp -> exp '+' . exp (rule 1)
7847
2a8d363a 7848 NUM shift, and go to state 1
ec3bc396 7849
2a8d363a 7850 exp go to state 8
ec3bc396
AD
7851
7852state 5
7853
7854 exp -> exp '-' . exp (rule 2)
7855
2a8d363a 7856 NUM shift, and go to state 1
ec3bc396 7857
2a8d363a 7858 exp go to state 9
ec3bc396
AD
7859
7860state 6
7861
7862 exp -> exp '*' . exp (rule 3)
7863
2a8d363a 7864 NUM shift, and go to state 1
ec3bc396 7865
2a8d363a 7866 exp go to state 10
ec3bc396
AD
7867
7868state 7
7869
7870 exp -> exp '/' . exp (rule 4)
7871
2a8d363a 7872 NUM shift, and go to state 1
ec3bc396 7873
2a8d363a 7874 exp go to state 11
ec3bc396
AD
7875@end example
7876
5a99098d
PE
7877As was announced in beginning of the report, @samp{State 8 conflicts:
78781 shift/reduce}:
ec3bc396
AD
7879
7880@example
7881state 8
7882
7883 exp -> exp . '+' exp (rule 1)
7884 exp -> exp '+' exp . (rule 1)
7885 exp -> exp . '-' exp (rule 2)
7886 exp -> exp . '*' exp (rule 3)
7887 exp -> exp . '/' exp (rule 4)
7888
2a8d363a
AD
7889 '*' shift, and go to state 6
7890 '/' shift, and go to state 7
ec3bc396 7891
2a8d363a
AD
7892 '/' [reduce using rule 1 (exp)]
7893 $default reduce using rule 1 (exp)
ec3bc396
AD
7894@end example
7895
742e4900 7896Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
7897either shifting (and going to state 7), or reducing rule 1. The
7898conflict means that either the grammar is ambiguous, or the parser lacks
7899information to make the right decision. Indeed the grammar is
7900ambiguous, as, since we did not specify the precedence of @samp{/}, the
7901sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
7902NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
7903NUM}, which corresponds to reducing rule 1.
7904
34a6c2d1 7905Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
7906arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
7907Shift/Reduce Conflicts}. Discarded actions are reported in between
7908square brackets.
7909
7910Note that all the previous states had a single possible action: either
7911shifting the next token and going to the corresponding state, or
7912reducing a single rule. In the other cases, i.e., when shifting
7913@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
7914possible, the lookahead is required to select the action. State 8 is
7915one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
7916is shifting, otherwise the action is reducing rule 1. In other words,
7917the first two items, corresponding to rule 1, are not eligible when the
742e4900 7918lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 7919precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
7920with some set of possible lookahead tokens. When run with
7921@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
7922
7923@example
7924state 8
7925
88c78747 7926 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
7927 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
7928 exp -> exp . '-' exp (rule 2)
7929 exp -> exp . '*' exp (rule 3)
7930 exp -> exp . '/' exp (rule 4)
7931
7932 '*' shift, and go to state 6
7933 '/' shift, and go to state 7
7934
7935 '/' [reduce using rule 1 (exp)]
7936 $default reduce using rule 1 (exp)
7937@end example
7938
7939The remaining states are similar:
7940
7941@example
7942state 9
7943
7944 exp -> exp . '+' exp (rule 1)
7945 exp -> exp . '-' exp (rule 2)
7946 exp -> exp '-' exp . (rule 2)
7947 exp -> exp . '*' exp (rule 3)
7948 exp -> exp . '/' exp (rule 4)
7949
2a8d363a
AD
7950 '*' shift, and go to state 6
7951 '/' shift, and go to state 7
ec3bc396 7952
2a8d363a
AD
7953 '/' [reduce using rule 2 (exp)]
7954 $default reduce using rule 2 (exp)
ec3bc396
AD
7955
7956state 10
7957
7958 exp -> exp . '+' exp (rule 1)
7959 exp -> exp . '-' exp (rule 2)
7960 exp -> exp . '*' exp (rule 3)
7961 exp -> exp '*' exp . (rule 3)
7962 exp -> exp . '/' exp (rule 4)
7963
2a8d363a 7964 '/' shift, and go to state 7
ec3bc396 7965
2a8d363a
AD
7966 '/' [reduce using rule 3 (exp)]
7967 $default reduce using rule 3 (exp)
ec3bc396
AD
7968
7969state 11
7970
7971 exp -> exp . '+' exp (rule 1)
7972 exp -> exp . '-' exp (rule 2)
7973 exp -> exp . '*' exp (rule 3)
7974 exp -> exp . '/' exp (rule 4)
7975 exp -> exp '/' exp . (rule 4)
7976
2a8d363a
AD
7977 '+' shift, and go to state 4
7978 '-' shift, and go to state 5
7979 '*' shift, and go to state 6
7980 '/' shift, and go to state 7
ec3bc396 7981
2a8d363a
AD
7982 '+' [reduce using rule 4 (exp)]
7983 '-' [reduce using rule 4 (exp)]
7984 '*' [reduce using rule 4 (exp)]
7985 '/' [reduce using rule 4 (exp)]
7986 $default reduce using rule 4 (exp)
ec3bc396
AD
7987@end example
7988
7989@noindent
fa7e68c3
PE
7990Observe that state 11 contains conflicts not only due to the lack of
7991precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7992@samp{*}, but also because the
ec3bc396
AD
7993associativity of @samp{/} is not specified.
7994
7995
7996@node Tracing
7997@section Tracing Your Parser
bfa74976
RS
7998@findex yydebug
7999@cindex debugging
8000@cindex tracing the parser
8001
8002If a Bison grammar compiles properly but doesn't do what you want when it
8003runs, the @code{yydebug} parser-trace feature can help you figure out why.
8004
3ded9a63
AD
8005There are several means to enable compilation of trace facilities:
8006
8007@table @asis
8008@item the macro @code{YYDEBUG}
8009@findex YYDEBUG
8010Define the macro @code{YYDEBUG} to a nonzero value when you compile the
35430378 8011parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8012@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8013YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8014Prologue}).
8015
8016@item the option @option{-t}, @option{--debug}
8017Use the @samp{-t} option when you run Bison (@pxref{Invocation,
35430378 8018,Invoking Bison}). This is POSIX compliant too.
3ded9a63
AD
8019
8020@item the directive @samp{%debug}
8021@findex %debug
8022Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
8023Declaration Summary}). This is a Bison extension, which will prove
8024useful when Bison will output parsers for languages that don't use a
35430378 8025preprocessor. Unless POSIX and Yacc portability matter to
c827f760 8026you, this is
3ded9a63
AD
8027the preferred solution.
8028@end table
8029
8030We suggest that you always enable the debug option so that debugging is
8031always possible.
bfa74976 8032
02a81e05 8033The trace facility outputs messages with macro calls of the form
e2742e46 8034@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8035@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8036arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8037define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8038and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8039
8040Once you have compiled the program with trace facilities, the way to
8041request a trace is to store a nonzero value in the variable @code{yydebug}.
8042You can do this by making the C code do it (in @code{main}, perhaps), or
8043you can alter the value with a C debugger.
8044
8045Each step taken by the parser when @code{yydebug} is nonzero produces a
8046line or two of trace information, written on @code{stderr}. The trace
8047messages tell you these things:
8048
8049@itemize @bullet
8050@item
8051Each time the parser calls @code{yylex}, what kind of token was read.
8052
8053@item
8054Each time a token is shifted, the depth and complete contents of the
8055state stack (@pxref{Parser States}).
8056
8057@item
8058Each time a rule is reduced, which rule it is, and the complete contents
8059of the state stack afterward.
8060@end itemize
8061
8062To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8063produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8064Bison}). This file shows the meaning of each state in terms of
8065positions in various rules, and also what each state will do with each
8066possible input token. As you read the successive trace messages, you
8067can see that the parser is functioning according to its specification in
8068the listing file. Eventually you will arrive at the place where
8069something undesirable happens, and you will see which parts of the
8070grammar are to blame.
bfa74976 8071
9913d6e4
JD
8072The parser implementation file is a C program and you can use C
8073debuggers on it, but it's not easy to interpret what it is doing. The
8074parser function is a finite-state machine interpreter, and aside from
8075the actions it executes the same code over and over. Only the values
8076of variables show where in the grammar it is working.
bfa74976
RS
8077
8078@findex YYPRINT
8079The debugging information normally gives the token type of each token
8080read, but not its semantic value. You can optionally define a macro
8081named @code{YYPRINT} to provide a way to print the value. If you define
8082@code{YYPRINT}, it should take three arguments. The parser will pass a
8083standard I/O stream, the numeric code for the token type, and the token
8084value (from @code{yylval}).
8085
8086Here is an example of @code{YYPRINT} suitable for the multi-function
f56274a8 8087calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
8088
8089@smallexample
38a92d50
PE
8090%@{
8091 static void print_token_value (FILE *, int, YYSTYPE);
8092 #define YYPRINT(file, type, value) print_token_value (file, type, value)
8093%@}
8094
8095@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8096
8097static void
831d3c99 8098print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8099@{
8100 if (type == VAR)
d3c4e709 8101 fprintf (file, "%s", value.tptr->name);
bfa74976 8102 else if (type == NUM)
d3c4e709 8103 fprintf (file, "%d", value.val);
bfa74976
RS
8104@}
8105@end smallexample
8106
ec3bc396
AD
8107@c ================================================= Invoking Bison
8108
342b8b6e 8109@node Invocation
bfa74976
RS
8110@chapter Invoking Bison
8111@cindex invoking Bison
8112@cindex Bison invocation
8113@cindex options for invoking Bison
8114
8115The usual way to invoke Bison is as follows:
8116
8117@example
8118bison @var{infile}
8119@end example
8120
8121Here @var{infile} is the grammar file name, which usually ends in
9913d6e4
JD
8122@samp{.y}. The parser implementation file's name is made by replacing
8123the @samp{.y} with @samp{.tab.c} and removing any leading directory.
8124Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
8125the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
8126also possible, in case you are writing C++ code instead of C in your
8127grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
8128output files will take an extension like the given one as input
8129(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
8130feature takes effect with all options that manipulate file names like
234a3be3
AD
8131@samp{-o} or @samp{-d}.
8132
8133For example :
8134
8135@example
8136bison -d @var{infile.yxx}
8137@end example
84163231 8138@noindent
72d2299c 8139will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8140
8141@example
b56471a6 8142bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8143@end example
84163231 8144@noindent
234a3be3
AD
8145will produce @file{output.c++} and @file{outfile.h++}.
8146
35430378 8147For compatibility with POSIX, the standard Bison
397ec073
PE
8148distribution also contains a shell script called @command{yacc} that
8149invokes Bison with the @option{-y} option.
8150
bfa74976 8151@menu
13863333 8152* Bison Options:: All the options described in detail,
c827f760 8153 in alphabetical order by short options.
bfa74976 8154* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8155* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8156@end menu
8157
342b8b6e 8158@node Bison Options
bfa74976
RS
8159@section Bison Options
8160
8161Bison supports both traditional single-letter options and mnemonic long
8162option names. Long option names are indicated with @samp{--} instead of
8163@samp{-}. Abbreviations for option names are allowed as long as they
8164are unique. When a long option takes an argument, like
8165@samp{--file-prefix}, connect the option name and the argument with
8166@samp{=}.
8167
8168Here is a list of options that can be used with Bison, alphabetized by
8169short option. It is followed by a cross key alphabetized by long
8170option.
8171
89cab50d
AD
8172@c Please, keep this ordered as in `bison --help'.
8173@noindent
8174Operations modes:
8175@table @option
8176@item -h
8177@itemx --help
8178Print a summary of the command-line options to Bison and exit.
bfa74976 8179
89cab50d
AD
8180@item -V
8181@itemx --version
8182Print the version number of Bison and exit.
bfa74976 8183
f7ab6a50
PE
8184@item --print-localedir
8185Print the name of the directory containing locale-dependent data.
8186
a0de5091
JD
8187@item --print-datadir
8188Print the name of the directory containing skeletons and XSLT.
8189
89cab50d
AD
8190@item -y
8191@itemx --yacc
9913d6e4
JD
8192Act more like the traditional Yacc command. This can cause different
8193diagnostics to be generated, and may change behavior in other minor
8194ways. Most importantly, imitate Yacc's output file name conventions,
8195so that the parser implementation file is called @file{y.tab.c}, and
8196the other outputs are called @file{y.output} and @file{y.tab.h}.
8197Also, if generating a deterministic parser in C, generate
8198@code{#define} statements in addition to an @code{enum} to associate
8199token numbers with token names. Thus, the following shell script can
8200substitute for Yacc, and the Bison distribution contains such a script
8201for compatibility with POSIX:
bfa74976 8202
89cab50d 8203@example
397ec073 8204#! /bin/sh
26e06a21 8205bison -y "$@@"
89cab50d 8206@end example
54662697
PE
8207
8208The @option{-y}/@option{--yacc} option is intended for use with
8209traditional Yacc grammars. If your grammar uses a Bison extension
8210like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8211this option is specified.
8212
ecd1b61c
JD
8213@item -W [@var{category}]
8214@itemx --warnings[=@var{category}]
118d4978
AD
8215Output warnings falling in @var{category}. @var{category} can be one
8216of:
8217@table @code
8218@item midrule-values
8e55b3aa
JD
8219Warn about mid-rule values that are set but not used within any of the actions
8220of the parent rule.
8221For example, warn about unused @code{$2} in:
118d4978
AD
8222
8223@example
8224exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8225@end example
8226
8e55b3aa
JD
8227Also warn about mid-rule values that are used but not set.
8228For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8229
8230@example
8231 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
8232@end example
8233
8234These warnings are not enabled by default since they sometimes prove to
8235be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8236@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
8237
8238
8239@item yacc
35430378 8240Incompatibilities with POSIX Yacc.
118d4978
AD
8241
8242@item all
8e55b3aa 8243All the warnings.
118d4978 8244@item none
8e55b3aa 8245Turn off all the warnings.
118d4978 8246@item error
8e55b3aa 8247Treat warnings as errors.
118d4978
AD
8248@end table
8249
8250A category can be turned off by prefixing its name with @samp{no-}. For
cf22447c 8251instance, @option{-Wno-yacc} will hide the warnings about
35430378 8252POSIX Yacc incompatibilities.
89cab50d
AD
8253@end table
8254
8255@noindent
8256Tuning the parser:
8257
8258@table @option
8259@item -t
8260@itemx --debug
9913d6e4
JD
8261In the parser implementation file, define the macro @code{YYDEBUG} to
82621 if it is not already defined, so that the debugging facilities are
8263compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 8264
e14c6831
AD
8265@item -D @var{name}[=@var{value}]
8266@itemx --define=@var{name}[=@var{value}]
c33bc800 8267@itemx -F @var{name}[=@var{value}]
34d41938
JD
8268@itemx --force-define=@var{name}[=@var{value}]
8269Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
2f4518a1 8270(@pxref{%define Summary}) except that Bison processes multiple
34d41938
JD
8271definitions for the same @var{name} as follows:
8272
8273@itemize
8274@item
e3a33f7c
JD
8275Bison quietly ignores all command-line definitions for @var{name} except
8276the last.
34d41938 8277@item
e3a33f7c
JD
8278If that command-line definition is specified by a @code{-D} or
8279@code{--define}, Bison reports an error for any @code{%define}
8280definition for @var{name}.
34d41938 8281@item
e3a33f7c
JD
8282If that command-line definition is specified by a @code{-F} or
8283@code{--force-define} instead, Bison quietly ignores all @code{%define}
8284definitions for @var{name}.
8285@item
8286Otherwise, Bison reports an error if there are multiple @code{%define}
8287definitions for @var{name}.
34d41938
JD
8288@end itemize
8289
8290You should avoid using @code{-F} and @code{--force-define} in your
9913d6e4
JD
8291make files unless you are confident that it is safe to quietly ignore
8292any conflicting @code{%define} that may be added to the grammar file.
e14c6831 8293
0e021770
PE
8294@item -L @var{language}
8295@itemx --language=@var{language}
8296Specify the programming language for the generated parser, as if
8297@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8298Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8299@var{language} is case-insensitive.
0e021770 8300
ed4d67dc
JD
8301This option is experimental and its effect may be modified in future
8302releases.
8303
89cab50d 8304@item --locations
d8988b2f 8305Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8306
8307@item -p @var{prefix}
8308@itemx --name-prefix=@var{prefix}
02975b9a 8309Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8310@xref{Decl Summary}.
bfa74976
RS
8311
8312@item -l
8313@itemx --no-lines
9913d6e4
JD
8314Don't put any @code{#line} preprocessor commands in the parser
8315implementation file. Ordinarily Bison puts them in the parser
8316implementation file so that the C compiler and debuggers will
8317associate errors with your source file, the grammar file. This option
8318causes them to associate errors with the parser implementation file,
8319treating it as an independent source file in its own right.
bfa74976 8320
e6e704dc
JD
8321@item -S @var{file}
8322@itemx --skeleton=@var{file}
a7867f53 8323Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8324(@pxref{Decl Summary, , Bison Declaration Summary}).
8325
ed4d67dc
JD
8326@c You probably don't need this option unless you are developing Bison.
8327@c You should use @option{--language} if you want to specify the skeleton for a
8328@c different language, because it is clearer and because it will always
8329@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8330
a7867f53
JD
8331If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8332file in the Bison installation directory.
8333If it does, @var{file} is an absolute file name or a file name relative to the
8334current working directory.
8335This is similar to how most shells resolve commands.
8336
89cab50d
AD
8337@item -k
8338@itemx --token-table
d8988b2f 8339Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8340@end table
bfa74976 8341
89cab50d
AD
8342@noindent
8343Adjust the output:
bfa74976 8344
89cab50d 8345@table @option
8e55b3aa 8346@item --defines[=@var{file}]
d8988b2f 8347Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8348file containing macro definitions for the token type names defined in
4bfd5e4e 8349the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8350
8e55b3aa
JD
8351@item -d
8352This is the same as @code{--defines} except @code{-d} does not accept a
8353@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8354with other short options.
342b8b6e 8355
89cab50d
AD
8356@item -b @var{file-prefix}
8357@itemx --file-prefix=@var{prefix}
9c437126 8358Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8359for all Bison output file names. @xref{Decl Summary}.
bfa74976 8360
ec3bc396
AD
8361@item -r @var{things}
8362@itemx --report=@var{things}
8363Write an extra output file containing verbose description of the comma
8364separated list of @var{things} among:
8365
8366@table @code
8367@item state
8368Description of the grammar, conflicts (resolved and unresolved), and
34a6c2d1 8369parser's automaton.
ec3bc396 8370
742e4900 8371@item lookahead
ec3bc396 8372Implies @code{state} and augments the description of the automaton with
742e4900 8373each rule's lookahead set.
ec3bc396
AD
8374
8375@item itemset
8376Implies @code{state} and augments the description of the automaton with
8377the full set of items for each state, instead of its core only.
8378@end table
8379
1bb2bd75
JD
8380@item --report-file=@var{file}
8381Specify the @var{file} for the verbose description.
8382
bfa74976
RS
8383@item -v
8384@itemx --verbose
9c437126 8385Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8386file containing verbose descriptions of the grammar and
72d2299c 8387parser. @xref{Decl Summary}.
bfa74976 8388
fa4d969f
PE
8389@item -o @var{file}
8390@itemx --output=@var{file}
9913d6e4 8391Specify the @var{file} for the parser implementation file.
bfa74976 8392
fa4d969f 8393The other output files' names are constructed from @var{file} as
d8988b2f 8394described under the @samp{-v} and @samp{-d} options.
342b8b6e 8395
72183df4 8396@item -g [@var{file}]
8e55b3aa 8397@itemx --graph[=@var{file}]
34a6c2d1 8398Output a graphical representation of the parser's
35fe0834 8399automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
35430378 8400@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
8401@code{@var{file}} is optional.
8402If omitted and the grammar file is @file{foo.y}, the output file will be
8403@file{foo.dot}.
59da312b 8404
72183df4 8405@item -x [@var{file}]
8e55b3aa 8406@itemx --xml[=@var{file}]
34a6c2d1 8407Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8408@code{@var{file}} is optional.
59da312b
JD
8409If omitted and the grammar file is @file{foo.y}, the output file will be
8410@file{foo.xml}.
8411(The current XML schema is experimental and may evolve.
8412More user feedback will help to stabilize it.)
bfa74976
RS
8413@end table
8414
342b8b6e 8415@node Option Cross Key
bfa74976
RS
8416@section Option Cross Key
8417
8418Here is a list of options, alphabetized by long option, to help you find
34d41938 8419the corresponding short option and directive.
bfa74976 8420
34d41938 8421@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
72183df4 8422@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8423@include cross-options.texi
aa08666d 8424@end multitable
bfa74976 8425
93dd49ab
PE
8426@node Yacc Library
8427@section Yacc Library
8428
8429The Yacc library contains default implementations of the
8430@code{yyerror} and @code{main} functions. These default
35430378 8431implementations are normally not useful, but POSIX requires
93dd49ab
PE
8432them. To use the Yacc library, link your program with the
8433@option{-ly} option. Note that Bison's implementation of the Yacc
35430378 8434library is distributed under the terms of the GNU General
93dd49ab
PE
8435Public License (@pxref{Copying}).
8436
8437If you use the Yacc library's @code{yyerror} function, you should
8438declare @code{yyerror} as follows:
8439
8440@example
8441int yyerror (char const *);
8442@end example
8443
8444Bison ignores the @code{int} value returned by this @code{yyerror}.
8445If you use the Yacc library's @code{main} function, your
8446@code{yyparse} function should have the following type signature:
8447
8448@example
8449int yyparse (void);
8450@end example
8451
12545799
AD
8452@c ================================================= C++ Bison
8453
8405b70c
PB
8454@node Other Languages
8455@chapter Parsers Written In Other Languages
12545799
AD
8456
8457@menu
8458* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8459* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8460@end menu
8461
8462@node C++ Parsers
8463@section C++ Parsers
8464
8465@menu
8466* C++ Bison Interface:: Asking for C++ parser generation
8467* C++ Semantic Values:: %union vs. C++
8468* C++ Location Values:: The position and location classes
8469* C++ Parser Interface:: Instantiating and running the parser
8470* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8471* A Complete C++ Example:: Demonstrating their use
12545799
AD
8472@end menu
8473
8474@node C++ Bison Interface
8475@subsection C++ Bison Interface
ed4d67dc 8476@c - %skeleton "lalr1.cc"
12545799
AD
8477@c - Always pure
8478@c - initial action
8479
34a6c2d1 8480The C++ deterministic parser is selected using the skeleton directive,
baacae49
AD
8481@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
8482@option{--skeleton=lalr1.cc}.
e6e704dc 8483@xref{Decl Summary}.
0e021770 8484
793fbca5
JD
8485When run, @command{bison} will create several entities in the @samp{yy}
8486namespace.
8487@findex %define namespace
2f4518a1
JD
8488Use the @samp{%define namespace} directive to change the namespace
8489name, see @ref{%define Summary,,namespace}. The various classes are
8490generated in the following files:
aa08666d 8491
12545799
AD
8492@table @file
8493@item position.hh
8494@itemx location.hh
8495The definition of the classes @code{position} and @code{location},
8496used for location tracking. @xref{C++ Location Values}.
8497
8498@item stack.hh
8499An auxiliary class @code{stack} used by the parser.
8500
fa4d969f
PE
8501@item @var{file}.hh
8502@itemx @var{file}.cc
9913d6e4 8503(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
8504declaration and implementation of the C++ parser class. The basename
8505and extension of these two files follow the same rules as with regular C
8506parsers (@pxref{Invocation}).
12545799 8507
cd8b5791
AD
8508The header is @emph{mandatory}; you must either pass
8509@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8510@samp{%defines} directive.
8511@end table
8512
8513All these files are documented using Doxygen; run @command{doxygen}
8514for a complete and accurate documentation.
8515
8516@node C++ Semantic Values
8517@subsection C++ Semantic Values
8518@c - No objects in unions
178e123e 8519@c - YYSTYPE
12545799
AD
8520@c - Printer and destructor
8521
8522The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8523Collection of Value Types}. In particular it produces a genuine
8524@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
8525within pseudo-unions (similar to Boost variants) might be implemented to
8526alleviate these issues.}, which have a few specific features in C++.
12545799
AD
8527@itemize @minus
8528@item
fb9712a9
AD
8529The type @code{YYSTYPE} is defined but its use is discouraged: rather
8530you should refer to the parser's encapsulated type
8531@code{yy::parser::semantic_type}.
12545799
AD
8532@item
8533Non POD (Plain Old Data) types cannot be used. C++ forbids any
8534instance of classes with constructors in unions: only @emph{pointers}
8535to such objects are allowed.
8536@end itemize
8537
8538Because objects have to be stored via pointers, memory is not
8539reclaimed automatically: using the @code{%destructor} directive is the
8540only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8541Symbols}.
8542
8543
8544@node C++ Location Values
8545@subsection C++ Location Values
8546@c - %locations
8547@c - class Position
8548@c - class Location
16dc6a9e 8549@c - %define filename_type "const symbol::Symbol"
12545799
AD
8550
8551When the directive @code{%locations} is used, the C++ parser supports
8552location tracking, see @ref{Locations, , Locations Overview}. Two
8553auxiliary classes define a @code{position}, a single point in a file,
8554and a @code{location}, a range composed of a pair of
8555@code{position}s (possibly spanning several files).
8556
fa4d969f 8557@deftypemethod {position} {std::string*} file
12545799
AD
8558The name of the file. It will always be handled as a pointer, the
8559parser will never duplicate nor deallocate it. As an experimental
8560feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8561filename_type "@var{type}"}.
12545799
AD
8562@end deftypemethod
8563
8564@deftypemethod {position} {unsigned int} line
8565The line, starting at 1.
8566@end deftypemethod
8567
8568@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8569Advance by @var{height} lines, resetting the column number.
8570@end deftypemethod
8571
8572@deftypemethod {position} {unsigned int} column
8573The column, starting at 0.
8574@end deftypemethod
8575
8576@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8577Advance by @var{width} columns, without changing the line number.
8578@end deftypemethod
8579
8580@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8581@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8582@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8583@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8584Various forms of syntactic sugar for @code{columns}.
8585@end deftypemethod
8586
8587@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8588Report @var{p} on @var{o} like this:
fa4d969f
PE
8589@samp{@var{file}:@var{line}.@var{column}}, or
8590@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8591@end deftypemethod
8592
8593@deftypemethod {location} {position} begin
8594@deftypemethodx {location} {position} end
8595The first, inclusive, position of the range, and the first beyond.
8596@end deftypemethod
8597
8598@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8599@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8600Advance the @code{end} position.
8601@end deftypemethod
8602
8603@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8604@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8605@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8606Various forms of syntactic sugar.
8607@end deftypemethod
8608
8609@deftypemethod {location} {void} step ()
8610Move @code{begin} onto @code{end}.
8611@end deftypemethod
8612
8613
8614@node C++ Parser Interface
8615@subsection C++ Parser Interface
8616@c - define parser_class_name
8617@c - Ctor
8618@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8619@c debug_stream.
8620@c - Reporting errors
8621
8622The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8623declare and define the parser class in the namespace @code{yy}. The
8624class name defaults to @code{parser}, but may be changed using
16dc6a9e 8625@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8626this class is detailed below. It can be extended using the
12545799
AD
8627@code{%parse-param} feature: its semantics is slightly changed since
8628it describes an additional member of the parser class, and an
8629additional argument for its constructor.
8630
baacae49
AD
8631@defcv {Type} {parser} {semantic_type}
8632@defcvx {Type} {parser} {location_type}
12545799 8633The types for semantics value and locations.
8a0adb01 8634@end defcv
12545799 8635
baacae49
AD
8636@defcv {Type} {parser} {token}
8637A structure that contains (only) the definition of the tokens as the
8638@code{yytokentype} enumeration. To refer to the token @code{FOO}, the
8639scanner should use @code{yy::parser::token::FOO}. The scanner can use
8640@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
8641(@pxref{Calc++ Scanner}).
8642@end defcv
8643
12545799
AD
8644@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8645Build a new parser object. There are no arguments by default, unless
8646@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8647@end deftypemethod
8648
8649@deftypemethod {parser} {int} parse ()
8650Run the syntactic analysis, and return 0 on success, 1 otherwise.
8651@end deftypemethod
8652
8653@deftypemethod {parser} {std::ostream&} debug_stream ()
8654@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8655Get or set the stream used for tracing the parsing. It defaults to
8656@code{std::cerr}.
8657@end deftypemethod
8658
8659@deftypemethod {parser} {debug_level_type} debug_level ()
8660@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8661Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8662or nonzero, full tracing.
12545799
AD
8663@end deftypemethod
8664
8665@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
8666The definition for this member function must be supplied by the user:
8667the parser uses it to report a parser error occurring at @var{l},
8668described by @var{m}.
8669@end deftypemethod
8670
8671
8672@node C++ Scanner Interface
8673@subsection C++ Scanner Interface
8674@c - prefix for yylex.
8675@c - Pure interface to yylex
8676@c - %lex-param
8677
8678The parser invokes the scanner by calling @code{yylex}. Contrary to C
8679parsers, C++ parsers are always pure: there is no point in using the
d9df47b6 8680@code{%define api.pure} directive. Therefore the interface is as follows.
12545799 8681
baacae49 8682@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
12545799
AD
8683Return the next token. Its type is the return value, its semantic
8684value and location being @var{yylval} and @var{yylloc}. Invocations of
8685@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8686@end deftypemethod
8687
8688
8689@node A Complete C++ Example
8405b70c 8690@subsection A Complete C++ Example
12545799
AD
8691
8692This section demonstrates the use of a C++ parser with a simple but
8693complete example. This example should be available on your system,
8694ready to compile, in the directory @dfn{../bison/examples/calc++}. It
8695focuses on the use of Bison, therefore the design of the various C++
8696classes is very naive: no accessors, no encapsulation of members etc.
8697We will use a Lex scanner, and more precisely, a Flex scanner, to
8698demonstrate the various interaction. A hand written scanner is
8699actually easier to interface with.
8700
8701@menu
8702* Calc++ --- C++ Calculator:: The specifications
8703* Calc++ Parsing Driver:: An active parsing context
8704* Calc++ Parser:: A parser class
8705* Calc++ Scanner:: A pure C++ Flex scanner
8706* Calc++ Top Level:: Conducting the band
8707@end menu
8708
8709@node Calc++ --- C++ Calculator
8405b70c 8710@subsubsection Calc++ --- C++ Calculator
12545799
AD
8711
8712Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 8713expression, possibly preceded by variable assignments. An
12545799
AD
8714environment containing possibly predefined variables such as
8715@code{one} and @code{two}, is exchanged with the parser. An example
8716of valid input follows.
8717
8718@example
8719three := 3
8720seven := one + two * three
8721seven * seven
8722@end example
8723
8724@node Calc++ Parsing Driver
8405b70c 8725@subsubsection Calc++ Parsing Driver
12545799
AD
8726@c - An env
8727@c - A place to store error messages
8728@c - A place for the result
8729
8730To support a pure interface with the parser (and the scanner) the
8731technique of the ``parsing context'' is convenient: a structure
8732containing all the data to exchange. Since, in addition to simply
8733launch the parsing, there are several auxiliary tasks to execute (open
8734the file for parsing, instantiate the parser etc.), we recommend
8735transforming the simple parsing context structure into a fully blown
8736@dfn{parsing driver} class.
8737
8738The declaration of this driver class, @file{calc++-driver.hh}, is as
8739follows. The first part includes the CPP guard and imports the
fb9712a9
AD
8740required standard library components, and the declaration of the parser
8741class.
12545799 8742
1c59e0a1 8743@comment file: calc++-driver.hh
12545799
AD
8744@example
8745#ifndef CALCXX_DRIVER_HH
8746# define CALCXX_DRIVER_HH
8747# include <string>
8748# include <map>
fb9712a9 8749# include "calc++-parser.hh"
12545799
AD
8750@end example
8751
12545799
AD
8752
8753@noindent
8754Then comes the declaration of the scanning function. Flex expects
8755the signature of @code{yylex} to be defined in the macro
8756@code{YY_DECL}, and the C++ parser expects it to be declared. We can
8757factor both as follows.
1c59e0a1
AD
8758
8759@comment file: calc++-driver.hh
12545799 8760@example
3dc5e96b
PE
8761// Tell Flex the lexer's prototype ...
8762# define YY_DECL \
c095d689
AD
8763 yy::calcxx_parser::token_type \
8764 yylex (yy::calcxx_parser::semantic_type* yylval, \
8765 yy::calcxx_parser::location_type* yylloc, \
8766 calcxx_driver& driver)
12545799
AD
8767// ... and declare it for the parser's sake.
8768YY_DECL;
8769@end example
8770
8771@noindent
8772The @code{calcxx_driver} class is then declared with its most obvious
8773members.
8774
1c59e0a1 8775@comment file: calc++-driver.hh
12545799
AD
8776@example
8777// Conducting the whole scanning and parsing of Calc++.
8778class calcxx_driver
8779@{
8780public:
8781 calcxx_driver ();
8782 virtual ~calcxx_driver ();
8783
8784 std::map<std::string, int> variables;
8785
8786 int result;
8787@end example
8788
8789@noindent
8790To encapsulate the coordination with the Flex scanner, it is useful to
8791have two members function to open and close the scanning phase.
12545799 8792
1c59e0a1 8793@comment file: calc++-driver.hh
12545799
AD
8794@example
8795 // Handling the scanner.
8796 void scan_begin ();
8797 void scan_end ();
8798 bool trace_scanning;
8799@end example
8800
8801@noindent
8802Similarly for the parser itself.
8803
1c59e0a1 8804@comment file: calc++-driver.hh
12545799 8805@example
bb32f4f2
AD
8806 // Run the parser. Return 0 on success.
8807 int parse (const std::string& f);
12545799
AD
8808 std::string file;
8809 bool trace_parsing;
8810@end example
8811
8812@noindent
8813To demonstrate pure handling of parse errors, instead of simply
8814dumping them on the standard error output, we will pass them to the
8815compiler driver using the following two member functions. Finally, we
8816close the class declaration and CPP guard.
8817
1c59e0a1 8818@comment file: calc++-driver.hh
12545799
AD
8819@example
8820 // Error handling.
8821 void error (const yy::location& l, const std::string& m);
8822 void error (const std::string& m);
8823@};
8824#endif // ! CALCXX_DRIVER_HH
8825@end example
8826
8827The implementation of the driver is straightforward. The @code{parse}
8828member function deserves some attention. The @code{error} functions
8829are simple stubs, they should actually register the located error
8830messages and set error state.
8831
1c59e0a1 8832@comment file: calc++-driver.cc
12545799
AD
8833@example
8834#include "calc++-driver.hh"
8835#include "calc++-parser.hh"
8836
8837calcxx_driver::calcxx_driver ()
8838 : trace_scanning (false), trace_parsing (false)
8839@{
8840 variables["one"] = 1;
8841 variables["two"] = 2;
8842@}
8843
8844calcxx_driver::~calcxx_driver ()
8845@{
8846@}
8847
bb32f4f2 8848int
12545799
AD
8849calcxx_driver::parse (const std::string &f)
8850@{
8851 file = f;
8852 scan_begin ();
8853 yy::calcxx_parser parser (*this);
8854 parser.set_debug_level (trace_parsing);
bb32f4f2 8855 int res = parser.parse ();
12545799 8856 scan_end ();
bb32f4f2 8857 return res;
12545799
AD
8858@}
8859
8860void
8861calcxx_driver::error (const yy::location& l, const std::string& m)
8862@{
8863 std::cerr << l << ": " << m << std::endl;
8864@}
8865
8866void
8867calcxx_driver::error (const std::string& m)
8868@{
8869 std::cerr << m << std::endl;
8870@}
8871@end example
8872
8873@node Calc++ Parser
8405b70c 8874@subsubsection Calc++ Parser
12545799 8875
9913d6e4
JD
8876The grammar file @file{calc++-parser.yy} starts by asking for the C++
8877deterministic parser skeleton, the creation of the parser header file,
8878and specifies the name of the parser class. Because the C++ skeleton
8879changed several times, it is safer to require the version you designed
8880the grammar for.
1c59e0a1
AD
8881
8882@comment file: calc++-parser.yy
12545799 8883@example
ed4d67dc 8884%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 8885%require "@value{VERSION}"
12545799 8886%defines
16dc6a9e 8887%define parser_class_name "calcxx_parser"
fb9712a9
AD
8888@end example
8889
8890@noindent
16dc6a9e 8891@findex %code requires
fb9712a9
AD
8892Then come the declarations/inclusions needed to define the
8893@code{%union}. Because the parser uses the parsing driver and
8894reciprocally, both cannot include the header of the other. Because the
8895driver's header needs detailed knowledge about the parser class (in
8896particular its inner types), it is the parser's header which will simply
8897use a forward declaration of the driver.
8e6f2266 8898@xref{%code Summary}.
fb9712a9
AD
8899
8900@comment file: calc++-parser.yy
8901@example
16dc6a9e 8902%code requires @{
12545799 8903# include <string>
fb9712a9 8904class calcxx_driver;
9bc0dd67 8905@}
12545799
AD
8906@end example
8907
8908@noindent
8909The driver is passed by reference to the parser and to the scanner.
8910This provides a simple but effective pure interface, not relying on
8911global variables.
8912
1c59e0a1 8913@comment file: calc++-parser.yy
12545799
AD
8914@example
8915// The parsing context.
8916%parse-param @{ calcxx_driver& driver @}
8917%lex-param @{ calcxx_driver& driver @}
8918@end example
8919
8920@noindent
8921Then we request the location tracking feature, and initialize the
c781580d 8922first location's file name. Afterward new locations are computed
12545799
AD
8923relatively to the previous locations: the file name will be
8924automatically propagated.
8925
1c59e0a1 8926@comment file: calc++-parser.yy
12545799
AD
8927@example
8928%locations
8929%initial-action
8930@{
8931 // Initialize the initial location.
b47dbebe 8932 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
8933@};
8934@end example
8935
8936@noindent
8937Use the two following directives to enable parser tracing and verbose
8938error messages.
8939
1c59e0a1 8940@comment file: calc++-parser.yy
12545799
AD
8941@example
8942%debug
8943%error-verbose
8944@end example
8945
8946@noindent
8947Semantic values cannot use ``real'' objects, but only pointers to
8948them.
8949
1c59e0a1 8950@comment file: calc++-parser.yy
12545799
AD
8951@example
8952// Symbols.
8953%union
8954@{
8955 int ival;
8956 std::string *sval;
8957@};
8958@end example
8959
fb9712a9 8960@noindent
136a0f76
PB
8961@findex %code
8962The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 8963@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
8964
8965@comment file: calc++-parser.yy
8966@example
136a0f76 8967%code @{
fb9712a9 8968# include "calc++-driver.hh"
34f98f46 8969@}
fb9712a9
AD
8970@end example
8971
8972
12545799
AD
8973@noindent
8974The token numbered as 0 corresponds to end of file; the following line
8975allows for nicer error messages referring to ``end of file'' instead
8976of ``$end''. Similarly user friendly named are provided for each
8977symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
8978avoid name clashes.
8979
1c59e0a1 8980@comment file: calc++-parser.yy
12545799 8981@example
fb9712a9
AD
8982%token END 0 "end of file"
8983%token ASSIGN ":="
8984%token <sval> IDENTIFIER "identifier"
8985%token <ival> NUMBER "number"
a8c2e813 8986%type <ival> exp
12545799
AD
8987@end example
8988
8989@noindent
8990To enable memory deallocation during error recovery, use
8991@code{%destructor}.
8992
287c78f6 8993@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 8994@comment file: calc++-parser.yy
12545799
AD
8995@example
8996%printer @{ debug_stream () << *$$; @} "identifier"
8997%destructor @{ delete $$; @} "identifier"
8998
a8c2e813 8999%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
9000@end example
9001
9002@noindent
9003The grammar itself is straightforward.
9004
1c59e0a1 9005@comment file: calc++-parser.yy
12545799
AD
9006@example
9007%%
9008%start unit;
9009unit: assignments exp @{ driver.result = $2; @};
9010
9011assignments: assignments assignment @{@}
9d9b8b70 9012 | /* Nothing. */ @{@};
12545799 9013
3dc5e96b
PE
9014assignment:
9015 "identifier" ":=" exp
9016 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
9017
9018%left '+' '-';
9019%left '*' '/';
9020exp: exp '+' exp @{ $$ = $1 + $3; @}
9021 | exp '-' exp @{ $$ = $1 - $3; @}
9022 | exp '*' exp @{ $$ = $1 * $3; @}
9023 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 9024 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 9025 | "number" @{ $$ = $1; @};
12545799
AD
9026%%
9027@end example
9028
9029@noindent
9030Finally the @code{error} member function registers the errors to the
9031driver.
9032
1c59e0a1 9033@comment file: calc++-parser.yy
12545799
AD
9034@example
9035void
1c59e0a1
AD
9036yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
9037 const std::string& m)
12545799
AD
9038@{
9039 driver.error (l, m);
9040@}
9041@end example
9042
9043@node Calc++ Scanner
8405b70c 9044@subsubsection Calc++ Scanner
12545799
AD
9045
9046The Flex scanner first includes the driver declaration, then the
9047parser's to get the set of defined tokens.
9048
1c59e0a1 9049@comment file: calc++-scanner.ll
12545799
AD
9050@example
9051%@{ /* -*- C++ -*- */
04098407 9052# include <cstdlib>
b10dd689
AD
9053# include <cerrno>
9054# include <climits>
12545799
AD
9055# include <string>
9056# include "calc++-driver.hh"
9057# include "calc++-parser.hh"
eaea13f5
PE
9058
9059/* Work around an incompatibility in flex (at least versions
9060 2.5.31 through 2.5.33): it generates code that does
9061 not conform to C89. See Debian bug 333231
9062 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
9063# undef yywrap
9064# define yywrap() 1
eaea13f5 9065
c095d689
AD
9066/* By default yylex returns int, we use token_type.
9067 Unfortunately yyterminate by default returns 0, which is
9068 not of token_type. */
8c5b881d 9069#define yyterminate() return token::END
12545799
AD
9070%@}
9071@end example
9072
9073@noindent
9074Because there is no @code{#include}-like feature we don't need
9075@code{yywrap}, we don't need @code{unput} either, and we parse an
9076actual file, this is not an interactive session with the user.
9077Finally we enable the scanner tracing features.
9078
1c59e0a1 9079@comment file: calc++-scanner.ll
12545799
AD
9080@example
9081%option noyywrap nounput batch debug
9082@end example
9083
9084@noindent
9085Abbreviations allow for more readable rules.
9086
1c59e0a1 9087@comment file: calc++-scanner.ll
12545799
AD
9088@example
9089id [a-zA-Z][a-zA-Z_0-9]*
9090int [0-9]+
9091blank [ \t]
9092@end example
9093
9094@noindent
9d9b8b70 9095The following paragraph suffices to track locations accurately. Each
12545799
AD
9096time @code{yylex} is invoked, the begin position is moved onto the end
9097position. Then when a pattern is matched, the end position is
9098advanced of its width. In case it matched ends of lines, the end
9099cursor is adjusted, and each time blanks are matched, the begin cursor
9100is moved onto the end cursor to effectively ignore the blanks
9101preceding tokens. Comments would be treated equally.
9102
1c59e0a1 9103@comment file: calc++-scanner.ll
12545799 9104@example
828c373b
AD
9105%@{
9106# define YY_USER_ACTION yylloc->columns (yyleng);
9107%@}
12545799
AD
9108%%
9109%@{
9110 yylloc->step ();
12545799
AD
9111%@}
9112@{blank@}+ yylloc->step ();
9113[\n]+ yylloc->lines (yyleng); yylloc->step ();
9114@end example
9115
9116@noindent
fb9712a9
AD
9117The rules are simple, just note the use of the driver to report errors.
9118It is convenient to use a typedef to shorten
9119@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 9120@code{token::identifier} for instance.
12545799 9121
1c59e0a1 9122@comment file: calc++-scanner.ll
12545799 9123@example
fb9712a9
AD
9124%@{
9125 typedef yy::calcxx_parser::token token;
9126%@}
8c5b881d 9127 /* Convert ints to the actual type of tokens. */
c095d689 9128[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 9129":=" return token::ASSIGN;
04098407
PE
9130@{int@} @{
9131 errno = 0;
9132 long n = strtol (yytext, NULL, 10);
9133 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
9134 driver.error (*yylloc, "integer is out of range");
9135 yylval->ival = n;
fb9712a9 9136 return token::NUMBER;
04098407 9137@}
fb9712a9 9138@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
9139. driver.error (*yylloc, "invalid character");
9140%%
9141@end example
9142
9143@noindent
9144Finally, because the scanner related driver's member function depend
9145on the scanner's data, it is simpler to implement them in this file.
9146
1c59e0a1 9147@comment file: calc++-scanner.ll
12545799
AD
9148@example
9149void
9150calcxx_driver::scan_begin ()
9151@{
9152 yy_flex_debug = trace_scanning;
bb32f4f2
AD
9153 if (file == "-")
9154 yyin = stdin;
9155 else if (!(yyin = fopen (file.c_str (), "r")))
9156 @{
9157 error (std::string ("cannot open ") + file);
9158 exit (1);
9159 @}
12545799
AD
9160@}
9161
9162void
9163calcxx_driver::scan_end ()
9164@{
9165 fclose (yyin);
9166@}
9167@end example
9168
9169@node Calc++ Top Level
8405b70c 9170@subsubsection Calc++ Top Level
12545799
AD
9171
9172The top level file, @file{calc++.cc}, poses no problem.
9173
1c59e0a1 9174@comment file: calc++.cc
12545799
AD
9175@example
9176#include <iostream>
9177#include "calc++-driver.hh"
9178
9179int
fa4d969f 9180main (int argc, char *argv[])
12545799
AD
9181@{
9182 calcxx_driver driver;
9183 for (++argv; argv[0]; ++argv)
9184 if (*argv == std::string ("-p"))
9185 driver.trace_parsing = true;
9186 else if (*argv == std::string ("-s"))
9187 driver.trace_scanning = true;
bb32f4f2
AD
9188 else if (!driver.parse (*argv))
9189 std::cout << driver.result << std::endl;
12545799
AD
9190@}
9191@end example
9192
8405b70c
PB
9193@node Java Parsers
9194@section Java Parsers
9195
9196@menu
f56274a8
DJ
9197* Java Bison Interface:: Asking for Java parser generation
9198* Java Semantic Values:: %type and %token vs. Java
9199* Java Location Values:: The position and location classes
9200* Java Parser Interface:: Instantiating and running the parser
9201* Java Scanner Interface:: Specifying the scanner for the parser
9202* Java Action Features:: Special features for use in actions
9203* Java Differences:: Differences between C/C++ and Java Grammars
9204* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
9205@end menu
9206
9207@node Java Bison Interface
9208@subsection Java Bison Interface
9209@c - %language "Java"
8405b70c 9210
59da312b
JD
9211(The current Java interface is experimental and may evolve.
9212More user feedback will help to stabilize it.)
9213
e254a580
DJ
9214The Java parser skeletons are selected using the @code{%language "Java"}
9215directive or the @option{-L java}/@option{--language=java} option.
8405b70c 9216
e254a580 9217@c FIXME: Documented bug.
9913d6e4
JD
9218When generating a Java parser, @code{bison @var{basename}.y} will
9219create a single Java source file named @file{@var{basename}.java}
9220containing the parser implementation. Using a grammar file without a
9221@file{.y} suffix is currently broken. The basename of the parser
9222implementation file can be changed by the @code{%file-prefix}
9223directive or the @option{-p}/@option{--name-prefix} option. The
9224entire parser implementation file name can be changed by the
9225@code{%output} directive or the @option{-o}/@option{--output} option.
9226The parser implementation file contains a single class for the parser.
8405b70c 9227
e254a580 9228You can create documentation for generated parsers using Javadoc.
8405b70c 9229
e254a580
DJ
9230Contrary to C parsers, Java parsers do not use global variables; the
9231state of the parser is always local to an instance of the parser class.
9232Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
9233and @code{%define api.pure} directives does not do anything when used in
9234Java.
8405b70c 9235
e254a580 9236Push parsers are currently unsupported in Java and @code{%define
812775a0 9237api.push-pull} have no effect.
01b477c6 9238
35430378 9239GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
9240@code{glr-parser} directive.
9241
9242No header file can be generated for Java parsers. Do not use the
9243@code{%defines} directive or the @option{-d}/@option{--defines} options.
9244
9245@c FIXME: Possible code change.
9246Currently, support for debugging and verbose errors are always compiled
9247in. Thus the @code{%debug} and @code{%token-table} directives and the
9248@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
9249options have no effect. This may change in the future to eliminate
9250unused code in the generated parser, so use @code{%debug} and
9251@code{%verbose-error} explicitly if needed. Also, in the future the
9252@code{%token-table} directive might enable a public interface to
9253access the token names and codes.
8405b70c
PB
9254
9255@node Java Semantic Values
9256@subsection Java Semantic Values
9257@c - No %union, specify type in %type/%token.
9258@c - YYSTYPE
9259@c - Printer and destructor
9260
9261There is no @code{%union} directive in Java parsers. Instead, the
9262semantic values' types (class names) should be specified in the
9263@code{%type} or @code{%token} directive:
9264
9265@example
9266%type <Expression> expr assignment_expr term factor
9267%type <Integer> number
9268@end example
9269
9270By default, the semantic stack is declared to have @code{Object} members,
9271which means that the class types you specify can be of any class.
9272To improve the type safety of the parser, you can declare the common
e254a580
DJ
9273superclass of all the semantic values using the @code{%define stype}
9274directive. For example, after the following declaration:
8405b70c
PB
9275
9276@example
e254a580 9277%define stype "ASTNode"
8405b70c
PB
9278@end example
9279
9280@noindent
9281any @code{%type} or @code{%token} specifying a semantic type which
9282is not a subclass of ASTNode, will cause a compile-time error.
9283
e254a580 9284@c FIXME: Documented bug.
8405b70c
PB
9285Types used in the directives may be qualified with a package name.
9286Primitive data types are accepted for Java version 1.5 or later. Note
9287that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
9288Generic types may not be used; this is due to a limitation in the
9289implementation of Bison, and may change in future releases.
8405b70c
PB
9290
9291Java parsers do not support @code{%destructor}, since the language
9292adopts garbage collection. The parser will try to hold references
9293to semantic values for as little time as needed.
9294
9295Java parsers do not support @code{%printer}, as @code{toString()}
9296can be used to print the semantic values. This however may change
9297(in a backwards-compatible way) in future versions of Bison.
9298
9299
9300@node Java Location Values
9301@subsection Java Location Values
9302@c - %locations
9303@c - class Position
9304@c - class Location
9305
9306When the directive @code{%locations} is used, the Java parser
9307supports location tracking, see @ref{Locations, , Locations Overview}.
9308An auxiliary user-defined class defines a @dfn{position}, a single point
9309in a file; Bison itself defines a class representing a @dfn{location},
9310a range composed of a pair of positions (possibly spanning several
9311files). The location class is an inner class of the parser; the name
e254a580 9312is @code{Location} by default, and may also be renamed using
f37495f6 9313@code{%define location_type "@var{class-name}"}.
8405b70c
PB
9314
9315The location class treats the position as a completely opaque value.
9316By default, the class name is @code{Position}, but this can be changed
e254a580
DJ
9317with @code{%define position_type "@var{class-name}"}. This class must
9318be supplied by the user.
8405b70c
PB
9319
9320
e254a580
DJ
9321@deftypeivar {Location} {Position} begin
9322@deftypeivarx {Location} {Position} end
8405b70c 9323The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
9324@end deftypeivar
9325
9326@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c046698e 9327Create a @code{Location} denoting an empty range located at a given point.
e254a580 9328@end deftypeop
8405b70c 9329
e254a580
DJ
9330@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
9331Create a @code{Location} from the endpoints of the range.
9332@end deftypeop
9333
9334@deftypemethod {Location} {String} toString ()
8405b70c
PB
9335Prints the range represented by the location. For this to work
9336properly, the position class should override the @code{equals} and
9337@code{toString} methods appropriately.
9338@end deftypemethod
9339
9340
9341@node Java Parser Interface
9342@subsection Java Parser Interface
9343@c - define parser_class_name
9344@c - Ctor
9345@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9346@c debug_stream.
9347@c - Reporting errors
9348
e254a580
DJ
9349The name of the generated parser class defaults to @code{YYParser}. The
9350@code{YY} prefix may be changed using the @code{%name-prefix} directive
9351or the @option{-p}/@option{--name-prefix} option. Alternatively, use
9352@code{%define parser_class_name "@var{name}"} to give a custom name to
9353the class. The interface of this class is detailed below.
8405b70c 9354
e254a580
DJ
9355By default, the parser class has package visibility. A declaration
9356@code{%define public} will change to public visibility. Remember that,
9357according to the Java language specification, the name of the @file{.java}
9358file should match the name of the class in this case. Similarly, you can
9359use @code{abstract}, @code{final} and @code{strictfp} with the
9360@code{%define} declaration to add other modifiers to the parser class.
9361
9362The Java package name of the parser class can be specified using the
9363@code{%define package} directive. The superclass and the implemented
9364interfaces of the parser class can be specified with the @code{%define
9365extends} and @code{%define implements} directives.
9366
9367The parser class defines an inner class, @code{Location}, that is used
9368for location tracking (see @ref{Java Location Values}), and a inner
9369interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
9370these inner class/interface, and the members described in the interface
9371below, all the other members and fields are preceded with a @code{yy} or
9372@code{YY} prefix to avoid clashes with user code.
9373
9374@c FIXME: The following constants and variables are still undocumented:
9375@c @code{bisonVersion}, @code{bisonSkeleton} and @code{errorVerbose}.
9376
9377The parser class can be extended using the @code{%parse-param}
9378directive. Each occurrence of the directive will add a @code{protected
9379final} field to the parser class, and an argument to its constructor,
9380which initialize them automatically.
9381
9382Token names defined by @code{%token} and the predefined @code{EOF} token
9383name are added as constant fields to the parser class.
9384
9385@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
9386Build a new parser object with embedded @code{%code lexer}. There are
9387no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
9388used.
9389@end deftypeop
9390
9391@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
9392Build a new parser object using the specified scanner. There are no
9393additional parameters unless @code{%parse-param}s are used.
9394
9395If the scanner is defined by @code{%code lexer}, this constructor is
9396declared @code{protected} and is called automatically with a scanner
9397created with the correct @code{%lex-param}s.
9398@end deftypeop
8405b70c
PB
9399
9400@deftypemethod {YYParser} {boolean} parse ()
9401Run the syntactic analysis, and return @code{true} on success,
9402@code{false} otherwise.
9403@end deftypemethod
9404
01b477c6 9405@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9406During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9407from a syntax error.
9408@xref{Error Recovery}.
8405b70c
PB
9409@end deftypemethod
9410
9411@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9412@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9413Get or set the stream used for tracing the parsing. It defaults to
9414@code{System.err}.
9415@end deftypemethod
9416
9417@deftypemethod {YYParser} {int} getDebugLevel ()
9418@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
9419Get or set the tracing level. Currently its value is either 0, no trace,
9420or nonzero, full tracing.
9421@end deftypemethod
9422
8405b70c
PB
9423
9424@node Java Scanner Interface
9425@subsection Java Scanner Interface
01b477c6 9426@c - %code lexer
8405b70c 9427@c - %lex-param
01b477c6 9428@c - Lexer interface
8405b70c 9429
e254a580
DJ
9430There are two possible ways to interface a Bison-generated Java parser
9431with a scanner: the scanner may be defined by @code{%code lexer}, or
9432defined elsewhere. In either case, the scanner has to implement the
9433@code{Lexer} inner interface of the parser class.
9434
9435In the first case, the body of the scanner class is placed in
9436@code{%code lexer} blocks. If you want to pass parameters from the
9437parser constructor to the scanner constructor, specify them with
9438@code{%lex-param}; they are passed before @code{%parse-param}s to the
9439constructor.
01b477c6 9440
59c5ac72 9441In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
9442which is defined within the parser class (e.g., @code{YYParser.Lexer}).
9443The constructor of the parser object will then accept an object
9444implementing the interface; @code{%lex-param} is not used in this
9445case.
9446
9447In both cases, the scanner has to implement the following methods.
9448
e254a580
DJ
9449@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
9450This method is defined by the user to emit an error message. The first
9451parameter is omitted if location tracking is not active. Its type can be
9452changed using @code{%define location_type "@var{class-name}".}
8405b70c
PB
9453@end deftypemethod
9454
e254a580 9455@deftypemethod {Lexer} {int} yylex ()
8405b70c 9456Return the next token. Its type is the return value, its semantic
c781580d 9457value and location are saved and returned by the their methods in the
e254a580
DJ
9458interface.
9459
9460Use @code{%define lex_throws} to specify any uncaught exceptions.
9461Default is @code{java.io.IOException}.
8405b70c
PB
9462@end deftypemethod
9463
9464@deftypemethod {Lexer} {Position} getStartPos ()
9465@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
9466Return respectively the first position of the last token that
9467@code{yylex} returned, and the first position beyond it. These
9468methods are not needed unless location tracking is active.
8405b70c 9469
e254a580 9470The return type can be changed using @code{%define position_type
8405b70c
PB
9471"@var{class-name}".}
9472@end deftypemethod
9473
9474@deftypemethod {Lexer} {Object} getLVal ()
c781580d 9475Return the semantic value of the last token that yylex returned.
8405b70c 9476
e254a580 9477The return type can be changed using @code{%define stype
8405b70c
PB
9478"@var{class-name}".}
9479@end deftypemethod
9480
9481
e254a580
DJ
9482@node Java Action Features
9483@subsection Special Features for Use in Java Actions
9484
9485The following special constructs can be uses in Java actions.
9486Other analogous C action features are currently unavailable for Java.
9487
9488Use @code{%define throws} to specify any uncaught exceptions from parser
9489actions, and initial actions specified by @code{%initial-action}.
9490
9491@defvar $@var{n}
9492The semantic value for the @var{n}th component of the current rule.
9493This may not be assigned to.
9494@xref{Java Semantic Values}.
9495@end defvar
9496
9497@defvar $<@var{typealt}>@var{n}
9498Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9499@xref{Java Semantic Values}.
9500@end defvar
9501
9502@defvar $$
9503The semantic value for the grouping made by the current rule. As a
9504value, this is in the base type (@code{Object} or as specified by
9505@code{%define stype}) as in not cast to the declared subtype because
9506casts are not allowed on the left-hand side of Java assignments.
9507Use an explicit Java cast if the correct subtype is needed.
9508@xref{Java Semantic Values}.
9509@end defvar
9510
9511@defvar $<@var{typealt}>$
9512Same as @code{$$} since Java always allow assigning to the base type.
9513Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9514for setting the value but there is currently no easy way to distinguish
9515these constructs.
9516@xref{Java Semantic Values}.
9517@end defvar
9518
9519@defvar @@@var{n}
9520The location information of the @var{n}th component of the current rule.
9521This may not be assigned to.
9522@xref{Java Location Values}.
9523@end defvar
9524
9525@defvar @@$
9526The location information of the grouping made by the current rule.
9527@xref{Java Location Values}.
9528@end defvar
9529
9530@deffn {Statement} {return YYABORT;}
9531Return immediately from the parser, indicating failure.
9532@xref{Java Parser Interface}.
9533@end deffn
8405b70c 9534
e254a580
DJ
9535@deffn {Statement} {return YYACCEPT;}
9536Return immediately from the parser, indicating success.
9537@xref{Java Parser Interface}.
9538@end deffn
8405b70c 9539
e254a580 9540@deffn {Statement} {return YYERROR;}
c046698e 9541Start error recovery without printing an error message.
e254a580
DJ
9542@xref{Error Recovery}.
9543@end deffn
8405b70c 9544
e254a580
DJ
9545@deftypefn {Function} {boolean} recovering ()
9546Return whether error recovery is being done. In this state, the parser
9547reads token until it reaches a known state, and then restarts normal
9548operation.
9549@xref{Error Recovery}.
9550@end deftypefn
8405b70c 9551
e254a580
DJ
9552@deftypefn {Function} {protected void} yyerror (String msg)
9553@deftypefnx {Function} {protected void} yyerror (Position pos, String msg)
9554@deftypefnx {Function} {protected void} yyerror (Location loc, String msg)
9555Print an error message using the @code{yyerror} method of the scanner
9556instance in use.
9557@end deftypefn
8405b70c 9558
8405b70c 9559
8405b70c
PB
9560@node Java Differences
9561@subsection Differences between C/C++ and Java Grammars
9562
9563The different structure of the Java language forces several differences
9564between C/C++ grammars, and grammars designed for Java parsers. This
29553547 9565section summarizes these differences.
8405b70c
PB
9566
9567@itemize
9568@item
01b477c6 9569Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 9570@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
9571macros. Instead, they should be preceded by @code{return} when they
9572appear in an action. The actual definition of these symbols is
8405b70c
PB
9573opaque to the Bison grammar, and it might change in the future. The
9574only meaningful operation that you can do, is to return them.
e254a580 9575See @pxref{Java Action Features}.
8405b70c
PB
9576
9577Note that of these three symbols, only @code{YYACCEPT} and
9578@code{YYABORT} will cause a return from the @code{yyparse}
9579method@footnote{Java parsers include the actions in a separate
9580method than @code{yyparse} in order to have an intuitive syntax that
9581corresponds to these C macros.}.
9582
e254a580
DJ
9583@item
9584Java lacks unions, so @code{%union} has no effect. Instead, semantic
9585values have a common base type: @code{Object} or as specified by
c781580d 9586@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
9587@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
9588an union. The type of @code{$$}, even with angle brackets, is the base
9589type since Java casts are not allow on the left-hand side of assignments.
9590Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
9591left-hand side of assignments. See @pxref{Java Semantic Values} and
9592@pxref{Java Action Features}.
9593
8405b70c 9594@item
c781580d 9595The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
9596@table @asis
9597@item @code{%code imports}
9598blocks are placed at the beginning of the Java source code. They may
9599include copyright notices. For a @code{package} declarations, it is
9600suggested to use @code{%define package} instead.
8405b70c 9601
01b477c6
PB
9602@item unqualified @code{%code}
9603blocks are placed inside the parser class.
9604
9605@item @code{%code lexer}
9606blocks, if specified, should include the implementation of the
9607scanner. If there is no such block, the scanner can be any class
9608that implements the appropriate interface (see @pxref{Java Scanner
9609Interface}).
29553547 9610@end table
8405b70c
PB
9611
9612Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
9613In particular, @code{%@{ @dots{} %@}} blocks should not be used
9614and may give an error in future versions of Bison.
9615
01b477c6 9616The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
9617be used to define other classes used by the parser @emph{outside}
9618the parser class.
8405b70c
PB
9619@end itemize
9620
e254a580
DJ
9621
9622@node Java Declarations Summary
9623@subsection Java Declarations Summary
9624
9625This summary only include declarations specific to Java or have special
9626meaning when used in a Java parser.
9627
9628@deffn {Directive} {%language "Java"}
9629Generate a Java class for the parser.
9630@end deffn
9631
9632@deffn {Directive} %lex-param @{@var{type} @var{name}@}
9633A parameter for the lexer class defined by @code{%code lexer}
9634@emph{only}, added as parameters to the lexer constructor and the parser
9635constructor that @emph{creates} a lexer. Default is none.
9636@xref{Java Scanner Interface}.
9637@end deffn
9638
9639@deffn {Directive} %name-prefix "@var{prefix}"
9640The prefix of the parser class name @code{@var{prefix}Parser} if
9641@code{%define parser_class_name} is not used. Default is @code{YY}.
9642@xref{Java Bison Interface}.
9643@end deffn
9644
9645@deffn {Directive} %parse-param @{@var{type} @var{name}@}
9646A parameter for the parser class added as parameters to constructor(s)
9647and as fields initialized by the constructor(s). Default is none.
9648@xref{Java Parser Interface}.
9649@end deffn
9650
9651@deffn {Directive} %token <@var{type}> @var{token} @dots{}
9652Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
9653@xref{Java Semantic Values}.
9654@end deffn
9655
9656@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
9657Declare the type of nonterminals. Note that the angle brackets enclose
9658a Java @emph{type}.
9659@xref{Java Semantic Values}.
9660@end deffn
9661
9662@deffn {Directive} %code @{ @var{code} @dots{} @}
9663Code appended to the inside of the parser class.
9664@xref{Java Differences}.
9665@end deffn
9666
9667@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
9668Code inserted just after the @code{package} declaration.
9669@xref{Java Differences}.
9670@end deffn
9671
9672@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
9673Code added to the body of a inner lexer class within the parser class.
9674@xref{Java Scanner Interface}.
9675@end deffn
9676
9677@deffn {Directive} %% @var{code} @dots{}
9678Code (after the second @code{%%}) appended to the end of the file,
9679@emph{outside} the parser class.
9680@xref{Java Differences}.
9681@end deffn
9682
9683@deffn {Directive} %@{ @var{code} @dots{} %@}
9684Not supported. Use @code{%code import} instead.
9685@xref{Java Differences}.
9686@end deffn
9687
9688@deffn {Directive} {%define abstract}
9689Whether the parser class is declared @code{abstract}. Default is false.
9690@xref{Java Bison Interface}.
9691@end deffn
9692
9693@deffn {Directive} {%define extends} "@var{superclass}"
9694The superclass of the parser class. Default is none.
9695@xref{Java Bison Interface}.
9696@end deffn
9697
9698@deffn {Directive} {%define final}
9699Whether the parser class is declared @code{final}. Default is false.
9700@xref{Java Bison Interface}.
9701@end deffn
9702
9703@deffn {Directive} {%define implements} "@var{interfaces}"
9704The implemented interfaces of the parser class, a comma-separated list.
9705Default is none.
9706@xref{Java Bison Interface}.
9707@end deffn
9708
9709@deffn {Directive} {%define lex_throws} "@var{exceptions}"
9710The exceptions thrown by the @code{yylex} method of the lexer, a
9711comma-separated list. Default is @code{java.io.IOException}.
9712@xref{Java Scanner Interface}.
9713@end deffn
9714
9715@deffn {Directive} {%define location_type} "@var{class}"
9716The name of the class used for locations (a range between two
9717positions). This class is generated as an inner class of the parser
9718class by @command{bison}. Default is @code{Location}.
9719@xref{Java Location Values}.
9720@end deffn
9721
9722@deffn {Directive} {%define package} "@var{package}"
9723The package to put the parser class in. Default is none.
9724@xref{Java Bison Interface}.
9725@end deffn
9726
9727@deffn {Directive} {%define parser_class_name} "@var{name}"
9728The name of the parser class. Default is @code{YYParser} or
9729@code{@var{name-prefix}Parser}.
9730@xref{Java Bison Interface}.
9731@end deffn
9732
9733@deffn {Directive} {%define position_type} "@var{class}"
9734The name of the class used for positions. This class must be supplied by
9735the user. Default is @code{Position}.
9736@xref{Java Location Values}.
9737@end deffn
9738
9739@deffn {Directive} {%define public}
9740Whether the parser class is declared @code{public}. Default is false.
9741@xref{Java Bison Interface}.
9742@end deffn
9743
9744@deffn {Directive} {%define stype} "@var{class}"
9745The base type of semantic values. Default is @code{Object}.
9746@xref{Java Semantic Values}.
9747@end deffn
9748
9749@deffn {Directive} {%define strictfp}
9750Whether the parser class is declared @code{strictfp}. Default is false.
9751@xref{Java Bison Interface}.
9752@end deffn
9753
9754@deffn {Directive} {%define throws} "@var{exceptions}"
9755The exceptions thrown by user-supplied parser actions and
9756@code{%initial-action}, a comma-separated list. Default is none.
9757@xref{Java Parser Interface}.
9758@end deffn
9759
9760
12545799 9761@c ================================================= FAQ
d1a1114f
AD
9762
9763@node FAQ
9764@chapter Frequently Asked Questions
9765@cindex frequently asked questions
9766@cindex questions
9767
9768Several questions about Bison come up occasionally. Here some of them
9769are addressed.
9770
9771@menu
55ba27be
AD
9772* Memory Exhausted:: Breaking the Stack Limits
9773* How Can I Reset the Parser:: @code{yyparse} Keeps some State
9774* Strings are Destroyed:: @code{yylval} Loses Track of Strings
9775* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 9776* Multiple start-symbols:: Factoring closely related grammars
35430378 9777* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
9778* I can't build Bison:: Troubleshooting
9779* Where can I find help?:: Troubleshouting
9780* Bug Reports:: Troublereporting
8405b70c 9781* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
9782* Beta Testing:: Experimenting development versions
9783* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
9784@end menu
9785
1a059451
PE
9786@node Memory Exhausted
9787@section Memory Exhausted
d1a1114f
AD
9788
9789@display
1a059451 9790My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
9791message. What can I do?
9792@end display
9793
9794This question is already addressed elsewhere, @xref{Recursion,
9795,Recursive Rules}.
9796
e64fec0a
PE
9797@node How Can I Reset the Parser
9798@section How Can I Reset the Parser
5b066063 9799
0e14ad77
PE
9800The following phenomenon has several symptoms, resulting in the
9801following typical questions:
5b066063
AD
9802
9803@display
9804I invoke @code{yyparse} several times, and on correct input it works
9805properly; but when a parse error is found, all the other calls fail
0e14ad77 9806too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
9807@end display
9808
9809@noindent
9810or
9811
9812@display
0e14ad77 9813My parser includes support for an @samp{#include}-like feature, in
5b066063 9814which case I run @code{yyparse} from @code{yyparse}. This fails
d9df47b6 9815although I did specify @code{%define api.pure}.
5b066063
AD
9816@end display
9817
0e14ad77
PE
9818These problems typically come not from Bison itself, but from
9819Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
9820speed, they might not notice a change of input file. As a
9821demonstration, consider the following source file,
9822@file{first-line.l}:
9823
9824@verbatim
9825%{
9826#include <stdio.h>
9827#include <stdlib.h>
9828%}
9829%%
9830.*\n ECHO; return 1;
9831%%
9832int
0e14ad77 9833yyparse (char const *file)
5b066063
AD
9834{
9835 yyin = fopen (file, "r");
9836 if (!yyin)
9837 exit (2);
fa7e68c3 9838 /* One token only. */
5b066063 9839 yylex ();
0e14ad77 9840 if (fclose (yyin) != 0)
5b066063
AD
9841 exit (3);
9842 return 0;
9843}
9844
9845int
0e14ad77 9846main (void)
5b066063
AD
9847{
9848 yyparse ("input");
9849 yyparse ("input");
9850 return 0;
9851}
9852@end verbatim
9853
9854@noindent
9855If the file @file{input} contains
9856
9857@verbatim
9858input:1: Hello,
9859input:2: World!
9860@end verbatim
9861
9862@noindent
0e14ad77 9863then instead of getting the first line twice, you get:
5b066063
AD
9864
9865@example
9866$ @kbd{flex -ofirst-line.c first-line.l}
9867$ @kbd{gcc -ofirst-line first-line.c -ll}
9868$ @kbd{./first-line}
9869input:1: Hello,
9870input:2: World!
9871@end example
9872
0e14ad77
PE
9873Therefore, whenever you change @code{yyin}, you must tell the
9874Lex-generated scanner to discard its current buffer and switch to the
9875new one. This depends upon your implementation of Lex; see its
9876documentation for more. For Flex, it suffices to call
9877@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
9878Flex-generated scanner needs to read from several input streams to
9879handle features like include files, you might consider using Flex
9880functions like @samp{yy_switch_to_buffer} that manipulate multiple
9881input buffers.
5b066063 9882
b165c324
AD
9883If your Flex-generated scanner uses start conditions (@pxref{Start
9884conditions, , Start conditions, flex, The Flex Manual}), you might
9885also want to reset the scanner's state, i.e., go back to the initial
9886start condition, through a call to @samp{BEGIN (0)}.
9887
fef4cb51
AD
9888@node Strings are Destroyed
9889@section Strings are Destroyed
9890
9891@display
c7e441b4 9892My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
9893them. Instead of reporting @samp{"foo", "bar"}, it reports
9894@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
9895@end display
9896
9897This error is probably the single most frequent ``bug report'' sent to
9898Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 9899of the scanner. Consider the following Lex code:
fef4cb51
AD
9900
9901@verbatim
9902%{
9903#include <stdio.h>
9904char *yylval = NULL;
9905%}
9906%%
9907.* yylval = yytext; return 1;
9908\n /* IGNORE */
9909%%
9910int
9911main ()
9912{
fa7e68c3 9913 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
9914 char *fst = (yylex (), yylval);
9915 char *snd = (yylex (), yylval);
9916 printf ("\"%s\", \"%s\"\n", fst, snd);
9917 return 0;
9918}
9919@end verbatim
9920
9921If you compile and run this code, you get:
9922
9923@example
9924$ @kbd{flex -osplit-lines.c split-lines.l}
9925$ @kbd{gcc -osplit-lines split-lines.c -ll}
9926$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9927"one
9928two", "two"
9929@end example
9930
9931@noindent
9932this is because @code{yytext} is a buffer provided for @emph{reading}
9933in the action, but if you want to keep it, you have to duplicate it
9934(e.g., using @code{strdup}). Note that the output may depend on how
9935your implementation of Lex handles @code{yytext}. For instance, when
9936given the Lex compatibility option @option{-l} (which triggers the
9937option @samp{%array}) Flex generates a different behavior:
9938
9939@example
9940$ @kbd{flex -l -osplit-lines.c split-lines.l}
9941$ @kbd{gcc -osplit-lines split-lines.c -ll}
9942$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9943"two", "two"
9944@end example
9945
9946
2fa09258
AD
9947@node Implementing Gotos/Loops
9948@section Implementing Gotos/Loops
a06ea4aa
AD
9949
9950@display
9951My simple calculator supports variables, assignments, and functions,
2fa09258 9952but how can I implement gotos, or loops?
a06ea4aa
AD
9953@end display
9954
9955Although very pedagogical, the examples included in the document blur
a1c84f45 9956the distinction to make between the parser---whose job is to recover
a06ea4aa 9957the structure of a text and to transmit it to subsequent modules of
a1c84f45 9958the program---and the processing (such as the execution) of this
a06ea4aa
AD
9959structure. This works well with so called straight line programs,
9960i.e., precisely those that have a straightforward execution model:
9961execute simple instructions one after the others.
9962
9963@cindex abstract syntax tree
35430378 9964@cindex AST
a06ea4aa
AD
9965If you want a richer model, you will probably need to use the parser
9966to construct a tree that does represent the structure it has
9967recovered; this tree is usually called the @dfn{abstract syntax tree},
35430378 9968or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
9969traversing it in various ways, will enable treatments such as its
9970execution or its translation, which will result in an interpreter or a
9971compiler.
9972
9973This topic is way beyond the scope of this manual, and the reader is
9974invited to consult the dedicated literature.
9975
9976
ed2e6384
AD
9977@node Multiple start-symbols
9978@section Multiple start-symbols
9979
9980@display
9981I have several closely related grammars, and I would like to share their
9982implementations. In fact, I could use a single grammar but with
9983multiple entry points.
9984@end display
9985
9986Bison does not support multiple start-symbols, but there is a very
9987simple means to simulate them. If @code{foo} and @code{bar} are the two
9988pseudo start-symbols, then introduce two new tokens, say
9989@code{START_FOO} and @code{START_BAR}, and use them as switches from the
9990real start-symbol:
9991
9992@example
9993%token START_FOO START_BAR;
9994%start start;
9995start: START_FOO foo
9996 | START_BAR bar;
9997@end example
9998
9999These tokens prevents the introduction of new conflicts. As far as the
10000parser goes, that is all that is needed.
10001
10002Now the difficult part is ensuring that the scanner will send these
10003tokens first. If your scanner is hand-written, that should be
10004straightforward. If your scanner is generated by Lex, them there is
10005simple means to do it: recall that anything between @samp{%@{ ... %@}}
10006after the first @code{%%} is copied verbatim in the top of the generated
10007@code{yylex} function. Make sure a variable @code{start_token} is
10008available in the scanner (e.g., a global variable or using
10009@code{%lex-param} etc.), and use the following:
10010
10011@example
10012 /* @r{Prologue.} */
10013%%
10014%@{
10015 if (start_token)
10016 @{
10017 int t = start_token;
10018 start_token = 0;
10019 return t;
10020 @}
10021%@}
10022 /* @r{The rules.} */
10023@end example
10024
10025
55ba27be
AD
10026@node Secure? Conform?
10027@section Secure? Conform?
10028
10029@display
10030Is Bison secure? Does it conform to POSIX?
10031@end display
10032
10033If you're looking for a guarantee or certification, we don't provide it.
10034However, Bison is intended to be a reliable program that conforms to the
35430378 10035POSIX specification for Yacc. If you run into problems,
55ba27be
AD
10036please send us a bug report.
10037
10038@node I can't build Bison
10039@section I can't build Bison
10040
10041@display
8c5b881d
PE
10042I can't build Bison because @command{make} complains that
10043@code{msgfmt} is not found.
55ba27be
AD
10044What should I do?
10045@end display
10046
10047Like most GNU packages with internationalization support, that feature
10048is turned on by default. If you have problems building in the @file{po}
10049subdirectory, it indicates that your system's internationalization
10050support is lacking. You can re-configure Bison with
10051@option{--disable-nls} to turn off this support, or you can install GNU
10052gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
10053Bison. See the file @file{ABOUT-NLS} for more information.
10054
10055
10056@node Where can I find help?
10057@section Where can I find help?
10058
10059@display
10060I'm having trouble using Bison. Where can I find help?
10061@end display
10062
10063First, read this fine manual. Beyond that, you can send mail to
10064@email{help-bison@@gnu.org}. This mailing list is intended to be
10065populated with people who are willing to answer questions about using
10066and installing Bison. Please keep in mind that (most of) the people on
10067the list have aspects of their lives which are not related to Bison (!),
10068so you may not receive an answer to your question right away. This can
10069be frustrating, but please try not to honk them off; remember that any
10070help they provide is purely voluntary and out of the kindness of their
10071hearts.
10072
10073@node Bug Reports
10074@section Bug Reports
10075
10076@display
10077I found a bug. What should I include in the bug report?
10078@end display
10079
10080Before you send a bug report, make sure you are using the latest
10081version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
10082mirrors. Be sure to include the version number in your bug report. If
10083the bug is present in the latest version but not in a previous version,
10084try to determine the most recent version which did not contain the bug.
10085
10086If the bug is parser-related, you should include the smallest grammar
10087you can which demonstrates the bug. The grammar file should also be
10088complete (i.e., I should be able to run it through Bison without having
10089to edit or add anything). The smaller and simpler the grammar, the
10090easier it will be to fix the bug.
10091
10092Include information about your compilation environment, including your
10093operating system's name and version and your compiler's name and
10094version. If you have trouble compiling, you should also include a
10095transcript of the build session, starting with the invocation of
10096`configure'. Depending on the nature of the bug, you may be asked to
10097send additional files as well (such as `config.h' or `config.cache').
10098
10099Patches are most welcome, but not required. That is, do not hesitate to
10100send a bug report just because you can not provide a fix.
10101
10102Send bug reports to @email{bug-bison@@gnu.org}.
10103
8405b70c
PB
10104@node More Languages
10105@section More Languages
55ba27be
AD
10106
10107@display
8405b70c 10108Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
10109favorite language here}?
10110@end display
10111
8405b70c 10112C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
10113languages; contributions are welcome.
10114
10115@node Beta Testing
10116@section Beta Testing
10117
10118@display
10119What is involved in being a beta tester?
10120@end display
10121
10122It's not terribly involved. Basically, you would download a test
10123release, compile it, and use it to build and run a parser or two. After
10124that, you would submit either a bug report or a message saying that
10125everything is okay. It is important to report successes as well as
10126failures because test releases eventually become mainstream releases,
10127but only if they are adequately tested. If no one tests, development is
10128essentially halted.
10129
10130Beta testers are particularly needed for operating systems to which the
10131developers do not have easy access. They currently have easy access to
10132recent GNU/Linux and Solaris versions. Reports about other operating
10133systems are especially welcome.
10134
10135@node Mailing Lists
10136@section Mailing Lists
10137
10138@display
10139How do I join the help-bison and bug-bison mailing lists?
10140@end display
10141
10142See @url{http://lists.gnu.org/}.
a06ea4aa 10143
d1a1114f
AD
10144@c ================================================= Table of Symbols
10145
342b8b6e 10146@node Table of Symbols
bfa74976
RS
10147@appendix Bison Symbols
10148@cindex Bison symbols, table of
10149@cindex symbols in Bison, table of
10150
18b519c0 10151@deffn {Variable} @@$
3ded9a63 10152In an action, the location of the left-hand side of the rule.
88bce5a2 10153@xref{Locations, , Locations Overview}.
18b519c0 10154@end deffn
3ded9a63 10155
18b519c0 10156@deffn {Variable} @@@var{n}
3ded9a63
AD
10157In an action, the location of the @var{n}-th symbol of the right-hand
10158side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 10159@end deffn
3ded9a63 10160
1f68dca5
AR
10161@deffn {Variable} @@@var{name}
10162In an action, the location of a symbol addressed by name.
10163@xref{Locations, , Locations Overview}.
10164@end deffn
10165
10166@deffn {Variable} @@[@var{name}]
10167In an action, the location of a symbol addressed by name.
10168@xref{Locations, , Locations Overview}.
10169@end deffn
10170
18b519c0 10171@deffn {Variable} $$
3ded9a63
AD
10172In an action, the semantic value of the left-hand side of the rule.
10173@xref{Actions}.
18b519c0 10174@end deffn
3ded9a63 10175
18b519c0 10176@deffn {Variable} $@var{n}
3ded9a63
AD
10177In an action, the semantic value of the @var{n}-th symbol of the
10178right-hand side of the rule. @xref{Actions}.
18b519c0 10179@end deffn
3ded9a63 10180
1f68dca5
AR
10181@deffn {Variable} $@var{name}
10182In an action, the semantic value of a symbol addressed by name.
10183@xref{Actions}.
10184@end deffn
10185
10186@deffn {Variable} $[@var{name}]
10187In an action, the semantic value of a symbol addressed by name.
10188@xref{Actions}.
10189@end deffn
10190
dd8d9022
AD
10191@deffn {Delimiter} %%
10192Delimiter used to separate the grammar rule section from the
10193Bison declarations section or the epilogue.
10194@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 10195@end deffn
bfa74976 10196
dd8d9022
AD
10197@c Don't insert spaces, or check the DVI output.
10198@deffn {Delimiter} %@{@var{code}%@}
9913d6e4
JD
10199All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
10200to the parser implementation file. Such code forms the prologue of
10201the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 10202Grammar}.
18b519c0 10203@end deffn
bfa74976 10204
dd8d9022
AD
10205@deffn {Construct} /*@dots{}*/
10206Comment delimiters, as in C.
18b519c0 10207@end deffn
bfa74976 10208
dd8d9022
AD
10209@deffn {Delimiter} :
10210Separates a rule's result from its components. @xref{Rules, ,Syntax of
10211Grammar Rules}.
18b519c0 10212@end deffn
bfa74976 10213
dd8d9022
AD
10214@deffn {Delimiter} ;
10215Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10216@end deffn
bfa74976 10217
dd8d9022
AD
10218@deffn {Delimiter} |
10219Separates alternate rules for the same result nonterminal.
10220@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10221@end deffn
bfa74976 10222
12e35840
JD
10223@deffn {Directive} <*>
10224Used to define a default tagged @code{%destructor} or default tagged
10225@code{%printer}.
85894313
JD
10226
10227This feature is experimental.
10228More user feedback will help to determine whether it should become a permanent
10229feature.
10230
12e35840
JD
10231@xref{Destructor Decl, , Freeing Discarded Symbols}.
10232@end deffn
10233
3ebecc24 10234@deffn {Directive} <>
12e35840
JD
10235Used to define a default tagless @code{%destructor} or default tagless
10236@code{%printer}.
85894313
JD
10237
10238This feature is experimental.
10239More user feedback will help to determine whether it should become a permanent
10240feature.
10241
12e35840
JD
10242@xref{Destructor Decl, , Freeing Discarded Symbols}.
10243@end deffn
10244
dd8d9022
AD
10245@deffn {Symbol} $accept
10246The predefined nonterminal whose only rule is @samp{$accept: @var{start}
10247$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
10248Start-Symbol}. It cannot be used in the grammar.
18b519c0 10249@end deffn
bfa74976 10250
136a0f76 10251@deffn {Directive} %code @{@var{code}@}
148d66d8 10252@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
406dec82
JD
10253Insert @var{code} verbatim into the output parser source at the
10254default location or at the location specified by @var{qualifier}.
8e6f2266 10255@xref{%code Summary}.
9bc0dd67 10256@end deffn
9bc0dd67 10257
18b519c0 10258@deffn {Directive} %debug
6deb4447 10259Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 10260@end deffn
6deb4447 10261
91d2c560 10262@ifset defaultprec
22fccf95
PE
10263@deffn {Directive} %default-prec
10264Assign a precedence to rules that lack an explicit @samp{%prec}
10265modifier. @xref{Contextual Precedence, ,Context-Dependent
10266Precedence}.
39a06c25 10267@end deffn
91d2c560 10268@end ifset
39a06c25 10269
148d66d8
JD
10270@deffn {Directive} %define @var{define-variable}
10271@deffnx {Directive} %define @var{define-variable} @var{value}
f37495f6 10272@deffnx {Directive} %define @var{define-variable} "@var{value}"
2f4518a1 10273Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
10274@end deffn
10275
18b519c0 10276@deffn {Directive} %defines
9913d6e4
JD
10277Bison declaration to create a parser header file, which is usually
10278meant for the scanner. @xref{Decl Summary}.
18b519c0 10279@end deffn
6deb4447 10280
02975b9a
JD
10281@deffn {Directive} %defines @var{defines-file}
10282Same as above, but save in the file @var{defines-file}.
10283@xref{Decl Summary}.
10284@end deffn
10285
18b519c0 10286@deffn {Directive} %destructor
258b75ca 10287Specify how the parser should reclaim the memory associated to
fa7e68c3 10288discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 10289@end deffn
72f889cc 10290
18b519c0 10291@deffn {Directive} %dprec
676385e2 10292Bison declaration to assign a precedence to a rule that is used at parse
c827f760 10293time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
35430378 10294GLR Parsers}.
18b519c0 10295@end deffn
676385e2 10296
dd8d9022
AD
10297@deffn {Symbol} $end
10298The predefined token marking the end of the token stream. It cannot be
10299used in the grammar.
10300@end deffn
10301
10302@deffn {Symbol} error
10303A token name reserved for error recovery. This token may be used in
10304grammar rules so as to allow the Bison parser to recognize an error in
10305the grammar without halting the process. In effect, a sentence
10306containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
10307token @code{error} becomes the current lookahead token. Actions
10308corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
10309token is reset to the token that originally caused the violation.
10310@xref{Error Recovery}.
18d192f0
AD
10311@end deffn
10312
18b519c0 10313@deffn {Directive} %error-verbose
2a8d363a
AD
10314Bison declaration to request verbose, specific error message strings
10315when @code{yyerror} is called.
18b519c0 10316@end deffn
2a8d363a 10317
02975b9a 10318@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 10319Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 10320Summary}.
18b519c0 10321@end deffn
d8988b2f 10322
18b519c0 10323@deffn {Directive} %glr-parser
35430378
JD
10324Bison declaration to produce a GLR parser. @xref{GLR
10325Parsers, ,Writing GLR Parsers}.
18b519c0 10326@end deffn
676385e2 10327
dd8d9022
AD
10328@deffn {Directive} %initial-action
10329Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
10330@end deffn
10331
e6e704dc
JD
10332@deffn {Directive} %language
10333Specify the programming language for the generated parser.
10334@xref{Decl Summary}.
10335@end deffn
10336
18b519c0 10337@deffn {Directive} %left
bfa74976
RS
10338Bison declaration to assign left associativity to token(s).
10339@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10340@end deffn
bfa74976 10341
feeb0eda 10342@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
10343Bison declaration to specifying an additional parameter that
10344@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
10345for Pure Parsers}.
18b519c0 10346@end deffn
2a8d363a 10347
18b519c0 10348@deffn {Directive} %merge
676385e2 10349Bison declaration to assign a merging function to a rule. If there is a
fae437e8 10350reduce/reduce conflict with a rule having the same merging function, the
676385e2 10351function is applied to the two semantic values to get a single result.
35430378 10352@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 10353@end deffn
676385e2 10354
02975b9a 10355@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 10356Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 10357@end deffn
d8988b2f 10358
91d2c560 10359@ifset defaultprec
22fccf95
PE
10360@deffn {Directive} %no-default-prec
10361Do not assign a precedence to rules that lack an explicit @samp{%prec}
10362modifier. @xref{Contextual Precedence, ,Context-Dependent
10363Precedence}.
10364@end deffn
91d2c560 10365@end ifset
22fccf95 10366
18b519c0 10367@deffn {Directive} %no-lines
931c7513 10368Bison declaration to avoid generating @code{#line} directives in the
9913d6e4 10369parser implementation file. @xref{Decl Summary}.
18b519c0 10370@end deffn
931c7513 10371
18b519c0 10372@deffn {Directive} %nonassoc
9d9b8b70 10373Bison declaration to assign nonassociativity to token(s).
bfa74976 10374@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10375@end deffn
bfa74976 10376
02975b9a 10377@deffn {Directive} %output "@var{file}"
9913d6e4
JD
10378Bison declaration to set the name of the parser implementation file.
10379@xref{Decl Summary}.
18b519c0 10380@end deffn
d8988b2f 10381
feeb0eda 10382@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
10383Bison declaration to specifying an additional parameter that
10384@code{yyparse} should accept. @xref{Parser Function,, The Parser
10385Function @code{yyparse}}.
18b519c0 10386@end deffn
2a8d363a 10387
18b519c0 10388@deffn {Directive} %prec
bfa74976
RS
10389Bison declaration to assign a precedence to a specific rule.
10390@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 10391@end deffn
bfa74976 10392
18b519c0 10393@deffn {Directive} %pure-parser
2f4518a1
JD
10394Deprecated version of @code{%define api.pure} (@pxref{%define
10395Summary,,api.pure}), for which Bison is more careful to warn about
10396unreasonable usage.
18b519c0 10397@end deffn
bfa74976 10398
b50d2359 10399@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
10400Require version @var{version} or higher of Bison. @xref{Require Decl, ,
10401Require a Version of Bison}.
b50d2359
AD
10402@end deffn
10403
18b519c0 10404@deffn {Directive} %right
bfa74976
RS
10405Bison declaration to assign right associativity to token(s).
10406@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10407@end deffn
bfa74976 10408
e6e704dc
JD
10409@deffn {Directive} %skeleton
10410Specify the skeleton to use; usually for development.
10411@xref{Decl Summary}.
10412@end deffn
10413
18b519c0 10414@deffn {Directive} %start
704a47c4
AD
10415Bison declaration to specify the start symbol. @xref{Start Decl, ,The
10416Start-Symbol}.
18b519c0 10417@end deffn
bfa74976 10418
18b519c0 10419@deffn {Directive} %token
bfa74976
RS
10420Bison declaration to declare token(s) without specifying precedence.
10421@xref{Token Decl, ,Token Type Names}.
18b519c0 10422@end deffn
bfa74976 10423
18b519c0 10424@deffn {Directive} %token-table
9913d6e4
JD
10425Bison declaration to include a token name table in the parser
10426implementation file. @xref{Decl Summary}.
18b519c0 10427@end deffn
931c7513 10428
18b519c0 10429@deffn {Directive} %type
704a47c4
AD
10430Bison declaration to declare nonterminals. @xref{Type Decl,
10431,Nonterminal Symbols}.
18b519c0 10432@end deffn
bfa74976 10433
dd8d9022
AD
10434@deffn {Symbol} $undefined
10435The predefined token onto which all undefined values returned by
10436@code{yylex} are mapped. It cannot be used in the grammar, rather, use
10437@code{error}.
10438@end deffn
10439
18b519c0 10440@deffn {Directive} %union
bfa74976
RS
10441Bison declaration to specify several possible data types for semantic
10442values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 10443@end deffn
bfa74976 10444
dd8d9022
AD
10445@deffn {Macro} YYABORT
10446Macro to pretend that an unrecoverable syntax error has occurred, by
10447making @code{yyparse} return 1 immediately. The error reporting
10448function @code{yyerror} is not called. @xref{Parser Function, ,The
10449Parser Function @code{yyparse}}.
8405b70c
PB
10450
10451For Java parsers, this functionality is invoked using @code{return YYABORT;}
10452instead.
dd8d9022 10453@end deffn
3ded9a63 10454
dd8d9022
AD
10455@deffn {Macro} YYACCEPT
10456Macro to pretend that a complete utterance of the language has been
10457read, by making @code{yyparse} return 0 immediately.
10458@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
10459
10460For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
10461instead.
dd8d9022 10462@end deffn
bfa74976 10463
dd8d9022 10464@deffn {Macro} YYBACKUP
742e4900 10465Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 10466token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10467@end deffn
bfa74976 10468
dd8d9022 10469@deffn {Variable} yychar
32c29292 10470External integer variable that contains the integer value of the
742e4900 10471lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
10472@code{yyparse}.) Error-recovery rule actions may examine this variable.
10473@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10474@end deffn
bfa74976 10475
dd8d9022
AD
10476@deffn {Variable} yyclearin
10477Macro used in error-recovery rule actions. It clears the previous
742e4900 10478lookahead token. @xref{Error Recovery}.
18b519c0 10479@end deffn
bfa74976 10480
dd8d9022
AD
10481@deffn {Macro} YYDEBUG
10482Macro to define to equip the parser with tracing code. @xref{Tracing,
10483,Tracing Your Parser}.
18b519c0 10484@end deffn
bfa74976 10485
dd8d9022
AD
10486@deffn {Variable} yydebug
10487External integer variable set to zero by default. If @code{yydebug}
10488is given a nonzero value, the parser will output information on input
10489symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 10490@end deffn
bfa74976 10491
dd8d9022
AD
10492@deffn {Macro} yyerrok
10493Macro to cause parser to recover immediately to its normal mode
10494after a syntax error. @xref{Error Recovery}.
10495@end deffn
10496
10497@deffn {Macro} YYERROR
10498Macro to pretend that a syntax error has just been detected: call
10499@code{yyerror} and then perform normal error recovery if possible
10500(@pxref{Error Recovery}), or (if recovery is impossible) make
10501@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
10502
10503For Java parsers, this functionality is invoked using @code{return YYERROR;}
10504instead.
dd8d9022
AD
10505@end deffn
10506
10507@deffn {Function} yyerror
10508User-supplied function to be called by @code{yyparse} on error.
10509@xref{Error Reporting, ,The Error
10510Reporting Function @code{yyerror}}.
10511@end deffn
10512
10513@deffn {Macro} YYERROR_VERBOSE
10514An obsolete macro that you define with @code{#define} in the prologue
10515to request verbose, specific error message strings
10516when @code{yyerror} is called. It doesn't matter what definition you
10517use for @code{YYERROR_VERBOSE}, just whether you define it. Using
10518@code{%error-verbose} is preferred.
10519@end deffn
10520
10521@deffn {Macro} YYINITDEPTH
10522Macro for specifying the initial size of the parser stack.
1a059451 10523@xref{Memory Management}.
dd8d9022
AD
10524@end deffn
10525
10526@deffn {Function} yylex
10527User-supplied lexical analyzer function, called with no arguments to get
10528the next token. @xref{Lexical, ,The Lexical Analyzer Function
10529@code{yylex}}.
10530@end deffn
10531
10532@deffn {Macro} YYLEX_PARAM
10533An obsolete macro for specifying an extra argument (or list of extra
32c29292 10534arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
10535macro is deprecated, and is supported only for Yacc like parsers.
10536@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
10537@end deffn
10538
10539@deffn {Variable} yylloc
10540External variable in which @code{yylex} should place the line and column
10541numbers associated with a token. (In a pure parser, it is a local
10542variable within @code{yyparse}, and its address is passed to
32c29292
JD
10543@code{yylex}.)
10544You can ignore this variable if you don't use the @samp{@@} feature in the
10545grammar actions.
10546@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 10547In semantic actions, it stores the location of the lookahead token.
32c29292 10548@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
10549@end deffn
10550
10551@deffn {Type} YYLTYPE
10552Data type of @code{yylloc}; by default, a structure with four
10553members. @xref{Location Type, , Data Types of Locations}.
10554@end deffn
10555
10556@deffn {Variable} yylval
10557External variable in which @code{yylex} should place the semantic
10558value associated with a token. (In a pure parser, it is a local
10559variable within @code{yyparse}, and its address is passed to
32c29292
JD
10560@code{yylex}.)
10561@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 10562In semantic actions, it stores the semantic value of the lookahead token.
32c29292 10563@xref{Actions, ,Actions}.
dd8d9022
AD
10564@end deffn
10565
10566@deffn {Macro} YYMAXDEPTH
1a059451
PE
10567Macro for specifying the maximum size of the parser stack. @xref{Memory
10568Management}.
dd8d9022
AD
10569@end deffn
10570
10571@deffn {Variable} yynerrs
8a2800e7 10572Global variable which Bison increments each time it reports a syntax error.
f4101aa6 10573(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 10574pure push parser, it is a member of yypstate.)
dd8d9022
AD
10575@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
10576@end deffn
10577
10578@deffn {Function} yyparse
10579The parser function produced by Bison; call this function to start
10580parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
10581@end deffn
10582
9987d1b3 10583@deffn {Function} yypstate_delete
f4101aa6 10584The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 10585call this function to delete the memory associated with a parser.
f4101aa6 10586@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 10587@code{yypstate_delete}}.
59da312b
JD
10588(The current push parsing interface is experimental and may evolve.
10589More user feedback will help to stabilize it.)
9987d1b3
JD
10590@end deffn
10591
10592@deffn {Function} yypstate_new
f4101aa6 10593The function to create a parser instance, produced by Bison in push mode;
9987d1b3 10594call this function to create a new parser.
f4101aa6 10595@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 10596@code{yypstate_new}}.
59da312b
JD
10597(The current push parsing interface is experimental and may evolve.
10598More user feedback will help to stabilize it.)
9987d1b3
JD
10599@end deffn
10600
10601@deffn {Function} yypull_parse
f4101aa6
AD
10602The parser function produced by Bison in push mode; call this function to
10603parse the rest of the input stream.
10604@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 10605@code{yypull_parse}}.
59da312b
JD
10606(The current push parsing interface is experimental and may evolve.
10607More user feedback will help to stabilize it.)
9987d1b3
JD
10608@end deffn
10609
10610@deffn {Function} yypush_parse
f4101aa6
AD
10611The parser function produced by Bison in push mode; call this function to
10612parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 10613@code{yypush_parse}}.
59da312b
JD
10614(The current push parsing interface is experimental and may evolve.
10615More user feedback will help to stabilize it.)
9987d1b3
JD
10616@end deffn
10617
dd8d9022
AD
10618@deffn {Macro} YYPARSE_PARAM
10619An obsolete macro for specifying the name of a parameter that
10620@code{yyparse} should accept. The use of this macro is deprecated, and
10621is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
10622Conventions for Pure Parsers}.
10623@end deffn
10624
10625@deffn {Macro} YYRECOVERING
02103984
PE
10626The expression @code{YYRECOVERING ()} yields 1 when the parser
10627is recovering from a syntax error, and 0 otherwise.
10628@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
10629@end deffn
10630
10631@deffn {Macro} YYSTACK_USE_ALLOCA
34a6c2d1
JD
10632Macro used to control the use of @code{alloca} when the
10633deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
10634the parser will use @code{malloc} to extend its stacks. If defined to
106351, the parser will use @code{alloca}. Values other than 0 and 1 are
10636reserved for future Bison extensions. If not defined,
10637@code{YYSTACK_USE_ALLOCA} defaults to 0.
10638
55289366 10639In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
10640limited stack and with unreliable stack-overflow checking, you should
10641set @code{YYMAXDEPTH} to a value that cannot possibly result in
10642unchecked stack overflow on any of your target hosts when
10643@code{alloca} is called. You can inspect the code that Bison
10644generates in order to determine the proper numeric values. This will
10645require some expertise in low-level implementation details.
dd8d9022
AD
10646@end deffn
10647
10648@deffn {Type} YYSTYPE
10649Data type of semantic values; @code{int} by default.
10650@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 10651@end deffn
bfa74976 10652
342b8b6e 10653@node Glossary
bfa74976
RS
10654@appendix Glossary
10655@cindex glossary
10656
10657@table @asis
34a6c2d1
JD
10658@item Accepting State
10659A state whose only action is the accept action.
10660The accepting state is thus a consistent state.
10661@xref{Understanding,,}.
10662
35430378 10663@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
10664Formal method of specifying context-free grammars originally proposed
10665by John Backus, and slightly improved by Peter Naur in his 1960-01-02
10666committee document contributing to what became the Algol 60 report.
10667@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 10668
34a6c2d1 10669@item Consistent State
2f4518a1
JD
10670A state containing only one possible action. @xref{%define
10671Summary,,lr.default-reductions}.
34a6c2d1 10672
bfa74976
RS
10673@item Context-free grammars
10674Grammars specified as rules that can be applied regardless of context.
10675Thus, if there is a rule which says that an integer can be used as an
10676expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
10677permitted. @xref{Language and Grammar, ,Languages and Context-Free
10678Grammars}.
bfa74976 10679
620b5727
JD
10680@item Default Reduction
10681The reduction that a parser should perform if the current parser state
2f4518a1
JD
10682contains no other action for the lookahead token. In permitted parser
10683states, Bison declares the reduction with the largest lookahead set to
10684be the default reduction and removes that lookahead set.
10685@xref{%define Summary,,lr.default-reductions}.
34a6c2d1 10686
bfa74976
RS
10687@item Dynamic allocation
10688Allocation of memory that occurs during execution, rather than at
10689compile time or on entry to a function.
10690
10691@item Empty string
10692Analogous to the empty set in set theory, the empty string is a
10693character string of length zero.
10694
10695@item Finite-state stack machine
10696A ``machine'' that has discrete states in which it is said to exist at
10697each instant in time. As input to the machine is processed, the
10698machine moves from state to state as specified by the logic of the
10699machine. In the case of the parser, the input is the language being
10700parsed, and the states correspond to various stages in the grammar
c827f760 10701rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 10702
35430378 10703@item Generalized LR (GLR)
676385e2 10704A parsing algorithm that can handle all context-free grammars, including those
35430378 10705that are not LR(1). It resolves situations that Bison's
34a6c2d1 10706deterministic parsing
676385e2
PH
10707algorithm cannot by effectively splitting off multiple parsers, trying all
10708possible parsers, and discarding those that fail in the light of additional
c827f760 10709right context. @xref{Generalized LR Parsing, ,Generalized
35430378 10710LR Parsing}.
676385e2 10711
bfa74976
RS
10712@item Grouping
10713A language construct that is (in general) grammatically divisible;
c827f760 10714for example, `expression' or `declaration' in C@.
bfa74976
RS
10715@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10716
35430378 10717@item IELR(1)
2f4518a1
JD
10718A minimal LR(1) parser table generation algorithm. That is, given any
10719context-free grammar, IELR(1) generates parser tables with the full
10720language recognition power of canonical LR(1) but with nearly the same
10721number of parser states as LALR(1). This reduction in parser states
10722is often an order of magnitude. More importantly, because canonical
10723LR(1)'s extra parser states may contain duplicate conflicts in the
10724case of non-LR(1) grammars, the number of conflicts for IELR(1) is
10725often an order of magnitude less as well. This can significantly
10726reduce the complexity of developing of a grammar. @xref{%define
10727Summary,,lr.type}.
34a6c2d1 10728
bfa74976
RS
10729@item Infix operator
10730An arithmetic operator that is placed between the operands on which it
10731performs some operation.
10732
10733@item Input stream
10734A continuous flow of data between devices or programs.
10735
35430378 10736@item LAC (Lookahead Correction)
4c38b19e 10737A parsing mechanism that fixes the problem of delayed syntax error
2f4518a1
JD
10738detection, which is caused by LR state merging, default reductions,
10739and the use of @code{%nonassoc}. Delayed syntax error detection
10740results in unexpected semantic actions, initiation of error recovery
10741in the wrong syntactic context, and an incorrect list of expected
10742tokens in a verbose syntax error message. @xref{%define
10743Summary,,parse.lac}.
4c38b19e 10744
bfa74976
RS
10745@item Language construct
10746One of the typical usage schemas of the language. For example, one of
10747the constructs of the C language is the @code{if} statement.
10748@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10749
10750@item Left associativity
10751Operators having left associativity are analyzed from left to right:
10752@samp{a+b+c} first computes @samp{a+b} and then combines with
10753@samp{c}. @xref{Precedence, ,Operator Precedence}.
10754
10755@item Left recursion
89cab50d
AD
10756A rule whose result symbol is also its first component symbol; for
10757example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
10758Rules}.
bfa74976
RS
10759
10760@item Left-to-right parsing
10761Parsing a sentence of a language by analyzing it token by token from
c827f760 10762left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10763
10764@item Lexical analyzer (scanner)
10765A function that reads an input stream and returns tokens one by one.
10766@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
10767
10768@item Lexical tie-in
10769A flag, set by actions in the grammar rules, which alters the way
10770tokens are parsed. @xref{Lexical Tie-ins}.
10771
931c7513 10772@item Literal string token
14ded682 10773A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 10774
742e4900
JD
10775@item Lookahead token
10776A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 10777Tokens}.
bfa74976 10778
35430378 10779@item LALR(1)
bfa74976 10780The class of context-free grammars that Bison (like most other parser
35430378 10781generators) can handle by default; a subset of LR(1).
34a6c2d1 10782@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 10783
35430378 10784@item LR(1)
bfa74976 10785The class of context-free grammars in which at most one token of
742e4900 10786lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
10787
10788@item Nonterminal symbol
10789A grammar symbol standing for a grammatical construct that can
10790be expressed through rules in terms of smaller constructs; in other
10791words, a construct that is not a token. @xref{Symbols}.
10792
bfa74976
RS
10793@item Parser
10794A function that recognizes valid sentences of a language by analyzing
10795the syntax structure of a set of tokens passed to it from a lexical
10796analyzer.
10797
10798@item Postfix operator
10799An arithmetic operator that is placed after the operands upon which it
10800performs some operation.
10801
10802@item Reduction
10803Replacing a string of nonterminals and/or terminals with a single
89cab50d 10804nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 10805Parser Algorithm}.
bfa74976
RS
10806
10807@item Reentrant
10808A reentrant subprogram is a subprogram which can be in invoked any
10809number of times in parallel, without interference between the various
10810invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
10811
10812@item Reverse polish notation
10813A language in which all operators are postfix operators.
10814
10815@item Right recursion
89cab50d
AD
10816A rule whose result symbol is also its last component symbol; for
10817example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
10818Rules}.
bfa74976
RS
10819
10820@item Semantics
10821In computer languages, the semantics are specified by the actions
10822taken for each instance of the language, i.e., the meaning of
10823each statement. @xref{Semantics, ,Defining Language Semantics}.
10824
10825@item Shift
10826A parser is said to shift when it makes the choice of analyzing
10827further input from the stream rather than reducing immediately some
c827f760 10828already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10829
10830@item Single-character literal
10831A single character that is recognized and interpreted as is.
10832@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
10833
10834@item Start symbol
10835The nonterminal symbol that stands for a complete valid utterance in
10836the language being parsed. The start symbol is usually listed as the
13863333 10837first nonterminal symbol in a language specification.
bfa74976
RS
10838@xref{Start Decl, ,The Start-Symbol}.
10839
10840@item Symbol table
10841A data structure where symbol names and associated data are stored
10842during parsing to allow for recognition and use of existing
10843information in repeated uses of a symbol. @xref{Multi-function Calc}.
10844
6e649e65
PE
10845@item Syntax error
10846An error encountered during parsing of an input stream due to invalid
10847syntax. @xref{Error Recovery}.
10848
bfa74976
RS
10849@item Token
10850A basic, grammatically indivisible unit of a language. The symbol
10851that describes a token in the grammar is a terminal symbol.
10852The input of the Bison parser is a stream of tokens which comes from
10853the lexical analyzer. @xref{Symbols}.
10854
10855@item Terminal symbol
89cab50d
AD
10856A grammar symbol that has no rules in the grammar and therefore is
10857grammatically indivisible. The piece of text it represents is a token.
10858@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
10859@end table
10860
342b8b6e 10861@node Copying This Manual
f2b5126e 10862@appendix Copying This Manual
f2b5126e
PB
10863@include fdl.texi
10864
71caec06
JD
10865@node Bibliography
10866@unnumbered Bibliography
10867
10868@table @asis
10869@item [Denny 2008]
10870Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
10871for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
108722008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
10873pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
10874
10875@item [Denny 2010 May]
10876Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
10877Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
10878University, Clemson, SC, USA (May 2010).
10879@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
10880
10881@item [Denny 2010 November]
10882Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
10883Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
10884in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
108852010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
10886
10887@item [DeRemer 1982]
10888Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
10889Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
10890Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
10891615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
10892
10893@item [Knuth 1965]
10894Donald E. Knuth, On the Translation of Languages from Left to Right, in
10895@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
10896607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
10897
10898@item [Scott 2000]
10899Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
10900@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
10901London, Department of Computer Science, TR-00-12 (December 2000).
10902@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
10903@end table
10904
342b8b6e 10905@node Index
bfa74976
RS
10906@unnumbered Index
10907
10908@printindex cp
10909
bfa74976 10910@bye
a06ea4aa 10911
232be91a
AD
10912@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
10913@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
10914@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
10915@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
10916@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
10917@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
10918@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
10919@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
10920@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
10921@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
10922@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
10923@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
10924@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
10925@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym enum
10926@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
10927@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
10928@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
10929@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
10930@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
10931@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
10932@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
10933@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
10934@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
10935@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype Lookahead
10936@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
10937@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
10938@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
10939@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
10940@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
4c38b19e 10941@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
232be91a 10942@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs
9913d6e4 10943@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC
232be91a
AD
10944@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
10945@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative
10946@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
10947@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
10948@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
10949@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz
10950@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
9913d6e4 10951@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno
232be91a
AD
10952@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
10953@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
10954@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
10955@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
10956@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc
10957@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
10958@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
10959@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
10960@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
10961@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
840341d6 10962@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett
232be91a 10963@c LocalWords: subdirectory Solaris nonassociativity
f3103c5b
AD
10964
10965@c Local Variables:
10966@c ispell-dictionary: "american"
10967@c fill-column: 76
10968@c End: