]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
Pacify ./configure --enable-gcc-warnings.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
e1145ad8
AD
33This manual (@value{UPDATED}) is for @acronym{GNU} Bison (version
34@value{VERSION}), the @acronym{GNU} parser generator.
fae437e8 35
a06ea4aa 36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
ecd1b61c
JD
371999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free
38Software Foundation, Inc.
fae437e8
AD
39
40@quotation
41Permission is granted to copy, distribute and/or modify this document
c827f760 42under the terms of the @acronym{GNU} Free Documentation License,
592fde95 43Version 1.2 or any later version published by the Free Software
c827f760
PE
44Foundation; with no Invariant Sections, with the Front-Cover texts
45being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
46(a) below. A copy of the license is included in the section entitled
47``@acronym{GNU} Free Documentation License.''
48
389c8cfd
PE
49(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
50modify this @acronym{GNU} manual. Buying copies from the @acronym{FSF}
51supports it in developing @acronym{GNU} and promoting software
52freedom.''
fae437e8
AD
53@end quotation
54@end copying
55
e62f1a89 56@dircategory Software development
fae437e8 57@direntry
c827f760 58* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 59@end direntry
bfa74976 60
bfa74976
RS
61@titlepage
62@title Bison
c827f760 63@subtitle The Yacc-compatible Parser Generator
df1af54c 64@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
65
66@author by Charles Donnelly and Richard Stallman
67
68@page
69@vskip 0pt plus 1filll
fae437e8 70@insertcopying
bfa74976
RS
71@sp 2
72Published by the Free Software Foundation @*
0fb669f9
PE
7351 Franklin Street, Fifth Floor @*
74Boston, MA 02110-1301 USA @*
9ecbd125 75Printed copies are available from the Free Software Foundation.@*
c827f760 76@acronym{ISBN} 1-882114-44-2
bfa74976
RS
77@sp 2
78Cover art by Etienne Suvasa.
79@end titlepage
d5796688
JT
80
81@contents
bfa74976 82
342b8b6e
AD
83@ifnottex
84@node Top
85@top Bison
fae437e8 86@insertcopying
342b8b6e 87@end ifnottex
bfa74976
RS
88
89@menu
13863333
AD
90* Introduction::
91* Conditions::
f56274a8
DJ
92* Copying:: The @acronym{GNU} General Public License says
93 how you can copy and share Bison.
bfa74976
RS
94
95Tutorial sections:
f56274a8
DJ
96* Concepts:: Basic concepts for understanding Bison.
97* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
98
99Reference sections:
f56274a8
DJ
100* Grammar File:: Writing Bison declarations and rules.
101* Interface:: C-language interface to the parser function @code{yyparse}.
102* Algorithm:: How the Bison parser works at run-time.
103* Error Recovery:: Writing rules for error recovery.
bfa74976 104* Context Dependency:: What to do if your language syntax is too
f56274a8
DJ
105 messy for Bison to handle straightforwardly.
106* Debugging:: Understanding or debugging Bison parsers.
107* Invocation:: How to run Bison (to produce the parser source file).
108* Other Languages:: Creating C++ and Java parsers.
109* FAQ:: Frequently Asked Questions
110* Table of Symbols:: All the keywords of the Bison language are explained.
111* Glossary:: Basic concepts are explained.
112* Copying This Manual:: License for copying this manual.
113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f56274a8
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
128* Locations Overview:: Tracking Locations.
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
fa7e68c3
PE
134Writing @acronym{GLR} Parsers
135
f56274a8
DJ
136* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
137* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
138* GLR Semantic Actions:: Deferred semantic actions have special concerns.
139* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 140
bfa74976
RS
141Examples
142
f56274a8
DJ
143* RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145* Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
bfa74976 147* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 148* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
149* Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
151* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
152
153Reverse Polish Notation Calculator
154
f56274a8
DJ
155* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
156* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
157* Rpcalc Lexer:: The lexical analyzer.
158* Rpcalc Main:: The controlling function.
159* Rpcalc Error:: The error reporting function.
160* Rpcalc Generate:: Running Bison on the grammar file.
161* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
162
163Grammar Rules for @code{rpcalc}
164
13863333
AD
165* Rpcalc Input::
166* Rpcalc Line::
167* Rpcalc Expr::
bfa74976 168
342b8b6e
AD
169Location Tracking Calculator: @code{ltcalc}
170
f56274a8
DJ
171* Ltcalc Declarations:: Bison and C declarations for ltcalc.
172* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
173* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 174
bfa74976
RS
175Multi-Function Calculator: @code{mfcalc}
176
f56274a8
DJ
177* Mfcalc Declarations:: Bison declarations for multi-function calculator.
178* Mfcalc Rules:: Grammar rules for the calculator.
179* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
180
181Bison Grammar Files
182
183* Grammar Outline:: Overall layout of the grammar file.
184* Symbols:: Terminal and nonterminal symbols.
185* Rules:: How to write grammar rules.
186* Recursion:: Writing recursive rules.
187* Semantics:: Semantic values and actions.
93dd49ab 188* Locations:: Locations and actions.
bfa74976
RS
189* Declarations:: All kinds of Bison declarations are described here.
190* Multiple Parsers:: Putting more than one Bison parser in one program.
191
192Outline of a Bison Grammar
193
f56274a8 194* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 195* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
196* Bison Declarations:: Syntax and usage of the Bison declarations section.
197* Grammar Rules:: Syntax and usage of the grammar rules section.
198* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
199
200Defining Language Semantics
201
202* Value Type:: Specifying one data type for all semantic values.
203* Multiple Types:: Specifying several alternative data types.
204* Actions:: An action is the semantic definition of a grammar rule.
205* Action Types:: Specifying data types for actions to operate on.
206* Mid-Rule Actions:: Most actions go at the end of a rule.
207 This says when, why and how to use the exceptional
208 action in the middle of a rule.
209
93dd49ab
PE
210Tracking Locations
211
212* Location Type:: Specifying a data type for locations.
213* Actions and Locations:: Using locations in actions.
214* Location Default Action:: Defining a general way to compute locations.
215
bfa74976
RS
216Bison Declarations
217
b50d2359 218* Require Decl:: Requiring a Bison version.
bfa74976
RS
219* Token Decl:: Declaring terminal symbols.
220* Precedence Decl:: Declaring terminals with precedence and associativity.
221* Union Decl:: Declaring the set of all semantic value types.
222* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 223* Initial Action Decl:: Code run before parsing starts.
72f889cc 224* Destructor Decl:: Declaring how symbols are freed.
d6328241 225* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
226* Start Decl:: Specifying the start symbol.
227* Pure Decl:: Requesting a reentrant parser.
9987d1b3 228* Push Decl:: Requesting a push parser.
bfa74976
RS
229* Decl Summary:: Table of all Bison declarations.
230
231Parser C-Language Interface
232
f56274a8
DJ
233* Parser Function:: How to call @code{yyparse} and what it returns.
234* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
235* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
236* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
237* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
238* Lexical:: You must supply a function @code{yylex}
239 which reads tokens.
240* Error Reporting:: You must supply a function @code{yyerror}.
241* Action Features:: Special features for use in actions.
242* Internationalization:: How to let the parser speak in the user's
243 native language.
bfa74976
RS
244
245The Lexical Analyzer Function @code{yylex}
246
247* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
248* Token Values:: How @code{yylex} must return the semantic value
249 of the token it has read.
250* Token Locations:: How @code{yylex} must return the text location
251 (line number, etc.) of the token, if the
252 actions want that.
253* Pure Calling:: How the calling convention differs in a pure parser
254 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 255
13863333 256The Bison Parser Algorithm
bfa74976 257
742e4900 258* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
259* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
260* Precedence:: Operator precedence works by resolving conflicts.
261* Contextual Precedence:: When an operator's precedence depends on context.
262* Parser States:: The parser is a finite-state-machine with stack.
263* Reduce/Reduce:: When two rules are applicable in the same situation.
f56274a8 264* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 265* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 266* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
267
268Operator Precedence
269
270* Why Precedence:: An example showing why precedence is needed.
271* Using Precedence:: How to specify precedence in Bison grammars.
272* Precedence Examples:: How these features are used in the previous example.
273* How Precedence:: How they work.
274
275Handling Context Dependencies
276
277* Semantic Tokens:: Token parsing can depend on the semantic context.
278* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
279* Tie-in Recovery:: Lexical tie-ins have implications for how
280 error recovery rules must be written.
281
93dd49ab 282Debugging Your Parser
ec3bc396
AD
283
284* Understanding:: Understanding the structure of your parser.
285* Tracing:: Tracing the execution of your parser.
286
bfa74976
RS
287Invoking Bison
288
13863333 289* Bison Options:: All the options described in detail,
c827f760 290 in alphabetical order by short options.
bfa74976 291* Option Cross Key:: Alphabetical list of long options.
93dd49ab 292* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 293
8405b70c 294Parsers Written In Other Languages
12545799
AD
295
296* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 297* Java Parsers:: The interface to generate Java parser classes
12545799
AD
298
299C++ Parsers
300
301* C++ Bison Interface:: Asking for C++ parser generation
302* C++ Semantic Values:: %union vs. C++
303* C++ Location Values:: The position and location classes
304* C++ Parser Interface:: Instantiating and running the parser
305* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 306* A Complete C++ Example:: Demonstrating their use
12545799
AD
307
308A Complete C++ Example
309
310* Calc++ --- C++ Calculator:: The specifications
311* Calc++ Parsing Driver:: An active parsing context
312* Calc++ Parser:: A parser class
313* Calc++ Scanner:: A pure C++ Flex scanner
314* Calc++ Top Level:: Conducting the band
315
8405b70c
PB
316Java Parsers
317
f56274a8
DJ
318* Java Bison Interface:: Asking for Java parser generation
319* Java Semantic Values:: %type and %token vs. Java
320* Java Location Values:: The position and location classes
321* Java Parser Interface:: Instantiating and running the parser
322* Java Scanner Interface:: Specifying the scanner for the parser
323* Java Action Features:: Special features for use in actions
324* Java Differences:: Differences between C/C++ and Java Grammars
325* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 326
d1a1114f
AD
327Frequently Asked Questions
328
f56274a8
DJ
329* Memory Exhausted:: Breaking the Stack Limits
330* How Can I Reset the Parser:: @code{yyparse} Keeps some State
331* Strings are Destroyed:: @code{yylval} Loses Track of Strings
332* Implementing Gotos/Loops:: Control Flow in the Calculator
333* Multiple start-symbols:: Factoring closely related grammars
334* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
335* I can't build Bison:: Troubleshooting
336* Where can I find help?:: Troubleshouting
337* Bug Reports:: Troublereporting
338* More Languages:: Parsers in C++, Java, and so on
339* Beta Testing:: Experimenting development versions
340* Mailing Lists:: Meeting other Bison users
d1a1114f 341
f2b5126e
PB
342Copying This Manual
343
f56274a8 344* Copying This Manual:: License for copying this manual.
f2b5126e 345
342b8b6e 346@end detailmenu
bfa74976
RS
347@end menu
348
342b8b6e 349@node Introduction
bfa74976
RS
350@unnumbered Introduction
351@cindex introduction
352
6077da58 353@dfn{Bison} is a general-purpose parser generator that converts an
34a6c2d1
JD
354annotated context-free grammar into a deterministic or @acronym{GLR}
355parser employing @acronym{LALR}(1), @acronym{IELR}(1), or canonical
356@acronym{LR}(1) parser tables.
357Once you are proficient with Bison, you can use it to develop a wide
358range of language parsers, from those used in simple desk calculators to
359complex programming languages.
bfa74976
RS
360
361Bison is upward compatible with Yacc: all properly-written Yacc grammars
362ought to work with Bison with no change. Anyone familiar with Yacc
363should be able to use Bison with little trouble. You need to be fluent in
1e137b71 364C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
365
366We begin with tutorial chapters that explain the basic concepts of using
367Bison and show three explained examples, each building on the last. If you
368don't know Bison or Yacc, start by reading these chapters. Reference
369chapters follow which describe specific aspects of Bison in detail.
370
931c7513
RS
371Bison was written primarily by Robert Corbett; Richard Stallman made it
372Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 373multi-character string literals and other features.
931c7513 374
df1af54c 375This edition corresponds to version @value{VERSION} of Bison.
bfa74976 376
342b8b6e 377@node Conditions
bfa74976
RS
378@unnumbered Conditions for Using Bison
379
193d7c70
PE
380The distribution terms for Bison-generated parsers permit using the
381parsers in nonfree programs. Before Bison version 2.2, these extra
382permissions applied only when Bison was generating @acronym{LALR}(1)
383parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 384parsers could be used only in programs that were free software.
a31239f1 385
c827f760
PE
386The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
387compiler, have never
9ecbd125 388had such a requirement. They could always be used for nonfree
a31239f1
RS
389software. The reason Bison was different was not due to a special
390policy decision; it resulted from applying the usual General Public
391License to all of the Bison source code.
392
393The output of the Bison utility---the Bison parser file---contains a
394verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
395parser's implementation. (The actions from your grammar are inserted
396into this implementation at one point, but most of the rest of the
397implementation is not changed.) When we applied the @acronym{GPL}
398terms to the skeleton code for the parser's implementation,
a31239f1
RS
399the effect was to restrict the use of Bison output to free software.
400
401We didn't change the terms because of sympathy for people who want to
402make software proprietary. @strong{Software should be free.} But we
403concluded that limiting Bison's use to free software was doing little to
404encourage people to make other software free. So we decided to make the
405practical conditions for using Bison match the practical conditions for
c827f760 406using the other @acronym{GNU} tools.
bfa74976 407
193d7c70
PE
408This exception applies when Bison is generating code for a parser.
409You can tell whether the exception applies to a Bison output file by
410inspecting the file for text beginning with ``As a special
411exception@dots{}''. The text spells out the exact terms of the
412exception.
262aa8dd 413
f16b0819
PE
414@node Copying
415@unnumbered GNU GENERAL PUBLIC LICENSE
416@include gpl-3.0.texi
bfa74976 417
342b8b6e 418@node Concepts
bfa74976
RS
419@chapter The Concepts of Bison
420
421This chapter introduces many of the basic concepts without which the
422details of Bison will not make sense. If you do not already know how to
423use Bison or Yacc, we suggest you start by reading this chapter carefully.
424
425@menu
f56274a8
DJ
426* Language and Grammar:: Languages and context-free grammars,
427 as mathematical ideas.
428* Grammar in Bison:: How we represent grammars for Bison's sake.
429* Semantic Values:: Each token or syntactic grouping can have
430 a semantic value (the value of an integer,
431 the name of an identifier, etc.).
432* Semantic Actions:: Each rule can have an action containing C code.
433* GLR Parsers:: Writing parsers for general context-free languages.
434* Locations Overview:: Tracking Locations.
435* Bison Parser:: What are Bison's input and output,
436 how is the output used?
437* Stages:: Stages in writing and running Bison grammars.
438* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
439@end menu
440
342b8b6e 441@node Language and Grammar
bfa74976
RS
442@section Languages and Context-Free Grammars
443
bfa74976
RS
444@cindex context-free grammar
445@cindex grammar, context-free
446In order for Bison to parse a language, it must be described by a
447@dfn{context-free grammar}. This means that you specify one or more
448@dfn{syntactic groupings} and give rules for constructing them from their
449parts. For example, in the C language, one kind of grouping is called an
450`expression'. One rule for making an expression might be, ``An expression
451can be made of a minus sign and another expression''. Another would be,
452``An expression can be an integer''. As you can see, rules are often
453recursive, but there must be at least one rule which leads out of the
454recursion.
455
c827f760 456@cindex @acronym{BNF}
bfa74976
RS
457@cindex Backus-Naur form
458The most common formal system for presenting such rules for humans to read
c827f760
PE
459is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
460order to specify the language Algol 60. Any grammar expressed in
461@acronym{BNF} is a context-free grammar. The input to Bison is
462essentially machine-readable @acronym{BNF}.
bfa74976 463
c827f760 464@cindex @acronym{LALR}(1) grammars
34a6c2d1 465@cindex @acronym{IELR}(1) grammars
c827f760 466@cindex @acronym{LR}(1) grammars
34a6c2d1
JD
467There are various important subclasses of context-free grammars.
468Although it can handle almost all context-free grammars, Bison is
469optimized for what are called @acronym{LR}(1) grammars.
470In brief, in these grammars, it must be possible to tell how to parse
471any portion of an input string with just a single token of lookahead.
472For historical reasons, Bison by default is limited by the additional
473restrictions of @acronym{LALR}(1), which is hard to explain simply.
c827f760
PE
474@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
475more information on this.
34a6c2d1
JD
476To escape these additional restrictions, you can request
477@acronym{IELR}(1) or canonical @acronym{LR}(1) parser tables.
478@xref{Decl Summary,,lr.type}, to learn how.
bfa74976 479
c827f760
PE
480@cindex @acronym{GLR} parsing
481@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 482@cindex ambiguous grammars
9d9b8b70 483@cindex nondeterministic parsing
9501dc6e 484
34a6c2d1 485Parsers for @acronym{LR}(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
486roughly that the next grammar rule to apply at any point in the input is
487uniquely determined by the preceding input and a fixed, finite portion
742e4900 488(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 489grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 490apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 491grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 492lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
493With the proper declarations, Bison is also able to parse these more
494general context-free grammars, using a technique known as @acronym{GLR}
495parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
496are able to handle any context-free grammar for which the number of
497possible parses of any given string is finite.
676385e2 498
bfa74976
RS
499@cindex symbols (abstract)
500@cindex token
501@cindex syntactic grouping
502@cindex grouping, syntactic
9501dc6e
AD
503In the formal grammatical rules for a language, each kind of syntactic
504unit or grouping is named by a @dfn{symbol}. Those which are built by
505grouping smaller constructs according to grammatical rules are called
bfa74976
RS
506@dfn{nonterminal symbols}; those which can't be subdivided are called
507@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
508corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 509corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
510
511We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
512nonterminal, mean. The tokens of C are identifiers, constants (numeric
513and string), and the various keywords, arithmetic operators and
514punctuation marks. So the terminal symbols of a grammar for C include
515`identifier', `number', `string', plus one symbol for each keyword,
516operator or punctuation mark: `if', `return', `const', `static', `int',
517`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
518(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
519lexicography, not grammar.)
520
521Here is a simple C function subdivided into tokens:
522
9edcd895
AD
523@ifinfo
524@example
525int /* @r{keyword `int'} */
14d4662b 526square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
527 @r{identifier, close-paren} */
528@{ /* @r{open-brace} */
aa08666d
AD
529 return x * x; /* @r{keyword `return', identifier, asterisk,}
530 @r{identifier, semicolon} */
9edcd895
AD
531@} /* @r{close-brace} */
532@end example
533@end ifinfo
534@ifnotinfo
bfa74976
RS
535@example
536int /* @r{keyword `int'} */
14d4662b 537square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 538@{ /* @r{open-brace} */
9edcd895 539 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
540@} /* @r{close-brace} */
541@end example
9edcd895 542@end ifnotinfo
bfa74976
RS
543
544The syntactic groupings of C include the expression, the statement, the
545declaration, and the function definition. These are represented in the
546grammar of C by nonterminal symbols `expression', `statement',
547`declaration' and `function definition'. The full grammar uses dozens of
548additional language constructs, each with its own nonterminal symbol, in
549order to express the meanings of these four. The example above is a
550function definition; it contains one declaration, and one statement. In
551the statement, each @samp{x} is an expression and so is @samp{x * x}.
552
553Each nonterminal symbol must have grammatical rules showing how it is made
554out of simpler constructs. For example, one kind of C statement is the
555@code{return} statement; this would be described with a grammar rule which
556reads informally as follows:
557
558@quotation
559A `statement' can be made of a `return' keyword, an `expression' and a
560`semicolon'.
561@end quotation
562
563@noindent
564There would be many other rules for `statement', one for each kind of
565statement in C.
566
567@cindex start symbol
568One nonterminal symbol must be distinguished as the special one which
569defines a complete utterance in the language. It is called the @dfn{start
570symbol}. In a compiler, this means a complete input program. In the C
571language, the nonterminal symbol `sequence of definitions and declarations'
572plays this role.
573
574For example, @samp{1 + 2} is a valid C expression---a valid part of a C
575program---but it is not valid as an @emph{entire} C program. In the
576context-free grammar of C, this follows from the fact that `expression' is
577not the start symbol.
578
579The Bison parser reads a sequence of tokens as its input, and groups the
580tokens using the grammar rules. If the input is valid, the end result is
581that the entire token sequence reduces to a single grouping whose symbol is
582the grammar's start symbol. If we use a grammar for C, the entire input
583must be a `sequence of definitions and declarations'. If not, the parser
584reports a syntax error.
585
342b8b6e 586@node Grammar in Bison
bfa74976
RS
587@section From Formal Rules to Bison Input
588@cindex Bison grammar
589@cindex grammar, Bison
590@cindex formal grammar
591
592A formal grammar is a mathematical construct. To define the language
593for Bison, you must write a file expressing the grammar in Bison syntax:
594a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
595
596A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 597as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
598in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
599
600The Bison representation for a terminal symbol is also called a @dfn{token
601type}. Token types as well can be represented as C-like identifiers. By
602convention, these identifiers should be upper case to distinguish them from
603nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
604@code{RETURN}. A terminal symbol that stands for a particular keyword in
605the language should be named after that keyword converted to upper case.
606The terminal symbol @code{error} is reserved for error recovery.
931c7513 607@xref{Symbols}.
bfa74976
RS
608
609A terminal symbol can also be represented as a character literal, just like
610a C character constant. You should do this whenever a token is just a
611single character (parenthesis, plus-sign, etc.): use that same character in
612a literal as the terminal symbol for that token.
613
931c7513
RS
614A third way to represent a terminal symbol is with a C string constant
615containing several characters. @xref{Symbols}, for more information.
616
bfa74976
RS
617The grammar rules also have an expression in Bison syntax. For example,
618here is the Bison rule for a C @code{return} statement. The semicolon in
619quotes is a literal character token, representing part of the C syntax for
620the statement; the naked semicolon, and the colon, are Bison punctuation
621used in every rule.
622
623@example
624stmt: RETURN expr ';'
625 ;
626@end example
627
628@noindent
629@xref{Rules, ,Syntax of Grammar Rules}.
630
342b8b6e 631@node Semantic Values
bfa74976
RS
632@section Semantic Values
633@cindex semantic value
634@cindex value, semantic
635
636A formal grammar selects tokens only by their classifications: for example,
637if a rule mentions the terminal symbol `integer constant', it means that
638@emph{any} integer constant is grammatically valid in that position. The
639precise value of the constant is irrelevant to how to parse the input: if
640@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 641grammatical.
bfa74976
RS
642
643But the precise value is very important for what the input means once it is
644parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6453989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
646has both a token type and a @dfn{semantic value}. @xref{Semantics,
647,Defining Language Semantics},
bfa74976
RS
648for details.
649
650The token type is a terminal symbol defined in the grammar, such as
651@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
652you need to know to decide where the token may validly appear and how to
653group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 654except their types.
bfa74976
RS
655
656The semantic value has all the rest of the information about the
657meaning of the token, such as the value of an integer, or the name of an
658identifier. (A token such as @code{','} which is just punctuation doesn't
659need to have any semantic value.)
660
661For example, an input token might be classified as token type
662@code{INTEGER} and have the semantic value 4. Another input token might
663have the same token type @code{INTEGER} but value 3989. When a grammar
664rule says that @code{INTEGER} is allowed, either of these tokens is
665acceptable because each is an @code{INTEGER}. When the parser accepts the
666token, it keeps track of the token's semantic value.
667
668Each grouping can also have a semantic value as well as its nonterminal
669symbol. For example, in a calculator, an expression typically has a
670semantic value that is a number. In a compiler for a programming
671language, an expression typically has a semantic value that is a tree
672structure describing the meaning of the expression.
673
342b8b6e 674@node Semantic Actions
bfa74976
RS
675@section Semantic Actions
676@cindex semantic actions
677@cindex actions, semantic
678
679In order to be useful, a program must do more than parse input; it must
680also produce some output based on the input. In a Bison grammar, a grammar
681rule can have an @dfn{action} made up of C statements. Each time the
682parser recognizes a match for that rule, the action is executed.
683@xref{Actions}.
13863333 684
bfa74976
RS
685Most of the time, the purpose of an action is to compute the semantic value
686of the whole construct from the semantic values of its parts. For example,
687suppose we have a rule which says an expression can be the sum of two
688expressions. When the parser recognizes such a sum, each of the
689subexpressions has a semantic value which describes how it was built up.
690The action for this rule should create a similar sort of value for the
691newly recognized larger expression.
692
693For example, here is a rule that says an expression can be the sum of
694two subexpressions:
695
696@example
697expr: expr '+' expr @{ $$ = $1 + $3; @}
698 ;
699@end example
700
701@noindent
702The action says how to produce the semantic value of the sum expression
703from the values of the two subexpressions.
704
676385e2 705@node GLR Parsers
c827f760
PE
706@section Writing @acronym{GLR} Parsers
707@cindex @acronym{GLR} parsing
708@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
709@findex %glr-parser
710@cindex conflicts
711@cindex shift/reduce conflicts
fa7e68c3 712@cindex reduce/reduce conflicts
676385e2 713
34a6c2d1
JD
714In some grammars, Bison's deterministic
715@acronym{LR}(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
716certain grammar rule at a given point. That is, it may not be able to
717decide (on the basis of the input read so far) which of two possible
718reductions (applications of a grammar rule) applies, or whether to apply
719a reduction or read more of the input and apply a reduction later in the
720input. These are known respectively as @dfn{reduce/reduce} conflicts
721(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
722(@pxref{Shift/Reduce}).
723
34a6c2d1 724To use a grammar that is not easily modified to be @acronym{LR}(1), a
9501dc6e 725more general parsing algorithm is sometimes necessary. If you include
676385e2 726@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 727(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
728(@acronym{GLR}) parser. These parsers handle Bison grammars that
729contain no unresolved conflicts (i.e., after applying precedence
34a6c2d1 730declarations) identically to deterministic parsers. However, when
9501dc6e
AD
731faced with unresolved shift/reduce and reduce/reduce conflicts,
732@acronym{GLR} parsers use the simple expedient of doing both,
733effectively cloning the parser to follow both possibilities. Each of
734the resulting parsers can again split, so that at any given time, there
735can be any number of possible parses being explored. The parsers
676385e2
PH
736proceed in lockstep; that is, all of them consume (shift) a given input
737symbol before any of them proceed to the next. Each of the cloned
738parsers eventually meets one of two possible fates: either it runs into
739a parsing error, in which case it simply vanishes, or it merges with
740another parser, because the two of them have reduced the input to an
741identical set of symbols.
742
743During the time that there are multiple parsers, semantic actions are
744recorded, but not performed. When a parser disappears, its recorded
745semantic actions disappear as well, and are never performed. When a
746reduction makes two parsers identical, causing them to merge, Bison
747records both sets of semantic actions. Whenever the last two parsers
748merge, reverting to the single-parser case, Bison resolves all the
749outstanding actions either by precedences given to the grammar rules
750involved, or by performing both actions, and then calling a designated
751user-defined function on the resulting values to produce an arbitrary
752merged result.
753
fa7e68c3 754@menu
f56274a8
DJ
755* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
756* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
757* GLR Semantic Actions:: Deferred semantic actions have special concerns.
758* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
759@end menu
760
761@node Simple GLR Parsers
762@subsection Using @acronym{GLR} on Unambiguous Grammars
763@cindex @acronym{GLR} parsing, unambiguous grammars
764@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
765@findex %glr-parser
766@findex %expect-rr
767@cindex conflicts
768@cindex reduce/reduce conflicts
769@cindex shift/reduce conflicts
770
771In the simplest cases, you can use the @acronym{GLR} algorithm
34a6c2d1
JD
772to parse grammars that are unambiguous but fail to be @acronym{LR}(1).
773Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
774
775Consider a problem that
776arises in the declaration of enumerated and subrange types in the
777programming language Pascal. Here are some examples:
778
779@example
780type subrange = lo .. hi;
781type enum = (a, b, c);
782@end example
783
784@noindent
785The original language standard allows only numeric
786literals and constant identifiers for the subrange bounds (@samp{lo}
787and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
78810206) and many other
789Pascal implementations allow arbitrary expressions there. This gives
790rise to the following situation, containing a superfluous pair of
791parentheses:
792
793@example
794type subrange = (a) .. b;
795@end example
796
797@noindent
798Compare this to the following declaration of an enumerated
799type with only one value:
800
801@example
802type enum = (a);
803@end example
804
805@noindent
806(These declarations are contrived, but they are syntactically
807valid, and more-complicated cases can come up in practical programs.)
808
809These two declarations look identical until the @samp{..} token.
34a6c2d1 810With normal @acronym{LR}(1) one-token lookahead it is not
fa7e68c3
PE
811possible to decide between the two forms when the identifier
812@samp{a} is parsed. It is, however, desirable
813for a parser to decide this, since in the latter case
814@samp{a} must become a new identifier to represent the enumeration
815value, while in the former case @samp{a} must be evaluated with its
816current meaning, which may be a constant or even a function call.
817
818You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
819to be resolved later, but this typically requires substantial
820contortions in both semantic actions and large parts of the
821grammar, where the parentheses are nested in the recursive rules for
822expressions.
823
824You might think of using the lexer to distinguish between the two
825forms by returning different tokens for currently defined and
826undefined identifiers. But if these declarations occur in a local
827scope, and @samp{a} is defined in an outer scope, then both forms
828are possible---either locally redefining @samp{a}, or using the
829value of @samp{a} from the outer scope. So this approach cannot
830work.
831
e757bb10 832A simple solution to this problem is to declare the parser to
fa7e68c3
PE
833use the @acronym{GLR} algorithm.
834When the @acronym{GLR} parser reaches the critical state, it
835merely splits into two branches and pursues both syntax rules
836simultaneously. Sooner or later, one of them runs into a parsing
837error. If there is a @samp{..} token before the next
838@samp{;}, the rule for enumerated types fails since it cannot
839accept @samp{..} anywhere; otherwise, the subrange type rule
840fails since it requires a @samp{..} token. So one of the branches
841fails silently, and the other one continues normally, performing
842all the intermediate actions that were postponed during the split.
843
844If the input is syntactically incorrect, both branches fail and the parser
845reports a syntax error as usual.
846
847The effect of all this is that the parser seems to ``guess'' the
848correct branch to take, or in other words, it seems to use more
34a6c2d1
JD
849lookahead than the underlying @acronym{LR}(1) algorithm actually allows
850for. In this example, @acronym{LR}(2) would suffice, but also some cases
851that are not @acronym{LR}(@math{k}) for any @math{k} can be handled this way.
fa7e68c3
PE
852
853In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
854and the current Bison parser even takes exponential time and space
855for some grammars. In practice, this rarely happens, and for many
856grammars it is possible to prove that it cannot happen.
857The present example contains only one conflict between two
858rules, and the type-declaration context containing the conflict
859cannot be nested. So the number of
860branches that can exist at any time is limited by the constant 2,
861and the parsing time is still linear.
862
863Here is a Bison grammar corresponding to the example above. It
864parses a vastly simplified form of Pascal type declarations.
865
866@example
867%token TYPE DOTDOT ID
868
869@group
870%left '+' '-'
871%left '*' '/'
872@end group
873
874%%
875
876@group
877type_decl : TYPE ID '=' type ';'
878 ;
879@end group
880
881@group
882type : '(' id_list ')'
883 | expr DOTDOT expr
884 ;
885@end group
886
887@group
888id_list : ID
889 | id_list ',' ID
890 ;
891@end group
892
893@group
894expr : '(' expr ')'
895 | expr '+' expr
896 | expr '-' expr
897 | expr '*' expr
898 | expr '/' expr
899 | ID
900 ;
901@end group
902@end example
903
34a6c2d1 904When used as a normal @acronym{LR}(1) grammar, Bison correctly complains
fa7e68c3
PE
905about one reduce/reduce conflict. In the conflicting situation the
906parser chooses one of the alternatives, arbitrarily the one
907declared first. Therefore the following correct input is not
908recognized:
909
910@example
911type t = (a) .. b;
912@end example
913
914The parser can be turned into a @acronym{GLR} parser, while also telling Bison
915to be silent about the one known reduce/reduce conflict, by
e757bb10 916adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
917@samp{%%}):
918
919@example
920%glr-parser
921%expect-rr 1
922@end example
923
924@noindent
925No change in the grammar itself is required. Now the
926parser recognizes all valid declarations, according to the
927limited syntax above, transparently. In fact, the user does not even
928notice when the parser splits.
929
f8e1c9e5
AD
930So here we have a case where we can use the benefits of @acronym{GLR},
931almost without disadvantages. Even in simple cases like this, however,
932there are at least two potential problems to beware. First, always
933analyze the conflicts reported by Bison to make sure that @acronym{GLR}
934splitting is only done where it is intended. A @acronym{GLR} parser
935splitting inadvertently may cause problems less obvious than an
34a6c2d1 936@acronym{LR} parser statically choosing the wrong alternative in a
f8e1c9e5
AD
937conflict. Second, consider interactions with the lexer (@pxref{Semantic
938Tokens}) with great care. Since a split parser consumes tokens without
939performing any actions during the split, the lexer cannot obtain
940information via parser actions. Some cases of lexer interactions can be
941eliminated by using @acronym{GLR} to shift the complications from the
942lexer to the parser. You must check the remaining cases for
943correctness.
944
945In our example, it would be safe for the lexer to return tokens based on
946their current meanings in some symbol table, because no new symbols are
947defined in the middle of a type declaration. Though it is possible for
948a parser to define the enumeration constants as they are parsed, before
949the type declaration is completed, it actually makes no difference since
950they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
951
952@node Merging GLR Parses
953@subsection Using @acronym{GLR} to Resolve Ambiguities
954@cindex @acronym{GLR} parsing, ambiguous grammars
955@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
956@findex %dprec
957@findex %merge
958@cindex conflicts
959@cindex reduce/reduce conflicts
960
2a8d363a 961Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
962
963@example
964%@{
38a92d50
PE
965 #include <stdio.h>
966 #define YYSTYPE char const *
967 int yylex (void);
968 void yyerror (char const *);
676385e2
PH
969%@}
970
971%token TYPENAME ID
972
973%right '='
974%left '+'
975
976%glr-parser
977
978%%
979
fae437e8 980prog :
676385e2
PH
981 | prog stmt @{ printf ("\n"); @}
982 ;
983
984stmt : expr ';' %dprec 1
985 | decl %dprec 2
986 ;
987
2a8d363a 988expr : ID @{ printf ("%s ", $$); @}
fae437e8 989 | TYPENAME '(' expr ')'
2a8d363a
AD
990 @{ printf ("%s <cast> ", $1); @}
991 | expr '+' expr @{ printf ("+ "); @}
992 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
993 ;
994
fae437e8 995decl : TYPENAME declarator ';'
2a8d363a 996 @{ printf ("%s <declare> ", $1); @}
676385e2 997 | TYPENAME declarator '=' expr ';'
2a8d363a 998 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
999 ;
1000
2a8d363a 1001declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1002 | '(' declarator ')'
1003 ;
1004@end example
1005
1006@noindent
1007This models a problematic part of the C++ grammar---the ambiguity between
1008certain declarations and statements. For example,
1009
1010@example
1011T (x) = y+z;
1012@end example
1013
1014@noindent
1015parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1016(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1017@samp{x} as an @code{ID}).
676385e2 1018Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1019@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1020time it encounters @code{x} in the example above. Since this is a
1021@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1022each choice of resolving the reduce/reduce conflict.
1023Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1024however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1025ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1026the other reduces @code{stmt : decl}, after which both parsers are in an
1027identical state: they've seen @samp{prog stmt} and have the same unprocessed
1028input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1029
1030At this point, the @acronym{GLR} parser requires a specification in the
1031grammar of how to choose between the competing parses.
1032In the example above, the two @code{%dprec}
e757bb10 1033declarations specify that Bison is to give precedence
fa7e68c3 1034to the parse that interprets the example as a
676385e2
PH
1035@code{decl}, which implies that @code{x} is a declarator.
1036The parser therefore prints
1037
1038@example
fae437e8 1039"x" y z + T <init-declare>
676385e2
PH
1040@end example
1041
fa7e68c3
PE
1042The @code{%dprec} declarations only come into play when more than one
1043parse survives. Consider a different input string for this parser:
676385e2
PH
1044
1045@example
1046T (x) + y;
1047@end example
1048
1049@noindent
e757bb10 1050This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1051construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1052Here, there is no ambiguity (this cannot be parsed as a declaration).
1053However, at the time the Bison parser encounters @code{x}, it does not
1054have enough information to resolve the reduce/reduce conflict (again,
1055between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1056case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1057into two, one assuming that @code{x} is an @code{expr}, and the other
1058assuming @code{x} is a @code{declarator}. The second of these parsers
1059then vanishes when it sees @code{+}, and the parser prints
1060
1061@example
fae437e8 1062x T <cast> y +
676385e2
PH
1063@end example
1064
1065Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1066the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1067actions of the two possible parsers, rather than choosing one over the
1068other. To do so, you could change the declaration of @code{stmt} as
1069follows:
1070
1071@example
1072stmt : expr ';' %merge <stmtMerge>
1073 | decl %merge <stmtMerge>
1074 ;
1075@end example
1076
1077@noindent
676385e2
PH
1078and define the @code{stmtMerge} function as:
1079
1080@example
38a92d50
PE
1081static YYSTYPE
1082stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1083@{
1084 printf ("<OR> ");
1085 return "";
1086@}
1087@end example
1088
1089@noindent
1090with an accompanying forward declaration
1091in the C declarations at the beginning of the file:
1092
1093@example
1094%@{
38a92d50 1095 #define YYSTYPE char const *
676385e2
PH
1096 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1097%@}
1098@end example
1099
1100@noindent
fa7e68c3
PE
1101With these declarations, the resulting parser parses the first example
1102as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1103
1104@example
fae437e8 1105"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1106@end example
1107
fa7e68c3 1108Bison requires that all of the
e757bb10 1109productions that participate in any particular merge have identical
fa7e68c3
PE
1110@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1111and the parser will report an error during any parse that results in
1112the offending merge.
9501dc6e 1113
32c29292
JD
1114@node GLR Semantic Actions
1115@subsection GLR Semantic Actions
1116
1117@cindex deferred semantic actions
1118By definition, a deferred semantic action is not performed at the same time as
1119the associated reduction.
1120This raises caveats for several Bison features you might use in a semantic
1121action in a @acronym{GLR} parser.
1122
1123@vindex yychar
1124@cindex @acronym{GLR} parsers and @code{yychar}
1125@vindex yylval
1126@cindex @acronym{GLR} parsers and @code{yylval}
1127@vindex yylloc
1128@cindex @acronym{GLR} parsers and @code{yylloc}
1129In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1130the lookahead token present at the time of the associated reduction.
32c29292
JD
1131After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1132you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1133lookahead token's semantic value and location, if any.
32c29292
JD
1134In a nondeferred semantic action, you can also modify any of these variables to
1135influence syntax analysis.
742e4900 1136@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1137
1138@findex yyclearin
1139@cindex @acronym{GLR} parsers and @code{yyclearin}
1140In a deferred semantic action, it's too late to influence syntax analysis.
1141In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1142shallow copies of the values they had at the time of the associated reduction.
1143For this reason alone, modifying them is dangerous.
1144Moreover, the result of modifying them is undefined and subject to change with
1145future versions of Bison.
1146For example, if a semantic action might be deferred, you should never write it
1147to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1148memory referenced by @code{yylval}.
1149
1150@findex YYERROR
1151@cindex @acronym{GLR} parsers and @code{YYERROR}
1152Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1153(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1154initiate error recovery.
1155During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
34a6c2d1 1156the same as its effect in a deterministic parser.
32c29292
JD
1157In a deferred semantic action, its effect is undefined.
1158@c The effect is probably a syntax error at the split point.
1159
8710fc41
JD
1160Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1161describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1162
fa7e68c3
PE
1163@node Compiler Requirements
1164@subsection Considerations when Compiling @acronym{GLR} Parsers
1165@cindex @code{inline}
9501dc6e 1166@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1167
38a92d50
PE
1168The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1169later. In addition, they use the @code{inline} keyword, which is not
1170C89, but is C99 and is a common extension in pre-C99 compilers. It is
1171up to the user of these parsers to handle
9501dc6e
AD
1172portability issues. For instance, if using Autoconf and the Autoconf
1173macro @code{AC_C_INLINE}, a mere
1174
1175@example
1176%@{
38a92d50 1177 #include <config.h>
9501dc6e
AD
1178%@}
1179@end example
1180
1181@noindent
1182will suffice. Otherwise, we suggest
1183
1184@example
1185%@{
38a92d50
PE
1186 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1187 #define inline
1188 #endif
9501dc6e
AD
1189%@}
1190@end example
676385e2 1191
342b8b6e 1192@node Locations Overview
847bf1f5
AD
1193@section Locations
1194@cindex location
95923bd6
AD
1195@cindex textual location
1196@cindex location, textual
847bf1f5
AD
1197
1198Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1199and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1200the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1201Bison provides a mechanism for handling these locations.
1202
72d2299c 1203Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1204associated location, but the type of locations is the same for all tokens and
72d2299c 1205groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1206structure for storing locations (@pxref{Locations}, for more details).
1207
1208Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1209set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1210is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1211@code{@@3}.
1212
1213When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1214of its left hand side (@pxref{Actions}). In the same way, another default
1215action is used for locations. However, the action for locations is general
847bf1f5 1216enough for most cases, meaning there is usually no need to describe for each
72d2299c 1217rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1218grouping, the default behavior of the output parser is to take the beginning
1219of the first symbol, and the end of the last symbol.
1220
342b8b6e 1221@node Bison Parser
bfa74976
RS
1222@section Bison Output: the Parser File
1223@cindex Bison parser
1224@cindex Bison utility
1225@cindex lexical analyzer, purpose
1226@cindex parser
1227
1228When you run Bison, you give it a Bison grammar file as input. The output
1229is a C source file that parses the language described by the grammar.
1230This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1231utility and the Bison parser are two distinct programs: the Bison utility
1232is a program whose output is the Bison parser that becomes part of your
1233program.
1234
1235The job of the Bison parser is to group tokens into groupings according to
1236the grammar rules---for example, to build identifiers and operators into
1237expressions. As it does this, it runs the actions for the grammar rules it
1238uses.
1239
704a47c4
AD
1240The tokens come from a function called the @dfn{lexical analyzer} that
1241you must supply in some fashion (such as by writing it in C). The Bison
1242parser calls the lexical analyzer each time it wants a new token. It
1243doesn't know what is ``inside'' the tokens (though their semantic values
1244may reflect this). Typically the lexical analyzer makes the tokens by
1245parsing characters of text, but Bison does not depend on this.
1246@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1247
1248The Bison parser file is C code which defines a function named
1249@code{yyparse} which implements that grammar. This function does not make
1250a complete C program: you must supply some additional functions. One is
1251the lexical analyzer. Another is an error-reporting function which the
1252parser calls to report an error. In addition, a complete C program must
1253start with a function called @code{main}; you have to provide this, and
1254arrange for it to call @code{yyparse} or the parser will never run.
1255@xref{Interface, ,Parser C-Language Interface}.
1256
f7ab6a50 1257Aside from the token type names and the symbols in the actions you
7093d0f5 1258write, all symbols defined in the Bison parser file itself
bfa74976
RS
1259begin with @samp{yy} or @samp{YY}. This includes interface functions
1260such as the lexical analyzer function @code{yylex}, the error reporting
1261function @code{yyerror} and the parser function @code{yyparse} itself.
1262This also includes numerous identifiers used for internal purposes.
1263Therefore, you should avoid using C identifiers starting with @samp{yy}
1264or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1265this manual. Also, you should avoid using the C identifiers
1266@samp{malloc} and @samp{free} for anything other than their usual
1267meanings.
bfa74976 1268
7093d0f5
AD
1269In some cases the Bison parser file includes system headers, and in
1270those cases your code should respect the identifiers reserved by those
55289366 1271headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1272@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1273declare memory allocators and related types. @code{<libintl.h>} is
1274included if message translation is in use
1275(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1276be included if you define @code{YYDEBUG} to a nonzero value
1277(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1278
342b8b6e 1279@node Stages
bfa74976
RS
1280@section Stages in Using Bison
1281@cindex stages in using Bison
1282@cindex using Bison
1283
1284The actual language-design process using Bison, from grammar specification
1285to a working compiler or interpreter, has these parts:
1286
1287@enumerate
1288@item
1289Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1290(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1291in the language, describe the action that is to be taken when an
1292instance of that rule is recognized. The action is described by a
1293sequence of C statements.
bfa74976
RS
1294
1295@item
704a47c4
AD
1296Write a lexical analyzer to process input and pass tokens to the parser.
1297The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1298Lexical Analyzer Function @code{yylex}}). It could also be produced
1299using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1300
1301@item
1302Write a controlling function that calls the Bison-produced parser.
1303
1304@item
1305Write error-reporting routines.
1306@end enumerate
1307
1308To turn this source code as written into a runnable program, you
1309must follow these steps:
1310
1311@enumerate
1312@item
1313Run Bison on the grammar to produce the parser.
1314
1315@item
1316Compile the code output by Bison, as well as any other source files.
1317
1318@item
1319Link the object files to produce the finished product.
1320@end enumerate
1321
342b8b6e 1322@node Grammar Layout
bfa74976
RS
1323@section The Overall Layout of a Bison Grammar
1324@cindex grammar file
1325@cindex file format
1326@cindex format of grammar file
1327@cindex layout of Bison grammar
1328
1329The input file for the Bison utility is a @dfn{Bison grammar file}. The
1330general form of a Bison grammar file is as follows:
1331
1332@example
1333%@{
08e49d20 1334@var{Prologue}
bfa74976
RS
1335%@}
1336
1337@var{Bison declarations}
1338
1339%%
1340@var{Grammar rules}
1341%%
08e49d20 1342@var{Epilogue}
bfa74976
RS
1343@end example
1344
1345@noindent
1346The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1347in every Bison grammar file to separate the sections.
1348
72d2299c 1349The prologue may define types and variables used in the actions. You can
342b8b6e 1350also use preprocessor commands to define macros used there, and use
bfa74976 1351@code{#include} to include header files that do any of these things.
38a92d50
PE
1352You need to declare the lexical analyzer @code{yylex} and the error
1353printer @code{yyerror} here, along with any other global identifiers
1354used by the actions in the grammar rules.
bfa74976
RS
1355
1356The Bison declarations declare the names of the terminal and nonterminal
1357symbols, and may also describe operator precedence and the data types of
1358semantic values of various symbols.
1359
1360The grammar rules define how to construct each nonterminal symbol from its
1361parts.
1362
38a92d50
PE
1363The epilogue can contain any code you want to use. Often the
1364definitions of functions declared in the prologue go here. In a
1365simple program, all the rest of the program can go here.
bfa74976 1366
342b8b6e 1367@node Examples
bfa74976
RS
1368@chapter Examples
1369@cindex simple examples
1370@cindex examples, simple
1371
1372Now we show and explain three sample programs written using Bison: a
1373reverse polish notation calculator, an algebraic (infix) notation
1374calculator, and a multi-function calculator. All three have been tested
1375under BSD Unix 4.3; each produces a usable, though limited, interactive
1376desk-top calculator.
1377
1378These examples are simple, but Bison grammars for real programming
aa08666d
AD
1379languages are written the same way. You can copy these examples into a
1380source file to try them.
bfa74976
RS
1381
1382@menu
f56274a8
DJ
1383* RPN Calc:: Reverse polish notation calculator;
1384 a first example with no operator precedence.
1385* Infix Calc:: Infix (algebraic) notation calculator.
1386 Operator precedence is introduced.
bfa74976 1387* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1388* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
1389* Multi-function Calc:: Calculator with memory and trig functions.
1390 It uses multiple data-types for semantic values.
1391* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1392@end menu
1393
342b8b6e 1394@node RPN Calc
bfa74976
RS
1395@section Reverse Polish Notation Calculator
1396@cindex reverse polish notation
1397@cindex polish notation calculator
1398@cindex @code{rpcalc}
1399@cindex calculator, simple
1400
1401The first example is that of a simple double-precision @dfn{reverse polish
1402notation} calculator (a calculator using postfix operators). This example
1403provides a good starting point, since operator precedence is not an issue.
1404The second example will illustrate how operator precedence is handled.
1405
1406The source code for this calculator is named @file{rpcalc.y}. The
1407@samp{.y} extension is a convention used for Bison input files.
1408
1409@menu
f56274a8
DJ
1410* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1411* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1412* Rpcalc Lexer:: The lexical analyzer.
1413* Rpcalc Main:: The controlling function.
1414* Rpcalc Error:: The error reporting function.
1415* Rpcalc Generate:: Running Bison on the grammar file.
1416* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1417@end menu
1418
f56274a8 1419@node Rpcalc Declarations
bfa74976
RS
1420@subsection Declarations for @code{rpcalc}
1421
1422Here are the C and Bison declarations for the reverse polish notation
1423calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1424
1425@example
72d2299c 1426/* Reverse polish notation calculator. */
bfa74976
RS
1427
1428%@{
38a92d50
PE
1429 #define YYSTYPE double
1430 #include <math.h>
1431 int yylex (void);
1432 void yyerror (char const *);
bfa74976
RS
1433%@}
1434
1435%token NUM
1436
72d2299c 1437%% /* Grammar rules and actions follow. */
bfa74976
RS
1438@end example
1439
75f5aaea 1440The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1441preprocessor directives and two forward declarations.
bfa74976
RS
1442
1443The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1444specifying the C data type for semantic values of both tokens and
1445groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1446Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1447don't define it, @code{int} is the default. Because we specify
1448@code{double}, each token and each expression has an associated value,
1449which is a floating point number.
bfa74976
RS
1450
1451The @code{#include} directive is used to declare the exponentiation
1452function @code{pow}.
1453
38a92d50
PE
1454The forward declarations for @code{yylex} and @code{yyerror} are
1455needed because the C language requires that functions be declared
1456before they are used. These functions will be defined in the
1457epilogue, but the parser calls them so they must be declared in the
1458prologue.
1459
704a47c4
AD
1460The second section, Bison declarations, provides information to Bison
1461about the token types (@pxref{Bison Declarations, ,The Bison
1462Declarations Section}). Each terminal symbol that is not a
1463single-character literal must be declared here. (Single-character
bfa74976
RS
1464literals normally don't need to be declared.) In this example, all the
1465arithmetic operators are designated by single-character literals, so the
1466only terminal symbol that needs to be declared is @code{NUM}, the token
1467type for numeric constants.
1468
342b8b6e 1469@node Rpcalc Rules
bfa74976
RS
1470@subsection Grammar Rules for @code{rpcalc}
1471
1472Here are the grammar rules for the reverse polish notation calculator.
1473
1474@example
1475input: /* empty */
1476 | input line
1477;
1478
1479line: '\n'
18b519c0 1480 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1481;
1482
18b519c0
AD
1483exp: NUM @{ $$ = $1; @}
1484 | exp exp '+' @{ $$ = $1 + $2; @}
1485 | exp exp '-' @{ $$ = $1 - $2; @}
1486 | exp exp '*' @{ $$ = $1 * $2; @}
1487 | exp exp '/' @{ $$ = $1 / $2; @}
1488 /* Exponentiation */
1489 | exp exp '^' @{ $$ = pow ($1, $2); @}
1490 /* Unary minus */
1491 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1492;
1493%%
1494@end example
1495
1496The groupings of the rpcalc ``language'' defined here are the expression
1497(given the name @code{exp}), the line of input (@code{line}), and the
1498complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1499symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1500which is read as ``or''. The following sections explain what these rules
1501mean.
1502
1503The semantics of the language is determined by the actions taken when a
1504grouping is recognized. The actions are the C code that appears inside
1505braces. @xref{Actions}.
1506
1507You must specify these actions in C, but Bison provides the means for
1508passing semantic values between the rules. In each action, the
1509pseudo-variable @code{$$} stands for the semantic value for the grouping
1510that the rule is going to construct. Assigning a value to @code{$$} is the
1511main job of most actions. The semantic values of the components of the
1512rule are referred to as @code{$1}, @code{$2}, and so on.
1513
1514@menu
13863333
AD
1515* Rpcalc Input::
1516* Rpcalc Line::
1517* Rpcalc Expr::
bfa74976
RS
1518@end menu
1519
342b8b6e 1520@node Rpcalc Input
bfa74976
RS
1521@subsubsection Explanation of @code{input}
1522
1523Consider the definition of @code{input}:
1524
1525@example
1526input: /* empty */
1527 | input line
1528;
1529@end example
1530
1531This definition reads as follows: ``A complete input is either an empty
1532string, or a complete input followed by an input line''. Notice that
1533``complete input'' is defined in terms of itself. This definition is said
1534to be @dfn{left recursive} since @code{input} appears always as the
1535leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1536
1537The first alternative is empty because there are no symbols between the
1538colon and the first @samp{|}; this means that @code{input} can match an
1539empty string of input (no tokens). We write the rules this way because it
1540is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1541It's conventional to put an empty alternative first and write the comment
1542@samp{/* empty */} in it.
1543
1544The second alternate rule (@code{input line}) handles all nontrivial input.
1545It means, ``After reading any number of lines, read one more line if
1546possible.'' The left recursion makes this rule into a loop. Since the
1547first alternative matches empty input, the loop can be executed zero or
1548more times.
1549
1550The parser function @code{yyparse} continues to process input until a
1551grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1552input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1553
342b8b6e 1554@node Rpcalc Line
bfa74976
RS
1555@subsubsection Explanation of @code{line}
1556
1557Now consider the definition of @code{line}:
1558
1559@example
1560line: '\n'
1561 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1562;
1563@end example
1564
1565The first alternative is a token which is a newline character; this means
1566that rpcalc accepts a blank line (and ignores it, since there is no
1567action). The second alternative is an expression followed by a newline.
1568This is the alternative that makes rpcalc useful. The semantic value of
1569the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1570question is the first symbol in the alternative. The action prints this
1571value, which is the result of the computation the user asked for.
1572
1573This action is unusual because it does not assign a value to @code{$$}. As
1574a consequence, the semantic value associated with the @code{line} is
1575uninitialized (its value will be unpredictable). This would be a bug if
1576that value were ever used, but we don't use it: once rpcalc has printed the
1577value of the user's input line, that value is no longer needed.
1578
342b8b6e 1579@node Rpcalc Expr
bfa74976
RS
1580@subsubsection Explanation of @code{expr}
1581
1582The @code{exp} grouping has several rules, one for each kind of expression.
1583The first rule handles the simplest expressions: those that are just numbers.
1584The second handles an addition-expression, which looks like two expressions
1585followed by a plus-sign. The third handles subtraction, and so on.
1586
1587@example
1588exp: NUM
1589 | exp exp '+' @{ $$ = $1 + $2; @}
1590 | exp exp '-' @{ $$ = $1 - $2; @}
1591 @dots{}
1592 ;
1593@end example
1594
1595We have used @samp{|} to join all the rules for @code{exp}, but we could
1596equally well have written them separately:
1597
1598@example
1599exp: NUM ;
1600exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1601exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1602 @dots{}
1603@end example
1604
1605Most of the rules have actions that compute the value of the expression in
1606terms of the value of its parts. For example, in the rule for addition,
1607@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1608the second one. The third component, @code{'+'}, has no meaningful
1609associated semantic value, but if it had one you could refer to it as
1610@code{$3}. When @code{yyparse} recognizes a sum expression using this
1611rule, the sum of the two subexpressions' values is produced as the value of
1612the entire expression. @xref{Actions}.
1613
1614You don't have to give an action for every rule. When a rule has no
1615action, Bison by default copies the value of @code{$1} into @code{$$}.
1616This is what happens in the first rule (the one that uses @code{NUM}).
1617
1618The formatting shown here is the recommended convention, but Bison does
72d2299c 1619not require it. You can add or change white space as much as you wish.
bfa74976
RS
1620For example, this:
1621
1622@example
99a9344e 1623exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1624@end example
1625
1626@noindent
1627means the same thing as this:
1628
1629@example
1630exp: NUM
1631 | exp exp '+' @{ $$ = $1 + $2; @}
1632 | @dots{}
99a9344e 1633;
bfa74976
RS
1634@end example
1635
1636@noindent
1637The latter, however, is much more readable.
1638
342b8b6e 1639@node Rpcalc Lexer
bfa74976
RS
1640@subsection The @code{rpcalc} Lexical Analyzer
1641@cindex writing a lexical analyzer
1642@cindex lexical analyzer, writing
1643
704a47c4
AD
1644The lexical analyzer's job is low-level parsing: converting characters
1645or sequences of characters into tokens. The Bison parser gets its
1646tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1647Analyzer Function @code{yylex}}.
bfa74976 1648
c827f760
PE
1649Only a simple lexical analyzer is needed for the @acronym{RPN}
1650calculator. This
bfa74976
RS
1651lexical analyzer skips blanks and tabs, then reads in numbers as
1652@code{double} and returns them as @code{NUM} tokens. Any other character
1653that isn't part of a number is a separate token. Note that the token-code
1654for such a single-character token is the character itself.
1655
1656The return value of the lexical analyzer function is a numeric code which
1657represents a token type. The same text used in Bison rules to stand for
1658this token type is also a C expression for the numeric code for the type.
1659This works in two ways. If the token type is a character literal, then its
e966383b 1660numeric code is that of the character; you can use the same
bfa74976
RS
1661character literal in the lexical analyzer to express the number. If the
1662token type is an identifier, that identifier is defined by Bison as a C
1663macro whose definition is the appropriate number. In this example,
1664therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1665
1964ad8c
AD
1666The semantic value of the token (if it has one) is stored into the
1667global variable @code{yylval}, which is where the Bison parser will look
1668for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f56274a8 1669defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1670,Declarations for @code{rpcalc}}.)
bfa74976 1671
72d2299c
PE
1672A token type code of zero is returned if the end-of-input is encountered.
1673(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1674
1675Here is the code for the lexical analyzer:
1676
1677@example
1678@group
72d2299c 1679/* The lexical analyzer returns a double floating point
e966383b 1680 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1681 of the character read if not a number. It skips all blanks
1682 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1683
1684#include <ctype.h>
1685@end group
1686
1687@group
13863333
AD
1688int
1689yylex (void)
bfa74976
RS
1690@{
1691 int c;
1692
72d2299c 1693 /* Skip white space. */
13863333 1694 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1695 ;
1696@end group
1697@group
72d2299c 1698 /* Process numbers. */
13863333 1699 if (c == '.' || isdigit (c))
bfa74976
RS
1700 @{
1701 ungetc (c, stdin);
1702 scanf ("%lf", &yylval);
1703 return NUM;
1704 @}
1705@end group
1706@group
72d2299c 1707 /* Return end-of-input. */
13863333 1708 if (c == EOF)
bfa74976 1709 return 0;
72d2299c 1710 /* Return a single char. */
13863333 1711 return c;
bfa74976
RS
1712@}
1713@end group
1714@end example
1715
342b8b6e 1716@node Rpcalc Main
bfa74976
RS
1717@subsection The Controlling Function
1718@cindex controlling function
1719@cindex main function in simple example
1720
1721In keeping with the spirit of this example, the controlling function is
1722kept to the bare minimum. The only requirement is that it call
1723@code{yyparse} to start the process of parsing.
1724
1725@example
1726@group
13863333
AD
1727int
1728main (void)
bfa74976 1729@{
13863333 1730 return yyparse ();
bfa74976
RS
1731@}
1732@end group
1733@end example
1734
342b8b6e 1735@node Rpcalc Error
bfa74976
RS
1736@subsection The Error Reporting Routine
1737@cindex error reporting routine
1738
1739When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1740function @code{yyerror} to print an error message (usually but not
6e649e65 1741always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1742@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1743here is the definition we will use:
bfa74976
RS
1744
1745@example
1746@group
1747#include <stdio.h>
1748
38a92d50 1749/* Called by yyparse on error. */
13863333 1750void
38a92d50 1751yyerror (char const *s)
bfa74976 1752@{
4e03e201 1753 fprintf (stderr, "%s\n", s);
bfa74976
RS
1754@}
1755@end group
1756@end example
1757
1758After @code{yyerror} returns, the Bison parser may recover from the error
1759and continue parsing if the grammar contains a suitable error rule
1760(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1761have not written any error rules in this example, so any invalid input will
1762cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1763real calculator, but it is adequate for the first example.
bfa74976 1764
f56274a8 1765@node Rpcalc Generate
bfa74976
RS
1766@subsection Running Bison to Make the Parser
1767@cindex running Bison (introduction)
1768
ceed8467
AD
1769Before running Bison to produce a parser, we need to decide how to
1770arrange all the source code in one or more source files. For such a
1771simple example, the easiest thing is to put everything in one file. The
1772definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1773end, in the epilogue of the file
75f5aaea 1774(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1775
1776For a large project, you would probably have several source files, and use
1777@code{make} to arrange to recompile them.
1778
1779With all the source in a single file, you use the following command to
1780convert it into a parser file:
1781
1782@example
fa4d969f 1783bison @var{file}.y
bfa74976
RS
1784@end example
1785
1786@noindent
1787In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1788@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1789removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1790Bison contains the source code for @code{yyparse}. The additional
1791functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1792are copied verbatim to the output.
1793
342b8b6e 1794@node Rpcalc Compile
bfa74976
RS
1795@subsection Compiling the Parser File
1796@cindex compiling the parser
1797
1798Here is how to compile and run the parser file:
1799
1800@example
1801@group
1802# @r{List files in current directory.}
9edcd895 1803$ @kbd{ls}
bfa74976
RS
1804rpcalc.tab.c rpcalc.y
1805@end group
1806
1807@group
1808# @r{Compile the Bison parser.}
1809# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1810$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1811@end group
1812
1813@group
1814# @r{List files again.}
9edcd895 1815$ @kbd{ls}
bfa74976
RS
1816rpcalc rpcalc.tab.c rpcalc.y
1817@end group
1818@end example
1819
1820The file @file{rpcalc} now contains the executable code. Here is an
1821example session using @code{rpcalc}.
1822
1823@example
9edcd895
AD
1824$ @kbd{rpcalc}
1825@kbd{4 9 +}
bfa74976 182613
9edcd895 1827@kbd{3 7 + 3 4 5 *+-}
bfa74976 1828-13
9edcd895 1829@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 183013
9edcd895 1831@kbd{5 6 / 4 n +}
bfa74976 1832-3.166666667
9edcd895 1833@kbd{3 4 ^} @r{Exponentiation}
bfa74976 183481
9edcd895
AD
1835@kbd{^D} @r{End-of-file indicator}
1836$
bfa74976
RS
1837@end example
1838
342b8b6e 1839@node Infix Calc
bfa74976
RS
1840@section Infix Notation Calculator: @code{calc}
1841@cindex infix notation calculator
1842@cindex @code{calc}
1843@cindex calculator, infix notation
1844
1845We now modify rpcalc to handle infix operators instead of postfix. Infix
1846notation involves the concept of operator precedence and the need for
1847parentheses nested to arbitrary depth. Here is the Bison code for
1848@file{calc.y}, an infix desk-top calculator.
1849
1850@example
38a92d50 1851/* Infix notation calculator. */
bfa74976
RS
1852
1853%@{
38a92d50
PE
1854 #define YYSTYPE double
1855 #include <math.h>
1856 #include <stdio.h>
1857 int yylex (void);
1858 void yyerror (char const *);
bfa74976
RS
1859%@}
1860
38a92d50 1861/* Bison declarations. */
bfa74976
RS
1862%token NUM
1863%left '-' '+'
1864%left '*' '/'
1865%left NEG /* negation--unary minus */
38a92d50 1866%right '^' /* exponentiation */
bfa74976 1867
38a92d50
PE
1868%% /* The grammar follows. */
1869input: /* empty */
bfa74976
RS
1870 | input line
1871;
1872
1873line: '\n'
1874 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1875;
1876
1877exp: NUM @{ $$ = $1; @}
1878 | exp '+' exp @{ $$ = $1 + $3; @}
1879 | exp '-' exp @{ $$ = $1 - $3; @}
1880 | exp '*' exp @{ $$ = $1 * $3; @}
1881 | exp '/' exp @{ $$ = $1 / $3; @}
1882 | '-' exp %prec NEG @{ $$ = -$2; @}
1883 | exp '^' exp @{ $$ = pow ($1, $3); @}
1884 | '(' exp ')' @{ $$ = $2; @}
1885;
1886%%
1887@end example
1888
1889@noindent
ceed8467
AD
1890The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1891same as before.
bfa74976
RS
1892
1893There are two important new features shown in this code.
1894
1895In the second section (Bison declarations), @code{%left} declares token
1896types and says they are left-associative operators. The declarations
1897@code{%left} and @code{%right} (right associativity) take the place of
1898@code{%token} which is used to declare a token type name without
1899associativity. (These tokens are single-character literals, which
1900ordinarily don't need to be declared. We declare them here to specify
1901the associativity.)
1902
1903Operator precedence is determined by the line ordering of the
1904declarations; the higher the line number of the declaration (lower on
1905the page or screen), the higher the precedence. Hence, exponentiation
1906has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1907by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1908Precedence}.
bfa74976 1909
704a47c4
AD
1910The other important new feature is the @code{%prec} in the grammar
1911section for the unary minus operator. The @code{%prec} simply instructs
1912Bison that the rule @samp{| '-' exp} has the same precedence as
1913@code{NEG}---in this case the next-to-highest. @xref{Contextual
1914Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1915
1916Here is a sample run of @file{calc.y}:
1917
1918@need 500
1919@example
9edcd895
AD
1920$ @kbd{calc}
1921@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19226.880952381
9edcd895 1923@kbd{-56 + 2}
bfa74976 1924-54
9edcd895 1925@kbd{3 ^ 2}
bfa74976
RS
19269
1927@end example
1928
342b8b6e 1929@node Simple Error Recovery
bfa74976
RS
1930@section Simple Error Recovery
1931@cindex error recovery, simple
1932
1933Up to this point, this manual has not addressed the issue of @dfn{error
1934recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1935error. All we have handled is error reporting with @code{yyerror}.
1936Recall that by default @code{yyparse} returns after calling
1937@code{yyerror}. This means that an erroneous input line causes the
1938calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1939
1940The Bison language itself includes the reserved word @code{error}, which
1941may be included in the grammar rules. In the example below it has
1942been added to one of the alternatives for @code{line}:
1943
1944@example
1945@group
1946line: '\n'
1947 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1948 | error '\n' @{ yyerrok; @}
1949;
1950@end group
1951@end example
1952
ceed8467 1953This addition to the grammar allows for simple error recovery in the
6e649e65 1954event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1955read, the error will be recognized by the third rule for @code{line},
1956and parsing will continue. (The @code{yyerror} function is still called
1957upon to print its message as well.) The action executes the statement
1958@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1959that error recovery is complete (@pxref{Error Recovery}). Note the
1960difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1961misprint.
bfa74976
RS
1962
1963This form of error recovery deals with syntax errors. There are other
1964kinds of errors; for example, division by zero, which raises an exception
1965signal that is normally fatal. A real calculator program must handle this
1966signal and use @code{longjmp} to return to @code{main} and resume parsing
1967input lines; it would also have to discard the rest of the current line of
1968input. We won't discuss this issue further because it is not specific to
1969Bison programs.
1970
342b8b6e
AD
1971@node Location Tracking Calc
1972@section Location Tracking Calculator: @code{ltcalc}
1973@cindex location tracking calculator
1974@cindex @code{ltcalc}
1975@cindex calculator, location tracking
1976
9edcd895
AD
1977This example extends the infix notation calculator with location
1978tracking. This feature will be used to improve the error messages. For
1979the sake of clarity, this example is a simple integer calculator, since
1980most of the work needed to use locations will be done in the lexical
72d2299c 1981analyzer.
342b8b6e
AD
1982
1983@menu
f56274a8
DJ
1984* Ltcalc Declarations:: Bison and C declarations for ltcalc.
1985* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
1986* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
1987@end menu
1988
f56274a8 1989@node Ltcalc Declarations
342b8b6e
AD
1990@subsection Declarations for @code{ltcalc}
1991
9edcd895
AD
1992The C and Bison declarations for the location tracking calculator are
1993the same as the declarations for the infix notation calculator.
342b8b6e
AD
1994
1995@example
1996/* Location tracking calculator. */
1997
1998%@{
38a92d50
PE
1999 #define YYSTYPE int
2000 #include <math.h>
2001 int yylex (void);
2002 void yyerror (char const *);
342b8b6e
AD
2003%@}
2004
2005/* Bison declarations. */
2006%token NUM
2007
2008%left '-' '+'
2009%left '*' '/'
2010%left NEG
2011%right '^'
2012
38a92d50 2013%% /* The grammar follows. */
342b8b6e
AD
2014@end example
2015
9edcd895
AD
2016@noindent
2017Note there are no declarations specific to locations. Defining a data
2018type for storing locations is not needed: we will use the type provided
2019by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2020four member structure with the following integer fields:
2021@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2022@code{last_column}. By conventions, and in accordance with the GNU
2023Coding Standards and common practice, the line and column count both
2024start at 1.
342b8b6e
AD
2025
2026@node Ltcalc Rules
2027@subsection Grammar Rules for @code{ltcalc}
2028
9edcd895
AD
2029Whether handling locations or not has no effect on the syntax of your
2030language. Therefore, grammar rules for this example will be very close
2031to those of the previous example: we will only modify them to benefit
2032from the new information.
342b8b6e 2033
9edcd895
AD
2034Here, we will use locations to report divisions by zero, and locate the
2035wrong expressions or subexpressions.
342b8b6e
AD
2036
2037@example
2038@group
2039input : /* empty */
2040 | input line
2041;
2042@end group
2043
2044@group
2045line : '\n'
2046 | exp '\n' @{ printf ("%d\n", $1); @}
2047;
2048@end group
2049
2050@group
2051exp : NUM @{ $$ = $1; @}
2052 | exp '+' exp @{ $$ = $1 + $3; @}
2053 | exp '-' exp @{ $$ = $1 - $3; @}
2054 | exp '*' exp @{ $$ = $1 * $3; @}
2055@end group
342b8b6e 2056@group
9edcd895 2057 | exp '/' exp
342b8b6e
AD
2058 @{
2059 if ($3)
2060 $$ = $1 / $3;
2061 else
2062 @{
2063 $$ = 1;
9edcd895
AD
2064 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2065 @@3.first_line, @@3.first_column,
2066 @@3.last_line, @@3.last_column);
342b8b6e
AD
2067 @}
2068 @}
2069@end group
2070@group
178e123e 2071 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2072 | exp '^' exp @{ $$ = pow ($1, $3); @}
2073 | '(' exp ')' @{ $$ = $2; @}
2074@end group
2075@end example
2076
2077This code shows how to reach locations inside of semantic actions, by
2078using the pseudo-variables @code{@@@var{n}} for rule components, and the
2079pseudo-variable @code{@@$} for groupings.
2080
9edcd895
AD
2081We don't need to assign a value to @code{@@$}: the output parser does it
2082automatically. By default, before executing the C code of each action,
2083@code{@@$} is set to range from the beginning of @code{@@1} to the end
2084of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2085can be redefined (@pxref{Location Default Action, , Default Action for
2086Locations}), and for very specific rules, @code{@@$} can be computed by
2087hand.
342b8b6e
AD
2088
2089@node Ltcalc Lexer
2090@subsection The @code{ltcalc} Lexical Analyzer.
2091
9edcd895 2092Until now, we relied on Bison's defaults to enable location
72d2299c 2093tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2094able to feed the parser with the token locations, as it already does for
2095semantic values.
342b8b6e 2096
9edcd895
AD
2097To this end, we must take into account every single character of the
2098input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2099
2100@example
2101@group
2102int
2103yylex (void)
2104@{
2105 int c;
18b519c0 2106@end group
342b8b6e 2107
18b519c0 2108@group
72d2299c 2109 /* Skip white space. */
342b8b6e
AD
2110 while ((c = getchar ()) == ' ' || c == '\t')
2111 ++yylloc.last_column;
18b519c0 2112@end group
342b8b6e 2113
18b519c0 2114@group
72d2299c 2115 /* Step. */
342b8b6e
AD
2116 yylloc.first_line = yylloc.last_line;
2117 yylloc.first_column = yylloc.last_column;
2118@end group
2119
2120@group
72d2299c 2121 /* Process numbers. */
342b8b6e
AD
2122 if (isdigit (c))
2123 @{
2124 yylval = c - '0';
2125 ++yylloc.last_column;
2126 while (isdigit (c = getchar ()))
2127 @{
2128 ++yylloc.last_column;
2129 yylval = yylval * 10 + c - '0';
2130 @}
2131 ungetc (c, stdin);
2132 return NUM;
2133 @}
2134@end group
2135
72d2299c 2136 /* Return end-of-input. */
342b8b6e
AD
2137 if (c == EOF)
2138 return 0;
2139
72d2299c 2140 /* Return a single char, and update location. */
342b8b6e
AD
2141 if (c == '\n')
2142 @{
2143 ++yylloc.last_line;
2144 yylloc.last_column = 0;
2145 @}
2146 else
2147 ++yylloc.last_column;
2148 return c;
2149@}
2150@end example
2151
9edcd895
AD
2152Basically, the lexical analyzer performs the same processing as before:
2153it skips blanks and tabs, and reads numbers or single-character tokens.
2154In addition, it updates @code{yylloc}, the global variable (of type
2155@code{YYLTYPE}) containing the token's location.
342b8b6e 2156
9edcd895 2157Now, each time this function returns a token, the parser has its number
72d2299c 2158as well as its semantic value, and its location in the text. The last
9edcd895
AD
2159needed change is to initialize @code{yylloc}, for example in the
2160controlling function:
342b8b6e
AD
2161
2162@example
9edcd895 2163@group
342b8b6e
AD
2164int
2165main (void)
2166@{
2167 yylloc.first_line = yylloc.last_line = 1;
2168 yylloc.first_column = yylloc.last_column = 0;
2169 return yyparse ();
2170@}
9edcd895 2171@end group
342b8b6e
AD
2172@end example
2173
9edcd895
AD
2174Remember that computing locations is not a matter of syntax. Every
2175character must be associated to a location update, whether it is in
2176valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2177
2178@node Multi-function Calc
bfa74976
RS
2179@section Multi-Function Calculator: @code{mfcalc}
2180@cindex multi-function calculator
2181@cindex @code{mfcalc}
2182@cindex calculator, multi-function
2183
2184Now that the basics of Bison have been discussed, it is time to move on to
2185a more advanced problem. The above calculators provided only five
2186functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2187be nice to have a calculator that provides other mathematical functions such
2188as @code{sin}, @code{cos}, etc.
2189
2190It is easy to add new operators to the infix calculator as long as they are
2191only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2192back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2193adding a new operator. But we want something more flexible: built-in
2194functions whose syntax has this form:
2195
2196@example
2197@var{function_name} (@var{argument})
2198@end example
2199
2200@noindent
2201At the same time, we will add memory to the calculator, by allowing you
2202to create named variables, store values in them, and use them later.
2203Here is a sample session with the multi-function calculator:
2204
2205@example
9edcd895
AD
2206$ @kbd{mfcalc}
2207@kbd{pi = 3.141592653589}
bfa74976 22083.1415926536
9edcd895 2209@kbd{sin(pi)}
bfa74976 22100.0000000000
9edcd895 2211@kbd{alpha = beta1 = 2.3}
bfa74976 22122.3000000000
9edcd895 2213@kbd{alpha}
bfa74976 22142.3000000000
9edcd895 2215@kbd{ln(alpha)}
bfa74976 22160.8329091229
9edcd895 2217@kbd{exp(ln(beta1))}
bfa74976 22182.3000000000
9edcd895 2219$
bfa74976
RS
2220@end example
2221
2222Note that multiple assignment and nested function calls are permitted.
2223
2224@menu
f56274a8
DJ
2225* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2226* Mfcalc Rules:: Grammar rules for the calculator.
2227* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2228@end menu
2229
f56274a8 2230@node Mfcalc Declarations
bfa74976
RS
2231@subsection Declarations for @code{mfcalc}
2232
2233Here are the C and Bison declarations for the multi-function calculator.
2234
2235@smallexample
18b519c0 2236@group
bfa74976 2237%@{
38a92d50
PE
2238 #include <math.h> /* For math functions, cos(), sin(), etc. */
2239 #include "calc.h" /* Contains definition of `symrec'. */
2240 int yylex (void);
2241 void yyerror (char const *);
bfa74976 2242%@}
18b519c0
AD
2243@end group
2244@group
bfa74976 2245%union @{
38a92d50
PE
2246 double val; /* For returning numbers. */
2247 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2248@}
18b519c0 2249@end group
38a92d50
PE
2250%token <val> NUM /* Simple double precision number. */
2251%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2252%type <val> exp
2253
18b519c0 2254@group
bfa74976
RS
2255%right '='
2256%left '-' '+'
2257%left '*' '/'
38a92d50
PE
2258%left NEG /* negation--unary minus */
2259%right '^' /* exponentiation */
18b519c0 2260@end group
38a92d50 2261%% /* The grammar follows. */
bfa74976
RS
2262@end smallexample
2263
2264The above grammar introduces only two new features of the Bison language.
2265These features allow semantic values to have various data types
2266(@pxref{Multiple Types, ,More Than One Value Type}).
2267
2268The @code{%union} declaration specifies the entire list of possible types;
2269this is instead of defining @code{YYSTYPE}. The allowable types are now
2270double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2271the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2272
2273Since values can now have various types, it is necessary to associate a
2274type with each grammar symbol whose semantic value is used. These symbols
2275are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2276declarations are augmented with information about their data type (placed
2277between angle brackets).
2278
704a47c4
AD
2279The Bison construct @code{%type} is used for declaring nonterminal
2280symbols, just as @code{%token} is used for declaring token types. We
2281have not used @code{%type} before because nonterminal symbols are
2282normally declared implicitly by the rules that define them. But
2283@code{exp} must be declared explicitly so we can specify its value type.
2284@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2285
342b8b6e 2286@node Mfcalc Rules
bfa74976
RS
2287@subsection Grammar Rules for @code{mfcalc}
2288
2289Here are the grammar rules for the multi-function calculator.
2290Most of them are copied directly from @code{calc}; three rules,
2291those which mention @code{VAR} or @code{FNCT}, are new.
2292
2293@smallexample
18b519c0 2294@group
bfa74976
RS
2295input: /* empty */
2296 | input line
2297;
18b519c0 2298@end group
bfa74976 2299
18b519c0 2300@group
bfa74976
RS
2301line:
2302 '\n'
2303 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2304 | error '\n' @{ yyerrok; @}
2305;
18b519c0 2306@end group
bfa74976 2307
18b519c0 2308@group
bfa74976
RS
2309exp: NUM @{ $$ = $1; @}
2310 | VAR @{ $$ = $1->value.var; @}
2311 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2312 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2313 | exp '+' exp @{ $$ = $1 + $3; @}
2314 | exp '-' exp @{ $$ = $1 - $3; @}
2315 | exp '*' exp @{ $$ = $1 * $3; @}
2316 | exp '/' exp @{ $$ = $1 / $3; @}
2317 | '-' exp %prec NEG @{ $$ = -$2; @}
2318 | exp '^' exp @{ $$ = pow ($1, $3); @}
2319 | '(' exp ')' @{ $$ = $2; @}
2320;
18b519c0 2321@end group
38a92d50 2322/* End of grammar. */
bfa74976
RS
2323%%
2324@end smallexample
2325
f56274a8 2326@node Mfcalc Symbol Table
bfa74976
RS
2327@subsection The @code{mfcalc} Symbol Table
2328@cindex symbol table example
2329
2330The multi-function calculator requires a symbol table to keep track of the
2331names and meanings of variables and functions. This doesn't affect the
2332grammar rules (except for the actions) or the Bison declarations, but it
2333requires some additional C functions for support.
2334
2335The symbol table itself consists of a linked list of records. Its
2336definition, which is kept in the header @file{calc.h}, is as follows. It
2337provides for either functions or variables to be placed in the table.
2338
2339@smallexample
2340@group
38a92d50 2341/* Function type. */
32dfccf8 2342typedef double (*func_t) (double);
72f889cc 2343@end group
32dfccf8 2344
72f889cc 2345@group
38a92d50 2346/* Data type for links in the chain of symbols. */
bfa74976
RS
2347struct symrec
2348@{
38a92d50 2349 char *name; /* name of symbol */
bfa74976 2350 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2351 union
2352 @{
38a92d50
PE
2353 double var; /* value of a VAR */
2354 func_t fnctptr; /* value of a FNCT */
bfa74976 2355 @} value;
38a92d50 2356 struct symrec *next; /* link field */
bfa74976
RS
2357@};
2358@end group
2359
2360@group
2361typedef struct symrec symrec;
2362
38a92d50 2363/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2364extern symrec *sym_table;
2365
a730d142 2366symrec *putsym (char const *, int);
38a92d50 2367symrec *getsym (char const *);
bfa74976
RS
2368@end group
2369@end smallexample
2370
2371The new version of @code{main} includes a call to @code{init_table}, a
2372function that initializes the symbol table. Here it is, and
2373@code{init_table} as well:
2374
2375@smallexample
bfa74976
RS
2376#include <stdio.h>
2377
18b519c0 2378@group
38a92d50 2379/* Called by yyparse on error. */
13863333 2380void
38a92d50 2381yyerror (char const *s)
bfa74976
RS
2382@{
2383 printf ("%s\n", s);
2384@}
18b519c0 2385@end group
bfa74976 2386
18b519c0 2387@group
bfa74976
RS
2388struct init
2389@{
38a92d50
PE
2390 char const *fname;
2391 double (*fnct) (double);
bfa74976
RS
2392@};
2393@end group
2394
2395@group
38a92d50 2396struct init const arith_fncts[] =
13863333 2397@{
32dfccf8
AD
2398 "sin", sin,
2399 "cos", cos,
13863333 2400 "atan", atan,
32dfccf8
AD
2401 "ln", log,
2402 "exp", exp,
13863333
AD
2403 "sqrt", sqrt,
2404 0, 0
2405@};
18b519c0 2406@end group
bfa74976 2407
18b519c0 2408@group
bfa74976 2409/* The symbol table: a chain of `struct symrec'. */
38a92d50 2410symrec *sym_table;
bfa74976
RS
2411@end group
2412
2413@group
72d2299c 2414/* Put arithmetic functions in table. */
13863333
AD
2415void
2416init_table (void)
bfa74976
RS
2417@{
2418 int i;
2419 symrec *ptr;
2420 for (i = 0; arith_fncts[i].fname != 0; i++)
2421 @{
2422 ptr = putsym (arith_fncts[i].fname, FNCT);
2423 ptr->value.fnctptr = arith_fncts[i].fnct;
2424 @}
2425@}
2426@end group
38a92d50
PE
2427
2428@group
2429int
2430main (void)
2431@{
2432 init_table ();
2433 return yyparse ();
2434@}
2435@end group
bfa74976
RS
2436@end smallexample
2437
2438By simply editing the initialization list and adding the necessary include
2439files, you can add additional functions to the calculator.
2440
2441Two important functions allow look-up and installation of symbols in the
2442symbol table. The function @code{putsym} is passed a name and the type
2443(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2444linked to the front of the list, and a pointer to the object is returned.
2445The function @code{getsym} is passed the name of the symbol to look up. If
2446found, a pointer to that symbol is returned; otherwise zero is returned.
2447
2448@smallexample
2449symrec *
38a92d50 2450putsym (char const *sym_name, int sym_type)
bfa74976
RS
2451@{
2452 symrec *ptr;
2453 ptr = (symrec *) malloc (sizeof (symrec));
2454 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2455 strcpy (ptr->name,sym_name);
2456 ptr->type = sym_type;
72d2299c 2457 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2458 ptr->next = (struct symrec *)sym_table;
2459 sym_table = ptr;
2460 return ptr;
2461@}
2462
2463symrec *
38a92d50 2464getsym (char const *sym_name)
bfa74976
RS
2465@{
2466 symrec *ptr;
2467 for (ptr = sym_table; ptr != (symrec *) 0;
2468 ptr = (symrec *)ptr->next)
2469 if (strcmp (ptr->name,sym_name) == 0)
2470 return ptr;
2471 return 0;
2472@}
2473@end smallexample
2474
2475The function @code{yylex} must now recognize variables, numeric values, and
2476the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2477characters with a leading letter are recognized as either variables or
bfa74976
RS
2478functions depending on what the symbol table says about them.
2479
2480The string is passed to @code{getsym} for look up in the symbol table. If
2481the name appears in the table, a pointer to its location and its type
2482(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2483already in the table, then it is installed as a @code{VAR} using
2484@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2485returned to @code{yyparse}.
bfa74976
RS
2486
2487No change is needed in the handling of numeric values and arithmetic
2488operators in @code{yylex}.
2489
2490@smallexample
2491@group
2492#include <ctype.h>
18b519c0 2493@end group
13863333 2494
18b519c0 2495@group
13863333
AD
2496int
2497yylex (void)
bfa74976
RS
2498@{
2499 int c;
2500
72d2299c 2501 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2502 while ((c = getchar ()) == ' ' || c == '\t');
2503
2504 if (c == EOF)
2505 return 0;
2506@end group
2507
2508@group
2509 /* Char starts a number => parse the number. */
2510 if (c == '.' || isdigit (c))
2511 @{
2512 ungetc (c, stdin);
2513 scanf ("%lf", &yylval.val);
2514 return NUM;
2515 @}
2516@end group
2517
2518@group
2519 /* Char starts an identifier => read the name. */
2520 if (isalpha (c))
2521 @{
2522 symrec *s;
2523 static char *symbuf = 0;
2524 static int length = 0;
2525 int i;
2526@end group
2527
2528@group
2529 /* Initially make the buffer long enough
2530 for a 40-character symbol name. */
2531 if (length == 0)
2532 length = 40, symbuf = (char *)malloc (length + 1);
2533
2534 i = 0;
2535 do
2536@end group
2537@group
2538 @{
2539 /* If buffer is full, make it bigger. */
2540 if (i == length)
2541 @{
2542 length *= 2;
18b519c0 2543 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2544 @}
2545 /* Add this character to the buffer. */
2546 symbuf[i++] = c;
2547 /* Get another character. */
2548 c = getchar ();
2549 @}
2550@end group
2551@group
72d2299c 2552 while (isalnum (c));
bfa74976
RS
2553
2554 ungetc (c, stdin);
2555 symbuf[i] = '\0';
2556@end group
2557
2558@group
2559 s = getsym (symbuf);
2560 if (s == 0)
2561 s = putsym (symbuf, VAR);
2562 yylval.tptr = s;
2563 return s->type;
2564 @}
2565
2566 /* Any other character is a token by itself. */
2567 return c;
2568@}
2569@end group
2570@end smallexample
2571
72d2299c 2572This program is both powerful and flexible. You may easily add new
704a47c4
AD
2573functions, and it is a simple job to modify this code to install
2574predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2575
342b8b6e 2576@node Exercises
bfa74976
RS
2577@section Exercises
2578@cindex exercises
2579
2580@enumerate
2581@item
2582Add some new functions from @file{math.h} to the initialization list.
2583
2584@item
2585Add another array that contains constants and their values. Then
2586modify @code{init_table} to add these constants to the symbol table.
2587It will be easiest to give the constants type @code{VAR}.
2588
2589@item
2590Make the program report an error if the user refers to an
2591uninitialized variable in any way except to store a value in it.
2592@end enumerate
2593
342b8b6e 2594@node Grammar File
bfa74976
RS
2595@chapter Bison Grammar Files
2596
2597Bison takes as input a context-free grammar specification and produces a
2598C-language function that recognizes correct instances of the grammar.
2599
2600The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2601@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2602
2603@menu
2604* Grammar Outline:: Overall layout of the grammar file.
2605* Symbols:: Terminal and nonterminal symbols.
2606* Rules:: How to write grammar rules.
2607* Recursion:: Writing recursive rules.
2608* Semantics:: Semantic values and actions.
847bf1f5 2609* Locations:: Locations and actions.
bfa74976
RS
2610* Declarations:: All kinds of Bison declarations are described here.
2611* Multiple Parsers:: Putting more than one Bison parser in one program.
2612@end menu
2613
342b8b6e 2614@node Grammar Outline
bfa74976
RS
2615@section Outline of a Bison Grammar
2616
2617A Bison grammar file has four main sections, shown here with the
2618appropriate delimiters:
2619
2620@example
2621%@{
38a92d50 2622 @var{Prologue}
bfa74976
RS
2623%@}
2624
2625@var{Bison declarations}
2626
2627%%
2628@var{Grammar rules}
2629%%
2630
75f5aaea 2631@var{Epilogue}
bfa74976
RS
2632@end example
2633
2634Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2635As a @acronym{GNU} extension, @samp{//} introduces a comment that
2636continues until end of line.
bfa74976
RS
2637
2638@menu
f56274a8 2639* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2640* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
2641* Bison Declarations:: Syntax and usage of the Bison declarations section.
2642* Grammar Rules:: Syntax and usage of the grammar rules section.
2643* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2644@end menu
2645
38a92d50 2646@node Prologue
75f5aaea
MA
2647@subsection The prologue
2648@cindex declarations section
2649@cindex Prologue
2650@cindex declarations
bfa74976 2651
f8e1c9e5
AD
2652The @var{Prologue} section contains macro definitions and declarations
2653of functions and variables that are used in the actions in the grammar
2654rules. These are copied to the beginning of the parser file so that
2655they precede the definition of @code{yyparse}. You can use
2656@samp{#include} to get the declarations from a header file. If you
2657don't need any C declarations, you may omit the @samp{%@{} and
2658@samp{%@}} delimiters that bracket this section.
bfa74976 2659
9c437126 2660The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2661of @samp{%@}} that is outside a comment, a string literal, or a
2662character constant.
2663
c732d2c6
AD
2664You may have more than one @var{Prologue} section, intermixed with the
2665@var{Bison declarations}. This allows you to have C and Bison
2666declarations that refer to each other. For example, the @code{%union}
2667declaration may use types defined in a header file, and you may wish to
2668prototype functions that take arguments of type @code{YYSTYPE}. This
2669can be done with two @var{Prologue} blocks, one before and one after the
2670@code{%union} declaration.
2671
2672@smallexample
2673%@{
aef3da86 2674 #define _GNU_SOURCE
38a92d50
PE
2675 #include <stdio.h>
2676 #include "ptypes.h"
c732d2c6
AD
2677%@}
2678
2679%union @{
779e7ceb 2680 long int n;
c732d2c6
AD
2681 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2682@}
2683
2684%@{
38a92d50
PE
2685 static void print_token_value (FILE *, int, YYSTYPE);
2686 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2687%@}
2688
2689@dots{}
2690@end smallexample
2691
aef3da86
PE
2692When in doubt, it is usually safer to put prologue code before all
2693Bison declarations, rather than after. For example, any definitions
2694of feature test macros like @code{_GNU_SOURCE} or
2695@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2696feature test macros can affect the behavior of Bison-generated
2697@code{#include} directives.
2698
2cbe6b7f
JD
2699@node Prologue Alternatives
2700@subsection Prologue Alternatives
2701@cindex Prologue Alternatives
2702
136a0f76 2703@findex %code
16dc6a9e
JD
2704@findex %code requires
2705@findex %code provides
2706@findex %code top
85894313
JD
2707(The prologue alternatives described here are experimental.
2708More user feedback will help to determine whether they should become permanent
2709features.)
2710
2cbe6b7f
JD
2711The functionality of @var{Prologue} sections can often be subtle and
2712inflexible.
8e0a5e9e
JD
2713As an alternative, Bison provides a %code directive with an explicit qualifier
2714field, which identifies the purpose of the code and thus the location(s) where
2715Bison should generate it.
2716For C/C++, the qualifier can be omitted for the default location, or it can be
8405b70c 2717one of @code{requires}, @code{provides}, @code{top}.
148d66d8 2718@xref{Decl Summary,,%code}.
2cbe6b7f
JD
2719
2720Look again at the example of the previous section:
2721
2722@smallexample
2723%@{
2724 #define _GNU_SOURCE
2725 #include <stdio.h>
2726 #include "ptypes.h"
2727%@}
2728
2729%union @{
2730 long int n;
2731 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2732@}
2733
2734%@{
2735 static void print_token_value (FILE *, int, YYSTYPE);
2736 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2737%@}
2738
2739@dots{}
2740@end smallexample
2741
2742@noindent
2743Notice that there are two @var{Prologue} sections here, but there's a subtle
2744distinction between their functionality.
2745For example, if you decide to override Bison's default definition for
2746@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2747definition?
2748You should write it in the first since Bison will insert that code into the
8e0a5e9e 2749parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2750In which @var{Prologue} section should you prototype an internal function,
2751@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2752arguments?
2753You should prototype it in the second since Bison will insert that code
2754@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2755
2756This distinction in functionality between the two @var{Prologue} sections is
2757established by the appearance of the @code{%union} between them.
a501eca9 2758This behavior raises a few questions.
2cbe6b7f
JD
2759First, why should the position of a @code{%union} affect definitions related to
2760@code{YYLTYPE} and @code{yytokentype}?
2761Second, what if there is no @code{%union}?
2762In that case, the second kind of @var{Prologue} section is not available.
2763This behavior is not intuitive.
2764
8e0a5e9e 2765To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2766@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2767Let's go ahead and add the new @code{YYLTYPE} definition and the
2768@code{trace_token} prototype at the same time:
2769
2770@smallexample
16dc6a9e 2771%code top @{
2cbe6b7f
JD
2772 #define _GNU_SOURCE
2773 #include <stdio.h>
8e0a5e9e
JD
2774
2775 /* WARNING: The following code really belongs
16dc6a9e 2776 * in a `%code requires'; see below. */
8e0a5e9e 2777
2cbe6b7f
JD
2778 #include "ptypes.h"
2779 #define YYLTYPE YYLTYPE
2780 typedef struct YYLTYPE
2781 @{
2782 int first_line;
2783 int first_column;
2784 int last_line;
2785 int last_column;
2786 char *filename;
2787 @} YYLTYPE;
2788@}
2789
2790%union @{
2791 long int n;
2792 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2793@}
2794
2795%code @{
2796 static void print_token_value (FILE *, int, YYSTYPE);
2797 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2798 static void trace_token (enum yytokentype token, YYLTYPE loc);
2799@}
2800
2801@dots{}
2802@end smallexample
2803
2804@noindent
16dc6a9e
JD
2805In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2806functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2807explicit which kind you intend.
2cbe6b7f
JD
2808Moreover, both kinds are always available even in the absence of @code{%union}.
2809
16dc6a9e 2810The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2811The first two lines before the warning need to appear near the top of the
2812parser source code file.
2813The first line after the warning is required by @code{YYSTYPE} and thus also
2814needs to appear in the parser source code file.
2cbe6b7f 2815However, if you've instructed Bison to generate a parser header file
148d66d8
JD
2816(@pxref{Decl Summary, ,%defines}), you probably want that line to appear before
2817the @code{YYSTYPE} definition in that header file as well.
8e0a5e9e 2818The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2819override the default @code{YYLTYPE} definition there.
2820
16dc6a9e 2821In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2822lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2823definitions.
16dc6a9e 2824Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2825
2826@smallexample
16dc6a9e 2827%code top @{
2cbe6b7f
JD
2828 #define _GNU_SOURCE
2829 #include <stdio.h>
2830@}
2831
16dc6a9e 2832%code requires @{
9bc0dd67
JD
2833 #include "ptypes.h"
2834@}
2835%union @{
2836 long int n;
2837 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2838@}
2839
16dc6a9e 2840%code requires @{
2cbe6b7f
JD
2841 #define YYLTYPE YYLTYPE
2842 typedef struct YYLTYPE
2843 @{
2844 int first_line;
2845 int first_column;
2846 int last_line;
2847 int last_column;
2848 char *filename;
2849 @} YYLTYPE;
2850@}
2851
136a0f76 2852%code @{
2cbe6b7f
JD
2853 static void print_token_value (FILE *, int, YYSTYPE);
2854 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2855 static void trace_token (enum yytokentype token, YYLTYPE loc);
2856@}
2857
2858@dots{}
2859@end smallexample
2860
2861@noindent
2862Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2863definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2864definitions in both the parser source code file and the parser header file.
16dc6a9e 2865(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2866place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2867
a501eca9 2868When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2869should prefer @code{%code requires} over @code{%code top} regardless of whether
2870you instruct Bison to generate a parser header file.
a501eca9 2871When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2872source code file and that has no special need to appear at the top of that
16dc6a9e 2873file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2874These practices will make the purpose of each block of your code explicit to
2875Bison and to other developers reading your grammar file.
8e0a5e9e 2876Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2877@code{%code requires} to be the most important of the four @var{Prologue}
2878alternatives.
a501eca9 2879
2cbe6b7f
JD
2880At some point while developing your parser, you might decide to provide
2881@code{trace_token} to modules that are external to your parser.
2882Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2883header file and the parser source code file.
2884Since this function is not a dependency required by @code{YYSTYPE} or
2885@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2886@code{%code requires}.
2cbe6b7f 2887More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2888@code{%code requires} is not sufficient.
8e0a5e9e 2889Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2890@code{%code provides}:
2cbe6b7f
JD
2891
2892@smallexample
16dc6a9e 2893%code top @{
2cbe6b7f 2894 #define _GNU_SOURCE
136a0f76 2895 #include <stdio.h>
2cbe6b7f 2896@}
136a0f76 2897
16dc6a9e 2898%code requires @{
2cbe6b7f
JD
2899 #include "ptypes.h"
2900@}
2901%union @{
2902 long int n;
2903 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2904@}
2905
16dc6a9e 2906%code requires @{
2cbe6b7f
JD
2907 #define YYLTYPE YYLTYPE
2908 typedef struct YYLTYPE
2909 @{
2910 int first_line;
2911 int first_column;
2912 int last_line;
2913 int last_column;
2914 char *filename;
2915 @} YYLTYPE;
2916@}
2917
16dc6a9e 2918%code provides @{
2cbe6b7f
JD
2919 void trace_token (enum yytokentype token, YYLTYPE loc);
2920@}
2921
2922%code @{
9bc0dd67
JD
2923 static void print_token_value (FILE *, int, YYSTYPE);
2924 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2925@}
9bc0dd67
JD
2926
2927@dots{}
2928@end smallexample
2929
2cbe6b7f
JD
2930@noindent
2931Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
2932file and the parser source code file after the definitions for
2933@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
2934
2935The above examples are careful to write directives in an order that reflects
8e0a5e9e 2936the layout of the generated parser source code and header files:
16dc6a9e 2937@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 2938@code{%code}.
a501eca9 2939While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
2940this order, Bison does not require it.
2941Instead, Bison lets you choose an organization that makes sense to you.
2942
a501eca9 2943You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2944In that case, Bison concatenates the contained code in declaration order.
2945This is the only way in which the position of one of these directives within
2946the grammar file affects its functionality.
2947
2948The result of the previous two properties is greater flexibility in how you may
2949organize your grammar file.
2950For example, you may organize semantic-type-related directives by semantic
2951type:
2952
2953@smallexample
16dc6a9e 2954%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2955%union @{ type1 field1; @}
2956%destructor @{ type1_free ($$); @} <field1>
2957%printer @{ type1_print ($$); @} <field1>
2958
16dc6a9e 2959%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2960%union @{ type2 field2; @}
2961%destructor @{ type2_free ($$); @} <field2>
2962%printer @{ type2_print ($$); @} <field2>
2963@end smallexample
2964
2965@noindent
2966You could even place each of the above directive groups in the rules section of
2967the grammar file next to the set of rules that uses the associated semantic
2968type.
61fee93e
JD
2969(In the rules section, you must terminate each of those directives with a
2970semicolon.)
2cbe6b7f
JD
2971And you don't have to worry that some directive (like a @code{%union}) in the
2972definitions section is going to adversely affect their functionality in some
2973counter-intuitive manner just because it comes first.
2974Such an organization is not possible using @var{Prologue} sections.
2975
a501eca9 2976This section has been concerned with explaining the advantages of the four
8e0a5e9e 2977@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2978However, in most cases when using these directives, you shouldn't need to
2979think about all the low-level ordering issues discussed here.
2980Instead, you should simply use these directives to label each block of your
2981code according to its purpose and let Bison handle the ordering.
2982@code{%code} is the most generic label.
16dc6a9e
JD
2983Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
2984as needed.
a501eca9 2985
342b8b6e 2986@node Bison Declarations
bfa74976
RS
2987@subsection The Bison Declarations Section
2988@cindex Bison declarations (introduction)
2989@cindex declarations, Bison (introduction)
2990
2991The @var{Bison declarations} section contains declarations that define
2992terminal and nonterminal symbols, specify precedence, and so on.
2993In some simple grammars you may not need any declarations.
2994@xref{Declarations, ,Bison Declarations}.
2995
342b8b6e 2996@node Grammar Rules
bfa74976
RS
2997@subsection The Grammar Rules Section
2998@cindex grammar rules section
2999@cindex rules section for grammar
3000
3001The @dfn{grammar rules} section contains one or more Bison grammar
3002rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3003
3004There must always be at least one grammar rule, and the first
3005@samp{%%} (which precedes the grammar rules) may never be omitted even
3006if it is the first thing in the file.
3007
38a92d50 3008@node Epilogue
75f5aaea 3009@subsection The epilogue
bfa74976 3010@cindex additional C code section
75f5aaea 3011@cindex epilogue
bfa74976
RS
3012@cindex C code, section for additional
3013
08e49d20
PE
3014The @var{Epilogue} is copied verbatim to the end of the parser file, just as
3015the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
3016place to put anything that you want to have in the parser file but which need
3017not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
3018definitions of @code{yylex} and @code{yyerror} often go here. Because
3019C requires functions to be declared before being used, you often need
3020to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 3021even if you define them in the Epilogue.
75f5aaea 3022@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3023
3024If the last section is empty, you may omit the @samp{%%} that separates it
3025from the grammar rules.
3026
f8e1c9e5
AD
3027The Bison parser itself contains many macros and identifiers whose names
3028start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3029any such names (except those documented in this manual) in the epilogue
3030of the grammar file.
bfa74976 3031
342b8b6e 3032@node Symbols
bfa74976
RS
3033@section Symbols, Terminal and Nonterminal
3034@cindex nonterminal symbol
3035@cindex terminal symbol
3036@cindex token type
3037@cindex symbol
3038
3039@dfn{Symbols} in Bison grammars represent the grammatical classifications
3040of the language.
3041
3042A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3043class of syntactically equivalent tokens. You use the symbol in grammar
3044rules to mean that a token in that class is allowed. The symbol is
3045represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3046function returns a token type code to indicate what kind of token has
3047been read. You don't need to know what the code value is; you can use
3048the symbol to stand for it.
bfa74976 3049
f8e1c9e5
AD
3050A @dfn{nonterminal symbol} stands for a class of syntactically
3051equivalent groupings. The symbol name is used in writing grammar rules.
3052By convention, it should be all lower case.
bfa74976 3053
663ce7bb
AD
3054Symbol names can contain letters, underscores, period, and (not at the
3055beginning) digits and dashes. Dashes in symbol names are a GNU
3056extension, incompatible with @acronym{POSIX} Yacc. Terminal symbols
3057that contain periods or dashes make little sense: since they are not
3058valid symbols (in most programming languages) they are not exported as
3059token names.
bfa74976 3060
931c7513 3061There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3062
3063@itemize @bullet
3064@item
3065A @dfn{named token type} is written with an identifier, like an
c827f760 3066identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3067such name must be defined with a Bison declaration such as
3068@code{%token}. @xref{Token Decl, ,Token Type Names}.
3069
3070@item
3071@cindex character token
3072@cindex literal token
3073@cindex single-character literal
931c7513
RS
3074A @dfn{character token type} (or @dfn{literal character token}) is
3075written in the grammar using the same syntax used in C for character
3076constants; for example, @code{'+'} is a character token type. A
3077character token type doesn't need to be declared unless you need to
3078specify its semantic value data type (@pxref{Value Type, ,Data Types of
3079Semantic Values}), associativity, or precedence (@pxref{Precedence,
3080,Operator Precedence}).
bfa74976
RS
3081
3082By convention, a character token type is used only to represent a
3083token that consists of that particular character. Thus, the token
3084type @code{'+'} is used to represent the character @samp{+} as a
3085token. Nothing enforces this convention, but if you depart from it,
3086your program will confuse other readers.
3087
3088All the usual escape sequences used in character literals in C can be
3089used in Bison as well, but you must not use the null character as a
72d2299c
PE
3090character literal because its numeric code, zero, signifies
3091end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3092for @code{yylex}}). Also, unlike standard C, trigraphs have no
3093special meaning in Bison character literals, nor is backslash-newline
3094allowed.
931c7513
RS
3095
3096@item
3097@cindex string token
3098@cindex literal string token
9ecbd125 3099@cindex multicharacter literal
931c7513
RS
3100A @dfn{literal string token} is written like a C string constant; for
3101example, @code{"<="} is a literal string token. A literal string token
3102doesn't need to be declared unless you need to specify its semantic
14ded682 3103value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3104(@pxref{Precedence}).
3105
3106You can associate the literal string token with a symbolic name as an
3107alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3108Declarations}). If you don't do that, the lexical analyzer has to
3109retrieve the token number for the literal string token from the
3110@code{yytname} table (@pxref{Calling Convention}).
3111
c827f760 3112@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3113
3114By convention, a literal string token is used only to represent a token
3115that consists of that particular string. Thus, you should use the token
3116type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3117does not enforce this convention, but if you depart from it, people who
931c7513
RS
3118read your program will be confused.
3119
3120All the escape sequences used in string literals in C can be used in
92ac3705
PE
3121Bison as well, except that you must not use a null character within a
3122string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3123meaning in Bison string literals, nor is backslash-newline allowed. A
3124literal string token must contain two or more characters; for a token
3125containing just one character, use a character token (see above).
bfa74976
RS
3126@end itemize
3127
3128How you choose to write a terminal symbol has no effect on its
3129grammatical meaning. That depends only on where it appears in rules and
3130on when the parser function returns that symbol.
3131
72d2299c
PE
3132The value returned by @code{yylex} is always one of the terminal
3133symbols, except that a zero or negative value signifies end-of-input.
3134Whichever way you write the token type in the grammar rules, you write
3135it the same way in the definition of @code{yylex}. The numeric code
3136for a character token type is simply the positive numeric code of the
3137character, so @code{yylex} can use the identical value to generate the
3138requisite code, though you may need to convert it to @code{unsigned
3139char} to avoid sign-extension on hosts where @code{char} is signed.
3140Each named token type becomes a C macro in
bfa74976 3141the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3142(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3143@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3144
3145If @code{yylex} is defined in a separate file, you need to arrange for the
3146token-type macro definitions to be available there. Use the @samp{-d}
3147option when you run Bison, so that it will write these macro definitions
3148into a separate header file @file{@var{name}.tab.h} which you can include
3149in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3150
72d2299c 3151If you want to write a grammar that is portable to any Standard C
9d9b8b70 3152host, you must use only nonnull character tokens taken from the basic
c827f760 3153execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3154digits, the 52 lower- and upper-case English letters, and the
3155characters in the following C-language string:
3156
3157@example
3158"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3159@end example
3160
f8e1c9e5
AD
3161The @code{yylex} function and Bison must use a consistent character set
3162and encoding for character tokens. For example, if you run Bison in an
3163@acronym{ASCII} environment, but then compile and run the resulting
3164program in an environment that uses an incompatible character set like
3165@acronym{EBCDIC}, the resulting program may not work because the tables
3166generated by Bison will assume @acronym{ASCII} numeric values for
3167character tokens. It is standard practice for software distributions to
3168contain C source files that were generated by Bison in an
3169@acronym{ASCII} environment, so installers on platforms that are
3170incompatible with @acronym{ASCII} must rebuild those files before
3171compiling them.
e966383b 3172
bfa74976
RS
3173The symbol @code{error} is a terminal symbol reserved for error recovery
3174(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3175In particular, @code{yylex} should never return this value. The default
3176value of the error token is 256, unless you explicitly assigned 256 to
3177one of your tokens with a @code{%token} declaration.
bfa74976 3178
342b8b6e 3179@node Rules
bfa74976
RS
3180@section Syntax of Grammar Rules
3181@cindex rule syntax
3182@cindex grammar rule syntax
3183@cindex syntax of grammar rules
3184
3185A Bison grammar rule has the following general form:
3186
3187@example
e425e872 3188@group
bfa74976
RS
3189@var{result}: @var{components}@dots{}
3190 ;
e425e872 3191@end group
bfa74976
RS
3192@end example
3193
3194@noindent
9ecbd125 3195where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3196and @var{components} are various terminal and nonterminal symbols that
13863333 3197are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3198
3199For example,
3200
3201@example
3202@group
3203exp: exp '+' exp
3204 ;
3205@end group
3206@end example
3207
3208@noindent
3209says that two groupings of type @code{exp}, with a @samp{+} token in between,
3210can be combined into a larger grouping of type @code{exp}.
3211
72d2299c
PE
3212White space in rules is significant only to separate symbols. You can add
3213extra white space as you wish.
bfa74976
RS
3214
3215Scattered among the components can be @var{actions} that determine
3216the semantics of the rule. An action looks like this:
3217
3218@example
3219@{@var{C statements}@}
3220@end example
3221
3222@noindent
287c78f6
PE
3223@cindex braced code
3224This is an example of @dfn{braced code}, that is, C code surrounded by
3225braces, much like a compound statement in C@. Braced code can contain
3226any sequence of C tokens, so long as its braces are balanced. Bison
3227does not check the braced code for correctness directly; it merely
3228copies the code to the output file, where the C compiler can check it.
3229
3230Within braced code, the balanced-brace count is not affected by braces
3231within comments, string literals, or character constants, but it is
3232affected by the C digraphs @samp{<%} and @samp{%>} that represent
3233braces. At the top level braced code must be terminated by @samp{@}}
3234and not by a digraph. Bison does not look for trigraphs, so if braced
3235code uses trigraphs you should ensure that they do not affect the
3236nesting of braces or the boundaries of comments, string literals, or
3237character constants.
3238
bfa74976
RS
3239Usually there is only one action and it follows the components.
3240@xref{Actions}.
3241
3242@findex |
3243Multiple rules for the same @var{result} can be written separately or can
3244be joined with the vertical-bar character @samp{|} as follows:
3245
bfa74976
RS
3246@example
3247@group
3248@var{result}: @var{rule1-components}@dots{}
3249 | @var{rule2-components}@dots{}
3250 @dots{}
3251 ;
3252@end group
3253@end example
bfa74976
RS
3254
3255@noindent
3256They are still considered distinct rules even when joined in this way.
3257
3258If @var{components} in a rule is empty, it means that @var{result} can
3259match the empty string. For example, here is how to define a
3260comma-separated sequence of zero or more @code{exp} groupings:
3261
3262@example
3263@group
3264expseq: /* empty */
3265 | expseq1
3266 ;
3267@end group
3268
3269@group
3270expseq1: exp
3271 | expseq1 ',' exp
3272 ;
3273@end group
3274@end example
3275
3276@noindent
3277It is customary to write a comment @samp{/* empty */} in each rule
3278with no components.
3279
342b8b6e 3280@node Recursion
bfa74976
RS
3281@section Recursive Rules
3282@cindex recursive rule
3283
f8e1c9e5
AD
3284A rule is called @dfn{recursive} when its @var{result} nonterminal
3285appears also on its right hand side. Nearly all Bison grammars need to
3286use recursion, because that is the only way to define a sequence of any
3287number of a particular thing. Consider this recursive definition of a
9ecbd125 3288comma-separated sequence of one or more expressions:
bfa74976
RS
3289
3290@example
3291@group
3292expseq1: exp
3293 | expseq1 ',' exp
3294 ;
3295@end group
3296@end example
3297
3298@cindex left recursion
3299@cindex right recursion
3300@noindent
3301Since the recursive use of @code{expseq1} is the leftmost symbol in the
3302right hand side, we call this @dfn{left recursion}. By contrast, here
3303the same construct is defined using @dfn{right recursion}:
3304
3305@example
3306@group
3307expseq1: exp
3308 | exp ',' expseq1
3309 ;
3310@end group
3311@end example
3312
3313@noindent
ec3bc396
AD
3314Any kind of sequence can be defined using either left recursion or right
3315recursion, but you should always use left recursion, because it can
3316parse a sequence of any number of elements with bounded stack space.
3317Right recursion uses up space on the Bison stack in proportion to the
3318number of elements in the sequence, because all the elements must be
3319shifted onto the stack before the rule can be applied even once.
3320@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3321of this.
bfa74976
RS
3322
3323@cindex mutual recursion
3324@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3325rule does not appear directly on its right hand side, but does appear
3326in rules for other nonterminals which do appear on its right hand
13863333 3327side.
bfa74976
RS
3328
3329For example:
3330
3331@example
3332@group
3333expr: primary
3334 | primary '+' primary
3335 ;
3336@end group
3337
3338@group
3339primary: constant
3340 | '(' expr ')'
3341 ;
3342@end group
3343@end example
3344
3345@noindent
3346defines two mutually-recursive nonterminals, since each refers to the
3347other.
3348
342b8b6e 3349@node Semantics
bfa74976
RS
3350@section Defining Language Semantics
3351@cindex defining language semantics
13863333 3352@cindex language semantics, defining
bfa74976
RS
3353
3354The grammar rules for a language determine only the syntax. The semantics
3355are determined by the semantic values associated with various tokens and
3356groupings, and by the actions taken when various groupings are recognized.
3357
3358For example, the calculator calculates properly because the value
3359associated with each expression is the proper number; it adds properly
3360because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3361the numbers associated with @var{x} and @var{y}.
3362
3363@menu
3364* Value Type:: Specifying one data type for all semantic values.
3365* Multiple Types:: Specifying several alternative data types.
3366* Actions:: An action is the semantic definition of a grammar rule.
3367* Action Types:: Specifying data types for actions to operate on.
3368* Mid-Rule Actions:: Most actions go at the end of a rule.
3369 This says when, why and how to use the exceptional
3370 action in the middle of a rule.
3371@end menu
3372
342b8b6e 3373@node Value Type
bfa74976
RS
3374@subsection Data Types of Semantic Values
3375@cindex semantic value type
3376@cindex value type, semantic
3377@cindex data types of semantic values
3378@cindex default data type
3379
3380In a simple program it may be sufficient to use the same data type for
3381the semantic values of all language constructs. This was true in the
c827f760 3382@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3383Notation Calculator}).
bfa74976 3384
ddc8ede1
PE
3385Bison normally uses the type @code{int} for semantic values if your
3386program uses the same data type for all language constructs. To
bfa74976
RS
3387specify some other type, define @code{YYSTYPE} as a macro, like this:
3388
3389@example
3390#define YYSTYPE double
3391@end example
3392
3393@noindent
50cce58e
PE
3394@code{YYSTYPE}'s replacement list should be a type name
3395that does not contain parentheses or square brackets.
342b8b6e 3396This macro definition must go in the prologue of the grammar file
75f5aaea 3397(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3398
342b8b6e 3399@node Multiple Types
bfa74976
RS
3400@subsection More Than One Value Type
3401
3402In most programs, you will need different data types for different kinds
3403of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3404@code{int} or @code{long int}, while a string constant needs type
3405@code{char *}, and an identifier might need a pointer to an entry in the
3406symbol table.
bfa74976
RS
3407
3408To use more than one data type for semantic values in one parser, Bison
3409requires you to do two things:
3410
3411@itemize @bullet
3412@item
ddc8ede1 3413Specify the entire collection of possible data types, either by using the
704a47c4 3414@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3415Value Types}), or by using a @code{typedef} or a @code{#define} to
3416define @code{YYSTYPE} to be a union type whose member names are
3417the type tags.
bfa74976
RS
3418
3419@item
14ded682
AD
3420Choose one of those types for each symbol (terminal or nonterminal) for
3421which semantic values are used. This is done for tokens with the
3422@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3423and for groupings with the @code{%type} Bison declaration (@pxref{Type
3424Decl, ,Nonterminal Symbols}).
bfa74976
RS
3425@end itemize
3426
342b8b6e 3427@node Actions
bfa74976
RS
3428@subsection Actions
3429@cindex action
3430@vindex $$
3431@vindex $@var{n}
3432
3433An action accompanies a syntactic rule and contains C code to be executed
3434each time an instance of that rule is recognized. The task of most actions
3435is to compute a semantic value for the grouping built by the rule from the
3436semantic values associated with tokens or smaller groupings.
3437
287c78f6
PE
3438An action consists of braced code containing C statements, and can be
3439placed at any position in the rule;
704a47c4
AD
3440it is executed at that position. Most rules have just one action at the
3441end of the rule, following all the components. Actions in the middle of
3442a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3443Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3444
3445The C code in an action can refer to the semantic values of the components
3446matched by the rule with the construct @code{$@var{n}}, which stands for
3447the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3448being constructed is @code{$$}. Bison translates both of these
3449constructs into expressions of the appropriate type when it copies the
3450actions into the parser file. @code{$$} is translated to a modifiable
3451lvalue, so it can be assigned to.
bfa74976
RS
3452
3453Here is a typical example:
3454
3455@example
3456@group
3457exp: @dots{}
3458 | exp '+' exp
3459 @{ $$ = $1 + $3; @}
3460@end group
3461@end example
3462
3463@noindent
3464This rule constructs an @code{exp} from two smaller @code{exp} groupings
3465connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3466refer to the semantic values of the two component @code{exp} groupings,
3467which are the first and third symbols on the right hand side of the rule.
3468The sum is stored into @code{$$} so that it becomes the semantic value of
3469the addition-expression just recognized by the rule. If there were a
3470useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3471referred to as @code{$2}.
bfa74976 3472
3ded9a63
AD
3473Note that the vertical-bar character @samp{|} is really a rule
3474separator, and actions are attached to a single rule. This is a
3475difference with tools like Flex, for which @samp{|} stands for either
3476``or'', or ``the same action as that of the next rule''. In the
3477following example, the action is triggered only when @samp{b} is found:
3478
3479@example
3480@group
3481a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3482@end group
3483@end example
3484
bfa74976
RS
3485@cindex default action
3486If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3487@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3488becomes the value of the whole rule. Of course, the default action is
3489valid only if the two data types match. There is no meaningful default
3490action for an empty rule; every empty rule must have an explicit action
3491unless the rule's value does not matter.
bfa74976
RS
3492
3493@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3494to tokens and groupings on the stack @emph{before} those that match the
3495current rule. This is a very risky practice, and to use it reliably
3496you must be certain of the context in which the rule is applied. Here
3497is a case in which you can use this reliably:
3498
3499@example
3500@group
3501foo: expr bar '+' expr @{ @dots{} @}
3502 | expr bar '-' expr @{ @dots{} @}
3503 ;
3504@end group
3505
3506@group
3507bar: /* empty */
3508 @{ previous_expr = $0; @}
3509 ;
3510@end group
3511@end example
3512
3513As long as @code{bar} is used only in the fashion shown here, @code{$0}
3514always refers to the @code{expr} which precedes @code{bar} in the
3515definition of @code{foo}.
3516
32c29292 3517@vindex yylval
742e4900 3518It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3519any, from a semantic action.
3520This semantic value is stored in @code{yylval}.
3521@xref{Action Features, ,Special Features for Use in Actions}.
3522
342b8b6e 3523@node Action Types
bfa74976
RS
3524@subsection Data Types of Values in Actions
3525@cindex action data types
3526@cindex data types in actions
3527
3528If you have chosen a single data type for semantic values, the @code{$$}
3529and @code{$@var{n}} constructs always have that data type.
3530
3531If you have used @code{%union} to specify a variety of data types, then you
3532must declare a choice among these types for each terminal or nonterminal
3533symbol that can have a semantic value. Then each time you use @code{$$} or
3534@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3535in the rule. In this example,
bfa74976
RS
3536
3537@example
3538@group
3539exp: @dots{}
3540 | exp '+' exp
3541 @{ $$ = $1 + $3; @}
3542@end group
3543@end example
3544
3545@noindent
3546@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3547have the data type declared for the nonterminal symbol @code{exp}. If
3548@code{$2} were used, it would have the data type declared for the
e0c471a9 3549terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3550
3551Alternatively, you can specify the data type when you refer to the value,
3552by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3553reference. For example, if you have defined types as shown here:
3554
3555@example
3556@group
3557%union @{
3558 int itype;
3559 double dtype;
3560@}
3561@end group
3562@end example
3563
3564@noindent
3565then you can write @code{$<itype>1} to refer to the first subunit of the
3566rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3567
342b8b6e 3568@node Mid-Rule Actions
bfa74976
RS
3569@subsection Actions in Mid-Rule
3570@cindex actions in mid-rule
3571@cindex mid-rule actions
3572
3573Occasionally it is useful to put an action in the middle of a rule.
3574These actions are written just like usual end-of-rule actions, but they
3575are executed before the parser even recognizes the following components.
3576
3577A mid-rule action may refer to the components preceding it using
3578@code{$@var{n}}, but it may not refer to subsequent components because
3579it is run before they are parsed.
3580
3581The mid-rule action itself counts as one of the components of the rule.
3582This makes a difference when there is another action later in the same rule
3583(and usually there is another at the end): you have to count the actions
3584along with the symbols when working out which number @var{n} to use in
3585@code{$@var{n}}.
3586
3587The mid-rule action can also have a semantic value. The action can set
3588its value with an assignment to @code{$$}, and actions later in the rule
3589can refer to the value using @code{$@var{n}}. Since there is no symbol
3590to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3591in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3592specify a data type each time you refer to this value.
bfa74976
RS
3593
3594There is no way to set the value of the entire rule with a mid-rule
3595action, because assignments to @code{$$} do not have that effect. The
3596only way to set the value for the entire rule is with an ordinary action
3597at the end of the rule.
3598
3599Here is an example from a hypothetical compiler, handling a @code{let}
3600statement that looks like @samp{let (@var{variable}) @var{statement}} and
3601serves to create a variable named @var{variable} temporarily for the
3602duration of @var{statement}. To parse this construct, we must put
3603@var{variable} into the symbol table while @var{statement} is parsed, then
3604remove it afterward. Here is how it is done:
3605
3606@example
3607@group
3608stmt: LET '(' var ')'
3609 @{ $<context>$ = push_context ();
3610 declare_variable ($3); @}
3611 stmt @{ $$ = $6;
3612 pop_context ($<context>5); @}
3613@end group
3614@end example
3615
3616@noindent
3617As soon as @samp{let (@var{variable})} has been recognized, the first
3618action is run. It saves a copy of the current semantic context (the
3619list of accessible variables) as its semantic value, using alternative
3620@code{context} in the data-type union. Then it calls
3621@code{declare_variable} to add the new variable to that list. Once the
3622first action is finished, the embedded statement @code{stmt} can be
3623parsed. Note that the mid-rule action is component number 5, so the
3624@samp{stmt} is component number 6.
3625
3626After the embedded statement is parsed, its semantic value becomes the
3627value of the entire @code{let}-statement. Then the semantic value from the
3628earlier action is used to restore the prior list of variables. This
3629removes the temporary @code{let}-variable from the list so that it won't
3630appear to exist while the rest of the program is parsed.
3631
841a7737
JD
3632@findex %destructor
3633@cindex discarded symbols, mid-rule actions
3634@cindex error recovery, mid-rule actions
3635In the above example, if the parser initiates error recovery (@pxref{Error
3636Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3637it might discard the previous semantic context @code{$<context>5} without
3638restoring it.
3639Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3640Discarded Symbols}).
ec5479ce
JD
3641However, Bison currently provides no means to declare a destructor specific to
3642a particular mid-rule action's semantic value.
841a7737
JD
3643
3644One solution is to bury the mid-rule action inside a nonterminal symbol and to
3645declare a destructor for that symbol:
3646
3647@example
3648@group
3649%type <context> let
3650%destructor @{ pop_context ($$); @} let
3651
3652%%
3653
3654stmt: let stmt
3655 @{ $$ = $2;
3656 pop_context ($1); @}
3657 ;
3658
3659let: LET '(' var ')'
3660 @{ $$ = push_context ();
3661 declare_variable ($3); @}
3662 ;
3663
3664@end group
3665@end example
3666
3667@noindent
3668Note that the action is now at the end of its rule.
3669Any mid-rule action can be converted to an end-of-rule action in this way, and
3670this is what Bison actually does to implement mid-rule actions.
3671
bfa74976
RS
3672Taking action before a rule is completely recognized often leads to
3673conflicts since the parser must commit to a parse in order to execute the
3674action. For example, the following two rules, without mid-rule actions,
3675can coexist in a working parser because the parser can shift the open-brace
3676token and look at what follows before deciding whether there is a
3677declaration or not:
3678
3679@example
3680@group
3681compound: '@{' declarations statements '@}'
3682 | '@{' statements '@}'
3683 ;
3684@end group
3685@end example
3686
3687@noindent
3688But when we add a mid-rule action as follows, the rules become nonfunctional:
3689
3690@example
3691@group
3692compound: @{ prepare_for_local_variables (); @}
3693 '@{' declarations statements '@}'
3694@end group
3695@group
3696 | '@{' statements '@}'
3697 ;
3698@end group
3699@end example
3700
3701@noindent
3702Now the parser is forced to decide whether to run the mid-rule action
3703when it has read no farther than the open-brace. In other words, it
3704must commit to using one rule or the other, without sufficient
3705information to do it correctly. (The open-brace token is what is called
742e4900
JD
3706the @dfn{lookahead} token at this time, since the parser is still
3707deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3708
3709You might think that you could correct the problem by putting identical
3710actions into the two rules, like this:
3711
3712@example
3713@group
3714compound: @{ prepare_for_local_variables (); @}
3715 '@{' declarations statements '@}'
3716 | @{ prepare_for_local_variables (); @}
3717 '@{' statements '@}'
3718 ;
3719@end group
3720@end example
3721
3722@noindent
3723But this does not help, because Bison does not realize that the two actions
3724are identical. (Bison never tries to understand the C code in an action.)
3725
3726If the grammar is such that a declaration can be distinguished from a
3727statement by the first token (which is true in C), then one solution which
3728does work is to put the action after the open-brace, like this:
3729
3730@example
3731@group
3732compound: '@{' @{ prepare_for_local_variables (); @}
3733 declarations statements '@}'
3734 | '@{' statements '@}'
3735 ;
3736@end group
3737@end example
3738
3739@noindent
3740Now the first token of the following declaration or statement,
3741which would in any case tell Bison which rule to use, can still do so.
3742
3743Another solution is to bury the action inside a nonterminal symbol which
3744serves as a subroutine:
3745
3746@example
3747@group
3748subroutine: /* empty */
3749 @{ prepare_for_local_variables (); @}
3750 ;
3751
3752@end group
3753
3754@group
3755compound: subroutine
3756 '@{' declarations statements '@}'
3757 | subroutine
3758 '@{' statements '@}'
3759 ;
3760@end group
3761@end example
3762
3763@noindent
3764Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3765deciding which rule for @code{compound} it will eventually use.
bfa74976 3766
342b8b6e 3767@node Locations
847bf1f5
AD
3768@section Tracking Locations
3769@cindex location
95923bd6
AD
3770@cindex textual location
3771@cindex location, textual
847bf1f5
AD
3772
3773Though grammar rules and semantic actions are enough to write a fully
72d2299c 3774functional parser, it can be useful to process some additional information,
3e259915
MA
3775especially symbol locations.
3776
704a47c4
AD
3777The way locations are handled is defined by providing a data type, and
3778actions to take when rules are matched.
847bf1f5
AD
3779
3780@menu
3781* Location Type:: Specifying a data type for locations.
3782* Actions and Locations:: Using locations in actions.
3783* Location Default Action:: Defining a general way to compute locations.
3784@end menu
3785
342b8b6e 3786@node Location Type
847bf1f5
AD
3787@subsection Data Type of Locations
3788@cindex data type of locations
3789@cindex default location type
3790
3791Defining a data type for locations is much simpler than for semantic values,
3792since all tokens and groupings always use the same type.
3793
50cce58e
PE
3794You can specify the type of locations by defining a macro called
3795@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3796defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3797When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3798four members:
3799
3800@example
6273355b 3801typedef struct YYLTYPE
847bf1f5
AD
3802@{
3803 int first_line;
3804 int first_column;
3805 int last_line;
3806 int last_column;
6273355b 3807@} YYLTYPE;
847bf1f5
AD
3808@end example
3809
cd48d21d
AD
3810At the beginning of the parsing, Bison initializes all these fields to 1
3811for @code{yylloc}.
3812
342b8b6e 3813@node Actions and Locations
847bf1f5
AD
3814@subsection Actions and Locations
3815@cindex location actions
3816@cindex actions, location
3817@vindex @@$
3818@vindex @@@var{n}
3819
3820Actions are not only useful for defining language semantics, but also for
3821describing the behavior of the output parser with locations.
3822
3823The most obvious way for building locations of syntactic groupings is very
72d2299c 3824similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3825constructs can be used to access the locations of the elements being matched.
3826The location of the @var{n}th component of the right hand side is
3827@code{@@@var{n}}, while the location of the left hand side grouping is
3828@code{@@$}.
3829
3e259915 3830Here is a basic example using the default data type for locations:
847bf1f5
AD
3831
3832@example
3833@group
3834exp: @dots{}
3e259915 3835 | exp '/' exp
847bf1f5 3836 @{
3e259915
MA
3837 @@$.first_column = @@1.first_column;
3838 @@$.first_line = @@1.first_line;
847bf1f5
AD
3839 @@$.last_column = @@3.last_column;
3840 @@$.last_line = @@3.last_line;
3e259915
MA
3841 if ($3)
3842 $$ = $1 / $3;
3843 else
3844 @{
3845 $$ = 1;
4e03e201
AD
3846 fprintf (stderr,
3847 "Division by zero, l%d,c%d-l%d,c%d",
3848 @@3.first_line, @@3.first_column,
3849 @@3.last_line, @@3.last_column);
3e259915 3850 @}
847bf1f5
AD
3851 @}
3852@end group
3853@end example
3854
3e259915 3855As for semantic values, there is a default action for locations that is
72d2299c 3856run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3857beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3858last symbol.
3e259915 3859
72d2299c 3860With this default action, the location tracking can be fully automatic. The
3e259915
MA
3861example above simply rewrites this way:
3862
3863@example
3864@group
3865exp: @dots{}
3866 | exp '/' exp
3867 @{
3868 if ($3)
3869 $$ = $1 / $3;
3870 else
3871 @{
3872 $$ = 1;
4e03e201
AD
3873 fprintf (stderr,
3874 "Division by zero, l%d,c%d-l%d,c%d",
3875 @@3.first_line, @@3.first_column,
3876 @@3.last_line, @@3.last_column);
3e259915
MA
3877 @}
3878 @}
3879@end group
3880@end example
847bf1f5 3881
32c29292 3882@vindex yylloc
742e4900 3883It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3884from a semantic action.
3885This location is stored in @code{yylloc}.
3886@xref{Action Features, ,Special Features for Use in Actions}.
3887
342b8b6e 3888@node Location Default Action
847bf1f5
AD
3889@subsection Default Action for Locations
3890@vindex YYLLOC_DEFAULT
8710fc41 3891@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3892
72d2299c 3893Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3894locations are much more general than semantic values, there is room in
3895the output parser to redefine the default action to take for each
72d2299c 3896rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3897matched, before the associated action is run. It is also invoked
3898while processing a syntax error, to compute the error's location.
8710fc41
JD
3899Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3900parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3901of that ambiguity.
847bf1f5 3902
3e259915 3903Most of the time, this macro is general enough to suppress location
79282c6c 3904dedicated code from semantic actions.
847bf1f5 3905
72d2299c 3906The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3907the location of the grouping (the result of the computation). When a
766de5eb 3908rule is matched, the second parameter identifies locations of
96b93a3d 3909all right hand side elements of the rule being matched, and the third
8710fc41
JD
3910parameter is the size of the rule's right hand side.
3911When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3912right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3913When processing a syntax error, the second parameter identifies locations
3914of the symbols that were discarded during error processing, and the third
96b93a3d 3915parameter is the number of discarded symbols.
847bf1f5 3916
766de5eb 3917By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3918
766de5eb 3919@smallexample
847bf1f5 3920@group
766de5eb
PE
3921# define YYLLOC_DEFAULT(Current, Rhs, N) \
3922 do \
3923 if (N) \
3924 @{ \
3925 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3926 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3927 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3928 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3929 @} \
3930 else \
3931 @{ \
3932 (Current).first_line = (Current).last_line = \
3933 YYRHSLOC(Rhs, 0).last_line; \
3934 (Current).first_column = (Current).last_column = \
3935 YYRHSLOC(Rhs, 0).last_column; \
3936 @} \
3937 while (0)
847bf1f5 3938@end group
766de5eb 3939@end smallexample
676385e2 3940
766de5eb
PE
3941where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3942in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3943just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3944
3e259915 3945When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3946
3e259915 3947@itemize @bullet
79282c6c 3948@item
72d2299c 3949All arguments are free of side-effects. However, only the first one (the
3e259915 3950result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3951
3e259915 3952@item
766de5eb
PE
3953For consistency with semantic actions, valid indexes within the
3954right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3955valid index, and it refers to the symbol just before the reduction.
3956During error processing @var{n} is always positive.
0ae99356
PE
3957
3958@item
3959Your macro should parenthesize its arguments, if need be, since the
3960actual arguments may not be surrounded by parentheses. Also, your
3961macro should expand to something that can be used as a single
3962statement when it is followed by a semicolon.
3e259915 3963@end itemize
847bf1f5 3964
342b8b6e 3965@node Declarations
bfa74976
RS
3966@section Bison Declarations
3967@cindex declarations, Bison
3968@cindex Bison declarations
3969
3970The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3971used in formulating the grammar and the data types of semantic values.
3972@xref{Symbols}.
3973
3974All token type names (but not single-character literal tokens such as
3975@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3976declared if you need to specify which data type to use for the semantic
3977value (@pxref{Multiple Types, ,More Than One Value Type}).
3978
3979The first rule in the file also specifies the start symbol, by default.
3980If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3981it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3982Grammars}).
bfa74976
RS
3983
3984@menu
b50d2359 3985* Require Decl:: Requiring a Bison version.
bfa74976
RS
3986* Token Decl:: Declaring terminal symbols.
3987* Precedence Decl:: Declaring terminals with precedence and associativity.
3988* Union Decl:: Declaring the set of all semantic value types.
3989* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3990* Initial Action Decl:: Code run before parsing starts.
72f889cc 3991* Destructor Decl:: Declaring how symbols are freed.
d6328241 3992* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3993* Start Decl:: Specifying the start symbol.
3994* Pure Decl:: Requesting a reentrant parser.
9987d1b3 3995* Push Decl:: Requesting a push parser.
bfa74976
RS
3996* Decl Summary:: Table of all Bison declarations.
3997@end menu
3998
b50d2359
AD
3999@node Require Decl
4000@subsection Require a Version of Bison
4001@cindex version requirement
4002@cindex requiring a version of Bison
4003@findex %require
4004
4005You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4006the requirement is not met, @command{bison} exits with an error (exit
4007status 63).
b50d2359
AD
4008
4009@example
4010%require "@var{version}"
4011@end example
4012
342b8b6e 4013@node Token Decl
bfa74976
RS
4014@subsection Token Type Names
4015@cindex declaring token type names
4016@cindex token type names, declaring
931c7513 4017@cindex declaring literal string tokens
bfa74976
RS
4018@findex %token
4019
4020The basic way to declare a token type name (terminal symbol) is as follows:
4021
4022@example
4023%token @var{name}
4024@end example
4025
4026Bison will convert this into a @code{#define} directive in
4027the parser, so that the function @code{yylex} (if it is in this file)
4028can use the name @var{name} to stand for this token type's code.
4029
14ded682
AD
4030Alternatively, you can use @code{%left}, @code{%right}, or
4031@code{%nonassoc} instead of @code{%token}, if you wish to specify
4032associativity and precedence. @xref{Precedence Decl, ,Operator
4033Precedence}.
bfa74976
RS
4034
4035You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4036a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4037following the token name:
bfa74976
RS
4038
4039@example
4040%token NUM 300
1452af69 4041%token XNUM 0x12d // a GNU extension
bfa74976
RS
4042@end example
4043
4044@noindent
4045It is generally best, however, to let Bison choose the numeric codes for
4046all token types. Bison will automatically select codes that don't conflict
e966383b 4047with each other or with normal characters.
bfa74976
RS
4048
4049In the event that the stack type is a union, you must augment the
4050@code{%token} or other token declaration to include the data type
704a47c4
AD
4051alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4052Than One Value Type}).
bfa74976
RS
4053
4054For example:
4055
4056@example
4057@group
4058%union @{ /* define stack type */
4059 double val;
4060 symrec *tptr;
4061@}
4062%token <val> NUM /* define token NUM and its type */
4063@end group
4064@end example
4065
931c7513
RS
4066You can associate a literal string token with a token type name by
4067writing the literal string at the end of a @code{%token}
4068declaration which declares the name. For example:
4069
4070@example
4071%token arrow "=>"
4072@end example
4073
4074@noindent
4075For example, a grammar for the C language might specify these names with
4076equivalent literal string tokens:
4077
4078@example
4079%token <operator> OR "||"
4080%token <operator> LE 134 "<="
4081%left OR "<="
4082@end example
4083
4084@noindent
4085Once you equate the literal string and the token name, you can use them
4086interchangeably in further declarations or the grammar rules. The
4087@code{yylex} function can use the token name or the literal string to
4088obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4089Syntax error messages passed to @code{yyerror} from the parser will reference
4090the literal string instead of the token name.
4091
4092The token numbered as 0 corresponds to end of file; the following line
4093allows for nicer error messages referring to ``end of file'' instead
4094of ``$end'':
4095
4096@example
4097%token END 0 "end of file"
4098@end example
931c7513 4099
342b8b6e 4100@node Precedence Decl
bfa74976
RS
4101@subsection Operator Precedence
4102@cindex precedence declarations
4103@cindex declaring operator precedence
4104@cindex operator precedence, declaring
4105
4106Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4107declare a token and specify its precedence and associativity, all at
4108once. These are called @dfn{precedence declarations}.
704a47c4
AD
4109@xref{Precedence, ,Operator Precedence}, for general information on
4110operator precedence.
bfa74976 4111
ab7f29f8 4112The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4113@code{%token}: either
4114
4115@example
4116%left @var{symbols}@dots{}
4117@end example
4118
4119@noindent
4120or
4121
4122@example
4123%left <@var{type}> @var{symbols}@dots{}
4124@end example
4125
4126And indeed any of these declarations serves the purposes of @code{%token}.
4127But in addition, they specify the associativity and relative precedence for
4128all the @var{symbols}:
4129
4130@itemize @bullet
4131@item
4132The associativity of an operator @var{op} determines how repeated uses
4133of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4134@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4135grouping @var{y} with @var{z} first. @code{%left} specifies
4136left-associativity (grouping @var{x} with @var{y} first) and
4137@code{%right} specifies right-associativity (grouping @var{y} with
4138@var{z} first). @code{%nonassoc} specifies no associativity, which
4139means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4140considered a syntax error.
4141
4142@item
4143The precedence of an operator determines how it nests with other operators.
4144All the tokens declared in a single precedence declaration have equal
4145precedence and nest together according to their associativity.
4146When two tokens declared in different precedence declarations associate,
4147the one declared later has the higher precedence and is grouped first.
4148@end itemize
4149
ab7f29f8
JD
4150For backward compatibility, there is a confusing difference between the
4151argument lists of @code{%token} and precedence declarations.
4152Only a @code{%token} can associate a literal string with a token type name.
4153A precedence declaration always interprets a literal string as a reference to a
4154separate token.
4155For example:
4156
4157@example
4158%left OR "<=" // Does not declare an alias.
4159%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4160@end example
4161
342b8b6e 4162@node Union Decl
bfa74976
RS
4163@subsection The Collection of Value Types
4164@cindex declaring value types
4165@cindex value types, declaring
4166@findex %union
4167
287c78f6
PE
4168The @code{%union} declaration specifies the entire collection of
4169possible data types for semantic values. The keyword @code{%union} is
4170followed by braced code containing the same thing that goes inside a
4171@code{union} in C@.
bfa74976
RS
4172
4173For example:
4174
4175@example
4176@group
4177%union @{
4178 double val;
4179 symrec *tptr;
4180@}
4181@end group
4182@end example
4183
4184@noindent
4185This says that the two alternative types are @code{double} and @code{symrec
4186*}. They are given names @code{val} and @code{tptr}; these names are used
4187in the @code{%token} and @code{%type} declarations to pick one of the types
4188for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4189
6273355b
PE
4190As an extension to @acronym{POSIX}, a tag is allowed after the
4191@code{union}. For example:
4192
4193@example
4194@group
4195%union value @{
4196 double val;
4197 symrec *tptr;
4198@}
4199@end group
4200@end example
4201
d6ca7905 4202@noindent
6273355b
PE
4203specifies the union tag @code{value}, so the corresponding C type is
4204@code{union value}. If you do not specify a tag, it defaults to
4205@code{YYSTYPE}.
4206
d6ca7905
PE
4207As another extension to @acronym{POSIX}, you may specify multiple
4208@code{%union} declarations; their contents are concatenated. However,
4209only the first @code{%union} declaration can specify a tag.
4210
6273355b 4211Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4212a semicolon after the closing brace.
4213
ddc8ede1
PE
4214Instead of @code{%union}, you can define and use your own union type
4215@code{YYSTYPE} if your grammar contains at least one
4216@samp{<@var{type}>} tag. For example, you can put the following into
4217a header file @file{parser.h}:
4218
4219@example
4220@group
4221union YYSTYPE @{
4222 double val;
4223 symrec *tptr;
4224@};
4225typedef union YYSTYPE YYSTYPE;
4226@end group
4227@end example
4228
4229@noindent
4230and then your grammar can use the following
4231instead of @code{%union}:
4232
4233@example
4234@group
4235%@{
4236#include "parser.h"
4237%@}
4238%type <val> expr
4239%token <tptr> ID
4240@end group
4241@end example
4242
342b8b6e 4243@node Type Decl
bfa74976
RS
4244@subsection Nonterminal Symbols
4245@cindex declaring value types, nonterminals
4246@cindex value types, nonterminals, declaring
4247@findex %type
4248
4249@noindent
4250When you use @code{%union} to specify multiple value types, you must
4251declare the value type of each nonterminal symbol for which values are
4252used. This is done with a @code{%type} declaration, like this:
4253
4254@example
4255%type <@var{type}> @var{nonterminal}@dots{}
4256@end example
4257
4258@noindent
704a47c4
AD
4259Here @var{nonterminal} is the name of a nonterminal symbol, and
4260@var{type} is the name given in the @code{%union} to the alternative
4261that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4262can give any number of nonterminal symbols in the same @code{%type}
4263declaration, if they have the same value type. Use spaces to separate
4264the symbol names.
bfa74976 4265
931c7513
RS
4266You can also declare the value type of a terminal symbol. To do this,
4267use the same @code{<@var{type}>} construction in a declaration for the
4268terminal symbol. All kinds of token declarations allow
4269@code{<@var{type}>}.
4270
18d192f0
AD
4271@node Initial Action Decl
4272@subsection Performing Actions before Parsing
4273@findex %initial-action
4274
4275Sometimes your parser needs to perform some initializations before
4276parsing. The @code{%initial-action} directive allows for such arbitrary
4277code.
4278
4279@deffn {Directive} %initial-action @{ @var{code} @}
4280@findex %initial-action
287c78f6 4281Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4282@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4283@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4284@code{%parse-param}.
18d192f0
AD
4285@end deffn
4286
451364ed
AD
4287For instance, if your locations use a file name, you may use
4288
4289@example
48b16bbc 4290%parse-param @{ char const *file_name @};
451364ed
AD
4291%initial-action
4292@{
4626a15d 4293 @@$.initialize (file_name);
451364ed
AD
4294@};
4295@end example
4296
18d192f0 4297
72f889cc
AD
4298@node Destructor Decl
4299@subsection Freeing Discarded Symbols
4300@cindex freeing discarded symbols
4301@findex %destructor
12e35840 4302@findex <*>
3ebecc24 4303@findex <>
a85284cf
AD
4304During error recovery (@pxref{Error Recovery}), symbols already pushed
4305on the stack and tokens coming from the rest of the file are discarded
4306until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4307or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4308symbols on the stack must be discarded. Even if the parser succeeds, it
4309must discard the start symbol.
258b75ca
PE
4310
4311When discarded symbols convey heap based information, this memory is
4312lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4313in traditional compilers, it is unacceptable for programs like shells or
4314protocol implementations that may parse and execute indefinitely.
258b75ca 4315
a85284cf
AD
4316The @code{%destructor} directive defines code that is called when a
4317symbol is automatically discarded.
72f889cc
AD
4318
4319@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4320@findex %destructor
287c78f6
PE
4321Invoke the braced @var{code} whenever the parser discards one of the
4322@var{symbols}.
4b367315 4323Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4324with the discarded symbol, and @code{@@$} designates its location.
4325The additional parser parameters are also available (@pxref{Parser Function, ,
4326The Parser Function @code{yyparse}}).
ec5479ce 4327
b2a0b7ca
JD
4328When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4329per-symbol @code{%destructor}.
4330You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4331tag among @var{symbols}.
b2a0b7ca 4332In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4333grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4334per-symbol @code{%destructor}.
4335
12e35840 4336Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4337(These default forms are experimental.
4338More user feedback will help to determine whether they should become permanent
4339features.)
3ebecc24 4340You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4341exactly one @code{%destructor} declaration in your grammar file.
4342The parser will invoke the @var{code} associated with one of these whenever it
4343discards any user-defined grammar symbol that has no per-symbol and no per-type
4344@code{%destructor}.
4345The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4346symbol for which you have formally declared a semantic type tag (@code{%type}
4347counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4348The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4349symbol that has no declared semantic type tag.
72f889cc
AD
4350@end deffn
4351
b2a0b7ca 4352@noindent
12e35840 4353For example:
72f889cc
AD
4354
4355@smallexample
ec5479ce
JD
4356%union @{ char *string; @}
4357%token <string> STRING1
4358%token <string> STRING2
4359%type <string> string1
4360%type <string> string2
b2a0b7ca
JD
4361%union @{ char character; @}
4362%token <character> CHR
4363%type <character> chr
12e35840
JD
4364%token TAGLESS
4365
b2a0b7ca 4366%destructor @{ @} <character>
12e35840
JD
4367%destructor @{ free ($$); @} <*>
4368%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4369%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4370@end smallexample
4371
4372@noindent
b2a0b7ca
JD
4373guarantees that, when the parser discards any user-defined symbol that has a
4374semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4375to @code{free} by default.
ec5479ce
JD
4376However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4377prints its line number to @code{stdout}.
4378It performs only the second @code{%destructor} in this case, so it invokes
4379@code{free} only once.
12e35840
JD
4380Finally, the parser merely prints a message whenever it discards any symbol,
4381such as @code{TAGLESS}, that has no semantic type tag.
4382
4383A Bison-generated parser invokes the default @code{%destructor}s only for
4384user-defined as opposed to Bison-defined symbols.
4385For example, the parser will not invoke either kind of default
4386@code{%destructor} for the special Bison-defined symbols @code{$accept},
4387@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4388none of which you can reference in your grammar.
4389It also will not invoke either for the @code{error} token (@pxref{Table of
4390Symbols, ,error}), which is always defined by Bison regardless of whether you
4391reference it in your grammar.
4392However, it may invoke one of them for the end token (token 0) if you
4393redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4394
4395@smallexample
4396%token END 0
4397@end smallexample
4398
12e35840
JD
4399@cindex actions in mid-rule
4400@cindex mid-rule actions
4401Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4402mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4403That is, Bison does not consider a mid-rule to have a semantic value if you do
4404not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4405@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4406rule.
4407However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4408@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4409
3508ce36
JD
4410@ignore
4411@noindent
4412In the future, it may be possible to redefine the @code{error} token as a
4413nonterminal that captures the discarded symbols.
4414In that case, the parser will invoke the default destructor for it as well.
4415@end ignore
4416
e757bb10
AD
4417@sp 1
4418
4419@cindex discarded symbols
4420@dfn{Discarded symbols} are the following:
4421
4422@itemize
4423@item
4424stacked symbols popped during the first phase of error recovery,
4425@item
4426incoming terminals during the second phase of error recovery,
4427@item
742e4900 4428the current lookahead and the entire stack (except the current
9d9b8b70 4429right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4430@item
4431the start symbol, when the parser succeeds.
e757bb10
AD
4432@end itemize
4433
9d9b8b70
PE
4434The parser can @dfn{return immediately} because of an explicit call to
4435@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4436exhaustion.
4437
29553547 4438Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4439error via @code{YYERROR} are not discarded automatically. As a rule
4440of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4441the memory.
e757bb10 4442
342b8b6e 4443@node Expect Decl
bfa74976
RS
4444@subsection Suppressing Conflict Warnings
4445@cindex suppressing conflict warnings
4446@cindex preventing warnings about conflicts
4447@cindex warnings, preventing
4448@cindex conflicts, suppressing warnings of
4449@findex %expect
d6328241 4450@findex %expect-rr
bfa74976
RS
4451
4452Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4453(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4454have harmless shift/reduce conflicts which are resolved in a predictable
4455way and would be difficult to eliminate. It is desirable to suppress
4456the warning about these conflicts unless the number of conflicts
4457changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4458
4459The declaration looks like this:
4460
4461@example
4462%expect @var{n}
4463@end example
4464
035aa4a0
PE
4465Here @var{n} is a decimal integer. The declaration says there should
4466be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4467Bison reports an error if the number of shift/reduce conflicts differs
4468from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4469
34a6c2d1 4470For deterministic parsers, reduce/reduce conflicts are more
035aa4a0
PE
4471serious, and should be eliminated entirely. Bison will always report
4472reduce/reduce conflicts for these parsers. With @acronym{GLR}
4473parsers, however, both kinds of conflicts are routine; otherwise,
4474there would be no need to use @acronym{GLR} parsing. Therefore, it is
4475also possible to specify an expected number of reduce/reduce conflicts
4476in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4477
4478@example
4479%expect-rr @var{n}
4480@end example
4481
bfa74976
RS
4482In general, using @code{%expect} involves these steps:
4483
4484@itemize @bullet
4485@item
4486Compile your grammar without @code{%expect}. Use the @samp{-v} option
4487to get a verbose list of where the conflicts occur. Bison will also
4488print the number of conflicts.
4489
4490@item
4491Check each of the conflicts to make sure that Bison's default
4492resolution is what you really want. If not, rewrite the grammar and
4493go back to the beginning.
4494
4495@item
4496Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4497number which Bison printed. With @acronym{GLR} parsers, add an
4498@code{%expect-rr} declaration as well.
bfa74976
RS
4499@end itemize
4500
035aa4a0
PE
4501Now Bison will warn you if you introduce an unexpected conflict, but
4502will keep silent otherwise.
bfa74976 4503
342b8b6e 4504@node Start Decl
bfa74976
RS
4505@subsection The Start-Symbol
4506@cindex declaring the start symbol
4507@cindex start symbol, declaring
4508@cindex default start symbol
4509@findex %start
4510
4511Bison assumes by default that the start symbol for the grammar is the first
4512nonterminal specified in the grammar specification section. The programmer
4513may override this restriction with the @code{%start} declaration as follows:
4514
4515@example
4516%start @var{symbol}
4517@end example
4518
342b8b6e 4519@node Pure Decl
bfa74976
RS
4520@subsection A Pure (Reentrant) Parser
4521@cindex reentrant parser
4522@cindex pure parser
d9df47b6 4523@findex %define api.pure
bfa74976
RS
4524
4525A @dfn{reentrant} program is one which does not alter in the course of
4526execution; in other words, it consists entirely of @dfn{pure} (read-only)
4527code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4528for example, a nonreentrant program may not be safe to call from a signal
4529handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4530program must be called only within interlocks.
4531
70811b85 4532Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4533suitable for most uses, and it permits compatibility with Yacc. (The
4534standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4535statically allocated variables for communication with @code{yylex},
4536including @code{yylval} and @code{yylloc}.)
bfa74976 4537
70811b85 4538Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4539declaration @code{%define api.pure} says that you want the parser to be
70811b85 4540reentrant. It looks like this:
bfa74976
RS
4541
4542@example
d9df47b6 4543%define api.pure
bfa74976
RS
4544@end example
4545
70811b85
RS
4546The result is that the communication variables @code{yylval} and
4547@code{yylloc} become local variables in @code{yyparse}, and a different
4548calling convention is used for the lexical analyzer function
4549@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4550Parsers}, for the details of this. The variable @code{yynerrs}
4551becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4552of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4553Reporting Function @code{yyerror}}). The convention for calling
4554@code{yyparse} itself is unchanged.
4555
4556Whether the parser is pure has nothing to do with the grammar rules.
4557You can generate either a pure parser or a nonreentrant parser from any
4558valid grammar.
bfa74976 4559
9987d1b3
JD
4560@node Push Decl
4561@subsection A Push Parser
4562@cindex push parser
4563@cindex push parser
c373bf8b 4564@findex %define api.push_pull
9987d1b3 4565
59da312b
JD
4566(The current push parsing interface is experimental and may evolve.
4567More user feedback will help to stabilize it.)
4568
f4101aa6
AD
4569A pull parser is called once and it takes control until all its input
4570is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4571each time a new token is made available.
4572
f4101aa6 4573A push parser is typically useful when the parser is part of a
9987d1b3 4574main event loop in the client's application. This is typically
f4101aa6
AD
4575a requirement of a GUI, when the main event loop needs to be triggered
4576within a certain time period.
9987d1b3 4577
d782395d
JD
4578Normally, Bison generates a pull parser.
4579The following Bison declaration says that you want the parser to be a push
c373bf8b 4580parser (@pxref{Decl Summary,,%define api.push_pull}):
9987d1b3
JD
4581
4582@example
c373bf8b 4583%define api.push_pull "push"
9987d1b3
JD
4584@end example
4585
4586In almost all cases, you want to ensure that your push parser is also
4587a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4588time you should create an impure push parser is to have backwards
9987d1b3
JD
4589compatibility with the impure Yacc pull mode interface. Unless you know
4590what you are doing, your declarations should look like this:
4591
4592@example
d9df47b6 4593%define api.pure
c373bf8b 4594%define api.push_pull "push"
9987d1b3
JD
4595@end example
4596
f4101aa6
AD
4597There is a major notable functional difference between the pure push parser
4598and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4599many parser instances, of the same type of parser, in memory at the same time.
4600An impure push parser should only use one parser at a time.
4601
4602When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4603the generated parser. @code{yypstate} is a structure that the generated
4604parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4605function that will create a new parser instance. @code{yypstate_delete}
4606will free the resources associated with the corresponding parser instance.
f4101aa6 4607Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4608token is available to provide the parser. A trivial example
4609of using a pure push parser would look like this:
4610
4611@example
4612int status;
4613yypstate *ps = yypstate_new ();
4614do @{
4615 status = yypush_parse (ps, yylex (), NULL);
4616@} while (status == YYPUSH_MORE);
4617yypstate_delete (ps);
4618@end example
4619
4620If the user decided to use an impure push parser, a few things about
f4101aa6 4621the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4622a global variable instead of a variable in the @code{yypush_parse} function.
4623For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4624changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4625example would thus look like this:
4626
4627@example
4628extern int yychar;
4629int status;
4630yypstate *ps = yypstate_new ();
4631do @{
4632 yychar = yylex ();
4633 status = yypush_parse (ps);
4634@} while (status == YYPUSH_MORE);
4635yypstate_delete (ps);
4636@end example
4637
f4101aa6 4638That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4639for use by the next invocation of the @code{yypush_parse} function.
4640
f4101aa6 4641Bison also supports both the push parser interface along with the pull parser
9987d1b3 4642interface in the same generated parser. In order to get this functionality,
f4101aa6 4643you should replace the @code{%define api.push_pull "push"} declaration with the
c373bf8b
JD
4644@code{%define api.push_pull "both"} declaration. Doing this will create all of
4645the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4646and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4647would be used. However, the user should note that it is implemented in the
d782395d
JD
4648generated parser by calling @code{yypull_parse}.
4649This makes the @code{yyparse} function that is generated with the
c373bf8b 4650@code{%define api.push_pull "both"} declaration slower than the normal
d782395d
JD
4651@code{yyparse} function. If the user
4652calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4653stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4654and then @code{yypull_parse} the rest of the input stream. If you would like
4655to switch back and forth between between parsing styles, you would have to
4656write your own @code{yypull_parse} function that knows when to quit looking
4657for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4658like this:
4659
4660@example
4661yypstate *ps = yypstate_new ();
4662yypull_parse (ps); /* Will call the lexer */
4663yypstate_delete (ps);
4664@end example
4665
d9df47b6 4666Adding the @code{%define api.pure} declaration does exactly the same thing to
f4101aa6 4667the generated parser with @code{%define api.push_pull "both"} as it did for
c373bf8b 4668@code{%define api.push_pull "push"}.
9987d1b3 4669
342b8b6e 4670@node Decl Summary
bfa74976
RS
4671@subsection Bison Declaration Summary
4672@cindex Bison declaration summary
4673@cindex declaration summary
4674@cindex summary, Bison declaration
4675
d8988b2f 4676Here is a summary of the declarations used to define a grammar:
bfa74976 4677
18b519c0 4678@deffn {Directive} %union
bfa74976
RS
4679Declare the collection of data types that semantic values may have
4680(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4681@end deffn
bfa74976 4682
18b519c0 4683@deffn {Directive} %token
bfa74976
RS
4684Declare a terminal symbol (token type name) with no precedence
4685or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4686@end deffn
bfa74976 4687
18b519c0 4688@deffn {Directive} %right
bfa74976
RS
4689Declare a terminal symbol (token type name) that is right-associative
4690(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4691@end deffn
bfa74976 4692
18b519c0 4693@deffn {Directive} %left
bfa74976
RS
4694Declare a terminal symbol (token type name) that is left-associative
4695(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4696@end deffn
bfa74976 4697
18b519c0 4698@deffn {Directive} %nonassoc
bfa74976 4699Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4700(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4701Using it in a way that would be associative is a syntax error.
4702@end deffn
4703
91d2c560 4704@ifset defaultprec
39a06c25 4705@deffn {Directive} %default-prec
22fccf95 4706Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4707(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4708@end deffn
91d2c560 4709@end ifset
bfa74976 4710
18b519c0 4711@deffn {Directive} %type
bfa74976
RS
4712Declare the type of semantic values for a nonterminal symbol
4713(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4714@end deffn
bfa74976 4715
18b519c0 4716@deffn {Directive} %start
89cab50d
AD
4717Specify the grammar's start symbol (@pxref{Start Decl, ,The
4718Start-Symbol}).
18b519c0 4719@end deffn
bfa74976 4720
18b519c0 4721@deffn {Directive} %expect
bfa74976
RS
4722Declare the expected number of shift-reduce conflicts
4723(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4724@end deffn
4725
bfa74976 4726
d8988b2f
AD
4727@sp 1
4728@noindent
4729In order to change the behavior of @command{bison}, use the following
4730directives:
4731
148d66d8
JD
4732@deffn {Directive} %code @{@var{code}@}
4733@findex %code
4734This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4735It inserts @var{code} verbatim at a language-dependent default location in the
4736output@footnote{The default location is actually skeleton-dependent;
4737 writers of non-standard skeletons however should choose the default location
4738 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4739
4740@cindex Prologue
8405b70c 4741For C/C++, the default location is the parser source code
148d66d8
JD
4742file after the usual contents of the parser header file.
4743Thus, @code{%code} replaces the traditional Yacc prologue,
4744@code{%@{@var{code}%@}}, for most purposes.
4745For a detailed discussion, see @ref{Prologue Alternatives}.
4746
8405b70c 4747For Java, the default location is inside the parser class.
148d66d8
JD
4748
4749(Like all the Yacc prologue alternatives, this directive is experimental.
4750More user feedback will help to determine whether it should become a permanent
4751feature.)
4752@end deffn
4753
4754@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4755This is the qualified form of the @code{%code} directive.
4756If you need to specify location-sensitive verbatim @var{code} that does not
4757belong at the default location selected by the unqualified @code{%code} form,
4758use this form instead.
4759
4760@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4761where Bison should generate it.
4762Not all values of @var{qualifier} are available for all target languages:
4763
4764@itemize @bullet
148d66d8 4765@item requires
793fbca5 4766@findex %code requires
148d66d8
JD
4767
4768@itemize @bullet
4769@item Language(s): C, C++
4770
4771@item Purpose: This is the best place to write dependency code required for
4772@code{YYSTYPE} and @code{YYLTYPE}.
4773In other words, it's the best place to define types referenced in @code{%union}
4774directives, and it's the best place to override Bison's default @code{YYSTYPE}
4775and @code{YYLTYPE} definitions.
4776
4777@item Location(s): The parser header file and the parser source code file
4778before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
4779@end itemize
4780
4781@item provides
4782@findex %code provides
4783
4784@itemize @bullet
4785@item Language(s): C, C++
4786
4787@item Purpose: This is the best place to write additional definitions and
4788declarations that should be provided to other modules.
4789
4790@item Location(s): The parser header file and the parser source code file after
4791the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
4792@end itemize
4793
4794@item top
4795@findex %code top
4796
4797@itemize @bullet
4798@item Language(s): C, C++
4799
4800@item Purpose: The unqualified @code{%code} or @code{%code requires} should
4801usually be more appropriate than @code{%code top}.
4802However, occasionally it is necessary to insert code much nearer the top of the
4803parser source code file.
4804For example:
4805
4806@smallexample
4807%code top @{
4808 #define _GNU_SOURCE
4809 #include <stdio.h>
4810@}
4811@end smallexample
4812
4813@item Location(s): Near the top of the parser source code file.
4814@end itemize
8405b70c 4815
148d66d8
JD
4816@item imports
4817@findex %code imports
4818
4819@itemize @bullet
4820@item Language(s): Java
4821
4822@item Purpose: This is the best place to write Java import directives.
4823
4824@item Location(s): The parser Java file after any Java package directive and
4825before any class definitions.
4826@end itemize
148d66d8
JD
4827@end itemize
4828
4829(Like all the Yacc prologue alternatives, this directive is experimental.
4830More user feedback will help to determine whether it should become a permanent
4831feature.)
4832
4833@cindex Prologue
4834For a detailed discussion of how to use @code{%code} in place of the
4835traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
4836@end deffn
4837
18b519c0 4838@deffn {Directive} %debug
4947ebdb
PE
4839In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4840already defined, so that the debugging facilities are compiled.
ec3bc396 4841@xref{Tracing, ,Tracing Your Parser}.
bd5df716 4842@end deffn
d8988b2f 4843
c1d19e10
PB
4844@deffn {Directive} %define @var{variable}
4845@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2
JD
4846Define a variable to adjust Bison's behavior.
4847The possible choices for @var{variable}, as well as their meanings, depend on
4848the selected target language and/or the parser skeleton (@pxref{Decl
ed4d67dc 4849Summary,,%language}, @pxref{Decl Summary,,%skeleton}).
9611cfa2
JD
4850
4851Bison will warn if a @var{variable} is defined multiple times.
4852
4853Omitting @code{"@var{value}"} is always equivalent to specifying it as
4854@code{""}.
4855
922bdd7f 4856Some @var{variable}s may be used as Booleans.
9611cfa2
JD
4857In this case, Bison will complain if the variable definition does not meet one
4858of the following four conditions:
4859
4860@enumerate
4861@item @code{"@var{value}"} is @code{"true"}
4862
4863@item @code{"@var{value}"} is omitted (or is @code{""}).
4864This is equivalent to @code{"true"}.
4865
4866@item @code{"@var{value}"} is @code{"false"}.
4867
4868@item @var{variable} is never defined.
4869In this case, Bison selects a default value, which may depend on the selected
4870target language and/or parser skeleton.
4871@end enumerate
148d66d8 4872
793fbca5
JD
4873Some of the accepted @var{variable}s are:
4874
4875@itemize @bullet
d9df47b6
JD
4876@item api.pure
4877@findex %define api.pure
4878
4879@itemize @bullet
4880@item Language(s): C
4881
4882@item Purpose: Request a pure (reentrant) parser program.
4883@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
4884
4885@item Accepted Values: Boolean
4886
4887@item Default Value: @code{"false"}
4888@end itemize
4889
c373bf8b
JD
4890@item api.push_pull
4891@findex %define api.push_pull
793fbca5
JD
4892
4893@itemize @bullet
34a6c2d1 4894@item Language(s): C (deterministic parsers only)
793fbca5
JD
4895
4896@item Purpose: Requests a pull parser, a push parser, or both.
d782395d 4897@xref{Push Decl, ,A Push Parser}.
59da312b
JD
4898(The current push parsing interface is experimental and may evolve.
4899More user feedback will help to stabilize it.)
793fbca5
JD
4900
4901@item Accepted Values: @code{"pull"}, @code{"push"}, @code{"both"}
4902
4903@item Default Value: @code{"pull"}
4904@end itemize
4905
620b5727
JD
4906@item lr.default_reductions
4907@cindex default reductions
4908@findex %define lr.default_reductions
34a6c2d1
JD
4909@cindex delayed syntax errors
4910@cindex syntax errors delayed
4911
4912@itemize @bullet
4913@item Language(s): all
4914
4915@item Purpose: Specifies the kind of states that are permitted to
620b5727
JD
4916contain default reductions.
4917That is, in such a state, Bison declares the reduction with the largest
4918lookahead set to be the default reduction and then removes that
4919lookahead set.
4920The advantages of default reductions are discussed below.
34a6c2d1
JD
4921The disadvantage is that, when the generated parser encounters a
4922syntactically unacceptable token, the parser might then perform
620b5727 4923unnecessary default reductions before it can detect the syntax error.
34a6c2d1
JD
4924
4925(This feature is experimental.
4926More user feedback will help to stabilize it.)
4927
4928@item Accepted Values:
4929@itemize
4930@item @code{"all"}.
4931For @acronym{LALR} and @acronym{IELR} parsers (@pxref{Decl
4932Summary,,lr.type}) by default, all states are permitted to contain
620b5727 4933default reductions.
34a6c2d1
JD
4934The advantage is that parser table sizes can be significantly reduced.
4935The reason Bison does not by default attempt to address the disadvantage
4936of delayed syntax error detection is that this disadvantage is already
4937inherent in @acronym{LALR} and @acronym{IELR} parser tables.
620b5727
JD
4938That is, unlike in a canonical @acronym{LR} state, the lookahead sets of
4939reductions in an @acronym{LALR} or @acronym{IELR} state can contain
4940tokens that are syntactically incorrect for some left contexts.
34a6c2d1
JD
4941
4942@item @code{"consistent"}.
4943@cindex consistent states
4944A consistent state is a state that has only one possible action.
4945If that action is a reduction, then the parser does not need to request
4946a lookahead token from the scanner before performing that action.
4947However, the parser only recognizes the ability to ignore the lookahead
620b5727
JD
4948token when such a reduction is encoded as a default reduction.
4949Thus, if default reductions are permitted in and only in consistent
4950states, then a canonical @acronym{LR} parser reports a syntax error as
4951soon as it @emph{needs} the syntactically unacceptable token from the
4952scanner.
34a6c2d1
JD
4953
4954@item @code{"accepting"}.
4955@cindex accepting state
620b5727
JD
4956By default, the only default reduction permitted in a canonical
4957@acronym{LR} parser is the accept action in the accepting state, which
4958the parser reaches only after reading all tokens from the input.
34a6c2d1
JD
4959Thus, the default canonical @acronym{LR} parser reports a syntax error
4960as soon as it @emph{reaches} the syntactically unacceptable token
4961without performing any extra reductions.
4962@end itemize
4963
4964@item Default Value:
4965@itemize
4966@item @code{"accepting"} if @code{lr.type} is @code{"canonical LR"}.
4967@item @code{"all"} otherwise.
4968@end itemize
4969@end itemize
4970
31984206
JD
4971@item lr.keep_unreachable_states
4972@findex %define lr.keep_unreachable_states
4973
4974@itemize @bullet
4975@item Language(s): all
4976
4977@item Purpose: Requests that Bison allow unreachable parser states to remain in
4978the parser tables.
4979Bison considers a state to be unreachable if there exists no sequence of
4980transitions from the start state to that state.
4981A state can become unreachable during conflict resolution if Bison disables a
4982shift action leading to it from a predecessor state.
4983Keeping unreachable states is sometimes useful for analysis purposes, but they
4984are useless in the generated parser.
4985
4986@item Accepted Values: Boolean
4987
4988@item Default Value: @code{"false"}
4989
4990@item Caveats:
4991
4992@itemize @bullet
cff03fb2
JD
4993
4994@item Unreachable states may contain conflicts and may use rules not used in
4995any other state.
31984206
JD
4996Thus, keeping unreachable states may induce warnings that are irrelevant to
4997your parser's behavior, and it may eliminate warnings that are relevant.
4998Of course, the change in warnings may actually be relevant to a parser table
4999analysis that wants to keep unreachable states, so this behavior will likely
5000remain in future Bison releases.
5001
5002@item While Bison is able to remove unreachable states, it is not guaranteed to
5003remove other kinds of useless states.
5004Specifically, when Bison disables reduce actions during conflict resolution,
5005some goto actions may become useless, and thus some additional states may
5006become useless.
5007If Bison were to compute which goto actions were useless and then disable those
5008actions, it could identify such states as unreachable and then remove those
5009states.
5010However, Bison does not compute which goto actions are useless.
5011@end itemize
5012@end itemize
5013
34a6c2d1
JD
5014@item lr.type
5015@findex %define lr.type
5016@cindex @acronym{LALR}
5017@cindex @acronym{IELR}
5018@cindex @acronym{LR}
5019
5020@itemize @bullet
5021@item Language(s): all
5022
5023@item Purpose: Specifies the type of parser tables within the
5024@acronym{LR}(1) family.
5025(This feature is experimental.
5026More user feedback will help to stabilize it.)
5027
5028@item Accepted Values:
5029@itemize
5030@item @code{"LALR"}.
5031While Bison generates @acronym{LALR} parser tables by default for
5032historical reasons, @acronym{IELR} or canonical @acronym{LR} is almost
5033always preferable for deterministic parsers.
5034The trouble is that @acronym{LALR} parser tables can suffer from
620b5727
JD
5035mysterious conflicts and thus may not accept the full set of sentences
5036that @acronym{IELR} and canonical @acronym{LR} accept.
34a6c2d1
JD
5037@xref{Mystery Conflicts}, for details.
5038However, there are at least two scenarios where @acronym{LALR} may be
5039worthwhile:
5040@itemize
5041@cindex @acronym{GLR} with @acronym{LALR}
5042@item When employing @acronym{GLR} parsers (@pxref{GLR Parsers}), if you
5043do not resolve any conflicts statically (for example, with @code{%left}
5044or @code{%prec}), then the parser explores all potential parses of any
5045given input.
620b5727
JD
5046In this case, the use of @acronym{LALR} parser tables is guaranteed not
5047to alter the language accepted by the parser.
34a6c2d1
JD
5048@acronym{LALR} parser tables are the smallest parser tables Bison can
5049currently generate, so they may be preferable.
5050
5051@item Occasionally during development, an especially malformed grammar
5052with a major recurring flaw may severely impede the @acronym{IELR} or
5053canonical @acronym{LR} parser table generation algorithm.
5054@acronym{LALR} can be a quick way to generate parser tables in order to
5055investigate such problems while ignoring the more subtle differences
5056from @acronym{IELR} and canonical @acronym{LR}.
5057@end itemize
5058
5059@item @code{"IELR"}.
5060@acronym{IELR} is a minimal @acronym{LR} algorithm.
5061That is, given any grammar (@acronym{LR} or non-@acronym{LR}),
5062@acronym{IELR} and canonical @acronym{LR} always accept exactly the same
5063set of sentences.
5064However, as for @acronym{LALR}, the number of parser states is often an
5065order of magnitude less for @acronym{IELR} than for canonical
5066@acronym{LR}.
5067More importantly, because canonical @acronym{LR}'s extra parser states
5068may contain duplicate conflicts in the case of non-@acronym{LR}
5069grammars, the number of conflicts for @acronym{IELR} is often an order
5070of magnitude less as well.
5071This can significantly reduce the complexity of developing of a grammar.
5072
5073@item @code{"canonical LR"}.
5074@cindex delayed syntax errors
5075@cindex syntax errors delayed
620b5727
JD
5076The only advantage of canonical @acronym{LR} over @acronym{IELR} is
5077that, for every left context of every canonical @acronym{LR} state, the
5078set of tokens accepted by that state is the exact set of tokens that is
5079syntactically acceptable in that left context.
5080Thus, the only difference in parsing behavior is that the canonical
34a6c2d1
JD
5081@acronym{LR} parser can report a syntax error as soon as possible
5082without performing any unnecessary reductions.
620b5727 5083@xref{Decl Summary,,lr.default_reductions}, for further details.
34a6c2d1
JD
5084Even when canonical @acronym{LR} behavior is ultimately desired,
5085@acronym{IELR}'s elimination of duplicate conflicts should still
5086facilitate the development of a grammar.
5087@end itemize
5088
5089@item Default Value: @code{"LALR"}
5090@end itemize
5091
793fbca5
JD
5092@item namespace
5093@findex %define namespace
5094
5095@itemize
5096@item Languages(s): C++
5097
5098@item Purpose: Specifies the namespace for the parser class.
5099For example, if you specify:
5100
5101@smallexample
5102%define namespace "foo::bar"
5103@end smallexample
5104
5105Bison uses @code{foo::bar} verbatim in references such as:
5106
5107@smallexample
5108foo::bar::parser::semantic_type
5109@end smallexample
5110
5111However, to open a namespace, Bison removes any leading @code{::} and then
5112splits on any remaining occurrences:
5113
5114@smallexample
5115namespace foo @{ namespace bar @{
5116 class position;
5117 class location;
5118@} @}
5119@end smallexample
5120
5121@item Accepted Values: Any absolute or relative C++ namespace reference without
5122a trailing @code{"::"}.
5123For example, @code{"foo"} or @code{"::foo::bar"}.
5124
5125@item Default Value: The value specified by @code{%name-prefix}, which defaults
5126to @code{yy}.
5127This usage of @code{%name-prefix} is for backward compatibility and can be
5128confusing since @code{%name-prefix} also specifies the textual prefix for the
5129lexical analyzer function.
5130Thus, if you specify @code{%name-prefix}, it is best to also specify
5131@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
5132lexical analyzer function.
5133For example, if you specify:
5134
5135@smallexample
5136%define namespace "foo"
5137%name-prefix "bar::"
5138@end smallexample
5139
5140The parser namespace is @code{foo} and @code{yylex} is referenced as
5141@code{bar::lex}.
5142@end itemize
5143@end itemize
5144
d782395d
JD
5145@end deffn
5146
18b519c0 5147@deffn {Directive} %defines
4bfd5e4e
PE
5148Write a header file containing macro definitions for the token type
5149names defined in the grammar as well as a few other declarations.
d8988b2f 5150If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 5151is named @file{@var{name}.h}.
d8988b2f 5152
b321737f 5153For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
5154@code{YYSTYPE} is already defined as a macro or you have used a
5155@code{<@var{type}>} tag without using @code{%union}.
5156Therefore, if you are using a @code{%union}
f8e1c9e5
AD
5157(@pxref{Multiple Types, ,More Than One Value Type}) with components that
5158require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 5159or type definition
f8e1c9e5
AD
5160(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
5161arrange for these definitions to be propagated to all modules, e.g., by
5162putting them in a prerequisite header that is included both by your
5163parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
5164
5165Unless your parser is pure, the output header declares @code{yylval}
5166as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
5167Parser}.
5168
5169If you have also used locations, the output header declares
5170@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 5171the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
5172Locations}.
5173
f8e1c9e5
AD
5174This output file is normally essential if you wish to put the definition
5175of @code{yylex} in a separate source file, because @code{yylex}
5176typically needs to be able to refer to the above-mentioned declarations
5177and to the token type codes. @xref{Token Values, ,Semantic Values of
5178Tokens}.
9bc0dd67 5179
16dc6a9e
JD
5180@findex %code requires
5181@findex %code provides
5182If you have declared @code{%code requires} or @code{%code provides}, the output
5183header also contains their code.
148d66d8 5184@xref{Decl Summary, ,%code}.
592d0b1e
PB
5185@end deffn
5186
02975b9a
JD
5187@deffn {Directive} %defines @var{defines-file}
5188Same as above, but save in the file @var{defines-file}.
5189@end deffn
5190
18b519c0 5191@deffn {Directive} %destructor
258b75ca 5192Specify how the parser should reclaim the memory associated to
fa7e68c3 5193discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 5194@end deffn
72f889cc 5195
02975b9a 5196@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
5197Specify a prefix to use for all Bison output file names. The names are
5198chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 5199@end deffn
d8988b2f 5200
e6e704dc 5201@deffn {Directive} %language "@var{language}"
0e021770 5202Specify the programming language for the generated parser. Currently
59da312b 5203supported languages include C, C++, and Java.
e6e704dc 5204@var{language} is case-insensitive.
ed4d67dc
JD
5205
5206This directive is experimental and its effect may be modified in future
5207releases.
0e021770
PE
5208@end deffn
5209
18b519c0 5210@deffn {Directive} %locations
89cab50d
AD
5211Generate the code processing the locations (@pxref{Action Features,
5212,Special Features for Use in Actions}). This mode is enabled as soon as
5213the grammar uses the special @samp{@@@var{n}} tokens, but if your
5214grammar does not use it, using @samp{%locations} allows for more
6e649e65 5215accurate syntax error messages.
18b519c0 5216@end deffn
89cab50d 5217
02975b9a 5218@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5219Rename the external symbols used in the parser so that they start with
5220@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5221in C parsers
d8988b2f 5222is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5223@code{yylval}, @code{yychar}, @code{yydebug}, and
f4101aa6
AD
5224(if locations are used) @code{yylloc}. If you use a push parser,
5225@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5226@code{yypstate_new} and @code{yypstate_delete} will
5227also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5
JD
5228names become @code{c_parse}, @code{c_lex}, and so on.
5229For C++ parsers, see the @code{%define namespace} documentation in this
5230section.
aa08666d 5231@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5232@end deffn
931c7513 5233
91d2c560 5234@ifset defaultprec
22fccf95
PE
5235@deffn {Directive} %no-default-prec
5236Do not assign a precedence to rules lacking an explicit @code{%prec}
5237modifier (@pxref{Contextual Precedence, ,Context-Dependent
5238Precedence}).
5239@end deffn
91d2c560 5240@end ifset
22fccf95 5241
18b519c0 5242@deffn {Directive} %no-lines
931c7513
RS
5243Don't generate any @code{#line} preprocessor commands in the parser
5244file. Ordinarily Bison writes these commands in the parser file so that
5245the C compiler and debuggers will associate errors and object code with
5246your source file (the grammar file). This directive causes them to
5247associate errors with the parser file, treating it an independent source
5248file in its own right.
18b519c0 5249@end deffn
931c7513 5250
02975b9a 5251@deffn {Directive} %output "@var{file}"
fa4d969f 5252Specify @var{file} for the parser file.
18b519c0 5253@end deffn
6deb4447 5254
18b519c0 5255@deffn {Directive} %pure-parser
d9df47b6
JD
5256Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
5257for which Bison is more careful to warn about unreasonable usage.
18b519c0 5258@end deffn
6deb4447 5259
b50d2359 5260@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5261Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5262Require a Version of Bison}.
b50d2359
AD
5263@end deffn
5264
0e021770 5265@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5266Specify the skeleton to use.
5267
ed4d67dc
JD
5268@c You probably don't need this option unless you are developing Bison.
5269@c You should use @code{%language} if you want to specify the skeleton for a
5270@c different language, because it is clearer and because it will always choose the
5271@c correct skeleton for non-deterministic or push parsers.
a7867f53
JD
5272
5273If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5274file in the Bison installation directory.
5275If it does, @var{file} is an absolute file name or a file name relative to the
5276directory of the grammar file.
5277This is similar to how most shells resolve commands.
0e021770
PE
5278@end deffn
5279
18b519c0 5280@deffn {Directive} %token-table
931c7513
RS
5281Generate an array of token names in the parser file. The name of the
5282array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 5283token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
5284three elements of @code{yytname} correspond to the predefined tokens
5285@code{"$end"},
88bce5a2
AD
5286@code{"error"}, and @code{"$undefined"}; after these come the symbols
5287defined in the grammar file.
931c7513 5288
9e0876fb
PE
5289The name in the table includes all the characters needed to represent
5290the token in Bison. For single-character literals and literal
5291strings, this includes the surrounding quoting characters and any
5292escape sequences. For example, the Bison single-character literal
5293@code{'+'} corresponds to a three-character name, represented in C as
5294@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5295corresponds to a five-character name, represented in C as
5296@code{"\"\\\\/\""}.
931c7513 5297
8c9a50be 5298When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5299definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5300@code{YYNRULES}, and @code{YYNSTATES}:
5301
5302@table @code
5303@item YYNTOKENS
5304The highest token number, plus one.
5305@item YYNNTS
9ecbd125 5306The number of nonterminal symbols.
931c7513
RS
5307@item YYNRULES
5308The number of grammar rules,
5309@item YYNSTATES
5310The number of parser states (@pxref{Parser States}).
5311@end table
18b519c0 5312@end deffn
d8988b2f 5313
18b519c0 5314@deffn {Directive} %verbose
d8988b2f 5315Write an extra output file containing verbose descriptions of the
742e4900 5316parser states and what is done for each type of lookahead token in
72d2299c 5317that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5318information.
18b519c0 5319@end deffn
d8988b2f 5320
18b519c0 5321@deffn {Directive} %yacc
d8988b2f
AD
5322Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5323including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5324@end deffn
d8988b2f
AD
5325
5326
342b8b6e 5327@node Multiple Parsers
bfa74976
RS
5328@section Multiple Parsers in the Same Program
5329
5330Most programs that use Bison parse only one language and therefore contain
5331only one Bison parser. But what if you want to parse more than one
5332language with the same program? Then you need to avoid a name conflict
5333between different definitions of @code{yyparse}, @code{yylval}, and so on.
5334
5335The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5336(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5337functions and variables of the Bison parser to start with @var{prefix}
5338instead of @samp{yy}. You can use this to give each parser distinct
5339names that do not conflict.
bfa74976
RS
5340
5341The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5342@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5343@code{yychar} and @code{yydebug}. If you use a push parser,
5344@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5345@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5346For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5347@code{clex}, and so on.
bfa74976
RS
5348
5349@strong{All the other variables and macros associated with Bison are not
5350renamed.} These others are not global; there is no conflict if the same
5351name is used in different parsers. For example, @code{YYSTYPE} is not
5352renamed, but defining this in different ways in different parsers causes
5353no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5354
5355The @samp{-p} option works by adding macro definitions to the beginning
5356of the parser source file, defining @code{yyparse} as
5357@code{@var{prefix}parse}, and so on. This effectively substitutes one
5358name for the other in the entire parser file.
5359
342b8b6e 5360@node Interface
bfa74976
RS
5361@chapter Parser C-Language Interface
5362@cindex C-language interface
5363@cindex interface
5364
5365The Bison parser is actually a C function named @code{yyparse}. Here we
5366describe the interface conventions of @code{yyparse} and the other
5367functions that it needs to use.
5368
5369Keep in mind that the parser uses many C identifiers starting with
5370@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5371identifier (aside from those in this manual) in an action or in epilogue
5372in the grammar file, you are likely to run into trouble.
bfa74976
RS
5373
5374@menu
f56274a8
DJ
5375* Parser Function:: How to call @code{yyparse} and what it returns.
5376* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5377* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5378* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5379* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5380* Lexical:: You must supply a function @code{yylex}
5381 which reads tokens.
5382* Error Reporting:: You must supply a function @code{yyerror}.
5383* Action Features:: Special features for use in actions.
5384* Internationalization:: How to let the parser speak in the user's
5385 native language.
bfa74976
RS
5386@end menu
5387
342b8b6e 5388@node Parser Function
bfa74976
RS
5389@section The Parser Function @code{yyparse}
5390@findex yyparse
5391
5392You call the function @code{yyparse} to cause parsing to occur. This
5393function reads tokens, executes actions, and ultimately returns when it
5394encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5395write an action which directs @code{yyparse} to return immediately
5396without reading further.
bfa74976 5397
2a8d363a
AD
5398
5399@deftypefun int yyparse (void)
bfa74976
RS
5400The value returned by @code{yyparse} is 0 if parsing was successful (return
5401is due to end-of-input).
5402
b47dbebe
PE
5403The value is 1 if parsing failed because of invalid input, i.e., input
5404that contains a syntax error or that causes @code{YYABORT} to be
5405invoked.
5406
5407The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5408@end deftypefun
bfa74976
RS
5409
5410In an action, you can cause immediate return from @code{yyparse} by using
5411these macros:
5412
2a8d363a 5413@defmac YYACCEPT
bfa74976
RS
5414@findex YYACCEPT
5415Return immediately with value 0 (to report success).
2a8d363a 5416@end defmac
bfa74976 5417
2a8d363a 5418@defmac YYABORT
bfa74976
RS
5419@findex YYABORT
5420Return immediately with value 1 (to report failure).
2a8d363a
AD
5421@end defmac
5422
5423If you use a reentrant parser, you can optionally pass additional
5424parameter information to it in a reentrant way. To do so, use the
5425declaration @code{%parse-param}:
5426
feeb0eda 5427@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5428@findex %parse-param
287c78f6
PE
5429Declare that an argument declared by the braced-code
5430@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5431The @var{argument-declaration} is used when declaring
feeb0eda
PE
5432functions or prototypes. The last identifier in
5433@var{argument-declaration} must be the argument name.
2a8d363a
AD
5434@end deffn
5435
5436Here's an example. Write this in the parser:
5437
5438@example
feeb0eda
PE
5439%parse-param @{int *nastiness@}
5440%parse-param @{int *randomness@}
2a8d363a
AD
5441@end example
5442
5443@noindent
5444Then call the parser like this:
5445
5446@example
5447@{
5448 int nastiness, randomness;
5449 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5450 value = yyparse (&nastiness, &randomness);
5451 @dots{}
5452@}
5453@end example
5454
5455@noindent
5456In the grammar actions, use expressions like this to refer to the data:
5457
5458@example
5459exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5460@end example
5461
9987d1b3
JD
5462@node Push Parser Function
5463@section The Push Parser Function @code{yypush_parse}
5464@findex yypush_parse
5465
59da312b
JD
5466(The current push parsing interface is experimental and may evolve.
5467More user feedback will help to stabilize it.)
5468
f4101aa6
AD
5469You call the function @code{yypush_parse} to parse a single token. This
5470function is available if either the @code{%define api.push_pull "push"} or
5471@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5472@xref{Push Decl, ,A Push Parser}.
5473
5474@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5475The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5476following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5477is required to finish parsing the grammar.
5478@end deftypefun
5479
5480@node Pull Parser Function
5481@section The Pull Parser Function @code{yypull_parse}
5482@findex yypull_parse
5483
59da312b
JD
5484(The current push parsing interface is experimental and may evolve.
5485More user feedback will help to stabilize it.)
5486
f4101aa6
AD
5487You call the function @code{yypull_parse} to parse the rest of the input
5488stream. This function is available if the @code{%define api.push_pull "both"}
5489declaration is used.
9987d1b3
JD
5490@xref{Push Decl, ,A Push Parser}.
5491
5492@deftypefun int yypull_parse (yypstate *yyps)
5493The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5494@end deftypefun
5495
5496@node Parser Create Function
5497@section The Parser Create Function @code{yystate_new}
5498@findex yypstate_new
5499
59da312b
JD
5500(The current push parsing interface is experimental and may evolve.
5501More user feedback will help to stabilize it.)
5502
f4101aa6
AD
5503You call the function @code{yypstate_new} to create a new parser instance.
5504This function is available if either the @code{%define api.push_pull "push"} or
5505@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5506@xref{Push Decl, ,A Push Parser}.
5507
5508@deftypefun yypstate *yypstate_new (void)
5509The fuction will return a valid parser instance if there was memory available
333e670c
JD
5510or 0 if no memory was available.
5511In impure mode, it will also return 0 if a parser instance is currently
5512allocated.
9987d1b3
JD
5513@end deftypefun
5514
5515@node Parser Delete Function
5516@section The Parser Delete Function @code{yystate_delete}
5517@findex yypstate_delete
5518
59da312b
JD
5519(The current push parsing interface is experimental and may evolve.
5520More user feedback will help to stabilize it.)
5521
9987d1b3 5522You call the function @code{yypstate_delete} to delete a parser instance.
f4101aa6
AD
5523function is available if either the @code{%define api.push_pull "push"} or
5524@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5525@xref{Push Decl, ,A Push Parser}.
5526
5527@deftypefun void yypstate_delete (yypstate *yyps)
5528This function will reclaim the memory associated with a parser instance.
5529After this call, you should no longer attempt to use the parser instance.
5530@end deftypefun
bfa74976 5531
342b8b6e 5532@node Lexical
bfa74976
RS
5533@section The Lexical Analyzer Function @code{yylex}
5534@findex yylex
5535@cindex lexical analyzer
5536
5537The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5538the input stream and returns them to the parser. Bison does not create
5539this function automatically; you must write it so that @code{yyparse} can
5540call it. The function is sometimes referred to as a lexical scanner.
5541
5542In simple programs, @code{yylex} is often defined at the end of the Bison
5543grammar file. If @code{yylex} is defined in a separate source file, you
5544need to arrange for the token-type macro definitions to be available there.
5545To do this, use the @samp{-d} option when you run Bison, so that it will
5546write these macro definitions into a separate header file
5547@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 5548that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
5549
5550@menu
5551* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
5552* Token Values:: How @code{yylex} must return the semantic value
5553 of the token it has read.
5554* Token Locations:: How @code{yylex} must return the text location
5555 (line number, etc.) of the token, if the
5556 actions want that.
5557* Pure Calling:: How the calling convention differs in a pure parser
5558 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5559@end menu
5560
342b8b6e 5561@node Calling Convention
bfa74976
RS
5562@subsection Calling Convention for @code{yylex}
5563
72d2299c
PE
5564The value that @code{yylex} returns must be the positive numeric code
5565for the type of token it has just found; a zero or negative value
5566signifies end-of-input.
bfa74976
RS
5567
5568When a token is referred to in the grammar rules by a name, that name
5569in the parser file becomes a C macro whose definition is the proper
5570numeric code for that token type. So @code{yylex} can use the name
5571to indicate that type. @xref{Symbols}.
5572
5573When a token is referred to in the grammar rules by a character literal,
5574the numeric code for that character is also the code for the token type.
72d2299c
PE
5575So @code{yylex} can simply return that character code, possibly converted
5576to @code{unsigned char} to avoid sign-extension. The null character
5577must not be used this way, because its code is zero and that
bfa74976
RS
5578signifies end-of-input.
5579
5580Here is an example showing these things:
5581
5582@example
13863333
AD
5583int
5584yylex (void)
bfa74976
RS
5585@{
5586 @dots{}
72d2299c 5587 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5588 return 0;
5589 @dots{}
5590 if (c == '+' || c == '-')
72d2299c 5591 return c; /* Assume token type for `+' is '+'. */
bfa74976 5592 @dots{}
72d2299c 5593 return INT; /* Return the type of the token. */
bfa74976
RS
5594 @dots{}
5595@}
5596@end example
5597
5598@noindent
5599This interface has been designed so that the output from the @code{lex}
5600utility can be used without change as the definition of @code{yylex}.
5601
931c7513
RS
5602If the grammar uses literal string tokens, there are two ways that
5603@code{yylex} can determine the token type codes for them:
5604
5605@itemize @bullet
5606@item
5607If the grammar defines symbolic token names as aliases for the
5608literal string tokens, @code{yylex} can use these symbolic names like
5609all others. In this case, the use of the literal string tokens in
5610the grammar file has no effect on @code{yylex}.
5611
5612@item
9ecbd125 5613@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5614table. The index of the token in the table is the token type's code.
9ecbd125 5615The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5616double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5617token's characters are escaped as necessary to be suitable as input
5618to Bison.
931c7513 5619
9e0876fb
PE
5620Here's code for looking up a multicharacter token in @code{yytname},
5621assuming that the characters of the token are stored in
5622@code{token_buffer}, and assuming that the token does not contain any
5623characters like @samp{"} that require escaping.
931c7513
RS
5624
5625@smallexample
5626for (i = 0; i < YYNTOKENS; i++)
5627 @{
5628 if (yytname[i] != 0
5629 && yytname[i][0] == '"'
68449b3a
PE
5630 && ! strncmp (yytname[i] + 1, token_buffer,
5631 strlen (token_buffer))
931c7513
RS
5632 && yytname[i][strlen (token_buffer) + 1] == '"'
5633 && yytname[i][strlen (token_buffer) + 2] == 0)
5634 break;
5635 @}
5636@end smallexample
5637
5638The @code{yytname} table is generated only if you use the
8c9a50be 5639@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5640@end itemize
5641
342b8b6e 5642@node Token Values
bfa74976
RS
5643@subsection Semantic Values of Tokens
5644
5645@vindex yylval
9d9b8b70 5646In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5647be stored into the global variable @code{yylval}. When you are using
5648just one data type for semantic values, @code{yylval} has that type.
5649Thus, if the type is @code{int} (the default), you might write this in
5650@code{yylex}:
5651
5652@example
5653@group
5654 @dots{}
72d2299c
PE
5655 yylval = value; /* Put value onto Bison stack. */
5656 return INT; /* Return the type of the token. */
bfa74976
RS
5657 @dots{}
5658@end group
5659@end example
5660
5661When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5662made from the @code{%union} declaration (@pxref{Union Decl, ,The
5663Collection of Value Types}). So when you store a token's value, you
5664must use the proper member of the union. If the @code{%union}
5665declaration looks like this:
bfa74976
RS
5666
5667@example
5668@group
5669%union @{
5670 int intval;
5671 double val;
5672 symrec *tptr;
5673@}
5674@end group
5675@end example
5676
5677@noindent
5678then the code in @code{yylex} might look like this:
5679
5680@example
5681@group
5682 @dots{}
72d2299c
PE
5683 yylval.intval = value; /* Put value onto Bison stack. */
5684 return INT; /* Return the type of the token. */
bfa74976
RS
5685 @dots{}
5686@end group
5687@end example
5688
95923bd6
AD
5689@node Token Locations
5690@subsection Textual Locations of Tokens
bfa74976
RS
5691
5692@vindex yylloc
847bf1f5 5693If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5694Tracking Locations}) in actions to keep track of the textual locations
5695of tokens and groupings, then you must provide this information in
5696@code{yylex}. The function @code{yyparse} expects to find the textual
5697location of a token just parsed in the global variable @code{yylloc}.
5698So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5699
5700By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5701initialize the members that are going to be used by the actions. The
5702four members are called @code{first_line}, @code{first_column},
5703@code{last_line} and @code{last_column}. Note that the use of this
5704feature makes the parser noticeably slower.
bfa74976
RS
5705
5706@tindex YYLTYPE
5707The data type of @code{yylloc} has the name @code{YYLTYPE}.
5708
342b8b6e 5709@node Pure Calling
c656404a 5710@subsection Calling Conventions for Pure Parsers
bfa74976 5711
d9df47b6 5712When you use the Bison declaration @code{%define api.pure} to request a
e425e872
RS
5713pure, reentrant parser, the global communication variables @code{yylval}
5714and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5715Parser}.) In such parsers the two global variables are replaced by
5716pointers passed as arguments to @code{yylex}. You must declare them as
5717shown here, and pass the information back by storing it through those
5718pointers.
bfa74976
RS
5719
5720@example
13863333
AD
5721int
5722yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5723@{
5724 @dots{}
5725 *lvalp = value; /* Put value onto Bison stack. */
5726 return INT; /* Return the type of the token. */
5727 @dots{}
5728@}
5729@end example
5730
5731If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5732textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5733this case, omit the second argument; @code{yylex} will be called with
5734only one argument.
5735
e425e872 5736
2a8d363a
AD
5737If you wish to pass the additional parameter data to @code{yylex}, use
5738@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5739Function}).
e425e872 5740
feeb0eda 5741@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5742@findex %lex-param
287c78f6
PE
5743Declare that the braced-code @var{argument-declaration} is an
5744additional @code{yylex} argument declaration.
2a8d363a 5745@end deffn
e425e872 5746
2a8d363a 5747For instance:
e425e872
RS
5748
5749@example
feeb0eda
PE
5750%parse-param @{int *nastiness@}
5751%lex-param @{int *nastiness@}
5752%parse-param @{int *randomness@}
e425e872
RS
5753@end example
5754
5755@noindent
2a8d363a 5756results in the following signature:
e425e872
RS
5757
5758@example
2a8d363a
AD
5759int yylex (int *nastiness);
5760int yyparse (int *nastiness, int *randomness);
e425e872
RS
5761@end example
5762
d9df47b6 5763If @code{%define api.pure} is added:
c656404a
RS
5764
5765@example
2a8d363a
AD
5766int yylex (YYSTYPE *lvalp, int *nastiness);
5767int yyparse (int *nastiness, int *randomness);
c656404a
RS
5768@end example
5769
2a8d363a 5770@noindent
d9df47b6 5771and finally, if both @code{%define api.pure} and @code{%locations} are used:
c656404a 5772
2a8d363a
AD
5773@example
5774int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5775int yyparse (int *nastiness, int *randomness);
5776@end example
931c7513 5777
342b8b6e 5778@node Error Reporting
bfa74976
RS
5779@section The Error Reporting Function @code{yyerror}
5780@cindex error reporting function
5781@findex yyerror
5782@cindex parse error
5783@cindex syntax error
5784
6e649e65 5785The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 5786whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 5787action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
5788macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
5789in Actions}).
bfa74976
RS
5790
5791The Bison parser expects to report the error by calling an error
5792reporting function named @code{yyerror}, which you must supply. It is
5793called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
5794receives one argument. For a syntax error, the string is normally
5795@w{@code{"syntax error"}}.
bfa74976 5796
2a8d363a
AD
5797@findex %error-verbose
5798If you invoke the directive @code{%error-verbose} in the Bison
5799declarations section (@pxref{Bison Declarations, ,The Bison Declarations
5800Section}), then Bison provides a more verbose and specific error message
6e649e65 5801string instead of just plain @w{@code{"syntax error"}}.
bfa74976 5802
1a059451
PE
5803The parser can detect one other kind of error: memory exhaustion. This
5804can happen when the input contains constructions that are very deeply
bfa74976 5805nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
5806parser normally extends its stack automatically up to a very large limit. But
5807if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
5808fashion, except that the argument string is @w{@code{"memory exhausted"}}.
5809
5810In some cases diagnostics like @w{@code{"syntax error"}} are
5811translated automatically from English to some other language before
5812they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
5813
5814The following definition suffices in simple programs:
5815
5816@example
5817@group
13863333 5818void
38a92d50 5819yyerror (char const *s)
bfa74976
RS
5820@{
5821@end group
5822@group
5823 fprintf (stderr, "%s\n", s);
5824@}
5825@end group
5826@end example
5827
5828After @code{yyerror} returns to @code{yyparse}, the latter will attempt
5829error recovery if you have written suitable error recovery grammar rules
5830(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
5831immediately return 1.
5832
93724f13 5833Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
5834an access to the current location.
5835This is indeed the case for the @acronym{GLR}
2a8d363a 5836parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 5837@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
5838@code{yyerror} are:
5839
5840@example
38a92d50
PE
5841void yyerror (char const *msg); /* Yacc parsers. */
5842void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
5843@end example
5844
feeb0eda 5845If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
5846
5847@example
b317297e
PE
5848void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
5849void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
5850@end example
5851
fa7e68c3 5852Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
5853convention for absolutely pure parsers, i.e., when the calling
5854convention of @code{yylex} @emph{and} the calling convention of
d9df47b6
JD
5855@code{%define api.pure} are pure.
5856I.e.:
2a8d363a
AD
5857
5858@example
5859/* Location tracking. */
5860%locations
5861/* Pure yylex. */
d9df47b6 5862%define api.pure
feeb0eda 5863%lex-param @{int *nastiness@}
2a8d363a 5864/* Pure yyparse. */
feeb0eda
PE
5865%parse-param @{int *nastiness@}
5866%parse-param @{int *randomness@}
2a8d363a
AD
5867@end example
5868
5869@noindent
5870results in the following signatures for all the parser kinds:
5871
5872@example
5873int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5874int yyparse (int *nastiness, int *randomness);
93724f13
AD
5875void yyerror (YYLTYPE *locp,
5876 int *nastiness, int *randomness,
38a92d50 5877 char const *msg);
2a8d363a
AD
5878@end example
5879
1c0c3e95 5880@noindent
38a92d50
PE
5881The prototypes are only indications of how the code produced by Bison
5882uses @code{yyerror}. Bison-generated code always ignores the returned
5883value, so @code{yyerror} can return any type, including @code{void}.
5884Also, @code{yyerror} can be a variadic function; that is why the
5885message is always passed last.
5886
5887Traditionally @code{yyerror} returns an @code{int} that is always
5888ignored, but this is purely for historical reasons, and @code{void} is
5889preferable since it more accurately describes the return type for
5890@code{yyerror}.
93724f13 5891
bfa74976
RS
5892@vindex yynerrs
5893The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 5894reported so far. Normally this variable is global; but if you
704a47c4
AD
5895request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
5896then it is a local variable which only the actions can access.
bfa74976 5897
342b8b6e 5898@node Action Features
bfa74976
RS
5899@section Special Features for Use in Actions
5900@cindex summary, action features
5901@cindex action features summary
5902
5903Here is a table of Bison constructs, variables and macros that
5904are useful in actions.
5905
18b519c0 5906@deffn {Variable} $$
bfa74976
RS
5907Acts like a variable that contains the semantic value for the
5908grouping made by the current rule. @xref{Actions}.
18b519c0 5909@end deffn
bfa74976 5910
18b519c0 5911@deffn {Variable} $@var{n}
bfa74976
RS
5912Acts like a variable that contains the semantic value for the
5913@var{n}th component of the current rule. @xref{Actions}.
18b519c0 5914@end deffn
bfa74976 5915
18b519c0 5916@deffn {Variable} $<@var{typealt}>$
bfa74976 5917Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
5918specified by the @code{%union} declaration. @xref{Action Types, ,Data
5919Types of Values in Actions}.
18b519c0 5920@end deffn
bfa74976 5921
18b519c0 5922@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 5923Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 5924union specified by the @code{%union} declaration.
e0c471a9 5925@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 5926@end deffn
bfa74976 5927
18b519c0 5928@deffn {Macro} YYABORT;
bfa74976
RS
5929Return immediately from @code{yyparse}, indicating failure.
5930@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5931@end deffn
bfa74976 5932
18b519c0 5933@deffn {Macro} YYACCEPT;
bfa74976
RS
5934Return immediately from @code{yyparse}, indicating success.
5935@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5936@end deffn
bfa74976 5937
18b519c0 5938@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
5939@findex YYBACKUP
5940Unshift a token. This macro is allowed only for rules that reduce
742e4900 5941a single value, and only when there is no lookahead token.
c827f760 5942It is also disallowed in @acronym{GLR} parsers.
742e4900 5943It installs a lookahead token with token type @var{token} and
bfa74976
RS
5944semantic value @var{value}; then it discards the value that was
5945going to be reduced by this rule.
5946
5947If the macro is used when it is not valid, such as when there is
742e4900 5948a lookahead token already, then it reports a syntax error with
bfa74976
RS
5949a message @samp{cannot back up} and performs ordinary error
5950recovery.
5951
5952In either case, the rest of the action is not executed.
18b519c0 5953@end deffn
bfa74976 5954
18b519c0 5955@deffn {Macro} YYEMPTY
bfa74976 5956@vindex YYEMPTY
742e4900 5957Value stored in @code{yychar} when there is no lookahead token.
18b519c0 5958@end deffn
bfa74976 5959
32c29292
JD
5960@deffn {Macro} YYEOF
5961@vindex YYEOF
742e4900 5962Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
5963stream.
5964@end deffn
5965
18b519c0 5966@deffn {Macro} YYERROR;
bfa74976
RS
5967@findex YYERROR
5968Cause an immediate syntax error. This statement initiates error
5969recovery just as if the parser itself had detected an error; however, it
5970does not call @code{yyerror}, and does not print any message. If you
5971want to print an error message, call @code{yyerror} explicitly before
5972the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 5973@end deffn
bfa74976 5974
18b519c0 5975@deffn {Macro} YYRECOVERING
02103984
PE
5976@findex YYRECOVERING
5977The expression @code{YYRECOVERING ()} yields 1 when the parser
5978is recovering from a syntax error, and 0 otherwise.
bfa74976 5979@xref{Error Recovery}.
18b519c0 5980@end deffn
bfa74976 5981
18b519c0 5982@deffn {Variable} yychar
742e4900
JD
5983Variable containing either the lookahead token, or @code{YYEOF} when the
5984lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
5985has been performed so the next token is not yet known.
5986Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
5987Actions}).
742e4900 5988@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 5989@end deffn
bfa74976 5990
18b519c0 5991@deffn {Macro} yyclearin;
742e4900 5992Discard the current lookahead token. This is useful primarily in
32c29292
JD
5993error rules.
5994Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
5995Semantic Actions}).
5996@xref{Error Recovery}.
18b519c0 5997@end deffn
bfa74976 5998
18b519c0 5999@deffn {Macro} yyerrok;
bfa74976 6000Resume generating error messages immediately for subsequent syntax
13863333 6001errors. This is useful primarily in error rules.
bfa74976 6002@xref{Error Recovery}.
18b519c0 6003@end deffn
bfa74976 6004
32c29292 6005@deffn {Variable} yylloc
742e4900 6006Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6007to @code{YYEMPTY} or @code{YYEOF}.
6008Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6009Actions}).
6010@xref{Actions and Locations, ,Actions and Locations}.
6011@end deffn
6012
6013@deffn {Variable} yylval
742e4900 6014Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6015not set to @code{YYEMPTY} or @code{YYEOF}.
6016Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6017Actions}).
6018@xref{Actions, ,Actions}.
6019@end deffn
6020
18b519c0 6021@deffn {Value} @@$
847bf1f5 6022@findex @@$
95923bd6 6023Acts like a structure variable containing information on the textual location
847bf1f5
AD
6024of the grouping made by the current rule. @xref{Locations, ,
6025Tracking Locations}.
bfa74976 6026
847bf1f5
AD
6027@c Check if those paragraphs are still useful or not.
6028
6029@c @example
6030@c struct @{
6031@c int first_line, last_line;
6032@c int first_column, last_column;
6033@c @};
6034@c @end example
6035
6036@c Thus, to get the starting line number of the third component, you would
6037@c use @samp{@@3.first_line}.
bfa74976 6038
847bf1f5
AD
6039@c In order for the members of this structure to contain valid information,
6040@c you must make @code{yylex} supply this information about each token.
6041@c If you need only certain members, then @code{yylex} need only fill in
6042@c those members.
bfa74976 6043
847bf1f5 6044@c The use of this feature makes the parser noticeably slower.
18b519c0 6045@end deffn
847bf1f5 6046
18b519c0 6047@deffn {Value} @@@var{n}
847bf1f5 6048@findex @@@var{n}
95923bd6 6049Acts like a structure variable containing information on the textual location
847bf1f5
AD
6050of the @var{n}th component of the current rule. @xref{Locations, ,
6051Tracking Locations}.
18b519c0 6052@end deffn
bfa74976 6053
f7ab6a50
PE
6054@node Internationalization
6055@section Parser Internationalization
6056@cindex internationalization
6057@cindex i18n
6058@cindex NLS
6059@cindex gettext
6060@cindex bison-po
6061
6062A Bison-generated parser can print diagnostics, including error and
6063tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6064also supports outputting diagnostics in the user's native language. To
6065make this work, the user should set the usual environment variables.
6066@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6067For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
6068set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
6069encoding. The exact set of available locales depends on the user's
6070installation.
6071
6072The maintainer of a package that uses a Bison-generated parser enables
6073the internationalization of the parser's output through the following
6074steps. Here we assume a package that uses @acronym{GNU} Autoconf and
6075@acronym{GNU} Automake.
6076
6077@enumerate
6078@item
30757c8c 6079@cindex bison-i18n.m4
f7ab6a50
PE
6080Into the directory containing the @acronym{GNU} Autoconf macros used
6081by the package---often called @file{m4}---copy the
6082@file{bison-i18n.m4} file installed by Bison under
6083@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6084For example:
6085
6086@example
6087cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6088@end example
6089
6090@item
30757c8c
PE
6091@findex BISON_I18N
6092@vindex BISON_LOCALEDIR
6093@vindex YYENABLE_NLS
f7ab6a50
PE
6094In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6095invocation, add an invocation of @code{BISON_I18N}. This macro is
6096defined in the file @file{bison-i18n.m4} that you copied earlier. It
6097causes @samp{configure} to find the value of the
30757c8c
PE
6098@code{BISON_LOCALEDIR} variable, and it defines the source-language
6099symbol @code{YYENABLE_NLS} to enable translations in the
6100Bison-generated parser.
f7ab6a50
PE
6101
6102@item
6103In the @code{main} function of your program, designate the directory
6104containing Bison's runtime message catalog, through a call to
6105@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6106For example:
6107
6108@example
6109bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6110@end example
6111
6112Typically this appears after any other call @code{bindtextdomain
6113(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6114@samp{BISON_LOCALEDIR} to be defined as a string through the
6115@file{Makefile}.
6116
6117@item
6118In the @file{Makefile.am} that controls the compilation of the @code{main}
6119function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6120either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6121
6122@example
6123DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6124@end example
6125
6126or:
6127
6128@example
6129AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6130@end example
6131
6132@item
6133Finally, invoke the command @command{autoreconf} to generate the build
6134infrastructure.
6135@end enumerate
6136
bfa74976 6137
342b8b6e 6138@node Algorithm
13863333
AD
6139@chapter The Bison Parser Algorithm
6140@cindex Bison parser algorithm
bfa74976
RS
6141@cindex algorithm of parser
6142@cindex shifting
6143@cindex reduction
6144@cindex parser stack
6145@cindex stack, parser
6146
6147As Bison reads tokens, it pushes them onto a stack along with their
6148semantic values. The stack is called the @dfn{parser stack}. Pushing a
6149token is traditionally called @dfn{shifting}.
6150
6151For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6152@samp{3} to come. The stack will have four elements, one for each token
6153that was shifted.
6154
6155But the stack does not always have an element for each token read. When
6156the last @var{n} tokens and groupings shifted match the components of a
6157grammar rule, they can be combined according to that rule. This is called
6158@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6159single grouping whose symbol is the result (left hand side) of that rule.
6160Running the rule's action is part of the process of reduction, because this
6161is what computes the semantic value of the resulting grouping.
6162
6163For example, if the infix calculator's parser stack contains this:
6164
6165@example
61661 + 5 * 3
6167@end example
6168
6169@noindent
6170and the next input token is a newline character, then the last three
6171elements can be reduced to 15 via the rule:
6172
6173@example
6174expr: expr '*' expr;
6175@end example
6176
6177@noindent
6178Then the stack contains just these three elements:
6179
6180@example
61811 + 15
6182@end example
6183
6184@noindent
6185At this point, another reduction can be made, resulting in the single value
618616. Then the newline token can be shifted.
6187
6188The parser tries, by shifts and reductions, to reduce the entire input down
6189to a single grouping whose symbol is the grammar's start-symbol
6190(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6191
6192This kind of parser is known in the literature as a bottom-up parser.
6193
6194@menu
742e4900 6195* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6196* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6197* Precedence:: Operator precedence works by resolving conflicts.
6198* Contextual Precedence:: When an operator's precedence depends on context.
6199* Parser States:: The parser is a finite-state-machine with stack.
6200* Reduce/Reduce:: When two rules are applicable in the same situation.
f56274a8 6201* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6202* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6203* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6204@end menu
6205
742e4900
JD
6206@node Lookahead
6207@section Lookahead Tokens
6208@cindex lookahead token
bfa74976
RS
6209
6210The Bison parser does @emph{not} always reduce immediately as soon as the
6211last @var{n} tokens and groupings match a rule. This is because such a
6212simple strategy is inadequate to handle most languages. Instead, when a
6213reduction is possible, the parser sometimes ``looks ahead'' at the next
6214token in order to decide what to do.
6215
6216When a token is read, it is not immediately shifted; first it becomes the
742e4900 6217@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6218perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6219the lookahead token remains off to the side. When no more reductions
6220should take place, the lookahead token is shifted onto the stack. This
bfa74976 6221does not mean that all possible reductions have been done; depending on the
742e4900 6222token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6223application.
6224
742e4900 6225Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6226expressions which contain binary addition operators and postfix unary
6227factorial operators (@samp{!}), and allow parentheses for grouping.
6228
6229@example
6230@group
6231expr: term '+' expr
6232 | term
6233 ;
6234@end group
6235
6236@group
6237term: '(' expr ')'
6238 | term '!'
6239 | NUMBER
6240 ;
6241@end group
6242@end example
6243
6244Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6245should be done? If the following token is @samp{)}, then the first three
6246tokens must be reduced to form an @code{expr}. This is the only valid
6247course, because shifting the @samp{)} would produce a sequence of symbols
6248@w{@code{term ')'}}, and no rule allows this.
6249
6250If the following token is @samp{!}, then it must be shifted immediately so
6251that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6252parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6253@code{expr}. It would then be impossible to shift the @samp{!} because
6254doing so would produce on the stack the sequence of symbols @code{expr
6255'!'}. No rule allows that sequence.
6256
6257@vindex yychar
32c29292
JD
6258@vindex yylval
6259@vindex yylloc
742e4900 6260The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6261Its semantic value and location, if any, are stored in the variables
6262@code{yylval} and @code{yylloc}.
bfa74976
RS
6263@xref{Action Features, ,Special Features for Use in Actions}.
6264
342b8b6e 6265@node Shift/Reduce
bfa74976
RS
6266@section Shift/Reduce Conflicts
6267@cindex conflicts
6268@cindex shift/reduce conflicts
6269@cindex dangling @code{else}
6270@cindex @code{else}, dangling
6271
6272Suppose we are parsing a language which has if-then and if-then-else
6273statements, with a pair of rules like this:
6274
6275@example
6276@group
6277if_stmt:
6278 IF expr THEN stmt
6279 | IF expr THEN stmt ELSE stmt
6280 ;
6281@end group
6282@end example
6283
6284@noindent
6285Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6286terminal symbols for specific keyword tokens.
6287
742e4900 6288When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6289contents of the stack (assuming the input is valid) are just right for
6290reduction by the first rule. But it is also legitimate to shift the
6291@code{ELSE}, because that would lead to eventual reduction by the second
6292rule.
6293
6294This situation, where either a shift or a reduction would be valid, is
6295called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6296these conflicts by choosing to shift, unless otherwise directed by
6297operator precedence declarations. To see the reason for this, let's
6298contrast it with the other alternative.
6299
6300Since the parser prefers to shift the @code{ELSE}, the result is to attach
6301the else-clause to the innermost if-statement, making these two inputs
6302equivalent:
6303
6304@example
6305if x then if y then win (); else lose;
6306
6307if x then do; if y then win (); else lose; end;
6308@end example
6309
6310But if the parser chose to reduce when possible rather than shift, the
6311result would be to attach the else-clause to the outermost if-statement,
6312making these two inputs equivalent:
6313
6314@example
6315if x then if y then win (); else lose;
6316
6317if x then do; if y then win (); end; else lose;
6318@end example
6319
6320The conflict exists because the grammar as written is ambiguous: either
6321parsing of the simple nested if-statement is legitimate. The established
6322convention is that these ambiguities are resolved by attaching the
6323else-clause to the innermost if-statement; this is what Bison accomplishes
6324by choosing to shift rather than reduce. (It would ideally be cleaner to
6325write an unambiguous grammar, but that is very hard to do in this case.)
6326This particular ambiguity was first encountered in the specifications of
6327Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6328
6329To avoid warnings from Bison about predictable, legitimate shift/reduce
6330conflicts, use the @code{%expect @var{n}} declaration. There will be no
6331warning as long as the number of shift/reduce conflicts is exactly @var{n}.
6332@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6333
6334The definition of @code{if_stmt} above is solely to blame for the
6335conflict, but the conflict does not actually appear without additional
6336rules. Here is a complete Bison input file that actually manifests the
6337conflict:
6338
6339@example
6340@group
6341%token IF THEN ELSE variable
6342%%
6343@end group
6344@group
6345stmt: expr
6346 | if_stmt
6347 ;
6348@end group
6349
6350@group
6351if_stmt:
6352 IF expr THEN stmt
6353 | IF expr THEN stmt ELSE stmt
6354 ;
6355@end group
6356
6357expr: variable
6358 ;
6359@end example
6360
342b8b6e 6361@node Precedence
bfa74976
RS
6362@section Operator Precedence
6363@cindex operator precedence
6364@cindex precedence of operators
6365
6366Another situation where shift/reduce conflicts appear is in arithmetic
6367expressions. Here shifting is not always the preferred resolution; the
6368Bison declarations for operator precedence allow you to specify when to
6369shift and when to reduce.
6370
6371@menu
6372* Why Precedence:: An example showing why precedence is needed.
6373* Using Precedence:: How to specify precedence in Bison grammars.
6374* Precedence Examples:: How these features are used in the previous example.
6375* How Precedence:: How they work.
6376@end menu
6377
342b8b6e 6378@node Why Precedence
bfa74976
RS
6379@subsection When Precedence is Needed
6380
6381Consider the following ambiguous grammar fragment (ambiguous because the
6382input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6383
6384@example
6385@group
6386expr: expr '-' expr
6387 | expr '*' expr
6388 | expr '<' expr
6389 | '(' expr ')'
6390 @dots{}
6391 ;
6392@end group
6393@end example
6394
6395@noindent
6396Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6397should it reduce them via the rule for the subtraction operator? It
6398depends on the next token. Of course, if the next token is @samp{)}, we
6399must reduce; shifting is invalid because no single rule can reduce the
6400token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6401the next token is @samp{*} or @samp{<}, we have a choice: either
6402shifting or reduction would allow the parse to complete, but with
6403different results.
6404
6405To decide which one Bison should do, we must consider the results. If
6406the next operator token @var{op} is shifted, then it must be reduced
6407first in order to permit another opportunity to reduce the difference.
6408The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6409hand, if the subtraction is reduced before shifting @var{op}, the result
6410is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6411reduce should depend on the relative precedence of the operators
6412@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6413@samp{<}.
bfa74976
RS
6414
6415@cindex associativity
6416What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6417@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6418operators we prefer the former, which is called @dfn{left association}.
6419The latter alternative, @dfn{right association}, is desirable for
6420assignment operators. The choice of left or right association is a
6421matter of whether the parser chooses to shift or reduce when the stack
742e4900 6422contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6423makes right-associativity.
bfa74976 6424
342b8b6e 6425@node Using Precedence
bfa74976
RS
6426@subsection Specifying Operator Precedence
6427@findex %left
6428@findex %right
6429@findex %nonassoc
6430
6431Bison allows you to specify these choices with the operator precedence
6432declarations @code{%left} and @code{%right}. Each such declaration
6433contains a list of tokens, which are operators whose precedence and
6434associativity is being declared. The @code{%left} declaration makes all
6435those operators left-associative and the @code{%right} declaration makes
6436them right-associative. A third alternative is @code{%nonassoc}, which
6437declares that it is a syntax error to find the same operator twice ``in a
6438row''.
6439
6440The relative precedence of different operators is controlled by the
6441order in which they are declared. The first @code{%left} or
6442@code{%right} declaration in the file declares the operators whose
6443precedence is lowest, the next such declaration declares the operators
6444whose precedence is a little higher, and so on.
6445
342b8b6e 6446@node Precedence Examples
bfa74976
RS
6447@subsection Precedence Examples
6448
6449In our example, we would want the following declarations:
6450
6451@example
6452%left '<'
6453%left '-'
6454%left '*'
6455@end example
6456
6457In a more complete example, which supports other operators as well, we
6458would declare them in groups of equal precedence. For example, @code{'+'} is
6459declared with @code{'-'}:
6460
6461@example
6462%left '<' '>' '=' NE LE GE
6463%left '+' '-'
6464%left '*' '/'
6465@end example
6466
6467@noindent
6468(Here @code{NE} and so on stand for the operators for ``not equal''
6469and so on. We assume that these tokens are more than one character long
6470and therefore are represented by names, not character literals.)
6471
342b8b6e 6472@node How Precedence
bfa74976
RS
6473@subsection How Precedence Works
6474
6475The first effect of the precedence declarations is to assign precedence
6476levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6477precedence levels to certain rules: each rule gets its precedence from
6478the last terminal symbol mentioned in the components. (You can also
6479specify explicitly the precedence of a rule. @xref{Contextual
6480Precedence, ,Context-Dependent Precedence}.)
6481
6482Finally, the resolution of conflicts works by comparing the precedence
742e4900 6483of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6484token's precedence is higher, the choice is to shift. If the rule's
6485precedence is higher, the choice is to reduce. If they have equal
6486precedence, the choice is made based on the associativity of that
6487precedence level. The verbose output file made by @samp{-v}
6488(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6489resolved.
bfa74976
RS
6490
6491Not all rules and not all tokens have precedence. If either the rule or
742e4900 6492the lookahead token has no precedence, then the default is to shift.
bfa74976 6493
342b8b6e 6494@node Contextual Precedence
bfa74976
RS
6495@section Context-Dependent Precedence
6496@cindex context-dependent precedence
6497@cindex unary operator precedence
6498@cindex precedence, context-dependent
6499@cindex precedence, unary operator
6500@findex %prec
6501
6502Often the precedence of an operator depends on the context. This sounds
6503outlandish at first, but it is really very common. For example, a minus
6504sign typically has a very high precedence as a unary operator, and a
6505somewhat lower precedence (lower than multiplication) as a binary operator.
6506
6507The Bison precedence declarations, @code{%left}, @code{%right} and
6508@code{%nonassoc}, can only be used once for a given token; so a token has
6509only one precedence declared in this way. For context-dependent
6510precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6511modifier for rules.
bfa74976
RS
6512
6513The @code{%prec} modifier declares the precedence of a particular rule by
6514specifying a terminal symbol whose precedence should be used for that rule.
6515It's not necessary for that symbol to appear otherwise in the rule. The
6516modifier's syntax is:
6517
6518@example
6519%prec @var{terminal-symbol}
6520@end example
6521
6522@noindent
6523and it is written after the components of the rule. Its effect is to
6524assign the rule the precedence of @var{terminal-symbol}, overriding
6525the precedence that would be deduced for it in the ordinary way. The
6526altered rule precedence then affects how conflicts involving that rule
6527are resolved (@pxref{Precedence, ,Operator Precedence}).
6528
6529Here is how @code{%prec} solves the problem of unary minus. First, declare
6530a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6531are no tokens of this type, but the symbol serves to stand for its
6532precedence:
6533
6534@example
6535@dots{}
6536%left '+' '-'
6537%left '*'
6538%left UMINUS
6539@end example
6540
6541Now the precedence of @code{UMINUS} can be used in specific rules:
6542
6543@example
6544@group
6545exp: @dots{}
6546 | exp '-' exp
6547 @dots{}
6548 | '-' exp %prec UMINUS
6549@end group
6550@end example
6551
91d2c560 6552@ifset defaultprec
39a06c25
PE
6553If you forget to append @code{%prec UMINUS} to the rule for unary
6554minus, Bison silently assumes that minus has its usual precedence.
6555This kind of problem can be tricky to debug, since one typically
6556discovers the mistake only by testing the code.
6557
22fccf95 6558The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6559this kind of problem systematically. It causes rules that lack a
6560@code{%prec} modifier to have no precedence, even if the last terminal
6561symbol mentioned in their components has a declared precedence.
6562
22fccf95 6563If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6564for all rules that participate in precedence conflict resolution.
6565Then you will see any shift/reduce conflict until you tell Bison how
6566to resolve it, either by changing your grammar or by adding an
6567explicit precedence. This will probably add declarations to the
6568grammar, but it helps to protect against incorrect rule precedences.
6569
22fccf95
PE
6570The effect of @code{%no-default-prec;} can be reversed by giving
6571@code{%default-prec;}, which is the default.
91d2c560 6572@end ifset
39a06c25 6573
342b8b6e 6574@node Parser States
bfa74976
RS
6575@section Parser States
6576@cindex finite-state machine
6577@cindex parser state
6578@cindex state (of parser)
6579
6580The function @code{yyparse} is implemented using a finite-state machine.
6581The values pushed on the parser stack are not simply token type codes; they
6582represent the entire sequence of terminal and nonterminal symbols at or
6583near the top of the stack. The current state collects all the information
6584about previous input which is relevant to deciding what to do next.
6585
742e4900
JD
6586Each time a lookahead token is read, the current parser state together
6587with the type of lookahead token are looked up in a table. This table
6588entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6589specifies the new parser state, which is pushed onto the top of the
6590parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6591This means that a certain number of tokens or groupings are taken off
6592the top of the stack, and replaced by one grouping. In other words,
6593that number of states are popped from the stack, and one new state is
6594pushed.
6595
742e4900 6596There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6597is erroneous in the current state. This causes error processing to begin
6598(@pxref{Error Recovery}).
6599
342b8b6e 6600@node Reduce/Reduce
bfa74976
RS
6601@section Reduce/Reduce Conflicts
6602@cindex reduce/reduce conflict
6603@cindex conflicts, reduce/reduce
6604
6605A reduce/reduce conflict occurs if there are two or more rules that apply
6606to the same sequence of input. This usually indicates a serious error
6607in the grammar.
6608
6609For example, here is an erroneous attempt to define a sequence
6610of zero or more @code{word} groupings.
6611
6612@example
6613sequence: /* empty */
6614 @{ printf ("empty sequence\n"); @}
6615 | maybeword
6616 | sequence word
6617 @{ printf ("added word %s\n", $2); @}
6618 ;
6619
6620maybeword: /* empty */
6621 @{ printf ("empty maybeword\n"); @}
6622 | word
6623 @{ printf ("single word %s\n", $1); @}
6624 ;
6625@end example
6626
6627@noindent
6628The error is an ambiguity: there is more than one way to parse a single
6629@code{word} into a @code{sequence}. It could be reduced to a
6630@code{maybeword} and then into a @code{sequence} via the second rule.
6631Alternatively, nothing-at-all could be reduced into a @code{sequence}
6632via the first rule, and this could be combined with the @code{word}
6633using the third rule for @code{sequence}.
6634
6635There is also more than one way to reduce nothing-at-all into a
6636@code{sequence}. This can be done directly via the first rule,
6637or indirectly via @code{maybeword} and then the second rule.
6638
6639You might think that this is a distinction without a difference, because it
6640does not change whether any particular input is valid or not. But it does
6641affect which actions are run. One parsing order runs the second rule's
6642action; the other runs the first rule's action and the third rule's action.
6643In this example, the output of the program changes.
6644
6645Bison resolves a reduce/reduce conflict by choosing to use the rule that
6646appears first in the grammar, but it is very risky to rely on this. Every
6647reduce/reduce conflict must be studied and usually eliminated. Here is the
6648proper way to define @code{sequence}:
6649
6650@example
6651sequence: /* empty */
6652 @{ printf ("empty sequence\n"); @}
6653 | sequence word
6654 @{ printf ("added word %s\n", $2); @}
6655 ;
6656@end example
6657
6658Here is another common error that yields a reduce/reduce conflict:
6659
6660@example
6661sequence: /* empty */
6662 | sequence words
6663 | sequence redirects
6664 ;
6665
6666words: /* empty */
6667 | words word
6668 ;
6669
6670redirects:/* empty */
6671 | redirects redirect
6672 ;
6673@end example
6674
6675@noindent
6676The intention here is to define a sequence which can contain either
6677@code{word} or @code{redirect} groupings. The individual definitions of
6678@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6679three together make a subtle ambiguity: even an empty input can be parsed
6680in infinitely many ways!
6681
6682Consider: nothing-at-all could be a @code{words}. Or it could be two
6683@code{words} in a row, or three, or any number. It could equally well be a
6684@code{redirects}, or two, or any number. Or it could be a @code{words}
6685followed by three @code{redirects} and another @code{words}. And so on.
6686
6687Here are two ways to correct these rules. First, to make it a single level
6688of sequence:
6689
6690@example
6691sequence: /* empty */
6692 | sequence word
6693 | sequence redirect
6694 ;
6695@end example
6696
6697Second, to prevent either a @code{words} or a @code{redirects}
6698from being empty:
6699
6700@example
6701sequence: /* empty */
6702 | sequence words
6703 | sequence redirects
6704 ;
6705
6706words: word
6707 | words word
6708 ;
6709
6710redirects:redirect
6711 | redirects redirect
6712 ;
6713@end example
6714
342b8b6e 6715@node Mystery Conflicts
bfa74976
RS
6716@section Mysterious Reduce/Reduce Conflicts
6717
6718Sometimes reduce/reduce conflicts can occur that don't look warranted.
6719Here is an example:
6720
6721@example
6722@group
6723%token ID
6724
6725%%
6726def: param_spec return_spec ','
6727 ;
6728param_spec:
6729 type
6730 | name_list ':' type
6731 ;
6732@end group
6733@group
6734return_spec:
6735 type
6736 | name ':' type
6737 ;
6738@end group
6739@group
6740type: ID
6741 ;
6742@end group
6743@group
6744name: ID
6745 ;
6746name_list:
6747 name
6748 | name ',' name_list
6749 ;
6750@end group
6751@end example
6752
6753It would seem that this grammar can be parsed with only a single token
742e4900 6754of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6755a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 6756@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 6757
c827f760
PE
6758@cindex @acronym{LR}(1)
6759@cindex @acronym{LALR}(1)
34a6c2d1
JD
6760However, for historical reasons, Bison cannot by default handle all
6761@acronym{LR}(1) grammars.
6762In this grammar, two contexts, that after an @code{ID} at the beginning
6763of a @code{param_spec} and likewise at the beginning of a
6764@code{return_spec}, are similar enough that Bison assumes they are the
6765same.
6766They appear similar because the same set of rules would be
bfa74976
RS
6767active---the rule for reducing to a @code{name} and that for reducing to
6768a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6769that the rules would require different lookahead tokens in the two
bfa74976
RS
6770contexts, so it makes a single parser state for them both. Combining
6771the two contexts causes a conflict later. In parser terminology, this
c827f760 6772occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976 6773
34a6c2d1
JD
6774For many practical grammars (specifically those that fall into the
6775non-@acronym{LR}(1) class), the limitations of @acronym{LALR}(1) result in
6776difficulties beyond just mysterious reduce/reduce conflicts.
6777The best way to fix all these problems is to select a different parser
6778table generation algorithm.
6779Either @acronym{IELR}(1) or canonical @acronym{LR}(1) would suffice, but
6780the former is more efficient and easier to debug during development.
6781@xref{Decl Summary,,lr.type}, for details.
6782(Bison's @acronym{IELR}(1) and canonical @acronym{LR}(1) implementations
6783are experimental.
6784More user feedback will help to stabilize them.)
6785
6786If you instead wish to work around @acronym{LALR}(1)'s limitations, you
6787can often fix a mysterious conflict by identifying the two parser states
6788that are being confused, and adding something to make them look
6789distinct. In the above example, adding one rule to
bfa74976
RS
6790@code{return_spec} as follows makes the problem go away:
6791
6792@example
6793@group
6794%token BOGUS
6795@dots{}
6796%%
6797@dots{}
6798return_spec:
6799 type
6800 | name ':' type
6801 /* This rule is never used. */
6802 | ID BOGUS
6803 ;
6804@end group
6805@end example
6806
6807This corrects the problem because it introduces the possibility of an
6808additional active rule in the context after the @code{ID} at the beginning of
6809@code{return_spec}. This rule is not active in the corresponding context
6810in a @code{param_spec}, so the two contexts receive distinct parser states.
6811As long as the token @code{BOGUS} is never generated by @code{yylex},
6812the added rule cannot alter the way actual input is parsed.
6813
6814In this particular example, there is another way to solve the problem:
6815rewrite the rule for @code{return_spec} to use @code{ID} directly
6816instead of via @code{name}. This also causes the two confusing
6817contexts to have different sets of active rules, because the one for
6818@code{return_spec} activates the altered rule for @code{return_spec}
6819rather than the one for @code{name}.
6820
6821@example
6822param_spec:
6823 type
6824 | name_list ':' type
6825 ;
6826return_spec:
6827 type
6828 | ID ':' type
6829 ;
6830@end example
6831
e054b190
PE
6832For a more detailed exposition of @acronym{LALR}(1) parsers and parser
6833generators, please see:
6834Frank DeRemer and Thomas Pennello, Efficient Computation of
6835@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
6836Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
6837pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
6838
fae437e8 6839@node Generalized LR Parsing
c827f760
PE
6840@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
6841@cindex @acronym{GLR} parsing
6842@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 6843@cindex ambiguous grammars
9d9b8b70 6844@cindex nondeterministic parsing
676385e2 6845
fae437e8
AD
6846Bison produces @emph{deterministic} parsers that choose uniquely
6847when to reduce and which reduction to apply
742e4900 6848based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
6849As a result, normal Bison handles a proper subset of the family of
6850context-free languages.
fae437e8 6851Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
6852sequence of reductions cannot have deterministic parsers in this sense.
6853The same is true of languages that require more than one symbol of
742e4900 6854lookahead, since the parser lacks the information necessary to make a
676385e2 6855decision at the point it must be made in a shift-reduce parser.
fae437e8 6856Finally, as previously mentioned (@pxref{Mystery Conflicts}),
34a6c2d1 6857there are languages where Bison's default choice of how to
676385e2
PH
6858summarize the input seen so far loses necessary information.
6859
6860When you use the @samp{%glr-parser} declaration in your grammar file,
6861Bison generates a parser that uses a different algorithm, called
c827f760
PE
6862Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
6863parser uses the same basic
676385e2
PH
6864algorithm for parsing as an ordinary Bison parser, but behaves
6865differently in cases where there is a shift-reduce conflict that has not
fae437e8 6866been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
6867reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
6868situation, it
fae437e8 6869effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
6870shift or reduction. These parsers then proceed as usual, consuming
6871tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 6872and split further, with the result that instead of a sequence of states,
c827f760 6873a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
6874
6875In effect, each stack represents a guess as to what the proper parse
6876is. Additional input may indicate that a guess was wrong, in which case
6877the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 6878actions generated in each stack are saved, rather than being executed
676385e2 6879immediately. When a stack disappears, its saved semantic actions never
fae437e8 6880get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
6881their sets of semantic actions are both saved with the state that
6882results from the reduction. We say that two stacks are equivalent
fae437e8 6883when they both represent the same sequence of states,
676385e2
PH
6884and each pair of corresponding states represents a
6885grammar symbol that produces the same segment of the input token
6886stream.
6887
6888Whenever the parser makes a transition from having multiple
34a6c2d1 6889states to having one, it reverts to the normal deterministic parsing
676385e2
PH
6890algorithm, after resolving and executing the saved-up actions.
6891At this transition, some of the states on the stack will have semantic
6892values that are sets (actually multisets) of possible actions. The
6893parser tries to pick one of the actions by first finding one whose rule
6894has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 6895declaration. Otherwise, if the alternative actions are not ordered by
676385e2 6896precedence, but there the same merging function is declared for both
fae437e8 6897rules by the @samp{%merge} declaration,
676385e2
PH
6898Bison resolves and evaluates both and then calls the merge function on
6899the result. Otherwise, it reports an ambiguity.
6900
c827f760 6901It is possible to use a data structure for the @acronym{GLR} parsing tree that
34a6c2d1 6902permits the processing of any @acronym{LR}(1) grammar in linear time (in the
c827f760 6903size of the input), any unambiguous (not necessarily
34a6c2d1 6904@acronym{LR}(1)) grammar in
fae437e8 6905quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
6906context-free grammar in cubic worst-case time. However, Bison currently
6907uses a simpler data structure that requires time proportional to the
6908length of the input times the maximum number of stacks required for any
9d9b8b70 6909prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
6910grammars can require exponential time and space to process. Such badly
6911behaving examples, however, are not generally of practical interest.
9d9b8b70 6912Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 6913doubt'' only for a few tokens at a time. Therefore, the current data
34a6c2d1
JD
6914structure should generally be adequate. On @acronym{LR}(1) portions of a
6915grammar, in particular, it is only slightly slower than with the
6916deterministic @acronym{LR}(1) Bison parser.
676385e2 6917
fa7e68c3 6918For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
6919Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
6920Generalised @acronym{LR} Parsers, Royal Holloway, University of
6921London, Department of Computer Science, TR-00-12,
6922@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
6923(2000-12-24).
6924
1a059451
PE
6925@node Memory Management
6926@section Memory Management, and How to Avoid Memory Exhaustion
6927@cindex memory exhaustion
6928@cindex memory management
bfa74976
RS
6929@cindex stack overflow
6930@cindex parser stack overflow
6931@cindex overflow of parser stack
6932
1a059451 6933The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 6934not reduced. When this happens, the parser function @code{yyparse}
1a059451 6935calls @code{yyerror} and then returns 2.
bfa74976 6936
c827f760 6937Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
6938usually results from using a right recursion instead of a left
6939recursion, @xref{Recursion, ,Recursive Rules}.
6940
bfa74976
RS
6941@vindex YYMAXDEPTH
6942By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 6943parser stack can become before memory is exhausted. Define the
bfa74976
RS
6944macro with a value that is an integer. This value is the maximum number
6945of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
6946
6947The stack space allowed is not necessarily allocated. If you specify a
1a059451 6948large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
6949stack at first, and then makes it bigger by stages as needed. This
6950increasing allocation happens automatically and silently. Therefore,
6951you do not need to make @code{YYMAXDEPTH} painfully small merely to save
6952space for ordinary inputs that do not need much stack.
6953
d7e14fc0
PE
6954However, do not allow @code{YYMAXDEPTH} to be a value so large that
6955arithmetic overflow could occur when calculating the size of the stack
6956space. Also, do not allow @code{YYMAXDEPTH} to be less than
6957@code{YYINITDEPTH}.
6958
bfa74976
RS
6959@cindex default stack limit
6960The default value of @code{YYMAXDEPTH}, if you do not define it, is
696110000.
6962
6963@vindex YYINITDEPTH
6964You can control how much stack is allocated initially by defining the
34a6c2d1
JD
6965macro @code{YYINITDEPTH} to a positive integer. For the deterministic
6966parser in C, this value must be a compile-time constant
d7e14fc0
PE
6967unless you are assuming C99 or some other target language or compiler
6968that allows variable-length arrays. The default is 200.
6969
1a059451 6970Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 6971
d1a1114f 6972@c FIXME: C++ output.
34a6c2d1
JD
6973Because of semantical differences between C and C++, the deterministic
6974parsers in C produced by Bison cannot grow when compiled
1a059451
PE
6975by C++ compilers. In this precise case (compiling a C parser as C++) you are
6976suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
6977this deficiency in a future release.
d1a1114f 6978
342b8b6e 6979@node Error Recovery
bfa74976
RS
6980@chapter Error Recovery
6981@cindex error recovery
6982@cindex recovery from errors
6983
6e649e65 6984It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
6985error. For example, a compiler should recover sufficiently to parse the
6986rest of the input file and check it for errors; a calculator should accept
6987another expression.
6988
6989In a simple interactive command parser where each input is one line, it may
6990be sufficient to allow @code{yyparse} to return 1 on error and have the
6991caller ignore the rest of the input line when that happens (and then call
6992@code{yyparse} again). But this is inadequate for a compiler, because it
6993forgets all the syntactic context leading up to the error. A syntax error
6994deep within a function in the compiler input should not cause the compiler
6995to treat the following line like the beginning of a source file.
6996
6997@findex error
6998You can define how to recover from a syntax error by writing rules to
6999recognize the special token @code{error}. This is a terminal symbol that
7000is always defined (you need not declare it) and reserved for error
7001handling. The Bison parser generates an @code{error} token whenever a
7002syntax error happens; if you have provided a rule to recognize this token
13863333 7003in the current context, the parse can continue.
bfa74976
RS
7004
7005For example:
7006
7007@example
7008stmnts: /* empty string */
7009 | stmnts '\n'
7010 | stmnts exp '\n'
7011 | stmnts error '\n'
7012@end example
7013
7014The fourth rule in this example says that an error followed by a newline
7015makes a valid addition to any @code{stmnts}.
7016
7017What happens if a syntax error occurs in the middle of an @code{exp}? The
7018error recovery rule, interpreted strictly, applies to the precise sequence
7019of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7020the middle of an @code{exp}, there will probably be some additional tokens
7021and subexpressions on the stack after the last @code{stmnts}, and there
7022will be tokens to read before the next newline. So the rule is not
7023applicable in the ordinary way.
7024
7025But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7026the semantic context and part of the input. First it discards states
7027and objects from the stack until it gets back to a state in which the
bfa74976 7028@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7029already parsed are discarded, back to the last complete @code{stmnts}.)
7030At this point the @code{error} token can be shifted. Then, if the old
742e4900 7031lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7032tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7033this example, Bison reads and discards input until the next newline so
7034that the fourth rule can apply. Note that discarded symbols are
7035possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7036Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7037
7038The choice of error rules in the grammar is a choice of strategies for
7039error recovery. A simple and useful strategy is simply to skip the rest of
7040the current input line or current statement if an error is detected:
7041
7042@example
72d2299c 7043stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7044@end example
7045
7046It is also useful to recover to the matching close-delimiter of an
7047opening-delimiter that has already been parsed. Otherwise the
7048close-delimiter will probably appear to be unmatched, and generate another,
7049spurious error message:
7050
7051@example
7052primary: '(' expr ')'
7053 | '(' error ')'
7054 @dots{}
7055 ;
7056@end example
7057
7058Error recovery strategies are necessarily guesses. When they guess wrong,
7059one syntax error often leads to another. In the above example, the error
7060recovery rule guesses that an error is due to bad input within one
7061@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7062middle of a valid @code{stmnt}. After the error recovery rule recovers
7063from the first error, another syntax error will be found straightaway,
7064since the text following the spurious semicolon is also an invalid
7065@code{stmnt}.
7066
7067To prevent an outpouring of error messages, the parser will output no error
7068message for another syntax error that happens shortly after the first; only
7069after three consecutive input tokens have been successfully shifted will
7070error messages resume.
7071
7072Note that rules which accept the @code{error} token may have actions, just
7073as any other rules can.
7074
7075@findex yyerrok
7076You can make error messages resume immediately by using the macro
7077@code{yyerrok} in an action. If you do this in the error rule's action, no
7078error messages will be suppressed. This macro requires no arguments;
7079@samp{yyerrok;} is a valid C statement.
7080
7081@findex yyclearin
742e4900 7082The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7083this is unacceptable, then the macro @code{yyclearin} may be used to clear
7084this token. Write the statement @samp{yyclearin;} in the error rule's
7085action.
32c29292 7086@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7087
6e649e65 7088For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7089called that advances the input stream to some point where parsing should
7090once again commence. The next symbol returned by the lexical scanner is
742e4900 7091probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7092with @samp{yyclearin;}.
7093
7094@vindex YYRECOVERING
02103984
PE
7095The expression @code{YYRECOVERING ()} yields 1 when the parser
7096is recovering from a syntax error, and 0 otherwise.
7097Syntax error diagnostics are suppressed while recovering from a syntax
7098error.
bfa74976 7099
342b8b6e 7100@node Context Dependency
bfa74976
RS
7101@chapter Handling Context Dependencies
7102
7103The Bison paradigm is to parse tokens first, then group them into larger
7104syntactic units. In many languages, the meaning of a token is affected by
7105its context. Although this violates the Bison paradigm, certain techniques
7106(known as @dfn{kludges}) may enable you to write Bison parsers for such
7107languages.
7108
7109@menu
7110* Semantic Tokens:: Token parsing can depend on the semantic context.
7111* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7112* Tie-in Recovery:: Lexical tie-ins have implications for how
7113 error recovery rules must be written.
7114@end menu
7115
7116(Actually, ``kludge'' means any technique that gets its job done but is
7117neither clean nor robust.)
7118
342b8b6e 7119@node Semantic Tokens
bfa74976
RS
7120@section Semantic Info in Token Types
7121
7122The C language has a context dependency: the way an identifier is used
7123depends on what its current meaning is. For example, consider this:
7124
7125@example
7126foo (x);
7127@end example
7128
7129This looks like a function call statement, but if @code{foo} is a typedef
7130name, then this is actually a declaration of @code{x}. How can a Bison
7131parser for C decide how to parse this input?
7132
c827f760 7133The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
7134@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7135identifier, it looks up the current declaration of the identifier in order
7136to decide which token type to return: @code{TYPENAME} if the identifier is
7137declared as a typedef, @code{IDENTIFIER} otherwise.
7138
7139The grammar rules can then express the context dependency by the choice of
7140token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7141but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7142@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7143is @emph{not} significant, such as in declarations that can shadow a
7144typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7145accepted---there is one rule for each of the two token types.
7146
7147This technique is simple to use if the decision of which kinds of
7148identifiers to allow is made at a place close to where the identifier is
7149parsed. But in C this is not always so: C allows a declaration to
7150redeclare a typedef name provided an explicit type has been specified
7151earlier:
7152
7153@example
3a4f411f
PE
7154typedef int foo, bar;
7155int baz (void)
7156@{
7157 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7158 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7159 return foo (bar);
7160@}
bfa74976
RS
7161@end example
7162
7163Unfortunately, the name being declared is separated from the declaration
7164construct itself by a complicated syntactic structure---the ``declarator''.
7165
9ecbd125 7166As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7167all the nonterminal names changed: once for parsing a declaration in
7168which a typedef name can be redefined, and once for parsing a
7169declaration in which that can't be done. Here is a part of the
7170duplication, with actions omitted for brevity:
bfa74976
RS
7171
7172@example
7173initdcl:
7174 declarator maybeasm '='
7175 init
7176 | declarator maybeasm
7177 ;
7178
7179notype_initdcl:
7180 notype_declarator maybeasm '='
7181 init
7182 | notype_declarator maybeasm
7183 ;
7184@end example
7185
7186@noindent
7187Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7188cannot. The distinction between @code{declarator} and
7189@code{notype_declarator} is the same sort of thing.
7190
7191There is some similarity between this technique and a lexical tie-in
7192(described next), in that information which alters the lexical analysis is
7193changed during parsing by other parts of the program. The difference is
7194here the information is global, and is used for other purposes in the
7195program. A true lexical tie-in has a special-purpose flag controlled by
7196the syntactic context.
7197
342b8b6e 7198@node Lexical Tie-ins
bfa74976
RS
7199@section Lexical Tie-ins
7200@cindex lexical tie-in
7201
7202One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7203which is set by Bison actions, whose purpose is to alter the way tokens are
7204parsed.
7205
7206For example, suppose we have a language vaguely like C, but with a special
7207construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7208an expression in parentheses in which all integers are hexadecimal. In
7209particular, the token @samp{a1b} must be treated as an integer rather than
7210as an identifier if it appears in that context. Here is how you can do it:
7211
7212@example
7213@group
7214%@{
38a92d50
PE
7215 int hexflag;
7216 int yylex (void);
7217 void yyerror (char const *);
bfa74976
RS
7218%@}
7219%%
7220@dots{}
7221@end group
7222@group
7223expr: IDENTIFIER
7224 | constant
7225 | HEX '('
7226 @{ hexflag = 1; @}
7227 expr ')'
7228 @{ hexflag = 0;
7229 $$ = $4; @}
7230 | expr '+' expr
7231 @{ $$ = make_sum ($1, $3); @}
7232 @dots{}
7233 ;
7234@end group
7235
7236@group
7237constant:
7238 INTEGER
7239 | STRING
7240 ;
7241@end group
7242@end example
7243
7244@noindent
7245Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7246it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7247with letters are parsed as integers if possible.
7248
342b8b6e
AD
7249The declaration of @code{hexflag} shown in the prologue of the parser file
7250is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 7251You must also write the code in @code{yylex} to obey the flag.
bfa74976 7252
342b8b6e 7253@node Tie-in Recovery
bfa74976
RS
7254@section Lexical Tie-ins and Error Recovery
7255
7256Lexical tie-ins make strict demands on any error recovery rules you have.
7257@xref{Error Recovery}.
7258
7259The reason for this is that the purpose of an error recovery rule is to
7260abort the parsing of one construct and resume in some larger construct.
7261For example, in C-like languages, a typical error recovery rule is to skip
7262tokens until the next semicolon, and then start a new statement, like this:
7263
7264@example
7265stmt: expr ';'
7266 | IF '(' expr ')' stmt @{ @dots{} @}
7267 @dots{}
7268 error ';'
7269 @{ hexflag = 0; @}
7270 ;
7271@end example
7272
7273If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7274construct, this error rule will apply, and then the action for the
7275completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7276remain set for the entire rest of the input, or until the next @code{hex}
7277keyword, causing identifiers to be misinterpreted as integers.
7278
7279To avoid this problem the error recovery rule itself clears @code{hexflag}.
7280
7281There may also be an error recovery rule that works within expressions.
7282For example, there could be a rule which applies within parentheses
7283and skips to the close-parenthesis:
7284
7285@example
7286@group
7287expr: @dots{}
7288 | '(' expr ')'
7289 @{ $$ = $2; @}
7290 | '(' error ')'
7291 @dots{}
7292@end group
7293@end example
7294
7295If this rule acts within the @code{hex} construct, it is not going to abort
7296that construct (since it applies to an inner level of parentheses within
7297the construct). Therefore, it should not clear the flag: the rest of
7298the @code{hex} construct should be parsed with the flag still in effect.
7299
7300What if there is an error recovery rule which might abort out of the
7301@code{hex} construct or might not, depending on circumstances? There is no
7302way you can write the action to determine whether a @code{hex} construct is
7303being aborted or not. So if you are using a lexical tie-in, you had better
7304make sure your error recovery rules are not of this kind. Each rule must
7305be such that you can be sure that it always will, or always won't, have to
7306clear the flag.
7307
ec3bc396
AD
7308@c ================================================== Debugging Your Parser
7309
342b8b6e 7310@node Debugging
bfa74976 7311@chapter Debugging Your Parser
ec3bc396
AD
7312
7313Developing a parser can be a challenge, especially if you don't
7314understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7315Algorithm}). Even so, sometimes a detailed description of the automaton
7316can help (@pxref{Understanding, , Understanding Your Parser}), or
7317tracing the execution of the parser can give some insight on why it
7318behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7319
7320@menu
7321* Understanding:: Understanding the structure of your parser.
7322* Tracing:: Tracing the execution of your parser.
7323@end menu
7324
7325@node Understanding
7326@section Understanding Your Parser
7327
7328As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7329Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7330frequent than one would hope), looking at this automaton is required to
7331tune or simply fix a parser. Bison provides two different
35fe0834 7332representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7333
7334The textual file is generated when the options @option{--report} or
7335@option{--verbose} are specified, see @xref{Invocation, , Invoking
7336Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
7337the parser output file name, and adding @samp{.output} instead.
7338Therefore, if the input file is @file{foo.y}, then the parser file is
7339called @file{foo.tab.c} by default. As a consequence, the verbose
7340output file is called @file{foo.output}.
7341
7342The following grammar file, @file{calc.y}, will be used in the sequel:
7343
7344@example
7345%token NUM STR
7346%left '+' '-'
7347%left '*'
7348%%
7349exp: exp '+' exp
7350 | exp '-' exp
7351 | exp '*' exp
7352 | exp '/' exp
7353 | NUM
7354 ;
7355useless: STR;
7356%%
7357@end example
7358
88bce5a2
AD
7359@command{bison} reports:
7360
7361@example
379261b3
JD
7362calc.y: warning: 1 nonterminal useless in grammar
7363calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
7364calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7365calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7366calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7367@end example
7368
7369When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7370creates a file @file{calc.output} with contents detailed below. The
7371order of the output and the exact presentation might vary, but the
7372interpretation is the same.
ec3bc396
AD
7373
7374The first section includes details on conflicts that were solved thanks
7375to precedence and/or associativity:
7376
7377@example
7378Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7379Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7380Conflict in state 8 between rule 2 and token '*' resolved as shift.
7381@exdent @dots{}
7382@end example
7383
7384@noindent
7385The next section lists states that still have conflicts.
7386
7387@example
5a99098d
PE
7388State 8 conflicts: 1 shift/reduce
7389State 9 conflicts: 1 shift/reduce
7390State 10 conflicts: 1 shift/reduce
7391State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7392@end example
7393
7394@noindent
7395@cindex token, useless
7396@cindex useless token
7397@cindex nonterminal, useless
7398@cindex useless nonterminal
7399@cindex rule, useless
7400@cindex useless rule
7401The next section reports useless tokens, nonterminal and rules. Useless
7402nonterminals and rules are removed in order to produce a smaller parser,
7403but useless tokens are preserved, since they might be used by the
d80fb37a 7404scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7405below):
7406
7407@example
d80fb37a 7408Nonterminals useless in grammar:
ec3bc396
AD
7409 useless
7410
d80fb37a 7411Terminals unused in grammar:
ec3bc396
AD
7412 STR
7413
cff03fb2 7414Rules useless in grammar:
ec3bc396
AD
7415#6 useless: STR;
7416@end example
7417
7418@noindent
7419The next section reproduces the exact grammar that Bison used:
7420
7421@example
7422Grammar
7423
7424 Number, Line, Rule
88bce5a2 7425 0 5 $accept -> exp $end
ec3bc396
AD
7426 1 5 exp -> exp '+' exp
7427 2 6 exp -> exp '-' exp
7428 3 7 exp -> exp '*' exp
7429 4 8 exp -> exp '/' exp
7430 5 9 exp -> NUM
7431@end example
7432
7433@noindent
7434and reports the uses of the symbols:
7435
7436@example
7437Terminals, with rules where they appear
7438
88bce5a2 7439$end (0) 0
ec3bc396
AD
7440'*' (42) 3
7441'+' (43) 1
7442'-' (45) 2
7443'/' (47) 4
7444error (256)
7445NUM (258) 5
7446
7447Nonterminals, with rules where they appear
7448
88bce5a2 7449$accept (8)
ec3bc396
AD
7450 on left: 0
7451exp (9)
7452 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7453@end example
7454
7455@noindent
7456@cindex item
7457@cindex pointed rule
7458@cindex rule, pointed
7459Bison then proceeds onto the automaton itself, describing each state
7460with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7461item is a production rule together with a point (marked by @samp{.})
7462that the input cursor.
7463
7464@example
7465state 0
7466
88bce5a2 7467 $accept -> . exp $ (rule 0)
ec3bc396 7468
2a8d363a 7469 NUM shift, and go to state 1
ec3bc396 7470
2a8d363a 7471 exp go to state 2
ec3bc396
AD
7472@end example
7473
7474This reads as follows: ``state 0 corresponds to being at the very
7475beginning of the parsing, in the initial rule, right before the start
7476symbol (here, @code{exp}). When the parser returns to this state right
7477after having reduced a rule that produced an @code{exp}, the control
7478flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7479symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7480the parse stack, and the control flow jumps to state 1. Any other
742e4900 7481lookahead triggers a syntax error.''
ec3bc396
AD
7482
7483@cindex core, item set
7484@cindex item set core
7485@cindex kernel, item set
7486@cindex item set core
7487Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7488report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7489at the beginning of any rule deriving an @code{exp}. By default Bison
7490reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7491you want to see more detail you can invoke @command{bison} with
7492@option{--report=itemset} to list all the items, include those that can
7493be derived:
7494
7495@example
7496state 0
7497
88bce5a2 7498 $accept -> . exp $ (rule 0)
ec3bc396
AD
7499 exp -> . exp '+' exp (rule 1)
7500 exp -> . exp '-' exp (rule 2)
7501 exp -> . exp '*' exp (rule 3)
7502 exp -> . exp '/' exp (rule 4)
7503 exp -> . NUM (rule 5)
7504
7505 NUM shift, and go to state 1
7506
7507 exp go to state 2
7508@end example
7509
7510@noindent
7511In the state 1...
7512
7513@example
7514state 1
7515
7516 exp -> NUM . (rule 5)
7517
2a8d363a 7518 $default reduce using rule 5 (exp)
ec3bc396
AD
7519@end example
7520
7521@noindent
742e4900 7522the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7523(@samp{$default}), the parser will reduce it. If it was coming from
7524state 0, then, after this reduction it will return to state 0, and will
7525jump to state 2 (@samp{exp: go to state 2}).
7526
7527@example
7528state 2
7529
88bce5a2 7530 $accept -> exp . $ (rule 0)
ec3bc396
AD
7531 exp -> exp . '+' exp (rule 1)
7532 exp -> exp . '-' exp (rule 2)
7533 exp -> exp . '*' exp (rule 3)
7534 exp -> exp . '/' exp (rule 4)
7535
2a8d363a
AD
7536 $ shift, and go to state 3
7537 '+' shift, and go to state 4
7538 '-' shift, and go to state 5
7539 '*' shift, and go to state 6
7540 '/' shift, and go to state 7
ec3bc396
AD
7541@end example
7542
7543@noindent
7544In state 2, the automaton can only shift a symbol. For instance,
742e4900 7545because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
7546@samp{+}, it will be shifted on the parse stack, and the automaton
7547control will jump to state 4, corresponding to the item @samp{exp -> exp
7548'+' . exp}. Since there is no default action, any other token than
6e649e65 7549those listed above will trigger a syntax error.
ec3bc396 7550
34a6c2d1 7551@cindex accepting state
ec3bc396
AD
7552The state 3 is named the @dfn{final state}, or the @dfn{accepting
7553state}:
7554
7555@example
7556state 3
7557
88bce5a2 7558 $accept -> exp $ . (rule 0)
ec3bc396 7559
2a8d363a 7560 $default accept
ec3bc396
AD
7561@end example
7562
7563@noindent
7564the initial rule is completed (the start symbol and the end
7565of input were read), the parsing exits successfully.
7566
7567The interpretation of states 4 to 7 is straightforward, and is left to
7568the reader.
7569
7570@example
7571state 4
7572
7573 exp -> exp '+' . exp (rule 1)
7574
2a8d363a 7575 NUM shift, and go to state 1
ec3bc396 7576
2a8d363a 7577 exp go to state 8
ec3bc396
AD
7578
7579state 5
7580
7581 exp -> exp '-' . exp (rule 2)
7582
2a8d363a 7583 NUM shift, and go to state 1
ec3bc396 7584
2a8d363a 7585 exp go to state 9
ec3bc396
AD
7586
7587state 6
7588
7589 exp -> exp '*' . exp (rule 3)
7590
2a8d363a 7591 NUM shift, and go to state 1
ec3bc396 7592
2a8d363a 7593 exp go to state 10
ec3bc396
AD
7594
7595state 7
7596
7597 exp -> exp '/' . exp (rule 4)
7598
2a8d363a 7599 NUM shift, and go to state 1
ec3bc396 7600
2a8d363a 7601 exp go to state 11
ec3bc396
AD
7602@end example
7603
5a99098d
PE
7604As was announced in beginning of the report, @samp{State 8 conflicts:
76051 shift/reduce}:
ec3bc396
AD
7606
7607@example
7608state 8
7609
7610 exp -> exp . '+' exp (rule 1)
7611 exp -> exp '+' exp . (rule 1)
7612 exp -> exp . '-' exp (rule 2)
7613 exp -> exp . '*' exp (rule 3)
7614 exp -> exp . '/' exp (rule 4)
7615
2a8d363a
AD
7616 '*' shift, and go to state 6
7617 '/' shift, and go to state 7
ec3bc396 7618
2a8d363a
AD
7619 '/' [reduce using rule 1 (exp)]
7620 $default reduce using rule 1 (exp)
ec3bc396
AD
7621@end example
7622
742e4900 7623Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
7624either shifting (and going to state 7), or reducing rule 1. The
7625conflict means that either the grammar is ambiguous, or the parser lacks
7626information to make the right decision. Indeed the grammar is
7627ambiguous, as, since we did not specify the precedence of @samp{/}, the
7628sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
7629NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
7630NUM}, which corresponds to reducing rule 1.
7631
34a6c2d1 7632Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
7633arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
7634Shift/Reduce Conflicts}. Discarded actions are reported in between
7635square brackets.
7636
7637Note that all the previous states had a single possible action: either
7638shifting the next token and going to the corresponding state, or
7639reducing a single rule. In the other cases, i.e., when shifting
7640@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
7641possible, the lookahead is required to select the action. State 8 is
7642one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
7643is shifting, otherwise the action is reducing rule 1. In other words,
7644the first two items, corresponding to rule 1, are not eligible when the
742e4900 7645lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 7646precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
7647with some set of possible lookahead tokens. When run with
7648@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
7649
7650@example
7651state 8
7652
88c78747 7653 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
7654 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
7655 exp -> exp . '-' exp (rule 2)
7656 exp -> exp . '*' exp (rule 3)
7657 exp -> exp . '/' exp (rule 4)
7658
7659 '*' shift, and go to state 6
7660 '/' shift, and go to state 7
7661
7662 '/' [reduce using rule 1 (exp)]
7663 $default reduce using rule 1 (exp)
7664@end example
7665
7666The remaining states are similar:
7667
7668@example
7669state 9
7670
7671 exp -> exp . '+' exp (rule 1)
7672 exp -> exp . '-' exp (rule 2)
7673 exp -> exp '-' exp . (rule 2)
7674 exp -> exp . '*' exp (rule 3)
7675 exp -> exp . '/' exp (rule 4)
7676
2a8d363a
AD
7677 '*' shift, and go to state 6
7678 '/' shift, and go to state 7
ec3bc396 7679
2a8d363a
AD
7680 '/' [reduce using rule 2 (exp)]
7681 $default reduce using rule 2 (exp)
ec3bc396
AD
7682
7683state 10
7684
7685 exp -> exp . '+' exp (rule 1)
7686 exp -> exp . '-' exp (rule 2)
7687 exp -> exp . '*' exp (rule 3)
7688 exp -> exp '*' exp . (rule 3)
7689 exp -> exp . '/' exp (rule 4)
7690
2a8d363a 7691 '/' shift, and go to state 7
ec3bc396 7692
2a8d363a
AD
7693 '/' [reduce using rule 3 (exp)]
7694 $default reduce using rule 3 (exp)
ec3bc396
AD
7695
7696state 11
7697
7698 exp -> exp . '+' exp (rule 1)
7699 exp -> exp . '-' exp (rule 2)
7700 exp -> exp . '*' exp (rule 3)
7701 exp -> exp . '/' exp (rule 4)
7702 exp -> exp '/' exp . (rule 4)
7703
2a8d363a
AD
7704 '+' shift, and go to state 4
7705 '-' shift, and go to state 5
7706 '*' shift, and go to state 6
7707 '/' shift, and go to state 7
ec3bc396 7708
2a8d363a
AD
7709 '+' [reduce using rule 4 (exp)]
7710 '-' [reduce using rule 4 (exp)]
7711 '*' [reduce using rule 4 (exp)]
7712 '/' [reduce using rule 4 (exp)]
7713 $default reduce using rule 4 (exp)
ec3bc396
AD
7714@end example
7715
7716@noindent
fa7e68c3
PE
7717Observe that state 11 contains conflicts not only due to the lack of
7718precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7719@samp{*}, but also because the
ec3bc396
AD
7720associativity of @samp{/} is not specified.
7721
7722
7723@node Tracing
7724@section Tracing Your Parser
bfa74976
RS
7725@findex yydebug
7726@cindex debugging
7727@cindex tracing the parser
7728
7729If a Bison grammar compiles properly but doesn't do what you want when it
7730runs, the @code{yydebug} parser-trace feature can help you figure out why.
7731
3ded9a63
AD
7732There are several means to enable compilation of trace facilities:
7733
7734@table @asis
7735@item the macro @code{YYDEBUG}
7736@findex YYDEBUG
7737Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 7738parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
7739@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7740YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7741Prologue}).
7742
7743@item the option @option{-t}, @option{--debug}
7744Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 7745,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
7746
7747@item the directive @samp{%debug}
7748@findex %debug
7749Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
7750Declaration Summary}). This is a Bison extension, which will prove
7751useful when Bison will output parsers for languages that don't use a
c827f760
PE
7752preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
7753you, this is
3ded9a63
AD
7754the preferred solution.
7755@end table
7756
7757We suggest that you always enable the debug option so that debugging is
7758always possible.
bfa74976 7759
02a81e05 7760The trace facility outputs messages with macro calls of the form
e2742e46 7761@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 7762@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
7763arguments. If you define @code{YYDEBUG} to a nonzero value but do not
7764define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 7765and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
7766
7767Once you have compiled the program with trace facilities, the way to
7768request a trace is to store a nonzero value in the variable @code{yydebug}.
7769You can do this by making the C code do it (in @code{main}, perhaps), or
7770you can alter the value with a C debugger.
7771
7772Each step taken by the parser when @code{yydebug} is nonzero produces a
7773line or two of trace information, written on @code{stderr}. The trace
7774messages tell you these things:
7775
7776@itemize @bullet
7777@item
7778Each time the parser calls @code{yylex}, what kind of token was read.
7779
7780@item
7781Each time a token is shifted, the depth and complete contents of the
7782state stack (@pxref{Parser States}).
7783
7784@item
7785Each time a rule is reduced, which rule it is, and the complete contents
7786of the state stack afterward.
7787@end itemize
7788
7789To make sense of this information, it helps to refer to the listing file
704a47c4
AD
7790produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
7791Bison}). This file shows the meaning of each state in terms of
7792positions in various rules, and also what each state will do with each
7793possible input token. As you read the successive trace messages, you
7794can see that the parser is functioning according to its specification in
7795the listing file. Eventually you will arrive at the place where
7796something undesirable happens, and you will see which parts of the
7797grammar are to blame.
bfa74976
RS
7798
7799The parser file is a C program and you can use C debuggers on it, but it's
7800not easy to interpret what it is doing. The parser function is a
7801finite-state machine interpreter, and aside from the actions it executes
7802the same code over and over. Only the values of variables show where in
7803the grammar it is working.
7804
7805@findex YYPRINT
7806The debugging information normally gives the token type of each token
7807read, but not its semantic value. You can optionally define a macro
7808named @code{YYPRINT} to provide a way to print the value. If you define
7809@code{YYPRINT}, it should take three arguments. The parser will pass a
7810standard I/O stream, the numeric code for the token type, and the token
7811value (from @code{yylval}).
7812
7813Here is an example of @code{YYPRINT} suitable for the multi-function
f56274a8 7814calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
7815
7816@smallexample
38a92d50
PE
7817%@{
7818 static void print_token_value (FILE *, int, YYSTYPE);
7819 #define YYPRINT(file, type, value) print_token_value (file, type, value)
7820%@}
7821
7822@dots{} %% @dots{} %% @dots{}
bfa74976
RS
7823
7824static void
831d3c99 7825print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
7826@{
7827 if (type == VAR)
d3c4e709 7828 fprintf (file, "%s", value.tptr->name);
bfa74976 7829 else if (type == NUM)
d3c4e709 7830 fprintf (file, "%d", value.val);
bfa74976
RS
7831@}
7832@end smallexample
7833
ec3bc396
AD
7834@c ================================================= Invoking Bison
7835
342b8b6e 7836@node Invocation
bfa74976
RS
7837@chapter Invoking Bison
7838@cindex invoking Bison
7839@cindex Bison invocation
7840@cindex options for invoking Bison
7841
7842The usual way to invoke Bison is as follows:
7843
7844@example
7845bison @var{infile}
7846@end example
7847
7848Here @var{infile} is the grammar file name, which usually ends in
7849@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
7850with @samp{.tab.c} and removing any leading directory. Thus, the
7851@samp{bison foo.y} file name yields
7852@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
7853@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 7854C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
7855or @file{foo.y++}. Then, the output files will take an extension like
7856the given one as input (respectively @file{foo.tab.cpp} and
7857@file{foo.tab.c++}).
fa4d969f 7858This feature takes effect with all options that manipulate file names like
234a3be3
AD
7859@samp{-o} or @samp{-d}.
7860
7861For example :
7862
7863@example
7864bison -d @var{infile.yxx}
7865@end example
84163231 7866@noindent
72d2299c 7867will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
7868
7869@example
b56471a6 7870bison -d -o @var{output.c++} @var{infile.y}
234a3be3 7871@end example
84163231 7872@noindent
234a3be3
AD
7873will produce @file{output.c++} and @file{outfile.h++}.
7874
397ec073
PE
7875For compatibility with @acronym{POSIX}, the standard Bison
7876distribution also contains a shell script called @command{yacc} that
7877invokes Bison with the @option{-y} option.
7878
bfa74976 7879@menu
13863333 7880* Bison Options:: All the options described in detail,
c827f760 7881 in alphabetical order by short options.
bfa74976 7882* Option Cross Key:: Alphabetical list of long options.
93dd49ab 7883* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
7884@end menu
7885
342b8b6e 7886@node Bison Options
bfa74976
RS
7887@section Bison Options
7888
7889Bison supports both traditional single-letter options and mnemonic long
7890option names. Long option names are indicated with @samp{--} instead of
7891@samp{-}. Abbreviations for option names are allowed as long as they
7892are unique. When a long option takes an argument, like
7893@samp{--file-prefix}, connect the option name and the argument with
7894@samp{=}.
7895
7896Here is a list of options that can be used with Bison, alphabetized by
7897short option. It is followed by a cross key alphabetized by long
7898option.
7899
89cab50d
AD
7900@c Please, keep this ordered as in `bison --help'.
7901@noindent
7902Operations modes:
7903@table @option
7904@item -h
7905@itemx --help
7906Print a summary of the command-line options to Bison and exit.
bfa74976 7907
89cab50d
AD
7908@item -V
7909@itemx --version
7910Print the version number of Bison and exit.
bfa74976 7911
f7ab6a50
PE
7912@item --print-localedir
7913Print the name of the directory containing locale-dependent data.
7914
a0de5091
JD
7915@item --print-datadir
7916Print the name of the directory containing skeletons and XSLT.
7917
89cab50d
AD
7918@item -y
7919@itemx --yacc
54662697
PE
7920Act more like the traditional Yacc command. This can cause
7921different diagnostics to be generated, and may change behavior in
7922other minor ways. Most importantly, imitate Yacc's output
7923file name conventions, so that the parser output file is called
89cab50d 7924@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e 7925@file{y.tab.h}.
34a6c2d1 7926Also, if generating a deterministic parser in C, generate @code{#define}
b931235e
JD
7927statements in addition to an @code{enum} to associate token numbers with token
7928names.
7929Thus, the following shell script can substitute for Yacc, and the Bison
7930distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 7931
89cab50d 7932@example
397ec073 7933#! /bin/sh
26e06a21 7934bison -y "$@@"
89cab50d 7935@end example
54662697
PE
7936
7937The @option{-y}/@option{--yacc} option is intended for use with
7938traditional Yacc grammars. If your grammar uses a Bison extension
7939like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
7940this option is specified.
7941
ecd1b61c
JD
7942@item -W [@var{category}]
7943@itemx --warnings[=@var{category}]
118d4978
AD
7944Output warnings falling in @var{category}. @var{category} can be one
7945of:
7946@table @code
7947@item midrule-values
8e55b3aa
JD
7948Warn about mid-rule values that are set but not used within any of the actions
7949of the parent rule.
7950For example, warn about unused @code{$2} in:
118d4978
AD
7951
7952@example
7953exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
7954@end example
7955
8e55b3aa
JD
7956Also warn about mid-rule values that are used but not set.
7957For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
7958
7959@example
7960 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
7961@end example
7962
7963These warnings are not enabled by default since they sometimes prove to
7964be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 7965@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
7966
7967
7968@item yacc
7969Incompatibilities with @acronym{POSIX} Yacc.
7970
7971@item all
8e55b3aa 7972All the warnings.
118d4978 7973@item none
8e55b3aa 7974Turn off all the warnings.
118d4978 7975@item error
8e55b3aa 7976Treat warnings as errors.
118d4978
AD
7977@end table
7978
7979A category can be turned off by prefixing its name with @samp{no-}. For
7980instance, @option{-Wno-syntax} will hide the warnings about unused
7981variables.
89cab50d
AD
7982@end table
7983
7984@noindent
7985Tuning the parser:
7986
7987@table @option
7988@item -t
7989@itemx --debug
4947ebdb
PE
7990In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
7991already defined, so that the debugging facilities are compiled.
ec3bc396 7992@xref{Tracing, ,Tracing Your Parser}.
89cab50d 7993
e14c6831
AD
7994@item -D @var{name}[=@var{value}]
7995@itemx --define=@var{name}[=@var{value}]
7996Same as running @samp{%define @var{name} "@var{value}"} (@pxref{Decl
7997Summary, ,%define}).
7998
0e021770
PE
7999@item -L @var{language}
8000@itemx --language=@var{language}
8001Specify the programming language for the generated parser, as if
8002@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8003Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8004@var{language} is case-insensitive.
0e021770 8005
ed4d67dc
JD
8006This option is experimental and its effect may be modified in future
8007releases.
8008
89cab50d 8009@item --locations
d8988b2f 8010Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8011
8012@item -p @var{prefix}
8013@itemx --name-prefix=@var{prefix}
02975b9a 8014Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8015@xref{Decl Summary}.
bfa74976
RS
8016
8017@item -l
8018@itemx --no-lines
8019Don't put any @code{#line} preprocessor commands in the parser file.
8020Ordinarily Bison puts them in the parser file so that the C compiler
8021and debuggers will associate errors with your source file, the
8022grammar file. This option causes them to associate errors with the
95e742f7 8023parser file, treating it as an independent source file in its own right.
bfa74976 8024
e6e704dc
JD
8025@item -S @var{file}
8026@itemx --skeleton=@var{file}
a7867f53 8027Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8028(@pxref{Decl Summary, , Bison Declaration Summary}).
8029
ed4d67dc
JD
8030@c You probably don't need this option unless you are developing Bison.
8031@c You should use @option{--language} if you want to specify the skeleton for a
8032@c different language, because it is clearer and because it will always
8033@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8034
a7867f53
JD
8035If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8036file in the Bison installation directory.
8037If it does, @var{file} is an absolute file name or a file name relative to the
8038current working directory.
8039This is similar to how most shells resolve commands.
8040
89cab50d
AD
8041@item -k
8042@itemx --token-table
d8988b2f 8043Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8044@end table
bfa74976 8045
89cab50d
AD
8046@noindent
8047Adjust the output:
bfa74976 8048
89cab50d 8049@table @option
8e55b3aa 8050@item --defines[=@var{file}]
d8988b2f 8051Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8052file containing macro definitions for the token type names defined in
4bfd5e4e 8053the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8054
8e55b3aa
JD
8055@item -d
8056This is the same as @code{--defines} except @code{-d} does not accept a
8057@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8058with other short options.
342b8b6e 8059
89cab50d
AD
8060@item -b @var{file-prefix}
8061@itemx --file-prefix=@var{prefix}
9c437126 8062Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8063for all Bison output file names. @xref{Decl Summary}.
bfa74976 8064
ec3bc396
AD
8065@item -r @var{things}
8066@itemx --report=@var{things}
8067Write an extra output file containing verbose description of the comma
8068separated list of @var{things} among:
8069
8070@table @code
8071@item state
8072Description of the grammar, conflicts (resolved and unresolved), and
34a6c2d1 8073parser's automaton.
ec3bc396 8074
742e4900 8075@item lookahead
ec3bc396 8076Implies @code{state} and augments the description of the automaton with
742e4900 8077each rule's lookahead set.
ec3bc396
AD
8078
8079@item itemset
8080Implies @code{state} and augments the description of the automaton with
8081the full set of items for each state, instead of its core only.
8082@end table
8083
1bb2bd75
JD
8084@item --report-file=@var{file}
8085Specify the @var{file} for the verbose description.
8086
bfa74976
RS
8087@item -v
8088@itemx --verbose
9c437126 8089Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8090file containing verbose descriptions of the grammar and
72d2299c 8091parser. @xref{Decl Summary}.
bfa74976 8092
fa4d969f
PE
8093@item -o @var{file}
8094@itemx --output=@var{file}
8095Specify the @var{file} for the parser file.
bfa74976 8096
fa4d969f 8097The other output files' names are constructed from @var{file} as
d8988b2f 8098described under the @samp{-v} and @samp{-d} options.
342b8b6e 8099
72183df4 8100@item -g [@var{file}]
8e55b3aa 8101@itemx --graph[=@var{file}]
34a6c2d1 8102Output a graphical representation of the parser's
35fe0834
PE
8103automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8104@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
8e55b3aa
JD
8105@code{@var{file}} is optional.
8106If omitted and the grammar file is @file{foo.y}, the output file will be
8107@file{foo.dot}.
59da312b 8108
72183df4 8109@item -x [@var{file}]
8e55b3aa 8110@itemx --xml[=@var{file}]
34a6c2d1 8111Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8112@code{@var{file}} is optional.
59da312b
JD
8113If omitted and the grammar file is @file{foo.y}, the output file will be
8114@file{foo.xml}.
8115(The current XML schema is experimental and may evolve.
8116More user feedback will help to stabilize it.)
bfa74976
RS
8117@end table
8118
342b8b6e 8119@node Option Cross Key
bfa74976
RS
8120@section Option Cross Key
8121
8122Here is a list of options, alphabetized by long option, to help you find
8123the corresponding short option.
8124
72183df4
DJ
8125@multitable {@option{--defines=@var{defines-file}}} {@option{-D @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
8126@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8127@include cross-options.texi
aa08666d 8128@end multitable
bfa74976 8129
93dd49ab
PE
8130@node Yacc Library
8131@section Yacc Library
8132
8133The Yacc library contains default implementations of the
8134@code{yyerror} and @code{main} functions. These default
8135implementations are normally not useful, but @acronym{POSIX} requires
8136them. To use the Yacc library, link your program with the
8137@option{-ly} option. Note that Bison's implementation of the Yacc
8138library is distributed under the terms of the @acronym{GNU} General
8139Public License (@pxref{Copying}).
8140
8141If you use the Yacc library's @code{yyerror} function, you should
8142declare @code{yyerror} as follows:
8143
8144@example
8145int yyerror (char const *);
8146@end example
8147
8148Bison ignores the @code{int} value returned by this @code{yyerror}.
8149If you use the Yacc library's @code{main} function, your
8150@code{yyparse} function should have the following type signature:
8151
8152@example
8153int yyparse (void);
8154@end example
8155
12545799
AD
8156@c ================================================= C++ Bison
8157
8405b70c
PB
8158@node Other Languages
8159@chapter Parsers Written In Other Languages
12545799
AD
8160
8161@menu
8162* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8163* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8164@end menu
8165
8166@node C++ Parsers
8167@section C++ Parsers
8168
8169@menu
8170* C++ Bison Interface:: Asking for C++ parser generation
8171* C++ Semantic Values:: %union vs. C++
8172* C++ Location Values:: The position and location classes
8173* C++ Parser Interface:: Instantiating and running the parser
8174* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8175* A Complete C++ Example:: Demonstrating their use
12545799
AD
8176@end menu
8177
8178@node C++ Bison Interface
8179@subsection C++ Bison Interface
ed4d67dc 8180@c - %skeleton "lalr1.cc"
12545799
AD
8181@c - Always pure
8182@c - initial action
8183
34a6c2d1 8184The C++ deterministic parser is selected using the skeleton directive,
ed4d67dc
JD
8185@samp{%skeleton "lalr1.c"}, or the synonymous command-line option
8186@option{--skeleton=lalr1.c}.
e6e704dc 8187@xref{Decl Summary}.
0e021770 8188
793fbca5
JD
8189When run, @command{bison} will create several entities in the @samp{yy}
8190namespace.
8191@findex %define namespace
8192Use the @samp{%define namespace} directive to change the namespace name, see
8193@ref{Decl Summary}.
8194The various classes are generated in the following files:
aa08666d 8195
12545799
AD
8196@table @file
8197@item position.hh
8198@itemx location.hh
8199The definition of the classes @code{position} and @code{location},
8200used for location tracking. @xref{C++ Location Values}.
8201
8202@item stack.hh
8203An auxiliary class @code{stack} used by the parser.
8204
fa4d969f
PE
8205@item @var{file}.hh
8206@itemx @var{file}.cc
cd8b5791
AD
8207(Assuming the extension of the input file was @samp{.yy}.) The
8208declaration and implementation of the C++ parser class. The basename
8209and extension of these two files follow the same rules as with regular C
8210parsers (@pxref{Invocation}).
12545799 8211
cd8b5791
AD
8212The header is @emph{mandatory}; you must either pass
8213@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8214@samp{%defines} directive.
8215@end table
8216
8217All these files are documented using Doxygen; run @command{doxygen}
8218for a complete and accurate documentation.
8219
8220@node C++ Semantic Values
8221@subsection C++ Semantic Values
8222@c - No objects in unions
178e123e 8223@c - YYSTYPE
12545799
AD
8224@c - Printer and destructor
8225
8226The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8227Collection of Value Types}. In particular it produces a genuine
8228@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
8229within pseudo-unions (similar to Boost variants) might be implemented to
8230alleviate these issues.}, which have a few specific features in C++.
12545799
AD
8231@itemize @minus
8232@item
fb9712a9
AD
8233The type @code{YYSTYPE} is defined but its use is discouraged: rather
8234you should refer to the parser's encapsulated type
8235@code{yy::parser::semantic_type}.
12545799
AD
8236@item
8237Non POD (Plain Old Data) types cannot be used. C++ forbids any
8238instance of classes with constructors in unions: only @emph{pointers}
8239to such objects are allowed.
8240@end itemize
8241
8242Because objects have to be stored via pointers, memory is not
8243reclaimed automatically: using the @code{%destructor} directive is the
8244only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8245Symbols}.
8246
8247
8248@node C++ Location Values
8249@subsection C++ Location Values
8250@c - %locations
8251@c - class Position
8252@c - class Location
16dc6a9e 8253@c - %define filename_type "const symbol::Symbol"
12545799
AD
8254
8255When the directive @code{%locations} is used, the C++ parser supports
8256location tracking, see @ref{Locations, , Locations Overview}. Two
8257auxiliary classes define a @code{position}, a single point in a file,
8258and a @code{location}, a range composed of a pair of
8259@code{position}s (possibly spanning several files).
8260
fa4d969f 8261@deftypemethod {position} {std::string*} file
12545799
AD
8262The name of the file. It will always be handled as a pointer, the
8263parser will never duplicate nor deallocate it. As an experimental
8264feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8265filename_type "@var{type}"}.
12545799
AD
8266@end deftypemethod
8267
8268@deftypemethod {position} {unsigned int} line
8269The line, starting at 1.
8270@end deftypemethod
8271
8272@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8273Advance by @var{height} lines, resetting the column number.
8274@end deftypemethod
8275
8276@deftypemethod {position} {unsigned int} column
8277The column, starting at 0.
8278@end deftypemethod
8279
8280@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8281Advance by @var{width} columns, without changing the line number.
8282@end deftypemethod
8283
8284@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8285@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8286@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8287@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8288Various forms of syntactic sugar for @code{columns}.
8289@end deftypemethod
8290
8291@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8292Report @var{p} on @var{o} like this:
fa4d969f
PE
8293@samp{@var{file}:@var{line}.@var{column}}, or
8294@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8295@end deftypemethod
8296
8297@deftypemethod {location} {position} begin
8298@deftypemethodx {location} {position} end
8299The first, inclusive, position of the range, and the first beyond.
8300@end deftypemethod
8301
8302@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8303@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8304Advance the @code{end} position.
8305@end deftypemethod
8306
8307@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8308@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8309@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8310Various forms of syntactic sugar.
8311@end deftypemethod
8312
8313@deftypemethod {location} {void} step ()
8314Move @code{begin} onto @code{end}.
8315@end deftypemethod
8316
8317
8318@node C++ Parser Interface
8319@subsection C++ Parser Interface
8320@c - define parser_class_name
8321@c - Ctor
8322@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8323@c debug_stream.
8324@c - Reporting errors
8325
8326The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8327declare and define the parser class in the namespace @code{yy}. The
8328class name defaults to @code{parser}, but may be changed using
16dc6a9e 8329@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8330this class is detailed below. It can be extended using the
12545799
AD
8331@code{%parse-param} feature: its semantics is slightly changed since
8332it describes an additional member of the parser class, and an
8333additional argument for its constructor.
8334
8a0adb01
AD
8335@defcv {Type} {parser} {semantic_value_type}
8336@defcvx {Type} {parser} {location_value_type}
12545799 8337The types for semantics value and locations.
8a0adb01 8338@end defcv
12545799
AD
8339
8340@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8341Build a new parser object. There are no arguments by default, unless
8342@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8343@end deftypemethod
8344
8345@deftypemethod {parser} {int} parse ()
8346Run the syntactic analysis, and return 0 on success, 1 otherwise.
8347@end deftypemethod
8348
8349@deftypemethod {parser} {std::ostream&} debug_stream ()
8350@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8351Get or set the stream used for tracing the parsing. It defaults to
8352@code{std::cerr}.
8353@end deftypemethod
8354
8355@deftypemethod {parser} {debug_level_type} debug_level ()
8356@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8357Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8358or nonzero, full tracing.
12545799
AD
8359@end deftypemethod
8360
8361@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
8362The definition for this member function must be supplied by the user:
8363the parser uses it to report a parser error occurring at @var{l},
8364described by @var{m}.
8365@end deftypemethod
8366
8367
8368@node C++ Scanner Interface
8369@subsection C++ Scanner Interface
8370@c - prefix for yylex.
8371@c - Pure interface to yylex
8372@c - %lex-param
8373
8374The parser invokes the scanner by calling @code{yylex}. Contrary to C
8375parsers, C++ parsers are always pure: there is no point in using the
d9df47b6 8376@code{%define api.pure} directive. Therefore the interface is as follows.
12545799
AD
8377
8378@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
8379Return the next token. Its type is the return value, its semantic
8380value and location being @var{yylval} and @var{yylloc}. Invocations of
8381@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8382@end deftypemethod
8383
8384
8385@node A Complete C++ Example
8405b70c 8386@subsection A Complete C++ Example
12545799
AD
8387
8388This section demonstrates the use of a C++ parser with a simple but
8389complete example. This example should be available on your system,
8390ready to compile, in the directory @dfn{../bison/examples/calc++}. It
8391focuses on the use of Bison, therefore the design of the various C++
8392classes is very naive: no accessors, no encapsulation of members etc.
8393We will use a Lex scanner, and more precisely, a Flex scanner, to
8394demonstrate the various interaction. A hand written scanner is
8395actually easier to interface with.
8396
8397@menu
8398* Calc++ --- C++ Calculator:: The specifications
8399* Calc++ Parsing Driver:: An active parsing context
8400* Calc++ Parser:: A parser class
8401* Calc++ Scanner:: A pure C++ Flex scanner
8402* Calc++ Top Level:: Conducting the band
8403@end menu
8404
8405@node Calc++ --- C++ Calculator
8405b70c 8406@subsubsection Calc++ --- C++ Calculator
12545799
AD
8407
8408Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 8409expression, possibly preceded by variable assignments. An
12545799
AD
8410environment containing possibly predefined variables such as
8411@code{one} and @code{two}, is exchanged with the parser. An example
8412of valid input follows.
8413
8414@example
8415three := 3
8416seven := one + two * three
8417seven * seven
8418@end example
8419
8420@node Calc++ Parsing Driver
8405b70c 8421@subsubsection Calc++ Parsing Driver
12545799
AD
8422@c - An env
8423@c - A place to store error messages
8424@c - A place for the result
8425
8426To support a pure interface with the parser (and the scanner) the
8427technique of the ``parsing context'' is convenient: a structure
8428containing all the data to exchange. Since, in addition to simply
8429launch the parsing, there are several auxiliary tasks to execute (open
8430the file for parsing, instantiate the parser etc.), we recommend
8431transforming the simple parsing context structure into a fully blown
8432@dfn{parsing driver} class.
8433
8434The declaration of this driver class, @file{calc++-driver.hh}, is as
8435follows. The first part includes the CPP guard and imports the
fb9712a9
AD
8436required standard library components, and the declaration of the parser
8437class.
12545799 8438
1c59e0a1 8439@comment file: calc++-driver.hh
12545799
AD
8440@example
8441#ifndef CALCXX_DRIVER_HH
8442# define CALCXX_DRIVER_HH
8443# include <string>
8444# include <map>
fb9712a9 8445# include "calc++-parser.hh"
12545799
AD
8446@end example
8447
12545799
AD
8448
8449@noindent
8450Then comes the declaration of the scanning function. Flex expects
8451the signature of @code{yylex} to be defined in the macro
8452@code{YY_DECL}, and the C++ parser expects it to be declared. We can
8453factor both as follows.
1c59e0a1
AD
8454
8455@comment file: calc++-driver.hh
12545799 8456@example
3dc5e96b
PE
8457// Tell Flex the lexer's prototype ...
8458# define YY_DECL \
c095d689
AD
8459 yy::calcxx_parser::token_type \
8460 yylex (yy::calcxx_parser::semantic_type* yylval, \
8461 yy::calcxx_parser::location_type* yylloc, \
8462 calcxx_driver& driver)
12545799
AD
8463// ... and declare it for the parser's sake.
8464YY_DECL;
8465@end example
8466
8467@noindent
8468The @code{calcxx_driver} class is then declared with its most obvious
8469members.
8470
1c59e0a1 8471@comment file: calc++-driver.hh
12545799
AD
8472@example
8473// Conducting the whole scanning and parsing of Calc++.
8474class calcxx_driver
8475@{
8476public:
8477 calcxx_driver ();
8478 virtual ~calcxx_driver ();
8479
8480 std::map<std::string, int> variables;
8481
8482 int result;
8483@end example
8484
8485@noindent
8486To encapsulate the coordination with the Flex scanner, it is useful to
8487have two members function to open and close the scanning phase.
12545799 8488
1c59e0a1 8489@comment file: calc++-driver.hh
12545799
AD
8490@example
8491 // Handling the scanner.
8492 void scan_begin ();
8493 void scan_end ();
8494 bool trace_scanning;
8495@end example
8496
8497@noindent
8498Similarly for the parser itself.
8499
1c59e0a1 8500@comment file: calc++-driver.hh
12545799 8501@example
bb32f4f2
AD
8502 // Run the parser. Return 0 on success.
8503 int parse (const std::string& f);
12545799
AD
8504 std::string file;
8505 bool trace_parsing;
8506@end example
8507
8508@noindent
8509To demonstrate pure handling of parse errors, instead of simply
8510dumping them on the standard error output, we will pass them to the
8511compiler driver using the following two member functions. Finally, we
8512close the class declaration and CPP guard.
8513
1c59e0a1 8514@comment file: calc++-driver.hh
12545799
AD
8515@example
8516 // Error handling.
8517 void error (const yy::location& l, const std::string& m);
8518 void error (const std::string& m);
8519@};
8520#endif // ! CALCXX_DRIVER_HH
8521@end example
8522
8523The implementation of the driver is straightforward. The @code{parse}
8524member function deserves some attention. The @code{error} functions
8525are simple stubs, they should actually register the located error
8526messages and set error state.
8527
1c59e0a1 8528@comment file: calc++-driver.cc
12545799
AD
8529@example
8530#include "calc++-driver.hh"
8531#include "calc++-parser.hh"
8532
8533calcxx_driver::calcxx_driver ()
8534 : trace_scanning (false), trace_parsing (false)
8535@{
8536 variables["one"] = 1;
8537 variables["two"] = 2;
8538@}
8539
8540calcxx_driver::~calcxx_driver ()
8541@{
8542@}
8543
bb32f4f2 8544int
12545799
AD
8545calcxx_driver::parse (const std::string &f)
8546@{
8547 file = f;
8548 scan_begin ();
8549 yy::calcxx_parser parser (*this);
8550 parser.set_debug_level (trace_parsing);
bb32f4f2 8551 int res = parser.parse ();
12545799 8552 scan_end ();
bb32f4f2 8553 return res;
12545799
AD
8554@}
8555
8556void
8557calcxx_driver::error (const yy::location& l, const std::string& m)
8558@{
8559 std::cerr << l << ": " << m << std::endl;
8560@}
8561
8562void
8563calcxx_driver::error (const std::string& m)
8564@{
8565 std::cerr << m << std::endl;
8566@}
8567@end example
8568
8569@node Calc++ Parser
8405b70c 8570@subsubsection Calc++ Parser
12545799 8571
b50d2359 8572The parser definition file @file{calc++-parser.yy} starts by asking for
34a6c2d1
JD
8573the C++ deterministic parser skeleton, the creation of the parser header
8574file, and specifies the name of the parser class.
8575Because the C++ skeleton changed several times, it is safer to require
8576the version you designed the grammar for.
1c59e0a1
AD
8577
8578@comment file: calc++-parser.yy
12545799 8579@example
ed4d67dc 8580%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 8581%require "@value{VERSION}"
12545799 8582%defines
16dc6a9e 8583%define parser_class_name "calcxx_parser"
fb9712a9
AD
8584@end example
8585
8586@noindent
16dc6a9e 8587@findex %code requires
fb9712a9
AD
8588Then come the declarations/inclusions needed to define the
8589@code{%union}. Because the parser uses the parsing driver and
8590reciprocally, both cannot include the header of the other. Because the
8591driver's header needs detailed knowledge about the parser class (in
8592particular its inner types), it is the parser's header which will simply
8593use a forward declaration of the driver.
148d66d8 8594@xref{Decl Summary, ,%code}.
fb9712a9
AD
8595
8596@comment file: calc++-parser.yy
8597@example
16dc6a9e 8598%code requires @{
12545799 8599# include <string>
fb9712a9 8600class calcxx_driver;
9bc0dd67 8601@}
12545799
AD
8602@end example
8603
8604@noindent
8605The driver is passed by reference to the parser and to the scanner.
8606This provides a simple but effective pure interface, not relying on
8607global variables.
8608
1c59e0a1 8609@comment file: calc++-parser.yy
12545799
AD
8610@example
8611// The parsing context.
8612%parse-param @{ calcxx_driver& driver @}
8613%lex-param @{ calcxx_driver& driver @}
8614@end example
8615
8616@noindent
8617Then we request the location tracking feature, and initialize the
8618first location's file name. Afterwards new locations are computed
8619relatively to the previous locations: the file name will be
8620automatically propagated.
8621
1c59e0a1 8622@comment file: calc++-parser.yy
12545799
AD
8623@example
8624%locations
8625%initial-action
8626@{
8627 // Initialize the initial location.
b47dbebe 8628 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
8629@};
8630@end example
8631
8632@noindent
8633Use the two following directives to enable parser tracing and verbose
8634error messages.
8635
1c59e0a1 8636@comment file: calc++-parser.yy
12545799
AD
8637@example
8638%debug
8639%error-verbose
8640@end example
8641
8642@noindent
8643Semantic values cannot use ``real'' objects, but only pointers to
8644them.
8645
1c59e0a1 8646@comment file: calc++-parser.yy
12545799
AD
8647@example
8648// Symbols.
8649%union
8650@{
8651 int ival;
8652 std::string *sval;
8653@};
8654@end example
8655
fb9712a9 8656@noindent
136a0f76
PB
8657@findex %code
8658The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 8659@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
8660
8661@comment file: calc++-parser.yy
8662@example
136a0f76 8663%code @{
fb9712a9 8664# include "calc++-driver.hh"
34f98f46 8665@}
fb9712a9
AD
8666@end example
8667
8668
12545799
AD
8669@noindent
8670The token numbered as 0 corresponds to end of file; the following line
8671allows for nicer error messages referring to ``end of file'' instead
8672of ``$end''. Similarly user friendly named are provided for each
8673symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
8674avoid name clashes.
8675
1c59e0a1 8676@comment file: calc++-parser.yy
12545799 8677@example
fb9712a9
AD
8678%token END 0 "end of file"
8679%token ASSIGN ":="
8680%token <sval> IDENTIFIER "identifier"
8681%token <ival> NUMBER "number"
a8c2e813 8682%type <ival> exp
12545799
AD
8683@end example
8684
8685@noindent
8686To enable memory deallocation during error recovery, use
8687@code{%destructor}.
8688
287c78f6 8689@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 8690@comment file: calc++-parser.yy
12545799
AD
8691@example
8692%printer @{ debug_stream () << *$$; @} "identifier"
8693%destructor @{ delete $$; @} "identifier"
8694
a8c2e813 8695%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
8696@end example
8697
8698@noindent
8699The grammar itself is straightforward.
8700
1c59e0a1 8701@comment file: calc++-parser.yy
12545799
AD
8702@example
8703%%
8704%start unit;
8705unit: assignments exp @{ driver.result = $2; @};
8706
8707assignments: assignments assignment @{@}
9d9b8b70 8708 | /* Nothing. */ @{@};
12545799 8709
3dc5e96b
PE
8710assignment:
8711 "identifier" ":=" exp
8712 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
8713
8714%left '+' '-';
8715%left '*' '/';
8716exp: exp '+' exp @{ $$ = $1 + $3; @}
8717 | exp '-' exp @{ $$ = $1 - $3; @}
8718 | exp '*' exp @{ $$ = $1 * $3; @}
8719 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 8720 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 8721 | "number" @{ $$ = $1; @};
12545799
AD
8722%%
8723@end example
8724
8725@noindent
8726Finally the @code{error} member function registers the errors to the
8727driver.
8728
1c59e0a1 8729@comment file: calc++-parser.yy
12545799
AD
8730@example
8731void
1c59e0a1
AD
8732yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
8733 const std::string& m)
12545799
AD
8734@{
8735 driver.error (l, m);
8736@}
8737@end example
8738
8739@node Calc++ Scanner
8405b70c 8740@subsubsection Calc++ Scanner
12545799
AD
8741
8742The Flex scanner first includes the driver declaration, then the
8743parser's to get the set of defined tokens.
8744
1c59e0a1 8745@comment file: calc++-scanner.ll
12545799
AD
8746@example
8747%@{ /* -*- C++ -*- */
04098407
PE
8748# include <cstdlib>
8749# include <errno.h>
8750# include <limits.h>
12545799
AD
8751# include <string>
8752# include "calc++-driver.hh"
8753# include "calc++-parser.hh"
eaea13f5
PE
8754
8755/* Work around an incompatibility in flex (at least versions
8756 2.5.31 through 2.5.33): it generates code that does
8757 not conform to C89. See Debian bug 333231
8758 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
8759# undef yywrap
8760# define yywrap() 1
eaea13f5 8761
c095d689
AD
8762/* By default yylex returns int, we use token_type.
8763 Unfortunately yyterminate by default returns 0, which is
8764 not of token_type. */
8c5b881d 8765#define yyterminate() return token::END
12545799
AD
8766%@}
8767@end example
8768
8769@noindent
8770Because there is no @code{#include}-like feature we don't need
8771@code{yywrap}, we don't need @code{unput} either, and we parse an
8772actual file, this is not an interactive session with the user.
8773Finally we enable the scanner tracing features.
8774
1c59e0a1 8775@comment file: calc++-scanner.ll
12545799
AD
8776@example
8777%option noyywrap nounput batch debug
8778@end example
8779
8780@noindent
8781Abbreviations allow for more readable rules.
8782
1c59e0a1 8783@comment file: calc++-scanner.ll
12545799
AD
8784@example
8785id [a-zA-Z][a-zA-Z_0-9]*
8786int [0-9]+
8787blank [ \t]
8788@end example
8789
8790@noindent
9d9b8b70 8791The following paragraph suffices to track locations accurately. Each
12545799
AD
8792time @code{yylex} is invoked, the begin position is moved onto the end
8793position. Then when a pattern is matched, the end position is
8794advanced of its width. In case it matched ends of lines, the end
8795cursor is adjusted, and each time blanks are matched, the begin cursor
8796is moved onto the end cursor to effectively ignore the blanks
8797preceding tokens. Comments would be treated equally.
8798
1c59e0a1 8799@comment file: calc++-scanner.ll
12545799 8800@example
828c373b
AD
8801%@{
8802# define YY_USER_ACTION yylloc->columns (yyleng);
8803%@}
12545799
AD
8804%%
8805%@{
8806 yylloc->step ();
12545799
AD
8807%@}
8808@{blank@}+ yylloc->step ();
8809[\n]+ yylloc->lines (yyleng); yylloc->step ();
8810@end example
8811
8812@noindent
fb9712a9
AD
8813The rules are simple, just note the use of the driver to report errors.
8814It is convenient to use a typedef to shorten
8815@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 8816@code{token::identifier} for instance.
12545799 8817
1c59e0a1 8818@comment file: calc++-scanner.ll
12545799 8819@example
fb9712a9
AD
8820%@{
8821 typedef yy::calcxx_parser::token token;
8822%@}
8c5b881d 8823 /* Convert ints to the actual type of tokens. */
c095d689 8824[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 8825":=" return token::ASSIGN;
04098407
PE
8826@{int@} @{
8827 errno = 0;
8828 long n = strtol (yytext, NULL, 10);
8829 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
8830 driver.error (*yylloc, "integer is out of range");
8831 yylval->ival = n;
fb9712a9 8832 return token::NUMBER;
04098407 8833@}
fb9712a9 8834@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
8835. driver.error (*yylloc, "invalid character");
8836%%
8837@end example
8838
8839@noindent
8840Finally, because the scanner related driver's member function depend
8841on the scanner's data, it is simpler to implement them in this file.
8842
1c59e0a1 8843@comment file: calc++-scanner.ll
12545799
AD
8844@example
8845void
8846calcxx_driver::scan_begin ()
8847@{
8848 yy_flex_debug = trace_scanning;
bb32f4f2
AD
8849 if (file == "-")
8850 yyin = stdin;
8851 else if (!(yyin = fopen (file.c_str (), "r")))
8852 @{
8853 error (std::string ("cannot open ") + file);
8854 exit (1);
8855 @}
12545799
AD
8856@}
8857
8858void
8859calcxx_driver::scan_end ()
8860@{
8861 fclose (yyin);
8862@}
8863@end example
8864
8865@node Calc++ Top Level
8405b70c 8866@subsubsection Calc++ Top Level
12545799
AD
8867
8868The top level file, @file{calc++.cc}, poses no problem.
8869
1c59e0a1 8870@comment file: calc++.cc
12545799
AD
8871@example
8872#include <iostream>
8873#include "calc++-driver.hh"
8874
8875int
fa4d969f 8876main (int argc, char *argv[])
12545799
AD
8877@{
8878 calcxx_driver driver;
8879 for (++argv; argv[0]; ++argv)
8880 if (*argv == std::string ("-p"))
8881 driver.trace_parsing = true;
8882 else if (*argv == std::string ("-s"))
8883 driver.trace_scanning = true;
bb32f4f2
AD
8884 else if (!driver.parse (*argv))
8885 std::cout << driver.result << std::endl;
12545799
AD
8886@}
8887@end example
8888
8405b70c
PB
8889@node Java Parsers
8890@section Java Parsers
8891
8892@menu
f56274a8
DJ
8893* Java Bison Interface:: Asking for Java parser generation
8894* Java Semantic Values:: %type and %token vs. Java
8895* Java Location Values:: The position and location classes
8896* Java Parser Interface:: Instantiating and running the parser
8897* Java Scanner Interface:: Specifying the scanner for the parser
8898* Java Action Features:: Special features for use in actions
8899* Java Differences:: Differences between C/C++ and Java Grammars
8900* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
8901@end menu
8902
8903@node Java Bison Interface
8904@subsection Java Bison Interface
8905@c - %language "Java"
8405b70c 8906
59da312b
JD
8907(The current Java interface is experimental and may evolve.
8908More user feedback will help to stabilize it.)
8909
e254a580
DJ
8910The Java parser skeletons are selected using the @code{%language "Java"}
8911directive or the @option{-L java}/@option{--language=java} option.
8405b70c 8912
e254a580
DJ
8913@c FIXME: Documented bug.
8914When generating a Java parser, @code{bison @var{basename}.y} will create
8915a single Java source file named @file{@var{basename}.java}. Using an
8916input file without a @file{.y} suffix is currently broken. The basename
8917of the output file can be changed by the @code{%file-prefix} directive
8918or the @option{-p}/@option{--name-prefix} option. The entire output file
8919name can be changed by the @code{%output} directive or the
8920@option{-o}/@option{--output} option. The output file contains a single
8921class for the parser.
8405b70c 8922
e254a580 8923You can create documentation for generated parsers using Javadoc.
8405b70c 8924
e254a580
DJ
8925Contrary to C parsers, Java parsers do not use global variables; the
8926state of the parser is always local to an instance of the parser class.
8927Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
8928and @code{%define api.pure} directives does not do anything when used in
8929Java.
8405b70c 8930
e254a580
DJ
8931Push parsers are currently unsupported in Java and @code{%define
8932api.push_pull} have no effect.
01b477c6 8933
e254a580
DJ
8934@acronym{GLR} parsers are currently unsupported in Java. Do not use the
8935@code{glr-parser} directive.
8936
8937No header file can be generated for Java parsers. Do not use the
8938@code{%defines} directive or the @option{-d}/@option{--defines} options.
8939
8940@c FIXME: Possible code change.
8941Currently, support for debugging and verbose errors are always compiled
8942in. Thus the @code{%debug} and @code{%token-table} directives and the
8943@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
8944options have no effect. This may change in the future to eliminate
8945unused code in the generated parser, so use @code{%debug} and
8946@code{%verbose-error} explicitly if needed. Also, in the future the
8947@code{%token-table} directive might enable a public interface to
8948access the token names and codes.
8405b70c
PB
8949
8950@node Java Semantic Values
8951@subsection Java Semantic Values
8952@c - No %union, specify type in %type/%token.
8953@c - YYSTYPE
8954@c - Printer and destructor
8955
8956There is no @code{%union} directive in Java parsers. Instead, the
8957semantic values' types (class names) should be specified in the
8958@code{%type} or @code{%token} directive:
8959
8960@example
8961%type <Expression> expr assignment_expr term factor
8962%type <Integer> number
8963@end example
8964
8965By default, the semantic stack is declared to have @code{Object} members,
8966which means that the class types you specify can be of any class.
8967To improve the type safety of the parser, you can declare the common
e254a580
DJ
8968superclass of all the semantic values using the @code{%define stype}
8969directive. For example, after the following declaration:
8405b70c
PB
8970
8971@example
e254a580 8972%define stype "ASTNode"
8405b70c
PB
8973@end example
8974
8975@noindent
8976any @code{%type} or @code{%token} specifying a semantic type which
8977is not a subclass of ASTNode, will cause a compile-time error.
8978
e254a580 8979@c FIXME: Documented bug.
8405b70c
PB
8980Types used in the directives may be qualified with a package name.
8981Primitive data types are accepted for Java version 1.5 or later. Note
8982that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
8983Generic types may not be used; this is due to a limitation in the
8984implementation of Bison, and may change in future releases.
8405b70c
PB
8985
8986Java parsers do not support @code{%destructor}, since the language
8987adopts garbage collection. The parser will try to hold references
8988to semantic values for as little time as needed.
8989
8990Java parsers do not support @code{%printer}, as @code{toString()}
8991can be used to print the semantic values. This however may change
8992(in a backwards-compatible way) in future versions of Bison.
8993
8994
8995@node Java Location Values
8996@subsection Java Location Values
8997@c - %locations
8998@c - class Position
8999@c - class Location
9000
9001When the directive @code{%locations} is used, the Java parser
9002supports location tracking, see @ref{Locations, , Locations Overview}.
9003An auxiliary user-defined class defines a @dfn{position}, a single point
9004in a file; Bison itself defines a class representing a @dfn{location},
9005a range composed of a pair of positions (possibly spanning several
9006files). The location class is an inner class of the parser; the name
e254a580
DJ
9007is @code{Location} by default, and may also be renamed using
9008@code{%define location_type "@var{class-name}}.
8405b70c
PB
9009
9010The location class treats the position as a completely opaque value.
9011By default, the class name is @code{Position}, but this can be changed
e254a580
DJ
9012with @code{%define position_type "@var{class-name}"}. This class must
9013be supplied by the user.
8405b70c
PB
9014
9015
e254a580
DJ
9016@deftypeivar {Location} {Position} begin
9017@deftypeivarx {Location} {Position} end
8405b70c 9018The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
9019@end deftypeivar
9020
9021@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
9022Create a @code{Location} denoting an empty range located at a given point.
9023@end deftypeop
8405b70c 9024
e254a580
DJ
9025@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
9026Create a @code{Location} from the endpoints of the range.
9027@end deftypeop
9028
9029@deftypemethod {Location} {String} toString ()
8405b70c
PB
9030Prints the range represented by the location. For this to work
9031properly, the position class should override the @code{equals} and
9032@code{toString} methods appropriately.
9033@end deftypemethod
9034
9035
9036@node Java Parser Interface
9037@subsection Java Parser Interface
9038@c - define parser_class_name
9039@c - Ctor
9040@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9041@c debug_stream.
9042@c - Reporting errors
9043
e254a580
DJ
9044The name of the generated parser class defaults to @code{YYParser}. The
9045@code{YY} prefix may be changed using the @code{%name-prefix} directive
9046or the @option{-p}/@option{--name-prefix} option. Alternatively, use
9047@code{%define parser_class_name "@var{name}"} to give a custom name to
9048the class. The interface of this class is detailed below.
8405b70c 9049
e254a580
DJ
9050By default, the parser class has package visibility. A declaration
9051@code{%define public} will change to public visibility. Remember that,
9052according to the Java language specification, the name of the @file{.java}
9053file should match the name of the class in this case. Similarly, you can
9054use @code{abstract}, @code{final} and @code{strictfp} with the
9055@code{%define} declaration to add other modifiers to the parser class.
9056
9057The Java package name of the parser class can be specified using the
9058@code{%define package} directive. The superclass and the implemented
9059interfaces of the parser class can be specified with the @code{%define
9060extends} and @code{%define implements} directives.
9061
9062The parser class defines an inner class, @code{Location}, that is used
9063for location tracking (see @ref{Java Location Values}), and a inner
9064interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
9065these inner class/interface, and the members described in the interface
9066below, all the other members and fields are preceded with a @code{yy} or
9067@code{YY} prefix to avoid clashes with user code.
9068
9069@c FIXME: The following constants and variables are still undocumented:
9070@c @code{bisonVersion}, @code{bisonSkeleton} and @code{errorVerbose}.
9071
9072The parser class can be extended using the @code{%parse-param}
9073directive. Each occurrence of the directive will add a @code{protected
9074final} field to the parser class, and an argument to its constructor,
9075which initialize them automatically.
9076
9077Token names defined by @code{%token} and the predefined @code{EOF} token
9078name are added as constant fields to the parser class.
9079
9080@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
9081Build a new parser object with embedded @code{%code lexer}. There are
9082no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
9083used.
9084@end deftypeop
9085
9086@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
9087Build a new parser object using the specified scanner. There are no
9088additional parameters unless @code{%parse-param}s are used.
9089
9090If the scanner is defined by @code{%code lexer}, this constructor is
9091declared @code{protected} and is called automatically with a scanner
9092created with the correct @code{%lex-param}s.
9093@end deftypeop
8405b70c
PB
9094
9095@deftypemethod {YYParser} {boolean} parse ()
9096Run the syntactic analysis, and return @code{true} on success,
9097@code{false} otherwise.
9098@end deftypemethod
9099
01b477c6 9100@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9101During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9102from a syntax error.
9103@xref{Error Recovery}.
8405b70c
PB
9104@end deftypemethod
9105
9106@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9107@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9108Get or set the stream used for tracing the parsing. It defaults to
9109@code{System.err}.
9110@end deftypemethod
9111
9112@deftypemethod {YYParser} {int} getDebugLevel ()
9113@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
9114Get or set the tracing level. Currently its value is either 0, no trace,
9115or nonzero, full tracing.
9116@end deftypemethod
9117
8405b70c
PB
9118
9119@node Java Scanner Interface
9120@subsection Java Scanner Interface
01b477c6 9121@c - %code lexer
8405b70c 9122@c - %lex-param
01b477c6 9123@c - Lexer interface
8405b70c 9124
e254a580
DJ
9125There are two possible ways to interface a Bison-generated Java parser
9126with a scanner: the scanner may be defined by @code{%code lexer}, or
9127defined elsewhere. In either case, the scanner has to implement the
9128@code{Lexer} inner interface of the parser class.
9129
9130In the first case, the body of the scanner class is placed in
9131@code{%code lexer} blocks. If you want to pass parameters from the
9132parser constructor to the scanner constructor, specify them with
9133@code{%lex-param}; they are passed before @code{%parse-param}s to the
9134constructor.
01b477c6 9135
59c5ac72 9136In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
9137which is defined within the parser class (e.g., @code{YYParser.Lexer}).
9138The constructor of the parser object will then accept an object
9139implementing the interface; @code{%lex-param} is not used in this
9140case.
9141
9142In both cases, the scanner has to implement the following methods.
9143
e254a580
DJ
9144@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
9145This method is defined by the user to emit an error message. The first
9146parameter is omitted if location tracking is not active. Its type can be
9147changed using @code{%define location_type "@var{class-name}".}
8405b70c
PB
9148@end deftypemethod
9149
e254a580 9150@deftypemethod {Lexer} {int} yylex ()
8405b70c
PB
9151Return the next token. Its type is the return value, its semantic
9152value and location are saved and returned by the ther methods in the
e254a580
DJ
9153interface.
9154
9155Use @code{%define lex_throws} to specify any uncaught exceptions.
9156Default is @code{java.io.IOException}.
8405b70c
PB
9157@end deftypemethod
9158
9159@deftypemethod {Lexer} {Position} getStartPos ()
9160@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
9161Return respectively the first position of the last token that
9162@code{yylex} returned, and the first position beyond it. These
9163methods are not needed unless location tracking is active.
8405b70c 9164
e254a580 9165The return type can be changed using @code{%define position_type
8405b70c
PB
9166"@var{class-name}".}
9167@end deftypemethod
9168
9169@deftypemethod {Lexer} {Object} getLVal ()
59c5ac72 9170Return the semantical value of the last token that yylex returned.
8405b70c 9171
e254a580 9172The return type can be changed using @code{%define stype
8405b70c
PB
9173"@var{class-name}".}
9174@end deftypemethod
9175
9176
e254a580
DJ
9177@node Java Action Features
9178@subsection Special Features for Use in Java Actions
9179
9180The following special constructs can be uses in Java actions.
9181Other analogous C action features are currently unavailable for Java.
9182
9183Use @code{%define throws} to specify any uncaught exceptions from parser
9184actions, and initial actions specified by @code{%initial-action}.
9185
9186@defvar $@var{n}
9187The semantic value for the @var{n}th component of the current rule.
9188This may not be assigned to.
9189@xref{Java Semantic Values}.
9190@end defvar
9191
9192@defvar $<@var{typealt}>@var{n}
9193Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9194@xref{Java Semantic Values}.
9195@end defvar
9196
9197@defvar $$
9198The semantic value for the grouping made by the current rule. As a
9199value, this is in the base type (@code{Object} or as specified by
9200@code{%define stype}) as in not cast to the declared subtype because
9201casts are not allowed on the left-hand side of Java assignments.
9202Use an explicit Java cast if the correct subtype is needed.
9203@xref{Java Semantic Values}.
9204@end defvar
9205
9206@defvar $<@var{typealt}>$
9207Same as @code{$$} since Java always allow assigning to the base type.
9208Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9209for setting the value but there is currently no easy way to distinguish
9210these constructs.
9211@xref{Java Semantic Values}.
9212@end defvar
9213
9214@defvar @@@var{n}
9215The location information of the @var{n}th component of the current rule.
9216This may not be assigned to.
9217@xref{Java Location Values}.
9218@end defvar
9219
9220@defvar @@$
9221The location information of the grouping made by the current rule.
9222@xref{Java Location Values}.
9223@end defvar
9224
9225@deffn {Statement} {return YYABORT;}
9226Return immediately from the parser, indicating failure.
9227@xref{Java Parser Interface}.
9228@end deffn
8405b70c 9229
e254a580
DJ
9230@deffn {Statement} {return YYACCEPT;}
9231Return immediately from the parser, indicating success.
9232@xref{Java Parser Interface}.
9233@end deffn
8405b70c 9234
e254a580
DJ
9235@deffn {Statement} {return YYERROR;}
9236Start error recovery without printing an error message.
9237@xref{Error Recovery}.
9238@end deffn
8405b70c 9239
e254a580
DJ
9240@deffn {Statement} {return YYFAIL;}
9241Print an error message and start error recovery.
9242@xref{Error Recovery}.
9243@end deffn
8405b70c 9244
e254a580
DJ
9245@deftypefn {Function} {boolean} recovering ()
9246Return whether error recovery is being done. In this state, the parser
9247reads token until it reaches a known state, and then restarts normal
9248operation.
9249@xref{Error Recovery}.
9250@end deftypefn
8405b70c 9251
e254a580
DJ
9252@deftypefn {Function} {protected void} yyerror (String msg)
9253@deftypefnx {Function} {protected void} yyerror (Position pos, String msg)
9254@deftypefnx {Function} {protected void} yyerror (Location loc, String msg)
9255Print an error message using the @code{yyerror} method of the scanner
9256instance in use.
9257@end deftypefn
8405b70c 9258
8405b70c 9259
8405b70c
PB
9260@node Java Differences
9261@subsection Differences between C/C++ and Java Grammars
9262
9263The different structure of the Java language forces several differences
9264between C/C++ grammars, and grammars designed for Java parsers. This
29553547 9265section summarizes these differences.
8405b70c
PB
9266
9267@itemize
9268@item
01b477c6 9269Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 9270@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
9271macros. Instead, they should be preceded by @code{return} when they
9272appear in an action. The actual definition of these symbols is
8405b70c
PB
9273opaque to the Bison grammar, and it might change in the future. The
9274only meaningful operation that you can do, is to return them.
e254a580 9275See @pxref{Java Action Features}.
8405b70c
PB
9276
9277Note that of these three symbols, only @code{YYACCEPT} and
9278@code{YYABORT} will cause a return from the @code{yyparse}
9279method@footnote{Java parsers include the actions in a separate
9280method than @code{yyparse} in order to have an intuitive syntax that
9281corresponds to these C macros.}.
9282
e254a580
DJ
9283@item
9284Java lacks unions, so @code{%union} has no effect. Instead, semantic
9285values have a common base type: @code{Object} or as specified by
9286@code{%define stype}. Angle backets on @code{%token}, @code{type},
9287@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
9288an union. The type of @code{$$}, even with angle brackets, is the base
9289type since Java casts are not allow on the left-hand side of assignments.
9290Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
9291left-hand side of assignments. See @pxref{Java Semantic Values} and
9292@pxref{Java Action Features}.
9293
8405b70c
PB
9294@item
9295The prolog declarations have a different meaning than in C/C++ code.
01b477c6
PB
9296@table @asis
9297@item @code{%code imports}
9298blocks are placed at the beginning of the Java source code. They may
9299include copyright notices. For a @code{package} declarations, it is
9300suggested to use @code{%define package} instead.
8405b70c 9301
01b477c6
PB
9302@item unqualified @code{%code}
9303blocks are placed inside the parser class.
9304
9305@item @code{%code lexer}
9306blocks, if specified, should include the implementation of the
9307scanner. If there is no such block, the scanner can be any class
9308that implements the appropriate interface (see @pxref{Java Scanner
9309Interface}).
29553547 9310@end table
8405b70c
PB
9311
9312Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
9313In particular, @code{%@{ @dots{} %@}} blocks should not be used
9314and may give an error in future versions of Bison.
9315
01b477c6 9316The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
9317be used to define other classes used by the parser @emph{outside}
9318the parser class.
8405b70c
PB
9319@end itemize
9320
e254a580
DJ
9321
9322@node Java Declarations Summary
9323@subsection Java Declarations Summary
9324
9325This summary only include declarations specific to Java or have special
9326meaning when used in a Java parser.
9327
9328@deffn {Directive} {%language "Java"}
9329Generate a Java class for the parser.
9330@end deffn
9331
9332@deffn {Directive} %lex-param @{@var{type} @var{name}@}
9333A parameter for the lexer class defined by @code{%code lexer}
9334@emph{only}, added as parameters to the lexer constructor and the parser
9335constructor that @emph{creates} a lexer. Default is none.
9336@xref{Java Scanner Interface}.
9337@end deffn
9338
9339@deffn {Directive} %name-prefix "@var{prefix}"
9340The prefix of the parser class name @code{@var{prefix}Parser} if
9341@code{%define parser_class_name} is not used. Default is @code{YY}.
9342@xref{Java Bison Interface}.
9343@end deffn
9344
9345@deffn {Directive} %parse-param @{@var{type} @var{name}@}
9346A parameter for the parser class added as parameters to constructor(s)
9347and as fields initialized by the constructor(s). Default is none.
9348@xref{Java Parser Interface}.
9349@end deffn
9350
9351@deffn {Directive} %token <@var{type}> @var{token} @dots{}
9352Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
9353@xref{Java Semantic Values}.
9354@end deffn
9355
9356@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
9357Declare the type of nonterminals. Note that the angle brackets enclose
9358a Java @emph{type}.
9359@xref{Java Semantic Values}.
9360@end deffn
9361
9362@deffn {Directive} %code @{ @var{code} @dots{} @}
9363Code appended to the inside of the parser class.
9364@xref{Java Differences}.
9365@end deffn
9366
9367@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
9368Code inserted just after the @code{package} declaration.
9369@xref{Java Differences}.
9370@end deffn
9371
9372@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
9373Code added to the body of a inner lexer class within the parser class.
9374@xref{Java Scanner Interface}.
9375@end deffn
9376
9377@deffn {Directive} %% @var{code} @dots{}
9378Code (after the second @code{%%}) appended to the end of the file,
9379@emph{outside} the parser class.
9380@xref{Java Differences}.
9381@end deffn
9382
9383@deffn {Directive} %@{ @var{code} @dots{} %@}
9384Not supported. Use @code{%code import} instead.
9385@xref{Java Differences}.
9386@end deffn
9387
9388@deffn {Directive} {%define abstract}
9389Whether the parser class is declared @code{abstract}. Default is false.
9390@xref{Java Bison Interface}.
9391@end deffn
9392
9393@deffn {Directive} {%define extends} "@var{superclass}"
9394The superclass of the parser class. Default is none.
9395@xref{Java Bison Interface}.
9396@end deffn
9397
9398@deffn {Directive} {%define final}
9399Whether the parser class is declared @code{final}. Default is false.
9400@xref{Java Bison Interface}.
9401@end deffn
9402
9403@deffn {Directive} {%define implements} "@var{interfaces}"
9404The implemented interfaces of the parser class, a comma-separated list.
9405Default is none.
9406@xref{Java Bison Interface}.
9407@end deffn
9408
9409@deffn {Directive} {%define lex_throws} "@var{exceptions}"
9410The exceptions thrown by the @code{yylex} method of the lexer, a
9411comma-separated list. Default is @code{java.io.IOException}.
9412@xref{Java Scanner Interface}.
9413@end deffn
9414
9415@deffn {Directive} {%define location_type} "@var{class}"
9416The name of the class used for locations (a range between two
9417positions). This class is generated as an inner class of the parser
9418class by @command{bison}. Default is @code{Location}.
9419@xref{Java Location Values}.
9420@end deffn
9421
9422@deffn {Directive} {%define package} "@var{package}"
9423The package to put the parser class in. Default is none.
9424@xref{Java Bison Interface}.
9425@end deffn
9426
9427@deffn {Directive} {%define parser_class_name} "@var{name}"
9428The name of the parser class. Default is @code{YYParser} or
9429@code{@var{name-prefix}Parser}.
9430@xref{Java Bison Interface}.
9431@end deffn
9432
9433@deffn {Directive} {%define position_type} "@var{class}"
9434The name of the class used for positions. This class must be supplied by
9435the user. Default is @code{Position}.
9436@xref{Java Location Values}.
9437@end deffn
9438
9439@deffn {Directive} {%define public}
9440Whether the parser class is declared @code{public}. Default is false.
9441@xref{Java Bison Interface}.
9442@end deffn
9443
9444@deffn {Directive} {%define stype} "@var{class}"
9445The base type of semantic values. Default is @code{Object}.
9446@xref{Java Semantic Values}.
9447@end deffn
9448
9449@deffn {Directive} {%define strictfp}
9450Whether the parser class is declared @code{strictfp}. Default is false.
9451@xref{Java Bison Interface}.
9452@end deffn
9453
9454@deffn {Directive} {%define throws} "@var{exceptions}"
9455The exceptions thrown by user-supplied parser actions and
9456@code{%initial-action}, a comma-separated list. Default is none.
9457@xref{Java Parser Interface}.
9458@end deffn
9459
9460
12545799 9461@c ================================================= FAQ
d1a1114f
AD
9462
9463@node FAQ
9464@chapter Frequently Asked Questions
9465@cindex frequently asked questions
9466@cindex questions
9467
9468Several questions about Bison come up occasionally. Here some of them
9469are addressed.
9470
9471@menu
55ba27be
AD
9472* Memory Exhausted:: Breaking the Stack Limits
9473* How Can I Reset the Parser:: @code{yyparse} Keeps some State
9474* Strings are Destroyed:: @code{yylval} Loses Track of Strings
9475* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 9476* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
9477* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
9478* I can't build Bison:: Troubleshooting
9479* Where can I find help?:: Troubleshouting
9480* Bug Reports:: Troublereporting
8405b70c 9481* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
9482* Beta Testing:: Experimenting development versions
9483* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
9484@end menu
9485
1a059451
PE
9486@node Memory Exhausted
9487@section Memory Exhausted
d1a1114f
AD
9488
9489@display
1a059451 9490My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
9491message. What can I do?
9492@end display
9493
9494This question is already addressed elsewhere, @xref{Recursion,
9495,Recursive Rules}.
9496
e64fec0a
PE
9497@node How Can I Reset the Parser
9498@section How Can I Reset the Parser
5b066063 9499
0e14ad77
PE
9500The following phenomenon has several symptoms, resulting in the
9501following typical questions:
5b066063
AD
9502
9503@display
9504I invoke @code{yyparse} several times, and on correct input it works
9505properly; but when a parse error is found, all the other calls fail
0e14ad77 9506too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
9507@end display
9508
9509@noindent
9510or
9511
9512@display
0e14ad77 9513My parser includes support for an @samp{#include}-like feature, in
5b066063 9514which case I run @code{yyparse} from @code{yyparse}. This fails
d9df47b6 9515although I did specify @code{%define api.pure}.
5b066063
AD
9516@end display
9517
0e14ad77
PE
9518These problems typically come not from Bison itself, but from
9519Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
9520speed, they might not notice a change of input file. As a
9521demonstration, consider the following source file,
9522@file{first-line.l}:
9523
9524@verbatim
9525%{
9526#include <stdio.h>
9527#include <stdlib.h>
9528%}
9529%%
9530.*\n ECHO; return 1;
9531%%
9532int
0e14ad77 9533yyparse (char const *file)
5b066063
AD
9534{
9535 yyin = fopen (file, "r");
9536 if (!yyin)
9537 exit (2);
fa7e68c3 9538 /* One token only. */
5b066063 9539 yylex ();
0e14ad77 9540 if (fclose (yyin) != 0)
5b066063
AD
9541 exit (3);
9542 return 0;
9543}
9544
9545int
0e14ad77 9546main (void)
5b066063
AD
9547{
9548 yyparse ("input");
9549 yyparse ("input");
9550 return 0;
9551}
9552@end verbatim
9553
9554@noindent
9555If the file @file{input} contains
9556
9557@verbatim
9558input:1: Hello,
9559input:2: World!
9560@end verbatim
9561
9562@noindent
0e14ad77 9563then instead of getting the first line twice, you get:
5b066063
AD
9564
9565@example
9566$ @kbd{flex -ofirst-line.c first-line.l}
9567$ @kbd{gcc -ofirst-line first-line.c -ll}
9568$ @kbd{./first-line}
9569input:1: Hello,
9570input:2: World!
9571@end example
9572
0e14ad77
PE
9573Therefore, whenever you change @code{yyin}, you must tell the
9574Lex-generated scanner to discard its current buffer and switch to the
9575new one. This depends upon your implementation of Lex; see its
9576documentation for more. For Flex, it suffices to call
9577@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
9578Flex-generated scanner needs to read from several input streams to
9579handle features like include files, you might consider using Flex
9580functions like @samp{yy_switch_to_buffer} that manipulate multiple
9581input buffers.
5b066063 9582
b165c324
AD
9583If your Flex-generated scanner uses start conditions (@pxref{Start
9584conditions, , Start conditions, flex, The Flex Manual}), you might
9585also want to reset the scanner's state, i.e., go back to the initial
9586start condition, through a call to @samp{BEGIN (0)}.
9587
fef4cb51
AD
9588@node Strings are Destroyed
9589@section Strings are Destroyed
9590
9591@display
c7e441b4 9592My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
9593them. Instead of reporting @samp{"foo", "bar"}, it reports
9594@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
9595@end display
9596
9597This error is probably the single most frequent ``bug report'' sent to
9598Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 9599of the scanner. Consider the following Lex code:
fef4cb51
AD
9600
9601@verbatim
9602%{
9603#include <stdio.h>
9604char *yylval = NULL;
9605%}
9606%%
9607.* yylval = yytext; return 1;
9608\n /* IGNORE */
9609%%
9610int
9611main ()
9612{
fa7e68c3 9613 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
9614 char *fst = (yylex (), yylval);
9615 char *snd = (yylex (), yylval);
9616 printf ("\"%s\", \"%s\"\n", fst, snd);
9617 return 0;
9618}
9619@end verbatim
9620
9621If you compile and run this code, you get:
9622
9623@example
9624$ @kbd{flex -osplit-lines.c split-lines.l}
9625$ @kbd{gcc -osplit-lines split-lines.c -ll}
9626$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9627"one
9628two", "two"
9629@end example
9630
9631@noindent
9632this is because @code{yytext} is a buffer provided for @emph{reading}
9633in the action, but if you want to keep it, you have to duplicate it
9634(e.g., using @code{strdup}). Note that the output may depend on how
9635your implementation of Lex handles @code{yytext}. For instance, when
9636given the Lex compatibility option @option{-l} (which triggers the
9637option @samp{%array}) Flex generates a different behavior:
9638
9639@example
9640$ @kbd{flex -l -osplit-lines.c split-lines.l}
9641$ @kbd{gcc -osplit-lines split-lines.c -ll}
9642$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9643"two", "two"
9644@end example
9645
9646
2fa09258
AD
9647@node Implementing Gotos/Loops
9648@section Implementing Gotos/Loops
a06ea4aa
AD
9649
9650@display
9651My simple calculator supports variables, assignments, and functions,
2fa09258 9652but how can I implement gotos, or loops?
a06ea4aa
AD
9653@end display
9654
9655Although very pedagogical, the examples included in the document blur
a1c84f45 9656the distinction to make between the parser---whose job is to recover
a06ea4aa 9657the structure of a text and to transmit it to subsequent modules of
a1c84f45 9658the program---and the processing (such as the execution) of this
a06ea4aa
AD
9659structure. This works well with so called straight line programs,
9660i.e., precisely those that have a straightforward execution model:
9661execute simple instructions one after the others.
9662
9663@cindex abstract syntax tree
9664@cindex @acronym{AST}
9665If you want a richer model, you will probably need to use the parser
9666to construct a tree that does represent the structure it has
9667recovered; this tree is usually called the @dfn{abstract syntax tree},
9668or @dfn{@acronym{AST}} for short. Then, walking through this tree,
9669traversing it in various ways, will enable treatments such as its
9670execution or its translation, which will result in an interpreter or a
9671compiler.
9672
9673This topic is way beyond the scope of this manual, and the reader is
9674invited to consult the dedicated literature.
9675
9676
ed2e6384
AD
9677@node Multiple start-symbols
9678@section Multiple start-symbols
9679
9680@display
9681I have several closely related grammars, and I would like to share their
9682implementations. In fact, I could use a single grammar but with
9683multiple entry points.
9684@end display
9685
9686Bison does not support multiple start-symbols, but there is a very
9687simple means to simulate them. If @code{foo} and @code{bar} are the two
9688pseudo start-symbols, then introduce two new tokens, say
9689@code{START_FOO} and @code{START_BAR}, and use them as switches from the
9690real start-symbol:
9691
9692@example
9693%token START_FOO START_BAR;
9694%start start;
9695start: START_FOO foo
9696 | START_BAR bar;
9697@end example
9698
9699These tokens prevents the introduction of new conflicts. As far as the
9700parser goes, that is all that is needed.
9701
9702Now the difficult part is ensuring that the scanner will send these
9703tokens first. If your scanner is hand-written, that should be
9704straightforward. If your scanner is generated by Lex, them there is
9705simple means to do it: recall that anything between @samp{%@{ ... %@}}
9706after the first @code{%%} is copied verbatim in the top of the generated
9707@code{yylex} function. Make sure a variable @code{start_token} is
9708available in the scanner (e.g., a global variable or using
9709@code{%lex-param} etc.), and use the following:
9710
9711@example
9712 /* @r{Prologue.} */
9713%%
9714%@{
9715 if (start_token)
9716 @{
9717 int t = start_token;
9718 start_token = 0;
9719 return t;
9720 @}
9721%@}
9722 /* @r{The rules.} */
9723@end example
9724
9725
55ba27be
AD
9726@node Secure? Conform?
9727@section Secure? Conform?
9728
9729@display
9730Is Bison secure? Does it conform to POSIX?
9731@end display
9732
9733If you're looking for a guarantee or certification, we don't provide it.
9734However, Bison is intended to be a reliable program that conforms to the
9735@acronym{POSIX} specification for Yacc. If you run into problems,
9736please send us a bug report.
9737
9738@node I can't build Bison
9739@section I can't build Bison
9740
9741@display
8c5b881d
PE
9742I can't build Bison because @command{make} complains that
9743@code{msgfmt} is not found.
55ba27be
AD
9744What should I do?
9745@end display
9746
9747Like most GNU packages with internationalization support, that feature
9748is turned on by default. If you have problems building in the @file{po}
9749subdirectory, it indicates that your system's internationalization
9750support is lacking. You can re-configure Bison with
9751@option{--disable-nls} to turn off this support, or you can install GNU
9752gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
9753Bison. See the file @file{ABOUT-NLS} for more information.
9754
9755
9756@node Where can I find help?
9757@section Where can I find help?
9758
9759@display
9760I'm having trouble using Bison. Where can I find help?
9761@end display
9762
9763First, read this fine manual. Beyond that, you can send mail to
9764@email{help-bison@@gnu.org}. This mailing list is intended to be
9765populated with people who are willing to answer questions about using
9766and installing Bison. Please keep in mind that (most of) the people on
9767the list have aspects of their lives which are not related to Bison (!),
9768so you may not receive an answer to your question right away. This can
9769be frustrating, but please try not to honk them off; remember that any
9770help they provide is purely voluntary and out of the kindness of their
9771hearts.
9772
9773@node Bug Reports
9774@section Bug Reports
9775
9776@display
9777I found a bug. What should I include in the bug report?
9778@end display
9779
9780Before you send a bug report, make sure you are using the latest
9781version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
9782mirrors. Be sure to include the version number in your bug report. If
9783the bug is present in the latest version but not in a previous version,
9784try to determine the most recent version which did not contain the bug.
9785
9786If the bug is parser-related, you should include the smallest grammar
9787you can which demonstrates the bug. The grammar file should also be
9788complete (i.e., I should be able to run it through Bison without having
9789to edit or add anything). The smaller and simpler the grammar, the
9790easier it will be to fix the bug.
9791
9792Include information about your compilation environment, including your
9793operating system's name and version and your compiler's name and
9794version. If you have trouble compiling, you should also include a
9795transcript of the build session, starting with the invocation of
9796`configure'. Depending on the nature of the bug, you may be asked to
9797send additional files as well (such as `config.h' or `config.cache').
9798
9799Patches are most welcome, but not required. That is, do not hesitate to
9800send a bug report just because you can not provide a fix.
9801
9802Send bug reports to @email{bug-bison@@gnu.org}.
9803
8405b70c
PB
9804@node More Languages
9805@section More Languages
55ba27be
AD
9806
9807@display
8405b70c 9808Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
9809favorite language here}?
9810@end display
9811
8405b70c 9812C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
9813languages; contributions are welcome.
9814
9815@node Beta Testing
9816@section Beta Testing
9817
9818@display
9819What is involved in being a beta tester?
9820@end display
9821
9822It's not terribly involved. Basically, you would download a test
9823release, compile it, and use it to build and run a parser or two. After
9824that, you would submit either a bug report or a message saying that
9825everything is okay. It is important to report successes as well as
9826failures because test releases eventually become mainstream releases,
9827but only if they are adequately tested. If no one tests, development is
9828essentially halted.
9829
9830Beta testers are particularly needed for operating systems to which the
9831developers do not have easy access. They currently have easy access to
9832recent GNU/Linux and Solaris versions. Reports about other operating
9833systems are especially welcome.
9834
9835@node Mailing Lists
9836@section Mailing Lists
9837
9838@display
9839How do I join the help-bison and bug-bison mailing lists?
9840@end display
9841
9842See @url{http://lists.gnu.org/}.
a06ea4aa 9843
d1a1114f
AD
9844@c ================================================= Table of Symbols
9845
342b8b6e 9846@node Table of Symbols
bfa74976
RS
9847@appendix Bison Symbols
9848@cindex Bison symbols, table of
9849@cindex symbols in Bison, table of
9850
18b519c0 9851@deffn {Variable} @@$
3ded9a63 9852In an action, the location of the left-hand side of the rule.
88bce5a2 9853@xref{Locations, , Locations Overview}.
18b519c0 9854@end deffn
3ded9a63 9855
18b519c0 9856@deffn {Variable} @@@var{n}
3ded9a63
AD
9857In an action, the location of the @var{n}-th symbol of the right-hand
9858side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 9859@end deffn
3ded9a63 9860
18b519c0 9861@deffn {Variable} $$
3ded9a63
AD
9862In an action, the semantic value of the left-hand side of the rule.
9863@xref{Actions}.
18b519c0 9864@end deffn
3ded9a63 9865
18b519c0 9866@deffn {Variable} $@var{n}
3ded9a63
AD
9867In an action, the semantic value of the @var{n}-th symbol of the
9868right-hand side of the rule. @xref{Actions}.
18b519c0 9869@end deffn
3ded9a63 9870
dd8d9022
AD
9871@deffn {Delimiter} %%
9872Delimiter used to separate the grammar rule section from the
9873Bison declarations section or the epilogue.
9874@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 9875@end deffn
bfa74976 9876
dd8d9022
AD
9877@c Don't insert spaces, or check the DVI output.
9878@deffn {Delimiter} %@{@var{code}%@}
9879All code listed between @samp{%@{} and @samp{%@}} is copied directly to
9880the output file uninterpreted. Such code forms the prologue of the input
9881file. @xref{Grammar Outline, ,Outline of a Bison
9882Grammar}.
18b519c0 9883@end deffn
bfa74976 9884
dd8d9022
AD
9885@deffn {Construct} /*@dots{}*/
9886Comment delimiters, as in C.
18b519c0 9887@end deffn
bfa74976 9888
dd8d9022
AD
9889@deffn {Delimiter} :
9890Separates a rule's result from its components. @xref{Rules, ,Syntax of
9891Grammar Rules}.
18b519c0 9892@end deffn
bfa74976 9893
dd8d9022
AD
9894@deffn {Delimiter} ;
9895Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9896@end deffn
bfa74976 9897
dd8d9022
AD
9898@deffn {Delimiter} |
9899Separates alternate rules for the same result nonterminal.
9900@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9901@end deffn
bfa74976 9902
12e35840
JD
9903@deffn {Directive} <*>
9904Used to define a default tagged @code{%destructor} or default tagged
9905@code{%printer}.
85894313
JD
9906
9907This feature is experimental.
9908More user feedback will help to determine whether it should become a permanent
9909feature.
9910
12e35840
JD
9911@xref{Destructor Decl, , Freeing Discarded Symbols}.
9912@end deffn
9913
3ebecc24 9914@deffn {Directive} <>
12e35840
JD
9915Used to define a default tagless @code{%destructor} or default tagless
9916@code{%printer}.
85894313
JD
9917
9918This feature is experimental.
9919More user feedback will help to determine whether it should become a permanent
9920feature.
9921
12e35840
JD
9922@xref{Destructor Decl, , Freeing Discarded Symbols}.
9923@end deffn
9924
dd8d9022
AD
9925@deffn {Symbol} $accept
9926The predefined nonterminal whose only rule is @samp{$accept: @var{start}
9927$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
9928Start-Symbol}. It cannot be used in the grammar.
18b519c0 9929@end deffn
bfa74976 9930
136a0f76 9931@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
9932@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
9933Insert @var{code} verbatim into output parser source.
9934@xref{Decl Summary,,%code}.
9bc0dd67 9935@end deffn
9bc0dd67 9936
18b519c0 9937@deffn {Directive} %debug
6deb4447 9938Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 9939@end deffn
6deb4447 9940
91d2c560 9941@ifset defaultprec
22fccf95
PE
9942@deffn {Directive} %default-prec
9943Assign a precedence to rules that lack an explicit @samp{%prec}
9944modifier. @xref{Contextual Precedence, ,Context-Dependent
9945Precedence}.
39a06c25 9946@end deffn
91d2c560 9947@end ifset
39a06c25 9948
148d66d8
JD
9949@deffn {Directive} %define @var{define-variable}
9950@deffnx {Directive} %define @var{define-variable} @var{value}
9951Define a variable to adjust Bison's behavior.
9952@xref{Decl Summary,,%define}.
9953@end deffn
9954
18b519c0 9955@deffn {Directive} %defines
6deb4447
AD
9956Bison declaration to create a header file meant for the scanner.
9957@xref{Decl Summary}.
18b519c0 9958@end deffn
6deb4447 9959
02975b9a
JD
9960@deffn {Directive} %defines @var{defines-file}
9961Same as above, but save in the file @var{defines-file}.
9962@xref{Decl Summary}.
9963@end deffn
9964
18b519c0 9965@deffn {Directive} %destructor
258b75ca 9966Specify how the parser should reclaim the memory associated to
fa7e68c3 9967discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 9968@end deffn
72f889cc 9969
18b519c0 9970@deffn {Directive} %dprec
676385e2 9971Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
9972time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
9973@acronym{GLR} Parsers}.
18b519c0 9974@end deffn
676385e2 9975
dd8d9022
AD
9976@deffn {Symbol} $end
9977The predefined token marking the end of the token stream. It cannot be
9978used in the grammar.
9979@end deffn
9980
9981@deffn {Symbol} error
9982A token name reserved for error recovery. This token may be used in
9983grammar rules so as to allow the Bison parser to recognize an error in
9984the grammar without halting the process. In effect, a sentence
9985containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
9986token @code{error} becomes the current lookahead token. Actions
9987corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
9988token is reset to the token that originally caused the violation.
9989@xref{Error Recovery}.
18d192f0
AD
9990@end deffn
9991
18b519c0 9992@deffn {Directive} %error-verbose
2a8d363a
AD
9993Bison declaration to request verbose, specific error message strings
9994when @code{yyerror} is called.
18b519c0 9995@end deffn
2a8d363a 9996
02975b9a 9997@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 9998Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 9999Summary}.
18b519c0 10000@end deffn
d8988b2f 10001
18b519c0 10002@deffn {Directive} %glr-parser
c827f760
PE
10003Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
10004Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10005@end deffn
676385e2 10006
dd8d9022
AD
10007@deffn {Directive} %initial-action
10008Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
10009@end deffn
10010
e6e704dc
JD
10011@deffn {Directive} %language
10012Specify the programming language for the generated parser.
10013@xref{Decl Summary}.
10014@end deffn
10015
18b519c0 10016@deffn {Directive} %left
bfa74976
RS
10017Bison declaration to assign left associativity to token(s).
10018@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10019@end deffn
bfa74976 10020
feeb0eda 10021@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
10022Bison declaration to specifying an additional parameter that
10023@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
10024for Pure Parsers}.
18b519c0 10025@end deffn
2a8d363a 10026
18b519c0 10027@deffn {Directive} %merge
676385e2 10028Bison declaration to assign a merging function to a rule. If there is a
fae437e8 10029reduce/reduce conflict with a rule having the same merging function, the
676385e2 10030function is applied to the two semantic values to get a single result.
c827f760 10031@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10032@end deffn
676385e2 10033
02975b9a 10034@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 10035Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 10036@end deffn
d8988b2f 10037
91d2c560 10038@ifset defaultprec
22fccf95
PE
10039@deffn {Directive} %no-default-prec
10040Do not assign a precedence to rules that lack an explicit @samp{%prec}
10041modifier. @xref{Contextual Precedence, ,Context-Dependent
10042Precedence}.
10043@end deffn
91d2c560 10044@end ifset
22fccf95 10045
18b519c0 10046@deffn {Directive} %no-lines
931c7513
RS
10047Bison declaration to avoid generating @code{#line} directives in the
10048parser file. @xref{Decl Summary}.
18b519c0 10049@end deffn
931c7513 10050
18b519c0 10051@deffn {Directive} %nonassoc
9d9b8b70 10052Bison declaration to assign nonassociativity to token(s).
bfa74976 10053@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10054@end deffn
bfa74976 10055
02975b9a 10056@deffn {Directive} %output "@var{file}"
72d2299c 10057Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 10058Summary}.
18b519c0 10059@end deffn
d8988b2f 10060
feeb0eda 10061@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
10062Bison declaration to specifying an additional parameter that
10063@code{yyparse} should accept. @xref{Parser Function,, The Parser
10064Function @code{yyparse}}.
18b519c0 10065@end deffn
2a8d363a 10066
18b519c0 10067@deffn {Directive} %prec
bfa74976
RS
10068Bison declaration to assign a precedence to a specific rule.
10069@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 10070@end deffn
bfa74976 10071
18b519c0 10072@deffn {Directive} %pure-parser
d9df47b6
JD
10073Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
10074for which Bison is more careful to warn about unreasonable usage.
18b519c0 10075@end deffn
bfa74976 10076
b50d2359 10077@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
10078Require version @var{version} or higher of Bison. @xref{Require Decl, ,
10079Require a Version of Bison}.
b50d2359
AD
10080@end deffn
10081
18b519c0 10082@deffn {Directive} %right
bfa74976
RS
10083Bison declaration to assign right associativity to token(s).
10084@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10085@end deffn
bfa74976 10086
e6e704dc
JD
10087@deffn {Directive} %skeleton
10088Specify the skeleton to use; usually for development.
10089@xref{Decl Summary}.
10090@end deffn
10091
18b519c0 10092@deffn {Directive} %start
704a47c4
AD
10093Bison declaration to specify the start symbol. @xref{Start Decl, ,The
10094Start-Symbol}.
18b519c0 10095@end deffn
bfa74976 10096
18b519c0 10097@deffn {Directive} %token
bfa74976
RS
10098Bison declaration to declare token(s) without specifying precedence.
10099@xref{Token Decl, ,Token Type Names}.
18b519c0 10100@end deffn
bfa74976 10101
18b519c0 10102@deffn {Directive} %token-table
931c7513
RS
10103Bison declaration to include a token name table in the parser file.
10104@xref{Decl Summary}.
18b519c0 10105@end deffn
931c7513 10106
18b519c0 10107@deffn {Directive} %type
704a47c4
AD
10108Bison declaration to declare nonterminals. @xref{Type Decl,
10109,Nonterminal Symbols}.
18b519c0 10110@end deffn
bfa74976 10111
dd8d9022
AD
10112@deffn {Symbol} $undefined
10113The predefined token onto which all undefined values returned by
10114@code{yylex} are mapped. It cannot be used in the grammar, rather, use
10115@code{error}.
10116@end deffn
10117
18b519c0 10118@deffn {Directive} %union
bfa74976
RS
10119Bison declaration to specify several possible data types for semantic
10120values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 10121@end deffn
bfa74976 10122
dd8d9022
AD
10123@deffn {Macro} YYABORT
10124Macro to pretend that an unrecoverable syntax error has occurred, by
10125making @code{yyparse} return 1 immediately. The error reporting
10126function @code{yyerror} is not called. @xref{Parser Function, ,The
10127Parser Function @code{yyparse}}.
8405b70c
PB
10128
10129For Java parsers, this functionality is invoked using @code{return YYABORT;}
10130instead.
dd8d9022 10131@end deffn
3ded9a63 10132
dd8d9022
AD
10133@deffn {Macro} YYACCEPT
10134Macro to pretend that a complete utterance of the language has been
10135read, by making @code{yyparse} return 0 immediately.
10136@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
10137
10138For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
10139instead.
dd8d9022 10140@end deffn
bfa74976 10141
dd8d9022 10142@deffn {Macro} YYBACKUP
742e4900 10143Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 10144token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10145@end deffn
bfa74976 10146
dd8d9022 10147@deffn {Variable} yychar
32c29292 10148External integer variable that contains the integer value of the
742e4900 10149lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
10150@code{yyparse}.) Error-recovery rule actions may examine this variable.
10151@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10152@end deffn
bfa74976 10153
dd8d9022
AD
10154@deffn {Variable} yyclearin
10155Macro used in error-recovery rule actions. It clears the previous
742e4900 10156lookahead token. @xref{Error Recovery}.
18b519c0 10157@end deffn
bfa74976 10158
dd8d9022
AD
10159@deffn {Macro} YYDEBUG
10160Macro to define to equip the parser with tracing code. @xref{Tracing,
10161,Tracing Your Parser}.
18b519c0 10162@end deffn
bfa74976 10163
dd8d9022
AD
10164@deffn {Variable} yydebug
10165External integer variable set to zero by default. If @code{yydebug}
10166is given a nonzero value, the parser will output information on input
10167symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 10168@end deffn
bfa74976 10169
dd8d9022
AD
10170@deffn {Macro} yyerrok
10171Macro to cause parser to recover immediately to its normal mode
10172after a syntax error. @xref{Error Recovery}.
10173@end deffn
10174
10175@deffn {Macro} YYERROR
10176Macro to pretend that a syntax error has just been detected: call
10177@code{yyerror} and then perform normal error recovery if possible
10178(@pxref{Error Recovery}), or (if recovery is impossible) make
10179@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
10180
10181For Java parsers, this functionality is invoked using @code{return YYERROR;}
10182instead.
dd8d9022
AD
10183@end deffn
10184
10185@deffn {Function} yyerror
10186User-supplied function to be called by @code{yyparse} on error.
10187@xref{Error Reporting, ,The Error
10188Reporting Function @code{yyerror}}.
10189@end deffn
10190
10191@deffn {Macro} YYERROR_VERBOSE
10192An obsolete macro that you define with @code{#define} in the prologue
10193to request verbose, specific error message strings
10194when @code{yyerror} is called. It doesn't matter what definition you
10195use for @code{YYERROR_VERBOSE}, just whether you define it. Using
10196@code{%error-verbose} is preferred.
10197@end deffn
10198
10199@deffn {Macro} YYINITDEPTH
10200Macro for specifying the initial size of the parser stack.
1a059451 10201@xref{Memory Management}.
dd8d9022
AD
10202@end deffn
10203
10204@deffn {Function} yylex
10205User-supplied lexical analyzer function, called with no arguments to get
10206the next token. @xref{Lexical, ,The Lexical Analyzer Function
10207@code{yylex}}.
10208@end deffn
10209
10210@deffn {Macro} YYLEX_PARAM
10211An obsolete macro for specifying an extra argument (or list of extra
32c29292 10212arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
10213macro is deprecated, and is supported only for Yacc like parsers.
10214@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
10215@end deffn
10216
10217@deffn {Variable} yylloc
10218External variable in which @code{yylex} should place the line and column
10219numbers associated with a token. (In a pure parser, it is a local
10220variable within @code{yyparse}, and its address is passed to
32c29292
JD
10221@code{yylex}.)
10222You can ignore this variable if you don't use the @samp{@@} feature in the
10223grammar actions.
10224@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 10225In semantic actions, it stores the location of the lookahead token.
32c29292 10226@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
10227@end deffn
10228
10229@deffn {Type} YYLTYPE
10230Data type of @code{yylloc}; by default, a structure with four
10231members. @xref{Location Type, , Data Types of Locations}.
10232@end deffn
10233
10234@deffn {Variable} yylval
10235External variable in which @code{yylex} should place the semantic
10236value associated with a token. (In a pure parser, it is a local
10237variable within @code{yyparse}, and its address is passed to
32c29292
JD
10238@code{yylex}.)
10239@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 10240In semantic actions, it stores the semantic value of the lookahead token.
32c29292 10241@xref{Actions, ,Actions}.
dd8d9022
AD
10242@end deffn
10243
10244@deffn {Macro} YYMAXDEPTH
1a059451
PE
10245Macro for specifying the maximum size of the parser stack. @xref{Memory
10246Management}.
dd8d9022
AD
10247@end deffn
10248
10249@deffn {Variable} yynerrs
8a2800e7 10250Global variable which Bison increments each time it reports a syntax error.
f4101aa6 10251(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 10252pure push parser, it is a member of yypstate.)
dd8d9022
AD
10253@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
10254@end deffn
10255
10256@deffn {Function} yyparse
10257The parser function produced by Bison; call this function to start
10258parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
10259@end deffn
10260
9987d1b3 10261@deffn {Function} yypstate_delete
f4101aa6 10262The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 10263call this function to delete the memory associated with a parser.
f4101aa6 10264@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 10265@code{yypstate_delete}}.
59da312b
JD
10266(The current push parsing interface is experimental and may evolve.
10267More user feedback will help to stabilize it.)
9987d1b3
JD
10268@end deffn
10269
10270@deffn {Function} yypstate_new
f4101aa6 10271The function to create a parser instance, produced by Bison in push mode;
9987d1b3 10272call this function to create a new parser.
f4101aa6 10273@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 10274@code{yypstate_new}}.
59da312b
JD
10275(The current push parsing interface is experimental and may evolve.
10276More user feedback will help to stabilize it.)
9987d1b3
JD
10277@end deffn
10278
10279@deffn {Function} yypull_parse
f4101aa6
AD
10280The parser function produced by Bison in push mode; call this function to
10281parse the rest of the input stream.
10282@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 10283@code{yypull_parse}}.
59da312b
JD
10284(The current push parsing interface is experimental and may evolve.
10285More user feedback will help to stabilize it.)
9987d1b3
JD
10286@end deffn
10287
10288@deffn {Function} yypush_parse
f4101aa6
AD
10289The parser function produced by Bison in push mode; call this function to
10290parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 10291@code{yypush_parse}}.
59da312b
JD
10292(The current push parsing interface is experimental and may evolve.
10293More user feedback will help to stabilize it.)
9987d1b3
JD
10294@end deffn
10295
dd8d9022
AD
10296@deffn {Macro} YYPARSE_PARAM
10297An obsolete macro for specifying the name of a parameter that
10298@code{yyparse} should accept. The use of this macro is deprecated, and
10299is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
10300Conventions for Pure Parsers}.
10301@end deffn
10302
10303@deffn {Macro} YYRECOVERING
02103984
PE
10304The expression @code{YYRECOVERING ()} yields 1 when the parser
10305is recovering from a syntax error, and 0 otherwise.
10306@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
10307@end deffn
10308
10309@deffn {Macro} YYSTACK_USE_ALLOCA
34a6c2d1
JD
10310Macro used to control the use of @code{alloca} when the
10311deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
10312the parser will use @code{malloc} to extend its stacks. If defined to
103131, the parser will use @code{alloca}. Values other than 0 and 1 are
10314reserved for future Bison extensions. If not defined,
10315@code{YYSTACK_USE_ALLOCA} defaults to 0.
10316
55289366 10317In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
10318limited stack and with unreliable stack-overflow checking, you should
10319set @code{YYMAXDEPTH} to a value that cannot possibly result in
10320unchecked stack overflow on any of your target hosts when
10321@code{alloca} is called. You can inspect the code that Bison
10322generates in order to determine the proper numeric values. This will
10323require some expertise in low-level implementation details.
dd8d9022
AD
10324@end deffn
10325
10326@deffn {Type} YYSTYPE
10327Data type of semantic values; @code{int} by default.
10328@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 10329@end deffn
bfa74976 10330
342b8b6e 10331@node Glossary
bfa74976
RS
10332@appendix Glossary
10333@cindex glossary
10334
10335@table @asis
34a6c2d1
JD
10336@item Accepting State
10337A state whose only action is the accept action.
10338The accepting state is thus a consistent state.
10339@xref{Understanding,,}.
10340
c827f760
PE
10341@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
10342Formal method of specifying context-free grammars originally proposed
10343by John Backus, and slightly improved by Peter Naur in his 1960-01-02
10344committee document contributing to what became the Algol 60 report.
10345@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 10346
34a6c2d1
JD
10347@item Consistent State
10348A state containing only one possible action.
620b5727 10349@xref{Decl Summary,,lr.default_reductions}.
34a6c2d1 10350
bfa74976
RS
10351@item Context-free grammars
10352Grammars specified as rules that can be applied regardless of context.
10353Thus, if there is a rule which says that an integer can be used as an
10354expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
10355permitted. @xref{Language and Grammar, ,Languages and Context-Free
10356Grammars}.
bfa74976 10357
620b5727
JD
10358@item Default Reduction
10359The reduction that a parser should perform if the current parser state
34a6c2d1 10360contains no other action for the lookahead token.
620b5727
JD
10361In permitted parser states, Bison declares the reduction with the
10362largest lookahead set to be the default reduction and removes that
10363lookahead set.
10364@xref{Decl Summary,,lr.default_reductions}.
34a6c2d1 10365
bfa74976
RS
10366@item Dynamic allocation
10367Allocation of memory that occurs during execution, rather than at
10368compile time or on entry to a function.
10369
10370@item Empty string
10371Analogous to the empty set in set theory, the empty string is a
10372character string of length zero.
10373
10374@item Finite-state stack machine
10375A ``machine'' that has discrete states in which it is said to exist at
10376each instant in time. As input to the machine is processed, the
10377machine moves from state to state as specified by the logic of the
10378machine. In the case of the parser, the input is the language being
10379parsed, and the states correspond to various stages in the grammar
c827f760 10380rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 10381
c827f760 10382@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 10383A parsing algorithm that can handle all context-free grammars, including those
34a6c2d1
JD
10384that are not @acronym{LR}(1). It resolves situations that Bison's
10385deterministic parsing
676385e2
PH
10386algorithm cannot by effectively splitting off multiple parsers, trying all
10387possible parsers, and discarding those that fail in the light of additional
c827f760
PE
10388right context. @xref{Generalized LR Parsing, ,Generalized
10389@acronym{LR} Parsing}.
676385e2 10390
bfa74976
RS
10391@item Grouping
10392A language construct that is (in general) grammatically divisible;
c827f760 10393for example, `expression' or `declaration' in C@.
bfa74976
RS
10394@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10395
34a6c2d1
JD
10396@item @acronym{IELR}(1)
10397A minimal @acronym{LR}(1) parser table generation algorithm.
10398That is, given any context-free grammar, @acronym{IELR}(1) generates
10399parser tables with the full language recognition power of canonical
10400@acronym{LR}(1) but with nearly the same number of parser states as
10401@acronym{LALR}(1).
10402This reduction in parser states is often an order of magnitude.
10403More importantly, because canonical @acronym{LR}(1)'s extra parser
10404states may contain duplicate conflicts in the case of
10405non-@acronym{LR}(1) grammars, the number of conflicts for
10406@acronym{IELR}(1) is often an order of magnitude less as well.
10407This can significantly reduce the complexity of developing of a grammar.
10408@xref{Decl Summary,,lr.type}.
10409
bfa74976
RS
10410@item Infix operator
10411An arithmetic operator that is placed between the operands on which it
10412performs some operation.
10413
10414@item Input stream
10415A continuous flow of data between devices or programs.
10416
10417@item Language construct
10418One of the typical usage schemas of the language. For example, one of
10419the constructs of the C language is the @code{if} statement.
10420@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10421
10422@item Left associativity
10423Operators having left associativity are analyzed from left to right:
10424@samp{a+b+c} first computes @samp{a+b} and then combines with
10425@samp{c}. @xref{Precedence, ,Operator Precedence}.
10426
10427@item Left recursion
89cab50d
AD
10428A rule whose result symbol is also its first component symbol; for
10429example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
10430Rules}.
bfa74976
RS
10431
10432@item Left-to-right parsing
10433Parsing a sentence of a language by analyzing it token by token from
c827f760 10434left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10435
10436@item Lexical analyzer (scanner)
10437A function that reads an input stream and returns tokens one by one.
10438@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
10439
10440@item Lexical tie-in
10441A flag, set by actions in the grammar rules, which alters the way
10442tokens are parsed. @xref{Lexical Tie-ins}.
10443
931c7513 10444@item Literal string token
14ded682 10445A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 10446
742e4900
JD
10447@item Lookahead token
10448A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 10449Tokens}.
bfa74976 10450
c827f760 10451@item @acronym{LALR}(1)
bfa74976 10452The class of context-free grammars that Bison (like most other parser
34a6c2d1
JD
10453generators) can handle by default; a subset of @acronym{LR}(1).
10454@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 10455
c827f760 10456@item @acronym{LR}(1)
bfa74976 10457The class of context-free grammars in which at most one token of
742e4900 10458lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
10459
10460@item Nonterminal symbol
10461A grammar symbol standing for a grammatical construct that can
10462be expressed through rules in terms of smaller constructs; in other
10463words, a construct that is not a token. @xref{Symbols}.
10464
bfa74976
RS
10465@item Parser
10466A function that recognizes valid sentences of a language by analyzing
10467the syntax structure of a set of tokens passed to it from a lexical
10468analyzer.
10469
10470@item Postfix operator
10471An arithmetic operator that is placed after the operands upon which it
10472performs some operation.
10473
10474@item Reduction
10475Replacing a string of nonterminals and/or terminals with a single
89cab50d 10476nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 10477Parser Algorithm}.
bfa74976
RS
10478
10479@item Reentrant
10480A reentrant subprogram is a subprogram which can be in invoked any
10481number of times in parallel, without interference between the various
10482invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
10483
10484@item Reverse polish notation
10485A language in which all operators are postfix operators.
10486
10487@item Right recursion
89cab50d
AD
10488A rule whose result symbol is also its last component symbol; for
10489example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
10490Rules}.
bfa74976
RS
10491
10492@item Semantics
10493In computer languages, the semantics are specified by the actions
10494taken for each instance of the language, i.e., the meaning of
10495each statement. @xref{Semantics, ,Defining Language Semantics}.
10496
10497@item Shift
10498A parser is said to shift when it makes the choice of analyzing
10499further input from the stream rather than reducing immediately some
c827f760 10500already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10501
10502@item Single-character literal
10503A single character that is recognized and interpreted as is.
10504@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
10505
10506@item Start symbol
10507The nonterminal symbol that stands for a complete valid utterance in
10508the language being parsed. The start symbol is usually listed as the
13863333 10509first nonterminal symbol in a language specification.
bfa74976
RS
10510@xref{Start Decl, ,The Start-Symbol}.
10511
10512@item Symbol table
10513A data structure where symbol names and associated data are stored
10514during parsing to allow for recognition and use of existing
10515information in repeated uses of a symbol. @xref{Multi-function Calc}.
10516
6e649e65
PE
10517@item Syntax error
10518An error encountered during parsing of an input stream due to invalid
10519syntax. @xref{Error Recovery}.
10520
bfa74976
RS
10521@item Token
10522A basic, grammatically indivisible unit of a language. The symbol
10523that describes a token in the grammar is a terminal symbol.
10524The input of the Bison parser is a stream of tokens which comes from
10525the lexical analyzer. @xref{Symbols}.
10526
10527@item Terminal symbol
89cab50d
AD
10528A grammar symbol that has no rules in the grammar and therefore is
10529grammatically indivisible. The piece of text it represents is a token.
10530@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
10531@end table
10532
342b8b6e 10533@node Copying This Manual
f2b5126e 10534@appendix Copying This Manual
f2b5126e
PB
10535@include fdl.texi
10536
342b8b6e 10537@node Index
bfa74976
RS
10538@unnumbered Index
10539
10540@printindex cp
10541
bfa74976 10542@bye
a06ea4aa
AD
10543
10544@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
10545@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
10546@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
10547@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
10548@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
f56274a8 10549@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex
a06ea4aa
AD
10550@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
10551@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
10552@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
10553@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
10554@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
10555@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
178e123e 10556@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln
a06ea4aa
AD
10557@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
10558@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
10559@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
10560@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
178e123e 10561@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs
a06ea4aa
AD
10562@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
10563@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
10564@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 10565@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa 10566@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
35fe0834 10567@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype
a06ea4aa 10568@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
35fe0834 10569@c LocalWords: infile ypp yxx outfile itemx tex leaderfill
a06ea4aa 10570@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
178e123e 10571@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST
34a6c2d1 10572@c LocalWords: YYSTACK DVI fdl printindex IELR