]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
doc: clean up naming of various Bison files.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
35430378
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
ea0a7676
JD
36Copyright @copyright{} 1988-1993, 1995, 1998-2011 Free Software
37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
35430378 41under the terms of the GNU Free Documentation License,
241ac701 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
35430378 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
35430378 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
35430378
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
35430378 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
35430378 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
35430378 91* Copying:: The GNU General Public License says
f56274a8 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f56274a8
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f56274a8
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f56274a8
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
9913d6e4 106* Invocation:: How to run Bison (to produce the parser implementation).
f56274a8
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
112* Index:: Cross-references to the text.
bfa74976 113
93dd49ab
PE
114@detailmenu
115 --- The Detailed Node Listing ---
bfa74976
RS
116
117The Concepts of Bison
118
f56274a8
DJ
119* Language and Grammar:: Languages and context-free grammars,
120 as mathematical ideas.
121* Grammar in Bison:: How we represent grammars for Bison's sake.
122* Semantic Values:: Each token or syntactic grouping can have
123 a semantic value (the value of an integer,
124 the name of an identifier, etc.).
125* Semantic Actions:: Each rule can have an action containing C code.
126* GLR Parsers:: Writing parsers for general context-free languages.
127* Locations Overview:: Tracking Locations.
128* Bison Parser:: What are Bison's input and output,
129 how is the output used?
130* Stages:: Stages in writing and running Bison grammars.
131* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 132
35430378 133Writing GLR Parsers
fa7e68c3 134
35430378
JD
135* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
136* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
f56274a8 137* GLR Semantic Actions:: Deferred semantic actions have special concerns.
35430378 138* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 139
bfa74976
RS
140Examples
141
f56274a8
DJ
142* RPN Calc:: Reverse polish notation calculator;
143 a first example with no operator precedence.
144* Infix Calc:: Infix (algebraic) notation calculator.
145 Operator precedence is introduced.
bfa74976 146* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 147* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
148* Multi-function Calc:: Calculator with memory and trig functions.
149 It uses multiple data-types for semantic values.
150* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
151
152Reverse Polish Notation Calculator
153
f56274a8
DJ
154* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
155* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
156* Rpcalc Lexer:: The lexical analyzer.
157* Rpcalc Main:: The controlling function.
158* Rpcalc Error:: The error reporting function.
159* Rpcalc Generate:: Running Bison on the grammar file.
160* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
161
162Grammar Rules for @code{rpcalc}
163
13863333
AD
164* Rpcalc Input::
165* Rpcalc Line::
166* Rpcalc Expr::
bfa74976 167
342b8b6e
AD
168Location Tracking Calculator: @code{ltcalc}
169
f56274a8
DJ
170* Ltcalc Declarations:: Bison and C declarations for ltcalc.
171* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
172* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 173
bfa74976
RS
174Multi-Function Calculator: @code{mfcalc}
175
f56274a8
DJ
176* Mfcalc Declarations:: Bison declarations for multi-function calculator.
177* Mfcalc Rules:: Grammar rules for the calculator.
178* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
179
180Bison Grammar Files
181
182* Grammar Outline:: Overall layout of the grammar file.
183* Symbols:: Terminal and nonterminal symbols.
184* Rules:: How to write grammar rules.
185* Recursion:: Writing recursive rules.
186* Semantics:: Semantic values and actions.
93dd49ab 187* Locations:: Locations and actions.
bfa74976
RS
188* Declarations:: All kinds of Bison declarations are described here.
189* Multiple Parsers:: Putting more than one Bison parser in one program.
190
191Outline of a Bison Grammar
192
f56274a8 193* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 194* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
195* Bison Declarations:: Syntax and usage of the Bison declarations section.
196* Grammar Rules:: Syntax and usage of the grammar rules section.
197* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
198
199Defining Language Semantics
200
201* Value Type:: Specifying one data type for all semantic values.
202* Multiple Types:: Specifying several alternative data types.
203* Actions:: An action is the semantic definition of a grammar rule.
204* Action Types:: Specifying data types for actions to operate on.
205* Mid-Rule Actions:: Most actions go at the end of a rule.
206 This says when, why and how to use the exceptional
207 action in the middle of a rule.
1f68dca5 208* Named References:: Using named references in actions.
bfa74976 209
93dd49ab
PE
210Tracking Locations
211
212* Location Type:: Specifying a data type for locations.
213* Actions and Locations:: Using locations in actions.
214* Location Default Action:: Defining a general way to compute locations.
215
bfa74976
RS
216Bison Declarations
217
b50d2359 218* Require Decl:: Requiring a Bison version.
bfa74976
RS
219* Token Decl:: Declaring terminal symbols.
220* Precedence Decl:: Declaring terminals with precedence and associativity.
221* Union Decl:: Declaring the set of all semantic value types.
222* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 223* Initial Action Decl:: Code run before parsing starts.
72f889cc 224* Destructor Decl:: Declaring how symbols are freed.
d6328241 225* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
226* Start Decl:: Specifying the start symbol.
227* Pure Decl:: Requesting a reentrant parser.
9987d1b3 228* Push Decl:: Requesting a push parser.
bfa74976
RS
229* Decl Summary:: Table of all Bison declarations.
230
231Parser C-Language Interface
232
f56274a8
DJ
233* Parser Function:: How to call @code{yyparse} and what it returns.
234* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
235* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
236* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
237* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
238* Lexical:: You must supply a function @code{yylex}
239 which reads tokens.
240* Error Reporting:: You must supply a function @code{yyerror}.
241* Action Features:: Special features for use in actions.
242* Internationalization:: How to let the parser speak in the user's
243 native language.
bfa74976
RS
244
245The Lexical Analyzer Function @code{yylex}
246
247* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
248* Token Values:: How @code{yylex} must return the semantic value
249 of the token it has read.
250* Token Locations:: How @code{yylex} must return the text location
251 (line number, etc.) of the token, if the
252 actions want that.
253* Pure Calling:: How the calling convention differs in a pure parser
254 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 255
13863333 256The Bison Parser Algorithm
bfa74976 257
742e4900 258* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
259* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
260* Precedence:: Operator precedence works by resolving conflicts.
261* Contextual Precedence:: When an operator's precedence depends on context.
262* Parser States:: The parser is a finite-state-machine with stack.
263* Reduce/Reduce:: When two rules are applicable in the same situation.
f56274a8 264* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 265* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 266* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
267
268Operator Precedence
269
270* Why Precedence:: An example showing why precedence is needed.
271* Using Precedence:: How to specify precedence in Bison grammars.
272* Precedence Examples:: How these features are used in the previous example.
273* How Precedence:: How they work.
274
275Handling Context Dependencies
276
277* Semantic Tokens:: Token parsing can depend on the semantic context.
278* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
279* Tie-in Recovery:: Lexical tie-ins have implications for how
280 error recovery rules must be written.
281
93dd49ab 282Debugging Your Parser
ec3bc396
AD
283
284* Understanding:: Understanding the structure of your parser.
285* Tracing:: Tracing the execution of your parser.
286
bfa74976
RS
287Invoking Bison
288
13863333 289* Bison Options:: All the options described in detail,
c827f760 290 in alphabetical order by short options.
bfa74976 291* Option Cross Key:: Alphabetical list of long options.
93dd49ab 292* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 293
8405b70c 294Parsers Written In Other Languages
12545799
AD
295
296* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 297* Java Parsers:: The interface to generate Java parser classes
12545799
AD
298
299C++ Parsers
300
301* C++ Bison Interface:: Asking for C++ parser generation
302* C++ Semantic Values:: %union vs. C++
303* C++ Location Values:: The position and location classes
304* C++ Parser Interface:: Instantiating and running the parser
305* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 306* A Complete C++ Example:: Demonstrating their use
12545799
AD
307
308A Complete C++ Example
309
310* Calc++ --- C++ Calculator:: The specifications
311* Calc++ Parsing Driver:: An active parsing context
312* Calc++ Parser:: A parser class
313* Calc++ Scanner:: A pure C++ Flex scanner
314* Calc++ Top Level:: Conducting the band
315
8405b70c
PB
316Java Parsers
317
f56274a8
DJ
318* Java Bison Interface:: Asking for Java parser generation
319* Java Semantic Values:: %type and %token vs. Java
320* Java Location Values:: The position and location classes
321* Java Parser Interface:: Instantiating and running the parser
322* Java Scanner Interface:: Specifying the scanner for the parser
323* Java Action Features:: Special features for use in actions
324* Java Differences:: Differences between C/C++ and Java Grammars
325* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 326
d1a1114f
AD
327Frequently Asked Questions
328
f56274a8
DJ
329* Memory Exhausted:: Breaking the Stack Limits
330* How Can I Reset the Parser:: @code{yyparse} Keeps some State
331* Strings are Destroyed:: @code{yylval} Loses Track of Strings
332* Implementing Gotos/Loops:: Control Flow in the Calculator
333* Multiple start-symbols:: Factoring closely related grammars
35430378 334* Secure? Conform?:: Is Bison POSIX safe?
f56274a8
DJ
335* I can't build Bison:: Troubleshooting
336* Where can I find help?:: Troubleshouting
337* Bug Reports:: Troublereporting
338* More Languages:: Parsers in C++, Java, and so on
339* Beta Testing:: Experimenting development versions
340* Mailing Lists:: Meeting other Bison users
d1a1114f 341
f2b5126e
PB
342Copying This Manual
343
f56274a8 344* Copying This Manual:: License for copying this manual.
f2b5126e 345
342b8b6e 346@end detailmenu
bfa74976
RS
347@end menu
348
342b8b6e 349@node Introduction
bfa74976
RS
350@unnumbered Introduction
351@cindex introduction
352
6077da58 353@dfn{Bison} is a general-purpose parser generator that converts an
d89e48b3
JD
354annotated context-free grammar into a deterministic LR or generalized
355LR (GLR) parser employing LALR(1) parser tables. As an experimental
356feature, Bison can also generate IELR(1) or canonical LR(1) parser
357tables. Once you are proficient with Bison, you can use it to develop
358a wide range of language parsers, from those used in simple desk
359calculators to complex programming languages.
360
361Bison is upward compatible with Yacc: all properly-written Yacc
362grammars ought to work with Bison with no change. Anyone familiar
363with Yacc should be able to use Bison with little trouble. You need
364to be fluent in C or C++ programming in order to use Bison or to
365understand this manual. Java is also supported as an experimental
366feature.
367
368We begin with tutorial chapters that explain the basic concepts of
369using Bison and show three explained examples, each building on the
370last. If you don't know Bison or Yacc, start by reading these
371chapters. Reference chapters follow, which describe specific aspects
372of Bison in detail.
bfa74976 373
840341d6
JD
374Bison was written originally by Robert Corbett. Richard Stallman made
375it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
376added multi-character string literals and other features. Since then,
377Bison has grown more robust and evolved many other new features thanks
378to the hard work of a long list of volunteers. For details, see the
379@file{THANKS} and @file{ChangeLog} files included in the Bison
380distribution.
931c7513 381
df1af54c 382This edition corresponds to version @value{VERSION} of Bison.
bfa74976 383
342b8b6e 384@node Conditions
bfa74976
RS
385@unnumbered Conditions for Using Bison
386
193d7c70
PE
387The distribution terms for Bison-generated parsers permit using the
388parsers in nonfree programs. Before Bison version 2.2, these extra
35430378 389permissions applied only when Bison was generating LALR(1)
193d7c70 390parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 391parsers could be used only in programs that were free software.
a31239f1 392
35430378 393The other GNU programming tools, such as the GNU C
c827f760 394compiler, have never
9ecbd125 395had such a requirement. They could always be used for nonfree
a31239f1
RS
396software. The reason Bison was different was not due to a special
397policy decision; it resulted from applying the usual General Public
398License to all of the Bison source code.
399
9913d6e4
JD
400The main output of the Bison utility---the Bison parser implementation
401file---contains a verbatim copy of a sizable piece of Bison, which is
402the code for the parser's implementation. (The actions from your
403grammar are inserted into this implementation at one point, but most
404of the rest of the implementation is not changed.) When we applied
405the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
406the effect was to restrict the use of Bison output to free software.
407
408We didn't change the terms because of sympathy for people who want to
409make software proprietary. @strong{Software should be free.} But we
410concluded that limiting Bison's use to free software was doing little to
411encourage people to make other software free. So we decided to make the
412practical conditions for using Bison match the practical conditions for
35430378 413using the other GNU tools.
bfa74976 414
193d7c70
PE
415This exception applies when Bison is generating code for a parser.
416You can tell whether the exception applies to a Bison output file by
417inspecting the file for text beginning with ``As a special
418exception@dots{}''. The text spells out the exact terms of the
419exception.
262aa8dd 420
f16b0819
PE
421@node Copying
422@unnumbered GNU GENERAL PUBLIC LICENSE
423@include gpl-3.0.texi
bfa74976 424
342b8b6e 425@node Concepts
bfa74976
RS
426@chapter The Concepts of Bison
427
428This chapter introduces many of the basic concepts without which the
429details of Bison will not make sense. If you do not already know how to
430use Bison or Yacc, we suggest you start by reading this chapter carefully.
431
432@menu
f56274a8
DJ
433* Language and Grammar:: Languages and context-free grammars,
434 as mathematical ideas.
435* Grammar in Bison:: How we represent grammars for Bison's sake.
436* Semantic Values:: Each token or syntactic grouping can have
437 a semantic value (the value of an integer,
438 the name of an identifier, etc.).
439* Semantic Actions:: Each rule can have an action containing C code.
440* GLR Parsers:: Writing parsers for general context-free languages.
441* Locations Overview:: Tracking Locations.
442* Bison Parser:: What are Bison's input and output,
443 how is the output used?
444* Stages:: Stages in writing and running Bison grammars.
445* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
446@end menu
447
342b8b6e 448@node Language and Grammar
bfa74976
RS
449@section Languages and Context-Free Grammars
450
bfa74976
RS
451@cindex context-free grammar
452@cindex grammar, context-free
453In order for Bison to parse a language, it must be described by a
454@dfn{context-free grammar}. This means that you specify one or more
455@dfn{syntactic groupings} and give rules for constructing them from their
456parts. For example, in the C language, one kind of grouping is called an
457`expression'. One rule for making an expression might be, ``An expression
458can be made of a minus sign and another expression''. Another would be,
459``An expression can be an integer''. As you can see, rules are often
460recursive, but there must be at least one rule which leads out of the
461recursion.
462
35430378 463@cindex BNF
bfa74976
RS
464@cindex Backus-Naur form
465The most common formal system for presenting such rules for humans to read
35430378 466is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 467order to specify the language Algol 60. Any grammar expressed in
35430378
JD
468BNF is a context-free grammar. The input to Bison is
469essentially machine-readable BNF.
bfa74976 470
35430378
JD
471@cindex LALR(1) grammars
472@cindex IELR(1) grammars
473@cindex LR(1) grammars
34a6c2d1
JD
474There are various important subclasses of context-free grammars.
475Although it can handle almost all context-free grammars, Bison is
35430378 476optimized for what are called LR(1) grammars.
34a6c2d1
JD
477In brief, in these grammars, it must be possible to tell how to parse
478any portion of an input string with just a single token of lookahead.
479For historical reasons, Bison by default is limited by the additional
35430378 480restrictions of LALR(1), which is hard to explain simply.
c827f760
PE
481@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
482more information on this.
3b1977ea 483As an experimental feature, you can escape these additional restrictions by
35430378 484requesting IELR(1) or canonical LR(1) parser tables.
34a6c2d1 485@xref{Decl Summary,,lr.type}, to learn how.
bfa74976 486
35430378
JD
487@cindex GLR parsing
488@cindex generalized LR (GLR) parsing
676385e2 489@cindex ambiguous grammars
9d9b8b70 490@cindex nondeterministic parsing
9501dc6e 491
35430378 492Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
493roughly that the next grammar rule to apply at any point in the input is
494uniquely determined by the preceding input and a fixed, finite portion
742e4900 495(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 496grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 497apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 498grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 499lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 500With the proper declarations, Bison is also able to parse these more
35430378
JD
501general context-free grammars, using a technique known as GLR
502parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
503are able to handle any context-free grammar for which the number of
504possible parses of any given string is finite.
676385e2 505
bfa74976
RS
506@cindex symbols (abstract)
507@cindex token
508@cindex syntactic grouping
509@cindex grouping, syntactic
9501dc6e
AD
510In the formal grammatical rules for a language, each kind of syntactic
511unit or grouping is named by a @dfn{symbol}. Those which are built by
512grouping smaller constructs according to grammatical rules are called
bfa74976
RS
513@dfn{nonterminal symbols}; those which can't be subdivided are called
514@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
515corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 516corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
517
518We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
519nonterminal, mean. The tokens of C are identifiers, constants (numeric
520and string), and the various keywords, arithmetic operators and
521punctuation marks. So the terminal symbols of a grammar for C include
522`identifier', `number', `string', plus one symbol for each keyword,
523operator or punctuation mark: `if', `return', `const', `static', `int',
524`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
525(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
526lexicography, not grammar.)
527
528Here is a simple C function subdivided into tokens:
529
9edcd895
AD
530@ifinfo
531@example
532int /* @r{keyword `int'} */
14d4662b 533square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
534 @r{identifier, close-paren} */
535@{ /* @r{open-brace} */
aa08666d
AD
536 return x * x; /* @r{keyword `return', identifier, asterisk,}
537 @r{identifier, semicolon} */
9edcd895
AD
538@} /* @r{close-brace} */
539@end example
540@end ifinfo
541@ifnotinfo
bfa74976
RS
542@example
543int /* @r{keyword `int'} */
14d4662b 544square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 545@{ /* @r{open-brace} */
9edcd895 546 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
547@} /* @r{close-brace} */
548@end example
9edcd895 549@end ifnotinfo
bfa74976
RS
550
551The syntactic groupings of C include the expression, the statement, the
552declaration, and the function definition. These are represented in the
553grammar of C by nonterminal symbols `expression', `statement',
554`declaration' and `function definition'. The full grammar uses dozens of
555additional language constructs, each with its own nonterminal symbol, in
556order to express the meanings of these four. The example above is a
557function definition; it contains one declaration, and one statement. In
558the statement, each @samp{x} is an expression and so is @samp{x * x}.
559
560Each nonterminal symbol must have grammatical rules showing how it is made
561out of simpler constructs. For example, one kind of C statement is the
562@code{return} statement; this would be described with a grammar rule which
563reads informally as follows:
564
565@quotation
566A `statement' can be made of a `return' keyword, an `expression' and a
567`semicolon'.
568@end quotation
569
570@noindent
571There would be many other rules for `statement', one for each kind of
572statement in C.
573
574@cindex start symbol
575One nonterminal symbol must be distinguished as the special one which
576defines a complete utterance in the language. It is called the @dfn{start
577symbol}. In a compiler, this means a complete input program. In the C
578language, the nonterminal symbol `sequence of definitions and declarations'
579plays this role.
580
581For example, @samp{1 + 2} is a valid C expression---a valid part of a C
582program---but it is not valid as an @emph{entire} C program. In the
583context-free grammar of C, this follows from the fact that `expression' is
584not the start symbol.
585
586The Bison parser reads a sequence of tokens as its input, and groups the
587tokens using the grammar rules. If the input is valid, the end result is
588that the entire token sequence reduces to a single grouping whose symbol is
589the grammar's start symbol. If we use a grammar for C, the entire input
590must be a `sequence of definitions and declarations'. If not, the parser
591reports a syntax error.
592
342b8b6e 593@node Grammar in Bison
bfa74976
RS
594@section From Formal Rules to Bison Input
595@cindex Bison grammar
596@cindex grammar, Bison
597@cindex formal grammar
598
599A formal grammar is a mathematical construct. To define the language
600for Bison, you must write a file expressing the grammar in Bison syntax:
601a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
602
603A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 604as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
605in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
606
607The Bison representation for a terminal symbol is also called a @dfn{token
608type}. Token types as well can be represented as C-like identifiers. By
609convention, these identifiers should be upper case to distinguish them from
610nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
611@code{RETURN}. A terminal symbol that stands for a particular keyword in
612the language should be named after that keyword converted to upper case.
613The terminal symbol @code{error} is reserved for error recovery.
931c7513 614@xref{Symbols}.
bfa74976
RS
615
616A terminal symbol can also be represented as a character literal, just like
617a C character constant. You should do this whenever a token is just a
618single character (parenthesis, plus-sign, etc.): use that same character in
619a literal as the terminal symbol for that token.
620
931c7513
RS
621A third way to represent a terminal symbol is with a C string constant
622containing several characters. @xref{Symbols}, for more information.
623
bfa74976
RS
624The grammar rules also have an expression in Bison syntax. For example,
625here is the Bison rule for a C @code{return} statement. The semicolon in
626quotes is a literal character token, representing part of the C syntax for
627the statement; the naked semicolon, and the colon, are Bison punctuation
628used in every rule.
629
630@example
631stmt: RETURN expr ';'
632 ;
633@end example
634
635@noindent
636@xref{Rules, ,Syntax of Grammar Rules}.
637
342b8b6e 638@node Semantic Values
bfa74976
RS
639@section Semantic Values
640@cindex semantic value
641@cindex value, semantic
642
643A formal grammar selects tokens only by their classifications: for example,
644if a rule mentions the terminal symbol `integer constant', it means that
645@emph{any} integer constant is grammatically valid in that position. The
646precise value of the constant is irrelevant to how to parse the input: if
647@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 648grammatical.
bfa74976
RS
649
650But the precise value is very important for what the input means once it is
651parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6523989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
653has both a token type and a @dfn{semantic value}. @xref{Semantics,
654,Defining Language Semantics},
bfa74976
RS
655for details.
656
657The token type is a terminal symbol defined in the grammar, such as
658@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
659you need to know to decide where the token may validly appear and how to
660group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 661except their types.
bfa74976
RS
662
663The semantic value has all the rest of the information about the
664meaning of the token, such as the value of an integer, or the name of an
665identifier. (A token such as @code{','} which is just punctuation doesn't
666need to have any semantic value.)
667
668For example, an input token might be classified as token type
669@code{INTEGER} and have the semantic value 4. Another input token might
670have the same token type @code{INTEGER} but value 3989. When a grammar
671rule says that @code{INTEGER} is allowed, either of these tokens is
672acceptable because each is an @code{INTEGER}. When the parser accepts the
673token, it keeps track of the token's semantic value.
674
675Each grouping can also have a semantic value as well as its nonterminal
676symbol. For example, in a calculator, an expression typically has a
677semantic value that is a number. In a compiler for a programming
678language, an expression typically has a semantic value that is a tree
679structure describing the meaning of the expression.
680
342b8b6e 681@node Semantic Actions
bfa74976
RS
682@section Semantic Actions
683@cindex semantic actions
684@cindex actions, semantic
685
686In order to be useful, a program must do more than parse input; it must
687also produce some output based on the input. In a Bison grammar, a grammar
688rule can have an @dfn{action} made up of C statements. Each time the
689parser recognizes a match for that rule, the action is executed.
690@xref{Actions}.
13863333 691
bfa74976
RS
692Most of the time, the purpose of an action is to compute the semantic value
693of the whole construct from the semantic values of its parts. For example,
694suppose we have a rule which says an expression can be the sum of two
695expressions. When the parser recognizes such a sum, each of the
696subexpressions has a semantic value which describes how it was built up.
697The action for this rule should create a similar sort of value for the
698newly recognized larger expression.
699
700For example, here is a rule that says an expression can be the sum of
701two subexpressions:
702
703@example
704expr: expr '+' expr @{ $$ = $1 + $3; @}
705 ;
706@end example
707
708@noindent
709The action says how to produce the semantic value of the sum expression
710from the values of the two subexpressions.
711
676385e2 712@node GLR Parsers
35430378
JD
713@section Writing GLR Parsers
714@cindex GLR parsing
715@cindex generalized LR (GLR) parsing
676385e2
PH
716@findex %glr-parser
717@cindex conflicts
718@cindex shift/reduce conflicts
fa7e68c3 719@cindex reduce/reduce conflicts
676385e2 720
34a6c2d1 721In some grammars, Bison's deterministic
35430378 722LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
723certain grammar rule at a given point. That is, it may not be able to
724decide (on the basis of the input read so far) which of two possible
725reductions (applications of a grammar rule) applies, or whether to apply
726a reduction or read more of the input and apply a reduction later in the
727input. These are known respectively as @dfn{reduce/reduce} conflicts
728(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
729(@pxref{Shift/Reduce}).
730
35430378 731To use a grammar that is not easily modified to be LR(1), a
9501dc6e 732more general parsing algorithm is sometimes necessary. If you include
676385e2 733@code{%glr-parser} among the Bison declarations in your file
35430378
JD
734(@pxref{Grammar Outline}), the result is a Generalized LR
735(GLR) parser. These parsers handle Bison grammars that
9501dc6e 736contain no unresolved conflicts (i.e., after applying precedence
34a6c2d1 737declarations) identically to deterministic parsers. However, when
9501dc6e 738faced with unresolved shift/reduce and reduce/reduce conflicts,
35430378 739GLR parsers use the simple expedient of doing both,
9501dc6e
AD
740effectively cloning the parser to follow both possibilities. Each of
741the resulting parsers can again split, so that at any given time, there
742can be any number of possible parses being explored. The parsers
676385e2
PH
743proceed in lockstep; that is, all of them consume (shift) a given input
744symbol before any of them proceed to the next. Each of the cloned
745parsers eventually meets one of two possible fates: either it runs into
746a parsing error, in which case it simply vanishes, or it merges with
747another parser, because the two of them have reduced the input to an
748identical set of symbols.
749
750During the time that there are multiple parsers, semantic actions are
751recorded, but not performed. When a parser disappears, its recorded
752semantic actions disappear as well, and are never performed. When a
753reduction makes two parsers identical, causing them to merge, Bison
754records both sets of semantic actions. Whenever the last two parsers
755merge, reverting to the single-parser case, Bison resolves all the
756outstanding actions either by precedences given to the grammar rules
757involved, or by performing both actions, and then calling a designated
758user-defined function on the resulting values to produce an arbitrary
759merged result.
760
fa7e68c3 761@menu
35430378
JD
762* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
763* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
f56274a8 764* GLR Semantic Actions:: Deferred semantic actions have special concerns.
35430378 765* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
766@end menu
767
768@node Simple GLR Parsers
35430378
JD
769@subsection Using GLR on Unambiguous Grammars
770@cindex GLR parsing, unambiguous grammars
771@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
772@findex %glr-parser
773@findex %expect-rr
774@cindex conflicts
775@cindex reduce/reduce conflicts
776@cindex shift/reduce conflicts
777
35430378
JD
778In the simplest cases, you can use the GLR algorithm
779to parse grammars that are unambiguous but fail to be LR(1).
34a6c2d1 780Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
781
782Consider a problem that
783arises in the declaration of enumerated and subrange types in the
784programming language Pascal. Here are some examples:
785
786@example
787type subrange = lo .. hi;
788type enum = (a, b, c);
789@end example
790
791@noindent
792The original language standard allows only numeric
793literals and constant identifiers for the subrange bounds (@samp{lo}
35430378 794and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
79510206) and many other
796Pascal implementations allow arbitrary expressions there. This gives
797rise to the following situation, containing a superfluous pair of
798parentheses:
799
800@example
801type subrange = (a) .. b;
802@end example
803
804@noindent
805Compare this to the following declaration of an enumerated
806type with only one value:
807
808@example
809type enum = (a);
810@end example
811
812@noindent
813(These declarations are contrived, but they are syntactically
814valid, and more-complicated cases can come up in practical programs.)
815
816These two declarations look identical until the @samp{..} token.
35430378 817With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
818possible to decide between the two forms when the identifier
819@samp{a} is parsed. It is, however, desirable
820for a parser to decide this, since in the latter case
821@samp{a} must become a new identifier to represent the enumeration
822value, while in the former case @samp{a} must be evaluated with its
823current meaning, which may be a constant or even a function call.
824
825You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
826to be resolved later, but this typically requires substantial
827contortions in both semantic actions and large parts of the
828grammar, where the parentheses are nested in the recursive rules for
829expressions.
830
831You might think of using the lexer to distinguish between the two
832forms by returning different tokens for currently defined and
833undefined identifiers. But if these declarations occur in a local
834scope, and @samp{a} is defined in an outer scope, then both forms
835are possible---either locally redefining @samp{a}, or using the
836value of @samp{a} from the outer scope. So this approach cannot
837work.
838
e757bb10 839A simple solution to this problem is to declare the parser to
35430378
JD
840use the GLR algorithm.
841When the GLR parser reaches the critical state, it
fa7e68c3
PE
842merely splits into two branches and pursues both syntax rules
843simultaneously. Sooner or later, one of them runs into a parsing
844error. If there is a @samp{..} token before the next
845@samp{;}, the rule for enumerated types fails since it cannot
846accept @samp{..} anywhere; otherwise, the subrange type rule
847fails since it requires a @samp{..} token. So one of the branches
848fails silently, and the other one continues normally, performing
849all the intermediate actions that were postponed during the split.
850
851If the input is syntactically incorrect, both branches fail and the parser
852reports a syntax error as usual.
853
854The effect of all this is that the parser seems to ``guess'' the
855correct branch to take, or in other words, it seems to use more
35430378
JD
856lookahead than the underlying LR(1) algorithm actually allows
857for. In this example, LR(2) would suffice, but also some cases
858that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 859
35430378 860In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
861and the current Bison parser even takes exponential time and space
862for some grammars. In practice, this rarely happens, and for many
863grammars it is possible to prove that it cannot happen.
864The present example contains only one conflict between two
865rules, and the type-declaration context containing the conflict
866cannot be nested. So the number of
867branches that can exist at any time is limited by the constant 2,
868and the parsing time is still linear.
869
870Here is a Bison grammar corresponding to the example above. It
871parses a vastly simplified form of Pascal type declarations.
872
873@example
874%token TYPE DOTDOT ID
875
876@group
877%left '+' '-'
878%left '*' '/'
879@end group
880
881%%
882
883@group
884type_decl : TYPE ID '=' type ';'
885 ;
886@end group
887
888@group
889type : '(' id_list ')'
890 | expr DOTDOT expr
891 ;
892@end group
893
894@group
895id_list : ID
896 | id_list ',' ID
897 ;
898@end group
899
900@group
901expr : '(' expr ')'
902 | expr '+' expr
903 | expr '-' expr
904 | expr '*' expr
905 | expr '/' expr
906 | ID
907 ;
908@end group
909@end example
910
35430378 911When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
912about one reduce/reduce conflict. In the conflicting situation the
913parser chooses one of the alternatives, arbitrarily the one
914declared first. Therefore the following correct input is not
915recognized:
916
917@example
918type t = (a) .. b;
919@end example
920
35430378 921The parser can be turned into a GLR parser, while also telling Bison
9913d6e4
JD
922to be silent about the one known reduce/reduce conflict, by adding
923these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
924@samp{%%}):
925
926@example
927%glr-parser
928%expect-rr 1
929@end example
930
931@noindent
932No change in the grammar itself is required. Now the
933parser recognizes all valid declarations, according to the
934limited syntax above, transparently. In fact, the user does not even
935notice when the parser splits.
936
35430378 937So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
938almost without disadvantages. Even in simple cases like this, however,
939there are at least two potential problems to beware. First, always
35430378
JD
940analyze the conflicts reported by Bison to make sure that GLR
941splitting is only done where it is intended. A GLR parser
f8e1c9e5 942splitting inadvertently may cause problems less obvious than an
35430378 943LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
944conflict. Second, consider interactions with the lexer (@pxref{Semantic
945Tokens}) with great care. Since a split parser consumes tokens without
946performing any actions during the split, the lexer cannot obtain
947information via parser actions. Some cases of lexer interactions can be
35430378 948eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
949lexer to the parser. You must check the remaining cases for
950correctness.
951
952In our example, it would be safe for the lexer to return tokens based on
953their current meanings in some symbol table, because no new symbols are
954defined in the middle of a type declaration. Though it is possible for
955a parser to define the enumeration constants as they are parsed, before
956the type declaration is completed, it actually makes no difference since
957they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
958
959@node Merging GLR Parses
35430378
JD
960@subsection Using GLR to Resolve Ambiguities
961@cindex GLR parsing, ambiguous grammars
962@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
963@findex %dprec
964@findex %merge
965@cindex conflicts
966@cindex reduce/reduce conflicts
967
2a8d363a 968Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
969
970@example
971%@{
38a92d50
PE
972 #include <stdio.h>
973 #define YYSTYPE char const *
974 int yylex (void);
975 void yyerror (char const *);
676385e2
PH
976%@}
977
978%token TYPENAME ID
979
980%right '='
981%left '+'
982
983%glr-parser
984
985%%
986
fae437e8 987prog :
676385e2
PH
988 | prog stmt @{ printf ("\n"); @}
989 ;
990
991stmt : expr ';' %dprec 1
992 | decl %dprec 2
993 ;
994
2a8d363a 995expr : ID @{ printf ("%s ", $$); @}
fae437e8 996 | TYPENAME '(' expr ')'
2a8d363a
AD
997 @{ printf ("%s <cast> ", $1); @}
998 | expr '+' expr @{ printf ("+ "); @}
999 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
1000 ;
1001
fae437e8 1002decl : TYPENAME declarator ';'
2a8d363a 1003 @{ printf ("%s <declare> ", $1); @}
676385e2 1004 | TYPENAME declarator '=' expr ';'
2a8d363a 1005 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1006 ;
1007
2a8d363a 1008declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1009 | '(' declarator ')'
1010 ;
1011@end example
1012
1013@noindent
1014This models a problematic part of the C++ grammar---the ambiguity between
1015certain declarations and statements. For example,
1016
1017@example
1018T (x) = y+z;
1019@end example
1020
1021@noindent
1022parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1023(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1024@samp{x} as an @code{ID}).
676385e2 1025Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1026@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1027time it encounters @code{x} in the example above. Since this is a
35430378 1028GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1029each choice of resolving the reduce/reduce conflict.
1030Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1031however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1032ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1033the other reduces @code{stmt : decl}, after which both parsers are in an
1034identical state: they've seen @samp{prog stmt} and have the same unprocessed
1035input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1036
35430378 1037At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1038grammar of how to choose between the competing parses.
1039In the example above, the two @code{%dprec}
e757bb10 1040declarations specify that Bison is to give precedence
fa7e68c3 1041to the parse that interprets the example as a
676385e2
PH
1042@code{decl}, which implies that @code{x} is a declarator.
1043The parser therefore prints
1044
1045@example
fae437e8 1046"x" y z + T <init-declare>
676385e2
PH
1047@end example
1048
fa7e68c3
PE
1049The @code{%dprec} declarations only come into play when more than one
1050parse survives. Consider a different input string for this parser:
676385e2
PH
1051
1052@example
1053T (x) + y;
1054@end example
1055
1056@noindent
35430378 1057This is another example of using GLR to parse an unambiguous
fa7e68c3 1058construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1059Here, there is no ambiguity (this cannot be parsed as a declaration).
1060However, at the time the Bison parser encounters @code{x}, it does not
1061have enough information to resolve the reduce/reduce conflict (again,
1062between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1063case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1064into two, one assuming that @code{x} is an @code{expr}, and the other
1065assuming @code{x} is a @code{declarator}. The second of these parsers
1066then vanishes when it sees @code{+}, and the parser prints
1067
1068@example
fae437e8 1069x T <cast> y +
676385e2
PH
1070@end example
1071
1072Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1073the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1074actions of the two possible parsers, rather than choosing one over the
1075other. To do so, you could change the declaration of @code{stmt} as
1076follows:
1077
1078@example
1079stmt : expr ';' %merge <stmtMerge>
1080 | decl %merge <stmtMerge>
1081 ;
1082@end example
1083
1084@noindent
676385e2
PH
1085and define the @code{stmtMerge} function as:
1086
1087@example
38a92d50
PE
1088static YYSTYPE
1089stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1090@{
1091 printf ("<OR> ");
1092 return "";
1093@}
1094@end example
1095
1096@noindent
1097with an accompanying forward declaration
1098in the C declarations at the beginning of the file:
1099
1100@example
1101%@{
38a92d50 1102 #define YYSTYPE char const *
676385e2
PH
1103 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1104%@}
1105@end example
1106
1107@noindent
fa7e68c3
PE
1108With these declarations, the resulting parser parses the first example
1109as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1110
1111@example
fae437e8 1112"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1113@end example
1114
fa7e68c3 1115Bison requires that all of the
e757bb10 1116productions that participate in any particular merge have identical
fa7e68c3
PE
1117@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1118and the parser will report an error during any parse that results in
1119the offending merge.
9501dc6e 1120
32c29292
JD
1121@node GLR Semantic Actions
1122@subsection GLR Semantic Actions
1123
1124@cindex deferred semantic actions
1125By definition, a deferred semantic action is not performed at the same time as
1126the associated reduction.
1127This raises caveats for several Bison features you might use in a semantic
35430378 1128action in a GLR parser.
32c29292
JD
1129
1130@vindex yychar
35430378 1131@cindex GLR parsers and @code{yychar}
32c29292 1132@vindex yylval
35430378 1133@cindex GLR parsers and @code{yylval}
32c29292 1134@vindex yylloc
35430378 1135@cindex GLR parsers and @code{yylloc}
32c29292 1136In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1137the lookahead token present at the time of the associated reduction.
32c29292
JD
1138After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1139you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1140lookahead token's semantic value and location, if any.
32c29292
JD
1141In a nondeferred semantic action, you can also modify any of these variables to
1142influence syntax analysis.
742e4900 1143@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1144
1145@findex yyclearin
35430378 1146@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1147In a deferred semantic action, it's too late to influence syntax analysis.
1148In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1149shallow copies of the values they had at the time of the associated reduction.
1150For this reason alone, modifying them is dangerous.
1151Moreover, the result of modifying them is undefined and subject to change with
1152future versions of Bison.
1153For example, if a semantic action might be deferred, you should never write it
1154to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1155memory referenced by @code{yylval}.
1156
1157@findex YYERROR
35430378 1158@cindex GLR parsers and @code{YYERROR}
32c29292 1159Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1160(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1161initiate error recovery.
35430378 1162During deterministic GLR operation, the effect of @code{YYERROR} is
34a6c2d1 1163the same as its effect in a deterministic parser.
32c29292
JD
1164In a deferred semantic action, its effect is undefined.
1165@c The effect is probably a syntax error at the split point.
1166
8710fc41 1167Also, see @ref{Location Default Action, ,Default Action for Locations}, which
35430378 1168describes a special usage of @code{YYLLOC_DEFAULT} in GLR parsers.
8710fc41 1169
fa7e68c3 1170@node Compiler Requirements
35430378 1171@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1172@cindex @code{inline}
35430378 1173@cindex GLR parsers and @code{inline}
fa7e68c3 1174
35430378 1175The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1176later. In addition, they use the @code{inline} keyword, which is not
1177C89, but is C99 and is a common extension in pre-C99 compilers. It is
1178up to the user of these parsers to handle
9501dc6e
AD
1179portability issues. For instance, if using Autoconf and the Autoconf
1180macro @code{AC_C_INLINE}, a mere
1181
1182@example
1183%@{
38a92d50 1184 #include <config.h>
9501dc6e
AD
1185%@}
1186@end example
1187
1188@noindent
1189will suffice. Otherwise, we suggest
1190
1191@example
1192%@{
38a92d50
PE
1193 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1194 #define inline
1195 #endif
9501dc6e
AD
1196%@}
1197@end example
676385e2 1198
342b8b6e 1199@node Locations Overview
847bf1f5
AD
1200@section Locations
1201@cindex location
95923bd6
AD
1202@cindex textual location
1203@cindex location, textual
847bf1f5
AD
1204
1205Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1206and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1207the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1208Bison provides a mechanism for handling these locations.
1209
72d2299c 1210Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1211associated location, but the type of locations is the same for all tokens and
72d2299c 1212groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1213structure for storing locations (@pxref{Locations}, for more details).
1214
1215Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1216set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1217is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1218@code{@@3}.
1219
1220When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1221of its left hand side (@pxref{Actions}). In the same way, another default
1222action is used for locations. However, the action for locations is general
847bf1f5 1223enough for most cases, meaning there is usually no need to describe for each
72d2299c 1224rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1225grouping, the default behavior of the output parser is to take the beginning
1226of the first symbol, and the end of the last symbol.
1227
342b8b6e 1228@node Bison Parser
9913d6e4 1229@section Bison Output: the Parser Implementation File
bfa74976
RS
1230@cindex Bison parser
1231@cindex Bison utility
1232@cindex lexical analyzer, purpose
1233@cindex parser
1234
9913d6e4
JD
1235When you run Bison, you give it a Bison grammar file as input. The
1236most important output is a C source file that implements a parser for
1237the language described by the grammar. This parser is called a
1238@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1239implementation file}. Keep in mind that the Bison utility and the
1240Bison parser are two distinct programs: the Bison utility is a program
1241whose output is the Bison parser implementation file that becomes part
1242of your program.
bfa74976
RS
1243
1244The job of the Bison parser is to group tokens into groupings according to
1245the grammar rules---for example, to build identifiers and operators into
1246expressions. As it does this, it runs the actions for the grammar rules it
1247uses.
1248
704a47c4
AD
1249The tokens come from a function called the @dfn{lexical analyzer} that
1250you must supply in some fashion (such as by writing it in C). The Bison
1251parser calls the lexical analyzer each time it wants a new token. It
1252doesn't know what is ``inside'' the tokens (though their semantic values
1253may reflect this). Typically the lexical analyzer makes the tokens by
1254parsing characters of text, but Bison does not depend on this.
1255@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1256
9913d6e4
JD
1257The Bison parser implementation file is C code which defines a
1258function named @code{yyparse} which implements that grammar. This
1259function does not make a complete C program: you must supply some
1260additional functions. One is the lexical analyzer. Another is an
1261error-reporting function which the parser calls to report an error.
1262In addition, a complete C program must start with a function called
1263@code{main}; you have to provide this, and arrange for it to call
1264@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1265C-Language Interface}.
bfa74976 1266
f7ab6a50 1267Aside from the token type names and the symbols in the actions you
9913d6e4
JD
1268write, all symbols defined in the Bison parser implementation file
1269itself begin with @samp{yy} or @samp{YY}. This includes interface
1270functions such as the lexical analyzer function @code{yylex}, the
1271error reporting function @code{yyerror} and the parser function
1272@code{yyparse} itself. This also includes numerous identifiers used
1273for internal purposes. Therefore, you should avoid using C
1274identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1275file except for the ones defined in this manual. Also, you should
1276avoid using the C identifiers @samp{malloc} and @samp{free} for
1277anything other than their usual meanings.
1278
1279In some cases the Bison parser implementation file includes system
1280headers, and in those cases your code should respect the identifiers
1281reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1282@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1283included as needed to declare memory allocators and related types.
1284@code{<libintl.h>} is included if message translation is in use
1285(@pxref{Internationalization}). Other system headers may be included
1286if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1287,Tracing Your Parser}).
7093d0f5 1288
342b8b6e 1289@node Stages
bfa74976
RS
1290@section Stages in Using Bison
1291@cindex stages in using Bison
1292@cindex using Bison
1293
1294The actual language-design process using Bison, from grammar specification
1295to a working compiler or interpreter, has these parts:
1296
1297@enumerate
1298@item
1299Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1300(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1301in the language, describe the action that is to be taken when an
1302instance of that rule is recognized. The action is described by a
1303sequence of C statements.
bfa74976
RS
1304
1305@item
704a47c4
AD
1306Write a lexical analyzer to process input and pass tokens to the parser.
1307The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1308Lexical Analyzer Function @code{yylex}}). It could also be produced
1309using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1310
1311@item
1312Write a controlling function that calls the Bison-produced parser.
1313
1314@item
1315Write error-reporting routines.
1316@end enumerate
1317
1318To turn this source code as written into a runnable program, you
1319must follow these steps:
1320
1321@enumerate
1322@item
1323Run Bison on the grammar to produce the parser.
1324
1325@item
1326Compile the code output by Bison, as well as any other source files.
1327
1328@item
1329Link the object files to produce the finished product.
1330@end enumerate
1331
342b8b6e 1332@node Grammar Layout
bfa74976
RS
1333@section The Overall Layout of a Bison Grammar
1334@cindex grammar file
1335@cindex file format
1336@cindex format of grammar file
1337@cindex layout of Bison grammar
1338
1339The input file for the Bison utility is a @dfn{Bison grammar file}. The
1340general form of a Bison grammar file is as follows:
1341
1342@example
1343%@{
08e49d20 1344@var{Prologue}
bfa74976
RS
1345%@}
1346
1347@var{Bison declarations}
1348
1349%%
1350@var{Grammar rules}
1351%%
08e49d20 1352@var{Epilogue}
bfa74976
RS
1353@end example
1354
1355@noindent
1356The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1357in every Bison grammar file to separate the sections.
1358
72d2299c 1359The prologue may define types and variables used in the actions. You can
342b8b6e 1360also use preprocessor commands to define macros used there, and use
bfa74976 1361@code{#include} to include header files that do any of these things.
38a92d50
PE
1362You need to declare the lexical analyzer @code{yylex} and the error
1363printer @code{yyerror} here, along with any other global identifiers
1364used by the actions in the grammar rules.
bfa74976
RS
1365
1366The Bison declarations declare the names of the terminal and nonterminal
1367symbols, and may also describe operator precedence and the data types of
1368semantic values of various symbols.
1369
1370The grammar rules define how to construct each nonterminal symbol from its
1371parts.
1372
38a92d50
PE
1373The epilogue can contain any code you want to use. Often the
1374definitions of functions declared in the prologue go here. In a
1375simple program, all the rest of the program can go here.
bfa74976 1376
342b8b6e 1377@node Examples
bfa74976
RS
1378@chapter Examples
1379@cindex simple examples
1380@cindex examples, simple
1381
1382Now we show and explain three sample programs written using Bison: a
1383reverse polish notation calculator, an algebraic (infix) notation
1384calculator, and a multi-function calculator. All three have been tested
1385under BSD Unix 4.3; each produces a usable, though limited, interactive
1386desk-top calculator.
1387
1388These examples are simple, but Bison grammars for real programming
aa08666d
AD
1389languages are written the same way. You can copy these examples into a
1390source file to try them.
bfa74976
RS
1391
1392@menu
f56274a8
DJ
1393* RPN Calc:: Reverse polish notation calculator;
1394 a first example with no operator precedence.
1395* Infix Calc:: Infix (algebraic) notation calculator.
1396 Operator precedence is introduced.
bfa74976 1397* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1398* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
1399* Multi-function Calc:: Calculator with memory and trig functions.
1400 It uses multiple data-types for semantic values.
1401* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1402@end menu
1403
342b8b6e 1404@node RPN Calc
bfa74976
RS
1405@section Reverse Polish Notation Calculator
1406@cindex reverse polish notation
1407@cindex polish notation calculator
1408@cindex @code{rpcalc}
1409@cindex calculator, simple
1410
1411The first example is that of a simple double-precision @dfn{reverse polish
1412notation} calculator (a calculator using postfix operators). This example
1413provides a good starting point, since operator precedence is not an issue.
1414The second example will illustrate how operator precedence is handled.
1415
1416The source code for this calculator is named @file{rpcalc.y}. The
9913d6e4 1417@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1418
1419@menu
f56274a8
DJ
1420* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1421* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1422* Rpcalc Lexer:: The lexical analyzer.
1423* Rpcalc Main:: The controlling function.
1424* Rpcalc Error:: The error reporting function.
1425* Rpcalc Generate:: Running Bison on the grammar file.
1426* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1427@end menu
1428
f56274a8 1429@node Rpcalc Declarations
bfa74976
RS
1430@subsection Declarations for @code{rpcalc}
1431
1432Here are the C and Bison declarations for the reverse polish notation
1433calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1434
1435@example
72d2299c 1436/* Reverse polish notation calculator. */
bfa74976
RS
1437
1438%@{
38a92d50
PE
1439 #define YYSTYPE double
1440 #include <math.h>
1441 int yylex (void);
1442 void yyerror (char const *);
bfa74976
RS
1443%@}
1444
1445%token NUM
1446
72d2299c 1447%% /* Grammar rules and actions follow. */
bfa74976
RS
1448@end example
1449
75f5aaea 1450The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1451preprocessor directives and two forward declarations.
bfa74976
RS
1452
1453The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1454specifying the C data type for semantic values of both tokens and
1455groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1456Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1457don't define it, @code{int} is the default. Because we specify
1458@code{double}, each token and each expression has an associated value,
1459which is a floating point number.
bfa74976
RS
1460
1461The @code{#include} directive is used to declare the exponentiation
1462function @code{pow}.
1463
38a92d50
PE
1464The forward declarations for @code{yylex} and @code{yyerror} are
1465needed because the C language requires that functions be declared
1466before they are used. These functions will be defined in the
1467epilogue, but the parser calls them so they must be declared in the
1468prologue.
1469
704a47c4
AD
1470The second section, Bison declarations, provides information to Bison
1471about the token types (@pxref{Bison Declarations, ,The Bison
1472Declarations Section}). Each terminal symbol that is not a
1473single-character literal must be declared here. (Single-character
bfa74976
RS
1474literals normally don't need to be declared.) In this example, all the
1475arithmetic operators are designated by single-character literals, so the
1476only terminal symbol that needs to be declared is @code{NUM}, the token
1477type for numeric constants.
1478
342b8b6e 1479@node Rpcalc Rules
bfa74976
RS
1480@subsection Grammar Rules for @code{rpcalc}
1481
1482Here are the grammar rules for the reverse polish notation calculator.
1483
1484@example
1485input: /* empty */
1486 | input line
1487;
1488
1489line: '\n'
18b519c0 1490 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1491;
1492
18b519c0
AD
1493exp: NUM @{ $$ = $1; @}
1494 | exp exp '+' @{ $$ = $1 + $2; @}
1495 | exp exp '-' @{ $$ = $1 - $2; @}
1496 | exp exp '*' @{ $$ = $1 * $2; @}
1497 | exp exp '/' @{ $$ = $1 / $2; @}
1498 /* Exponentiation */
1499 | exp exp '^' @{ $$ = pow ($1, $2); @}
1500 /* Unary minus */
1501 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1502;
1503%%
1504@end example
1505
1506The groupings of the rpcalc ``language'' defined here are the expression
1507(given the name @code{exp}), the line of input (@code{line}), and the
1508complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1509symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1510which is read as ``or''. The following sections explain what these rules
1511mean.
1512
1513The semantics of the language is determined by the actions taken when a
1514grouping is recognized. The actions are the C code that appears inside
1515braces. @xref{Actions}.
1516
1517You must specify these actions in C, but Bison provides the means for
1518passing semantic values between the rules. In each action, the
1519pseudo-variable @code{$$} stands for the semantic value for the grouping
1520that the rule is going to construct. Assigning a value to @code{$$} is the
1521main job of most actions. The semantic values of the components of the
1522rule are referred to as @code{$1}, @code{$2}, and so on.
1523
1524@menu
13863333
AD
1525* Rpcalc Input::
1526* Rpcalc Line::
1527* Rpcalc Expr::
bfa74976
RS
1528@end menu
1529
342b8b6e 1530@node Rpcalc Input
bfa74976
RS
1531@subsubsection Explanation of @code{input}
1532
1533Consider the definition of @code{input}:
1534
1535@example
1536input: /* empty */
1537 | input line
1538;
1539@end example
1540
1541This definition reads as follows: ``A complete input is either an empty
1542string, or a complete input followed by an input line''. Notice that
1543``complete input'' is defined in terms of itself. This definition is said
1544to be @dfn{left recursive} since @code{input} appears always as the
1545leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1546
1547The first alternative is empty because there are no symbols between the
1548colon and the first @samp{|}; this means that @code{input} can match an
1549empty string of input (no tokens). We write the rules this way because it
1550is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1551It's conventional to put an empty alternative first and write the comment
1552@samp{/* empty */} in it.
1553
1554The second alternate rule (@code{input line}) handles all nontrivial input.
1555It means, ``After reading any number of lines, read one more line if
1556possible.'' The left recursion makes this rule into a loop. Since the
1557first alternative matches empty input, the loop can be executed zero or
1558more times.
1559
1560The parser function @code{yyparse} continues to process input until a
1561grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1562input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1563
342b8b6e 1564@node Rpcalc Line
bfa74976
RS
1565@subsubsection Explanation of @code{line}
1566
1567Now consider the definition of @code{line}:
1568
1569@example
1570line: '\n'
1571 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1572;
1573@end example
1574
1575The first alternative is a token which is a newline character; this means
1576that rpcalc accepts a blank line (and ignores it, since there is no
1577action). The second alternative is an expression followed by a newline.
1578This is the alternative that makes rpcalc useful. The semantic value of
1579the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1580question is the first symbol in the alternative. The action prints this
1581value, which is the result of the computation the user asked for.
1582
1583This action is unusual because it does not assign a value to @code{$$}. As
1584a consequence, the semantic value associated with the @code{line} is
1585uninitialized (its value will be unpredictable). This would be a bug if
1586that value were ever used, but we don't use it: once rpcalc has printed the
1587value of the user's input line, that value is no longer needed.
1588
342b8b6e 1589@node Rpcalc Expr
bfa74976
RS
1590@subsubsection Explanation of @code{expr}
1591
1592The @code{exp} grouping has several rules, one for each kind of expression.
1593The first rule handles the simplest expressions: those that are just numbers.
1594The second handles an addition-expression, which looks like two expressions
1595followed by a plus-sign. The third handles subtraction, and so on.
1596
1597@example
1598exp: NUM
1599 | exp exp '+' @{ $$ = $1 + $2; @}
1600 | exp exp '-' @{ $$ = $1 - $2; @}
1601 @dots{}
1602 ;
1603@end example
1604
1605We have used @samp{|} to join all the rules for @code{exp}, but we could
1606equally well have written them separately:
1607
1608@example
1609exp: NUM ;
1610exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1611exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1612 @dots{}
1613@end example
1614
1615Most of the rules have actions that compute the value of the expression in
1616terms of the value of its parts. For example, in the rule for addition,
1617@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1618the second one. The third component, @code{'+'}, has no meaningful
1619associated semantic value, but if it had one you could refer to it as
1620@code{$3}. When @code{yyparse} recognizes a sum expression using this
1621rule, the sum of the two subexpressions' values is produced as the value of
1622the entire expression. @xref{Actions}.
1623
1624You don't have to give an action for every rule. When a rule has no
1625action, Bison by default copies the value of @code{$1} into @code{$$}.
1626This is what happens in the first rule (the one that uses @code{NUM}).
1627
1628The formatting shown here is the recommended convention, but Bison does
72d2299c 1629not require it. You can add or change white space as much as you wish.
bfa74976
RS
1630For example, this:
1631
1632@example
99a9344e 1633exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1634@end example
1635
1636@noindent
1637means the same thing as this:
1638
1639@example
1640exp: NUM
1641 | exp exp '+' @{ $$ = $1 + $2; @}
1642 | @dots{}
99a9344e 1643;
bfa74976
RS
1644@end example
1645
1646@noindent
1647The latter, however, is much more readable.
1648
342b8b6e 1649@node Rpcalc Lexer
bfa74976
RS
1650@subsection The @code{rpcalc} Lexical Analyzer
1651@cindex writing a lexical analyzer
1652@cindex lexical analyzer, writing
1653
704a47c4
AD
1654The lexical analyzer's job is low-level parsing: converting characters
1655or sequences of characters into tokens. The Bison parser gets its
1656tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1657Analyzer Function @code{yylex}}.
bfa74976 1658
35430378 1659Only a simple lexical analyzer is needed for the RPN
c827f760 1660calculator. This
bfa74976
RS
1661lexical analyzer skips blanks and tabs, then reads in numbers as
1662@code{double} and returns them as @code{NUM} tokens. Any other character
1663that isn't part of a number is a separate token. Note that the token-code
1664for such a single-character token is the character itself.
1665
1666The return value of the lexical analyzer function is a numeric code which
1667represents a token type. The same text used in Bison rules to stand for
1668this token type is also a C expression for the numeric code for the type.
1669This works in two ways. If the token type is a character literal, then its
e966383b 1670numeric code is that of the character; you can use the same
bfa74976
RS
1671character literal in the lexical analyzer to express the number. If the
1672token type is an identifier, that identifier is defined by Bison as a C
1673macro whose definition is the appropriate number. In this example,
1674therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1675
1964ad8c
AD
1676The semantic value of the token (if it has one) is stored into the
1677global variable @code{yylval}, which is where the Bison parser will look
1678for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f56274a8 1679defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1680,Declarations for @code{rpcalc}}.)
bfa74976 1681
72d2299c
PE
1682A token type code of zero is returned if the end-of-input is encountered.
1683(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1684
1685Here is the code for the lexical analyzer:
1686
1687@example
1688@group
72d2299c 1689/* The lexical analyzer returns a double floating point
e966383b 1690 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1691 of the character read if not a number. It skips all blanks
1692 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1693
1694#include <ctype.h>
1695@end group
1696
1697@group
13863333
AD
1698int
1699yylex (void)
bfa74976
RS
1700@{
1701 int c;
1702
72d2299c 1703 /* Skip white space. */
13863333 1704 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1705 ;
1706@end group
1707@group
72d2299c 1708 /* Process numbers. */
13863333 1709 if (c == '.' || isdigit (c))
bfa74976
RS
1710 @{
1711 ungetc (c, stdin);
1712 scanf ("%lf", &yylval);
1713 return NUM;
1714 @}
1715@end group
1716@group
72d2299c 1717 /* Return end-of-input. */
13863333 1718 if (c == EOF)
bfa74976 1719 return 0;
72d2299c 1720 /* Return a single char. */
13863333 1721 return c;
bfa74976
RS
1722@}
1723@end group
1724@end example
1725
342b8b6e 1726@node Rpcalc Main
bfa74976
RS
1727@subsection The Controlling Function
1728@cindex controlling function
1729@cindex main function in simple example
1730
1731In keeping with the spirit of this example, the controlling function is
1732kept to the bare minimum. The only requirement is that it call
1733@code{yyparse} to start the process of parsing.
1734
1735@example
1736@group
13863333
AD
1737int
1738main (void)
bfa74976 1739@{
13863333 1740 return yyparse ();
bfa74976
RS
1741@}
1742@end group
1743@end example
1744
342b8b6e 1745@node Rpcalc Error
bfa74976
RS
1746@subsection The Error Reporting Routine
1747@cindex error reporting routine
1748
1749When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1750function @code{yyerror} to print an error message (usually but not
6e649e65 1751always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1752@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1753here is the definition we will use:
bfa74976
RS
1754
1755@example
1756@group
1757#include <stdio.h>
1758
38a92d50 1759/* Called by yyparse on error. */
13863333 1760void
38a92d50 1761yyerror (char const *s)
bfa74976 1762@{
4e03e201 1763 fprintf (stderr, "%s\n", s);
bfa74976
RS
1764@}
1765@end group
1766@end example
1767
1768After @code{yyerror} returns, the Bison parser may recover from the error
1769and continue parsing if the grammar contains a suitable error rule
1770(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1771have not written any error rules in this example, so any invalid input will
1772cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1773real calculator, but it is adequate for the first example.
bfa74976 1774
f56274a8 1775@node Rpcalc Generate
bfa74976
RS
1776@subsection Running Bison to Make the Parser
1777@cindex running Bison (introduction)
1778
ceed8467
AD
1779Before running Bison to produce a parser, we need to decide how to
1780arrange all the source code in one or more source files. For such a
9913d6e4
JD
1781simple example, the easiest thing is to put everything in one file,
1782the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1783@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1784(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1785
1786For a large project, you would probably have several source files, and use
1787@code{make} to arrange to recompile them.
1788
9913d6e4
JD
1789With all the source in the grammar file, you use the following command
1790to convert it into a parser implementation file:
bfa74976
RS
1791
1792@example
fa4d969f 1793bison @var{file}.y
bfa74976
RS
1794@end example
1795
1796@noindent
9913d6e4
JD
1797In this example, the grammar file is called @file{rpcalc.y} (for
1798``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1799implementation file named @file{@var{file}.tab.c}, removing the
1800@samp{.y} from the grammar file name. The parser implementation file
1801contains the source code for @code{yyparse}. The additional functions
1802in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1803copied verbatim to the parser implementation file.
bfa74976 1804
342b8b6e 1805@node Rpcalc Compile
9913d6e4 1806@subsection Compiling the Parser Implementation File
bfa74976
RS
1807@cindex compiling the parser
1808
9913d6e4 1809Here is how to compile and run the parser implementation file:
bfa74976
RS
1810
1811@example
1812@group
1813# @r{List files in current directory.}
9edcd895 1814$ @kbd{ls}
bfa74976
RS
1815rpcalc.tab.c rpcalc.y
1816@end group
1817
1818@group
1819# @r{Compile the Bison parser.}
1820# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1821$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1822@end group
1823
1824@group
1825# @r{List files again.}
9edcd895 1826$ @kbd{ls}
bfa74976
RS
1827rpcalc rpcalc.tab.c rpcalc.y
1828@end group
1829@end example
1830
1831The file @file{rpcalc} now contains the executable code. Here is an
1832example session using @code{rpcalc}.
1833
1834@example
9edcd895
AD
1835$ @kbd{rpcalc}
1836@kbd{4 9 +}
bfa74976 183713
9edcd895 1838@kbd{3 7 + 3 4 5 *+-}
bfa74976 1839-13
9edcd895 1840@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 184113
9edcd895 1842@kbd{5 6 / 4 n +}
bfa74976 1843-3.166666667
9edcd895 1844@kbd{3 4 ^} @r{Exponentiation}
bfa74976 184581
9edcd895
AD
1846@kbd{^D} @r{End-of-file indicator}
1847$
bfa74976
RS
1848@end example
1849
342b8b6e 1850@node Infix Calc
bfa74976
RS
1851@section Infix Notation Calculator: @code{calc}
1852@cindex infix notation calculator
1853@cindex @code{calc}
1854@cindex calculator, infix notation
1855
1856We now modify rpcalc to handle infix operators instead of postfix. Infix
1857notation involves the concept of operator precedence and the need for
1858parentheses nested to arbitrary depth. Here is the Bison code for
1859@file{calc.y}, an infix desk-top calculator.
1860
1861@example
38a92d50 1862/* Infix notation calculator. */
bfa74976
RS
1863
1864%@{
38a92d50
PE
1865 #define YYSTYPE double
1866 #include <math.h>
1867 #include <stdio.h>
1868 int yylex (void);
1869 void yyerror (char const *);
bfa74976
RS
1870%@}
1871
38a92d50 1872/* Bison declarations. */
bfa74976
RS
1873%token NUM
1874%left '-' '+'
1875%left '*' '/'
1876%left NEG /* negation--unary minus */
38a92d50 1877%right '^' /* exponentiation */
bfa74976 1878
38a92d50
PE
1879%% /* The grammar follows. */
1880input: /* empty */
bfa74976
RS
1881 | input line
1882;
1883
1884line: '\n'
1885 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1886;
1887
1888exp: NUM @{ $$ = $1; @}
1889 | exp '+' exp @{ $$ = $1 + $3; @}
1890 | exp '-' exp @{ $$ = $1 - $3; @}
1891 | exp '*' exp @{ $$ = $1 * $3; @}
1892 | exp '/' exp @{ $$ = $1 / $3; @}
1893 | '-' exp %prec NEG @{ $$ = -$2; @}
1894 | exp '^' exp @{ $$ = pow ($1, $3); @}
1895 | '(' exp ')' @{ $$ = $2; @}
1896;
1897%%
1898@end example
1899
1900@noindent
ceed8467
AD
1901The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1902same as before.
bfa74976
RS
1903
1904There are two important new features shown in this code.
1905
1906In the second section (Bison declarations), @code{%left} declares token
1907types and says they are left-associative operators. The declarations
1908@code{%left} and @code{%right} (right associativity) take the place of
1909@code{%token} which is used to declare a token type name without
1910associativity. (These tokens are single-character literals, which
1911ordinarily don't need to be declared. We declare them here to specify
1912the associativity.)
1913
1914Operator precedence is determined by the line ordering of the
1915declarations; the higher the line number of the declaration (lower on
1916the page or screen), the higher the precedence. Hence, exponentiation
1917has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1918by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1919Precedence}.
bfa74976 1920
704a47c4
AD
1921The other important new feature is the @code{%prec} in the grammar
1922section for the unary minus operator. The @code{%prec} simply instructs
1923Bison that the rule @samp{| '-' exp} has the same precedence as
1924@code{NEG}---in this case the next-to-highest. @xref{Contextual
1925Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1926
1927Here is a sample run of @file{calc.y}:
1928
1929@need 500
1930@example
9edcd895
AD
1931$ @kbd{calc}
1932@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19336.880952381
9edcd895 1934@kbd{-56 + 2}
bfa74976 1935-54
9edcd895 1936@kbd{3 ^ 2}
bfa74976
RS
19379
1938@end example
1939
342b8b6e 1940@node Simple Error Recovery
bfa74976
RS
1941@section Simple Error Recovery
1942@cindex error recovery, simple
1943
1944Up to this point, this manual has not addressed the issue of @dfn{error
1945recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1946error. All we have handled is error reporting with @code{yyerror}.
1947Recall that by default @code{yyparse} returns after calling
1948@code{yyerror}. This means that an erroneous input line causes the
1949calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1950
1951The Bison language itself includes the reserved word @code{error}, which
1952may be included in the grammar rules. In the example below it has
1953been added to one of the alternatives for @code{line}:
1954
1955@example
1956@group
1957line: '\n'
1958 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1959 | error '\n' @{ yyerrok; @}
1960;
1961@end group
1962@end example
1963
ceed8467 1964This addition to the grammar allows for simple error recovery in the
6e649e65 1965event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1966read, the error will be recognized by the third rule for @code{line},
1967and parsing will continue. (The @code{yyerror} function is still called
1968upon to print its message as well.) The action executes the statement
1969@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1970that error recovery is complete (@pxref{Error Recovery}). Note the
1971difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1972misprint.
bfa74976
RS
1973
1974This form of error recovery deals with syntax errors. There are other
1975kinds of errors; for example, division by zero, which raises an exception
1976signal that is normally fatal. A real calculator program must handle this
1977signal and use @code{longjmp} to return to @code{main} and resume parsing
1978input lines; it would also have to discard the rest of the current line of
1979input. We won't discuss this issue further because it is not specific to
1980Bison programs.
1981
342b8b6e
AD
1982@node Location Tracking Calc
1983@section Location Tracking Calculator: @code{ltcalc}
1984@cindex location tracking calculator
1985@cindex @code{ltcalc}
1986@cindex calculator, location tracking
1987
9edcd895
AD
1988This example extends the infix notation calculator with location
1989tracking. This feature will be used to improve the error messages. For
1990the sake of clarity, this example is a simple integer calculator, since
1991most of the work needed to use locations will be done in the lexical
72d2299c 1992analyzer.
342b8b6e
AD
1993
1994@menu
f56274a8
DJ
1995* Ltcalc Declarations:: Bison and C declarations for ltcalc.
1996* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
1997* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
1998@end menu
1999
f56274a8 2000@node Ltcalc Declarations
342b8b6e
AD
2001@subsection Declarations for @code{ltcalc}
2002
9edcd895
AD
2003The C and Bison declarations for the location tracking calculator are
2004the same as the declarations for the infix notation calculator.
342b8b6e
AD
2005
2006@example
2007/* Location tracking calculator. */
2008
2009%@{
38a92d50
PE
2010 #define YYSTYPE int
2011 #include <math.h>
2012 int yylex (void);
2013 void yyerror (char const *);
342b8b6e
AD
2014%@}
2015
2016/* Bison declarations. */
2017%token NUM
2018
2019%left '-' '+'
2020%left '*' '/'
2021%left NEG
2022%right '^'
2023
38a92d50 2024%% /* The grammar follows. */
342b8b6e
AD
2025@end example
2026
9edcd895
AD
2027@noindent
2028Note there are no declarations specific to locations. Defining a data
2029type for storing locations is not needed: we will use the type provided
2030by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2031four member structure with the following integer fields:
2032@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2033@code{last_column}. By conventions, and in accordance with the GNU
2034Coding Standards and common practice, the line and column count both
2035start at 1.
342b8b6e
AD
2036
2037@node Ltcalc Rules
2038@subsection Grammar Rules for @code{ltcalc}
2039
9edcd895
AD
2040Whether handling locations or not has no effect on the syntax of your
2041language. Therefore, grammar rules for this example will be very close
2042to those of the previous example: we will only modify them to benefit
2043from the new information.
342b8b6e 2044
9edcd895
AD
2045Here, we will use locations to report divisions by zero, and locate the
2046wrong expressions or subexpressions.
342b8b6e
AD
2047
2048@example
2049@group
2050input : /* empty */
2051 | input line
2052;
2053@end group
2054
2055@group
2056line : '\n'
2057 | exp '\n' @{ printf ("%d\n", $1); @}
2058;
2059@end group
2060
2061@group
2062exp : NUM @{ $$ = $1; @}
2063 | exp '+' exp @{ $$ = $1 + $3; @}
2064 | exp '-' exp @{ $$ = $1 - $3; @}
2065 | exp '*' exp @{ $$ = $1 * $3; @}
2066@end group
342b8b6e 2067@group
9edcd895 2068 | exp '/' exp
342b8b6e
AD
2069 @{
2070 if ($3)
2071 $$ = $1 / $3;
2072 else
2073 @{
2074 $$ = 1;
9edcd895
AD
2075 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2076 @@3.first_line, @@3.first_column,
2077 @@3.last_line, @@3.last_column);
342b8b6e
AD
2078 @}
2079 @}
2080@end group
2081@group
178e123e 2082 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2083 | exp '^' exp @{ $$ = pow ($1, $3); @}
2084 | '(' exp ')' @{ $$ = $2; @}
2085@end group
2086@end example
2087
2088This code shows how to reach locations inside of semantic actions, by
2089using the pseudo-variables @code{@@@var{n}} for rule components, and the
2090pseudo-variable @code{@@$} for groupings.
2091
9edcd895
AD
2092We don't need to assign a value to @code{@@$}: the output parser does it
2093automatically. By default, before executing the C code of each action,
2094@code{@@$} is set to range from the beginning of @code{@@1} to the end
2095of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2096can be redefined (@pxref{Location Default Action, , Default Action for
2097Locations}), and for very specific rules, @code{@@$} can be computed by
2098hand.
342b8b6e
AD
2099
2100@node Ltcalc Lexer
2101@subsection The @code{ltcalc} Lexical Analyzer.
2102
9edcd895 2103Until now, we relied on Bison's defaults to enable location
72d2299c 2104tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2105able to feed the parser with the token locations, as it already does for
2106semantic values.
342b8b6e 2107
9edcd895
AD
2108To this end, we must take into account every single character of the
2109input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2110
2111@example
2112@group
2113int
2114yylex (void)
2115@{
2116 int c;
18b519c0 2117@end group
342b8b6e 2118
18b519c0 2119@group
72d2299c 2120 /* Skip white space. */
342b8b6e
AD
2121 while ((c = getchar ()) == ' ' || c == '\t')
2122 ++yylloc.last_column;
18b519c0 2123@end group
342b8b6e 2124
18b519c0 2125@group
72d2299c 2126 /* Step. */
342b8b6e
AD
2127 yylloc.first_line = yylloc.last_line;
2128 yylloc.first_column = yylloc.last_column;
2129@end group
2130
2131@group
72d2299c 2132 /* Process numbers. */
342b8b6e
AD
2133 if (isdigit (c))
2134 @{
2135 yylval = c - '0';
2136 ++yylloc.last_column;
2137 while (isdigit (c = getchar ()))
2138 @{
2139 ++yylloc.last_column;
2140 yylval = yylval * 10 + c - '0';
2141 @}
2142 ungetc (c, stdin);
2143 return NUM;
2144 @}
2145@end group
2146
72d2299c 2147 /* Return end-of-input. */
342b8b6e
AD
2148 if (c == EOF)
2149 return 0;
2150
72d2299c 2151 /* Return a single char, and update location. */
342b8b6e
AD
2152 if (c == '\n')
2153 @{
2154 ++yylloc.last_line;
2155 yylloc.last_column = 0;
2156 @}
2157 else
2158 ++yylloc.last_column;
2159 return c;
2160@}
2161@end example
2162
9edcd895
AD
2163Basically, the lexical analyzer performs the same processing as before:
2164it skips blanks and tabs, and reads numbers or single-character tokens.
2165In addition, it updates @code{yylloc}, the global variable (of type
2166@code{YYLTYPE}) containing the token's location.
342b8b6e 2167
9edcd895 2168Now, each time this function returns a token, the parser has its number
72d2299c 2169as well as its semantic value, and its location in the text. The last
9edcd895
AD
2170needed change is to initialize @code{yylloc}, for example in the
2171controlling function:
342b8b6e
AD
2172
2173@example
9edcd895 2174@group
342b8b6e
AD
2175int
2176main (void)
2177@{
2178 yylloc.first_line = yylloc.last_line = 1;
2179 yylloc.first_column = yylloc.last_column = 0;
2180 return yyparse ();
2181@}
9edcd895 2182@end group
342b8b6e
AD
2183@end example
2184
9edcd895
AD
2185Remember that computing locations is not a matter of syntax. Every
2186character must be associated to a location update, whether it is in
2187valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2188
2189@node Multi-function Calc
bfa74976
RS
2190@section Multi-Function Calculator: @code{mfcalc}
2191@cindex multi-function calculator
2192@cindex @code{mfcalc}
2193@cindex calculator, multi-function
2194
2195Now that the basics of Bison have been discussed, it is time to move on to
2196a more advanced problem. The above calculators provided only five
2197functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2198be nice to have a calculator that provides other mathematical functions such
2199as @code{sin}, @code{cos}, etc.
2200
2201It is easy to add new operators to the infix calculator as long as they are
2202only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2203back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2204adding a new operator. But we want something more flexible: built-in
2205functions whose syntax has this form:
2206
2207@example
2208@var{function_name} (@var{argument})
2209@end example
2210
2211@noindent
2212At the same time, we will add memory to the calculator, by allowing you
2213to create named variables, store values in them, and use them later.
2214Here is a sample session with the multi-function calculator:
2215
2216@example
9edcd895
AD
2217$ @kbd{mfcalc}
2218@kbd{pi = 3.141592653589}
bfa74976 22193.1415926536
9edcd895 2220@kbd{sin(pi)}
bfa74976 22210.0000000000
9edcd895 2222@kbd{alpha = beta1 = 2.3}
bfa74976 22232.3000000000
9edcd895 2224@kbd{alpha}
bfa74976 22252.3000000000
9edcd895 2226@kbd{ln(alpha)}
bfa74976 22270.8329091229
9edcd895 2228@kbd{exp(ln(beta1))}
bfa74976 22292.3000000000
9edcd895 2230$
bfa74976
RS
2231@end example
2232
2233Note that multiple assignment and nested function calls are permitted.
2234
2235@menu
f56274a8
DJ
2236* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2237* Mfcalc Rules:: Grammar rules for the calculator.
2238* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2239@end menu
2240
f56274a8 2241@node Mfcalc Declarations
bfa74976
RS
2242@subsection Declarations for @code{mfcalc}
2243
2244Here are the C and Bison declarations for the multi-function calculator.
2245
2246@smallexample
18b519c0 2247@group
bfa74976 2248%@{
38a92d50
PE
2249 #include <math.h> /* For math functions, cos(), sin(), etc. */
2250 #include "calc.h" /* Contains definition of `symrec'. */
2251 int yylex (void);
2252 void yyerror (char const *);
bfa74976 2253%@}
18b519c0
AD
2254@end group
2255@group
bfa74976 2256%union @{
38a92d50
PE
2257 double val; /* For returning numbers. */
2258 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2259@}
18b519c0 2260@end group
38a92d50
PE
2261%token <val> NUM /* Simple double precision number. */
2262%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2263%type <val> exp
2264
18b519c0 2265@group
bfa74976
RS
2266%right '='
2267%left '-' '+'
2268%left '*' '/'
38a92d50
PE
2269%left NEG /* negation--unary minus */
2270%right '^' /* exponentiation */
18b519c0 2271@end group
38a92d50 2272%% /* The grammar follows. */
bfa74976
RS
2273@end smallexample
2274
2275The above grammar introduces only two new features of the Bison language.
2276These features allow semantic values to have various data types
2277(@pxref{Multiple Types, ,More Than One Value Type}).
2278
2279The @code{%union} declaration specifies the entire list of possible types;
2280this is instead of defining @code{YYSTYPE}. The allowable types are now
2281double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2282the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2283
2284Since values can now have various types, it is necessary to associate a
2285type with each grammar symbol whose semantic value is used. These symbols
2286are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2287declarations are augmented with information about their data type (placed
2288between angle brackets).
2289
704a47c4
AD
2290The Bison construct @code{%type} is used for declaring nonterminal
2291symbols, just as @code{%token} is used for declaring token types. We
2292have not used @code{%type} before because nonterminal symbols are
2293normally declared implicitly by the rules that define them. But
2294@code{exp} must be declared explicitly so we can specify its value type.
2295@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2296
342b8b6e 2297@node Mfcalc Rules
bfa74976
RS
2298@subsection Grammar Rules for @code{mfcalc}
2299
2300Here are the grammar rules for the multi-function calculator.
2301Most of them are copied directly from @code{calc}; three rules,
2302those which mention @code{VAR} or @code{FNCT}, are new.
2303
2304@smallexample
18b519c0 2305@group
bfa74976
RS
2306input: /* empty */
2307 | input line
2308;
18b519c0 2309@end group
bfa74976 2310
18b519c0 2311@group
bfa74976
RS
2312line:
2313 '\n'
2314 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2315 | error '\n' @{ yyerrok; @}
2316;
18b519c0 2317@end group
bfa74976 2318
18b519c0 2319@group
bfa74976
RS
2320exp: NUM @{ $$ = $1; @}
2321 | VAR @{ $$ = $1->value.var; @}
2322 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2323 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2324 | exp '+' exp @{ $$ = $1 + $3; @}
2325 | exp '-' exp @{ $$ = $1 - $3; @}
2326 | exp '*' exp @{ $$ = $1 * $3; @}
2327 | exp '/' exp @{ $$ = $1 / $3; @}
2328 | '-' exp %prec NEG @{ $$ = -$2; @}
2329 | exp '^' exp @{ $$ = pow ($1, $3); @}
2330 | '(' exp ')' @{ $$ = $2; @}
2331;
18b519c0 2332@end group
38a92d50 2333/* End of grammar. */
bfa74976
RS
2334%%
2335@end smallexample
2336
f56274a8 2337@node Mfcalc Symbol Table
bfa74976
RS
2338@subsection The @code{mfcalc} Symbol Table
2339@cindex symbol table example
2340
2341The multi-function calculator requires a symbol table to keep track of the
2342names and meanings of variables and functions. This doesn't affect the
2343grammar rules (except for the actions) or the Bison declarations, but it
2344requires some additional C functions for support.
2345
2346The symbol table itself consists of a linked list of records. Its
2347definition, which is kept in the header @file{calc.h}, is as follows. It
2348provides for either functions or variables to be placed in the table.
2349
2350@smallexample
2351@group
38a92d50 2352/* Function type. */
32dfccf8 2353typedef double (*func_t) (double);
72f889cc 2354@end group
32dfccf8 2355
72f889cc 2356@group
38a92d50 2357/* Data type for links in the chain of symbols. */
bfa74976
RS
2358struct symrec
2359@{
38a92d50 2360 char *name; /* name of symbol */
bfa74976 2361 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2362 union
2363 @{
38a92d50
PE
2364 double var; /* value of a VAR */
2365 func_t fnctptr; /* value of a FNCT */
bfa74976 2366 @} value;
38a92d50 2367 struct symrec *next; /* link field */
bfa74976
RS
2368@};
2369@end group
2370
2371@group
2372typedef struct symrec symrec;
2373
38a92d50 2374/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2375extern symrec *sym_table;
2376
a730d142 2377symrec *putsym (char const *, int);
38a92d50 2378symrec *getsym (char const *);
bfa74976
RS
2379@end group
2380@end smallexample
2381
2382The new version of @code{main} includes a call to @code{init_table}, a
2383function that initializes the symbol table. Here it is, and
2384@code{init_table} as well:
2385
2386@smallexample
bfa74976
RS
2387#include <stdio.h>
2388
18b519c0 2389@group
38a92d50 2390/* Called by yyparse on error. */
13863333 2391void
38a92d50 2392yyerror (char const *s)
bfa74976
RS
2393@{
2394 printf ("%s\n", s);
2395@}
18b519c0 2396@end group
bfa74976 2397
18b519c0 2398@group
bfa74976
RS
2399struct init
2400@{
38a92d50
PE
2401 char const *fname;
2402 double (*fnct) (double);
bfa74976
RS
2403@};
2404@end group
2405
2406@group
38a92d50 2407struct init const arith_fncts[] =
13863333 2408@{
32dfccf8
AD
2409 "sin", sin,
2410 "cos", cos,
13863333 2411 "atan", atan,
32dfccf8
AD
2412 "ln", log,
2413 "exp", exp,
13863333
AD
2414 "sqrt", sqrt,
2415 0, 0
2416@};
18b519c0 2417@end group
bfa74976 2418
18b519c0 2419@group
bfa74976 2420/* The symbol table: a chain of `struct symrec'. */
38a92d50 2421symrec *sym_table;
bfa74976
RS
2422@end group
2423
2424@group
72d2299c 2425/* Put arithmetic functions in table. */
13863333
AD
2426void
2427init_table (void)
bfa74976
RS
2428@{
2429 int i;
2430 symrec *ptr;
2431 for (i = 0; arith_fncts[i].fname != 0; i++)
2432 @{
2433 ptr = putsym (arith_fncts[i].fname, FNCT);
2434 ptr->value.fnctptr = arith_fncts[i].fnct;
2435 @}
2436@}
2437@end group
38a92d50
PE
2438
2439@group
2440int
2441main (void)
2442@{
2443 init_table ();
2444 return yyparse ();
2445@}
2446@end group
bfa74976
RS
2447@end smallexample
2448
2449By simply editing the initialization list and adding the necessary include
2450files, you can add additional functions to the calculator.
2451
2452Two important functions allow look-up and installation of symbols in the
2453symbol table. The function @code{putsym} is passed a name and the type
2454(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2455linked to the front of the list, and a pointer to the object is returned.
2456The function @code{getsym} is passed the name of the symbol to look up. If
2457found, a pointer to that symbol is returned; otherwise zero is returned.
2458
2459@smallexample
2460symrec *
38a92d50 2461putsym (char const *sym_name, int sym_type)
bfa74976
RS
2462@{
2463 symrec *ptr;
2464 ptr = (symrec *) malloc (sizeof (symrec));
2465 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2466 strcpy (ptr->name,sym_name);
2467 ptr->type = sym_type;
72d2299c 2468 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2469 ptr->next = (struct symrec *)sym_table;
2470 sym_table = ptr;
2471 return ptr;
2472@}
2473
2474symrec *
38a92d50 2475getsym (char const *sym_name)
bfa74976
RS
2476@{
2477 symrec *ptr;
2478 for (ptr = sym_table; ptr != (symrec *) 0;
2479 ptr = (symrec *)ptr->next)
2480 if (strcmp (ptr->name,sym_name) == 0)
2481 return ptr;
2482 return 0;
2483@}
2484@end smallexample
2485
2486The function @code{yylex} must now recognize variables, numeric values, and
2487the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2488characters with a leading letter are recognized as either variables or
bfa74976
RS
2489functions depending on what the symbol table says about them.
2490
2491The string is passed to @code{getsym} for look up in the symbol table. If
2492the name appears in the table, a pointer to its location and its type
2493(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2494already in the table, then it is installed as a @code{VAR} using
2495@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2496returned to @code{yyparse}.
bfa74976
RS
2497
2498No change is needed in the handling of numeric values and arithmetic
2499operators in @code{yylex}.
2500
2501@smallexample
2502@group
2503#include <ctype.h>
18b519c0 2504@end group
13863333 2505
18b519c0 2506@group
13863333
AD
2507int
2508yylex (void)
bfa74976
RS
2509@{
2510 int c;
2511
72d2299c 2512 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2513 while ((c = getchar ()) == ' ' || c == '\t');
2514
2515 if (c == EOF)
2516 return 0;
2517@end group
2518
2519@group
2520 /* Char starts a number => parse the number. */
2521 if (c == '.' || isdigit (c))
2522 @{
2523 ungetc (c, stdin);
2524 scanf ("%lf", &yylval.val);
2525 return NUM;
2526 @}
2527@end group
2528
2529@group
2530 /* Char starts an identifier => read the name. */
2531 if (isalpha (c))
2532 @{
2533 symrec *s;
2534 static char *symbuf = 0;
2535 static int length = 0;
2536 int i;
2537@end group
2538
2539@group
2540 /* Initially make the buffer long enough
2541 for a 40-character symbol name. */
2542 if (length == 0)
2543 length = 40, symbuf = (char *)malloc (length + 1);
2544
2545 i = 0;
2546 do
2547@end group
2548@group
2549 @{
2550 /* If buffer is full, make it bigger. */
2551 if (i == length)
2552 @{
2553 length *= 2;
18b519c0 2554 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2555 @}
2556 /* Add this character to the buffer. */
2557 symbuf[i++] = c;
2558 /* Get another character. */
2559 c = getchar ();
2560 @}
2561@end group
2562@group
72d2299c 2563 while (isalnum (c));
bfa74976
RS
2564
2565 ungetc (c, stdin);
2566 symbuf[i] = '\0';
2567@end group
2568
2569@group
2570 s = getsym (symbuf);
2571 if (s == 0)
2572 s = putsym (symbuf, VAR);
2573 yylval.tptr = s;
2574 return s->type;
2575 @}
2576
2577 /* Any other character is a token by itself. */
2578 return c;
2579@}
2580@end group
2581@end smallexample
2582
72d2299c 2583This program is both powerful and flexible. You may easily add new
704a47c4
AD
2584functions, and it is a simple job to modify this code to install
2585predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2586
342b8b6e 2587@node Exercises
bfa74976
RS
2588@section Exercises
2589@cindex exercises
2590
2591@enumerate
2592@item
2593Add some new functions from @file{math.h} to the initialization list.
2594
2595@item
2596Add another array that contains constants and their values. Then
2597modify @code{init_table} to add these constants to the symbol table.
2598It will be easiest to give the constants type @code{VAR}.
2599
2600@item
2601Make the program report an error if the user refers to an
2602uninitialized variable in any way except to store a value in it.
2603@end enumerate
2604
342b8b6e 2605@node Grammar File
bfa74976
RS
2606@chapter Bison Grammar Files
2607
2608Bison takes as input a context-free grammar specification and produces a
2609C-language function that recognizes correct instances of the grammar.
2610
9913d6e4 2611The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2612@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2613
2614@menu
2615* Grammar Outline:: Overall layout of the grammar file.
2616* Symbols:: Terminal and nonterminal symbols.
2617* Rules:: How to write grammar rules.
2618* Recursion:: Writing recursive rules.
2619* Semantics:: Semantic values and actions.
847bf1f5 2620* Locations:: Locations and actions.
bfa74976
RS
2621* Declarations:: All kinds of Bison declarations are described here.
2622* Multiple Parsers:: Putting more than one Bison parser in one program.
2623@end menu
2624
342b8b6e 2625@node Grammar Outline
bfa74976
RS
2626@section Outline of a Bison Grammar
2627
2628A Bison grammar file has four main sections, shown here with the
2629appropriate delimiters:
2630
2631@example
2632%@{
38a92d50 2633 @var{Prologue}
bfa74976
RS
2634%@}
2635
2636@var{Bison declarations}
2637
2638%%
2639@var{Grammar rules}
2640%%
2641
75f5aaea 2642@var{Epilogue}
bfa74976
RS
2643@end example
2644
2645Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
35430378 2646As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2647continues until end of line.
bfa74976
RS
2648
2649@menu
f56274a8 2650* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2651* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
2652* Bison Declarations:: Syntax and usage of the Bison declarations section.
2653* Grammar Rules:: Syntax and usage of the grammar rules section.
2654* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2655@end menu
2656
38a92d50 2657@node Prologue
75f5aaea
MA
2658@subsection The prologue
2659@cindex declarations section
2660@cindex Prologue
2661@cindex declarations
bfa74976 2662
f8e1c9e5
AD
2663The @var{Prologue} section contains macro definitions and declarations
2664of functions and variables that are used in the actions in the grammar
9913d6e4
JD
2665rules. These are copied to the beginning of the parser implementation
2666file so that they precede the definition of @code{yyparse}. You can
2667use @samp{#include} to get the declarations from a header file. If
2668you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2669@samp{%@}} delimiters that bracket this section.
bfa74976 2670
9c437126 2671The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2672of @samp{%@}} that is outside a comment, a string literal, or a
2673character constant.
2674
c732d2c6
AD
2675You may have more than one @var{Prologue} section, intermixed with the
2676@var{Bison declarations}. This allows you to have C and Bison
2677declarations that refer to each other. For example, the @code{%union}
2678declaration may use types defined in a header file, and you may wish to
2679prototype functions that take arguments of type @code{YYSTYPE}. This
2680can be done with two @var{Prologue} blocks, one before and one after the
2681@code{%union} declaration.
2682
2683@smallexample
2684%@{
aef3da86 2685 #define _GNU_SOURCE
38a92d50
PE
2686 #include <stdio.h>
2687 #include "ptypes.h"
c732d2c6
AD
2688%@}
2689
2690%union @{
779e7ceb 2691 long int n;
c732d2c6
AD
2692 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2693@}
2694
2695%@{
38a92d50
PE
2696 static void print_token_value (FILE *, int, YYSTYPE);
2697 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2698%@}
2699
2700@dots{}
2701@end smallexample
2702
aef3da86
PE
2703When in doubt, it is usually safer to put prologue code before all
2704Bison declarations, rather than after. For example, any definitions
2705of feature test macros like @code{_GNU_SOURCE} or
2706@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2707feature test macros can affect the behavior of Bison-generated
2708@code{#include} directives.
2709
2cbe6b7f
JD
2710@node Prologue Alternatives
2711@subsection Prologue Alternatives
2712@cindex Prologue Alternatives
2713
136a0f76 2714@findex %code
16dc6a9e
JD
2715@findex %code requires
2716@findex %code provides
2717@findex %code top
85894313 2718
2cbe6b7f 2719The functionality of @var{Prologue} sections can often be subtle and
9913d6e4
JD
2720inflexible. As an alternative, Bison provides a @code{%code}
2721directive with an explicit qualifier field, which identifies the
2722purpose of the code and thus the location(s) where Bison should
2723generate it. For C/C++, the qualifier can be omitted for the default
2724location, or it can be one of @code{requires}, @code{provides},
2725@code{top}. @xref{Decl Summary,,%code}.
2cbe6b7f
JD
2726
2727Look again at the example of the previous section:
2728
2729@smallexample
2730%@{
2731 #define _GNU_SOURCE
2732 #include <stdio.h>
2733 #include "ptypes.h"
2734%@}
2735
2736%union @{
2737 long int n;
2738 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2739@}
2740
2741%@{
2742 static void print_token_value (FILE *, int, YYSTYPE);
2743 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2744%@}
2745
2746@dots{}
2747@end smallexample
2748
2749@noindent
9913d6e4
JD
2750Notice that there are two @var{Prologue} sections here, but there's a
2751subtle distinction between their functionality. For example, if you
2752decide to override Bison's default definition for @code{YYLTYPE}, in
2753which @var{Prologue} section should you write your new definition?
2754You should write it in the first since Bison will insert that code
2755into the parser implementation file @emph{before} the default
2756@code{YYLTYPE} definition. In which @var{Prologue} section should you
2757prototype an internal function, @code{trace_token}, that accepts
2758@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2759prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2760@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2761
2762This distinction in functionality between the two @var{Prologue} sections is
2763established by the appearance of the @code{%union} between them.
a501eca9 2764This behavior raises a few questions.
2cbe6b7f
JD
2765First, why should the position of a @code{%union} affect definitions related to
2766@code{YYLTYPE} and @code{yytokentype}?
2767Second, what if there is no @code{%union}?
2768In that case, the second kind of @var{Prologue} section is not available.
2769This behavior is not intuitive.
2770
8e0a5e9e 2771To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2772@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2773Let's go ahead and add the new @code{YYLTYPE} definition and the
2774@code{trace_token} prototype at the same time:
2775
2776@smallexample
16dc6a9e 2777%code top @{
2cbe6b7f
JD
2778 #define _GNU_SOURCE
2779 #include <stdio.h>
8e0a5e9e
JD
2780
2781 /* WARNING: The following code really belongs
16dc6a9e 2782 * in a `%code requires'; see below. */
8e0a5e9e 2783
2cbe6b7f
JD
2784 #include "ptypes.h"
2785 #define YYLTYPE YYLTYPE
2786 typedef struct YYLTYPE
2787 @{
2788 int first_line;
2789 int first_column;
2790 int last_line;
2791 int last_column;
2792 char *filename;
2793 @} YYLTYPE;
2794@}
2795
2796%union @{
2797 long int n;
2798 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2799@}
2800
2801%code @{
2802 static void print_token_value (FILE *, int, YYSTYPE);
2803 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2804 static void trace_token (enum yytokentype token, YYLTYPE loc);
2805@}
2806
2807@dots{}
2808@end smallexample
2809
2810@noindent
16dc6a9e
JD
2811In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2812functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2813explicit which kind you intend.
2cbe6b7f
JD
2814Moreover, both kinds are always available even in the absence of @code{%union}.
2815
9913d6e4
JD
2816The @code{%code top} block above logically contains two parts. The
2817first two lines before the warning need to appear near the top of the
2818parser implementation file. The first line after the warning is
2819required by @code{YYSTYPE} and thus also needs to appear in the parser
2820implementation file. However, if you've instructed Bison to generate
2821a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2822want that line to appear before the @code{YYSTYPE} definition in that
2823header file as well. The @code{YYLTYPE} definition should also appear
2824in the parser header file to override the default @code{YYLTYPE}
2825definition there.
2cbe6b7f 2826
16dc6a9e 2827In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2828lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2829definitions.
16dc6a9e 2830Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2831
2832@smallexample
16dc6a9e 2833%code top @{
2cbe6b7f
JD
2834 #define _GNU_SOURCE
2835 #include <stdio.h>
2836@}
2837
16dc6a9e 2838%code requires @{
9bc0dd67
JD
2839 #include "ptypes.h"
2840@}
2841%union @{
2842 long int n;
2843 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2844@}
2845
16dc6a9e 2846%code requires @{
2cbe6b7f
JD
2847 #define YYLTYPE YYLTYPE
2848 typedef struct YYLTYPE
2849 @{
2850 int first_line;
2851 int first_column;
2852 int last_line;
2853 int last_column;
2854 char *filename;
2855 @} YYLTYPE;
2856@}
2857
136a0f76 2858%code @{
2cbe6b7f
JD
2859 static void print_token_value (FILE *, int, YYSTYPE);
2860 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2861 static void trace_token (enum yytokentype token, YYLTYPE loc);
2862@}
2863
2864@dots{}
2865@end smallexample
2866
2867@noindent
9913d6e4
JD
2868Now Bison will insert @code{#include "ptypes.h"} and the new
2869@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
2870and @code{YYLTYPE} definitions in both the parser implementation file
2871and the parser header file. (By the same reasoning, @code{%code
2872requires} would also be the appropriate place to write your own
2873definition for @code{YYSTYPE}.)
2874
2875When you are writing dependency code for @code{YYSTYPE} and
2876@code{YYLTYPE}, you should prefer @code{%code requires} over
2877@code{%code top} regardless of whether you instruct Bison to generate
2878a parser header file. When you are writing code that you need Bison
2879to insert only into the parser implementation file and that has no
2880special need to appear at the top of that file, you should prefer the
2881unqualified @code{%code} over @code{%code top}. These practices will
2882make the purpose of each block of your code explicit to Bison and to
2883other developers reading your grammar file. Following these
2884practices, we expect the unqualified @code{%code} and @code{%code
2885requires} to be the most important of the four @var{Prologue}
16dc6a9e 2886alternatives.
a501eca9 2887
9913d6e4
JD
2888At some point while developing your parser, you might decide to
2889provide @code{trace_token} to modules that are external to your
2890parser. Thus, you might wish for Bison to insert the prototype into
2891both the parser header file and the parser implementation file. Since
2892this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 2893@code{YYLTYPE}, it doesn't make sense to move its prototype to a
9913d6e4
JD
2894@code{%code requires}. More importantly, since it depends upon
2895@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
2896sufficient. Instead, move its prototype from the unqualified
2897@code{%code} to a @code{%code provides}:
2cbe6b7f
JD
2898
2899@smallexample
16dc6a9e 2900%code top @{
2cbe6b7f 2901 #define _GNU_SOURCE
136a0f76 2902 #include <stdio.h>
2cbe6b7f 2903@}
136a0f76 2904
16dc6a9e 2905%code requires @{
2cbe6b7f
JD
2906 #include "ptypes.h"
2907@}
2908%union @{
2909 long int n;
2910 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2911@}
2912
16dc6a9e 2913%code requires @{
2cbe6b7f
JD
2914 #define YYLTYPE YYLTYPE
2915 typedef struct YYLTYPE
2916 @{
2917 int first_line;
2918 int first_column;
2919 int last_line;
2920 int last_column;
2921 char *filename;
2922 @} YYLTYPE;
2923@}
2924
16dc6a9e 2925%code provides @{
2cbe6b7f
JD
2926 void trace_token (enum yytokentype token, YYLTYPE loc);
2927@}
2928
2929%code @{
9bc0dd67
JD
2930 static void print_token_value (FILE *, int, YYSTYPE);
2931 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2932@}
9bc0dd67
JD
2933
2934@dots{}
2935@end smallexample
2936
2cbe6b7f 2937@noindent
9913d6e4
JD
2938Bison will insert the @code{trace_token} prototype into both the
2939parser header file and the parser implementation file after the
2940definitions for @code{yytokentype}, @code{YYLTYPE}, and
2941@code{YYSTYPE}.
2942
2943The above examples are careful to write directives in an order that
2944reflects the layout of the generated parser implementation and header
2945files: @code{%code top}, @code{%code requires}, @code{%code provides},
2946and then @code{%code}. While your grammar files may generally be
2947easier to read if you also follow this order, Bison does not require
2948it. Instead, Bison lets you choose an organization that makes sense
2949to you.
2cbe6b7f 2950
a501eca9 2951You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2952In that case, Bison concatenates the contained code in declaration order.
2953This is the only way in which the position of one of these directives within
2954the grammar file affects its functionality.
2955
2956The result of the previous two properties is greater flexibility in how you may
2957organize your grammar file.
2958For example, you may organize semantic-type-related directives by semantic
2959type:
2960
2961@smallexample
16dc6a9e 2962%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2963%union @{ type1 field1; @}
2964%destructor @{ type1_free ($$); @} <field1>
2965%printer @{ type1_print ($$); @} <field1>
2966
16dc6a9e 2967%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2968%union @{ type2 field2; @}
2969%destructor @{ type2_free ($$); @} <field2>
2970%printer @{ type2_print ($$); @} <field2>
2971@end smallexample
2972
2973@noindent
2974You could even place each of the above directive groups in the rules section of
2975the grammar file next to the set of rules that uses the associated semantic
2976type.
61fee93e
JD
2977(In the rules section, you must terminate each of those directives with a
2978semicolon.)
2cbe6b7f
JD
2979And you don't have to worry that some directive (like a @code{%union}) in the
2980definitions section is going to adversely affect their functionality in some
2981counter-intuitive manner just because it comes first.
2982Such an organization is not possible using @var{Prologue} sections.
2983
a501eca9 2984This section has been concerned with explaining the advantages of the four
8e0a5e9e 2985@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2986However, in most cases when using these directives, you shouldn't need to
2987think about all the low-level ordering issues discussed here.
2988Instead, you should simply use these directives to label each block of your
2989code according to its purpose and let Bison handle the ordering.
2990@code{%code} is the most generic label.
16dc6a9e
JD
2991Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
2992as needed.
a501eca9 2993
342b8b6e 2994@node Bison Declarations
bfa74976
RS
2995@subsection The Bison Declarations Section
2996@cindex Bison declarations (introduction)
2997@cindex declarations, Bison (introduction)
2998
2999The @var{Bison declarations} section contains declarations that define
3000terminal and nonterminal symbols, specify precedence, and so on.
3001In some simple grammars you may not need any declarations.
3002@xref{Declarations, ,Bison Declarations}.
3003
342b8b6e 3004@node Grammar Rules
bfa74976
RS
3005@subsection The Grammar Rules Section
3006@cindex grammar rules section
3007@cindex rules section for grammar
3008
3009The @dfn{grammar rules} section contains one or more Bison grammar
3010rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3011
3012There must always be at least one grammar rule, and the first
3013@samp{%%} (which precedes the grammar rules) may never be omitted even
3014if it is the first thing in the file.
3015
38a92d50 3016@node Epilogue
75f5aaea 3017@subsection The epilogue
bfa74976 3018@cindex additional C code section
75f5aaea 3019@cindex epilogue
bfa74976
RS
3020@cindex C code, section for additional
3021
9913d6e4
JD
3022The @var{Epilogue} is copied verbatim to the end of the parser
3023implementation file, just as the @var{Prologue} is copied to the
3024beginning. This is the most convenient place to put anything that you
3025want to have in the parser implementation file but which need not come
3026before the definition of @code{yyparse}. For example, the definitions
3027of @code{yylex} and @code{yyerror} often go here. Because C requires
3028functions to be declared before being used, you often need to declare
3029functions like @code{yylex} and @code{yyerror} in the Prologue, even
3030if you define them in the Epilogue. @xref{Interface, ,Parser
3031C-Language Interface}.
bfa74976
RS
3032
3033If the last section is empty, you may omit the @samp{%%} that separates it
3034from the grammar rules.
3035
f8e1c9e5
AD
3036The Bison parser itself contains many macros and identifiers whose names
3037start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3038any such names (except those documented in this manual) in the epilogue
3039of the grammar file.
bfa74976 3040
342b8b6e 3041@node Symbols
bfa74976
RS
3042@section Symbols, Terminal and Nonterminal
3043@cindex nonterminal symbol
3044@cindex terminal symbol
3045@cindex token type
3046@cindex symbol
3047
3048@dfn{Symbols} in Bison grammars represent the grammatical classifications
3049of the language.
3050
3051A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3052class of syntactically equivalent tokens. You use the symbol in grammar
3053rules to mean that a token in that class is allowed. The symbol is
3054represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3055function returns a token type code to indicate what kind of token has
3056been read. You don't need to know what the code value is; you can use
3057the symbol to stand for it.
bfa74976 3058
f8e1c9e5
AD
3059A @dfn{nonterminal symbol} stands for a class of syntactically
3060equivalent groupings. The symbol name is used in writing grammar rules.
3061By convention, it should be all lower case.
bfa74976 3062
eb8c66bb
JD
3063Symbol names can contain letters, underscores, periods, and non-initial
3064digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3065with POSIX Yacc. Periods and dashes make symbol names less convenient to
3066use with named references, which require brackets around such names
3067(@pxref{Named References}). Terminal symbols that contain periods or dashes
3068make little sense: since they are not valid symbols (in most programming
3069languages) they are not exported as token names.
bfa74976 3070
931c7513 3071There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3072
3073@itemize @bullet
3074@item
3075A @dfn{named token type} is written with an identifier, like an
c827f760 3076identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3077such name must be defined with a Bison declaration such as
3078@code{%token}. @xref{Token Decl, ,Token Type Names}.
3079
3080@item
3081@cindex character token
3082@cindex literal token
3083@cindex single-character literal
931c7513
RS
3084A @dfn{character token type} (or @dfn{literal character token}) is
3085written in the grammar using the same syntax used in C for character
3086constants; for example, @code{'+'} is a character token type. A
3087character token type doesn't need to be declared unless you need to
3088specify its semantic value data type (@pxref{Value Type, ,Data Types of
3089Semantic Values}), associativity, or precedence (@pxref{Precedence,
3090,Operator Precedence}).
bfa74976
RS
3091
3092By convention, a character token type is used only to represent a
3093token that consists of that particular character. Thus, the token
3094type @code{'+'} is used to represent the character @samp{+} as a
3095token. Nothing enforces this convention, but if you depart from it,
3096your program will confuse other readers.
3097
3098All the usual escape sequences used in character literals in C can be
3099used in Bison as well, but you must not use the null character as a
72d2299c
PE
3100character literal because its numeric code, zero, signifies
3101end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3102for @code{yylex}}). Also, unlike standard C, trigraphs have no
3103special meaning in Bison character literals, nor is backslash-newline
3104allowed.
931c7513
RS
3105
3106@item
3107@cindex string token
3108@cindex literal string token
9ecbd125 3109@cindex multicharacter literal
931c7513
RS
3110A @dfn{literal string token} is written like a C string constant; for
3111example, @code{"<="} is a literal string token. A literal string token
3112doesn't need to be declared unless you need to specify its semantic
14ded682 3113value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3114(@pxref{Precedence}).
3115
3116You can associate the literal string token with a symbolic name as an
3117alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3118Declarations}). If you don't do that, the lexical analyzer has to
3119retrieve the token number for the literal string token from the
3120@code{yytname} table (@pxref{Calling Convention}).
3121
c827f760 3122@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3123
3124By convention, a literal string token is used only to represent a token
3125that consists of that particular string. Thus, you should use the token
3126type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3127does not enforce this convention, but if you depart from it, people who
931c7513
RS
3128read your program will be confused.
3129
3130All the escape sequences used in string literals in C can be used in
92ac3705
PE
3131Bison as well, except that you must not use a null character within a
3132string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3133meaning in Bison string literals, nor is backslash-newline allowed. A
3134literal string token must contain two or more characters; for a token
3135containing just one character, use a character token (see above).
bfa74976
RS
3136@end itemize
3137
3138How you choose to write a terminal symbol has no effect on its
3139grammatical meaning. That depends only on where it appears in rules and
3140on when the parser function returns that symbol.
3141
72d2299c
PE
3142The value returned by @code{yylex} is always one of the terminal
3143symbols, except that a zero or negative value signifies end-of-input.
3144Whichever way you write the token type in the grammar rules, you write
3145it the same way in the definition of @code{yylex}. The numeric code
3146for a character token type is simply the positive numeric code of the
3147character, so @code{yylex} can use the identical value to generate the
3148requisite code, though you may need to convert it to @code{unsigned
3149char} to avoid sign-extension on hosts where @code{char} is signed.
9913d6e4
JD
3150Each named token type becomes a C macro in the parser implementation
3151file, so @code{yylex} can use the name to stand for the code. (This
3152is why periods don't make sense in terminal symbols.) @xref{Calling
3153Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3154
3155If @code{yylex} is defined in a separate file, you need to arrange for the
3156token-type macro definitions to be available there. Use the @samp{-d}
3157option when you run Bison, so that it will write these macro definitions
3158into a separate header file @file{@var{name}.tab.h} which you can include
3159in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3160
72d2299c 3161If you want to write a grammar that is portable to any Standard C
9d9b8b70 3162host, you must use only nonnull character tokens taken from the basic
c827f760 3163execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3164digits, the 52 lower- and upper-case English letters, and the
3165characters in the following C-language string:
3166
3167@example
3168"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3169@end example
3170
f8e1c9e5
AD
3171The @code{yylex} function and Bison must use a consistent character set
3172and encoding for character tokens. For example, if you run Bison in an
35430378 3173ASCII environment, but then compile and run the resulting
f8e1c9e5 3174program in an environment that uses an incompatible character set like
35430378
JD
3175EBCDIC, the resulting program may not work because the tables
3176generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3177character tokens. It is standard practice for software distributions to
3178contain C source files that were generated by Bison in an
35430378
JD
3179ASCII environment, so installers on platforms that are
3180incompatible with ASCII must rebuild those files before
f8e1c9e5 3181compiling them.
e966383b 3182
bfa74976
RS
3183The symbol @code{error} is a terminal symbol reserved for error recovery
3184(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3185In particular, @code{yylex} should never return this value. The default
3186value of the error token is 256, unless you explicitly assigned 256 to
3187one of your tokens with a @code{%token} declaration.
bfa74976 3188
342b8b6e 3189@node Rules
bfa74976
RS
3190@section Syntax of Grammar Rules
3191@cindex rule syntax
3192@cindex grammar rule syntax
3193@cindex syntax of grammar rules
3194
3195A Bison grammar rule has the following general form:
3196
3197@example
e425e872 3198@group
bfa74976
RS
3199@var{result}: @var{components}@dots{}
3200 ;
e425e872 3201@end group
bfa74976
RS
3202@end example
3203
3204@noindent
9ecbd125 3205where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3206and @var{components} are various terminal and nonterminal symbols that
13863333 3207are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3208
3209For example,
3210
3211@example
3212@group
3213exp: exp '+' exp
3214 ;
3215@end group
3216@end example
3217
3218@noindent
3219says that two groupings of type @code{exp}, with a @samp{+} token in between,
3220can be combined into a larger grouping of type @code{exp}.
3221
72d2299c
PE
3222White space in rules is significant only to separate symbols. You can add
3223extra white space as you wish.
bfa74976
RS
3224
3225Scattered among the components can be @var{actions} that determine
3226the semantics of the rule. An action looks like this:
3227
3228@example
3229@{@var{C statements}@}
3230@end example
3231
3232@noindent
287c78f6
PE
3233@cindex braced code
3234This is an example of @dfn{braced code}, that is, C code surrounded by
3235braces, much like a compound statement in C@. Braced code can contain
3236any sequence of C tokens, so long as its braces are balanced. Bison
3237does not check the braced code for correctness directly; it merely
9913d6e4
JD
3238copies the code to the parser implementation file, where the C
3239compiler can check it.
287c78f6
PE
3240
3241Within braced code, the balanced-brace count is not affected by braces
3242within comments, string literals, or character constants, but it is
3243affected by the C digraphs @samp{<%} and @samp{%>} that represent
3244braces. At the top level braced code must be terminated by @samp{@}}
3245and not by a digraph. Bison does not look for trigraphs, so if braced
3246code uses trigraphs you should ensure that they do not affect the
3247nesting of braces or the boundaries of comments, string literals, or
3248character constants.
3249
bfa74976
RS
3250Usually there is only one action and it follows the components.
3251@xref{Actions}.
3252
3253@findex |
3254Multiple rules for the same @var{result} can be written separately or can
3255be joined with the vertical-bar character @samp{|} as follows:
3256
bfa74976
RS
3257@example
3258@group
3259@var{result}: @var{rule1-components}@dots{}
3260 | @var{rule2-components}@dots{}
3261 @dots{}
3262 ;
3263@end group
3264@end example
bfa74976
RS
3265
3266@noindent
3267They are still considered distinct rules even when joined in this way.
3268
3269If @var{components} in a rule is empty, it means that @var{result} can
3270match the empty string. For example, here is how to define a
3271comma-separated sequence of zero or more @code{exp} groupings:
3272
3273@example
3274@group
3275expseq: /* empty */
3276 | expseq1
3277 ;
3278@end group
3279
3280@group
3281expseq1: exp
3282 | expseq1 ',' exp
3283 ;
3284@end group
3285@end example
3286
3287@noindent
3288It is customary to write a comment @samp{/* empty */} in each rule
3289with no components.
3290
342b8b6e 3291@node Recursion
bfa74976
RS
3292@section Recursive Rules
3293@cindex recursive rule
3294
f8e1c9e5
AD
3295A rule is called @dfn{recursive} when its @var{result} nonterminal
3296appears also on its right hand side. Nearly all Bison grammars need to
3297use recursion, because that is the only way to define a sequence of any
3298number of a particular thing. Consider this recursive definition of a
9ecbd125 3299comma-separated sequence of one or more expressions:
bfa74976
RS
3300
3301@example
3302@group
3303expseq1: exp
3304 | expseq1 ',' exp
3305 ;
3306@end group
3307@end example
3308
3309@cindex left recursion
3310@cindex right recursion
3311@noindent
3312Since the recursive use of @code{expseq1} is the leftmost symbol in the
3313right hand side, we call this @dfn{left recursion}. By contrast, here
3314the same construct is defined using @dfn{right recursion}:
3315
3316@example
3317@group
3318expseq1: exp
3319 | exp ',' expseq1
3320 ;
3321@end group
3322@end example
3323
3324@noindent
ec3bc396
AD
3325Any kind of sequence can be defined using either left recursion or right
3326recursion, but you should always use left recursion, because it can
3327parse a sequence of any number of elements with bounded stack space.
3328Right recursion uses up space on the Bison stack in proportion to the
3329number of elements in the sequence, because all the elements must be
3330shifted onto the stack before the rule can be applied even once.
3331@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3332of this.
bfa74976
RS
3333
3334@cindex mutual recursion
3335@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3336rule does not appear directly on its right hand side, but does appear
3337in rules for other nonterminals which do appear on its right hand
13863333 3338side.
bfa74976
RS
3339
3340For example:
3341
3342@example
3343@group
3344expr: primary
3345 | primary '+' primary
3346 ;
3347@end group
3348
3349@group
3350primary: constant
3351 | '(' expr ')'
3352 ;
3353@end group
3354@end example
3355
3356@noindent
3357defines two mutually-recursive nonterminals, since each refers to the
3358other.
3359
342b8b6e 3360@node Semantics
bfa74976
RS
3361@section Defining Language Semantics
3362@cindex defining language semantics
13863333 3363@cindex language semantics, defining
bfa74976
RS
3364
3365The grammar rules for a language determine only the syntax. The semantics
3366are determined by the semantic values associated with various tokens and
3367groupings, and by the actions taken when various groupings are recognized.
3368
3369For example, the calculator calculates properly because the value
3370associated with each expression is the proper number; it adds properly
3371because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3372the numbers associated with @var{x} and @var{y}.
3373
3374@menu
3375* Value Type:: Specifying one data type for all semantic values.
3376* Multiple Types:: Specifying several alternative data types.
3377* Actions:: An action is the semantic definition of a grammar rule.
3378* Action Types:: Specifying data types for actions to operate on.
3379* Mid-Rule Actions:: Most actions go at the end of a rule.
3380 This says when, why and how to use the exceptional
3381 action in the middle of a rule.
1f68dca5 3382* Named References:: Using named references in actions.
bfa74976
RS
3383@end menu
3384
342b8b6e 3385@node Value Type
bfa74976
RS
3386@subsection Data Types of Semantic Values
3387@cindex semantic value type
3388@cindex value type, semantic
3389@cindex data types of semantic values
3390@cindex default data type
3391
3392In a simple program it may be sufficient to use the same data type for
3393the semantic values of all language constructs. This was true in the
35430378 3394RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3395Notation Calculator}).
bfa74976 3396
ddc8ede1
PE
3397Bison normally uses the type @code{int} for semantic values if your
3398program uses the same data type for all language constructs. To
bfa74976
RS
3399specify some other type, define @code{YYSTYPE} as a macro, like this:
3400
3401@example
3402#define YYSTYPE double
3403@end example
3404
3405@noindent
50cce58e
PE
3406@code{YYSTYPE}'s replacement list should be a type name
3407that does not contain parentheses or square brackets.
342b8b6e 3408This macro definition must go in the prologue of the grammar file
75f5aaea 3409(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3410
342b8b6e 3411@node Multiple Types
bfa74976
RS
3412@subsection More Than One Value Type
3413
3414In most programs, you will need different data types for different kinds
3415of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3416@code{int} or @code{long int}, while a string constant needs type
3417@code{char *}, and an identifier might need a pointer to an entry in the
3418symbol table.
bfa74976
RS
3419
3420To use more than one data type for semantic values in one parser, Bison
3421requires you to do two things:
3422
3423@itemize @bullet
3424@item
ddc8ede1 3425Specify the entire collection of possible data types, either by using the
704a47c4 3426@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3427Value Types}), or by using a @code{typedef} or a @code{#define} to
3428define @code{YYSTYPE} to be a union type whose member names are
3429the type tags.
bfa74976
RS
3430
3431@item
14ded682
AD
3432Choose one of those types for each symbol (terminal or nonterminal) for
3433which semantic values are used. This is done for tokens with the
3434@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3435and for groupings with the @code{%type} Bison declaration (@pxref{Type
3436Decl, ,Nonterminal Symbols}).
bfa74976
RS
3437@end itemize
3438
342b8b6e 3439@node Actions
bfa74976
RS
3440@subsection Actions
3441@cindex action
3442@vindex $$
3443@vindex $@var{n}
1f68dca5
AR
3444@vindex $@var{name}
3445@vindex $[@var{name}]
bfa74976
RS
3446
3447An action accompanies a syntactic rule and contains C code to be executed
3448each time an instance of that rule is recognized. The task of most actions
3449is to compute a semantic value for the grouping built by the rule from the
3450semantic values associated with tokens or smaller groupings.
3451
287c78f6
PE
3452An action consists of braced code containing C statements, and can be
3453placed at any position in the rule;
704a47c4
AD
3454it is executed at that position. Most rules have just one action at the
3455end of the rule, following all the components. Actions in the middle of
3456a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3457Actions, ,Actions in Mid-Rule}).
bfa74976 3458
9913d6e4
JD
3459The C code in an action can refer to the semantic values of the
3460components matched by the rule with the construct @code{$@var{n}},
3461which stands for the value of the @var{n}th component. The semantic
3462value for the grouping being constructed is @code{$$}. In addition,
3463the semantic values of symbols can be accessed with the named
3464references construct @code{$@var{name}} or @code{$[@var{name}]}.
3465Bison translates both of these constructs into expressions of the
3466appropriate type when it copies the actions into the parser
3467implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3468for the current grouping) is translated to a modifiable lvalue, so it
3469can be assigned to.
bfa74976
RS
3470
3471Here is a typical example:
3472
3473@example
3474@group
3475exp: @dots{}
3476 | exp '+' exp
3477 @{ $$ = $1 + $3; @}
3478@end group
3479@end example
3480
1f68dca5
AR
3481Or, in terms of named references:
3482
3483@example
3484@group
3485exp[result]: @dots{}
3486 | exp[left] '+' exp[right]
3487 @{ $result = $left + $right; @}
3488@end group
3489@end example
3490
bfa74976
RS
3491@noindent
3492This rule constructs an @code{exp} from two smaller @code{exp} groupings
3493connected by a plus-sign token. In the action, @code{$1} and @code{$3}
1f68dca5 3494(@code{$left} and @code{$right})
bfa74976
RS
3495refer to the semantic values of the two component @code{exp} groupings,
3496which are the first and third symbols on the right hand side of the rule.
1f68dca5
AR
3497The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3498semantic value of
bfa74976
RS
3499the addition-expression just recognized by the rule. If there were a
3500useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3501referred to as @code{$2}.
bfa74976 3502
1f68dca5
AR
3503@xref{Named References,,Using Named References}, for more information
3504about using the named references construct.
3505
3ded9a63
AD
3506Note that the vertical-bar character @samp{|} is really a rule
3507separator, and actions are attached to a single rule. This is a
3508difference with tools like Flex, for which @samp{|} stands for either
3509``or'', or ``the same action as that of the next rule''. In the
3510following example, the action is triggered only when @samp{b} is found:
3511
3512@example
3513@group
3514a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3515@end group
3516@end example
3517
bfa74976
RS
3518@cindex default action
3519If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3520@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3521becomes the value of the whole rule. Of course, the default action is
3522valid only if the two data types match. There is no meaningful default
3523action for an empty rule; every empty rule must have an explicit action
3524unless the rule's value does not matter.
bfa74976
RS
3525
3526@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3527to tokens and groupings on the stack @emph{before} those that match the
3528current rule. This is a very risky practice, and to use it reliably
3529you must be certain of the context in which the rule is applied. Here
3530is a case in which you can use this reliably:
3531
3532@example
3533@group
3534foo: expr bar '+' expr @{ @dots{} @}
3535 | expr bar '-' expr @{ @dots{} @}
3536 ;
3537@end group
3538
3539@group
3540bar: /* empty */
3541 @{ previous_expr = $0; @}
3542 ;
3543@end group
3544@end example
3545
3546As long as @code{bar} is used only in the fashion shown here, @code{$0}
3547always refers to the @code{expr} which precedes @code{bar} in the
3548definition of @code{foo}.
3549
32c29292 3550@vindex yylval
742e4900 3551It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3552any, from a semantic action.
3553This semantic value is stored in @code{yylval}.
3554@xref{Action Features, ,Special Features for Use in Actions}.
3555
342b8b6e 3556@node Action Types
bfa74976
RS
3557@subsection Data Types of Values in Actions
3558@cindex action data types
3559@cindex data types in actions
3560
3561If you have chosen a single data type for semantic values, the @code{$$}
3562and @code{$@var{n}} constructs always have that data type.
3563
3564If you have used @code{%union} to specify a variety of data types, then you
3565must declare a choice among these types for each terminal or nonterminal
3566symbol that can have a semantic value. Then each time you use @code{$$} or
3567@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3568in the rule. In this example,
bfa74976
RS
3569
3570@example
3571@group
3572exp: @dots{}
3573 | exp '+' exp
3574 @{ $$ = $1 + $3; @}
3575@end group
3576@end example
3577
3578@noindent
3579@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3580have the data type declared for the nonterminal symbol @code{exp}. If
3581@code{$2} were used, it would have the data type declared for the
e0c471a9 3582terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3583
3584Alternatively, you can specify the data type when you refer to the value,
3585by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3586reference. For example, if you have defined types as shown here:
3587
3588@example
3589@group
3590%union @{
3591 int itype;
3592 double dtype;
3593@}
3594@end group
3595@end example
3596
3597@noindent
3598then you can write @code{$<itype>1} to refer to the first subunit of the
3599rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3600
342b8b6e 3601@node Mid-Rule Actions
bfa74976
RS
3602@subsection Actions in Mid-Rule
3603@cindex actions in mid-rule
3604@cindex mid-rule actions
3605
3606Occasionally it is useful to put an action in the middle of a rule.
3607These actions are written just like usual end-of-rule actions, but they
3608are executed before the parser even recognizes the following components.
3609
3610A mid-rule action may refer to the components preceding it using
3611@code{$@var{n}}, but it may not refer to subsequent components because
3612it is run before they are parsed.
3613
3614The mid-rule action itself counts as one of the components of the rule.
3615This makes a difference when there is another action later in the same rule
3616(and usually there is another at the end): you have to count the actions
3617along with the symbols when working out which number @var{n} to use in
3618@code{$@var{n}}.
3619
3620The mid-rule action can also have a semantic value. The action can set
3621its value with an assignment to @code{$$}, and actions later in the rule
3622can refer to the value using @code{$@var{n}}. Since there is no symbol
3623to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3624in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3625specify a data type each time you refer to this value.
bfa74976
RS
3626
3627There is no way to set the value of the entire rule with a mid-rule
3628action, because assignments to @code{$$} do not have that effect. The
3629only way to set the value for the entire rule is with an ordinary action
3630at the end of the rule.
3631
3632Here is an example from a hypothetical compiler, handling a @code{let}
3633statement that looks like @samp{let (@var{variable}) @var{statement}} and
3634serves to create a variable named @var{variable} temporarily for the
3635duration of @var{statement}. To parse this construct, we must put
3636@var{variable} into the symbol table while @var{statement} is parsed, then
3637remove it afterward. Here is how it is done:
3638
3639@example
3640@group
3641stmt: LET '(' var ')'
3642 @{ $<context>$ = push_context ();
3643 declare_variable ($3); @}
3644 stmt @{ $$ = $6;
3645 pop_context ($<context>5); @}
3646@end group
3647@end example
3648
3649@noindent
3650As soon as @samp{let (@var{variable})} has been recognized, the first
3651action is run. It saves a copy of the current semantic context (the
3652list of accessible variables) as its semantic value, using alternative
3653@code{context} in the data-type union. Then it calls
3654@code{declare_variable} to add the new variable to that list. Once the
3655first action is finished, the embedded statement @code{stmt} can be
3656parsed. Note that the mid-rule action is component number 5, so the
3657@samp{stmt} is component number 6.
3658
3659After the embedded statement is parsed, its semantic value becomes the
3660value of the entire @code{let}-statement. Then the semantic value from the
3661earlier action is used to restore the prior list of variables. This
3662removes the temporary @code{let}-variable from the list so that it won't
3663appear to exist while the rest of the program is parsed.
3664
841a7737
JD
3665@findex %destructor
3666@cindex discarded symbols, mid-rule actions
3667@cindex error recovery, mid-rule actions
3668In the above example, if the parser initiates error recovery (@pxref{Error
3669Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3670it might discard the previous semantic context @code{$<context>5} without
3671restoring it.
3672Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3673Discarded Symbols}).
ec5479ce
JD
3674However, Bison currently provides no means to declare a destructor specific to
3675a particular mid-rule action's semantic value.
841a7737
JD
3676
3677One solution is to bury the mid-rule action inside a nonterminal symbol and to
3678declare a destructor for that symbol:
3679
3680@example
3681@group
3682%type <context> let
3683%destructor @{ pop_context ($$); @} let
3684
3685%%
3686
3687stmt: let stmt
3688 @{ $$ = $2;
3689 pop_context ($1); @}
3690 ;
3691
3692let: LET '(' var ')'
3693 @{ $$ = push_context ();
3694 declare_variable ($3); @}
3695 ;
3696
3697@end group
3698@end example
3699
3700@noindent
3701Note that the action is now at the end of its rule.
3702Any mid-rule action can be converted to an end-of-rule action in this way, and
3703this is what Bison actually does to implement mid-rule actions.
3704
bfa74976
RS
3705Taking action before a rule is completely recognized often leads to
3706conflicts since the parser must commit to a parse in order to execute the
3707action. For example, the following two rules, without mid-rule actions,
3708can coexist in a working parser because the parser can shift the open-brace
3709token and look at what follows before deciding whether there is a
3710declaration or not:
3711
3712@example
3713@group
3714compound: '@{' declarations statements '@}'
3715 | '@{' statements '@}'
3716 ;
3717@end group
3718@end example
3719
3720@noindent
3721But when we add a mid-rule action as follows, the rules become nonfunctional:
3722
3723@example
3724@group
3725compound: @{ prepare_for_local_variables (); @}
3726 '@{' declarations statements '@}'
3727@end group
3728@group
3729 | '@{' statements '@}'
3730 ;
3731@end group
3732@end example
3733
3734@noindent
3735Now the parser is forced to decide whether to run the mid-rule action
3736when it has read no farther than the open-brace. In other words, it
3737must commit to using one rule or the other, without sufficient
3738information to do it correctly. (The open-brace token is what is called
742e4900
JD
3739the @dfn{lookahead} token at this time, since the parser is still
3740deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3741
3742You might think that you could correct the problem by putting identical
3743actions into the two rules, like this:
3744
3745@example
3746@group
3747compound: @{ prepare_for_local_variables (); @}
3748 '@{' declarations statements '@}'
3749 | @{ prepare_for_local_variables (); @}
3750 '@{' statements '@}'
3751 ;
3752@end group
3753@end example
3754
3755@noindent
3756But this does not help, because Bison does not realize that the two actions
3757are identical. (Bison never tries to understand the C code in an action.)
3758
3759If the grammar is such that a declaration can be distinguished from a
3760statement by the first token (which is true in C), then one solution which
3761does work is to put the action after the open-brace, like this:
3762
3763@example
3764@group
3765compound: '@{' @{ prepare_for_local_variables (); @}
3766 declarations statements '@}'
3767 | '@{' statements '@}'
3768 ;
3769@end group
3770@end example
3771
3772@noindent
3773Now the first token of the following declaration or statement,
3774which would in any case tell Bison which rule to use, can still do so.
3775
3776Another solution is to bury the action inside a nonterminal symbol which
3777serves as a subroutine:
3778
3779@example
3780@group
3781subroutine: /* empty */
3782 @{ prepare_for_local_variables (); @}
3783 ;
3784
3785@end group
3786
3787@group
3788compound: subroutine
3789 '@{' declarations statements '@}'
3790 | subroutine
3791 '@{' statements '@}'
3792 ;
3793@end group
3794@end example
3795
3796@noindent
3797Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3798deciding which rule for @code{compound} it will eventually use.
bfa74976 3799
1f68dca5
AR
3800@node Named References
3801@subsection Using Named References
3802@cindex named references
3803
3804While every semantic value can be accessed with positional references
3805@code{$@var{n}} and @code{$$}, it's often much more convenient to refer to
3806them by name. First of all, original symbol names may be used as named
3807references. For example:
3808
3809@example
3810@group
3811invocation: op '(' args ')'
3812 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
3813@end group
3814@end example
3815
3816@noindent
3817The positional @code{$$}, @code{@@$}, @code{$n}, and @code{@@n} can be
3818mixed with @code{$name} and @code{@@name} arbitrarily. For example:
3819
3820@example
3821@group
3822invocation: op '(' args ')'
3823 @{ $$ = new_invocation ($op, $args, @@$); @}
3824@end group
3825@end example
3826
3827@noindent
3828However, sometimes regular symbol names are not sufficient due to
3829ambiguities:
3830
3831@example
3832@group
3833exp: exp '/' exp
3834 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
3835
3836exp: exp '/' exp
3837 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
3838
3839exp: exp '/' exp
3840 @{ $$ = $1 / $3; @} // No error.
3841@end group
3842@end example
3843
3844@noindent
3845When ambiguity occurs, explicitly declared names may be used for values and
3846locations. Explicit names are declared as a bracketed name after a symbol
3847appearance in rule definitions. For example:
3848@example
3849@group
3850exp[result]: exp[left] '/' exp[right]
3851 @{ $result = $left / $right; @}
3852@end group
3853@end example
3854
3855@noindent
3856Explicit names may be declared for RHS and for LHS symbols as well. In order
3857to access a semantic value generated by a mid-rule action, an explicit name
3858may also be declared by putting a bracketed name after the closing brace of
3859the mid-rule action code:
3860@example
3861@group
3862exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
3863 @{ $res = $left + $right; @}
3864@end group
3865@end example
3866
3867@noindent
3868
3869In references, in order to specify names containing dots and dashes, an explicit
3870bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
3871@example
3872@group
3873if-stmt: IF '(' expr ')' THEN then.stmt ';'
3874 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
3875@end group
3876@end example
3877
3878It often happens that named references are followed by a dot, dash or other
3879C punctuation marks and operators. By default, Bison will read
3880@code{$name.suffix} as a reference to symbol value @code{$name} followed by
3881@samp{.suffix}, i.e., an access to the @samp{suffix} field of the semantic
3882value. In order to force Bison to recognize @code{name.suffix} in its entirety
3883as the name of a semantic value, bracketed syntax @code{$[name.suffix]}
3884must be used.
3885
3886
342b8b6e 3887@node Locations
847bf1f5
AD
3888@section Tracking Locations
3889@cindex location
95923bd6
AD
3890@cindex textual location
3891@cindex location, textual
847bf1f5
AD
3892
3893Though grammar rules and semantic actions are enough to write a fully
72d2299c 3894functional parser, it can be useful to process some additional information,
3e259915
MA
3895especially symbol locations.
3896
704a47c4
AD
3897The way locations are handled is defined by providing a data type, and
3898actions to take when rules are matched.
847bf1f5
AD
3899
3900@menu
3901* Location Type:: Specifying a data type for locations.
3902* Actions and Locations:: Using locations in actions.
3903* Location Default Action:: Defining a general way to compute locations.
3904@end menu
3905
342b8b6e 3906@node Location Type
847bf1f5
AD
3907@subsection Data Type of Locations
3908@cindex data type of locations
3909@cindex default location type
3910
3911Defining a data type for locations is much simpler than for semantic values,
3912since all tokens and groupings always use the same type.
3913
50cce58e
PE
3914You can specify the type of locations by defining a macro called
3915@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3916defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3917When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3918four members:
3919
3920@example
6273355b 3921typedef struct YYLTYPE
847bf1f5
AD
3922@{
3923 int first_line;
3924 int first_column;
3925 int last_line;
3926 int last_column;
6273355b 3927@} YYLTYPE;
847bf1f5
AD
3928@end example
3929
8fbbeba2
AD
3930When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3931initializes all these fields to 1 for @code{yylloc}. To initialize
3932@code{yylloc} with a custom location type (or to chose a different
3933initialization), use the @code{%initial-action} directive. @xref{Initial
3934Action Decl, , Performing Actions before Parsing}.
cd48d21d 3935
342b8b6e 3936@node Actions and Locations
847bf1f5
AD
3937@subsection Actions and Locations
3938@cindex location actions
3939@cindex actions, location
3940@vindex @@$
3941@vindex @@@var{n}
1f68dca5
AR
3942@vindex @@@var{name}
3943@vindex @@[@var{name}]
847bf1f5
AD
3944
3945Actions are not only useful for defining language semantics, but also for
3946describing the behavior of the output parser with locations.
3947
3948The most obvious way for building locations of syntactic groupings is very
72d2299c 3949similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3950constructs can be used to access the locations of the elements being matched.
3951The location of the @var{n}th component of the right hand side is
3952@code{@@@var{n}}, while the location of the left hand side grouping is
3953@code{@@$}.
3954
1f68dca5
AR
3955In addition, the named references construct @code{@@@var{name}} and
3956@code{@@[@var{name}]} may also be used to address the symbol locations.
3957@xref{Named References,,Using Named References}, for more information
3958about using the named references construct.
3959
3e259915 3960Here is a basic example using the default data type for locations:
847bf1f5
AD
3961
3962@example
3963@group
3964exp: @dots{}
3e259915 3965 | exp '/' exp
847bf1f5 3966 @{
3e259915
MA
3967 @@$.first_column = @@1.first_column;
3968 @@$.first_line = @@1.first_line;
847bf1f5
AD
3969 @@$.last_column = @@3.last_column;
3970 @@$.last_line = @@3.last_line;
3e259915
MA
3971 if ($3)
3972 $$ = $1 / $3;
3973 else
3974 @{
3975 $$ = 1;
4e03e201
AD
3976 fprintf (stderr,
3977 "Division by zero, l%d,c%d-l%d,c%d",
3978 @@3.first_line, @@3.first_column,
3979 @@3.last_line, @@3.last_column);
3e259915 3980 @}
847bf1f5
AD
3981 @}
3982@end group
3983@end example
3984
3e259915 3985As for semantic values, there is a default action for locations that is
72d2299c 3986run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3987beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3988last symbol.
3e259915 3989
72d2299c 3990With this default action, the location tracking can be fully automatic. The
3e259915
MA
3991example above simply rewrites this way:
3992
3993@example
3994@group
3995exp: @dots{}
3996 | exp '/' exp
3997 @{
3998 if ($3)
3999 $$ = $1 / $3;
4000 else
4001 @{
4002 $$ = 1;
4e03e201
AD
4003 fprintf (stderr,
4004 "Division by zero, l%d,c%d-l%d,c%d",
4005 @@3.first_line, @@3.first_column,
4006 @@3.last_line, @@3.last_column);
3e259915
MA
4007 @}
4008 @}
4009@end group
4010@end example
847bf1f5 4011
32c29292 4012@vindex yylloc
742e4900 4013It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4014from a semantic action.
4015This location is stored in @code{yylloc}.
4016@xref{Action Features, ,Special Features for Use in Actions}.
4017
342b8b6e 4018@node Location Default Action
847bf1f5
AD
4019@subsection Default Action for Locations
4020@vindex YYLLOC_DEFAULT
35430378 4021@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4022
72d2299c 4023Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4024locations are much more general than semantic values, there is room in
4025the output parser to redefine the default action to take for each
72d2299c 4026rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4027matched, before the associated action is run. It is also invoked
4028while processing a syntax error, to compute the error's location.
35430378 4029Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4030parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4031of that ambiguity.
847bf1f5 4032
3e259915 4033Most of the time, this macro is general enough to suppress location
79282c6c 4034dedicated code from semantic actions.
847bf1f5 4035
72d2299c 4036The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4037the location of the grouping (the result of the computation). When a
766de5eb 4038rule is matched, the second parameter identifies locations of
96b93a3d 4039all right hand side elements of the rule being matched, and the third
8710fc41 4040parameter is the size of the rule's right hand side.
35430378 4041When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4042right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4043When processing a syntax error, the second parameter identifies locations
4044of the symbols that were discarded during error processing, and the third
96b93a3d 4045parameter is the number of discarded symbols.
847bf1f5 4046
766de5eb 4047By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4048
766de5eb 4049@smallexample
847bf1f5 4050@group
766de5eb
PE
4051# define YYLLOC_DEFAULT(Current, Rhs, N) \
4052 do \
4053 if (N) \
4054 @{ \
4055 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
4056 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
4057 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
4058 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
4059 @} \
4060 else \
4061 @{ \
4062 (Current).first_line = (Current).last_line = \
4063 YYRHSLOC(Rhs, 0).last_line; \
4064 (Current).first_column = (Current).last_column = \
4065 YYRHSLOC(Rhs, 0).last_column; \
4066 @} \
4067 while (0)
847bf1f5 4068@end group
766de5eb 4069@end smallexample
676385e2 4070
766de5eb
PE
4071where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4072in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4073just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4074
3e259915 4075When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4076
3e259915 4077@itemize @bullet
79282c6c 4078@item
72d2299c 4079All arguments are free of side-effects. However, only the first one (the
3e259915 4080result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4081
3e259915 4082@item
766de5eb
PE
4083For consistency with semantic actions, valid indexes within the
4084right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4085valid index, and it refers to the symbol just before the reduction.
4086During error processing @var{n} is always positive.
0ae99356
PE
4087
4088@item
4089Your macro should parenthesize its arguments, if need be, since the
4090actual arguments may not be surrounded by parentheses. Also, your
4091macro should expand to something that can be used as a single
4092statement when it is followed by a semicolon.
3e259915 4093@end itemize
847bf1f5 4094
342b8b6e 4095@node Declarations
bfa74976
RS
4096@section Bison Declarations
4097@cindex declarations, Bison
4098@cindex Bison declarations
4099
4100The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4101used in formulating the grammar and the data types of semantic values.
4102@xref{Symbols}.
4103
4104All token type names (but not single-character literal tokens such as
4105@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4106declared if you need to specify which data type to use for the semantic
4107value (@pxref{Multiple Types, ,More Than One Value Type}).
4108
9913d6e4
JD
4109The first rule in the grammar file also specifies the start symbol, by
4110default. If you want some other symbol to be the start symbol, you
4111must declare it explicitly (@pxref{Language and Grammar, ,Languages
4112and Context-Free Grammars}).
bfa74976
RS
4113
4114@menu
b50d2359 4115* Require Decl:: Requiring a Bison version.
bfa74976
RS
4116* Token Decl:: Declaring terminal symbols.
4117* Precedence Decl:: Declaring terminals with precedence and associativity.
4118* Union Decl:: Declaring the set of all semantic value types.
4119* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4120* Initial Action Decl:: Code run before parsing starts.
72f889cc 4121* Destructor Decl:: Declaring how symbols are freed.
d6328241 4122* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4123* Start Decl:: Specifying the start symbol.
4124* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4125* Push Decl:: Requesting a push parser.
bfa74976
RS
4126* Decl Summary:: Table of all Bison declarations.
4127@end menu
4128
b50d2359
AD
4129@node Require Decl
4130@subsection Require a Version of Bison
4131@cindex version requirement
4132@cindex requiring a version of Bison
4133@findex %require
4134
4135You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4136the requirement is not met, @command{bison} exits with an error (exit
4137status 63).
b50d2359
AD
4138
4139@example
4140%require "@var{version}"
4141@end example
4142
342b8b6e 4143@node Token Decl
bfa74976
RS
4144@subsection Token Type Names
4145@cindex declaring token type names
4146@cindex token type names, declaring
931c7513 4147@cindex declaring literal string tokens
bfa74976
RS
4148@findex %token
4149
4150The basic way to declare a token type name (terminal symbol) is as follows:
4151
4152@example
4153%token @var{name}
4154@end example
4155
4156Bison will convert this into a @code{#define} directive in
4157the parser, so that the function @code{yylex} (if it is in this file)
4158can use the name @var{name} to stand for this token type's code.
4159
14ded682
AD
4160Alternatively, you can use @code{%left}, @code{%right}, or
4161@code{%nonassoc} instead of @code{%token}, if you wish to specify
4162associativity and precedence. @xref{Precedence Decl, ,Operator
4163Precedence}.
bfa74976
RS
4164
4165You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4166a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4167following the token name:
bfa74976
RS
4168
4169@example
4170%token NUM 300
1452af69 4171%token XNUM 0x12d // a GNU extension
bfa74976
RS
4172@end example
4173
4174@noindent
4175It is generally best, however, to let Bison choose the numeric codes for
4176all token types. Bison will automatically select codes that don't conflict
e966383b 4177with each other or with normal characters.
bfa74976
RS
4178
4179In the event that the stack type is a union, you must augment the
4180@code{%token} or other token declaration to include the data type
704a47c4
AD
4181alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4182Than One Value Type}).
bfa74976
RS
4183
4184For example:
4185
4186@example
4187@group
4188%union @{ /* define stack type */
4189 double val;
4190 symrec *tptr;
4191@}
4192%token <val> NUM /* define token NUM and its type */
4193@end group
4194@end example
4195
931c7513
RS
4196You can associate a literal string token with a token type name by
4197writing the literal string at the end of a @code{%token}
4198declaration which declares the name. For example:
4199
4200@example
4201%token arrow "=>"
4202@end example
4203
4204@noindent
4205For example, a grammar for the C language might specify these names with
4206equivalent literal string tokens:
4207
4208@example
4209%token <operator> OR "||"
4210%token <operator> LE 134 "<="
4211%left OR "<="
4212@end example
4213
4214@noindent
4215Once you equate the literal string and the token name, you can use them
4216interchangeably in further declarations or the grammar rules. The
4217@code{yylex} function can use the token name or the literal string to
4218obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4219Syntax error messages passed to @code{yyerror} from the parser will reference
4220the literal string instead of the token name.
4221
4222The token numbered as 0 corresponds to end of file; the following line
4223allows for nicer error messages referring to ``end of file'' instead
4224of ``$end'':
4225
4226@example
4227%token END 0 "end of file"
4228@end example
931c7513 4229
342b8b6e 4230@node Precedence Decl
bfa74976
RS
4231@subsection Operator Precedence
4232@cindex precedence declarations
4233@cindex declaring operator precedence
4234@cindex operator precedence, declaring
4235
4236Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4237declare a token and specify its precedence and associativity, all at
4238once. These are called @dfn{precedence declarations}.
704a47c4
AD
4239@xref{Precedence, ,Operator Precedence}, for general information on
4240operator precedence.
bfa74976 4241
ab7f29f8 4242The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4243@code{%token}: either
4244
4245@example
4246%left @var{symbols}@dots{}
4247@end example
4248
4249@noindent
4250or
4251
4252@example
4253%left <@var{type}> @var{symbols}@dots{}
4254@end example
4255
4256And indeed any of these declarations serves the purposes of @code{%token}.
4257But in addition, they specify the associativity and relative precedence for
4258all the @var{symbols}:
4259
4260@itemize @bullet
4261@item
4262The associativity of an operator @var{op} determines how repeated uses
4263of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4264@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4265grouping @var{y} with @var{z} first. @code{%left} specifies
4266left-associativity (grouping @var{x} with @var{y} first) and
4267@code{%right} specifies right-associativity (grouping @var{y} with
4268@var{z} first). @code{%nonassoc} specifies no associativity, which
4269means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4270considered a syntax error.
4271
4272@item
4273The precedence of an operator determines how it nests with other operators.
4274All the tokens declared in a single precedence declaration have equal
4275precedence and nest together according to their associativity.
4276When two tokens declared in different precedence declarations associate,
4277the one declared later has the higher precedence and is grouped first.
4278@end itemize
4279
ab7f29f8
JD
4280For backward compatibility, there is a confusing difference between the
4281argument lists of @code{%token} and precedence declarations.
4282Only a @code{%token} can associate a literal string with a token type name.
4283A precedence declaration always interprets a literal string as a reference to a
4284separate token.
4285For example:
4286
4287@example
4288%left OR "<=" // Does not declare an alias.
4289%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4290@end example
4291
342b8b6e 4292@node Union Decl
bfa74976
RS
4293@subsection The Collection of Value Types
4294@cindex declaring value types
4295@cindex value types, declaring
4296@findex %union
4297
287c78f6
PE
4298The @code{%union} declaration specifies the entire collection of
4299possible data types for semantic values. The keyword @code{%union} is
4300followed by braced code containing the same thing that goes inside a
4301@code{union} in C@.
bfa74976
RS
4302
4303For example:
4304
4305@example
4306@group
4307%union @{
4308 double val;
4309 symrec *tptr;
4310@}
4311@end group
4312@end example
4313
4314@noindent
4315This says that the two alternative types are @code{double} and @code{symrec
4316*}. They are given names @code{val} and @code{tptr}; these names are used
4317in the @code{%token} and @code{%type} declarations to pick one of the types
4318for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4319
35430378 4320As an extension to POSIX, a tag is allowed after the
6273355b
PE
4321@code{union}. For example:
4322
4323@example
4324@group
4325%union value @{
4326 double val;
4327 symrec *tptr;
4328@}
4329@end group
4330@end example
4331
d6ca7905 4332@noindent
6273355b
PE
4333specifies the union tag @code{value}, so the corresponding C type is
4334@code{union value}. If you do not specify a tag, it defaults to
4335@code{YYSTYPE}.
4336
35430378 4337As another extension to POSIX, you may specify multiple
d6ca7905
PE
4338@code{%union} declarations; their contents are concatenated. However,
4339only the first @code{%union} declaration can specify a tag.
4340
6273355b 4341Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4342a semicolon after the closing brace.
4343
ddc8ede1
PE
4344Instead of @code{%union}, you can define and use your own union type
4345@code{YYSTYPE} if your grammar contains at least one
4346@samp{<@var{type}>} tag. For example, you can put the following into
4347a header file @file{parser.h}:
4348
4349@example
4350@group
4351union YYSTYPE @{
4352 double val;
4353 symrec *tptr;
4354@};
4355typedef union YYSTYPE YYSTYPE;
4356@end group
4357@end example
4358
4359@noindent
4360and then your grammar can use the following
4361instead of @code{%union}:
4362
4363@example
4364@group
4365%@{
4366#include "parser.h"
4367%@}
4368%type <val> expr
4369%token <tptr> ID
4370@end group
4371@end example
4372
342b8b6e 4373@node Type Decl
bfa74976
RS
4374@subsection Nonterminal Symbols
4375@cindex declaring value types, nonterminals
4376@cindex value types, nonterminals, declaring
4377@findex %type
4378
4379@noindent
4380When you use @code{%union} to specify multiple value types, you must
4381declare the value type of each nonterminal symbol for which values are
4382used. This is done with a @code{%type} declaration, like this:
4383
4384@example
4385%type <@var{type}> @var{nonterminal}@dots{}
4386@end example
4387
4388@noindent
704a47c4
AD
4389Here @var{nonterminal} is the name of a nonterminal symbol, and
4390@var{type} is the name given in the @code{%union} to the alternative
4391that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4392can give any number of nonterminal symbols in the same @code{%type}
4393declaration, if they have the same value type. Use spaces to separate
4394the symbol names.
bfa74976 4395
931c7513
RS
4396You can also declare the value type of a terminal symbol. To do this,
4397use the same @code{<@var{type}>} construction in a declaration for the
4398terminal symbol. All kinds of token declarations allow
4399@code{<@var{type}>}.
4400
18d192f0
AD
4401@node Initial Action Decl
4402@subsection Performing Actions before Parsing
4403@findex %initial-action
4404
4405Sometimes your parser needs to perform some initializations before
4406parsing. The @code{%initial-action} directive allows for such arbitrary
4407code.
4408
4409@deffn {Directive} %initial-action @{ @var{code} @}
4410@findex %initial-action
287c78f6 4411Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4412@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4413@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4414@code{%parse-param}.
18d192f0
AD
4415@end deffn
4416
451364ed
AD
4417For instance, if your locations use a file name, you may use
4418
4419@example
48b16bbc 4420%parse-param @{ char const *file_name @};
451364ed
AD
4421%initial-action
4422@{
4626a15d 4423 @@$.initialize (file_name);
451364ed
AD
4424@};
4425@end example
4426
18d192f0 4427
72f889cc
AD
4428@node Destructor Decl
4429@subsection Freeing Discarded Symbols
4430@cindex freeing discarded symbols
4431@findex %destructor
12e35840 4432@findex <*>
3ebecc24 4433@findex <>
a85284cf
AD
4434During error recovery (@pxref{Error Recovery}), symbols already pushed
4435on the stack and tokens coming from the rest of the file are discarded
4436until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4437or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4438symbols on the stack must be discarded. Even if the parser succeeds, it
4439must discard the start symbol.
258b75ca
PE
4440
4441When discarded symbols convey heap based information, this memory is
4442lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4443in traditional compilers, it is unacceptable for programs like shells or
4444protocol implementations that may parse and execute indefinitely.
258b75ca 4445
a85284cf
AD
4446The @code{%destructor} directive defines code that is called when a
4447symbol is automatically discarded.
72f889cc
AD
4448
4449@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4450@findex %destructor
287c78f6
PE
4451Invoke the braced @var{code} whenever the parser discards one of the
4452@var{symbols}.
4b367315 4453Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4454with the discarded symbol, and @code{@@$} designates its location.
4455The additional parser parameters are also available (@pxref{Parser Function, ,
4456The Parser Function @code{yyparse}}).
ec5479ce 4457
b2a0b7ca
JD
4458When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4459per-symbol @code{%destructor}.
4460You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4461tag among @var{symbols}.
b2a0b7ca 4462In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4463grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4464per-symbol @code{%destructor}.
4465
12e35840 4466Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4467(These default forms are experimental.
4468More user feedback will help to determine whether they should become permanent
4469features.)
3ebecc24 4470You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4471exactly one @code{%destructor} declaration in your grammar file.
4472The parser will invoke the @var{code} associated with one of these whenever it
4473discards any user-defined grammar symbol that has no per-symbol and no per-type
4474@code{%destructor}.
4475The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4476symbol for which you have formally declared a semantic type tag (@code{%type}
4477counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4478The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4479symbol that has no declared semantic type tag.
72f889cc
AD
4480@end deffn
4481
b2a0b7ca 4482@noindent
12e35840 4483For example:
72f889cc
AD
4484
4485@smallexample
ec5479ce
JD
4486%union @{ char *string; @}
4487%token <string> STRING1
4488%token <string> STRING2
4489%type <string> string1
4490%type <string> string2
b2a0b7ca
JD
4491%union @{ char character; @}
4492%token <character> CHR
4493%type <character> chr
12e35840
JD
4494%token TAGLESS
4495
b2a0b7ca 4496%destructor @{ @} <character>
12e35840
JD
4497%destructor @{ free ($$); @} <*>
4498%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4499%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4500@end smallexample
4501
4502@noindent
b2a0b7ca
JD
4503guarantees that, when the parser discards any user-defined symbol that has a
4504semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4505to @code{free} by default.
ec5479ce
JD
4506However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4507prints its line number to @code{stdout}.
4508It performs only the second @code{%destructor} in this case, so it invokes
4509@code{free} only once.
12e35840
JD
4510Finally, the parser merely prints a message whenever it discards any symbol,
4511such as @code{TAGLESS}, that has no semantic type tag.
4512
4513A Bison-generated parser invokes the default @code{%destructor}s only for
4514user-defined as opposed to Bison-defined symbols.
4515For example, the parser will not invoke either kind of default
4516@code{%destructor} for the special Bison-defined symbols @code{$accept},
4517@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4518none of which you can reference in your grammar.
4519It also will not invoke either for the @code{error} token (@pxref{Table of
4520Symbols, ,error}), which is always defined by Bison regardless of whether you
4521reference it in your grammar.
4522However, it may invoke one of them for the end token (token 0) if you
4523redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4524
4525@smallexample
4526%token END 0
4527@end smallexample
4528
12e35840
JD
4529@cindex actions in mid-rule
4530@cindex mid-rule actions
4531Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4532mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4533That is, Bison does not consider a mid-rule to have a semantic value if you do
4534not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4535@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4536rule.
4537However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4538@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4539
3508ce36
JD
4540@ignore
4541@noindent
4542In the future, it may be possible to redefine the @code{error} token as a
4543nonterminal that captures the discarded symbols.
4544In that case, the parser will invoke the default destructor for it as well.
4545@end ignore
4546
e757bb10
AD
4547@sp 1
4548
4549@cindex discarded symbols
4550@dfn{Discarded symbols} are the following:
4551
4552@itemize
4553@item
4554stacked symbols popped during the first phase of error recovery,
4555@item
4556incoming terminals during the second phase of error recovery,
4557@item
742e4900 4558the current lookahead and the entire stack (except the current
9d9b8b70 4559right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4560@item
4561the start symbol, when the parser succeeds.
e757bb10
AD
4562@end itemize
4563
9d9b8b70
PE
4564The parser can @dfn{return immediately} because of an explicit call to
4565@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4566exhaustion.
4567
29553547 4568Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4569error via @code{YYERROR} are not discarded automatically. As a rule
4570of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4571the memory.
e757bb10 4572
342b8b6e 4573@node Expect Decl
bfa74976
RS
4574@subsection Suppressing Conflict Warnings
4575@cindex suppressing conflict warnings
4576@cindex preventing warnings about conflicts
4577@cindex warnings, preventing
4578@cindex conflicts, suppressing warnings of
4579@findex %expect
d6328241 4580@findex %expect-rr
bfa74976
RS
4581
4582Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4583(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4584have harmless shift/reduce conflicts which are resolved in a predictable
4585way and would be difficult to eliminate. It is desirable to suppress
4586the warning about these conflicts unless the number of conflicts
4587changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4588
4589The declaration looks like this:
4590
4591@example
4592%expect @var{n}
4593@end example
4594
035aa4a0
PE
4595Here @var{n} is a decimal integer. The declaration says there should
4596be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4597Bison reports an error if the number of shift/reduce conflicts differs
4598from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4599
34a6c2d1 4600For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4601serious, and should be eliminated entirely. Bison will always report
35430378 4602reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4603parsers, however, both kinds of conflicts are routine; otherwise,
35430378 4604there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4605also possible to specify an expected number of reduce/reduce conflicts
35430378 4606in GLR parsers, using the declaration:
d6328241
PH
4607
4608@example
4609%expect-rr @var{n}
4610@end example
4611
bfa74976
RS
4612In general, using @code{%expect} involves these steps:
4613
4614@itemize @bullet
4615@item
4616Compile your grammar without @code{%expect}. Use the @samp{-v} option
4617to get a verbose list of where the conflicts occur. Bison will also
4618print the number of conflicts.
4619
4620@item
4621Check each of the conflicts to make sure that Bison's default
4622resolution is what you really want. If not, rewrite the grammar and
4623go back to the beginning.
4624
4625@item
4626Add an @code{%expect} declaration, copying the number @var{n} from the
35430378 4627number which Bison printed. With GLR parsers, add an
035aa4a0 4628@code{%expect-rr} declaration as well.
bfa74976
RS
4629@end itemize
4630
cf22447c
JD
4631Now Bison will report an error if you introduce an unexpected conflict,
4632but will keep silent otherwise.
bfa74976 4633
342b8b6e 4634@node Start Decl
bfa74976
RS
4635@subsection The Start-Symbol
4636@cindex declaring the start symbol
4637@cindex start symbol, declaring
4638@cindex default start symbol
4639@findex %start
4640
4641Bison assumes by default that the start symbol for the grammar is the first
4642nonterminal specified in the grammar specification section. The programmer
4643may override this restriction with the @code{%start} declaration as follows:
4644
4645@example
4646%start @var{symbol}
4647@end example
4648
342b8b6e 4649@node Pure Decl
bfa74976
RS
4650@subsection A Pure (Reentrant) Parser
4651@cindex reentrant parser
4652@cindex pure parser
d9df47b6 4653@findex %define api.pure
bfa74976
RS
4654
4655A @dfn{reentrant} program is one which does not alter in the course of
4656execution; in other words, it consists entirely of @dfn{pure} (read-only)
4657code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4658for example, a nonreentrant program may not be safe to call from a signal
4659handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4660program must be called only within interlocks.
4661
70811b85 4662Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4663suitable for most uses, and it permits compatibility with Yacc. (The
4664standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4665statically allocated variables for communication with @code{yylex},
4666including @code{yylval} and @code{yylloc}.)
bfa74976 4667
70811b85 4668Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4669declaration @code{%define api.pure} says that you want the parser to be
70811b85 4670reentrant. It looks like this:
bfa74976
RS
4671
4672@example
d9df47b6 4673%define api.pure
bfa74976
RS
4674@end example
4675
70811b85
RS
4676The result is that the communication variables @code{yylval} and
4677@code{yylloc} become local variables in @code{yyparse}, and a different
4678calling convention is used for the lexical analyzer function
4679@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4680Parsers}, for the details of this. The variable @code{yynerrs}
4681becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4682of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4683Reporting Function @code{yyerror}}). The convention for calling
4684@code{yyparse} itself is unchanged.
4685
4686Whether the parser is pure has nothing to do with the grammar rules.
4687You can generate either a pure parser or a nonreentrant parser from any
4688valid grammar.
bfa74976 4689
9987d1b3
JD
4690@node Push Decl
4691@subsection A Push Parser
4692@cindex push parser
4693@cindex push parser
812775a0 4694@findex %define api.push-pull
9987d1b3 4695
59da312b
JD
4696(The current push parsing interface is experimental and may evolve.
4697More user feedback will help to stabilize it.)
4698
f4101aa6
AD
4699A pull parser is called once and it takes control until all its input
4700is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4701each time a new token is made available.
4702
f4101aa6 4703A push parser is typically useful when the parser is part of a
9987d1b3 4704main event loop in the client's application. This is typically
f4101aa6
AD
4705a requirement of a GUI, when the main event loop needs to be triggered
4706within a certain time period.
9987d1b3 4707
d782395d
JD
4708Normally, Bison generates a pull parser.
4709The following Bison declaration says that you want the parser to be a push
812775a0 4710parser (@pxref{Decl Summary,,%define api.push-pull}):
9987d1b3
JD
4711
4712@example
f37495f6 4713%define api.push-pull push
9987d1b3
JD
4714@end example
4715
4716In almost all cases, you want to ensure that your push parser is also
4717a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4718time you should create an impure push parser is to have backwards
9987d1b3
JD
4719compatibility with the impure Yacc pull mode interface. Unless you know
4720what you are doing, your declarations should look like this:
4721
4722@example
d9df47b6 4723%define api.pure
f37495f6 4724%define api.push-pull push
9987d1b3
JD
4725@end example
4726
f4101aa6
AD
4727There is a major notable functional difference between the pure push parser
4728and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4729many parser instances, of the same type of parser, in memory at the same time.
4730An impure push parser should only use one parser at a time.
4731
4732When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4733the generated parser. @code{yypstate} is a structure that the generated
4734parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4735function that will create a new parser instance. @code{yypstate_delete}
4736will free the resources associated with the corresponding parser instance.
f4101aa6 4737Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4738token is available to provide the parser. A trivial example
4739of using a pure push parser would look like this:
4740
4741@example
4742int status;
4743yypstate *ps = yypstate_new ();
4744do @{
4745 status = yypush_parse (ps, yylex (), NULL);
4746@} while (status == YYPUSH_MORE);
4747yypstate_delete (ps);
4748@end example
4749
4750If the user decided to use an impure push parser, a few things about
f4101aa6 4751the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4752a global variable instead of a variable in the @code{yypush_parse} function.
4753For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4754changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4755example would thus look like this:
4756
4757@example
4758extern int yychar;
4759int status;
4760yypstate *ps = yypstate_new ();
4761do @{
4762 yychar = yylex ();
4763 status = yypush_parse (ps);
4764@} while (status == YYPUSH_MORE);
4765yypstate_delete (ps);
4766@end example
4767
f4101aa6 4768That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4769for use by the next invocation of the @code{yypush_parse} function.
4770
f4101aa6 4771Bison also supports both the push parser interface along with the pull parser
9987d1b3 4772interface in the same generated parser. In order to get this functionality,
f37495f6
JD
4773you should replace the @code{%define api.push-pull push} declaration with the
4774@code{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4775the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4776and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4777would be used. However, the user should note that it is implemented in the
d782395d
JD
4778generated parser by calling @code{yypull_parse}.
4779This makes the @code{yyparse} function that is generated with the
f37495f6 4780@code{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4781@code{yyparse} function. If the user
4782calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4783stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4784and then @code{yypull_parse} the rest of the input stream. If you would like
4785to switch back and forth between between parsing styles, you would have to
4786write your own @code{yypull_parse} function that knows when to quit looking
4787for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4788like this:
4789
4790@example
4791yypstate *ps = yypstate_new ();
4792yypull_parse (ps); /* Will call the lexer */
4793yypstate_delete (ps);
4794@end example
4795
d9df47b6 4796Adding the @code{%define api.pure} declaration does exactly the same thing to
f37495f6
JD
4797the generated parser with @code{%define api.push-pull both} as it did for
4798@code{%define api.push-pull push}.
9987d1b3 4799
342b8b6e 4800@node Decl Summary
bfa74976
RS
4801@subsection Bison Declaration Summary
4802@cindex Bison declaration summary
4803@cindex declaration summary
4804@cindex summary, Bison declaration
4805
d8988b2f 4806Here is a summary of the declarations used to define a grammar:
bfa74976 4807
18b519c0 4808@deffn {Directive} %union
bfa74976
RS
4809Declare the collection of data types that semantic values may have
4810(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4811@end deffn
bfa74976 4812
18b519c0 4813@deffn {Directive} %token
bfa74976
RS
4814Declare a terminal symbol (token type name) with no precedence
4815or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4816@end deffn
bfa74976 4817
18b519c0 4818@deffn {Directive} %right
bfa74976
RS
4819Declare a terminal symbol (token type name) that is right-associative
4820(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4821@end deffn
bfa74976 4822
18b519c0 4823@deffn {Directive} %left
bfa74976
RS
4824Declare a terminal symbol (token type name) that is left-associative
4825(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4826@end deffn
bfa74976 4827
18b519c0 4828@deffn {Directive} %nonassoc
bfa74976 4829Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4830(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4831Using it in a way that would be associative is a syntax error.
4832@end deffn
4833
91d2c560 4834@ifset defaultprec
39a06c25 4835@deffn {Directive} %default-prec
22fccf95 4836Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4837(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4838@end deffn
91d2c560 4839@end ifset
bfa74976 4840
18b519c0 4841@deffn {Directive} %type
bfa74976
RS
4842Declare the type of semantic values for a nonterminal symbol
4843(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4844@end deffn
bfa74976 4845
18b519c0 4846@deffn {Directive} %start
89cab50d
AD
4847Specify the grammar's start symbol (@pxref{Start Decl, ,The
4848Start-Symbol}).
18b519c0 4849@end deffn
bfa74976 4850
18b519c0 4851@deffn {Directive} %expect
bfa74976
RS
4852Declare the expected number of shift-reduce conflicts
4853(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4854@end deffn
4855
bfa74976 4856
d8988b2f
AD
4857@sp 1
4858@noindent
4859In order to change the behavior of @command{bison}, use the following
4860directives:
4861
148d66d8
JD
4862@deffn {Directive} %code @{@var{code}@}
4863@findex %code
4864This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4865It inserts @var{code} verbatim at a language-dependent default location in the
4866output@footnote{The default location is actually skeleton-dependent;
4867 writers of non-standard skeletons however should choose the default location
4868 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4869
4870@cindex Prologue
9913d6e4
JD
4871For C/C++, the default location is the parser implementation file
4872after the usual contents of the parser header file. Thus,
4873@code{%code} replaces the traditional Yacc prologue,
4874@code{%@{@var{code}%@}}, for most purposes. For a detailed
4875discussion, see @ref{Prologue Alternatives}.
148d66d8 4876
8405b70c 4877For Java, the default location is inside the parser class.
148d66d8
JD
4878@end deffn
4879
4880@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4881This is the qualified form of the @code{%code} directive.
4882If you need to specify location-sensitive verbatim @var{code} that does not
4883belong at the default location selected by the unqualified @code{%code} form,
4884use this form instead.
4885
4886@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4887where Bison should generate it.
628be6c9
JD
4888Not all @var{qualifier}s are accepted for all target languages.
4889Unaccepted @var{qualifier}s produce an error.
4890Some of the accepted @var{qualifier}s are:
148d66d8
JD
4891
4892@itemize @bullet
148d66d8 4893@item requires
793fbca5 4894@findex %code requires
148d66d8
JD
4895
4896@itemize @bullet
4897@item Language(s): C, C++
4898
4899@item Purpose: This is the best place to write dependency code required for
4900@code{YYSTYPE} and @code{YYLTYPE}.
4901In other words, it's the best place to define types referenced in @code{%union}
4902directives, and it's the best place to override Bison's default @code{YYSTYPE}
4903and @code{YYLTYPE} definitions.
4904
9913d6e4
JD
4905@item Location(s): The parser header file and the parser implementation file
4906before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
4907definitions.
148d66d8
JD
4908@end itemize
4909
4910@item provides
4911@findex %code provides
4912
4913@itemize @bullet
4914@item Language(s): C, C++
4915
4916@item Purpose: This is the best place to write additional definitions and
4917declarations that should be provided to other modules.
4918
9913d6e4
JD
4919@item Location(s): The parser header file and the parser implementation
4920file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
4921token definitions.
148d66d8
JD
4922@end itemize
4923
4924@item top
4925@findex %code top
4926
4927@itemize @bullet
4928@item Language(s): C, C++
4929
9913d6e4
JD
4930@item Purpose: The unqualified @code{%code} or @code{%code requires}
4931should usually be more appropriate than @code{%code top}. However,
4932occasionally it is necessary to insert code much nearer the top of the
4933parser implementation file. For example:
148d66d8
JD
4934
4935@smallexample
4936%code top @{
4937 #define _GNU_SOURCE
4938 #include <stdio.h>
4939@}
4940@end smallexample
4941
9913d6e4 4942@item Location(s): Near the top of the parser implementation file.
148d66d8 4943@end itemize
8405b70c 4944
148d66d8
JD
4945@item imports
4946@findex %code imports
4947
4948@itemize @bullet
4949@item Language(s): Java
4950
4951@item Purpose: This is the best place to write Java import directives.
4952
4953@item Location(s): The parser Java file after any Java package directive and
4954before any class definitions.
4955@end itemize
148d66d8
JD
4956@end itemize
4957
148d66d8
JD
4958@cindex Prologue
4959For a detailed discussion of how to use @code{%code} in place of the
4960traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
4961@end deffn
4962
18b519c0 4963@deffn {Directive} %debug
9913d6e4
JD
4964In the parser implementation file, define the macro @code{YYDEBUG} to
49651 if it is not already defined, so that the debugging facilities are
4966compiled. @xref{Tracing, ,Tracing Your Parser}.
bd5df716 4967@end deffn
d8988b2f 4968
c1d19e10 4969@deffn {Directive} %define @var{variable}
f37495f6 4970@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 4971@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2 4972Define a variable to adjust Bison's behavior.
9611cfa2 4973
e3a33f7c 4974It is an error if a @var{variable} is defined by @code{%define} multiple
c33bc800 4975times, but see @ref{Bison Options,,-D @var{name}[=@var{value}]}.
9611cfa2 4976
eb8c66bb
JD
4977@var{value} must be placed in quotation marks if it contains any character
4978other than a letter, underscore, period, or non-initial dash or digit.
f37495f6
JD
4979
4980Omitting @code{"@var{value}"} entirely is always equivalent to specifying
9611cfa2
JD
4981@code{""}.
4982
628be6c9 4983Some @var{variable}s take Boolean values.
9611cfa2
JD
4984In this case, Bison will complain if the variable definition does not meet one
4985of the following four conditions:
4986
4987@enumerate
f37495f6 4988@item @code{@var{value}} is @code{true}
9611cfa2 4989
f37495f6
JD
4990@item @code{@var{value}} is omitted (or @code{""} is specified).
4991This is equivalent to @code{true}.
9611cfa2 4992
f37495f6 4993@item @code{@var{value}} is @code{false}.
9611cfa2
JD
4994
4995@item @var{variable} is never defined.
628be6c9 4996In this case, Bison selects a default value.
9611cfa2 4997@end enumerate
148d66d8 4998
628be6c9
JD
4999What @var{variable}s are accepted, as well as their meanings and default
5000values, depend on the selected target language and/or the parser
5001skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5002Summary,,%skeleton}).
5003Unaccepted @var{variable}s produce an error.
793fbca5
JD
5004Some of the accepted @var{variable}s are:
5005
5006@itemize @bullet
d9df47b6
JD
5007@item api.pure
5008@findex %define api.pure
5009
5010@itemize @bullet
5011@item Language(s): C
5012
5013@item Purpose: Request a pure (reentrant) parser program.
5014@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5015
5016@item Accepted Values: Boolean
5017
f37495f6 5018@item Default Value: @code{false}
d9df47b6
JD
5019@end itemize
5020
812775a0
JD
5021@item api.push-pull
5022@findex %define api.push-pull
793fbca5
JD
5023
5024@itemize @bullet
34a6c2d1 5025@item Language(s): C (deterministic parsers only)
793fbca5 5026
3b1977ea 5027@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5028@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5029(The current push parsing interface is experimental and may evolve.
5030More user feedback will help to stabilize it.)
793fbca5 5031
f37495f6 5032@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5033
f37495f6 5034@item Default Value: @code{pull}
793fbca5
JD
5035@end itemize
5036
232be91a
AD
5037@c ================================================== lr.default-reductions
5038
1d0f55cc 5039@item lr.default-reductions
620b5727 5040@cindex default reductions
1d0f55cc 5041@findex %define lr.default-reductions
34a6c2d1
JD
5042@cindex delayed syntax errors
5043@cindex syntax errors delayed
35430378 5044@cindex LAC
4c38b19e 5045@findex %nonassoc
34a6c2d1
JD
5046
5047@itemize @bullet
5048@item Language(s): all
5049
4c38b19e 5050@item Purpose: Specify the kind of states that are permitted to
620b5727 5051contain default reductions.
4c38b19e
JD
5052That is, in such a state, Bison selects the reduction with the largest
5053lookahead set to be the default parser action and then removes that
620b5727 5054lookahead set.
4c38b19e
JD
5055(The ability to specify where default reductions should be used is
5056experimental.
34a6c2d1
JD
5057More user feedback will help to stabilize it.)
5058
5059@item Accepted Values:
5060@itemize
f37495f6 5061@item @code{all}.
4c38b19e
JD
5062This is the traditional Bison behavior.
5063The main advantage is a significant decrease in the size of the parser
5064tables.
5065The disadvantage is that, when the generated parser encounters a
5066syntactically unacceptable token, the parser might then perform
5067unnecessary default reductions before it can detect the syntax error.
5068Such delayed syntax error detection is usually inherent in
35430378
JD
5069LALR and IELR parser tables anyway due to
5070LR state merging (@pxref{Decl Summary,,lr.type}).
4c38b19e 5071Furthermore, the use of @code{%nonassoc} can contribute to delayed
35430378 5072syntax error detection even in the case of canonical LR.
4c38b19e 5073As an experimental feature, delayed syntax error detection can be
35430378 5074overcome in all cases by enabling LAC (@pxref{Decl
4c38b19e
JD
5075Summary,,parse.lac}, for details, including a discussion of the effects
5076of delayed syntax error detection).
34a6c2d1 5077
f37495f6 5078@item @code{consistent}.
34a6c2d1
JD
5079@cindex consistent states
5080A consistent state is a state that has only one possible action.
5081If that action is a reduction, then the parser does not need to request
5082a lookahead token from the scanner before performing that action.
4c38b19e
JD
5083However, the parser recognizes the ability to ignore the lookahead token
5084in this way only when such a reduction is encoded as a default
5085reduction.
5086Thus, if default reductions are permitted only in consistent states,
35430378 5087then a canonical LR parser that does not employ
4c38b19e
JD
5088@code{%nonassoc} detects a syntax error as soon as it @emph{needs} the
5089syntactically unacceptable token from the scanner.
34a6c2d1 5090
f37495f6 5091@item @code{accepting}.
34a6c2d1 5092@cindex accepting state
4c38b19e
JD
5093In the accepting state, the default reduction is actually the accept
5094action.
35430378 5095In this case, a canonical LR parser that does not employ
4c38b19e
JD
5096@code{%nonassoc} detects a syntax error as soon as it @emph{reaches} the
5097syntactically unacceptable token in the input.
5098That is, it does not perform any extra reductions.
34a6c2d1
JD
5099@end itemize
5100
5101@item Default Value:
5102@itemize
f37495f6
JD
5103@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
5104@item @code{all} otherwise.
34a6c2d1
JD
5105@end itemize
5106@end itemize
5107
232be91a
AD
5108@c ============================================ lr.keep-unreachable-states
5109
812775a0
JD
5110@item lr.keep-unreachable-states
5111@findex %define lr.keep-unreachable-states
31984206
JD
5112
5113@itemize @bullet
5114@item Language(s): all
5115
3b1977ea
JD
5116@item Purpose: Request that Bison allow unreachable parser states to
5117remain in the parser tables.
31984206
JD
5118Bison considers a state to be unreachable if there exists no sequence of
5119transitions from the start state to that state.
5120A state can become unreachable during conflict resolution if Bison disables a
5121shift action leading to it from a predecessor state.
5122Keeping unreachable states is sometimes useful for analysis purposes, but they
5123are useless in the generated parser.
5124
5125@item Accepted Values: Boolean
5126
f37495f6 5127@item Default Value: @code{false}
31984206
JD
5128
5129@item Caveats:
5130
5131@itemize @bullet
cff03fb2
JD
5132
5133@item Unreachable states may contain conflicts and may use rules not used in
5134any other state.
31984206
JD
5135Thus, keeping unreachable states may induce warnings that are irrelevant to
5136your parser's behavior, and it may eliminate warnings that are relevant.
5137Of course, the change in warnings may actually be relevant to a parser table
5138analysis that wants to keep unreachable states, so this behavior will likely
5139remain in future Bison releases.
5140
5141@item While Bison is able to remove unreachable states, it is not guaranteed to
5142remove other kinds of useless states.
5143Specifically, when Bison disables reduce actions during conflict resolution,
5144some goto actions may become useless, and thus some additional states may
5145become useless.
5146If Bison were to compute which goto actions were useless and then disable those
5147actions, it could identify such states as unreachable and then remove those
5148states.
5149However, Bison does not compute which goto actions are useless.
5150@end itemize
5151@end itemize
5152
232be91a
AD
5153@c ================================================== lr.type
5154
34a6c2d1
JD
5155@item lr.type
5156@findex %define lr.type
35430378
JD
5157@cindex LALR
5158@cindex IELR
5159@cindex LR
34a6c2d1
JD
5160
5161@itemize @bullet
5162@item Language(s): all
5163
3b1977ea 5164@item Purpose: Specify the type of parser tables within the
35430378 5165LR(1) family.
34a6c2d1
JD
5166(This feature is experimental.
5167More user feedback will help to stabilize it.)
5168
5169@item Accepted Values:
5170@itemize
f37495f6 5171@item @code{lalr}.
35430378
JD
5172While Bison generates LALR parser tables by default for
5173historical reasons, IELR or canonical LR is almost
34a6c2d1 5174always preferable for deterministic parsers.
35430378 5175The trouble is that LALR parser tables can suffer from
620b5727 5176mysterious conflicts and thus may not accept the full set of sentences
35430378 5177that IELR and canonical LR accept.
34a6c2d1 5178@xref{Mystery Conflicts}, for details.
35430378 5179However, there are at least two scenarios where LALR may be
34a6c2d1
JD
5180worthwhile:
5181@itemize
35430378
JD
5182@cindex GLR with LALR
5183@item When employing GLR parsers (@pxref{GLR Parsers}), if you
34a6c2d1
JD
5184do not resolve any conflicts statically (for example, with @code{%left}
5185or @code{%prec}), then the parser explores all potential parses of any
5186given input.
35430378 5187In this case, the use of LALR parser tables is guaranteed not
620b5727 5188to alter the language accepted by the parser.
35430378 5189LALR parser tables are the smallest parser tables Bison can
34a6c2d1 5190currently generate, so they may be preferable.
3b1977ea 5191Nevertheless, once you begin to resolve conflicts statically,
35430378
JD
5192GLR begins to behave more like a deterministic parser, and so
5193IELR and canonical LR can be helpful to avoid
5194LALR's mysterious behavior.
34a6c2d1
JD
5195
5196@item Occasionally during development, an especially malformed grammar
35430378
JD
5197with a major recurring flaw may severely impede the IELR or
5198canonical LR parser table generation algorithm.
5199LALR can be a quick way to generate parser tables in order to
34a6c2d1 5200investigate such problems while ignoring the more subtle differences
35430378 5201from IELR and canonical LR.
34a6c2d1
JD
5202@end itemize
5203
f37495f6 5204@item @code{ielr}.
35430378
JD
5205IELR is a minimal LR algorithm.
5206That is, given any grammar (LR or non-LR),
5207IELR and canonical LR always accept exactly the same
34a6c2d1 5208set of sentences.
35430378
JD
5209However, as for LALR, the number of parser states is often an
5210order of magnitude less for IELR than for canonical
5211LR.
5212More importantly, because canonical LR's extra parser states
5213may contain duplicate conflicts in the case of non-LR
5214grammars, the number of conflicts for IELR is often an order
34a6c2d1
JD
5215of magnitude less as well.
5216This can significantly reduce the complexity of developing of a grammar.
5217
f37495f6 5218@item @code{canonical-lr}.
34a6c2d1
JD
5219@cindex delayed syntax errors
5220@cindex syntax errors delayed
35430378 5221@cindex LAC
4c38b19e 5222@findex %nonassoc
35430378 5223While inefficient, canonical LR parser tables can be an
4c38b19e 5224interesting means to explore a grammar because they have a property that
35430378 5225IELR and LALR tables do not.
4c38b19e
JD
5226That is, if @code{%nonassoc} is not used and default reductions are left
5227disabled (@pxref{Decl Summary,,lr.default-reductions}), then, for every
35430378 5228left context of every canonical LR state, the set of tokens
4c38b19e
JD
5229accepted by that state is guaranteed to be the exact set of tokens that
5230is syntactically acceptable in that left context.
35430378 5231It might then seem that an advantage of canonical LR parsers
4c38b19e
JD
5232in production is that, under the above constraints, they are guaranteed
5233to detect a syntax error as soon as possible without performing any
5234unnecessary reductions.
35430378 5235However, IELR parsers using LAC (@pxref{Decl
4c38b19e
JD
5236Summary,,parse.lac}) are also able to achieve this behavior without
5237sacrificing @code{%nonassoc} or default reductions.
34a6c2d1
JD
5238@end itemize
5239
f37495f6 5240@item Default Value: @code{lalr}
34a6c2d1
JD
5241@end itemize
5242
793fbca5
JD
5243@item namespace
5244@findex %define namespace
5245
5246@itemize
5247@item Languages(s): C++
5248
3b1977ea 5249@item Purpose: Specify the namespace for the parser class.
793fbca5
JD
5250For example, if you specify:
5251
5252@smallexample
5253%define namespace "foo::bar"
5254@end smallexample
5255
5256Bison uses @code{foo::bar} verbatim in references such as:
5257
5258@smallexample
5259foo::bar::parser::semantic_type
5260@end smallexample
5261
5262However, to open a namespace, Bison removes any leading @code{::} and then
5263splits on any remaining occurrences:
5264
5265@smallexample
5266namespace foo @{ namespace bar @{
5267 class position;
5268 class location;
5269@} @}
5270@end smallexample
5271
5272@item Accepted Values: Any absolute or relative C++ namespace reference without
5273a trailing @code{"::"}.
5274For example, @code{"foo"} or @code{"::foo::bar"}.
5275
5276@item Default Value: The value specified by @code{%name-prefix}, which defaults
5277to @code{yy}.
5278This usage of @code{%name-prefix} is for backward compatibility and can be
5279confusing since @code{%name-prefix} also specifies the textual prefix for the
5280lexical analyzer function.
5281Thus, if you specify @code{%name-prefix}, it is best to also specify
5282@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
5283lexical analyzer function.
5284For example, if you specify:
5285
5286@smallexample
5287%define namespace "foo"
5288%name-prefix "bar::"
5289@end smallexample
5290
5291The parser namespace is @code{foo} and @code{yylex} is referenced as
5292@code{bar::lex}.
5293@end itemize
4c38b19e
JD
5294
5295@c ================================================== parse.lac
5296@item parse.lac
5297@findex %define parse.lac
35430378 5298@cindex LAC
4c38b19e
JD
5299@cindex lookahead correction
5300
5301@itemize
5302@item Languages(s): C
5303
35430378 5304@item Purpose: Enable LAC (lookahead correction) to improve
4c38b19e
JD
5305syntax error handling.
5306
35430378 5307Canonical LR, IELR, and LALR can suffer
4c38b19e
JD
5308from a couple of problems upon encountering a syntax error. First, the
5309parser might perform additional parser stack reductions before
5310discovering the syntax error. Such reductions perform user semantic
5311actions that are unexpected because they are based on an invalid token,
5312and they cause error recovery to begin in a different syntactic context
5313than the one in which the invalid token was encountered. Second, when
5314verbose error messages are enabled (with @code{%error-verbose} or
5315@code{#define YYERROR_VERBOSE}), the expected token list in the syntax
5316error message can both contain invalid tokens and omit valid tokens.
5317
5318The culprits for the above problems are @code{%nonassoc}, default
5319reductions in inconsistent states, and parser state merging. Thus,
35430378
JD
5320IELR and LALR suffer the most. Canonical
5321LR can suffer only if @code{%nonassoc} is used or if default
4c38b19e
JD
5322reductions are enabled for inconsistent states.
5323
35430378
JD
5324LAC is a new mechanism within the parsing algorithm that
5325completely solves these problems for canonical LR,
5326IELR, and LALR without sacrificing @code{%nonassoc},
4c38b19e
JD
5327default reductions, or state mering. Conceptually, the mechanism is
5328straight-forward. Whenever the parser fetches a new token from the
5329scanner so that it can determine the next parser action, it immediately
5330suspends normal parsing and performs an exploratory parse using a
5331temporary copy of the normal parser state stack. During this
5332exploratory parse, the parser does not perform user semantic actions.
5333If the exploratory parse reaches a shift action, normal parsing then
5334resumes on the normal parser stacks. If the exploratory parse reaches
5335an error instead, the parser reports a syntax error. If verbose syntax
5336error messages are enabled, the parser must then discover the list of
5337expected tokens, so it performs a separate exploratory parse for each
5338token in the grammar.
5339
35430378 5340There is one subtlety about the use of LAC. That is, when in
4c38b19e
JD
5341a consistent parser state with a default reduction, the parser will not
5342attempt to fetch a token from the scanner because no lookahead is needed
5343to determine the next parser action. Thus, whether default reductions
5344are enabled in consistent states (@pxref{Decl
5345Summary,,lr.default-reductions}) affects how soon the parser detects a
5346syntax error: when it @emph{reaches} an erroneous token or when it
5347eventually @emph{needs} that token as a lookahead. The latter behavior
5348is probably more intuitive, so Bison currently provides no way to
5349achieve the former behavior while default reductions are fully enabled.
5350
35430378 5351Thus, when LAC is in use, for some fixed decision of whether
4c38b19e 5352to enable default reductions in consistent states, canonical
35430378 5353LR and IELR behave exactly the same for both
4c38b19e 5354syntactically acceptable and syntactically unacceptable input. While
35430378
JD
5355LALR still does not support the full language-recognition
5356power of canonical LR and IELR, LAC at
5357least enables LALR's syntax error handling to correctly
5358reflect LALR's language-recognition power.
4c38b19e 5359
35430378 5360Because LAC requires many parse actions to be performed twice,
4c38b19e
JD
5361it can have a performance penalty. However, not all parse actions must
5362be performed twice. Specifically, during a series of default reductions
5363in consistent states and shift actions, the parser never has to initiate
5364an exploratory parse. Moreover, the most time-consuming tasks in a
5365parse are often the file I/O, the lexical analysis performed by the
5366scanner, and the user's semantic actions, but none of these are
5367performed during the exploratory parse. Finally, the base of the
5368temporary stack used during an exploratory parse is a pointer into the
5369normal parser state stack so that the stack is never physically copied.
35430378 5370In our experience, the performance penalty of LAC has proven
4c38b19e
JD
5371insignificant for practical grammars.
5372
5373@item Accepted Values: @code{none}, @code{full}
5374
5375@item Default Value: @code{none}
5376@end itemize
793fbca5
JD
5377@end itemize
5378
d782395d
JD
5379@end deffn
5380
18b519c0 5381@deffn {Directive} %defines
9913d6e4
JD
5382Write a parser header file containing macro definitions for the token
5383type names defined in the grammar as well as a few other declarations.
5384If the parser implementation file is named @file{@var{name}.c} then
5385the parser header file is named @file{@var{name}.h}.
d8988b2f 5386
9913d6e4 5387For C parsers, the parser header file declares @code{YYSTYPE} unless
ddc8ede1 5388@code{YYSTYPE} is already defined as a macro or you have used a
9913d6e4
JD
5389@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5390you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5391Value Type}) with components that require other definitions, or if you
5392have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5393Type, ,Data Types of Semantic Values}), you need to arrange for these
5394definitions to be propagated to all modules, e.g., by putting them in
5395a prerequisite header that is included both by your parser and by any
5396other module that needs @code{YYSTYPE}.
5397
5398Unless your parser is pure, the parser header file declares
5399@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5400(Reentrant) Parser}.
5401
5402If you have also used locations, the parser header file declares
4bfd5e4e 5403@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
9913d6e4
JD
5404the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations,
5405,Tracking Locations}.
4bfd5e4e 5406
9913d6e4
JD
5407This parser header file is normally essential if you wish to put the
5408definition of @code{yylex} in a separate source file, because
5409@code{yylex} typically needs to be able to refer to the
5410above-mentioned declarations and to the token type codes. @xref{Token
5411Values, ,Semantic Values of Tokens}.
9bc0dd67 5412
16dc6a9e
JD
5413@findex %code requires
5414@findex %code provides
5415If you have declared @code{%code requires} or @code{%code provides}, the output
5416header also contains their code.
148d66d8 5417@xref{Decl Summary, ,%code}.
592d0b1e
PB
5418@end deffn
5419
02975b9a
JD
5420@deffn {Directive} %defines @var{defines-file}
5421Same as above, but save in the file @var{defines-file}.
5422@end deffn
5423
18b519c0 5424@deffn {Directive} %destructor
258b75ca 5425Specify how the parser should reclaim the memory associated to
fa7e68c3 5426discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 5427@end deffn
72f889cc 5428
02975b9a 5429@deffn {Directive} %file-prefix "@var{prefix}"
9913d6e4
JD
5430Specify a prefix to use for all Bison output file names. The names
5431are chosen as if the grammar file were named @file{@var{prefix}.y}.
18b519c0 5432@end deffn
d8988b2f 5433
e6e704dc 5434@deffn {Directive} %language "@var{language}"
0e021770 5435Specify the programming language for the generated parser. Currently
59da312b 5436supported languages include C, C++, and Java.
e6e704dc 5437@var{language} is case-insensitive.
ed4d67dc
JD
5438
5439This directive is experimental and its effect may be modified in future
5440releases.
0e021770
PE
5441@end deffn
5442
18b519c0 5443@deffn {Directive} %locations
89cab50d
AD
5444Generate the code processing the locations (@pxref{Action Features,
5445,Special Features for Use in Actions}). This mode is enabled as soon as
5446the grammar uses the special @samp{@@@var{n}} tokens, but if your
5447grammar does not use it, using @samp{%locations} allows for more
6e649e65 5448accurate syntax error messages.
18b519c0 5449@end deffn
89cab50d 5450
02975b9a 5451@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5452Rename the external symbols used in the parser so that they start with
5453@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5454in C parsers
d8988b2f 5455is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5456@code{yylval}, @code{yychar}, @code{yydebug}, and
f4101aa6
AD
5457(if locations are used) @code{yylloc}. If you use a push parser,
5458@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5459@code{yypstate_new} and @code{yypstate_delete} will
5460also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5
JD
5461names become @code{c_parse}, @code{c_lex}, and so on.
5462For C++ parsers, see the @code{%define namespace} documentation in this
5463section.
aa08666d 5464@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5465@end deffn
931c7513 5466
91d2c560 5467@ifset defaultprec
22fccf95
PE
5468@deffn {Directive} %no-default-prec
5469Do not assign a precedence to rules lacking an explicit @code{%prec}
5470modifier (@pxref{Contextual Precedence, ,Context-Dependent
5471Precedence}).
5472@end deffn
91d2c560 5473@end ifset
22fccf95 5474
18b519c0 5475@deffn {Directive} %no-lines
931c7513 5476Don't generate any @code{#line} preprocessor commands in the parser
9913d6e4
JD
5477implementation file. Ordinarily Bison writes these commands in the
5478parser implementation file so that the C compiler and debuggers will
5479associate errors and object code with your source file (the grammar
5480file). This directive causes them to associate errors with the parser
5481implementation file, treating it as an independent source file in its
5482own right.
18b519c0 5483@end deffn
931c7513 5484
02975b9a 5485@deffn {Directive} %output "@var{file}"
9913d6e4 5486Specify @var{file} for the parser implementation file.
18b519c0 5487@end deffn
6deb4447 5488
18b519c0 5489@deffn {Directive} %pure-parser
d9df47b6
JD
5490Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
5491for which Bison is more careful to warn about unreasonable usage.
18b519c0 5492@end deffn
6deb4447 5493
b50d2359 5494@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5495Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5496Require a Version of Bison}.
b50d2359
AD
5497@end deffn
5498
0e021770 5499@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5500Specify the skeleton to use.
5501
ed4d67dc
JD
5502@c You probably don't need this option unless you are developing Bison.
5503@c You should use @code{%language} if you want to specify the skeleton for a
5504@c different language, because it is clearer and because it will always choose the
5505@c correct skeleton for non-deterministic or push parsers.
a7867f53
JD
5506
5507If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5508file in the Bison installation directory.
5509If it does, @var{file} is an absolute file name or a file name relative to the
5510directory of the grammar file.
5511This is similar to how most shells resolve commands.
0e021770
PE
5512@end deffn
5513
18b519c0 5514@deffn {Directive} %token-table
9913d6e4
JD
5515Generate an array of token names in the parser implementation file.
5516The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5517the name of the token whose internal Bison token code number is
5518@var{i}. The first three elements of @code{yytname} correspond to the
5519predefined tokens @code{"$end"}, @code{"error"}, and
5520@code{"$undefined"}; after these come the symbols defined in the
5521grammar file.
931c7513 5522
9e0876fb
PE
5523The name in the table includes all the characters needed to represent
5524the token in Bison. For single-character literals and literal
5525strings, this includes the surrounding quoting characters and any
5526escape sequences. For example, the Bison single-character literal
5527@code{'+'} corresponds to a three-character name, represented in C as
5528@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5529corresponds to a five-character name, represented in C as
5530@code{"\"\\\\/\""}.
931c7513 5531
8c9a50be 5532When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5533definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5534@code{YYNRULES}, and @code{YYNSTATES}:
5535
5536@table @code
5537@item YYNTOKENS
5538The highest token number, plus one.
5539@item YYNNTS
9ecbd125 5540The number of nonterminal symbols.
931c7513
RS
5541@item YYNRULES
5542The number of grammar rules,
5543@item YYNSTATES
5544The number of parser states (@pxref{Parser States}).
5545@end table
18b519c0 5546@end deffn
d8988b2f 5547
18b519c0 5548@deffn {Directive} %verbose
d8988b2f 5549Write an extra output file containing verbose descriptions of the
742e4900 5550parser states and what is done for each type of lookahead token in
72d2299c 5551that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5552information.
18b519c0 5553@end deffn
d8988b2f 5554
18b519c0 5555@deffn {Directive} %yacc
d8988b2f
AD
5556Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5557including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5558@end deffn
d8988b2f
AD
5559
5560
342b8b6e 5561@node Multiple Parsers
bfa74976
RS
5562@section Multiple Parsers in the Same Program
5563
5564Most programs that use Bison parse only one language and therefore contain
5565only one Bison parser. But what if you want to parse more than one
5566language with the same program? Then you need to avoid a name conflict
5567between different definitions of @code{yyparse}, @code{yylval}, and so on.
5568
5569The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5570(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5571functions and variables of the Bison parser to start with @var{prefix}
5572instead of @samp{yy}. You can use this to give each parser distinct
5573names that do not conflict.
bfa74976
RS
5574
5575The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5576@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5577@code{yychar} and @code{yydebug}. If you use a push parser,
5578@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5579@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5580For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5581@code{clex}, and so on.
bfa74976
RS
5582
5583@strong{All the other variables and macros associated with Bison are not
5584renamed.} These others are not global; there is no conflict if the same
5585name is used in different parsers. For example, @code{YYSTYPE} is not
5586renamed, but defining this in different ways in different parsers causes
5587no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5588
9913d6e4
JD
5589The @samp{-p} option works by adding macro definitions to the
5590beginning of the parser implementation file, defining @code{yyparse}
5591as @code{@var{prefix}parse}, and so on. This effectively substitutes
5592one name for the other in the entire parser implementation file.
bfa74976 5593
342b8b6e 5594@node Interface
bfa74976
RS
5595@chapter Parser C-Language Interface
5596@cindex C-language interface
5597@cindex interface
5598
5599The Bison parser is actually a C function named @code{yyparse}. Here we
5600describe the interface conventions of @code{yyparse} and the other
5601functions that it needs to use.
5602
5603Keep in mind that the parser uses many C identifiers starting with
5604@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5605identifier (aside from those in this manual) in an action or in epilogue
5606in the grammar file, you are likely to run into trouble.
bfa74976
RS
5607
5608@menu
f56274a8
DJ
5609* Parser Function:: How to call @code{yyparse} and what it returns.
5610* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5611* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5612* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5613* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5614* Lexical:: You must supply a function @code{yylex}
5615 which reads tokens.
5616* Error Reporting:: You must supply a function @code{yyerror}.
5617* Action Features:: Special features for use in actions.
5618* Internationalization:: How to let the parser speak in the user's
5619 native language.
bfa74976
RS
5620@end menu
5621
342b8b6e 5622@node Parser Function
bfa74976
RS
5623@section The Parser Function @code{yyparse}
5624@findex yyparse
5625
5626You call the function @code{yyparse} to cause parsing to occur. This
5627function reads tokens, executes actions, and ultimately returns when it
5628encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5629write an action which directs @code{yyparse} to return immediately
5630without reading further.
bfa74976 5631
2a8d363a
AD
5632
5633@deftypefun int yyparse (void)
bfa74976
RS
5634The value returned by @code{yyparse} is 0 if parsing was successful (return
5635is due to end-of-input).
5636
b47dbebe
PE
5637The value is 1 if parsing failed because of invalid input, i.e., input
5638that contains a syntax error or that causes @code{YYABORT} to be
5639invoked.
5640
5641The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5642@end deftypefun
bfa74976
RS
5643
5644In an action, you can cause immediate return from @code{yyparse} by using
5645these macros:
5646
2a8d363a 5647@defmac YYACCEPT
bfa74976
RS
5648@findex YYACCEPT
5649Return immediately with value 0 (to report success).
2a8d363a 5650@end defmac
bfa74976 5651
2a8d363a 5652@defmac YYABORT
bfa74976
RS
5653@findex YYABORT
5654Return immediately with value 1 (to report failure).
2a8d363a
AD
5655@end defmac
5656
5657If you use a reentrant parser, you can optionally pass additional
5658parameter information to it in a reentrant way. To do so, use the
5659declaration @code{%parse-param}:
5660
feeb0eda 5661@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5662@findex %parse-param
287c78f6
PE
5663Declare that an argument declared by the braced-code
5664@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5665The @var{argument-declaration} is used when declaring
feeb0eda
PE
5666functions or prototypes. The last identifier in
5667@var{argument-declaration} must be the argument name.
2a8d363a
AD
5668@end deffn
5669
5670Here's an example. Write this in the parser:
5671
5672@example
feeb0eda
PE
5673%parse-param @{int *nastiness@}
5674%parse-param @{int *randomness@}
2a8d363a
AD
5675@end example
5676
5677@noindent
5678Then call the parser like this:
5679
5680@example
5681@{
5682 int nastiness, randomness;
5683 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5684 value = yyparse (&nastiness, &randomness);
5685 @dots{}
5686@}
5687@end example
5688
5689@noindent
5690In the grammar actions, use expressions like this to refer to the data:
5691
5692@example
5693exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5694@end example
5695
9987d1b3
JD
5696@node Push Parser Function
5697@section The Push Parser Function @code{yypush_parse}
5698@findex yypush_parse
5699
59da312b
JD
5700(The current push parsing interface is experimental and may evolve.
5701More user feedback will help to stabilize it.)
5702
f4101aa6 5703You call the function @code{yypush_parse} to parse a single token. This
f37495f6
JD
5704function is available if either the @code{%define api.push-pull push} or
5705@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5706@xref{Push Decl, ,A Push Parser}.
5707
5708@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5709The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5710following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5711is required to finish parsing the grammar.
5712@end deftypefun
5713
5714@node Pull Parser Function
5715@section The Pull Parser Function @code{yypull_parse}
5716@findex yypull_parse
5717
59da312b
JD
5718(The current push parsing interface is experimental and may evolve.
5719More user feedback will help to stabilize it.)
5720
f4101aa6 5721You call the function @code{yypull_parse} to parse the rest of the input
f37495f6 5722stream. This function is available if the @code{%define api.push-pull both}
f4101aa6 5723declaration is used.
9987d1b3
JD
5724@xref{Push Decl, ,A Push Parser}.
5725
5726@deftypefun int yypull_parse (yypstate *yyps)
5727The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5728@end deftypefun
5729
5730@node Parser Create Function
5731@section The Parser Create Function @code{yystate_new}
5732@findex yypstate_new
5733
59da312b
JD
5734(The current push parsing interface is experimental and may evolve.
5735More user feedback will help to stabilize it.)
5736
f4101aa6 5737You call the function @code{yypstate_new} to create a new parser instance.
f37495f6
JD
5738This function is available if either the @code{%define api.push-pull push} or
5739@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5740@xref{Push Decl, ,A Push Parser}.
5741
5742@deftypefun yypstate *yypstate_new (void)
c781580d 5743The function will return a valid parser instance if there was memory available
333e670c
JD
5744or 0 if no memory was available.
5745In impure mode, it will also return 0 if a parser instance is currently
5746allocated.
9987d1b3
JD
5747@end deftypefun
5748
5749@node Parser Delete Function
5750@section The Parser Delete Function @code{yystate_delete}
5751@findex yypstate_delete
5752
59da312b
JD
5753(The current push parsing interface is experimental and may evolve.
5754More user feedback will help to stabilize it.)
5755
9987d1b3 5756You call the function @code{yypstate_delete} to delete a parser instance.
f37495f6
JD
5757function is available if either the @code{%define api.push-pull push} or
5758@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5759@xref{Push Decl, ,A Push Parser}.
5760
5761@deftypefun void yypstate_delete (yypstate *yyps)
5762This function will reclaim the memory associated with a parser instance.
5763After this call, you should no longer attempt to use the parser instance.
5764@end deftypefun
bfa74976 5765
342b8b6e 5766@node Lexical
bfa74976
RS
5767@section The Lexical Analyzer Function @code{yylex}
5768@findex yylex
5769@cindex lexical analyzer
5770
5771The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5772the input stream and returns them to the parser. Bison does not create
5773this function automatically; you must write it so that @code{yyparse} can
5774call it. The function is sometimes referred to as a lexical scanner.
5775
9913d6e4
JD
5776In simple programs, @code{yylex} is often defined at the end of the
5777Bison grammar file. If @code{yylex} is defined in a separate source
5778file, you need to arrange for the token-type macro definitions to be
5779available there. To do this, use the @samp{-d} option when you run
5780Bison, so that it will write these macro definitions into the separate
5781parser header file, @file{@var{name}.tab.h}, which you can include in
5782the other source files that need it. @xref{Invocation, ,Invoking
5783Bison}.
bfa74976
RS
5784
5785@menu
5786* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
5787* Token Values:: How @code{yylex} must return the semantic value
5788 of the token it has read.
5789* Token Locations:: How @code{yylex} must return the text location
5790 (line number, etc.) of the token, if the
5791 actions want that.
5792* Pure Calling:: How the calling convention differs in a pure parser
5793 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5794@end menu
5795
342b8b6e 5796@node Calling Convention
bfa74976
RS
5797@subsection Calling Convention for @code{yylex}
5798
72d2299c
PE
5799The value that @code{yylex} returns must be the positive numeric code
5800for the type of token it has just found; a zero or negative value
5801signifies end-of-input.
bfa74976
RS
5802
5803When a token is referred to in the grammar rules by a name, that name
9913d6e4
JD
5804in the parser implementation file becomes a C macro whose definition
5805is the proper numeric code for that token type. So @code{yylex} can
5806use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
5807
5808When a token is referred to in the grammar rules by a character literal,
5809the numeric code for that character is also the code for the token type.
72d2299c
PE
5810So @code{yylex} can simply return that character code, possibly converted
5811to @code{unsigned char} to avoid sign-extension. The null character
5812must not be used this way, because its code is zero and that
bfa74976
RS
5813signifies end-of-input.
5814
5815Here is an example showing these things:
5816
5817@example
13863333
AD
5818int
5819yylex (void)
bfa74976
RS
5820@{
5821 @dots{}
72d2299c 5822 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5823 return 0;
5824 @dots{}
5825 if (c == '+' || c == '-')
72d2299c 5826 return c; /* Assume token type for `+' is '+'. */
bfa74976 5827 @dots{}
72d2299c 5828 return INT; /* Return the type of the token. */
bfa74976
RS
5829 @dots{}
5830@}
5831@end example
5832
5833@noindent
5834This interface has been designed so that the output from the @code{lex}
5835utility can be used without change as the definition of @code{yylex}.
5836
931c7513
RS
5837If the grammar uses literal string tokens, there are two ways that
5838@code{yylex} can determine the token type codes for them:
5839
5840@itemize @bullet
5841@item
5842If the grammar defines symbolic token names as aliases for the
5843literal string tokens, @code{yylex} can use these symbolic names like
5844all others. In this case, the use of the literal string tokens in
5845the grammar file has no effect on @code{yylex}.
5846
5847@item
9ecbd125 5848@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5849table. The index of the token in the table is the token type's code.
9ecbd125 5850The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5851double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5852token's characters are escaped as necessary to be suitable as input
5853to Bison.
931c7513 5854
9e0876fb
PE
5855Here's code for looking up a multicharacter token in @code{yytname},
5856assuming that the characters of the token are stored in
5857@code{token_buffer}, and assuming that the token does not contain any
5858characters like @samp{"} that require escaping.
931c7513
RS
5859
5860@smallexample
5861for (i = 0; i < YYNTOKENS; i++)
5862 @{
5863 if (yytname[i] != 0
5864 && yytname[i][0] == '"'
68449b3a
PE
5865 && ! strncmp (yytname[i] + 1, token_buffer,
5866 strlen (token_buffer))
931c7513
RS
5867 && yytname[i][strlen (token_buffer) + 1] == '"'
5868 && yytname[i][strlen (token_buffer) + 2] == 0)
5869 break;
5870 @}
5871@end smallexample
5872
5873The @code{yytname} table is generated only if you use the
8c9a50be 5874@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5875@end itemize
5876
342b8b6e 5877@node Token Values
bfa74976
RS
5878@subsection Semantic Values of Tokens
5879
5880@vindex yylval
9d9b8b70 5881In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5882be stored into the global variable @code{yylval}. When you are using
5883just one data type for semantic values, @code{yylval} has that type.
5884Thus, if the type is @code{int} (the default), you might write this in
5885@code{yylex}:
5886
5887@example
5888@group
5889 @dots{}
72d2299c
PE
5890 yylval = value; /* Put value onto Bison stack. */
5891 return INT; /* Return the type of the token. */
bfa74976
RS
5892 @dots{}
5893@end group
5894@end example
5895
5896When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5897made from the @code{%union} declaration (@pxref{Union Decl, ,The
5898Collection of Value Types}). So when you store a token's value, you
5899must use the proper member of the union. If the @code{%union}
5900declaration looks like this:
bfa74976
RS
5901
5902@example
5903@group
5904%union @{
5905 int intval;
5906 double val;
5907 symrec *tptr;
5908@}
5909@end group
5910@end example
5911
5912@noindent
5913then the code in @code{yylex} might look like this:
5914
5915@example
5916@group
5917 @dots{}
72d2299c
PE
5918 yylval.intval = value; /* Put value onto Bison stack. */
5919 return INT; /* Return the type of the token. */
bfa74976
RS
5920 @dots{}
5921@end group
5922@end example
5923
95923bd6
AD
5924@node Token Locations
5925@subsection Textual Locations of Tokens
bfa74976
RS
5926
5927@vindex yylloc
847bf1f5 5928If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5929Tracking Locations}) in actions to keep track of the textual locations
5930of tokens and groupings, then you must provide this information in
5931@code{yylex}. The function @code{yyparse} expects to find the textual
5932location of a token just parsed in the global variable @code{yylloc}.
5933So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5934
5935By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5936initialize the members that are going to be used by the actions. The
5937four members are called @code{first_line}, @code{first_column},
5938@code{last_line} and @code{last_column}. Note that the use of this
5939feature makes the parser noticeably slower.
bfa74976
RS
5940
5941@tindex YYLTYPE
5942The data type of @code{yylloc} has the name @code{YYLTYPE}.
5943
342b8b6e 5944@node Pure Calling
c656404a 5945@subsection Calling Conventions for Pure Parsers
bfa74976 5946
d9df47b6 5947When you use the Bison declaration @code{%define api.pure} to request a
e425e872
RS
5948pure, reentrant parser, the global communication variables @code{yylval}
5949and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5950Parser}.) In such parsers the two global variables are replaced by
5951pointers passed as arguments to @code{yylex}. You must declare them as
5952shown here, and pass the information back by storing it through those
5953pointers.
bfa74976
RS
5954
5955@example
13863333
AD
5956int
5957yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5958@{
5959 @dots{}
5960 *lvalp = value; /* Put value onto Bison stack. */
5961 return INT; /* Return the type of the token. */
5962 @dots{}
5963@}
5964@end example
5965
5966If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5967textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5968this case, omit the second argument; @code{yylex} will be called with
5969only one argument.
5970
e425e872 5971
2a8d363a
AD
5972If you wish to pass the additional parameter data to @code{yylex}, use
5973@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5974Function}).
e425e872 5975
feeb0eda 5976@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5977@findex %lex-param
287c78f6
PE
5978Declare that the braced-code @var{argument-declaration} is an
5979additional @code{yylex} argument declaration.
2a8d363a 5980@end deffn
e425e872 5981
2a8d363a 5982For instance:
e425e872
RS
5983
5984@example
feeb0eda
PE
5985%parse-param @{int *nastiness@}
5986%lex-param @{int *nastiness@}
5987%parse-param @{int *randomness@}
e425e872
RS
5988@end example
5989
5990@noindent
2a8d363a 5991results in the following signature:
e425e872
RS
5992
5993@example
2a8d363a
AD
5994int yylex (int *nastiness);
5995int yyparse (int *nastiness, int *randomness);
e425e872
RS
5996@end example
5997
d9df47b6 5998If @code{%define api.pure} is added:
c656404a
RS
5999
6000@example
2a8d363a
AD
6001int yylex (YYSTYPE *lvalp, int *nastiness);
6002int yyparse (int *nastiness, int *randomness);
c656404a
RS
6003@end example
6004
2a8d363a 6005@noindent
d9df47b6 6006and finally, if both @code{%define api.pure} and @code{%locations} are used:
c656404a 6007
2a8d363a
AD
6008@example
6009int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6010int yyparse (int *nastiness, int *randomness);
6011@end example
931c7513 6012
342b8b6e 6013@node Error Reporting
bfa74976
RS
6014@section The Error Reporting Function @code{yyerror}
6015@cindex error reporting function
6016@findex yyerror
6017@cindex parse error
6018@cindex syntax error
6019
6e649e65 6020The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 6021whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6022action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6023macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6024in Actions}).
bfa74976
RS
6025
6026The Bison parser expects to report the error by calling an error
6027reporting function named @code{yyerror}, which you must supply. It is
6028called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6029receives one argument. For a syntax error, the string is normally
6030@w{@code{"syntax error"}}.
bfa74976 6031
2a8d363a
AD
6032@findex %error-verbose
6033If you invoke the directive @code{%error-verbose} in the Bison
6034declarations section (@pxref{Bison Declarations, ,The Bison Declarations
6035Section}), then Bison provides a more verbose and specific error message
6e649e65 6036string instead of just plain @w{@code{"syntax error"}}.
bfa74976 6037
1a059451
PE
6038The parser can detect one other kind of error: memory exhaustion. This
6039can happen when the input contains constructions that are very deeply
bfa74976 6040nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6041parser normally extends its stack automatically up to a very large limit. But
6042if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6043fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6044
6045In some cases diagnostics like @w{@code{"syntax error"}} are
6046translated automatically from English to some other language before
6047they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6048
6049The following definition suffices in simple programs:
6050
6051@example
6052@group
13863333 6053void
38a92d50 6054yyerror (char const *s)
bfa74976
RS
6055@{
6056@end group
6057@group
6058 fprintf (stderr, "%s\n", s);
6059@}
6060@end group
6061@end example
6062
6063After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6064error recovery if you have written suitable error recovery grammar rules
6065(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6066immediately return 1.
6067
93724f13 6068Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 6069an access to the current location.
35430378 6070This is indeed the case for the GLR
2a8d363a 6071parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6072@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6073@code{yyerror} are:
6074
6075@example
38a92d50
PE
6076void yyerror (char const *msg); /* Yacc parsers. */
6077void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6078@end example
6079
feeb0eda 6080If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6081
6082@example
b317297e
PE
6083void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6084void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6085@end example
6086
35430378 6087Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6088convention for absolutely pure parsers, i.e., when the calling
6089convention of @code{yylex} @emph{and} the calling convention of
d9df47b6
JD
6090@code{%define api.pure} are pure.
6091I.e.:
2a8d363a
AD
6092
6093@example
6094/* Location tracking. */
6095%locations
6096/* Pure yylex. */
d9df47b6 6097%define api.pure
feeb0eda 6098%lex-param @{int *nastiness@}
2a8d363a 6099/* Pure yyparse. */
feeb0eda
PE
6100%parse-param @{int *nastiness@}
6101%parse-param @{int *randomness@}
2a8d363a
AD
6102@end example
6103
6104@noindent
6105results in the following signatures for all the parser kinds:
6106
6107@example
6108int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6109int yyparse (int *nastiness, int *randomness);
93724f13
AD
6110void yyerror (YYLTYPE *locp,
6111 int *nastiness, int *randomness,
38a92d50 6112 char const *msg);
2a8d363a
AD
6113@end example
6114
1c0c3e95 6115@noindent
38a92d50
PE
6116The prototypes are only indications of how the code produced by Bison
6117uses @code{yyerror}. Bison-generated code always ignores the returned
6118value, so @code{yyerror} can return any type, including @code{void}.
6119Also, @code{yyerror} can be a variadic function; that is why the
6120message is always passed last.
6121
6122Traditionally @code{yyerror} returns an @code{int} that is always
6123ignored, but this is purely for historical reasons, and @code{void} is
6124preferable since it more accurately describes the return type for
6125@code{yyerror}.
93724f13 6126
bfa74976
RS
6127@vindex yynerrs
6128The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6129reported so far. Normally this variable is global; but if you
704a47c4
AD
6130request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6131then it is a local variable which only the actions can access.
bfa74976 6132
342b8b6e 6133@node Action Features
bfa74976
RS
6134@section Special Features for Use in Actions
6135@cindex summary, action features
6136@cindex action features summary
6137
6138Here is a table of Bison constructs, variables and macros that
6139are useful in actions.
6140
18b519c0 6141@deffn {Variable} $$
bfa74976
RS
6142Acts like a variable that contains the semantic value for the
6143grouping made by the current rule. @xref{Actions}.
18b519c0 6144@end deffn
bfa74976 6145
18b519c0 6146@deffn {Variable} $@var{n}
bfa74976
RS
6147Acts like a variable that contains the semantic value for the
6148@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6149@end deffn
bfa74976 6150
18b519c0 6151@deffn {Variable} $<@var{typealt}>$
bfa74976 6152Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6153specified by the @code{%union} declaration. @xref{Action Types, ,Data
6154Types of Values in Actions}.
18b519c0 6155@end deffn
bfa74976 6156
18b519c0 6157@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6158Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6159union specified by the @code{%union} declaration.
e0c471a9 6160@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6161@end deffn
bfa74976 6162
18b519c0 6163@deffn {Macro} YYABORT;
bfa74976
RS
6164Return immediately from @code{yyparse}, indicating failure.
6165@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6166@end deffn
bfa74976 6167
18b519c0 6168@deffn {Macro} YYACCEPT;
bfa74976
RS
6169Return immediately from @code{yyparse}, indicating success.
6170@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6171@end deffn
bfa74976 6172
18b519c0 6173@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6174@findex YYBACKUP
6175Unshift a token. This macro is allowed only for rules that reduce
742e4900 6176a single value, and only when there is no lookahead token.
35430378 6177It is also disallowed in GLR parsers.
742e4900 6178It installs a lookahead token with token type @var{token} and
bfa74976
RS
6179semantic value @var{value}; then it discards the value that was
6180going to be reduced by this rule.
6181
6182If the macro is used when it is not valid, such as when there is
742e4900 6183a lookahead token already, then it reports a syntax error with
bfa74976
RS
6184a message @samp{cannot back up} and performs ordinary error
6185recovery.
6186
6187In either case, the rest of the action is not executed.
18b519c0 6188@end deffn
bfa74976 6189
18b519c0 6190@deffn {Macro} YYEMPTY
bfa74976 6191@vindex YYEMPTY
742e4900 6192Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6193@end deffn
bfa74976 6194
32c29292
JD
6195@deffn {Macro} YYEOF
6196@vindex YYEOF
742e4900 6197Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6198stream.
6199@end deffn
6200
18b519c0 6201@deffn {Macro} YYERROR;
bfa74976
RS
6202@findex YYERROR
6203Cause an immediate syntax error. This statement initiates error
6204recovery just as if the parser itself had detected an error; however, it
6205does not call @code{yyerror}, and does not print any message. If you
6206want to print an error message, call @code{yyerror} explicitly before
6207the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6208@end deffn
bfa74976 6209
18b519c0 6210@deffn {Macro} YYRECOVERING
02103984
PE
6211@findex YYRECOVERING
6212The expression @code{YYRECOVERING ()} yields 1 when the parser
6213is recovering from a syntax error, and 0 otherwise.
bfa74976 6214@xref{Error Recovery}.
18b519c0 6215@end deffn
bfa74976 6216
18b519c0 6217@deffn {Variable} yychar
742e4900
JD
6218Variable containing either the lookahead token, or @code{YYEOF} when the
6219lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6220has been performed so the next token is not yet known.
6221Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6222Actions}).
742e4900 6223@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6224@end deffn
bfa74976 6225
18b519c0 6226@deffn {Macro} yyclearin;
742e4900 6227Discard the current lookahead token. This is useful primarily in
32c29292
JD
6228error rules.
6229Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6230Semantic Actions}).
6231@xref{Error Recovery}.
18b519c0 6232@end deffn
bfa74976 6233
18b519c0 6234@deffn {Macro} yyerrok;
bfa74976 6235Resume generating error messages immediately for subsequent syntax
13863333 6236errors. This is useful primarily in error rules.
bfa74976 6237@xref{Error Recovery}.
18b519c0 6238@end deffn
bfa74976 6239
32c29292 6240@deffn {Variable} yylloc
742e4900 6241Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6242to @code{YYEMPTY} or @code{YYEOF}.
6243Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6244Actions}).
6245@xref{Actions and Locations, ,Actions and Locations}.
6246@end deffn
6247
6248@deffn {Variable} yylval
742e4900 6249Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6250not set to @code{YYEMPTY} or @code{YYEOF}.
6251Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6252Actions}).
6253@xref{Actions, ,Actions}.
6254@end deffn
6255
18b519c0 6256@deffn {Value} @@$
847bf1f5 6257@findex @@$
95923bd6 6258Acts like a structure variable containing information on the textual location
847bf1f5
AD
6259of the grouping made by the current rule. @xref{Locations, ,
6260Tracking Locations}.
bfa74976 6261
847bf1f5
AD
6262@c Check if those paragraphs are still useful or not.
6263
6264@c @example
6265@c struct @{
6266@c int first_line, last_line;
6267@c int first_column, last_column;
6268@c @};
6269@c @end example
6270
6271@c Thus, to get the starting line number of the third component, you would
6272@c use @samp{@@3.first_line}.
bfa74976 6273
847bf1f5
AD
6274@c In order for the members of this structure to contain valid information,
6275@c you must make @code{yylex} supply this information about each token.
6276@c If you need only certain members, then @code{yylex} need only fill in
6277@c those members.
bfa74976 6278
847bf1f5 6279@c The use of this feature makes the parser noticeably slower.
18b519c0 6280@end deffn
847bf1f5 6281
18b519c0 6282@deffn {Value} @@@var{n}
847bf1f5 6283@findex @@@var{n}
95923bd6 6284Acts like a structure variable containing information on the textual location
847bf1f5
AD
6285of the @var{n}th component of the current rule. @xref{Locations, ,
6286Tracking Locations}.
18b519c0 6287@end deffn
bfa74976 6288
f7ab6a50
PE
6289@node Internationalization
6290@section Parser Internationalization
6291@cindex internationalization
6292@cindex i18n
6293@cindex NLS
6294@cindex gettext
6295@cindex bison-po
6296
6297A Bison-generated parser can print diagnostics, including error and
6298tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6299also supports outputting diagnostics in the user's native language. To
6300make this work, the user should set the usual environment variables.
6301@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6302For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
35430378 6303set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6304encoding. The exact set of available locales depends on the user's
6305installation.
6306
6307The maintainer of a package that uses a Bison-generated parser enables
6308the internationalization of the parser's output through the following
35430378
JD
6309steps. Here we assume a package that uses GNU Autoconf and
6310GNU Automake.
f7ab6a50
PE
6311
6312@enumerate
6313@item
30757c8c 6314@cindex bison-i18n.m4
35430378 6315Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6316by the package---often called @file{m4}---copy the
6317@file{bison-i18n.m4} file installed by Bison under
6318@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6319For example:
6320
6321@example
6322cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6323@end example
6324
6325@item
30757c8c
PE
6326@findex BISON_I18N
6327@vindex BISON_LOCALEDIR
6328@vindex YYENABLE_NLS
f7ab6a50
PE
6329In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6330invocation, add an invocation of @code{BISON_I18N}. This macro is
6331defined in the file @file{bison-i18n.m4} that you copied earlier. It
6332causes @samp{configure} to find the value of the
30757c8c
PE
6333@code{BISON_LOCALEDIR} variable, and it defines the source-language
6334symbol @code{YYENABLE_NLS} to enable translations in the
6335Bison-generated parser.
f7ab6a50
PE
6336
6337@item
6338In the @code{main} function of your program, designate the directory
6339containing Bison's runtime message catalog, through a call to
6340@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6341For example:
6342
6343@example
6344bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6345@end example
6346
6347Typically this appears after any other call @code{bindtextdomain
6348(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6349@samp{BISON_LOCALEDIR} to be defined as a string through the
6350@file{Makefile}.
6351
6352@item
6353In the @file{Makefile.am} that controls the compilation of the @code{main}
6354function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6355either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6356
6357@example
6358DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6359@end example
6360
6361or:
6362
6363@example
6364AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6365@end example
6366
6367@item
6368Finally, invoke the command @command{autoreconf} to generate the build
6369infrastructure.
6370@end enumerate
6371
bfa74976 6372
342b8b6e 6373@node Algorithm
13863333
AD
6374@chapter The Bison Parser Algorithm
6375@cindex Bison parser algorithm
bfa74976
RS
6376@cindex algorithm of parser
6377@cindex shifting
6378@cindex reduction
6379@cindex parser stack
6380@cindex stack, parser
6381
6382As Bison reads tokens, it pushes them onto a stack along with their
6383semantic values. The stack is called the @dfn{parser stack}. Pushing a
6384token is traditionally called @dfn{shifting}.
6385
6386For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6387@samp{3} to come. The stack will have four elements, one for each token
6388that was shifted.
6389
6390But the stack does not always have an element for each token read. When
6391the last @var{n} tokens and groupings shifted match the components of a
6392grammar rule, they can be combined according to that rule. This is called
6393@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6394single grouping whose symbol is the result (left hand side) of that rule.
6395Running the rule's action is part of the process of reduction, because this
6396is what computes the semantic value of the resulting grouping.
6397
6398For example, if the infix calculator's parser stack contains this:
6399
6400@example
64011 + 5 * 3
6402@end example
6403
6404@noindent
6405and the next input token is a newline character, then the last three
6406elements can be reduced to 15 via the rule:
6407
6408@example
6409expr: expr '*' expr;
6410@end example
6411
6412@noindent
6413Then the stack contains just these three elements:
6414
6415@example
64161 + 15
6417@end example
6418
6419@noindent
6420At this point, another reduction can be made, resulting in the single value
642116. Then the newline token can be shifted.
6422
6423The parser tries, by shifts and reductions, to reduce the entire input down
6424to a single grouping whose symbol is the grammar's start-symbol
6425(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6426
6427This kind of parser is known in the literature as a bottom-up parser.
6428
6429@menu
742e4900 6430* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6431* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6432* Precedence:: Operator precedence works by resolving conflicts.
6433* Contextual Precedence:: When an operator's precedence depends on context.
6434* Parser States:: The parser is a finite-state-machine with stack.
6435* Reduce/Reduce:: When two rules are applicable in the same situation.
f56274a8 6436* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6437* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6438* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6439@end menu
6440
742e4900
JD
6441@node Lookahead
6442@section Lookahead Tokens
6443@cindex lookahead token
bfa74976
RS
6444
6445The Bison parser does @emph{not} always reduce immediately as soon as the
6446last @var{n} tokens and groupings match a rule. This is because such a
6447simple strategy is inadequate to handle most languages. Instead, when a
6448reduction is possible, the parser sometimes ``looks ahead'' at the next
6449token in order to decide what to do.
6450
6451When a token is read, it is not immediately shifted; first it becomes the
742e4900 6452@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6453perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6454the lookahead token remains off to the side. When no more reductions
6455should take place, the lookahead token is shifted onto the stack. This
bfa74976 6456does not mean that all possible reductions have been done; depending on the
742e4900 6457token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6458application.
6459
742e4900 6460Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6461expressions which contain binary addition operators and postfix unary
6462factorial operators (@samp{!}), and allow parentheses for grouping.
6463
6464@example
6465@group
6466expr: term '+' expr
6467 | term
6468 ;
6469@end group
6470
6471@group
6472term: '(' expr ')'
6473 | term '!'
6474 | NUMBER
6475 ;
6476@end group
6477@end example
6478
6479Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6480should be done? If the following token is @samp{)}, then the first three
6481tokens must be reduced to form an @code{expr}. This is the only valid
6482course, because shifting the @samp{)} would produce a sequence of symbols
6483@w{@code{term ')'}}, and no rule allows this.
6484
6485If the following token is @samp{!}, then it must be shifted immediately so
6486that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6487parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6488@code{expr}. It would then be impossible to shift the @samp{!} because
6489doing so would produce on the stack the sequence of symbols @code{expr
6490'!'}. No rule allows that sequence.
6491
6492@vindex yychar
32c29292
JD
6493@vindex yylval
6494@vindex yylloc
742e4900 6495The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6496Its semantic value and location, if any, are stored in the variables
6497@code{yylval} and @code{yylloc}.
bfa74976
RS
6498@xref{Action Features, ,Special Features for Use in Actions}.
6499
342b8b6e 6500@node Shift/Reduce
bfa74976
RS
6501@section Shift/Reduce Conflicts
6502@cindex conflicts
6503@cindex shift/reduce conflicts
6504@cindex dangling @code{else}
6505@cindex @code{else}, dangling
6506
6507Suppose we are parsing a language which has if-then and if-then-else
6508statements, with a pair of rules like this:
6509
6510@example
6511@group
6512if_stmt:
6513 IF expr THEN stmt
6514 | IF expr THEN stmt ELSE stmt
6515 ;
6516@end group
6517@end example
6518
6519@noindent
6520Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6521terminal symbols for specific keyword tokens.
6522
742e4900 6523When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6524contents of the stack (assuming the input is valid) are just right for
6525reduction by the first rule. But it is also legitimate to shift the
6526@code{ELSE}, because that would lead to eventual reduction by the second
6527rule.
6528
6529This situation, where either a shift or a reduction would be valid, is
6530called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6531these conflicts by choosing to shift, unless otherwise directed by
6532operator precedence declarations. To see the reason for this, let's
6533contrast it with the other alternative.
6534
6535Since the parser prefers to shift the @code{ELSE}, the result is to attach
6536the else-clause to the innermost if-statement, making these two inputs
6537equivalent:
6538
6539@example
6540if x then if y then win (); else lose;
6541
6542if x then do; if y then win (); else lose; end;
6543@end example
6544
6545But if the parser chose to reduce when possible rather than shift, the
6546result would be to attach the else-clause to the outermost if-statement,
6547making these two inputs equivalent:
6548
6549@example
6550if x then if y then win (); else lose;
6551
6552if x then do; if y then win (); end; else lose;
6553@end example
6554
6555The conflict exists because the grammar as written is ambiguous: either
6556parsing of the simple nested if-statement is legitimate. The established
6557convention is that these ambiguities are resolved by attaching the
6558else-clause to the innermost if-statement; this is what Bison accomplishes
6559by choosing to shift rather than reduce. (It would ideally be cleaner to
6560write an unambiguous grammar, but that is very hard to do in this case.)
6561This particular ambiguity was first encountered in the specifications of
6562Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6563
6564To avoid warnings from Bison about predictable, legitimate shift/reduce
cf22447c
JD
6565conflicts, use the @code{%expect @var{n}} declaration.
6566There will be no warning as long as the number of shift/reduce conflicts
6567is exactly @var{n}, and Bison will report an error if there is a
6568different number.
bfa74976
RS
6569@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6570
6571The definition of @code{if_stmt} above is solely to blame for the
6572conflict, but the conflict does not actually appear without additional
9913d6e4
JD
6573rules. Here is a complete Bison grammar file that actually manifests
6574the conflict:
bfa74976
RS
6575
6576@example
6577@group
6578%token IF THEN ELSE variable
6579%%
6580@end group
6581@group
6582stmt: expr
6583 | if_stmt
6584 ;
6585@end group
6586
6587@group
6588if_stmt:
6589 IF expr THEN stmt
6590 | IF expr THEN stmt ELSE stmt
6591 ;
6592@end group
6593
6594expr: variable
6595 ;
6596@end example
6597
342b8b6e 6598@node Precedence
bfa74976
RS
6599@section Operator Precedence
6600@cindex operator precedence
6601@cindex precedence of operators
6602
6603Another situation where shift/reduce conflicts appear is in arithmetic
6604expressions. Here shifting is not always the preferred resolution; the
6605Bison declarations for operator precedence allow you to specify when to
6606shift and when to reduce.
6607
6608@menu
6609* Why Precedence:: An example showing why precedence is needed.
6610* Using Precedence:: How to specify precedence in Bison grammars.
6611* Precedence Examples:: How these features are used in the previous example.
6612* How Precedence:: How they work.
6613@end menu
6614
342b8b6e 6615@node Why Precedence
bfa74976
RS
6616@subsection When Precedence is Needed
6617
6618Consider the following ambiguous grammar fragment (ambiguous because the
6619input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6620
6621@example
6622@group
6623expr: expr '-' expr
6624 | expr '*' expr
6625 | expr '<' expr
6626 | '(' expr ')'
6627 @dots{}
6628 ;
6629@end group
6630@end example
6631
6632@noindent
6633Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6634should it reduce them via the rule for the subtraction operator? It
6635depends on the next token. Of course, if the next token is @samp{)}, we
6636must reduce; shifting is invalid because no single rule can reduce the
6637token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6638the next token is @samp{*} or @samp{<}, we have a choice: either
6639shifting or reduction would allow the parse to complete, but with
6640different results.
6641
6642To decide which one Bison should do, we must consider the results. If
6643the next operator token @var{op} is shifted, then it must be reduced
6644first in order to permit another opportunity to reduce the difference.
6645The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6646hand, if the subtraction is reduced before shifting @var{op}, the result
6647is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6648reduce should depend on the relative precedence of the operators
6649@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6650@samp{<}.
bfa74976
RS
6651
6652@cindex associativity
6653What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6654@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6655operators we prefer the former, which is called @dfn{left association}.
6656The latter alternative, @dfn{right association}, is desirable for
6657assignment operators. The choice of left or right association is a
6658matter of whether the parser chooses to shift or reduce when the stack
742e4900 6659contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6660makes right-associativity.
bfa74976 6661
342b8b6e 6662@node Using Precedence
bfa74976
RS
6663@subsection Specifying Operator Precedence
6664@findex %left
6665@findex %right
6666@findex %nonassoc
6667
6668Bison allows you to specify these choices with the operator precedence
6669declarations @code{%left} and @code{%right}. Each such declaration
6670contains a list of tokens, which are operators whose precedence and
6671associativity is being declared. The @code{%left} declaration makes all
6672those operators left-associative and the @code{%right} declaration makes
6673them right-associative. A third alternative is @code{%nonassoc}, which
6674declares that it is a syntax error to find the same operator twice ``in a
6675row''.
6676
6677The relative precedence of different operators is controlled by the
6678order in which they are declared. The first @code{%left} or
6679@code{%right} declaration in the file declares the operators whose
6680precedence is lowest, the next such declaration declares the operators
6681whose precedence is a little higher, and so on.
6682
342b8b6e 6683@node Precedence Examples
bfa74976
RS
6684@subsection Precedence Examples
6685
6686In our example, we would want the following declarations:
6687
6688@example
6689%left '<'
6690%left '-'
6691%left '*'
6692@end example
6693
6694In a more complete example, which supports other operators as well, we
6695would declare them in groups of equal precedence. For example, @code{'+'} is
6696declared with @code{'-'}:
6697
6698@example
6699%left '<' '>' '=' NE LE GE
6700%left '+' '-'
6701%left '*' '/'
6702@end example
6703
6704@noindent
6705(Here @code{NE} and so on stand for the operators for ``not equal''
6706and so on. We assume that these tokens are more than one character long
6707and therefore are represented by names, not character literals.)
6708
342b8b6e 6709@node How Precedence
bfa74976
RS
6710@subsection How Precedence Works
6711
6712The first effect of the precedence declarations is to assign precedence
6713levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6714precedence levels to certain rules: each rule gets its precedence from
6715the last terminal symbol mentioned in the components. (You can also
6716specify explicitly the precedence of a rule. @xref{Contextual
6717Precedence, ,Context-Dependent Precedence}.)
6718
6719Finally, the resolution of conflicts works by comparing the precedence
742e4900 6720of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6721token's precedence is higher, the choice is to shift. If the rule's
6722precedence is higher, the choice is to reduce. If they have equal
6723precedence, the choice is made based on the associativity of that
6724precedence level. The verbose output file made by @samp{-v}
6725(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6726resolved.
bfa74976
RS
6727
6728Not all rules and not all tokens have precedence. If either the rule or
742e4900 6729the lookahead token has no precedence, then the default is to shift.
bfa74976 6730
342b8b6e 6731@node Contextual Precedence
bfa74976
RS
6732@section Context-Dependent Precedence
6733@cindex context-dependent precedence
6734@cindex unary operator precedence
6735@cindex precedence, context-dependent
6736@cindex precedence, unary operator
6737@findex %prec
6738
6739Often the precedence of an operator depends on the context. This sounds
6740outlandish at first, but it is really very common. For example, a minus
6741sign typically has a very high precedence as a unary operator, and a
6742somewhat lower precedence (lower than multiplication) as a binary operator.
6743
6744The Bison precedence declarations, @code{%left}, @code{%right} and
6745@code{%nonassoc}, can only be used once for a given token; so a token has
6746only one precedence declared in this way. For context-dependent
6747precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6748modifier for rules.
bfa74976
RS
6749
6750The @code{%prec} modifier declares the precedence of a particular rule by
6751specifying a terminal symbol whose precedence should be used for that rule.
6752It's not necessary for that symbol to appear otherwise in the rule. The
6753modifier's syntax is:
6754
6755@example
6756%prec @var{terminal-symbol}
6757@end example
6758
6759@noindent
6760and it is written after the components of the rule. Its effect is to
6761assign the rule the precedence of @var{terminal-symbol}, overriding
6762the precedence that would be deduced for it in the ordinary way. The
6763altered rule precedence then affects how conflicts involving that rule
6764are resolved (@pxref{Precedence, ,Operator Precedence}).
6765
6766Here is how @code{%prec} solves the problem of unary minus. First, declare
6767a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6768are no tokens of this type, but the symbol serves to stand for its
6769precedence:
6770
6771@example
6772@dots{}
6773%left '+' '-'
6774%left '*'
6775%left UMINUS
6776@end example
6777
6778Now the precedence of @code{UMINUS} can be used in specific rules:
6779
6780@example
6781@group
6782exp: @dots{}
6783 | exp '-' exp
6784 @dots{}
6785 | '-' exp %prec UMINUS
6786@end group
6787@end example
6788
91d2c560 6789@ifset defaultprec
39a06c25
PE
6790If you forget to append @code{%prec UMINUS} to the rule for unary
6791minus, Bison silently assumes that minus has its usual precedence.
6792This kind of problem can be tricky to debug, since one typically
6793discovers the mistake only by testing the code.
6794
22fccf95 6795The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6796this kind of problem systematically. It causes rules that lack a
6797@code{%prec} modifier to have no precedence, even if the last terminal
6798symbol mentioned in their components has a declared precedence.
6799
22fccf95 6800If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6801for all rules that participate in precedence conflict resolution.
6802Then you will see any shift/reduce conflict until you tell Bison how
6803to resolve it, either by changing your grammar or by adding an
6804explicit precedence. This will probably add declarations to the
6805grammar, but it helps to protect against incorrect rule precedences.
6806
22fccf95
PE
6807The effect of @code{%no-default-prec;} can be reversed by giving
6808@code{%default-prec;}, which is the default.
91d2c560 6809@end ifset
39a06c25 6810
342b8b6e 6811@node Parser States
bfa74976
RS
6812@section Parser States
6813@cindex finite-state machine
6814@cindex parser state
6815@cindex state (of parser)
6816
6817The function @code{yyparse} is implemented using a finite-state machine.
6818The values pushed on the parser stack are not simply token type codes; they
6819represent the entire sequence of terminal and nonterminal symbols at or
6820near the top of the stack. The current state collects all the information
6821about previous input which is relevant to deciding what to do next.
6822
742e4900
JD
6823Each time a lookahead token is read, the current parser state together
6824with the type of lookahead token are looked up in a table. This table
6825entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6826specifies the new parser state, which is pushed onto the top of the
6827parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6828This means that a certain number of tokens or groupings are taken off
6829the top of the stack, and replaced by one grouping. In other words,
6830that number of states are popped from the stack, and one new state is
6831pushed.
6832
742e4900 6833There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6834is erroneous in the current state. This causes error processing to begin
6835(@pxref{Error Recovery}).
6836
342b8b6e 6837@node Reduce/Reduce
bfa74976
RS
6838@section Reduce/Reduce Conflicts
6839@cindex reduce/reduce conflict
6840@cindex conflicts, reduce/reduce
6841
6842A reduce/reduce conflict occurs if there are two or more rules that apply
6843to the same sequence of input. This usually indicates a serious error
6844in the grammar.
6845
6846For example, here is an erroneous attempt to define a sequence
6847of zero or more @code{word} groupings.
6848
6849@example
6850sequence: /* empty */
6851 @{ printf ("empty sequence\n"); @}
6852 | maybeword
6853 | sequence word
6854 @{ printf ("added word %s\n", $2); @}
6855 ;
6856
6857maybeword: /* empty */
6858 @{ printf ("empty maybeword\n"); @}
6859 | word
6860 @{ printf ("single word %s\n", $1); @}
6861 ;
6862@end example
6863
6864@noindent
6865The error is an ambiguity: there is more than one way to parse a single
6866@code{word} into a @code{sequence}. It could be reduced to a
6867@code{maybeword} and then into a @code{sequence} via the second rule.
6868Alternatively, nothing-at-all could be reduced into a @code{sequence}
6869via the first rule, and this could be combined with the @code{word}
6870using the third rule for @code{sequence}.
6871
6872There is also more than one way to reduce nothing-at-all into a
6873@code{sequence}. This can be done directly via the first rule,
6874or indirectly via @code{maybeword} and then the second rule.
6875
6876You might think that this is a distinction without a difference, because it
6877does not change whether any particular input is valid or not. But it does
6878affect which actions are run. One parsing order runs the second rule's
6879action; the other runs the first rule's action and the third rule's action.
6880In this example, the output of the program changes.
6881
6882Bison resolves a reduce/reduce conflict by choosing to use the rule that
6883appears first in the grammar, but it is very risky to rely on this. Every
6884reduce/reduce conflict must be studied and usually eliminated. Here is the
6885proper way to define @code{sequence}:
6886
6887@example
6888sequence: /* empty */
6889 @{ printf ("empty sequence\n"); @}
6890 | sequence word
6891 @{ printf ("added word %s\n", $2); @}
6892 ;
6893@end example
6894
6895Here is another common error that yields a reduce/reduce conflict:
6896
6897@example
6898sequence: /* empty */
6899 | sequence words
6900 | sequence redirects
6901 ;
6902
6903words: /* empty */
6904 | words word
6905 ;
6906
6907redirects:/* empty */
6908 | redirects redirect
6909 ;
6910@end example
6911
6912@noindent
6913The intention here is to define a sequence which can contain either
6914@code{word} or @code{redirect} groupings. The individual definitions of
6915@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6916three together make a subtle ambiguity: even an empty input can be parsed
6917in infinitely many ways!
6918
6919Consider: nothing-at-all could be a @code{words}. Or it could be two
6920@code{words} in a row, or three, or any number. It could equally well be a
6921@code{redirects}, or two, or any number. Or it could be a @code{words}
6922followed by three @code{redirects} and another @code{words}. And so on.
6923
6924Here are two ways to correct these rules. First, to make it a single level
6925of sequence:
6926
6927@example
6928sequence: /* empty */
6929 | sequence word
6930 | sequence redirect
6931 ;
6932@end example
6933
6934Second, to prevent either a @code{words} or a @code{redirects}
6935from being empty:
6936
6937@example
6938sequence: /* empty */
6939 | sequence words
6940 | sequence redirects
6941 ;
6942
6943words: word
6944 | words word
6945 ;
6946
6947redirects:redirect
6948 | redirects redirect
6949 ;
6950@end example
6951
342b8b6e 6952@node Mystery Conflicts
bfa74976
RS
6953@section Mysterious Reduce/Reduce Conflicts
6954
6955Sometimes reduce/reduce conflicts can occur that don't look warranted.
6956Here is an example:
6957
6958@example
6959@group
6960%token ID
6961
6962%%
6963def: param_spec return_spec ','
6964 ;
6965param_spec:
6966 type
6967 | name_list ':' type
6968 ;
6969@end group
6970@group
6971return_spec:
6972 type
6973 | name ':' type
6974 ;
6975@end group
6976@group
6977type: ID
6978 ;
6979@end group
6980@group
6981name: ID
6982 ;
6983name_list:
6984 name
6985 | name ',' name_list
6986 ;
6987@end group
6988@end example
6989
6990It would seem that this grammar can be parsed with only a single token
742e4900 6991of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6992a @code{name} if a comma or colon follows, or a @code{type} if another
35430378 6993@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 6994
35430378
JD
6995@cindex LR(1)
6996@cindex LALR(1)
34a6c2d1 6997However, for historical reasons, Bison cannot by default handle all
35430378 6998LR(1) grammars.
34a6c2d1
JD
6999In this grammar, two contexts, that after an @code{ID} at the beginning
7000of a @code{param_spec} and likewise at the beginning of a
7001@code{return_spec}, are similar enough that Bison assumes they are the
7002same.
7003They appear similar because the same set of rules would be
bfa74976
RS
7004active---the rule for reducing to a @code{name} and that for reducing to
7005a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7006that the rules would require different lookahead tokens in the two
bfa74976
RS
7007contexts, so it makes a single parser state for them both. Combining
7008the two contexts causes a conflict later. In parser terminology, this
35430378 7009occurrence means that the grammar is not LALR(1).
bfa74976 7010
34a6c2d1 7011For many practical grammars (specifically those that fall into the
35430378 7012non-LR(1) class), the limitations of LALR(1) result in
34a6c2d1
JD
7013difficulties beyond just mysterious reduce/reduce conflicts.
7014The best way to fix all these problems is to select a different parser
7015table generation algorithm.
35430378 7016Either IELR(1) or canonical LR(1) would suffice, but
34a6c2d1
JD
7017the former is more efficient and easier to debug during development.
7018@xref{Decl Summary,,lr.type}, for details.
35430378 7019(Bison's IELR(1) and canonical LR(1) implementations
34a6c2d1
JD
7020are experimental.
7021More user feedback will help to stabilize them.)
7022
35430378 7023If you instead wish to work around LALR(1)'s limitations, you
34a6c2d1
JD
7024can often fix a mysterious conflict by identifying the two parser states
7025that are being confused, and adding something to make them look
7026distinct. In the above example, adding one rule to
bfa74976
RS
7027@code{return_spec} as follows makes the problem go away:
7028
7029@example
7030@group
7031%token BOGUS
7032@dots{}
7033%%
7034@dots{}
7035return_spec:
7036 type
7037 | name ':' type
7038 /* This rule is never used. */
7039 | ID BOGUS
7040 ;
7041@end group
7042@end example
7043
7044This corrects the problem because it introduces the possibility of an
7045additional active rule in the context after the @code{ID} at the beginning of
7046@code{return_spec}. This rule is not active in the corresponding context
7047in a @code{param_spec}, so the two contexts receive distinct parser states.
7048As long as the token @code{BOGUS} is never generated by @code{yylex},
7049the added rule cannot alter the way actual input is parsed.
7050
7051In this particular example, there is another way to solve the problem:
7052rewrite the rule for @code{return_spec} to use @code{ID} directly
7053instead of via @code{name}. This also causes the two confusing
7054contexts to have different sets of active rules, because the one for
7055@code{return_spec} activates the altered rule for @code{return_spec}
7056rather than the one for @code{name}.
7057
7058@example
7059param_spec:
7060 type
7061 | name_list ':' type
7062 ;
7063return_spec:
7064 type
7065 | ID ':' type
7066 ;
7067@end example
7068
35430378 7069For a more detailed exposition of LALR(1) parsers and parser
e054b190
PE
7070generators, please see:
7071Frank DeRemer and Thomas Pennello, Efficient Computation of
35430378 7072LALR(1) Look-Ahead Sets, @cite{ACM Transactions on
e054b190
PE
7073Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
7074pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
7075
fae437e8 7076@node Generalized LR Parsing
35430378
JD
7077@section Generalized LR (GLR) Parsing
7078@cindex GLR parsing
7079@cindex generalized LR (GLR) parsing
676385e2 7080@cindex ambiguous grammars
9d9b8b70 7081@cindex nondeterministic parsing
676385e2 7082
fae437e8
AD
7083Bison produces @emph{deterministic} parsers that choose uniquely
7084when to reduce and which reduction to apply
742e4900 7085based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7086As a result, normal Bison handles a proper subset of the family of
7087context-free languages.
fae437e8 7088Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7089sequence of reductions cannot have deterministic parsers in this sense.
7090The same is true of languages that require more than one symbol of
742e4900 7091lookahead, since the parser lacks the information necessary to make a
676385e2 7092decision at the point it must be made in a shift-reduce parser.
fae437e8 7093Finally, as previously mentioned (@pxref{Mystery Conflicts}),
34a6c2d1 7094there are languages where Bison's default choice of how to
676385e2
PH
7095summarize the input seen so far loses necessary information.
7096
7097When you use the @samp{%glr-parser} declaration in your grammar file,
7098Bison generates a parser that uses a different algorithm, called
35430378 7099Generalized LR (or GLR). A Bison GLR
c827f760 7100parser uses the same basic
676385e2
PH
7101algorithm for parsing as an ordinary Bison parser, but behaves
7102differently in cases where there is a shift-reduce conflict that has not
fae437e8 7103been resolved by precedence rules (@pxref{Precedence}) or a
35430378 7104reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7105situation, it
fae437e8 7106effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7107shift or reduction. These parsers then proceed as usual, consuming
7108tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7109and split further, with the result that instead of a sequence of states,
35430378 7110a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7111
7112In effect, each stack represents a guess as to what the proper parse
7113is. Additional input may indicate that a guess was wrong, in which case
7114the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7115actions generated in each stack are saved, rather than being executed
676385e2 7116immediately. When a stack disappears, its saved semantic actions never
fae437e8 7117get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7118their sets of semantic actions are both saved with the state that
7119results from the reduction. We say that two stacks are equivalent
fae437e8 7120when they both represent the same sequence of states,
676385e2
PH
7121and each pair of corresponding states represents a
7122grammar symbol that produces the same segment of the input token
7123stream.
7124
7125Whenever the parser makes a transition from having multiple
34a6c2d1 7126states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7127algorithm, after resolving and executing the saved-up actions.
7128At this transition, some of the states on the stack will have semantic
7129values that are sets (actually multisets) of possible actions. The
7130parser tries to pick one of the actions by first finding one whose rule
7131has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7132declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7133precedence, but there the same merging function is declared for both
fae437e8 7134rules by the @samp{%merge} declaration,
676385e2
PH
7135Bison resolves and evaluates both and then calls the merge function on
7136the result. Otherwise, it reports an ambiguity.
7137
35430378
JD
7138It is possible to use a data structure for the GLR parsing tree that
7139permits the processing of any LR(1) grammar in linear time (in the
c827f760 7140size of the input), any unambiguous (not necessarily
35430378 7141LR(1)) grammar in
fae437e8 7142quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7143context-free grammar in cubic worst-case time. However, Bison currently
7144uses a simpler data structure that requires time proportional to the
7145length of the input times the maximum number of stacks required for any
9d9b8b70 7146prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7147grammars can require exponential time and space to process. Such badly
7148behaving examples, however, are not generally of practical interest.
9d9b8b70 7149Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7150doubt'' only for a few tokens at a time. Therefore, the current data
35430378 7151structure should generally be adequate. On LR(1) portions of a
34a6c2d1 7152grammar, in particular, it is only slightly slower than with the
35430378 7153deterministic LR(1) Bison parser.
676385e2 7154
35430378 7155For a more detailed exposition of GLR parsers, please see: Elizabeth
f6481e2f 7156Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
35430378 7157Generalised LR Parsers, Royal Holloway, University of
f6481e2f
PE
7158London, Department of Computer Science, TR-00-12,
7159@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
7160(2000-12-24).
7161
1a059451
PE
7162@node Memory Management
7163@section Memory Management, and How to Avoid Memory Exhaustion
7164@cindex memory exhaustion
7165@cindex memory management
bfa74976
RS
7166@cindex stack overflow
7167@cindex parser stack overflow
7168@cindex overflow of parser stack
7169
1a059451 7170The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7171not reduced. When this happens, the parser function @code{yyparse}
1a059451 7172calls @code{yyerror} and then returns 2.
bfa74976 7173
c827f760 7174Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7175usually results from using a right recursion instead of a left
7176recursion, @xref{Recursion, ,Recursive Rules}.
7177
bfa74976
RS
7178@vindex YYMAXDEPTH
7179By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7180parser stack can become before memory is exhausted. Define the
bfa74976
RS
7181macro with a value that is an integer. This value is the maximum number
7182of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7183
7184The stack space allowed is not necessarily allocated. If you specify a
1a059451 7185large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7186stack at first, and then makes it bigger by stages as needed. This
7187increasing allocation happens automatically and silently. Therefore,
7188you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7189space for ordinary inputs that do not need much stack.
7190
d7e14fc0
PE
7191However, do not allow @code{YYMAXDEPTH} to be a value so large that
7192arithmetic overflow could occur when calculating the size of the stack
7193space. Also, do not allow @code{YYMAXDEPTH} to be less than
7194@code{YYINITDEPTH}.
7195
bfa74976
RS
7196@cindex default stack limit
7197The default value of @code{YYMAXDEPTH}, if you do not define it, is
719810000.
7199
7200@vindex YYINITDEPTH
7201You can control how much stack is allocated initially by defining the
34a6c2d1
JD
7202macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7203parser in C, this value must be a compile-time constant
d7e14fc0
PE
7204unless you are assuming C99 or some other target language or compiler
7205that allows variable-length arrays. The default is 200.
7206
1a059451 7207Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7208
d1a1114f 7209@c FIXME: C++ output.
c781580d 7210Because of semantic differences between C and C++, the deterministic
34a6c2d1 7211parsers in C produced by Bison cannot grow when compiled
1a059451
PE
7212by C++ compilers. In this precise case (compiling a C parser as C++) you are
7213suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
7214this deficiency in a future release.
d1a1114f 7215
342b8b6e 7216@node Error Recovery
bfa74976
RS
7217@chapter Error Recovery
7218@cindex error recovery
7219@cindex recovery from errors
7220
6e649e65 7221It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7222error. For example, a compiler should recover sufficiently to parse the
7223rest of the input file and check it for errors; a calculator should accept
7224another expression.
7225
7226In a simple interactive command parser where each input is one line, it may
7227be sufficient to allow @code{yyparse} to return 1 on error and have the
7228caller ignore the rest of the input line when that happens (and then call
7229@code{yyparse} again). But this is inadequate for a compiler, because it
7230forgets all the syntactic context leading up to the error. A syntax error
7231deep within a function in the compiler input should not cause the compiler
7232to treat the following line like the beginning of a source file.
7233
7234@findex error
7235You can define how to recover from a syntax error by writing rules to
7236recognize the special token @code{error}. This is a terminal symbol that
7237is always defined (you need not declare it) and reserved for error
7238handling. The Bison parser generates an @code{error} token whenever a
7239syntax error happens; if you have provided a rule to recognize this token
13863333 7240in the current context, the parse can continue.
bfa74976
RS
7241
7242For example:
7243
7244@example
7245stmnts: /* empty string */
7246 | stmnts '\n'
7247 | stmnts exp '\n'
7248 | stmnts error '\n'
7249@end example
7250
7251The fourth rule in this example says that an error followed by a newline
7252makes a valid addition to any @code{stmnts}.
7253
7254What happens if a syntax error occurs in the middle of an @code{exp}? The
7255error recovery rule, interpreted strictly, applies to the precise sequence
7256of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7257the middle of an @code{exp}, there will probably be some additional tokens
7258and subexpressions on the stack after the last @code{stmnts}, and there
7259will be tokens to read before the next newline. So the rule is not
7260applicable in the ordinary way.
7261
7262But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7263the semantic context and part of the input. First it discards states
7264and objects from the stack until it gets back to a state in which the
bfa74976 7265@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7266already parsed are discarded, back to the last complete @code{stmnts}.)
7267At this point the @code{error} token can be shifted. Then, if the old
742e4900 7268lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7269tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7270this example, Bison reads and discards input until the next newline so
7271that the fourth rule can apply. Note that discarded symbols are
7272possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7273Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7274
7275The choice of error rules in the grammar is a choice of strategies for
7276error recovery. A simple and useful strategy is simply to skip the rest of
7277the current input line or current statement if an error is detected:
7278
7279@example
72d2299c 7280stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7281@end example
7282
7283It is also useful to recover to the matching close-delimiter of an
7284opening-delimiter that has already been parsed. Otherwise the
7285close-delimiter will probably appear to be unmatched, and generate another,
7286spurious error message:
7287
7288@example
7289primary: '(' expr ')'
7290 | '(' error ')'
7291 @dots{}
7292 ;
7293@end example
7294
7295Error recovery strategies are necessarily guesses. When they guess wrong,
7296one syntax error often leads to another. In the above example, the error
7297recovery rule guesses that an error is due to bad input within one
7298@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7299middle of a valid @code{stmnt}. After the error recovery rule recovers
7300from the first error, another syntax error will be found straightaway,
7301since the text following the spurious semicolon is also an invalid
7302@code{stmnt}.
7303
7304To prevent an outpouring of error messages, the parser will output no error
7305message for another syntax error that happens shortly after the first; only
7306after three consecutive input tokens have been successfully shifted will
7307error messages resume.
7308
7309Note that rules which accept the @code{error} token may have actions, just
7310as any other rules can.
7311
7312@findex yyerrok
7313You can make error messages resume immediately by using the macro
7314@code{yyerrok} in an action. If you do this in the error rule's action, no
7315error messages will be suppressed. This macro requires no arguments;
7316@samp{yyerrok;} is a valid C statement.
7317
7318@findex yyclearin
742e4900 7319The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7320this is unacceptable, then the macro @code{yyclearin} may be used to clear
7321this token. Write the statement @samp{yyclearin;} in the error rule's
7322action.
32c29292 7323@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7324
6e649e65 7325For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7326called that advances the input stream to some point where parsing should
7327once again commence. The next symbol returned by the lexical scanner is
742e4900 7328probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7329with @samp{yyclearin;}.
7330
7331@vindex YYRECOVERING
02103984
PE
7332The expression @code{YYRECOVERING ()} yields 1 when the parser
7333is recovering from a syntax error, and 0 otherwise.
7334Syntax error diagnostics are suppressed while recovering from a syntax
7335error.
bfa74976 7336
342b8b6e 7337@node Context Dependency
bfa74976
RS
7338@chapter Handling Context Dependencies
7339
7340The Bison paradigm is to parse tokens first, then group them into larger
7341syntactic units. In many languages, the meaning of a token is affected by
7342its context. Although this violates the Bison paradigm, certain techniques
7343(known as @dfn{kludges}) may enable you to write Bison parsers for such
7344languages.
7345
7346@menu
7347* Semantic Tokens:: Token parsing can depend on the semantic context.
7348* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7349* Tie-in Recovery:: Lexical tie-ins have implications for how
7350 error recovery rules must be written.
7351@end menu
7352
7353(Actually, ``kludge'' means any technique that gets its job done but is
7354neither clean nor robust.)
7355
342b8b6e 7356@node Semantic Tokens
bfa74976
RS
7357@section Semantic Info in Token Types
7358
7359The C language has a context dependency: the way an identifier is used
7360depends on what its current meaning is. For example, consider this:
7361
7362@example
7363foo (x);
7364@end example
7365
7366This looks like a function call statement, but if @code{foo} is a typedef
7367name, then this is actually a declaration of @code{x}. How can a Bison
7368parser for C decide how to parse this input?
7369
35430378 7370The method used in GNU C is to have two different token types,
bfa74976
RS
7371@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7372identifier, it looks up the current declaration of the identifier in order
7373to decide which token type to return: @code{TYPENAME} if the identifier is
7374declared as a typedef, @code{IDENTIFIER} otherwise.
7375
7376The grammar rules can then express the context dependency by the choice of
7377token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7378but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7379@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7380is @emph{not} significant, such as in declarations that can shadow a
7381typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7382accepted---there is one rule for each of the two token types.
7383
7384This technique is simple to use if the decision of which kinds of
7385identifiers to allow is made at a place close to where the identifier is
7386parsed. But in C this is not always so: C allows a declaration to
7387redeclare a typedef name provided an explicit type has been specified
7388earlier:
7389
7390@example
3a4f411f
PE
7391typedef int foo, bar;
7392int baz (void)
7393@{
7394 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7395 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7396 return foo (bar);
7397@}
bfa74976
RS
7398@end example
7399
7400Unfortunately, the name being declared is separated from the declaration
7401construct itself by a complicated syntactic structure---the ``declarator''.
7402
9ecbd125 7403As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7404all the nonterminal names changed: once for parsing a declaration in
7405which a typedef name can be redefined, and once for parsing a
7406declaration in which that can't be done. Here is a part of the
7407duplication, with actions omitted for brevity:
bfa74976
RS
7408
7409@example
7410initdcl:
7411 declarator maybeasm '='
7412 init
7413 | declarator maybeasm
7414 ;
7415
7416notype_initdcl:
7417 notype_declarator maybeasm '='
7418 init
7419 | notype_declarator maybeasm
7420 ;
7421@end example
7422
7423@noindent
7424Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7425cannot. The distinction between @code{declarator} and
7426@code{notype_declarator} is the same sort of thing.
7427
7428There is some similarity between this technique and a lexical tie-in
7429(described next), in that information which alters the lexical analysis is
7430changed during parsing by other parts of the program. The difference is
7431here the information is global, and is used for other purposes in the
7432program. A true lexical tie-in has a special-purpose flag controlled by
7433the syntactic context.
7434
342b8b6e 7435@node Lexical Tie-ins
bfa74976
RS
7436@section Lexical Tie-ins
7437@cindex lexical tie-in
7438
7439One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7440which is set by Bison actions, whose purpose is to alter the way tokens are
7441parsed.
7442
7443For example, suppose we have a language vaguely like C, but with a special
7444construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7445an expression in parentheses in which all integers are hexadecimal. In
7446particular, the token @samp{a1b} must be treated as an integer rather than
7447as an identifier if it appears in that context. Here is how you can do it:
7448
7449@example
7450@group
7451%@{
38a92d50
PE
7452 int hexflag;
7453 int yylex (void);
7454 void yyerror (char const *);
bfa74976
RS
7455%@}
7456%%
7457@dots{}
7458@end group
7459@group
7460expr: IDENTIFIER
7461 | constant
7462 | HEX '('
7463 @{ hexflag = 1; @}
7464 expr ')'
7465 @{ hexflag = 0;
7466 $$ = $4; @}
7467 | expr '+' expr
7468 @{ $$ = make_sum ($1, $3); @}
7469 @dots{}
7470 ;
7471@end group
7472
7473@group
7474constant:
7475 INTEGER
7476 | STRING
7477 ;
7478@end group
7479@end example
7480
7481@noindent
7482Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7483it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7484with letters are parsed as integers if possible.
7485
9913d6e4
JD
7486The declaration of @code{hexflag} shown in the prologue of the grammar
7487file is needed to make it accessible to the actions (@pxref{Prologue,
7488,The Prologue}). You must also write the code in @code{yylex} to obey
7489the flag.
bfa74976 7490
342b8b6e 7491@node Tie-in Recovery
bfa74976
RS
7492@section Lexical Tie-ins and Error Recovery
7493
7494Lexical tie-ins make strict demands on any error recovery rules you have.
7495@xref{Error Recovery}.
7496
7497The reason for this is that the purpose of an error recovery rule is to
7498abort the parsing of one construct and resume in some larger construct.
7499For example, in C-like languages, a typical error recovery rule is to skip
7500tokens until the next semicolon, and then start a new statement, like this:
7501
7502@example
7503stmt: expr ';'
7504 | IF '(' expr ')' stmt @{ @dots{} @}
7505 @dots{}
7506 error ';'
7507 @{ hexflag = 0; @}
7508 ;
7509@end example
7510
7511If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7512construct, this error rule will apply, and then the action for the
7513completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7514remain set for the entire rest of the input, or until the next @code{hex}
7515keyword, causing identifiers to be misinterpreted as integers.
7516
7517To avoid this problem the error recovery rule itself clears @code{hexflag}.
7518
7519There may also be an error recovery rule that works within expressions.
7520For example, there could be a rule which applies within parentheses
7521and skips to the close-parenthesis:
7522
7523@example
7524@group
7525expr: @dots{}
7526 | '(' expr ')'
7527 @{ $$ = $2; @}
7528 | '(' error ')'
7529 @dots{}
7530@end group
7531@end example
7532
7533If this rule acts within the @code{hex} construct, it is not going to abort
7534that construct (since it applies to an inner level of parentheses within
7535the construct). Therefore, it should not clear the flag: the rest of
7536the @code{hex} construct should be parsed with the flag still in effect.
7537
7538What if there is an error recovery rule which might abort out of the
7539@code{hex} construct or might not, depending on circumstances? There is no
7540way you can write the action to determine whether a @code{hex} construct is
7541being aborted or not. So if you are using a lexical tie-in, you had better
7542make sure your error recovery rules are not of this kind. Each rule must
7543be such that you can be sure that it always will, or always won't, have to
7544clear the flag.
7545
ec3bc396
AD
7546@c ================================================== Debugging Your Parser
7547
342b8b6e 7548@node Debugging
bfa74976 7549@chapter Debugging Your Parser
ec3bc396
AD
7550
7551Developing a parser can be a challenge, especially if you don't
7552understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7553Algorithm}). Even so, sometimes a detailed description of the automaton
7554can help (@pxref{Understanding, , Understanding Your Parser}), or
7555tracing the execution of the parser can give some insight on why it
7556behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7557
7558@menu
7559* Understanding:: Understanding the structure of your parser.
7560* Tracing:: Tracing the execution of your parser.
7561@end menu
7562
7563@node Understanding
7564@section Understanding Your Parser
7565
7566As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7567Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7568frequent than one would hope), looking at this automaton is required to
7569tune or simply fix a parser. Bison provides two different
35fe0834 7570representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7571
7572The textual file is generated when the options @option{--report} or
7573@option{--verbose} are specified, see @xref{Invocation, , Invoking
7574Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
9913d6e4
JD
7575the parser implementation file name, and adding @samp{.output}
7576instead. Therefore, if the grammar file is @file{foo.y}, then the
7577parser implementation file is called @file{foo.tab.c} by default. As
7578a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
7579
7580The following grammar file, @file{calc.y}, will be used in the sequel:
7581
7582@example
7583%token NUM STR
7584%left '+' '-'
7585%left '*'
7586%%
7587exp: exp '+' exp
7588 | exp '-' exp
7589 | exp '*' exp
7590 | exp '/' exp
7591 | NUM
7592 ;
7593useless: STR;
7594%%
7595@end example
7596
88bce5a2
AD
7597@command{bison} reports:
7598
7599@example
379261b3
JD
7600calc.y: warning: 1 nonterminal useless in grammar
7601calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
7602calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7603calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7604calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7605@end example
7606
7607When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7608creates a file @file{calc.output} with contents detailed below. The
7609order of the output and the exact presentation might vary, but the
7610interpretation is the same.
ec3bc396
AD
7611
7612The first section includes details on conflicts that were solved thanks
7613to precedence and/or associativity:
7614
7615@example
7616Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7617Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7618Conflict in state 8 between rule 2 and token '*' resolved as shift.
7619@exdent @dots{}
7620@end example
7621
7622@noindent
7623The next section lists states that still have conflicts.
7624
7625@example
5a99098d
PE
7626State 8 conflicts: 1 shift/reduce
7627State 9 conflicts: 1 shift/reduce
7628State 10 conflicts: 1 shift/reduce
7629State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7630@end example
7631
7632@noindent
7633@cindex token, useless
7634@cindex useless token
7635@cindex nonterminal, useless
7636@cindex useless nonterminal
7637@cindex rule, useless
7638@cindex useless rule
7639The next section reports useless tokens, nonterminal and rules. Useless
7640nonterminals and rules are removed in order to produce a smaller parser,
7641but useless tokens are preserved, since they might be used by the
d80fb37a 7642scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7643below):
7644
7645@example
d80fb37a 7646Nonterminals useless in grammar:
ec3bc396
AD
7647 useless
7648
d80fb37a 7649Terminals unused in grammar:
ec3bc396
AD
7650 STR
7651
cff03fb2 7652Rules useless in grammar:
ec3bc396
AD
7653#6 useless: STR;
7654@end example
7655
7656@noindent
7657The next section reproduces the exact grammar that Bison used:
7658
7659@example
7660Grammar
7661
7662 Number, Line, Rule
88bce5a2 7663 0 5 $accept -> exp $end
ec3bc396
AD
7664 1 5 exp -> exp '+' exp
7665 2 6 exp -> exp '-' exp
7666 3 7 exp -> exp '*' exp
7667 4 8 exp -> exp '/' exp
7668 5 9 exp -> NUM
7669@end example
7670
7671@noindent
7672and reports the uses of the symbols:
7673
7674@example
7675Terminals, with rules where they appear
7676
88bce5a2 7677$end (0) 0
ec3bc396
AD
7678'*' (42) 3
7679'+' (43) 1
7680'-' (45) 2
7681'/' (47) 4
7682error (256)
7683NUM (258) 5
7684
7685Nonterminals, with rules where they appear
7686
88bce5a2 7687$accept (8)
ec3bc396
AD
7688 on left: 0
7689exp (9)
7690 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7691@end example
7692
7693@noindent
7694@cindex item
7695@cindex pointed rule
7696@cindex rule, pointed
7697Bison then proceeds onto the automaton itself, describing each state
7698with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7699item is a production rule together with a point (marked by @samp{.})
7700that the input cursor.
7701
7702@example
7703state 0
7704
88bce5a2 7705 $accept -> . exp $ (rule 0)
ec3bc396 7706
2a8d363a 7707 NUM shift, and go to state 1
ec3bc396 7708
2a8d363a 7709 exp go to state 2
ec3bc396
AD
7710@end example
7711
7712This reads as follows: ``state 0 corresponds to being at the very
7713beginning of the parsing, in the initial rule, right before the start
7714symbol (here, @code{exp}). When the parser returns to this state right
7715after having reduced a rule that produced an @code{exp}, the control
7716flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7717symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7718the parse stack, and the control flow jumps to state 1. Any other
742e4900 7719lookahead triggers a syntax error.''
ec3bc396
AD
7720
7721@cindex core, item set
7722@cindex item set core
7723@cindex kernel, item set
7724@cindex item set core
7725Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7726report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7727at the beginning of any rule deriving an @code{exp}. By default Bison
7728reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7729you want to see more detail you can invoke @command{bison} with
7730@option{--report=itemset} to list all the items, include those that can
7731be derived:
7732
7733@example
7734state 0
7735
88bce5a2 7736 $accept -> . exp $ (rule 0)
ec3bc396
AD
7737 exp -> . exp '+' exp (rule 1)
7738 exp -> . exp '-' exp (rule 2)
7739 exp -> . exp '*' exp (rule 3)
7740 exp -> . exp '/' exp (rule 4)
7741 exp -> . NUM (rule 5)
7742
7743 NUM shift, and go to state 1
7744
7745 exp go to state 2
7746@end example
7747
7748@noindent
7749In the state 1...
7750
7751@example
7752state 1
7753
7754 exp -> NUM . (rule 5)
7755
2a8d363a 7756 $default reduce using rule 5 (exp)
ec3bc396
AD
7757@end example
7758
7759@noindent
742e4900 7760the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7761(@samp{$default}), the parser will reduce it. If it was coming from
7762state 0, then, after this reduction it will return to state 0, and will
7763jump to state 2 (@samp{exp: go to state 2}).
7764
7765@example
7766state 2
7767
88bce5a2 7768 $accept -> exp . $ (rule 0)
ec3bc396
AD
7769 exp -> exp . '+' exp (rule 1)
7770 exp -> exp . '-' exp (rule 2)
7771 exp -> exp . '*' exp (rule 3)
7772 exp -> exp . '/' exp (rule 4)
7773
2a8d363a
AD
7774 $ shift, and go to state 3
7775 '+' shift, and go to state 4
7776 '-' shift, and go to state 5
7777 '*' shift, and go to state 6
7778 '/' shift, and go to state 7
ec3bc396
AD
7779@end example
7780
7781@noindent
7782In state 2, the automaton can only shift a symbol. For instance,
742e4900 7783because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
7784@samp{+}, it will be shifted on the parse stack, and the automaton
7785control will jump to state 4, corresponding to the item @samp{exp -> exp
7786'+' . exp}. Since there is no default action, any other token than
6e649e65 7787those listed above will trigger a syntax error.
ec3bc396 7788
34a6c2d1 7789@cindex accepting state
ec3bc396
AD
7790The state 3 is named the @dfn{final state}, or the @dfn{accepting
7791state}:
7792
7793@example
7794state 3
7795
88bce5a2 7796 $accept -> exp $ . (rule 0)
ec3bc396 7797
2a8d363a 7798 $default accept
ec3bc396
AD
7799@end example
7800
7801@noindent
7802the initial rule is completed (the start symbol and the end
7803of input were read), the parsing exits successfully.
7804
7805The interpretation of states 4 to 7 is straightforward, and is left to
7806the reader.
7807
7808@example
7809state 4
7810
7811 exp -> exp '+' . exp (rule 1)
7812
2a8d363a 7813 NUM shift, and go to state 1
ec3bc396 7814
2a8d363a 7815 exp go to state 8
ec3bc396
AD
7816
7817state 5
7818
7819 exp -> exp '-' . exp (rule 2)
7820
2a8d363a 7821 NUM shift, and go to state 1
ec3bc396 7822
2a8d363a 7823 exp go to state 9
ec3bc396
AD
7824
7825state 6
7826
7827 exp -> exp '*' . exp (rule 3)
7828
2a8d363a 7829 NUM shift, and go to state 1
ec3bc396 7830
2a8d363a 7831 exp go to state 10
ec3bc396
AD
7832
7833state 7
7834
7835 exp -> exp '/' . exp (rule 4)
7836
2a8d363a 7837 NUM shift, and go to state 1
ec3bc396 7838
2a8d363a 7839 exp go to state 11
ec3bc396
AD
7840@end example
7841
5a99098d
PE
7842As was announced in beginning of the report, @samp{State 8 conflicts:
78431 shift/reduce}:
ec3bc396
AD
7844
7845@example
7846state 8
7847
7848 exp -> exp . '+' exp (rule 1)
7849 exp -> exp '+' exp . (rule 1)
7850 exp -> exp . '-' exp (rule 2)
7851 exp -> exp . '*' exp (rule 3)
7852 exp -> exp . '/' exp (rule 4)
7853
2a8d363a
AD
7854 '*' shift, and go to state 6
7855 '/' shift, and go to state 7
ec3bc396 7856
2a8d363a
AD
7857 '/' [reduce using rule 1 (exp)]
7858 $default reduce using rule 1 (exp)
ec3bc396
AD
7859@end example
7860
742e4900 7861Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
7862either shifting (and going to state 7), or reducing rule 1. The
7863conflict means that either the grammar is ambiguous, or the parser lacks
7864information to make the right decision. Indeed the grammar is
7865ambiguous, as, since we did not specify the precedence of @samp{/}, the
7866sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
7867NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
7868NUM}, which corresponds to reducing rule 1.
7869
34a6c2d1 7870Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
7871arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
7872Shift/Reduce Conflicts}. Discarded actions are reported in between
7873square brackets.
7874
7875Note that all the previous states had a single possible action: either
7876shifting the next token and going to the corresponding state, or
7877reducing a single rule. In the other cases, i.e., when shifting
7878@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
7879possible, the lookahead is required to select the action. State 8 is
7880one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
7881is shifting, otherwise the action is reducing rule 1. In other words,
7882the first two items, corresponding to rule 1, are not eligible when the
742e4900 7883lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 7884precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
7885with some set of possible lookahead tokens. When run with
7886@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
7887
7888@example
7889state 8
7890
88c78747 7891 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
7892 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
7893 exp -> exp . '-' exp (rule 2)
7894 exp -> exp . '*' exp (rule 3)
7895 exp -> exp . '/' exp (rule 4)
7896
7897 '*' shift, and go to state 6
7898 '/' shift, and go to state 7
7899
7900 '/' [reduce using rule 1 (exp)]
7901 $default reduce using rule 1 (exp)
7902@end example
7903
7904The remaining states are similar:
7905
7906@example
7907state 9
7908
7909 exp -> exp . '+' exp (rule 1)
7910 exp -> exp . '-' exp (rule 2)
7911 exp -> exp '-' exp . (rule 2)
7912 exp -> exp . '*' exp (rule 3)
7913 exp -> exp . '/' exp (rule 4)
7914
2a8d363a
AD
7915 '*' shift, and go to state 6
7916 '/' shift, and go to state 7
ec3bc396 7917
2a8d363a
AD
7918 '/' [reduce using rule 2 (exp)]
7919 $default reduce using rule 2 (exp)
ec3bc396
AD
7920
7921state 10
7922
7923 exp -> exp . '+' exp (rule 1)
7924 exp -> exp . '-' exp (rule 2)
7925 exp -> exp . '*' exp (rule 3)
7926 exp -> exp '*' exp . (rule 3)
7927 exp -> exp . '/' exp (rule 4)
7928
2a8d363a 7929 '/' shift, and go to state 7
ec3bc396 7930
2a8d363a
AD
7931 '/' [reduce using rule 3 (exp)]
7932 $default reduce using rule 3 (exp)
ec3bc396
AD
7933
7934state 11
7935
7936 exp -> exp . '+' exp (rule 1)
7937 exp -> exp . '-' exp (rule 2)
7938 exp -> exp . '*' exp (rule 3)
7939 exp -> exp . '/' exp (rule 4)
7940 exp -> exp '/' exp . (rule 4)
7941
2a8d363a
AD
7942 '+' shift, and go to state 4
7943 '-' shift, and go to state 5
7944 '*' shift, and go to state 6
7945 '/' shift, and go to state 7
ec3bc396 7946
2a8d363a
AD
7947 '+' [reduce using rule 4 (exp)]
7948 '-' [reduce using rule 4 (exp)]
7949 '*' [reduce using rule 4 (exp)]
7950 '/' [reduce using rule 4 (exp)]
7951 $default reduce using rule 4 (exp)
ec3bc396
AD
7952@end example
7953
7954@noindent
fa7e68c3
PE
7955Observe that state 11 contains conflicts not only due to the lack of
7956precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7957@samp{*}, but also because the
ec3bc396
AD
7958associativity of @samp{/} is not specified.
7959
7960
7961@node Tracing
7962@section Tracing Your Parser
bfa74976
RS
7963@findex yydebug
7964@cindex debugging
7965@cindex tracing the parser
7966
7967If a Bison grammar compiles properly but doesn't do what you want when it
7968runs, the @code{yydebug} parser-trace feature can help you figure out why.
7969
3ded9a63
AD
7970There are several means to enable compilation of trace facilities:
7971
7972@table @asis
7973@item the macro @code{YYDEBUG}
7974@findex YYDEBUG
7975Define the macro @code{YYDEBUG} to a nonzero value when you compile the
35430378 7976parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
7977@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7978YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7979Prologue}).
7980
7981@item the option @option{-t}, @option{--debug}
7982Use the @samp{-t} option when you run Bison (@pxref{Invocation,
35430378 7983,Invoking Bison}). This is POSIX compliant too.
3ded9a63
AD
7984
7985@item the directive @samp{%debug}
7986@findex %debug
7987Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
7988Declaration Summary}). This is a Bison extension, which will prove
7989useful when Bison will output parsers for languages that don't use a
35430378 7990preprocessor. Unless POSIX and Yacc portability matter to
c827f760 7991you, this is
3ded9a63
AD
7992the preferred solution.
7993@end table
7994
7995We suggest that you always enable the debug option so that debugging is
7996always possible.
bfa74976 7997
02a81e05 7998The trace facility outputs messages with macro calls of the form
e2742e46 7999@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8000@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8001arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8002define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8003and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8004
8005Once you have compiled the program with trace facilities, the way to
8006request a trace is to store a nonzero value in the variable @code{yydebug}.
8007You can do this by making the C code do it (in @code{main}, perhaps), or
8008you can alter the value with a C debugger.
8009
8010Each step taken by the parser when @code{yydebug} is nonzero produces a
8011line or two of trace information, written on @code{stderr}. The trace
8012messages tell you these things:
8013
8014@itemize @bullet
8015@item
8016Each time the parser calls @code{yylex}, what kind of token was read.
8017
8018@item
8019Each time a token is shifted, the depth and complete contents of the
8020state stack (@pxref{Parser States}).
8021
8022@item
8023Each time a rule is reduced, which rule it is, and the complete contents
8024of the state stack afterward.
8025@end itemize
8026
8027To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8028produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8029Bison}). This file shows the meaning of each state in terms of
8030positions in various rules, and also what each state will do with each
8031possible input token. As you read the successive trace messages, you
8032can see that the parser is functioning according to its specification in
8033the listing file. Eventually you will arrive at the place where
8034something undesirable happens, and you will see which parts of the
8035grammar are to blame.
bfa74976 8036
9913d6e4
JD
8037The parser implementation file is a C program and you can use C
8038debuggers on it, but it's not easy to interpret what it is doing. The
8039parser function is a finite-state machine interpreter, and aside from
8040the actions it executes the same code over and over. Only the values
8041of variables show where in the grammar it is working.
bfa74976
RS
8042
8043@findex YYPRINT
8044The debugging information normally gives the token type of each token
8045read, but not its semantic value. You can optionally define a macro
8046named @code{YYPRINT} to provide a way to print the value. If you define
8047@code{YYPRINT}, it should take three arguments. The parser will pass a
8048standard I/O stream, the numeric code for the token type, and the token
8049value (from @code{yylval}).
8050
8051Here is an example of @code{YYPRINT} suitable for the multi-function
f56274a8 8052calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
8053
8054@smallexample
38a92d50
PE
8055%@{
8056 static void print_token_value (FILE *, int, YYSTYPE);
8057 #define YYPRINT(file, type, value) print_token_value (file, type, value)
8058%@}
8059
8060@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8061
8062static void
831d3c99 8063print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8064@{
8065 if (type == VAR)
d3c4e709 8066 fprintf (file, "%s", value.tptr->name);
bfa74976 8067 else if (type == NUM)
d3c4e709 8068 fprintf (file, "%d", value.val);
bfa74976
RS
8069@}
8070@end smallexample
8071
ec3bc396
AD
8072@c ================================================= Invoking Bison
8073
342b8b6e 8074@node Invocation
bfa74976
RS
8075@chapter Invoking Bison
8076@cindex invoking Bison
8077@cindex Bison invocation
8078@cindex options for invoking Bison
8079
8080The usual way to invoke Bison is as follows:
8081
8082@example
8083bison @var{infile}
8084@end example
8085
8086Here @var{infile} is the grammar file name, which usually ends in
9913d6e4
JD
8087@samp{.y}. The parser implementation file's name is made by replacing
8088the @samp{.y} with @samp{.tab.c} and removing any leading directory.
8089Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
8090the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
8091also possible, in case you are writing C++ code instead of C in your
8092grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
8093output files will take an extension like the given one as input
8094(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
8095feature takes effect with all options that manipulate file names like
234a3be3
AD
8096@samp{-o} or @samp{-d}.
8097
8098For example :
8099
8100@example
8101bison -d @var{infile.yxx}
8102@end example
84163231 8103@noindent
72d2299c 8104will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8105
8106@example
b56471a6 8107bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8108@end example
84163231 8109@noindent
234a3be3
AD
8110will produce @file{output.c++} and @file{outfile.h++}.
8111
35430378 8112For compatibility with POSIX, the standard Bison
397ec073
PE
8113distribution also contains a shell script called @command{yacc} that
8114invokes Bison with the @option{-y} option.
8115
bfa74976 8116@menu
13863333 8117* Bison Options:: All the options described in detail,
c827f760 8118 in alphabetical order by short options.
bfa74976 8119* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8120* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8121@end menu
8122
342b8b6e 8123@node Bison Options
bfa74976
RS
8124@section Bison Options
8125
8126Bison supports both traditional single-letter options and mnemonic long
8127option names. Long option names are indicated with @samp{--} instead of
8128@samp{-}. Abbreviations for option names are allowed as long as they
8129are unique. When a long option takes an argument, like
8130@samp{--file-prefix}, connect the option name and the argument with
8131@samp{=}.
8132
8133Here is a list of options that can be used with Bison, alphabetized by
8134short option. It is followed by a cross key alphabetized by long
8135option.
8136
89cab50d
AD
8137@c Please, keep this ordered as in `bison --help'.
8138@noindent
8139Operations modes:
8140@table @option
8141@item -h
8142@itemx --help
8143Print a summary of the command-line options to Bison and exit.
bfa74976 8144
89cab50d
AD
8145@item -V
8146@itemx --version
8147Print the version number of Bison and exit.
bfa74976 8148
f7ab6a50
PE
8149@item --print-localedir
8150Print the name of the directory containing locale-dependent data.
8151
a0de5091
JD
8152@item --print-datadir
8153Print the name of the directory containing skeletons and XSLT.
8154
89cab50d
AD
8155@item -y
8156@itemx --yacc
9913d6e4
JD
8157Act more like the traditional Yacc command. This can cause different
8158diagnostics to be generated, and may change behavior in other minor
8159ways. Most importantly, imitate Yacc's output file name conventions,
8160so that the parser implementation file is called @file{y.tab.c}, and
8161the other outputs are called @file{y.output} and @file{y.tab.h}.
8162Also, if generating a deterministic parser in C, generate
8163@code{#define} statements in addition to an @code{enum} to associate
8164token numbers with token names. Thus, the following shell script can
8165substitute for Yacc, and the Bison distribution contains such a script
8166for compatibility with POSIX:
bfa74976 8167
89cab50d 8168@example
397ec073 8169#! /bin/sh
26e06a21 8170bison -y "$@@"
89cab50d 8171@end example
54662697
PE
8172
8173The @option{-y}/@option{--yacc} option is intended for use with
8174traditional Yacc grammars. If your grammar uses a Bison extension
8175like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8176this option is specified.
8177
ecd1b61c
JD
8178@item -W [@var{category}]
8179@itemx --warnings[=@var{category}]
118d4978
AD
8180Output warnings falling in @var{category}. @var{category} can be one
8181of:
8182@table @code
8183@item midrule-values
8e55b3aa
JD
8184Warn about mid-rule values that are set but not used within any of the actions
8185of the parent rule.
8186For example, warn about unused @code{$2} in:
118d4978
AD
8187
8188@example
8189exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8190@end example
8191
8e55b3aa
JD
8192Also warn about mid-rule values that are used but not set.
8193For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8194
8195@example
8196 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
8197@end example
8198
8199These warnings are not enabled by default since they sometimes prove to
8200be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8201@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
8202
8203
8204@item yacc
35430378 8205Incompatibilities with POSIX Yacc.
118d4978
AD
8206
8207@item all
8e55b3aa 8208All the warnings.
118d4978 8209@item none
8e55b3aa 8210Turn off all the warnings.
118d4978 8211@item error
8e55b3aa 8212Treat warnings as errors.
118d4978
AD
8213@end table
8214
8215A category can be turned off by prefixing its name with @samp{no-}. For
cf22447c 8216instance, @option{-Wno-yacc} will hide the warnings about
35430378 8217POSIX Yacc incompatibilities.
89cab50d
AD
8218@end table
8219
8220@noindent
8221Tuning the parser:
8222
8223@table @option
8224@item -t
8225@itemx --debug
9913d6e4
JD
8226In the parser implementation file, define the macro @code{YYDEBUG} to
82271 if it is not already defined, so that the debugging facilities are
8228compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 8229
e14c6831
AD
8230@item -D @var{name}[=@var{value}]
8231@itemx --define=@var{name}[=@var{value}]
c33bc800 8232@itemx -F @var{name}[=@var{value}]
34d41938
JD
8233@itemx --force-define=@var{name}[=@var{value}]
8234Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
8235(@pxref{Decl Summary, ,%define}) except that Bison processes multiple
8236definitions for the same @var{name} as follows:
8237
8238@itemize
8239@item
e3a33f7c
JD
8240Bison quietly ignores all command-line definitions for @var{name} except
8241the last.
34d41938 8242@item
e3a33f7c
JD
8243If that command-line definition is specified by a @code{-D} or
8244@code{--define}, Bison reports an error for any @code{%define}
8245definition for @var{name}.
34d41938 8246@item
e3a33f7c
JD
8247If that command-line definition is specified by a @code{-F} or
8248@code{--force-define} instead, Bison quietly ignores all @code{%define}
8249definitions for @var{name}.
8250@item
8251Otherwise, Bison reports an error if there are multiple @code{%define}
8252definitions for @var{name}.
34d41938
JD
8253@end itemize
8254
8255You should avoid using @code{-F} and @code{--force-define} in your
9913d6e4
JD
8256make files unless you are confident that it is safe to quietly ignore
8257any conflicting @code{%define} that may be added to the grammar file.
e14c6831 8258
0e021770
PE
8259@item -L @var{language}
8260@itemx --language=@var{language}
8261Specify the programming language for the generated parser, as if
8262@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8263Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8264@var{language} is case-insensitive.
0e021770 8265
ed4d67dc
JD
8266This option is experimental and its effect may be modified in future
8267releases.
8268
89cab50d 8269@item --locations
d8988b2f 8270Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8271
8272@item -p @var{prefix}
8273@itemx --name-prefix=@var{prefix}
02975b9a 8274Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8275@xref{Decl Summary}.
bfa74976
RS
8276
8277@item -l
8278@itemx --no-lines
9913d6e4
JD
8279Don't put any @code{#line} preprocessor commands in the parser
8280implementation file. Ordinarily Bison puts them in the parser
8281implementation file so that the C compiler and debuggers will
8282associate errors with your source file, the grammar file. This option
8283causes them to associate errors with the parser implementation file,
8284treating it as an independent source file in its own right.
bfa74976 8285
e6e704dc
JD
8286@item -S @var{file}
8287@itemx --skeleton=@var{file}
a7867f53 8288Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8289(@pxref{Decl Summary, , Bison Declaration Summary}).
8290
ed4d67dc
JD
8291@c You probably don't need this option unless you are developing Bison.
8292@c You should use @option{--language} if you want to specify the skeleton for a
8293@c different language, because it is clearer and because it will always
8294@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8295
a7867f53
JD
8296If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8297file in the Bison installation directory.
8298If it does, @var{file} is an absolute file name or a file name relative to the
8299current working directory.
8300This is similar to how most shells resolve commands.
8301
89cab50d
AD
8302@item -k
8303@itemx --token-table
d8988b2f 8304Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8305@end table
bfa74976 8306
89cab50d
AD
8307@noindent
8308Adjust the output:
bfa74976 8309
89cab50d 8310@table @option
8e55b3aa 8311@item --defines[=@var{file}]
d8988b2f 8312Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8313file containing macro definitions for the token type names defined in
4bfd5e4e 8314the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8315
8e55b3aa
JD
8316@item -d
8317This is the same as @code{--defines} except @code{-d} does not accept a
8318@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8319with other short options.
342b8b6e 8320
89cab50d
AD
8321@item -b @var{file-prefix}
8322@itemx --file-prefix=@var{prefix}
9c437126 8323Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8324for all Bison output file names. @xref{Decl Summary}.
bfa74976 8325
ec3bc396
AD
8326@item -r @var{things}
8327@itemx --report=@var{things}
8328Write an extra output file containing verbose description of the comma
8329separated list of @var{things} among:
8330
8331@table @code
8332@item state
8333Description of the grammar, conflicts (resolved and unresolved), and
34a6c2d1 8334parser's automaton.
ec3bc396 8335
742e4900 8336@item lookahead
ec3bc396 8337Implies @code{state} and augments the description of the automaton with
742e4900 8338each rule's lookahead set.
ec3bc396
AD
8339
8340@item itemset
8341Implies @code{state} and augments the description of the automaton with
8342the full set of items for each state, instead of its core only.
8343@end table
8344
1bb2bd75
JD
8345@item --report-file=@var{file}
8346Specify the @var{file} for the verbose description.
8347
bfa74976
RS
8348@item -v
8349@itemx --verbose
9c437126 8350Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8351file containing verbose descriptions of the grammar and
72d2299c 8352parser. @xref{Decl Summary}.
bfa74976 8353
fa4d969f
PE
8354@item -o @var{file}
8355@itemx --output=@var{file}
9913d6e4 8356Specify the @var{file} for the parser implementation file.
bfa74976 8357
fa4d969f 8358The other output files' names are constructed from @var{file} as
d8988b2f 8359described under the @samp{-v} and @samp{-d} options.
342b8b6e 8360
72183df4 8361@item -g [@var{file}]
8e55b3aa 8362@itemx --graph[=@var{file}]
34a6c2d1 8363Output a graphical representation of the parser's
35fe0834 8364automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
35430378 8365@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
8366@code{@var{file}} is optional.
8367If omitted and the grammar file is @file{foo.y}, the output file will be
8368@file{foo.dot}.
59da312b 8369
72183df4 8370@item -x [@var{file}]
8e55b3aa 8371@itemx --xml[=@var{file}]
34a6c2d1 8372Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8373@code{@var{file}} is optional.
59da312b
JD
8374If omitted and the grammar file is @file{foo.y}, the output file will be
8375@file{foo.xml}.
8376(The current XML schema is experimental and may evolve.
8377More user feedback will help to stabilize it.)
bfa74976
RS
8378@end table
8379
342b8b6e 8380@node Option Cross Key
bfa74976
RS
8381@section Option Cross Key
8382
8383Here is a list of options, alphabetized by long option, to help you find
34d41938 8384the corresponding short option and directive.
bfa74976 8385
34d41938 8386@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
72183df4 8387@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8388@include cross-options.texi
aa08666d 8389@end multitable
bfa74976 8390
93dd49ab
PE
8391@node Yacc Library
8392@section Yacc Library
8393
8394The Yacc library contains default implementations of the
8395@code{yyerror} and @code{main} functions. These default
35430378 8396implementations are normally not useful, but POSIX requires
93dd49ab
PE
8397them. To use the Yacc library, link your program with the
8398@option{-ly} option. Note that Bison's implementation of the Yacc
35430378 8399library is distributed under the terms of the GNU General
93dd49ab
PE
8400Public License (@pxref{Copying}).
8401
8402If you use the Yacc library's @code{yyerror} function, you should
8403declare @code{yyerror} as follows:
8404
8405@example
8406int yyerror (char const *);
8407@end example
8408
8409Bison ignores the @code{int} value returned by this @code{yyerror}.
8410If you use the Yacc library's @code{main} function, your
8411@code{yyparse} function should have the following type signature:
8412
8413@example
8414int yyparse (void);
8415@end example
8416
12545799
AD
8417@c ================================================= C++ Bison
8418
8405b70c
PB
8419@node Other Languages
8420@chapter Parsers Written In Other Languages
12545799
AD
8421
8422@menu
8423* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8424* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8425@end menu
8426
8427@node C++ Parsers
8428@section C++ Parsers
8429
8430@menu
8431* C++ Bison Interface:: Asking for C++ parser generation
8432* C++ Semantic Values:: %union vs. C++
8433* C++ Location Values:: The position and location classes
8434* C++ Parser Interface:: Instantiating and running the parser
8435* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8436* A Complete C++ Example:: Demonstrating their use
12545799
AD
8437@end menu
8438
8439@node C++ Bison Interface
8440@subsection C++ Bison Interface
ed4d67dc 8441@c - %skeleton "lalr1.cc"
12545799
AD
8442@c - Always pure
8443@c - initial action
8444
34a6c2d1 8445The C++ deterministic parser is selected using the skeleton directive,
baacae49
AD
8446@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
8447@option{--skeleton=lalr1.cc}.
e6e704dc 8448@xref{Decl Summary}.
0e021770 8449
793fbca5
JD
8450When run, @command{bison} will create several entities in the @samp{yy}
8451namespace.
8452@findex %define namespace
8453Use the @samp{%define namespace} directive to change the namespace name, see
8454@ref{Decl Summary}.
8455The various classes are generated in the following files:
aa08666d 8456
12545799
AD
8457@table @file
8458@item position.hh
8459@itemx location.hh
8460The definition of the classes @code{position} and @code{location},
8461used for location tracking. @xref{C++ Location Values}.
8462
8463@item stack.hh
8464An auxiliary class @code{stack} used by the parser.
8465
fa4d969f
PE
8466@item @var{file}.hh
8467@itemx @var{file}.cc
9913d6e4 8468(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
8469declaration and implementation of the C++ parser class. The basename
8470and extension of these two files follow the same rules as with regular C
8471parsers (@pxref{Invocation}).
12545799 8472
cd8b5791
AD
8473The header is @emph{mandatory}; you must either pass
8474@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8475@samp{%defines} directive.
8476@end table
8477
8478All these files are documented using Doxygen; run @command{doxygen}
8479for a complete and accurate documentation.
8480
8481@node C++ Semantic Values
8482@subsection C++ Semantic Values
8483@c - No objects in unions
178e123e 8484@c - YYSTYPE
12545799
AD
8485@c - Printer and destructor
8486
8487The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8488Collection of Value Types}. In particular it produces a genuine
8489@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
8490within pseudo-unions (similar to Boost variants) might be implemented to
8491alleviate these issues.}, which have a few specific features in C++.
12545799
AD
8492@itemize @minus
8493@item
fb9712a9
AD
8494The type @code{YYSTYPE} is defined but its use is discouraged: rather
8495you should refer to the parser's encapsulated type
8496@code{yy::parser::semantic_type}.
12545799
AD
8497@item
8498Non POD (Plain Old Data) types cannot be used. C++ forbids any
8499instance of classes with constructors in unions: only @emph{pointers}
8500to such objects are allowed.
8501@end itemize
8502
8503Because objects have to be stored via pointers, memory is not
8504reclaimed automatically: using the @code{%destructor} directive is the
8505only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8506Symbols}.
8507
8508
8509@node C++ Location Values
8510@subsection C++ Location Values
8511@c - %locations
8512@c - class Position
8513@c - class Location
16dc6a9e 8514@c - %define filename_type "const symbol::Symbol"
12545799
AD
8515
8516When the directive @code{%locations} is used, the C++ parser supports
8517location tracking, see @ref{Locations, , Locations Overview}. Two
8518auxiliary classes define a @code{position}, a single point in a file,
8519and a @code{location}, a range composed of a pair of
8520@code{position}s (possibly spanning several files).
8521
fa4d969f 8522@deftypemethod {position} {std::string*} file
12545799
AD
8523The name of the file. It will always be handled as a pointer, the
8524parser will never duplicate nor deallocate it. As an experimental
8525feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8526filename_type "@var{type}"}.
12545799
AD
8527@end deftypemethod
8528
8529@deftypemethod {position} {unsigned int} line
8530The line, starting at 1.
8531@end deftypemethod
8532
8533@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8534Advance by @var{height} lines, resetting the column number.
8535@end deftypemethod
8536
8537@deftypemethod {position} {unsigned int} column
8538The column, starting at 0.
8539@end deftypemethod
8540
8541@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8542Advance by @var{width} columns, without changing the line number.
8543@end deftypemethod
8544
8545@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8546@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8547@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8548@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8549Various forms of syntactic sugar for @code{columns}.
8550@end deftypemethod
8551
8552@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8553Report @var{p} on @var{o} like this:
fa4d969f
PE
8554@samp{@var{file}:@var{line}.@var{column}}, or
8555@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8556@end deftypemethod
8557
8558@deftypemethod {location} {position} begin
8559@deftypemethodx {location} {position} end
8560The first, inclusive, position of the range, and the first beyond.
8561@end deftypemethod
8562
8563@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8564@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8565Advance the @code{end} position.
8566@end deftypemethod
8567
8568@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8569@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8570@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8571Various forms of syntactic sugar.
8572@end deftypemethod
8573
8574@deftypemethod {location} {void} step ()
8575Move @code{begin} onto @code{end}.
8576@end deftypemethod
8577
8578
8579@node C++ Parser Interface
8580@subsection C++ Parser Interface
8581@c - define parser_class_name
8582@c - Ctor
8583@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8584@c debug_stream.
8585@c - Reporting errors
8586
8587The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8588declare and define the parser class in the namespace @code{yy}. The
8589class name defaults to @code{parser}, but may be changed using
16dc6a9e 8590@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8591this class is detailed below. It can be extended using the
12545799
AD
8592@code{%parse-param} feature: its semantics is slightly changed since
8593it describes an additional member of the parser class, and an
8594additional argument for its constructor.
8595
baacae49
AD
8596@defcv {Type} {parser} {semantic_type}
8597@defcvx {Type} {parser} {location_type}
12545799 8598The types for semantics value and locations.
8a0adb01 8599@end defcv
12545799 8600
baacae49
AD
8601@defcv {Type} {parser} {token}
8602A structure that contains (only) the definition of the tokens as the
8603@code{yytokentype} enumeration. To refer to the token @code{FOO}, the
8604scanner should use @code{yy::parser::token::FOO}. The scanner can use
8605@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
8606(@pxref{Calc++ Scanner}).
8607@end defcv
8608
12545799
AD
8609@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8610Build a new parser object. There are no arguments by default, unless
8611@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8612@end deftypemethod
8613
8614@deftypemethod {parser} {int} parse ()
8615Run the syntactic analysis, and return 0 on success, 1 otherwise.
8616@end deftypemethod
8617
8618@deftypemethod {parser} {std::ostream&} debug_stream ()
8619@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8620Get or set the stream used for tracing the parsing. It defaults to
8621@code{std::cerr}.
8622@end deftypemethod
8623
8624@deftypemethod {parser} {debug_level_type} debug_level ()
8625@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8626Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8627or nonzero, full tracing.
12545799
AD
8628@end deftypemethod
8629
8630@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
8631The definition for this member function must be supplied by the user:
8632the parser uses it to report a parser error occurring at @var{l},
8633described by @var{m}.
8634@end deftypemethod
8635
8636
8637@node C++ Scanner Interface
8638@subsection C++ Scanner Interface
8639@c - prefix for yylex.
8640@c - Pure interface to yylex
8641@c - %lex-param
8642
8643The parser invokes the scanner by calling @code{yylex}. Contrary to C
8644parsers, C++ parsers are always pure: there is no point in using the
d9df47b6 8645@code{%define api.pure} directive. Therefore the interface is as follows.
12545799 8646
baacae49 8647@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
12545799
AD
8648Return the next token. Its type is the return value, its semantic
8649value and location being @var{yylval} and @var{yylloc}. Invocations of
8650@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8651@end deftypemethod
8652
8653
8654@node A Complete C++ Example
8405b70c 8655@subsection A Complete C++ Example
12545799
AD
8656
8657This section demonstrates the use of a C++ parser with a simple but
8658complete example. This example should be available on your system,
8659ready to compile, in the directory @dfn{../bison/examples/calc++}. It
8660focuses on the use of Bison, therefore the design of the various C++
8661classes is very naive: no accessors, no encapsulation of members etc.
8662We will use a Lex scanner, and more precisely, a Flex scanner, to
8663demonstrate the various interaction. A hand written scanner is
8664actually easier to interface with.
8665
8666@menu
8667* Calc++ --- C++ Calculator:: The specifications
8668* Calc++ Parsing Driver:: An active parsing context
8669* Calc++ Parser:: A parser class
8670* Calc++ Scanner:: A pure C++ Flex scanner
8671* Calc++ Top Level:: Conducting the band
8672@end menu
8673
8674@node Calc++ --- C++ Calculator
8405b70c 8675@subsubsection Calc++ --- C++ Calculator
12545799
AD
8676
8677Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 8678expression, possibly preceded by variable assignments. An
12545799
AD
8679environment containing possibly predefined variables such as
8680@code{one} and @code{two}, is exchanged with the parser. An example
8681of valid input follows.
8682
8683@example
8684three := 3
8685seven := one + two * three
8686seven * seven
8687@end example
8688
8689@node Calc++ Parsing Driver
8405b70c 8690@subsubsection Calc++ Parsing Driver
12545799
AD
8691@c - An env
8692@c - A place to store error messages
8693@c - A place for the result
8694
8695To support a pure interface with the parser (and the scanner) the
8696technique of the ``parsing context'' is convenient: a structure
8697containing all the data to exchange. Since, in addition to simply
8698launch the parsing, there are several auxiliary tasks to execute (open
8699the file for parsing, instantiate the parser etc.), we recommend
8700transforming the simple parsing context structure into a fully blown
8701@dfn{parsing driver} class.
8702
8703The declaration of this driver class, @file{calc++-driver.hh}, is as
8704follows. The first part includes the CPP guard and imports the
fb9712a9
AD
8705required standard library components, and the declaration of the parser
8706class.
12545799 8707
1c59e0a1 8708@comment file: calc++-driver.hh
12545799
AD
8709@example
8710#ifndef CALCXX_DRIVER_HH
8711# define CALCXX_DRIVER_HH
8712# include <string>
8713# include <map>
fb9712a9 8714# include "calc++-parser.hh"
12545799
AD
8715@end example
8716
12545799
AD
8717
8718@noindent
8719Then comes the declaration of the scanning function. Flex expects
8720the signature of @code{yylex} to be defined in the macro
8721@code{YY_DECL}, and the C++ parser expects it to be declared. We can
8722factor both as follows.
1c59e0a1
AD
8723
8724@comment file: calc++-driver.hh
12545799 8725@example
3dc5e96b
PE
8726// Tell Flex the lexer's prototype ...
8727# define YY_DECL \
c095d689
AD
8728 yy::calcxx_parser::token_type \
8729 yylex (yy::calcxx_parser::semantic_type* yylval, \
8730 yy::calcxx_parser::location_type* yylloc, \
8731 calcxx_driver& driver)
12545799
AD
8732// ... and declare it for the parser's sake.
8733YY_DECL;
8734@end example
8735
8736@noindent
8737The @code{calcxx_driver} class is then declared with its most obvious
8738members.
8739
1c59e0a1 8740@comment file: calc++-driver.hh
12545799
AD
8741@example
8742// Conducting the whole scanning and parsing of Calc++.
8743class calcxx_driver
8744@{
8745public:
8746 calcxx_driver ();
8747 virtual ~calcxx_driver ();
8748
8749 std::map<std::string, int> variables;
8750
8751 int result;
8752@end example
8753
8754@noindent
8755To encapsulate the coordination with the Flex scanner, it is useful to
8756have two members function to open and close the scanning phase.
12545799 8757
1c59e0a1 8758@comment file: calc++-driver.hh
12545799
AD
8759@example
8760 // Handling the scanner.
8761 void scan_begin ();
8762 void scan_end ();
8763 bool trace_scanning;
8764@end example
8765
8766@noindent
8767Similarly for the parser itself.
8768
1c59e0a1 8769@comment file: calc++-driver.hh
12545799 8770@example
bb32f4f2
AD
8771 // Run the parser. Return 0 on success.
8772 int parse (const std::string& f);
12545799
AD
8773 std::string file;
8774 bool trace_parsing;
8775@end example
8776
8777@noindent
8778To demonstrate pure handling of parse errors, instead of simply
8779dumping them on the standard error output, we will pass them to the
8780compiler driver using the following two member functions. Finally, we
8781close the class declaration and CPP guard.
8782
1c59e0a1 8783@comment file: calc++-driver.hh
12545799
AD
8784@example
8785 // Error handling.
8786 void error (const yy::location& l, const std::string& m);
8787 void error (const std::string& m);
8788@};
8789#endif // ! CALCXX_DRIVER_HH
8790@end example
8791
8792The implementation of the driver is straightforward. The @code{parse}
8793member function deserves some attention. The @code{error} functions
8794are simple stubs, they should actually register the located error
8795messages and set error state.
8796
1c59e0a1 8797@comment file: calc++-driver.cc
12545799
AD
8798@example
8799#include "calc++-driver.hh"
8800#include "calc++-parser.hh"
8801
8802calcxx_driver::calcxx_driver ()
8803 : trace_scanning (false), trace_parsing (false)
8804@{
8805 variables["one"] = 1;
8806 variables["two"] = 2;
8807@}
8808
8809calcxx_driver::~calcxx_driver ()
8810@{
8811@}
8812
bb32f4f2 8813int
12545799
AD
8814calcxx_driver::parse (const std::string &f)
8815@{
8816 file = f;
8817 scan_begin ();
8818 yy::calcxx_parser parser (*this);
8819 parser.set_debug_level (trace_parsing);
bb32f4f2 8820 int res = parser.parse ();
12545799 8821 scan_end ();
bb32f4f2 8822 return res;
12545799
AD
8823@}
8824
8825void
8826calcxx_driver::error (const yy::location& l, const std::string& m)
8827@{
8828 std::cerr << l << ": " << m << std::endl;
8829@}
8830
8831void
8832calcxx_driver::error (const std::string& m)
8833@{
8834 std::cerr << m << std::endl;
8835@}
8836@end example
8837
8838@node Calc++ Parser
8405b70c 8839@subsubsection Calc++ Parser
12545799 8840
9913d6e4
JD
8841The grammar file @file{calc++-parser.yy} starts by asking for the C++
8842deterministic parser skeleton, the creation of the parser header file,
8843and specifies the name of the parser class. Because the C++ skeleton
8844changed several times, it is safer to require the version you designed
8845the grammar for.
1c59e0a1
AD
8846
8847@comment file: calc++-parser.yy
12545799 8848@example
ed4d67dc 8849%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 8850%require "@value{VERSION}"
12545799 8851%defines
16dc6a9e 8852%define parser_class_name "calcxx_parser"
fb9712a9
AD
8853@end example
8854
8855@noindent
16dc6a9e 8856@findex %code requires
fb9712a9
AD
8857Then come the declarations/inclusions needed to define the
8858@code{%union}. Because the parser uses the parsing driver and
8859reciprocally, both cannot include the header of the other. Because the
8860driver's header needs detailed knowledge about the parser class (in
8861particular its inner types), it is the parser's header which will simply
8862use a forward declaration of the driver.
148d66d8 8863@xref{Decl Summary, ,%code}.
fb9712a9
AD
8864
8865@comment file: calc++-parser.yy
8866@example
16dc6a9e 8867%code requires @{
12545799 8868# include <string>
fb9712a9 8869class calcxx_driver;
9bc0dd67 8870@}
12545799
AD
8871@end example
8872
8873@noindent
8874The driver is passed by reference to the parser and to the scanner.
8875This provides a simple but effective pure interface, not relying on
8876global variables.
8877
1c59e0a1 8878@comment file: calc++-parser.yy
12545799
AD
8879@example
8880// The parsing context.
8881%parse-param @{ calcxx_driver& driver @}
8882%lex-param @{ calcxx_driver& driver @}
8883@end example
8884
8885@noindent
8886Then we request the location tracking feature, and initialize the
c781580d 8887first location's file name. Afterward new locations are computed
12545799
AD
8888relatively to the previous locations: the file name will be
8889automatically propagated.
8890
1c59e0a1 8891@comment file: calc++-parser.yy
12545799
AD
8892@example
8893%locations
8894%initial-action
8895@{
8896 // Initialize the initial location.
b47dbebe 8897 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
8898@};
8899@end example
8900
8901@noindent
8902Use the two following directives to enable parser tracing and verbose
8903error messages.
8904
1c59e0a1 8905@comment file: calc++-parser.yy
12545799
AD
8906@example
8907%debug
8908%error-verbose
8909@end example
8910
8911@noindent
8912Semantic values cannot use ``real'' objects, but only pointers to
8913them.
8914
1c59e0a1 8915@comment file: calc++-parser.yy
12545799
AD
8916@example
8917// Symbols.
8918%union
8919@{
8920 int ival;
8921 std::string *sval;
8922@};
8923@end example
8924
fb9712a9 8925@noindent
136a0f76
PB
8926@findex %code
8927The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 8928@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
8929
8930@comment file: calc++-parser.yy
8931@example
136a0f76 8932%code @{
fb9712a9 8933# include "calc++-driver.hh"
34f98f46 8934@}
fb9712a9
AD
8935@end example
8936
8937
12545799
AD
8938@noindent
8939The token numbered as 0 corresponds to end of file; the following line
8940allows for nicer error messages referring to ``end of file'' instead
8941of ``$end''. Similarly user friendly named are provided for each
8942symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
8943avoid name clashes.
8944
1c59e0a1 8945@comment file: calc++-parser.yy
12545799 8946@example
fb9712a9
AD
8947%token END 0 "end of file"
8948%token ASSIGN ":="
8949%token <sval> IDENTIFIER "identifier"
8950%token <ival> NUMBER "number"
a8c2e813 8951%type <ival> exp
12545799
AD
8952@end example
8953
8954@noindent
8955To enable memory deallocation during error recovery, use
8956@code{%destructor}.
8957
287c78f6 8958@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 8959@comment file: calc++-parser.yy
12545799
AD
8960@example
8961%printer @{ debug_stream () << *$$; @} "identifier"
8962%destructor @{ delete $$; @} "identifier"
8963
a8c2e813 8964%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
8965@end example
8966
8967@noindent
8968The grammar itself is straightforward.
8969
1c59e0a1 8970@comment file: calc++-parser.yy
12545799
AD
8971@example
8972%%
8973%start unit;
8974unit: assignments exp @{ driver.result = $2; @};
8975
8976assignments: assignments assignment @{@}
9d9b8b70 8977 | /* Nothing. */ @{@};
12545799 8978
3dc5e96b
PE
8979assignment:
8980 "identifier" ":=" exp
8981 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
8982
8983%left '+' '-';
8984%left '*' '/';
8985exp: exp '+' exp @{ $$ = $1 + $3; @}
8986 | exp '-' exp @{ $$ = $1 - $3; @}
8987 | exp '*' exp @{ $$ = $1 * $3; @}
8988 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 8989 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 8990 | "number" @{ $$ = $1; @};
12545799
AD
8991%%
8992@end example
8993
8994@noindent
8995Finally the @code{error} member function registers the errors to the
8996driver.
8997
1c59e0a1 8998@comment file: calc++-parser.yy
12545799
AD
8999@example
9000void
1c59e0a1
AD
9001yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
9002 const std::string& m)
12545799
AD
9003@{
9004 driver.error (l, m);
9005@}
9006@end example
9007
9008@node Calc++ Scanner
8405b70c 9009@subsubsection Calc++ Scanner
12545799
AD
9010
9011The Flex scanner first includes the driver declaration, then the
9012parser's to get the set of defined tokens.
9013
1c59e0a1 9014@comment file: calc++-scanner.ll
12545799
AD
9015@example
9016%@{ /* -*- C++ -*- */
04098407 9017# include <cstdlib>
b10dd689
AD
9018# include <cerrno>
9019# include <climits>
12545799
AD
9020# include <string>
9021# include "calc++-driver.hh"
9022# include "calc++-parser.hh"
eaea13f5
PE
9023
9024/* Work around an incompatibility in flex (at least versions
9025 2.5.31 through 2.5.33): it generates code that does
9026 not conform to C89. See Debian bug 333231
9027 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
9028# undef yywrap
9029# define yywrap() 1
eaea13f5 9030
c095d689
AD
9031/* By default yylex returns int, we use token_type.
9032 Unfortunately yyterminate by default returns 0, which is
9033 not of token_type. */
8c5b881d 9034#define yyterminate() return token::END
12545799
AD
9035%@}
9036@end example
9037
9038@noindent
9039Because there is no @code{#include}-like feature we don't need
9040@code{yywrap}, we don't need @code{unput} either, and we parse an
9041actual file, this is not an interactive session with the user.
9042Finally we enable the scanner tracing features.
9043
1c59e0a1 9044@comment file: calc++-scanner.ll
12545799
AD
9045@example
9046%option noyywrap nounput batch debug
9047@end example
9048
9049@noindent
9050Abbreviations allow for more readable rules.
9051
1c59e0a1 9052@comment file: calc++-scanner.ll
12545799
AD
9053@example
9054id [a-zA-Z][a-zA-Z_0-9]*
9055int [0-9]+
9056blank [ \t]
9057@end example
9058
9059@noindent
9d9b8b70 9060The following paragraph suffices to track locations accurately. Each
12545799
AD
9061time @code{yylex} is invoked, the begin position is moved onto the end
9062position. Then when a pattern is matched, the end position is
9063advanced of its width. In case it matched ends of lines, the end
9064cursor is adjusted, and each time blanks are matched, the begin cursor
9065is moved onto the end cursor to effectively ignore the blanks
9066preceding tokens. Comments would be treated equally.
9067
1c59e0a1 9068@comment file: calc++-scanner.ll
12545799 9069@example
828c373b
AD
9070%@{
9071# define YY_USER_ACTION yylloc->columns (yyleng);
9072%@}
12545799
AD
9073%%
9074%@{
9075 yylloc->step ();
12545799
AD
9076%@}
9077@{blank@}+ yylloc->step ();
9078[\n]+ yylloc->lines (yyleng); yylloc->step ();
9079@end example
9080
9081@noindent
fb9712a9
AD
9082The rules are simple, just note the use of the driver to report errors.
9083It is convenient to use a typedef to shorten
9084@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 9085@code{token::identifier} for instance.
12545799 9086
1c59e0a1 9087@comment file: calc++-scanner.ll
12545799 9088@example
fb9712a9
AD
9089%@{
9090 typedef yy::calcxx_parser::token token;
9091%@}
8c5b881d 9092 /* Convert ints to the actual type of tokens. */
c095d689 9093[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 9094":=" return token::ASSIGN;
04098407
PE
9095@{int@} @{
9096 errno = 0;
9097 long n = strtol (yytext, NULL, 10);
9098 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
9099 driver.error (*yylloc, "integer is out of range");
9100 yylval->ival = n;
fb9712a9 9101 return token::NUMBER;
04098407 9102@}
fb9712a9 9103@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
9104. driver.error (*yylloc, "invalid character");
9105%%
9106@end example
9107
9108@noindent
9109Finally, because the scanner related driver's member function depend
9110on the scanner's data, it is simpler to implement them in this file.
9111
1c59e0a1 9112@comment file: calc++-scanner.ll
12545799
AD
9113@example
9114void
9115calcxx_driver::scan_begin ()
9116@{
9117 yy_flex_debug = trace_scanning;
bb32f4f2
AD
9118 if (file == "-")
9119 yyin = stdin;
9120 else if (!(yyin = fopen (file.c_str (), "r")))
9121 @{
9122 error (std::string ("cannot open ") + file);
9123 exit (1);
9124 @}
12545799
AD
9125@}
9126
9127void
9128calcxx_driver::scan_end ()
9129@{
9130 fclose (yyin);
9131@}
9132@end example
9133
9134@node Calc++ Top Level
8405b70c 9135@subsubsection Calc++ Top Level
12545799
AD
9136
9137The top level file, @file{calc++.cc}, poses no problem.
9138
1c59e0a1 9139@comment file: calc++.cc
12545799
AD
9140@example
9141#include <iostream>
9142#include "calc++-driver.hh"
9143
9144int
fa4d969f 9145main (int argc, char *argv[])
12545799
AD
9146@{
9147 calcxx_driver driver;
9148 for (++argv; argv[0]; ++argv)
9149 if (*argv == std::string ("-p"))
9150 driver.trace_parsing = true;
9151 else if (*argv == std::string ("-s"))
9152 driver.trace_scanning = true;
bb32f4f2
AD
9153 else if (!driver.parse (*argv))
9154 std::cout << driver.result << std::endl;
12545799
AD
9155@}
9156@end example
9157
8405b70c
PB
9158@node Java Parsers
9159@section Java Parsers
9160
9161@menu
f56274a8
DJ
9162* Java Bison Interface:: Asking for Java parser generation
9163* Java Semantic Values:: %type and %token vs. Java
9164* Java Location Values:: The position and location classes
9165* Java Parser Interface:: Instantiating and running the parser
9166* Java Scanner Interface:: Specifying the scanner for the parser
9167* Java Action Features:: Special features for use in actions
9168* Java Differences:: Differences between C/C++ and Java Grammars
9169* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
9170@end menu
9171
9172@node Java Bison Interface
9173@subsection Java Bison Interface
9174@c - %language "Java"
8405b70c 9175
59da312b
JD
9176(The current Java interface is experimental and may evolve.
9177More user feedback will help to stabilize it.)
9178
e254a580
DJ
9179The Java parser skeletons are selected using the @code{%language "Java"}
9180directive or the @option{-L java}/@option{--language=java} option.
8405b70c 9181
e254a580 9182@c FIXME: Documented bug.
9913d6e4
JD
9183When generating a Java parser, @code{bison @var{basename}.y} will
9184create a single Java source file named @file{@var{basename}.java}
9185containing the parser implementation. Using a grammar file without a
9186@file{.y} suffix is currently broken. The basename of the parser
9187implementation file can be changed by the @code{%file-prefix}
9188directive or the @option{-p}/@option{--name-prefix} option. The
9189entire parser implementation file name can be changed by the
9190@code{%output} directive or the @option{-o}/@option{--output} option.
9191The parser implementation file contains a single class for the parser.
8405b70c 9192
e254a580 9193You can create documentation for generated parsers using Javadoc.
8405b70c 9194
e254a580
DJ
9195Contrary to C parsers, Java parsers do not use global variables; the
9196state of the parser is always local to an instance of the parser class.
9197Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
9198and @code{%define api.pure} directives does not do anything when used in
9199Java.
8405b70c 9200
e254a580 9201Push parsers are currently unsupported in Java and @code{%define
812775a0 9202api.push-pull} have no effect.
01b477c6 9203
35430378 9204GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
9205@code{glr-parser} directive.
9206
9207No header file can be generated for Java parsers. Do not use the
9208@code{%defines} directive or the @option{-d}/@option{--defines} options.
9209
9210@c FIXME: Possible code change.
9211Currently, support for debugging and verbose errors are always compiled
9212in. Thus the @code{%debug} and @code{%token-table} directives and the
9213@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
9214options have no effect. This may change in the future to eliminate
9215unused code in the generated parser, so use @code{%debug} and
9216@code{%verbose-error} explicitly if needed. Also, in the future the
9217@code{%token-table} directive might enable a public interface to
9218access the token names and codes.
8405b70c
PB
9219
9220@node Java Semantic Values
9221@subsection Java Semantic Values
9222@c - No %union, specify type in %type/%token.
9223@c - YYSTYPE
9224@c - Printer and destructor
9225
9226There is no @code{%union} directive in Java parsers. Instead, the
9227semantic values' types (class names) should be specified in the
9228@code{%type} or @code{%token} directive:
9229
9230@example
9231%type <Expression> expr assignment_expr term factor
9232%type <Integer> number
9233@end example
9234
9235By default, the semantic stack is declared to have @code{Object} members,
9236which means that the class types you specify can be of any class.
9237To improve the type safety of the parser, you can declare the common
e254a580
DJ
9238superclass of all the semantic values using the @code{%define stype}
9239directive. For example, after the following declaration:
8405b70c
PB
9240
9241@example
e254a580 9242%define stype "ASTNode"
8405b70c
PB
9243@end example
9244
9245@noindent
9246any @code{%type} or @code{%token} specifying a semantic type which
9247is not a subclass of ASTNode, will cause a compile-time error.
9248
e254a580 9249@c FIXME: Documented bug.
8405b70c
PB
9250Types used in the directives may be qualified with a package name.
9251Primitive data types are accepted for Java version 1.5 or later. Note
9252that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
9253Generic types may not be used; this is due to a limitation in the
9254implementation of Bison, and may change in future releases.
8405b70c
PB
9255
9256Java parsers do not support @code{%destructor}, since the language
9257adopts garbage collection. The parser will try to hold references
9258to semantic values for as little time as needed.
9259
9260Java parsers do not support @code{%printer}, as @code{toString()}
9261can be used to print the semantic values. This however may change
9262(in a backwards-compatible way) in future versions of Bison.
9263
9264
9265@node Java Location Values
9266@subsection Java Location Values
9267@c - %locations
9268@c - class Position
9269@c - class Location
9270
9271When the directive @code{%locations} is used, the Java parser
9272supports location tracking, see @ref{Locations, , Locations Overview}.
9273An auxiliary user-defined class defines a @dfn{position}, a single point
9274in a file; Bison itself defines a class representing a @dfn{location},
9275a range composed of a pair of positions (possibly spanning several
9276files). The location class is an inner class of the parser; the name
e254a580 9277is @code{Location} by default, and may also be renamed using
f37495f6 9278@code{%define location_type "@var{class-name}"}.
8405b70c
PB
9279
9280The location class treats the position as a completely opaque value.
9281By default, the class name is @code{Position}, but this can be changed
e254a580
DJ
9282with @code{%define position_type "@var{class-name}"}. This class must
9283be supplied by the user.
8405b70c
PB
9284
9285
e254a580
DJ
9286@deftypeivar {Location} {Position} begin
9287@deftypeivarx {Location} {Position} end
8405b70c 9288The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
9289@end deftypeivar
9290
9291@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c046698e 9292Create a @code{Location} denoting an empty range located at a given point.
e254a580 9293@end deftypeop
8405b70c 9294
e254a580
DJ
9295@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
9296Create a @code{Location} from the endpoints of the range.
9297@end deftypeop
9298
9299@deftypemethod {Location} {String} toString ()
8405b70c
PB
9300Prints the range represented by the location. For this to work
9301properly, the position class should override the @code{equals} and
9302@code{toString} methods appropriately.
9303@end deftypemethod
9304
9305
9306@node Java Parser Interface
9307@subsection Java Parser Interface
9308@c - define parser_class_name
9309@c - Ctor
9310@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9311@c debug_stream.
9312@c - Reporting errors
9313
e254a580
DJ
9314The name of the generated parser class defaults to @code{YYParser}. The
9315@code{YY} prefix may be changed using the @code{%name-prefix} directive
9316or the @option{-p}/@option{--name-prefix} option. Alternatively, use
9317@code{%define parser_class_name "@var{name}"} to give a custom name to
9318the class. The interface of this class is detailed below.
8405b70c 9319
e254a580
DJ
9320By default, the parser class has package visibility. A declaration
9321@code{%define public} will change to public visibility. Remember that,
9322according to the Java language specification, the name of the @file{.java}
9323file should match the name of the class in this case. Similarly, you can
9324use @code{abstract}, @code{final} and @code{strictfp} with the
9325@code{%define} declaration to add other modifiers to the parser class.
9326
9327The Java package name of the parser class can be specified using the
9328@code{%define package} directive. The superclass and the implemented
9329interfaces of the parser class can be specified with the @code{%define
9330extends} and @code{%define implements} directives.
9331
9332The parser class defines an inner class, @code{Location}, that is used
9333for location tracking (see @ref{Java Location Values}), and a inner
9334interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
9335these inner class/interface, and the members described in the interface
9336below, all the other members and fields are preceded with a @code{yy} or
9337@code{YY} prefix to avoid clashes with user code.
9338
9339@c FIXME: The following constants and variables are still undocumented:
9340@c @code{bisonVersion}, @code{bisonSkeleton} and @code{errorVerbose}.
9341
9342The parser class can be extended using the @code{%parse-param}
9343directive. Each occurrence of the directive will add a @code{protected
9344final} field to the parser class, and an argument to its constructor,
9345which initialize them automatically.
9346
9347Token names defined by @code{%token} and the predefined @code{EOF} token
9348name are added as constant fields to the parser class.
9349
9350@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
9351Build a new parser object with embedded @code{%code lexer}. There are
9352no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
9353used.
9354@end deftypeop
9355
9356@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
9357Build a new parser object using the specified scanner. There are no
9358additional parameters unless @code{%parse-param}s are used.
9359
9360If the scanner is defined by @code{%code lexer}, this constructor is
9361declared @code{protected} and is called automatically with a scanner
9362created with the correct @code{%lex-param}s.
9363@end deftypeop
8405b70c
PB
9364
9365@deftypemethod {YYParser} {boolean} parse ()
9366Run the syntactic analysis, and return @code{true} on success,
9367@code{false} otherwise.
9368@end deftypemethod
9369
01b477c6 9370@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9371During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9372from a syntax error.
9373@xref{Error Recovery}.
8405b70c
PB
9374@end deftypemethod
9375
9376@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9377@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9378Get or set the stream used for tracing the parsing. It defaults to
9379@code{System.err}.
9380@end deftypemethod
9381
9382@deftypemethod {YYParser} {int} getDebugLevel ()
9383@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
9384Get or set the tracing level. Currently its value is either 0, no trace,
9385or nonzero, full tracing.
9386@end deftypemethod
9387
8405b70c
PB
9388
9389@node Java Scanner Interface
9390@subsection Java Scanner Interface
01b477c6 9391@c - %code lexer
8405b70c 9392@c - %lex-param
01b477c6 9393@c - Lexer interface
8405b70c 9394
e254a580
DJ
9395There are two possible ways to interface a Bison-generated Java parser
9396with a scanner: the scanner may be defined by @code{%code lexer}, or
9397defined elsewhere. In either case, the scanner has to implement the
9398@code{Lexer} inner interface of the parser class.
9399
9400In the first case, the body of the scanner class is placed in
9401@code{%code lexer} blocks. If you want to pass parameters from the
9402parser constructor to the scanner constructor, specify them with
9403@code{%lex-param}; they are passed before @code{%parse-param}s to the
9404constructor.
01b477c6 9405
59c5ac72 9406In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
9407which is defined within the parser class (e.g., @code{YYParser.Lexer}).
9408The constructor of the parser object will then accept an object
9409implementing the interface; @code{%lex-param} is not used in this
9410case.
9411
9412In both cases, the scanner has to implement the following methods.
9413
e254a580
DJ
9414@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
9415This method is defined by the user to emit an error message. The first
9416parameter is omitted if location tracking is not active. Its type can be
9417changed using @code{%define location_type "@var{class-name}".}
8405b70c
PB
9418@end deftypemethod
9419
e254a580 9420@deftypemethod {Lexer} {int} yylex ()
8405b70c 9421Return the next token. Its type is the return value, its semantic
c781580d 9422value and location are saved and returned by the their methods in the
e254a580
DJ
9423interface.
9424
9425Use @code{%define lex_throws} to specify any uncaught exceptions.
9426Default is @code{java.io.IOException}.
8405b70c
PB
9427@end deftypemethod
9428
9429@deftypemethod {Lexer} {Position} getStartPos ()
9430@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
9431Return respectively the first position of the last token that
9432@code{yylex} returned, and the first position beyond it. These
9433methods are not needed unless location tracking is active.
8405b70c 9434
e254a580 9435The return type can be changed using @code{%define position_type
8405b70c
PB
9436"@var{class-name}".}
9437@end deftypemethod
9438
9439@deftypemethod {Lexer} {Object} getLVal ()
c781580d 9440Return the semantic value of the last token that yylex returned.
8405b70c 9441
e254a580 9442The return type can be changed using @code{%define stype
8405b70c
PB
9443"@var{class-name}".}
9444@end deftypemethod
9445
9446
e254a580
DJ
9447@node Java Action Features
9448@subsection Special Features for Use in Java Actions
9449
9450The following special constructs can be uses in Java actions.
9451Other analogous C action features are currently unavailable for Java.
9452
9453Use @code{%define throws} to specify any uncaught exceptions from parser
9454actions, and initial actions specified by @code{%initial-action}.
9455
9456@defvar $@var{n}
9457The semantic value for the @var{n}th component of the current rule.
9458This may not be assigned to.
9459@xref{Java Semantic Values}.
9460@end defvar
9461
9462@defvar $<@var{typealt}>@var{n}
9463Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9464@xref{Java Semantic Values}.
9465@end defvar
9466
9467@defvar $$
9468The semantic value for the grouping made by the current rule. As a
9469value, this is in the base type (@code{Object} or as specified by
9470@code{%define stype}) as in not cast to the declared subtype because
9471casts are not allowed on the left-hand side of Java assignments.
9472Use an explicit Java cast if the correct subtype is needed.
9473@xref{Java Semantic Values}.
9474@end defvar
9475
9476@defvar $<@var{typealt}>$
9477Same as @code{$$} since Java always allow assigning to the base type.
9478Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9479for setting the value but there is currently no easy way to distinguish
9480these constructs.
9481@xref{Java Semantic Values}.
9482@end defvar
9483
9484@defvar @@@var{n}
9485The location information of the @var{n}th component of the current rule.
9486This may not be assigned to.
9487@xref{Java Location Values}.
9488@end defvar
9489
9490@defvar @@$
9491The location information of the grouping made by the current rule.
9492@xref{Java Location Values}.
9493@end defvar
9494
9495@deffn {Statement} {return YYABORT;}
9496Return immediately from the parser, indicating failure.
9497@xref{Java Parser Interface}.
9498@end deffn
8405b70c 9499
e254a580
DJ
9500@deffn {Statement} {return YYACCEPT;}
9501Return immediately from the parser, indicating success.
9502@xref{Java Parser Interface}.
9503@end deffn
8405b70c 9504
e254a580 9505@deffn {Statement} {return YYERROR;}
c046698e 9506Start error recovery without printing an error message.
e254a580
DJ
9507@xref{Error Recovery}.
9508@end deffn
8405b70c 9509
e254a580
DJ
9510@deftypefn {Function} {boolean} recovering ()
9511Return whether error recovery is being done. In this state, the parser
9512reads token until it reaches a known state, and then restarts normal
9513operation.
9514@xref{Error Recovery}.
9515@end deftypefn
8405b70c 9516
e254a580
DJ
9517@deftypefn {Function} {protected void} yyerror (String msg)
9518@deftypefnx {Function} {protected void} yyerror (Position pos, String msg)
9519@deftypefnx {Function} {protected void} yyerror (Location loc, String msg)
9520Print an error message using the @code{yyerror} method of the scanner
9521instance in use.
9522@end deftypefn
8405b70c 9523
8405b70c 9524
8405b70c
PB
9525@node Java Differences
9526@subsection Differences between C/C++ and Java Grammars
9527
9528The different structure of the Java language forces several differences
9529between C/C++ grammars, and grammars designed for Java parsers. This
29553547 9530section summarizes these differences.
8405b70c
PB
9531
9532@itemize
9533@item
01b477c6 9534Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 9535@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
9536macros. Instead, they should be preceded by @code{return} when they
9537appear in an action. The actual definition of these symbols is
8405b70c
PB
9538opaque to the Bison grammar, and it might change in the future. The
9539only meaningful operation that you can do, is to return them.
e254a580 9540See @pxref{Java Action Features}.
8405b70c
PB
9541
9542Note that of these three symbols, only @code{YYACCEPT} and
9543@code{YYABORT} will cause a return from the @code{yyparse}
9544method@footnote{Java parsers include the actions in a separate
9545method than @code{yyparse} in order to have an intuitive syntax that
9546corresponds to these C macros.}.
9547
e254a580
DJ
9548@item
9549Java lacks unions, so @code{%union} has no effect. Instead, semantic
9550values have a common base type: @code{Object} or as specified by
c781580d 9551@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
9552@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
9553an union. The type of @code{$$}, even with angle brackets, is the base
9554type since Java casts are not allow on the left-hand side of assignments.
9555Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
9556left-hand side of assignments. See @pxref{Java Semantic Values} and
9557@pxref{Java Action Features}.
9558
8405b70c 9559@item
c781580d 9560The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
9561@table @asis
9562@item @code{%code imports}
9563blocks are placed at the beginning of the Java source code. They may
9564include copyright notices. For a @code{package} declarations, it is
9565suggested to use @code{%define package} instead.
8405b70c 9566
01b477c6
PB
9567@item unqualified @code{%code}
9568blocks are placed inside the parser class.
9569
9570@item @code{%code lexer}
9571blocks, if specified, should include the implementation of the
9572scanner. If there is no such block, the scanner can be any class
9573that implements the appropriate interface (see @pxref{Java Scanner
9574Interface}).
29553547 9575@end table
8405b70c
PB
9576
9577Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
9578In particular, @code{%@{ @dots{} %@}} blocks should not be used
9579and may give an error in future versions of Bison.
9580
01b477c6 9581The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
9582be used to define other classes used by the parser @emph{outside}
9583the parser class.
8405b70c
PB
9584@end itemize
9585
e254a580
DJ
9586
9587@node Java Declarations Summary
9588@subsection Java Declarations Summary
9589
9590This summary only include declarations specific to Java or have special
9591meaning when used in a Java parser.
9592
9593@deffn {Directive} {%language "Java"}
9594Generate a Java class for the parser.
9595@end deffn
9596
9597@deffn {Directive} %lex-param @{@var{type} @var{name}@}
9598A parameter for the lexer class defined by @code{%code lexer}
9599@emph{only}, added as parameters to the lexer constructor and the parser
9600constructor that @emph{creates} a lexer. Default is none.
9601@xref{Java Scanner Interface}.
9602@end deffn
9603
9604@deffn {Directive} %name-prefix "@var{prefix}"
9605The prefix of the parser class name @code{@var{prefix}Parser} if
9606@code{%define parser_class_name} is not used. Default is @code{YY}.
9607@xref{Java Bison Interface}.
9608@end deffn
9609
9610@deffn {Directive} %parse-param @{@var{type} @var{name}@}
9611A parameter for the parser class added as parameters to constructor(s)
9612and as fields initialized by the constructor(s). Default is none.
9613@xref{Java Parser Interface}.
9614@end deffn
9615
9616@deffn {Directive} %token <@var{type}> @var{token} @dots{}
9617Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
9618@xref{Java Semantic Values}.
9619@end deffn
9620
9621@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
9622Declare the type of nonterminals. Note that the angle brackets enclose
9623a Java @emph{type}.
9624@xref{Java Semantic Values}.
9625@end deffn
9626
9627@deffn {Directive} %code @{ @var{code} @dots{} @}
9628Code appended to the inside of the parser class.
9629@xref{Java Differences}.
9630@end deffn
9631
9632@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
9633Code inserted just after the @code{package} declaration.
9634@xref{Java Differences}.
9635@end deffn
9636
9637@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
9638Code added to the body of a inner lexer class within the parser class.
9639@xref{Java Scanner Interface}.
9640@end deffn
9641
9642@deffn {Directive} %% @var{code} @dots{}
9643Code (after the second @code{%%}) appended to the end of the file,
9644@emph{outside} the parser class.
9645@xref{Java Differences}.
9646@end deffn
9647
9648@deffn {Directive} %@{ @var{code} @dots{} %@}
9649Not supported. Use @code{%code import} instead.
9650@xref{Java Differences}.
9651@end deffn
9652
9653@deffn {Directive} {%define abstract}
9654Whether the parser class is declared @code{abstract}. Default is false.
9655@xref{Java Bison Interface}.
9656@end deffn
9657
9658@deffn {Directive} {%define extends} "@var{superclass}"
9659The superclass of the parser class. Default is none.
9660@xref{Java Bison Interface}.
9661@end deffn
9662
9663@deffn {Directive} {%define final}
9664Whether the parser class is declared @code{final}. Default is false.
9665@xref{Java Bison Interface}.
9666@end deffn
9667
9668@deffn {Directive} {%define implements} "@var{interfaces}"
9669The implemented interfaces of the parser class, a comma-separated list.
9670Default is none.
9671@xref{Java Bison Interface}.
9672@end deffn
9673
9674@deffn {Directive} {%define lex_throws} "@var{exceptions}"
9675The exceptions thrown by the @code{yylex} method of the lexer, a
9676comma-separated list. Default is @code{java.io.IOException}.
9677@xref{Java Scanner Interface}.
9678@end deffn
9679
9680@deffn {Directive} {%define location_type} "@var{class}"
9681The name of the class used for locations (a range between two
9682positions). This class is generated as an inner class of the parser
9683class by @command{bison}. Default is @code{Location}.
9684@xref{Java Location Values}.
9685@end deffn
9686
9687@deffn {Directive} {%define package} "@var{package}"
9688The package to put the parser class in. Default is none.
9689@xref{Java Bison Interface}.
9690@end deffn
9691
9692@deffn {Directive} {%define parser_class_name} "@var{name}"
9693The name of the parser class. Default is @code{YYParser} or
9694@code{@var{name-prefix}Parser}.
9695@xref{Java Bison Interface}.
9696@end deffn
9697
9698@deffn {Directive} {%define position_type} "@var{class}"
9699The name of the class used for positions. This class must be supplied by
9700the user. Default is @code{Position}.
9701@xref{Java Location Values}.
9702@end deffn
9703
9704@deffn {Directive} {%define public}
9705Whether the parser class is declared @code{public}. Default is false.
9706@xref{Java Bison Interface}.
9707@end deffn
9708
9709@deffn {Directive} {%define stype} "@var{class}"
9710The base type of semantic values. Default is @code{Object}.
9711@xref{Java Semantic Values}.
9712@end deffn
9713
9714@deffn {Directive} {%define strictfp}
9715Whether the parser class is declared @code{strictfp}. Default is false.
9716@xref{Java Bison Interface}.
9717@end deffn
9718
9719@deffn {Directive} {%define throws} "@var{exceptions}"
9720The exceptions thrown by user-supplied parser actions and
9721@code{%initial-action}, a comma-separated list. Default is none.
9722@xref{Java Parser Interface}.
9723@end deffn
9724
9725
12545799 9726@c ================================================= FAQ
d1a1114f
AD
9727
9728@node FAQ
9729@chapter Frequently Asked Questions
9730@cindex frequently asked questions
9731@cindex questions
9732
9733Several questions about Bison come up occasionally. Here some of them
9734are addressed.
9735
9736@menu
55ba27be
AD
9737* Memory Exhausted:: Breaking the Stack Limits
9738* How Can I Reset the Parser:: @code{yyparse} Keeps some State
9739* Strings are Destroyed:: @code{yylval} Loses Track of Strings
9740* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 9741* Multiple start-symbols:: Factoring closely related grammars
35430378 9742* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
9743* I can't build Bison:: Troubleshooting
9744* Where can I find help?:: Troubleshouting
9745* Bug Reports:: Troublereporting
8405b70c 9746* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
9747* Beta Testing:: Experimenting development versions
9748* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
9749@end menu
9750
1a059451
PE
9751@node Memory Exhausted
9752@section Memory Exhausted
d1a1114f
AD
9753
9754@display
1a059451 9755My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
9756message. What can I do?
9757@end display
9758
9759This question is already addressed elsewhere, @xref{Recursion,
9760,Recursive Rules}.
9761
e64fec0a
PE
9762@node How Can I Reset the Parser
9763@section How Can I Reset the Parser
5b066063 9764
0e14ad77
PE
9765The following phenomenon has several symptoms, resulting in the
9766following typical questions:
5b066063
AD
9767
9768@display
9769I invoke @code{yyparse} several times, and on correct input it works
9770properly; but when a parse error is found, all the other calls fail
0e14ad77 9771too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
9772@end display
9773
9774@noindent
9775or
9776
9777@display
0e14ad77 9778My parser includes support for an @samp{#include}-like feature, in
5b066063 9779which case I run @code{yyparse} from @code{yyparse}. This fails
d9df47b6 9780although I did specify @code{%define api.pure}.
5b066063
AD
9781@end display
9782
0e14ad77
PE
9783These problems typically come not from Bison itself, but from
9784Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
9785speed, they might not notice a change of input file. As a
9786demonstration, consider the following source file,
9787@file{first-line.l}:
9788
9789@verbatim
9790%{
9791#include <stdio.h>
9792#include <stdlib.h>
9793%}
9794%%
9795.*\n ECHO; return 1;
9796%%
9797int
0e14ad77 9798yyparse (char const *file)
5b066063
AD
9799{
9800 yyin = fopen (file, "r");
9801 if (!yyin)
9802 exit (2);
fa7e68c3 9803 /* One token only. */
5b066063 9804 yylex ();
0e14ad77 9805 if (fclose (yyin) != 0)
5b066063
AD
9806 exit (3);
9807 return 0;
9808}
9809
9810int
0e14ad77 9811main (void)
5b066063
AD
9812{
9813 yyparse ("input");
9814 yyparse ("input");
9815 return 0;
9816}
9817@end verbatim
9818
9819@noindent
9820If the file @file{input} contains
9821
9822@verbatim
9823input:1: Hello,
9824input:2: World!
9825@end verbatim
9826
9827@noindent
0e14ad77 9828then instead of getting the first line twice, you get:
5b066063
AD
9829
9830@example
9831$ @kbd{flex -ofirst-line.c first-line.l}
9832$ @kbd{gcc -ofirst-line first-line.c -ll}
9833$ @kbd{./first-line}
9834input:1: Hello,
9835input:2: World!
9836@end example
9837
0e14ad77
PE
9838Therefore, whenever you change @code{yyin}, you must tell the
9839Lex-generated scanner to discard its current buffer and switch to the
9840new one. This depends upon your implementation of Lex; see its
9841documentation for more. For Flex, it suffices to call
9842@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
9843Flex-generated scanner needs to read from several input streams to
9844handle features like include files, you might consider using Flex
9845functions like @samp{yy_switch_to_buffer} that manipulate multiple
9846input buffers.
5b066063 9847
b165c324
AD
9848If your Flex-generated scanner uses start conditions (@pxref{Start
9849conditions, , Start conditions, flex, The Flex Manual}), you might
9850also want to reset the scanner's state, i.e., go back to the initial
9851start condition, through a call to @samp{BEGIN (0)}.
9852
fef4cb51
AD
9853@node Strings are Destroyed
9854@section Strings are Destroyed
9855
9856@display
c7e441b4 9857My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
9858them. Instead of reporting @samp{"foo", "bar"}, it reports
9859@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
9860@end display
9861
9862This error is probably the single most frequent ``bug report'' sent to
9863Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 9864of the scanner. Consider the following Lex code:
fef4cb51
AD
9865
9866@verbatim
9867%{
9868#include <stdio.h>
9869char *yylval = NULL;
9870%}
9871%%
9872.* yylval = yytext; return 1;
9873\n /* IGNORE */
9874%%
9875int
9876main ()
9877{
fa7e68c3 9878 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
9879 char *fst = (yylex (), yylval);
9880 char *snd = (yylex (), yylval);
9881 printf ("\"%s\", \"%s\"\n", fst, snd);
9882 return 0;
9883}
9884@end verbatim
9885
9886If you compile and run this code, you get:
9887
9888@example
9889$ @kbd{flex -osplit-lines.c split-lines.l}
9890$ @kbd{gcc -osplit-lines split-lines.c -ll}
9891$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9892"one
9893two", "two"
9894@end example
9895
9896@noindent
9897this is because @code{yytext} is a buffer provided for @emph{reading}
9898in the action, but if you want to keep it, you have to duplicate it
9899(e.g., using @code{strdup}). Note that the output may depend on how
9900your implementation of Lex handles @code{yytext}. For instance, when
9901given the Lex compatibility option @option{-l} (which triggers the
9902option @samp{%array}) Flex generates a different behavior:
9903
9904@example
9905$ @kbd{flex -l -osplit-lines.c split-lines.l}
9906$ @kbd{gcc -osplit-lines split-lines.c -ll}
9907$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9908"two", "two"
9909@end example
9910
9911
2fa09258
AD
9912@node Implementing Gotos/Loops
9913@section Implementing Gotos/Loops
a06ea4aa
AD
9914
9915@display
9916My simple calculator supports variables, assignments, and functions,
2fa09258 9917but how can I implement gotos, or loops?
a06ea4aa
AD
9918@end display
9919
9920Although very pedagogical, the examples included in the document blur
a1c84f45 9921the distinction to make between the parser---whose job is to recover
a06ea4aa 9922the structure of a text and to transmit it to subsequent modules of
a1c84f45 9923the program---and the processing (such as the execution) of this
a06ea4aa
AD
9924structure. This works well with so called straight line programs,
9925i.e., precisely those that have a straightforward execution model:
9926execute simple instructions one after the others.
9927
9928@cindex abstract syntax tree
35430378 9929@cindex AST
a06ea4aa
AD
9930If you want a richer model, you will probably need to use the parser
9931to construct a tree that does represent the structure it has
9932recovered; this tree is usually called the @dfn{abstract syntax tree},
35430378 9933or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
9934traversing it in various ways, will enable treatments such as its
9935execution or its translation, which will result in an interpreter or a
9936compiler.
9937
9938This topic is way beyond the scope of this manual, and the reader is
9939invited to consult the dedicated literature.
9940
9941
ed2e6384
AD
9942@node Multiple start-symbols
9943@section Multiple start-symbols
9944
9945@display
9946I have several closely related grammars, and I would like to share their
9947implementations. In fact, I could use a single grammar but with
9948multiple entry points.
9949@end display
9950
9951Bison does not support multiple start-symbols, but there is a very
9952simple means to simulate them. If @code{foo} and @code{bar} are the two
9953pseudo start-symbols, then introduce two new tokens, say
9954@code{START_FOO} and @code{START_BAR}, and use them as switches from the
9955real start-symbol:
9956
9957@example
9958%token START_FOO START_BAR;
9959%start start;
9960start: START_FOO foo
9961 | START_BAR bar;
9962@end example
9963
9964These tokens prevents the introduction of new conflicts. As far as the
9965parser goes, that is all that is needed.
9966
9967Now the difficult part is ensuring that the scanner will send these
9968tokens first. If your scanner is hand-written, that should be
9969straightforward. If your scanner is generated by Lex, them there is
9970simple means to do it: recall that anything between @samp{%@{ ... %@}}
9971after the first @code{%%} is copied verbatim in the top of the generated
9972@code{yylex} function. Make sure a variable @code{start_token} is
9973available in the scanner (e.g., a global variable or using
9974@code{%lex-param} etc.), and use the following:
9975
9976@example
9977 /* @r{Prologue.} */
9978%%
9979%@{
9980 if (start_token)
9981 @{
9982 int t = start_token;
9983 start_token = 0;
9984 return t;
9985 @}
9986%@}
9987 /* @r{The rules.} */
9988@end example
9989
9990
55ba27be
AD
9991@node Secure? Conform?
9992@section Secure? Conform?
9993
9994@display
9995Is Bison secure? Does it conform to POSIX?
9996@end display
9997
9998If you're looking for a guarantee or certification, we don't provide it.
9999However, Bison is intended to be a reliable program that conforms to the
35430378 10000POSIX specification for Yacc. If you run into problems,
55ba27be
AD
10001please send us a bug report.
10002
10003@node I can't build Bison
10004@section I can't build Bison
10005
10006@display
8c5b881d
PE
10007I can't build Bison because @command{make} complains that
10008@code{msgfmt} is not found.
55ba27be
AD
10009What should I do?
10010@end display
10011
10012Like most GNU packages with internationalization support, that feature
10013is turned on by default. If you have problems building in the @file{po}
10014subdirectory, it indicates that your system's internationalization
10015support is lacking. You can re-configure Bison with
10016@option{--disable-nls} to turn off this support, or you can install GNU
10017gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
10018Bison. See the file @file{ABOUT-NLS} for more information.
10019
10020
10021@node Where can I find help?
10022@section Where can I find help?
10023
10024@display
10025I'm having trouble using Bison. Where can I find help?
10026@end display
10027
10028First, read this fine manual. Beyond that, you can send mail to
10029@email{help-bison@@gnu.org}. This mailing list is intended to be
10030populated with people who are willing to answer questions about using
10031and installing Bison. Please keep in mind that (most of) the people on
10032the list have aspects of their lives which are not related to Bison (!),
10033so you may not receive an answer to your question right away. This can
10034be frustrating, but please try not to honk them off; remember that any
10035help they provide is purely voluntary and out of the kindness of their
10036hearts.
10037
10038@node Bug Reports
10039@section Bug Reports
10040
10041@display
10042I found a bug. What should I include in the bug report?
10043@end display
10044
10045Before you send a bug report, make sure you are using the latest
10046version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
10047mirrors. Be sure to include the version number in your bug report. If
10048the bug is present in the latest version but not in a previous version,
10049try to determine the most recent version which did not contain the bug.
10050
10051If the bug is parser-related, you should include the smallest grammar
10052you can which demonstrates the bug. The grammar file should also be
10053complete (i.e., I should be able to run it through Bison without having
10054to edit or add anything). The smaller and simpler the grammar, the
10055easier it will be to fix the bug.
10056
10057Include information about your compilation environment, including your
10058operating system's name and version and your compiler's name and
10059version. If you have trouble compiling, you should also include a
10060transcript of the build session, starting with the invocation of
10061`configure'. Depending on the nature of the bug, you may be asked to
10062send additional files as well (such as `config.h' or `config.cache').
10063
10064Patches are most welcome, but not required. That is, do not hesitate to
10065send a bug report just because you can not provide a fix.
10066
10067Send bug reports to @email{bug-bison@@gnu.org}.
10068
8405b70c
PB
10069@node More Languages
10070@section More Languages
55ba27be
AD
10071
10072@display
8405b70c 10073Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
10074favorite language here}?
10075@end display
10076
8405b70c 10077C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
10078languages; contributions are welcome.
10079
10080@node Beta Testing
10081@section Beta Testing
10082
10083@display
10084What is involved in being a beta tester?
10085@end display
10086
10087It's not terribly involved. Basically, you would download a test
10088release, compile it, and use it to build and run a parser or two. After
10089that, you would submit either a bug report or a message saying that
10090everything is okay. It is important to report successes as well as
10091failures because test releases eventually become mainstream releases,
10092but only if they are adequately tested. If no one tests, development is
10093essentially halted.
10094
10095Beta testers are particularly needed for operating systems to which the
10096developers do not have easy access. They currently have easy access to
10097recent GNU/Linux and Solaris versions. Reports about other operating
10098systems are especially welcome.
10099
10100@node Mailing Lists
10101@section Mailing Lists
10102
10103@display
10104How do I join the help-bison and bug-bison mailing lists?
10105@end display
10106
10107See @url{http://lists.gnu.org/}.
a06ea4aa 10108
d1a1114f
AD
10109@c ================================================= Table of Symbols
10110
342b8b6e 10111@node Table of Symbols
bfa74976
RS
10112@appendix Bison Symbols
10113@cindex Bison symbols, table of
10114@cindex symbols in Bison, table of
10115
18b519c0 10116@deffn {Variable} @@$
3ded9a63 10117In an action, the location of the left-hand side of the rule.
88bce5a2 10118@xref{Locations, , Locations Overview}.
18b519c0 10119@end deffn
3ded9a63 10120
18b519c0 10121@deffn {Variable} @@@var{n}
3ded9a63
AD
10122In an action, the location of the @var{n}-th symbol of the right-hand
10123side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 10124@end deffn
3ded9a63 10125
1f68dca5
AR
10126@deffn {Variable} @@@var{name}
10127In an action, the location of a symbol addressed by name.
10128@xref{Locations, , Locations Overview}.
10129@end deffn
10130
10131@deffn {Variable} @@[@var{name}]
10132In an action, the location of a symbol addressed by name.
10133@xref{Locations, , Locations Overview}.
10134@end deffn
10135
18b519c0 10136@deffn {Variable} $$
3ded9a63
AD
10137In an action, the semantic value of the left-hand side of the rule.
10138@xref{Actions}.
18b519c0 10139@end deffn
3ded9a63 10140
18b519c0 10141@deffn {Variable} $@var{n}
3ded9a63
AD
10142In an action, the semantic value of the @var{n}-th symbol of the
10143right-hand side of the rule. @xref{Actions}.
18b519c0 10144@end deffn
3ded9a63 10145
1f68dca5
AR
10146@deffn {Variable} $@var{name}
10147In an action, the semantic value of a symbol addressed by name.
10148@xref{Actions}.
10149@end deffn
10150
10151@deffn {Variable} $[@var{name}]
10152In an action, the semantic value of a symbol addressed by name.
10153@xref{Actions}.
10154@end deffn
10155
dd8d9022
AD
10156@deffn {Delimiter} %%
10157Delimiter used to separate the grammar rule section from the
10158Bison declarations section or the epilogue.
10159@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 10160@end deffn
bfa74976 10161
dd8d9022
AD
10162@c Don't insert spaces, or check the DVI output.
10163@deffn {Delimiter} %@{@var{code}%@}
9913d6e4
JD
10164All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
10165to the parser implementation file. Such code forms the prologue of
10166the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 10167Grammar}.
18b519c0 10168@end deffn
bfa74976 10169
dd8d9022
AD
10170@deffn {Construct} /*@dots{}*/
10171Comment delimiters, as in C.
18b519c0 10172@end deffn
bfa74976 10173
dd8d9022
AD
10174@deffn {Delimiter} :
10175Separates a rule's result from its components. @xref{Rules, ,Syntax of
10176Grammar Rules}.
18b519c0 10177@end deffn
bfa74976 10178
dd8d9022
AD
10179@deffn {Delimiter} ;
10180Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10181@end deffn
bfa74976 10182
dd8d9022
AD
10183@deffn {Delimiter} |
10184Separates alternate rules for the same result nonterminal.
10185@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10186@end deffn
bfa74976 10187
12e35840
JD
10188@deffn {Directive} <*>
10189Used to define a default tagged @code{%destructor} or default tagged
10190@code{%printer}.
85894313
JD
10191
10192This feature is experimental.
10193More user feedback will help to determine whether it should become a permanent
10194feature.
10195
12e35840
JD
10196@xref{Destructor Decl, , Freeing Discarded Symbols}.
10197@end deffn
10198
3ebecc24 10199@deffn {Directive} <>
12e35840
JD
10200Used to define a default tagless @code{%destructor} or default tagless
10201@code{%printer}.
85894313
JD
10202
10203This feature is experimental.
10204More user feedback will help to determine whether it should become a permanent
10205feature.
10206
12e35840
JD
10207@xref{Destructor Decl, , Freeing Discarded Symbols}.
10208@end deffn
10209
dd8d9022
AD
10210@deffn {Symbol} $accept
10211The predefined nonterminal whose only rule is @samp{$accept: @var{start}
10212$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
10213Start-Symbol}. It cannot be used in the grammar.
18b519c0 10214@end deffn
bfa74976 10215
136a0f76 10216@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
10217@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
10218Insert @var{code} verbatim into output parser source.
10219@xref{Decl Summary,,%code}.
9bc0dd67 10220@end deffn
9bc0dd67 10221
18b519c0 10222@deffn {Directive} %debug
6deb4447 10223Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 10224@end deffn
6deb4447 10225
91d2c560 10226@ifset defaultprec
22fccf95
PE
10227@deffn {Directive} %default-prec
10228Assign a precedence to rules that lack an explicit @samp{%prec}
10229modifier. @xref{Contextual Precedence, ,Context-Dependent
10230Precedence}.
39a06c25 10231@end deffn
91d2c560 10232@end ifset
39a06c25 10233
148d66d8
JD
10234@deffn {Directive} %define @var{define-variable}
10235@deffnx {Directive} %define @var{define-variable} @var{value}
f37495f6 10236@deffnx {Directive} %define @var{define-variable} "@var{value}"
148d66d8
JD
10237Define a variable to adjust Bison's behavior.
10238@xref{Decl Summary,,%define}.
10239@end deffn
10240
18b519c0 10241@deffn {Directive} %defines
9913d6e4
JD
10242Bison declaration to create a parser header file, which is usually
10243meant for the scanner. @xref{Decl Summary}.
18b519c0 10244@end deffn
6deb4447 10245
02975b9a
JD
10246@deffn {Directive} %defines @var{defines-file}
10247Same as above, but save in the file @var{defines-file}.
10248@xref{Decl Summary}.
10249@end deffn
10250
18b519c0 10251@deffn {Directive} %destructor
258b75ca 10252Specify how the parser should reclaim the memory associated to
fa7e68c3 10253discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 10254@end deffn
72f889cc 10255
18b519c0 10256@deffn {Directive} %dprec
676385e2 10257Bison declaration to assign a precedence to a rule that is used at parse
c827f760 10258time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
35430378 10259GLR Parsers}.
18b519c0 10260@end deffn
676385e2 10261
dd8d9022
AD
10262@deffn {Symbol} $end
10263The predefined token marking the end of the token stream. It cannot be
10264used in the grammar.
10265@end deffn
10266
10267@deffn {Symbol} error
10268A token name reserved for error recovery. This token may be used in
10269grammar rules so as to allow the Bison parser to recognize an error in
10270the grammar without halting the process. In effect, a sentence
10271containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
10272token @code{error} becomes the current lookahead token. Actions
10273corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
10274token is reset to the token that originally caused the violation.
10275@xref{Error Recovery}.
18d192f0
AD
10276@end deffn
10277
18b519c0 10278@deffn {Directive} %error-verbose
2a8d363a
AD
10279Bison declaration to request verbose, specific error message strings
10280when @code{yyerror} is called.
18b519c0 10281@end deffn
2a8d363a 10282
02975b9a 10283@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 10284Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 10285Summary}.
18b519c0 10286@end deffn
d8988b2f 10287
18b519c0 10288@deffn {Directive} %glr-parser
35430378
JD
10289Bison declaration to produce a GLR parser. @xref{GLR
10290Parsers, ,Writing GLR Parsers}.
18b519c0 10291@end deffn
676385e2 10292
dd8d9022
AD
10293@deffn {Directive} %initial-action
10294Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
10295@end deffn
10296
e6e704dc
JD
10297@deffn {Directive} %language
10298Specify the programming language for the generated parser.
10299@xref{Decl Summary}.
10300@end deffn
10301
18b519c0 10302@deffn {Directive} %left
bfa74976
RS
10303Bison declaration to assign left associativity to token(s).
10304@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10305@end deffn
bfa74976 10306
feeb0eda 10307@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
10308Bison declaration to specifying an additional parameter that
10309@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
10310for Pure Parsers}.
18b519c0 10311@end deffn
2a8d363a 10312
18b519c0 10313@deffn {Directive} %merge
676385e2 10314Bison declaration to assign a merging function to a rule. If there is a
fae437e8 10315reduce/reduce conflict with a rule having the same merging function, the
676385e2 10316function is applied to the two semantic values to get a single result.
35430378 10317@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 10318@end deffn
676385e2 10319
02975b9a 10320@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 10321Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 10322@end deffn
d8988b2f 10323
91d2c560 10324@ifset defaultprec
22fccf95
PE
10325@deffn {Directive} %no-default-prec
10326Do not assign a precedence to rules that lack an explicit @samp{%prec}
10327modifier. @xref{Contextual Precedence, ,Context-Dependent
10328Precedence}.
10329@end deffn
91d2c560 10330@end ifset
22fccf95 10331
18b519c0 10332@deffn {Directive} %no-lines
931c7513 10333Bison declaration to avoid generating @code{#line} directives in the
9913d6e4 10334parser implementation file. @xref{Decl Summary}.
18b519c0 10335@end deffn
931c7513 10336
18b519c0 10337@deffn {Directive} %nonassoc
9d9b8b70 10338Bison declaration to assign nonassociativity to token(s).
bfa74976 10339@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10340@end deffn
bfa74976 10341
02975b9a 10342@deffn {Directive} %output "@var{file}"
9913d6e4
JD
10343Bison declaration to set the name of the parser implementation file.
10344@xref{Decl Summary}.
18b519c0 10345@end deffn
d8988b2f 10346
feeb0eda 10347@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
10348Bison declaration to specifying an additional parameter that
10349@code{yyparse} should accept. @xref{Parser Function,, The Parser
10350Function @code{yyparse}}.
18b519c0 10351@end deffn
2a8d363a 10352
18b519c0 10353@deffn {Directive} %prec
bfa74976
RS
10354Bison declaration to assign a precedence to a specific rule.
10355@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 10356@end deffn
bfa74976 10357
18b519c0 10358@deffn {Directive} %pure-parser
d9df47b6
JD
10359Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
10360for which Bison is more careful to warn about unreasonable usage.
18b519c0 10361@end deffn
bfa74976 10362
b50d2359 10363@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
10364Require version @var{version} or higher of Bison. @xref{Require Decl, ,
10365Require a Version of Bison}.
b50d2359
AD
10366@end deffn
10367
18b519c0 10368@deffn {Directive} %right
bfa74976
RS
10369Bison declaration to assign right associativity to token(s).
10370@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10371@end deffn
bfa74976 10372
e6e704dc
JD
10373@deffn {Directive} %skeleton
10374Specify the skeleton to use; usually for development.
10375@xref{Decl Summary}.
10376@end deffn
10377
18b519c0 10378@deffn {Directive} %start
704a47c4
AD
10379Bison declaration to specify the start symbol. @xref{Start Decl, ,The
10380Start-Symbol}.
18b519c0 10381@end deffn
bfa74976 10382
18b519c0 10383@deffn {Directive} %token
bfa74976
RS
10384Bison declaration to declare token(s) without specifying precedence.
10385@xref{Token Decl, ,Token Type Names}.
18b519c0 10386@end deffn
bfa74976 10387
18b519c0 10388@deffn {Directive} %token-table
9913d6e4
JD
10389Bison declaration to include a token name table in the parser
10390implementation file. @xref{Decl Summary}.
18b519c0 10391@end deffn
931c7513 10392
18b519c0 10393@deffn {Directive} %type
704a47c4
AD
10394Bison declaration to declare nonterminals. @xref{Type Decl,
10395,Nonterminal Symbols}.
18b519c0 10396@end deffn
bfa74976 10397
dd8d9022
AD
10398@deffn {Symbol} $undefined
10399The predefined token onto which all undefined values returned by
10400@code{yylex} are mapped. It cannot be used in the grammar, rather, use
10401@code{error}.
10402@end deffn
10403
18b519c0 10404@deffn {Directive} %union
bfa74976
RS
10405Bison declaration to specify several possible data types for semantic
10406values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 10407@end deffn
bfa74976 10408
dd8d9022
AD
10409@deffn {Macro} YYABORT
10410Macro to pretend that an unrecoverable syntax error has occurred, by
10411making @code{yyparse} return 1 immediately. The error reporting
10412function @code{yyerror} is not called. @xref{Parser Function, ,The
10413Parser Function @code{yyparse}}.
8405b70c
PB
10414
10415For Java parsers, this functionality is invoked using @code{return YYABORT;}
10416instead.
dd8d9022 10417@end deffn
3ded9a63 10418
dd8d9022
AD
10419@deffn {Macro} YYACCEPT
10420Macro to pretend that a complete utterance of the language has been
10421read, by making @code{yyparse} return 0 immediately.
10422@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
10423
10424For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
10425instead.
dd8d9022 10426@end deffn
bfa74976 10427
dd8d9022 10428@deffn {Macro} YYBACKUP
742e4900 10429Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 10430token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10431@end deffn
bfa74976 10432
dd8d9022 10433@deffn {Variable} yychar
32c29292 10434External integer variable that contains the integer value of the
742e4900 10435lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
10436@code{yyparse}.) Error-recovery rule actions may examine this variable.
10437@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10438@end deffn
bfa74976 10439
dd8d9022
AD
10440@deffn {Variable} yyclearin
10441Macro used in error-recovery rule actions. It clears the previous
742e4900 10442lookahead token. @xref{Error Recovery}.
18b519c0 10443@end deffn
bfa74976 10444
dd8d9022
AD
10445@deffn {Macro} YYDEBUG
10446Macro to define to equip the parser with tracing code. @xref{Tracing,
10447,Tracing Your Parser}.
18b519c0 10448@end deffn
bfa74976 10449
dd8d9022
AD
10450@deffn {Variable} yydebug
10451External integer variable set to zero by default. If @code{yydebug}
10452is given a nonzero value, the parser will output information on input
10453symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 10454@end deffn
bfa74976 10455
dd8d9022
AD
10456@deffn {Macro} yyerrok
10457Macro to cause parser to recover immediately to its normal mode
10458after a syntax error. @xref{Error Recovery}.
10459@end deffn
10460
10461@deffn {Macro} YYERROR
10462Macro to pretend that a syntax error has just been detected: call
10463@code{yyerror} and then perform normal error recovery if possible
10464(@pxref{Error Recovery}), or (if recovery is impossible) make
10465@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
10466
10467For Java parsers, this functionality is invoked using @code{return YYERROR;}
10468instead.
dd8d9022
AD
10469@end deffn
10470
10471@deffn {Function} yyerror
10472User-supplied function to be called by @code{yyparse} on error.
10473@xref{Error Reporting, ,The Error
10474Reporting Function @code{yyerror}}.
10475@end deffn
10476
10477@deffn {Macro} YYERROR_VERBOSE
10478An obsolete macro that you define with @code{#define} in the prologue
10479to request verbose, specific error message strings
10480when @code{yyerror} is called. It doesn't matter what definition you
10481use for @code{YYERROR_VERBOSE}, just whether you define it. Using
10482@code{%error-verbose} is preferred.
10483@end deffn
10484
10485@deffn {Macro} YYINITDEPTH
10486Macro for specifying the initial size of the parser stack.
1a059451 10487@xref{Memory Management}.
dd8d9022
AD
10488@end deffn
10489
10490@deffn {Function} yylex
10491User-supplied lexical analyzer function, called with no arguments to get
10492the next token. @xref{Lexical, ,The Lexical Analyzer Function
10493@code{yylex}}.
10494@end deffn
10495
10496@deffn {Macro} YYLEX_PARAM
10497An obsolete macro for specifying an extra argument (or list of extra
32c29292 10498arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
10499macro is deprecated, and is supported only for Yacc like parsers.
10500@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
10501@end deffn
10502
10503@deffn {Variable} yylloc
10504External variable in which @code{yylex} should place the line and column
10505numbers associated with a token. (In a pure parser, it is a local
10506variable within @code{yyparse}, and its address is passed to
32c29292
JD
10507@code{yylex}.)
10508You can ignore this variable if you don't use the @samp{@@} feature in the
10509grammar actions.
10510@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 10511In semantic actions, it stores the location of the lookahead token.
32c29292 10512@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
10513@end deffn
10514
10515@deffn {Type} YYLTYPE
10516Data type of @code{yylloc}; by default, a structure with four
10517members. @xref{Location Type, , Data Types of Locations}.
10518@end deffn
10519
10520@deffn {Variable} yylval
10521External variable in which @code{yylex} should place the semantic
10522value associated with a token. (In a pure parser, it is a local
10523variable within @code{yyparse}, and its address is passed to
32c29292
JD
10524@code{yylex}.)
10525@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 10526In semantic actions, it stores the semantic value of the lookahead token.
32c29292 10527@xref{Actions, ,Actions}.
dd8d9022
AD
10528@end deffn
10529
10530@deffn {Macro} YYMAXDEPTH
1a059451
PE
10531Macro for specifying the maximum size of the parser stack. @xref{Memory
10532Management}.
dd8d9022
AD
10533@end deffn
10534
10535@deffn {Variable} yynerrs
8a2800e7 10536Global variable which Bison increments each time it reports a syntax error.
f4101aa6 10537(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 10538pure push parser, it is a member of yypstate.)
dd8d9022
AD
10539@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
10540@end deffn
10541
10542@deffn {Function} yyparse
10543The parser function produced by Bison; call this function to start
10544parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
10545@end deffn
10546
9987d1b3 10547@deffn {Function} yypstate_delete
f4101aa6 10548The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 10549call this function to delete the memory associated with a parser.
f4101aa6 10550@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 10551@code{yypstate_delete}}.
59da312b
JD
10552(The current push parsing interface is experimental and may evolve.
10553More user feedback will help to stabilize it.)
9987d1b3
JD
10554@end deffn
10555
10556@deffn {Function} yypstate_new
f4101aa6 10557The function to create a parser instance, produced by Bison in push mode;
9987d1b3 10558call this function to create a new parser.
f4101aa6 10559@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 10560@code{yypstate_new}}.
59da312b
JD
10561(The current push parsing interface is experimental and may evolve.
10562More user feedback will help to stabilize it.)
9987d1b3
JD
10563@end deffn
10564
10565@deffn {Function} yypull_parse
f4101aa6
AD
10566The parser function produced by Bison in push mode; call this function to
10567parse the rest of the input stream.
10568@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 10569@code{yypull_parse}}.
59da312b
JD
10570(The current push parsing interface is experimental and may evolve.
10571More user feedback will help to stabilize it.)
9987d1b3
JD
10572@end deffn
10573
10574@deffn {Function} yypush_parse
f4101aa6
AD
10575The parser function produced by Bison in push mode; call this function to
10576parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 10577@code{yypush_parse}}.
59da312b
JD
10578(The current push parsing interface is experimental and may evolve.
10579More user feedback will help to stabilize it.)
9987d1b3
JD
10580@end deffn
10581
dd8d9022
AD
10582@deffn {Macro} YYPARSE_PARAM
10583An obsolete macro for specifying the name of a parameter that
10584@code{yyparse} should accept. The use of this macro is deprecated, and
10585is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
10586Conventions for Pure Parsers}.
10587@end deffn
10588
10589@deffn {Macro} YYRECOVERING
02103984
PE
10590The expression @code{YYRECOVERING ()} yields 1 when the parser
10591is recovering from a syntax error, and 0 otherwise.
10592@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
10593@end deffn
10594
10595@deffn {Macro} YYSTACK_USE_ALLOCA
34a6c2d1
JD
10596Macro used to control the use of @code{alloca} when the
10597deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
10598the parser will use @code{malloc} to extend its stacks. If defined to
105991, the parser will use @code{alloca}. Values other than 0 and 1 are
10600reserved for future Bison extensions. If not defined,
10601@code{YYSTACK_USE_ALLOCA} defaults to 0.
10602
55289366 10603In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
10604limited stack and with unreliable stack-overflow checking, you should
10605set @code{YYMAXDEPTH} to a value that cannot possibly result in
10606unchecked stack overflow on any of your target hosts when
10607@code{alloca} is called. You can inspect the code that Bison
10608generates in order to determine the proper numeric values. This will
10609require some expertise in low-level implementation details.
dd8d9022
AD
10610@end deffn
10611
10612@deffn {Type} YYSTYPE
10613Data type of semantic values; @code{int} by default.
10614@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 10615@end deffn
bfa74976 10616
342b8b6e 10617@node Glossary
bfa74976
RS
10618@appendix Glossary
10619@cindex glossary
10620
10621@table @asis
34a6c2d1
JD
10622@item Accepting State
10623A state whose only action is the accept action.
10624The accepting state is thus a consistent state.
10625@xref{Understanding,,}.
10626
35430378 10627@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
10628Formal method of specifying context-free grammars originally proposed
10629by John Backus, and slightly improved by Peter Naur in his 1960-01-02
10630committee document contributing to what became the Algol 60 report.
10631@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 10632
34a6c2d1
JD
10633@item Consistent State
10634A state containing only one possible action.
1d0f55cc 10635@xref{Decl Summary,,lr.default-reductions}.
34a6c2d1 10636
bfa74976
RS
10637@item Context-free grammars
10638Grammars specified as rules that can be applied regardless of context.
10639Thus, if there is a rule which says that an integer can be used as an
10640expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
10641permitted. @xref{Language and Grammar, ,Languages and Context-Free
10642Grammars}.
bfa74976 10643
620b5727
JD
10644@item Default Reduction
10645The reduction that a parser should perform if the current parser state
34a6c2d1 10646contains no other action for the lookahead token.
620b5727
JD
10647In permitted parser states, Bison declares the reduction with the
10648largest lookahead set to be the default reduction and removes that
10649lookahead set.
1d0f55cc 10650@xref{Decl Summary,,lr.default-reductions}.
34a6c2d1 10651
bfa74976
RS
10652@item Dynamic allocation
10653Allocation of memory that occurs during execution, rather than at
10654compile time or on entry to a function.
10655
10656@item Empty string
10657Analogous to the empty set in set theory, the empty string is a
10658character string of length zero.
10659
10660@item Finite-state stack machine
10661A ``machine'' that has discrete states in which it is said to exist at
10662each instant in time. As input to the machine is processed, the
10663machine moves from state to state as specified by the logic of the
10664machine. In the case of the parser, the input is the language being
10665parsed, and the states correspond to various stages in the grammar
c827f760 10666rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 10667
35430378 10668@item Generalized LR (GLR)
676385e2 10669A parsing algorithm that can handle all context-free grammars, including those
35430378 10670that are not LR(1). It resolves situations that Bison's
34a6c2d1 10671deterministic parsing
676385e2
PH
10672algorithm cannot by effectively splitting off multiple parsers, trying all
10673possible parsers, and discarding those that fail in the light of additional
c827f760 10674right context. @xref{Generalized LR Parsing, ,Generalized
35430378 10675LR Parsing}.
676385e2 10676
bfa74976
RS
10677@item Grouping
10678A language construct that is (in general) grammatically divisible;
c827f760 10679for example, `expression' or `declaration' in C@.
bfa74976
RS
10680@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10681
35430378
JD
10682@item IELR(1)
10683A minimal LR(1) parser table generation algorithm.
10684That is, given any context-free grammar, IELR(1) generates
34a6c2d1 10685parser tables with the full language recognition power of canonical
35430378
JD
10686LR(1) but with nearly the same number of parser states as
10687LALR(1).
34a6c2d1 10688This reduction in parser states is often an order of magnitude.
35430378 10689More importantly, because canonical LR(1)'s extra parser
34a6c2d1 10690states may contain duplicate conflicts in the case of
35430378
JD
10691non-LR(1) grammars, the number of conflicts for
10692IELR(1) is often an order of magnitude less as well.
34a6c2d1
JD
10693This can significantly reduce the complexity of developing of a grammar.
10694@xref{Decl Summary,,lr.type}.
10695
bfa74976
RS
10696@item Infix operator
10697An arithmetic operator that is placed between the operands on which it
10698performs some operation.
10699
10700@item Input stream
10701A continuous flow of data between devices or programs.
10702
35430378 10703@item LAC (Lookahead Correction)
4c38b19e
JD
10704A parsing mechanism that fixes the problem of delayed syntax error
10705detection, which is caused by LR state merging, default reductions, and
10706the use of @code{%nonassoc}. Delayed syntax error detection results in
10707unexpected semantic actions, initiation of error recovery in the wrong
10708syntactic context, and an incorrect list of expected tokens in a verbose
10709syntax error message. @xref{Decl Summary,,parse.lac}.
10710
bfa74976
RS
10711@item Language construct
10712One of the typical usage schemas of the language. For example, one of
10713the constructs of the C language is the @code{if} statement.
10714@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10715
10716@item Left associativity
10717Operators having left associativity are analyzed from left to right:
10718@samp{a+b+c} first computes @samp{a+b} and then combines with
10719@samp{c}. @xref{Precedence, ,Operator Precedence}.
10720
10721@item Left recursion
89cab50d
AD
10722A rule whose result symbol is also its first component symbol; for
10723example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
10724Rules}.
bfa74976
RS
10725
10726@item Left-to-right parsing
10727Parsing a sentence of a language by analyzing it token by token from
c827f760 10728left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10729
10730@item Lexical analyzer (scanner)
10731A function that reads an input stream and returns tokens one by one.
10732@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
10733
10734@item Lexical tie-in
10735A flag, set by actions in the grammar rules, which alters the way
10736tokens are parsed. @xref{Lexical Tie-ins}.
10737
931c7513 10738@item Literal string token
14ded682 10739A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 10740
742e4900
JD
10741@item Lookahead token
10742A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 10743Tokens}.
bfa74976 10744
35430378 10745@item LALR(1)
bfa74976 10746The class of context-free grammars that Bison (like most other parser
35430378 10747generators) can handle by default; a subset of LR(1).
34a6c2d1 10748@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 10749
35430378 10750@item LR(1)
bfa74976 10751The class of context-free grammars in which at most one token of
742e4900 10752lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
10753
10754@item Nonterminal symbol
10755A grammar symbol standing for a grammatical construct that can
10756be expressed through rules in terms of smaller constructs; in other
10757words, a construct that is not a token. @xref{Symbols}.
10758
bfa74976
RS
10759@item Parser
10760A function that recognizes valid sentences of a language by analyzing
10761the syntax structure of a set of tokens passed to it from a lexical
10762analyzer.
10763
10764@item Postfix operator
10765An arithmetic operator that is placed after the operands upon which it
10766performs some operation.
10767
10768@item Reduction
10769Replacing a string of nonterminals and/or terminals with a single
89cab50d 10770nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 10771Parser Algorithm}.
bfa74976
RS
10772
10773@item Reentrant
10774A reentrant subprogram is a subprogram which can be in invoked any
10775number of times in parallel, without interference between the various
10776invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
10777
10778@item Reverse polish notation
10779A language in which all operators are postfix operators.
10780
10781@item Right recursion
89cab50d
AD
10782A rule whose result symbol is also its last component symbol; for
10783example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
10784Rules}.
bfa74976
RS
10785
10786@item Semantics
10787In computer languages, the semantics are specified by the actions
10788taken for each instance of the language, i.e., the meaning of
10789each statement. @xref{Semantics, ,Defining Language Semantics}.
10790
10791@item Shift
10792A parser is said to shift when it makes the choice of analyzing
10793further input from the stream rather than reducing immediately some
c827f760 10794already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10795
10796@item Single-character literal
10797A single character that is recognized and interpreted as is.
10798@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
10799
10800@item Start symbol
10801The nonterminal symbol that stands for a complete valid utterance in
10802the language being parsed. The start symbol is usually listed as the
13863333 10803first nonterminal symbol in a language specification.
bfa74976
RS
10804@xref{Start Decl, ,The Start-Symbol}.
10805
10806@item Symbol table
10807A data structure where symbol names and associated data are stored
10808during parsing to allow for recognition and use of existing
10809information in repeated uses of a symbol. @xref{Multi-function Calc}.
10810
6e649e65
PE
10811@item Syntax error
10812An error encountered during parsing of an input stream due to invalid
10813syntax. @xref{Error Recovery}.
10814
bfa74976
RS
10815@item Token
10816A basic, grammatically indivisible unit of a language. The symbol
10817that describes a token in the grammar is a terminal symbol.
10818The input of the Bison parser is a stream of tokens which comes from
10819the lexical analyzer. @xref{Symbols}.
10820
10821@item Terminal symbol
89cab50d
AD
10822A grammar symbol that has no rules in the grammar and therefore is
10823grammatically indivisible. The piece of text it represents is a token.
10824@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
10825@end table
10826
342b8b6e 10827@node Copying This Manual
f2b5126e 10828@appendix Copying This Manual
f2b5126e
PB
10829@include fdl.texi
10830
342b8b6e 10831@node Index
bfa74976
RS
10832@unnumbered Index
10833
10834@printindex cp
10835
bfa74976 10836@bye
a06ea4aa 10837
8fbbeba2
AD
10838@c Local Variables:
10839@c fill-column: 76
10840@c End:
10841
232be91a
AD
10842@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
10843@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
10844@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
10845@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
10846@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
10847@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
10848@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
10849@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
10850@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
10851@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
10852@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
10853@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
10854@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
10855@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym enum
10856@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
10857@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
10858@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
10859@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
10860@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
10861@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
10862@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
10863@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
10864@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
10865@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype Lookahead
10866@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
10867@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
10868@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
10869@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
10870@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
4c38b19e 10871@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
232be91a 10872@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs
9913d6e4 10873@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC
232be91a
AD
10874@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
10875@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative
10876@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
10877@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
10878@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
10879@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz
10880@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
9913d6e4 10881@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno
232be91a
AD
10882@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
10883@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
10884@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
10885@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
10886@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc
10887@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
10888@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
10889@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
10890@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
10891@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
840341d6 10892@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett
232be91a 10893@c LocalWords: subdirectory Solaris nonassociativity